Science.gov

Sample records for 1-butyl-3-methylimidazolium hexafluorophosphate bmimpf6

  1. Mechanical exfoliation of graphite in 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) providing graphene nanoplatelets that exhibit enhanced electrocatalysis

    NASA Astrophysics Data System (ADS)

    Hayes, William Ignatius; Lubarsky, Gennady; Li, Meixian; Papakonstantinou, Pagona

    2014-12-01

    A novel production method for graphene nanoplatelets (GPs) with enhanced electrocatalytic behaviour is presented. GPs show improvement in their oxygen reduction reaction (ORR) catalysis after prolonging the grinding of graphite in 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6). Nitrogen doping of the GPs has inferred a further increase in ORR. The ORR onset potential, cathodic current magnitude and electron transfer efficiency have all improved as a direct consequence of increasing the graphite grinding duration from 30 min to 4 h. Atomic force microscopy has confirmed a decrease in the GP diameter and height as the grinding increases. Raman spectroscopy indicates a higher level of defects present after prolonging the graphite grinding in BMIM-PF6, most likely a result of the increased edge plane exposure. This increased edge plane appears to promote a higher level of nitrogen incorporation as the graphite grinding duration increases, as confirmed by X-ray photoelectron spectroscopy analysis. The stability of the cathodic current assessed by chronoamperometry analysis is higher for the GP and nitrogen doped graphene nanoplatelet (N-GP) samples than the platinum on carbon black (Pt/C). This study presents a novel process for the production of nitrogen doped graphene nanoplatelets, constituting a strategy for the up-scaled production of electrocatalysts.

  2. Multiprobe Spectroscopic Evidence for "Hyperpolarity" within 1-Butyl-3-methylimidazolium Hexafluorophosphate Mixtures with Tetraethylene Glycol

    SciTech Connect

    Sarkar, Abhra; Trivedi, Shruti; Baker, Gary A; Pandey, Siddharth

    2008-01-01

    A hybrid, potentially green solvent system composed of tetraethylene glycol (TEG) and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) was investigated across all mole fractions with regard to the solvent properties of the mixture. For this purpose, a suite of absorbance- and fluorescence-based solvatochromic probes were utilized to explore solute-solvent and solvent-solvent interactions existing within the [bmim][PF6] + TEG system. These studies revealed an interesting and unusual synergistic solvent effect. In particular, a remarkable hyperpolarity was observed in which the ET value, comprising dipolarity/polarizability and hydrogen bond donor (HBD) acidity contributions, at intermediate mole fractions of the binary mixture well exceeded that of the most polar pure component (i.e., [bmim][PF6]). Independently determined dipolarity/polarizability ( *) and HBD acidity (R) Kamlet-Taft values for the [bmim][PF6] + TEG mixtures were also observed to be anomalously high at intermediate mole fractions, whereas hydrogen bond acceptor (HBA) basicities ( values) were much more in line with the ideal arithmetic values predicted on a mole fraction basis.

  3. Catalytic activities of fungal oxidases in hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate-based microemulsion.

    PubMed

    Zhou, Gui-Ping; Zhang, Yun; Huang, Xi-Rong; Shi, Chuan-Hong; Liu, Wei-Feng; Li, Yue-Zhong; Qu, Yin-Bo; Gao, Pei-Ji

    2008-10-01

    For hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]), an H(2)O-in-[BMIM][PF(6)] microemulsion could be formed in the presence of nonionic surfactant Triton X-100 (TX-100). In such a medium, both lignin peroxidase (LiP) and laccase could express their catalytic activity with the optimum molar ratio of H(2)O to TX-100 at 8.0 for LiP and >20 for laccase, and the optimum pH values at 3.2 for LiP and 4.2 for laccase, respectively. As compared with pure or water saturated [BMIM][PF(6)], in which the two oxidases had negligible catalytic activity due to the strong inactivating effect of [BMIM][PF(6)] on both enzymes, the use of the [BMIM][PF(6)]-based microemulsion had some advantages. Not only the catalytic activities of both fungal oxidases greatly enhanced, but also the apparent viscosity of the medium decreased. PMID:18602799

  4. Interaction of ionic liquid with water in ternary microemulsions (Triton X-100/water/1-butyl-3-methylimidazolium hexafluorophosphate) probed by solvent and rotational relaxation of coumarin 153 and coumarin 151.

    PubMed

    Seth, Debabrata; Chakraborty, Anjan; Setua, Palash; Sarkar, Nilmoni

    2006-08-29

    The interaction of ionic liquid with water in 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6])/Triton X-100 (TX-100)/H2O ternary microemulsions, i.e., "[bmim][PF6]-in-water" microregions of the microemulsions, has been studied by the dynamics of solvent and rotational relaxation of coumarin 153 (C-153) and coumarin 151 (C-151). The variation of the time constants of solvent relaxation of C-153 is very small with an increase in the [bmim][PF6]/TX-100 ratio (R). The rotational relaxation time of C-153 also remains unchanged in all micremulsions of different R values. The invariance of solvation and rotational relaxation times of C-153 indicates that the position of C-153 remains unaltered with an increase in R and probably the probe is located at the interfacial region of [bmim][PF6] and TX-100 in the microemulsions. On the other hand, in the case of C-151, with an increase in R the fast component of the solvation time gradually increases and the slow component gradually decreases, although the change in solvation time is small in comparison to that of microemulsions containing common polar solvents such as water, methanol, acetonitrile, etc. The rotational relaxation time of C-151 increases with an increase in R. This indicates that with an increase in the [bmim][PF6] content the number of C-151 molecules in the core of the microemulsions gradually increases. In general, the solvent relaxation time is retarded in this room temperature ionic liquid/water-containing microemulsion compared to that of a neat solvent, although retardation is very small compared to that of the solvent relaxation time of the conventional solvent in the core of the microemulsions. PMID:16922562

  5. Solid phase extraction of cadmium on 2-mercaptobenzothiazole loaded on sulfur powder in the medium of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and cold vapor generation-atomic absorption spectrometric determination.

    PubMed

    Pourreza, N; Ghanemi, K

    2010-06-15

    A novel solid phase extractor for preconcentration of cadmium at ng L(-1) levels has been developed. Cadmium ions were retained on a column packed with sulfur powder modified with 2-mercaptobenzothiazole (2-MBT) in the medium of 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim](+)PF(6)(-)) ionic liquid. The presence of ionic liquid during modification of sulfur enhanced the retention of cadmium ions on the column. The retained cadmium ions were eluted with 2 mol L(-1) solution of HCl and measured by cold vapor generation-atomic absorption spectrometry (CVG-AAS). By using reaction cell-gas liquid separator (RC-GLS), gaseous cadmium vapors were produced and reached the atomic absorption spectrometer, instantaneously. The influence of different variables on both processes of solid phase extraction and CVG-AAS determination of cadmium ions was investigated. The calibration curve was linear in the range of 10-200 ng L(-1)of cadmium in the initial solution with r=0.9992 (n=8) under optimum conditions. The limit of detection based on three times the standard deviation of the blank (3S(b), n=10) was 4.6 ng L(-1). The relative standard deviation (R.S.D.) of 25 and 150 ng L(-1) of cadmium was 4.1 and 2.2% (n=8), respectively. The procedure was validated by the analysis of a certified reference material (DORM-3), water and fish samples.

  6. Characterization of cellulose II nanoparticles regenerated from ionic liquid, 1-butyl-3-methylimidazolium chloride

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Regenerated cellulose nanoparticles (RCNs) including both elongated fiber and spherical structures were prepared from microcrystalline cellulose (MCC)and cotton using 1-butyl-3-methylimidazolium chloride followed by high-pressure homogenization. The crystalline structure of RCNs was cellulose II in ...

  7. MICROWAVE-ASSISTED PREPARATION OF 1-BUTYL-3-METHYLIMIDAZOLIUM TETRACHLOROGALLATE AND ITS CATALYTIC USE IN ACETAL FORMATION UNDER MILD CONDITIONS

    EPA Science Inventory

    1-Butyl-3-methylimidazolium tetrachlorogallate, [bmim][GaCl4], prepared via microwave-assisted protocol, is found to be an active catalyst for the efficient acetalization of aldehydes under mild conditions.

  8. Dielectric spectroscopy study on ionic liquid microemulsion composed of water, TX-100, and BmimPF6

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Nozaki, Ryusuke

    2012-06-01

    We report here a broadband dielectric spectroscopy study on an ionic liquid microemulsion (ILM) composed of water, Triton X-100 (TX-100), and 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6). It is found that the phase behavior of this ILM can be easily identified by its dielectric response. The dielectric behavior of the ILM in the GHz range is consistent with that of TX-100/water mixtures with comparable water-to-TX-100 weight ratio. It consists of the relaxations due to ethylene oxide (EO) unit relaxation, hydration water dynamics, and/or free water dynamics. The water content dependence of the EO unit relaxation suggests that this relaxation involves dynamics of hydration water molecules. In the IL-in-water microemulsion phase, it is found that bmimPF6 molecules are preferentially dissolved in water when their concentration in water is lower than the solubility. An additional dielectric relaxation that is absent in the TX-100/water mixtures is observed in the frequency range of 107-108 Hz for this ILM. This low-frequency relaxation is found closely related to the bmimPF6 molecule and could be attributed to the hopping of its cations/anions between the anionic/cationic sites.

  9. Dielectric spectroscopy study on ionic liquid microemulsion composed of water, TX-100, and BmimPF6.

    PubMed

    Chen, Zhen; Nozaki, Ryusuke

    2012-06-28

    We report here a broadband dielectric spectroscopy study on an ionic liquid microemulsion (ILM) composed of water, Triton X-100 (TX-100), and 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF(6)). It is found that the phase behavior of this ILM can be easily identified by its dielectric response. The dielectric behavior of the ILM in the GHz range is consistent with that of TX-100∕water mixtures with comparable water-to-TX-100 weight ratio. It consists of the relaxations due to ethylene oxide (EO) unit relaxation, hydration water dynamics, and∕or free water dynamics. The water content dependence of the EO unit relaxation suggests that this relaxation involves dynamics of hydration water molecules. In the IL-in-water microemulsion phase, it is found that bmimPF(6) molecules are preferentially dissolved in water when their concentration in water is lower than the solubility. An additional dielectric relaxation that is absent in the TX-100∕water mixtures is observed in the frequency range of 10(7)-10(8) Hz for this ILM. This low-frequency relaxation is found closely related to the bmimPF(6) molecule and could be attributed to the hopping of its cations∕anions between the anionic∕cationic sites. PMID:22755585

  10. Efficient production and separation of biodegradable surfactants from cellulose in 1-butyl-3-methylimidazolium chloride.

    PubMed

    Puga, Alberto V; Corma, Avelino

    2014-12-01

    Alkyl glycoside biodegradable surfactants were produced from cellulose and 1-octanol or 1-dodecanol in a one-pot, two-step (hydrolysis-glycosidation) process in 1-butyl-3-methylimidazolium chloride. Both surfactant productivity and separation efficiencies have been strikingly enhanced compared to other previously reported ionic liquid processes. Production temperatures were decreased to limit the extent of glucose dehydration and further degradation processes, but the conversions remained high. Surfactant molar yields up to 72% were achieved by operating at 70 °C. Several separation procedures were tested to achieve high recoveries of both surfactant and ionic liquid. The use of a silica stationary phase was useful for isolation of the surfactant, whereas crystallization of the ionic liquid improved its separation efficiency. Finally, the precipitation of dodecyl glycosides in aqueous media was highly efficient for their isolation and for the recovery (>99%) of the ionic liquid by using only water as the solvent for separation.

  11. Electron density analysis of 1-butyl-3-methylimidazolium chloride ionic liquid.

    PubMed

    del Olmo, Lourdes; Morera-Boado, Cercis; López, Rafael; García de la Vega, José M

    2014-06-01

    An analysis of the electron density of different conformers of the 1-butyl-3-methylimidazolium chloride (bmimCl) ionic liquid by using DFT through the BVP86 density functional has been obtained within the framework of Bader's atom in molecules (AIM), localized orbital locator (LOL), natural bond orbital (NBO), and deformed atoms in molecules (DAM). We also present an analysis of the reduced density gradients that deliver the non-covalent interaction regions and allow to understand the nature of intermolecular interactions. The most polar conformer can be characterized as ionic by AIM, LOL, and DAM methods while the most stable and the least polar shows shared-type interactions. The NBO method allows to comprehend what causes the stabilization of the most stable conformer based on analysis of the second-order perturbative energy and the charge transferred among the natural orbitals involved in the interaction. PMID:24878801

  12. Electron density analysis of 1-butyl-3-methylimidazolium chloride ionic liquid.

    PubMed

    del Olmo, Lourdes; Morera-Boado, Cercis; López, Rafael; García de la Vega, José M

    2014-06-01

    An analysis of the electron density of different conformers of the 1-butyl-3-methylimidazolium chloride (bmimCl) ionic liquid by using DFT through the BVP86 density functional has been obtained within the framework of Bader's atom in molecules (AIM), localized orbital locator (LOL), natural bond orbital (NBO), and deformed atoms in molecules (DAM). We also present an analysis of the reduced density gradients that deliver the non-covalent interaction regions and allow to understand the nature of intermolecular interactions. The most polar conformer can be characterized as ionic by AIM, LOL, and DAM methods while the most stable and the least polar shows shared-type interactions. The NBO method allows to comprehend what causes the stabilization of the most stable conformer based on analysis of the second-order perturbative energy and the charge transferred among the natural orbitals involved in the interaction.

  13. Green polymer electrolytes based on chitosan and 1-butyl-3-methylimidazolium acetate

    SciTech Connect

    Shamsudin, Intan Juliana; Ahmad, Azizan; Hassan, Nur Hasyareeda

    2014-09-03

    Green polymer electrolytes based on chitosan as the polymer matrix and ionic liquid 1-butyl-3-methylimidazolium acetate [Bmim][OAc] as charge carriers were prepared by solution casting technique. Complexes with various amount of ionic liquid loading were investigated as possible ionic conducting polymers. The ionic conductivity was found to increase with increasing weight percent of ionic liquid. The highest ionic conductivity of the charged chitosan-[Bmim][OAc] was 2.44 × 10{sup −3} S cm{sup −1} at 90 wt.% of [Bmim][OAc] content at ambient temperature. Attenuated Total Reflection Fourier Transform infrared (ATR-FTIR) spectroscopy has proven the interaction between chitosan and [Bmim][OAc]. X-ray Diffraction (XRD) has shown that the amorphosity of the complexes increase as the amount of [Bmim][OAc] increase.

  14. Electrodeposition of Nanocrystalline Chromium Coatings Based on 1-Butyl-3-Methylimidazolium-Bromide Ionic Liquid.

    PubMed

    He, Xinkuai; Zhu, Qingyun; Hou, Bailong; Cai, Youxing; Li, Chen; Fu, Liqin; Wu, Luye

    2015-12-01

    The electrochemical behavior of trivalent chromium reduction from 1-butyl-3-methylimidazolium-bromide ([BMIM]Br) ionic liquid is studied. The result of cyclic voltammetry shows that the Cr(III) reduction is irreversible and occurs in two steps, Cr(III)to Cr(II), and Cr(II) to Cr(0), respectively. In the electrochemical impedance spectroscopy measurements, the preferable equivalent circuit is made to fit the experimental data. The effects of electroplating parameters on coating thickness and electrodepositon rate are investigated by potentiostatic method on Cu electrode from Cr(III)-[BMIM]Br solution. The results show that the temperature and depositing potential have great effect on the coating thickness and electrodeposition rate. The surface morphology and composition of deposited Cr are investigated using scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS). SEM analysis shows that chromium electrodeposits obtained on Cu electrodes present a ball-like structure. EDS analysis shows that the coatings are composed of Cr. Moreover, the corrosion resistance of the as-deposited chromium layer is evaluated using polarization curves. The results show that the corrosion resistance of the chromium coatings obtained at higher potential is better.

  15. Understanding the dissolution of cellulose in 1-butyl-3-methylimidazolium acetate+DMAc solvent.

    PubMed

    Xu, Airong; Guo, Xin; Xu, Rui

    2015-11-01

    Cellulose solvent ([C4mim][CH3COO]/DMAc) could be obtained by adding N,N-dimethylacetamide (DMAc) in 1-butyl-3-methylimidazolium acetate ([C4mim][CH3COO]). The solubilities of cellulose in [C4mim][CH3COO]/DMAc solvents were determined at 25°C. The effects of molar ratio of DMAc to [C4mim][CH3COO] on cellulose solubility and the possible dissolution mechanism of cellulose in [C4mim][CH3COO]/DMAc solvent have been studied. Moreover, the regenerated cellulose from [C4mim][CH3COO]/DMAc solvent were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). It was found that, cellulose was more readily dissolved in [C4mim][CH3COO]/DMAc solvent than in a neat [C4mim][CH3COO], which mainly attributed to the increased "free" [CH3COO](-) anions and [C4mim](+) cations which result from the dissociation of [C4mim][CH3COO] by DMAc. Moreover, the regenerated cellulose from [C4mim][CH3COO]/DMAc solvent displayed good thermostability and similar molecular structure to the original cellulose. PMID:26432363

  16. Highly ordered cellulose II crystalline regenerated from cellulose hydrolyzed by 1-butyl-3-methylimidazolium chloride.

    PubMed

    Ahn, Yongjun; Song, Younghan; Kwak, Seung-Yeop; Kim, Hyungsup

    2016-02-10

    This research focused on the preparation of highly ordered cellulose II crystalline by cellulose hydrolysis in ionic liquid, and the influence of molecular mobility on recrystallization of cellulose. The molar mass of cellulose was controlled by hydrolysis using 1-butyl-3-methylimidazolium chloride (BmimCl). The molecular mobility of cellulose dissolved in BmimCl was characterized by rheological properties. After characterization of cellulose solution and regeneration, change of molar mass and conversion to crystalline were monitored using gel-permeation chromatography and powder X-ray diffraction, respectively. The molar mass of the cellulose in BmimCl was remarkably decreased with an increase in duration time, resulting in better mobility and a lower conformational constraint below critical molar mass. The decrease in molar mass surprisingly increased the crystallinity up to ∼ 85%, suggesting a recrystallization rate dependence of the mobility. The correlation between the mobility and recrystallization rate represented quit different behavior above and below a critical molar mass, which strongly demonstrated to the effect of mobility on the conversion of amorphous state to crystalline structure.

  17. Protic acid resin enhanced 1-butyl-3-methylimidazolium chloride pretreatment of Arundo donax Linn.

    PubMed

    You, Tingting; Zhang, Liming; Zhou, Sukun; Xu, Feng

    2014-09-01

    To improve the cellulose digestibility of energy crop Arudo donax Linn. with cost-efficient, a novel pretreatment of protic acid resin Amberlyst 35DRY catalyzed inexpensive ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) was developed in this work. The pretreatment was performed at 160°C with [C4mim]Cl for 1.5h, followed by Amberlyst 35DRY catalyzed at 90°C for 1h. The IL-Amberlyst pretreatment was demonstrated to be effective, evidenced by the reduction in cellulose crystallinity (31.4%) and increased porosity caused by extensive swelling the undissolved biomass and partial depolymerization of the longer cellulose chain of the dissolved biomass by Amberlyst. Consequently, a higher glucose yield (92.8%) was obtained than for the single [C4mim]Cl pretreatment (42.8%) at an enzyme loading of 20 FPU/g substrate. Overall, the enhanced pretreatment was competitive by using inexpensive and recyclable IL-Amberlyst 35DRY pretreated system with shorter processing time and reduced enzyme usage. PMID:25001325

  18. Understanding the dissolution of cellulose in 1-butyl-3-methylimidazolium acetate+DMAc solvent.

    PubMed

    Xu, Airong; Guo, Xin; Xu, Rui

    2015-11-01

    Cellulose solvent ([C4mim][CH3COO]/DMAc) could be obtained by adding N,N-dimethylacetamide (DMAc) in 1-butyl-3-methylimidazolium acetate ([C4mim][CH3COO]). The solubilities of cellulose in [C4mim][CH3COO]/DMAc solvents were determined at 25°C. The effects of molar ratio of DMAc to [C4mim][CH3COO] on cellulose solubility and the possible dissolution mechanism of cellulose in [C4mim][CH3COO]/DMAc solvent have been studied. Moreover, the regenerated cellulose from [C4mim][CH3COO]/DMAc solvent were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). It was found that, cellulose was more readily dissolved in [C4mim][CH3COO]/DMAc solvent than in a neat [C4mim][CH3COO], which mainly attributed to the increased "free" [CH3COO](-) anions and [C4mim](+) cations which result from the dissociation of [C4mim][CH3COO] by DMAc. Moreover, the regenerated cellulose from [C4mim][CH3COO]/DMAc solvent displayed good thermostability and similar molecular structure to the original cellulose.

  19. Rheological Behaviors of Polyacrylonitrile/1-Butyl-3-Methylimidazolium Chloride Concentrated Solutions

    PubMed Central

    Liu, Weiwei; Cheng, Lingyan; Zhang, Hongyan; Zhang, Yumei; Wang, Huaping; Yu, Mingfang

    2007-01-01

    One of the room temperature ionic liquids (RTILs), 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) was chosen to prepare the concentrated solutions of Polyacrylonitrile (PAN). The rheological behaviors of the solutions were measured with rotational rheometry under different conditions, including temperatures, concentration, and molecular weight of PAN. The solutions exhibited shear-thinning behaviors, similar to that of PAN/DMF solutions. The viscosities decreased with the increasing of shear rates. However, the viscosity decreased sharply at high shear rates when the concentration was up to 16wt%. The dependence of the viscosity on temperature was analyzed through the determination of the apparent activation energy. Unusually, the viscosity of solutions of higher concentration is lower than that of lower concentration. Similarly, the viscosity of low molecular weight PAN was higher than high molecular weight PAN at high shear rates. The dynamic rheological measurement indicates the loss modulus is much higher than storage modulus. The trend of complex viscosity is similar with the result of static rheological measurement. The interaction between PAN and ionic liquid [BMIM]Cl was discussed.

  20. Local Structure in Terms of Nearest-Neighbor Approach in 1-Butyl-3-methylimidazolium-Based Ionic Liquids: MD Simulations.

    PubMed

    Marekha, Bogdan A; Koverga, Volodymyr A; Chesneau, Erwan; Kalugin, Oleg N; Takamuku, Toshiyuki; Jedlovszky, Pál; Idrissi, Abdenacer

    2016-06-01

    Description of the local microscopic structure in ionic liquids (ILs) is a prerequisite to obtain a comprehensive understanding of the influence of the nature of ions on the properties of ILs. The local structure is mainly determined by the spatial arrangement of the nearest neighboring ions. Therefore, the main interaction patterns in ILs, such as cation-anion H-bond-like motifs, cation-cation alkyl tail aggregation, and ring stacking, were considered within the framework of the nearest-neighbor approach with respect to each particular interaction site. We employed classical molecular dynamics (MD) simulations to study in detail the spatial, radial, and orientational relative distribution of ions in a set of imidazolium-based ILs, in which the 1-butyl-3-methylimidazolium (C4mim(+)) cation is coupled with the acetate (OAc(-)), chloride (Cl(-)), tetrafluoroborate (BF4(-)), hexafluorophosphate (PF6(-)), trifluoromethanesulfonate (TfO(-)), or bis(trifluoromethanesulfonyl)amide (TFSA(-)) anion. It was established that several structural properties are strongly anion-specific, while some can be treated as universally applicable to ILs, regardless of the nature of the anion. Namely, strongly basic anions, such as OAc(-) and Cl(-), prefer to be located in the imidazolium ring plane next to the C-H(2/4-5) sites. By contrast, the other four bulky and weakly coordinating anions tend to occupy positions above/below the plane. Similarly, the H-bond-like interactions involving the H(2) site are found to be particularly enhanced in comparison with the ones at H(4-5) in the case of asymmetric and/or more basic anions (C4mimOAc, C4mimCl, C4mimTfO, and C4mimTFSA), in accordance with recent spectroscopic and theoretical findings. Other IL-specific details related to the multiple H-bond-like binding and cation stacking issues are also discussed in this paper. The secondary H-bonding of anions with the alkyl hydrogen atoms of cations as well as the cation-cation alkyl chain

  1. Influence of counterions on micellization of tetramethylammonium perfluorononanoic carboxylate in 1-butyl-3-methylimidazolium ionic liquid.

    PubMed

    Long, Panfeng; Chen, Jingfei; Wang, Dong; Hu, Ziqi; Gao, Xuedong; Li, Ziran; Hao, Jingcheng

    2012-07-01

    The influence of counterions on micellization of perfluorononanoic carboxylate ammonium salts in water and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BF(4)) solutions was investigated by surface tension and (19)F NMR measurements and freeze-fracture transmission electron microscopy (FF-TEM) observations. Changes in the counterions of the fluorocarbon surfactants have different effects on the two solvents. With the increase of counterion volume, the critical micelle concentration (cmc) value of relevant fluorinated surfactant decreases in aqueous solutions. This is because the counterions with larger size, such as (+)N(CH(3))(4), can be little hydrated, which can screen the electrostatic repulsion of the headgroups of the fluorocarbon surfactant and thus facilitate micelle formation. However, the fluorocarbon surfactants can dissolve and form micelles in [bmim]BF(4) only when they provide with largest counterion such as (+)N(CH(3))(4). This is because the counterion, (+)N(CH(3))(4), disperses the charge of the cations, which could weaken the electrostatic interaction between the ion pair of the surfactant, leading to a higher degree of counterion binding. The thermodynamic parameters estimated from the temperature dependence of the cmc values tell us that the micelle formation for tetramethylammonium perfluorononanoic carboxylate (C(8)F(17)COON(CH(3))(4), PFNT) in ionic liquids (ILs) is an entropy-driven process at low temperature but an enthalpy-driven process at high temperature. The driving force of the micellization for fluorocarbon surfactants in [bmim]BF(4) is the solvophobic effect, due to the hydrophobic and oleophobic properties of fluorocarbon chains. PMID:22690854

  2. Aqueous Solutions of the Ionic Liquid 1-butyl-3-methylimidazolium Chloride Denature Proteins

    SciTech Connect

    Baker, Gary A; Heller, William T

    2009-01-01

    As we advance our understanding, ionic liquids (ILs) are finding ever broader scope within the chemical sciences including, most recently, pharmaceutical, enzymatic, and bioanalytical applications. With examples of enzymatic activity reported in both neat ILs and in IL/water mixtures, enzymes are frequently assumed to adopt a quasi-native conformation, even if little work has been carried out to date toward characterizing the conformation, dynamics, active-site perturbation, cooperativity of unfolding transitions, free energy of stabilization, or aggregation/oligomerization state of enzymes in the presence of an IL solvent component. In this study, human serum albumin and equine heart cytochrome c were characterized in aqueous solutions of the fully water-miscible IL 1-butyl-3-methylimidazolium chloride, [bmim]Cl, by small-angle neutron and X-ray scattering. At [bmim]Cl concentrations up to 25 vol.%, these two proteins were found to largely retain their higher-order structures whereas both proteins become highly denatured at the highest IL concentration studied here (i.e., 50 vol.% [bmim]Cl). The response of these proteins to [bmim]Cl is analogous to their behavior in the widely studied denaturants guanidine hydrochloride and urea which similarly lead to random coil conformations at excessive molar concentrations. Interestingly, human serum albumin dimerizes in response to [bmim]Cl, whereas cytochrome c remains predominantly in monomeric form. These results have important implications for enzymatic studies in aqueous IL media, as they suggest a facile pathway through which biocatalytic activity can be altered in these nascent and potentially green electrolyte systems.

  3. Influence of counterions on micellization of tetramethylammonium perfluorononanoic carboxylate in 1-butyl-3-methylimidazolium ionic liquid.

    PubMed

    Long, Panfeng; Chen, Jingfei; Wang, Dong; Hu, Ziqi; Gao, Xuedong; Li, Ziran; Hao, Jingcheng

    2012-07-01

    The influence of counterions on micellization of perfluorononanoic carboxylate ammonium salts in water and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BF(4)) solutions was investigated by surface tension and (19)F NMR measurements and freeze-fracture transmission electron microscopy (FF-TEM) observations. Changes in the counterions of the fluorocarbon surfactants have different effects on the two solvents. With the increase of counterion volume, the critical micelle concentration (cmc) value of relevant fluorinated surfactant decreases in aqueous solutions. This is because the counterions with larger size, such as (+)N(CH(3))(4), can be little hydrated, which can screen the electrostatic repulsion of the headgroups of the fluorocarbon surfactant and thus facilitate micelle formation. However, the fluorocarbon surfactants can dissolve and form micelles in [bmim]BF(4) only when they provide with largest counterion such as (+)N(CH(3))(4). This is because the counterion, (+)N(CH(3))(4), disperses the charge of the cations, which could weaken the electrostatic interaction between the ion pair of the surfactant, leading to a higher degree of counterion binding. The thermodynamic parameters estimated from the temperature dependence of the cmc values tell us that the micelle formation for tetramethylammonium perfluorononanoic carboxylate (C(8)F(17)COON(CH(3))(4), PFNT) in ionic liquids (ILs) is an entropy-driven process at low temperature but an enthalpy-driven process at high temperature. The driving force of the micellization for fluorocarbon surfactants in [bmim]BF(4) is the solvophobic effect, due to the hydrophobic and oleophobic properties of fluorocarbon chains.

  4. Simultaneous determination of α-, β- and γ-asarone in Acorus tatarinowii by microemulsion electrokinetic chromatography with [BMIM]PF6 as oil phase.

    PubMed

    Wang, Ying; Li, Feng; Yang, Feng-Qing; Zuo, Hua-Li; Xia, Zhi-Ning

    2012-11-15

    In the present study, a rapid and repeatable microemulsion electrokinetic chromatography (MEEKC) method was developed for the simultaneous determination of three isomers (α-, β- and γ-asarone) in Acorus tatarinowii by using ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF(6)) as oil phase. Experimental parameters including the microemulsion compositions (concentrations of surfactant, co-surfactant and oil phase), pH, concentration of borate buffer, capillary temperature and voltage were intensively investigated. Finally, the main compounds in the methanol extract of A. tatarinowii were well separated within 11 min using a running buffer composed of 40 mmol/L sodium dodecyl sulfonate (SDS), 2.0 mol/L n-propanol, 8 mmol/L [BMIM]PF(6) in 10 mmol/L borate buffer of pH 9.5. The developed method was applied to determine the contents of α-, β- and γ-asarone in A. tatarinowii from five different producing areas in China (Anhui, Hebei, Sichuan, Zhejiang and Chongqing). The results indicated that the contents of three asarones are quite different in the investigated A. tatarinowii samples. On the other hand, the MEEKC with ionic liquid as oil phase should be a promising method for the analysis of volatile components especially isomers in medicinal herbs. PMID:23158356

  5. Polymer electrolyte based on crosslinked poly(glycidyl methacrylate) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

    SciTech Connect

    Fei, Beatrice Wong Chui; Hanifah, Sharina Abu; Ahmad, Azizan; Hassan, Nur Hasyareeda

    2015-09-25

    Polymer electrolytes based on crosslinked poly(glycidyl methacrylate) as polymer host and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) as incorporated salt were prepared by in-situ photopolymerization technique. The complexes with different mass ratio of glycidyl methacrylate (GMA) monomer to BmimTFSI were investigated. The ionic conductivity of the polymer electrolyte was increased and reach the highest value of 7.50 × 10{sup −4} S cm{sup −1} at the ratio of 3:7 (GMA: BmimTFSI). The interaction between the polymer host and ionic liquid was proved by Attenuated Total Reflectance-Fourier Transformation Infra-Red Spectroscopy (ATR-FTIR). Meanwhile, the X-ray diffraction analysis shows the amorphousity of the polymer electrolyte film increase with the ionic liquid ratio.

  6. Comparison and Characterisation of Regenerated Chitosan from 1-Butyl-3-methylimidazolium Chloride and Chitosan from Crab Shells.

    PubMed

    Islam, Saniyat; Arnold, Lyndon; Padhye, Rajiv

    2015-01-01

    Chitosan is a biopolymer derived from chitin which is naturally occurring in the exoskeleton of crustaceans. This paper reports dissolution and regeneration of chitosan by directly dissolving in an ionic liquid solvent, 1-butyl-3-methylimidazolium chloride (BMIMCl). This will provide an ideal platform to solubilise these kinds of polymers to achieve the dissolution. The current study dissolved chitosan from crab shell utilising BMIMCl as a solvent and characterised the resultant regenerated polymer. The regenerated chitosan showed increased hydrogen bonding when characterised by Fourier transform infrared (FTIR) spectral analysis. In addition, the study also compared the characteristics of regenerated and generic chitosan. The regenerated chitosan was also evaluated for antimicrobial properties and showed to possess antibacterial features similar to the commercial grade. This method can be utilised in future for blending of polymers with chitosan in a dissolved phase.

  7. Anomalous Freezing of Nano-Confined Water in Room-Temperature Ionic Liquid 1-Butyl-3-Methylimidazolium Nitrate.

    PubMed

    Abe, Hiroshi; Takekiyo, Takahiro; Yoshimura, Yukihiro; Saihara, Koji; Shimizu, Akio

    2016-04-18

    Non-crystal formation of ice is investigated by simultaneous X-ray diffraction and differential scanning calorimetry measurements upon cooling to -100 °C. At room temperature, size-tunable water confinement (≈20 Å size) in a room-temperature ionic liquid (RTIL, 1-butyl-3-methylimidazolium nitrate, [C4 mim][NO3 ]) exists in a water-rich region (70-90 mol % D2 O). The confined water (water pocket) is characterized by almost monodispersive size distribution. In [C4 mim][NO3 ]-x mol % D2 O (70

  8. Comparison and Characterisation of Regenerated Chitosan from 1-Butyl-3-methylimidazolium Chloride and Chitosan from Crab Shells

    PubMed Central

    Arnold, Lyndon

    2015-01-01

    Chitosan is a biopolymer derived from chitin which is naturally occurring in the exoskeleton of crustaceans. This paper reports dissolution and regeneration of chitosan by directly dissolving in an ionic liquid solvent, 1-butyl-3-methylimidazolium chloride (BMIMCl). This will provide an ideal platform to solubilise these kinds of polymers to achieve the dissolution. The current study dissolved chitosan from crab shell utilising BMIMCl as a solvent and characterised the resultant regenerated polymer. The regenerated chitosan showed increased hydrogen bonding when characterised by Fourier transform infrared (FTIR) spectral analysis. In addition, the study also compared the characteristics of regenerated and generic chitosan. The regenerated chitosan was also evaluated for antimicrobial properties and showed to possess antibacterial features similar to the commercial grade. This method can be utilised in future for blending of polymers with chitosan in a dissolved phase. PMID:26090452

  9. Effect of water on structure and dynamics of [BMIM][PF6] ionic liquid: An all-atom molecular dynamics simulation investigation.

    PubMed

    Sharma, Anirban; Ghorai, Pradip Kr

    2016-03-21

    Composition dependent structural and dynamical properties of aqueous hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) ionic liquid (IL) have been investigated by using all-atom molecular dynamics simulation. We observe that addition of water does not increase significant number of dissociated ions in the solution over the pure state. As a consequence, self-diffusion coefficient of the cation and anion is comparable to each other at all water concentration similar to that is observed for the pure state. Voronoi polyhedra analysis exhibits strong dependence on the local environment of IL concentration. Void and neck distributions in Voronoi tessellation are approximately Gaussian for pure IL but upon subsequent addition of water, we observe deviation from the Gaussian behaviour with an asymmetric broadening with long tail of exponential decay at large void radius, particularly at higher water concentrations. The increase in void space and neck size at higher water concentration facilitates ionic motion, thus, decreasing dynamical heterogeneity and IL reorientation time and increases self-diffusion coefficient significantly.

  10. Effect of water on structure and dynamics of [BMIM][PF6] ionic liquid: An all-atom molecular dynamics simulation investigation

    NASA Astrophysics Data System (ADS)

    Sharma, Anirban; Ghorai, Pradip Kr.

    2016-03-01

    Composition dependent structural and dynamical properties of aqueous hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) ionic liquid (IL) have been investigated by using all-atom molecular dynamics simulation. We observe that addition of water does not increase significant number of dissociated ions in the solution over the pure state. As a consequence, self-diffusion coefficient of the cation and anion is comparable to each other at all water concentration similar to that is observed for the pure state. Voronoi polyhedra analysis exhibits strong dependence on the local environment of IL concentration. Void and neck distributions in Voronoi tessellation are approximately Gaussian for pure IL but upon subsequent addition of water, we observe deviation from the Gaussian behaviour with an asymmetric broadening with long tail of exponential decay at large void radius, particularly at higher water concentrations. The increase in void space and neck size at higher water concentration facilitates ionic motion, thus, decreasing dynamical heterogeneity and IL reorientation time and increases self-diffusion coefficient significantly.

  11. Influence of the current density on the electrochemical treatment of concentrated 1-butyl-3-methylimidazolium chloride solutions on diamond electrodes.

    PubMed

    Marcionilio, Suzana M L de Oliveira; Alves, Gisele M; E Silva, Rachel B Góes; Marques, Pablo J Lima; Maia, Poliana D; Neto, Brenno A D; Linares, José J

    2016-10-01

    This paper focuses on the influence of the current density treatment of a concentrated 1-butyl-3-methylimidazolium chloride (BMImCl) solution on an electrochemical reactor with a boron-doped diamond (BDD) anode. The decrease in the total organic carbon (TOC) and the BMImCl concentration demonstrate the capability of BDD in oxidizing ionic liquids (ILs) and further mineralizing (to CO2 and NO3 (-)) more rapidly at higher current densities in spite of the reduced current efficiency of the process. Moreover, the presence of Cl(-) led to the formation of oxychlorinated anions (mostly ClO3 (-) and ClO4 (-)) and, in combination with the ammonia generated in the cathode from the nitrate reduction, chloramines, more intensely at higher current density. Finally, the analysis of the intermediates formed revealed no apparent influence of the current density on the BMImCl degradation mechanism. The current density presents therefore a complex influence on the IL treatment process that is discussed throughout this paper.

  12. Synthesis, Characterization and Application of 1-Butyl-3 Methylimidazolium Chloride as Green Material for Extractive Desulfurization of Liquid Fuel

    PubMed Central

    Dharaskar, Swapnil A.; Varma, Mahesh N.; Shende, Diwakar Z.; Yoo, Chang Kyoo; Wasewar, Kailas L.

    2013-01-01

    The possible application of imidazolium ionic liquids as energy-efficient green material for extractive deep desulfurization of liquid fuel has been investigated. 1-Butyl-3-methylimidazolium chloride [BMIM]Cl was synthesized by nucleophilic substitution reaction of n-methylimidazolium and 1-chlorobutane. Molecular structures of the ILs were confirmed by FTIR, 1H-NMR, and 13C-NMR. The thermal properties, conductivity, solubility, water content and viscosity analysis of [BMIM]Cl were carried out. The effects of reaction time, reaction temperature, sulfur compounds, and recycling of IL without regeneration on dibenzothiophene removal of liquid fuel were presented. In the extractive desulfurization process, the removal of dibenzothiophene in n-dodecane using [BMIM]Cl was 81% with mass ratio of 1 : 1, in 30 min at 30°C under the mild reaction conditions. Also, desulfurization of real fuels with IL and multistage extraction were studied. The results of this work might offer significant insights in the perceptive use of imidazoled ILs as energy-efficient green material for extractive deep desulfurization of liquid fuels as it can be reused without regeneration with considerable extraction efficiency. PMID:24307868

  13. The genotoxic and cytotoxic effects of 1-butyl-3-methylimidazolium chloride in soil on Vicia faba seedlings.

    PubMed

    Liu, Tong; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Xie, Hui

    2015-03-21

    Although considered as "green" solvents, the toxic effects of ionic liquids (ILs) on organisms have been widely investigated in recent years. However, studies on the toxic effects of ILs on plants all focus on toxicity in nutrient solution. In the present paper, the toxic effects of 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) on Vicia faba seedlings in soil at 0, 500, 1500, and 2500 mg kg(-1) on day 10 were studied. The present results showed that the growth of V. faba seedlings may be seriously inhibited when the IL concentrations were higher than 500 mg kg(-1). The EC50 values for shoot length, root length, and dry weight were 3886, 2483, and 3359 mg kg(-1), respectively. In addition, [C4mim]Cl caused lipid peroxidation and DNA damage at 500 mg kg(-1) and oxidative stress at 1500 mg kg(-1), which indicated that [C4mim]Cl may have genotoxicity and cytotoxicity on V. faba seedlings. Moreover, oxidative damage may be the main toxic mechanism of ILs.

  14. Structural studies of 1-butyl-3-methylimidazolium tetrafluoroborate/TX-100/ p-xylene ionic liquid microemulsions.

    PubMed

    Gao, Yan'an; Zhang, Jin; Xu, Hongyan; Zhao, Xueyan; Zheng, Liqiang; Li, Xinwei; Yu, Li

    2006-07-17

    The ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) forms nonaqueous microemulsions with p-xylene, with the aid of the nonionic surfactant TX-100. The phase behavior of the ternary system is investigated, and three microregions of the microemulsions-ionic liquid-in-oil (IL/O), bicontinuous, and oil-in-ionic liquid (O/IL)-are identified by conductivity measurements, according to percolation theory. On the basis of a phase diagram, a series of IL/O microemulsions are chosen and characterized by dynamic light scattering (DLS). The size of aggregates increases on increasing the amount of added polar component (bmimBF(4)), which is a similar phenomenon to that observed for typical water-in-oil (W/O) microemulsions, suggesting the formation of IL/O microemulsions. The microstructural characteristics of the microemulsions are investigated by FTIR and 1H NMR spectroscopy. The results indicate that the interaction between the electronegative oxygen atoms of the oxyethylene (OE) units in TX-100 and the electropositive imidazolium ring may be the driving force for the solubilization of bmimBF4 into the core of the TX-100 aggregates. In addition, the micropolarity of the microemulsions is investigated by using methyl orange (MO) as a UV/Vis spectroscopic probe. A relatively constant polarity of the microemulsion droplets is obtained in the IL microemulsion. Finally, a plausible structure for the IL/O microemulsion is presented. PMID:16789041

  15. Molecular dynamics simulations of n-hexane at 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide interface

    SciTech Connect

    Lisal, Martin; Izak, Pavel

    2013-07-07

    Molecular dynamics simulations of n-hexane adsorbed onto the interface of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([bmim][Tf{sub 2}N]) are performed at three n-hexane surface densities, ranged from 0.7 to 2.3 {mu}mol/m{sup 2} at 300 K. For [bmim][Tf{sub 2}N] room-temperature ionic liquid, we use a non-polarizable all-atom force field with the partial atomic charges based on ab initio calculations for the isolated ion pair. The net charges of the ions are {+-}0.89e, which mimics the anion to cation charge transfer and polarization effects. The OPLS-AA force field is employed for modeling of n-hexane. The surface tension is computed using the mechanical route and its value decreases with increase of the n-hexane surface density. The [bmim][Tf{sub 2}N]/n-hexane interface is analyzed using the intrinsic method, and the structural and dynamic properties of the interfacial, sub-interfacial, and central layers are computed. We determine the surface roughness, global and intrinsic density profiles, and orientation ordering of the molecules to describe the structure of the interface. We further compute the survival probability, normal and lateral self-diffusion coefficients, and re-orientation correlation functions to elucidate the effects of n-hexane on dynamics of the cations and anions in the layers.

  16. Determination of the solubility parameter of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate by inverse gas chromatography.

    PubMed

    Ma, Xiaohong; Wang, Qiang; Li, Xiaoping; Tang, Jun; Zhang, Zhengfang

    2015-11-01

    Thermodynamic properties of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM] BF4) were determined via inverse gas chromatography (IGC). Two groups of solvents with different chemical natures and polarities were used to obtain information about [BMIM] BF4-solvent interactions. The specific retention volume, molar heat of sorption, weight fraction activity coefficient, Flory-Huggins interaction parameter as well as solubility parameter were also determined in a temperature range of 333 - 373 K. The results showed that the selected solvents n-C10 to n-C12, carbon tetrachloride, cyclohexane and toluene were poor solvents for [BMIM] BF4, while dichloromethane, acetone, chloroform, methyl acetate, ethanol and methanol were favorite solvents for [BMIM] BF4. In addition, the solubility parameter of [ BMIM] BF4 was determined as 23.39 (J/cm3)0.5 by the extrapolation at 298 K. The experiment proved that IGC was a simple and accurate method to obtain the thermodynamic properties of ionic liquids. This study could be used as a reference to the application and research of the ionic liquids. PMID:26939366

  17. Free volume and phase transitions of 1-butyl-3-methylimidazolium based ionic liquids from positron lifetime spectroscopy.

    PubMed

    Yu, Yang; Beichel, Witali; Dlubek, Günter; Krause-Rehberg, Reinhard; Paluch, Marian; Pionteck, Jürgen; Pfefferkorn, Dirk; Bulut, Safak; Friedrich, Christian; Pogodina, Natalia; Krossing, Ingo

    2012-05-21

    Positron annihilation lifetime spectroscopy (PALS) was used to study a series of ionic liquids (ILs) with the 1-butyl-3-methylimidazolium cation ([C4MIM](+)) but different anions [Cl](-), [BF4](-), [PF6](-), [OTf](-), [NTf2](-), and [B(hfip)4](-) with increasing anion volumes. Changes of the ortho-positronium (o-Ps) lifetime parameters with temperature were observed for crystalline and amorphous (glass, supercooled, and normal liquid) states. Evidence for distinct phase transitions, e.g. melting, crystallization and solid-solid transitions, was observed in several PALS experiments. The o-Ps mean lifetime τ3 showed smaller values in the crystalline phase due to dense packing of the material compared to the amorphous phase. The o-Ps lifetime intensity I3 in the liquid state is clearly smaller than in the crystallized state. This behaviour can be attributed to a solvation of e(+) by the anions, which reduces the Ps formation probability in the normal and supercooled liquid. These phenomena were observed for the first time when applying the PALS technique to ionic liquids by us in one preliminary and in this work. Four of the ionic liquids investigated in this work ([BF4](-), [NTf2](-), [PF6](-) and [Cl](-) ILs) exhibit supercooled phases. The specific hole densities and occupied volumes of those ILs were obtained by comparing the local free volume with the specific volume from pressure-volume-temperature (PVT) experiments. From the o-Ps lifetime, the mean size vh of free volume holes of the four samples was calculated and compared with that calculated according to Fürth's hole theory. The hole volumes from both methods agree well. From the Cohen-Turnbull fitting of viscosity and conductivity against PALS/PVT results, the influence of the free volume on molecular transport properties was investigated.

  18. Characterization of the influence of 1-butyl-3-methylimidazolium chloride on the structure and thermal stability of green fluorescent protein

    SciTech Connect

    Heller, William T; O'Neill, Hugh Michael; Zhang, Qiu; Baker, Gary A

    2010-01-01

    Ionic liquids (ILs) are finding a vast array of applications as novel solvents for a wide variety of processes that include enzymatic chemistry, particularly as more biocompatible ILs are designed and discovered. While it is assumed that a native or near-native structure is required for enzymatic activity, there is some evidence that ILs alter protein structure and oligomerization states in a manner than can negatively impact function. The IL 1-butyl-3-methylimidazolium chloride, [bmim]Cl, is a well-studied, water-miscible member of the popular 1-alkyl-3-methylimidazolium IL family. To improve our understanding of the impact of water-miscible ILs on proteins, we have characterized the structure and oligomerization state of green fluorescent protein (GFP) in aqueous solutions containing 25 and 50 vol % [bmim]Cl using a combination of optical spectroscopy and small-angle neutron scattering (SANS). Measurements were also performed as a function of temperature to provide insight into the effect of the IL on the thermal stability of GFP. While GFP exists as a dimer in water, the presence of 25 vol % [bmim]Cl causes GFP to transition to a monomeric state. The SANS data indicate that GFP is a great deal less compact in 50 vol % [bmim]Cl than in neat water, indicative of unfolding from the native structure. The oligomerization state of the protein in IL-containing aqueous solution changes from a dimer to a monomer in response to the IL, but does not change as a function of temperature in the IL-containing solution. The SANS and spectroscopic results also demonstrate that the addition of [bmim]Cl to the solution decreases the thermal stability of GFP, allowing the protein to unfold at lower temperatures than in aqueous solution.

  19. The effect of water on the microstructure of 1-butyl-3-methylimidazolium tetrafluoroborate/TX-100/benzene ionic liquid microemulsions.

    PubMed

    Gao, Yan'an; Li, Na; Zheng, Liqiang; Zhao, Xueyan; Zhang, Jin; Cao, Quan; Zhao, Mingwei; Li, Zhen; Zhang, Gaoyong

    2007-01-01

    The ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) forms nonaqueous microemulsions with benzene with the aid of nonionic surfactant TX-100. The phase diagram of the ternary system was prepared, and the microstructures of the microemulsion were recognized. On the basis of the phase diagram, a series of ionic liquid-in-oil (IL/O) microemulsions were chosen and characterized by dynamic light scattering (DLS), which shows a similar swelling behavior to typical water-in-oil (W/O) microemulsions. The existence of IL pools in the IL/O microemulsion was confirmed by UV/Vis spectroscopic analysis with CoCl2 and methylene blue (MB) as the absorption probes. A constant polarity of the IL pool is observed, even if small amounts of water are added to the microemulsion, thus suggesting that the water molecules are solubilized in the polar outer shell of the microemulsion, as confirmed by FTIR spectra. 1H NMR spectroscopic analysis shows that these water molecules interact with the electronegative oxygen atoms of the oxyethylene (OE) units of TX-100 through hydrogen-bonding interactions, and the electronegative oxygen atoms of the water molecules attract the electropositive imidazolium rings of [bmim][BF4]. Hence, the water molecules are like a glue that stick the IL and OE units more tightly together and thus make the microemulsion system more stable. Considering the unique solubilization behavior of added water molecules, the IL/O microemulsion system may be used as a medium to prepare porous or hollow nanomaterials by hydrolysis reactions. PMID:17177215

  20. Role of solubilized water in the reverse ionic liquid microemulsion of 1-butyl-3-methylimidazolium tetrafluoroborate/TX-100/benzene.

    PubMed

    Gao, Yan'an; Li, Na; Zheng, Liqiang; Bai, Xiangtao; Yu, Li; Zhao, Xueyan; Zhang, Jin; Zhao, Mingwei; Li, Zhen

    2007-03-15

    The ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) can form nonaqueous microemulsions with benzene by the aid of nonionic surfactant TX-100. The effect of water on ionic liquid-in-oil (IL/O) microemulsions was studied, and it was shown that the addition of small amount of water to the IL microemulsion contributed to the stability of microemulsion and thus increased the amount of solubilized bmimBF4 in the microemulsion. The conductivity measurements also showed that the attractive interactions between IL microdroplets were weakened, that is, the IL/O microemulsion becomes more stable in the present of some water. Fourier transform IR was carried out to analyze the states of the added water, and the result showed that these water molecules mainly behaved as bound water and trapped water, indicating that the water molecules are located in the palisade layers of the IL/O microemulsion. Furthermore, 1H NMR and 19F NMR spectra suggested that the added water molecules built the hydrogen binding network of imidazolium cations and H2O, BF4- anion and H2O, and at the same time the electronegative oxygen atoms of the oxyethylene units of TX-100 and water in the palisade layers, which made the palisade layers more firm and thus increased the stability of the microemulsion. The study can help in further understanding the formation mechanism of microemulsions. In addition, the characteristic solubilization behavior of the added water can provide an aqueous interface film for hydrolysis reactions and therefore may be used as an ideal medium to prepare porous or hollow nanomaterials. PMID:17305388

  1. Solvation dynamics in a prototypical ionic liquid + dipolar aprotic liquid mixture: 1-butyl-3-methylimidazolium tetrafluoroborate + acetonitrile.

    PubMed

    Liang, Min; Zhang, Xin-Xing; Kaintz, Anne; Ernsting, Nikolaus P; Maroncelli, Mark

    2014-02-01

    Solvation energies, rotation times, and 100 fs to 20 ns solvation response functions of the solute coumarin 153 (C153) in mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate ([Im41][BF4]) + acetonitrile (CH3CN) at room temperature (20.5 °C) are reported. Available density, shear viscosity, and electrical conductivity data at 25 °C are also collected and parametrized, and new data on refractive indices and component diffusion coefficients presented. Solvation free energies and reorganization energies associated with the S0 ↔ S1 transition of C153 are slightly (≤15%) larger in neat [Im41][BF4] than in CH3CN. No clear evidence for preferential solvation of C153 in these mixtures is found. Composition-dependent diffusion coefficients (D) of Im41(+) and CH3CN as well as C153 rotation times (τ) are approximately related to solution viscosity (η) as D, τ ∝ η(p) with values of p = -0.88, -0.77, and +0.90, respectively. Spectral/solvation response functions (Sν(t)) are bimodal at all compositions, consisting of a subpicosecond fast component followed by a broadly distributed slower component extending over ps-ns times. Integral solvation times (⟨τ(solv)⟩ = ∫(0)(∞)Sν(t) dt) follow a power law on viscosity for mixturecompositions 0.2 ≤ x(IL) ≤ 1 with p = 0.79. With recent broad-band dielectric measurements [J. Phys. Chem. B 2012, 116, 7509] asinput, a simple dielectric continuum model provides predictions for solvation response functions that correctly capture thedistinctive bimodal character of the observed response. At x(IL) ∼ 1 predicted values of ⟨τ(solv)⟩ are smaller than those observed by a factor of 2-3, but the two become approximately equal at x(IL) = 0.2. Predictions of a recent semimolecular theory [J. Phys. Chem. B 2011, 115, 4011] are less accurate, being uniformly slower than the observed solvation dynamics.

  2. Experimental and theoretical investigation of multistage extraction of 1,3-propanediol using the extraction system phosphate/1-butyl-3-methylimidazolium trifluoromethanesulfonate/water.

    PubMed

    Müller, Anja; Lutze, Philip; Górak, Andrzej

    2013-01-01

    The separation of 1,3-propanediol from fermentation broth is a challenging and energy-demanding step using conventional unit operations. One alternative process is the use of an aqueous two-phase system incorporating ionic liquids to use synergy effects of both technologies. Within this manuscript, the technical feasibility of the extraction of 1,3-propanediol using the aqueous two-phase system phosphate (salt)/1-butyl-3-methylimidazolium trifluoromethanesulfonate (ionic liquid)/water in a continuously operated process in pilot-scale is presented. The extraction was performed in a multistage mixer-settler unit and successfully modeled with an equilibrium-stage model and correlations to describe the liquid-liquid equilibrium of the salt/ionic liquid/water two-phase system. The developed and validated model was used for a further investigation of the influence of different process parameters in the determined operating window. Theses parameters include the number of stages, the phase ratio, the pH, and the mass fraction of the involved components. The results prove that the phosphate and 1-butyl-3-methylimidazolium trifluoromethanesulfonate mass fraction, the phase ratio, and the number of stages have a considerable influence on the recovery of 1,3-propanediol, whereas the pH value has only a smaller impact. Those results can be used for optimization of the system as well as for targeting future research within this area.

  3. Interaction of ionic liquid with water with variation of water content in 1-butyl-3-methyl-imidazolium hexafluorophosphate ([bmim][PF6])/TX-100/water ternary microemulsions monitored by solvent and rotational relaxation of coumarin 153 and coumarin 490.

    PubMed

    Seth, Debabrata; Chakraborty, Anjan; Setua, Palash; Sarkar, Nilmoni

    2007-06-14

    The interaction of water with room temperature ionic liquid (RTIL) [bmim][PF6] has been studied in [bmim][PF6]/TX-100/water ternary microemulsions by solvent and rotational relaxation of coumarin 153 (C-153) and coumarin 490 (C-490). The rotational relaxation and average solvation time of C-153 and C-490 gradually decrease with increase in water content of the microemulsions. The gradual increase in the size of the microemulsion with increase in w0 (w0=[water]/[surfactant]) is evident from dynamic light scattering measurements. Consequently the mobility of the water molecules also increases. In comparison to pure water the retardation of solvation time in the RTIL containing ternary microemulsions is very less. The authors have also reported the solvation time of C-490 in neat [bmim][PF6]. The solvation time of C-490 in neat [bmim][PF6] is bimodal with time constants of 400 ps and 1.10 ns. PMID:17581068

  4. Interaction of ionic liquid with water with variation of water content in 1-butyl-3-methyl-imidazolium hexafluorophosphate ([bmim][PF6])/TX-100/water ternary microemulsions monitored by solvent and rotational relaxation of coumarin 153 and coumarin 490

    NASA Astrophysics Data System (ADS)

    Seth, Debabrata; Chakraborty, Anjan; Setua, Palash; Sarkar, Nilmoni

    2007-06-01

    The interaction of water with room temperature ionic liquid (RTIL) [bmim][PF6] has been studied in [bmim][PF6]/TX-100/water ternary microemulsions by solvent and rotational relaxation of coumarin 153 (C-153) and coumarin 490 (C-490). The rotational relaxation and average solvation time of C-153 and C-490 gradually decrease with increase in water content of the microemulsions. The gradual increase in the size of the microemulsion with increase in w0 (w0=[water]/[surfactant]) is evident from dynamic light scattering measurements. Consequently the mobility of the water molecules also increases. In comparison to pure water the retardation of solvation time in the RTIL containing ternary microemulsions is very less. The authors have also reported the solvation time of C-490 in neat [bmim][PF6]. The solvation time of C-490 in neat [bmim][PF6] is bimodal with time constants of 400ps and 1.10ns.

  5. Melting and freezing behaviors of prototype ionic liquids, 1-butyl-3-methylimidazolium bromide and its chloride, studied by using a nano-Watt differential scanning calorimeter.

    PubMed

    Nishikawa, Keiko; Wang, Shaolan; Katayanagi, Hideki; Hayashi, Satoshi; Hamaguchi, Hiro-o; Koga, Yoshikata; Tozaki, Ken-ichi

    2007-05-10

    1-Butyl-3-methylimidazolium bromide ([bmim]Br) and its chloride ([bmim]Cl) are representative prototypes of ionic liquids. We investigated the melting and freezing behaviors of [bmim]Br and [bmim]Cl by using a homemade differential scanning calorimeter (DSC) with nano-Watt stability and sensitivity. The measurements were carried out at heating and cooling rates slow enough to mimic quasi-static processes. Their thermal behaviors of melting and freezing show characteristic features such as a wide pre-melting range and excessive supercooling and individual behaviors of single crystals even for the same substance. The melting temperatures of [bmim]Br and [bmim]Cl were determined from the broad DSC traces and discussed in relation to the crystal structure. We suggest that the observed characteristics are due to the dynamics of the cooperative change between gauche-trans (GT) and trans-trans (TT) conformations of the butyl group in the [bmim]+ cation.

  6. Physical Properties of Ionic Liquids Consisting of the 1-Butyl-3-Methylimidazolium Cation with Various Anions and the Bis(trifluoromethylsulfonyl)imide Anion with Various Cations

    SciTech Connect

    Jin, Hui; O'Hare, Bernie; Dong, Jing; Arzhantsev, Sergei; Baker, Gary A; Wishart, James F.; Benesi, Alan; Maroncelli, Mark

    2008-01-01

    Physical properties of 4 room-temperature ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various perfluorinated anions and the bis(trifluoromethylsulfonyl)imide (Tf2N-) anion with 12 pyrrolidinium-, ammonium-, and hydroxyl-containing cations are reported. Electronic structure methods are used to calculate properties related to the size, shape, and dipole moment of individual ions. Experimental measurements of phase-transition temperatures, densities, refractive indices, surface tensions, solvatochromic polarities based on absorption of Nile Red, 19F chemical shifts of the Tf2N- anion, temperature-dependent viscosities, conductivities, and cation diffusion coefficients are reported. Correlations among the measured quantities as well as the use of surface tension and molar volume for estimating Hildebrand solubility parameters of ionic liquids are also discussed.

  7. Interaction between amphiphilic ionic liquid 1-butyl-3-methylimidazolium octyl sulfate and anionic polymer of sodium polystyrene sulfonate in aqueous medium

    NASA Astrophysics Data System (ADS)

    Barhoumi, Z.; Saini, M.; Amdouni, N.; Pal, A.

    2016-09-01

    The micellization of an aqueous solution of the surface active ionic liquid (SAIL), 1-butyl-3-methylimidazolium octylsufate (C4mim)(C8OSO3) and its interaction with an anionic polymer sodium polystyrene sulfonate, (NaPSS) were studied using conductimetry, tensiometry and fluorimetry. Surface tension profile shows a more dramatic increase in the value of surface tension of aqueous (C4mim)(C8OSO3) before the critical micelle concentration (cmc) of IL. The critical micelle concentration (cmc) value of this surfactant was found out from conductance measurements. The thermodynamic parameters, i.e., Gibb's free energy, enthalpy, and entropy of micellization of the IL in aqueous solution have been calculated. Behavior of fluorescence probe confirms the binding interactions between SAIL and the polyelectrolyte.

  8. States of water located in the continuous organic phase of 1-butyl-3-methylimidazolium tetrafluoroborate/Triton X-100/triethylamine reverse microemulsions.

    PubMed

    Li, Na; Cao, Quan; Gao, Yanan; Zhang, Jin; Zheng, Liqiang; Bai, Xiangtao; Dong, Bin; Li, Zhen; Zhao, Mingwei; Yu, Li

    2007-10-22

    We demonstrate a novel ionic liquid (IL) microemulsion, consisting of 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) and nonionic surfactant Triton X-100 prepared in triethylamine which is used either as an organic solvent or a Lewis base. The effects of small amounts of added water on the microstructure of the IL microemulsion are investigated by various techniques. UV/Vis spectroscopic analysis and FTIR spectra indicate that these water molecules are not solubilized into the IL pools of the microemulsions. 1H NMR spectra further show that the added water binds with triethylamine to form a surrounding OH- base environment. Some of OH- ions enter the palisade layers of the IL microemulsions and a continuous base interface is created. The unique solubilization behavior of water reveals that it is possible to use the triethylamine microemulsions as a template to prepare metal hydroxides as well as metal oxides in the microemulsions, which is not possible when using traditional microemulsions. PMID:17886245

  9. Molecular dynamics simulation of the electrochemical interface between a graphite surface and the ionic liquid [BMIM][PF6].

    PubMed

    Kislenko, Sergey A; Samoylov, Igor S; Amirov, Ravil H

    2009-07-21

    The structure of the electrical double layer in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) near a basal plane of graphite was investigated by molecular dynamics simulation. The calculations were performed both for an uncharged graphite surface and for positively and negatively charged ones. It is found that near an uncharged surface the ionic liquid structure differs from its bulk structure and represents a well-ordered region, extending over approximately 20 A from the surface. Three dense layers of ca 5 A thick are clearly observed at the interface, composed of negative ions and positively charged rings. It is established that in the first adsorption layer the imidazolium ring in the [BMIM]+ cation tends to be arranged in parallel to the graphite surface at a distance of 3.5 A. The [PF6]- anion is oriented in such a way that the phosphorus atom is at a distance of 4.1 A from the surface and triplets of fluorine atoms form two planes parallel to the graphite surface. Ions adsorbed at the uncharged surface are arranged in a highly defective 2D hexagonal lattice and the corresponding lattice spacing is approximately four times larger than that of the graphene substrate. The influence of the electrode potential on the distribution of electrolyte ions and their orientation has also been investigated. Increase in the electrode potential induces broadening of the angle distribution of adsorbed rings and a shift of the most probable tilt angle towards bigger values. It was shown that there are no adsorbed anions on the negatively charged surface (sigma = -8.2 microC cm(-2)), but the surface concentration of adsorbed cations on the positively charged surface (sigma = +8.2 microC cm(-2)) has a nonzero value. In addition, the influence of the surface charge (+/- sigma) on the volume charge density and electric potential profiles in an electrolyte was studied. The differences in the cation and anion structure result in the fact that the

  10. Effect of 1-Butyl-3-methylimidazolium Halide on the Relative Stability between Sodium Dodecyl Sulfate Micelles and Sodium Dodecyl Sulfate-Poly(ethylene oxide) Nanoaggregates.

    PubMed

    Ferreira, Gabriel M Dias; Ferreira, Guilherme M Dias; Agudelo, Álvaro J Patiño; Hespanhol da Silva, Maria C; Rezende, Jaqueline de Paula; Pires, Ana Clarissa Dos Santos; da Silva, Luis Henrique Mendes

    2015-12-24

    It is well-known that ionic liquids (ILs) alter the properties of aqueous systems containing only surfactants. However, the effect of ILs on polymer-surfactant systems is still unknown. Here, the effect of 1-butyl-3-methylimidazolium bromide (bmimBr) and chloride (bmimCl) on the micellization of sodium dodecyl sulfate (SDS) and its interaction with poly(ethylene oxide) (PEO) was evaluated using conductimetry, fluorimetry, and isothermal titration calorimetry. The ILs decreased the critical micellar concentration (cmc) of the surfactant, stabilizing the SDS micelles. A second critical concentration (c2thc) was verified at high SDS concentrations, due to the micelle size decrease. The stability of PEO/SDS aggregates was also affected by ILs, and the critical aggregation concentration (cac) of SDS increased. Integral aggregation enthalpy changed from -0.72 in water to 2.16 kJ mol(-1) in 4.00 mM bmimBr. IL anions did not affect the SDS micellization or the beginning of PEO/SDS aggregation. Nevertheless, when chloride was replaced with bromide, the amount of SDS bound to the polymer increased. At 100.0 mM IL, the PEO-SDS interaction vanished. We suggest that the effect of ILs comes from participating in the structure of the formed aggregates, interacting with the SDS monomers at the core/interface of the micelles, and promoting preferential solvation of the polymer.

  11. Supercritical carbon dioxide combined with 1-butyl-3-methylimidazolium acetate and ethanol for the pretreatment and enzymatic hydrolysis of sugarcane bagasse.

    PubMed

    Silveira, Marcos Henrique Luciano; Vanelli, Bruno Angelo; Corazza, Marcos Lucio; Ramos, Luiz Pereira

    2015-09-01

    The use of green solvents for the partial delignification of milled sugarcane bagasse (1mm particle size) and for the enhancement of its susceptibility to enzymatic hydrolysis was demonstrated. The experiments were carried out for 2h using 40 g of supercritical carbon dioxide combined with 1-butyl-3-methylimidazolium acetate and 15.8 g of ethanol. The effects of temperature (110-180 °C), pressure (195-250 bar) and IL-to-bagasse mass ratio (0:1-1:1) were investigated through a factorial design in which the response variables were the extent of delignification and both anhydroglucose and anhydroxylose contents in the pretreated materials. The highest delignification degree (41%) led to the best substrate for hydrolysis, giving a 70.7 wt% glucose yield after 12h using 5 wt% and Cellic CTec2® (Novozymes) at 10 mg g(-1) total solids. Hence, excellent substrates for hydrolysis were produced with a minimal IL requirement, which could be recovered by ethanol washing for its downstream processing and reuse. PMID:26056781

  12. Hydrolysis of insoluble cellulose to glucose catalyzed by cellulase-containing liposomes in an aqueous solution of 1-butyl-3-methylimidazolium chloride.

    PubMed

    Yoshimoto, Makoto; Tanimura, Kazuhiko; Tokunaga, Kazuki; Kamimura, Akio

    2013-01-01

    The liposome containing cellulase from Trichoderma viride was prepared under the condition that an appreciable amount of cellulase was incorporated in lipid membranes. The liposomal cellulase and free enzyme were examined in their hydrolytic activities to insoluble cellulose powder CC31 in the acetate buffer solution (pH 4.8) of 15 w/w% [Bmim][Cl] (1-butyl-3-methylimidazolium chloride). The mean diameter and size distribution of cellulase-containing liposome were practically unchanged under the above condition. The free cellulase was deactivated more rapidly than the liposomal cellulase in catalyzing the hydrolysis of 2.0 g/l CC31 at 45°C in the presence of [Bmim][Cl] for 48 h. The activities of liposomal and free cellulase to cellobiose as soluble substrate were less susceptible to [Bmim][Cl] than their cellulolytic activities to CC31, meaning that β-glucosidase is relatively stable among the three enzyme components of cellulase. The rate of glucose production could be appreciably improved by the pretreatment of CC31 with [Bmim][Cl] alone at 120°C for 30 min followed by the liposomal cellulase-catalyzed hydrolysis of the substrate at 45°C at the [Bmim][Cl] concentration of 15 w/w%. PMID:23813807

  13. Electrochemical and Thermodynamic Properties of Ln(III) (Ln = Eu, Sm, Dy, Nd) in 1-Butyl-3-Methylimidazolium Bromide Ionic Liquid

    PubMed Central

    Yang, Xiao; He, Ling; Qin, Song; Tao, Guo-Hong; Huang, Ming; Lv, Yi

    2014-01-01

    The electrochemical behavior and thermodynamic properties of Ln(III) (Ln = Eu, Sm, Dy, Nd) were studied in 1-butyl-3-methylimidazolium bromide ionic liquid (BmimBr) at a glassy carbon (GC) electrode in the range of 293–338 K. The electrode reaction of Eu(III) was found to be quasi-reversible by the cyclic voltammetry, the reactions of the other three lanthanide ions were regarded as irreversible systems. An increase of the current intensity was obtained with the temperature increase. At 293 K, the cathodic peak potentials of −0.893 V (Eu(III)), −0.596 V (Sm(III)), −0.637 V (Dy(III)) and −0.641 V (Nd(III)) were found, respectively, to be assigned to the reduction of Ln(III) to Ln(II). The diffusion coefficients (Do), the transfer coefficients (α) of Ln(III) (Ln = Eu, Sm, Dy, Nd) and the charge transfer rate constants (ks) of Eu(III) were estimated. The apparent standard potential (E0*) and the thermodynamic properties of the reduction of Eu(III) to Eu(II) were also investigated. PMID:24752584

  14. Decrease of droplet size of the reverse microemulsion 1-butyl-3-methylimidazolium tetrafluoroborate/Triton X-100/cyclohexane by addition of water.

    PubMed

    Gao, Yanan; Hilfert, Liane; Voigt, Andreas; Sundmacher, Kai

    2008-03-27

    In the present contribution, results concerning the role of small amounts of water in the 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4)-in-cyclohexane ionic liquid (IL) reverse microemulsions are reported. Dynamic light scattering (DLS) revealed that the size of microemulsion droplets decreased remarkably with increasing water content although water is often used as a polar component to swell reverse microemulsions. It was thus deduced that the number of microemulsion droplets was increased which was confirmed by conductivity measurements. The states of dissolved water were investigated by Fourier transform IR (FTIR) spectroscopic analysis showing that water molecules mainly act as bound water. 1H NMR along with two-dimensional rotating frame nuclear Overhauser effect (NOE) experiments (ROESY) further revealed that water molecules were mainly located in the periphery of the polar core of the microemulsion droplets and behave like a chock being inserted in the palisade layer of the droplet. This increased the curvature of the surfactant film at the IL/cyclohexane interface and thus led to the decrease of the microemulsion droplet size. The order of surfactant molecules arranged in the interface film was increased and thus induced a loss of entropy. Isothermal titration calorimetry (ITC) indicated that an enthalpy increase compensates for the loss of entropy during the process of microstructural transition. PMID:18318531

  15. Vibrational sum-frequency generation spectroscopy of ionic liquid 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate at the air-water interface

    NASA Astrophysics Data System (ADS)

    Saha, Ankur; SenGupta, Sumana; Kumar, Awadhesh; Choudhury, Sipra; Naik, Prakash D.

    2016-08-01

    The structure and orientation of room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate [PF3(C2F5)3], commonly known as [bmim][fap], have been investigated at the air-[bmim][fap] and air-water interfaces, employing vibrational sum-frequency generation (VSFG) spectroscopy. The VSFG spectra in the CH stretch region suggest presence of the [bmim] cation at the interfaces. Studies reveal that the butyl chain protrudes out into air, and the imidazolium ring lies almost planar to the interface. The CH stretch intensities get enhanced at the air-water interface, mainly because of polar orientation of imidazolium cation induced by interfacial water molecules. The OH stretch intensities are also enhanced at the air-water interface due to polar orientation of interfacial water molecules induced by [bmim][fap]. The Brewster angle microscopy suggests self aggregation of [bmim][fap] in the presence of water, and the aggregation becomes extensive showing dense surface domains with time. However, the surface pressure is almost unaffected due to aggregation.

  16. Supercritical carbon dioxide combined with 1-butyl-3-methylimidazolium acetate and ethanol for the pretreatment and enzymatic hydrolysis of sugarcane bagasse.

    PubMed

    Silveira, Marcos Henrique Luciano; Vanelli, Bruno Angelo; Corazza, Marcos Lucio; Ramos, Luiz Pereira

    2015-09-01

    The use of green solvents for the partial delignification of milled sugarcane bagasse (1mm particle size) and for the enhancement of its susceptibility to enzymatic hydrolysis was demonstrated. The experiments were carried out for 2h using 40 g of supercritical carbon dioxide combined with 1-butyl-3-methylimidazolium acetate and 15.8 g of ethanol. The effects of temperature (110-180 °C), pressure (195-250 bar) and IL-to-bagasse mass ratio (0:1-1:1) were investigated through a factorial design in which the response variables were the extent of delignification and both anhydroglucose and anhydroxylose contents in the pretreated materials. The highest delignification degree (41%) led to the best substrate for hydrolysis, giving a 70.7 wt% glucose yield after 12h using 5 wt% and Cellic CTec2® (Novozymes) at 10 mg g(-1) total solids. Hence, excellent substrates for hydrolysis were produced with a minimal IL requirement, which could be recovered by ethanol washing for its downstream processing and reuse.

  17. Temperature-programed time-of-flight secondary ion mass spectrometry study of 1-butyl-3-methylimidazolium trifluoromethanesulfonate during glass-liquid transition, crystallization, melting, and solvation

    SciTech Connect

    Souda, Ryutaro; Guenster, Jens

    2008-09-07

    For this study, time-of-flight secondary ion mass spectrometry was used to analyze the molecular orientation of 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim][OTf]) and its interaction with the adsorbed Na and LiI species at temperatures of 150-300 K. A glassy [bmim][OTf] film crystallizes at around 230 K, as observed from the increase in the [bmim]{sup +} yield. LiI and Na adsorbed on the glassy film are solvated, whereas they tend to form islands on a crystalline film. The crystalline surface inertness is ascribable to the termination with the CF{sub 3} and C{sub 4}H{sub 9} groups, whereas the exposure of polar SO{sub 3} and imidazole groups at the glassy film results in the solvation. Surface layering occurs during solvation of LiI on the glassy film in such a way that the [bmim]{sup +} ([OTf]{sup -}) moiety is exposed to the vacuum (oriented to the bulk). The LiI adsorbed on the glassy film is incorporated into the bulk at temperatures higher than 200 K because of the glass-liquid transition. No further uptake of LiI is observed during crystallization, providing a contrast to the results of normal molecular solids such as water and ethanol. The surface layers of the crystal melt at temperatures below the bulk melting point, as confirmed from the dissolution of adsorbed LiI, but the melting layer retains a short-range order similar to the crystal. The [bmim][OTf] can be regarded as a strongly correlated liquid with the combined liquid property and crystal-type local structure. The origin of this behavior is discussed.

  18. Electrochemical and spectral properties of ferrocene (Fc) in ionic liquid: 1-butyl-3-methylimidazolium triflimide, [BMIM][NTf(2)]. Concentration effects.

    PubMed

    Vorotyntsev, Mikhail A; Zinovyeva, Veronika A; Konev, Dmitry V; Picquet, Michel; Gaillon, Laurent; Rizzi, Cecile

    2009-01-29

    Several earlier studies of the electrochemical oxidation of ferrocene (Fc) in room-temperature ionic liquids revealed an essentially nonlinear dependence of the oxidation current on the Fc concentration in its relatively dilute solutions, with its formally calculated diffusion coefficient strongly increasing with the concentration. Since no plausible mechanism leading to this very unusual finding had been proposed, our study of Fc solutions in 1-butyl-3-methylimidazolium triflimide, [BMIM][NTf(2)], was performed to verify whether the above observation originated from an incorrect determination of the dissolved Fc concentration. Our observations have demonstrated that reliable control of the Fc concentration in solution is complicated by factors such as the low amount of Fc used to prepare small-volume solutions or the great difficulty to dissolve completely a solid powder in a solvent with an extremely high viscosity. An unexpected additional complication is related to a sufficiently high volatility of Fc which manifests itself even at room temperature and especially at elevated temperatures or/and in the course of vacuum treatment of its solutions or its solid powder. Parallel measurements of electrochemical responses and UV-visible spectra for several series of Fc solutions of various concentrations (prepared with the use of different procedures) have shown a perfect parallelism between the peak current and the intensity of the absorption band in the range of 360-550 nm, leading us to the conclusion of a linear relationship between the oxidation current and the molecularly dissolved Fc concentration. The relations of these measured characteristics with the estimated Fc concentration in these solutions have demonstrated a much greater dispersion (attributed to the difficulty of a precise measurement of the latter) but without a significant deviation from the linearity in general. This finding has allowed us to estimate the diffusion coefficient of this species: D

  19. Electrochemical reduction of aromatic ketones in 1-butyl-3-methylimidazolium-based ionic liquids in the presence of carbon dioxide: the influence of the ketone substituent and the ionic liquid anion on bulk electrolysis product distribution.

    PubMed

    Zhao, Shu-Feng; Horne, Mike; Bond, Alan M; Zhang, Jie

    2015-07-15

    Electrochemical reduction of aromatic ketones, including acetophenone, benzophenone and 4-phenylbenzophenone, has been undertaken in 1-butyl-3-methylimidazolium-based ionic liquids containing tetrafluoroborate ([BF4](-)), trifluoromethanesulfonate ([TfO](-)) and tris(pentafluoroethyl)trifluorophosphate ([FAP](-)) anions in the presence of carbon dioxide in order to investigate the ketone substituent effect and the influence of the acidic proton on the imidazolium cation (C2-H) on bulk electrolysis product distribution. For acetophenone, the minor products were dimers (<10%) in all ionic liquids, which are the result of acetophenone radical anion coupling. For benzophenone and 4-phenylbenzophenone, no dimers were formed due to steric hindrance. In these cases, even though carboxylic acids were obtained, the main products generated were alcohols (>50%) derived from proton coupled electron transfer reactions involving the electrogenerated radical anions and C2-H. In the cases of both acetophenone and benzophenone, the product distribution is essentially independent of the ionic liquid anion. By contrast, 4-phenylbenzophenone shows a product distribution that is dependent on the ionic liquid anion. Higher yields of carboxylic acids (∼40%) are obtained with [TfO](-) and [FAP](-) anions because in these ionic liquids the C2-H is less acidic, making the formation of alcohol less favourable. In comparison with benzophenone, a higher yield of carboxylic acid (>30% versus ∼15%) was obtained with 4-phenylbenzophenone in all ionic liquids due to the weaker basicity of 4-phenylbenzophenone radical anion.

  20. Partitioning of amino acids in the aqueous biphasic system containing the water-miscible ionic liquid 1-butyl-3-methylimidazolium bromide and the water-structuring salt potassium citrate.

    PubMed

    Zafarani-Moattar, Mohammed Taghi; Hamzehzadeh, Sholeh

    2011-07-01

    In biotechnology, extraction by means of aqueous biphasic systems (ABS) is known as a promising tool for the recovery and purification of bio-molecules. Over the past decade, the increasing emphasis on cleaner and environmentally benign extraction procedures has led to enhanced interest in the ABS containing ionic liquids (ILs)-a new class of non-volatile alternative solvents. ABS composed of the hydrophilic IL {1-butyl-3-methylimidazolium bromide ([C4 mim]Br)} and potassium citrate-which is easily degraded-represents a clean media to green separation of bio-molecules. In this regard, here, the extraction capability of this ABS was evaluated through its application to the extraction of some amino acids. To gain an insight into the driving forces of amino acid partitioning in the studied IL-based ABS, the distribution of five model amino acids (L-tryptophan, L-phenylalanine, L-tyrosine, L-leucine, and L-valine) at different aqueous medium pH values and different phase compositions was investigated. The studies indicated that hydrophobic interactions were the main driving force, although electrostatic interactions and salting-out effects were also important for the transfer of the amino acids. Moreover, based on the statistical analysis of the driving forces of amino acid partitioning in the studied IL-based ABS, a model was established to describe the partition coefficient of three model amino acids, L-tryptophan, L-phenylalanine, and L-valine, and employed to predict the partition coefficient of two other model amino acids, L-tyrosine and L-leucine. PMID:21509956

  1. Molecular mechanism of CO2 and SO2 molecules binding to the air/liquid interface of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid: A Molecular dynamics study with polarizable potential models

    SciTech Connect

    Wick, Collin D.; Chang, Tsun-Mei; Dang, Liem X.

    2010-11-25

    Molecular dynamics simulations with many-body interactions were carried out to understand the bulk and interfacial absorption of gases in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4). A new polarizable molecular model was developed for BMIMBF4, which was found to give the correct liquid density, but also had good agreement with experiment for its surface tension and X-ray reflectivity. The potential of mean force of CO2 and SO2 were calculated across the air-BMIMBF4 interface, and the bulk free energies were calculated with the free energy perturbation method. A new polarizable model was also developed for CO2. The air-BMIMBF4 interface had enhanced BMIM density, which was mostly related to its butyl group, followed by enhanced BF4 density a few angstroms towards the liquid bulk. The density profiles were observed to exhibit oscillations between high BMIM and BF4 density, indicating the presence of surface layering induced by the interface. The potential of mean force for CO2 and SO2 showed more negative free energies in regions of enhanced BF4 density, while more positive free energies in regions of high BMIM density. Moreover, these gases showed free energy minimums at the interface, where the BMIM alkyl groups were found to be most prevalent. Our results show the importance of ionic liquid interfacial ordering for understanding gas solvation in them. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  2. Solubility of CO2, CO, and H2 in the ionic liquid [bmim][PF6] from Monte Carlo simulations.

    PubMed

    Urukova, Ilina; Vorholz, Johannes; Maurer, Gerd

    2005-06-23

    This work reports predictions from molecular simulation results for the solubility of the single gases carbon dioxide, carbon monoxide, and hydrogen in the ionic liquid 1-N-butyl-3-methyl-imidazolium hexafluorophosphate ([bmim][PF6]) at temperatures from 293 to 393 K and at pressures up to 9 MPa. The predictions are achieved by Gibbs ensemble Monte Carlo simulations at constant pressure and temperature (NpT-GEMC). The intermolecular forces are approximated by effective pair potentials for the pure gases and by a quantum-chemistry-based pair potential for [bmim][PF6]. The interactions between unlike groups are described using common mixing rules without any adjustable binary interaction parameter. The simulation results for the solubility of hydrogen agree within their statistical uncertainty with experimental data, whereas the results for carbon monoxide and carbon dioxide reveal somewhat larger deviations. PMID:16852499

  3. Solubility of CO2, CO, and H2 in the ionic liquid [bmim][PF6] from Monte Carlo simulations.

    PubMed

    Urukova, Ilina; Vorholz, Johannes; Maurer, Gerd

    2005-06-23

    This work reports predictions from molecular simulation results for the solubility of the single gases carbon dioxide, carbon monoxide, and hydrogen in the ionic liquid 1-N-butyl-3-methyl-imidazolium hexafluorophosphate ([bmim][PF6]) at temperatures from 293 to 393 K and at pressures up to 9 MPa. The predictions are achieved by Gibbs ensemble Monte Carlo simulations at constant pressure and temperature (NpT-GEMC). The intermolecular forces are approximated by effective pair potentials for the pure gases and by a quantum-chemistry-based pair potential for [bmim][PF6]. The interactions between unlike groups are described using common mixing rules without any adjustable binary interaction parameter. The simulation results for the solubility of hydrogen agree within their statistical uncertainty with experimental data, whereas the results for carbon monoxide and carbon dioxide reveal somewhat larger deviations.

  4. Peculiarity of the liquid/vapour interface of an ionic liquid: study of surface tension and viscoelasticity of liquid BMImPF6 at various temperatures

    NASA Astrophysics Data System (ADS)

    Halka, V.; Tsekov, R.; Freyland, W.

    2005-03-01

    We have measured the surface tension and the capillary wave spectra at the liquid/vapour interface of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate at various temperatures up to 400 K. From the weak temperature dependence of the surface tension a low value of the surface excess entropy of 3.5 × 10-5 J K-1 m-2 results which is consistent with a strongly aligned surface layer of imidazolium cations previously predicted by MD-calculations. The capillary wave spectra recorded at different wave numbers in the range 170 cm-1q 500 cm-1 exhibit strong deviations from the behaviour expected for the free surface of simple liquids. With an extended dispersion relation including the contributions of surface dipole moment density and shear surface excess viscosity - the spectra have been analyzed. It is found that - is negligibly small, whereas substantially influences the capillary wave spectra. The electrostatic potential across the interface, which corresponds to the measured dipole moment densities, qualitatively agrees with simulation calculations. The distinct temperature dependence of suggests that with increasing temperature an order-disorder transformation occurs in the surface layer.

  5. Determining diffusion coefficients of ionic liquids by means of field cycling nuclear magnetic resonance relaxometry

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Meier, R.; Rachocki, A.; Korpała, A.; Singh, R. K.; Rössler, E. A.

    2014-06-01

    Field Cycling Nuclear Magnetic Resonance (FC NMR) relaxation studies are reported for three ionic liquids: 1-ethyl-3- methylimidazolium thiocyanate (EMIM-SCN, 220-258 K), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4, 243-318 K), and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6, 258-323 K). The dispersion of 1H spin-lattice relaxation rate R1(ω) is measured in the frequency range of 10 kHz-20 MHz, and the studies are complemented by 19F spin-lattice relaxation measurements on BMIM-PF6 in the corresponding frequency range. From the 1H relaxation results self-diffusion coefficients for the cation in EMIM-SCN, BMIM-BF4, and BMIM-PF6 are determined. This is done by performing an analysis considering all relevant intra- and intermolecular relaxation contributions to the 1H spin-lattice relaxation as well as by benefiting from the universal low-frequency dispersion law characteristic of Fickian diffusion which yields, at low frequencies, a linear dependence of R1 on square root of frequency. From the 19F relaxation both anion and cation diffusion coefficients are determined for BMIM-PF6. The diffusion coefficients obtained from FC NMR relaxometry are in good agreement with results reported from pulsed- field-gradient NMR. This shows that NMR relaxometry can be considered as an alternative route of determining diffusion coefficients of both cations and anions in ionic liquids.

  6. Determining diffusion coefficients of ionic liquids by means of field cycling nuclear magnetic resonance relaxometry.

    PubMed

    Kruk, D; Meier, R; Rachocki, A; Korpała, A; Singh, R K; Rössler, E A

    2014-06-28

    Field Cycling Nuclear Magnetic Resonance (FC NMR) relaxation studies are reported for three ionic liquids: 1-ethyl-3- methylimidazolium thiocyanate (EMIM-SCN, 220-258 K), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4, 243-318 K), and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6, 258-323 K). The dispersion of (1)H spin-lattice relaxation rate R1(ω) is measured in the frequency range of 10 kHz-20 MHz, and the studies are complemented by (19)F spin-lattice relaxation measurements on BMIM-PF6 in the corresponding frequency range. From the (1)H relaxation results self-diffusion coefficients for the cation in EMIM-SCN, BMIM-BF4, and BMIM-PF6 are determined. This is done by performing an analysis considering all relevant intra- and intermolecular relaxation contributions to the (1)H spin-lattice relaxation as well as by benefiting from the universal low-frequency dispersion law characteristic of Fickian diffusion which yields, at low frequencies, a linear dependence of R1 on square root of frequency. From the (19)F relaxation both anion and cation diffusion coefficients are determined for BMIM-PF6. The diffusion coefficients obtained from FC NMR relaxometry are in good agreement with results reported from pulsed- field-gradient NMR. This shows that NMR relaxometry can be considered as an alternative route of determining diffusion coefficients of both cations and anions in ionic liquids.

  7. Templated electrodeposition of silver nanowires in a nanoporous polycarbonate membrane from a nonaqueous ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Kazeminezhad, I.; Barnes, A. C.; Holbrey, J. D.; Seddon, K. R.; Schwarzacher, W.

    2007-03-01

    Template electrodeposition has been used to prepare a wide range of nanostructures but has generally been restricted to aqueous electrolytes. We report the deposition of silver nanowires in a commercial nuclear track-etched polycarbonate template from the nonaqueous ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) using silver electrochemically dissolved from the anode. Transmission electron microscopy (TEM) shows that the nanowires have a very high aspect ratio with an average diameter of 80 nm and length of 5 μm. Ionic liquid electrolytes should greatly extend the range of metals that can be electrodeposited as nanowires using templates.

  8. The effect of ionic liquid hydrophobicity and solvent miscibility on pluronic amphiphile self-assembly.

    PubMed

    Sharma, Suraj Chandra; Atkin, Rob; Warr, Gregory G

    2013-11-21

    The phase behavior of the triblock copolymer, (EO)20(PO)70(EO)20 (P123), in the water-immiscible (hydrophobic) ionic liquids (ILs), 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6), and tris(pentafluoroethyl)trifluorophosphate (bmimFAP), has been investigated, and its amphiphilic self-assembly examined using small-angle X-ray scattering. The results obtained are contrasted with those for P123 in water. Direct and water-swellable micellar, hexagonal, and lamellar phases of P123 are found in bmimPF6, which behaves like a polar solvent despite being water immiscible, but bmimFAP behaves as a truly hydrophobic solvent, forming only a lamellar phase over a narrow composition range. The miscibility of bmimPF6 and water is increased by P123 addition, and at sufficiently high P123 concentrations, a single lamellar phase forms in which bmimPF6 and water are miscible in all proportions. In contrast, the preferential solubilization of bmimPF6 by PEO chains and bmimFAP by PPO chains causes the nanosegregation of these miscible ILs in concentrated P123 solutions. This leads to the formation of a P123/bmimPF6/bmimFAP microemulsion where bmimPF6 is the polar solvent and bmimFAP is the non-polar solvent. PMID:24138343

  9. Extraction of arsenic from a soil in the blackfoot disease endemic area with ionic liquids

    NASA Astrophysics Data System (ADS)

    Liao, Chang-Yu; Peng, Ching-Yu; Wang, Hong-Chung; Kang, Hsu-Ya; Paul Wang, H.

    2011-10-01

    Speciation of arsenic extracted with room temperature ionic liquids (RTILs) ([bmim][BF 4] (1-butyl-3-methylimidazolium tetrafluoroborate) and [bmim][PF 6] (1-butyl-3-methylimidazolium hexafluorophosphate)) from an As-humic acid (As-HA) complex contaminated soil (As-HA/soil) in a blackfoot disease endemic area has been studied by X-ray absorption (near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS)) spectroscopy. About 45% of arsenic in the As-HA/soil can be extracted with [bmim][BF 4] while the relatively less hydrophilic [bmim][PF 6] extracts 25% of arsenic. The extracted arsenic in the [bmim][BF 4] and [bmim][PF 6] from the As-HA/soil possesses mainly As(III) species, suggesting that at least two reaction paths may be involved in the extraction process: (1) splitting of As-HA and (2) reduction of As(V) to As(III). The refined EXAFS spectra also indicate that the As(III) extracted in the RTILs possesses the AsO 2- structure, which has the As-O bond distances of 1.77-1.79 Å and coordination numbers of 4.0-4.2.

  10. Distribution of 1-Butyl-3-methylimidazolium Bistrifluoromethylsulfonimide in Mesoporous Silica as a Function of Pore Filling

    SciTech Connect

    Han, Kee Sung; Wang, Xiqing; Hagaman, Edward {Ed} W; Dai, Sheng

    2013-01-01

    Rotational dynamics of the ionic liquid (IL) 1-butyl-3-methlyimidazolium bistrifluoromethylsulfonimide, [C4mim][Tf2N], 1, as a neat liquid and confined in mesoporous silica were investigated by 1H spin-spin (T2) and spin-lattice (T1) relaxation measurements and 13C NMR spectroscopy. Translational dynamics (self-diffusion) were monitored via the diffusion coefficient, D, obtained with 1H pulsed field gradient NMR measurements. These data were used to determine the distribution of 1 in the pores of KIT-6, a mesoporous silica with a bicontinuous gyroid pore structure, as a function of filling fraction. Relaxation studies performed as a function of filling factor and temperature, reveal a dynamic heterogeneity in both translational and rotational motions for 1 at filling factors, f, = 0.2-1.0 (f = 1 corresponds to fully filled pores). Spin-lattice and spin-spin relaxation times reveal the motion of 1 in silica mesopores conform to that expected for a two-dimensional relaxation model. The relaxation dynamics are interpreted using a two-state, fast exchange model for all motions; a slow rotation (and translation) of molecules in contact with the surface and a faster motion approximated by the values for bulk relaxation and diffusion. 1 retains liquid like behavior at all filling factors and temperatures that extend to ca. 50 degrees below the bulk melting point. Translational motion in these systems, interpreted with MD-simulated diffusivity limits, confirms the high propensity of 1 to form a monolayer film on the silica surface at low filling factors.. The attractive interaction of 1 with the surface is greater than that for self-association of 1. The trends in diffusion data at short and long diffusion time suggest that the population of surface-bound 1 is in intimate contact with 1 in the pores. This condition is most easily met at higher filling fractions with successive additions of 1 increasing the layer thickness built up on the surface layer.

  11. ALPHA-AMYLASE ACTIVITY IN VARIOUS CONCENTRATIONS OF THE IONIC LIQUID, 1-BUTYL-3-METHYLIMIDAZOLIUM CHLORIDE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch is an extremely abundant, economical and versatile industrial commodity. Many industrial uses of starch depend on hydrolyzing the polymer for the conversion of glucose and maltodextrins. Starch hydrolysis is frequently achieved by utilizing alpha-amylase, which is an endo-acting enzyme that...

  12. Ordering layers of [bmim][PF6] ionic liquid on graphite surfaces: molecular dynamics simulation.

    PubMed

    Maolin, Sha; Fuchun, Zhang; Guozhong, Wu; Haiping, Fang; Chunlei, Wang; Shimou, Chen; Yi, Zhang; Jun, Hu

    2008-04-01

    Microscopic structures of room temperature ionic liquid (IL) [bmim][PF6] on hydrophobic graphite surfaces have been studied in detail by molecular dynamics simulation. It is clearly shown that both the mass and electron densities of the surface adsorbed ionic liquid are oscillatory, and the first peak adjacent to the graphite surface is considerably higher than others, corresponding to a solidlike IL bottom layer of 6 angstroms thick. Three IL layers are indicated between the graphite surface and the inner bulk IL liquid. The individually simulated properties of single-, double-, and triple-IL layers on the graphite surface are very similar to those of the layers between the graphite surface and the bulk liquid, indicating an insignificant effect of vapor-IL interface on the ordered IL layers. The simulation also indicates that the imidazolium ring and butyl tail of the cation (bmim+) of the IL bottom layer lie flat on the graphite surface.

  13. Sensitive determination of Amaranth in drinks by highly dispersed CNT in graphene oxide "water" with the aid of small amounts of ionic liquid.

    PubMed

    Wang, Meiling; Sun, Yinlu; Yang, Xiongbo; Zhao, Jianwei

    2015-07-15

    Graphene oxide (GO) is a pH-dependent amphiphile. In this paper, it was found that carbon nanotubes (CNTs) can be highly dispersed in graphene oxide "water" with the aid of prototype ionic liquid of 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]). The introduction of [BMIM][PF6] not only can minimize the defects of poor electrical conductivity of GO, but also can improve the dispersibility of CNT in water. Hence, a new composite of CNT/GO-[BMIM][PF6] with high dispersibility and strong conductivity was presented for the first time and employed in the sensitive determination of Amaranth in soft drinks. The detection limit achieved (0.1 nM) is much lower than the guideline values in soft drinks. The ease of preparation, low background current, high sensitivity and stability can create novel avenues and applications for fabricating robust sensors for determination of other azo dyes in foods.

  14. The Effect of Microporous Polymeric Support Modification on Surface and Gas Transport Properties of Supported Ionic Liquid Membranes

    PubMed Central

    Akhmetshina, Alsu A.; Davletbaeva, Ilsiya M.; Grebenschikova, Ekaterina S.; Sazanova, Tatyana S.; Petukhov, Anton N.; Atlaskin, Artem A.; Razov, Evgeny N.; Zaripov, Ilnaz I.; Martins, Carla F.; Neves, Luísa A.; Vorotyntsev, Ilya V.

    2015-01-01

    Microporous polymers based on anionic macroinitiator and toluene 2,4-diisocyanate were used as a support for 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) immobilization. The polymeric support was modified by using silica particles associated in oligomeric media, and the influence of the modifier used on the polymeric structure was studied. The supported ionic liquid membranes (SILMs) were tested for He, N2, NH3, H2S, and CO2 gas separation and ideal selectivities were calculated. The high values of ideal selectivity for ammonia-based systems with permanent gases were observed on polymer matrixes immobilized with [bmim][PF6] and [emim][Tf2N]. The modification of SILMs by nanosize silica particles leads to an increase of NH3 separation relatively to CO2 or H2S. PMID:26729177

  15. Photoinduced electron and energy transfer from coumarin 153 to perylenetetracarboxylic diimide in bmimPF6/TX-100/water microemulsions.

    PubMed

    Wu, Haixia; Wang, Haixia; Xue, Lin; Li, Xiyou

    2011-01-15

    A perylenetetracarboxylic diimide (PDI) compound with an attached hydrophilic polyoxyethylene group at the imide nitrogen position was designed and synthesized. Photoinduced electron and energy transfer between coumarin 153 (C-153) and PDI in a ternary microemulsion with an ionic liquid (bmimPF(6)/TX-100/H(2)O) were investigated by steady state electronic absorption and fluorescence spectroscopy. The results revealed that both PDI and C-153 resided at the interface between the surfactant TX-100 and the ionic liquid bmimPF(6) in the ternary microemulsions. The absorption spectra suggested no interactions between C-153 and PDI in the ground states, but the fluorescence spectra revealed the presence of an efficient electron transfer and a less efficient energy transfer from C-153 to PDI. Moreover, the electron transfer was much more efficient in microemulsions than that in homogeneous conventional organic solvents due to the unique micro-environment of the microemulsion. PMID:20965513

  16. Computational Studies of [Bmim][PF6]/n-Alcohol Interfaces with Many-Body Potentials

    SciTech Connect

    Chang, Tsun-Mei; Dang, Liem X.

    2014-09-04

    In this paper, we present the results from molecular-dynamics simulations of the equilibrium properties of liquid/liquid interfaces of room temperature ionic liquid [bmim][PF6] and simple alcohols (i.e., methanol, 1-butanol, and 1-hexanol) at room temperature. Polarizable potential models are employed to describe the interactions among species. Results from our simulations show stable interfaces between the ionic liquid and n-alcohols, and we found that the interfacial widths decrease from methanol to 1-butanol systems, and then increase for 1-hexanol interfaces. Angular distribution analysis reveals that the interface induces a strong orientational order of [bmim] and n-alcohol molecules near the interface, with [bmim] extending its butyl group into the alcohol phase while the alcohol has the OH group pointing into the ion liquid region, which is consistent with the recent sum-frequency-generation experiments. We found the interface to have a significant influence on the dynamics of ionic liquids and n-alcohols. The orientational autocorrelation functions illustrate that [bmim] rotate more freely near the interface than in the bulk, while the rotation of n-alcohol is hindered at the interface. Additionally, the time scale associated with the diffusion along the interfacial direction is found to be faster for [bmim] but slowed down for n-alcohols approaching the interface. We also calculate the dipole moment of n-alcohols as a function of the distance normal to the interface. We found that, even though methanol and 1-butanol have different dipole moments in bulk phase, they reach a similar value at the interface. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the Department of Energy by Battelle. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  17. Photoinduced electron transfer between 2-methylanthraquinone and triethylamine in an ionic liquid: time-resolved EPR and transient absorption spectroscopy study.

    PubMed

    Zhu, Guanglai; Wang, Yu; Fu, Haiying; Xu, Xinsheng; Cui, Zhifeng; Ji, Xuehan; Wu, Guozhong

    2015-02-25

    Photoinduced electron transfer between 2-methylanthraquinone (MeAQ) and triethylamine (TEA) in a room-temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), was investigated by comparing the time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy and the transient absorption spectroscopy. The results of TR-EPR spectroscopy, in which MeAQ was 8 mmol L(-1) and TEA was 150 mmol L(-1), indicated that the transient radical would exist longer time in [bmim][PF6] than in acetonitrile. At the delay time of 8 μs after laser excitation, the TR-EPR signal transformed from an emissive peak into an absorptive peak when the experiment was performed in [bmim][PF6]. The results of the transient absorption spectroscopy, in which MeAQ was 0.1 mmol L(-1) and TEA was 2.2 mmol L(-1), showed that the efficiency and the rate of the photoinduced electron transfer reaction in [bmim][PF6] were obviously lower than that in acetonitrile. It was concluded that various factors, such as concentration, viscosity and local structural transformation of the solution, have an influence on the process of photoinduced electron transfer in [bmim][PF6].

  18. Electrical, structural, thermal and electrochemical properties of corn starch-based biopolymer electrolytes.

    PubMed

    Liew, Chiam-Wen; Ramesh, S

    2015-06-25

    Biopolymer electrolytes containing corn starch, lithium hexafluorophosphate (LiPF6) and ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) are prepared by solution casting technique. Temperature dependence-ionic conductivity studies reveal Vogel-Tamman-Fulcher (VTF) relationship which is associated with free volume theory. Ionic liquid-based biopolymer electrolytes show lower glass transition temperature (Tg) than ionic liquid-free biopolymer electrolyte. X-ray diffraction (XRD) studies demonstrate higher amorphous region of ionic liquid-added biopolymer electrolytes. In addition, the potential stability window of the biopolymer electrolyte becomes wider and stable up to 2.9V. Conclusively, the fabricated electric double layer capacitor (EDLC) shows improved electrochemical performance upon addition of ionic liquid into the biopolymer electrolyte. The specific capacitance of EDLC based on ionic liquid-added polymer electrolyte is relatively higher than that of ionic liquid-free polymer electrolyte as depicted in cyclic voltammogram. PMID:25839815

  19. First-principle investigation of the interactions between PtxRu55-x (x = 0, 13, 42, 55) nanoparticles and [BMIM][PF6] ionic liquid

    NASA Astrophysics Data System (ADS)

    Cheng, Ping; Liu, Chuan; Yang, Yongpeng; Huang, Shiping

    2015-05-01

    Density functional theory calculations have been performed to characterize the interactions between [BMIM][PF6] ionic liquid and icosahedral PtxRu55-x (x = 0, 13, 42, 55) nanoparticles. In Ru13Pt42-[BMIM][PF6], only one F atom of the anion form the bond with nanoparticle, resulting in the smallest interaction energy (-0.56 eV). While in Pt13Ru42-[BMIM][PF6], two F atoms of the anion together with two C atoms of cation form the bonds with nanoparticle, resulting in the biggest interaction energy (-10.65 eV). The interaction between [BMIM][PF6] and Pt13Ru42 is so strong that it induces a significant distortion in the original core-shell structure of Pt13Ru42. Moreover, after interacting with [BMIM][PF6], the Pt55, Pt13Ru42 and Ru55 nanoparticles become more stable based on the negative relaxation energy. The d-band centers of Pt13Ru42 and Ru55 shift from -1.90, -1.78 eV up to -1.78, -1.56 eV, suggesting that the catalytic activities of Pt13Ru42 and Ru55 are enhanced.

  20. Comparative ecotoxicology study of two neoteric solvents: Imidazolium ionic liquid vs. glycerol derivative.

    PubMed

    Perales, Eduardo; García, Cristina Belén; Lomba, Laura; Aldea, Luis; García, José Ignacio; Giner, Beatriz

    2016-10-01

    In this study we have compared the acute ecotoxicity of two solvents, with very different structure and origin, but sharing many physical-chemical properties, so they can be used for similar purposes; a well-known ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) and a solvent partially derived from biomass, 3-bis(2,2,2-trifluoroethoxy)propan-2-ol (BTFIP). We have used three biomodels (Vibrio fischeri, Daphnia magna and Danio rerio) and performed the comparison applying the Environmental, Health and Safety (EHS) hazard assessment. According to the results, ecotoxicity of [BMIM][PF6] and BTFIP is quite similar in the simplest model Vibrio fischeri, while in Daphnia magna [BMIM][PF6] is clearly more toxic. However, in Danio rerio, toxicity of these chemicals is again quite similar and both can be classified as "nontoxic". The higher index value of [BMIM][PF6] in water mediate effect in the EHS assessment indicates that this ionic liquid is more dangerous than BTFIP, although accumulation and degradation properties have not been taken into account. Further studies will be necessary to ascertain these conclusions.

  1. Comparative ecotoxicology study of two neoteric solvents: Imidazolium ionic liquid vs. glycerol derivative.

    PubMed

    Perales, Eduardo; García, Cristina Belén; Lomba, Laura; Aldea, Luis; García, José Ignacio; Giner, Beatriz

    2016-10-01

    In this study we have compared the acute ecotoxicity of two solvents, with very different structure and origin, but sharing many physical-chemical properties, so they can be used for similar purposes; a well-known ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) and a solvent partially derived from biomass, 3-bis(2,2,2-trifluoroethoxy)propan-2-ol (BTFIP). We have used three biomodels (Vibrio fischeri, Daphnia magna and Danio rerio) and performed the comparison applying the Environmental, Health and Safety (EHS) hazard assessment. According to the results, ecotoxicity of [BMIM][PF6] and BTFIP is quite similar in the simplest model Vibrio fischeri, while in Daphnia magna [BMIM][PF6] is clearly more toxic. However, in Danio rerio, toxicity of these chemicals is again quite similar and both can be classified as "nontoxic". The higher index value of [BMIM][PF6] in water mediate effect in the EHS assessment indicates that this ionic liquid is more dangerous than BTFIP, although accumulation and degradation properties have not been taken into account. Further studies will be necessary to ascertain these conclusions. PMID:27265564

  2. The Importance of Ion Size and Electrode Curvature on Electrical Double Layers in Ionic Liquids

    SciTech Connect

    Feng, Guang; Qiao, Rui; Huang, Jingsong; Dai, Sheng; Sumpter, Bobby G; Meunier, Vincent

    2010-01-01

    Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF(6)], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF(6)] (near the positive electrode) {approx} [BMIM][Cl] (near the negative electrode) {approx} [BMIM][PF(6)] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a 'Multiple Ion Layers with Overscreening' (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.

  3. Performance of Liquid Phase Exfoliated Graphene As Electrochemical Double Layer Capacitors Electrodes

    NASA Astrophysics Data System (ADS)

    Huffstutler, Jacob; Wasala, Milinda; Richie, Julianna; Winchester, Andrew; Ghosh, Sujoy; Kar, Swastik; Talapatra, Saikat

    2014-03-01

    We will present the results of our investigations of electrochemical double layer capacitors (EDLCs) or supercapacitors (SC) fabricated using liquid-phase exfoliated graphene. Several electrolytes, such as aqueous potassium hydroxide KOH (6M), ionic 1-Butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], and ionic 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate[BMP][FAP] were used. These EDLC's show good performance compared to other carbon nanomaterials based EDLC's devices. We found that the liquid phase exfoliated graphene based devices possess specific capacitance values as high as 262 F/g, when used with ionic liquid electrolyte[BMP][FAP], with power densities (~ 454 W/kg) and energy densities (~ 0.38Wh/kg). Further, these devices indicated rapid charge transfer response even without the use of any binders or specially prepared current collectors. A detailed electrochemical impedance spectroscopy analysis in order to understand the phenomenon of charge storage in these materials will be presented.

  4. Temperature effects on the capacitance of an imidazolium-based ionic liquid on a graphite electrode: a molecular dynamics simulation.

    PubMed

    Liu, Xiaohong; Han, Yining; Yan, Tianying

    2014-08-25

    Temperature-dependent electric double layer (EDL) and differential capacitance-potential (C(d)-U) curves of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM(+)/PF6(-)) were studied on a graphite electrode by molecular dynamics simulations. It was found that all C(d)-U curves were asymmetric camel-shaped with higher C(d) at negative polarization, attributed to the specific adsorption of BMIM(+). In addition, the maxima of Cd at the negative polarization decrease monotonically with temperature due to the thicker EDL, whereas at the positive polarization they gradually increase from 450 to 550 K and decrease at 600 K. Such temperature effects at positive polarization may be understood in terms of the competition between two aspects: the weakening specific adsorption of BMIM(+) allows more effective screening to the positive charge and overall increasing EDL thickness. Although the former dominates from 450 to 550 K, the latter becomes dominant at 600 K.

  5. Theoretical investigation of polarization effects in solution: Importance of solvent collective motions

    NASA Astrophysics Data System (ADS)

    Ishida, Tateki

    2015-01-01

    Recent theoretical studies on interesting topics related to polarization effects in solutions are presented. As one of interesting topics, ionic liquids (ILs) solvents are focused on. The collective dynamics of electronic polarizability through interionic dynamics and the effect of polarization in ILs, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]), are studied with molecular dynamics simulation. Also, the time-dependent polarization effect on the probe betaine dye molecule, pyridinium N-phenoxide, in water is investigated by a time-dependent reference interaction site model self-consistent field (time-dependent RISM-SCF) approach. The importance of considering polarization effects on solution systems related to solvent collective motions is shown.

  6. An electrochemical fungicide pyrimethanil sensor based on carbon nanotubes/ionic-liquid construction modified electrode.

    PubMed

    Yang, Jichun; Wang, Qiong; Zhang, Minhui; Zhang, Shuming; Zhang, Lei

    2015-11-15

    In this study, a simple, rapid, sensitive and environmentally friendly electroanalytical detection method for pyrimethanil (PMT) was developed, which was based on multi-walled carbon nanotubes (MWCNTs) and ionic liquids (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) modified glassy carbon electrode (GCE). MWCNTs-IL modified electrode significantly enhanced the oxidation peak current of PMT by combining the excellent electrochemical properties of MWCNTs and IL, suggesting that the modified electrode can remarkably improve the sensitivity of PMT detection. Under the optimum conditions, this electrochemical sensor exhibited a linear concentration range for PMT of 1.0 × 10(-7)-1.0 × 10(-4) mol L(-1) and the detection limit was 1.6 × 10(-8) mol L(-1) (S/N = 3). The fabricated electrode showed good reproducibility, stability and anti-interference, and also it was successfully employed to detect PMT in real samples.

  7. Ultrasound-assisted ionic liquid-based dispersive liquid-liquid microextraction for preconcentration of patent blue V and its determination in food samples by UV-visible spectrophotometry.

    PubMed

    Unsal, Yunus Emre; Soylak, Mustafa; Tuzen, Mustafa

    2015-04-01

    Ultrasound-assisted ionic liquid-based dispersive liquid-liquid microextraction procedure (UA-IL-DLLME) was developed for determination of trace levels of patent blue V prior to its determination by UV-visible spectrophotometry. Patent blue V was extracted from 25-mL sample into a 100-μL volume of ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), with the aid of sonication in an ultrasonic bath. Several variables affecting microextraction efficiency were optimized. Under the optimum experimental conditions, the detection limit (3 s) was 0.68 μg L(-1), and the preconcentration factor was 100. The relative standard deviation for six replicate determinations of patent blue V was 4.5%. The method was applied to the determination of patent blue V in food samples. The proposed procedure is effective, very simple, and fast.

  8. CRYSTAL POLYMORPHISM IN 1-BUTYL-3-METHYLIMIDAZOLIUM HALIDES: SUPPORTING IONIC LIQUID FORMATION THROUGH INHIBITION OF CRYSTALLIZATION. (R828257)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  9. Adsorption of 1-butyl-3-methylimidazolium chloride ionic liquid by functional carbon microspheres from hydrothermal carbonization of cellulose.

    PubMed

    Qi, Xinhua; Li, Luyang; Tan, Tengfei; Chen, Wenting; Smith, Richard L

    2013-03-19

    Functional carbonaceous material (FCM) loaded with carboxylic groups was prepared by hydrothermal carbonization of cellulose in the presence of acrylic acid. The resulting FCM was used as adsorbent for recovery of a water-soluble ionic liquid, 1-butyl-3-methyl-imidazolium chloride ([BMIM][Cl]). The FCM consisted of microspheres (100-150 nm) and had a low surface area (ca. 20 m(2)/g), but exhibited adsorption capacity comparable to that of commercial activated carbon which can be attributed to the presence of high content of polar oxygenated groups (-OH, -C═O, -COOH) as revealed by spectral analyses. Sorption of [BMIM][Cl] onto FCM adsorbent could be well-described by pseudo-second-order kinetics. Thermodynamic and adsorption isothermal analyses revealed that the adsorption process was spontaneous, exothermic, and could be described by the Freundlich adsorption model. The FCM adsorbent could be regenerated effectively and recycled for at least three times without loss of adsorption capacity. The results of this work provide a facile method for production of functional carbonaceous materials from renewable resources that can be used for treatment of aqueous streams containing small concentrations of ionic liquid, [BMIM][Cl]. PMID:23410095

  10. Adsorption of 1-butyl-3-methylimidazolium chloride ionic liquid by functional carbon microspheres from hydrothermal carbonization of cellulose.

    PubMed

    Qi, Xinhua; Li, Luyang; Tan, Tengfei; Chen, Wenting; Smith, Richard L

    2013-03-19

    Functional carbonaceous material (FCM) loaded with carboxylic groups was prepared by hydrothermal carbonization of cellulose in the presence of acrylic acid. The resulting FCM was used as adsorbent for recovery of a water-soluble ionic liquid, 1-butyl-3-methyl-imidazolium chloride ([BMIM][Cl]). The FCM consisted of microspheres (100-150 nm) and had a low surface area (ca. 20 m(2)/g), but exhibited adsorption capacity comparable to that of commercial activated carbon which can be attributed to the presence of high content of polar oxygenated groups (-OH, -C═O, -COOH) as revealed by spectral analyses. Sorption of [BMIM][Cl] onto FCM adsorbent could be well-described by pseudo-second-order kinetics. Thermodynamic and adsorption isothermal analyses revealed that the adsorption process was spontaneous, exothermic, and could be described by the Freundlich adsorption model. The FCM adsorbent could be regenerated effectively and recycled for at least three times without loss of adsorption capacity. The results of this work provide a facile method for production of functional carbonaceous materials from renewable resources that can be used for treatment of aqueous streams containing small concentrations of ionic liquid, [BMIM][Cl].

  11. Ionic liquid 1-butyl-3-methylimidazolium cyanamide (bmim [dca]) as a solvent and catalyst for acylation of maltodextrin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have found a novel method to prepare maltodextrin stearate with DS upto 0.60 in 90% yields from maltodextrin in IL bmim[dca] reacted with vinyl stearate or stearic acid. In this work we have demonstrated that IL could simultaneously act as a solvent and as a catalyst for reaction of maltodextrin...

  12. Ionic liquids for improving the extraction of NSAIDs in water samples using dispersive liquid-liquid microextraction by high performance liquid chromatography-diode array-fluorescence detection.

    PubMed

    Toledo-Neira, Carla; Álvarez-Lueje, Alejandro

    2015-03-01

    A rapid, sensitive and efficient analytical method based on the use of ionic liquids for determination of non-steroidal anti-inflammatory drugs (NSAIDs) in water samples was developed. High-performance liquid chromatography equipped with a diode array and fluorescence detector was used for quantification of ketoprofen, ibuprofen and diclofenac in tap and river water samples. This new method relies on the use of two ionic liquids with multiple functionalities: one functions as an extraction solvent (1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), and the other changes the polarity in the aqueous medium (1-butyl-3-methylimidazolium tetrafluoroborate, ([BMIM][BF4]). Factors such as the type and volume of the ILs and dispersive solvent, sample volume, and centrifugation time were investigated and optimized. The optimized method exhibited good precision, with relative standard deviation values between 2% and 3%, for the three NSAIDs. Limits of detection achieved for all of the analytes were between 17 and 95 ng mL(-1), and the recoveries ranged from 89% to 103%. Furthermore, the enrichment factors ranged from 49 to 57. The proposed method was successfully applied to the analysis of NSAIDs in tap and river water samples.

  13. Aggregation behavior of Triton X-100 with a mixture of two room-temperature ionic liquids: can we identify the mutual penetration of ionic liquids in ionic liquid containing micellar aggregates?

    PubMed

    Rao, Vishal Govind; Mandal, Sarthak; Ghosh, Surajit; Banerjee, Chiranjib; Sarkar, Nilmoni

    2012-11-29

    In this manuscript, we have characterized two different micellar aggregates containing all nonvolatile components. We have shown (i) the effect of ethylammonium nitrate (EAN) addition on the properties of micellar solution of Triton X-100 in 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF(6)) and (ii) the effect of bmimPF(6) addition on the properties of micellar solution of Triton X-100 in EAN. To investigate the effect, we have used (1)H NMR, pulsed-field gradient spin-echo NMR (PFGSE NMR), and methyl orange (MO) and coumarin 153 (C-153) as absorption and emission probes, respectively. The penetration of added EAN inside the Triton X-100/bmimPF(6) micellar aggregates is indicated by (i) red shift in both the absorption spectra of MO and emission spectra of C-153 and (ii) downfield shift of proton signals of ethylene oxide units in Triton X-100. On the other hand, (1)H NMR and PFGSE NMR indicates the penetration of added bmimPF(6) inside the Triton X-100/EAN micellar aggregates. However, the constancy of both the absorption spectra of MO and emission spectra of C-153 indicates that the microenvironment around the probe molecules remains unaffected. We have also investigated the effect of micelle formation and the effect of penetration of ionic liquids (ILs) in micellar aggregates, on the solvation dynamics of C-153. The solvent relaxation around C-153 gets retarded on going from neat ILs to the micellar solution of Triton X-100 in ILs. In addition to this, we have also observed that with the addition of EAN in Triton X-100/bmimPF(6) micellar aggregates the solvation dynamics becomes faster, whereas with the addition of bmimPF(6) in Triton X-100/EAN micellar aggregates we did not observe any notable change in solvation dynamics. This observation further supports the conclusions drawn from UV-visible and NMR studies.

  14. OsO(4) in ionic liquid [Bmim]PF(6): a recyclable and reusable catalyst system for olefin dihydroxylation. remarkable effect of DMAP.

    PubMed

    Yao, Qingwei

    2002-06-27

    [reaction: see text] The combination of the ionic liquid [bmim]PF(6) and DMAP provides a most simple and practical approach to the immobilization of OsO(4) as catalyst for olefin dihydroxylation. Both the catalyst and the ionic liquid can be repeatedly recycled and reused in the dihydroxylation of a variety of olefins with only a very slight drop in catalyst activity. PMID:12074666

  15. OsO(4) in ionic liquid [Bmim]PF(6): a recyclable and reusable catalyst system for olefin dihydroxylation. remarkable effect of DMAP.

    PubMed

    Yao, Qingwei

    2002-06-27

    [reaction: see text] The combination of the ionic liquid [bmim]PF(6) and DMAP provides a most simple and practical approach to the immobilization of OsO(4) as catalyst for olefin dihydroxylation. Both the catalyst and the ionic liquid can be repeatedly recycled and reused in the dihydroxylation of a variety of olefins with only a very slight drop in catalyst activity.

  16. Influence of ionic liquid film thickness on ion pair distributions and orientations at graphene and vacuum interfaces.

    PubMed

    Wang, Yong-Lei; Laaksonen, Aatto; Lu, Zhong-Yuan

    2013-08-28

    Microscopic structures, orientational preferences together with mass, number and electron density distributions of 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) ionic liquid (IL) have been studied on a neutral hydrophobic graphene surface, and at the IL-vacuum interface using atomistic Molecular Dynamics simulations. At the IL-graphene interface, distinct mass, number and electron density distributions are observed oscillating into the bulk region with several compact structural layers. The imidazolium ring of [BMIM] cations lies preferentially flat on the graphene surface, with its methyl and butyl side chains elongated along the graphene surface. At the IL-vacuum interface, however, the distributions of [BMIM][PF6] ion pairs are strongly influenced by the thickness of IL film. With the increase of IL film thickness, the orientations of [BMIM] cations at the IL-vacuum interface change gradually from dominant flat distributions along the graphene surface to orientations where the imidazolium rings are either parallel or perpendicular to the IL-vacuum interface with tilted angles. The outmost layers are populated with alkyl groups and imparted with distinct hydrophobic character. The calculated radial distribution functions suggest that ionic structures of [BMIM][PF6] ion pairs in IL-graphene and IL-vacuum interfacial regions are significantly different from each other and also from that in bulk regions.

  17. Enhanced Horizontal Transfer of Antibiotic Resistance Genes in Freshwater Microcosms Induced by an Ionic Liquid

    PubMed Central

    Wang, Qing; Mao, Daqing; Mu, Quanhua; Luo, Yi

    2015-01-01

    The spread and propagation of antibiotic resistance genes (ARGs) is a worldwide public health concern. Ionic liquids (ILs), considered as “environmentally friendly” replacements for industrial organic solvents, have been widely applied in modern industry. However, few data have been collected regarding the potential ecological and environmental risks of ILs, which are important for preparing for their potential discharge into the environment. In this paper, the IL 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]) (0.001-5.0 g/L) was tested for its effects on facilitating ARGs horizontal transfer mediated by plasmid RP4 in freshwater microcosms. In the horizontal transfer microcosms, the transfer frequency of plasmid RP4 was significantly enhanced (60-fold higher than untreated groups) by the IL [BMIm][PF6] (1.0 g/L). Meanwhile, two strains of opportunistic pathogen Acinetobacter spp. and Salmonella spp. were isolated among the transconjugants, illustrating plasmid RP4 mediated horizontal transfer of ARGs occurred in pathogen. This could increase the risk of ARGs dissemination to human pathogens and pose great threat to public health. The cause that [BMIm[PF6] enhanced the transfer frequency of plasmid RP4 was proposed by suppressed cell membrane barrier and enhanced cell membrane permeability, which was evidenced by flow cytometry (FCM). This is the first report that some ILs facilitate horizontal transfer of plasmid RP4 which is widely distributed in the environment and thus add the adverse effects of the environmental risk of ILs. PMID:25951456

  18. Evidence of water-in-ionic liquid microemulsion formation by nonionic surfactant Brij-35.

    PubMed

    Rai, Rewa; Pandey, Siddharth

    2014-09-01

    Brij-35, a common and popular nonionic surfactant, is shown to form water-in-ionic liquid (w/IL) microemulsions with IL 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) as the bulk phase. The presence of w/[bmim][PF6] microemulsions is hinted by the significantly increased solubility of water in Brij-35 solution of [bmim][PF6]. The formation of w/[bmim][PF6] microemulsions by Brij-35 is confirmed using dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) measurements. Brij-35 forms reverse micelle-type aggregates within [bmim][PF6] in the absence of added-water. These reverse micelles become w/[bmim][PF6] microemulsions as the water is added to the system. As the water loading (w0) is increased, the average diameter of the aggregates increases. Fourier transform infrared (FTIR) absorbance data reveal the presence of both "bound" and "free" water within the system. The "bound" water is associated with the water pools of the w/[bmim][PF6] microemulsions. Excited-state proton transfer (ESPT) involving probe pyranine shows deprotonation of pyranine within the water pools of the w/[bmim][PF6] microemulsions. PMID:25121578

  19. Structural and dynamic features of Candida rugosa lipase 1 in water, octane, toluene, and ionic liquids BMIM-PF6 and BMIM-NO3.

    PubMed

    Burney, Patrick R; Pfaendtner, Jim

    2013-03-01

    Ionic liquids (ILs) and organic chemicals can be used as solvents in biochemical reactions to influence the structural and dynamic features of the enzyme, sometimes detrimentally. In this work we report the results for molecular dynamics simulations of Candida rugosa lipase (CRL) in ILs BMIM-PF6 and BMIM-NO3, as well as organic solvents toluene and octane in an effort to explore the role of solvent on the structure and dynamics of an enzyme known to be active in many nonaqueous media. Simulations of CRL in water were also included for comparison, bringing the aggregate simulation time to over 2.8 μs. At both 310 and 375 K the ILs significantly dampen protein dynamics and trap the system near its starting structure. Structural changes in the enzyme follow the viscosity of the solvent, with the enzyme deviating from its initial structure the most in water and the least in BMIM-PF6. Interactions between the enzyme surface and the solvent in the IL simulations show that contacts are dominated by the IL anion, which is ascribed to a broader spatial distribution of positively charged protein residues and reduced mobility of the cation due to the size of the imadazolium ring.

  20. Toxicity of ionic liquids to Clostridium sp. and effects on uranium biosorption.

    PubMed

    Zhang, C; Malhotra, S V; Francis, A J

    2014-01-15

    As green solvents ionic liquids (ILs) show high potential in nuclear industry for extraction and purification of actinides. However, to date relatively little information has been gained on ILs application in microbial processes, for example biosorption of radionuclides. We investigated the effects of three ILs, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6), N-ethylpyridinium trifluoroacetate (EtPyCF3COO) and N-ethylpyridinium tetrafluoroborate (EtPyBF4) on the growth and biosorption of uranium by Clostridium sp. The ILs affected the growth of the bacterium as evidenced by decreases in optical density, total gas production, and organic acids production from glucose metabolism. The IC50-48h of three ILs decreased in the order of BMIMPF6 (8.26mM)>EtPyBF4 (7.04mM)>EtPyCF3COO (4.05mM). Uranium biosorption by the bacterial cells decreased by 75% in the presence of 1% (v/v) BMIMPF6 and by about 90% with 1% (v/v) EtPyBF4 or EtPyCF3COO, in comparison to the control without ILs. The diminished biosorption may be attributed to the membrane damages induced by EtPyBF4 and EtPyCF3COO, which can be visualized by Transmission Electron Microscope (TEM) analysis. Energy-dispersive X-ray spectroscopy (EDS) analysis revealed the accumulation of uranium inside peripheral membrane of the cells exposed to uranium alone or with BMIMPF6, while little or no accumulation was observed in the presence of EtPyBF4 and EtPyCF3COO. These results imply that potential toxicity of ILs towards microorganisms is a particularly important issue in limiting its biotechnological applications. PMID:24316798

  1. Ionic Liquid-Induced Unprecedented Size Enhancement of Aggregates within Aqueous Sodium Dodecylbenzene Sulfonate

    SciTech Connect

    Rai, Rewa; Baker, Gary A; Behera, Kamalakanta; Mohanty, Pravakar; Kurur, Narayanan; Pandey, Siddharth

    2010-01-01

    Physicochemical properties of aqueous micellar solutions may change in the presence of ionic liquids (ILs). Micelles help to increase the aqueous solubility of ILs. The average size of the micellar aggregates within aqueous sodium dodecylbenzene sulfonate (SDBS) is observed by dynamic light scattering (DLS) and transmission electron microscopy (TEM) to increase in a sudden and drastic fashion as the IL 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) is added. Similar addition of [bmim][PF6] to aqueous sodium dodecyl sulfate (SDS) results in only a slow gradual increase in average aggregate size. While addition of the IL [bmim][BF4] also gives rise to sudden aggregate size enhancement within aqueous SDBS, the IL 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4]), and inorganic salts NaPF6 and NaBF4, only gradually increase the assembly size upon their addition. Bulk dynamic viscosity, microviscosity, dipolarity (indicated by the fluorescent reporter pyrene), zeta potential, and electrical conductance measurements were taken to gain insight into this unusual size enhancement. It is proposed that bmim cations of the IL undergo Coulombic attractive interactions with anionic headgroups at the micellar surface at all [bmim][PF6] concentrations in aqueous SDS; in aqueous SDBS, beyond a critical IL concentration, bmim becomes involved in cation- interaction with the phenyl moiety of SDBS within micellar aggregates with the butyl group aligned along the alkyl chain of the surfactant. This relocation of bmim results in an unprecedented size increase in micellar aggregates. Aromaticity of the IL cation alongside the presence of sufficiently aliphatic (butyl or longer) alkyl chains on the IL appear to be essential for this dramatic critical expansion in self-assembly dimensions within aqueous SDBS.

  2. Anion Effects on Interfacial Absorption of Gases in Ionic Liquids. A Molecular Dynamics Study

    SciTech Connect

    Wick, Collin D.; Dang, Liem X.

    2011-06-02

    Molecular dynamics simulations with many-body interactions were carried out to systematic study the effect of anion type, tetrafluoroborate [BF4] or hexafluorophosphate [PF6], paired with the cation 1-butyl-3-methylimidazolium [bmim], on the interfacial absorption of gases in room temperature ionic liquids (RTILs). The potentials of mean force (PMF) of CO2 and H2O at 350 K were calculated across the air-liquid interfaces of [bmim][BF4] and [bmim][PF6]. We found that the PMFs for H2O exhibited no interfacial minima at both interfaces, while the corresponding PMFs for CO2 had significant free energy minima there. However, the PMFs for H2O showed a much higher interfacial free energy than in the bulk for [bmim][BF4], but only a slightly higher interfacial free energy for [bmim][PF6] than in bulk. The reason for this was due to the more hydrophilic nature of the [BF4] anion, and the fact that [BF4] was found to have little propensity for the interface. Our results show that H2O is much more likely to be found at the air-[bmim][PF6] interface than at the air-[bmim][BF4] interface. The free energies of solvation were found to be more negative for [bmim][BF4] than [bmim][PF6] for water and similar for CO2. This observation is consistent with experimental Henry’s law coefficients. Our results show that anion type, in addition to affecting the free energy of solvation into RTILs, should also significantly influence the uptake mechanism. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  3. Bottom-up electrochemical preparation of solid-state carbon nanodots directly from nitriles/ionic liquids using carbon-free electrodes and the applications in specific ferric ion detection and cell imaging

    NASA Astrophysics Data System (ADS)

    Niu, Fushuang; Xu, Yuanhong; Liu, Mengli; Sun, Jing; Guo, Pengran; Liu, Jingquan

    2016-03-01

    Carbon nanodots (C-dots), a new type of potential alternative to conventional semiconductor quantum dots, have attracted numerous attentions in various applications including bio-chemical sensing, cell imaging, etc., due to their chemical inertness, low toxicity and flexible functionalization. Various methods including electrochemical (EC) methods have been reported for the synthesis of C-dots. However, complex procedures and/or carbon source-containing electrodes are often required. Herein, solid-state C-dots were simply prepared by bottom-up EC carbonization of nitriles (e.g. acetonitrile) in the presence of an ionic liquid [e.g. 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6)], using carbon-free electrodes. Due to the positive charges of BMIM+ on the C-dots, the final products presented in a precipitate form on the cathode, and the unreacted nitriles and BMIMPF6 can be easily removed by simple vacuum filtration. The as-prepared solid-state C-dots can be well dispersed in an aqueous medium with excellent photoluminescence properties. The average size of the C-dots was found to be 3.02 +/- 0.12 nm as evidenced by transmission electron microscopy. Other techniques such as UV-vis spectroscopy, fluorescence spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were applied for the characterization of the C-dots and to analyze the possible generation mechanism. These C-dots have been successfully applied in efficient cell imaging and specific ferric ion detection.Carbon nanodots (C-dots), a new type of potential alternative to conventional semiconductor quantum dots, have attracted numerous attentions in various applications including bio-chemical sensing, cell imaging, etc., due to their chemical inertness, low toxicity and flexible functionalization. Various methods including electrochemical (EC) methods have been reported for the synthesis of C-dots. However, complex procedures and/or carbon source-containing electrodes are often

  4. Free radical (co)polymerization of methyl methacrylate and styrene in room temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Zhang, Hongwei

    Conventional free radical polymerizations were carried out in a variety of room temperature ionic liquids (RTILs). Generally, methyl methacrylate (MMA) and styrene (St) were used as typical monomers to compare the polymerization behavior both in RTILs and in common volatile organic compound solvents (VOCs). In most cases, it was observed that both yields and molecular weights are enhanced in the RTIL. While we believe the "diffusion-controlled termination" mechanism makes the termination of the radical propagating chains difficult due to the highly viscous nature of RTIL, other researchers have suggested that the rapid polymerization rates are due to the high polarity of these reaction media. By employing more than a dozen RTILs with a wide range of anions and cations, we attempted to correlate the viscosity and polarity of the RTILs with the molecular weights and polymerization rates. This correlation was not successful, suggesting that other parameters may also play a role in affecting the polymerization behavior. Other kinds of polymerizations have also been attempted including nitroxide-mediated living radical polymerizations of St and MMA in 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6), and redox initiation system initiated polymerization of MMA through redox pair formed by cation of trihexyl-tetradecyl-phosphonium bis(2,4,4-trimethylpentyl) phosphinate ([H3TDP] [(PM3) 2P]) and BPO. The formation of PSt-b-PMMA by sequential monomer addition through the standard free radical polymerization mechanism, using BPO as initiator, can be realized in [BMIM]PF6 due to the insolubility of polymerized first block---PSt in [BMIM]PF6. The macroradicals wrapped inside the chain coils have prolonged lifetimes because of the diminished termination, which allow some of these radicals to initiate polymerization of MMA at room temperature to form diblock copolymer. Solvents effects on reactivity ratios for free radical statistical copolymerization have been

  5. Effective asymmetric bioreduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate by recombinant E. coli CCZU-A13 in [Bmim]PF6-hydrolyzate media.

    PubMed

    He, Yu-Cai; Tao, Zhi-Cheng; Di, Jun-Hua; Chen, Liang; Zhang, Lin-Bing; Zhang, Dan-Ping; Chong, Gang-Gang; Liu, Feng; Ding, Yun; Jiang, Chun-Xia; Ma, Cui-Luan

    2016-08-01

    It was the first report that the concentrated hydrolyzates from the enzymatic hydrolysis of dilute NaOH (3wt%)-soaking rice straw at 30°C was used to form [Bmim]PF6-hydrolyzate (50:50, v/v) media for bioconverting ethyl 4-chloro-3-oxobutanoate (COBE) into ethyl (R)-4-chloro-3-hydroxybutanoate [(R)-CHBE] (>99% e.e.) with recombinant E. coli CCZU-A13. Compared with pure glucose, the hydrolyzates could promote both initial reaction rate and the intracellular NADH content. Furthermore, emulsifier OP-10 (20mM) was employed to improve the reductase activity. Moreover, Hp-β-cyclodextrin (0.01mol Hp-β-cyclodextrin/mol COBE) was also added into this bioreaction system for enhancing the biosynthesis of (R)-CHBE from COBE by E. coli CCZU-A13 whole-cells. The yield of (R)-CHBE (>99% e.e.) from 800mM COBE was obtained at 100% in the [Bmim]PF6-hydrolyzate (50:50, v/v) media by supplementation of OP-10 (20mM) and Hp-β-CD (8mM). In conclusion, an effective strategy for the biosynthesis of (R)-CHBE was successfully demonstrated. PMID:27155796

  6. Effective asymmetric bioreduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate by recombinant E. coli CCZU-A13 in [Bmim]PF6-hydrolyzate media.

    PubMed

    He, Yu-Cai; Tao, Zhi-Cheng; Di, Jun-Hua; Chen, Liang; Zhang, Lin-Bing; Zhang, Dan-Ping; Chong, Gang-Gang; Liu, Feng; Ding, Yun; Jiang, Chun-Xia; Ma, Cui-Luan

    2016-08-01

    It was the first report that the concentrated hydrolyzates from the enzymatic hydrolysis of dilute NaOH (3wt%)-soaking rice straw at 30°C was used to form [Bmim]PF6-hydrolyzate (50:50, v/v) media for bioconverting ethyl 4-chloro-3-oxobutanoate (COBE) into ethyl (R)-4-chloro-3-hydroxybutanoate [(R)-CHBE] (>99% e.e.) with recombinant E. coli CCZU-A13. Compared with pure glucose, the hydrolyzates could promote both initial reaction rate and the intracellular NADH content. Furthermore, emulsifier OP-10 (20mM) was employed to improve the reductase activity. Moreover, Hp-β-cyclodextrin (0.01mol Hp-β-cyclodextrin/mol COBE) was also added into this bioreaction system for enhancing the biosynthesis of (R)-CHBE from COBE by E. coli CCZU-A13 whole-cells. The yield of (R)-CHBE (>99% e.e.) from 800mM COBE was obtained at 100% in the [Bmim]PF6-hydrolyzate (50:50, v/v) media by supplementation of OP-10 (20mM) and Hp-β-CD (8mM). In conclusion, an effective strategy for the biosynthesis of (R)-CHBE was successfully demonstrated.

  7. Molecular dynamics studies on the adaptability of an ionic liquid in the extraction of solid nanoparticles.

    PubMed

    Frost, Denzil S; Machas, Michael; Dai, Lenore L

    2012-10-01

    Recently, a number of publications have suggested that ionic liquids (ILs) can absorb solid particles. This development may have implications in fields like oil sand processing, oil spill beach cleanup, and water treatment. In this Article, we provide a computational investigation of this phenomenon via molecular dynamics simulations. Two particle surface chemistries were investigated: (1) hydrocarbon-saturated and (2) silanol-saturated, representing hydrophobic and hydrophilic particles, respectively. Employing 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]) as a model IL, these nanoparticles were allowed to equilibrate at the IL/water and IL/hexane interfaces to observe the interfacial self-assembled structures. At the IL/water interface, the hydrocarbon-based nanoparticles were nearly completely absorbed by the IL, while the silica nanoparticles maintained equal volume in both phases. At the IL/hexane interface, the hydrocarbon nanoparticles maintained minimal interactions with the IL, whereas the silica nanoparticles were nearly completely absorbed by it. Studies of these two types of nanoparticles immersed in the bulk IL indicate that the surface chemistry has a great effect on the corresponding IL liquid structure. These effects include layering of the ions, hydrogen bonding, and irreversible absorption of some ions to the silica nanoparticle surface. We quantify these effects with respect to each nanoparticle. The results suggest that ILs likely exhibit this absorption capability because they can form solvation layers with reduced dynamics around the nanoparticles. PMID:22950605

  8. Field Effect Transistors Using Atomically Thin Layers of Copper Indium Selenide (CuInSe)

    NASA Astrophysics Data System (ADS)

    Patil, Prasanna; Ghosh, Sujoy; Wasala, Milinda; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel; Talapatra, Saikat

    We will report fabrication of field-effect transistors (FETs) using few-layers of Copper Indium Selenide (CuInSe) flakes exfoliated from crystals grown using chemical vapor transport technique. Our transport measurements indicate n-type FET with electron mobility µ ~ 3 cm2 V-1 s-1 at room temperature when Silicon dioxide (SiO2) is used as a back gate. Mobility can be further increased significantly when ionic liquid 1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) is used as top gate. Similarly subthreshold swing can be further improved from 103 V/dec to 0.55 V/dec by using ionic liquid as a top gate. We also found ON/OFF ratio of ~ 102 for both top and back gate. Comparison between ionic liquid top gate and SiO2 back gate will be presented and discussed. This work is supported by the U.S. Army Research Office through a MURI Grant # W911NF-11-1-0362.

  9. Pre-concentration procedure based on chitosan combined with ionic liquid for the determination of cobalt, nickel, and copper in water samples.

    PubMed

    Zawisza, Beata; Sitko, Rafal

    2013-05-01

    An environmentally friendly analytical procedure of pre-concentration of cobalt, nickel, and copper according to the rules of green chemistry has been developed. The proposed method is based on using chitosan for sorption of trace elements from water samples. The novel modification of the sorption process is the combination of an ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6]) with chitosan. Ionic liquid partly decreases the crystallinity of the chitosan. The crystalline regions of the polymer are not accessible to metal ions. Although the ionic liquid cannot completely disrupt the crystalline domains of chitosan, it may gain in the reactive groups of the chitosan, even at the center of the particle. Consequently, the sorption of metal ions by chitosan is significantly improved. In this paper, adsorption characteristics of cobalt, nickel, and copper using newly developed sorption are studied. The effect of pH and time of chitosan activation, as well as sorption, salt concentration, some metals ion concentrations, and the amount of adsorbent on the extent of adsorption, are investigated. Chitosan with adsorbed metal ions was dissolved in acetic acid. After evaporation a solvent film formed and was then analyzed using X-ray fluorescence spectrometry (XRF). As it meets the criterion of thin samples for XRF analysis, the matrix effects can be neglected. With the proposed procedure we obtained detection limits of 7 ng mL(-1) for cobalt, 5 ng mL(-1) for nickel, and 4 ng mL(-1) for copper. PMID:23643042

  10. Novel multifunctional nanofibers based on thermoplastic polyurethane and ionic liquid: towards antibacterial, anti-electrostatic and hydrophilic nonwovens by electrospinning.

    PubMed

    Xing, Chenyang; Guan, Jipeng; Chen, Zhouli; Zhu, Yu; Zhang, Bowu; Li, Yongjin; Li, Jingye

    2015-03-13

    Novel antibacterial, anti-electrostatic, and hydrophilic nanofibers based on a blend containing thermoplastic polyurethane (TPU) and a room-temperature ionic liquid (IL), 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], were fabricated by electrospinning. We investigated the effect of the IL on the morphology and the physical properties of the TPU nanofibers. Nanofibers with a 'bead-on-string' morphology were obtained by electrospinning from a neat TPU solution. The incorporation of the IL, at levels as low as 1 wt%, largely suppressed the formation of beads during electrospinning, and homogeneous nanofibers were obtained. The as-spun TPU/IL composite nanofibers showed significant activity against both Escherichia coli (E coli) and Staphylococcus aureus (S. aureus), with antibacterial activities of more than four and three, respectively. This means that the antibacterial efficiencies of TPU/IL composite nanofibers toward E coli and S. aureus are 99.99% and 99.9%, respectively. Moreover, nonwoven fabrics derived from the electrospun TPU/IL composite nanofibers exhibit better stretchability, elasticity, and higher electrical conductivity compared to those made using neat TPU without an IL. Additionally, the incorporation of the IL leads to a hydrophilic surface for the TPU/IL composite nanofibers compared to hydrophobic neat TPU nanofibers. These multifunctional nanofibers with excellent antibacterial, anti-electrostatic, and mechanical properties and improved hydrophilicity are promising candidates for biomedical and wastewater treatment applications.

  11. Syntheses and crystal structures of benzene-sulfonate and -carboxylate copper polymers and their application in the oxidation of cyclohexane in ionic liquid under mild conditions.

    PubMed

    Hazra, Susanta; Ribeiro, Ana P C; Guedes da Silva, M Fátima C; Nieto de Castro, Carlos A; Pombeiro, Armando J L

    2016-09-21

    The syntheses, crystal structures and catalytic activities of the polymers derived from 2-(2-pyridylmethyleneamino)benzenesulfonic acid (HL), viz. [CuL(H2tma)]n (1) and [{Cu2L2(H2pma)}·(8H2O)]n (2) [H3tma = benzene-1,3,5-tricarboxylic (trimesic) acid and H4pma = benzene-1,2,4,5-tetracarboxylic (pyromellitic) acid], are presented. Despite the comparable combinations and compositions of ligands (sulfonate and carboxylate) in these two polymers the bridging moiety in 1 is sulfonate while in 2 it is carboxylate. Complexes 1 and 2 act as catalysts in the peroxidative oxidation of cyclohexane under mild conditions using either the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6] or acetonitrile as the solvent. The ionic liquid medium leads to increases in the yields and in the turnover numbers, achieved in shorter reaction times in comparison with those when using the conventional acetonitrile solvent. A simple recycling of the catalysts in the ionic liquid medium is achieved without loss of activity and selectivity.

  12. Novel multifunctional nanofibers based on thermoplastic polyurethane and ionic liquid: towards antibacterial, anti-electrostatic and hydrophilic nonwovens by electrospinning

    NASA Astrophysics Data System (ADS)

    Xing, Chenyang; Guan, Jipeng; Chen, Zhouli; Zhu, Yu; Zhang, Bowu; Li, Yongjin; Li, Jingye

    2015-03-01

    Novel antibacterial, anti-electrostatic, and hydrophilic nanofibers based on a blend containing thermoplastic polyurethane (TPU) and a room-temperature ionic liquid (IL), 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], were fabricated by electrospinning. We investigated the effect of the IL on the morphology and the physical properties of the TPU nanofibers. Nanofibers with a ‘bead-on-string’ morphology were obtained by electrospinning from a neat TPU solution. The incorporation of the IL, at levels as low as 1 wt%, largely suppressed the formation of beads during electrospinning, and homogeneous nanofibers were obtained. The as-spun TPU/IL composite nanofibers showed significant activity against both Escherichia coli (E coli) and Staphylococcus aureus (S. aureus), with antibacterial activities of more than four and three, respectively. This means that the antibacterial efficiencies of TPU/IL composite nanofibers toward E coli and S. aureus are 99.99% and 99.9%, respectively. Moreover, nonwoven fabrics derived from the electrospun TPU/IL composite nanofibers exhibit better stretchability, elasticity, and higher electrical conductivity compared to those made using neat TPU without an IL. Additionally, the incorporation of the IL leads to a hydrophilic surface for the TPU/IL composite nanofibers compared to hydrophobic neat TPU nanofibers. These multifunctional nanofibers with excellent antibacterial, anti-electrostatic, and mechanical properties and improved hydrophilicity are promising candidates for biomedical and wastewater treatment applications.

  13. Formation, characterization and enzyme activity in water-in-hydrophobic ionic liquid microemulsion stabilized by mixed cationic/nonionic surfactants.

    PubMed

    Sun, Yanwen; Yan, Keqian; Huang, Xirong

    2014-10-01

    The phase behavior of the pseudo ternary system 1-tetradecyl-3-methylimidazolium bromide ([C14mim]Br)/Triton X-100/H2O/1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF6) has been studied at 35°C. With the increase in the mole fraction of Triton X-100 in the mixed surfactants, the water solubilization capacity increases and the monophasic area enlarges. The H2O-in-[Bmim]PF6 (W/IL) microemulsion was identified via electrical conductivity measurement. The existence of bulk water in the W/IL microemulsion was demonstrated based on the change of the O-D vibration frequency with content of D2O added and confirmed using UV-vis technique with CoCl2 as probe. Laccase can be solubilized in the W/IL microemulsion and exhibits a catalytic activity. The interface of the W/IL microemulsion has an inhibitory effect on the expression of the laccase activity, and the inhibitory effect is varied with the molar ratio of the mixed surfactants.

  14. Formation, characterization and enzyme activity in water-in-hydrophobic ionic liquid microemulsion stabilized by mixed cationic/nonionic surfactants.

    PubMed

    Sun, Yanwen; Yan, Keqian; Huang, Xirong

    2014-10-01

    The phase behavior of the pseudo ternary system 1-tetradecyl-3-methylimidazolium bromide ([C14mim]Br)/Triton X-100/H2O/1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF6) has been studied at 35°C. With the increase in the mole fraction of Triton X-100 in the mixed surfactants, the water solubilization capacity increases and the monophasic area enlarges. The H2O-in-[Bmim]PF6 (W/IL) microemulsion was identified via electrical conductivity measurement. The existence of bulk water in the W/IL microemulsion was demonstrated based on the change of the O-D vibration frequency with content of D2O added and confirmed using UV-vis technique with CoCl2 as probe. Laccase can be solubilized in the W/IL microemulsion and exhibits a catalytic activity. The interface of the W/IL microemulsion has an inhibitory effect on the expression of the laccase activity, and the inhibitory effect is varied with the molar ratio of the mixed surfactants. PMID:25016546

  15. An ionic liquid-in-water microemulsion as a potential carrier for topical delivery of poorly water soluble drug: Development, ex-vivo and in-vivo evaluation.

    PubMed

    Goindi, Shishu; Kaur, Ramanpreet; Kaur, Randeep

    2015-11-30

    In this paper, we report an ionic liquid-in-water (IL/w) microemulsion (ME) formulation which is able to solubilize etodolac (ETO), a poorly water soluble drug for topical delivery using BMIMPF6 (1-butyl-3-methylimidazolium hexafluorophosphate) as IL, Tween 80 as surfactant and ethanol as co-surfactant. The prepared ME was characterized for physicochemical parameters, subjected to ex-vivo permeation studies as well as in-vivo pharmacodynamic evaluation. The ex-vivo drug permeation studies through rat skin was performed using Franz-diffusion cell and the IL/w based ME showed maximum mean cumulative percent permeation of 99.030±0.921% in comparison to oil-in-water (o/w) ME (61.548±1.875%) and oily solution (48.830±2.488%) of ETO. In-vivo anti-arthritic and anti-inflammatory activities of the prepared formulations were evaluated using different rodent models and the results revealed that ETO loaded IL/w based ME was found to be more effective in controlling inflammation than oily solution, o/w ME and marketed formulation of ETO. Histopathological studies also demonstrated that IL/w based ME caused no anatomical and pathological changes in the skin. PMID:26456294

  16. Syntheses and crystal structures of benzene-sulfonate and -carboxylate copper polymers and their application in the oxidation of cyclohexane in ionic liquid under mild conditions.

    PubMed

    Hazra, Susanta; Ribeiro, Ana P C; Guedes da Silva, M Fátima C; Nieto de Castro, Carlos A; Pombeiro, Armando J L

    2016-09-21

    The syntheses, crystal structures and catalytic activities of the polymers derived from 2-(2-pyridylmethyleneamino)benzenesulfonic acid (HL), viz. [CuL(H2tma)]n (1) and [{Cu2L2(H2pma)}·(8H2O)]n (2) [H3tma = benzene-1,3,5-tricarboxylic (trimesic) acid and H4pma = benzene-1,2,4,5-tetracarboxylic (pyromellitic) acid], are presented. Despite the comparable combinations and compositions of ligands (sulfonate and carboxylate) in these two polymers the bridging moiety in 1 is sulfonate while in 2 it is carboxylate. Complexes 1 and 2 act as catalysts in the peroxidative oxidation of cyclohexane under mild conditions using either the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6] or acetonitrile as the solvent. The ionic liquid medium leads to increases in the yields and in the turnover numbers, achieved in shorter reaction times in comparison with those when using the conventional acetonitrile solvent. A simple recycling of the catalysts in the ionic liquid medium is achieved without loss of activity and selectivity. PMID:27529408

  17. Flow-focusing generation of monodisperse water droplets wrapped by ionic liquid on microfluidic chips: from plug to sphere.

    PubMed

    Wang, Wei-Han; Zhang, Zhi-Ling; Xie, Ya-Ni; Wang, Li; Yi, Song; Liu, Kan; Liu, Jia; Pang, Dai-Wen; Zhao, Xing-Zhong

    2007-11-01

    Generating droplets via microfluidic chips is a promising technology in microanalysis and microsynthesis. To realize room-temperature ionic liquid (IL)-water two-phase studies in microscale, a water-immiscible IL was employed as the continuous phase for the first time to wrap water droplets (either plugs or spheres) on flow-focusing microfluidic chips. The IL, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), could wet both hydrophilic and hydrophobic channel surfaces because of its dual role of hydrophilicity/hydrophobicity and extremely high viscosity, thus offering the possibility of wrapping water droplets in totally hydrophilic (THI), moderately hydrophilic (MHI), and hydrophobic (HO) channels. The droplet shape could be tuned from plug to sphere, with the volume from 6.3 nL to 65 pL, by adding an orifice in the focusing region, rendering the hydrophilic channel surface hydrophobic, and suppressing the Uw/UIL ratio below 1.0. Three different breakup processes were defined and clarified, in which the sub-steady breakup and steady breakup were essential for the formation of plugs and spheric droplets, respectively. The influences of channel hydrophilicity/hydrophobicity on droplet formation were carefully studied by evaluating the wetting abilities of water and IL on different surfaces. The superiority of IL over water in wetting hydrophobic surface led to the tendency of forming small, spheric aqueous droplets in the hydrophobic channel. This IL-favored droplet-based system represented a high efficiency in water/IL extraction, in which rhodamine 6G was extracted from aqueous droplets to [BMIM][PF6] in the hydrophobic orifice-included (HO-OI) channel in 0.51 s. PMID:17918864

  18. In vitro detection of superoxide anions released from cancer cells based on potassium-doped carbon nanotubes-ionic liquid composite gels

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Rong; Wang, Bo; Xu, Jing-Juan; Chen, Hong-Yuan

    2011-12-01

    A newly developed electrochemical biosensor for the determination of superoxide anions (O2&z.rad;-) released from cancer cells using potassium-doped multi-walled carbon nanotubes (KMWNTs)-1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) ionic liquid composite gels is demonstrated. The KMWNTs-[BMIM]PF6 can electrocatalyze oxygen reduction to generate a strong current signal in neutral solution. Compared with KMWNTs without [BMIM]PF6 or MWNTs-[BMIM]PF6 composites, the KMWNTs-[BMIM]PF6 can enhance the oxygen reduction peak current by 6.2-fold and 2.8-fold, which greatly increases the detection sensitivity of oxygen. Then, O2&z.rad;- biosensors are fabricated by mixing superoxide dismutase (SOD) in the KMWNTs-[BMIM]PF6 gels via monitoring oxygen produced by an enzymic reaction between SOD/O2&z.rad;- without the help of electron mediators. The resulting biosensors show a linear range from 0.04 to 38 μM with a high sensitivity of 98.2 μA mM-1, and a lower detection limit of 0.024 μM. The common interferents such as hydrogen peroxide (H2O2), ascorbic acid (AA), uric acid (UA), and metabolites of neurotransmitters, do not interfere with the detection of O2&z.rad;-. The proposed biosensor is tested to determine O2&z.rad;-in vitro and from liver cancer and leukemia cells and shows good application potential in biological electrochemistry.

  19. Phase- and size-controllable synthesis of hexagonal upconversion rare-earth fluoride nanocrystals through an oleic acid/ionic liquid two-phase system.

    PubMed

    He, Meng; Huang, Peng; Zhang, Chunlei; Ma, Jiebing; He, Rong; Cui, Daxiang

    2012-05-01

    Herein, we introduce a facile, user- and environmentally friendly (n-octanol-induced) oleic acid (OA)/ionic liquid (IL) two-phase system for the phase- and size-controllable synthesis of water-soluble hexagonal rare earth (RE = La, Gd, and Y) fluoride nanocrystals with uniform morphologies (mainly spheres and elongated particles) and small sizes (<50 nm). The unique role of the IL 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF(6)) and n-octanol in modulating the phase structure and particle size are discussed in detail. More importantly, the mechanism of the (n-octanol-induced) OA/IL two-phase system, the formation of the RE fluoride nanocrystals, and the distinctive size- and morphology-controlling capacity of the system are presented. BmimPF(6) is versatile in term of crystal-phase manipulation, size and shape maintenance, and providing water solubility in a one-step reaction. The luminescent properties of Er(3+)-, Ho(3+)-, and Tm(3+)-doped LaF(3), NaGdF(4), and NaYF(4) nanocrystals were also studied. It is worth noting that the as-prepared products can be directly dispersed in water due to the hydrophilic property of Bmim(+) (cationic part of the IL) as a capping agent. This advantageous feature has made the IL-capped products favorable in facile surface modifications, such as the classic Stober method. Finally, the cytotoxicity evaluation of NaYF(4):Yb,Er nanocrystals before and after silica coating was conducted for further biological applications.

  20. Catalytic dimerization of propene by nickel-phosphine complexes in 1-butyl-3-methylimidazolium chloride/AlEt{sub x}Cl{sub 3{minus}x} (x = 0, 1) ionic liquids

    SciTech Connect

    Chauvin, Y.; Einloft, S.; Olivier, H.

    1995-04-01

    The dimerization of propene was catalyzed by cationic nickel complexes in a two-phase solvent system using organochloroaluminate ionic liquids as the solvent for the catalyst. In ionic liquids containing an excess of strongly coordinating chloride ions, i.e., basic, no activity was observed. In contrast, melts containing an excess of alkylchloroaluminum species, i.e., acidic, stabilized the active cationic nickel species. The reaction products separate as an organic layer. Molecular organochloroaluminum species were extracted, and the composition of the salt was strongly modified. This was circumvented using a salt which contains an excess of aluminum chloride. The propene dimers obtained by this way can be transformed either into ethers or into alkanes to produce high octane number additives for gasoline. The effects of phosphine ligands coordinated on nickel and operating variables were investigated in order to maximize the octane number of the corresponding alkanes and ethers.

  1. Water in Room Temperature Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Fayer, Michael

    2014-03-01

    Room temperature ionic liquids (or RTILs, salts with a melting point below 25 °C) have become a subject of intense study over the last several decades. Currently, RTIL application research includes synthesis, batteries, solar cells, crystallization, drug delivery, and optics. RTILs are often composed of an inorganic anion paired with an asymmetric organic cation which contains one or more pendant alkyl chains. The asymmetry of the cation frustrates crystallization, causing the salt's melting point to drop significantly. In general, RTILs are very hygroscopic, and therefore, it is of interest to examine the influence of water on RTIL structure and dynamics. In addition, in contrast to normal aqueous salt solutions, which crystallize at low water concentration, in an RTIL it is possible to examine isolated water molecules interacting with ions but not with other water molecules. Here, optical heterodyne-detected optical Kerr effect (OHD-OKE) measurements of orientational relaxation on a series of 1-alkyl-3-methylimidazolium tetrafluoroborate RTILs as a function of chain length and water concentration are presented. The addition of water to the longer alkyl chain RTILs causes the emergence of a long time bi-exponential orientational anisotropy decay. Such decays have not been seen previously in OHD-OKE experiments on any type of liquid and are analyzed here using a wobbling-in-a-cone model. The orientational relaxation is not hydrodynamic, with the slowest relaxation component becoming slower as the viscosity decreases for the longest chain, highest water content samples. The dynamics of isolated D2O molecules in 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) were examined using two dimensional infrared (2D IR) vibrational echo spectroscopy. Spectral diffusion and incoherent and coherent transfer of excitation between the symmetric and antisymmetric modes are examined. The coherent transfer experiments are used to address the nature of inhomogeneous

  2. The horizontal transfer of antibiotic resistance genes is enhanced by ionic liquid with different structure of varying alkyl chain length.

    PubMed

    Wang, Qing; Lu, Qian; Mao, Daqing; Cui, Yuxiao; Luo, Yi

    2015-01-01

    Antibiotic resistance genes (ARGs) have become a global health concern. In our previous study, an ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]) had been proven to facilitate the dissemination of ARGs in the environment. However, enhanced alkyl group chain length or the substitution of alkyl groups with the cation ring corresponded with increased antimicrobial effects. In this study, we investigated how different structures of ILs with 4, 6, and 8 C atoms in the longer alkyl chain on the imidazolium cations facilitated the dissemination of ARGs. The promotion of plasmid RP4 transfer frequency decreased with [CnMIM][BF4] increasing the alkyl chain length from 4 carbon atoms to 8 carbon atoms on the imidazolium cations, which is observed with [BMIM][BF4] (n = 4, 5.9 fold) > HMIM][BF4] (n = 6, 2.2 fold) > [OMIM][BF4] (n = 8, 1.7 fold). This illustrates that [CnMIM][BF4] with increasing the alkyl chain length exert decreasing ability in facilitating plasmid RP4 horizontal transfer, which is possibly related to IL-structure dependent toxicity. The IL-structure dependent plasmid RP4 transfer frequency was attributable to bacterial cell membrane permeability weaken with increasing alkyl chain length of [CnMIM][PF4], which was evidenced by flow cytometry. In freshwater microcosm, [CnMIm][BF4] promoted the relative abundance of the sulI and intI genes for 4.6 folds, aphA and traF for 5.2 folds higher than the untreated groups, promoting the propagation of ARGs in the aquatic environment. This is the first report that ILs with different structure of varying alkyl chain length facilitate horizontal transfer of plasmid RP4 which is widely distributed in the environment, and thus add the adverse effects of the environmental risk of ILs.

  3. The horizontal transfer of antibiotic resistance genes is enhanced by ionic liquid with different structure of varying alkyl chain length

    PubMed Central

    Wang, Qing; Lu, Qian; Mao, Daqing; Cui, Yuxiao; Luo, Yi

    2015-01-01

    Antibiotic resistance genes (ARGs) have become a global health concern. In our previous study, an ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]) had been proven to facilitate the dissemination of ARGs in the environment. However, enhanced alkyl group chain length or the substitution of alkyl groups with the cation ring corresponded with increased antimicrobial effects. In this study, we investigated how different structures of ILs with 4, 6, and 8 C atoms in the longer alkyl chain on the imidazolium cations facilitated the dissemination of ARGs. The promotion of plasmid RP4 transfer frequency decreased with [CnMIM][BF4] increasing the alkyl chain length from 4 carbon atoms to 8 carbon atoms on the imidazolium cations, which is observed with [BMIM][BF4] (n = 4, 5.9 fold) > HMIM][BF4] (n = 6, 2.2 fold) > [OMIM][BF4] (n = 8, 1.7 fold). This illustrates that [CnMIM][BF4] with increasing the alkyl chain length exert decreasing ability in facilitating plasmid RP4 horizontal transfer, which is possibly related to IL-structure dependent toxicity. The IL-structure dependent plasmid RP4 transfer frequency was attributable to bacterial cell membrane permeability weaken with increasing alkyl chain length of [CnMIM][PF4], which was evidenced by flow cytometry. In freshwater microcosm, [CnMIm][BF4] promoted the relative abundance of the sulI and intI genes for 4.6 folds, aphA and traF for 5.2 folds higher than the untreated groups, promoting the propagation of ARGs in the aquatic environment. This is the first report that ILs with different structure of varying alkyl chain length facilitate horizontal transfer of plasmid RP4 which is widely distributed in the environment, and thus add the adverse effects of the environmental risk of ILs. PMID:26379641

  4. Ionic liquid based three-phase liquid-liquid-liquid solvent bar microextraction for the determination of phenols in seawater samples.

    PubMed

    Guo, Liang; Lee, Hian Kee

    2011-07-15

    For the first time, an ionic liquid based three-phase liquid-liquid-liquid solvent bar microextraction (IL-LLL-SBME) was developed for the analysis of phenols in seawater samples. The ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]), was used as the intermediary solvent for LLL-SBME, enhancing the extraction efficiency for polar analytes. In the procedure, the analytes were extracted from the aqueous sample into the ionic liquid intermediary and finally, back-extracted into an aqueous acceptor solution in the lumen of the hollow fiber. The porous polypropylene membrane acted as a filter to prevent potential interfering materials from being extracted, and no additional cleanup was required. After extraction, the acceptor solution could be directly injected into a high-performance liquid chromatographic system for analysis. Six phenols, 2-nitrophenol, 4-chlorophenol, 2,3-dichlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol were selected here as model compounds for developing and evaluating the method. The most influential extraction parameters were evaluated, including the ionic liquid, the composition of donor solution and acceptor solution, the extraction time and the extraction temperature, the effect of ionic strength, and the agitation speed. Under the most favorable extraction parameters, the method showed good linearity (from 0.05-50 to 0.5-50 μg/L, depending on the analytes) and repeatability of extractions (RSD below 8.3%, n=5). The proposed method was compared to conventional three-phase LLL-SBME and ionic liquid supported hollow fiber protected three-phase liquid-liquid-liquid microextraction, and showed higher extraction efficiency. The proposed method was demonstrated to be a simple, fast, and efficient method for the analysis of phenols from environmental water samples.

  5. Mesoscopic simulation of a micellar poly(N-isopropyl acrylamide)-b-(polyethylene oxide) copolymer system

    NASA Astrophysics Data System (ADS)

    Bautista-Reyes, Rubén; Soto-Figueroa, César; Vicente, Luis

    2016-05-01

    In this article we studied the micellar formation of poly(N-isopropyl acrylamide)-b-polyethylene oxide (PNIPAM-b-PEO) copolymers in an aqueous system. From molecular simulations the dependence on temperature of the Flory-Huggins interaction parameter χ for PNIPAM and PEO in water is obtained and compared with available experimental results and values from other theoretical calculations. By means of dissipative particle dynamics (DPD) we then simulated the coil-globule transition for PNIPAM chains in water with a transition temperature of around 305 K. The simulations for PNIPAM-b-PEO copolymers showed that at room temperature the chains are miscible in an aqueous phase but with a temperature increase the system turns into micelles at T  =  305 K. The change in micelle anisotropy due to a different ratio PNIPAM/PEO of chains is also analyzed. What is observed is that for large PEO the large number of dissolved PEO chains gives a large corona size and the micelle is not spherical but obloide and as the number of PNIPAM is increased the micelle acquires a spherical shape. As an important application we considered the system micelle-water/anionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate [BMIM]+[PF6]-). By increasing the temperature of the system from 306 K it is shown that at T  =  345 K there is a transfer of the micelle from water to the ionic liquid phase and this was due to the change in the relative affinity of PEO to water and ionic liquid expressed by the change in χ. All the simulation outcomes are qualitatively consistent with experimental results and thus to our knowledge we give the first set of χ values for the interaction between PNIPAM and water in a wide range of temperature values.

  6. Properties of an ionic liquid-tolerant Bacillus amyloliquefaciens CMW1 and its extracellular protease.

    PubMed

    Kurata, Atsushi; Senoo, Humiya; Ikeda, Yasuyuki; Kaida, Hideaki; Matsuhara, Chiaki; Kishimoto, Noriaki

    2016-07-01

    An ionic liquid-tolerant bacterium, Bacillus amyloliquefaciens CMW1, was isolated from a Japanese fermented soybean paste. Strain CMW1 grew in the presence of 10 % (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), a commonly used ionic liquid. Additionally, strain CMW1 grew adequately in the presence of the hydrophilic ionic liquids 10 % (v/v) 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM]CF3SO3) or 2.5 % (v/v) 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIM]CF3SO3). Strain CMW1 produced an extracellular protease (BapIL) in the culture medium. BapIL was stable in the presence of 80 % (v/v) ionic liquids, [EMIM]CF3SO3, [BMIM]Cl, [BMIM]CF3SO3, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate, and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and functioned in 10 % (v/v) these ionic liquids. BapIL was stable at pH 4.0-12.6 or in 4004 mM NaCl solution, and exhibited activity in the presence of 50 % (v/v) hydrophilic or hydrophobic organic solvents. BapIL was completely inhibited by 1 mM PMSF and partially by 5 mM EDTA. BapIL belongs to the true subtilisins according to analysis of the deduced amino acid sequence. We showed that BapIL from the ionic liquid-tolerant B. amyloliquefaciens CMW1 exhibited tolerance to ionic liquid and halo, alkaline, and organic solvents. PMID:27142029

  7. Properties of an ionic liquid-tolerant Bacillus amyloliquefaciens CMW1 and its extracellular protease.

    PubMed

    Kurata, Atsushi; Senoo, Humiya; Ikeda, Yasuyuki; Kaida, Hideaki; Matsuhara, Chiaki; Kishimoto, Noriaki

    2016-07-01

    An ionic liquid-tolerant bacterium, Bacillus amyloliquefaciens CMW1, was isolated from a Japanese fermented soybean paste. Strain CMW1 grew in the presence of 10 % (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), a commonly used ionic liquid. Additionally, strain CMW1 grew adequately in the presence of the hydrophilic ionic liquids 10 % (v/v) 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM]CF3SO3) or 2.5 % (v/v) 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIM]CF3SO3). Strain CMW1 produced an extracellular protease (BapIL) in the culture medium. BapIL was stable in the presence of 80 % (v/v) ionic liquids, [EMIM]CF3SO3, [BMIM]Cl, [BMIM]CF3SO3, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate, and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and functioned in 10 % (v/v) these ionic liquids. BapIL was stable at pH 4.0-12.6 or in 4004 mM NaCl solution, and exhibited activity in the presence of 50 % (v/v) hydrophilic or hydrophobic organic solvents. BapIL was completely inhibited by 1 mM PMSF and partially by 5 mM EDTA. BapIL belongs to the true subtilisins according to analysis of the deduced amino acid sequence. We showed that BapIL from the ionic liquid-tolerant B. amyloliquefaciens CMW1 exhibited tolerance to ionic liquid and halo, alkaline, and organic solvents.

  8. Sound velocity dispersion in room temperature ionic liquids studied using the transient grating method.

    PubMed

    Fukuda, M; Terazima, M; Kimura, Y

    2008-03-21

    Sound velocity is determined by the transient grating method in a range from 10(6) to 10(10) Hz in three room temperature ionic liquids, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1-butyl-3-methylimidazolium hexafluorophosphate, and N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide. In all room temperature ionic liquids studied, the sound velocity increased with increasing frequency. The cause of this change is posited to be structural relaxation in the room temperature ionic liquids. Frequency dependence of the sound velocity is not reproduced by a simple Debye relaxation model. The sound velocity dispersion relation in 1-butyl-3-methylimidazolium hexafluorophosphate matches a Cole-Davidson function with parameters determined by a dielectric relaxation [C. Daguenet et al., J. Phys. Chem. B 110, 12682 (2006)], indicating that structural and reorientational relaxations are strongly coupled. Conversely, the sound velocity dispersions of the other two ionic liquids measured do not match those measured for dielectric relaxation, implying that structural relaxation is much faster than the reorientational relaxation. This difference is discussed in relation to the motilities of anions and cations. PMID:18361592

  9. Ionic liquids influence on the surface properties of electron beam irradiated wood

    NASA Astrophysics Data System (ADS)

    Croitoru, Catalin; Patachia, Silvia; Doroftei, Florica; Parparita, Elena; Vasile, Cornelia

    2014-09-01

    In this paper, the influence of three imidazolium-based ionic liquids (1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-hexyl-3-methylimidazolium chloride) on the structure and surface properties of sycamore maple (Acer pseudoplatanus) veneers submitted to electron beam irradiation with a dose of 50 kGy has been studied by using Fourier transform infrared spectroscopy, as well as image, scanning electron microscopy/SEM/EDX, atomic force microscopy and contact angle analysis. The experimental results have proven that the studied ionic liquids determine a better preservation of the structural features of wood (cellulose crystallinity index and lignin concentration on the surface) as well as some of surface properties such as surface energy, roughness, color upon irradiation with electron beam, in comparison with the reference wood, but surface composition is changed by treatment with imidazolium-based ionic liquids mainly with 1-butyl-3-methylimidazolium tetrafluoroborate. Also, under electron beam irradiation covalent bonding of the imidazolium moiety to wood determines a higher resistance to water penetration and spreading on the surface.

  10. A study of the time-resolved fluorescence spectrum and red edge effect of ANF in a room-temperature ionic liquid.

    PubMed

    Hu, Zhonghan; Margulis, Claudio J

    2006-06-15

    In a recent article, we have analyzed using molecular dynamics simulations the steady-state red edge effect (REE) observed by Samanta and co-workers when the fluorescent probe 2-amino-7-nitrofluorene (ANF) is photoexcited at different wavelengths in 1-butyl-3-methylimidazolium ([BMIM+]) hexafluorophosphate ([PF6-]). In this letter, we predict the time- and wavelength-dependent emission spectra of ANF in the same ionic solvent. From the analysis of our simulated data, we are able to derive an approximate time scale for reorganization of the solvent around the solute probe. The effect that slow varying local liquid environments have on the overall time-dependent signal is also discussed.

  11. Understanding chemical reactions of CO2 and its isoelectronic molecules with 1-butyl-3-methylimidazolium acetate by changing the nature of the cation: the case of CS2 in 1-butyl-1-methylpyrrolidinium acetate studied by NMR spectroscopy and density functional theory calculations.

    PubMed

    Cabaço, M Isabel; Besnard, Marcel; Chávez, Fabián Vaca; Pinaud, Noël; Sebastião, Pedro J; Coutinho, João A P; Danten, Yann

    2014-06-28

    NMR spectroscopy ((1)H, (13)C, (15)N) shows that carbon disulfide reacts spontaneously with 1-butyl-1-methylpyrrolidinium acetate ([BmPyrro][Ac]) in the liquid phase. It is found that the acetate anions play an important role in conditioning chemical reactions with CS2 leading, via coupled complex reactions, to the degradation of this molecule to form thioacetate anion (CH3COS(-)), CO2, OCS, and trithiocarbonate (CS3 (2-)). In marked contrast, the cation does not lead to the formation of any adducts allowing to conclude that, at most, its role consists in assisting indirectly these reactions. The choice of the [BmPyrro](+) cation in the present study allows disentangling the role of the anion and the cation in the reactions. As a consequence, the ensemble of results already reported on CS2-[Bmim][Ac] (1), OCS-[Bmim][Ac] (2), and CO2-[Bmim][Ac] (3) systems can be consistently rationalized. It is argued that in system (1) both anion and cation play a role. The CS2 reacts with the acetate anion leading to the formation of CH3COS(-), CO2, and OCS. After these reactions have proceeded the nascent CO2 and OCS interact with the cation to form imidazolium-carboxylate ([Bmim] CO2) and imidazolium-thiocarboxylate ([Bmim] COS). The same scenario also applies to system (2). In contrast, in the CO2-[Bmim] [Ac] system a concerted cooperative process between the cation, the anion, and the CO2 molecule takes place. A carbene issued from the cation reacts to form the [Bmim] CO2, whereas the proton released by the ring interacts with the anion to produce acetic acid. In all these systems, the formation of adduct resulting from the reaction between the solute molecule and the carbene species originating from the cation is expected. However, this species was only observed in systems (2) and (3). The absence of such an adduct in system (1) has been theoretically investigated using DFT calculations. The values of the energetic barrier of the reactions show that the formation of [Bmim] CS2 is unfavoured and that the anion offers a competitive reactive channel via an oxygen-sulphur exchange mechanism with the solute in systems (1) and (2).

  12. Understanding chemical reactions of CO{sub 2} and its isoelectronic molecules with 1-butyl-3-methylimidazolium acetate by changing the nature of the cation: The case of CS{sub 2} in 1-butyl-1-methylpyrrolidinium acetate studied by NMR spectroscopy and density functional theory calculations

    SciTech Connect

    Cabaço, M. Isabel; Besnard, Marcel; Danten, Yann; Chávez, Fabián Vaca; Pinaud, Noël; Sebastião, Pedro J.; Coutinho, João A. P.

    2014-06-28

    NMR spectroscopy ({sup 1}H, {sup 13}C, {sup 15}N) shows that carbon disulfide reacts spontaneously with 1-butyl-1-methylpyrrolidinium acetate ([BmPyrro][Ac]) in the liquid phase. It is found that the acetate anions play an important role in conditioning chemical reactions with CS{sub 2} leading, via coupled complex reactions, to the degradation of this molecule to form thioacetate anion (CH{sub 3}COS{sup −}), CO{sub 2}, OCS, and trithiocarbonate (CS{sub 3}{sup 2−}). In marked contrast, the cation does not lead to the formation of any adducts allowing to conclude that, at most, its role consists in assisting indirectly these reactions. The choice of the [BmPyrro]{sup +} cation in the present study allows disentangling the role of the anion and the cation in the reactions. As a consequence, the ensemble of results already reported on CS{sub 2}-[Bmim][Ac] (1), OCS-[Bmim][Ac] (2), and CO{sub 2}-[Bmim][Ac] (3) systems can be consistently rationalized. It is argued that in system (1) both anion and cation play a role. The CS{sub 2} reacts with the acetate anion leading to the formation of CH{sub 3}COS{sup −}, CO{sub 2}, and OCS. After these reactions have proceeded the nascent CO{sub 2} and OCS interact with the cation to form imidazolium-carboxylate ([Bmim] CO{sub 2}) and imidazolium-thiocarboxylate ([Bmim] COS). The same scenario also applies to system (2). In contrast, in the CO{sub 2}-[Bmim] [Ac] system a concerted cooperative process between the cation, the anion, and the CO{sub 2} molecule takes place. A carbene issued from the cation reacts to form the [Bmim] CO{sub 2}, whereas the proton released by the ring interacts with the anion to produce acetic acid. In all these systems, the formation of adduct resulting from the reaction between the solute molecule and the carbene species originating from the cation is expected. However, this species was only observed in systems (2) and (3). The absence of such an adduct in system (1) has been theoretically investigated using DFT calculations. The values of the energetic barrier of the reactions show that the formation of [Bmim] CS{sub 2} is unfavoured and that the anion offers a competitive reactive channel via an oxygen-sulphur exchange mechanism with the solute in systems (1) and (2)

  13. Pressure tuning of the electronic energy levels of ferrocene, cobaltocenium hexafluorophosphate, and nickelocene

    SciTech Connect

    Roginski, R.T.; Moroz, A.; Hendrickson, D.N.; Drickamer, H.G.

    1988-07-28

    The effects of pressure on various d-d transitions for ferrocene, cobaltocenium hexafluorophosphate, and nickelocene in the solid state are presented here. The bands are found to shift in a manner such as to increase the symmetry-imposed splittings between the d orbitals, which is consistent with a qualitative molecular orbital picture. These splittings are found to increase between 2 and 8% in 100 kbar, as compared with 7-15% for simple ionic compounds. The Racah parameter B is almost independent of pressure, in contrast to the results seen for simple ionic compounds. These results are discussed in terms of the large degree of covalency for these compounds.

  14. Homogeneous ionic liquid microextraction of the active constituents from fruits of Schisandra chinensis and Schisandra sphenanthera.

    PubMed

    Xiao, Yao; Zhang, Hanqi

    2012-01-27

    Homogeneous ionic liquid microextraction (HILME) was developed for the extraction of schizandrin, schisantherin A and deoxyschizandrin from Schisandra chinensis and Schisandra sphenanthera. 1-Butyl-3-methylimidazolium tetrafluoroborate ([C(4)MIM][BF(4)]) aqueous solution was used as extraction solvent, and ammonium hexafluorophosphate ([NH(4)][PF(6)]) was used as ion-pairing agent. 1-Butyl-3-methylimidazolium hexafluorophosphate ([C(4)MIM][PF(6)]), which is barely soluble in water, was formed in situ, and was used as sample solution. High-performance liquid chromatography (HPLC) was employed for separation and determination of the analytes. The calibration curve showed good linear relationship (r>0.9998). The recoveries were between 69.71% and 88.33% with RSDs lower than 4.86%. External standard method was adopted in the proposed method, and internal standard method was applied for the evaluation of the proposed method. The two methods were compared and the results indicated that the proposed method was acceptable and simple. The HILME is free of volatile organic solvents, and represents lower expenditures of sample, extraction time and solvent, compared with ultrasonic and Soxhlet extraction. There was no obvious difference in the extraction yields of active constitutions obtained by the three extraction methods.

  15. Ionic liquid-linked dual magnetic microextraction of lead(II) from environmental samples prior to its micro-sampling flame atomic absorption spectrometric determination.

    PubMed

    Yilmaz, Erkan; Soylak, Mustafa

    2013-11-15

    A novel and rapid microextraction approach termed as ionic liquid-linked dual magnetic microextraction (IL-DMME), was developed for the atomic absorption spectrometric determination of lead. The developed method based on a combination of dispersive liquid-liquid microextraction (DLLME) and dispersive micro solid-phase extraction (D-μ-SPE). In the first DLLME step, 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6], was selected to extract the lead-pyrrolidine-dithiocarbamate (Pb-PDC) complex from sample solution by the assistance of vortex agitator. After the first step, fifty milligrams of Fe3O4 magnetic nanoparticles (MNPs) were added to extraction of the ionic liquid and Pb-PDC complex in aqueous solution. The effective factors in proposed IL-DMME procedure, including volume of 1-butyl-3-methylimidazolium hexafluorophosphate, amount of Fe3O4 magnetic nanoparticles, vortex time, amount of ammonium pyrrolidinedithiocarbamate, sample volume and matrix effect were optimized in details. Under the optimal conditions, the method present has low detection limit (0.57 μg L(-1)), high preconcentration factor (160) and good repeatability (<7.5%, n=10). The accuracy of the developed method was evaluated by the analysis of the certified reference materials and addition-recovery tests. The method was successfully applied to the determination of lead in water, plant and hair samples.

  16. Application of cold-induced aggregation microextraction as a fast, simple, and organic solvent-free method for the separation and preconcentration of Se(IV) in rice and various water samples.

    PubMed

    Rahnama, Reyhaneh; Abed, Zinat

    2014-07-01

    The developed method is based on cold-induced aggregation microextraction of Se(IV) using the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid as an extractant followed by spectrophotometry determination. The extraction of Se(IV) was performed in the presence of dithizone as the complexing agent. In this method, a very small amount of 1-butyl-3-methylimidazolium hexafluorophosphate was added to the sample solution containing Se-dithizone complex. Then, the solution was kept in a thermostated bath at 50 °C for 4 min. Subsequently, the solution was cooled in an ice bath and a cloudy solution was formed. After centrifuging, the extractant phase was analyzed using a spectrophotometric detection method. Some important parameters that might affect the extraction efficiency were optimized (HCl, 0.6 mol L(-1); dithizone, 4.0 × 10(-6) mol L(-1); ionic liquid, 100 μL). Under the optimum conditions, good linear relationship, sensitivity, and reproducibility were obtained. The limit of detection (LOD) (3Sb/m) was 1.5 μg L(-1), and the relative standard deviation (RSD) was 1.2 % for 30 μg L(-1) of Se(IV). The linear range was obtained in the range of 5-60 μg L(-1). It was satisfactory to analyze rice and various water samples. PMID:24590231

  17. Ionic liquid-linked dual magnetic microextraction of lead(II) from environmental samples prior to its micro-sampling flame atomic absorption spectrometric determination.

    PubMed

    Yilmaz, Erkan; Soylak, Mustafa

    2013-11-15

    A novel and rapid microextraction approach termed as ionic liquid-linked dual magnetic microextraction (IL-DMME), was developed for the atomic absorption spectrometric determination of lead. The developed method based on a combination of dispersive liquid-liquid microextraction (DLLME) and dispersive micro solid-phase extraction (D-μ-SPE). In the first DLLME step, 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6], was selected to extract the lead-pyrrolidine-dithiocarbamate (Pb-PDC) complex from sample solution by the assistance of vortex agitator. After the first step, fifty milligrams of Fe3O4 magnetic nanoparticles (MNPs) were added to extraction of the ionic liquid and Pb-PDC complex in aqueous solution. The effective factors in proposed IL-DMME procedure, including volume of 1-butyl-3-methylimidazolium hexafluorophosphate, amount of Fe3O4 magnetic nanoparticles, vortex time, amount of ammonium pyrrolidinedithiocarbamate, sample volume and matrix effect were optimized in details. Under the optimal conditions, the method present has low detection limit (0.57 μg L(-1)), high preconcentration factor (160) and good repeatability (<7.5%, n=10). The accuracy of the developed method was evaluated by the analysis of the certified reference materials and addition-recovery tests. The method was successfully applied to the determination of lead in water, plant and hair samples. PMID:24148489

  18. Dynamics of Loop 1 of Domain I in Human Serum Albumin WhenDissolved in Ionic Liquids

    SciTech Connect

    Page, Taylor; Kraut, Nadine; Page, Phillip; Baker, Gary A; Bright, Frank

    2009-01-01

    We report on the rotational reorientation dynamics associated with loop 1 of domain I within a large multidomain protein (human serum albumin, HSA) when it is dissolved in binary mixtures of ionic liquid (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4mim][Tf2N]), 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]), or 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6])) and distilled deionized water (ddH2O) as a function of temperature and water loading. In IL/2% ddH2O (v/v) mixtures, loop 1 of domain I is more significantly denatured in comparison to the protein dissolved in aqueous solutions containing strong chemical denaturants (e.g., 8 M guanidine HCl (Gu HCl) or urea). As water loading increases, there is evidence for progressive refolding of loop 1 of domain I followed by recoupling with domains I, II, and III in the [C4mim][BF4]/ddH2O mixtures at 20 C. Above 30% (v/v) water, where domain I appears refolded, the Ac reporter molecule s semiangle steadily decreases from 35 to 20 with increasing water loading. From the perspective of domain I in HSA, this behavior is similar to the effects of dilution from 4 to 0 M Gu HCl in aqueous solution. Overall, these results lend insight into the tangle of biocatalytic and structural/dynamical mechanisms that enzymes may undergo in ionic liquid-based systems. It will be particularly motivating to extend this work to include enzyme-attuned ionic liquids shown to improve biocatalytic performance beyond that possible in the native (predominantly aqueous) setting.

  19. Dynamics of loop 1 of domain I in human serum albumin when dissolved in ionic liquids.

    PubMed

    Page, Taylor A; Kraut, Nadine D; Page, Phillip M; Baker, Gary A; Bright, Frank V

    2009-09-24

    We report on the rotational reorientation dynamics associated with loop 1 of domain I within a large multidomain protein (human serum albumin, HSA) when it is dissolved in binary mixtures of ionic liquid (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4mim][Tf2N]), 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]), or 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6])) and distilled deionized water (ddH2O) as a function of temperature and water loading. In IL/2% ddH2O (v/v) mixtures, loop 1 of domain I is more significantly denatured in comparison to the protein dissolved in aqueous solutions containing strong chemical denaturants (e.g., 8 M guanidine HCl (Gu.HCl) or urea). As water loading increases, there is evidence for progressive refolding of loop 1 of domain I followed by recoupling with domains I, II, and III in the [C4mim][BF4]/ddH2O mixtures at 20 degrees C. Above 30% (v/v) water, where domain I appears refolded, the Ac reporter molecule's semiangle steadily decreases from 35 degrees to 20 degrees with increasing water loading. From the perspective of domain I in HSA, this behavior is similar to the effects of dilution from 4 to 0 M Gu.HCl in aqueous solution. Overall, these results lend insight into the tangle of biocatalytic and structural/dynamical mechanisms that enzymes may undergo in ionic liquid-based systems. It will be particularly motivating to extend this work to include enzyme-attuned ionic liquids shown to improve biocatalytic performance beyond that possible in the native (predominantly aqueous) setting.

  20. Direct electrochemistry of glucose oxidase entrapped in nano gold particles-ionic liquid-N,N-dimethylformamide composite film on glassy carbon electrode and glucose sensing.

    PubMed

    Li, Jiangwen; Yu, Jingjing; Zhao, Faqiong; Zeng, Baizhao

    2007-03-21

    The direct electrochemistry of glucose oxidase (GOD) entrapped in nano gold particles (NAs)-N,N-dimethylformamide (DMF)-1-butyl-3-methylimidazolium hexafluophosphate (BMIMPF(6)) composite film on a glassy carbon electrode (NAs-DMF-GOD (BMIMPF(6))/GC) has been investigated for first time. The immobilized GOD exhibits a pair of well-defined reversible peaks in 0.050 M pH 5 phosphate solutions (PS), resulting from the redox of flavin adenine dinucleotide (FAD) in GOD. The peak currents are three times as large as those of GOD-NAs-DMF film coated GC electrode (i.e. NAs-DMF-GOD (water)/GC). In addition, the NAs-DMF-GOD (BMIMPF(6)) composite material has higher thermal stability than NAs-DMF-GOD (water). Results show that ionic liquid BMIMPF(6), DMF and NAs are requisite for GOD to exhibit a pair of stable and reversible peaks. Without any of them, the peaks of GOD become small and unstable. Upon the addition of glucose, the peak currents of GOD decrease and a new cathodic peak occurs at -0.8 V (versus SCE), which corresponds to the reduction of hydrogen peroxide (H(2)O(2)) generated by the catalytic oxidation of glucose. The peak current of the new cathodic peak and the glucose concentration show a linear relationship in the ranges of 1.0 x 10(-7) to 1.0 x 10(-6)M and 2.0 x 10(-6) to 2.0 x 10(-5) M. The kinetic parameter I(max) of H(2)O(2) is estimated to be 1.19 x 10(-6)A and the apparent K(m) (Michaelis-Menten constant) for the enzymatic reaction is 3.49 microM. This method has been successfully applied to the determination of glucose in human plasma and beer samples, and the average recoveries are 97.2% and 99%, respectively.

  1. Thermal decomposition and vibrational spectroscopic aspects of pyridinium hexafluorophosphate (C5H5NHPF6)

    NASA Astrophysics Data System (ADS)

    Lekgoathi, M. D. S.; Kock, L. D.

    2016-12-01

    Thermal decomposition and vibrational spectroscopic properties of pyridinium hexafluorophosphate (C5H5NHPF6) have been studied. The structure of the compound is better interpreted as having a cubic space group, based on Raman and infrared vibrational spectroscopy experiments and group theoretical correlation data between site symmetry species and the spectroscopic space group. The 13C NMR data shows three significant signals corresponding to the three chemical environments expected on the pyridinium ring i.e. γ, β and α carbons, suggesting that the position of the anion must be symmetrical with respect to the pyridinium ring's C2v symmetry. The process of thermal decomposition of the compound using TGA methods was found to follow a contracting volume model. The activation energy associated with the thermal decomposition reaction of the compound is 108.5 kJ mol-1, while the pre exponential factor is 1.51 × 109 sec-1.

  2. The interface between HOPG and 1-butyl-3-methyl-imidazolium hexafluorophosphate.

    PubMed

    Müller, C; Németh, K; Vesztergom, S; Pajkossy, T; Jacob, T

    2016-01-14

    The interface between highly oriented pyrolytic graphite (HOPG) and 1-butyl-3-metyl-imidazolium hexafluorophosphate (BMIPF6) has been studied using cyclic voltammetry, electrochemical impedance spectroscopy, immersion charge measurements and in situ scanning tunneling microscopy (in situ STM). The results are compared with those obtained with Au(100) in BMIPF6 (Phys. Chem. Chem. Phys., 2011, 13, 11627). The main result is that the high frequency capacitance spectra on the two systems are similar to each other, however at low frequencies some slow interfacial processes cause the appearance of a second capacitance arc on Au(100), which is absent for HOPG. The slow processes are attributed to the rearrangement of the Au surface structure and to the formation of ionic liquid adlayers--these are visualized by in situ STM.

  3. Oxidative stress in spring barley and common radish exposed to quaternary ammonium salts with hexafluorophosphate anion.

    PubMed

    Biczak, Robert; Telesiński, Arkadiusz; Pawłowska, Barbara

    2016-10-01

    Quaternary ammonium salts (QAS), including ionic liquids (ILs), constitute a huge group of substances, which due to their desirable physical and chemical properties still attracts great interest in many industrial sectors. An increased concentration of this compound in the environment may lead to the contamination of the natural environment and may pose a potential threat to all organisms, including terrestrial higher plants. The present study demonstrates the interaction of three QAS with PF6(-) anions - tetramethylammonium [TMA][PF6], tetrabutylammonium [TBA][PF6], and tetrahexylammonium [THA][PF6] hexafluorophosphates - and its impact on the physiological and biochemical changes in spring barley seedlings and common radish plants. A similar study was also carried out by introducing the inorganic salt - ammonium hexafluorophosphate [A][PF6] to the soil; the results showed the soil became highly toxic to both plants. All the salts used led to significant changes in the metabolism of both spring barley and common radish which can be evidenced, for example, by a decrease in the content of chlorophyll a (Chla), chlorophyll b (Chlb), and total chlorophyll (Chla + b), as well as carotenoids (Car). The decrease in assimilation pigments was linearly correlated with an increasing concentration of QAS in the soil. QAS and [A][PF6] led to the formation of oxidative stress in both experimental plants, as evidenced by an increase in malondialdehyde (MDA) content in their cells and the changes in H2O2 level. In response to stress, the plants synthesized enzymatic free radicals (ROS) scavengers that lead to changes in the activity of superoxide dismutase (SOD) and catalase (CAT), as well as significantly increased peroxidase (POD) activity. A decrease in the content of assimilation pigments and an increased POD activity are the most reliable indices of oxidative stress, and concurrently the signs of premature plants aging. Common radish proved to be more resistant to the

  4. Synthesis of Bis(1,2-Dimethylimidazole)Copper(I)Hexafluorophosphate: An Experiment Using a Glove Box

    ERIC Educational Resources Information Center

    Niewahner, J. H.; Walters, Keith A.

    2007-01-01

    A detailed description of the synthesis of bis(1,2-dimethylimidazole)copper(I) hexafluorophosphate by using techniques in a glove box is presented. The results shows that the synthesis of the copper complex has a distinct color change indicating by-product oxidation by oxygen.

  5. Screening of lignan patterns in Schisandra species using ultrasonic assisted temperature switch ionic liquid microextraction followed by UPLC-MS/MS analysis.

    PubMed

    Dong, Wei; Yu, Shuijing; Deng, Yangwu; Pan, Tao

    2016-01-01

    The ultrasonic assisted temperature-switch ionic liquid microextraction (UATS-ILME) has been successfully applied in extracting of seven lignans from Schisandra. 1-Butyl-3-methylimidazolium tetrafluoroborate ([C4MIM][BF4]) aqueous solution was selected for extracting the target analytes in raw material at 80°C. The lignans were deposited into a single drop by in situ forming 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) by cooling down to 0°C and centrifuging for 10min. The extracts were analyzed by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) in a robust multiple-reaction monitoring (MRM) mode in five minutes. Meanwhile, the proposed method was validated and successfully applied to the determination of seven lignans in twelve Schisandra species. The results indicated that UATS-ILME combined with UPLC-MS/MS is a powerful and practical tool, which has great potential for comprehensive quality control of herbal medicines. PMID:26625336

  6. Extraction of arsenic in a soil of the blackfoot disease endemic area with ionic liquids

    NASA Astrophysics Data System (ADS)

    Liao, C.-Y.; Wang, H. Paul; Peng, C.-Y.; Kang, H.-Y.; Wei, Y.-L.

    2009-04-01

    Speciation of arsenic in the soil of the old blackfoot disease endemic area in the Southern Taiwan has been studied by X-ray absorption near edge structural (XANES) and extended X-ray absorption fine structural (EXAFS) spectroscopy. Experimentally, at the contact time of 30-180 min, 30-40% of As(III) and 40-60% of As(V) in the soil can be extracted with a room temperature ionic liquid (RTIL) [BMI][BF4] (1-butyl-3-methylimidazolium tetrafluoroborate). For the relatively hydrophobic RTIL [BMI][PF6] (1-butyl-3-methylimidazolium hexafluorophosphate), on the contrary, 10-15% of As(III) and 20-25% of As(V) can be extracted. By XANES, it is found that an enhanced oxidation of the extracted As(III) (As(III)→As(V)) in the RTIL may occur during the extraction processes. The refined EXAFS spectra also indicate that the bond distances of As(III)-N and As(V)-N in the arsenic-extracted RTILs are 1.76-1.78 and 1.68-1.70

  7. Extraction of ranitidine and nizatidine with using imidazolium ionic liquids prior spectrophotometric and chromatographic detection.

    PubMed

    Kiszkiel, Ilona; Starczewska, Barbara; Leśniewska, Barbara; Późniak, Patrycja

    2015-03-15

    A new extraction medium was proposed for liquid-liquid extraction of the histamine H2 receptor antagonists ranitidine (RNT) and nizatidine (NZT). The ionic liquids with low vapor pressure and favorable solvating properties for a range of compounds such as 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C4mim][Tf2N] were tested for isolation of analytes. The extraction parameters of RNT and NZT, namely, amount of ionic liquid, pH of sample solution, shaking and centrifugation time were optimized. The isolation processes were performed with 1 mL of the ionic liquids. The extracted samples (pH values near 4) were shaken at 1750 rpm. The influence of interfering substances on the efficiency of extraction process was also studied. Methods for the histamine H2 receptor antagonists (ranitidine and nizatidine) determination after their separation using imidazolium ionic liquids by high performance liquid chromatography (HPLC) combined with UV spectrophotometry were developed. The application of ionic liquids in extraction step allows for selective isolation of analytes from aqueous matrices and their preconcentration. The above methods were applied to the determination of RNT and NZT in environmental samples (river water and wastewater after treatment).

  8. Correlation between the fluorescent response of microfluidity probes and the water content and viscosity of ionic liquid and water mixtures.

    PubMed

    Pandey, Siddharth; Fletcher, Kristin A; Baker, Sheila N; Baker, Gary A

    2004-07-01

    Accurate data on transport properties such as viscosity are essential in plant and process design involving ionic liquids. In this study, we determined the absolute viscosity of the ionic liquid + water system at water mole fractions from 0 to 0.25 for three 1-alkyl-3-methylimidazolium ionic liquids: 1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide and 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide. In each case, the excimer to monomer ratio for 1,m-bis(1-pyrenyl)alkanes (m= 3 or 10) was found to increase linearly with the mole fraction of water. Of the probes studied only PRODAN and rhodamine 6G, both of which have the ability to participate in hydrogen bonding, exhibited Perrin hydrodynamic behavior in the lower viscosity bis(trifluoromethane sulfonyl)imides. As a result, these probes allow for the extrapolation of the absolute viscosity of the ionic liquid mixture from the experimental fluorescence steady-state polarization values.

  9. Screening of lignan patterns in Schisandra species using ultrasonic assisted temperature switch ionic liquid microextraction followed by UPLC-MS/MS analysis.

    PubMed

    Dong, Wei; Yu, Shuijing; Deng, Yangwu; Pan, Tao

    2016-01-01

    The ultrasonic assisted temperature-switch ionic liquid microextraction (UATS-ILME) has been successfully applied in extracting of seven lignans from Schisandra. 1-Butyl-3-methylimidazolium tetrafluoroborate ([C4MIM][BF4]) aqueous solution was selected for extracting the target analytes in raw material at 80°C. The lignans were deposited into a single drop by in situ forming 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) by cooling down to 0°C and centrifuging for 10min. The extracts were analyzed by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) in a robust multiple-reaction monitoring (MRM) mode in five minutes. Meanwhile, the proposed method was validated and successfully applied to the determination of seven lignans in twelve Schisandra species. The results indicated that UATS-ILME combined with UPLC-MS/MS is a powerful and practical tool, which has great potential for comprehensive quality control of herbal medicines.

  10. Determination of atenolol in human plasma using ionic-liquid-based ultrasound-assisted in situ solvent formation microextraction followed by high-performance liquid chromatography.

    PubMed

    Zeeb, Mohsen; Farahani, Hadi; Papan, Mohammad Kazem

    2016-06-01

    An efficient analytical method called ionic-liquid-based ultrasound-assisted in situ solvent formation microextraction followed by high-performance liquid chromatography was developed for the determination of atenolol in human plasma. A hydrophobic ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) was formed by the addition of a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) to a sample solution containing an ion-pairing agent during microextraction. The analyte was extracted into the ionic liquid phase while the microextraction solvent was dispersed throughout the sample by utilizing ultrasound. The sample was then centrifuged, and the extracting phase retracted into the microsyringe and injected to liquid chromatography. After optimization, the calibration curve showed linearity in the range of 2-750 ng/mL with the regression coefficient corresponding to 0.998. The limits of detection (S/N = 3) and quantification (S/N = 10) were 0.5 and 2 ng/mL, respectively. A reasonable relative recovery range of 90-96.7% and satisfactory intra-assay (4.8-5.1%, n = 6) and interassay (5.0-5.6%, n = 9) precision along with a substantial sample clean-up demonstrated good performance of the procedure. It was applied for the determination of atenolol in human plasma after oral administration and some pharmacokinetic data were obtained.

  11. Voltammetry of ferrocene in supercritical CO sub 2 containing water and tetrahexylammonium hexafluorophosphate

    SciTech Connect

    Niehaus, D.; Philips, M.; Michael, A.; Wightman, R.M. )

    1989-08-10

    The voltammetric oxidation of ferrocene has been examined with microdisk electrodes in supercritical CO{sub 2} containing small-amounts of added water. Voltammograms obtained under these conditions indicate a high rate of diffusion for ferrocene but exhibit considerable ohmic drop. The ohmic distortion of the voltammograms is reduced by the addition of tetrahexylammonium hexafluorophosphate ((THA)PF{sub 6}) to the cell. However, when large amounts of (THA)PF{sub 6} are added to the cell, visual inspection indicates a two-phase system under the conditions used. Near-infrared spectra show that the upper phase is supercritical CO{sub 2} and the lower phase is liquid (THA)PF{sub 6}. This result is obtained at a temperature that is 64{degree}C below the melting point of pure (THA)PF{sub 6} at atmospheric pressure. Ferrocene is found to have a much lower diffusion coefficient in the molten salt. However, the limiting current recorded in the molten salt is not attenuated relative to that in the upper phase, because ferrocene preferentially dissolves in the molten salt. It is shown that the molten salt, when added in small amounts to the cell, acts as an electrode-surface modifier that promotes ionic conductivity and allows the oxidation of ferrocene extracted from the supercritical CO{sub 2}. This occurs even when the electrode is placed in the upper CO{sub 2} phase.

  12. Unraveling heterogeneous microviscosities of the 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids with different chain lengths.

    PubMed

    Li, Boxuan; Qiu, Meng; Long, Saran; Wang, Xuefei; Guo, Qianjin; Xia, Andong

    2013-10-14

    The rotational dynamics of coumarin 153 (C153) have been investigated in a series of 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids with different alkyl chain lengths (alkyl = butyl, pentyl, hexyl, heptyl, octyl) ([Cnmim][PF6], n = 4-8) to examine the alkyl chain length dependent local viscosity of the microenvironment surrounding the probe molecules. The excimer-to-monomer fluorescence emission intensity ratio (IE/IM) of a well-known microviscosity probe, 1,3-bis(1-pyrenyl)propane (BPP), is also employed to study the microviscosity of [Cnmim][PF6] as a complementary measurement. The rotational dynamics of C153 show that at a certain length of the alkyl chain there are incompact and compact domains within [Cnmim][PF6], resulting in fast and slow components of C153 rotational dynamics. The microviscosities in different structural domains of [Cnmim][PF6] with different alkyl chain lengths are investigated by studying the fluorescence anisotropy decay of probe molecules. The obtained average rotation time constants show that with an increase in the length of the alkyl chain, the microviscosity of [Cnmim][PF6] is obviously increased first and then slightly decreased. The steady state fluorescence measurements with the microviscosity probe of BPP further prove that the microviscosity is not increased as much as expected when ionic liquids [Cnmim][PF6] have a relatively long alkyl chain. The different heterogeneous structures of [Cnmim][PF6] with different lengths of the alkyl chain are proposed to interpret the unusual microviscosity behaviors.

  13. Application of a nanostructured sensor based on NiO nanoparticles modified carbon paste electrode for determination of methyldopa in the presence of folic acid

    NASA Astrophysics Data System (ADS)

    Fouladgar, Masoud; Ahmadzadeh, Saeid

    2016-08-01

    A new method for determination of methyldopa in the presence of folic acid has been described in this work. This method is based on modification of carbon paste electrode with NiO nanoparticles and an ionic liquid (1-Butyl-3-methylimidazolium hexafluorophosphate). Electrochemical studies showed that on the surface of modified electrode, oxidation current of methyldopa has been enhanced and shifted to negative potentials. The fabricated electrode exhibited a linear response to concentration of methyldopa from 0.1 to 700.0 μmol L-1. The sensitivity of the modified electrode to methyldopa not changed in the presence of folic acid and simultaneous or independent measurements of them are possible. The performance of proposed method was investigated by determination of methyldopa in real samples.

  14. Development of Ionic Liquid Modified Disposable Graphite Electrodes for Label-Free Electrochemical Detection of DNA Hybridization Related to Microcystis spp.

    PubMed

    Sengiz, Ceren; Congur, Gulsah; Erdem, Arzum

    2015-01-01

    In this present study, ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate (IL)) modified pencil graphite electrode (IL-PGEs) was developed for electrochemical monitoring of DNA hybridization related to Microcystis spp. (MYC). The characterization of IL-PGEs was performed using microscopic and electrochemical techniques. DNA hybridization related to MYC was then explored at the surface of IL-PGEs using differential pulse voltammetry (DPV) technique. After the experimental parameters were optimized, the sequence-selective DNA hybridization related to MYC was performed in the case of hybridization between MYC probe and its complementary DNA target, noncomplementary (NC) or mismatched DNA sequence (MM), or and in the presence of mixture of DNA target: NC (1:1) and DNA target: MM (1:1).

  15. A study of the time-resolved fluorescence spectrum and red edge effect of ANF in a room-temperature ionic liquid.

    PubMed

    Hu, Zhonghan; Margulis, Claudio J

    2006-06-15

    In a recent article, we have analyzed using molecular dynamics simulations the steady-state red edge effect (REE) observed by Samanta and co-workers when the fluorescent probe 2-amino-7-nitrofluorene (ANF) is photoexcited at different wavelengths in 1-butyl-3-methylimidazolium ([BMIM+]) hexafluorophosphate ([PF6-]). In this letter, we predict the time- and wavelength-dependent emission spectra of ANF in the same ionic solvent. From the analysis of our simulated data, we are able to derive an approximate time scale for reorganization of the solvent around the solute probe. The effect that slow varying local liquid environments have on the overall time-dependent signal is also discussed. PMID:16771357

  16. Dielectric relaxation and solvation dynamics in a room-temperature ionic liquid: temperature dependence.

    PubMed

    Shim, Youngseon; Kim, Hyung J

    2013-10-01

    Dielectric relaxation, related polarization and conductivity, and solvation dynamics of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMI(+)PF6(-)) are studied via molecular dynamics computer simulations in the temperature range 300 K ≤ T ≤ 500 K. Two main bands of its dielectric loss spectrum show differing temperature behaviors. As T increases, the absorption band in the microwave region shifts to higher frequencies rapidly, whereas the location of the bimodal far-IR band remains nearly unchanged. Their respective intensities tend to decrease and increase. The static dielectric constant of BMI(+)PF6(-) is found to decrease weakly with T. The ultrafast inertial component of solvation dynamics remains largely unchanged, while their dissipative relaxation component becomes faster. Roles played by ion reorientations and translations in governing dynamic and static dielectric properties of the ionic liquid are examined. A brief comparison with available experimental results is also made.

  17. Reverse dynamic calorimetry of a viscous ionic liquid.

    PubMed

    Huang, Wei; Richert, Ranko

    2009-11-14

    We compare the time scale of thermal relaxation with that of the electric modulus in the deeply supercooled regime of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. Thermal relaxation refers to the process of configurational temperatures of the slow degrees of freedom equilibrating toward the vibrational temperature, which is a reliable indicator for the time scale of structural relaxation. Energy is supplied to the sample by absorption from a sinusoidal electric field with amplitude as high as 387 kV/cm and frequencies in the 0.2 Hz-56 kHz range, analogous to microwave heating. The time resolved response of configurational temperature as well as the low field dielectric properties are measured in a single high field impedance setup. Near T(g), we find that the macroscopic field (or modulus M) relaxes considerably faster than the structure (in terms of thermal relaxation, solvation dynamics, and probe rotation), although the liquid is entirely composed of mobile ions.

  18. Preparation of starch nanoparticles in a water-in-ionic liquid microemulsion system and their drug loading and releasing properties.

    PubMed

    Zhou, Gang; Luo, Zhigang; Fu, Xiong

    2014-08-13

    An ionic liquid microemulsion consisting of 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF₆), surfactant TX-100, 1-butanol, and water was prepared. The water-in-[Bmim]PF₆ (W/IL), bicontinuous, and [Bmim]PF₆-in-water (IL/W) microregions of the microemulsion were identified by conductivity measurements. Starch nanoparticles with a mean diameter of 91.4 nm were synthesized with epichlorohydrin as cross-linker through W/IL microemulsion cross-linking reaction at 50 °C for 4 h. Fourier transform infrared spectroscopy (FTIR) data demonstrated the formation of cross-linking bonds in starch molecules. Scanning electron microscopy (SEM) revealed that starch nanoparticles were spherical and that some particles showed aggregation formation. Furthermore, drug loading and releasing properties of starch nanoparticles were investigated with mitoxantrone hydrochloride as a drug model. This work provides an efficient and environmentally friendly approach for the preparation of starch nanoparticles, which is beneficial to their further application. PMID:25069988

  19. Enzymatic catalysis of formation of Z-aspartame in ionic liquid - An alternative to enzymatic catalysis in organic solvents.

    PubMed

    Erbeldinger, M; Mesiano, A J; Russell, A J

    2000-01-01

    We present the first report of enzymatic catalysis in an ionic liquid. The virtually nonexistent vapor pressure makes ionic liquids an exciting new alternative for enzyme-catalyzed syntheses in environmentally friendly environments. Z-aspartame was synthesized in a thermolysin-catalyzed reaction of carbobenzoxy-L-aspartate and L-phenylalanine methyl ester hydrochloride in 1-butyl-3-methylimidazolium hexafluorophosphate (BP6). Ionic liquids such as BP6 are thermally stable and have a remarkable range of temperatures over which they remain liquid (300 degrees C). With an initial rate of 1.2 +/- 0.1 nmol min(-)(1) mg(-)(1), we observed a competitive rate in comparison to that of enzymatic synthesis in organic solvent. Additionally, the enzyme exhibits outstanding stability, which would normally require immobilization.

  20. Theoretical investigation of polarization effects in solution: Importance of solvent collective motions

    SciTech Connect

    Ishida, Tateki

    2015-01-22

    Recent theoretical studies on interesting topics related to polarization effects in solutions are presented. As one of interesting topics, ionic liquids (ILs) solvents are focused on. The collective dynamics of electronic polarizability through interionic dynamics and the effect of polarization in ILs, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF{sub 6}]), are studied with molecular dynamics simulation. Also, the time-dependent polarization effect on the probe betaine dye molecule, pyridinium N-phenoxide, in water is investigated by a time-dependent reference interaction site model self-consistent field (time-dependent RISM-SCF) approach. The importance of considering polarization effects on solution systems related to solvent collective motions is shown.

  1. The Effect of Microporous Polymeric Support Modification on Surface and Gas Transport Properties of Supported Ionic Liquid Membranes.

    PubMed

    Akhmetshina, Alsu A; Davletbaeva, Ilsiya M; Grebenschikova, Ekaterina S; Sazanova, Tatyana S; Petukhov, Anton N; Atlaskin, Artem A; Razov, Evgeny N; Zaripov, Ilnaz I; Martins, Carla F; Neves, Luísa A; Vorotyntsev, Ilya V

    2015-12-30

    Microporous polymers based on anionic macroinitiator and toluene 2,4-diisocyanate were used as a support for 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF₆]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf₂N]) immobilization. The polymeric support was modified by using silica particles associated in oligomeric media, and the influence of the modifier used on the polymeric structure was studied. The supported ionic liquid membranes (SILMs) were tested for He, N₂, NH₃, H₂S, and CO₂ gas separation and ideal selectivities were calculated. The high values of ideal selectivity for ammonia-based systems with permanent gases were observed on polymer matrixes immobilized with [bmim][PF₆] and [emim][Tf₂N]. The modification of SILMs by nanosize silica particles leads to an increase of NH₃ separation relatively to CO₂ or H₂S.

  2. Real-time monitoring of hydrogen peroxide consumption in an oxidation reaction in molecular solvent and ionic liquids by a hydrogen peroxide electrochemical sensor.

    PubMed

    Sordi, Daniela; Arduini, Fabiana; Conte, Valeria; Moscone, Danila; Palleschi, Giuseppe

    2011-06-20

    An efficient electrochemical protocol to monitor hydrogen peroxide consumption during metal-catalyzed oxidation by using screen-printed electrodes modified with Prussian blue is presented. In particular, cyclooctene oxidation to cyclooctene oxide, catalyzed by a vanadium(V)-salophen complex (H(2)salophen=N,N'-o-phenylenebis(salicylideneimine)), in molecular and ionic media was tested. Initially, a protocol for batch analysis was developed for a monophasic system in acetonitrile, and subsequently, an in situ protocol was developed for a biphasic system of 1-butyl-3-methylimidazolium hexafluorophosphate/phosphate buffer. Calibration curves were performed in amperometric mode by applying -50 mV versus an Ag pseudo-reference. The calibration curve of hydrogen peroxide showed a linear correlation from 1 × 10(-6) up to 5 × 10(-3) mol L(-1) with satisfactory inter- and intra-electrode reproducibility (relative standard deviation (RSD) values of 5 and 13%, respectively, for the monophasic system and 11 and 13%, respectively, for the biphasic system). Kinetic studies to investigate the oxidation reaction for both the mono- and biphasic systems have been carried out in amperometric mode as well. Firstly, the decomposition of hydrogen peroxide was examined, which showed that, in 1-butyl-3-methylimidazolium hexafluorophosphate(,) it completely decomposed in 300 min, whereas in acetonitrile, in the same time frame, 20% of the initial amount was still active. In the presence of 1% of the catalyst the decomposition rate increased in both solvents. Finally, the complete oxidation of cyclooctene was followed and the effective conversion was determined. The developed protocols showed high reproducibility, with the advantage that the environmentally friendly biphasic system could also be recycled. The good analytical performance obtained, coupled with a short analysis time, the possibility of in-line automation and the use of ionic liquids instead of molecular solvents, made this

  3. Dispersive liquid-liquid microextraction of silver nanoparticles in water using ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate.

    PubMed

    Chen, Sha; Sun, Yuanjing; Chao, Jingbo; Cheng, Liping; Chen, Yun; Liu, Jingfu

    2016-03-01

    Using the ionic liquid (IL) 1-octyl-3-methylimidazolium hexafluorophosphate as the extractant and methanol as the dispersion solvent, a dispersive liquid-liquid microextraction method was developed to extract silver nanoparticles (AgNPs) from environmental water samples. Parameters that influenced the extraction efficiency such as IL concentration, pH and extraction time were optimized. Under the optimized conditions, the highest extraction efficiency for AgNPs was above 90% with an enrichment factor of >90. The extracted AgNPs in the IL phase were identified by transmission electron microscopy and ultraviolet-visible spectroscopy, and quantified by inductively coupled plasma mass spectrometry after microwave digestion, with a detection limit of 0.01μg/L. The spiked recovery of AgNPs was 84.4% with a relative standard deviation (RSD) of 3.8% (n=6) at a spiked level of 5μg/L, and 89.7% with a RSD of 2.2% (n=6) at a spiked level of 300μg/L, respectively. Commonly existed environmental ions had a very limited influence on the extraction efficiency. The developed method was successfully applied to the analysis of AgNPs in river water, lake water, and the influent and effluent of a wastewater treatment plant, with recoveries in the range of 71.0%-90.9% at spiking levels of 0.11-4.7μg/L.

  4. Mechanisms and rules of anion partition into ionic liquids: phenolate ions in ionic liquid/water biphasic systems.

    PubMed

    Katsuta, Shoichi; Nakamura, Ko-ichi; Kudo, Yoshihiro; Takeda, Yasuyuki

    2012-01-19

    It is important to understand the mechanisms and general rules of ion partitioning in hydrophobic ionic liquid (IL)/water biphasic systems in order to predict the extractability of an ionic species with various ILs. In this study, we have investigated the partition of picrate ion (target anion, T(-)) from aqueous sodium picrate solutions into several ILs and the accompanying changes in aqueous concentrations of the IL component cation (C(+)) and anion (A(-)) at 298.2 K. The main ILs examined are 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide, 1-butyl-3-methylimidazolium hexafluorophosphate, and 1-methyl-3-octylimidazolium bis(trifluoromethanesulfonyl)amide. The aqueous concentrations of C(+) and A(-) decreased and increased, respectively, with the extraction of T(-) into the IL phase. From the standpoint of equilibrium, the partition behavior of T(-) can be explained both by the anion exchange with A(-) in the IL phase and by the ion pair extraction with C(+) in the aqueous phase. The aqueous concentrations of C(+) and A(-) are governed by the solubility product of the IL (K(sp)). The distribution ratio of T(-) is expressed as a function of Δ[T(-)](W), namely, the difference between the initial and equilibrium concentrations of T(-) in the aqueous phase; the distribution ratio of T(-) is nearly constant when Δ[T(-)](W) < K(sp)(1/2), but decreases with increasing Δ[T(-)](W) in the larger Δ[T(-)](W) region. The equilibrium constants of the ion pair extraction and the ion exchange extraction have been determined for picrate and other phenolate ions whose partition data were previously reported. The dependences of the extraction constants and extractability on the kinds of IL component ions can be quantitatively explained on the basis of the variations of K(sp). PMID:22176301

  5. The importance of ion size and electrode curvature on electrical double layers in ionic liquids

    SciTech Connect

    Feng, G.; Qiao, R.; Huang, J; Dai, S.; Sumpter, B. G.; Meunier, V.

    2011-01-01

    Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF{sub 6}], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF{sub 6}] (near the positive electrode) ≈ [BMIM][Cl] (near the negative electrode) ≈ [BMIM][PF{sub 6}] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a “Multiple Ion Layers with Overscreening” (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.

  6. Determining diffusion coefficients of ionic liquids by means of field cycling nuclear magnetic resonance relaxometry

    SciTech Connect

    Kruk, D.; Meier, R.; Rössler, E. A.; Rachocki, A.; Korpała, A.; Singh, R. K.

    2014-06-28

    Field Cycling Nuclear Magnetic Resonance (FC NMR) relaxation studies are reported for three ionic liquids: 1-ethyl-3- methylimidazolium thiocyanate (EMIM-SCN, 220–258 K), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF{sub 4}, 243–318 K), and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF{sub 6}, 258–323 K). The dispersion of {sup 1}H spin-lattice relaxation rate R{sub 1}(ω) is measured in the frequency range of 10 kHz–20 MHz, and the studies are complemented by {sup 19}F spin-lattice relaxation measurements on BMIM-PF{sub 6} in the corresponding frequency range. From the {sup 1}H relaxation results self-diffusion coefficients for the cation in EMIM-SCN, BMIM-BF{sub 4}, and BMIM-PF{sub 6} are determined. This is done by performing an analysis considering all relevant intra- and intermolecular relaxation contributions to the {sup 1}H spin-lattice relaxation as well as by benefiting from the universal low-frequency dispersion law characteristic of Fickian diffusion which yields, at low frequencies, a linear dependence of R{sub 1} on square root of frequency. From the {sup 19}F relaxation both anion and cation diffusion coefficients are determined for BMIM-PF{sub 6}. The diffusion coefficients obtained from FC NMR relaxometry are in good agreement with results reported from pulsed- field-gradient NMR. This shows that NMR relaxometry can be considered as an alternative route of determining diffusion coefficients of both cations and anions in ionic liquids.

  7. Mechanisms and rules of anion partition into ionic liquids: phenolate ions in ionic liquid/water biphasic systems.

    PubMed

    Katsuta, Shoichi; Nakamura, Ko-ichi; Kudo, Yoshihiro; Takeda, Yasuyuki

    2012-01-19

    It is important to understand the mechanisms and general rules of ion partitioning in hydrophobic ionic liquid (IL)/water biphasic systems in order to predict the extractability of an ionic species with various ILs. In this study, we have investigated the partition of picrate ion (target anion, T(-)) from aqueous sodium picrate solutions into several ILs and the accompanying changes in aqueous concentrations of the IL component cation (C(+)) and anion (A(-)) at 298.2 K. The main ILs examined are 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide, 1-butyl-3-methylimidazolium hexafluorophosphate, and 1-methyl-3-octylimidazolium bis(trifluoromethanesulfonyl)amide. The aqueous concentrations of C(+) and A(-) decreased and increased, respectively, with the extraction of T(-) into the IL phase. From the standpoint of equilibrium, the partition behavior of T(-) can be explained both by the anion exchange with A(-) in the IL phase and by the ion pair extraction with C(+) in the aqueous phase. The aqueous concentrations of C(+) and A(-) are governed by the solubility product of the IL (K(sp)). The distribution ratio of T(-) is expressed as a function of Δ[T(-)](W), namely, the difference between the initial and equilibrium concentrations of T(-) in the aqueous phase; the distribution ratio of T(-) is nearly constant when Δ[T(-)](W) < K(sp)(1/2), but decreases with increasing Δ[T(-)](W) in the larger Δ[T(-)](W) region. The equilibrium constants of the ion pair extraction and the ion exchange extraction have been determined for picrate and other phenolate ions whose partition data were previously reported. The dependences of the extraction constants and extractability on the kinds of IL component ions can be quantitatively explained on the basis of the variations of K(sp).

  8. Reactions of Starch in Ionic Liquids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We found that starches are found to be soluble at 80 ºC in ionic liquids such as 1-butyl-3-methylimidazolium chloride (BMIMCl) and 1-butyl-3-methylimidazolium dicyanamide (BMIMdca) in concentration up to 10% (w/w). Higher concentrations of biopolymers in these novel solvents resulted in solutions w...

  9. Ion chromatography electrospray ionization mass spectrometry method development and investigation of lithium hexafluorophosphate-based organic electrolytes and their thermal decomposition products.

    PubMed

    Kraft, Vadim; Grützke, Martin; Weber, Waldemar; Winter, Martin; Nowak, Sascha

    2014-08-01

    A method based on the coupling of ion chromatography (IC) and electrospray ionization mass spectrometry (ESI-MS) for the separation and determination of thermal decomposition products of LiPF6-based organic electrolytes is presented. The utilized electrolytes, LP30 and LP50, are commercially available and consist of 1mol/l LiPF6 dissolved in ethylene carbonate/dimethyl carbonate and ethylene carbonate/ethyl methyl carbonate, respectively. For the separation method development three ion chromatographic columns with different capacity and stationary phase were used and compared. Besides the known hydrolysis products of lithium hexafluorophosphate, several new organophosphates were separated and identified with the developed IC-ESI-MS method during aging investigations of the electrolytes. The chemical structures were elucidated with IC-ESI-MS/MS.

  10. Ion chromatography electrospray ionization mass spectrometry method development and investigation of lithium hexafluorophosphate-based organic electrolytes and their thermal decomposition products.

    PubMed

    Kraft, Vadim; Grützke, Martin; Weber, Waldemar; Winter, Martin; Nowak, Sascha

    2014-08-01

    A method based on the coupling of ion chromatography (IC) and electrospray ionization mass spectrometry (ESI-MS) for the separation and determination of thermal decomposition products of LiPF6-based organic electrolytes is presented. The utilized electrolytes, LP30 and LP50, are commercially available and consist of 1mol/l LiPF6 dissolved in ethylene carbonate/dimethyl carbonate and ethylene carbonate/ethyl methyl carbonate, respectively. For the separation method development three ion chromatographic columns with different capacity and stationary phase were used and compared. Besides the known hydrolysis products of lithium hexafluorophosphate, several new organophosphates were separated and identified with the developed IC-ESI-MS method during aging investigations of the electrolytes. The chemical structures were elucidated with IC-ESI-MS/MS. PMID:24939088

  11. Dispersive liquid-liquid microextraction of pesticides and metabolites from soils using 1,3-dipentylimidazolium hexafluorophosphate ionic liquid as an alternative extraction solvent.

    PubMed

    Asensio-Ramos, María; Hernández-Borges, Javier; Ravelo-Pérez, Lidia M; Afonso, María M; Palenzuela, J Antonio; Rodríguez-Delgado, Miguel Ángel

    2012-05-01

    In this work, the use of the ionic liquid (IL) 1,3-dipentylimidazolium hexafluorophosphate ([PPIm][PF₆]) as an alternative extractant for IL dispersive liquid-liquid microextraction (IL-DLLME) of a group of pesticides and metabolites (2-aminobenzimidazole, carbendazim/benomyl, thiabendazole, fuberidazole, carbaryl, 1-naphthol, and triazophos) from soils is described. After performing an initial ultrasound-assisted extraction (USE), the IL-DLLME procedure was applied for the extraction of these organic analytes from soil extracts. Separation and quantification was achieved by high-performance liquid chromatography (HPLC) with fluorescence detection (FD). Calibration, precision, and accuracy of the described USE-IL-DLLME-HPLC-FD method using [PPIm][PF₆] as an alternative extractant was evaluated with two soils of different physicochemical properties. Accuracy percentages were in the range 93-118% with RSD values below 20%. A comparison of the performance of [PPIm][PF₆] versus that of the so-common 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIm][PF₆]) was accomplished. Results indicate a comparable extraction efficiency with both ILs, being slightly higher with [HMIm][PF₆] for the metabolite 2-aminobenzimidazole, and slightly higher with [PPIm][PF₆] for triazophos. In all cases, LODs were in the low ng/g range (0.02-14.2 ng/g for [HMIm][PF₆] and 0.02-60.5 ng/g for [PPIm][PF₆]). As a result, the current work constitutes a starting point for the use of the IL [PPIm][PF₆] for further analytical approaches.

  12. A non-aqueous all-cobalt redox flow battery using 1,10-phenanthrolinecobalt(II) hexafluorophosphate as active species

    NASA Astrophysics Data System (ADS)

    Xing, Xueqi; Zhang, Dapeng; Li, Yongdan

    2015-04-01

    A non-aqueous all-cobalt redox flow battery, with a cobalt complex 1,10-phenanthrolinecobalt(II) hexafluorophosphate ([Co(phen)3](PF6)2) as the active species, acetonitrile as the solvent and tetraethylammonium hexafluorophosphate (TEAPF6) as the supporting electrolyte, has been investigated. The electrochemical behaviour of oxidation and reduction reactions is measured using cyclic voltammetry (CV). The [Co(phen)3]2+ can be oxidized to [Co(phen)3]3+ and reduced to [Co(phen)3]+. A theoretical cell potential of 1.45 V for one-electron disproportionation reaction is obtained. The electrode reactions show quasi-reversible behaviour and are diffusion controlled. The diffusion coefficients of [Co(phen)3] 2+ for oxidation and reduction reactions are calculated to be 1.35-2.34 × 10-6 cm2 s-1 and 2.50-4.35 × 10-6 cm2 s-1, respectively. The effect of the electrode material is also examined by experiments. The CV curves of [Co(phen)3]2+ on the graphite working electrode show superior peak current and diffusivity to those measured on the glassy-carbon electrode. The charge-discharge performance of the battery is accessed with an H-type glass cell. A coulomb efficiency of about 52% is achieved at 50% state-of-charge for an electrolyte containing of 0.01 M [Co(phen)3]2+ and 0.5 M TEAPF6 in acetonitrile.

  13. A non-aqueous all-cobalt redox flow battery using 1,10-phenanthrolinecobalt(II) hexafluorophosphate as active species

    NASA Astrophysics Data System (ADS)

    Xing, Xueqi; Zhang, Dapeng; Li, Yongdan

    2015-04-01

    A non-aqueous all-cobalt redox flow battery, with a cobalt complex 1,10-phenanthrolinecobalt(II) hexafluorophosphate ([Co(phen)3](PF6)2) as the active species, acetonitrile as the solvent and tetraethylammonium hexafluorophosphate (TEAPF6) as the supporting electrolyte, has been investigated. The electrochemical behaviour of oxidation and reduction reactions is measured using cyclic voltammetry (CV). The [Co(phen)3]2+ can be oxidized to [Co(phen)3]3+ and reduced to [Co(phen)3]+. A theoretical cell potential of 1.45 V for one-electron disproportionation reaction is obtained. The electrode reactions show quasi-reversible behaviour and are diffusion controlled. The diffusion coefficients of [Co(phen)3] 2+ for oxidation and reduction reactions are calculated to be 1.35-2.34 × 10-6 cm2 s-1 and 2.50-4.35 × 10-6 cm2 s-1, respectively. The effect of the electrode material is also examined by experiments. The CV curves of [Co(phen)3]2+ on the graphite working electrode show superior peak current and diffusivity to those measured on the glassy-carbon electrode. The charge-discharge performance of the battery is accessed with an H-type glass cell. A coulomb efficiency of about 52% is achieved at 50% state-of-charge for an electrolyte containing of 0.01 M [Co(phen)3]2+ and 0.5 M TEAPF6 in acetonitrile.

  14. Development of Bitter Taste Sensor Using Ionic-Liquid/Polymer Membranes

    NASA Astrophysics Data System (ADS)

    Akutagawa, Nobuyuki; Toida, Jinichi; Amano, Yoshihiko; Ikezaki, Hidekazu; Toko, Kiyoshi; Arikawa, Yukihiko

    A taste sensor is composed of several kinds of lipid/polymer membranes as transducers which convert taste information to electric signal. Thus, the role of membranes is very important to detect various taste components. In this paper, we developed novel membranes which specifically respond to quinine that is typical bitter substances. These membranes were composed of hydrophobic ionic liquid such as N, N, N-trimethyl-N-propylammonium bis(trifluoromethansulfonyl)imide, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-butylpyridinium hexafluorophosphate, a plasticizer, 2-nitrophenyl octyl ether and a polymer, polyvinyl chloride. In addition to quinine, they also showed response to both several kinds of alkaloids such as caffeine and strychnine, and non-alkaloid such as phenylthiocarbamide. The order of these responses was equal to that of the tongue glossopharyngeal nerve of flog. Furthermore, there were the other alkaloids which response to these membranes. Especially in these alkaloids, they showed high response to denatonium benzoate and berberin chloride which have a strong bitter taste.

  15. A new room temperature ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate as a solvent for extraction and preconcentration of mercury with determination by cold vapor atomic absorption spectrometry.

    PubMed

    Li, Zaijun; Wei, Qin; Yuan, Rui; Zhou, Xia; Liu, Huizhen; Shan, Haixia; Song, Qijun

    2007-01-15

    A new room temperature ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate abbreviated as [C(4)tmsim][PF(6)] was synthesized and developed as a novel medium for liquid/liquid extraction of inorganic mercury in this work. Under optimal condition, o-carboxyphenyldiazoamino-p-azobenzene abbreviated as CDAA reacted with inorganic mercury to form a neutral Hg-CDAA complex, the complex was rapidly extracted into ionic liquid phase. After back-extracting into aqueous phase with sulfide sodium solution, the mercury concentration was detected by cold vapor atomic absorption spectrometry. The extraction and back-extraction efficiencies were 99.9 and 100.1% for 5.0microg L(-1) standard mercury in 1000mL of water solution, respectively. The detection limit, calculated using three times the standard error of estimate of the calibration graph, is 0.01ng of mercury per milliliter water sample. The proposed method has been used to the determination of trace inorganic mercury in natural water with satisfactory results. Moreover, Zeta potential and surface tension of [C(4)tmsim][PF(6)] solution were measured and applied to explain the extraction mechanism of [C(4)tmsim][PF(6)] system.

  16. Two-dimensional ion chromatography for the separation of ionic organophosphates generated in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes.

    PubMed

    Kraft, Vadim; Grützke, Martin; Weber, Waldemar; Menzel, Jennifer; Wiemers-Meyer, Simon; Winter, Martin; Nowak, Sascha

    2015-08-28

    A two-dimensional ion chromatography (IC/IC) technique with heart-cutting mode for the separation of ionic organophosphates was developed. These analytes are generated during thermal degradation of three different commercially available Selectilyte™ lithium ion battery electrolytes. The composition of the investigated electrolytes is based on 1M lithium hexafluorophosphate (LiPF6) dissolved in ethylene carbonate/dimethyl carbonate (50:50wt%, LP30), ethylene carbonate/diethyl carbonate (50:50wt%, LP40) and ethylene carbonate/ethyl methyl carbonate (50:50wt%, LP50). The organophosphates were pre-separated from PF6(-) anion on the low capacity A Supp 4 column, which was eluted with a gradient step containing acetonitrile. The fraction containing analytes was retarded on a pre-concentration column and after that transferred to the high capacity columns, where the separation was performed isocratically. Different stationary phases and eluents were applied on the 2nd dimension for the investigation of retention times, whereas the highly promising results were obtained with a high capacitive A Supp 10 column. The organophosphates generated in LP30 and LP40 electrolytes could be separated by application of an aqueous NaOH eluent providing fast analysis time within 35min. For the separation of the organophosphates of LP50 electrolyte due to its complexity a NaOH eluent containing a mixture of methanol/H2O was necessary. In addition, the developed two dimensional IC method was hyphenated to an inductively coupled plasma mass spectrometer (ICP-MS) using aqueous NaOH without organic modifiers. This proof of principle measurement was carried out for future quantitative investigation regarding the concentration of the ionic organophosphates. Furthermore, the chemical stability of several ionic organophosphates in water and acetonitrile at room temperature over a period of 10h was investigated. In both solvents no decomposition of the investigated analytes was observed and

  17. Bucky-gel coated glassy carbon electrodes, for voltammetric detection of femtomolar leveled lead ions.

    PubMed

    Wan, Qijin; Yu, Fen; Zhu, Lina; Wang, Xiaoxia; Yang, Nianjun

    2010-10-15

    Femtomolar (fM) leveled lead ions were electrochemically detected using a bucky-gel coated glassy carbon electrode and differential pulse anodic stripping voltammetry. The bucky-gel was composed of dithizone, ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate), and multi-walled carbon nanotubes (MWCNTs). The fabrication of the bucky-gel coated electrode was optimized. The modified electrode was characterized with voltammetry, electrochemical impedance spectroscopy, and chronoamperometry. After the accumulation of lead ions into the bucky-gel modified electrode at -1.2V vs. saturated calomel electrode (SCE) for 5 min in a pH 4.4 sodium acetate-acetate acid buffer solution, differential pulse anodic stripping voltammograms of the accumulated lead show an anodic wave at -0.58 V. The anodic peak current is detectable for lead ions in the concentration range from 1.0 μM down to 500 fM. The detection limit is calculated to be 100 fM. The proposed method was successfully applied for the detection of lead ions in lake water. PMID:20875583

  18. Synthesis of Mesoporous Carbons from Rice Husk for Supercapacitors with High Energy Density in Ionic Liquid Electrolytes.

    PubMed

    He, Xiaojun; Zhang, Hebao; Xie, Kang; Xia, Youyi; Zhao, Zhigang; Wang, Xiaoting

    2016-03-01

    High-performance mesoporous carbons (MCs) for supercapacitors were made from rice husk by one-step microwave-assisted ZnCl2 activation. The microstructures of MCs as-made were characterized by field emission scanning electron microscopy and transmission electron microscopy. The pore structure parameters of MCs were obtained by N2 adsorption technique. The electrochemical properties of MC electrodes were studied by constant current charge-discharge, cyclic voltammetry and electrochemical impedance spectroscopy in different electrolytes. The results showed that the specific surface area of MC4 made at the ZnCl2/rice husk mass of 4:1 reached 1737 m2 g(-1). The specific capacitance and energy density of the electrodes fabricated from the mixture of MC4 and microporous carbon increased with the mass percentage of MC4, reaching 157 F g(-1) and 84 Wh kg(-1) at 0.05 A g(-1), and showed good cycle stability in 1-butyl-3-methylimidazolium hexafluorophosphate electrolyte. Compared to the often-used aqueous and organic electrolytes, MC4 capacitor exhibited extremely high energy density in ionic liquid electrolyte, remaining at 28 Wh kg(-1) at 1684 W kg(-1). This work paves a new way to produce cost-effective MCs from biomass for supercapacitors with extremely high energy density in ionic liquid electrolytes.

  19. A novel impedimetric nanobiosensor for low level determination of hydrogen peroxide based on biocatalysis of catalase.

    PubMed

    Shamsipur, Mojtaba; Asgari, Mehdi; Maragheh, Mohammad Ghannadi; Moosavi-Movahedi, Ali Akbar

    2012-02-01

    A robust and effective nanocomposite film-glassy carbon modified electrode based on multi-walled carbon nanotubes and a room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate was prepared by a layer-by-layer self-assembly method. The fabricated modified electrode was used as a novel impedimetric catalase nanobiosensor for the determination of H(2)O(2). Direct electron transfer and electrocatalysis of catalase were fully investigated. The results suggested that catalase could be firmly adsorbed at the modified electrode. A pair of quasi-reversible redox peaks of catalase was observed in a 0.20 M degassed phosphate buffer solution of pH 7.0. The nanocomposite film showed a pronounced increase in direct electron transfer between catalase and the electrode. The immobilized catalase exhibited an excellent electrocatalytic activity towards the reduction of H(2)O(2). The electrochemical impedance spectroscopy measurements revealed that the charge transfer resistance decreases significantly after enzymatic reaction with hydrogen peroxide, so that the prepared modified electrode can be used for the detection of ultra traces of H(2)O(2) (5-1700 nM).

  20. Lyotropic Phase Behavior of Polybutadiene-Poly(ethylene oxide) Diblock Copolymers in Ionic Liquids

    SciTech Connect

    Simone, Peter M.; Lodge, Timothy P.

    2008-08-26

    The lyotropic phase behavior of three poly(1,2-butadiene-b-ethylene oxide) diblock copolymers (PB-PEO) with different monomer volume fractions has been studied in two different ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMI][PF{sub 6}]), across the complete concentration range. The ordered microstructures present in the solutions were characterized via small-angle X-ray scattering (SAXS). The phase diagrams for the PB-PEO/ionic liquid solutions include regions corresponding to the classical copolymer microstructures: body-centered-cubic lattices of spheres, hexagonally ordered cylinders, and lamellae. Additionally, the phase diagrams also include wide regions of coexisting microstructures and regions apparently corresponding to a disordered network microstructure. The phase behavior of the PB-PEO copolymers in both ionic liquids was comparable to their previously reported aqueous solution behavior. The temperature dependence of the phase diagrams was very modest, indicative of a highly segregated system. The level of solvent selectivity was also investigated via cryogenic transmission electron microscopy (cryo-TEM) on dilute solutions. On the basis of the morphology of the dilute solution copolymer aggregate structures in the ionic liquid solvents, and on the structural length scales of the concentrated solutions, it was concluded that for PB-PEO [BMI][PF{sub 6}] behaves as a more selective solvent than [EMI][TFSI].

  1. Theoretical and experimental investigation on the capture of H2S in a series of ionic liquids.

    PubMed

    Zhou, Xinming; Cao, Bobo; Liu, Shuangyue; Sun, Xuejun; Zhu, Xiao; Fu, Hui

    2016-07-01

    H2S absorptions in ionic liquids (ILs), including tetramethyl guanidinelactate (TMGL), 4-bis(2-hydroxypropyl)-1,1,3,3-tetramethyl guanidinium tetrafluoroborate ([TMGHPO2][BF4]) and 1-butyl-3-methylimidazolium cation ([BMIM](+)) with the anions chloride ([Cl](-)), tetrafluoroborate ([BF4](-)), hexafluorophosphate ([PF6](-)), triflate ([TfO](-)), bis-(trifluoromethyl) sulfonylimide ([Tf2N](-)), were studied in experiment and computational methods. [TMGHPO2][BF4] showed the best H2S absorption capacity among the seven ILs. Density functional theory (DFT) calculations were applied to reveal the absorption mechanisms. Interaction energy results were consistent with absorptivities (molar ratio of H2S in IL) measured in experiment. As the best candidate absorbent, [TMGHPO2][BF4] was chosen as an example to characterize the hydrogen bonds and orbital interactions between H2S and [TMGHPO2][BF4] in atoms in molecules (AIM) and natural bond orbital (NBO) methods, respectively. IR spectrums obtained in both experimental and computational method were used to characterize the features of absorption process. The results indicated that H2S was physically absorbed by ILs, in which hydrogen bond was the driving force. PMID:27388120

  2. Development of a new green non-dispersive ionic liquid microextraction method in a narrow glass column for determination of cadmium prior to couple with graphite furnace atomic absorption spectrometry.

    PubMed

    Naeemullah; Kazi, Tasneem Gul; Tuzen, Mustafa; Shah, Faheem; Afridi, Hassan Imran; Citak, Demirhan

    2014-02-17

    Easy and innovative non-dispersive ionic liquid based microextraction (NDILME) has been developed for preconcentration of trace level of cadmium (Cd) in aqueous real surface water samples prior to couple with graphite furnace atomic absorption spectrometry (GFAAS). A 200 cm long narrow glass column containing aqueous solution of standard/sample was used to increase phase transfer ratio by providing more contact area between two medium (aqueous and extractive), which drastically improve the recoveries of labile hydrophobic chelate of Cd ammonium pyrrolidinedithiocarbamate (APDC), into ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6]. Different aspect of the desire method have been investigated and optimized. Under the optimized key experimental variables, limit of detection (LOD) and enhancement factor (EF) were achieved to be 0.5 ng L(-1) and 150, respectively. Reliability of the model method was checked by relative standard deviation (%RSD), which was found to be <5%. Validity and accuracy of the developed method was checked by analysis of certified reference water samples (SLRS-4 Riverine water) using standard addition method. Application of the model method was productively performed by analysis of Cd in real surface water samples (tap and sea).

  3. Temperature-controlled ionic liquid-based ultrasound-assisted microextraction for preconcentration of trace quantity of cadmium and nickel by using organic ligand in artificial saliva extract of smokeless tobacco products.

    PubMed

    Arain, Sadaf Sadia; Kazi, Tasneem Gul; Arain, Asma Jabeen; Afridi, Hassan Imran; Baig, Jameel Ahmed; Brahman, Kapil Dev; Naeemullah; Arain, Salma Aslam

    2015-03-01

    A new approach was developed for the preconcentration of cadmium (Cd) and nickel (Ni) in artificial saliva extract of dry snuff (brown and black) products using temperature-controlled ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction (TIL-UDLLμE) followed by electrothermal atomic absorption spectrometry (ETAAS). The Cd and Ni were complexed with ammonium pyrrolidinedithiocarbamate (APDC), extracted in ionic liquid drops, 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6]. The multivariate strategy was applied to estimate the optimum values of experimental variables influence the % recovery of analytes by TIL-UDLLμE method. At optimum experimental conditions, the limit of detection (3s) were 0.05 and 0.14μgL(-1) while relative standard deviations (% RSD) were 3.97 and 3.55 for Cd and Ni respectively. After extraction, the enhancement factors (EF) were 87 and 79 for Cd and Ni, respectively. The RSD for six replicates of 10μgL(-1) Cd and Ni were 3.97% and 3.55% respectively. To validate the proposed method, certified reference material (CRM) of Virginia tobacco leaves was analyzed, and the determined values of Cd and Ni were in good agreement with the certified values. The concentration of Cd and Ni in artificial saliva extracts corresponds to 39-52% and 21-32%, respectively, of the total contents of both elements in dry brown and black snuff products. PMID:25523044

  4. Ultra-trace determination of lead in water and food samples by using ionic liquid-based single drop microextraction-electrothermal atomic absorption spectrometry.

    PubMed

    Manzoori, Jamshid L; Amjadi, Mohammad; Abulhassani, Jafar

    2009-06-30

    An improved single drop microextraction procedure was developed for the preconcentration of lead prior to its determination by electrothermal atomic absorption spectrometry. Ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6], was used as an alternative to volatile organic solvents for extraction. Lead was complexed with ammonium pyrroldinedithiocarbamate (APDC) and extracted into a 7-microL ionic liquid drop. The extracted complex was directly injected into the graphite furnace. Several variables affecting microextraction efficiency and ETAAS signal, such as pyrolysis and atomization temperature, pH, APDC concentration, extraction time, drop volume and stirring rate were investigated and optimized. In the optimum experimental conditions, the limit of detection (3s) and the enhancement factor were 0.015 microg L(-1) and 76, respectively. The relative standard deviation (RSD) for five replicate determinations of 0.2 microg L(-1) Pb was 5.2%. The developed method was validated by the analysis of certified reference materials and applied successfully to the determination of lead in several real samples. PMID:19463561

  5. Ionic liquid-based single drop microextraction combined with electrothermal atomic absorption spectrometry for the determination of manganese in water samples.

    PubMed

    Manzoori, Jamshid L; Amjadi, Mohammad; Abulhassani, Jafar

    2009-02-15

    Room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate [C(4)MIM][PF(6)], was used as an alternative to volatile organic solvents in single drop microextraction-electrothermal atomic absorption spectrometry (SDME-ETAAS). Manganese was extracted from aqueous solution into a drop of the ionic liquid after complextaion with 1-(2-thiazolylazo)-2-naphthol (TAN) and the drop was directly injected into the graphite furnace. Several variables affecting microextraction efficiency and ETAAS signal, such as pyrolysis and atomization temperature, pH, TAN concentration, extraction time, drop volume and stirring rate were investigated and optimized. In the optimum experimental conditions, the limit of detection (3s) and the enhancement factor were 0.024 microg L(-1) and 30.3, respectively. The relative standard deviation (RSD) for five replicate determinations of 0.5 microg L(-1) Mn(II) was 5.5%. The developed method was validated by the analysis of a certified reference material (NIST SRM 1643e) and applied successfully to the determination of manganese in several natural water samples. PMID:19084676

  6. Nanoparticles decorated with a Schiff's base for the microextraction of Cd, Pb, Ni, and Co in environmental samples.

    PubMed

    Shah, Faheem; Naeemullah; Shah, Muhammad Raza; Kazi, Tasneem Gul; Afridi, Hassan Imran; Shah, Kiramat

    2016-05-01

    In this paper, we report a new liquid-liquid microextraction procedure called "nanoparticles decorated with a Schiff's base for the microextraction of Cd, Pb, Ni, and Co in environmental samples". The developed procedure was utilized for the extraction of Cd, Pb, Ni, and Co in environmental samples. The Schiff's base was formed by reacting salicylaldehyde with 3-aminopropyltriethoxysilane-functionalized iron oxide nanoparticles. Analyte extraction was conducted in a capillary column system loaded with modified nanoparticles and triton X-114 as dispersion medium. 1-Butyl-3-methylimidazolium hexafluorophosphate was employed as an extraction solvent. Acidified methanol in ultrasonic bath was used as desorption solvent, and elemental determination was carried out with flame atomic absorption spectrometer. Characterization of modified nanoparticles was performed with FTIR spectroscopy and transmission electron microscopy. Solution pH, nanoparticles amount, dispersant concentration, ionic liquid, and temperature were optimized for the extraction. Detection limits obtained for Cd, Pb, Ni, and Co were 0.183, 0.201, 0.241, and 0.192 μg L(-1), respectively, and enhancement factors were 79.1, 86.4, 95.7, and 82.0, respectively. The reproducibility of the developed procedure was in the range of 3.98-5.10%. Validation was checked by applying the developed procedure on certified reference water samples. The microextraction based on nanoparticles decorated with Schiff's base was successfully applied for the extraction of Cd, Pb, Ni, and Co in real environmental water samples. PMID:27187842

  7. Multivariate optimization of "In capillary-Schiff's base functionalized magnetic nanoparticle based microextraction" of Pb(+2): A novel synergistic approach.

    PubMed

    Shah, Faheem; Muhammad, Haji; Naeemullah; Ullah, Azeem

    2016-07-01

    A novel microextraction procedure based on Schiff's base functionalized magnetic nanoparticles (SBMNPs) has been developed for Pb(+2) extraction. Compared to conventional microextraction systems, the main advantage of proposed procedure is that no volatile/flammable reagents have used and experimental time is also reduced. Schiff's base has been derived from salicylaldehyde and 3-aminopropyltriethoxysilane modified nanoparticles. Extraction of Pb(+2) was carried out in a capillary column containing analyte followed by the addition of SBMNPs and triton X-114 where ionic-liquid "1-Butyl-3-methylimidazolium hexafluorophosphate" was used as an extractant. After extraction; analyte concentration was determined with flame atomic absorption spectrometer through a self made micro-injection system. The SBMNPs were characterized by FTIR and TEM, respectively, demonstrating their distinct core-shell structures. Different experimental parameters were optimized through multivariate strategy. Detection limit, enhancement factor and relative standard deviation obtained with developed procedure were 0.193μgL(-1), 26.3 and 4.01%, respectively. Validity was checked through the recovery experiments and satisfactory results were obtained. In brief the synergistic combination of SBMNPs in column with ionic-liquid resulted in an efficient microextraction procedure for Pb(+2) in real samples. PMID:27154669

  8. Pt-Pd bimetallic nanoparticles dispersed in an ionic liquid and peroxidase immobilized on nanoclay applied in the development of a biosensor.

    PubMed

    Pusch, Jessica M E; Brondani, Daniela; Luza, Leandro; Dupont, Jairton; Vieira, Iolanda C

    2013-09-01

    Pt-Pd bimetallic alloy nanoparticles (NPs) dispersed in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (Pt-Pd-BMI·PF6) were employed together with a peroxidase (PO) enzyme from cauliflower immobilized on nanoclay for the development of a new biosensor for polyphenol determination by square-wave voltammetry (SWV). The biosensor demonstrated good repeatability and reproducibility, low limit of detection (LOD = 3.7 × 10(-7) mol L(-1) for caffeic acid (CA)), and adequate lifetime and stability (maintaining over 80% of the response over 80 days of evaluation, and allowing over 600 measurements by SWV for each electrode). Under optimized conditions, the proposed biosensor was applied in the determination of the bioelectrochemical polyphenolic index (BPI) for samples of commercial white wine, using CA as the phenolic compound standard. The recovery of CA from wine samples ranged from 95.5 to 108.3%. The values for the polyphenolic content obtained using the proposed biosensor showed a good correlation (r = 0.990) with those obtained with the reference spectrophotometric method (Folin-Ciocalteu method). Therefore, the proposed biosensor represents a useful tool for the rapid and accurate monitoring of polyphenolic content in wine samples and may also be applicable to other beverage samples, such as juices and teas.

  9. Extraction of nanosize copper pollutants with an ionic liquid.

    PubMed

    Huang, Hsin-Liang; Wang, H Paul; Wei, Guor-Tzo; Sun, I-Wen; Huang, Jing-Fang; Yang, Y W

    2006-08-01

    Speciation and possible reaction paths of nanosize copper pollutants extracted with a RTIL (room-temperature ionic liquid ([C4mim][PF6], 1-butyl-3-methylimidazolium hexafluorophosphate)) have been studied in the present work. Experimentally, in a very short contact time (2 min), 80-95% of nanosize CuO as well as other forms of copper (such as nanosize Cu, Cu2+, or Cu(II)(ads) (in the channels of MCM-41)) in the samples could be extracted into the RTIL. The main copper species extracted in the RTIL as observed by XANES (X-ray absorption near edge structure) were Cu(II). Existence of Cu-N bondings with coordination numbers (CNs) of 3-4 for copper extracted in the RTIL was found by EXAFS (extended X-ray absorption fine structural) spectroscopy. Interestingly, chelation of Cu(II) with 1-methylimidazole (MIm) in the RTIL during extraction was also observed by 1H NMR (nuclear magnetic resonance). At least two possible reaction paths for the rapid extraction of nanosize copper pollutants with the RTIL might occur: (1) an enhanced dissolution of nanosize CuO (to form Cu2+) and (2) formation of [Cu(MIm)4(H2O)2]2+ that acted as a carrier of copper into the RTIL matrix.

  10. Temperature-controlled ionic liquid-based ultrasound-assisted microextraction for preconcentration of trace quantity of cadmium and nickel by using organic ligand in artificial saliva extract of smokeless tobacco products

    NASA Astrophysics Data System (ADS)

    Arain, Sadaf Sadia; Kazi, Tasneem Gul; Arain, Asma Jabeen; Afridi, Hassan Imran; Baig, Jameel Ahmed; Brahman, Kapil Dev; Naeemullah; Arain, Salma Aslam

    2015-03-01

    A new approach was developed for the preconcentration of cadmium (Cd) and nickel (Ni) in artificial saliva extract of dry snuff (brown and black) products using temperature-controlled ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction (TIL-UDLLμE) followed by electrothermal atomic absorption spectrometry (ETAAS). The Cd and Ni were complexed with ammonium pyrrolidinedithiocarbamate (APDC), extracted in ionic liquid drops, 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6]. The multivariate strategy was applied to estimate the optimum values of experimental variables influence the % recovery of analytes by TIL-UDLLμE method. At optimum experimental conditions, the limit of detection (3s) were 0.05 and 0.14 μg L-1 while relative standard deviations (% RSD) were 3.97 and 3.55 for Cd and Ni respectively. After extraction, the enhancement factors (EF) were 87 and 79 for Cd and Ni, respectively. The RSD for six replicates of 10 μg L-1 Cd and Ni were 3.97% and 3.55% respectively. To validate the proposed method, certified reference material (CRM) of Virginia tobacco leaves was analyzed, and the determined values of Cd and Ni were in good agreement with the certified values. The concentration of Cd and Ni in artificial saliva extracts corresponds to 39-52% and 21-32%, respectively, of the total contents of both elements in dry brown and black snuff products.

  11. Synthesis of Mesoporous Carbons from Rice Husk for Supercapacitors with High Energy Density in Ionic Liquid Electrolytes.

    PubMed

    He, Xiaojun; Zhang, Hebao; Xie, Kang; Xia, Youyi; Zhao, Zhigang; Wang, Xiaoting

    2016-03-01

    High-performance mesoporous carbons (MCs) for supercapacitors were made from rice husk by one-step microwave-assisted ZnCl2 activation. The microstructures of MCs as-made were characterized by field emission scanning electron microscopy and transmission electron microscopy. The pore structure parameters of MCs were obtained by N2 adsorption technique. The electrochemical properties of MC electrodes were studied by constant current charge-discharge, cyclic voltammetry and electrochemical impedance spectroscopy in different electrolytes. The results showed that the specific surface area of MC4 made at the ZnCl2/rice husk mass of 4:1 reached 1737 m2 g(-1). The specific capacitance and energy density of the electrodes fabricated from the mixture of MC4 and microporous carbon increased with the mass percentage of MC4, reaching 157 F g(-1) and 84 Wh kg(-1) at 0.05 A g(-1), and showed good cycle stability in 1-butyl-3-methylimidazolium hexafluorophosphate electrolyte. Compared to the often-used aqueous and organic electrolytes, MC4 capacitor exhibited extremely high energy density in ionic liquid electrolyte, remaining at 28 Wh kg(-1) at 1684 W kg(-1). This work paves a new way to produce cost-effective MCs from biomass for supercapacitors with extremely high energy density in ionic liquid electrolytes. PMID:27455718

  12. Preconcentration and determination of lead and cadmium levels in blood samples of adolescent workers consuming smokeless tobacco products in Pakistan.

    PubMed

    Arain, Sadaf Sadia; Kazi, Tasneem Gul; Afridi, Hassan Imran; Brahman, Kapil Dev; Naeemullah; Khan, Sumaira; Panhwar, Abdul Haleem; Kamboh, Muhammad Afzal; Memon, Jamil R

    2015-05-01

    The present study was aimed to evaluate the cadmium (Cd) and lead (Pb) levels in the blood samples of adolescent boys, chewing different smokeless tobacco (SLT) products in Pakistan. For comparative purpose, boys of the same age group (12-15 years), not consumed any SLT products were selected as referents. To determine trace levels of Cd and Pb in blood samples, a preconcentration method, vortex-assisted liquid-liquid microextraction (VLLME) has been developed, prior to analysis by flame atomic absorption spectrometry. The hydrophobic chelates of Cd and Pb with ammonium pyrrolidinedithiocarbamate were extracted into the fine droplets of ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate, while nonionic surfactant, Triton X-114 was used as a dispersing medium. The main factors affecting the recoveries of Cd and Pb, such as concentration of APDC, centrifugation time, volume of IL and TX-114, were investigated in detail. It was also observed that adolescent boys who consumed different SLT products have 2- to 3-fold higher levels of Cd and Pb in their blood samples as compared to referent boys (p < 0.001). PMID:25930204

  13. Heterogeneity in a room-temperature ionic liquid: persistent local environments and the red-edge effect.

    PubMed

    Hu, Zhonghan; Margulis, Claudio J

    2006-01-24

    In this work, we investigate the slow dynamics of 1-butyl-3-methylimidazolium hexafluorophosphate, a very popular room-temperature ionic solvent. Our study predicts the existence of heterogeneity in the liquid and shows that this heterogeneity is the underlying microscopic cause for the recently reported "red-edge effect" (REE) observed in the study of fluorescence of the organic probe 2-amino-7-nitrofluorene. This theoretical work explains in microscopic terms the relation between REE and dynamic heterogeneity in a room-temperature ionic liquid (IL). The REE is typical of micellar or colloidal systems, which are characterized by microscopic environments that are structurally very different. In contrast, in the case of this room-temperature IL, the REE occurs because of the long period during which molecules are trapped in quasistatic local solvent cages. This trapping time, which is longer than the lifetime of the excited-state probe, together with the inability of the surroundings to adiabatically relax, induces a set of site-specific spectroscopic responses. Subensembles of fluorescent molecules associated with particular local environments absorb and emit at different frequencies. We describe in detail the absorption wavelength-dependent emission spectra of 2-amino-7-nitrofluorene and show that this dependence on lambda(ex) is characteristic of the IL and, as is to be expected, is absent in the case of a normal solvent such as methanol.

  14. Toxicity of imidazolium- and pyridinium-based ionic liquids and the co-metabolic degradation of N-ethylpyridinium tetrafluoroborate.

    PubMed

    Zhang, C; Malhotra, S V; Francis, A J

    2011-03-01

    We examined the effects of the ionic liquids (ILs), 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF₆], N-ethylpyridinium tetrafluoroborate [EtPy][BF₄], and N-ethylpyridinium trifluoroacetate [EtPy][CF₃COO] on Pseudomonas fluorescens, a ubiquitous soil bacterium. In the presence of 0.5- and 1% of [BMIM][PF₆] or [EtPy][CF₃COO] the growth of bacteria was inhibited, whereas exposing them to 1% [EtPy][BF₄] increased the lag period wherein bacteria adapt to growth conditions before continuing to grow. However, at higher concentrations (5% and 10%), no growth was observed. The inhibitory effects were evident by a decrease in the optical density of the culture, a decline in the consumption of the carbon source, citric acid, and a change in the size of the bacterium. At concentrations below 1%, [EtPy][BF₄] was metabolized by P. fluorescens in the presence of citric acid. Oxidation of the side alkyl-chain of [EtPy][BF₄] caused the accumulation of N-hydroxylethylpyridinium and pyridinium as major degradation products.

  15. Magnetic stirrer induced dispersive ionic-liquid microextraction for the determination of vanadium in water and food samples prior to graphite furnace atomic absorption spectrometry.

    PubMed

    Naeemullah; Kazi, Tasneem Gul; Tuzen, Mustafa

    2015-04-01

    A new dispersive liquid-liquid microextraction, magnetic stirrer induced dispersive ionic-liquid microextraction (MS-IL-DLLME) was developed to quantify the trace level of vanadium in real water and food samples by graphite furnace atomic absorption spectrometry (GFAAS). In this extraction method magnetic stirrer was applied to obtained a dispersive medium of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] in aqueous solution of (real water samples and digested food samples) to increase phase transfer ratio, which significantly enhance the recovery of vanadium - 4-(2-pyridylazo) resorcinol (PAR) chelate. Variables having vital role on desired microextraction methods were optimised to obtain the maximum recovery of study analyte. Under the optimised experimental variables, enhancement factor (EF) and limit of detection (LOD) were achieved to be 125 and 18 ng L(-1), respectively. Validity and accuracy of the desired method was checked by analysis of certified reference materials (SLRS-4 Riverine water and NIST SRM 1515 Apple leaves). The relative standard deviation (RSD) for 10 replicate determinations at 0.5 μg L(-1) of vanadium level was found to be <5.0%. This method was successfully applied to real water and acid digested food samples.

  16. An electrochemical aptasensor electrocatalyst for detection of thrombin.

    PubMed

    Tian, Rong; Chen, Xiaojun; Li, Qingwen; Yao, Cheng

    2016-05-01

    This work reports a novel signal amplification strategy based on three-dimensional ordered macroporous C60-poly(3,4-ethylenedioxythiophene)-1-butyl-3-methylimidazolium hexafluorophosphate (3DOM C60-PEDOT-[BMIm][BF6]) for ultrasensitive detection of thrombin by cascade catalysis of Au-PEDOT@SiO2 microspheres and alcohol dehydrogenase (ADH). Au-PEDOT@SiO2 microspheres were constructed not only as nanocarriers to anchor the large amounts of secondary thrombin aptamers but also as nanocatalysts to catalyze the oxidation of ethanol efficiently. Significantly, the electrochemical signal was greatly enhanced based on cascade catalysis: First, ADH catalyzed the oxidation of ethanol to acetaldehyde with the concomitant generation of NADH in the presence of β-nicotinamide adenine dinucleotide hydrate (NAD(+)). Then, gold nanoparticles (AuNPs) as nanocatalysts could effectively catalyze NADH to produce NAD(+) with the help of PEDOT as redox probe. Under the optimal conditions, the proposed aptasensor exhibits a linear range of 2 × 10(-13) to 2 × 10(-8) M with a low detection limit of 2 × 10(-14) M for thrombin detection and shows high sensitivity and good specificity. PMID:26869084

  17. Heterogeneity in a room-temperature ionic liquid: Persistent local environments and the red-edge effect

    PubMed Central

    Hu, Zhonghan; Margulis, Claudio J.

    2006-01-01

    In this work, we investigate the slow dynamics of 1-butyl-3-methylimidazolium hexafluorophosphate, a very popular room-temperature ionic solvent. Our study predicts the existence of heterogeneity in the liquid and shows that this heterogeneity is the underlying microscopic cause for the recently reported “red-edge effect” (REE) observed in the study of fluorescence of the organic probe 2-amino-7-nitrofluorene. This theoretical work explains in microscopic terms the relation between REE and dynamic heterogeneity in a room-temperature ionic liquid (IL). The REE is typical of micellar or colloidal systems, which are characterized by microscopic environments that are structurally very different. In contrast, in the case of this room-temperature IL, the REE occurs because of the long period during which molecules are trapped in quasistatic local solvent cages. This trapping time, which is longer than the lifetime of the excited-state probe, together with the inability of the surroundings to adiabatically relax, induces a set of site-specific spectroscopic responses. Subensembles of fluorescent molecules associated with particular local environments absorb and emit at different frequencies. We describe in detail the absorption wavelength-dependent emission spectra of 2-amino-7-nitrofluorene and show that this dependence on λex is characteristic of the IL and, as is to be expected, is absent in the case of a normal solvent such as methanol. PMID:16418271

  18. Heterogeneity in a room-temperature ionic liquid: persistent local environments and the red-edge effect.

    PubMed

    Hu, Zhonghan; Margulis, Claudio J

    2006-01-24

    In this work, we investigate the slow dynamics of 1-butyl-3-methylimidazolium hexafluorophosphate, a very popular room-temperature ionic solvent. Our study predicts the existence of heterogeneity in the liquid and shows that this heterogeneity is the underlying microscopic cause for the recently reported "red-edge effect" (REE) observed in the study of fluorescence of the organic probe 2-amino-7-nitrofluorene. This theoretical work explains in microscopic terms the relation between REE and dynamic heterogeneity in a room-temperature ionic liquid (IL). The REE is typical of micellar or colloidal systems, which are characterized by microscopic environments that are structurally very different. In contrast, in the case of this room-temperature IL, the REE occurs because of the long period during which molecules are trapped in quasistatic local solvent cages. This trapping time, which is longer than the lifetime of the excited-state probe, together with the inability of the surroundings to adiabatically relax, induces a set of site-specific spectroscopic responses. Subensembles of fluorescent molecules associated with particular local environments absorb and emit at different frequencies. We describe in detail the absorption wavelength-dependent emission spectra of 2-amino-7-nitrofluorene and show that this dependence on lambda(ex) is characteristic of the IL and, as is to be expected, is absent in the case of a normal solvent such as methanol. PMID:16418271

  19. Interactions of Ionic Liquids with Uranium and its Bioreduction

    SciTech Connect

    Zhang, C.; Francis, A.

    2012-09-18

    We investigated the influence of ionic liquids (ILs) 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM]{sup +}[PF{sub 6}]{sup -}, N-ethylpyridinium trifluoroacetate [EtPy]{sup +}[CF{sub 3}COO]{sup -} and N-ethylpyridinium tetrafluoroborate [Et-Py]{sup +}[BF{sub 4}]{sup -} on uranium reduction by Clostridium sp. under anaerobic conditions. Potentiometric titration, UV-vis spectrophotometry, LC-MS and EXAFS analyses showed monodentate complexation between uranyl and BF{sub 4}{sup -} PF{sub 6}{sup -}; and bidentate complexation with CF{sub 3}COO{sup -}. Ionic liquids affected the growth of Clostridium sp. as evidenced by decrease in optical density, changes in pH, gas production, and the extent of U(VI) reduction and precipitation of U(IV) from solution. Reduction of U(VI) to U(IV) was observed in the presence of [EtPy][BF{sub 4}] and [BMIM][PF{sub 6}] but not with [EtPy][CF{sub 3}COO].

  20. Temperature-controlled ionic liquid-based ultrasound-assisted microextraction for preconcentration of trace quantity of cadmium and nickel by using organic ligand in artificial saliva extract of smokeless tobacco products.

    PubMed

    Arain, Sadaf Sadia; Kazi, Tasneem Gul; Arain, Asma Jabeen; Afridi, Hassan Imran; Baig, Jameel Ahmed; Brahman, Kapil Dev; Naeemullah; Arain, Salma Aslam

    2015-03-01

    A new approach was developed for the preconcentration of cadmium (Cd) and nickel (Ni) in artificial saliva extract of dry snuff (brown and black) products using temperature-controlled ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction (TIL-UDLLμE) followed by electrothermal atomic absorption spectrometry (ETAAS). The Cd and Ni were complexed with ammonium pyrrolidinedithiocarbamate (APDC), extracted in ionic liquid drops, 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6]. The multivariate strategy was applied to estimate the optimum values of experimental variables influence the % recovery of analytes by TIL-UDLLμE method. At optimum experimental conditions, the limit of detection (3s) were 0.05 and 0.14μgL(-1) while relative standard deviations (% RSD) were 3.97 and 3.55 for Cd and Ni respectively. After extraction, the enhancement factors (EF) were 87 and 79 for Cd and Ni, respectively. The RSD for six replicates of 10μgL(-1) Cd and Ni were 3.97% and 3.55% respectively. To validate the proposed method, certified reference material (CRM) of Virginia tobacco leaves was analyzed, and the determined values of Cd and Ni were in good agreement with the certified values. The concentration of Cd and Ni in artificial saliva extracts corresponds to 39-52% and 21-32%, respectively, of the total contents of both elements in dry brown and black snuff products.

  1. High-performance lubricant additives based on modified graphene oxide by ionic liquids.

    PubMed

    Fan, Xiaoqiang; Wang, Liping

    2015-08-15

    Graphene oxide (GO) is a layered material bearing a variety of oxygen-containing functional groups on its basal planes and edges, which allow it as a substrate to conduct a variety of chemical transformations. Here modified graphene oxide (MGO) was prepared using alkyl imidazolium ionic liquids (ILs) (1-butyl-3-methylimidazolium tetrafluoroborate (LB104), 1-butyl-3-methyl imidazolium hexafluorophosphate (LP104) and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide (LF106)) via epoxide ring-opening reaction, cation-π stacking or van der Waals interactions, with LB104 modified graphene (MG) exfoliated from graphite rod by a moderate electrochemical method as a comparison. The stability and tribological properties of MGO and MG as multialkylated cyclopentanes (MACs) additives were investigated in detail. The results show that GO is converted into graphene through the chemical modification using ILs, and MGO with good dispersion and stability in MACs significantly improves the tribological performance (friction and wear were reduced about 27% and 74% with pure MACs as a comparison, respectively). The excellent tribological properties are attributed to the formation of an ILs-containing graphene-rich tribofilm on the sliding surfaces, which as the third body can prevent the sliding surfaces from straight asperity contact and improve friction reducing and anti-wear behaviors.

  2. High-performance lubricant additives based on modified graphene oxide by ionic liquids.

    PubMed

    Fan, Xiaoqiang; Wang, Liping

    2015-08-15

    Graphene oxide (GO) is a layered material bearing a variety of oxygen-containing functional groups on its basal planes and edges, which allow it as a substrate to conduct a variety of chemical transformations. Here modified graphene oxide (MGO) was prepared using alkyl imidazolium ionic liquids (ILs) (1-butyl-3-methylimidazolium tetrafluoroborate (LB104), 1-butyl-3-methyl imidazolium hexafluorophosphate (LP104) and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide (LF106)) via epoxide ring-opening reaction, cation-π stacking or van der Waals interactions, with LB104 modified graphene (MG) exfoliated from graphite rod by a moderate electrochemical method as a comparison. The stability and tribological properties of MGO and MG as multialkylated cyclopentanes (MACs) additives were investigated in detail. The results show that GO is converted into graphene through the chemical modification using ILs, and MGO with good dispersion and stability in MACs significantly improves the tribological performance (friction and wear were reduced about 27% and 74% with pure MACs as a comparison, respectively). The excellent tribological properties are attributed to the formation of an ILs-containing graphene-rich tribofilm on the sliding surfaces, which as the third body can prevent the sliding surfaces from straight asperity contact and improve friction reducing and anti-wear behaviors. PMID:25935280

  3. Development of biosensor for phenolic compounds containing PPO in β-cyclodextrin modified support and iridium nanoparticles.

    PubMed

    da Silva, Cristiano P; Franzoi, Ana C; Fernandes, Suellen C; Dupont, Jairton; Vieira, Iolanda C

    2013-04-10

    A biosensor based on the iridium nanoparticles dispersed in ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate (Ir-BMI·PF6) and a celery (Apium graveolens) extract as a source of polyphenol oxidase (PPO) was constructed. A modified support based on β-cyclodextrin (β-CDEP) was used for enzyme immobilization. The behavior of phenolic compounds was investigated by square-wave voltammetry and rutin was selected by presenting the greatest signal. The best performance was obtained with a composition of 70:10:10:10% (w/w/w/w) of the graphite powder:β-CDEP:Nujol:Ir-BMI·PF6 composition, a PPO concentration of 500unitsmL(-1), in 0.1M phosphate buffer solution (pH 6.0) with frequency, pulse amplitude and scan increment at 100Hz, 60mV, and 3.0mV, respectively. Under optimized conditions, the cathodic currents increased linearly for the rutin concentration range of 1.3×10(-7)-2.0×10(-6)M with a detection limit of 7.9×10(-8)M. This sensor demonstrated acceptable repeatability and reproducibility and the results for the rutin recovery ranged from 92.8 to 103.4%. A relative error of 0.7% was obtained in the rutin determination in simulated samples.

  4. Determination of water in room temperature ionic liquids by cathodic stripping voltammetry at a gold electrode.

    PubMed

    Zhao, Chuan; Bond, Alan M; Lu, Xunyu

    2012-03-20

    An electrochemical method based on cathodic stripping voltammetry at a gold electrode has been developed for the determination of water in ionic liquids. The technique has been applied to two aprotic ionic liquids, (1-butyl-3-ethylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate), and two protic ionic liquids, (bis(2-hydroxyethyl)ammonium acetate and triethylammonium acetate). When water is present in an ionic liquid, electrooxidation of a gold electrode forms gold oxides. Thus, application of an anodic potential scan or holding the potential of the electrode at a very positive value leads to accumulation of an oxide film. On applying a cathodic potential scan, a sensitive stripping peak is produced as a result of the reduction of gold oxide back to gold. The magnitude of the peak current generated from the stripping process is a function of the water concentration in an ionic liquid. The method requires no addition of reagents and can be used for the sensitive and in situ determination of water present in small volumes of ionic liquids. Importantly, the method allows the determination of water in the carboxylic acid-based ionic liquids, such as acetate-based protic ionic liquids, where the widely used Karl Fischer titration method suffering from an esterification side reaction which generates water as a side product.

  5. Two-dimensional ion chromatography for the separation of ionic organophosphates generated in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes.

    PubMed

    Kraft, Vadim; Grützke, Martin; Weber, Waldemar; Menzel, Jennifer; Wiemers-Meyer, Simon; Winter, Martin; Nowak, Sascha

    2015-08-28

    A two-dimensional ion chromatography (IC/IC) technique with heart-cutting mode for the separation of ionic organophosphates was developed. These analytes are generated during thermal degradation of three different commercially available Selectilyte™ lithium ion battery electrolytes. The composition of the investigated electrolytes is based on 1M lithium hexafluorophosphate (LiPF6) dissolved in ethylene carbonate/dimethyl carbonate (50:50wt%, LP30), ethylene carbonate/diethyl carbonate (50:50wt%, LP40) and ethylene carbonate/ethyl methyl carbonate (50:50wt%, LP50). The organophosphates were pre-separated from PF6(-) anion on the low capacity A Supp 4 column, which was eluted with a gradient step containing acetonitrile. The fraction containing analytes was retarded on a pre-concentration column and after that transferred to the high capacity columns, where the separation was performed isocratically. Different stationary phases and eluents were applied on the 2nd dimension for the investigation of retention times, whereas the highly promising results were obtained with a high capacitive A Supp 10 column. The organophosphates generated in LP30 and LP40 electrolytes could be separated by application of an aqueous NaOH eluent providing fast analysis time within 35min. For the separation of the organophosphates of LP50 electrolyte due to its complexity a NaOH eluent containing a mixture of methanol/H2O was necessary. In addition, the developed two dimensional IC method was hyphenated to an inductively coupled plasma mass spectrometer (ICP-MS) using aqueous NaOH without organic modifiers. This proof of principle measurement was carried out for future quantitative investigation regarding the concentration of the ionic organophosphates. Furthermore, the chemical stability of several ionic organophosphates in water and acetonitrile at room temperature over a period of 10h was investigated. In both solvents no decomposition of the investigated analytes was observed and

  6. Oxa-thia-, oxa-selena and crown ether macrocyclic complexes of tin(II) tetrafluoroborate and hexafluorophosphate--synthesis, properties and structures.

    PubMed

    Beattie, Christopher; Farina, Paolo; Levason, William; Reid, Gillian

    2013-11-14

    The reactions of Sn(BF4)2 and Sn(PF6)2 with crown ethers and oxa-thia- or oxa-selena-macrocycles are complex, with examples of fragmentation of the fluoroanions, and cleavage of the ligands observed, in addition to adduct formation. The reaction of Sn(BF4)2 with 15-crown-5 or 18-crown-6 produced the sandwich complex [Sn(15-crown-5)2][BF4]2 with 10-coordinate tin, and [Sn(18-crown-6)(H2O)][BF4]2·2H2O which has an hexagonal pyramidal tin centre with two long contacts to lattice water molecules (overall 7 + 2 coordination). [Sn(18-crown-6)(PF6)][PF6] is formed from 18-crown-6 and Sn(PF6)2, but the hexafluorophosphate ions hydrolyse readily in these systems to produce F(-) which coordinates to the tin to produce [Sn(18-crown-6)F][PF6], which can also be made directly from Sn(PF6)2, 18-crown-6 and KF in MeCN. The structure contains a hexagonal pyramidal coordinated Sn(II) cation with an apical fluoride. The oxa-thia macrocycle [18]aneO4S2 forms [Sn([18]aneO4S2)(H2O)2(PF6)][PF6], from which some crystals of composition [Sn([18]aneO4S2)(H2O)2(PF6)]2[PF6][F] were obtained. The cation contains an approximately planar O4S2 coordinated macrocycle, with two coordinated water molecules on one side of the plane and a weakly bound (κ(2)) PF6(-) group on the opposite face, and with the fluoride ion hydrogen bonded to the coordinated water molecules. In contrast, the oxa-selena macrocycle, [18]aneO4Se2, produces an anhydrous complex [Sn([18]aneO4Se2)(PF6)2] which probably contains coordinated anions, although it decomposes quite rapidly in solution, depositing elemental Se, and hence crystals for an X-ray study were not obtained. Reacting Sn(BF4)2 and [18]aneO4Se2 or [18]aneO4S2 also causes rapid decomposition, but from the latter reaction crystals of the 1,2-ethanediol complex [Sn([18]aneO4S2){C2H4(OH)2}][BF4]2 were isolated. The structure reveals the coordinated macrocycle and a chelating diol, with the O-H protons of the latter hydrogen bonded to the [BF4](-) anions. This is a

  7. The effect of C2 substitution on melting point and liquid phase dynamics of imidazolium based-ionic liquids: insights from molecular dynamics simulations

    SciTech Connect

    Zhang, Y; Maginn, EJ

    2012-01-01

    Using molecular dynamics simulations, the melting points and liquid phase dynamic properties were studied for four alkyl-imidazolium-based ionic liquids, 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), 1-n-butyl-2,3-dimethylimidazolium hexafluorophosphate ([BMMIM][PF6]), 1-ethyl-3-methylimidazolium hexafluorophosphate ([EMIM][PF6]), and 1-ethyl-2,3-dimethylimidazolium hexafluorophosphate ([EMMIM][PF6]), respectively. Experimentally it has been observed that the substitution of a methyl group for a hydrogen at the C2 position of the cation ring leads to an increase in both the melting point and liquid phase viscosity, contrary to arguments that had been made regarding associations between the ions. The melting points of the four ionic liquids were accurately predicted using simulations, as were the trends in viscosity. The simulation results show that the origin of the effect is mainly entropic, although enthalpy also plays an important role.

  8. Copper triflate-mediated synthesis of 1,3,5-triarylpyrazoles in [bmim][PF6] ionic liquid and evaluation of their anticancer activities.

    PubMed

    Rao, V Kameshwara; Tiwari, Rakesh; Chhikara, Bhupender S; Shirazi, Amir Nasrolahi; Parang, Keykavous; Kumar, Anil

    2013-09-21

    A simple, efficient, and environment friendly protocol for the synthesis of 1,3,5-triarylpyrazole and 1,3,5-triarylpyrazolines in [bimm][PF6] ionic liquid mediated by Cu(OTf)2 is described. The reaction protocol gave 1,3,5-triarylpyrazoles in good to high yields (71-84%) via a one-pot addition-cyclocondensation between chalcones and arylhydrazines, and oxidative aromatization without requirement for an additional oxidizing reagent. The catalyst can be reused up to four cycles without much loss in the catalytic activity. The pyrazoles (4a-o) and pyrazolines (3a-n) were evaluated for antiproliferative activity in SK-OV-3, HT-29, and HeLa human cancer cells lines. Among all compounds, 3b inhibited cell proliferation of HeLa cells by 80% at a concentration of 50 μM. PMID:24163734

  9. X-ray and Synchrotron Diffraction Studies of 2-(Pyridin-2-yl)-1,10- Phenanthroline in the Role of Ligand for Two Copper Polymorphs or Hydrogen bonded with 2,2,6,6-Tetramethyl-4-oxopiperidinium Hexafluorophosphate

    SciTech Connect

    Krause, Jeanette A.; Zhao, Daoli; Chatterjee, Sayandev; Yeung, Bonnie M.; Connick, William B.; Collins, Sibrina N.

    2013-12-01

    Different extended packing motifs of dichloro-[2-(pyridin-2-yl)-1,10-phenanthroline]copper(II), CuCl2 (C17H11N3Cl2) are obtained depending on the crystallization conditions. A triclinic form (I) is obtained from dimethylformamide-diethyl ether or methanol whereas crystallization from dimethylformamide-water yields a monoclinic form (II). In each case, the CuII center is in a 5-coordinate, distorted square-pyramidal geometry. The extended packing for both forms can be described as a highly-offset π stacking arrangement with interlayer distances of 3.674 (3) and 3.679 (3) Å for (I) and (II), respectively. The reaction of diprotonated Pt(tmpip2NCN)Cl (tmpip2NCN = 2,6-bis(2,2,6,6-tetramethylpiperidylmethyl)- benzyl) with AgPF6 under acidic conditions followed by the addition of 2-(pyridin-2-yl)-1,10-phenanthroline, results in a hydrogen bonded co-crystal, 2,2,6,6-tetramethyl-4-oxopiperidinium hexafluorophosphate- 2-(pyridin-2-yl)-1,10-phenanthroline (1/1),C9H18NO+.PF6-.C17H11N3.(III). The extended packing maximizes π-π interactions in a parallel, faceto-face arrangement with an interlayer stacking distance of 3.4960 (14) Å.

  10. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids

    NASA Astrophysics Data System (ADS)

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Cabeza, Oscar; Fedorov, Maxim; Lynden-Bell, Ruth M.; Gallego, Luis J.; Varela, Luis M.

    2015-09-01

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF6]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means of their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO3]- and [PF6]- anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca2+ cations. No qualitative difference with

  11. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids.

    PubMed

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Cabeza, Oscar; Fedorov, Maxim; Lynden-Bell, Ruth M; Gallego, Luis J; Varela, Luis M

    2015-09-28

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF6]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means of their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO3](-) and [PF6](-) anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca(2+) cations. No qualitative

  12. Advantages available in the application of the semi-integral electroanalysis technique for the determination of diffusion coefficients in the highly viscous ionic liquid 1-methyl-3-octylimidazolium hexafluorophosphate.

    PubMed

    Bentley, Cameron L; Bond, Alan M; Hollenkamp, Anthony F; Mahon, Peter J; Zhang, Jie

    2013-02-19

    While it is common to determine diffusion coefficients from steady-state voltammetric limiting current values, derived from microelectrode/rotating disk electrode measurements or transient peak currents at macroelectrodes, application of these methods is problematic in highly viscous ionic liquids. This study shows that the semi-integral electroanalysis technique is highly advantageous under these circumstances, and it has allowed the diffusion coefficient of cobaltocenium, [Co(Cp)(2)](+) (simple redox process), and iodide, I(-) (complex redox mechanism), to be determined in the highly viscous ionic liquid 1-methyl-3-octylimidazolium hexafluorophosphate (viscosity = 866 cP at 20 °C) from transient voltammograms obtained using a 1.6 mm diameter Pt electrode. In such a viscous medium, a near-steady-state current is not attainable with a 10 μm diameter microdisk electrode or a 3 mm diameter Pt rotating disk electrode, while peak currents at a macrodisk are subject to ohmic drop problems and the analysis is hampered by difficulties in modeling the processes involved in the oxidation of iodide. The diffusion coefficients of [Co(Cp)(2)](+) and I(-) were determined to be 9.4 (±0.3) × 10(-9) cm(2) s(-1) and 7.3 (±0.3) × 10(-9) cm(2) s(-1), respectively. These results highlight the utility of the semi-integral electroanalysis technique for quantifying the diffusivity of electroactive species in high viscosity media, where the use of steady-state techniques and transient peak currents is often limited.

  13. Ion yields for some salts in MALDI: mechanism for the gas-phase ion formation from preformed ions.

    PubMed

    Moon, Jeong Hee; Shin, Young Sik; Bae, Yong Jin; Kim, Myung Soo

    2012-01-01

    Preformed ion emission is the main assumption in one of the prevailing theories for peptide and protein ion formation in matrix-assisted laser desorption ionization (MALDI). Since salts are in preformed ion forms in the matrix-analyte mixture, they are ideal systems to study the characteristics of preformed ion emission. In this work, a reliable method to measure the ion yield (IY) in MALDI was developed and used for a solid salt benzyltriphenylphosphonium chloride and two room-temperature ionic liquids 1-butyl-3-methylimidazolium hexafluorophosphate and trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate. IY for the matrix (α-cyano-4-hydroxycinnamic acid, CHCA) was also measured. Taking 1 pmol salts in 25 nmol CHCA as examples, IYs for three salts were similar, (4-8) × 10(-4), and those for CHCA were (0.8-1.2) × 10(-7). Even though IYs for the salts and CHCA remained virtually constant at low analyte concentration, they decreased as the salt concentrations increased. Two models, Model 1 and Model 2, were proposed to explain low IYs for the salts and the concentration dependences. Both models are based on the fact that the ion-pair formation equilibrium is highly shifted toward the neutral ion pair. In Model 1, the gas-phase analyte cations were proposed to originate from the same cations in the solid that were dielectrically screened from counter anions by matrix neutrals. In Model 2, preformed ions were assumed to be released from the solid sample in the form of neutral ion pairs and the anions in the ion pairs were assumed to be eliminated via reactions with matrix-derived cations.

  14. Temperature controlled ionic liquid-based dispersive micro-extraction using two ligands, for determination of aluminium in scalp hair samples of Alzheimer's patients: a multivariate study.

    PubMed

    Arain, Mariam S; Arain, Salma A; Kazi, Tasneem G; Afridi, Hassan I; Ali, Jamshaid; Naeemulllah; Arain, Sadaf S; Brahman, Kapil Dev; Mughal, Moina Akhtar

    2015-02-25

    A green and sensitive temperature controlled dispersive liquid-liquid microextraction (TIL-DLLME) methodology based on the application of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, [C4mim][PF6], as an extractant solvent was proposed for the preconcentration of trace levels of aluminium (Al(3+)) in scalp hair samples of Alzheimer's (AD) patients, prior to analyzing by flame atomic absorption spectrometry (FAAS). The Al(3+) was complexed with 8-hydrooxyquinoline (oxine) (L1) and 3,5,7,2'-4' pentahydroxy flavone (morin) (L2) separately and then extracted by IL at temperature (50±2.0°C). Some effective factors that influence the TIL-DLLME efficiency such as pH, ligands concentrations, volume of IL, ionic strength, and incubation time were investigated and optimized by multivariate analysis. In the optimum experimental conditions, the limit of detection (3s) and enhancement factor were 0.56 μg L(-1), 0.64 μg L(-1) and 85, 73 for both ligands, respectively. The relative standard deviation (RSD) for six replicate determinations of 100 μg L(-1) Al(3+) complexed with oxine and morin were found to be 3.88% and 4.74%, respectively. The developed method was validated by the analysis of certified reference material of human hair (NCSZC81002).and applied satisfactorily to the determination of Al(3+) in acid digested scalp hair samples of AD patients and healthy controls. The resulted data shows significant higher level in scalp hair samples of AD male patients with related to referents of same age and socioeconomic status.

  15. Ultrafast vibrational spectroscopy (2D-IR) of CO{sub 2} in ionic liquids: Carbon capture from carbon dioxide’s point of view

    SciTech Connect

    Brinzer, Thomas; Berquist, Eric J.; Ren, Zhe; Dutta, Samrat; Johnson, Clinton A.; Krisher, Cullen S.; Lambrecht, Daniel S.; Garrett-Roe, Sean

    2015-06-07

    The CO{sub 2}ν{sub 3} asymmetric stretching mode is established as a vibrational chromophore for ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and dynamics in ionic liquids, which are of interest for carbon capture applications. CO{sub 2} is dissolved in a series of 1-butyl-3-methylimidazolium-based ionic liquids ([C{sub 4}C{sub 1}im][X], where [X]{sup −} is the anion from the series hexafluorophosphate (PF{sub 6}{sup −}), tetrafluoroborate (BF{sub 4}{sup −}), bis-(trifluoromethyl)sulfonylimide (Tf{sub 2}N{sup −}), triflate (TfO{sup −}), trifluoroacetate (TFA{sup −}), dicyanamide (DCA{sup −}), and thiocyanate (SCN{sup −})). In the ionic liquids studied, the ν{sub 3} center frequency is sensitive to the local solvation environment and reports on the timescales for local structural relaxation. Density functional theory calculations predict charge transfer from the anion to the CO{sub 2} and from CO{sub 2} to the cation. The charge transfer drives geometrical distortion of CO{sub 2}, which in turn changes the ν{sub 3} frequency. The observed structural relaxation timescales vary by up to an order of magnitude between ionic liquids. Shoulders in the 2D-IR spectra arise from anharmonic coupling of the ν{sub 2} and ν{sub 3} normal modes of CO{sub 2}. Thermal fluctuations in the ν{sub 2} population stochastically modulate the ν{sub 3} frequency and generate dynamic cross-peaks. These timescales are attributed to the breakup of ion cages that create a well-defined local environment for CO{sub 2}. The results suggest that the picosecond dynamics of CO{sub 2} are gated by local diffusion of anions and cations.

  16. Ultrafast vibrational spectroscopy (2D-IR) of CO2 in ionic liquids: Carbon capture from carbon dioxide's point of view

    NASA Astrophysics Data System (ADS)

    Brinzer, Thomas; Berquist, Eric J.; Ren, Zhe; Dutta, Samrat; Johnson, Clinton A.; Krisher, Cullen S.; Lambrecht, Daniel S.; Garrett-Roe, Sean

    2015-06-01

    The CO2ν3 asymmetric stretching mode is established as a vibrational chromophore for ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and dynamics in ionic liquids, which are of interest for carbon capture applications. CO2 is dissolved in a series of 1-butyl-3-methylimidazolium-based ionic liquids ([C4C1im][X], where [X]- is the anion from the series hexafluorophosphate (PF 6- ), tetrafluoroborate (BF 4- ), bis-(trifluoromethyl)sulfonylimide (Tf2N-), triflate (TfO-), trifluoroacetate (TFA-), dicyanamide (DCA-), and thiocyanate (SCN-)). In the ionic liquids studied, the ν3 center frequency is sensitive to the local solvation environment and reports on the timescales for local structural relaxation. Density functional theory calculations predict charge transfer from the anion to the CO2 and from CO2 to the cation. The charge transfer drives geometrical distortion of CO2, which in turn changes the ν3 frequency. The observed structural relaxation timescales vary by up to an order of magnitude between ionic liquids. Shoulders in the 2D-IR spectra arise from anharmonic coupling of the ν2 and ν3 normal modes of CO2. Thermal fluctuations in the ν2 population stochastically modulate the ν3 frequency and generate dynamic cross-peaks. These timescales are attributed to the breakup of ion cages that create a well-defined local environment for CO2. The results suggest that the picosecond dynamics of CO2 are gated by local diffusion of anions and cations.

  17. Why is the electroanalytical performance of carbon paste electrodes involving an ionic liquid binder higher than paraffinic binders? A simulation investigation.

    PubMed

    Ghatee, M H; Namvar, S; Zolghadr, A R; Moosavi, F

    2015-10-14

    Recently, carbon paste electrodes (CPE) fabricated using an ionic liquid (IL) binder have shown enhanced electroanalytical performance over conventional paraffinic binders. Molecular dynamics (MD) simulations of graphite mixed with ionic liquid and with paraffin binder can unravel the potential atomistic factors responsible for such enhancement. Based on an experimentally optimized binder/graphite mass ratio, which has been reported to be crucial for such a performance, comprehensive simulations (at 323 K) are performed with the ensembles involving an ionic liquid binder (1-butyl-3-methylimidazolium hexafluorophosphate, [C4mim]PF6) and a paraffin binder (n-C20H42) mixed with graphite comprising large-size hexagonal-shaped double graphene plates. Structural analysis indicates both binders form only a monolayer on the graphite surface, covering the surface locally by IL but all-encompassing by paraffin. With charged and uncharged graphite, the IL monolayer tends to cover mainly the graphite center without approaching the edge planes. On the contrary, a monolayer of the paraffin binder covers uniformly the center, near the center, and the edge planes. Cations and anions of the IL form well-defined two dimensional pentagonal matrixes with characteristic high adsorption energy, almost 2.4 times higher than paraffin adsorption. The cation and anion coordination ability of the IL is responsible for such a local distribution. The simulation of these phenomena under experimental conditions unravels strong two-dimensional coordination properties inherent to the ionic liquid when distributed over the graphite surface. This direct MD simulation comparison of the IL properties with an organic liquid counterpart, made for the first time, can be used to explain the high electroanalytical performance (electron transfer) of CPEs involving an IL binder over paraffin binders.

  18. The use of silica nanoparticles for gas chromatographic separation.

    PubMed

    Na, Na; Cui, Xianglan; De Beer, Thomas; Liu, Tingting; Tang, Tingting; Sajid, Muhammad; Ouyang, Jin

    2011-07-15

    A new IL-dispersed silica nanoparticles (IL-SNs) capillary column, combining properties of silica nanoparticles and ionic liquid (IL), was used for gas chromatographic separation. By dispersing silica nanoparticles in a conventional IL of 1-butyl-3-methylimidazolium hexafluorophosphate ([BuMIm][BF6]), a layer of homogeneous interconnected particulate silica networks (thickness: 0.4-0.6 μm) was formed on the inner surface of a capillary column. This coating integrates advantages of silica nanoparticles (high surface area, high dispersed behaviour) and IL (extended liquid-state temperature range, chemical stability), hence increasing interactions between stationary phase and analytes. It was demonstrated that mixtures of a wide range of organic compounds including alcohols, esters, alkanes, aromatic compounds, as well as isomers and non-polar compounds can be well separated using an IL-SNs capillary column. Comparing to traditional support coated open tubular columns, the IL-SNs capillary column displays retention behaviors of separating both polar and non-polar compounds. The much thinner coating film of IL-SNs capillary column, compared to the coating film of SNs capillary column, decreases the resistance to mass transfer, resulting a good column efficiency of 3030 theoretical plates per meter for n-butanol (which is about 5 times higher than for the SNs capillary column). Furthermore, the IL-SNs capillary column decreases the IL retention selectivity dominated by IL structures, and has a higher coating value than neat IL stationary phase. Moreover, the preparation is simple as no modification of ILs or adoption of additional reagents is needed in pretreatments. This manuscript is the first report on the use of silica nanoparticles for gas chromatography, which would expand the applicability of silica nanoparticles in analytical chemistry.

  19. Estimation of lead in biological samples of oral cancer patients chewing smokeless tobacco products by ionic liquid-based microextraction in a single syringe system.

    PubMed

    Arain, Sadaf S; Kazi, Tasneem G; Arain, Asma J; Afridi, Hassan I; Arain, Muhammad B; Brahman, Kapil D; Naeemullah; Panhwar, Abdul H; Arain, Mariam S

    2015-08-01

    Several studies have reported that the chewing habit of smokeless tobacco (SLT) has been associated with oral cancer. The aim of the present study was to evaluate the trace levels of lead (Pb) in biological samples (blood, scalp hair) of oral cancer patients and referents of the same age group (range 30-60 years). As the concentrations of Pb are very low in biological samples, so a simple and efficient ionic liquid-based microextraction in a single syringe system has been developed, as a prior step to determination by flame atomic absorption spectrometry. In this procedure, the hydrophobic chelates of Pb with ammonium pyrrolidinedithiocarbamate (APDC) were extracted into fine droplets of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] within a syringe while using Triton X-114 as a dispersant. Factors influencing the microextraction efficiency and determination, such as pH of the sample, volume of [C4MIM][PF6] and Triton X-114, ligand concentration, and incubation time, were studied. To validate the proposed method, certified reference materials were analyzed and the results of Pb(2+) were in good agreement with certified values. At optimum experimental values of significant variables, detection limit and enhancement factor were found to be 0.412 μg/L and 80, respectively. The coexisting ions showed no obvious negative outcome on Pb preconcentration. The proposed method was applied satisfactorily for the preconcentration of Pb(2+) in acid-digested SLT and biological samples of the study population. It was observed that oral cancer patients who consumed different SLT products have 2-3-fold higher levels of Pb in scalp hair and blood samples as compared to healthy referents (p < 0.001). While 31.4-50.8% higher levels of Pb were observed in referents chewing different SLT products as compared to nonconsumers (p < 0.01). PMID:25903188

  20. Temperature controlled ionic liquid-based dispersive micro-extraction using two ligands, for determination of aluminium in scalp hair samples of Alzheimer's patients: A multivariate study

    NASA Astrophysics Data System (ADS)

    Arain, Mariam S.; Arain, Salma A.; Kazi, Tasneem G.; Afridi, Hassan I.; Ali, Jamshaid; Naeemulllah; Arain, Sadaf S.; Brahman, Kapil Dev; Mughal, Moina Akhtar

    2015-02-01

    A green and sensitive temperature controlled dispersive liquid-liquid microextraction (TIL-DLLME) methodology based on the application of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, [C4mim][PF6], as an extractant solvent was proposed for the preconcentration of trace levels of aluminium (Al3+) in scalp hair samples of Alzheimer's (AD) patients, prior to analyzing by flame atomic absorption spectrometry (FAAS). The Al3+ was complexed with 8-hydrooxyquinoline (oxine) (L1) and 3,5,7,2‧-4‧ pentahydroxy flavone (morin) (L2) separately and then extracted by IL at temperature (50 ± 2.0 °C). Some effective factors that influence the TIL-DLLME efficiency such as pH, ligands concentrations, volume of IL, ionic strength, and incubation time were investigated and optimized by multivariate analysis. In the optimum experimental conditions, the limit of detection (3 s) and enhancement factor were 0.56 μg L-1, 0.64 μg L-1 and 85, 73 for both ligands, respectively. The relative standard deviation (RSD) for six replicate determinations of 100 μg L-1 Al3+ complexed with oxine and morin were found to be 3.88% and 4.74%, respectively. The developed method was validated by the analysis of certified reference material of human hair (NCSZC81002).and applied satisfactorily to the determination of Al3+ in acid digested scalp hair samples of AD patients and healthy controls. The resulted data shows significant higher level in scalp hair samples of AD male patients with related to referents of same age and socioeconomic status.

  1. A new dispersive liquid-liquid microextraction using ionic liquid based microemulsion coupled with cloud point extraction for determination of copper in serum and water samples.

    PubMed

    Arain, Salma Aslam; Kazi, Tasneem Gul; Afridi, Hassan Imran; Arain, Mariam Shahzadi; Panhwar, Abdul Haleem; Khan, Naeemullah; Baig, Jameel Ahmed; Shah, Faheem

    2016-04-01

    A simple and rapid dispersive liquid-liquid microextraction procedure based on ionic liquid assisted microemulsion (IL-µE-DLLME) combined with cloud point extraction has been developed for preconcentration copper (Cu(2+)) in drinking water and serum samples of adolescent female hepatitits C (HCV) patients. In this method a ternary system was developed to form microemulsion (µE) by phase inversion method (PIM), using ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]) and nonionic surfactant, TX-100 (as a stabilizer in aqueous media). The Ionic liquid microemulsion (IL-µE) was evaluated through visual assessment, optical light microscope and spectrophotometrically. The Cu(2+) in real water and aqueous acid digested serum samples were complexed with 8-hydroxyquinoline (oxine) and extracted into IL-µE medium. The phase separation of stable IL-µE was carried out by the micellar cloud point extraction approach. The influence of of different parameters such as pH, oxine concentration, centrifugation time and rate were investigated. At optimized experimental conditions, the limit of detection and enhancement factor were found to be 0.132 µg/L and 70 respectively, with relative standard deviation <5%. In order to validate the developed method, certified reference materials (SLRS-4 Riverine water) and human serum (Sero-M10181) were analyzed. The resulting data indicated a non-significant difference in obtained and certified values of Cu(2+). The developed procedure was successfully applied for the preconcentration and determination of trace levels of Cu(2+) in environmental and biological samples. PMID:26761783

  2. Estimation of lead in biological samples of oral cancer patients chewing smokeless tobacco products by ionic liquid-based microextraction in a single syringe system.

    PubMed

    Arain, Sadaf S; Kazi, Tasneem G; Arain, Asma J; Afridi, Hassan I; Arain, Muhammad B; Brahman, Kapil D; Naeemullah; Panhwar, Abdul H; Arain, Mariam S

    2015-08-01

    Several studies have reported that the chewing habit of smokeless tobacco (SLT) has been associated with oral cancer. The aim of the present study was to evaluate the trace levels of lead (Pb) in biological samples (blood, scalp hair) of oral cancer patients and referents of the same age group (range 30-60 years). As the concentrations of Pb are very low in biological samples, so a simple and efficient ionic liquid-based microextraction in a single syringe system has been developed, as a prior step to determination by flame atomic absorption spectrometry. In this procedure, the hydrophobic chelates of Pb with ammonium pyrrolidinedithiocarbamate (APDC) were extracted into fine droplets of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] within a syringe while using Triton X-114 as a dispersant. Factors influencing the microextraction efficiency and determination, such as pH of the sample, volume of [C4MIM][PF6] and Triton X-114, ligand concentration, and incubation time, were studied. To validate the proposed method, certified reference materials were analyzed and the results of Pb(2+) were in good agreement with certified values. At optimum experimental values of significant variables, detection limit and enhancement factor were found to be 0.412 μg/L and 80, respectively. The coexisting ions showed no obvious negative outcome on Pb preconcentration. The proposed method was applied satisfactorily for the preconcentration of Pb(2+) in acid-digested SLT and biological samples of the study population. It was observed that oral cancer patients who consumed different SLT products have 2-3-fold higher levels of Pb in scalp hair and blood samples as compared to healthy referents (p < 0.001). While 31.4-50.8% higher levels of Pb were observed in referents chewing different SLT products as compared to nonconsumers (p < 0.01).

  3. Room temperature ionic liquid-based dispersive liquid phase microextraction for the separation/preconcentration of trace Cd(2+) as 1-(2-pyridylazo)-2-naphthol (PAN) complex from environmental and biological samples and determined by FAAS.

    PubMed

    Khan, Sumaira; Soylak, Mustafa; Kazi, Tasneem Gul

    2013-12-01

    The current work develops a new green methodology for the separation/preconcentration of cadmium ions (Cd(2+)) using room temperature ionic liquid-dispersive liquid phase microextraction (RTIL-DLME) prior to analysis by flame atomic absorption spectrometry with microsample introduction system. Room temperature ionic liquids (RTIL) are considered "Green Solvents" for their thermally stable and non-volatile properties, here 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] was used as an extractant. The preconcentration of Cd(2+) in different waters and acid digested scalp hair samples were complexed with 1-(2-pyridylazo)-2-naphthol and extracted into the fine drops of RTILs. Some significant factors influencing the extraction efficiency of Cd(2+) and its subsequent determination, including pH, amount of ligand, volume of RTIL, dispersant solvent, sample volume, temperature, and incubation time were investigated in detail. The limit of detection and the enhancement factor under the optimal conditions were 0.05 μg/L and 50, respectively. The relative standard deviation of 100 μg/L Cd(2+) was 4.3 %. The validity of the proposed method was checked by determining Cd(2+) in certified reference material (TM-25.3 fortified water). The sufficient recovery (>98 %) of Cd(2+) with the certified value. The mean concentrations of Cd in lake water 13.2, waste water 15.7 and hair sample 16.8 μg/L, respectively and the developed method was applied satisfactorily to the preconcentration and determination of Cd(2+) in real samples. PMID:24197606

  4. Temperature controlled ionic liquid-based dispersive micro-extraction using two ligands, for determination of aluminium in scalp hair samples of Alzheimer's patients: a multivariate study.

    PubMed

    Arain, Mariam S; Arain, Salma A; Kazi, Tasneem G; Afridi, Hassan I; Ali, Jamshaid; Naeemulllah; Arain, Sadaf S; Brahman, Kapil Dev; Mughal, Moina Akhtar

    2015-02-25

    A green and sensitive temperature controlled dispersive liquid-liquid microextraction (TIL-DLLME) methodology based on the application of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, [C4mim][PF6], as an extractant solvent was proposed for the preconcentration of trace levels of aluminium (Al(3+)) in scalp hair samples of Alzheimer's (AD) patients, prior to analyzing by flame atomic absorption spectrometry (FAAS). The Al(3+) was complexed with 8-hydrooxyquinoline (oxine) (L1) and 3,5,7,2'-4' pentahydroxy flavone (morin) (L2) separately and then extracted by IL at temperature (50±2.0°C). Some effective factors that influence the TIL-DLLME efficiency such as pH, ligands concentrations, volume of IL, ionic strength, and incubation time were investigated and optimized by multivariate analysis. In the optimum experimental conditions, the limit of detection (3s) and enhancement factor were 0.56 μg L(-1), 0.64 μg L(-1) and 85, 73 for both ligands, respectively. The relative standard deviation (RSD) for six replicate determinations of 100 μg L(-1) Al(3+) complexed with oxine and morin were found to be 3.88% and 4.74%, respectively. The developed method was validated by the analysis of certified reference material of human hair (NCSZC81002).and applied satisfactorily to the determination of Al(3+) in acid digested scalp hair samples of AD patients and healthy controls. The resulted data shows significant higher level in scalp hair samples of AD male patients with related to referents of same age and socioeconomic status. PMID:25280335

  5. A new dispersive liquid-liquid microextraction using ionic liquid based microemulsion coupled with cloud point extraction for determination of copper in serum and water samples.

    PubMed

    Arain, Salma Aslam; Kazi, Tasneem Gul; Afridi, Hassan Imran; Arain, Mariam Shahzadi; Panhwar, Abdul Haleem; Khan, Naeemullah; Baig, Jameel Ahmed; Shah, Faheem

    2016-04-01

    A simple and rapid dispersive liquid-liquid microextraction procedure based on ionic liquid assisted microemulsion (IL-µE-DLLME) combined with cloud point extraction has been developed for preconcentration copper (Cu(2+)) in drinking water and serum samples of adolescent female hepatitits C (HCV) patients. In this method a ternary system was developed to form microemulsion (µE) by phase inversion method (PIM), using ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]) and nonionic surfactant, TX-100 (as a stabilizer in aqueous media). The Ionic liquid microemulsion (IL-µE) was evaluated through visual assessment, optical light microscope and spectrophotometrically. The Cu(2+) in real water and aqueous acid digested serum samples were complexed with 8-hydroxyquinoline (oxine) and extracted into IL-µE medium. The phase separation of stable IL-µE was carried out by the micellar cloud point extraction approach. The influence of of different parameters such as pH, oxine concentration, centrifugation time and rate were investigated. At optimized experimental conditions, the limit of detection and enhancement factor were found to be 0.132 µg/L and 70 respectively, with relative standard deviation <5%. In order to validate the developed method, certified reference materials (SLRS-4 Riverine water) and human serum (Sero-M10181) were analyzed. The resulting data indicated a non-significant difference in obtained and certified values of Cu(2+). The developed procedure was successfully applied for the preconcentration and determination of trace levels of Cu(2+) in environmental and biological samples.

  6. Acetylation of Starch with Vinyl Acetate in Imidazolium Ionic Liquids and Characterization of Acetate Distribution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch was acetylated with vinyl acetate in different 1-butyl-3-methylimidazolium (BMIM) salts as solvent in effort to produce starches with different acetylation patterns. Overall degree of substitution was much higher for basic anions such as acetate and dicyanimide (dca) than for neutral anions ...

  7. Esterification of Starch in Ionic Liquids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We shall discuss the use of various ionic liquids in the preparation of starch esters. Starch was reacted with vinyl acetate in different 1-butyl-3-methylimidazolium (bmim) salts as solvents in an effort to produce starches with different acetylation patterns. Overall degree of substitution (DS) w...

  8. Ionic Liquid as a Solvent and Catalyst for Acylation of Maltodextrin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Catalyst-free esterification of maltodextrin was carried out in ionic liquid. Stearate esters of maltodextrin were obtained in various degree of substitution (DS) when vinyl stearate or stearic acid was heated with maltodextrin in ionic liquid, 1-butyl-3-methylimidazolium cyanamide (bmim[dca]). Re...

  9. Ionic liquid catalysed reaction of thiols with α,β-unsaturated carbonyl compounds--remarkable influence of the C-2 hydrogen and the anion.

    PubMed

    Sarkar, Anirban; Roy, Sudipta Raha; Chakraborti, Asit K

    2011-04-21

    Hydrogen bond induced reactivity and selectivity control in the 1-butyl-3-methylimidazolium based ionic liquid catalysed reaction of thiols with α,β-unsaturated carbonyl compounds is reported with remarkable influence of the anion and the C-2 hydrogen in catalytic activity and reversal of selectivity.

  10. Ionic liquid-in-oil microemulsions.

    PubMed

    Eastoe, Julian; Gold, Sarah; Rogers, Sarah E; Paul, Alison; Welton, Tom; Heenan, Richard K; Grillo, Isabelle

    2005-05-25

    Phase stability and small-angle neutron scattering (SANS) data show that surfactant-stabilized nanodomains of a typical ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4]) may be dispersed by the nonionic surfactant Triton-X100 in cyclohexane. Analyses of these SANS data are consistent with the formation of ionic liquid-in-oil microemulsion droplets. PMID:15898765

  11. Ionic liquids for nano- and microstructures preparation. Part 2: Application in synthesis.

    PubMed

    Łuczak, Justyna; Paszkiewicz, Marta; Krukowska, Anna; Malankowska, Anna; Zaleska-Medynska, Adriana

    2016-01-01

    Ionic liquids (ILs) are widely applied to prepare metal nanoparticles and 3D semiconductor microparticles. Generally, they serve as a structuring agent or reaction medium (solvent), however it was also demonstrated that ILs can play a role of a co-solvent, metal precursor, reducing as well as surface modifying agent. The crucial role and possible types of interactions between ILs and growing particles have been presented in the Part 1 of this review paper. Part 2 of the paper gives a comprehensive overview of recent experimental studies dealing with application of ionic liquids for preparation of metal and semiconductor based nano- and microparticles. A wide spectrum of preparation routes using ionic liquids is presented, including precipitation, sol-gel technique, hydrothermal method, nanocasting and ray-mediated methods (microwave, ultrasound, UV-radiation and γ-radiation). It was found that ionic liquids formed of a 1-butyl-3-methylimidazolium [BMIM] combined with tetrafluoroborate [BF4], hexafluorophosphate [PF6], and bis(trifluoromethanesulfonyl)imide [Tf2N] are the most often used ILs in the synthesis of nano- and microparticles, due to their low melting temperature, low viscosity and good transportation properties. Nevertheless, examples of other IL classes with intrinsic nanoparticles stabilizing abilities such as phosphonium and ammonium derivatives are also presented. Experimental data revealed that structure of ILs (both anion and cation type) affects the size and shape of formed metal particles, and in some cases may even determine possibility of particles formation. The nature of the metal precursor determines its affinity to polar or nonpolar domains of ionic liquid, and therefore, the size of the nanoparticles depends on the size of these regions. Ability of ionic liquids to form varied extended interactions with particle precursor as well as other compounds presented in the reaction media (water, organic solvents etc.) provides nano- and

  12. Rapid ionic liquid-based ultrasound assisted dual magnetic microextraction to preconcentrate and separate cadmium-4-(2-thiazolylazo)-resorcinol complex from environmental and biological samples.

    PubMed

    Khan, Sumaira; Kazi, Tasneem Gul; Soylak, Mustafa

    2014-04-01

    A rapid and innovative microextraction technique named as, ionic liquid-based ultrasound-assisted dual magnetic microextraction (IL-UA-DMME) was developed for the preconcentration and extraction of trace cadmium from environmental and biological samples, prior to analyzed by flame atomic absorption spectrometry (FAAS). The proposed method has many obvious advantages, including evading the use of organic solvents and achieved high extraction yields by the combination of dispersive liquid-liquid microextraction (DLLME) and magnetic mediated-solid phase extraction (MM-SPE). In this approach ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] play an important role to extract the cadmium-4-(2-thiazolylazo)-resorcinol (Cd-TAR) complex from acid digested sample solutions and ultrasonic irradiation was applied to assist emulsification. After then, dispersed small amount of Fe3O4 magnetic nanoparticles (MNPs) in sample solutions to salvaged the IL and complete phase separation was attained. Some analytical parameters that influencing the efficiency of proposed (IL-UA-DMME) method, such as pH, volume of IL, ligand concentration, ultra-sonication time, amount of Fe3O4 MNPs, sample volume and matrix effect were optimized. Limit of detection (LOD) and enrichment factor (EF) of the method under optimal experimental conditions were found to be 0.40μgL(-1) and 100, respectively. The relative standard deviation (RSD) of 50μgL(-1) Cd was 4.29%. The validity and accuracy of proposed method, was assessed to analyzed certified reference materials of fortified lake water TMDA-54.4, SPS-WW2 waste water, spinach leaves 1570a and also checked by standard addition method. The obtained values showed good agreement with the certified values and sufficiently high recovery were found in the range of 98.1-101% for Cd. The proposed method was facile, rapid and successfully applied for the determination of Cd in environmental and different biological samples. PMID

  13. Ionic liquids-lithium salts pretreatment followed by ultrasound-assisted extraction of vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside and vitexin from Phyllostachys edulis leaves.

    PubMed

    Hou, Kexin; Chen, Fengli; Zu, Yuangang; Yang, Lei

    2016-01-29

    An efficient method for the extraction of vitexin, vitexin-4″-O-glucoside, and vitexin-2″-O-rhamnoside from Phyllostachys edulis leaves comprises heat treatment using an ionic liquid-lithium salt mixture (using 1-butyl-3-methylimidazolium bromide as the solvent and lithium chloride as the additive), followed by ultrasound-assisted extraction. To obtain higher extraction yields, the effects of the relevant experimental parameters (including heat treatment temperature and time, relative amounts of 1-butyl-3-methylimidazolium bromide and lithium chloride, power and time of the ultrasound irradiation, and the liquid-solid ratio) are evaluated and response surface methodology is used to optimize the significant factors. The morphologies of the treated and untreated P. edulis leaves are studied by scanning electron microscopy. The improved extraction method proposed provides high extraction yield, good repeatability and precision, and has wide potential applications in the analysis of plant samples. PMID:26763300

  14. Fast Measurement of Methanol Concentration in Ionic Liquids by Potential Step Method

    PubMed Central

    Hainstock, Michael L.; Tang, Yijun

    2015-01-01

    The development of direct methanol fuel cells required the attention to the electrolyte. A good electrolyte should not only be ionic conductive but also be crossover resistant. Ionic liquids could be a promising electrolyte for fuel cells. Monitoring methanol was critical in several locations in a direct methanol fuel cell. Conductivity could be used to monitor the methanol content in ionic liquids. The conductivity of 1-butyl-3-methylimidazolium tetrafluoroborate had a linear relationship with the methanol concentration. However, the conductivity was significantly affected by the moisture or water content in the ionic liquid. On the contrary, potential step could be used in sensing methanol in ionic liquids. This method was not affected by the water content. The sampling current at a properly selected sampling time was proportional to the concentration of methanol in 1-butyl-3-methylimidazolium tetrafluoroborate. The linearity still stood even when there was 2.4 M water present in the ionic liquid. PMID:25802522

  15. Ionic liquids-lithium salts pretreatment followed by ultrasound-assisted extraction of vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside and vitexin from Phyllostachys edulis leaves.

    PubMed

    Hou, Kexin; Chen, Fengli; Zu, Yuangang; Yang, Lei

    2016-01-29

    An efficient method for the extraction of vitexin, vitexin-4″-O-glucoside, and vitexin-2″-O-rhamnoside from Phyllostachys edulis leaves comprises heat treatment using an ionic liquid-lithium salt mixture (using 1-butyl-3-methylimidazolium bromide as the solvent and lithium chloride as the additive), followed by ultrasound-assisted extraction. To obtain higher extraction yields, the effects of the relevant experimental parameters (including heat treatment temperature and time, relative amounts of 1-butyl-3-methylimidazolium bromide and lithium chloride, power and time of the ultrasound irradiation, and the liquid-solid ratio) are evaluated and response surface methodology is used to optimize the significant factors. The morphologies of the treated and untreated P. edulis leaves are studied by scanning electron microscopy. The improved extraction method proposed provides high extraction yield, good repeatability and precision, and has wide potential applications in the analysis of plant samples.

  16. Ligand-assisted soft-chemical synthesis of self-assembled different shaped mesoporous Co3O4: efficient visible light photocatalysts.

    PubMed

    Roy, Mouni; Ghosh, Sourav; Naskar, Milan Kanti

    2015-04-21

    Mesoporous self-assembled cobalt oxide (Co3O4) of different shapes was synthesized by a facile soft-chemical process using cobalt nitrate, oxalic acid and phosphoric acid in the presence of cationic templates, cetyltrimethylammonium bromide, 1-butyl-3-methylimidazolium bromide, and pyridinium bromide at 75 °C/2 h followed by calcination at 300 °C. The effect of cationic templates of the samples on the physico-chemical properties, and the photocatalytic efficiency for the degradation of Chicago Sky Blue 6B was studied. Pyridinium bromide and 1-butyl-3-methylimidazolium bromide facilitated formation of particles with different shaped morphology compared to cetyltrimethylammonium bromide. The rod-like particles having higher surface area exhibited higher photocatalytic performance. PMID:25792483

  17. Carbon nanoparticle ionic liquid hybrids and their photoluminescence properties.

    PubMed

    Wei, Ying; Liu, Yang; Li, Haitao; He, Xiaodie; Zhang, Qingguo; Kang, Zhenhui; Lee, Shuit-Tong

    2011-06-01

    A fluorescent carbon nanoparticle ionic liquid hybrids (CNPIL) with high conductivity is synthesized by a facile one-step microwave method from ionic liquid 1-butyl-3-methylimidazolium glutamine salt and Glucose. This CNPIL exhibits excellent PL properties: bright and colorful PL covering the entire visible-NIR spectral range, up conversion PL properties, pH dependent and can be controlled by the reaction condition.

  18. Ionic liquid acceleration of solid-phase suzuki-miyaura cross-coupling reactions.

    PubMed

    Revell, Jefferson D; Ganesan, A

    2002-09-01

    [reaction: see text] Room-temperature ionic liquids promote various transition metal-catalyzed reactions in the solution phase. Here, for the first time, we show that these effects are translatable to solid-phase reactions. The Suzuki-Miyaura cross-coupling of 4-iodophenol immobilized on polystyrene-Wang resin with various arylboronic acids was significantly accelerated by the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF(4)(-)]).

  19. A selenium-based ionic liquid as a recyclable solvent for the catalyst-free synthesis of 3-selenylindoles.

    PubMed

    Zimmermann, Everton G; Thurow, Samuel; Freitas, Camilo S; Mendes, Samuel R; Perin, Gelson; Alves, Diego; Jacob, Raquel G; Lenardão, Eder J

    2013-04-05

    The ionic liquid 1-butyl-3-methylimidazolium methylselenite, [bmim][SeO2(OCH3)], was successfully used as solvent in the catalyst-free preparation of 3-arylselenylindoles by the reaction of indole with ArSeCl at room temperature. The products were obtained selectively in good yields without the need of any additive and the solvent was easily reused for several cycles with good results.

  20. Organo-niobate Ionic Liquids: Synthesis, Characterization and Application as Acid Catalyst in Pechmann Reactions

    PubMed Central

    Soares, Valerio C. D.; Alves, Melquizedeque B.; Souza, Ernesto R.; Pinto, Ivana O.; Rubim, Joel C.; Andrade, Carlos Kleber Z.; Suarez, Paulo A. Z.

    2007-01-01

    The combinations of 1-butyl-3-methylimidazolium chloride with NbCl5 yielded ionic mixtures with different melting point temperatures and acidity depending on the niobium molar fraction. The mixtures were characterized by thermal (DSC) and spectroscopic (FT-IR and 1H NMR) analysis. The Pechmann reactions of different phenols with ethylacetoacetate, producing coumarins, was used as model to evaluate the catalytic behavior of these mixtures as acid Lewis catalyst. These reactions were carried out using acidic mixtures of 60 mol%.

  1. Pretreatment and fractionation of wheat straw using various ionic liquids.

    PubMed

    Lopes, André M da Costa; João, Karen G; Bogel-Łukasik, Ewa; Roseiro, Luísa B; Bogel-Łukasik, Rafał

    2013-08-21

    Pretreatment of lignocellulosic biomass with ionic liquids (ILs) is a promising and challenging process for an alternative method of biomass processing. The present work emphasizes the examination of wheat straw pretreatment using ILs, namely, 1-butyl-3-methylimidazolium hydrogensulfate ([bmim][HSO4]), 1-butyl-3-methylimidazolium thiocyanate ([bmim][SCN]), and 1-butyl-3-methylimidazolium dicyanamide ([bmim][N(CN)2]). Only [bmim][HSO4] was found to achieve a macroscopic complete dissolution of wheat straw during pretreatment. The fractionation process demonstrated to be dependent on the IL used. Using [bmim][SCN], a high-purity lignin-rich material was obtained. In contrast, [bmim][N(CN)2] was a good solvent to produce high-purity carbohydrate-rich fractions. When [bmim][HSO4] was used, a different behavior was observed, exhibiting similarities to an acid hydrolysis pretreatment, and no hemicellulose-rich material was recovered during fractionation. A capillary electrophoresis (CE) technique allowed for a better understanding of this phenomenon. Hydrolysis of carbohydrates was confirmed, although an extended degradation of monosaccharides to furfural and hydroxymethylfurfural (HMF) was observed.

  2. Molecularly imprinted SPE coupled with HPLC for the selective separation and enrichment of alkyl imidazolium ionic liquids in environmental water samples.

    PubMed

    Xia, Gao; Jing, Fan; Guifen, Zhu; Xiaolong, Wang; Jianji, Wang

    2013-10-01

    A novel 1-butyl-3-methylimidazolium chloride ionic liquid surface imprinted solid-phase sorbent was synthesized. The as-prepared material was characterized by SEM, Brunauer-Emmett-Teller surface area analysis and Fourier Transform IR measurements. Then its adsorption properties for alkyl imidazolium ionic liquids, including adsorption capacities, adsorption kinetics, and properties of selective separation and enrichment were studied in detail. It was shown that the ionic liquid surface imprinted polymer exhibited high selective recognition characteristics for the imidazolium chloride ionic liquids with short alkyl chains (C(n)mimCl, n = 2, 4, 6, 8) and the adsorption equilibrium was achieved within 25 min. Various parameters were optimized for the 1-butyl-3-methylimidazolium chloride ionic liquid surface imprinted polymer SPE column, such as flow rate, eluent solvent, selectivity, and reusability of the column. Then, the SPE column coupled with HPLC was used for the determination of alkyl imidazolium ionic liquids. Experimental results showed that the existence of their structural analogs and common concomitants in environmental matrices did not affect the enrichment of 1-butyl-3-methyl imidazolium chloride ionic liquid. The average recoveries of 1-butyl-3-methylimidazolium chloride ionic liquid in spiked water samples were in the range of 92.0-102.0% with the RSD lower than 5.8%.

  3. Ionic liquid coated magnetic core/shell Fe3O4@SiO2 nanoparticles for the separation/analysis of linuron in food samples.

    PubMed

    Chen, Jieping; Zhu, Xiashi

    2015-02-25

    Three hydrophobic ionic liquids (ILs) including 1-butyl-3-methylimidazole hexafluorophosphate ([BMIM]PF6), 1-hexyl-3-methyl-imidazole hexafluorophosphate ([HMIM]PF6), and 1-octyl-3-methylimidazole hexafluoro-phosphate ([OMIM]PF6) coated Fe3O4@SiO2 nanoparticles with core-shell structure to prepare magnetic solid phase extraction agent (Fe3O4@SiO2@ILs) and establish a new method of magnetic solid phase extraction (MSPE) coupled with UV spectrometry for separation/analysis of linuron. The results showed that linuron was adsorbed rapidly by Fe3O4@SiO2@[OMIM]PF6 and eluanted by ethanol. Under the optimal conditions, preconcentration factor of the proposed method was 10-fold. The linear range, detection limit, correlation coefficient (R) and relative standard deviation (RSD) were found to be 0.04-20.00 μg mL(-1), 5.0 ng mL(-1), 0.9993 and 2.8% (n=3, c=4.00 μg mL(-1)), respectively. The Fe3O4@SiO2 nanoparticles could be used repeatedly for 10 times. This proposed method has been successfully applied to the determination of linuron in food samples.

  4. Magnetic solid phase extraction using ionic liquid-coated core-shell magnetic nanoparticles followed by high-performance liquid chromatography for determination of Rhodamine B in food samples.

    PubMed

    Chen, Jieping; Zhu, Xiashi

    2016-06-01

    Three hydrophobic ionic liquids (ILs) (1-butyl-3-methylimidazole hexafluorophosphate ([BMIM]PF6), 1-hexyl-3-methyl-imidazole hexafluoro-phosphate ([HMIM]PF6), and 1-octyl-3-methylimidazole hexafluorophosphate ([OMIM]PF6)) were used to coat Fe3O4@SiO2 nanoparticles (NPs) with core-shell structures to prepare magnetic solid phase extraction (MSPE) agents (Fe3O4@SiO2@IL). A novel method of MSPE coupled with high-performance liquid chromatography for the separation/analysis of Rhodamine B was then established. The results showed that Rhodamine B was adsorbed rapidly on Fe3O4@SiO2@[OMIM]PF6 and was released using ethanol. Under optimal conditions, the pre-concentration factor for the proposed method was 25. The linear range, limit of detection (LOD), correlation coefficient (R), and relative standard deviation (RSD) were found to be 0.50-150.00 μgL(-1), 0.08 μgL(-1), 0.9999, and 0.51% (n=3, c=10.00 μgL(-1)), respectively. The Fe3O4@SiO2 NPs could be re-used up to 10 times. The method was successfully applied to the determination of Rhodamine B in food samples. PMID:26830554

  5. Magnetic solid phase extraction using ionic liquid-coated core-shell magnetic nanoparticles followed by high-performance liquid chromatography for determination of Rhodamine B in food samples.

    PubMed

    Chen, Jieping; Zhu, Xiashi

    2016-06-01

    Three hydrophobic ionic liquids (ILs) (1-butyl-3-methylimidazole hexafluorophosphate ([BMIM]PF6), 1-hexyl-3-methyl-imidazole hexafluoro-phosphate ([HMIM]PF6), and 1-octyl-3-methylimidazole hexafluorophosphate ([OMIM]PF6)) were used to coat Fe3O4@SiO2 nanoparticles (NPs) with core-shell structures to prepare magnetic solid phase extraction (MSPE) agents (Fe3O4@SiO2@IL). A novel method of MSPE coupled with high-performance liquid chromatography for the separation/analysis of Rhodamine B was then established. The results showed that Rhodamine B was adsorbed rapidly on Fe3O4@SiO2@[OMIM]PF6 and was released using ethanol. Under optimal conditions, the pre-concentration factor for the proposed method was 25. The linear range, limit of detection (LOD), correlation coefficient (R), and relative standard deviation (RSD) were found to be 0.50-150.00 μgL(-1), 0.08 μgL(-1), 0.9999, and 0.51% (n=3, c=10.00 μgL(-1)), respectively. The Fe3O4@SiO2 NPs could be re-used up to 10 times. The method was successfully applied to the determination of Rhodamine B in food samples.

  6. Structure and dynamics of POPC bilayers in water solutions of room temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Benedetto, Antonio; Bingham, Richard J.; Ballone, Pietro

    2015-03-01

    Molecular dynamics simulations in the NPT ensemble have been carried out to investigate the effect of two room temperature ionic liquids (RTILs), on stacks of phospholipid bilayers in water. We consider RTIL compounds consisting of chloride ([bmim][Cl]) and hexafluorophosphate ([bmim][PF6]) salts of the 1-buthyl-3-methylimidazolium ([bmim]+) cation, while the phospholipid bilayer is made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Our investigations focus on structural and dynamical properties of phospholipid and water molecules that could be probed by inelastic and quasi-elastic neutron scattering measurements. The results confirm the fast incorporation of [bmim]+ into the lipid phase already observed in previous simulations, driven by the Coulomb attraction of the cation for the most electronegative oxygens in the POPC head group and by sizeable dispersion forces binding the neutral hydrocarbon tails of [bmim]+ and of POPC. The [bmim]+ absorption into the bilayer favours the penetration of water into POPC, causes a slight but systematic thinning of the bilayer, and further stabilises hydrogen bonds at the lipid/water interface that already in pure samples (no RTIL) display a lifetime much longer than in bulk water. On the other hand, the effect of RTILs on the diffusion constant of POPC (DPOPC) does not reveal a clearly identifiable trend, since DPOPC increases upon addition of [bmim][Cl] and decreases in the [bmim][PF6] case. Moreover, because of screening, the electrostatic signature of each bilayer is only moderately affected by the addition of RTIL ions in solution. The analysis of long wavelength fluctuations of the bilayers shows that RTIL sorption causes a general decrease of the lipid/water interfacial tension and bending rigidity, pointing to the destabilizing effect of RTILs on lipid bilayers.

  7. Structure and dynamics of POPC bilayers in water solutions of room temperature ionic liquids.

    PubMed

    Benedetto, Antonio; Bingham, Richard J; Ballone, Pietro

    2015-03-28

    Molecular dynamics simulations in the NPT ensemble have been carried out to investigate the effect of two room temperature ionic liquids (RTILs), on stacks of phospholipid bilayers in water. We consider RTIL compounds consisting of chloride ([bmim][Cl]) and hexafluorophosphate ([bmim][PF6]) salts of the 1-buthyl-3-methylimidazolium ([bmim](+)) cation, while the phospholipid bilayer is made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Our investigations focus on structural and dynamical properties of phospholipid and water molecules that could be probed by inelastic and quasi-elastic neutron scattering measurements. The results confirm the fast incorporation of [bmim](+) into the lipid phase already observed in previous simulations, driven by the Coulomb attraction of the cation for the most electronegative oxygens in the POPC head group and by sizeable dispersion forces binding the neutral hydrocarbon tails of [bmim](+) and of POPC. The [bmim](+) absorption into the bilayer favours the penetration of water into POPC, causes a slight but systematic thinning of the bilayer, and further stabilises hydrogen bonds at the lipid/water interface that already in pure samples (no RTIL) display a lifetime much longer than in bulk water. On the other hand, the effect of RTILs on the diffusion constant of POPC (DPOPC) does not reveal a clearly identifiable trend, since DPOPC increases upon addition of [bmim][Cl] and decreases in the [bmim][PF6] case. Moreover, because of screening, the electrostatic signature of each bilayer is only moderately affected by the addition of RTIL ions in solution. The analysis of long wavelength fluctuations of the bilayers shows that RTIL sorption causes a general decrease of the lipid/water interfacial tension and bending rigidity, pointing to the destabilizing effect of RTILs on lipid bilayers. PMID:25833602

  8. Probing structural patterns of ion association and solvation in mixtures of imidazolium ionic liquids with acetonitrile by means of relative (1)H and (13)C NMR chemical shifts.

    PubMed

    Marekha, Bogdan A; Kalugin, Oleg N; Bria, Marc; Idrissi, Abdenacer

    2015-09-21

    Mixtures of ionic liquids (ILs) with polar aprotic solvents in different combinations and under different conditions (concentration, temperature etc.) are used widely in electrochemistry. However, little is known about the key intermolecular interactions in such mixtures depending on the nature of the constituents and mixture composition. In order to systematically address the intermolecular interactions, the chemical shift variation of (1)H and (13)C nuclei has been followed in mixtures of imidazolium ILs 1-n-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4), 1-n-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6), 1-n-butyl-3-methylimidazolium trifluoromethanesulfonate (BmimTfO) and 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) with molecular solvent acetonitrile (AN) over the entire composition range at 300 K. The concept of relative chemical shift variation is proposed to assess the observed effects on a unified and unbiased scale. We have found that hydrogen bonds between the imidazolium ring hydrogen atoms and electronegative atoms of anions are stronger in BmimBF4 and BmimTfO ILs than those in BmimTFSI and BmimPF6. Hydrogen atom at position 2 of the imidazolium ring is substantially more sensitive to interionic hydrogen bonding than those at positions 4-5 in the case of BmimTfO and BmimTFSI ILs. These hydrogen bonds are disrupted upon dilution in AN due to ion dissociation which is more pronounced at high dilutions. Specific solvation interactions between AN molecules and IL cations are poorly manifested.

  9. Fabrication and Characterization of Polysaccharide Ion Gels with Ionic Liquids and Their Further Conversion into Value-Added Sustainable Materials

    PubMed Central

    Takada, Akihiko; Kadokawa, Jun-ichi

    2015-01-01

    A review of the fabrication of polysaccharide ion gels with ionic liquids is presented. From various polysaccharides, the corresponding ion gels were fabricated through the dissolution with ionic liquids. As ionic liquids, in the most cases, 1-butyl-3-methylimidazolium chloride has been used, whereas 1-allyl-3methylimidazolium acetate was specifically used for chitin. The resulting ion gels have been characterized by suitable analytical measurements. Characterization of a pregel state by viscoelastic measurement provided the molecular weight information. Furthermore, the polysaccharide ion gels have been converted into value-added sustainable materials by appropriate procedures, such as exchange with other disperse media and regeneration. PMID:25793912

  10. Microwave-assisted rapid conversion of carbohydrates into 5-hydroxymethylfurfural by ScCl3 in ionic liquids.

    PubMed

    Zhou, Xuanmu; Zhang, Zehui; Liu, Bing; Xu, Zheng; Deng, Kejian

    2013-06-28

    In this study, synthesis of HMF from carbohydrates was carried out in ionic liquids 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) catalyzed by ScCl3 under microwave irradiation. Under the optimal reaction conditions, HMF was obtained in a high yield of 73.4% in 2 mins with the microwave power at 400 W. Compared with the conventional oil-bath heating manner, the use of microwave irradiation not only reduced reaction times from hours to minutes, but also improved HMF yield. This catalytic system could be reused several times without losing its catalytic activity. This efficient catalytic system will generate a promising application strategy for biomass transformation. PMID:23694706

  11. Furfural production in biphasic media using an acidic ionic liquid as a catalyst.

    PubMed

    Peleteiro, Susana; Santos, Valentín; Parajó, Juan C

    2016-11-20

    Ionic liquids are valuable tools for biorefineries. This study provides an experimental assessment on the utilization of an acidic ionic liquid (1-butyl-3-methylimidazolium hydrogen sulfate) as a catalyst for furfural production in water/solvent media. The substrates employed in experiments were commercial xylose (employed as a reference compound) or hemicellulosic saccharides obtained by hydrothermal processing of Eucalyptus globulus wood (which were employed as produced, after membrane concentration or after freeze-drying). A variety of reaction conditions (defined by temperature, reaction time and type of organic solvent) were considered. The possibility of recycling the catalyst was assessed in selected experiments. PMID:27561513

  12. Lipid extraction from microalgae using a single ionic liquid

    DOEpatents

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2013-05-28

    A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.

  13. Electrodeposition of Three Dimensionally Ordered Macroporous Germanium from Two Different Ionic Liquids.

    PubMed

    Hao, Jian; Zhao, Jiupeng; Zhang, Yiwen; An, Xiaokun; Liu, Xin; Li, Yao; Endres, Frank

    2016-01-01

    Three dimensionally ordered macroporous (3DOM) Ge films have been made via ordered polystyrene (PS) templates by electrodeposition from ionic liquids 1-Butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide and 1-Ethyl-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate at room temperature. We discuss the possibility of obtaining high quality 3DOM Ge films from two different ionic liquids by the simple and inexpensive template-assisted electrochemical pathway. Scanning electron microscopy confirms the quality of the samples, and the optical measurements demonstrate that 3DOM Ge made electrochemically shows photonic crystal behavior. Such a material has the potential to make 3DOM Ge feasible for electrical, optical applications and for photonic crystal solar cells.

  14. Effect of BMITFSI to the electrical properties of methycelloluse/chitosan/NH4TF-based polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Arifin, N. A.; Khiar, A. S. A.

    2015-12-01

    Blended polymer electrolyte of methylcellulose (MC) / chitosan with ammonium triflate (NH4TF) were prepared with different weight percentage of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMITFSI) via solution casting technique. The film was characterized by impedance spectroscopy to measure its ionic conductivity. Samples with 45% of BMITFSI exhibit the highest conductivity of (3.98 +/- 2.84) x 10-4 Scm-1 at ambient. Dielectric data were analyzed by using complex permittivity and complex electrical modulus for the sample with highest conductivity. Dielectric data proves that the increase in conductivity is mainly due to the increase in number of charge carriers.

  15. Furfural production in biphasic media using an acidic ionic liquid as a catalyst.

    PubMed

    Peleteiro, Susana; Santos, Valentín; Parajó, Juan C

    2016-11-20

    Ionic liquids are valuable tools for biorefineries. This study provides an experimental assessment on the utilization of an acidic ionic liquid (1-butyl-3-methylimidazolium hydrogen sulfate) as a catalyst for furfural production in water/solvent media. The substrates employed in experiments were commercial xylose (employed as a reference compound) or hemicellulosic saccharides obtained by hydrothermal processing of Eucalyptus globulus wood (which were employed as produced, after membrane concentration or after freeze-drying). A variety of reaction conditions (defined by temperature, reaction time and type of organic solvent) were considered. The possibility of recycling the catalyst was assessed in selected experiments.

  16. Conversion of hexose into 5-hydroxymethylfurfural in imidazolium ionic liquids with and without a catalyst.

    PubMed

    Cao, Quan; Guo, Xingcui; Yao, Shengxi; Guan, Jing; Wang, Xiaoyan; Mu, Xindong; Zhang, Dongke

    2011-05-15

    Conversion of fructose and glucose into 5-hydroxymethylfurfural (HMF) was investigated in various imidazolium ionic liquids, including 1-butyl-3-methylimidazolium chloride (BmimCl), 1-hexyl-3-methylimidazolium chloride (HmimCl), 1-octyl-3-methylimidazolium chloride (OmimCl), 1-benzyl-3-methylimidazolium chloride (BemimCl), 1-Butyl-2,3-dimethylimidazolium chloride (BdmimCl), and 1-butyl-3-methylimidazolium p-toluenesulfonate (BmimPS). The acidic C-2 hydrogen of imidazolium cations was shown to play a major role in the dehydration of fructose in the absence of a catalyst, such as sulfuric acid or CrCl(3). Both the alkyl groups of imidazolium cations and the type of anions affected the reactivity of the carbohydrates. Although, except BmimCl and BemimCl, other four ionic liquids could only achieve not more than 25% HMF yields without an additional catalyst, 60-80% HMF yields were achieved in HmimCl, BdmimCl, and BmimPS in the presence of sulfuric acid or CrCl(3) in sufficient quantities.

  17. Heteroatom-Containing Porous Carbons Derived from Ionic Liquid-Doped Alkali Organic Salts for Supercapacitors.

    PubMed

    Zhu, Jingyue; Xu, Dan; Qian, Wenjing; Zhang, Jinyu; Yan, Feng

    2016-04-13

    A simple strategy for the synthesis of heteroatom-doped porous carbon materials (CMs) via using ionic liquid (IL)-doped alkali organic salts as small molecular precursors is developed. Doping of alkali organic salts (such as sodium glutamate, sodium tartrate, and sodium citrate) with heteroatoms containing ILs (including 1-butyl-3-methylimidazolium chlorine and 3-butyl-4-methythiazolebromination) not only incorporates the heteroatoms into the carbon frameworks but also highly improves the carbonization yield, as compared with that of either alkali organic salts or ILs as precursors. The porous structure of CMs can be tuned by adjusting the feed ratio of ILs. The porous CMs derived from 1-butyl-3-methylimidazolium chlorine-doped sodium glutamate exhibit high charge storage capacity with a specific capacitance of 287 F g(-1) and good stability over 5000 cycles in 6 m KOH at a current density of 1 A g(-1) for supercapacitors. This strategy opens a simple and efficient method for the synthesis of heteroatom-doped porous CMs. PMID:26869577

  18. Heats of vaporization of room temperature ionic liquids by tunable vacuum ultraviolet photoionization

    SciTech Connect

    Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; To, Albert; Koh, Christine; Strasser, Daniel; Kostko, Oleg; Leone, Stephen R.

    2009-11-25

    The heats of vaporization of the room temperature ionic liquids (RTILs) N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide, N-butyl-N-methylpyrrolidinium dicyanamide, and 1-butyl-3-methylimidazolium dicyanamide are determined using a heated effusive vapor source in conjunction with single photon ionization by a tunable vacuum ultraviolet synchrotron source. The relative gas phase ionic liquid vapor densities in the effusive beam are monitored by clearly distinguished dissociative photoionization processes via a time-of-flight mass spectrometer at a tunable vacuum ultraviolet beamline 9.0.2.3 (Chemical Dynamics Beamline) at the Advanced Light Source synchrotron facility. Resulting in relatively few assumptions, through the analysis of both parent cations and fragment cations, the heat of vaporization of N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide is determined to be Delta Hvap(298.15 K) = 195+-19 kJ mol-1. The observed heats of vaporization of 1-butyl-3-methylimidazolium dicyanamide (Delta Hvap(298.15 K) = 174+-12 kJ mol-1) and N-butyl-N-methylpyrrolidinium dicyanamide (Delta Hvap(298.15 K) = 171+-12 kJ mol-1) are consistent with reported experimental values using electron impact ionization. The tunable vacuum ultraviolet source has enabled accurate measurement of photoion appearance energies. These appearance energies are in good agreement with MP2 calculations for dissociative photoionization of the ion pair. These experimental heats of vaporization, photoion appearance energies, and ab initio calculations corroborate vaporization of these RTILs as intact cation-anion ion pairs.

  19. The Highly Selective and Near-Quantitative Conversion of Glucose to 5-Hydroxymethylfurfural Using Ionic Liquids

    PubMed Central

    Eminov, Sanan; Brandt, Agnieszka; Wilton-Ely, James D. E. T.

    2016-01-01

    A number of ionic liquids have been shown to be excellent solvents for lignocellulosic biomass processing, and some of these are particularly effective in the production of the versatile chemical building block 5-hydroxymethylfurfural (HMF). In this study, the production of HMF from the simple sugar glucose in ionic liquid media is discussed. Several aspects of the selective catalytic formation of HMF from glucose have been elucidated using metal halide salts in two distinct ionic liquids, 1-butyl-3-methylimidazolium chloride and 1-butyl-3-methylimidazolium hydrogen sulfate as well as mixtures of these, revealing key features for accelerating the desired reaction and suppressing byproduct formation. The choice of ionic liquid anion is revealed to be of particular importance, with low HMF yields in the case of hydrogen sulfate-based salts, which are reported to be effective for HMF production from fructose. The most successful system investigated in this study led to almost quantitative conversion of glucose to HMF (90% in only 30 minutes using 7 mol% catalyst loading at 120°C) in a system which is selective for the desired product, has low energy intensity and is environmentally benign. PMID:27711238

  20. Lignin dissolution in dialkylimidazolium-based ionic liquid-water mixtures.

    PubMed

    Wang, Yantao; Wei, Ligang; Li, Kunlan; Ma, Yingchong; Ma, Ningning; Ding, Shan; Wang, Linlin; Zhao, Deyang; Yan, Bing; Wan, Wenying; Zhang, Qian; Wang, Xin; Wang, Junmei; Li, Hui

    2014-10-01

    Lignin dissolution in dialkylimidazolium-based ionic liquid (IL)-water mixtures (40wt%-100wt% IL content) at 60°C was investigated. The IL content and type are found to considerably affect lignin solubility. For the IL-water mixtures except 1-butyl-3-methylimidazolium tetrafluoroborate ([C4C1im]BF4), the maximum lignin solubility can be achieved at 70wt% IL content. Lignin solubility in IL-water mixtures with different cations follows the order 1-butyl-3-methylimidazolium ([C4C1im](+))>1-hexyl-3-methylimidazolium ([C6C1im](+))>1-ethyl-3-methylimidazolium ([C2C1im](+))>1-octyl-3-methylimidazolium ([C8C1im](+))>1-butyl-3-ethylimidazolium ([C4C2im](+))>1-butyl-3-propylimidazolium ([C4C3im](+)). For IL mixtures with different anions, lignin solubility decreases in the following order: methanesulfonate (MeSO3(-))>acetate (MeCO2(-))>bromide (Br(-))>dibutylphosphate (DBP(-)). Evaluation using the theory of Hansen solubility parameter (HSP) is consistent with the experimental results, suggesting that HSP can aid in finding the appropriate range of IL content for IL-water mixtures. However, HSP cannot be used to evaluate the effect of IL type on lignin solubility. PMID:25164342

  1. Ionic liquids entrapped in reverse micelles as nanoreactors for bimolecular nucleophilic substitution reaction. Effect of the confinement on the chloride ion availability.

    PubMed

    Blach, Diana; Pessêgo, Marcia; Silber, Juana J; Correa, N Mariano; García-Río, Luis; Falcone, R Darío

    2014-10-21

    In this work was explored how the confinement of two ionic liquids (ILs), 1-butyl-3-methylimidazolium chloride (bmimCl) and 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4), inside toluene/benzyl-n-hexadecyldimethylammonium chloride (BHDC) reverse micelles (RMs) affects the Cl(-) nucleophilicity on the bimolecular nucleophilic substitution (SN2) reaction between this anion and dimethyl-4-nitrophenylsulfonium trifluoromethanesulfonate. The results obtained show that, upon confinement, the ionic interactions between the ILs with the cationic surfactant polar head group and the surfactant counterion modify substantially the performance of both ILs as solvents. In toluene/BHDC/bmimCl RMs, the Cl(-) interacts strongly with bmim(+) (and/or BHD(+)) in such a way that its nucleophilicity is reduced in comparison with neat IL. In toluene/BHDC/bmimBF4 RMs, an ionic exchange equilibrium produces segregation of bmim(+) and BF4(-) ions, changing the composition of the RMs interface and affecting dramatically the Cl(-) availability. These results show the versatility of this kind of organized system to alter the ionic organization and influence on reaction rate when used as nanoreactors.

  2. Solvent extraction separation of Th-227 and Ac-225 in room temperature ionic liquids

    SciTech Connect

    Bell, Jason R; Boll, Rose Ann; Dai, Sheng; Luo, Huimin

    2012-01-01

    The solvent extractions of Th-227 and Ac-225 from the aqueous phase into ionic liquids (ILs) were investigated by using N,N,N ,N - tetraoctyldiglycolamide (TODGA) or di(2-ethylhexyl)phosphoric acid (HDEHP) as an extractant. Four ionic liquids, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]), 1-butyl-3-methylimidazolium bis(perfluoroethanesulfonyl)imide ([C4mim][BETI]), 1-butyl-2,3-trimethyleneimidazolium (trifluoromethanesulfonyl)imide [BuI5][NTf2], and 1-benzyl pyridinium bis(trifluoromethanesulfonyl)imide ([PhCH2Py][NTf2]) were used as extraction solvents for separation of Th-227 and Ac-225 in this study. Excellent extraction efficiencies and selectivities were found for Th-227/Ac-225 when HDEHP was used as an extractant in these ionic liquids. The effects of different extractant concentrations in ionic liquids and acidities of the aqueous phase on extraction efficiencies and selectivities of Th-227/Ac-225 are also presented in this article.

  3. Alkylation of Methyl Linoleate with Propene in Ionic Liquids in the Presence of Metal Salts.

    PubMed

    Pomelli, Christian Silvio; Ghilardi, Tiziana; Chiappe, Cinzia; de Angelis, Alberto Renato; Calemma, Vincenzo

    2015-01-01

    Vegetable oils and fatty acid esters are suitable precursor molecules for the production of a variety of bio-based products and materials, such as paints and coatings, plastics, soaps, lubricants, cosmetics, pharmaceuticals, printing inks, surfactants, and biofuels. Here, we report the possibility of using Lewis acidic ionic liquids (ILs) to obtain polyunsaturated ester dimerization-oligomerization and/or, in the presence of another terminal alkene (propene), co-polymerization. In particular, we have tested the Lewis acidic mixtures arising from the addition of a proper amount of GaCl₃ (Χ > 0.5) to two chloride-based (1-butyl-3-methylimidazolium chloride, [bmim]Cl, and 1-butylisoquinolium chloride, [BuIsoq]Cl) or by dissolution of a smaller amount of Al(Tf₂N)₃ (Χ = 0.1) in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [bmim][Tf₂N]. On the basis of product distribution studies, [bmim][Tf₂N]/Al(Tf₂N)₃ appears the most suitable medium in which methyl linoleate alkylation with propene can compete with methyl linoleate or propene oligomerization. PMID:26690107

  4. Insight into dissolution mechanism of cellulose in [C4mim][CH3COO]/DMSO solvent by 13C NMR spectra

    NASA Astrophysics Data System (ADS)

    Xu, Airong; Zhang, Yibo

    2015-05-01

    Recently, it has been reported that 1-butyl-3-methylimidazolium acetate/dimethyl sulfoxide ([C4mim][CH3COO]/DMSO) can efficiently dissolve cellulose at room temperature. In the present study, 13C NMR measurements of 1-butyl-3-methylimidazolium acetate [C4mim][CH3COO] and cellulose were carried out in [C4mim][CH3COO]/DMSO-d6 (Deuterated dimethyl sulfoxide)/cellulose solution to directly reveal the possible dissolution mechanism of cellulose in true [C4mim][CH3COO]/DMSO solvent. The results indicate that both cation and anion of [C4mim][CH3COO] in [C4mim][CH3COO]/DMSO solvent dominate cellulose dissolution, and DMSO mainly serves to dissociate the ion pairs in [C4mim][CH3COO] into solvated cations and anions. Moreover, the hydrogen bonding interaction of anion of [C4mim][CH3COO] with cellulose hydroxyl proton is much stronger than that of cation of [C4mim][CH3COO] with cellulose hydroxyl oxygen.

  5. Evaluation of synergistic enantioseparation systems with chiral spirocyclic ionic liquids as additives by capillary electrophoresis.

    PubMed

    Zhang, Yanjie; Du, Shuaijing; Feng, Zijie; Du, Yingxiang; Yan, Zhi

    2016-04-01

    In recent years, chiral ionic liquids (CILs) have attracted more and more attention in the field of enantioseparation. In this study, two novel spirocyclic chiral ionic liquids, 1-butyl-3-methylimidazolium(T-4)-bis[(2S)-2-(hydroxy-κO)-3-methylbutanoato-κO]borate (BMIm(+)BLHvB(-)) and 1-butyl-3-methylimidazolium (T-4)-bis[(αS)-α-(hydroxy-κO)-4-methylbenzeneacetato-κO]borate (BMIm(+)BSMB(-)), were applied for the first time in capillary electrophoresis (CE) to establish synergistic systems for enantiomeric separation. Significantly improved separations of five tested analytes were observed in the CILs synergistic systems based on three β-cyclodextrin derivatives (CD), compared with conventional single CD separation systems. Several principal parameters such as CILs concentration, cyclodextrin concentration, buffer pH, and applied voltage were systematically investigated with BMIm(+)BLHvB(-)/hydroxypropyl-β-CD selected as a model system to optimize the enantioseparation. Molecular modeling was applied to further demonstrate the chiral recognition mechanism of the CILs/hydroxypropyl-β-CD synergistic system, which showed a good agreement with the experimental results. PMID:26894758

  6. Radiolysis of solutions of diphenyliodonium and triphenylsulfonium hexafluorophosphates in various solvents

    SciTech Connect

    Ma, X.H.; Yamamoto, Y.; Hayashi, K.

    1988-11-11

    The radiolysis of solutions of Ph/sub 2/IPF/sub 6/ and Ph/sub 3/SPF/sub 6/ was undertaken in various kinds of solvents such as alcohols, ethers, acetone, acetonitrile, and dichloromethane. The salts decompose through one-electron reduction in all of the solvents except dichloromethane. The ..cap alpha..-hydroxyalkyl and ..cap alpha..-alkoxyalkyl radicals derived from the oxygen-containing solvents are oxidized by Ph/sub 2/IPF/sub 6/ to initiate a chain reaction. The kinetic chain length depends on the oxidation potentials of the radicals. In dichloromethane, which is electron scavenger, the decomposition of the salts is much less pronounced than in the other solvents. 41 references, 2 tables, 1 figure.

  7. Translational diffusion in mixtures of imidazolium ILs with polar aprotic molecular solvents.

    PubMed

    Marekha, Bogdan A; Kalugin, Oleg N; Bria, Marc; Buchner, Richard; Idrissi, Abdenacer

    2014-05-22

    Self-diffusion coefficients of cations and solvent molecules were determined with (1)H NMR in mixtures of 1-n-butyl-3-methylimidazolium (Bmim(+)) tetrafluoroborate (BF4(-)), hexafluorophosphate (PF6(-)), trifluoromethanesulfonate (TfO(-)), and bis(trifluoromethylsulfonyl)imide (TFSI(-)) with acetonitrile (AN), γ-butyrolactone (γ-BL), and propylene carbonate (PC) over the entire composition range at 300 K. The relative diffusivities of solvent molecules to cations as a function of concentration were found to depend on the solvent but not on the anion (i.e., IL). In all cases the values exhibit a plateau at low IL content (x(IL) < 0.2) and then increase steeply (AN), moderately (γ-BL), or negligibly (PC) at higher IL concentrations. This behavior was related to the different solvation patterns in the employed solvents. In BmimPF6-based systems, anionic diffusivities were followed via (31)P nuclei and found to be higher than the corresponding cation values in IL-poor systems and lower in the IL-rich region. The inversion point of relative ionic diffusivities was found around equimolar composition and does not depend on the solvent. At this point, a distinct change in the ion-diffusion mechanism appears to take place.

  8. Application of carbon nanotubes-ionic liquid hybrid in a sensitive atorvastatin ion-selective electrode.

    PubMed

    Jalali, Fahimeh; Ardeshiri, Moslem

    2016-12-01

    Atorvastatin (ATR) was determined by a potentiometric method. The ion-pair of ATR and cetyltrimethylammonium bromide (CTAB) was used as a suitable ionophore. A graphite paste electrode was modified with ATR-CTAB ion-pair, multiwalled carbon nanotubes (MWCNTs), and an ionic liquid, 1-butyl-3-mtehyl-imidazolium hexafluorophosphate (BMIMPF6). The amounts of electrode ingredients were optimized (graphite powder: paraffin oil: ATR-CTAB: MWCNTs: BMIMPF6 (58:26:5:8:3 w/w%). Surface characterization was done by using scanning electron microscopy. The potential measurements were recorded at optimized pH by using acetate buffer solution (0.1molL(-1), pH5.5). At the above experimental conditions, calibration curve (E vs. log [ATR]) was linear (R(2)=0.9977) in the concentration range of 1.0×10(-9)-1.0×10(-3)molL(-1) (0.0012-1209mgL(-1)) of ATR with a Nernstian slope of 58.14±0.2mV decade(-1), and detection limit of 1.0×10(-9)molL(-1) (0.0013mgL(-1)). After each injection of ATR to the buffer solution, the potential was stabilized in a very short time (average response time~6s) at 25°C. The modified graphite paste electrode had a long lifetime (>4months). Recovery of the spiked drug to blood serum samples (95.3-98.2%) revealed the reliability of electrode response to ATR. Blood serum samples from consumers were analyzed by the proposed method; the results were comparable with those from HPLC standard method. The potentiometric analysis of ATR tablets by the proposed electrode resulted in a relative error of 0.8% and 1.5% for 20 and 40mg per tablets, respectively. Finally, the electrode was used in potentiometric titration of ATR (1.0×10(-3)molL(-1)) by CTAB (1.0×10(-3)molL(-1)). Excellent accuracy (≈100%) was obtained from the volume of the titrant at the endpoint. PMID:27612714

  9. Nacre-like calcium carbonate controlled by ionic liquid/graphene oxide composite template.

    PubMed

    Yao, Chengli; Xie, Anjian; Shen, Yuhua; Zhu, Jinmiao; Li, Hongying

    2015-06-01

    Nacre-like calcium carbonate nanostructures have been mediated by an ionic liquid (IL)-graphene oxide (GO) composite template. The resultant crystals were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray powder diffractometry (XRD). The results showed that either 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) or graphene oxide can act as a soft template for calcium carbonate formation with unusual morphologies. Based on the time-dependent morphology changes of calcium carbonate particles, it is concluded that nacre-like calcium carbonate nanostructures can be formed gradually utilizing [BMIM]BF4/GO composite template. During the process of calcium carbonate formation, [BMIM]BF4 acted not only as solvents but also as morphology templates for the fabrication of calcium carbonate materials with nacre-like morphology. Based on the observations, the possible mechanisms were also discussed.

  10. Ionic liquid as a promising biobased green solvent in combination with microwave irradiation for direct biodiesel production.

    PubMed

    Wahidin, Suzana; Idris, Ani; Shaleh, Sitti Raehanah Muhamad

    2016-04-01

    The wet biomass microalgae of Nannochloropsis sp. was converted to biodiesel using direct transesterification (DT) by microwave technique and ionic liquid (IL) as the green solvent. Three different ionic liquids; 1-butyl-3-metyhlimidazolium chloride ([BMIM][Cl], 1-ethyl-3-methylimmidazolium methyl sulphate [EMIM][MeSO4] and 1-butyl-3-methylimidazolium trifluoromethane sulfonate [BMIM][CF3SO3]) and organic solvents (hexane and methanol) were used as co-solvents under microwave irradiation and their performances in terms of percentage disruption, cell walls ruptured and biodiesel yields were compared at different reaction times (5, 10 and 15 min). [EMIM][MeSO4] showed highest percentage cell disruption (99.73%) and biodiesel yield (36.79% per dried biomass) after 15 min of simultaneous reaction. The results demonstrated that simultaneous extraction-transesterification using ILs and microwave irradiation is a potential alternative method for biodiesel production. PMID:26851899

  11. Ionic liquid-based aqueous two-phase system, a sample pretreatment procedure prior to high-performance liquid chromatography of opium alkaloids.

    PubMed

    Li, Shehong; He, Chiyang; Liu, Huwei; Li, Kean; Liu, Feng

    2005-11-01

    An ionic liquid, 1-butyl-3-methylimidazolium chloride ([C4 mim]Cl)/salt aqueous two-phase systems (ATPS) was presented as a simple, rapid and effective sample pretreatment technique coupled with high-performance liquid chromatography (HPLC) for analysis of the major opium alkaloids in Pericarpium papaveris. To find optimal conditions, the partition behaviors of codeine and papaverine in ionic liquid/salt aqueous two-phase systems were investigated. Various factors were considered systematically, and the results indicated that both the pH value and the salting-out ability of salt had great influence on phase separation. The recoveries of codeine and papaverine were 90.0-100.2% and 99.3-102.0%, respectively, from aqueous samples of P. papaveris by the proposed method. PMID:16143571

  12. Molecular dynamics simulation of the behaviour of water in nano-confined ionic liquid-water mixtures

    NASA Astrophysics Data System (ADS)

    Docampo-Álvarez, B.; Gómez-González, V.; Montes-Campos, H.; Otero-Mato, J. M.; Méndez-Morales, T.; Cabeza, O.; Gallego, L. J.; Lynden-Bell, R. M.; Ivaništšev, V. B.; Fedorov, M. V.; Varela, L. M.

    2016-11-01

    This work describes the behaviour of water molecules in 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid under nanoconfinement, between graphene sheets. By means of molecular dynamics simulations, the adsorption of water molecules at the graphene surface is studied. A depletion of water molecules in the vicinity of the neutral and negatively charged graphene surfaces, and their adsorption at the positively charged surface are observed in line with the preferential hydration of the ionic liquid anions. The findings are appropriately described using a two-level statistical model. The confinement effect on the structure and dynamics of the mixtures is thoroughly analyzed using the density and the potential of mean force profiles, as well as by the vibrational densities of the states of water molecules near the graphene surface. The orientation of water molecules and the water-induced structural transitions in the layer closest to the graphene surface are also discussed.

  13. Application of Ionic Liquids in the Microwave-Assisted Extraction of Proanthocyanidins from Larix gmelini Bark

    PubMed Central

    Yang, Lei; Sun, Xiaowei; Yang, Fengjian; Zhao, Chunjian; Zhang, Lin; Zu, Yuangang

    2012-01-01

    Ionic liquid based, microwave-assisted extraction (ILMAE) was successfully applied to the extraction of proanthocyanidins from Larix gmelini bark. In this work, in order to evaluate the performance of ionic liquids in the microwave-assisted extraction process, a series of 1-alkyl-3-methylimidazolium ionic liquids with different cations and anions were evaluated for extraction yield, and 1-butyl-3-methylimidazolium bromide was selected as the optimal solvent. In addition, the ILMAE procedure for the proanthocyanidins was optimized and compared with other conventional extraction techniques. Under the optimized conditions, satisfactory extraction yield of the proanthocyanidins was obtained. Relative to other methods, the proposed approach provided higher extraction yield and lower energy consumption. The Larix gmelini bark samples before and after extraction were analyzed by Thermal gravimetric analysis, Fourier-transform infrared spectroscopy and characterized by scanning electron microscopy. The results showed that the ILMAE method is a simple and efficient technique for sample preparation. PMID:22606036

  14. Metsulfuron-methyl-based herbicidal ionic liquids.

    PubMed

    Pernak, Juliusz; Niemczak, Michał; Shamshina, Julia L; Gurau, Gabriela; Głowacki, Grzegorz; Praczyk, Tadeusz; Marcinkowska, Katarzyna; Rogers, Robin D

    2015-04-01

    Ten sulfonylurea-based herbicidal ionic liquids (HILs) were prepared by combining the metsulfuron-methyl anion with various cation types including quaternary ammonium ([bis(2-hydroxyethyl)methyloleylammonium](+), [2-hydroxyethyltrimethylammonium](+)), pyridinium ([1-dodecylpyridinium](+)), piperidinium ([1-methyl-1-propylpiperidinium](+)), imidazolium ([1-allyl-3-methylimidazolium](+), [1-butyl-3-methylimidazolium](+)), pyrrolidinium ([1-butyl-1-methylpyrrolidinium](+)), morpholinium ([4-decyl-4-methylmorpholinium](+)), and phosphonium ([trihexyltetradecylphosphonium](+) and [tetrabutylphosphonium](+)). Their herbicidal efficacy was studied in both greenhouse tests and field trials. Preliminary results for the greenhouse tests showed at least twice the activity for all HILs when compared to the activity of commercial Galmet 20 SG, with HILs with phosphonium cations being the most effective. The results of two-year field studies showed significantly less enhancement of activity than observed in the greenhouse; nonetheless, it was found that the herbicidal efficacy was higher than that of the commercial analog, and efficacy varied depending on the plant species. PMID:25734891

  15. Furfural production from Eucalyptus wood using an Acidic Ionic Liquid.

    PubMed

    Peleteiro, Susana; Santos, Valentín; Garrote, Gil; Parajó, Juan Carlos

    2016-08-01

    Eucalyptus globulus wood samples were treated with hot, compressed water to separate hemicelluloses (as soluble saccharides) from a solid phase mainly made up of cellulose and lignin. The liquid phase was dehydrated, and the resulting solids (containing pentoses as well as poly- and oligo- saccharides made up of pentoses) were dissolved and reacted in media containing an Acidic Ionic Liquid (1-butyl-3-methylimidazolium hydrogen sulfate) and a co-solvent (dioxane). The effects of the reaction time on the product distribution were studied at temperatures in the range 120-170°C for reaction times up to 8h, and operational conditions leading to 59.1% conversion of the potential substrates (including pentoses and pentose structural units in oligo- and poly- saccharides) into furfural were identified. PMID:27112846

  16. Preparation of polyhedral oligomeric silsesquioxane based imprinted monolith.

    PubMed

    Li, Fang; Chen, Xiu-Xiu; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-12-18

    Polyhedral oligomeric silsesquioxane (POSS) was successfully applied, for the first time, to prepare imprinted monolithic column with high porosity and good permeability. The imprinted monolithic column was synthesized with a mixture of PSS-(1-Propylmethacrylate)-heptaisobutyl substituted (MA 0702), naproxon (template), 4-vinylpyridine, and ethylene glycol dimethacrylate, in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4). The influence of synthesis parameters on the retention factor and imprinting effect, including the amount of MA 0702, the ratio of template to monomer, and the ratio of monomer to crosslinker, was investigated. The greatest imprinting factor on the imprinted monolithic column prepared with MA 0702 was 22, about 10 times higher than that prepared in absence of POSS. The comparisons between MIP monoliths synthesized with POSS and without POSS were made in terms of permeability, column efficiency, surface morphology and pore size distribution. In addition, thermodynamic and Van Deemter analysis were used to evaluate the POSS-based MIP monolith.

  17. Cellulase-producing bacteria from Thai higher termites, Microcerotermes sp.: enzymatic activities and ionic liquid tolerance.

    PubMed

    Taechapoempol, Kitipong; Sreethawong, Thammanoon; Rangsunvigit, Pramoch; Namprohm, Weerachart; Thamprajamchit, Bandhit; Rengpipat, Sirirat; Chavadej, Sumaeth

    2011-05-01

    The three highest hydrolysis-capacity-value isolates of Bacillus subtilis (A 002, M 015, and F 018) obtained from Thai higher termites, Microcerotermes sp., under different isolation conditions (aerobic, anaerobic, and anaerobic/aerobic) were tested for cellulase activities--FPase, endoglucanase, and β-glucosidase--at 37 °C and pH 7.2 for 24 h. Their tolerance to an ionic liquid, 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), was also investigated. The results showed that the isolate M 015 provided the highest endoglucanase activity whereas the highest FPase and β-glucosidase activities were observed for the isolate F 018. The isolate F 018 also showed the highest tolerance to [BMIM]Cl in the range of 0.1-1.0 vol.%. In contrast, the isolate A 002 exhibited growth retardation in the presence of 0.5-1.0 vol.% [BMIM]Cl.

  18. Evaluation of a hydrophilic ionic liquid as a salting-out phase separation agent to a water-tetrahydrofuran homogeneous system for aqueous biphasic extraction separation.

    PubMed

    Hirayama, Naoki; Higo, Takaaki; Imura, Hisanori

    2012-01-01

    The use of a hydrophilic ionic liquid (IL), 1-butyl-3-methylimidazolium chloride (C(4)mimCl), as a salting-out phase separation agent to a water-tetrahydrofuran homogeneous system was studied for possible applications to novel aqueous biphasic extraction separation. The IL showed a salting-out phase-separation ability. Also, differences in the polarity between the formed two phases were smaller than that when using NaCl as a salting-out agent. This result suggested that C(4)mimCl remaining in water-rich phase acts not only as a salting-out agent, but also a component of a mixed-solvent. Possible uses of C(4)mimCl/NaCl mixed salting-out agent system were also discussed.

  19. Salting-out effects in aqueous ionic liquid solutions: cloud-point temperature shifts.

    PubMed

    Trindade, Joana R; Visak, Zoran P; Blesic, Marijana; Marrucho, Isabel M; Coutinho, João A P; Lopes, José N Canongia; Rebelo, Luis P N

    2007-05-10

    The effects of the addition of three inorganic salts, namely, NaCl, Na(2)SO(4), and Na(3)PO(4), on the liquid-liquid (L-L) phase diagram of aqueous solutions containing the model ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF(4)], were investigated. All three inorganic salts trigger salting-out effects, leading to significant upward shifts of the L-L demixing temperatures of the systems. The magnitude of the shifts depends on both the water-structuring nature of the salt and its concentration; that is, the effects are correlated with the ionic strength of the solution and the Gibbs free energy of hydration of the inorganic salt. The pH effect and the occurrence of salt precipitation in concentrated solutions are also discussed.

  20. Homogeneous esterification of xylan-rich hemicelluloses with maleic anhydride in ionic liquid.

    PubMed

    Peng, Xin-Wen; Ren, Jun-Li; Sun, Run-Cang

    2010-12-13

    Generation of bioenergy, new functional polymers, or chemicals and biomaterials from hemicelluloses are important uses for biomass. In this paper, a novel functional biopolymer with carbon-carbon double bond and carboxyl groups was prepared by a homogeneous esterification of xylan-rich hemicelluloses (XH) with maleic anhydride in 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) ionic liquid using LiOH as catalyst. The biopolymers with degrees of substitution (DS) between 0.095 and 0.75 were accessible in a completely homogeneous system by changing reaction temperature, reaction time, the dosage of catalyst, and the molar ratio of maleic anhydride to anhydroxylose unit in XH. Results obtained from FT-IR and (13)C NMR spectroscopies confirmed the structure of hemicellulosic derivatives with carbon-carbon double bond and carboxyl groups, implying an efficient method to prepare a novel and important functional biopolymer for biomaterials.

  1. The first molecular level monitoring of carbohydrate conversion to 5-hydroxymethylfurfural in ionic liquids. B2O3--an efficient dual-function metal-free promoter for environmentally benign applications.

    PubMed

    Khokhlova, Elena A; Kachala, Vadim V; Ananikov, Valentine P

    2012-04-01

    The mechanistic nature of the conversion of carbohydrates to the sustainable platform chemical 5-hydroxymethylfurfural (5-HMF) was revealed at the molecular level. A detailed study of the key sugar units involved in the biomass conversion process has shown that the simple dissolution of fructose in the ionic liquid 1-butyl-3-methylimidazolium chloride significantly changes the anomeric composition and favors the formation of the open fructoketose form. A special NMR approach was developed for the determination of molecular structures and monitoring of chemical reactions directly in ionic liquids. The transformation of glucose to 5-HMF has been followed in situ through the detection of intermediate species. A new environmentally benign, easily available, metal-free promoter with a dual functionality (B(2)O(3)) was developed for carbohydrate conversion to 5-HMF. PMID:22359390

  2. Two-dimensional ultrafast vibrational spectroscopy of azides in ionic liquids reveals solute-specific solvation.

    PubMed

    Dutta, Samrat; Ren, Zhe; Brinzer, Thomas; Garrett-Roe, Sean

    2015-10-28

    The stereochemistry and the reaction rates of bimolecular nucleophilic substitution reactions involving azides in ionic liquids are governed by solute-solvent interactions. Two-dimensional ultrafast vibrational spectroscopy (2D-IR) shows that the picosecond dynamics of inorganic azides are substantially slower than organic azides in a series of homologous imidazolium ionic liquids. In water, both organic and inorganic azides spectrally diffuse with a ∼2 ps time constant. In the aprotic solvent tetrahydrofuran, both kinds of azides spectrally diffuse on a timescale >5 ps. In ionic liquids, like 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), organic azides spectrally diffuse with a 2-4 ps time constant, and inorganic azides spectrally diffuse with a >40 ps time constant. Such a striking difference suggests that neutral (organic) and charged (inorganic) azides are incorporated in the ionic liquids with different solvation structures.

  3. Supported Ionic Liquid Membranes and Ion-Jelly® Membranes with [BMIM][DCA]: Comparison of Its Performance for CO2 Separation

    PubMed Central

    Couto, Ricardo; Neves, Luísa; Simões, Pedro; Coelhoso, Isabel

    2015-01-01

    In this work, a supported ionic liquid membrane (SILM) was prepared by impregnating a PVDF membrane with 1-butyl-3-methylimidazolium dicyanamide ([BMIM][DCA]) ionic liquid. This membrane was tested for its permeability to pure gases (CO2, N2 and O2) and ideal selectivities were calculated. The SILM performance was also compared to that of Ion-Jelly® membranes, a new type of gelled membranes developed recently. It was found that the PVDF membrane presents permeabilities for pure gases similar or lower to those presented by the Ion-Jelly® membranes, but with increased ideal selectivities. This membrane presents also the highest ideal selectivity (73) for the separation of CO2 from N2 when compared with SILMs using the same PVDF support but with different ionic liquids. PMID:25594165

  4. Comparison of some new pretreatment methods for second generation bioethanol production from wheat straw and water hyacinth.

    PubMed

    Guragain, Yadhu Nath; De Coninck, Joelle; Husson, Florence; Durand, Alain; Rakshit, Sudip Kumar

    2011-03-01

    Pretreatment of lignocellulosic residues like water hyacinth (WH) and wheat straw (WS) using crude glycerol (CG) and ionic liquids (IL) pretreatment was evaluated and compared with conventional dilute acid pretreatment (DAT) in terms of enzymatic hydrolysis yield and fermentation yield of pretreated samples. In the case of WS, 1-butyl-3-methylimidazolium acetate pretreatment was found to be the best method. The hydrolysis yields of glucose and total reducing sugars were 2.1 and 3.3 times respectively higher by IL pretreatment than DAT, while it was 1.4 and 1.9 times respectively higher with CG pretreatment. For WH sample, CG pretreatment was as effective as DAT and more effective than IL pretreatment regarding hydrolysis yield. The fermentation inhibition was not noticeable with both types of pretreatment methods and feedstocks. Besides, CG pretreatment was found as effective as pure glycerol pretreatment for both feedstocks. This opens up an attractive economic route for the utilization of CG. PMID:21273061

  5. Separation of Lignin from Corn Stover Hydrolysate with Quantitative Recovery of Ionic Liquid

    PubMed Central

    Underkofler, Kaylee A.; Teixeira, Rodrigo E.; Pietsch, Stephen A.; Knapp, Kurtis G.; Raines, Ronald T.

    2015-01-01

    Abundant lignocellulosic biomass could become a source of sugars and lignin, potential feedstocks for the now emergent bio-renewable economy. The production and conversion of sugars from biomass have been well-studied, but far less is known about the production of lignin that is amenable to valorization. Here we report the isolation of lignin generated from the hydrolysis of biomass dissolved in the ionic liquid 1-butyl-3-methylimidazolium chloride. We show that lignin can be isolated from the hydrolysate slurry by simple filtration or centrifugation, and that the ionic liquid can be recovered quantitatively by a straightforward wash with water. The isolated lignin is not only free from ionic liquid, but also lacks cellulosic residues and is substantially depolymerized, making it a promising feedstock for valorization by conversion into fuels and chemicals. PMID:25866701

  6. Morphology-controlled synthesis of nanostructured zinc hydroxide fluoride via a microwave-assisted ionic liquid route

    NASA Astrophysics Data System (ADS)

    Zhang, Songtao; Zheng, Mingbo; Song, Jiakui; Li, Nianwu; Lu, Hongling; Cao, Jieming

    2014-12-01

    Zinc hydroxide fluoride (Zn(OH)F) with multiform morphologies such as flower-like particles, pumpkin-like aggregates, and hollow orange-like aggregates are prepared by a microwave-assisted ionic liquid method. During synthesis, microwave irradiation accelerates the reaction rate and shortens the reaction time. 1-Butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) or 1-2-hydroxylethyl-3-methylimidazolium tetrafluoroborate ([C2OHmim][BF4]) is used as both reactant and template. Experimental results indicate that the morphology evolution of Zn(OH)F is mainly controlled by the concentration of zinc acetate solution. A possible mechanism underlying the formation of nanostructured Zn(OH)F with diverse morphologies is proposed. Furthermore, nanoporous ZnO is obtained by the thermal decomposition of as-prepared Zn(OH)F in air, and the morphology is well retained.

  7. Fluorescence spectroscopic analysis of the interaction of papain with ionic liquids.

    PubMed

    Fan, Yunchang; Yan, Jinlong; Zhang, Sheli; Li, Junhai; Chen, Dong; Duan, Peigao

    2012-10-01

    The interaction between papain and two typical ionic liquids (ILs), 1-octyl-3-methylimidazolium chloride ([C(8)mim]Cl) and 1-butyl-3-methylimidazolium chloride ([C(4)mim]Cl), was investigated by using fluorescence spectroscopy technique at a pH value of 7.4. The results suggested that ILs could quench the intrinsic fluorescence of papain probably via a static quenching mechanism. The binding constants were determined by employing the fluorescence quenching method. They were very small compared with that of volatile organic solvents, indicating that only very weak interaction between ILs and papain existed. The Gibbs free energy change (∆G), enthalpy change (∆H), and entropy change (∆S) during the interaction of papain and ILs were estimated. Negative values of these parameters indicated that the interaction between ILs and papain was a spontaneous process, also implying that hydrogen bonding and van der Waals forces played important roles in the interaction processes. PMID:22798189

  8. Volumetric properties of binary mixtures of benzene with cyano-based ionic liquids

    NASA Astrophysics Data System (ADS)

    Gonfa, Girma; Bustam, Mohamad Azmi; Moniruzzaman, Muhammad; Murugesan, Thanabalan

    2014-10-01

    The objective of this study is to investigate the volumetric properties of the binary mixtures comprised benzene and two ionic liquids, 1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN]) and 1-butyl-3-methyl- imidazolium dicyanamide ([ BMIM ][ N ( CN )2]( . Densities (ρ) and viscosities (μ) of the binary mixtures were measured over a temperature range of 293.15 to 323.15 K and at atmospheric pressure. Excess molar volumes and viscosity deviations were calculated from the experimental densities and viscosities values. The volumetric properties of the mixtures were changed significantly with the change of compositions and temperatures. It was also found that the value of excess molar volume and viscosity deviations were negative (-ve) over the entire range of compositions. The results have been interpreted in terms of molecular interactions of ILs and benzene.

  9. Fabrication of normally-off AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistors by photo-electrochemical gate recess etching in ionic liquid

    NASA Astrophysics Data System (ADS)

    Zhang, Zhili; Qin, Shuangjiao; Fu, Kai; Yu, Guohao; Li, Weiyi; Zhang, Xiaodong; Sun, Shichuang; Song, Liang; Li, Shuiming; Hao, Ronghui; Fan, Yaming; Sun, Qian; Pan, Gebo; Cai, Yong; Zhang, Baoshun

    2016-08-01

    We characterized an ionic liquid (1-butyl-3-methylimidazolium nitrate, C8H15N3O3) as a photo-electrochemical etchant for fabricating normally-off AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistors (MIS-HEMTs). Using the ionic liquid, we achieved an etching rate of ∼2.9 nm/min, which is sufficiently low to facilitate good etching control. The normally-off AlGaN/GaN MIS-HEMT was fabricated with an etching time of 6 min, with the 20 nm low-pressure chemical vapor deposition (LPCVD) silicon nitride (Si3N4) gate dielectric exhibiting a threshold voltage shift from ‑10 to 1.2 V, a maximum drain current of more than 426 mA/mm, and a breakdown voltage of 582 V.

  10. Synergistic effects of surfactant-assisted ionic liquid pretreatment rice straw.

    PubMed

    Chang, Ken-Lin; Chen, Xi-Mei; Han, Ye-Ju; Wang, Xiao-Qin; Potprommanee, Laddawan; Ning, Xun-An; Liu, Jing-Yong; Sun, Jian; Peng, Yen-Ping; Sun, Shui-Yu; Lin, Yuan-Chung

    2016-08-01

    The aim of this work was to study an environmentally friendly method for pretreating rice straw by using 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) as an ionic liquid (IL) assisted by surfactants. Different temperatures, reaction times, and surfactant concentrations were studied. Compared with [BMIM]Cl only pretreatment, the addition of 1% sodium dodecyl sulfate (SDS) and 1% cetyl trimethyl ammonium bromide (CTAB) increased lignin removal to 49.48% and 34.76%, respectively. Untreated and pretreated rice straw was thoroughly characterized through FTIR, XRD, and FE-SEM. Cellulose crystallinity and surface morphology of the rice straw were substantially altered after surfactant-assisted IL pretreatment. In conclusion, surfactant-assisted IL pretreatment is an effective method for producing fermentable sugars from lignocellulosic substrates. PMID:27155265

  11. Radiation stability of some room temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Jagadeeswara Rao, Ch.; Venkatesan, K. A.; Tata, B. V. R.; Nagarajan, K.; Srinivasan, T. G.; Vasudeva Rao, P. R.

    2011-05-01

    Radiation stability of some room temperature ionic liquids (RTILs) that find useful electrochemical applications in nuclear fuel cycle has been evaluated. The ionic liquids such as protonated betaine bis(trifluoromethylsulfonyl)imide (HbetNTf 2), aliquat 336 (tri-n-octlymethylammonium chloride), 1-butyl-3-methylimidazolium chloride (bmimCl), 1-hexyl-3-methylimidazolium chloride (hmimCl), N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPyNTf 2) and N-methyl-N-propylpiperidinium bis(trifluoromethylsulfonyl)imide (MPPiNTf 2) have been irradiated to various absorbed dose levels, up to 700 kGy. The effect of gamma radiation on these ionic liquids has been evaluated by determining the variations in the physical properties such as color, density, viscosity, refractive index and electrochemical window. The changes in density, viscosity and refractive index of these ionic liquids upon irradiation were insignificant; however, the color and electrochemical window varied significantly with increase of absorbed dose.

  12. Cellobiose as a model system to reveal cellulose dissolution mechanism in acetate-based ionic liquids: Density functional theory study substantiated by NMR spectra.

    PubMed

    Cao, Bobo; Du, Jiuyao; Du, Dongmei; Sun, Haitao; Zhu, Xiao; Fu, Hui

    2016-09-20

    Cellulose dissolution mechanism in acetate-based ionic liquids was systematically studied in Nuclear Magnetic Resonance (NMR) spectra and Density Functional Theory (DFT) methods by using cellobiose and 1-butyl-3-methylimidazolium acetate (BmimAc) as a model system. The solubility of cellulose in ionic liquid increased with temperature increase in the range of 90-140°C. NMR spectra suggested OAc(-) preferred to form stronger hydrogen bonds with hydrogen of hydroxyl in cellulose. Electrostatic potential method was employed to predict the most possible reaction sites and locate the most stable configuration. Atoms in molecules (AIM) theory was used to study the features of bonds at bond critical points and the variations of bond types. Simultaneously, noncovalent interactions were characterized and visualized by employing reduced density gradient analysis combined with Visual Molecular Dynamics (VMD) program. Natural bond orbital (NBO) theory was applied to study the noncovalent nature and characterize the orbital interactions between cellobiose and Bmim[OAc]. PMID:27261759

  13. High Performance Fe Porphyrin/Ionic Liquid Co-catalyst for Electrochemical CO2 Reduction.

    PubMed

    Choi, Jaecheol; Benedetti, Tania M; Jalili, Rouhollah; Walker, Ashley; Wallace, Gordon G; Officer, David L

    2016-09-26

    The efficient and selective catalytic reduction of CO2 is a highly promising process for both of the storage of renewable energy as well as the production of valuable chemical feedstocks. In this work, we show that the addition of an ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, in an aprotic electrolyte containing a proton source and FeTPP, promotes the in situ formation of the [Fe(0) TPP](2-) homogeneous catalyst at a less negative potential, resulting in lower overpotentials for the CO2 reduction (670 mV) and increased kinetics of electron transfer. This co-catalysis exhibits high Faradaic efficiency for CO production (93 %) and turnover number (2 740 000 after 4 hour electrolysis), with a four-fold increase in turnover frequency (TOF) when compared with the standard system without the ionic liquid.

  14. Trivalent actinide and lanthanide separations using tetraalkyldiglycolamides (TCnDGA) in molecular and ionic liquid diluents

    SciTech Connect

    Bruce J. Mincher; Robert V. Fox; Mary E. Mincher; Chien M. Wai

    2014-09-01

    The use of the diglycolamide, tetrabutyldiglycolamide was investigated for intergroup separations of the lanthanides, focusing especially on those lanthanides (Y, Ce, Eu, Tb, Dy, Er, and Yb) found in lighting phosphors. Tetrabutyldiglycolamide extraction efficiency for the lanthanides varied depending on whether the diluent was the conventional molecular diluent 1-octanol, the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide, or a mixture of the two. This was attributed to extraction of either neutral, cationic or anionic lanthanide metal complexes with nitrate ion. Based on the batch contact solvent extraction results measured here, a series of extractions providing product streams containing separated Y, Ce, Eu, Tb/Dy, and Er/Yb are proposed.

  15. Charge-Induced Long-Range Order in a Room-Temperature Ionic Liquid.

    PubMed

    Ma, Ke; Jarosova, Romana; Swain, Greg M; Blanchard, Gary J

    2016-09-20

    We report direct evidence for charge-induced long-range (ca. 100 μm) order in the room-temperature ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM(+)BF4(-)), supported on a silica surface. We have measured the rotational diffusion dynamics of anionic, cationic, and neutral chromophores as a function of distance from a silica surface. The results reflect the excess charge density gradient induced in the IL by the (negative) charge present on the silica surface. Identical measurements in ethylene glycol reveal spatially invariant reorientation dynamics for all chromophores. Capping the silica support with Me2SiCl2 results in spatially invariant reorientation dynamics in the IL. We understand these data in the context of the IL exhibiting a spatially damped piezoelectric response mediated by IL fluidity and disorder. PMID:27563803

  16. Recovery of ionic liquid via a hybrid methodology of electrodialysis with ultrafiltration after biomass pretreatment.

    PubMed

    Liang, Xiaocong; Fu, Yan; Chang, Jie

    2016-11-01

    Hybrid membrane-based methodology of electrodialysis (ED) with ultrafiltration (UF) was employed to recover the IL BmimBr (1-Butyl-3-methylimidazolium bromide) after biomass fractionation. Ultrafiltration was used to remove the residual lignin in IL solutions. Influence of molecular weight interception of UF treatment, initial IL concentration in dilute section, applied voltage and flow rate in each section of ED module were studied in detail. In this study, the highest overall IL recovery ratio reached 75.2% and the current efficiency of ED process approached 79.1%. Besides, the highest IL recovery performance of specific energy consumption was about 514.1g/kw·h. Insight gained from this study suggests a potential methodology for IL recovery after the pretreatment process for biomass. PMID:27589823

  17. Rapid carbonation for calcite from a solid-liquid-gas system with an imidazolium-based ionic liquid.

    PubMed

    Ibrahim, Abdul-Rauf; Vuningoma, Jean Bosco; Huang, Yan; Wang, Hongtao; Li, Jun

    2014-06-25

    Aqueous carbonation of Ca(OH)2 is a complex process that produces calcite with scalenohedral calcite phases and characterized by inadequate carbonate species for effective carbonation due to the poor dissolution of CO2 in water. Consequently, we report a solid-liquid-gas carbonation system with an ionic liquid (IL), 1-butyl-3-methylimidazolium bromide, in view of enhancing the reaction of CO2 with Ca(OH)2. The use of the IL increased the solubility of CO2 in the aqueous environment and enhanced the transport of the reactive species (Ca2+ and CO32-) and products. The presence of the IL also avoided the formation of the CaCO3 protective and passivation layer and ensured high carbonation yields, as well as the production of stoichiometric rhombohedral calcite phases in a short time.

  18. High Performance Fe Porphyrin/Ionic Liquid Co-catalyst for Electrochemical CO2 Reduction.

    PubMed

    Choi, Jaecheol; Benedetti, Tania M; Jalili, Rouhollah; Walker, Ashley; Wallace, Gordon G; Officer, David L

    2016-09-26

    The efficient and selective catalytic reduction of CO2 is a highly promising process for both of the storage of renewable energy as well as the production of valuable chemical feedstocks. In this work, we show that the addition of an ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, in an aprotic electrolyte containing a proton source and FeTPP, promotes the in situ formation of the [Fe(0) TPP](2-) homogeneous catalyst at a less negative potential, resulting in lower overpotentials for the CO2 reduction (670 mV) and increased kinetics of electron transfer. This co-catalysis exhibits high Faradaic efficiency for CO production (93 %) and turnover number (2 740 000 after 4 hour electrolysis), with a four-fold increase in turnover frequency (TOF) when compared with the standard system without the ionic liquid. PMID:27464300

  19. Rapid Carbonation for Calcite from a Solid-Liquid-Gas System with an Imidazolium-Based Ionic Liquid

    PubMed Central

    Ibrahim, Abdul-Rauf; Vuningoma, Jean Bosco; Huang, Yan; Wang, Hongtao; Li, Jun

    2014-01-01

    Aqueous carbonation of Ca(OH)2 is a complex process that produces calcite with scalenohedral calcite phases and characterized by inadequate carbonate species for effective carbonation due to the poor dissolution of CO2 in water. Consequently, we report a solid-liquid-gas carbonation system with an ionic liquid (IL), 1-butyl-3-methylimidazolium bromide, in view of enhancing the reaction of CO2 with Ca(OH)2. The use of the IL increased the solubility of CO2 in the aqueous environment and enhanced the transport of the reactive species (Ca2+ and CO32−) and products. The presence of the IL also avoided the formation of the CaCO3 protective and passivation layer and ensured high carbonation yields, as well as the production of stoichiometric rhombohedral calcite phases in a short time. PMID:24968273

  20. Ionic liquid, glass or crystalline solid? Structures and thermal behaviour of (C4mim)2CuCl3.

    PubMed

    Zürner, Philipp; Schmidt, Horst; Bette, Sebastian; Wagler, Jörg; Frisch, Gero

    2016-02-28

    The ionic liquid (C4mim)2CuCl3 was synthesised from a mixture of copper(i) chloride and 1-butyl-3-methylimidazolium chloride (C4mimCl) and investigated using crystallographic and thermoanalytical methods. In the crystalline state, the compound consists of C4mim(+) cations and triangular [CuCl3](2-) anions and forms three different modifications, which are connected through phase transitions at 227 and 203 K. The high and intermediate temperature phases crystallise in the space group C2, whereas the low temperature phase exhibits the space group P21. The three crystal structures are related through an isomorphic and a klassengleiche symmetry transition, respectively. The solid undergoes congruent melting at 320 K. The enthalpy of fusion was determined to be 25.7 kJ mol(-1). The melting process is irreversible and the ionic liquid can be supercooled to its glass transition at 221 K. PMID:26785819

  1. Cellobiose as a model system to reveal cellulose dissolution mechanism in acetate-based ionic liquids: Density functional theory study substantiated by NMR spectra.

    PubMed

    Cao, Bobo; Du, Jiuyao; Du, Dongmei; Sun, Haitao; Zhu, Xiao; Fu, Hui

    2016-09-20

    Cellulose dissolution mechanism in acetate-based ionic liquids was systematically studied in Nuclear Magnetic Resonance (NMR) spectra and Density Functional Theory (DFT) methods by using cellobiose and 1-butyl-3-methylimidazolium acetate (BmimAc) as a model system. The solubility of cellulose in ionic liquid increased with temperature increase in the range of 90-140°C. NMR spectra suggested OAc(-) preferred to form stronger hydrogen bonds with hydrogen of hydroxyl in cellulose. Electrostatic potential method was employed to predict the most possible reaction sites and locate the most stable configuration. Atoms in molecules (AIM) theory was used to study the features of bonds at bond critical points and the variations of bond types. Simultaneously, noncovalent interactions were characterized and visualized by employing reduced density gradient analysis combined with Visual Molecular Dynamics (VMD) program. Natural bond orbital (NBO) theory was applied to study the noncovalent nature and characterize the orbital interactions between cellobiose and Bmim[OAc].

  2. Nacre-like calcium carbonate controlled by ionic liquid/graphene oxide composite template.

    PubMed

    Yao, Chengli; Xie, Anjian; Shen, Yuhua; Zhu, Jinmiao; Li, Hongying

    2015-06-01

    Nacre-like calcium carbonate nanostructures have been mediated by an ionic liquid (IL)-graphene oxide (GO) composite template. The resultant crystals were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray powder diffractometry (XRD). The results showed that either 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) or graphene oxide can act as a soft template for calcium carbonate formation with unusual morphologies. Based on the time-dependent morphology changes of calcium carbonate particles, it is concluded that nacre-like calcium carbonate nanostructures can be formed gradually utilizing [BMIM]BF4/GO composite template. During the process of calcium carbonate formation, [BMIM]BF4 acted not only as solvents but also as morphology templates for the fabrication of calcium carbonate materials with nacre-like morphology. Based on the observations, the possible mechanisms were also discussed. PMID:25842135

  3. Modified pineapple peel cellulose hydrogels embedded with sepia ink for effective removal of methylene blue.

    PubMed

    Dai, Hongjie; Huang, Huihua

    2016-09-01

    Novel composite hydrogels based on pineapple peel cellulose and sepia ink were synthesized by homogeneous acetylation of cellulose in ionic liquid 1-butyl-3-methylimidazolium chloride. The structure and morphology of the prepared hydrogels were characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscope, X-ray diffraction, thermogravimetry and differential scanning calorimetry. The effects of acetylation time, acetylation temperature, molar ratio of acetic anhydride/anhydroglucose unit and the additive amount of sepia ink on methylene blue adsorption capacity of the hydrogels embedded with sepia ink were also investigated. Methylene blue adsorption of the hydrogels followed pseudo-second-order kinetic model and sepia ink improved adsorption capacity significantly. The adsorption capacity at equilibrium was increased from 53.72 to 138.25mg/g when the additive amount of sepia ink of the hydrogels was 10%. PMID:27185109

  4. Microregion detection of ionic liquid microemulsions.

    PubMed

    Gao, Yanan; Wang, Suqing; Zheng, Liqiang; Han, Shuaibing; Zhang, Xuan; Lu, Deming; Yu, Li; Ji, Yongqiang; Zhang, Gaoyong

    2006-09-15

    Nonaqueous ionic liquid (IL) microemulsion consisting of IL, 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)), surfactant TX-100, and toluene was prepared and the phase behavior of the ternary system was investigated. Electrical conductivity measurement was used for investigating the microregions of the nonaqueous IL microemulsions. On the basis of the percolation theory, the bmimBF(4)-in-toluene (IL/O), bicontinuous, and toluene-in-bmimBF(4) (O/IL) microregions of the microemulsions were successfully identified using insulative toluene as the titration phase. However, this method was invalid when conductive bmimBF(4) acted as the titration phase. The microregions obtained by conductivity measurements were further proved by electrochemical cyclic voltammetry experiments. The results indicated that the conductivity method was feasible for identifying microstructures of the nonaqueous IL microemulsions. PMID:16765365

  5. Dynamics of solvation and rotational relaxation of Coumarin 153 in ionic liquid confined nanometer-sized microemulsions.

    PubMed

    Chakrabarty, Debdeep; Seth, Debabrata; Chakraborty, Anjan; Sarkar, Nilmoni

    2005-03-31

    The effects of confinement of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate on solvation dynamics and rotational relaxation of Coumarin 153 (C-153) in Triton X-100/cyclohexane microemulsions have been explored using steady-state and picosecond time-resolved emission spectroscopy. The steady-state and rotational relaxation data indicate that C-153 molecules are incorporated in the core of the microemulsions. The average rotational relaxation time increases with increase in w ([bmim][BF(4)]/[TX-100]) values. The solvent relaxation in the core of the microemulsion occurs on two different time scales and is almost insensitive to the increase in w values. The solvent relaxation is retarded in the pool of the microemulsions compared to the neat solvent. Though, the retardation is very small compared to several-fold retardation of the solvation time of the conventional solvent inside the pool of the microemulsions. PMID:16851624

  6. Plasticizing effect of ionic liquid on cellulose acetate obtained by melt processing.

    PubMed

    Bendaoud, Amine; Chalamet, Yvan

    2014-08-01

    Cellulose acetate (CA) plasticized by 1-butyl-3-methylimidazolium chloride (BMIMCl) and with diethylphtalate (DEP) was obtained by melt processing at 150°C. The effect and the interaction of ionic liquid with the cellulose acetate and their influence on structural, thermo-mechanical, rheological and tensile properties of CA materials were investigated. Ionic liquid (BMIMCl) has shown a good plasticization and more efficient destruction of the crystalline structure of cellulose acetate than the DEP plasticized CA. BMIMCl interacts intensively with CA molecules due to the pronounced van der Waals interactions, hydrogen bonding and electrostatic nature of ionic liquid. The tensile test and the low Young's modulus for plasticized CA suggest a strong reduction of the interaction between the CA chains due to the presence of the ionic liquid.

  7. Efficient dehydration of 6-gingerol to 6-shogaol catalyzed by an acidic ionic liquid under ultrasound irradiation.

    PubMed

    Kou, Xingran; Li, Xingze; Rahman, Md Ramim Tanver; Yan, Minming; Huang, Huanhuan; Wang, Hongxin; Su, Yihai

    2017-01-15

    6-Gingerol and 6-shogaol are the main bioactive compounds in ginger. Although 6-shogaol has more and better bioactivities than its precursor 6-gingerol, the low content of 6-shogaol in ginger restricts its bioactive effects in functional foods. The traditional preparation methods of 6-shogaol are defective because of the environmental hazards and low efficiency of the processes. In this study, an efficient, easy and eco-friendly dehydration conversion of 6-gingerol to 6-shogaol is presented using an acidic ionic liquid 1-butyl-3-methylimidazolium hydrosulfate ([Bmim]HSO4) under ultrasound irradiation. The key parameters, including reaction temperature, reaction time, mass ratio of catalyst to substrate and ultrasonic power in each reaction process, were investigated. The yield of 6-shogaol reached as high as 97.16% under optimized condition. The catalyst could be separated from the reaction mixture and reused five times with only a slight loss of activity. PMID:27542467

  8. Crystalline characteristics of cellulose fiber and film regenerated from ionic liquid solution.

    PubMed

    Sun, Liangfeng; Chen, Jonathan Y; Jiang, Wei; Lynch, Vincent

    2015-03-15

    Regenerated cellulose fiber, fiber extrudate, and film were produced from cellulose solution prepared with raw pulp and ionic liquid solvent 1-butyl-3-methylimidazolium chloride ([BMIM]Cl). Spinning setting was based on a dry-jet and wet-spun approach including extrusion, coagulation, drawing, drying, and winding. Crystallization of the experimental fiber, fiber extrudate, and film was evaluated using a technique of wide angle X-ray diffraction (WAXD). Crystallinity index, crystallite size, and crystal orientation factor were calculated and compared among these samples. Influence of die shape, die dimension, and drawing speed on the regenerated cellulose crystallinity was discussed. The study indicated that the pulp cellulose was a Cellulose I type structure. The cellulose regeneration from the [BMIM]Cl solution completed a transformation from this intermediate phase to a final Cellulose II phase. The die shape and dimension and drawing speed were all important factors affecting the crystallinity of regenerated cellulose fiber and film. PMID:25542120

  9. Molecular dynamics simulation of the behaviour of water in nano-confined ionic liquid-water mixtures.

    PubMed

    Docampo-Álvarez, B; Gómez-González, V; Montes-Campos, H; Otero-Mato, J M; Méndez-Morales, T; Cabeza, O; Gallego, L J; Lynden-Bell, R M; Ivaništšev, V B; Fedorov, M V; Varela, L M

    2016-11-23

    This work describes the behaviour of water molecules in 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid under nanoconfinement, between graphene sheets. By means of molecular dynamics simulations, the adsorption of water molecules at the graphene surface is studied. A depletion of water molecules in the vicinity of the neutral and negatively charged graphene surfaces, and their adsorption at the positively charged surface are observed in line with the preferential hydration of the ionic liquid anions. The findings are appropriately described using a two-level statistical model. The confinement effect on the structure and dynamics of the mixtures is thoroughly analyzed using the density and the potential of mean force profiles, as well as by the vibrational densities of the states of water molecules near the graphene surface. The orientation of water molecules and the water-induced structural transitions in the layer closest to the graphene surface are also discussed. PMID:27623714

  10. Electrocatalysis of CO2 Reduction in Brush Polymer Ion Gels.

    PubMed

    McNicholas, Brendon J; Blakemore, James D; Chang, Alice B; Bates, Christopher M; Kramer, Wesley W; Grubbs, Robert H; Gray, Harry B

    2016-09-01

    The electrochemical characterization of brush polymer ion gels containing embedded small-molecule redox-active species is reported. Gels comprising PS-PEO-PS triblock brush polymer, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIm-TFSI), and some combination of ferrocene (Fc), cobaltocenium (CoCp2(+)), and Re(bpy)(CO)3Cl (1) exhibit diffusion-controlled redox processes with diffusion coefficients approximately one-fifth of those observed in neat BMIm-TFSI. Notably, 1 dissolves homogeneously in the interpenetrating matrix domain of the ion gel and displays electrocatalytic CO2 reduction to CO in the gel. The catalytic wave exhibits a positive shift versus Fc(+/0) compared with analogous nonaqueous solvents with a reduction potential 450 mV positive of onset and 90% Faradaic efficiency for CO production. These materials provide a promising and alternative approach to immobilized electrocatalysis, creating numerous opportunities for application in solid-state devices.

  11. Furfural production from Eucalyptus wood using an Acidic Ionic Liquid.

    PubMed

    Peleteiro, Susana; Santos, Valentín; Garrote, Gil; Parajó, Juan Carlos

    2016-08-01

    Eucalyptus globulus wood samples were treated with hot, compressed water to separate hemicelluloses (as soluble saccharides) from a solid phase mainly made up of cellulose and lignin. The liquid phase was dehydrated, and the resulting solids (containing pentoses as well as poly- and oligo- saccharides made up of pentoses) were dissolved and reacted in media containing an Acidic Ionic Liquid (1-butyl-3-methylimidazolium hydrogen sulfate) and a co-solvent (dioxane). The effects of the reaction time on the product distribution were studied at temperatures in the range 120-170°C for reaction times up to 8h, and operational conditions leading to 59.1% conversion of the potential substrates (including pentoses and pentose structural units in oligo- and poly- saccharides) into furfural were identified.

  12. Ionothermal synthesis process for aluminophosphate molecular sieves in the mixed water/ionic liquid system.

    PubMed

    Zhao, Zhenchao; Zhang, Weiping; Xu, Renshun; Han, Xiuwen; Tian, Zhijian; Bao, Xinhe

    2012-01-21

    The synthesis process of aluminophosphate AlPO(4)-11 molecular sieve in the mixed water/1-butyl- 3-methylimidazolium bromide ([bmim]Br) ionic liquid was investigated by XRD, multinuclear solid-state NMR, scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS). It was observed that a tablet phase, named SIZ-2, was formed at the early stage of crystallization. During crystallization metastable SIZ-2 with an incompletely condensed framework phosphorus disappeared gradually, and the phosphorous species became fully condensed through hydroxyl reaction with tetrahedral aluminum to form thermodynamically stable AlPO(4)-11 in the final product. It was found that [bmim]Br, acting as the structure-directing agent, was occluded into the AlPO(4)-11 channel.

  13. Circular dichroism studies on intermolecular interactions of amphotericin B in ionic liquid-rich environments.

    PubMed

    Jameson, Laramie P; Dzyuba, Sergei V

    2013-07-01

    Aggregation of amphotericin B (AmB) in an ionic liquid-rich environment was investigated using circular dichroism (CD) spectroscopy. It was found that nature of the ionic liquids' anion had a strong impact not only on the aggregation of AmB, but more importantly on the nature of AmB aggregates, as observed in the asymmetry of the exciton couplet of the aggregate in CD spectra. Unique CD signals for AmB aggregates were observed in three different 1-butyl-3-methylimidazolium ionic liquid solutions: [C4 -mim]Br favored the formation of AmB aggregates that were similar to those found in water, whereas [C4 -mim]BF4 and [C4 -mim]NO3 produced AmB aggregates that were different from each other and those found in water. The obtained results suggest that the designer solvent ability of ionic liquids could be expanded to address numerous intermolecular processes.

  14. Fabrication of normally-off AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors by photo-electrochemical gate recess etching in ionic liquid

    NASA Astrophysics Data System (ADS)

    Zhang, Zhili; Qin, Shuangjiao; Fu, Kai; Yu, Guohao; Li, Weiyi; Zhang, Xiaodong; Sun, Shichuang; Song, Liang; Li, Shuiming; Hao, Ronghui; Fan, Yaming; Sun, Qian; Pan, Gebo; Cai, Yong; Zhang, Baoshun

    2016-08-01

    We characterized an ionic liquid (1-butyl-3-methylimidazolium nitrate, C8H15N3O3) as a photo-electrochemical etchant for fabricating normally-off AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs). Using the ionic liquid, we achieved an etching rate of ˜2.9 nm/min, which is sufficiently low to facilitate good etching control. The normally-off AlGaN/GaN MIS-HEMT was fabricated with an etching time of 6 min, with the 20 nm low-pressure chemical vapor deposition (LPCVD) silicon nitride (Si3N4) gate dielectric exhibiting a threshold voltage shift from -10 to 1.2 V, a maximum drain current of more than 426 mA/mm, and a breakdown voltage of 582 V.

  15. Advanced two-photon photolithography for patterning of transparent, electrically conductive ionic liquid-polymer nanostructures

    NASA Astrophysics Data System (ADS)

    Bakhtina, Natalia A.; MacKinnon, Neil; Korvink, Jan G.

    2016-04-01

    A key challenge in micro- and nanotechnology is the direct patterning of functional structures. For example, it is highly desirable to possess the ability to create three-dimensional (3D), conductive, and optically transparent structures. Efforts in this direction have, to date, yielded less than optimal results since the polymer composites had low optical transparency over the visible range, were only slightly conductive, or incompatible with high resolution structuring. We have previously presented the novel cross-linkable, conductive, highly transparent composite material based on a photoresist (IP-L 780, OrmoComp, or SU-8) and the ionic liquid 1-butyl-3-methylimidazolium dicyanamide. Material patterning by conventional and two-photon photolithography has been demonstrated as proof-of-concept. Aiming to increase the resolution and to extend the spectrum of exciting applications we continued our research into identifying new ionic liquid - polymer composites. In this paper, we report the precise 3D single-step structuring of optically transparent and electrically conductive ionic liquid - polymer nanostructures with the highest spatial resolution (down to 150 nm) achieved to date. This was achieved via the development of novel cross-linkable composite based on the photoresist IP-G 780 and the ionic liquid 1-butyl-3-methylimidazolium dicyanamide. The successful combination of the developed material with the advanced direct laser writing technique enabled the time- and cost-saving direct manufacturing of transparent, electrically conductive components. We believe that the excellent characteristics of the structured material will open a wider range of exciting applications.

  16. Ionic liquid-based microwave-assisted extraction of rutin from Chinese medicinal plants.

    PubMed

    Zeng, Huan; Wang, Yuzhi; Kong, Jinhuan; Nie, Chan; Yuan, Ya

    2010-12-15

    An ionic liquid-based microwave-assisted extraction (ILMAE) method has been developed for the effective extraction of rutin from Chinese medicinal plants including Saururus chinensis (Lour.) Bail. (S. chinensis) and Flos Sophorae. A series of 1-butyl-3-methylimidazolium ionic liquids with different anions were investigated. The results indicated that the characteristics of anions have remarkable effects on the extraction efficiency of rutin and among the investigated ionic liquids, 1-butyl-3-methylimidazolium bromide ([bmim]Br) aqueous solution was the best. In addition, the ILMAE procedures for the two kinds of medicinal herbs were also optimized by means of a series of single factor experiments and an L(9) (3(4)) orthogonal design. Compared with the optimal ionic liquid-based heating extraction (ILHE), marinated extraction (ILME), ultrasonic-assisted extraction (ILUAE), the optimized approach of ILMAE gained higher extraction efficiency which is 4.879 mg/g in S. chinensis with RSD 1.33% and 171.82 mg/g in Flos Sophorae with RSD 1.47% within the shortest extraction time. Reversed phase high performance liquid chromatography (RP-HPLC) with ultraviolet detection was employed for the analysis of rutin in Chinese medicinal plants. Under the optimum conditions, the average recoveries of rutin from S. chinensis and Flos Sophorae were 101.23% and 99.62% with RSD lower than 3%, respectively. The developed approach is linear at concentrations from 42 to 252 mg L(-1) of rutin solution, with the regression coefficient (r) at 0.99917. Moreover, the extraction mechanism of ILMAE and the microstructures and chemical structures of the two researched samples before and after extraction were also investigated. With the help of LC-MS, it was future demonstrated that the two researched herbs do contain active ingredient of rutin and ionic liquids would not influence the structure of rutin.

  17. Enzymatic hydrolysis of penicillin in mixed ionic liquids/water two-phase system.

    PubMed

    Jiang, Yangyang; Xia, Hansong; Guo, Chen; Mahmood, Iram; Liu, Huizhou

    2007-01-01

    In this paper, an integrated process involving the mixed ionic liquids/water two-phase system (MILWS) is proposed to improve the efficiency for enzymatic hydrolysis of penicillin G. First, hydrophilic [C4mim]BF4 (1-butyl-3-methylimidazolium tetrafluoraborate) and NaH2PO4 salt form an ionic liquids aqueous two-phase system (ILATPS), which could extract penicillin from its fermentation broth efficiently. Second, a hydrophobic [C4mim]PF6 (1-butyl-3-methylimidazolium hexafluoraphosphate) is introduced into the ionic liquids-rich phase of ILATPS containing penicillin and converses it into MILWS. Penicillin is hydrolyzed by penicillin acylase in the water phase of MILWS at pH 5. The byproduct phenylacetic acid (PAA) is partitioned into the ionic liquids mixture phase, while the intended product 6-aminopenicillanic acid (6-APA) is precipitated at this pH. In comparison with a similar butyl acetate/water system (BAWS) at pH 4, MILWS exhibits two advantages. (1) The selectivity between PAA and penicillin is greatly optimized at pH 5 by varying the mole ratio of [C4mim]PF6/[C4mim]BF4 in MILWS, whereas in BAWS the unalterable nature of the organic solvent restricts the optimized pH for maximum selectivity between PAA and penicillin at pH 4. (2) The pH for 6-APA precipitation in BAWS is 4, whereas it shifts to pH 5 in MILWS due to the complexation between negatively charged 6-APA and the cationic surface of the ionic liquids micelle. As a result, the removal of the two products from the enzyme sphere at relatively high pH is permitted in MILWS, which is beneficial for enzymatic activity and stability in comparison with the acidic pH 4 environment in BAWS.

  18. Evaluation of thermophysical properties of ionic liquids with polar solvent: a comparable study of two families of ionic liquids with various ions.

    PubMed

    Govinda, Varadhi; Attri, Pankaj; Venkatesu, Punnuru; Venkateswarlu, Ponneri

    2013-10-17

    In this work, we explore and compare the role of the ion effect on the thermophysical properties of two families of ionic liquids (ILs), namely, tetra-alkyl ammonium cation [R4N](+) with hydroxide [OH](-) anion and 1-alkyl-3-methyl imidazolium cation [amim](+) with different anions (chloride, methyl sulfate, and tetrafluoroborate), with polar solvent such as dimethylsulfoxide (DMSO) in the temperature range from 25 to 40 °C and over the whole concentration range of ILs. Two families of ILs, namely, tetramethyl ammonium hydroxide [(CH3)4N][OH] (TMAH), tetraethyl ammonium hydroxide [(C2H5)4N][OH] (TEAH), tetrapropyl ammonium hydroxide [(C3H7)4N][OH] (TPAH), and tetrabutyl ammonium hydroxide [(C4H9)4N][OH] (TBAH) from ammonium-based ILs and 1-ethyl-3-methylimidazolium chloride [Emim][Cl], 1-ethyl-3-methylimidazolium methylsulfate [Emim][MeSO4], 1-butyl-3-methylimidazolium tetrafluoroborate [Bmim][BF4], and 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) from imidazolium family of ILs, are used in the present study. To address the molecular interactions of ILs with DMSO, densities (ρ), ultrasonic sound velocities (u), and viscosities (η) have been measured over the entire composition range and at four temperatures, 25, 30, 35, and 40 °C, under atmospheric pressure. From these experimental data, the excess molar volume (V(E)), the deviation in isentropic compressibility (Δκs), and the deviation in viscosity (Δη) were calculated and were adequately correlated by using the Redlich-Kister polynomial equation. The measured and predicted data were interpreted on the basis of intermolecular interactions and structural effects between like and unlike molecules upon mixing. The hydrogen-bonding features between ammonium-based ILs and DMSO were analyzed using molecular modeling program by HyperChem 7. PMID:24087984

  19. Computational and experimental study of the interactions between ionic liquids and volatile organic compounds.

    PubMed

    Gao, Tingting; Andino, Jean M; Alvarez-Idaboy, J Raul

    2010-09-01

    Computational chemistry calculations were performed to investigate the interactions of ionic liquids with different classes of volatile organic compounds (VOCs), including alcohols, aldehydes, ketones, alkanes, alkenes, alkynes and aromatic compounds. At least one VOC was studied to represent each class. Initially, 1-butyl-3-methylimindazolium chloride (abbreviated as C(4)mimCl) was used as the test ionic liquid compound. Calculated interaction lengths between atoms in the ionic liquid and the VOC tested as well as thermodynamic data suggest that C(4)mimCl preferentially interacts with alcohols as compared to other classes of volatile organic compounds. The interactions of methanol with different kinds of ionic liquids, specifically 1-butyl-3-methylimidazolium bromine (C(4)mimBr) and 1-butyl-3-methylimidazolium tetrafluoroborate (C(4)mimBF(4)) were also studied. In comparing C(4)mimCl, C(4)mimBr, and C(4)mimBF(4), the computational results suggest that C(4)mimCl is more likely to interact with methanol. Laboratory experiments were performed to provide further evidence for the interaction between C(4)mimCl and different classes of VOCs. Fourier transform infrared spectroscopy was used to probe the ionic liquid surface before and after exposure to the VOCs that were tested. New spectral features were detected after exposure of C(4)mimCl to various alcohols. The new features are characteristic of the alcohols tested. No new IR features were detected after exposure of the C(4)mimCl to the aldehyde, ketone, alkane, alkene, alkyne or aromatic compounds studied. In addition, after exposing the C(4)mimCl to a multi-component mixture of various classes of compounds (including an alcohol), the only new peaks that were detected were characteristic of the alcohol that was tested. These experimental results demonstrated that C(4)mimCl is selective to alcohols, even in complex mixtures. The findings in this work provide information for future gas-phase alcohol sensor design

  20. High Stabilities of Di(1-azulenyl)(4-hydroxyphenyl)methyl Hexafluorophosphates and Polarized Properties of alpha,alpha-Di(1-azulenyl)-1,4-benzoquinone Methides.

    PubMed

    Ito, Shunji; Kikuchi, Shigeru; Kobayashi, Hiroki; Morita, Noboru; Asao, Toyonobu

    1997-04-18

    Acid-catalyzed condensation of azulenes 8a-c with 4-hydroxy- and 3,5-di-tert-butyl-4-hydroxybenzaldehyde leads to substituted di(1-azulenyl)(4-hydroxy- and 3,5-di-tert-butyl-4-hydroxyphenyl)methanes 7a- f, which are easily converted into substituted di(1-azulenyl)(4-hydroxy- and 3,5-di-tert-butyl-4-hydroxyphenyl)methyl cations 5a-f by oxidation with DDQ. The spectroscopic data are consistent with the protonated cationic structures of 5a-f. The electrochemical reduction of 5a-f showed a reversible wave at -0.74 to -0.86 V (V vs Ag/Ag(+)) upon cyclic voltammetry (CV), although 5d and 5e showed an irreversible wave at -0.79 V. The relatively high reduction potentials of 5a-f, compared with those of di(1-azulenyl)phenylmethyl cations 2a-c, exhibit the stabilization by 4-hydroxy substituents on the phenyl groups. These salts (5a-f.PF(6)(-)) bearing 4-hydroxyl groups on the phenyl rings have been converted by treatment with bases to alpha,alpha-di(1-azulenyl)-1,4-benzoquinone methides 6a-f, which revert to 5a-f.PF(6)(-) upon reprotonation with HPF(6). These quinone methides (6a-f) are highly polarized by the extreme-electrodonating properties of 1-azulenyl groups. The highly polarized properties of 6a-f reflected to the high pK(a) values of their conjugate acids (5a-c, 6.5-7.1, and 5d-f, 3.4-3.8). The strong solvatochromic effects also provide strong evidence of a large contribution of dipolar forms (6') in the ground state. The relatively low oxidation potentials of 6a-f (+0.35 to +0.47 V vs Ag/Ag(+)) reflected facile formation of phenoxy radical cations, stabilized by two 1-azulenyl groups. PMID:11671576

  1. Three dimensional ink-jet printing of biomaterials using ionic liquids and co-solvents.

    PubMed

    Gunasekera, Deshani H A T; Kuek, SzeLee; Hasanaj, Denis; He, Yinfeng; Tuck, Christopher; Croft, Anna K; Wildman, Ricky D

    2016-08-15

    1-Ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) and 1-butyl-3-methylimidazolium acetate ([C4C1Im][OAc]) have been used as solvents for the dissolution and ink-jet printing of cellulose from 1.0 to 4.8 wt%, mixed with the co-solvents 1-butanol and DMSO. 1-Butanol and DMSO were used as rheological modifiers to ensure consistent printing, with DMSO in the range of 41-47 wt% producing samples within the printable range of a DIMATIX print-head used (printability parameter < 10) at 55 °C, whilst maintaining cellulose solubility. Regeneration of cellulose from printed samples using water was demonstrated, with the resulting structural changes to the cellulose sample assessed by scanning electron microscopy (SEM) and white light interferometry (WLI). These results indicate the potential of biorenewable materials to be used in the 3D additive manufacture process to generate single-component and composite materials. PMID:27231729

  2. Choline chloride-thiourea, a deep eutectic solvent for the production of chitin nanofibers.

    PubMed

    Mukesh, Chandrakant; Mondal, Dibyendu; Sharma, Mukesh; Prasad, Kamalesh

    2014-03-15

    Deep eutectic solvents (DESs) consisting of the mixtures of choline halide (chloride/bromide)-urea and choline chloride-thiourea were used as solvents to prepare α-chitin nanofibers (CNFs). CNFs of diameter 20-30 nm could be obtained using the DESs comprising of the mixture of choline chloride and thiourea (CCT 1:2); however, NFs could not be obtained using the DESs having urea (CCU 1:2) as hydrogen bond donor. The physicochemical properties of thus obtained NFs were compared with those obtained using a couple of imidazolium based ionic liquids namely, 1-butyl-3-methylimidazolium hydrogen sulphate [(Bmim)HSO4] and 1-methylimidazolium hydrogen sulphate [(Hmim)HSO4] as well as choline based bio-ILs namely, choline hydrogen sulphate [(Chol)HSO4] and choline acrylate. The CNFs obtained using the DES as a solvent were used to prepare calcium alginate bio-nanocomposite gel beads having enhanced elasticity in comparison to Ca-alginate beads. The bio-nanocomposite gel beads thus obtained were used to study slow release of 5-fluorouracil, an anticancer drug. PMID:24528755

  3. Novel applications of ionic liquids in materials processing

    NASA Astrophysics Data System (ADS)

    Reddy, Ramana G.

    2009-05-01

    Ionic liquids are mixtures of organic and inorganic salts which are liquids at room temperature. Several potential applications of ionic liquids in the field of materials processing are electrowinning and electrodeposition of metals and alloys, electrolysis of active metals at low temperature, liquid-liquid extraction of metals. Results using 1-butyl-3-methylimidazolium chloride with AlCl3 at low temperatures yielded high purity aluminium deposits (>99.9% pure) and current efficiencies >98%. Titanium and aluminium were co-deposited with/without the addition of TiCl4 with up to 27 wt% Ti in the deposit with current efficiencies in the range of 78-85 %. Certain ionic liquids are potential replacements for thermal oils and molten salts as heat transfer fluids in solar energy applications due to high thermal stability, very low corrosivity and substantial sensible heat retentivity. The calculated storage densities for several chloride and fluoride ionic liquids are in the range of 160-210 MJ/m3. A 3-D mathematical model was developed to simulate the large scale electrowinning of aluminium. Since ionic liquids processing results in their low energy consumption, low pollutant emissions many more materials processing applications are expected in future.

  4. Sodium bromide induced micelle to vesicle transitions of newly synthesized anionic surface active ionic liquids based on dodecylbenzenesulfonate.

    PubMed

    Rao, K Srinivasa; Gehlot, Praveen Singh; Gupta, Hariom; Drechsler, Markus; Kumar, Arvind

    2015-03-19

    Dodecylbenezenesulfonate-based anionic surface active ionic liquids (DBS-ILs) paired with onium cations, n-butyltrimethylammonium ([N1114]), 1-butyl-3-methylimidazolium ([C4mim]), and N-butylpyridinium ([C4Py]) have been synthesized. DBS-ILs were found to be highly surface active having critical micelle concentration (CMC) lower than that of their conventional analogue sodium dodecylbenezenesulfonate ([Na][DBS]). The CMC values of DBS-ILs were determined from surface tension (ST) and isothermal titration calorimetry (ITC). DBS-ILs formed micelles predominantly in the aqueous medium, and unlike [Na]DBS, the micelles of DBS-ILs could be transformed into vesicles with the addition of sodium bromide (NaBr). Micelle to vesicle transitions (MVTs) were evidenced from dynamic light scattering (DLS), turbidity, proton nuclear magnetic resonance ((1)H NMR), and cryo-TEM techniques. Thermodynamics of aggregation was investigated from ITC which indicated that the aggregation process is primarily driven by the entropy factor. The formation of a vesicle upon addition of NaBr has been accounted to the increased electrostatic interactions between the less hydrated sulfonate headgroup and the more populated bigger sized counterions along with the favored cation-π or π-π interactions between them as evidenced from 2D-NOESY NMR experiments. The stimuli-responsive morphological transitions in the self-assembly of the reported anionic surface active ionic liquids (SAILs) will be useful for encapsulation and delivery of active (bio)molecules in the targeted biomedical applications.

  5. Gels and lyotropic liquid crystals: using an imidazolium-based catanionic surfactant in binary solvents.

    PubMed

    Cheng, Ni; Hu, Qiongzheng; Bi, Yanhui; Xu, Wenwen; Gong, Yanjun; Yu, Li

    2014-08-01

    The self-assembly behavior of an imidazolium-based catanionic surfactant, 1-butyl-3-methylimidazolium dodecylsulfate ([C4mim][C12H25SO4]), was investigated in water-ethylammonium nitrate (EAN) mixed solvents with different volume ratios. It is particular interesting that this simple surfactant could not only form lyotropic liquid crystals (LLC) with multimesophases, i.e., normal hexagonal (H1), lamellar liquid crystal (Lα), and reverse bicontinuous cubic phase (V2), in the water-rich environment but also act as an efficient low-molecular-weight gelator (LMWG) which gelated EAN-abundant binary media in a broad concentration range. The peculiar nanodisk cluster morphology of gels composed of similar bilayer units was first observed. FT-IR spectra and density functional theory (DFT) calculations reveal that strong H bonding and electrostatic interactions between EAN and the headgroups of [C4mim][C12H25SO4] are primarily responsible for gelation. The self-assembled gels displayed excellent mechanical strength and a thermoreversible sol-gel transition. It is for the first time that a rich variety of controllable ordered aggregates could be observed only by simply modulating the concentration of a single imidazolium-based catanionic surfactant or the ratio of mixed solvents. This environmentally friendly system is expected to have broad applications in various fields, such as materials science, drug delivery systems, and supramolecular chemistry.

  6. Synthesis of Cu, Zn and Cu/Zn brass alloy nanoparticles from metal amidinate precursors in ionic liquids or propylene carbonate with relevance to methanol synthesis.

    PubMed

    Schütte, Kai; Meyer, Hajo; Gemel, Christian; Barthel, Juri; Fischer, Roland A; Janiak, Christoph

    2014-03-21

    Microwave-induced decomposition of the transition metal amidinates {[Me(C(N(i)Pr)2)]Cu}2 (1) and [Me(C(N(i)Pr)2)]2Zn (2) in the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) or in propylene carbonate (PC) gives copper and zinc nanoparticles which are stable in the absence of capping ligands (surfactants) for more than six weeks. Co-decomposition of 1 and 2 yields the intermetallic nano-brass phases β-CuZn and γ-Cu3Zn depending on the chosen molar ratios of the precursors. Nanoparticles were characterized by high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), dynamic light scattering and powder X-ray diffractometry. Microstructure characterizations were complemented by STEM with spatially resolved energy-dispersive X-ray spectrometry and X-ray photoelectron spectroscopy. Synthesis in ILs yields significantly smaller nanoparticles than in PC. β-CuZn alloy nanoparticles are precursors to catalysts for methanol synthesis from the synthesis gas H2/CO/CO2 with a productivity of 10.7 mol(MeOH) (kg(Cu) h)(-1).

  7. A striking effect of ionic-liquid anions in the extraction of Sr2+ and Cs+ by dicyclohexano-18-crown-6

    SciTech Connect

    Luo, Huimin; Dai, Sheng; Bonnesen, Peter V; Haverlock, Tamara; Moyer, Bruce A; Buchanan III, A C

    2006-01-01

    The nature of the ionic-liquid (IL) anion has been found to have a remarkable effect on the solvent extraction of Sr2+ and Cs+ by dicyclohexano-18-crown-6 dissolved in ionic liquids. In particular, the extraction efficiency increases with the hydrophobicity of the IL anion as reflected by the solubility in water of ILs having a common cation. Since a cation-exchange mechanism is operating in these systems, the influence of the IL anion is in large part attributable to an expected Le Chatelier effect in which a greater aqueous concentration of IL cation, obtained when using an IL anion of lower hydrophobicity, opposes cation exchange. This dependence is opposite to that found for IL cations, indicating a significant advantage of using ILs with hydrophobic anions for cation extraction. Furthermore, the extraction selectivity for Sr2+ over Na+, K+, and Cs+ can be significantly improved through the use of hydrophobic anions for the ILs containing 1-ethyl-3-methylimidazolium or 1-butyl-3-methylimidazolium cations.

  8. Understanding positive and negative deviations in polarity of ionic liquid mixtures by pseudo-solvent approach.

    PubMed

    Beniwal, Vijay; Kumar, Anil

    2016-08-24

    Physico-chemical properties of liquid mixtures in general display large deviations from linear behaviour, arising out of complex specific and non-specific intermolecular interactions. The polarity of liquid mixtures displaying large positive and negative deviations can be minimized and linear mixing can be achieved in liquids using a pseudo-solvent methodology. The work described herein is designed to investigate the influence of different physical parameters on the linear pseudo-solvent composition in ionic liquid mixtures. For this purpose, we have determined the deviations from linearity, ΔE values (defined as given by ) for binary mixtures of a variety of ionic liquids, including two molecular solvents, DMSO and formamide. Firstly, the investigations were carried out in three 1-butyl-3-methylimidazolium cation based aprotic ionic liquids and the roles of anionic structure and hydrogen bond acceptor basicities (β values) of the ionic liquids were determined. The influence of the cationic structure, i.e., the hydrogen bond donor acidity (α values) and non-associative nature of the ionic liquids, was determined using C2-methylated analogs, 1-butyl-2,3-dimethylimidazolium cation based ionic liquids. The role of the protic nature of ionic liquids was studied in two protic ionic liquids, viz., 1-methylimidazolium formate and 1-methylimidazolium acetate. The effects of the temperature, pseudo-solvent structure and solvatochromic probe structure on the ΔE values were also explored.

  9. Role of LiBF4 in Ionic Liquid Membranes for Facilitated CO2 Transport.

    PubMed

    Choi, Yeji; Hong, Gil Hwan; Kang, Sang Wook

    2016-03-01

    The ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM BF4)/LiBF4 electrolyte was prepared for highly selective facilitated CO2 transport membranes. When LiBF4 was incorporated into BMIM BF4, synergy effects by free Li+ ion and imidazolium cations is expected to enhance the separation performance for CO2/N2 and CO2/CH4. The free state of BF4- ions in BMIM BF4/LiBF4 solutions was investigated by FT-Raman spectroscopy. For the coordination of LiBF4 with BMIMBF4, thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) was utilized. Electrolyte membranes consisting of BMIM BF4 and LiBF4 showed selectivities of 8.40 and 8.25 for CO2/N2 and CO2/CH4, respectively. Neat BMIM BF4 membrane showed selectivities of 5.0 and 4.8, respectively. Enhanced separation performance was attributed to increased free Li+ and abundant free imidazolium cations. PMID:27455716

  10. Hydrolysis of microcrystalline cellulose using functionalized Bronsted acidic ionic liquids - A comparative study.

    PubMed

    Parveen, Firdaus; Patra, Tanmoy; Upadhyayula, Sreedevi

    2016-01-01

    Cellulose conversion to platform chemicals is required to meet the demands of increasing population and modernization of the world. Hydrolysis of microcrystalline cellulose was studied with SO3H, COOH and OH functionalized imidazole based ionic liquid using 1-butyl-3-methylimidazolium chloride [BMIM]Cl as a solvent. The influence of temperature, time, acidity of ionic liquids and catalyst loading was studied on hydrolysis reaction. The maximum %TRS yield 85%, was obtained at 100°C and 90min with 0.2g of SO3H functionalized ionic liquid. UV-vis spectroscopy using 4-nitro aniline as an indicator was performed to find out the Hammett function of ionic liquid and acidity trends are as follows: SO3H>COOH>OH. Density functional theory (DFT) calculations were performed to optimize the ionic liquid and their conjugate bases at B3LYP 6-311G++ (d, p) level using Gaussian 09 program. Theoretical findings are in agreement with the experimental results.

  11. Monolithic column incorporated with lanthanide metal-organic framework for capillary electrochromatography.

    PubMed

    Zhang, Li-Shun; Du, Pei-Yao; Gu, Wen; Zhao, Qing-Li; Huang, Yan-Ping; Liu, Zhao-Sheng

    2016-08-26

    A new lanthanide metal-organic frameworks NKU-1 have successfully incorporated into poly (BMA-co-EDMA) monolith and evaluated by capillary electrochromatography (CEC). Lanthanide metal-organic frameworks [Eu2(ABTC)1.5(H2O)3(DMA)] (NKU-1) were synthesized by self-assembly of Eu(III) ions and 3,3',5,5'-azo benzene tetracarboxylic acid ligands have been fabricated into poly(BMA-co-EDMA) monoliths. 1-Butyl-3-methylimidazolium tetrafluoroborate and N,N-dimethylformamide were developed as binary porogen obtaining homogeneous dispersibility for NKU-1 and high permeability for monolithic column. The successful incorporation of NKU-1 into poly(BMA-co-EDMA) was confirmed and characterized by FT-IR spectra, scanning electron microscopy, X-ray diffraction, energy dispersive spectrometer area scanning, and transmission electron microscopy. Separation ability of the NKU-1-poly (BMA-co-EDMA) monoliths was demonstrated by separating four groups of analytes in CEC, including alkylbenzenes, polycyclic aromatic hydrocarbon, aniline series and naphthyl substitutes. Compared with bare monolithic (column efficiency of 100,000plates/m), the NKU-1-poly (BMA-co-EDMA) monoliths have displayed greater column efficiency (maximum 210,000plates/m) and higher permeability, as well as less peak tailing. The results showed that the NKU-1-poly (BMA-co-EDMA) monoliths are promising stationary phases for CEC separations. PMID:27432788

  12. Green synthesis of polymer monoliths incorporated with carbon nanotubes in room temperature ionic liquid and deep eutectic solvents.

    PubMed

    Zhang, Li-Shun; Gao, Shu-Ping; Huang, Yan-Ping; Liu, Zhao-Sheng

    2016-07-01

    In this work, an efficient method to prepare polymer monoliths with incorporated carbon nanotubes in a mixture of room temperature ionic liquid and deep eutectic solvents was developed. With assistance of the binary green solvent, 1-butyl-3-methylimidazolium tetrafluoroborate and choline chloride/ethylene glycol, single-walled carbon nanotubes were dispersed successfully in pre-polymerization mixture without need of oxidative cutting of carbon nanotubes, which may allow depletion of the emission of volatile organic compounds into environment. The novel single-walled carbon nanotubes monolith was evaluated by capillary electrochromatography. Compared with the monolith made without single-walled carbon nanotubes, the monolith with the incorporation of single-walled carbon nanotubes exhibited high column efficiency (251,000plates/m) in the chromatographic separation. The morphology of the monolith can be tuned by the composition of mixture of ionic liquids and deep eutectic solvents to afford good column permeability and excellent separation ability for small molecules of alkyl phenones and alkyl benzenes. The results demonstrated that the method is a green strategy for the fabrication of multifunctional polymer monoliths. PMID:27154683

  13. Effects of Water on Solvation Layers of Imidazolium-Type Room Temperature Ionic Liquids on Silica and Mica.

    PubMed

    Sakai, Kenichi; Okada, Kohei; Uka, Akihito; Misono, Takeshi; Endo, Takeshi; Sasaki, Shinya; Abe, Masahiko; Sakai, Hideki

    2015-06-01

    Effects of the addition of water on solvation layers of imidazolium-type room temperature ionic liquids (RT-ILs) have been studied through force curve measurements of atomic force microscopy (AFM). Two kinds of RT-ILs were employed in this study; one is a hydrophilic RT-IL (1-butyl-3-methylimidazolium tetrafluoroborate, BmimBF4), and the other is a hydrophobic one (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, EmimTFSI). These RT-ILs form solvation layers on hydrophilic solid substances (i.e., silica and mica) in the absence of added water. The addition of water into BmimBF4 resulted in the disruption of the solvation layers and then the formation of an interfacial water phase on silica. In contrast, the formation of the interfacial water phase was not evidenced on mica because of the absence of hydrogen-bonding sites on the mica surface. Interestingly, the addition of water into EmimTFSI induced the formation of the interfacial water phase on the two solid surfaces. In the EmimTFSI system, importantly, significantly greater adhesion forces were observed on silica than on mica. This reflects the different formation mechanisms of the interfacial water phase on the two solid surfaces. We conclude that the hydrogen bonding is a key factor in determining whether water molecules can be adsorbed on the solid surfaces, but it is also necessary to take into account the hydrophilic/hydrophobic nature of the RT-ILs.

  14. Comparing an ionic liquid to a molecular solvent in the cesium cation extraction by a calixarene: a molecular dynamics study of the aqueous interfaces.

    PubMed

    Sieffert, Nicolas; Wipff, Georges

    2006-10-01

    We report a molecular dynamics (MD) study of the interfacial behavior of key partners involved in the Cs(+) cation extraction by a calix[4]arene-crown-6 host (L), comparing an ionic liquid (IL) to a classical molecular solvent (chloroform) as receiving "oil" phase. The IL is composed of hydrophobic 1-butyl-3-methylimidazolium cations (BMI(+)) and bis(trifluoromethylsulfonyl)imide anions (Tf(2)N(-)) and forms a biphasic system with water. The simulations reveal similarities but also interesting differences between the two types of interfaces. Much longer times are needed to "equilibrate" IL systems, compared to classical liquid mixtures, and there is more intersolvent mixing with the IL than with chloroform, especially concerning the water-in-oil content. There is also some excess of the BMI(+) cations over the Tf(2)N(-) anions in the aqueous phase. Simulations on the Na(+)NO(3)(-) and Cs(+)NO(3)(-) ions show that they sometimes interact at the interface with the IL ions, forming hydrated intimate ion pairs, whereas they are "repelled" by the classical interface. The LCs(+) complex and L ligand also behave differently, depending on the "oil phase". They are better solvated by the IL than by chloroform and thus poorly attracted at the IL interface, whereas they adsorb at the chloroform interface, adopting well-defined amphiphilic orientations. The results are discussed in the context of assisted ion transfer and provide a number of arguments explaining the specificity and efficiency of IL based, compared to classical extraction systems.

  15. Multi-podant diglycolamides and room temperature ionic liquid impregnated resins: An excellent combination for extraction chromatography of actinides.

    PubMed

    Gujar, R B; Ansari, S A; Verboom, W; Mohapatra, P K

    2016-05-27

    Extraction chromatography resins, prepared by impregnating two multi-podant diglycolamide ligands, viz. diglycolamide-functionalized calix[4]arene (C4DGA) and tripodal diglycolamide (T-DGA) dissolved in the room temperature ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (RTIL: C4mimTf2N) on Chromosorb-W (an inert solid support), gave excellent results for the removal of trivalent actinides from acidic waste solutions. Distribution coefficient measurements on several metal ions showed selective sorption of Am(III) over hexavalent uranyl ions and other fission product elements such as strontium and cesium. The sorbed metal ions could be efficiently desorbed with a complexing solution containing guanidine carbonate and EDTA buffer. The sorption of Am(III) on both resins followed pseudo-second order rate kinetics with rate constants of 1.37×10(-6) and 6.88×10(-7)g/cpmmin for T-DGA and C4DGA resins, respectively. The metal sorption on both resins indicated the Langmuir monolayer chemisorption phenomenon with Eu(III) sorption capacities of 4.83±0.21 and 0.52±0.05mg per g of T-DGA and C4DGA resins, respectively. The results of column studies show that these resins are of interest for a possible application for the recovery of hazardous trivalent actinides from dilute aqueous solutions. PMID:27130582

  16. [Separation and determination of optical isomers of phenylephrine by chiral ligand exchange capillary elcctrophoresis coupling with the promoting effect of ionic liquid].

    PubMed

    Yang, Simei; Zhang, Jiayao; Li, Fei; Hu, Xufang; Cao, Qiue

    2016-01-01

    A method for the separation and determination of optical isomers of phenylephrine was developed based on the promoting effect of non-chiral ionic liquid on chiral ligand-exchange capillary electrophoresis after the electrophoretic parameters were optimized systematically. R-phenylephrine and S-phenylephrine can be separated and determined effectively in 20 mmol/L Tris-H3PO4 buffer solution (pH 5.4) composed of 4.0 mmol/L Cu(II), 8.0 mmol/L L-proline (L-Pro) and 15 mmol/L 1-butyl-3-methylimidazolium chloride ([BMIM] Cl) with the applied voltage of 20 kV, capillary temperature of 25 °C , detection wavelength of 254 nm, and injection of 5 s at 3,447 Pa. The resolution of R- and S-phenylephrines was 1. 42. The linear ranges for the determination of R-phenylephrine and S-phenylephrine were 12. 5 - 150 mg/L and 15. 0-150 mg/L, respectively. The method has been satisfactorily used for the determination of R-phenylephrine and S-phenylephrine in the spiked blood and urine samples. The spiked recoveries in the urine sample were in the range of 93. 7% -108. 2% with the RSDs lower than 3. 18% (n= 3) , and the spiked recoveries in the blood sample were in the range of 91. 4% and 113. 1% with the RSDs lower than 4. 82% (n =3).

  17. Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Pandey, Gaind P.; Liu, Tao; Hancock, Cody; Li, Yonghui; Sun, Xiuzhi Susan; Li, Jun

    2016-10-01

    A flexible, free-standing, thermostable gel polymer electrolyte based on plastic crystalline succinonitrile (SN) and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) entrapped in copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) is prepared and optimized for application in solvent-free solid-state supercapacitors. The synthesized gel polymer electrolyte exhibits a high ionic conductivity over a wide temperature range (from ∼5 × 10-4 S cm-1 at -30 °C up to ∼1.5 × 10-2 S cm-1 at 80 °C) with good electrochemical stability window (-2.9 to 2.5 V). Thermal studies confirm that the SN containing gel polymer electrolyte remains stable in the same gel phase over a wide temperature range from -30 to 90 °C. The electric double layer capacitors (EDLCs) have been fabricated using activated carbon as active materials and new gel polymer electrolytes. Electrochemical performance of the EDLCs is assessed through cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy. The EDLC cells with the proper SN-containing gel polymer electrolyte has been found to give high specific capacitance 176 F g-1 at 0.18 A g-1 and 138 F g-1 at 8 A g-1. These solid-state EDLC cells show good cycling stability and the capability to retain ∼80% of the initial capacitance after 10,000 cycles.

  18. Phase Transitions of Triflate-Based Ionic Liquids under High Pressure.

    PubMed

    Faria, Luiz F O; Ribeiro, Mauro C C

    2015-11-01

    Raman spectroscopy has been used to study phase transitions of ionic liquids based on the triflate anion, [TfO](-), as a function of pressure or temperature. Raman spectra of ionic liquids containing the cations 1-butyl-3-methylimidazolium, [C4C1Im](+), 1-octyl-3-methylimidazolium, [C8C1Im](+), 1-butyl-2,3-dimethylimidazolium, [C4C1C1Im](+), and 1-butyl-1-methylpyrrolidinium, [C4C1Pyr](+), were compared. Vibrational frequencies and binding energy of ionic pairs were calculated by quantum chemistry methods. The ionic liquids [C4C1Im][TfO] and [C4C1Pyr][TfO] crystallize at 1.0 GPa when the pressure is increased in steps of ∼ 0.2 GPa from the atmospheric pressure, whereas [C8C1Im][TfO] and [C4C1C1Im][TfO] do not crystallize up to 2.3 GPa of applied pressure. The low-frequency range of the Raman spectrum of [C4C1Im][TfO] indicates that the system undergoes glass transition, rather than crystallization, when the pressure applied on the liquid has been increased above 2.0 GPa in a single step. Strong hysteresis of spectral features (frequency shift and bandwidth) of the high-pressure crystalline phase when the pressure was released stepwise back to the atmospheric pressure has been found .

  19. [Effects of imidazolium chloride ionic liquids on the acute toxicity and weight of earthworm].

    PubMed

    Huang, Ruo-Nan; Fan, Jun-Jie; Tu, Hong-Zhi; Tang, Ling-Yan; Liu, Hui-Jun; Xu, Dong-Mei

    2013-04-01

    Standard contact filter paper test of OECD and artificial soil test were used to study the acute lethal effect of three imidazolium chloride ionic liquids, 1-butyl- 3-methylimidazolium chloride ([Bmim] Cl), 1-hexyl- 3-methylimidazolium chloride ([Hmim] Cl), and 1-octyl- 3-methylimidazolium chloride ([Omim] Cl) on earthworm (Eisenia fetida), and the weight of the earthworms was measured after subtle exposure. The 24 h-LC50 values of [Bmim] Cl, [Hmim] Cl and [Omim] Cl using the contact filter paper method were 109.60, 50.38 and 7.94 microg x cm(-2), respectively. The 48 h-LC50 values were 98.52, 39.14 and 3.61 microg x cm(-2), respectively. Using the artificial soil method, the 7 d-LC50 values of [Bmim] Cl, [Hmim] Cl and [Omim] Cl were 447.78, 245.56 and 180.51 mg x kg(-1), respectively, and the 14 d-LC50 values were 288.42, 179.75, 150.35 mg x kg(-1), respectively. There were differences in poisoning symptoms of the three ionic liquids on earthworms. The growth of Eisenia fetida was inhibited and declined with increasing ionic liquid concentration. The toxicity of ionic liquids on Eisenia fetida increased with the length of carbon chain.

  20. Direct Synthesis of Controlled-Size Nanospheres inside Nanocavities of Self-Organized Photopolymerizing Soft Oxometalates [PW12 O40 ]n (n=1100-7500).

    PubMed

    Das, Kousik; Roy, Soumyajit

    2015-09-01

    The unusual self-assembly of {(BMIm)2 (DMIm)[PW12 O40 ]}n (n=1100-7500) (BMIm=1-butyl-3-methylimidazolium, DMIm=3,3'-dimethyl-1,1'-diimidazolium) soft oxometalates (SOMs) with controlled size and a hollow nanocavity was exploited for the photochemical synthesis of polymeric nanospheres within the nanocavity of the SOM. The SOM vesicle has been characterized by using several techniques, including dynamic light scattering (DLS), static light scattering (SLS), attenuated total reflection (ATR) IR spectroscopy, Raman spectroscopy, microscopy, and zeta-potential analysis. The self-assembly and stabilization of this soft-oxometalate vesicle has been shown by means of counter-ion condensation. The immediate implication of such stabilization-the variation of the dielectric constant with the hydrodynamic radius of the vesicle-has been used to synthesize vesicles of controlled size. Such vesicles of varying size have been used as templates for polymerization reactions that produce polymeric spheres of controlled size. Direct evidence shows that the SOM behaves as a model heterogeneous catalytic system. Such surfactant- and initiator-free photochemical synthetic routes for obtaining uniform latex spheres could be used in the making of optical bandgap materials, inverse opals, and paints. PMID:26185037

  1. Ionic liquid assisted chemical strategy to TiO2 hollow nanocube assemblies with surface-fluorination and nitridation and high energy crystal facet exposure for enhanced photocatalysis.

    PubMed

    Yu, Shengli; Liu, Baocang; Wang, Qin; Gao, Yuxi; Shi, Ying; Feng, Xue; An, Xiaoting; Liu, Lixia; Zhang, Jun

    2014-07-01

    Realization of anionic nonmetal doping and high energy crystal facet exposure in TiO2 photocatalysts has been proven to be an effective approach for significantly improving their photocatalytic performance. A facile strategy of ionic liquid assisted etching chemistry by simply hydrothermally etching hollow TiO2 spheres composed of TiO2 nanoparticles with an ionic liquid of 1-butyl-3-methylimidazolium tetrafluoroborate without any other additives is developed to create highly active anatase TiO2 nanocubes and TiO2 nanocube assemblies. With this one-pot ionic liquid assisted etching process, the surface-fluorination and nitridation and high energy {001} crystal facets exposure can be readily realized simultaneously. Compared with the benchmark materials of P25 and TiO2 nanostructures with other hierarchical architectures of hollow spheres, flaky spheres, and spindles synthesized by hydrothermally etching hollow TiO2 spheres with nonionic liquid of NH4F, the TiO2 nanocubes and TiO2 nanocube assemblies used as efficient photocatalysts show super high photocatalytic activity for degradation of methylene blue, methyl orange, and rhodamine B, due to their surface-fluorination and nitridation and high energy crystal facet exposure. The ionic liquid assisted etching chemistry is facile and robust and may be a general strategy for synthesizing other metal oxides with high energy crystal facets and surface doping for improving photocatalytic activity. PMID:24881462

  2. Electron microscopy of Staphylococcus epidermidis fibril and biofilm formation using image-enhancing ionic liquid.

    PubMed

    Takahashi, Chisato; Kalita, Golap; Ogawa, Noriko; Moriguchi, Keiichi; Tanemura, Masaki; Kawashima, Yoshiaki; Yamamoto, Hiromitsu

    2015-02-01

    We established an optimized biofilm observation method using a hydrophilic ionic liquid (IL), 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]). In the present study, a biofilm was formed by Staphylococcus epidermidis. Using field emission (FE) scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the colonization of assemblages formed by microbial cells was observed as a function of the cultivation time. FE-TEM analysis revealed that the fibril comprises three types of protein. In addition, the ultrastructure of each protein monomer was visualized. It was expected that the curly-structured protein plays an important role in extension during fibril formation. Compared to the conventional sample preparation method for electron microscopy, a fine structure was easily obtained by the present method using IL. This observation technique can provide valuable information to characterize the ultrastructure of the fibril and biofilm that has not been revealed till date. Furthermore, these findings of the molecular architecture of the fibril and the colonization behavior of microbial cells during biofilm formation are useful for the development of antibacterial drugs and microbial utilization.

  3. Comparing an ionic liquid to a molecular solvent in the cesium cation extraction by a calixarene: a molecular dynamics study of the aqueous interfaces.

    PubMed

    Sieffert, Nicolas; Wipff, Georges

    2006-10-01

    We report a molecular dynamics (MD) study of the interfacial behavior of key partners involved in the Cs(+) cation extraction by a calix[4]arene-crown-6 host (L), comparing an ionic liquid (IL) to a classical molecular solvent (chloroform) as receiving "oil" phase. The IL is composed of hydrophobic 1-butyl-3-methylimidazolium cations (BMI(+)) and bis(trifluoromethylsulfonyl)imide anions (Tf(2)N(-)) and forms a biphasic system with water. The simulations reveal similarities but also interesting differences between the two types of interfaces. Much longer times are needed to "equilibrate" IL systems, compared to classical liquid mixtures, and there is more intersolvent mixing with the IL than with chloroform, especially concerning the water-in-oil content. There is also some excess of the BMI(+) cations over the Tf(2)N(-) anions in the aqueous phase. Simulations on the Na(+)NO(3)(-) and Cs(+)NO(3)(-) ions show that they sometimes interact at the interface with the IL ions, forming hydrated intimate ion pairs, whereas they are "repelled" by the classical interface. The LCs(+) complex and L ligand also behave differently, depending on the "oil phase". They are better solvated by the IL than by chloroform and thus poorly attracted at the IL interface, whereas they adsorb at the chloroform interface, adopting well-defined amphiphilic orientations. The results are discussed in the context of assisted ion transfer and provide a number of arguments explaining the specificity and efficiency of IL based, compared to classical extraction systems. PMID:17004811

  4. Ionic liquid-based aqueous two-phase system extraction of sulfonamides in milk.

    PubMed

    Shao, Mingyuan; Zhang, Xuli; Li, Na; Shi, Jiayuan; Zhang, Huijie; Wang, Zhibing; Zhang, Hanqi; Yu, Aimin; Yu, Yong

    2014-06-15

    A simple method for the determination of six sulfonamides (SAs) in milk samples was developed. 1-Butyl-3-methylimidazolium tetrafluoroborate and trisodium citrate dihydrate were used to form aqueous two-phase system. The aqueous two phase system was applied to the extraction of the SAs and the determination of the analytes was performed by high-performance liquid chromatography. To achieve optimum extraction performance, several experimental parameters, including the type and the amount of salt, the type and amount of ionic liquid, ultrasonic time and pH of sample solution, were investigated and optimized. Under the optimal experimental conditions, good linearity was observed in the range of 8.55-1036.36ngmL(-1). The limits of detection and quantification were in the range of 2.04-2.84 and 6.73-9.37ngmL(-1), respectively. The present method was successfully applied to the determination of SAs in milk samples, and the recoveries of analytes were in the range of 72.32-108.96% with relative standard deviations ranging from 0.56 to 12.20%. The results showed that the present method was rapid, feasible and environmentally friendly. PMID:24854709

  5. Role of the Hofmeister series in the formation of ionic-liquid-based aqueous biphasic systems.

    PubMed

    Shahriari, Shahla; Neves, Catarina M S S; Freire, Mara G; Coutinho, João A P

    2012-06-21

    Among the numerous and interesting features of ionic liquids is their ability to form aqueous biphasic systems (ABSs) when combined with inorganic or organic salts in aqueous media. In this work, a wide range of salts was studied, aiming at gathering a detailed picture on the molecular mechanisms that govern the ability of the salt ions to induce the formation of ionic-liquid-based ABSs. For that purpose, 1-butyl-3-methylimidazolium trifluoromethanesulfonate was chosen due to its facility to undergo liquid-liquid demixing in aqueous media containing conventional salts. The corresponding ternary phase diagrams, tie-lines, and tie-line lengths were determined at 298 K and atmospheric pressure. With the large body of data measured in this work, it was possible to establish a scale on the salt cation and anion abilities to induce the formation of ionic-liquid-based ABSs, which follows the Hofmeister series, and to show that the molar entropy of hydration of the salt ions is the driving force for aqueous two-phase system formation. PMID:22594382

  6. ILs-based microwave-assisted extraction coupled with aqueous two-phase for the extraction of useful compounds from Chinese medicine.

    PubMed

    Lin, Xiao; Wang, Yuzhi; Liu, Xiaojie; Huang, Songyun; Zeng, Qun

    2012-09-01

    Ionic liquids-based microwave-assisted extraction (ILs-MAE) of medicinal or useful compounds from plants was investigated as an alternative to conventional organic solvent extractions. The extraction and the preconcentration of aqueous two-phase (ATP) systems have been integrated. Various operating parameters were systematically considered by single-factor and L(9) (3(4)) orthogonal array experiments. 1-Butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF(4)]) has been selected to extract Apocynum venetum. The extract was then converted to the top phase by [bmim][BF(4)]/NaH(2)PO(4) system which was suitable for the preconcentration. Reversed phase high performance liquid chromatography (RP-HPLC) with ultraviolet detection was employed for the analysis of hyperin and isoquercitrin in Apocynum venetum. The optimal experiment approach could provide higher detection limit of hyperin and isoquercitrin which were 3.82 μg L(-1) and 3.00 μg L(-1) in Apocynum venetum. The recoveries of hyperin and isoquercitrin were 97.29% (RSD = 1.02%) and 99.40% (RSD = 1.13%), respectively, from aqueous samples of Apocynum venetum by the proposed method. Moreover, the extraction mechanism of ILs-MAE and the microstructures and chemical structures of the herb before and after extraction were also investigated. The method exhibited potential applicability with other complicated samples. PMID:22785248

  7. Extraction of proteins from biological fluids by use of an ionic liquid/aqueous two-phase system.

    PubMed

    Du, Zhuo; Yu, Yong-Liang; Wang, Jian-Hua

    2007-01-01

    An ionic liquid/aqueous two-phase system based on the hydrophilic ionic liquid 1-butyl-3-methylimidazolium chloride (BmimCl) and K(2)HPO(4) has been employed for direct extraction of proteins from human body fluids for the first time. Proteins present at low levels were quantitatively extracted into the BmimCl-rich upper phase with a distribution ratio of about 10 between the upper and lower phase and an enrichment factor of 5. Addition of an appropriate amount of K(2)HPO(4) to the separated upper phase results in a further phase separation, giving rise to an improved enrichment factor of 20. FTIR and UV spectroscopy demonstrated that no chemical (bonding) interactions between the ionic liquid and the protein functional groups were identifiable, while no alterations of the natural properties of the proteins were observed. The partitioning of proteins in the two-phase system was assumed to have been facilitated by the electrostatic potential difference between the coexisting phases, as well as by salting out effects. The system could be applied successfully for the quantification of proteins in human urine after on-line phase separation in a flow system. The use of an ionic liquid, as a green solvent, offers clear advantages over traditional liquid-liquid extractions, in which the use of toxic organic solvents is unavoidable. PMID:17136782

  8. Extraction of testosterone and epitestosterone in human urine using aqueous two-phase systems of ionic liquid and salt.

    PubMed

    He, Chiyang; Li, Shehong; Liu, Huwei; Li, Kean; Liu, Feng

    2005-08-01

    Based on aqueous two-phase systems (ATPS) consisting of 1-butyl-3-methylimidazolium chloride, a hydrophilic ionic liquid (IL), and K2HPO4, a new and simple extraction technique, coupled with a reversed-phase high performance liquid chromatography (RP-HPLC), was developed for the simultaneous concentration and analysis of testosterone (T) and epitestosterone (ET) in human urine. Under the optimal conditions, the extraction efficiencies for both analytes were 80-90% in a one-step extraction. The method required only 3.0 mL of urine and a single hydrolysis/deproteinization/extraction step followed by direct injection of the IL-rich upper phase into HPLC system for analysis. The method has been satisfactorily applied to the analysis of T and ET in human urine with detection limits of 1 ng/mL and linear ranges of 10-500 ng/mL for both compounds. Compared with conventional liquid-liquid extraction or solid phase extraction, this new method is much "greener" due to no use of volatile organic solvent and low consumption of IL. The proposed extraction technique opens up new possibilities in the separation of other drugs. PMID:16035355

  9. Influence of PVP template on the formation of porous TiO2 nanofibers by electrospinning technique for dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Elayappan, Vijayakumar; Panneerselvam, Pratheep; Nemala, Sivasankar; Nallathambi, Karthick S.; Angaiah, Subramania

    2015-09-01

    The porous TiO2 nanofibers were prepared by electrospinning technique using polyvinylpyrrolidone (PVP) as template as well as pore-forming agent at the calcination temperature of 475 °C for 5 h. The influence of various concentrations of PVP (5, 8 and 10 wt%) on the surface area and porosity of the prepared TiO2 nanofibers (NFs) were studied by using BET-specific surface area analyzer. The TiO2 NFs obtained by using 5 wt% of PVP had higher surface area and porosity than those obtained by using 8 and 10 wt% of PVP. The prepared electrospun TiO2 NFs were characterized by using TG analysis, X-ray diffraction, FTIR, FE-SEM and TEM studies. Finally, dye-sensitized solar cells were assembled using the prepared TiO2 NFs as the photoanode, Pt as the cathode and 0.5 M 1-butyl-3-methylimidazolium iodide, 0.5 M LiI, 0.05 M I2, 0.5 M 4-tertbutylpyridine in acetonitrile as an electrolyte. Among the three photoanodes, the cell assembled using porous TiO2 NFs obtained by using 5 wt% of PVP showed higher power conversion efficiency (PCE) of 4.81 % than those obtained by using 8 and 10 wt% of PVP, which showed the lower PCE of 4.13 and 3.42 %, respectively.

  10. Charge engineering of cellulases improves ionic liquid tolerance and reduces lignin inhibition.

    PubMed

    Nordwald, Erik M; Brunecky, Roman; Himmel, Michael E; Beckham, Gregg T; Kaar, Joel L

    2014-08-01

    We report a novel approach to concurrently improve the tolerance to ionic liquids (ILs) as well as reduce lignin inhibition of Trichoderma reesei cellulase via engineering enzyme charge. Succinylation of the cellulase enzymes led to a nearly twofold enhancement in cellulose conversion in 15% (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]). The improvement in activity upon succinylation correlated with the apparent preferential exclusion of the [Cl] anion in fluorescence quenching assays. Additionally, modeling analysis of progress curves of Avicel hydrolysis in buffer indicated that succinylation had a negligible impact on the apparent KM of cellulase. As evidence of reducing lignin inhibition of T. reesei cellulase, succinylation resulted in a greater than twofold increase in Avicel conversion after 170 h in buffer with 1 wt% lignin. The impact of succinylation on lignin inhibition of cellulase further led to the reduction in apparent KM of the enzyme cocktail for Avicel by 2.7-fold. These results provide evidence that naturally evolved cellulases with highly negative surface charge densities may similarly repel lignin, resulting in improved cellulase activity. Ultimately, these results underscore the potential of rational charge engineering as a means of enhancing cellulase function and thus conversion of whole biomass in ILs. PMID:24522957

  11. Hydrothermal microwave valorization of eucalyptus using acidic ionic liquid as catalyst toward a green biorefinery scenario.

    PubMed

    Xu, Ji-Kun; Chen, Jing-Huan; Sun, Run-Cang

    2015-10-01

    The application of the acidic ionic liquid (IL), 1-butyl-3-methylimidazolium hydrogensulfate ([bmim]HSO4), as a catalyst in the hydrothermal microwave treatment (HMT) and green upgradation of eucalyptus biomass has been investigated. The process was carried out in a microwave reactor system at different temperatures (140-200°C) and evaluated for severities. The xylooligosaccharides (XOS, refers to a DP of 2-6) yield up to 5.04% (w/w) of the initial biomass and 26.72% (w/w) of xylan were achieved. Higher temperature resulted in lower molecular weight product, and enhanced the concentration of monosaccharides and byproducts. The morphology and structure of the solid residues were performed using an array of techniques, such as SEM, XRD, FTIR, BET surface area, and CP/MAS (13)C NMR, by which the increase of crystallinity, the destruction of surface structure, and the changes in functional groups and compositions were studied after the pretreatment, thus significantly enhancing the enzymatic hydrolysis.

  12. Ionic liquid and aqueous two-phase extraction based on salting-out coupled with high-performance liquid chromatography for the determination of seven rare ginsenosides in Xue-Sai-Tong injection.

    PubMed

    Li, Lan-Jie; Jin, Yong-Ri; Wang, Xiao-Zhong; Liu, Ying; Wu, Qian; Shi, Xiao-Lei; Li, Xu-Wen

    2015-09-01

    A method of ionic liquid salt aqueous two-phase extraction coupled with high-performance liquid chromatography has been developed for the analysis of seven rare ginsenosides including Rg6 , F4 , 20(S)-Rg3 , 20(R)-Rg3 , Rk3 , Rk1 , and Rg5 in Xue-Sai-Tong injection. The injection was mixed with ionic liquid 1-butyl-3-methylimidazolium bromide aqueous solution, and a mixture was obtained. With the addition of sodium dodecyl sulfate and dipotassium phosphate into the mixture, the aqueous two-phase mixture was formed after ultrasonic treatment and centrifuged. Rare ginsenosides were extracted into the upper phase. To obtain a high extraction factors, various influences were considered systematically, such as the volume of ionic liquid, the category and amount of salts, the amount of sodium dodecyl sulfate, the pH value of system, and the time of ultrasonic treatment. Under the optimal condition, rare ginsenosides in Xue-Sai-Tong injection were enriched and detected, the recoveries of seven rare ginsenosides ranged from 90.05 to 112.55%, while relative standard deviations were lower than 2.50%. The developed method was reliable, rapid and sensitive for the determination of seven rare ginsenosides in the injections. PMID:26081987

  13. Matrix solid-phase dispersion coupled with magnetic ionic liquid dispersive liquid-liquid microextraction for the determination of triazine herbicides in oilseeds.

    PubMed

    Wang, Yuanpeng; Sun, Ying; Xu, Bo; Li, Xinpei; Wang, Xinghua; Zhang, Hanqi; Song, Daqian

    2015-08-12

    A novel method was developed for the determination of six triazine herbicides from oilseeds by matrix solid-phase dispersion combined with magnetic ionic liquid dispersive liquid-liquid microextraction (MSPD-MIL-DLLME), followed by ultrafast liquid chromatography with ultraviolet detection (UFLC-UV). The MIL, 1-butyl-3-methylimidazolium tetrachloroferrate ([C4mim][FeCl4]), was used as the microextraction solvent to simplify the extraction procedure by magnetic separation. The effects of several important experimental parameters, including type of dispersant, ratio of sample to dispersant, type and volume of collected elution solvent, type and volume of MIL, were investigated. Using the present method, UFLC-UV gave the limits of detection (LODs) of 1.20-2.72 ng g(-1) and the limits of quantification (LOQs) of 3.99-9.06 ng g(-1) for triazine herbicides. The recoveries were ranged from 82.9 to 113.7% and the relative standard deviations (RSDs) were equal or lower than 7.7%. The present method is easy-to-use and effective for extraction of triazine herbicides from oilseeds and shows the potentials of practical applications in the treatment of the fatty solid samples. PMID:26320960

  14. Catalysis of rice straw hydrolysis by the combination of immobilized cellulase from Aspergillus niger on β-cyclodextrin-Fe3O4 nanoparticles and ionic liquid.

    PubMed

    Huang, Po-Jung; Chang, Ken-Lin; Hsieh, Jung-Feng; Chen, Shui-Tein

    2015-01-01

    Cellulase from Aspergillus niger was immobilized onto β-cyclodextrin-conjugated magnetic particles by silanization and reductive amidation. The immobilized cellulase gained supermagnetism due to the magnetic nanoparticles. Ninety percent of cellulase was immobilized, but the activity of immobilized cellulase decreased by 10%. In this study, ionic liquid (1-butyl-3-methylimidazolium chloride) was introduced into the hydrolytic process because the original reaction was a solid-solid reaction. The activity of immobilized cellulase was improved from 54.87 to 59.11 U g immobilized cellulase(-1) at an ionic liquid concentration of 200 mM. Using immobilized cellulase and ionic liquid in the hydrolysis of rice straw, the initial reaction rate was increased from 1.629 to 2.739 g h(-1) L(-1). One of the advantages of immobilized cellulase is high reusability--it was usable for a total of 16 times in this study. Compared with free cellulase, magnetized cellulase can be recycled by magnetic field and the activity of immobilized cellulase was shown to remain at 85% of free cellulase without denaturation under a high concentration of glucose (15 g L(-1)). Therefore, immobilized cellulase can hydrolyze rice straw continuously compared with free cellulase. The amount of harvested glucose can be up to twentyfold higher than that from the hydrolysis by free cellulase. PMID:25874210

  15. Two solid-phase recycling method for basic ionic liquid [C4mim]Ac by macroporous resin and ion exchange resin from Schisandra chinensis fruits extract.

    PubMed

    Ma, Chun-hui; Zu, Yuan-gang; Yang, Lei; Li, Jian

    2015-01-22

    In this study, two solid-phase recycling method for basic ionic liquid (IL) 1-butyl-3-methylimidazolium acetate ([C4mim]Ac) were studied through a digestion extraction system of extracting biphenyl cyclooctene lignans from Schisandra chinensis. The RP-HPLC detection method for [C4mim]Ac was established in order to investigate the recovery efficiency of IL. The recycling method of [C4mim]Ac is divided into two steps, the first step was the separation of lignans from the IL solution containing HPD 5000 macroporous resin, the recovery efficiency and purity of [C4mim]Ac achieved were 97.8% and 67.7%, respectively. This method cannot only separate the lignans from [C4mim]Ac solution, also improve the purity of lignans, the absorption rate of lignans in [C4mim]Ac solution was found to be higher (69.2%) than that in ethanol solution (57.7%). The second step was the purification of [C4mim]Ac by the SK1B strong acid ion exchange resin, an [C4mim]Ac recovery efficiency of 55.9% and the purity higher than 90% were achieved. Additionally, [C4mim]Ac as solvent extraction of lignans from S. chinensis was optimized, the hydrolysis temperature was 90°C and the hydrolysis time was 2h. PMID:25463641

  16. Hydrothermal microwave valorization of eucalyptus using acidic ionic liquid as catalyst toward a green biorefinery scenario.

    PubMed

    Xu, Ji-Kun; Chen, Jing-Huan; Sun, Run-Cang

    2015-10-01

    The application of the acidic ionic liquid (IL), 1-butyl-3-methylimidazolium hydrogensulfate ([bmim]HSO4), as a catalyst in the hydrothermal microwave treatment (HMT) and green upgradation of eucalyptus biomass has been investigated. The process was carried out in a microwave reactor system at different temperatures (140-200°C) and evaluated for severities. The xylooligosaccharides (XOS, refers to a DP of 2-6) yield up to 5.04% (w/w) of the initial biomass and 26.72% (w/w) of xylan were achieved. Higher temperature resulted in lower molecular weight product, and enhanced the concentration of monosaccharides and byproducts. The morphology and structure of the solid residues were performed using an array of techniques, such as SEM, XRD, FTIR, BET surface area, and CP/MAS (13)C NMR, by which the increase of crystallinity, the destruction of surface structure, and the changes in functional groups and compositions were studied after the pretreatment, thus significantly enhancing the enzymatic hydrolysis. PMID:26119053

  17. Toxicity of two imidazolium ionic liquids, [bmim][BF4] and [omim][BF4], to standard aquatic test organisms: Role of acetone in the induced toxicity.

    PubMed

    Tsarpali, Vasiliki; Dailianis, Stefanos

    2015-07-01

    The main goal of this study was to investigate the toxicity of the imidazolium-based ionic liquids (ILs), [bmim][BF4] (1-butyl-3-methylimidazolium tetrafluoroborate) and [omim][BF4] (1-octyl-3-methylimidazolium tetrafluoroborate), in battery of standard aquatic toxicity test organisms. Specifically, exposure of the algae Scenedesmus rubescens, crustaceans Thamnocephalus platyurus and Artemia franciscana, rotifers Brachionus calyciflorus and Brachionus plicatilis and bivalve Mytilus galloprovincialis to different concentrations of [bmim][BF4], [omim][BF4] and/or a binary mixture of [bmim][BF4]-[omim][BF4] (1:1) with or without acetone (carrier solvent), revealed that solvent can differentially mediate ILs' toxic profile. Acetone's ability to differentially affect ILs' cation's alkyl chain length, as well as the hydrolysis of [BF4(-)] anions was evident. Given that the toxic potency of the tested ILs seemed to be equal or even higher (in some cases) than those of conventional organic solvents, the present study revealed that the characterization of imidazolium-based ILs as "green solvents" should not be generalized, at least in case of their natural occurrence in mixtures with organic solvents, such as acetone. PMID:25839183

  18. Ionic Liquid-Assisted Hydrothermal Method Synthesis of Flower-Like MoS2 and Their Electrochemical Performances.

    PubMed

    Li, Maohua; Yang, Bo; Hao, Junying; Lu, Yi; Long, Zerong; Liu, Yumei

    2016-06-01

    Molybdenum disulfide (MoS2) was prepared successfully via hydrothermal reaction at 200 degrees C in water/ethanol (1:1) solvent system using the ammonium molybdate and sodium thiosulfate as the molybdenum sources and sulfur sources, 1-butyl-3-methylimidazolium chloride salt [BMIM][Cl] as the additive agent. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the morphology and structure of flower-like products. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy spectrum analysis results show that the as-prepared product is a pure phase of MoS2. The prepared products are used as electrode materials for Li-ion batteries and showed excellent cycle stability and high Coulombic efficiency at a current density of 200 mA x g(-1) in the voltage range of 0.01 - 3.00 V (vs. Li/Li+). In addition, this paper also examined the influence of the reaction time and the amount of template agent on morphology, and discussed the reaction mechanism of the formation of flower-like morphology. PMID:27427696

  19. Dissociation of equimolar mixtures of aqueous carboxylic acids in ionic liquids: role of specific interactions.

    PubMed

    Shukla, Shashi Kant; Kumar, Anil

    2015-04-30

    Hammett acidity function observes the effect of protonation/deprotonation on the optical density/absorbance of spectrophotometric indicator. In this work, the Hammett acidity, H0, of equimolar mixtures of aqueous HCOOH, CH3COOH, and CH3CH2COOH was measured in 1-methylimidazolium-, 1-methylpyrrolidinium-, and 1-methylpiperidinium-based protic ionic liquids (PILs) and 1-butyl-3-methylimidazolium-based aprotic ionic liquid (AIL) with formate (HCOO(-)) anion. Higher H0 values were observed for the equimolar mixtures of aqueous carboxylic acids in protic ionic liquids compared with those of the aprotic ionic liquid because of the involvement of the stronger specific interactions between the conjugate acid of ionic liquid and conjugate base of carboxylic acids as suggested by the hard-soft acid base (HSAB) theory. The different H0 values for the equimolar mixtures of aqueous carboxylic acids in protic and aprotic ionic liquids were noted to depend on the activation energy of proton transfer (Ea,H(+)). The higher activation energy of proton transfer was obtained in AIL, indicating lower ability to form specific interactions with solute than that of PILs. Thermodynamic parameters determined by the "indicator overlapping method" further confirmed the involvement of the secondary interactions in the dissociation of carboxylic acids. On the basis of the thermodynamic parameter values, the potential of different ionic liquids in the dissociation of carboxylic acids was observed to depend on the hydrogen bond donor acidity (α) and hydrogen bond acceptor basicity (β), characteristics of specific interactions.

  20. Development of an ionic liquid-based microwave-assisted method for the extraction and determination of taxifolin in different parts of Larix gmelinii.

    PubMed

    Liu, Zaizhi; Jia, Jia; Chen, Fengli; Yang, Fengjian; Zu, Yuangang; Yang, Lei

    2014-01-01

    An ionic liquid-based microwave-assisted extraction method (ILMAE) was successfully applied for the extraction of taxifolin from Larix gmelinii. Different kinds of 1-alkyl-3-methylimidazolium ionic liquids with different kinds of cations and anions were studied and 1-butyl-3-methylimidazolium bromide was chosen as the optimal solvent for taxifolin extraction. The optimal conditions of ILMAE were determined by single factor experiments and Box-Behnken design as follows: [C4mim]Br concentration of 1.00 M, soaking time of 2 h, liquid-solid ratio of 15:1 mL/g, microwave irradiation power of 406 W, microwave irradiation time of 14 min. No degradation of taxifolin had been observed under the optimum conditions as evidenced from the stability studies performed with standard taxifolin. Compared with traditional solvent and methods, ILMAE provided higher extraction yield, lower energy and time consumption. The distribution of taxifolin in different parts of larch and the influences of age, orientation, and season on the accumulation of taxifolin were analyzed for the sufficient utilization of L. gmelinii.

  1. Direct UV-spectroscopic measurement of selected ionic-liquid vapors

    SciTech Connect

    Dai, Sheng; Luo, Huimin; Wang, Congmin; Li, Haoran

    2010-01-01

    The hallmark of ionic liquids lies in their negligible vapor pressure. This ultralow vapor pressure makes it difficult to conduct the direct spectroscopic measurement of ionic-liquid vapors. In fact, there have been no electronic spectroscopic data currently available for ionic-liquid vapors. This deficiency significantly hampers the fundamental understanding of the unique molecular structures of ionic liquids. Herein, the UV absorption spectra of eight ionic liquids, such as 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Bmim{sup +}] [Tf{sub 2}N{sup -}]) and 1-ethyl-3-methylimidazolium bis(perfluoroethylsulfonyl)imide ([Emim{sup +}][beti{sup -}]) in the vapor phase in a distillation-like environment, were measured through a high-temperature spectroscopic technique to fill this knowledge gap. Two strong absorption peaks of the [Bmim{sup +}][Tf{sub 2}N{sup -}] vapor lie at 202 and 211 nm, slightly different from those of the neat [Bmim{sup +}][Tf{sub 2}N{sup -}] thin film and its solution in water. Based on the quantitative determination of the vapor absorption spectra as a function of temperature, the vaporization enthalpies of these ionic liquids vapors were measured and found to be in good agreement with the corresponding literature values. This in situ method opens up a new avenue to study the nature of ionic-liquid vapors and to determine the vaporization enthalpies of ionic liquids.

  2. New Alkylether-Thiazolium Room-Temperature Ionic Liquid Lubricants: Surface Interactions and Tribological Performance.

    PubMed

    Espinosa, Tulia; Sanes, José; Bermúdez, María-Dolores

    2016-07-20

    The use of newly synthesized alkylether-thiazolium ionic liquids as lubricants is described for the first time. Two ionic liquids composed of a thiazolium cation and a bis(trifluoromethanesulfonyl)amide ([Th][Tf2N]) or dicyanamide ([Th][(NC)2N]) anion have been studied, and their tribological behavior has been compared with that of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([Im][Tf2N]) in pin-on-disk tests using sapphire balls against AISI 52100 or AISI 316L steels. All ionic liquids show higher contact angles on AISI 316L steel than on AISI 52100, the lowest values found for ([Im][Tf2N]) on both steel surfaces. AISI 52100 shows similar friction coefficients for all lubricants, and negligible wear rates for the ionic liquids containing the bis(trifluoromethanesulfonyl)amide anion. Immersion tests show no corrosion of AISI 52100 in imidazolium or thiazolium bis(trifluoromethanesulfonyl)amide ionic liquids. AISI 316L shows similar friction coefficients for both bis(trifluoromethanesulfonyl)amide ionic liquids, but the lowest wear rate is obtained for [Th][Tf2N]. An increase in friction coefficient and wear rate is observed for thiazolium dicyanamide. This increase is related to a tribocorrosion process due to decomposition of the thiazolium cation. XPS shows the formation of iron sulfide on the wear track on AISI 316L after lubrication with thiazolium dicyanamide. No tribocorrosion processes take place for the [Tf2N] ionic liquids.

  3. A roadmap to uranium ionic liquids: anti-crystal engineering.

    PubMed

    Yaprak, Damla; Spielberg, Eike T; Bäcker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja-Verena

    2014-05-19

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO2(2+) unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim to establish structure-property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. These materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery.

  4. Sulfonic Acid- and Lithium Sulfonate-Grafted Poly(Vinylidene Fluoride) Electrospun Mats As Ionic Liquid Host for Electrochromic Device and Lithium-Ion Battery.

    PubMed

    Zhou, Rui; Liu, Wanshuang; Leong, Yew Wei; Xu, Jianwei; Lu, Xuehong

    2015-08-01

    Electrospun polymer nanofibrous mats loaded with ionic liquids (ILs) are promising nonvolatile electrolytes with high ionic conductivity. The large cations of ILs are, however, difficult to diffuse into solid electrodes, making them unappealing for application in some electrochemical devices. To address this issue, a new strategy is used to introduce proton conduction into an IL-based electrolyte. Poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) copolymer is functionalized with sulfonic acid through covalent attachment of taurine. The sulfonic acid-grafted P(VDF-HFP) electrospun mats consist of interconnected nanofibers, leading to remarkable improvement in dimensional stability of the mats. IL-based polymer electrolytes are prepared by immersing the modified mats in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM(+)BF4(-)). It is found that the SO3(-) groups can have Lewis acid-base interactions with the cations (BMIM(+)) of IL to promote the dissociation of ILs, and provide additional proton conduction, resulting in significantly improved ionic conductivity. Using this novel electrolyte, polyaniline-based electrochromic devices show higher transmittance contrast and faster switching behavior. Furthermore, the sulfonic acid-grafted P(VDF-HFP) electrospun mats can also be lithiated, giving additional lithium ion conduction for the IL-based electrolyte, with which Li/LiCoO2 batteries display enhanced C-rate performance.

  5. Green synthesis of polymer monoliths incorporated with carbon nanotubes in room temperature ionic liquid and deep eutectic solvents.

    PubMed

    Zhang, Li-Shun; Gao, Shu-Ping; Huang, Yan-Ping; Liu, Zhao-Sheng

    2016-07-01

    In this work, an efficient method to prepare polymer monoliths with incorporated carbon nanotubes in a mixture of room temperature ionic liquid and deep eutectic solvents was developed. With assistance of the binary green solvent, 1-butyl-3-methylimidazolium tetrafluoroborate and choline chloride/ethylene glycol, single-walled carbon nanotubes were dispersed successfully in pre-polymerization mixture without need of oxidative cutting of carbon nanotubes, which may allow depletion of the emission of volatile organic compounds into environment. The novel single-walled carbon nanotubes monolith was evaluated by capillary electrochromatography. Compared with the monolith made without single-walled carbon nanotubes, the monolith with the incorporation of single-walled carbon nanotubes exhibited high column efficiency (251,000plates/m) in the chromatographic separation. The morphology of the monolith can be tuned by the composition of mixture of ionic liquids and deep eutectic solvents to afford good column permeability and excellent separation ability for small molecules of alkyl phenones and alkyl benzenes. The results demonstrated that the method is a green strategy for the fabrication of multifunctional polymer monoliths.

  6. Efficient adsorption of 1-alkyl-3-methylimidazolium chloride ionic liquids onto modified cellulose microspheres.

    PubMed

    Xu, Min; Ao, Yinyong; Wang, Shuojue; Peng, Jing; Li, Jiuqiang; Zhai, Maolin

    2015-09-01

    A novel sulfonated cellulose microsphere adsorbent (CGS) was prepared by pre-irradiation induced emulsion grafting of glycidyl methacrylate (GMA) onto the cellulose microsphere, followed by sulfonation. The resulting CGS exhibited superior adsorption ability toward 1-alkyl-3-methylimidazolium chloride ([CnMIM]Cl) ionic liquids (ILs). The adsorption equilibrium could be attained rapidly within 40 min for representative 1-butyl-3-methylimidazolium chloride ([C4MIM]Cl) using CGS with different amounts of SO3H group. The adsorption behavior of CGS toward [C4MIM]Cl was well described by the pseudo-second-order model and the Langmuir model. The maximum adsorption capacity toward [C4MIM]Cl was 1.08 mmol/g in the wide range of pH (4.8-10.1). In addition, the adsorption capacity of CGS toward [CnMIM]Cl increased with the alkyl length of cations of [CnMIM]Cl due to the hydrophobic interaction and cation exchange adsorption. Spent CGS could be easily regenerated by 0.1 mol/L HCl or NaCl. The results indicated that this new adsorbent is useful in removing ILs from wastewater.

  7. Two solid-phase recycling method for basic ionic liquid [C4mim]Ac by macroporous resin and ion exchange resin from Schisandra chinensis fruits extract.

    PubMed

    Ma, Chun-hui; Zu, Yuan-gang; Yang, Lei; Li, Jian

    2015-01-22

    In this study, two solid-phase recycling method for basic ionic liquid (IL) 1-butyl-3-methylimidazolium acetate ([C4mim]Ac) were studied through a digestion extraction system of extracting biphenyl cyclooctene lignans from Schisandra chinensis. The RP-HPLC detection method for [C4mim]Ac was established in order to investigate the recovery efficiency of IL. The recycling method of [C4mim]Ac is divided into two steps, the first step was the separation of lignans from the IL solution containing HPD 5000 macroporous resin, the recovery efficiency and purity of [C4mim]Ac achieved were 97.8% and 67.7%, respectively. This method cannot only separate the lignans from [C4mim]Ac solution, also improve the purity of lignans, the absorption rate of lignans in [C4mim]Ac solution was found to be higher (69.2%) than that in ethanol solution (57.7%). The second step was the purification of [C4mim]Ac by the SK1B strong acid ion exchange resin, an [C4mim]Ac recovery efficiency of 55.9% and the purity higher than 90% were achieved. Additionally, [C4mim]Ac as solvent extraction of lignans from S. chinensis was optimized, the hydrolysis temperature was 90°C and the hydrolysis time was 2h.

  8. Toxicity of two imidazolium ionic liquids, [bmim][BF4] and [omim][BF4], to standard aquatic test organisms: Role of acetone in the induced toxicity.

    PubMed

    Tsarpali, Vasiliki; Dailianis, Stefanos

    2015-07-01

    The main goal of this study was to investigate the toxicity of the imidazolium-based ionic liquids (ILs), [bmim][BF4] (1-butyl-3-methylimidazolium tetrafluoroborate) and [omim][BF4] (1-octyl-3-methylimidazolium tetrafluoroborate), in battery of standard aquatic toxicity test organisms. Specifically, exposure of the algae Scenedesmus rubescens, crustaceans Thamnocephalus platyurus and Artemia franciscana, rotifers Brachionus calyciflorus and Brachionus plicatilis and bivalve Mytilus galloprovincialis to different concentrations of [bmim][BF4], [omim][BF4] and/or a binary mixture of [bmim][BF4]-[omim][BF4] (1:1) with or without acetone (carrier solvent), revealed that solvent can differentially mediate ILs' toxic profile. Acetone's ability to differentially affect ILs' cation's alkyl chain length, as well as the hydrolysis of [BF4(-)] anions was evident. Given that the toxic potency of the tested ILs seemed to be equal or even higher (in some cases) than those of conventional organic solvents, the present study revealed that the characterization of imidazolium-based ILs as "green solvents" should not be generalized, at least in case of their natural occurrence in mixtures with organic solvents, such as acetone.

  9. Surface study of metal-containing ionic liquids by means of photoemission and absorption spectroscopies

    NASA Astrophysics Data System (ADS)

    Caporali, Stefano; Pedio, Maddalena; Chiappe, Cinzia; Pomelli, Christian S.; Acres, Robert G.; Bardi, Ugo

    2016-06-01

    The vacuum/liquid interface of different ionic liquids obtained by dissolving bistriflimide salts of Ag, Al, Cu, Ni, and Zn in 1-butyl-3-methylimidazolium bistriflimide ([bmim][Tf2N]) was investigated under vacuum using AR-XPS and NEXAFS. The XPS spectra show chemical shifts of the nitrogen of the bistriflimide anion as a function of the metal type, indicating different strength of the coordination bonds. In silver bearing ILs, silver ions were found to be only weakly coordinated. On the contrary, Ni, Cu, Zn, and especially Al exhibit large chemical shifts attributable to strong interaction with the bistriflimide ions. The outermost surface was enriched with or depleted of metal ions as a function of the nature of the metals. Nickel and zinc tend to slightly concentrate at the surface while copper, silver, and especially aluminum are depleted at the surface. We also observed that the aliphatic alkyl chains of the cations tend to protrude outside the surface in all systems studied. However, the presence of metals generally increases the amount of bistriflimide at the vacuum/liquid interface.

  10. Association structures of ionic liquid/DMSO mixtures studied by high-pressure infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Jyh-Chiang; Lin, Kuan-Hung; Li, Sz-Chi; Shih, Pao-Ming; Hung, Kai-Chan; Lin, Sheng Hsien; Chang, Hai-Chou

    2011-01-01

    Using high-pressure infrared methods, we have investigated close interactions of charge-enhanced C-H-O type in ionic liquid/dimethyl sulfoxide (DMSO) mixtures. The solvation and association of the 1-butyl-3-methylimidazolium tetrafluoroborate (BMI^ + BF_4^ - ) and 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (BMM^ + BF_4^ - ) in DMSO-d6 were examined by analysis of C-H spectral features. Based on our concentration-dependent results, the imidazolium C-H groups are more sensitive sites for C-H-O than the alkyl C-H groups and the dominant imidazolium C-H species in dilute ionic liquid/DMSO-d6 should be assigned to the isolated (or dissociated) structures. As the dilute mixtures were compressed by high pressures, the loss in intensity of the bands attributed to the isolated structures was observed. In other words, high pressure can be used to perturb the association-dissociation equilibrium in the polar region. This result is remarkably different from what is revealed for the imidazolium C-H in the BMM^ + BF_4^ - /D2O mixtures. DFT-calculations are in agreement with our experimental results indicating that C4-H-O and C5-H-O interactions seem to play non-negligible roles for BMM^ + BF_4^ - /DMSO mixtures.

  11. Catalysis of rice straw hydrolysis by the combination of immobilized cellulase from Aspergillus niger on β-cyclodextrin-Fe3O4 nanoparticles and ionic liquid.

    PubMed

    Huang, Po-Jung; Chang, Ken-Lin; Hsieh, Jung-Feng; Chen, Shui-Tein

    2015-01-01

    Cellulase from Aspergillus niger was immobilized onto β-cyclodextrin-conjugated magnetic particles by silanization and reductive amidation. The immobilized cellulase gained supermagnetism due to the magnetic nanoparticles. Ninety percent of cellulase was immobilized, but the activity of immobilized cellulase decreased by 10%. In this study, ionic liquid (1-butyl-3-methylimidazolium chloride) was introduced into the hydrolytic process because the original reaction was a solid-solid reaction. The activity of immobilized cellulase was improved from 54.87 to 59.11 U g immobilized cellulase(-1) at an ionic liquid concentration of 200 mM. Using immobilized cellulase and ionic liquid in the hydrolysis of rice straw, the initial reaction rate was increased from 1.629 to 2.739 g h(-1) L(-1). One of the advantages of immobilized cellulase is high reusability--it was usable for a total of 16 times in this study. Compared with free cellulase, magnetized cellulase can be recycled by magnetic field and the activity of immobilized cellulase was shown to remain at 85% of free cellulase without denaturation under a high concentration of glucose (15 g L(-1)). Therefore, immobilized cellulase can hydrolyze rice straw continuously compared with free cellulase. The amount of harvested glucose can be up to twentyfold higher than that from the hydrolysis by free cellulase.

  12. Synthesis, micellization behavior and alcohol induced amphipathic cellulose film of cellulose-based amphiphilic surfactant

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Liu, Ya-nan; Yu, Jian-ling; Li, Hai-peng; Li, Gang

    2015-08-01

    This paper presented a novel preparation method of the cellulose-based amphiphilic surfactant, and the surfactant was used to prepare amphipathic cellulose membrane. The native cotton cellulose was tailored to cellulose segments in ionic liquid 1-butyl-3-methylimidazolium chloride. Then, the hydrophobic and hydrophilic modification of cellulose segments were carried out by esterification and graft polymerization of the ɛ-caprolactone (ɛ-CL) monomer onto the hydroxyl group of cellulose as well as sulphonation with sulfamic acid. The amphipathic cellulose membrane was made by cellulose-based amphiphilic surfactant cross-linking with glutaraldehyde. The molecular structure of amphipathic cellulose surfactant was confirmed by FT-IR, and its surface active properties were investigated by Wilhelmy plate method and Steady-state fluorescence probe method, respectively. Experimental results showed that cellulose-based amphiphilic surfactant caused low interfacial tension of 48.62 mN/m and its critical micelle concentration (cmc) value was 0.65 wt% when the grafting ratio of cellulose-g-PCL (poly-caprolactone) was 25.40%. The contact angle between a droplet of water and the surface of membrane was 90.84o, and the surface free energy of the alcohol induced cellulose membrane was 15.7 mJ/m2. This study may help increase using natural and biodegradable surface-activity materials with improved properties as surfactants.

  13. Solubility and solvation of monosaccharides in ionic liquids.

    PubMed

    Teles, Ana Rita R; Dinis, Teresa B V; Capela, Emanuel V; Santos, Luís M N B F; Pinho, Simão P; Freire, Mara G; Coutinho, João A P

    2016-07-20

    Herein, solubility experimental data for six monosaccharides, viz.d-(+)-glucose, d-(+)-mannose, d-(-)-fructose, d-(+)-galactose, d-(+)-xylose and l-(+)-arabinose, in four ionic liquids (ILs), at temperatures ranging from 288.2 to 348.2 K, were obtained aimed at gathering a better understanding of their solvation ability and molecular-level mechanisms which rule the dissolution process. To ascertain the chemical features that enhance the solubility of monosaccharides, ILs composed of dialkylimidazolium or tetraalkylphosphonium cations combined with the dicyanamide, dimethylphosphate or chloride anions were investigated. It was found that the ranking of the solubility of monosaccharides depends on the IL; yet, d-(+)-xylose is always the most soluble while d-(-)-fructose is the least soluble monosaccharide. The results obtained show that both the IL cation and the anion play a major role in the solubility of monosaccharides. Finally, from the determination of the respective thermodynamic properties of solution, it was found that enthalpic contributions are dominant in the solubilization process. However, the observed differences in the solubilities of monosaccharides in 1-butyl-3-methylimidazolium dicyanamide are ruled by a change in the entropy of solution. PMID:27380720

  14. Development of an ionic liquid-based microwave-assisted method for simultaneous extraction and distillation for determination of proanthocyanidins and essential oil in Cortex cinnamomi.

    PubMed

    Liu, Ye; Yang, Lei; Zu, Yuangang; Zhao, Chunjian; Zhang, Lin; Zhang, Ying; Zhang, Zhonghua; Wang, Wenjie

    2012-12-15

    Cortex cinnamomi is associated with many health benefits and is used in the food and pharmaceutical industries. In this study, an efficient ionic liquid-based microwave-assisted simultaneous extraction and distillation (ILMSED) technique was used to extract cassia oil and proanthocyanidins from Cortex cinnamomi; these were quantified by gas chromatography/mass spectrometry (GC-MS) and the vanillin-HCl colorimetric method, respectively. 0.5M 1-butyl-3-methylimidazolium bromide ionic liquid was selected as solvent. The optimum parameters of dealing with 20.0 g sample were 230 W microwave irradiation power, 15 min microwave extraction time and 10 liquid-solid ratio. The yields of essential oil and proanthocyanidins were 1.24 ± 0.04% and 4.58 ± 0.21% under the optimum conditions. The composition of the essential oil was analysed by GC-MS. Using the ILMSED method, the energy consumption was reduced and the extraction yields were improved. The proposed method was validated using stability, repeatability, and recovery experiments. The results indicated that the developed ILMSED method provided a good alternative for the extraction of both the essential oil and proanthocyanidins from Cortex cinnamomi.

  15. Unique role of hydrophilic ionic liquid in modifying properties of aqueous Triton X-100

    NASA Astrophysics Data System (ADS)

    Behera, Kamalakanta; Pandey, Mrituanjay D.; Porel, Mintu; Pandey, Siddharth

    2007-11-01

    Modification of important physicochemical properties of aqueous surfactant solutions can be achieved by addition of environmentally benign room temperature ionic liquids (ILs). While low aqueous solubility of ``hydrophobic'' ILs limits the amount of IL that may be added to achieve desired changes in the physicochemical properties, hydrophilic ILs do not have such restrictions associated to them. Alterations in the key physicochemical properties of aqueous solutions of a common nonionic surfactant Triton X-100 (TX100) on addition of up to 30 wt % hydrophilic IL 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) are reported. The presence of micellar aggregates in as high as 30 wt % [bmim][BF4]-added aqueous TX100 solutions is established by dynamic light scattering and fluorescence probe behavior. Increasing the concentration of [bmim][BF4] results in decrease in average micellar size and aggregation number and increase in critical micelle concentration, indicating an overall unfavorable aggregation process. Increase in the dipolarity and the microfluidity of the probe cybotactic region within the palisade layer of the micellar phase upon [bmim][BF4] addition implies increased water penetration and the possibility of TX100-[bmim][BF4] interactions. While the changes in some of the physicochemical properties indicate the role of [bmim][BF4] to be similar to a cosurfactant, the IL acts like a cosolvent as far as changes in other properties are concerned. Effectiveness of IL [bmim][BF4] in modifying physicochemical properties of aqueous TX100 is demonstrated.

  16. Synthesis, micellization behavior and alcohol induced amphipathic cellulose film of cellulose-based amphiphilic surfactant

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Liu, Ya-nan; Yu, Jian-ling; Li, Hai-peng; Li, Gang

    2015-08-01

    This paper presented a novel preparation method of the cellulose-based amphiphilic surfactant, and the surfactant was used to prepare amphipathic cellulose membrane. The native cotton cellulose was tailored to cellulose segments in ionic liquid 1-butyl-3-methylimidazolium chloride. Then, the hydrophobic and hydrophilic modification of cellulose segments were carried out by esterification and graft polymerization of the ɛ-caprolactone (ɛ-CL) monomer onto the hydroxyl group of cellulose as well as sulphonation with sulfamic acid. The amphipathic cellulose membrane was made by cellulose-based amphiphilic surfactant cross-linking with glutaraldehyde. The molecular structure of amphipathic cellulose surfactant was confirmed by FT-IR, and its surface active properties were investigated by Wilhelmy plate method and Steady-state fluorescence probe method, respectively. Experimental results showed that cellulose-based amphiphilic surfactant caused low interfacial tension of 48.62 mN/m and its critical micelle concentration (cmc) value was 0.65 wt% when the grafting ratio of cellulose-g-PCL (poly-caprolactone) was 25.40%. The contact angle between a droplet of water and the surface of membrane was 90.84o, and the surface free energy of the alcohol induced cellulose membrane was 15.7 mJ/m2. This study may help increase using natural and biodegradable surface-activity materials with improved properties as surfactants.

  17. Theoretical Elucidation of Glucose Dehydration to 5-Hydroxymethylfurfural Catalyzed by a SO3H-Functionalized Ionic Liquid.

    PubMed

    Li, Jingjing; Li, Jinghua; Zhang, Dongju; Liu, Chengbu

    2015-10-22

    While the catalytic conversion of glucose to 5-hydroxymethyl furfural (HMF) catalyzed by SO3H-functioned ionic liquids (ILs) has been achieved successfully, the relevant molecular mechanism is still not understood well. Choosing 1-butyl-3-methylimidazolium chloride [C4SO3HmimCl] as a representative of SO3H-functioned IL, this work presents a density functional theory (DFT) study on the catalytic mechanism for conversion of glucose into HMF. It is found that the conversion may proceed via two potential pathways and that throughout most of elementary steps, the cation of the IL plays a substantial role, functioning as a proton shuttle to promote the reaction. The chloride anion interacts with the substrate and the acidic proton in the imidazolium ring via H-bonding, as well as provides a polar environment together with the imidazolium cation to stabilize intermediates and transition states. The calculated overall barriers of the catalytic conversion along two potential pathways are 32.9 and 31.0 kcal/mol, respectively, which are compatible with the observed catalytic performance of the IL under mild conditions (100 °C). The present results provide help for rationalizing the effective conversion of glucose to HMF catalyzed by SO3H-functionalized ILs and for designing IL catalysts used in biomass conversion chemistry. PMID:26434955

  18. Three-phase catalytic system of H2O, ionic liquid, and VOPO4-SiO2 solid acid for conversion of fructose to 5-hydroxymethylfurfural.

    PubMed

    Tian, Chengcheng; Zhu, Xiang; Chai, Song-Hai; Wu, Zili; Binder, Andrew; Brown, Suree; Li, Lin; Luo, Huimin; Guo, Yanglong; Dai, Sheng

    2014-06-01

    Efficient transformation of biomass-derived feedstocks to chemicals and fuels remains a daunting challenge in utilizing biomass as alternatives to fossil resources. A three-phase catalytic system, consisting of an aqueous phase, a hydrophobic ionic-liquid phase, and a solid-acid catalyst phase of nanostructured vanadium phosphate and mesostructured cellular foam (VPO-MCF), is developed for efficient conversion of biomass-derived fructose to 5-hydroxymethylfurfural (HMF). HMF is a promising, versatile building block for production of value-added chemicals and transportation fuels. The essence of this three-phase system lies in enabling the isolation of the solid-acid catalyst from the aqueous phase and regulation of its local environment by using a hydrophobic ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Tf2N]). This system significantly inhibits the side reactions of HMF with H2O and leads to 91 mol % selectivity to HMF at 89 % of fructose conversion. The unique three-phase catalytic system opens up an alternative avenue for making solid-acid catalyst systems with controlled and locally regulated microenvironment near catalytically active sites by using a hydrophobic ionic liquid. PMID:24729382

  19. Hydrolysis of cellulose catalyzed by novel acidic ionic liquids.

    PubMed

    Zhuo, Kelei; Du, Quanzhou; Bai, Guangyue; Wang, Congyue; Chen, Yujuan; Wang, Jianji

    2015-01-22

    The conversion of cellulosic biomass directly into valuable chemicals becomes a hot subject. Six novel acidic ionic liquids (ILs) based on 2-phenyl-2-imidazoline were synthesized and characterized by UV-VIS, TGA, and NMR. The novel acidic ionic liquids were investigated as catalysts for the hydrolysis of cellulose in 1-butyl-3-methylimidazolium chloride ([Bmim]Cl). The acidic ionic liquids with anions HSO4(-) and Cl(-) showed better catalytic performance for the hydrolysis of cellulose than those with H2PO4(-). The temperature and dosage of water affect significantly the yield of total reducing sugar (TRS). When the hydrolysis of cellulose was catalyzed by 1-propyl sulfonic acid-2-phenyl imidazoline hydrogensulfate (IL-1) and the dosage of water was 0.2g, the TRS yield was up to 85.1% within 60 min at 100°C. These new acidic ionic liquids catalysts are expected to have a wide application in the conversion of cellulose into valuable chemicals. PMID:25439867

  20. Catalytic conversion of carbohydrates into 5-hydroxymethylfurfural over cellulose-derived carbonaceous catalyst in ionic liquid.

    PubMed

    Hu, Lei; Zhao, Geng; Tang, Xing; Wu, Zhen; Xu, Jiaxing; Lin, Lu; Liu, Shijie

    2013-11-01

    Three environmental-benign and low-cost carbon-based solid acid catalysts containing -SO3H, -COOH and phenolic -OH groups were prepared and used for the conversion of glucose into 5-hydroxymethylfurfural (HMF) in ionic liquid 1-butyl-3-methylimidazolium chloride ([BMIM]Cl). The results demonstrated that cellulose-derived carbonaceous catalyst (CCC) possessed the highest catalytic activity, which resulted in 46.4% HMF yield at 160°C for only 15 min. In addition, the reaction kinetics for the conversion of glucose into HMF over CCC was fitted with the first-order rate equation. The slightly-deactivated CCC after four successive reaction runs could be easily regenerated by a simple carbonization and sulfonation process. More gratifyingly, the combination of CCC and [BMIM]Cl were confirmed to be suitable for converting other carbohydrates such as fructose, sucrose, maltose, cellobiose, starch and cellulose into HMF. Particularly, a plausible mechanism involving hydrolysis, isomerization and dehydration for the conversion of carbohydrates into HMF was also proposed. PMID:24090810

  1. Conversion of xylan, d-xylose and lignocellulosic biomass into furfural using AlCl3 as catalyst in ionic liquid.

    PubMed

    Zhang, Luxin; Yu, Hongbing; Wang, Pan; Dong, Heng; Peng, Xinhong

    2013-02-01

    In order to define a new green catalytic pathway for the production of furfural, the catalyzed conversion of xylan into furfural in 1-butyl-3-methylimidazolium chloride was studied by using mineral acids and metal chlorides as catalysts under microwave irradiation. Amongst these catalysts, AlCl(3) resulted in the highest furfural yield of 84.8% at 170°C for 10s. The effect of AlCl(3) on the conversion efficiency of d-xylose and untreated lignocellulosic biomass was also investigated, the yields of furfural from corncob, grass and pine wood catalyzed by AlCl(3) in [BMIM]Cl were in the range of 16-33%. [BMIM]Cl and AlCl(3) could be recycled for four runs with stable catalytic activity. AlCl(3) is less corrosive than mineral acids, and the use of ionic liquid as reaction medium will no longer generate toxic wastewater, thus this reaction system is more ecologically viable. PMID:23306118

  2. "One-step production of biodiesel from Jatropha oil with high-acid value in ionic liquids" [Bioresour. Technol. 102 (11) (2011)].

    PubMed

    Guo, Feng; Fang, Zhen; Tian, Xiao-fei; Long, Yun-Duo; Jiang, Li-Qun

    2013-07-01

    Catalytic conversion of un-pretreated Jatropha oil with high-acid value (13.8 mg KOH/g) to biodiesel was studied in ionic liquids (ILs) with metal chlorides. Several commercial ILs were used to catalyze the esterification of oleic acid. It was found that 1-butyl-3-methylimidazolium tosylate {[BMIm][TS]} had high catalytic activity with 93% esterification rate for oleic acid at 140 °C but only 63.7% Jatropha biodiesel yield at 200 °C. When ZnCl2 was added to [BMIm][TS], a maximum Jatropha biodiesel yield of 92.5% was achieved at 180 °C. Addition of metal ions supplied Lewis acidic sites in ILs promoted both esterification and transestrification reactions. It was also found that the transition metal ions performed higher catalytic activity in transestrification than the ions of Group A. Mixture of [BMIm][TS] and ZnCl2 was easily separated from products for reuse to avoid producing pollutants. PMID:23908993

  3. Conversion of fructose and glucose into 5-hydroxymethylfurfural with lignin-derived carbonaceous catalyst under microwave irradiation in dimethyl sulfoxide-ionic liquid mixtures.

    PubMed

    Guo, Feng; Fang, Zhen; Zhou, Tie-Jun

    2012-05-01

    5-Hydroxymethylfurfural (5-HMF) was successfully produced by the dehydration of fructose and glucose using lignin-derived solid acid catalyst in DMSO-[BMIM][Cl] (dimethyl sulfoxide and 1-butyl-3-methylimidazolium chloride) mixtures. Six solid acid catalysts were synthesized by carbonization and sulfonation of raw biomass materials, i.e., glucose, fructose, cellulose, lignin, bamboo and Jatropha hulls. It was found that lignin-derived solid acid catalyst (LCC) was the most active one in the dehydration of sugars. LCC coupled with microwave irradiation was used for the 5-HMF production, 84% 5-HMF yield with 98% fructose conversion rate was achieved at 110°C for 10 min. Furthermore, 99% glucose was converted with 68% 5-HMF yield under severer condition (160°C for 50 min). LCC was recycled for five times, 5-HMF yield declined only 7%. Use of LCC combined with DMSO-[BMIM][Cl] solution and microwave irradiation is a novel method for the effective production of 5-HMF. PMID:22429401

  4. One-step production of biodiesel from Jatropha oil with high-acid value in ionic liquids.

    PubMed

    Guo, Feng; Fang, Zhen; Tian, Xiao-Fei; Long, Yun-Duo; Jiang, Li-Qun

    2011-06-01

    Catalytic conversion of un-pretreated Jatropha oil with high-acid value (13.8 mg KOH/g) to biodiesel was studied in ionic liquids (ILs) with metal chlorides. Several commercial ILs were used to catalyze the esterification of oleic acid. It was found that 1-butyl-3-methylimidazolium tosylate ([BMIm][CH(3)SO(3)]; a Brønsted acidic IL) had the highest catalytic activity with 93% esterification rate for oleic acid at 140°C but only 12% biodiesel yield at 120°C. When FeCl(3) was added to [BMIm][CH(3)SO(3)], a maximum biodiesel yield of 99.7% was achieved at 120°C. Because metal ions in ILs supplied Lewis acidic sites, and more of the sites could be provided by trivalent metallic ions than those of bivalent ones. It was also found that the catalytic activity with bivalent metallic ions increased with atomic radius. Mixture of [BMIm][CH(3)SO(3)] and FeCl(3) was easily separated from products for reuse to avoid producing pollutants. PMID:21420854

  5. Influence of the molecular-oriented structure of ionic liquids on the crystallinity of aluminum hydroxide prepared by a sol-gel process in ionic liquids.

    PubMed

    Kinoshita, K; Yanagimoto, H; Suzuki, T; Minami, H

    2015-07-28

    The influence of the structure of ionic liquids on the crystallinity of aluminum hydroxide (Al(OH)3) prepared by a sol-gel process with aluminum isopropoxide (Al(OPr(i))3) in imidazolium-based ionic liquids was investigated. When Al(OH)3 was prepared in ionic liquids having long alkyl chains, such as 1-butyl-3-methylimidazolium salts and 1-methyl-3-octylimidazolium salts, highly crystalline products were obtained. In contrast, Al(OH)3 obtained using the 1-ethyl-3-methylimidazolium salt was an amorphous material, indicating that hydrophobic interaction of the alkyl tail of the imidazolium cation of the ionic liquid strongly affects the crystallinity of sol-gel products and the local structure of the ionic liquid. Moreover, the crystallinity of Al(OH)3 prepared in ionic liquids increased relative to the amount of additional water (ionic liquid/water = 1.28/2.0-3.5/0.2, w/w). In the case of addition of a small amount of water (ionic liquid/water = 3.5/0.2, w/w), the product was amorphous. These results implied that the presence of an ionic liquid and a sufficient amount of water was crucial for the successful synthesis of sol-gel products with high crystallinity. (1)H NMR analyses revealed a shift of the peak associated with the imidazolium cation upon addition of water, which suggested that the molecular orientation of the ionic liquid was similar to that of a micelle. PMID:26118363

  6. Nonaborane and decaborane cluster anions can enhance the ignition delay in hypergolic ionic liquids and induce hypergolicity in molecular solvents.

    PubMed

    McCrary, Parker D; Barber, Patrick S; Kelley, Steven P; Rogers, Robin D

    2014-05-01

    The dissolution of nido-decaborane, B10H14, in ionic liquids that are hypergolic (fuels that spontaneously ignite upon contact with an appropriate oxidizer), 1-butyl-3-methylimidazolium dicyanamide, 1-methyl-4-amino-1,2,4-triazolium dicyanamide, and 1-allyl-3-methylimidazolium dicyanamide, led to the in situ generation of a nonaborane cluster anion, [B9H14](-), and reductions in ignition delays for the ionic liquids suggesting salts of borane anions could enhance hypergolic properties of ionic liquids. To explore these results, four salts based on [B10H13](-) and [B9H14](-), triethylammonium nido-decaborane, tetraethylammonium nido-decaborane, 1-ethyl-3-methylimidazolium arachno-nonaborane, and N-butyl-N-methyl-pyrrolidinium arachano-nonaborane were synthesized from nido-decaborane by reaction of triethylamine or tetraethylammonium hydroxide with nido-decaborane in the case of salts containing the decaborane anion or via metathesis reactions between sodium nonaborane (Na[B9H14]) and the corresponding organic chloride in the case of the salts containing the nonaborane anion. These borane cluster anion salts form stable solutions in some combustible polar aprotic solvents such as tetrahydrofuran and ethyl acetate and trigger hypergolic reactivity of these solutions. Solutions of these salts in polar protic solvents are not hypergolic. PMID:24716643

  7. Comparison of different ionic liquids pretreatment for corn stover enzymatic saccharification.

    PubMed

    Mood, Sohrab Haghighi; Golfeshan, Amir Hossein; Tabatabaei, Meisam; Abbasalizadeh, Saeed; Ardjmand, Mehdi; Jouzani, Gholamreza Salehi

    2014-01-01

    Recently, application of ionic liquids (ILs) has received much attention due to their special solvency properties as a promising method of pretreatment for lignocellulosic biomass. Easy recovery of ionic liquids, chemical stability, temperature stability, nonflammability, low vapor pressure, and wide liquidus range are among those unique properties. These solvents are also known as green solvents due to their low vapor pressure. The present study was set to compare the effect of five different ILs, namely, 1-ethyl-3-methylimidazolium acetate ([EMIM][Ac]), 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]), 1-ethyl-3-methyl imidazolium diethyl phosphate ([EMIM][DEP]), 1-allyl-3-methylimidazolium chloride ([AMIM][Cl]), and 1-ethyl-3-methylimidazolium-hydrogen sulfate ([EMIM][HSO₄]), on corn stover in a bioethanol production process. The performance of ILs was evaluated based on the change observed in chemical structure, crystallinity index, cellulose digestibility, and glucose release. Overall, [EMIM][Ac]-pretreated corn stover led to significantly higher saccharification, with cellulose digestibility reaching 69% after 72 hr, whereas digestibility of untreated barley straw was measured at only 21%. PMID:24397717

  8. Carbene formation upon reactive dissolution of metal oxides in imidazolium ionic liquids.

    PubMed

    Wellens, Sil; Brooks, Neil R; Thijs, Ben; Meervelt, Luc Van; Binnemans, Koen

    2014-03-01

    Metal oxides were found to dissolve in different imidazolium ionic liquids with a hydrogen atom in the C2 position of the imidazolium ring, but not if a methyl substituent was present in the C2 position. The crystal structure of the product that crystallised from an ionic liquid containing dissolved silver(i) oxide showed that this was a silver(i) carbene complex. The presence of carbenes in solution was proven by (13)C NMR spectroscopy and the reactions were also monitored by Raman spectroscopy. The dissolution of other metal oxides, namely copper(ii) oxide, zinc(ii) oxide and nickel(ii) oxide, was also studied in imidazolium ionic liquids and it was found that stable zinc(ii) carbenes were formed in solution, but these did not crystallise under the given experimental conditions. A crystalline nickel(ii) carbene complex could be obtained from a solution of nickel(ii) chloride dissolved in a mixture of 1-butyl-3-methylimidazolium and 1-ethyl-3-methylimidazolium acetate. PMID:24390601

  9. Topochemical pretreatment of wood biomass to enhance enzymatic hydrolysis of polysaccharides to sugars.

    PubMed

    Mou, Hong-Yan; Orblin, Elina; Kruus, Kristiina; Fardim, Pedro

    2013-08-01

    The surface chemistry of milled birch and pine wood pretreated by ionic liquid, hydrothermal and hydrotropic methods, followed by enzymatic hydrolysis was studied in this work. Surface coverage by lignin was measured by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to describe the surface chemical composition after pretreatment in detail, and the morphology after pretreatment was investigated by FE-SEM. Ionic liquid (1-ethyl-3-methylimidazolium acetate, 1-butyl-3-methylimidazolium chloride) pretreatment at room temperature made the samples swell but did not dissolve the wood. Comparing the surface coverage by lignin, both in the case of birch and pine wood, hydrotropic worked best to remove the lignin hampering enzymatic hydrolysis. ToF-SIMS supported this finding, and showed that in birch, the carbohydrates were degraded more than in pine after hydrotropic pretreatment. The glucose yield of birch was improved by hydrotropic pretreatment from 5.1% to 83.9%, more significantly than in case of pine. PMID:23774220

  10. SEM Observation of Hydrous Superabsorbent Polymer Pretreated with Room-Temperature Ionic Liquids

    PubMed Central

    Tsuda, Tetsuya; Mochizuki, Eiko; Kishida, Shoko; Iwasaki, Kazuki; Tsunashima, Katsuhiko; Kuwabata, Susumu

    2014-01-01

    Room-temperature ionic liquid (RTIL), which is a liquid salt at or below room temperature, shows peculiar physicochemical properties such as negligible vapor pressure and relatively-high ionic conductivity. In this investigation, we used six types of RTILs as a liquid material in the pretreatment process for scanning electron microscope (SEM) observation of hydrous superabsorbent polymer (SAP) particles. Very clear SEM images of the hydrous SAP particles were obtained if the neat RTILs were used for the pretreatment process. Of them, tri-n-butylmethylphosphonium dimethylphosphate ([P4, 4, 4, 1][DMP]) provided the best result. On the other hand, the surface morphology of the hydrous SAP particles pretreated with 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim][BF4]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]) was damaged. The results of SEM observation and thermogravimetry analysis of the hydrous SAP pretreated with the RTILs strongly suggested that most water in the SAP particles are replaced with RTIL during the pretreatment process. PMID:24621609

  11. Combined effects of raw materials and solvent systems on the preparation and properties of regenerated cellulose fibers.

    PubMed

    Chen, Jinghuan; Guan, Ying; Wang, Kun; Zhang, Xueming; Xu, Feng; Sun, Runcang

    2015-09-01

    To investigate the combined effects of materials and solvents on the preparation, structural and mechanical properties of regenerated cellulose fibers, four cellulosic materials (microcrystalline cellulose, cotton linter pulp, bamboo pulp and bleached softwood sulfite dissolving pulp) and six non-derivative solvents (NaOH/urea aqueous solution, N,N-dimethylacetamide/lithium chloride, N-methyl-morpholine-N-oxide, 1-butyl-3-methylimidazolium chloride, 1-allyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium acetate) were used to prepare fibers with wet spinning method. The results showed that the dissolvability of solvent was the determining factor in cellulose dissolution, and the dissolving time was influenced by the raw materials' properties, such as molecular weight, exposed area and hemicellulose content. The crystallinity and elongation at break of the fibers were almost fixed and not affected by the materials and solvents. However, the tensile strength of the fibers was directly proportional to the molecular weight of the raw materials, and varied with the type of solvents through cellulose degradation. PMID:26005150

  12. Catalysis of Rice Straw Hydrolysis by the Combination of Immobilized Cellulase from Aspergillus niger on β-Cyclodextrin-Fe3O4 Nanoparticles and Ionic Liquid

    PubMed Central

    Huang, Po-Jung; Chang, Ken-Lin; Chen, Shui-Tein

    2015-01-01

    Cellulase from Aspergillus niger was immobilized onto β-cyclodextrin-conjugated magnetic particles by silanization and reductive amidation. The immobilized cellulase gained supermagnetism due to the magnetic nanoparticles. Ninety percent of cellulase was immobilized, but the activity of immobilized cellulase decreased by 10%. In this study, ionic liquid (1-butyl-3-methylimidazolium chloride) was introduced into the hydrolytic process because the original reaction was a solid-solid reaction. The activity of immobilized cellulase was improved from 54.87 to 59.11 U g immobilized cellulase−1 at an ionic liquid concentration of 200 mM. Using immobilized cellulase and ionic liquid in the hydrolysis of rice straw, the initial reaction rate was increased from 1.629 to 2.739 g h−1 L−1. One of the advantages of immobilized cellulase is high reusability—it was usable for a total of 16 times in this study. Compared with free cellulase, magnetized cellulase can be recycled by magnetic field and the activity of immobilized cellulase was shown to remain at 85% of free cellulase without denaturation under a high concentration of glucose (15 g L−1). Therefore, immobilized cellulase can hydrolyze rice straw continuously compared with free cellulase. The amount of harvested glucose can be up to twentyfold higher than that from the hydrolysis by free cellulase. PMID:25874210

  13. Dissolving process of a cellulose bunch in ionic liquids: a molecular dynamics study.

    PubMed

    Li, Yao; Liu, Xiaomin; Zhang, Suojiang; Yao, Yingying; Yao, Xiaoqian; Xu, Junli; Lu, Xingmei

    2015-07-21

    In recent years, a variety of ionic liquids (ILs) were found to be capable of dissolving cellulose and mechanistic studies were also reported. However, there is still a lack of detailed information at the molecular level. Here, long time molecular dynamics simulations of cellulose bunch in 1-ethyl-3-methylimidazolium acetate (EmimAc), 1-ethyl-3-methylimidazolium chloride (EmimCl), 1-butyl-3-methylimidazolium chloride (BmimCl) and water were performed to analyze the inherent interaction and dissolving mechanism. Complete dissolution of the cellulose bunch was observed in EmimAc, while little change took place in EmimCl and BmimCl, and nothing significant happened in water. The deconstruction of the hydrogen bond (H-bond) network in cellulose was found and analyzed quantitatively. The synergistic effect of cations and anions was revealed by analyzing the whole dissolving process. Initially, cations bind to the side face of the cellulose bunch and anions insert into the cellulose strands to form H-bonds with hydroxyl groups. Then cations start to intercalate into cellulose chains due to their strong electrostatic interaction with the entered anions. The H-bonds formed by Cl(-) cannot effectively separate the cellulose chain and that is the reason why EmimCl and BmimCl dissolve cellulose more slowly. These findings deepen people's understanding on how ILs dissolve cellulose and would be helpful for designing new efficient ILs to dissolve cellulose. PMID:26095890

  14. A Comprehensive Study on Lyotropic Liquid-Crystalline Behavior of an Amphiphile in 20 Kinds of Amino Acid Ionic Liquids.

    PubMed

    Fujimura, Kanae; Ichikawa, Takahiro; Yoshio, Masafumi; Kato, Takashi; Ohno, Hiroyuki

    2016-02-18

    We examined the self-organization behavior of a designed amphiphilic molecule in 20 kinds of amino acid ionic liquids composed of 1-butyl-3-methylimidazolium cation and natural amino acid anion ([C4mim][AA]). Addition of [C4mim][AA], regardless of their anion species, to the amphiphile provided homogeneous mixtures showing lyotropic liquid-crystalline (LC) behavior. Upon increasing the component ratio of [C4mim][AA] in the mixtures, a successive change of the mesophase patterns from inverted hexagonal columnar, in some case via bicontinuous cubic, to layered phases was observed. By examining the LC properties at various temperatures and component ratios, we constructed lyotropic LC phase diagrams. Interestingly, the appearance of these phase diagrams is greatly different according to the selection of [AA]. Through comparison, we found that the self-organization behavior of an amphiphile in ionic liquids can be tuned by controlling their ability to form hydrogen-bond, van der Waals, and π-π interactions.

  15. Comparative Investigation of the Ionicity of Aprotic and Protic Ionic Liquids in Molecular Solvents by using Conductometry and NMR Spectroscopy.

    PubMed

    Thawarkar, Sachin; Khupse, Nageshwar D; Kumar, Anil

    2016-04-01

    Electrical conductivity (σ), viscosity (η), and self-diffusion coefficient (D) measurements of binary mixtures of aprotic and protic imidazolium-based ionic liquids with water, dimethyl sulfoxide, and ethylene glycol were measured from 293.15 to 323.15 K. The temperature dependence study reveals typical Arrhenius behavior. The ionicities of aprotic ionic liquids were observed to be higher than those of protic ionic liquids in these solvents. The aprotic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, [bmIm][BF4 ], displays 100 % ionicity in both water and ethylene glycol. The protic ionic liquids in both water and ethylene glycol are classed as good ionic candidates, whereas in DMSO they are classed as having a poor ionic nature. The solvation dynamics of the ionic species of the ionic liquids are illustrated on the basis of the (1) H NMR chemical shifts of the ionic liquids. The self-diffusion coefficients D of the cation and anion of [HmIm][CH3 COO] in D2 O and in [D6 ]DMSO are determined by using (1) H nuclei with pulsed field gradient spin-echo NMR spectroscopy.

  16. Influence of the molecular-oriented structure of ionic liquids on the crystallinity of aluminum hydroxide prepared by a sol-gel process in ionic liquids.

    PubMed

    Kinoshita, K; Yanagimoto, H; Suzuki, T; Minami, H

    2015-07-28

    The influence of the structure of ionic liquids on the crystallinity of aluminum hydroxide (Al(OH)3) prepared by a sol-gel process with aluminum isopropoxide (Al(OPr(i))3) in imidazolium-based ionic liquids was investigated. When Al(OH)3 was prepared in ionic liquids having long alkyl chains, such as 1-butyl-3-methylimidazolium salts and 1-methyl-3-octylimidazolium salts, highly crystalline products were obtained. In contrast, Al(OH)3 obtained using the 1-ethyl-3-methylimidazolium salt was an amorphous material, indicating that hydrophobic interaction of the alkyl tail of the imidazolium cation of the ionic liquid strongly affects the crystallinity of sol-gel products and the local structure of the ionic liquid. Moreover, the crystallinity of Al(OH)3 prepared in ionic liquids increased relative to the amount of additional water (ionic liquid/water = 1.28/2.0-3.5/0.2, w/w). In the case of addition of a small amount of water (ionic liquid/water = 3.5/0.2, w/w), the product was amorphous. These results implied that the presence of an ionic liquid and a sufficient amount of water was crucial for the successful synthesis of sol-gel products with high crystallinity. (1)H NMR analyses revealed a shift of the peak associated with the imidazolium cation upon addition of water, which suggested that the molecular orientation of the ionic liquid was similar to that of a micelle.

  17. Self-healing guar gum and guar gum-multiwalled carbon nanotubes nanocomposite gels prepared in an ionic liquid.

    PubMed

    Sharma, Mukesh; Mondal, Dibyendu; Mukesh, Chandrakant; Prasad, Kamalesh

    2013-10-15

    Guar gum is a galactomannan extracted from the seed of the leguminous shrub Cyamopsis tetragonoloba. It was found to form a soft viscoelastic gel in 1-butyl-3-methylimidazolium chloride, an ionic liquid at an optimized concentration of 10%w/v. A nanocomposite gel of the gum with enhanced strength could be prepared with 0.2%w/v of multiwalled carbon nanotubes (MWCNTs) in the ionic liquid. When the gels thus prepared were subjected to surface fractures or bisected completely, they found to self-heal at room temperature without any external interventions. The self-healing process could be repeated several times. These viscoelastic gel systems showed thixotropic nature and recovery of the storage modulus with time for several cycles was observed upon rheological investigations. The interaction took place between ionic liquid, guar gum and MWCNT was studied by SEM, TEM, FT-IR, powder XRD and rheometry. The results suggested that, upon standing at room temperature development of electrostatic interactions and the van der Waals interactions among the ionic liquid molecules facilitated the formation of reversible noncovalent bonds and eventually activated the self-healing in the gel systems through appropriate chain entanglements.

  18. Observation of antibacterial effect of biodegradable polymeric nanoparticles on Staphylococcus epidermidis biofilm using FE-SEM with an ionic liquid.

    PubMed

    Takahashi, Chisato; Ogawa, Noriko; Kawashima, Yoshiaki; Yamamoto, Hiromitsu

    2015-06-01

    We successfully visualized the antibacterial behavior of biodegradable polymeric nanoparticles (NPs) on a biofilm formed by Staphylococcus epidermidis using field emission scanning electron microscopy (FE-SEM). A hydrophilic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), was applied for observation using FE-SEM. The differences in adherence and penetration behavior of three types of NPs were revealed using this method and confocal laser scanning microscopy. Biodegradable poly(dl-lactide-co-glycolide) (PLGA) NPs were prepared by the emulsion solvent diffusion method. In this study, we treated the biofilm with three PLGA NPs: unmodified PLGA, PLGA modified with chitosan (CS) and clarithromycin (CAM)-loaded + CS-modified PLGA. The viability of S. epidermidis cells treated with PLGA NPs was estimated using the LIVE/DEAD BacLight kit to understand the antibacterial ability of each NP sample in a quantitative way. The results confirmed that CAM-loaded + CS-modified PLGA had high antibacterial ability on the biofilm. This novel observation technique would be useful in the development of drug formations and medical agents.

  19. Atomic Resolution Insights into the Structural Aggregations and Optical Properties of Neat Imidazolium-Based Ionic Liquids.

    PubMed

    Du, Likai; Geng, Cuihuan; Zhang, Dongju; Lan, Zhenggang; Liu, Chengbu

    2016-07-14

    A fundamental understanding of the structural heterogeneity and optical properties of ionic liquids is crucial for their potential applications in catalysis, optical measurement, and solar cells. Herein, a synergistic approach combining molecular dynamics simulations, excited-state calculations, and statistical analysis was used to explore the explicit correlation between the structural and optical properties of one imidazolium amino acid-based ionic liquid, 1-butyl-3-methylimidazolium glycine. The estimated absorption spectrum successfully rationalizes the unusual and non-negligible absorption band beyond 300 nm for the neat imidazolium-based ionic liquid. The absorption behavior of imidazolium-based ionic liquids is shown to be sensitive to the details of their locally heterogeneous environments. We quantitatively highlight the imidazolium moiety and its various molecular aggregations, rather than the monomeric imidazolium moiety, that are responsible for the absorption characteristics. These results would improve our understanding of the preliminary interplay between structural heterogeneity and optical properties for neat imidazolium-based ionic liquids. PMID:27276660

  20. High/low temperature operation of electric double layer capacitor utilizing acidic cellulose-chitin hybrid gel electrolyte

    NASA Astrophysics Data System (ADS)

    Yamazaki, Shigeaki; Takegawa, Akihiko; Kaneko, Yoshiro; Kadokawa, Jun-ichi; Yamagata, Masaki; Ishikawa, Masashi

    An acidic cellulose-chitin hybrid gel electrolyte consisting of cellulose, chitin, 1-butyl-3-methylimidazolium, 1-allyl-3-methylimidazolium bromide, and an aqueous H 2SO 4 solution is investigated for electric double layer capacitors (EDLCs) with activated carbon fiber cloth electrodes. The acidic cellulose-chitin hybrid gel electrolyte shows a high ionic conductivity comparable to that for an aqueous 2 mol dm -3 H 2SO 4 solution at 0-80 °C. This system's temperature dependence in EDLC performance is investigated by galvanostatic charge-discharge measurement. An EDLC cell with the acidic hybrid gel electrolyte has higher capacitance than that with the aqueous H 2SO 4 solution in the range of operation temperatures (-10 to 60 °C). Moreover, the capacitance retention of the EDLC cell with the acidic hybrid gel electrolyte is better than that of a cell with the H 2SO 4 solution at 60 °C over 10,000 cycles. This suggests that the proposed acidic gel electrolyte has excellent stability in the presence of a strong acid, even at a high temperature of 60 °C.

  1. Synthesis, COSMO-RS analysis and optical properties of surface modified ZnS quantum dots using ionic liquids

    NASA Astrophysics Data System (ADS)

    Shahid, Robina; Muhammad, Nawshad; Gonfa, Girma; Toprak, Muhammet S.; Muhammed, Mamoun

    2015-10-01

    Zinc sulfide (ZnS) quantum dots (QDs) were synthesized using the microwave assisted ionic liquid (MAIL) route. Three ionic liquids (ILs), namely, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4]), trihexyl(tetradecyl) phosphonium bis(trifluoromethanesulfonyl) amide ([P6,6,6,14][TSFA]) and trihexyl(tetradecyl) phosphonium chloride ([P6,6,6,14][Cl]) were used in this study. The size and structure of the QDs were characterized by high-resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED) pattern, respectively. The synthesized QDs were of wurtzite crystalline structure with size less than 5 nm. The QDs were more uniformly distributed while using the phosponium based ILs as a reaction medium during synthesis. The optical properties were investigated by UV-vis absorption and photoluminescence (PL) emission spectroscopy. The optical properties of QDs showed the quantum confinement effect in their absorption and the effect of cation and anion structural moiety was observed on their bandedge emission. The QDs emission intensity was measured higher for [P6,6,6,14][Cl] due to their better dispersion as well as high charge density of Cl anion. The capability of the ILs in stabilizing the QDs was interpreted by density functional theory (DFT) computations. The obtained results are in good agreement with the theoretical prediction.

  2. Morphology- and facet-controlled synthesis of CuO micro/nanomaterials and analysis of their lithium ion storage properties

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodi; Liu, Guangyin; Wang, Lijuan; Li, Yinping; Ma, Yupei; Ma, Jianmin

    2016-04-01

    Hierarchical CuO architectures and monodisperse CuO nanoplates are synthesized via a hydrothermal method with the assistance of ionic liquid 1-butyl-3-methylimidazolium chloride ([Bmim]Cl). The products are characterized by XRD, SEM, TEM, HRTEM, BET, and XPS, and the results indicate that the CuO architectures are composed of nanosheets with exposed (001) facets and the CuO nanoplates are single crystals enclosed by (200) facets. More specially, it is found that [Bmim]Cl serves as an effective template for the synthesis of CuO nanoplates by adsorbing on the (200) planes of monoclinic CuO. When evaluated as anode materials for lithium-ion batteries, CuO architectures possess higher discharge capacity, better cycling stability, and better rate capability than CuO nanoplates. The initial discharge capacity of CuO architectures is 1096 mAh g-1 at a rate of 0.5 C, whereas CuO nanoplates exhibit a lower capacity of 878.4 mAh g-1. Moreover, after 50 cycles, CuO architectures and CuO nanoplates can deliver discharge capacities of 465.6 and 281.6 mAh g-1, respectively.

  3. Matrix solid-phase dispersion coupled with magnetic ionic liquid dispersive liquid-liquid microextraction for the determination of triazine herbicides in oilseeds.

    PubMed

    Wang, Yuanpeng; Sun, Ying; Xu, Bo; Li, Xinpei; Wang, Xinghua; Zhang, Hanqi; Song, Daqian

    2015-08-12

    A novel method was developed for the determination of six triazine herbicides from oilseeds by matrix solid-phase dispersion combined with magnetic ionic liquid dispersive liquid-liquid microextraction (MSPD-MIL-DLLME), followed by ultrafast liquid chromatography with ultraviolet detection (UFLC-UV). The MIL, 1-butyl-3-methylimidazolium tetrachloroferrate ([C4mim][FeCl4]), was used as the microextraction solvent to simplify the extraction procedure by magnetic separation. The effects of several important experimental parameters, including type of dispersant, ratio of sample to dispersant, type and volume of collected elution solvent, type and volume of MIL, were investigated. Using the present method, UFLC-UV gave the limits of detection (LODs) of 1.20-2.72 ng g(-1) and the limits of quantification (LOQs) of 3.99-9.06 ng g(-1) for triazine herbicides. The recoveries were ranged from 82.9 to 113.7% and the relative standard deviations (RSDs) were equal or lower than 7.7%. The present method is easy-to-use and effective for extraction of triazine herbicides from oilseeds and shows the potentials of practical applications in the treatment of the fatty solid samples.

  4. Dielectric spectra of ionic liquids and their conversion to solvation dynamics: a detailed computational analysis of polarizable systems.

    PubMed

    Schmollngruber, Michael; Schröder, Christian; Steinhauser, Othmar

    2014-06-14

    For the three molecular ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate and 1-butyl-3-methylimidazolium tetrafluoroborate, dielectric spectra were calculated from molecular dynamics simulations based on polarizable force fields. Using the reaction field continuum model the dielectric spectra were converted to the solvation dynamics of coumarin 153. It is shown in detail that the inclusion of the static conductivity in this model is essential. When simplifying the dielectric spectrum to the static conductivity hyperbola, the solvation response function becomes mono-exponential. Taking into account the frequency dependence of the conductivity, the typical two time-regimes of the solvation response function in ionic liquids are already obtained. However, the mean relaxation time remains the same. When converting the complete dielectric spectrum, i.e. also including frequency-dependent dielectric permittivity, quantitative changes are observed, but the qualitative shape is conserved. In accordance with previous experimental studies, solvation dynamics in ionic liquids predicted by the reaction field continuum model is too fast for longer times. This correlates with the suppression of the fine structure of the dielectric spectrum at low frequencies by the static conductivity hyperbola. By scaling down the static conductivity this effect can be partially amended. In addition to the impact of the solvent dielectric spectrum on solvation dynamics, solute-specific effects, i.e. anisotropy in shape and charge distribution as well as polarizability, were also studied.

  5. Ionic liquid-induced formation of the α-helical structure of β-lactoglobulin.

    PubMed

    Takekiyo, Takahiro; Koyama, Yoshihiro; Yamazaki, Kumiko; Abe, Hiroshi; Yoshimura, Yukihiro

    2013-09-01

    Structural modification of bovine milk β-lactoglobulin (β-LG) in aqueous 1-butyl-3-methylimidazolium nitrate ([bmim][NO3]) and ethylammonium nitrate ([EAN][NO3]) solutions has been investigated by Fourier transform infrared and circular dichroism spectroscopy. Remarkably, high ionic liquid (IL) concentrations (>15 mol %IL) caused formation of a non-native α-helical structure of β-LG and disruption of its tertiary structure. Furthermore, while [bmim][NO3] promoted protein aggregation, [EAN][NO3] inhibited it probably owing to differences in the unique solution structure (nanoheterogeneity) of the ILs by the different cationic species. The IL-induced α-helical formation of β-LG shows a behavior similar to the alcohol denaturation, but a disordered structure-rich state was observed in the β-α transition process by adding IL, in contrast to the case of an aqueous alcohol solution of protein. We propose that the molten salt-like property of aqueous IL solutions strongly support α-helical formation of proteins.

  6. Understanding positive and negative deviations in polarity of ionic liquid mixtures by pseudo-solvent approach.

    PubMed

    Beniwal, Vijay; Kumar, Anil

    2016-08-24

    Physico-chemical properties of liquid mixtures in general display large deviations from linear behaviour, arising out of complex specific and non-specific intermolecular interactions. The polarity of liquid mixtures displaying large positive and negative deviations can be minimized and linear mixing can be achieved in liquids using a pseudo-solvent methodology. The work described herein is designed to investigate the influence of different physical parameters on the linear pseudo-solvent composition in ionic liquid mixtures. For this purpose, we have determined the deviations from linearity, ΔE values (defined as given by ) for binary mixtures of a variety of ionic liquids, including two molecular solvents, DMSO and formamide. Firstly, the investigations were carried out in three 1-butyl-3-methylimidazolium cation based aprotic ionic liquids and the roles of anionic structure and hydrogen bond acceptor basicities (β values) of the ionic liquids were determined. The influence of the cationic structure, i.e., the hydrogen bond donor acidity (α values) and non-associative nature of the ionic liquids, was determined using C2-methylated analogs, 1-butyl-2,3-dimethylimidazolium cation based ionic liquids. The role of the protic nature of ionic liquids was studied in two protic ionic liquids, viz., 1-methylimidazolium formate and 1-methylimidazolium acetate. The effects of the temperature, pseudo-solvent structure and solvatochromic probe structure on the ΔE values were also explored. PMID:27523572

  7. Esterification of potato starch by a biocatalysed reaction in an ionic liquid.

    PubMed

    Zarski, Arkadiusz; Ptak, Sylwia; Siemion, Przemyslaw; Kapusniak, Janusz

    2016-02-10

    In this study, potato starch was esterified with oleic acid, using 1-butyl-3-methylimidazolium chloride as a reaction medium and an immobilised lipase from Thermomyces lanuginosus as a catalyst. The degree of substitution (DS) of the products was determined by the volumetric method; and the best esterified product (with the highest DS) was determined by an elemental analysis. The effect of the reaction parameters on the DS, such as the time and the temperature, were also studied. The product with the highest DS (0.22) was found in the reaction carried out at 60 °C for 4h. Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) analyses confirmed the esterification of the potato starch. Furthermore, the results of X-ray diffraction (XRD) and a scanning electron microscopy (SEM) revealed that the crystallinity and the morphology of the native potato starch was slightly changed during its partial gelatinisation in the ionic liquid, and was completely destroyed as a result of the formation of the esters. The thermal stability of the starch oleate decreased, when compared to the unmodified starch, as was indicated by a thermal gravimetric analysis (TGA).

  8. Unusual solvatochromic absorbance probe behaviour within mixtures of poly(ethylene glycol)-400 + ionic liquid, [bmim][Tf2N

    NASA Astrophysics Data System (ADS)

    Ali, Anwar; Ali, Maroof; Malik, Nisar Ahmad; Uzair, Sahar

    2014-03-01

    The potentially green solvents made up of ionic liquids (ILs) and poly(ethylene glycols) may have wide range of the applications in many chemical and biochemical fields. In the present work, solvatochromic absorbance probe behaviour is used to assess the physicochemical properties of the mixtures composed of PEG-400 + IL, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [bmim][Tf2N]. Lowest energy intramolecular charge-transfer absorbance maxima of a betaine dye, i.e., ETN , indicates the dipolarity/polarizability and/or hydrogen-bond donating (HBD) acidity of the [bmim][Tf2N] + PEG-400 mixtures to be even higher than that of neat [bmim][Tf2N], the solution component with higher dipolarity/polarizability and/or HBD acidity. Dipolarity/polarizability (π∗) obtained separately from the electronic absorbance response of probe N,N-diethyl-4-nitroaniline, and the HBD acidity (α) of PEG-400 + [bmim][Tf2N] mixtures are also observed to be anomalously high. A comparative study of the PEG + IL mixtures has also been done with PEG-400 + molecular organic solvents (protic polar [methanol], aprotic polar [N,N-dimethylformamide], and non polar, [benzene]) mixtures, but these mixtures do not show this type of unusual behaviour. A four-parameter simplified combined nearly ideal binary solvent/Redlich-Kister (CNIBS/R-K) equation is shown to satisfactorily predict the solvatochromic parameters within PEG-400 + different solvent mixtures.

  9. Ionic liquid-assisted sonochemical preparation of CeO2 nanoparticles for CO oxidation

    DOE PAGES

    Alammar, Tarek; Noei, Heshmat; Wang, Yuemin; Grünert, Wolfgang; Mudring, Anja -Verena

    2014-10-10

    CeO2 nanoparticles were synthesized via a one-step ultrasound synthesis in different kinds of ionic liquids based on bis(trifluoromethanesulfonylamide, [Tf2N]–, in combination with various cations including 1-butyl-3-methylimidazolium ([C4mim]+), 1-ethyl-2,3-dimethylimidazolium ([Edimim]+), butyl-pyridinium([Py4]+), 1-butyl-1-methyl-pyrrolidinium ([Pyrr14]+), and 2-hydroxyethyl-trimethylammonium ([N1112OH]+). Depending on synthetic parameters, such as ionic liquid, Ce(IV) precursor, heating method, and precipitator, formed ceria exhibits different morphologies, varying from nanospheres, nanorods, nanoribbons, and nanoflowers. The morphology, crystallinity, and chemical composition of the obtained materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and N2 adsorption. The structural and electronic propertiesmore » of the as-prepared CeO2 samples were probed by CO adsorption using IR spectroscopy under ultrahigh vacuum conditions. The catalytic activities of CeO2 nanoparticles were investigated in the oxidation of CO. CeO2 nanospheres obtained sonochemically in [C4mim][Tf2N] exhibit the best performance for low-temperature CO oxidation. As a result, the superior catalytic performance of this material can be related to its mesoporous structure, small particle size, large surface area, and high number of surface oxygen vacancy sites.« less

  10. A novel architecture based upon multi-walled carbon nanotubes and ionic liquid to improve the electroanalytical detection of ciprofibrate.

    PubMed

    Vicentini, Fernando Campanhã; Elisa Ravanini, Amanda; Silva, Tiago Almeida; Janegitz, Bruno C; Zucolotto, Valtencir; Fatibello-Filho, Orlando

    2014-08-21

    Voltammetric studies have been carried out using a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes (MWCNTs) and the ionic liquid 1-butyl-3-methylimidazolium chloride (IL). Studies on the electrochemical properties of GCEs modified with MWCNTs and IL within different polymeric films (dihexadecylphosphate (DHP), Nafion, and chitosan (CTS)) were performed using a [Fe(CN)6](4-/3-) electrochemical probe. The modified GCE with different polymeric films was also tested for ciprofibrate (CPF) sensing in the presence and absence of IL in the film. The presence of IL and the MWCNTs improved the electrochemical response for CPF in all cases due to a synergic effect, and the IL-MWCNTs-DHP/GCE showed a great voltammetric profile for CPF detection. The IL-MWCNTs-DHP/GCE and differential pulse voltammetry (DPV) were used for the determination of CPF. An analytical curve was obtained for CPF in the concentration range of 2.50 × 10(-7) to 7.41 × 10(-6) mol L(-1) with a detection limit of 9.20 × 10(-8) mol L(-1). The proposed DPV method was successfully applied for CPF determination in pharmaceutical samples, and the results obtained agree with the results obtained using a spectrophotometric method at a confidence level of 95%.

  11. Room-temperature ionic liquids as electrolytes in electroanalytical determination of traces of 2-furaldehyde from oil and related wastewaters from refining processes.

    PubMed

    Shamsipur, Mojtaba; Beigi, Ali Akbar Miran; Teymouri, Mohammad; Ghorbani, Yousefali; Irandoust, Mohsen; Mehdizadeh, Ali

    2010-04-15

    Three different ionic liquids, 1-ethyl-3-methylimidazolium tetrafluoroborate, [EMIM][BF(4)]; 1-butyl-3-methylimidazolium trifluoromethanesulfonate, [BMIM][OTf]; and 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide [bmpyrr][NTf(2)] were studied as electrolytes in the electroanalytical quantification of 2-furaldehyde using square wave and differential pulse voltammetries. On applying a cathodic scan, a well-defined 2-electron wave was observed corresponding to the reduction of 2-furaldehyde to furfuryl alcohol. The electrochemical stability of the ionic liquids as electrolytes for analytical aspects and electrokinetic studies was investigated using a glassy carbon electrode (GCE). The measurements were carried out in a designed double-wall three-electrode cell, using two platinum wires as the quasi-reference and counter electrodes. Differential pulse voltammetry was found to be the most sensitive method at GCE. The detection limits of 1.4, 19.0 and 2.5 microg g(-1) were obtained for the determination of 2-furaldehyde in [EMIM][BF(4)], [BMIM][OTf] and [BMPyrr][NTf(2)], respectively. At a concentration of 50 microg g(-1), the maximum relative standard deviation (n=3) was 4.9%. The effect of water content of the ionic liquids on their potential windows and waveforms was also investigated. The proposed method was successfully applied to the determination of 2-furaldehyde in real samples, especially in oil matrices.

  12. New Alkylether-Thiazolium Room-Temperature Ionic Liquid Lubricants: Surface Interactions and Tribological Performance.

    PubMed

    Espinosa, Tulia; Sanes, José; Bermúdez, María-Dolores

    2016-07-20

    The use of newly synthesized alkylether-thiazolium ionic liquids as lubricants is described for the first time. Two ionic liquids composed of a thiazolium cation and a bis(trifluoromethanesulfonyl)amide ([Th][Tf2N]) or dicyanamide ([Th][(NC)2N]) anion have been studied, and their tribological behavior has been compared with that of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([Im][Tf2N]) in pin-on-disk tests using sapphire balls against AISI 52100 or AISI 316L steels. All ionic liquids show higher contact angles on AISI 316L steel than on AISI 52100, the lowest values found for ([Im][Tf2N]) on both steel surfaces. AISI 52100 shows similar friction coefficients for all lubricants, and negligible wear rates for the ionic liquids containing the bis(trifluoromethanesulfonyl)amide anion. Immersion tests show no corrosion of AISI 52100 in imidazolium or thiazolium bis(trifluoromethanesulfonyl)amide ionic liquids. AISI 316L shows similar friction coefficients for both bis(trifluoromethanesulfonyl)amide ionic liquids, but the lowest wear rate is obtained for [Th][Tf2N]. An increase in friction coefficient and wear rate is observed for thiazolium dicyanamide. This increase is related to a tribocorrosion process due to decomposition of the thiazolium cation. XPS shows the formation of iron sulfide on the wear track on AISI 316L after lubrication with thiazolium dicyanamide. No tribocorrosion processes take place for the [Tf2N] ionic liquids. PMID:27348604

  13. Ionic liquid-assisted solvothermal synthesis of hollow Mn2O3 anode and LiMn2O4 cathode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    He, Xin; Wang, Jun; Jia, Haiping; Kloepsch, Richard; Liu, Haidong; Beltrop, Kolja; Li, Jie

    2015-10-01

    Mn-based Mn2O3 anode and LiMn2O4 cathode materials are prepared by a solvothermal method combined with post annealing process. Environmentally friendly ionic liquid 1-Butyl-3-methylimidazolium tetrafluoroborate as both structure-directing agent and fluorine source is used to prepare hollow polyhedron MnF2 precursor. Both target materials Mn2O3 anode and LiMn2O4 cathode have the morphology of the MnF2 precursor. The Mn2O3 anode using carboxymethyl cellulose as binder could deliver slight better electrochemical performance than the one using poly (vinyldifluoride) as binder. The former has an initial charge capacity of 800 mAh g-1 at a current density of 101.8 mA g-1, and exhibits no obvious capacity decay for 150 cycles at 101.8 mA g-1. The LiMn2O4 cathode material prepared with molten salt assistant could display much better electrochemical performance than the one prepared without molten salt assistance. In particular, it has an initial discharge capacity of 117.5 mAh g-1 at a current density of 0.5C and good rate capability. In the field of lithium ion batteries, both the Mn2O3 anode and LiMn2O4 cathode materials could exhibit enhanced electrochemical performance due to the well formed morphology based on the ionic liquid-assisted solvothermal method.

  14. Highly Luminescent Salts Containing Well-Shielded Lanthanide-Centered Complex Anions and Bulky Imidazolium Countercations

    SciTech Connect

    Tang, Si-Fu; Lorbeer, Chantal; Wang, Xinjiao; Ghosh, Pushpal; Mudring, Anja-Verena

    2014-09-02

    Four salts containing imidazolium cations and europium(III)- or terbium(III)-centered complex anions have been successfully synthesized from an ethanol/H2O solution. The single-crystal X-ray diffraction analyses reveal that these compounds have a common formula of [R][Ln(DETCAP)4] [R = 1-ethyl-3-methylimidazolium (C2mim), Ln = Eu (1) and Tb (2); R = 1-butyl-3-methylimidazolium (C4mim), Ln = Eu (3) and Tb (4); DETCAP = diethyl-2,2,2-trichloroacetylphosphoramidate], in which the lanthanide centers are chelated by four chelating pseudo-β-diketonate ligands (DETCAP)-, forming the respective complex anions. Their thermal behaviors and stabilities were also investigated to study the role of the length of the side chain in the cations. Fluorescence measurements at both room temperature and liquid-nitrogen temperature show that these materials show intense characteristic europium(III) or terbium(III) emissions and have long decay times. Their overall quantum yields were determined to be in the range of 30–49%.

  15. Solubility and solvation of monosaccharides in ionic liquids†

    PubMed Central

    Teles, Ana Rita R.; Dinis, Teresa B. V.; Capela, Emanuel V.; Santos, Luís M. N. B. F.; Pinho, Simão P.; Freire, Mara G.; Coutinho, João A. P.

    2016-01-01

    Herein, solubility experimental data for six monosaccharides, viz. d-(+)-glucose, d-(+)-mannose, d-(−)-fructose, d-(+)-galactose, d-(+)-xylose and l-(+)-arabinose, in four ionic liquids (ILs), at temperatures ranging from 288.2 to 348.2 K, were obtained aimed at gathering a better understanding of their solvation ability and molecular-level mechanisms which rule the dissolution process. To ascertain the chemical features that enhance the solubility of monosaccharides, ILs composed of dialkylimidazolium or tetraalkylphosphonium cations combined with the dicyanamide, dimethylphosphate or chloride anions were investigated. It was found that the ranking of the solubility of monosaccharides depends on the IL; yet, d-(+)-xylose is always the most soluble while d-(−)-fructose is the least soluble monosaccharide. The results obtained show that both the IL cation and the anion play a major role in the solubility of monosaccharides. Finally, from the determination of the respective thermodynamic properties of solution, it was found that enthalpic contributions are dominant in the solubilization process. However, the observed differences in the solubilities of monosaccharides in 1-butyl-3-methylimidazolium dicyanamide are ruled by a change in the entropy of solution. PMID:27380720

  16. Carbon Quantum Dots Induced Ultrasmall BiOI Nanosheets with Assembled Hollow Structures for Broad Spectrum Photocatalytic Activity and Mechanism Insight.

    PubMed

    Di, Jun; Xia, Jiexiang; Ji, Mengxia; Wang, Bin; Yin, Sheng; Xu, Hui; Chen, Zhigang; Li, Huaming

    2016-03-01

    Carbon quantum dots (CQDs) induced ultrasmall BiOI nanosheets with assembled hollow microsphere structures were prepared via ionic liquids 1-butyl-3-methylimidazolium iodine ([Bmim]I)-assisted synthesis method at room temperature condition. The composition, structure, morphology, and photoelectrochemical properties were investigated by multiple techniques. The CQDs/BiOI hollow microspheres structure displayed improved photocatalytic activities than pure BiOI for the degradation of three different kinds of pollutants, such as antibacterial agent tetracycline (TC), endocrine disrupting chemical bisphenol A (BPA), and phenol rhodamine B (RhB) under visible light, light above 580 nm, or light above 700 nm irradiation, which showed the broad spectrum photocatalytic activity. The key role of CQDs for the improvement of photocatalytic activity was explored. The introduction of CQDs could induce the formation of ultrasmall BiOI nanosheets with assembled hollow microsphere structure, strengthen the light absorption within full spectrum, increase the specific surface areas and improve the separation efficiency of the photogenerated electron-hole pairs. Benefiting from the unique structural features, the CQDs/BiOI microspheres exhibited excellent photoactivity. The h(+) was determined to be the main active specie for the photocatalytic degradation by ESR analysis and free radicals trapping experiments. The CQDs can be further employed to induce other nanosheets be smaller. The design of such architecture with CQDs/BiOI hollow microsphere structure can be extended to other photocatalytic systems.

  17. Smooth deuterated cellulose films for the visualisation of adsorbed bio-macromolecules

    PubMed Central

    Su, Jielong; Raghuwanshi, Vikram S.; Raverty, Warwick; Garvey, Christopher J.; Holden, Peter J.; Gillon, Marie; Holt, Stephen A.; Tabor, Rico; Batchelor, Warren; Garnier, Gil

    2016-01-01

    Novel thin and smooth deuterated cellulose films were synthesised to visualize adsorbed bio-macromolecules using contrast variation neutron reflectivity (NR) measurements. Incorporation of varying degrees of deuteration into cellulose was achieved by growing Gluconacetobacter xylinus in deuterated glycerol as carbon source dissolved in growth media containing D2O. The derivative of deuterated cellulose was prepared by trimethylsilylation(TMS) in ionic liquid(1-butyl-3-methylimidazolium chloride). The TMS derivative was dissolved in toluene for thin film preparation by spin-coating. The resulting film was regenerated into deuterated cellulose by exposure to acidic vapour. A common enzyme, horseradish peroxidase (HRP), was adsorbed from solution onto the deuterated cellulose films and visualized by NR. The scattering length density contrast of the deuterated cellulose enabled accurate visualization and quantification of the adsorbed HRP, which would have been impossible to achieve with non-deuterated cellulose. The procedure described enables preparing deuterated cellulose films that allows differentiation of cellulose and non-deuterated bio-macromolecules using NR. PMID:27796332

  18. Employment of ionic liquid-imbibed polymer gel electrolyte for efficient quasi-solid-state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Qinghua; Tang, Qunwei; Du, Nan; Qin, Yuancheng; Xiao, Jin; He, Benlin; Chen, Haiyan; Chu, Lei

    2014-02-01

    Volatility of organic solvent in liquid electrolyte has been tremendous obstacle for its application in dye-sensitized solar cells (DSSCs), here we designed an ionic liquid-imbibed polymer gel electrolyte using 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) as solvent, 1-methyl-3-propylimidazolium iodide (MPII) as iodine source, and amphiphilic poly(hydroxyethyl methacrylate/glycerol) [poly(HEMA/GR)] as a placeholder. As an amphiphilic matrix, poly(HEMA/GR) material can swell in ionic liquid electrolyte to form a stable gel, benefiting from its extraordinary absorption. The imbibed ionic liquid electrolyte is stored into interconnected poly(HEMA/GR) framework. Resultant quasi-solid-state electrolyte is honored with high ionic conductivity (14.29 mS cm-1) at room temperature and good retention. The ionic liquid-imbibed poly(HEMA/GR) gel electrolyte-based DSSC gives an overall light-to-electric conversion efficiency of 7.15%. The new concept along with easy fabrication promises the ionic liquid-imbibed gel electrolytes good alternatives in efficient DSSCs.

  19. Full-ionic liquid gel electrolytes: Enhanced photovoltaic performances in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Qinghua; Tang, Qunwei; He, Benlin; Yang, Peizhi

    2014-10-01

    Liquid electrolytes containing redox species have been widely used in dye-sensitized solar cells (DSSCs), whereas the volatility of organic solvents has been a tremendous obstacle for their commercial application. To assemble durable DSSCs, here we report the synthesis of full-ionic liquid electrolyte, in which 1-butyl-3-methylimidazolium nitrate is employed as solvent and 1-methyl-3-propylimidazolium iodide is iodide source. Using the imbibition performance of amphiphilic poly(acrylic acid/gelatin) [poly(AA/GR)] and poly(acrylic acid/cetyltrimethyl ammonium bromide) [poly(AA/CTAB)] matrices, full-ionic liquid electrolytes are imbibed into three-dimensional framework of poly(AA/GR) or poly(AA/CTAB) to form stable gel electrolytes. Room-temperature ionic conductivities as high as 17.82 and 18.44 mS cm-1 are recorded from full-ionic liquid imbibed poly(AA/GR) and poly(AA/CTAB) gel electrolytes, respectively. Promising power conversion efficiencies of 7.19% and 7.15% are determined from their DSSC devices in comparison with 6.55% and 6.12% from traditional acetonitrile-based poly(AA/GR) and poly(AA/CTAB) gel electrolytes, respectively. The new concept along with easy fabrication demonstrates the full-ionic liquid electrolytes to be good alternatives for robust gel electrolytes in quasi-solid-state DSSCs.

  20. A roadmap to uranium ionic liquids: Anti-crystal engineering

    SciTech Connect

    Yaprak, Damla; Spielberg, Eike T.; Bäcker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja -Verena

    2014-04-15

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO22+ unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim to establish structure–property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. As a result, these materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery.

  1. A roadmap to uranium ionic liquids: Anti-crystal engineering

    DOE PAGES

    Yaprak, Damla; Spielberg, Eike T.; Bäcker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja -Verena

    2014-04-15

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO22+ unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim tomore » establish structure–property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. As a result, these materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery.« less

  2. Facile synthesis of nitrogen and sulfur codoped carbon from ionic liquid as metal-free catalyst for oxygen reduction reaction.

    PubMed

    She, Yiyi; Lu, Zhouguang; Ni, Meng; Li, Li; Leung, Michael K H

    2015-04-01

    Developing metal-free catalysts for oxygen reduction reaction (ORR) is a great challenge in the development of fuel cells. Nitrogen and sulfur codoped carbon with remarkably high nitrogen content up to 13.00 at % was successfully fabricated by pyrolysis of homogeneous mixture of exfoliated graphitic flakes and ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Bimi][Tf2N]). The exfoliated graphite flakes served as a structure-directing substance as well as additional carbon source in the fabrication. It was demonstrated that the use of graphite flakes increased the nitrogen doping level, optimized the composition of active nitrogen configurations, and enlarged the specific surface area of the catalysts. Electrochemical characterizations revealed that the N and S codoped carbon fabricated by this method exhibited superior catalytic activities toward ORR under both acidic and alkaline conditions. Particularly in alkaline solution, the current catalyst compared favorably to the conventional 20 wt % Pt/C catalyst via four-electron transfer pathway with better ORR selectivity. The excellent catalytic activity was mainly ascribed to high nitrogen doping content, appropriate constitution of active nitrogen configurations, large specific surface area, and synergistic effect of N and S codoping. PMID:25781628

  3. Pesticide Removal from Aqueous Solutions by Adding Salting Out Agents

    PubMed Central

    Moscoso, Fátima; Deive, Francisco J.; Esperança, José M. S. S.; Rodríguez, Ana

    2013-01-01

    Phase segregation in aqueous biphasic systems (ABS) composed of four hydrophilic ionic liquids (ILs): 1-butyl-3-methylimidazolium methylsulfate and 1-ethyl-3-methylimidazolium methylsulfate (CnC1im C1SO4, n = 2 and 4), tributylmethyl phosphonium methylsulfate (P4441 C1SO4) and methylpyridinium methylsulfate (C1Py C1SO4) and two high charge density potassium inorganic salts (K2CO3 and K2HPO4) were determined by the cloud point method at 298.15 K. The influence of the addition of the selected inorganic salts to aqueous mixtures of ILs was discussed in the light of the Hofmeister series and in terms of molar Gibbs free energy of hydration. The effect of the alkyl chain length of the cation on the methylsulfate-based ILs has been investigated. All the solubility data were satisfactorily correlated to several empirical equations. A pesticide (pentachlorophenol, PCP) extraction process based on the inorganic salt providing a greater salting out effect was tackled. The viability of the proposed process was analyzed in terms of partition coefficients and extraction efficiencies. PMID:24145747

  4. Ionic liquid-based extraction followed by graphite-furnace atomic absorption spectrometry for the determination of trace heavy metals in high-purity iron metal.

    PubMed

    Matsumiya, Hiroaki; Kato, Tatsuya; Hiraide, Masataka

    2014-02-01

    The analysis of high-purity materials for trace impurities is an important and challenging task. The present paper describes a facile and sensitive method for the determination of trace heavy metals in high-purity iron metal. Trace heavy metals in an iron sample solution were rapidly and selectively preconcentrated by the extraction into a tiny volume of an ionic liquid [1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide] for the determination by graphite-furnace atomic absorption spectrometry (GFAAS). A nitrogen-donating neutral ligand, 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ), was found to be effective in the ionic liquid-based selective extraction, allowing the nearly complete (~99.8%) elimination of the iron matrix. The combination with the optimized GFAAS was successful. The detectability reached sub-μg g(-1) levels in iron metal. The novel use of TPTZ in ionic liquid-based extraction followed by GFAAS was successfully applied to the determination of traces of Co, Ni, Cu, Cd, and Pb in certified reference materials for high-purity iron metal.

  5. Optimization of Ionic Liquid Based Simultaneous Ultrasonic- and Microwave-Assisted Extraction of Rutin and Quercetin from Leaves of Velvetleaf (Abutilon theophrasti) by Response Surface Methodology

    PubMed Central

    Zhao, Chunjian; Lu, Zhicheng; He, Xin; Li, Zhao; Shi, Kunming; Yang, Lei; Fu, Yujie; Zu, Yuangang

    2014-01-01

    An ionic liquids based simultaneous ultrasonic and microwave assisted extraction (ILs-UMAE) method has been proposed for the extraction of rutin (RU), quercetin (QU), from velvetleaf leaves. The influential parameters of the ILs-UMAE were optimized by the single factor and the central composite design (CCD) experiments. A 2.00 M 1-butyl-3-methylimidazolium bromide ([C4mim]Br) was used as the experimental ionic liquid, extraction temperature 60°C, extraction time 12 min, liquid-solid ratio 32 mL/g, microwave power of 534 W, and a fixed ultrasonic power of 50 W. Compared to conventional heating reflux extraction (HRE), the RU and QU extraction yields obtained by ILs-UMAE were, respectively, 5.49 mg/g and 0.27 mg/g, which increased, respectively, 2.01-fold and 2.34-fold with the recoveries that were in the range of 97.62–102.36% for RU and 97.33–102.21% for QU with RSDs lower than 3.2% under the optimized UMAE conditions. In addition, the shorter extraction time was used in ILs-UMAE, compared with HRE. Therefore, ILs-UMAE was a rapid and an efficient method for the extraction of RU and QU from the leaves of velvetleaf. PMID:25243207

  6. Performance of amines as silanol suppressors in reversed-phase liquid chromatography.

    PubMed

    Calabuig-Hernández, S; García-Alvarez-Coque, M C; Ruiz-Angel, M J

    2016-09-23

    In reversed-phase liquid chromatography, cationic basic compounds yield broad and asymmetrical peaks, as a result of their ionic interaction with the anionic free silanol groups present in the silica-based stationary phases (commonly derivatised with C18 groups). A simple way to improve the peak shape is the addition to the hydro-organic mobile phase of a reagent (usually called additive) with cationic character. This associates with the stationary phase to prevent the access of analytes to the free silanol groups. Cationic additives may interact electrostatically with the anionic silanols. The hydrophobic region of the additive may also associate with the alkyl chains bound to the stationary phase, with the positive charge oriented towards the mobile phase. The access to the silanol groups is thus blocked, but in turn, the stationary phase is positively charged and will repel the protonated basic compounds, which unless their polarity is sufficiently low, will elute at very short times. In this work, a comparative study of the performance of a group of amines (butylamine, pentylamine, hexylamine, cyclopentylamine, cycloheptylamine, N,N-dimethyloctylamine and tributylmethylammonium chloride), as modifiers of the chromatographic behaviour of basic compounds, is carried out. The behaviour is compared with that obtained with the ionic liquids 1-butyl-3-methylimidazolium chloride and 1-hexyl-3-methylimidazolium chloride, used as additives. The study revealed that the performance of the cationic additives to block the silanol activity is mainly explained by the additive size and its ability to be adsorbed onto the stationary phase.

  7. On the influence of hydrated imidazolium-based ionic liquid on protein structure stability: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Shao, Qiang

    2013-09-01

    The structure stability of three α-helix bundle (the B domain of protein A) in an imidazolium-based ionic liquid (1-butyl-3-methylimidazolium chloride (BMIM-Cl)) is studied by molecular dynamics simulations. Consistent with previous experiments, the present simulation results show that the native structure of the protein is consistently stabilized in BMIM-Cl solutions with different concentrations. It is observed that BMIM+ cations have a strong tendency to accumulate on protein surface whereas Cl- anions are expelled from protein. BMIM+ cations cannot only have electrostatic interactions with the carbonyl groups on backbone and the carboxylate groups on negatively charged side chains, but also have hydrophobic interactions with the side chains of non-polar residues. In the meanwhile, the accumulation of large-size BMIM+ cations on protein surface could remove the surrounding water molecules, reduce the hydrogen bonding from water to protein, and thus stabilize the backbone hydrogen bonds. In summary, the present study could improve our understanding of the molecular mechanism of the impact of water-miscible ionic liquid on protein structure.

  8. Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid-graphene electrode interfaces.

    PubMed

    Ivaništšev, Vladislav; Méndez-Morales, Trinidad; Lynden-Bell, Ruth M; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M; Fedorov, Maxim V

    2016-01-14

    In this work we study mechanisms of solvent-mediated ion interactions with charged surfaces in ionic liquids by molecular dynamics simulations, in an attempt to reveal the main trends that determine ion-electrode interactions in ionic liquids. We compare the interfacial behaviour of Li(+) and K(+) at a charged graphene sheet in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, and its mixtures with lithium and potassium tetrafluoroborate salts. Our results show that there are dense interfacial solvation structures in these electrolytes that lead to the formation of high free energy barriers for these alkali metal cations between the bulk and direct contact with the negatively charged surface. We show that the stronger solvation of Li(+) in the ionic liquid leads to the formation of significantly higher interfacial free energy barriers for Li(+) than for K(+). The high free energy barriers observed in our simulations can explain the generally high interfacial resistance in electrochemical storage devices that use ionic liquid-based electrolytes. Overcoming these barriers is the rate-limiting step in the interfacial transport of alkali metal ions and, hence, appears to be a major drawback for a generalised application of ionic liquids in electrochemistry. Some plausible strategies for future theoretical and experimental work for tuning them are suggested. PMID:26661060

  9. Extraction and characterization of lignin from oil palm biomass via ionic liquid dissolution and non-toxic aluminium potassium sulfate dodecahydrate precipitation processes.

    PubMed

    Mohtar, S S; Tengku Malim Busu, T N Z; Md Noor, A M; Shaari, N; Yusoff, N A; Bustam Khalil, M A; Abdul Mutalib, M I; Mat, H B

    2015-09-01

    The objective of this study is to extract and characterize lignin from oil palm biomass (OPB) by dissolution in 1-butyl-3-methylimidazolium chloride ([bmim][Cl]), followed by the lignin extraction through the CO2 gas purging prior to addition of aluminum potassium sulfate dodecahydrate (AlK(SO4)2 · 12H2O). The lignin yield, Y(L) (%wt.) was found to be dependent of the types of OPB observed for all precipitation methods used. The lignin recovery, RL (%wt.) obtained from CO2-AlK(SO4)2 · 12H2O precipitation was, however dependent on the types of OPB, which contradicted to that of the acidified H2SO4 and HCl solutions of pH 0.7 and 2 precipitations. Only about 54% of lignin was recovered from the OPB. The FTIR results indicate that the monodispersed lignin was successfully extracted from the OPT, OPF and OPEFB having a molecular weight (MW) of 1331, 1263 and 1473 g/mol, and degradation temperature of 215, 207.5 and 272 °C, respectively.

  10. Highly efficient extraction and oxidative desulfurization system using Na7H2LaW10O36⋅32 H2O in [bmim]BF4 at room temperature.

    PubMed

    Xu, Junhua; Zhao, Shen; Chen, Wei; Wang, Miao; Song, Yu-Fei

    2012-04-10

    Highly efficient, deep desulfurization of model oil containing dibenzothiophene (DBT), benzothiophene (BT), or 4,6-dimethyldibenzothiophene (4,6-DMDBT) has been achieved under mild conditions by using an extraction and catalytic oxidative desulfurization system (ECODS) in which a lanthanide-containing polyoxometalate Na(7)H(2)LnW(10)O(36)⋅32 H(2)O (LnW(10); Ln = Eu, La) acts as catalyst, [bmim]BF(4) (bmim = 1-butyl-3-methylimidazolium) as extractant, and H(2)O(2) as oxidant. Sulfur removal follows the order DBT>4,6-DMDBT>BT at 30 °C. DBT can be completely oxidized to the corresponding sulfone in 25 min under mild conditions, and the LaW(10)/[bmim]BF(4) system could be recycled for ten times with only slight decrease in activity. Thus, LaW(10) in [bmim]BF(4) is one of the most efficient systems for desulfurization using ionic liquids as extractant reported so far. PMID:22374858

  11. Surface Adsorption and Micelle Formation of Polyoxyethylene-type Nonionic Surfactants in Mixtures of Water and Hydrophilic Imidazolium-type Ionic Liquid.

    PubMed

    Misono, Takeshi; Okada, Kohei; Sakai, Kenichi; Abe, Masahiko; Sakai, Hideki

    2016-06-01

    The interfacial properties of polyoxyethylene alkyl ether-type nonionic surfactants (CnEm) were studied in a hydrophilic room-temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4), in the presence of water. These properties were assessed using static surface tension, pyrene fluorescence, and dynamic light scattering measurements. The interfacial properties were strongly dependent on the solution composition. Increased water concentration lowered the critical micelle concentration (cmc). The cmc was also affected by the lengths of both the alkyl and polyoxyethylene chains, but a greater impact was observed for the alkyl chain length. These results indicate that micellization occurs as a result of solvophobic interaction between surfactant molecules in the water/bmimBF4 mixed solutions, similar to aqueous surfactant systems. The cloud point phenomenon was observed for CnEm with a relatively low hydrophilic-lipophilic balance (HLB) value, and the relationship between the cloud point and water/bmimBF4 composition exhibited a convex upward curve. Furthermore, the mixing of bmimBF4 with water increased the surfactant solubility for water-rich compositions, suggesting that bmimBF4 acts as a chaotropic salt.

  12. [Bi3GaS5]2[Ga3Cl10]2[GaCl4]2·S8 containing heterocubane-type [Bi3GaS5]2+, star-shaped [Ga3Cl10]-, monomeric [GaCl4]- and crown-like S8.

    PubMed

    Freudenmann, Dominic; Feldmann, Claus

    2011-01-14

    By reaction of elemental bismuth, sulfur, bismuth(III) chloride and gallium(III) chloride in the ionic liquid (BMIm)Cl (BMIm: 1-butyl-3-methylimidazolium), [Bi(3)GaS(5)](2)[Ga(3)Cl(10)](2)[GaCl(4)](2)·S(8) is obtained as red transparent crystals. According to X-ray structure analysis based on single crystals, the title compound crystallizes with triclinic lattice symmetry and is composed of heterocubane-type [Bi(3)GaS(5)](2+) cations, trimeric star-shaped [Ga(3)Cl(10)](-) anions with three (GaCl(4)) tetrahedra sharing a single central chlorine atom, monomeric [GaCl(4)](-) tetrahedra and neutral, crown-shaped S(8)-rings. Here, the heterocubane [Bi(3)GaS(5)](2+) as well as the star-shaped [Ga(3)Cl(10)](-) are observed as building units for the first time. [Bi(3)GaS(5)](2)[Ga(3)Cl(10)](2)[GaCl(4)](2)·S(8) is further characterized by X-ray powder diffraction as well as by thermogravimetry/differential thermal analysis.

  13. Combined effects of raw materials and solvent systems on the preparation and properties of regenerated cellulose fibers.

    PubMed

    Chen, Jinghuan; Guan, Ying; Wang, Kun; Zhang, Xueming; Xu, Feng; Sun, Runcang

    2015-09-01

    To investigate the combined effects of materials and solvents on the preparation, structural and mechanical properties of regenerated cellulose fibers, four cellulosic materials (microcrystalline cellulose, cotton linter pulp, bamboo pulp and bleached softwood sulfite dissolving pulp) and six non-derivative solvents (NaOH/urea aqueous solution, N,N-dimethylacetamide/lithium chloride, N-methyl-morpholine-N-oxide, 1-butyl-3-methylimidazolium chloride, 1-allyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium acetate) were used to prepare fibers with wet spinning method. The results showed that the dissolvability of solvent was the determining factor in cellulose dissolution, and the dissolving time was influenced by the raw materials' properties, such as molecular weight, exposed area and hemicellulose content. The crystallinity and elongation at break of the fibers were almost fixed and not affected by the materials and solvents. However, the tensile strength of the fibers was directly proportional to the molecular weight of the raw materials, and varied with the type of solvents through cellulose degradation.

  14. Facile cellulose dissolution without heating in [C₄mim][CH ₃COO]/DMF solvent.

    PubMed

    Xu, Airong; Cao, Lili; Wang, Bingjun

    2015-07-10

    Novel cellulose solvents, [C4mim][CH3COO]/DMF, were designed by adding an aprotic polar solvent N,N-dimethylformamide (DMF) in 1-butyl-3-methylimidazolium acetate ([C4mim][CH3COO]). The solubilities of cellulose in [C4mim][CH3COO]/DMF solvents were determined at 25°C. The effects of molar ratio of DMF to [C4mim][CH3COO] on cellulose solubility and the possible dissolution mechanism of cellulose in [C4mim][CH3COO]/DMF solvent have been studied. Moreover, the regenerated cellulose from [C4mim][CH3COO]/DMF solvent were characterized by scanning electron micrograph (SEM) Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), and the degree of polymerization (DP) of regenerated cellulose was determined. The findings reveal that the facile dissolution of cellulose in such solvents is mainly attributed to the increased "free" [CH3COO](-) anions and [C4mim](+) cations which result from the dissociation of [C4mim][CH3COO] by DMF. Moreover, the macromolecular chain of the cellulose is hardly broken during the dissolution and precipitation processes.

  15. Thinning of reverse osmosis membranes by ionic liquids

    NASA Astrophysics Data System (ADS)

    Meng, Hong; Gong, Beibei; Geng, Tao; Li, Chunxi

    2014-02-01

    In this study, ionic liquids (ILs) were used to thin out the dense layer and, in turn, tune the surface properties and separation performance of commercial aromatic polyamide reverse osmosis membranes. It was observed that the structure of the ILs and dipping time had a strong impact on the dense layer thickness and morphology. This can be understood in terms of the dissolubility and interaction force between ILs and the organic membrane surface, such as hydrogen bonding and π-π interactions. Among the ILs synthesized, 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) showed the most promising thinning effects. It was observed that the thickness of the dense layer on the surface decreased from 127 to 67 nm after dipping treatment with [BMIM]Cl for 24 h. The water flux was enhanced by 20% at the expense of a slight decline of salt rejection. AFM, contact angle and zeta potential analyses suggest that the surface hydrophilicity and electronegativity increased, while the roughness decreased, which improved the anti-fouling properties.

  16. Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid-graphene electrode interfaces.

    PubMed

    Ivaništšev, Vladislav; Méndez-Morales, Trinidad; Lynden-Bell, Ruth M; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M; Fedorov, Maxim V

    2016-01-14

    In this work we study mechanisms of solvent-mediated ion interactions with charged surfaces in ionic liquids by molecular dynamics simulations, in an attempt to reveal the main trends that determine ion-electrode interactions in ionic liquids. We compare the interfacial behaviour of Li(+) and K(+) at a charged graphene sheet in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, and its mixtures with lithium and potassium tetrafluoroborate salts. Our results show that there are dense interfacial solvation structures in these electrolytes that lead to the formation of high free energy barriers for these alkali metal cations between the bulk and direct contact with the negatively charged surface. We show that the stronger solvation of Li(+) in the ionic liquid leads to the formation of significantly higher interfacial free energy barriers for Li(+) than for K(+). The high free energy barriers observed in our simulations can explain the generally high interfacial resistance in electrochemical storage devices that use ionic liquid-based electrolytes. Overcoming these barriers is the rate-limiting step in the interfacial transport of alkali metal ions and, hence, appears to be a major drawback for a generalised application of ionic liquids in electrochemistry. Some plausible strategies for future theoretical and experimental work for tuning them are suggested.

  17. [Separation and determination of optical isomers of phenylephrine by chiral ligand exchange capillary elcctrophoresis coupling with the promoting effect of ionic liquid].

    PubMed

    Yang, Simei; Zhang, Jiayao; Li, Fei; Hu, Xufang; Cao, Qiue

    2016-01-01

    A method for the separation and determination of optical isomers of phenylephrine was developed based on the promoting effect of non-chiral ionic liquid on chiral ligand-exchange capillary electrophoresis after the electrophoretic parameters were optimized systematically. R-phenylephrine and S-phenylephrine can be separated and determined effectively in 20 mmol/L Tris-H3PO4 buffer solution (pH 5.4) composed of 4.0 mmol/L Cu(II), 8.0 mmol/L L-proline (L-Pro) and 15 mmol/L 1-butyl-3-methylimidazolium chloride ([BMIM] Cl) with the applied voltage of 20 kV, capillary temperature of 25 °C , detection wavelength of 254 nm, and injection of 5 s at 3,447 Pa. The resolution of R- and S-phenylephrines was 1. 42. The linear ranges for the determination of R-phenylephrine and S-phenylephrine were 12. 5 - 150 mg/L and 15. 0-150 mg/L, respectively. The method has been satisfactorily used for the determination of R-phenylephrine and S-phenylephrine in the spiked blood and urine samples. The spiked recoveries in the urine sample were in the range of 93. 7% -108. 2% with the RSDs lower than 3. 18% (n= 3) , and the spiked recoveries in the blood sample were in the range of 91. 4% and 113. 1% with the RSDs lower than 4. 82% (n =3). PMID:27319173

  18. Catalytic pyrolysis of cellulose in ionic liquid [bmim]OTf.

    PubMed

    Qu, Guangfei; He, Weiwei; Cai, Yingying; Huang, Xi; Ning, Ping

    2016-09-01

    This study discussed the catalytic cracking process of cellulose in ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim]OTF) under 180°C, 240°C and 340°C, found that [bmim]OTF is an effective catalyst which can effectively reduce the pyrolysis temperature(nearly 200°C) of the cellulose. FRIR, XRD and SEM were used to analyze the structure characterization of fiber before and after the cracking; GC-MS was used for liquid phase products analysis; GC was used to analyze gas phase products. The results showed that the cellulose pyrolysis in [bmim]OTf mainly generated CO2, CO and H2, also generated 2-furfuryl alcohol, 2,5-dimethyl-1,5-diallyl-3-alcohol, 1,4-butyrolactone, 5-methyl furfural, 4-hydroxy butyric acid, vinyl propionate, 1-acetoxyl group-2-butanone, furan formate tetrahydrofuran methyl ester liquid product, and thus simulated the evolution mechanism of cellulose pyrolysis products based on the basic model of cellulose monomer. PMID:27185153

  19. Green chemical functionalization of multiwalled carbon nanotubes with poly(ɛ-caprolactone) in ionic liquids

    NASA Astrophysics Data System (ADS)

    Yang, Yingkui; Qiu, Shengqiang; He, Chengen; He, Wenjie; Yu, Linjuan; Xie, Xiaolin

    2010-11-01

    Multiwalled carbon nanotubes (MWNTs) have been successfully functionalized by free radical addition of 4,4'-azobis(4-cyanopentanol) in aqueous media to generate the terminal-hydroxyl-modified MWNTs (MWNT-OH), followed by surface-initiated in situ ring-opening polymerization of ɛ-caprolactone in 1-butyl-3-methylimidazolium tetrafluoroborate (BmimBF 4) to obtain poly(ɛ-caprolactone)-grafted MWNTs (MWNT- g-PCL). Spectroscopic methods in conjunction with electron microscopy clearly revealed that hairy PCL chains were chemically attached to the surface of MWNTs to form core-shell nanostructures with the latter as core and the former as shell. With increasing polymerization time from 2 to 8 h, the amount of the grafted-PCL synthesized in BmimBF 4 varies from 30.6 to 62.7 wt%, which is clearly higher than that (41.5 wt%) obtained in 1,2-dichlorobenzene under comparable conditions (8 h). The proposed methodology here uses water and room temperature ionic liquids (RTILs) as the reaction media and promises a green chemical process for functionalizing nanotubes.

  20. Letter: High-mass capabilities of positive-ion and negative-ion direct analysis in real time mass spectrometry.

    PubMed

    Gross, Jürgen H

    2016-01-01

    Of the ionic liquid 1-butyl-3-methylimidazolium (C(+)) tricyanomethide (A(-)) high-mass cluster ions of both positive ([C(n)A(n-1)](+)) and negative ([C(n-1)A(n)](-)) charge were generated and detected by direct analysis in real time (DART) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS). After optimization of the settings of the DART ionization source and of the mass analyzer ions of m/z values unprecedented in DART-MS were detected. Thus, the upper m/z limits of positive-ion and negative-ion DART- MS were substantially expanded. Negative-ion DART-MS delivered cluster ions up to [C(15)A(16)](-), m/z 3527 (nominal mass of monoisotopic ion), while positive-ion DART-MS even yielded ions up to [C(30)A(29)](+), m/z 6784. The identification of the cluster ions is supported by their accurate mass and exact mass differences corresponding to CA between adjacent cluster ion peaks.

  1. Amyloid formation and disaggregation of {alpha}-synuclein and its tandem repeat ({alpha}-TR)

    SciTech Connect

    Bae, Song Yi; Kim, Seulgi; Hwang, Heejin; Kim, Hyun-Kyung; Yoon, Hyun C.; Kim, Jae Ho; Lee, SangYoon; Kim, T. Doohun

    2010-10-01

    Research highlights: {yields} Formation of the {alpha}-synuclein amyloid fibrils by [BIMbF{sub 3}Im]. {yields} Disaggregation of amyloid fibrils by epigallocatechin gallate (EGCG) and baicalein. {yields} Amyloid formation of {alpha}-synuclein tandem repeat ({alpha}-TR). -- Abstract: The aggregation of {alpha}-synuclein is clearly related to the pathogenesis of Parkinson's disease. Therefore, detailed understanding of the mechanism of fibril formation is highly valuable for the development of clinical treatment and also of the diagnostic tools. Here, we have investigated the interaction of {alpha}-synuclein with ionic liquids by using several biochemical techniques including Thioflavin T assays and transmission electron microscopy (TEM). Our data shows a rapid formation of {alpha}-synuclein amyloid fibrils was stimulated by 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BIMbF{sub 3}Im], and these fibrils could be disaggregated by polyphenols such as epigallocatechin gallate (EGCG) and baicalein. Furthermore, the effect of [BIMbF{sub 3}Im] on the {alpha}-synuclein tandem repeat ({alpha}-TR) in the aggregation process was studied.

  2. Three-phase catalytic system of H2O, ionic liquid, and VOPO4-SiO2 solid acid for conversion of fructose to 5-hydroxymethylfurfural.

    PubMed

    Tian, Chengcheng; Zhu, Xiang; Chai, Song-Hai; Wu, Zili; Binder, Andrew; Brown, Suree; Li, Lin; Luo, Huimin; Guo, Yanglong; Dai, Sheng

    2014-06-01

    Efficient transformation of biomass-derived feedstocks to chemicals and fuels remains a daunting challenge in utilizing biomass as alternatives to fossil resources. A three-phase catalytic system, consisting of an aqueous phase, a hydrophobic ionic-liquid phase, and a solid-acid catalyst phase of nanostructured vanadium phosphate and mesostructured cellular foam (VPO-MCF), is developed for efficient conversion of biomass-derived fructose to 5-hydroxymethylfurfural (HMF). HMF is a promising, versatile building block for production of value-added chemicals and transportation fuels. The essence of this three-phase system lies in enabling the isolation of the solid-acid catalyst from the aqueous phase and regulation of its local environment by using a hydrophobic ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Tf2N]). This system significantly inhibits the side reactions of HMF with H2O and leads to 91 mol % selectivity to HMF at 89 % of fructose conversion. The unique three-phase catalytic system opens up an alternative avenue for making solid-acid catalyst systems with controlled and locally regulated microenvironment near catalytically active sites by using a hydrophobic ionic liquid.

  3. Ionic liquid tunes microemulsion curvature.

    PubMed

    Liu, Liping; Bauduin, Pierre; Zemb, Thomas; Eastoe, Julian; Hao, Jingcheng

    2009-02-17

    Middle-phase microemulsions formed from cationic dioctadecyldimethylammonium chloride (DODMAC), anionic sodium dodecylsulfate (SDS), n-butanol, and n-heptane were studied. An ionic liquid (IL), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), was employed as the electrolyte in the aqueous media instead of inorganic salts usually used in microemulsion formulation. Studies have been carried out as a function of the concentrations of [bmim][BF4], n-butanol, total surfactant (cDODMAC+SDS), and temperature on the phase behavior and the ultralow interfacial tensions in which the anionic component is present in excess in the catanionic film. Ultralow interfacial tension measurements confirmed the formation of middle-phase microemulsions and the necessary conditions for stabilizing middle-phase microemulsions. Electrical conductivity, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS) experiments were also performed, indicating that the typical heptane domain size has an average radius of 360 A and the ionic liquid induces softening of the charged catanionic film. Most interestingly, the IL concentration (cIL) is shown to act as an effective interfacial curvature-control parameter, representing a new approach to tuning the formulation of microemulsions and emulsions. The results expand the potential uses of ILs but also point to the design of new ILs that may achieve superefficient control over interfacial and self-assembly systems. PMID:19161325

  4. Organic solvents induce the formation of oil-in-ionic liquid microemulsion aggregations.

    PubMed

    Gao, Yanan; Li, Na; Zhang, Shaohua; Zheng, Liqiang; Li, Xinwei; Dong, Bin; Yu, Li

    2009-02-01

    The role of four organic solvents in the formation process of 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) based ionic liquid (IL) microemulsions is investigated. The results showed that the addition of Triton X-100 remarkably decreased the conductivity of bmimBF4. The added organic solvents provided a strong apolar environment for the hydrophobic tails of Triton X-100 and caused the surfactant molecules to aggregate into the interfacial film of oil-in-bmimBF4 (O/IL) microemulsions. As a result, the conductivities of the solutions were initially increased because the insulative Triton X-100 molecules were assembled, which corresponded to increasing the concentration of continuous bmimBF4 solutions. The hydrophobic interaction between the dispersed organic solvents and the hydrophobic tails of Triton X-100 may be the driving force for the formation of O/IL microemulsions. The droplets of O/IL microemulsions were successively swollen by organic solvents, and a bicontinuous IL-containing microemulsion was observed by freeze-fracture transmission electron microscopy for the first time. The current study can help in further understanding the ILs-containing microemulsions and thereby improve microemulsion theory. PMID:19138136

  5. Dielectric analysis of micelles and microemulsions formed in a hydrophilic ionic liquid. I. Interaction and percolation.

    PubMed

    Lian, Yiwei; Zhao, Kongshuang

    2011-10-01

    Dielectric measurements were carried out on binary mixtures of Triton X-100 (TX-100, a nonionic surfactant with a polyoxyethylene chain) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF(4)], a hydrophilic ionic liquid), and [bmim][BF(4)]/TX-100/cyclohexane microemulsions in a wide frequency range to study the molecular interaction and percolation in these systems. Striking dielectric relaxations were observed, and the dc conductivity data were obtained from the measured total dielectric loss spectra. The interaction between TX-100 and [bmim][BF(4)] is estimated by analyzing the dc conductivity of TX-100/[bmim][BF(4)] solutions in light of the Bruggeman's effective medium approximation, which indicates that spherical micelles are formed when the TX-100 volume fraction is below 48% and the number of cations associated with every TX-100 molecule is eight. For IL-oil microemulsions, both the dependence of dc conductivity and the permittivity (for fixed frequency) on cyclohexane concentration were used to identify the oil-in-IL, bicontinuous, and IL-in-oil microregions. Both the conduction and dielectric relaxation behavior suggest that a static percolation occurs in this hydrophilic IL microemulsion. PMID:21859133

  6. Development of novel ionic liquid-based microemulsion formulation for dermal delivery of 5-Fluorouracil.

    PubMed

    Goindi, Shishu; Arora, Prabhleen; Kumar, Neeraj; Puri, Ashana

    2014-08-01

    The present study was aimed at synthesizing an imidazole-based ionic liquid 1-butyl-3-methylimidazolium bromide (BMIMBr) and subsequent development of a novel ionic liquid-in-oil (IL/o) microemulsion (ME) system for dermal delivery of a poorly permeating drug 5-fluorouracil (5-FU). A significant enhancement in the solubility of 5-FU was observed in BMIMBr. IL/o MEs of 5-FU were prepared using isopropyl myristate, Tween 80/Span 20, and BMIMBr. Results of ex vivo skin permeation studies through mice skin indicated that the selected IL/o ME exhibited 4-fold enhancement in percent drug permeation as compared to aqueous solution, 2.3-fold as compared to hydrophilic ointment, and 1.6-fold greater permeation than water in oil (w/o) ME. The results of in vivo studies against dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mice skin carcinogenesis demonstrated that the IL/o ME could effectively treat skin cancer in 4 weeks. In addition, the side effects such as erythema and irritation associated with the conventional formulations were not observed. Histopathological studies showed that the use of IL/o ME caused no anatomic and pathological changes in the skin structure of mice. These studies suggest that the use of IL-based ME system can efficiently enhance the solubility and permeability of 5-FU and hence its therapeutic efficacy. PMID:24668136

  7. Analysis of baicalein, baicalin and wogonin in Scutellariae radix and its preparation by microemulsion electrokinetic chromatography with 1-butyl-3-methylimizolium tetrafluoborate ionic liquid as additive.

    PubMed

    Zhang, Huige; Tian, Kan; Tang, Jianghong; Qi, Shengda; Chen, Hongli; Chen, Xingguo; Hu, Zhide

    2006-10-01

    Microemulsion electrokinetic chromatography (MEEKC) using 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4) ionic liquid (IL) as additive was developed for the analysis of baicalin, wogonin and baicalein in Scutellariae radix and its preparation. After conducting a series of optimizations, baseline separation was obtained for the analytes within 5min under the optimum conditions (sodium dodecyl sulfate (SDS) 0.88% (m/v) ethyl acetate 0.8% (v/v) butan-1-ol 0.2% (v/v) and the buffer composition were 25% acetonitrile (v/v), 7.5 mM BMIM-BF4 and 10 mM NaH2PO4, pH 8.2, applied voltage 17.5 kV and detection at 254 nm), the method has been successfully applied to the determination and quantification of the analytes in the extracts of S. radix (cooked), S. radix (raw) and Qingfeiyihuowan which was the preparation including S. radix. PMID:16952364

  8. Layered structure of room-temperature ionic liquids in microemulsions by multinuclear NMR spectroscopic studies.

    PubMed

    Falcone, R Dario; Baruah, Bharat; Gaidamauskas, Ernestas; Rithner, Christopher D; Correa, N Mariano; Silber, Juana J; Crans, Debbie C; Levinger, Nancy E

    2011-06-01

    Microemulsions form in mixtures of polar, nonpolar, and amphiphilic molecules. Typical microemulsions employ water as the polar phase. However, microemulsions can form with a polar phase other than water, which hold promise to diversify the range of properties, and hence utility, of microemulsions. Here microemulsions formed by using a room-temperature ionic liquid (RTIL) as the polar phase were created and characterized by using multinuclear NMR spectroscopy. (1)H, (11)B, and (19)F NMR spectroscopy was applied to explore differences between microemulsions formed by using 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF(4)]) as the polar phase with a cationic surfactant, benzylhexadecyldimethylammonium chloride (BHDC), and a nonionic surfactant, Triton X-100 (TX-100). NMR spectroscopy showed distinct differences in the behavior of the RTIL as the charge of the surfactant head group varies in the different microemulsion environments. Minor changes in the chemical shifts were observed for [bmim](+) and [BF(4)](-) in the presence of TX-100 suggesting that the surfactant and the ionic liquid are separated in the microemulsion. The large changes in spectroscopic parameters observed are consistent with microstructure formation with layering of [bmim](+) and [BF(4)](-) and migration of Cl(-) within the BHDC microemulsions. Comparisons with NMR results for related ionic compounds in organic and aqueous environments as well as literature studies assisted the development of a simple organizational model for these microstructures. PMID:21547960

  9. Studies on the micropolarities of bmimBF4/TX-100/toluene ionic liquid microemulsions and their behaviors characterized by UV-visible spectroscopy.

    PubMed

    Li, Na; Gao, Yan'an; Zheng, Liqiang; Zhang, Jin; Yu, Li; Li, Xinwei

    2007-01-30

    Ionic liquids (ILs), 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4), were substituted for polar water and formed nonaqueous microemulsions with toluene by the aid of nonionic surfactant TX-100. The phase behavior of the ternary system was investigated, and microregions of bmimBF4-in-toluene (IL/O), bicontinuous, and toluene-in-bmimBF4 (O/IL) were identified by traditional electrical conductivity measurements. Dynamic light scattering (DLS) revealed the formation of the IL microemulsions. The micropolarities of the IL/O microemulsions were investigated by the UV-vis spectroscopy using the methyl orange (MO) and methylene blue (MB) as absorption probes. The results indicated that the polarity of the IL/O microemulsion increased only before the IL pools were formed, whereas a relatively fixed polar microenvironment was obtained in the IL pools of the microemulsions. Moreover, UV-vis spectroscopy has also shown that ionic salt compounds such as Ni(NO3)2, CoCl2, CuCl2, and biochemical reagent riboflavin could be solubilized into the IL/O microemulsion droplets, indicating that the IL/O microemulsions have potential application in the production of metallic or semiconductor nanomaterials, and in biological extractions or as solvents for enzymatic reactions. The IL/O microemulsions may have some expected effects due to the unique features of ILs and microemulsions. PMID:17241018

  10. Nanodroplet cluster formation in ionic liquid microemulsions.

    PubMed

    Gao, Yanan; Voigt, Andreas; Hilfert, Liane; Sundmacher, Kai

    2008-08-01

    A common ionic liquid (IL), 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)), is used as polar solvent to induce the formation of a reverse bmimBF(4)-in-toluene IL microemulsion with the aid of the nonionic surfactant Triton X-100. The swelling process of the microemulsion droplets by increasing bmimBF(4) content is detected by dynamic light scattering (DLS), conductivity, UV/Vis spectroscopy, and freeze-fracture transmission electron microscopy (FF-TEM). The results show that the microemulsion droplets initially formed are enlarged by the addition of bmimBF(4). However, successive addition of bmimBF(4) lead to the appearance of large-sized microemulsion droplet clusters (200-400 nm). NMR spectroscopic analysis reveal that the special structures and properties of bmimBF(4) and Triton X-100 together with the polar nature of toluene contribute to the formation of such self-assemblies. These unique self-assembled structures of IL-based microemulsion droplet clusters may have some unusual and unique properties with a number of interesting possibilities for potential applications. PMID:18576451

  11. Temperature-induced microstructural changes in ionic liquid-based microemulsions.

    PubMed

    Gao, Yanan; Li, Na; Hilfert, Liane; Zhang, Shaohua; Zheng, Liqiang; Yu, Li

    2009-02-01

    In the present contribution, results concerning the effect of temperature on the nonionic surfactant Triton X-100 based 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4)-in-cyclohexane and bmimBF4-in-toluene ionic liquid (IL) reverse microemulsions are reported. Dynamic light scattering (DLS) along with freeze-fracture transmission electron microscopy (FF-TEM) measurements revealed that the sizes of single microemulsion droplets increased with increasing temperature. However, a decreased temperature led to the appearance of droplet clusters, which have also been observed previously when the single microemulsion droplets were swollen by added bmimBF4 to a certain extent (Gao, Y. A.; Vogit, A.; Hilfert, L.; Sundmacher, K. ChemPhysChem, 2008, 9, 1603-1609). Compared to traditional aqueous microemulsions, IL microemulsions revealed relatively high temperature-independence. The droplet-shaped microstructure was always kept in a large range of temperature. The temperature-independence is ascribed to the temperature-insensitive electrostatic attraction between the solubilized bmimBF4 and Triton X-100, which was considered to be the driving force for solubilizing bmimBF4 into the cores of Triton X-100 aggregates. Two-dimensional rotating frame nuclear Overhauser effect (NOE) experiments (ROESY) further confirmed the microstructural change with temperature. PMID:19132875

  12. Influence of the ionic liquid cation on the solvent extraction of trivalent rare-earth ions by mixtures of Cyanex 923 and ionic liquids.

    PubMed

    Rout, Alok; Binnemans, Koen

    2015-01-21

    Trivalent rare-earth ions were extracted from nitric acid medium by the neutral phosphine oxide extractant Cyanex 923 into ionic liquid phases containing the bis(trifluoromethylsulfonyl)imide anion. Five different cations were considered: 1-butyl-3-methylimidazolium, 1-decyl-3-methylimidazolium, methyltributylammonium, methyltrioctylammonium and trihexyl(tetradecyl)phosphonium. The extraction behavior of neodymium(iii) was investigated as a function of various parameters: pH, extractant concentration, concentration of the neodymium(iii) ion in the aqueous feed and concentration of the salting-out agent. The loading capacity of the ionic liquid phase was studied. The extraction efficiency increased with increasing pH of the aqueous feed solution. The extraction occurred for all ionic liquids via an ion-exchange mechanism and the extraction efficiency could be related to the solubility of the ionic liquid cation in the aqueous phase: high distribution ratios for hydrophilic cations and low ones for hydrophobic cations. Addition of nitrate ions to the aqueous phase resulted in an increase in extraction efficiency for ionic liquids with hydrophobic cations due to extraction of neutral complexes. Neodymium(iii) could be stripped from the ionic liquid phase by 0.5-1.0 M nitric acid solutions and the extracting phase could be reused. The extractability of other rare earths present in the mixture was compared for the five ionic liquids.

  13. The Influence of Silica Nanoparticles on Ionic Liquid Behavior: A Clear Difference between Adsorption and Confinement

    PubMed Central

    Wang, Yaxing; Li, Cheng; Guo, Xiaojing; Wu, Guozhong

    2013-01-01

    The phase behaviors of ionic liquids (ILs) confined in nanospace and adsorbed on outer surface of nanoparticles are expected to be different from those of the bulk. Anomalous phase behaviors of room temperature ionic liquid tributylhexadecylphosphonium bromide (P44416Br) confined in ordered mesoporous silica nanoparticles with average pore size 3.7 nm and adsorbed on outer surface of the same silica nanoparticles were reported. It was revealed that the melting points (Tm) of confined and adsorbed ILs depressed significantly in comparison with the bulk one. The Tm depressions for confined and adsorbed ILs are 8 °C and 14 °C, respectively. For comparison with the phase behavior of confined P44416Br, 1-butyl-3-methylimidazolium bromide (BmimBr) was entrapped within silica nanopores, we observed an enhancement of 50 °C in Tm under otherwise similar conditions. The XRD analysis indicates the formation of crystalline-like phase under confinement, in contrast to the amorphous phase in adsorbed IL. It was confirmed that the behavior of IL has clear difference. Moreover, the complex π-π stacking and H-bonding do not exist in the newly proposed phosphonium-based IL in comparison with the widely studied imidazolium-based IL. The opposite change in melting point of P44416Br@SiO2 and BmimBr@SiO2 indicates that the cationic species plays an important role in the variation of melting point. PMID:24145752

  14. The solvation structures of cellulose microfibrils in ionic liquids

    SciTech Connect

    Mostofian, Barmak; Smith, Jeremy C; Cheng, Xiaolin

    2011-01-01

    The use of ionic liquids for non-derivatized cellulose dissolution promises an alternative method for the thermochemical pretreatment of biomass that may be more efficient and environmentally acceptable than more conventional techniques in aqueous solution. Here, we performed equilibrium MD simulations of a cellulose microfibril in the ionic liquid 1-butyl-3-methylimidazolium chloride (BmimCl) and compared the solute structure and the solute-solvent interactions at the interface with those from corresponding simulations in water. The results indicate a higher occurrence of solvent-exposed orientations of cellulose surface hydroxymethyl groups in BmimCl than in water. Moreover, spatial and radial distribution functions indicate that hydrophilic surfaces are a preferred site of interaction between cellulose and the ionic liquid. In particular, hydroxymethyl groups on the hydrophilic fiber surface adopt a different conformation from their counterparts oriented towards the fiber s core. Furthermore, the glucose units with these solvent-oriented hydroxymethyls are surrounded by the heterocyclic organic cation in a preferred parallel orientation, suggesting a direct and distinct interaction scheme between cellulose and BmimCl.

  15. Effects of Room-Temperature Ionic Liquids on Freshwater Primary Producers

    NASA Astrophysics Data System (ADS)

    Kulacki, K. J.; Bernot, R. J.; Lamberti, G. A.; Lodge, D. M.

    2005-05-01

    Room-temperature ionic liquids (ILs) are non-volatile chemicals, which are presumed to be environmentally friendly because they pose no significant threat to air quality. However, the potential toxic effects of ILs on aquatic environments have not been studied, despite the likelihood of unintentional releases into streams and lakes during industrial applications. We studied the effects of ILs on the growth rates of the freshwater green algae Scenedesmus quadricauda and Chlamydomonas reinhardtii in 96-h bioassays. ILs with increasing alkyl chain lengths (from 1-butyl- to 1-hexyl- to 1-octyl-3-methylimidazolium bromide) were increasingly toxic to S. quadricauda (EC-50 values of 0.28 mg*L-1, 0.04 mg*L-1, and <0.005 mg*L-1 respectively). S. quadricauda growth rates decreased with increasing IL concentration across all treatments. Compared to controls, C. reinhardtii growth rates were higher at 200-800 mg*L-1 1-butyl-3-methylimidazolium bromide (bmimBr) treatments, but declined at 1600 mg*L-1 bmimBr. These results illustrate that different algal taxa can respond quite differently to potential chemical pollutants. Furthermore, by studying the effects of ILs on primary producers in concert with organisms from other trophic levels, we can develop hypotheses about how these effects may be felt throughout aquatic ecosystems.

  16. Oligomerization of n-butenes catalyzed by nickel complexes dissolved in organochloroaluminate ionic liquids

    SciTech Connect

    Chauvin, Y.; Olivier, H.; Wyrvalski, C.N.

    1997-01-15

    The industrial synthesis of higher olefins is generally performed via oligomerization of lower olefins by transition metal complexes or acidic catalysts. The broad variety of olefins that are nowadays produced by these reactions are used as polyethylene co-monomers or as intermediates in the synthesis of detergents, surface active compounds, lubricating oils, and plasticizers. Thus, in the Dimersol{reg_sign} process, butenes are dimerized into C{sub 8} olefins which are usually further hydroformylated giving C{sub 9} alcohols used in the manufacture of plasticizers. In spite of important research efforts devoted to these homogeneous phase oligomerization reactions, activity and conversion still need to be improved. In a more general sense, the separation of the products from the catalyst and the solvent is a major drawback, which leads to increased operational costs and environmental impact. Organochloroaluminate ionic liquids have been envisioned as solvents of nickel catalysts in oligomerization reactions to overcome this technical limitation. The solubility of nickel complexes and the poor solubility of olefins in polar and non-coordinating ionic liquids make possible the separation of the reaction products by simple decantation, with low costs and absence of by-products. In the present article, the authors report the use of 1-butyl-3-methylimidazolium chloro-ethyl-aluminate ionic liquids as solvents in butene oligomerization catalyzed by nickel complexes in a two-phase system. 24 refs., 2 figs., 2 tabs.

  17. Multivariable optimization of the micellar system for the ionic liquid-modified MEKC separation of phenolic acids.

    PubMed

    Liu, Lei; Wu, Bin; Liu, Ke; Li, Chao-Ran; Zhou, Xu; Li, Ping; Yang, Hua

    2016-07-15

    An ionic liquid (IL)-modified micellar electrokinetic chromatography (MEKC) method was proposed for the separation and determination of eight phenolic acids. In order to increase separation efficiency and selectivity, the micelle system consisting of aqueous mixtures of ILs, Tween 20 and borate was optimized using a D-optimal design. A 16-run experimental plan was carried out. The results indicated that the addition of ILs in background electrolyte could significantly alter the electrophoretic behavior and improve the resolution of target analytes. By evaluating the electropherograms obtained, a satisfactory separation condition for all analytes was achieved in 10min with optimized buffer composed of 0.70% (w/w) 1-butyl-3-methylimidazolium tetrafluoroborate, 8.1% (w/w) polyoxyethylene sorbitan monolaurate (Tween 20) and 10mM sodium borate at pH 9.2. Under these conditions, all calibration curves showed good linearity (r(2)>0.9969), and accuracy (recoveries ranging from 94.71 to 106.85%). Finally, the proposed method was successfully applied to determine the phenolic acids in a Chinese medicine compound, compound danshen dripping pills. PMID:27136281

  18. Effects of Room-Temperature Ionic Liquids on Zebra Mussels (Dreissena polymorpha)

    NASA Astrophysics Data System (ADS)

    Costello, D. M.; Bernot, R. J.; Lamberti, G. A.

    2005-05-01

    Zebra mussels (Dreissena polymorpha) are exotic bivalves that are widely distributed in eastern North America. We propose that this nuisance organism could serve as a model species for studies of aquatic toxicology. We tested zebra mussels response to room-temperature ionic liquids (ILs), which are being synthesized as environmentally friendly alternatives to volatile organic solvents. Volatile organic solvents contribute to atmospheric pollution and ozone depletion, whereas ILs are non-volatile and less harmful to the atmosphere. Although ILs would contribute significantly less to air pollution, little is known about their potential effects on aquatic ecosystems. In 72-hour toxicity tests, we determined the acute effects of three imidazolium-based ILs (1-butyl-3-methylimidazolium bromide (bmimBr), 1-hexyl-3-methylimidazolium bromide (hmimBr), and 1-octyl-3-methylimidazolium bromide (omimBr)) on the survival of zebra mussels. As alkyl chain length decreased, median lethal concentration (LC50) decreased from 1291 mg L-1 for bmimBr, to 105 mg L-1 for hmimBr, and 21.2 mg L-1 for omimBr. For bivalve mussels, the toxicities of these ILs are comparable to the toxicities of commonly used industrial solvents (e.g., toluene, benzene). This study presents a foundation for using zebra mussels in toxicity studies as well as possible models for less common Unionid mussels.

  19. Utilization of an ionic liquid in situ preconcentration method for the determination of the 15 + 1 European Union polycyclic aromatic hydrocarbons in drinking water and fruit-tea infusions.

    PubMed

    Germán-Hernández, Mónica; Crespo-Llabrés, Pilar; Pino, Verónica; Ayala, Juan H; Afonso, Ana M

    2013-08-01

    An ionic liquid (IL) in situ preconcentration method was optimized and applied to the monitoring of the 15 + 1 European Union polycyclic aromatic hydrocarbons in water and fruit-tea infusions. The optimized method utilizes 10 mL of water (or infusion) containing 38 μL of the IL 1-butyl-3-methylimidazolium chloride and a content of 36.1 g/L NaCl, which are mixed with Li-NTf2 (340 μL, 0.2 g/mL), followed by vortex (4 min) and centrifugation (5 min). The obtained microdroplet containing hydrocarbons is diluted with acetonitrile and injected into an HPLC with UV/Vis and fluorescence detection. The method presented average enrichment factors of 127 for water (tap water and bottled water) and 27 for two fruit-tea infusions; with average relative recoveries of 86.7 and 106% for water and fruit-tea infusions, respectively. The method was sensitive, with detection limits ranging from 0.001 to 0.050 ng/mL in water, and from 0.010 to 0.600 ng/mL in fruit-tea infusions, for the fluorescent hydrocarbons. Real extraction efficiencies ranged from 12.7 to 58.7% for water, and from 20.2 to 117% for the infusions. The method was also fast (~12 min) and free of organic solvents in the extraction step.

  20. Desorption of low-volatility compounds induced by dynamic friction between microdroplets and an ultrasonically vibrating blade.

    PubMed

    Usmanov, D T; Hiraoka, K; Wada, H; Morita, S; Nonami, H

    2016-02-21

    Friction plays an important role in desorption and/or ionization of nonvolatile compounds in mass spectrometry, e.g., sonic spray, easy ambient sonic-spray ionization, solvent-assisted inlet ionization, desorption electrospray, etc. In our previous work, desorption of low molecular weight compounds induced by solid/solid dynamic friction was studied. The objective of this work was to investigate desorption of low-volatility compounds induced by liquid/solid friction. Water/methanol (1/1) microdroplets with ∼30 μm in diameter were generated by using a piezoelectric microdroplet generator. They were injected to analytes deposited on the flat surface of a blade vibrating ultrasonically with the frequency of 40 kHz. Neutral molecules desorbed from the blade were ionized by a helium dielectric barrier discharge (DBD), generating strong signals for samples including drugs, explosives, and insecticides. These signals were not detected when either the blade vibrator or the piezoelectric microdroplet generator was off. In contrast, for ionic compounds such as 1-butyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)imide, p-chlorobenzyl pyridinium chloride, and rhodamine B, strong ion signals were obtained when the vibrator and droplet generator were on, but DBD was off. Sub-nanogram limits of detection were attained for low-volatility compounds. PMID:26779570

  1. Mesoporous Face-Centered-Cubic In4Ni Alloy Nanorices: Superior Catalysts for Hydrazine Dehydrogenation in Aqueous Solution.

    PubMed

    Miao, Xue; Chen, Ming Ming; Chu, Wei; Wu, Ping; Tong, Dong Ge

    2016-09-28

    Mesoporous face-centered-cubic (fcc) In4Ni alloy nanorices (NRs) were successfully synthesized as superior catalysts for N2H4 dehydrogenation in aqueous solution via a facile solution plasma technique (SPT) in an ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]). This incorporation introduces basic sites for dehydrogenation. Also, the synthesis of In and Ni weakens the interactions among generated adspecies such as H2 and NHx and surface metal atoms. Alongside their unique NR structure, the as-prepared fcc-In4Ni alloy NRs exhibited superior performance for N2H4 dehydrogenation in aqueous solution. The activation energy of the fcc-In4Ni alloy NRs was 38.9 ± 1.0 kJ mol(-1). The NRs were also found to be stable for catalytic N2H4 dehydrogenation in aqueous solution, providing an average TOF value of 82.0 (mol of H2 (mol of active In4Ni min)(-1)) over 30 h reaction. These fcc-In4Ni alloy NRs have demonstrated exceptional performance, which indicates that the construction of hydrogen-producing systems from N2H4, capable of matching the performance of NaBH4 and NH3BH3 hydrogen-producing systems for fuel-cell applications, is a promising possibility. PMID:27599086

  2. Molybdenum-Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol.

    PubMed

    Sun, Xiaofu; Zhu, Qinggong; Kang, Xinchen; Liu, Huizhen; Qian, Qingli; Zhang, Zhaofu; Han, Buxing

    2016-06-01

    Methanol is a very useful platform molecule and liquid fuel. Electrocatalytic reduction of CO2 to methanol is a promising route, which currently suffers from low efficiency and poor selectivity. Herein we report the first work to use a Mo-Bi bimetallic chalcogenide (BMC) as an electrocatalyst for CO2 reduction. By using the Mo-Bi BMC on carbon paper as the electrode and 1-butyl-3-methylimidazolium tetrafluoroborate in MeCN as the electrolyte, the Faradaic efficiency of methanol could reach 71.2 % with a current density of 12.1 mA cm(-2) , which is much higher than the best result reported to date. The superior performance of the electrode resulted from the excellent synergistic effect of Mo and Bi for producing methanol. The reaction mechanism was proposed and the reason for the synergistic effect of Mo and Bi was discussed on the basis of some control experiments. This work opens a way to produce methanol efficiently by electrochemical reduction of CO2 . PMID:27098284

  3. Development and optimization of a naphthoic acid-based ionic liquid as a "non-organic solvent microextraction" for the determination of tetracycline antibiotics in milk and chicken eggs.

    PubMed

    Gao, Jiajia; Wang, Hui; Qu, Jingang; Wang, Huili; Wang, Xuedong

    2017-01-15

    In traditional ionic liquids (ILs)-based microextraction, ILs are often used as extraction and dispersive solvents; however, their functional effects are not fully utilized. Herein, we developed a novel ionic liquid 1-butyl-3-methylimidazolium naphthoic acid salt ([C4MIM][NPA]) with strong acidity. It was used as a mixed dispersive solvent with conventional [C2MIM][BF4] in "functionalized ionic liquid-based non-organic solvent microextraction (FIL-NOSM)" for determination of tetracycline antibiotics (TCs) in milk and eggs. Utilization of [C4MIM][NPA] in FIL-NOSM method increased extraction recoveries (ERs) of TCs by more than 20% and eliminated the pH adjustment step because of its strong acidity. Under optimized conditions based on central composite design, the ERs of four TCs were 94.1-102.1%, and the limitsofdetection were 0.08-1.12μgkg(-1) in milk and egg samples. This proposed method provides high extraction efficiency, less pretreatment time and requires non-organic solvents for determination of trace TC concentrations in complex animal-based food matrices. PMID:27542460

  4. Pretreatment of corn stover by combining ionic liquid dissolution with alkali extraction.

    PubMed

    Geng, Xinglian; Henderson, Wesley A

    2012-01-01

    Pretreatment plays an important role in the efficient enzymatic hydrolysis of biomass into fermentable sugars for biofuels. A highly effective pretreatment method is reported for corn stover which combines mild alkali-extraction followed by ionic liquid (IL) dissolution of the polysaccharides and regeneration (recovery of the polysaccharides as solids). Air-dried, knife-milled corn stover was soaked in 1% NaOH at a moderate condition (90°C, 1 h) and then thoroughly washed with hot deionized (DI) water. The alkali extraction solublized 75% of the lignin and 37% of the hemicellulose. The corn stover fibers became softer and smoother after the alkali extraction. Unextracted and extracted corn stover samples were separately dissolved in an IL, 1-butyl-3-methylimidazolium chloride (C(4) mimCl), at 130°C for 2 h and then regenerated with DI water. The IL dissolution process did not significantly change the chemical composition of the materials, but did alter their structural features. Untreated and treated corn stover samples were hydrolyzed with commercial enzyme preparations including cellulases and hemicellulases at 50°C. The glucose yield from the corn stover sample that was both alkali-extracted and IL-dissolved was 96% in 5 h of hydrolysis. This is a highly effective methodology for minimizing the enzymatic loading for biomass hydrolysis and/or maximizing the conversion of biomass polysaccharides into sugars.

  5. Significantly improving enzymatic saccharification of high crystallinity index's corn stover by combining ionic liquid [Bmim]Cl-HCl-water media with dilute NaOH pretreatment.

    PubMed

    He, Yu-Cai; Liu, Feng; Gong, Lei; Zhu, Zheng-Zhong; Ding, Yun; Wang, Cheng; Xue, Yu-Feng; Rui, Huan; Tao, Zhi-Cheng; Zhang, Dan-Ping; Ma, Cui-Luan

    2015-01-01

    In this study, a pretreatment by combining acidified aqueous ionic liquid 1-butyl-3-methylimidazolium chloride (IL [Bmim]Cl) solution with dilute NaOH extraction was employed to pretreat high crystallinity index (CrI) of corn stover before its enzymatic saccharification. After NaOH extraction, [Bmim]Cl-HCl-water (78.8:1.2:20, w/w/w) media was used for further pretreatment at 130 °C for 30 min. After being enzymatically hydrolyzed for 48 h, corn stover pretreated could be biotransformed into reducing sugars in the yield of 95.1%. Furthermore, SEM, XRD and FTIR analyses of untreated and pretreated corn stovers were examined. It was found that the intact structure was disrupted by combination pretreatment and resulted in a porous and amorphous regenerated cellulosic material that greatly improved enzymatic hydrolysis. Finally, the recovered hydrolyzates obtained from the enzymatic hydrolysis of pretreated corn stovers could be fermented into ethanol efficiently. In conclusion, the combination pretreatment shows high potential application in future.

  6. Facile fabrication of a novel anisotropic gold nanoparticle-chitosan-ionic liquid/graphene modified electrode for the determination of theophylline and caffeine.

    PubMed

    Yang, Guangming; Zhao, Faqiong; Zeng, Baizhao

    2014-09-01

    In the present study, a suspension solution containing anisotropic gold nanoparticle (GNP), chitosan (CHIT) and ionic liquid (IL, i.e. 1-butyl-3-methylimidazolium tetrafluoroborate, [BMIM][BF4]), is prepared by reducing HAuCl4 with sodium citrate in CHIT-IL aqueous solution. The hybrid solution is coated on a graphene (r-GO) modified glassy carbon electrode to construct an electrochemical sensor for the determination of theophylline (TP) and caffeine (CAF). The obtained hybrid film shows rough surface, and anisotropic GNPs are well dispersed on it. The factors concerning this assay strategy are carefully investigated, including the components of the hybrid film, the concentrations of r-GO, HAuCl4 and IL, and the pH of buffer solution. Under the optimized conditions, the linear response ranges are 2.50×10(-8)-2.10×10(-6) mol L(-1) and 2.50×10(-8)-2.49×10(-6) mol L(-1) for TP and CAF, respectively; the detection limits are 1.32×10(-9) mol L(-1) and 4.42×10(-9) mol L(-1), respectively. The electrochemical sensor shows good reproducibility, stability and selectivity, and it has been successfully applied to the determination of TP and CAF in real samples.

  7. Effects of Oxygen-Containing Functional Groups on Supercapacitor Performance

    SciTech Connect

    Kerisit, Sebastien N.; Schwenzer, Birgit; Vijayakumar, M.

    2014-07-03

    Molecular dynamics (MD) simulations of the interface between graphene and the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIM OTf) were carried out to gain molecular-level insights into the performance of graphene-based supercapacitors and, in particular, determine the effects of the presence of oxygen-containing defects at the graphene surface on their integral capacitance. The MD simulations predict that increasing the surface coverage of hydroxyl groups negatively affects the integral capacitance, whereas the effect of the presence of epoxy groups is much less significant. The calculated variations in capacitance are found to be directly correlated to the interfacial structure. Indeed, hydrogen bonding between hydroxyl groups and SO3 anion moieties prevents BMIM+ and OTf- molecules from interacting favorably in the dense interfacial layer and restrains the orientation and mobility of OTf- ions, thereby reducing the permittivity of the ionic liquid at the interface. The results of the molecular simulations can facilitate the rational design of electrode materials for supercapacitors.

  8. Fractionation of sugarcane bagasse using a combined process of dilute acid and ionic liquid treatments.

    PubMed

    Diedericks, Danie; van Rensburg, Eugéne; Görgens, Johann F

    2012-08-01

    Biorefineries processing lignocellulose will produce chemicals and fuels from chemical constituents, cellulose, hemicelluloses, and lignin to replace fossil-derived products. Fractionation of sugarcane bagasse into three pure streams of chemical constituents was addressed through dissolution of constituents with the ionic liquids, 1-ethyl-3-methylimidazolium acetate ([EMiM]CH(3)COO) or 1-butyl-3-methylimidazolium methyl sulfate ([BMiM]MeSO(4)). Constituents were isolated from the reaction mixture with the anti-solvents acetone (Ā), acetone-water (AW), and sodium hydroxide (NaOH). Delignification was enhanced by NaOH, although resulting in impure product streams. Xylose pre-extraction (75 % w/w) by dilute acid pretreatment, prior to ionic liquid treatment, improved lignin purity after anti-solvent separation. Fractionation efficiency of the combined process was maximized (84 %) by ionic liquid treatment at 125 °C for 120 min, resulting in 80.2 % (w/w) lignin removal and 76.5 % (w/w) lignin recovery. Ionic liquids achieved similar degrees of delignification, although fully digestible cellulose-rich solids were produced only by [EMiM]CH(3)COO treatment.

  9. Ionic Liquid-Assisted Hydrothermal Method Synthesis of Flower-Like MoS2 and Their Electrochemical Performances.

    PubMed

    Li, Maohua; Yang, Bo; Hao, Junying; Lu, Yi; Long, Zerong; Liu, Yumei

    2016-06-01

    Molybdenum disulfide (MoS2) was prepared successfully via hydrothermal reaction at 200 degrees C in water/ethanol (1:1) solvent system using the ammonium molybdate and sodium thiosulfate as the molybdenum sources and sulfur sources, 1-butyl-3-methylimidazolium chloride salt [BMIM][Cl] as the additive agent. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the morphology and structure of flower-like products. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy spectrum analysis results show that the as-prepared product is a pure phase of MoS2. The prepared products are used as electrode materials for Li-ion batteries and showed excellent cycle stability and high Coulombic efficiency at a current density of 200 mA x g(-1) in the voltage range of 0.01 - 3.00 V (vs. Li/Li+). In addition, this paper also examined the influence of the reaction time and the amount of template agent on morphology, and discussed the reaction mechanism of the formation of flower-like morphology.

  10. Electron microscopy of Staphylococcus epidermidis fibril and biofilm formation using image-enhancing ionic liquid.

    PubMed

    Takahashi, Chisato; Kalita, Golap; Ogawa, Noriko; Moriguchi, Keiichi; Tanemura, Masaki; Kawashima, Yoshiaki; Yamamoto, Hiromitsu

    2015-02-01

    We established an optimized biofilm observation method using a hydrophilic ionic liquid (IL), 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]). In the present study, a biofilm was formed by Staphylococcus epidermidis. Using field emission (FE) scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the colonization of assemblages formed by microbial cells was observed as a function of the cultivation time. FE-TEM analysis revealed that the fibril comprises three types of protein. In addition, the ultrastructure of each protein monomer was visualized. It was expected that the curly-structured protein plays an important role in extension during fibril formation. Compared to the conventional sample preparation method for electron microscopy, a fine structure was easily obtained by the present method using IL. This observation technique can provide valuable information to characterize the ultrastructure of the fibril and biofilm that has not been revealed till date. Furthermore, these findings of the molecular architecture of the fibril and the colonization behavior of microbial cells during biofilm formation are useful for the development of antibacterial drugs and microbial utilization. PMID:25542577

  11. Ionic liquid and aqueous two-phase extraction based on salting-out coupled with high-performance liquid chromatography for the determination of seven rare ginsenosides in Xue-Sai-Tong injection.

    PubMed

    Li, Lan-Jie; Jin, Yong-Ri; Wang, Xiao-Zhong; Liu, Ying; Wu, Qian; Shi, Xiao-Lei; Li, Xu-Wen

    2015-09-01

    A method of ionic liquid salt aqueous two-phase extraction coupled with high-performance liquid chromatography has been developed for the analysis of seven rare ginsenosides including Rg6 , F4 , 20(S)-Rg3 , 20(R)-Rg3 , Rk3 , Rk1 , and Rg5 in Xue-Sai-Tong injection. The injection was mixed with ionic liquid 1-butyl-3-methylimidazolium bromide aqueous solution, and a mixture was obtained. With the addition of sodium dodecyl sulfate and dipotassium phosphate into the mixture, the aqueous two-phase mixture was formed after ultrasonic treatment and centrifuged. Rare ginsenosides were extracted into the upper phase. To obtain a high extraction factors, various influences were considered systematically, such as the volume of ionic liquid, the category and amount of salts, the amount of sodium dodecyl sulfate, the pH value of system, and the time of ultrasonic treatment. Under the optimal condition, rare ginsenosides in Xue-Sai-Tong injection were enriched and detected, the recoveries of seven rare ginsenosides ranged from 90.05 to 112.55%, while relative standard deviations were lower than 2.50%. The developed method was reliable, rapid and sensitive for the determination of seven rare ginsenosides in the injections.

  12. Charge engineering of cellulases improves ionic liquid tolerance and reduces lignin inhibition.

    PubMed

    Nordwald, Erik M; Brunecky, Roman; Himmel, Michael E; Beckham, Gregg T; Kaar, Joel L

    2014-08-01

    We report a novel approach to concurrently improve the tolerance to ionic liquids (ILs) as well as reduce lignin inhibition of Trichoderma reesei cellulase via engineering enzyme charge. Succinylation of the cellulase enzymes led to a nearly twofold enhancement in cellulose conversion in 15% (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]). The improvement in activity upon succinylation correlated with the apparent preferential exclusion of the [Cl] anion in fluorescence quenching assays. Additionally, modeling analysis of progress curves of Avicel hydrolysis in buffer indicated that succinylation had a negligible impact on the apparent KM of cellulase. As evidence of reducing lignin inhibition of T. reesei cellulase, succinylation resulted in a greater than twofold increase in Avicel conversion after 170 h in buffer with 1 wt% lignin. The impact of succinylation on lignin inhibition of cellulase further led to the reduction in apparent KM of the enzyme cocktail for Avicel by 2.7-fold. These results provide evidence that naturally evolved cellulases with highly negative surface charge densities may similarly repel lignin, resulting in improved cellulase activity. Ultimately, these results underscore the potential of rational charge engineering as a means of enhancing cellulase function and thus conversion of whole biomass in ILs.

  13. RUTHENIUM-CATALYZED TANDEM OLEFIN MIGRATION-ALDOL AND MANNICH-TYPE REACTIONS IN IONIC LIQUID.

    EPA Science Inventory

    In the presence of a catalytic amount of RuCl2(PPh3)3, a cross-coupling of 3-buten-2-ol with aldehydes and imines was developed via a tandem olefin migration--aldol--Mannich reaction in bmim[PF6]. With In(OAc)3 as a co-catalyst, a-vinylbenzyl alcohol and aldehydes underwent sim...

  14. Ultrasonic-electrodeposition of PtPd alloy nanoparticles on ionic liquid-functionalized graphene paper: towards a flexible and versatile nanohybrid electrode

    NASA Astrophysics Data System (ADS)

    Sun, Yimin; Zheng, Huaming; Wang, Chenxu; Yang, Mengmeng; Zhou, Aijun; Duan, Hongwei

    2016-01-01

    Here we fabricate a new type of flexible and versatile nanohybrid paper electrode by ultrasonic-electrodeposition of PtPd alloy nanoparticles on freestanding ionic liquid (IL)-functionalized graphene paper, and explore its multifunctional applications in electrochemical catalysis and sensing systems. The graphene-based paper materials demonstrate intrinsic flexibility, exceptional mechanical strength and high electrical conductivity, and therefore can serve as an ideal freestanding flexible electrode for electrochemical devices. Furthermore, the functionalization of graphene with IL (i.e., 1-butyl-3-methylimidazolium tetrafluoroborate) not only increases the electroactive surface area of a graphene-based nanohybrid paper electrode, but also improves the adhesion and dispersion of metal nanoparticles on the paper surface. These unique attributes, combined with the merits of an ultrasonic-electrodeposition method, lead to the formation of PtPd alloy nanoparticles on IL-graphene paper with high loading, uniform distribution, controlled morphology and favourable size. Consequently, the resultant nanohybrid paper electrode exhibits remarkable catalytic activity as well as excellent cycle stability and improved anti-poisoning ability towards electrooxidation of fuel molecules such as methanol and ethanol. Furthermore, for nonenzymatic electrochemical sensing of some specific biomarkers such as glucose and reactive oxygen species, the nanohybrid paper electrode shows high selectivity, sensitivity and biocompatibility in these bio-catalytic processes, and can be used for real-time tracking hydrogen peroxide secretion by living human cells. All these features demonstrate its promising application as a versatile nanohybrid electrode material in flexible and lightweight electrochemical energy conversion and biosensing systems such as bendable on-chip power sources, wearable/implantable detectors and in vivo micro-biosensors.Here we fabricate a new type of flexible and

  15. Ultrasonic-electrodeposition of PtPd alloy nanoparticles on ionic liquid-functionalized graphene paper: towards a flexible and versatile nanohybrid electrode

    NASA Astrophysics Data System (ADS)

    Sun, Yimin; Zheng, Huaming; Wang, Chenxu; Yang, Mengmeng; Zhou, Aijun; Duan, Hongwei

    2016-01-01

    Here we fabricate a new type of flexible and versatile nanohybrid paper electrode by ultrasonic-electrodeposition of PtPd alloy nanoparticles on freestanding ionic liquid (IL)-functionalized graphene paper, and explore its multifunctional applications in electrochemical catalysis and sensing systems. The graphene-based paper materials demonstrate intrinsic flexibility, exceptional mechanical strength and high electrical conductivity, and therefore can serve as an ideal freestanding flexible electrode for electrochemical devices. Furthermore, the functionalization of graphene with IL (i.e., 1-butyl-3-methylimidazolium tetrafluoroborate) not only increases the electroactive surface area of a graphene-based nanohybrid paper electrode, but also improves the adhesion and dispersion of metal nanoparticles on the paper surface. These unique attributes, combined with the merits of an ultrasonic-electrodeposition method, lead to the formation of PtPd alloy nanoparticles on IL-graphene paper with high loading, uniform distribution, controlled morphology and favourable size. Consequently, the resultant nanohybrid paper electrode exhibits remarkable catalytic activity as well as excellent cycle stability and improved anti-poisoning ability towards electrooxidation of fuel molecules such as methanol and ethanol. Furthermore, for nonenzymatic electrochemical sensing of some specific biomarkers such as glucose and reactive oxygen species, the nanohybrid paper electrode shows high selectivity, sensitivity and biocompatibility in these bio-catalytic processes, and can be used for real-time tracking hydrogen peroxide secretion by living human cells. All these features demonstrate its promising application as a versatile nanohybrid electrode material in flexible and lightweight electrochemical energy conversion and biosensing systems such as bendable on-chip power sources, wearable/implantable detectors and in vivo micro-biosensors.Here we fabricate a new type of flexible and

  16. Video-microscopic observation of ionic liquid/alcohol interface and the corresponding molecular simulation study

    NASA Astrophysics Data System (ADS)

    Zhu, Peixi

    This research is aimed at studying the ionic liquid/n-pentanol interface via video-microscopy and molecular dynamic simulations. Understanding the interfacial phenomena and interfacial transport between ionic liquids and other liquids is of interest to the development and application of ionic liquids in a number of areas. One such area is the biphasic hydroformylation of alkenes to obtain alcohol and aldehyde, in which case ionic liquid is the reaction medium where a catalyst resides. The dissolution of an ionic liquid into an alcohol was studied by microscopically observing and measuring the shrinking of a micropipette-produced droplet in real time. Although microscopic investigation of droplet dissolution has been studied before, no attempt had been made to measure the diffusion coefficient D of the droplet species in the surrounding medium. A key finding of this work is that the Epstein-Plesset mathematical model, which describes the dissolution of a droplet/bubble in another fluid medium, can be used to measure D. Other experimental studies of the ionic liquid/alcohol system include electrical conductivity and UV-visible spectroscopy measurements of solutions of 1-hexyl-3-methylimidazolium tetrafluoroborate in n-pentanol. Those experiments were done in order to understand the molecular state of the particular ionic liquid in n-pentanol, as well as obtaining the dissociation constant K of such weak electrolyte solution. The experimental results provide an entry to the assessment of ionic liquid interaction with n-pentanol at molecular scale. Subsequently, molecular dynamics simulation was implemented for the investigation of such interaction. The computation started with simulation of the bulk phase of 1-butyl-3-methylimidazolium tetrafluoroborate, an affine ionic liquid on which molecular simulations had already been reported. A generalized probability based on Fuoss approximation for the closest ion to a distinguished countercharge ion was developed. In

  17. On-line in-syringe magnetic stirring assisted dispersive liquid-liquid microextraction HPLC--UV method for UV filters determination using 1-hexyl-3-methylimidazolium hexafluorophosphate as extractant.

    PubMed

    Suárez, Ruth; Clavijo, Sabrina; Avivar, Jessica; Cerdà, Víctor

    2016-02-01

    An environmental friendly and fully automated method using in-syringe magnetic stirring assisted dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography has been developed for the determination of UV filters in environmental water samples. The main "green" features on this method are the use of an ionic liquid as extracting solvent, avoiding the use of chlorinated solvents, and the on-line microextraction, preconcentration, separation and detection minimizing the use of reagents and so the waste generation. After sample treatment, 20 µL of the organic droplet was injected onto the HPLC-UV system. Various parameters affecting the extraction efficiency were studied using multivariate optimization approach, including the quantity of extraction and dispersive solvents, extraction and sedimentation time, ionic strength and pH. Under optimized conditions, limits of detection were within the range of 0.08-12 µg/L, for 3.5 mL sample volume. Linearity ranges were up to 500 µg/L for the UV-filters studied. Furthermore, enrichment factors ranging from 11 to 23 folds were obtained. Intra- and inter-assay precisions were 6% and 8%, respectively. Finally, the proposed method was successfully applied to determine UV filters in surface seawater and swimming pool samples attaining satisfactory recoveries over the range of 89-114% and 86-107%, respectively. PMID:26653488

  18. Fabrication of hollow mesoporous NiO hexagonal microspheres via hydrothermal process in ionic liquid

    SciTech Connect

    Zhao, Jinbo; Wu, Lili; Zou, Ke

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Ni(OH){sub 2} precursors were synthesized in ionic liquid and water solution by hydrothermal method. Black-Right-Pointing-Pointer NiO hollow microspheres were prepared by thermal treatment of Ni(OH){sub 2} precursors. Black-Right-Pointing-Pointer NiO hollow microspheres were self-assembled by mesoporous cubic and hexagonal nanocrystals with high specific surface area. Black-Right-Pointing-Pointer The mesoporous structure is stable at 773 K. Black-Right-Pointing-Pointer The ionic liquid absorbed on the O-terminate surface of the crystals to form hydrogen bond and played key roles in determining the final shape of the NiO novel microstructure. -- Abstract: The novel NiO hexagonal hollow microspheres have been successfully prepared by annealing Ni(OH){sub 2}, which was synthesized via an ionic liquid-assisted hydrothermal method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption and Fourier transform infrared spectrometer (FTIR). The results show that the hollow NiO microstructures are self-organized by mesoporous cubic and hexagonal nanocrystals. The mesoporous structure possessed good thermal stability and high specific surface area (ca. 83 m{sup 2}/g). The ionic liquid 1-butyl-3methylimidazolium tetrafluoroborate ([Bmim][BF{sub 4}]) was found to play a key role in controlling the morphology of NiO microstructures during the hydrothermal process. The special hollow mesoporous architectures will have potential applications in many fields, such as catalysts, absorbents, sensors, drug-delivery carriers, acoustic insulators and supercapacitors.

  19. Solvation of uranyl(II) and europium(III) cations and their chloro complexes in a room-temperature ionic liquid. A theoretical study of the effect of solvent "humidity".

    PubMed

    Chaumont, Alain; Wipff, Georges

    2004-09-20

    We report a molecular dynamics study of the solvation of the UO2(2+) and Eu3+ cations and their chloro complexes in the [BMI][PF6][H2O] "humid" room-temperature ionic liquid (IL) composed of 1-butyl-3-methylimidazolium+ and PF6- ions and H2O in a 1:1:1 ratio. When compared to the results obtained in dry [BMI][PF6], the present results reveal the importance of water. The "naked" cations form UO2(H2O)5(2+) and Eu(H2O)9(3+) complexes, embedded in a shell of 7 and 8 PF6- anions, respectively. All studied UO2Cln(2-n) and EuCln(3-n) chloro complexes remain stable during the dynamics and coordinate additional H2O molecules in their first shell. UO2Cl4(2-) and EuCl6(3-) are surrounded by an "unsaturated" water shell, followed by a shell of BMI+ cations. According to an energy component analysis, the UO2Cl4(2-) and EuCl6(3-) species, intrinsically unstable toward dissociation, are more stable than their less halogenated analogues in the IL solution, due to the solvation forces. The different chloro species also interact better with the humid than with the dry IL, which hints at the importance of solvent humidity to improve their solubility. Humidity markedly modifies the local ion environment, with major consequences as far as their spectroscopic properties are concerned. We finally compare the aqueous interface of [BMI][PF6] and [OMI][PF6] ionic liquids, demonstrating the importance of imidazolium substituents (N-butyl versus N-octyl) to the nature of the interface and miscibility with water.

  20. The [BMI][Tf2N] ionic liquid/water binary system: a molecular dynamics study of phase separation and of the liquid-liquid interface.

    PubMed

    Sieffert, N; Wipff, G

    2006-07-01

    We report molecular dynamics (MD) simulations of the aqueous interface of the hydrophobic [BMI][Tf2N] ionic liquid (IL), composed of 1-butyl-3-methylimidazolium cations (BMI+) and bis(trifluoromethylsulfonyl)imide anions (Tf2N-). The questions of water/IL phase separation and properties of the neat interface are addressed, comparing different liquid models (TIP3P vs TIP5P water and +1.0/-1.0 vs +0.9/-0.9 charged IL ions), the Ewald vs the reaction field treatments of the long range electrostatics, and different starting conditions. With the different models, the "randomly" mixed liquids separate much more slowly (in 20 to 40 ns) than classical water-oil mixtures do (typically, in less than 1 ns), finally leading to distinct nanoscopic phases separated by an interface, as in simulations which started with a preformed interface, but the IL phase is more humid. The final state of water in the IL thus depends on the protocol and relates to IL heterogeneities and viscosity. Water mainly fluctuates in hydrophilic basins (rich in O(Tf2N) and aromatic CH(BMI) groups), separated by more hydrophobic domains (rich in CF3(Tf2N) and alkyl(BMI) groups), in the form of monomers and dimers in the weakly humid IL phase, and as higher aggregates when the IL phase is more humid. There is more water in the IL than IL in water, to different extents, depending on the model. The interface is sharper and narrower (approximately 10 A) than with the less hydrophobic [BMI][PF6] IL and is overall neutral, with isotropically oriented molecules, as in the bulk phases. The results allow us to better understand the analogies and differences of aqueous interfaces with hydrophobic (but hygroscopic) ILs, compared to classical organic liquids.

  1. Development of a novel naphthoic acid ionic liquid and its application in "no-organic solvent microextraction" for determination of triclosan and methyltriclosan in human fluids and the method optimization by central composite design.

    PubMed

    Wang, Hui; Gao, Jiajia; Yu, Nana; Qu, Jingang; Fang, Fang; Wang, Huili; Wang, Mei; Wang, Xuedong

    2016-07-01

    In traditional ionic liquids (ILs)-based microextraction, the hydrophobic and hydrophilic ILs are often used as extractant and disperser, respectively. However, the functional effects of ILs are not utilized in microextraction procedures. Herein, we introduced 1-naphthoic acid into imidazolium ring to synthesize a novel ionic liquid 1-butyl-3-methylimidazolium naphthoic acid salt ([C4MIM][NPA]), and its structure was characterized by IR, (1)H NMR and MS. On the basis of its acidic property and lower solubility than common [CnMIM][BF4], it was used as a mixing dispersive solvent with [C4MIM][BF4] in "functionalized ionic liquid-based no organic solvent microextraction (FIL-NOSM)". Utilization of [C4MIM][NPA] in FIL-NOSM procedures has two obvious advantages: (1) it promoted the non-polar environment, increased volume of the sedimented phase, and thus could enhance the extraction recoveries of triclosan (TCS) and methyltriclosan (MTCS) by more than 10%; and (2) because of the acidic property, it can act as a pH modifier, avoiding extra pH adjustment step. By combining single factor optimization and central composite design, the main factors in the FIL-NOSM method were optimized. Under the optimal conditions, the relative recoveries of TCS and MTCS reached up to 98.60-106.09%, and the LODs of them were as low as 0.12-0.15µgL(-1) in plasma and urine samples. In total, this [C4MIM][NPA]-based FIL-NOSM method provided high extraction efficiency, and required less pretreatment time and unutilized any organic solvent. To the best of our knowledge, this is the first application of [C4mim][NPA]-based microextraction method for the simultaneous quantification of trace TCS and MTCS in human fluids. PMID:27154690

  2. Assessment of green cleaning effectiveness on polychrome surfaces by MALDI-TOF mass spectrometry and microscopic imaging.

    PubMed

    Hrdlickova Kuckova, Stepanka; Crhova Krizkova, Michaela; Pereira, Catarina Luísa Cortes; Hynek, Radovan; Lavrova, Olga; Busani, Tito; Branco, Luis Cobra; Sandu, Irina Crina Anca

    2014-08-01

    This article proposes an innovative methodology which employs nondestructive techniques to assess the effectiveness of new formulations based on ionic liquids, as alternative solvents for enzymes (proteases), for the removal of proteinaceous materials from painted surfaces during restoration treatments. Ionic liquids (ILs), also known as "designer" solvents, because of their peculiar properties which can be adjusted by selecting different cation-anion combinations, are potentially green solvents due totheir low vapour pressure. In this study, two ionic liquids were selected: IL1 (1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4 ])) and IL2 (1-ethyl-3-methylimidazolium ethylsulphate ([EMIM][EtSO4 ])). New formulations were prepared with these ILs and two different proteases (E): one acid (E1-pepsin) and one alkaline (E2-obtained from Aspergillus sojae). These formulations were tested on tempera and oil mock-up samples, prepared in accordance with historically documented recipes, and covered with two different types of protein-based varnishes (egg white and isinglass-fish glue). A noninvasive multiscale imaging methodology was applied before and after the treatment to evaluate the cleaning's effectiveness. Different microscopic techniques-optical microscopy (OM) with visible and fluorescent light, scanning electron microscopy (SEM) and atomic force microscopy (AFM)-together with Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) were applied on areas cleaned with the new formulations (IL + E) and reference areas cleaned only with the commercial enzyme formulations (gels). MALDI-TOF proved particularly very useful for comparing the diversity and abundance of peptides released by using different enzymatic systems. Microsc. Res. Tech. 77:574-585, 2014. © 2014 Wiley Periodicals, Inc. PMID:24825619

  3. Extraction and determination of chloramphenicol in feed water, milk, and honey samples using an ionic liquid/sodium citrate aqueous two-phase system coupled with high-performance liquid chromatography.

    PubMed

    Han, Juan; Wang, Yun; Yu, Cui-lan; Yan, Yong-sheng; Xie, Xue-qiao

    2011-01-01

    A green, simple, non-toxic, and sensitive sample pretreatment procedure coupled with high-performance liquid chromatography (HPLC) was developed for the analysis of chloramphenicol (CAP) that exploits an aqueous two-phase system based on imidazolium ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, [Bmim]BF(4)) and organic salt (Na(3)C(6)H(5)O(7)) using a liquid-liquid extraction technique. The influence factors on partition behaviors of CAP were studied, including the type and amount of salts, the pH value, the volume of [Bmim]BF(4), and the extraction temperature. Extraction efficiency of the CAP was found to increase with increasing temperature and the volume of [Bmim]BF(4). Thermodynamic studies indicated that hydrophobic interactions were the main driving force, although electrostatic interactions and salting-out effects were also important for the transfer of the CAP. Under the optimal conditions, 90.1% of the CAP could be extracted into the ionic liquid-rich phase in a single-step extraction. This method was practical when applied to the analysis of CAP in feed water, milk, and honey samples with a linear range of 2~1,000 ng mL(-1). The method yielded a limit of detection of 0.3 ng mL(-1) and a limit of quantification of 1.0 ng mL(-1). The recovery of CAP was 90.4-102.7% from aqueous samples of real feed water, milk, and honey samples by the proposed method. This novel process is much simpler and more environmentally friendly and is suggested to have important applications for the separation of antibiotics. PMID:21063686

  4. Separation, concentration and determination of chloramphenicol in environment and food using an ionic liquid/salt aqueous two-phase flotation system coupled with high-performance liquid chromatography.

    PubMed

    Han, Juan; Wang, Yun; Yu, Cuilan; Li, Chunxiang; Yan, Yongsheng; Liu, Yan; Wang, Liang

    2011-01-31

    Ionic liquid-salt aqueous two-phase flotation (ILATPF) is a novel, green, non-toxic and sensitive samples pretreatment technique. ILATPF coupled with high-performance liquid chromatography (HPLC) was developed for the analysis of chloramphenicol, which combines ionic liquid aqueous two-phase system (ILATPS) based on imidazolium ionic liquid (1-butyl-3-methylimidazolium chloride, [C(4)mim]Cl) and inorganic salt (K(2)HPO(4)) with solvent sublation. In ILATPF systems, phase behaviors of the ILATPF were studied for different types of ionic liquids and salts. The sublation efficiency of chloramphenicol in [C(4)mim]Cl-K(2)HPO(4) ILATPF was influenced by the types of salts, concentration of K(2)HPO(4) in aqueous solution, solution pH, nitrogen flow rate, sublation time and the amount of [C(4)mim]Cl. Under the optimum conditions, the average sublation efficiency is up to 98.5%. The mechanism of ILATPF contains two principal processes. One is the mechanism of IL-salt ILATPS formation, the other is solvent sublation. This method was practical when applied to the analysis of chloramphenicol in lake water, feed water, milk, and honey samples with the linear range of 0.5-500 ng mL(-1). The method yielded limit of detection (LOD) of 0.1 ng mL(-1) and limit of quantification (LOQ) of 0.3 ng mL(-1). The recovery of CAP was 97.1-101.9% from aqueous samples of environmental and food samples by the proposed method. Compared with liquid-liquid extraction, solvent sublation and ionic liquid aqueous two-phase extraction, ILATPF can not only separate and concentrate chloramphenicol with high sublation efficiency, but also efficiently reduce the wastage of IL. This novel technique is much simpler and more environmentally friendly and is suggested to have important applications for the concentration and separation of other small biomolecules. PMID:21168562

  5. Rotational Dynamics in Ionic Liquids from NMR Relaxation Experiments and Simulations: Benzene and 1-Ethyl-3-Methylimidazolium.

    PubMed

    Rumble, Christopher A; Kaintz, Anne; Yadav, Sharad K; Conway, Brian; Araque, Juan C; Baker, Gary A; Margulis, Claudio; Maroncelli, Mark

    2016-09-01

    Temperature-dependent (2)H longitudinal spin relaxation times (T1) of dilute benzene-d6 in 1-butyl-3-methylimidazolium tetrafluoroborate ([Im41][BF4]) and two deuterated variants of the 1-ethyl-3-methylimidazolium cation (Im21(+)-d1 and Im21(+)-d6) in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Im21][Tf2N]), measured at multiple Larmor frequencies, were used to probe rotational dynamics in ionic liquids. Rotational correlation times significantly faster than predicted by slip hydrodynamic calculations were observed for both solutes. Molecular dynamics simulations of these systems enabled extraction of more information about the rotational dynamics from the NMR data than rotation times alone. The multifrequency (2)H T1(T) data could be fit to within uncertainties over a broad region about the T1 minimum using models of the relevant rotational time correlation functions and their viscosity/temperature dependence derived from simulation. Such simulation-guided fitting provided confidence in the semiquantitative accuracy of the simulation models and enabled interpretation of NMR measurements to higher viscosities than previously possible. Simulations of the benzene system were therefore used to explore the nature of solute rotation in ionic liquids and how it might differ from rotation in conventional solvents. Whereas "spinning" about the C6 axis of benzene senses similarly weak solvent friction in both types of solvents, "tumbling" (rotations about in-plane axes) differs significantly in conventional solvents and ionic liquids. In the sluggish environment provided by ionic liquids, orientational caging and the presence of rare but influential large-amplitude (180°) jumps about in-plane axes lead to rotations being markedly nondiffusive, especially below room temperature. PMID:27509215

  6. Polarity and Nonpolarity of Ionic Liquids Viewed from the Rotational Dynamics of Carbon Monoxide.

    PubMed

    Yasaka, Y; Kimura, Y

    2015-12-17

    The rotational dynamics of carbon monoxide (CO) in a molten salt, ionic liquids (ILs), and alkanes were investigated by (17)O NMR T1 measurements using labeled C(17)O. The molten salt and the studied ILs have the bis(trifluoromethanesulfonyl)imide anion ([NTf2](-)) in common. In hexane near room temperature, the rotational relaxation times are close to the values predicted from the slip boundary condition in the Stokes-Einstein-Debye (SED) theory. However, in contradiction to the theoretical prediction, the rotational relaxation times decrease as the value of η/T increases, where η and T are the viscosity and absolute temperature, respectively. In other alkanes and ILs used in this study, the rotational relaxation times are much faster than those predicted by SED, and show a unique dependence on the number of alkyl carbons. For the same value of η/T, the CO rotational relaxation times in ILs composed of short-alkyl-chain-length imidazolium cations (1-ethyl-3-methylimidazolium and 1-butyl-3-methylimidazolium) are close to those for a molten salt (Cs[NTf2]). On the other hand, the rotational relaxation times in ILs composed of long-chain-length imidazolium (1-methyl-3-octylimidazolium) and phosphonium (tributylmethylphosphonium and tetraoctylphosphonium) cations are much shorter than the SED predictions. This deviation from theory increases as the alkyl chain length increases. We also found that the rotational relaxation times in dodecane and squalane are similar to those in ILs with a similar number of alkyl carbons. These results are discussed in terms of heterogeneous solvation and in comparison with the translational diffusion of CO in ILs.

  7. Free volume in ionic liquids: a connection of experimentally accessible observables from PALS and PVT experiments with the molecular structure from XRD data.

    PubMed

    Beichel, Witali; Yu, Yang; Dlubek, Günter; Krause-Rehberg, Reinhard; Pionteck, Jürgen; Pfefferkorn, Dirk; Bulut, Safak; Bejan, Dana; Friedrich, Christian; Krossing, Ingo

    2013-06-14

    In the current work, free volume concepts, primarily applied to glass formers in the literature, were transferred to ionic liquids (ILs). A series of 1-butyl-3-methylimidazolium ([C4MIM](+)) based ILs was investigated by Positron Annihilation Lifetime Spectroscopy (PALS). The phase transition and dynamic properties of the ILs [C4MIM][X] with [X](-) = [Cl](-), [BF4](-), [PF6](-), [OTf](-), [NTf2](-) and [B(hfip)4](-) were reported recently (Yu et al., Phys. Chem. Chem. Phys., 2012, 14, 6856-6868). In this subsequent work, attention was paid to the connection of the free volume from PALS (here the mean hole volume, ) with the molecular structure, represented by volumes derived from X-ray diffraction (XRD) data. These were the scaled molecular volume Vm,scaled and the van der Waals volume V(vdw). Linear correlations of at the "knee" temperature ((T(k))) with V(m,scaled) and V(vdw) gave good results for the [C4MIM](+) series. Further relationships between volumes from XRD data with the occupied volume Vocc determined from PALS/PVT (Pressure Volume Temperature) measurements and from Sanchez-Lacombe Equation of State (SL-EOS) fits were elaborated (V(occ)(SL-EOS) ≈ 1.63 V(vdw), R(2) = 0.981 and V(occ)(SL-EOS) ≈ 1.12 V(m,scaled), R(2) = 0.980). Finally, the usability of V(m,scaled) was justified in terms of the Cohen-Turnbull (CT) free volume theory. Empirical CT type plots of viscosity and electrical conductivity showed a systematic increase in the critical free volume with molecular size. Such correlations allow descriptions of IL properties with the easily accessible quantity V(m,scaled) within the context of the free volume.

  8. Physico-Chemical Properties and Phase Behavior of the Ionic Liquid-β-Cyclodextrin Complexes

    PubMed Central

    Rogalski, Marek; Modaressi, Ali; Magri, Pierre; Mutelet, Fabrice; Grydziuszko, Aleksandra; Wlazło, Michał; Domańska, Urszula

    2013-01-01

    The solubility of β-cyclodextrin (β-CD) in ionic liquids (ILs) and the activity coefficients at infinite dilution ( γ13∞) of more than 20 solutes (alkanes, aromatic hydrocarbons, alcohols) were measured in four chosen ionic liquids, their mixtures with β-CD, and in the β-CD at high temperatures from 338 to 398 K using the inverse gas chromatography. The intermolecular interactions, inclusion complexes and the possible increasing of the solubility of β-CD in water using the IL are presented. The solubility of β-CD in ten chosen hydrophobic ILs at the temperature T = 423 K was detected. The solid-liquid phase diagrams (SLE) of {IL (1) + β-CD (2)} binary systems at the high mole fraction of the IL were measured for three systems (1-ethyl-3-methylimidazolium chloride, [EMIM][Cl], 1-ethyl-3-methylimidazolium bromide, [EMIM][Br]; and for 1-butyl-3-methylimidazolium chloride, [BMIM][Cl]). The eutectic points were determined at the high IL concentration for all binary systems. The intermolecular interaction and the possibility of inclusion complexes of the IL and/or solvents with β-CD were discussed. The infrared spectroscopy, IR was used for the description of the intermolecular interactions in the (β-CD + IL) systems. It was shown via the activity coefficients at infinite dilution results that the inclusion complexes are dependent on the temperature. The addition of β-CD to the IL does not improve the selectivity of the separation of the aliphatics from aromatics. PMID:23945559

  9. Determination of triazine herbicides in fresh vegetables by dynamic microwave-assisted extraction coupled with homogeneous ionic liquid microextraction high performance liquid chromatography.

    PubMed

    Wu, Lijie; Hu, Mingzhu; Li, Zhanchao; Song, Ying; Yu, Cui; Zhang, Yupu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-02-01

    A novel extraction method, dynamic microwave-assisted extraction coupled with homogeneous ionic liquid microextraction, was developed for the determination of triazine herbicides, including desmetryn, terbumeton, propazine, terbuthylazine, dimethametryn, and dipropetryn in fresh vegetable samples by high performance liquid chromatography (HPLC). In the developed method, 120 μL of 1-butyl-3-methylimidazolium tetrafluoroborate ([C4MIM][BF4]) was added to 10 mL of aqueous solution containing 0.3 g of NaCl to obtained the extraction solvent. Six triazines could be extracted completely within 4 min by the present method. Then, [NH4][PF6] was added into the extract to form a water-insoluble ionic liquid [C4MIM][PF6] via a simple metathesis reaction, and the analytes were enriched into the ionic liquid phase. After centrifugation and dilution with acetonitrile, the resulting solution was analyzed directly by HPLC. The effects of some experimental parameters, including type and volume of ionic liquid, volume of extraction solvent, amount of ion-pairing agent [NH4][PF6], salt concentration, microwave power, and flow rate of extraction solvent on the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 2.50-250.00 μg kg(-1), with the correlation coefficients ranging from 0.9989 to 0.9999. When the present method was applied to the analysis of vegetable samples, satisfactory recoveries were obtained in the range of 76.8%-106.9%, and relative standard deviations were lower than 9.8%. PMID:25542578

  10. Supramolecular solvent-based vortex-mixed microextraction: determination of glucocorticoids in water samples.

    PubMed

    Qin, Hui; Qiu, Xiaoyan; Zhao, Jiao; Liu, Mousheng; Yang, Yaling

    2013-10-11

    Glucocorticoids contamination has become a big environmental issue in China and other developing countries, due to increasing needs in medical prescription and farming. However, no highly sensitive and precise methods have been reported to quantify glucocorticoids so far. In the past several years, supramolecular solvent-based vortex-mixed microextraction (SS-BVMME) has been shown to be effective. However, the mechanism of SS-BVMME is still unknown. In this report, a novel method has been proposed for rapid quantification of trace amount of glucocorticoids, beclomethasone dipropionate (BD), hydrocortisone butyrate (HB) and nandrolone phenylpropionate (NPP) in water samples from the Green Lake. This method is simple, safe and cost effective. It contains two steps: supramolecular solvent-based vortex-mixed microextraction (SS-BVMME) technique and high performance liquid chromatography (HPLC) analysis. First, ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) and n-butanol were mixed to form the supramolecular solvent. After mixing the supramolecular solvent with an aqueous sample to test, a homogenous mixture was formed immediately. BD, HB and NPP were then extracted based on their binding interactions, particularly hydrogen bond formed between their hydroxyl group and the supramolecular solvent. The overall process of sample preparation took only 20min and more than 5 samples could be simultaneously prepared. The minimum detectable concentrations of samples in this method were 0.09925, 0.5429 and 2.428ngmL(-1) for BD, HB and NPP, respectively. Product recoveries ranged from 88% to 103% with relative standard deviations from 0.6% to 4%. For the first time, we report that hydrogen bond plays a key role in SS-BVMME. We also improve the sensitivity significantly to quantify glucocorticoids, which may greatly benefit environmental safety management in China.

  11. Rational Design of Bi Nanoparticles for Efficient Electrochemical CO2 Reduction: The Elucidation of Size and Surface Condition Effects

    DOE PAGES

    Zhang, Zhiyong; Chi, Miaofang; Veith, Gabriel M.; Zhang, Pengfei; Lutterman, Daniel A.; Rosenthal, Joel; Overbury, Steven H.; Dai, Sheng; Zhu, Huiyuan

    2016-08-08

    Here we report an efficient electrochemical conversion of CO2 to CO on surface-activated bismuth nanoparticles (NPs) in acetonitrile (MeCN) under ambient conditions, with the assistance of 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim][OTf]). Through the comparison between electrodeposited Bi films (Bi-ED) and different types of Bi NPs, we, for the first time, demonstrate the effects of catalyst’s size and surface condition on organic phase electrochemical CO2 reduction. Our study reveals that the surface inhibiting layer (hydrophobic surfactants and Bi3+ species) formed during the synthesis and purification process hinders the CO2 reduction, leading to a 20% drop in Faradaic efficiency for CO evolution (FECO). Bimore » particle size showed a significant effect on FECO when the surface of Bi was air-oxidized, but this effect of size on FECO became negligible on surface-activated Bi NPs. After the surface activation (hydrazine treatment) that effectively removed the native inhibiting layer, activated 36-nm Bi NPs exhibited an almost-quantitative conversion of CO2 to CO (96.1% FECO), and a mass activity for CO evolution (MACO) of 15.6 mA mg–1, which is three-fold higher than the conventional Bi-ED, at ₋2.0 V (vs Ag/AgCl). Ultimately, this work elucidates the importance of the surface activation for an efficient electrochemical CO2 conversion on metal NPs and paves the way for understanding the CO2 electrochemical reduction mechanism in nonaqueous media.« less

  12. A structural investigation of ionic liquid mixtures.

    PubMed

    Matthews, Richard P; Villar-Garcia, Ignacio J; Weber, Cameron C; Griffith, Jeraime; Cameron, Fiona; Hallett, Jason P; Hunt, Patricia A; Welton, Tom

    2016-03-28

    The structures of mixtures of ionic liquids (ILs) featuring a common 1-butyl-3-methylimidazolium ([C4C1im](+)) cation but different anions have been investigated both experimentally and computationally. (1)H and (13)C NMR of the ILs and their mixtures has been performed both on the undiluted liquids and those diluted by CD2Cl2. These experiments have been complemented by quantum chemical density functional theory calculations and molecular dynamics simulations. These techniques have identified the formation of preferential interactions between H(2) of the imidazolium cation and the most strongly hydrogen bond (H-bond) accepting anion. In addition, a preference for the more weakly H-bond accepting anion to interact above the imidazolium ring through anion-π(+) interactions has been identified. The modelling of these data has identified that the magnitude of these preferences are small, of the order of only a few kJ mol(-1), for all IL mixtures. No clustering of the anions around a specific cation could be observed, indicating that these interactions arise from the reorientation of the cation within a randomly assigned network of anions. π(+)-π(+) stacking of the imidazolium cations was also studied and found to be promoted by ILs with a strong H-bond accepting anion. Stacking interactions are easily disrupted by the introduction of small proportions (<50 mol%) of a weakly coordinating anion due to their propensity to form anion-π(+) interactions. These results suggest that the formation of IL mixtures with different anions leads to subtle structural changes of much lower energy than the Coulombic ordering of ions, accounting for why most IL mixtures exhibit ideal, or nearly ideal, behaviour. PMID:26947103

  13. Base-Promoted Ammonia Borane Hydrogen-Release

    SciTech Connect

    Himmelberger, Daniel W.; Yoon, Chang W.; Bluhm, Martin E.; Carroll, Patrick J.; Sneddon, Larry G.

    2009-10-07

    The strong non-nucleophilic base bis(dimethylamino)naphthalene (Proton Sponge, PS) has been found to promote the rate and extent of H2-release from ammonia borane (AB) either in the solid state or in ionic-liquid and tetraglyme solutions. For example, AB reactions in 1-butyl-3-methylimidazolium chloride (bmimCl) containing 5.3 mol % PS released 2 equiv of H2 in 171 min at 85 °C and only 9 min at 110 °C, whereas comparable reactions without PS required 316 min at 85 °C and 20 min at 110 °C. Ionic-liquid solvents proved more favorable than tetraglyme since they reduced the formation of undesirable products such as borazine. Solid-state and solution 11B NMR studies of PS-promoted reactions in progress support a reaction pathway involving initial AB deprotonation to form the H3BNH2 - anion. This anion can then initiate AB dehydropolymerization to form branched-chain polyaminoborane polymers. Subsequent chain-branching and dehydrogenation reactions lead ultimately to a cross-linked polyborazylene-type product. AB dehydrogenation by lithium and potassium triethylborohydride was found to produce the stabilized Et3BNH2BH3 - anion, with the crystallographically determined structure of the [Et3BNH2BH3]-K+ · 18-crown-6 complex showing that, following AB nitrogen-deprotonation by the triethylborohydride, the Lewis-acidic triethylborane group coordinated at the nitrogen. Model studies of the reactions of [Et3BNH2BH3]-Li+ with AB show evidence of chain-growth, providing additional support for a PS-promoted AB anionic dehydropolymerization H2- release process.

  14. Hydrogen-bonding interactions between [BMIM][BF4] and dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Zheng, Yan-Zhen; He, Hong-Yan; Zhou, Yu; Yu, Zhi-Wu

    2014-07-01

    Mixtures of Ionic liquids and small polar organic solvent are potential green solvents for cellulose dissolution under mild conditions. In this work, the interactions between a representative imidazolium-based ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) and dimethyl sulfoxide (DMSO) were investigated in detail by attenuated total reflection infrared spectroscopy (ATR-IR) and density functional theory calculations (DFT). The main conclusions are: (1) C2-H is the main interaction site in forming cation-anion, cation-DMSO, and [BMIM][BF4]-DMSO complexes. (2) The two turning points of the wavenumber shift changes of C2-H may indicate that the dilution process can be divided into several stages: from larger ion clusters to smaller ion clusters, then to ion pairs, and finally to individual ions. The solvent molecules cannot break apart the strong Coulombic interaction between [BMIM]+ and [BF4]- but can break apart the ion clusters into ion pairs when the mole fraction of DMSO is less than 0.9. When the mole fraction of DMSO is greater than 0.9, ion pairs can be broke into ions. (3) The hydrogen-bonds of the aromatic C-Hs in [BMIM]+ are strengthened in the dilution process while those of the alkyl C-Hs of [BMIM]+ are weakened. (4) The aromatic C-Hs of the [BMIM]+ cation strength before the weakening of the alkyl C-Hs. These in-depth studies on the properties of the ionic liquid-DMSO mixed solvents may shed light on exploring their applications as mixed solvents in cellulose dissolution and other practices.

  15. Modulation of cellulase activity by charged lipid bilayers with different acyl chain properties for efficient hydrolysis of ionic liquid-pretreated cellulose.

    PubMed

    Mihono, Kai; Ohtsu, Takeshi; Ohtani, Mai; Yoshimoto, Makoto; Kamimura, Akio

    2016-10-01

    The stability of cellulase activity in the presence of ionic liquids (ILs) is critical for the enzymatic hydrolysis of insoluble cellulose pretreated with ILs. In this work, cellulase was incorporated in the liposomes composed of negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) and zwitterionic phosphatidylcholines (PCs) with different length and degree of unsaturation of the acyl chains. The liposomal cellulase-catalyzed reaction was performed at 45°C in the acetate buffer solution (pH 4.8) with 2.0g/L CC31 as cellulosic substrate. The crystallinity of CC31 was reduced by treating with 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) at 120°C for 30min. The liposomal cellulase continuously catalyzed hydrolysis of the pretreated CC31 for 48h producing glucose in the presence of 15wt% [Bmim]Cl. The charged lipid membranes were interactive with [Bmim](+), as elucidated by the [Bmim]Cl-induced alterations in fluorescence polarization of the membrane-embedded 1,6-diphenyl-1,3,5-hexatriene (DPH) molecules. The charged membranes offered the microenvironment where inhibitory effects of [Bmim]Cl on the cellulase activity was relieved. The maximum glucose productivity GP of 10.8 mmol-glucose/(hmol-lipid) was obtained at the reaction time of 48h with the cellulase incorporated in the liposomes ([lipid]=5.0mM) composed of 50mol% POPG and 1,2-dilauroyl-sn-glycero-3-phosohocholine (DLPC) with relatively short and saturated acyl chains. PMID:27318965

  16. Solubility of alkali metal halides in the ionic liquid [C4C1im][OTf].

    PubMed

    Kuzmina, O; Bordes, E; Schmauck, J; Hunt, P A; Hallett, J P; Welton, T

    2016-06-28

    The solubilities of the metal halides LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbCl, CsCl, CsI, were measured at temperatures ranging from 298.15 to 378.15 K in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4C1im][OTf]). Li(+), Na(+) and K(+) salts with anions matching the ionic liquid have also been investigated to determine how well these cations dissolve in [C4C1im][OTf]. This study compares the influence of metal cation and halide anion on the solubility of salts within this ionic liquid. The highest solubility found was for iodide salts, and the lowest solubility for the three fluoride salts. There is no outstanding difference in the solubility of salts with matching anions in comparison to halide salts. The experimental data were correlated employing several phase equilibria models, including ideal mixtures, van't Hoff, the λh (Buchowski) equation, the modified Apelblat equation, and the non-random two-liquid model (NRTL). It was found that the van't Hoff model gave the best correlation results. On the basis of the experimental data the thermodynamic dissolution parameters (ΔH, ΔS, and ΔG) were determined for the studied systems together with computed gas phase metathesis parameters. Dissolution depends on the energy difference between enthalpies of fusion and dissolution of the solute salt. This demonstrates that overcoming the lattice energy of the solid matrix is the key to the solubility of inorganic salts in ionic liquids. PMID:27264676

  17. Dissolution of wood in ionic liquids.

    PubMed

    Kilpeläinen, Ilkka; Xie, Haibo; King, Alistair; Granstrom, Mari; Heikkinen, Sami; Argyropoulos, Dimitris S

    2007-10-31

    The present paper demonstrates that both hardwoods and softwoods are readily soluble in various imidazolium-based ionic liquids (ILs) under gentle conditions. More specifically, a variety of ionic liquids can only partially dissolve wood chips, whereas ionic liquids such as 1-butyl-3-methylimidazolium chloride and 1-allyl-3-methylimidazolium chloride have good solvating power for Norway spruce sawdust and Norway spruce and Southern pine thermomechanical pulp (TMP) fibers. Despite the fact that the obtained solutions were not fully clear, these ionic liquids provided solutions which permitted the complete acetylation of the wood. Alternatively, transparent amber solutions of wood could be obtained when the dissolution of the same lignocellulosic samples was attempted in 1-benzyl-3-methylimidazolium chloride. This realization was based on a designed augmented interaction of the aromatic character of the cation of the ionic liquid with the lignin in the wood. After dissolution, wood can be regenerated as an amorphous mixture of its original components. The cellulose of the regenerated wood can be efficiently digested to glucose by a cellulase enzymatic hydrolysis treatment. Furthermore, completely acetylated wood was found to be readily soluble in chloroform, allowing, for the first time, detailed proton nuclear magnetic resonance (NMR) spectra and NMR diffusion measurements to be made. It was thus demonstrated that the dissolution of wood in ionic liquids now offers a variety of new possibilities for its structural and macromolecular characterization, without the prior isolation of its individual components. Furthermore, considering the relatively wide solubility and compatibility of ionic liquids with many organic or inorganic functional chemicals or polymers, it is envisaged that this research could create a variety of new strategies for converting abundant woody biomass to valuable biofuels, chemicals, and novel functional composite biomaterials.

  18. Liquid infused porous surfaces for mineral fouling mitigation.

    PubMed

    Charpentier, Thibaut V J; Neville, Anne; Baudin, Sophie; Smith, Margaret J; Euvrard, Myriam; Bell, Ashley; Wang, Chun; Barker, Richard

    2015-04-15

    Prevention of mineral fouling, known as scale, is a long-standing problem in a wide variety of industrial applications, such as oil production, water treatment, and many others. The build-up of inorganic scale such as calcium carbonate on surfaces and facilities is undesirable as it can result in safety risks and associated flow assurance issues. To date the overwhelming amount of research has mainly focused on chemical inhibition of scale bulk precipitation and little attention has been paid to deposition onto surfaces. The development of novel more environmentally-friendly strategies to control mineral fouling will most probably necessitate a multifunctional approach including surface engineering. In this study, we demonstrate that liquid infused porous surfaces provide an appealing strategy for surface modification to reduce mineral scale deposition. Microporous polypyrrole (PPy) coatings were fabricated onto stainless steel substrates by electrodeposition in potentiostatic mode. Subsequent infusion of low surface energy lubricants (fluorinated oil Fluorinert FC-70 and ionic liquid 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIm)) into the porous coatings results in liquid-repellent slippery surfaces. To assess their ability to reduce surface scaling the coatings were subjected to a calcium carbonate scaling environment and the scale on the surface was quantified using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). PPy surfaces infused with BMIm (and Fluorinert to a lesser extent) exhibit remarkable antifouling properties with the calcium carbonate deposition reduced by 18 times in comparison to untreated stainless steel. These scaling tests suggest a correlation between the stability of the liquid infused surfaces in artificial brines and fouling reduction efficiency. The current work shows the great potential of such novel coatings for the management of mineral scale fouling.

  19. Aqueous Ionic Liquids and Deep Eutectic Solvents for Cellulosic Biomass Pretreatment and Saccharification

    PubMed Central

    Xia, Shuqian; Baker, Gary A.; Li, Hao; Ravula, Sudhir; Zhao, Hua

    2014-01-01

    Ionic liquids (ILs) have proven effective solvents for pretreating lignocellulose, leading to the fast saccharification of cellulose and hemicellulose. However, the high current cost of most ILs remains a major barrier to commercializing this recent approach at a practical scale. As a strategic detour, aqueous solutions of ILs are also being explored as less costly alternatives to neat ILs for cellulose pretreatment. However, limited studies on a few select IL systems are known and there remains no systematic survey of various ILs, eluding an in-depth understanding of pretreatment mechanisms afforded by aqueous IL systems. As a step toward filling this gap, this study presents results for Avicel cellulose pretreatment by neat and aqueous solutions (1.0 and 2.0 M) of 20 different ILs and three deep eutectic solvents, correlating enzymatic hydrolysis rates of pretreated cellulose with various IL properties such as hydrogen-bond basicity, polarity, Hofmeister ranking, and hydrophobicity. The pretreatment efficiencies of neat ILs may be loosely correlated to the hydrogen-bond basicity of the constituent anion and IL polarity; however, the pretreatment efficacies for aqueous ILs are more complicated and cannot be simply related to any single IL property. Several aqueous IL systems have been identified as effective alternatives to neat ILs in lignocellulose pretreatment. In particular, this study reveals that aqueous solutions of 1-butyl-3-methylimidazolium methanesulfonate ([BMIM][MeSO3]) are effective for pretreating switchgrass (Panicum virgatum), resulting in fast saccharification of both cellulose and hemicellulose. An integrated analysis afforded by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis and cellulase adsorption isotherm of lignocellulose samples is further used to deliver a more complete view of the structural changes attending aqueous IL pretreatment. PMID:24729865

  20. Acid-catalyzed dehydration of fructose into 5-hydroxymethylfurfural by cellulose-derived amorphous carbon.

    PubMed

    Qi, Xinhua; Guo, Haixin; Li, Luyang; Smith, Richard L

    2012-11-01

    Carbonaceous solid (CS) catalysts with --SO₃H, --COOH, and phenolic --OH groups were prepared by incomplete hydrothermal carbonization of cellulose followed by either sulfonation with H₂SO₄ to give carbonaceous sulfonated solid (CSS) material or by both chemical activation with KOH and sulfonation to give activated carbonaceous sulfonated solid (a-CSS) material. The obtained carbon products (CS, CSS, and a-CSS) were amorphous; the CSS material had a small surface area (<0.5 m² g⁻¹) and a high --SO₃H group concentration (0.953 mmol g⁻¹), whereas the a-CSS material had a large surface area (514 m²  g ⁻¹) and a low --SO₃H group concentration (0.172 mmol g⁻¹). The prepared materials were evaluated as catalysts for the dehydration of fructose to 5-hydroxymethylfurfural (5-HMF) in the ionic liquid 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]). Remarkably high 5-HMF yields (83 %) could be obtained efficiently (80 °C and 10 min reaction time). CSS and a-CSS catalysts had similar catalytic activities and efficiencies for the conversion of fructose to 5-HMF in [BMIM][Cl]; this could be explained by the trade-off between --SO₃H group concentration (high for CSS) and surface area (high for a-CSS). The cellulose-derived catalysts and ionic liquid exhibited constant activity for five successive recycles, and thus, the methods developed provide a renewable strategy for biomass conversion. PMID:22927099