Science.gov

Sample records for 1-cm path length

  1. Gap Filling as Exact Path Length Problem.

    PubMed

    Salmela, Leena; Sahlin, Kristoffer; Mäkinen, Veli; Tomescu, Alexandru I

    2016-05-01

    One of the last steps in a genome assembly project is filling the gaps between consecutive contigs in the scaffolds. This problem can be naturally stated as finding an s-t path in a directed graph whose sum of arc costs belongs to a given range (the estimate on the gap length). Here s and t are any two contigs flanking a gap. This problem is known to be NP-hard in general. Here we derive a simpler dynamic programming solution than already known, pseudo-polynomial in the maximum value of the input range. We implemented various practical optimizations to it, and compared our exact gap-filling solution experimentally to popular gap-filling tools. Summing over all the bacterial assemblies considered in our experiments, we can in total fill 76% more gaps than the best previous tool, and the gaps filled by our method span 136% more sequence. Furthermore, the error level of the newly introduced sequence is comparable to that of the previous tools. The experiments also show that our exact approach does not easily scale to larger genomes, where the problem is in general difficult for all tools. PMID:26959081

  2. 47 CFR 101.143 - Minimum path length requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Minimum path length requirements. 101.143... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The...) Minimum path length (km) Below 1,850 N/A 1,850 to 7,125 17 10,550 to 13,250 5 Above 17,700 N/A (b)...

  3. 47 CFR 101.143 - Minimum path length requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Minimum path length requirements. 101.143... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The...) Minimum path length (km) Below 1,850 N/A 1,850 to 7,125 17 10,550 to 13,250 5 Above 17,700 N/A (b)...

  4. 47 CFR 101.143 - Minimum path length requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Minimum path length requirements. 101.143... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The...) Minimum path length (km) Below 1,850 N/A 1,850 to 7,125 17 10,550 to 13,250 5 Above 17,700 N/A (b)...

  5. Diagnosis of multilayer clouds using photon path length distributions

    NASA Astrophysics Data System (ADS)

    Li, Siwei; Min, Qilong

    2010-10-01

    Photon path length distribution is sensitive to 3-D cloud structures. A detection method for multilayer clouds has been developed, by utilizing the information of photon path length distribution. The photon path length method estimates photon path length information from the low level, single-layer cloud structure that can be accurately observed by a millimeter-wave cloud radar (MMCR) combined with a micropulse lidar (MPL). As multiple scattering within the cloud layers and between layers would substantially enhance the photon path length, the multilayer clouds can be diagnosed by evaluating the estimated photon path information against observed photon path length information from a co-located rotating shadowband spectrometer (RSS). The measurements of MMCR-MPL and RSS at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site have been processed for the year 2000. Cases studies illustrate the consistency between MMCR-MPL detection and the photon path length method under most conditions. However, the photon path length method detected some multilayer clouds that were classified by the MMCR-MPL as single-layer clouds. From 1 year statistics at the ARM SGP site, about 27.7% of single-layer clouds detected by the MMCR-MPL with solar zenith angle less than 70° and optical depth greater than 10 could be multilayer clouds. It suggests that a substantial portion of single-layer clouds detected by the MMCR-MPL could also be influenced by some "missed" clouds or by the 3-D effects of clouds.

  6. 47 CFR 101.143 - Minimum path length requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the...

  7. 47 CFR 101.143 - Minimum path length requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.143 Minimum path length requirements. (a) The... carrier fixed point-to-point microwave services must equal or exceed the value set forth in the...

  8. Foraging Path-length Protocol for Drosophila melanogaster Larvae.

    PubMed

    Anreiter, Ina; Vasquez, Oscar E; Allen, Aaron M; Sokolowski, Marla B

    2016-01-01

    The Drosophila melanogaster larval path-length phenotype is an established measure used to study the genetic and environmental contributions to behavioral variation. The larval path-length assay was developed to measure individual differences in foraging behavior that were later linked to the foraging gene. Larval path-length is an easily scored trait that facilitates the collection of large sample sizes, at minimal cost, for genetic screens. Here we provide a detailed description of the current protocol for the larval path-length assay first used by Sokolowski. The protocol details how to reproducibly handle test animals, perform the behavioral assay and analyze the data. An example of how the assay can be used to measure behavioral plasticity in response to environmental change, by manipulating feeding environment prior to performing the assay, is also provided. Finally, appropriate test design as well as environmental factors that can modify larval path-length such as food quality, developmental age and day effects are discussed. PMID:27167330

  9. Analytical solution of average path length for Apollonian networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongzhi; Chen, Lichao; Zhou, Shuigeng; Fang, Lujun; Guan, Jihong; Zou, Tao

    2008-01-01

    With the help of recursion relations derived from the self-similar structure, we obtain the solution of average path length, dmacr t , for Apollonian networks. In contrast to the well-known numerical result dmacr t∝(lnNt)3/4 [J. S. Andrade, Jr. , Phys. Rev. Lett. 94, 018702 (2005)], our rigorous solution shows that the average path length grows logarithmically as dmacr t∝lnNt in the infinite limit of network size Nt . The extensive numerical calculations completely agree with our closed-form solution.

  10. Limited-path-length entanglement percolation in quantum complex networks

    NASA Astrophysics Data System (ADS)

    Cuquet, Martí; Calsamiglia, John

    2011-03-01

    We study entanglement distribution in quantum complex networks where nodes are connected by bipartite entangled states. These networks are characterized by a complex structure, which dramatically affects how information is transmitted through them. For pure quantum state links, quantum networks exhibit a remarkable feature absent in classical networks: it is possible to effectively rewire the network by performing local operations on the nodes. We propose a family of such quantum operations that decrease the entanglement percolation threshold of the network and increase the size of the giant connected component. We provide analytic results for complex networks with an arbitrary (uncorrelated) degree distribution. These results are in good agreement with numerical simulations, which also show enhancement in correlated and real-world networks. The proposed quantum preprocessing strategies are not robust in the presence of noise. However, even when the links consist of (noisy) mixed-state links, one can send quantum information through a connecting path with a fidelity that decreases with the path length. In this noisy scenario, complex networks offer a clear advantage over regular lattices, namely, the fact that two arbitrary nodes can be connected through a relatively small number of steps, known as the small-world effect. We calculate the probability that two arbitrary nodes in the network can successfully communicate with a fidelity above a given threshold. This amounts to working out the classical problem of percolation with a limited path length. We find that this probability can be significant even for paths limited to few connections and that the results for standard (unlimited) percolation are soon recovered if the path length exceeds by a finite amount the average path length, which in complex networks generally scales logarithmically with the size of the network.

  11. Test Bed For Control Of Optical-Path Lengths

    NASA Technical Reports Server (NTRS)

    O'Neal, Michael C.; Eldred, Daniel D.; Liu, Dankai; Redding, David C.

    1994-01-01

    Truss structure and ancillary equipment constitute test bed for experiments in methods of controlling lengths of optical paths under conditions of structural vibration and deformation. Accommodates both passive and active methods of control. Experimental control system reduces millimeter-level disturbances in optical path length to nanometers. Developed for control, alignment, and aiming of distributed optical systems on large flexible structures. Test bed includes tower 2.5 meters high with two horizontal arms extending at right angles from its top. Rigidly mounted on massive steel block providing measure of isolation from ground vibrations. Optical motion-compensation system similar to one described previously in NASA Tech Briefs enclosed in flexure-mounted frame, called "trolley," at end of longer horizontal arm.

  12. 47 CFR 78.108 - Minimum path lengths for fixed links.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Minimum path lengths for fixed links. 78.108... CABLE TELEVISION RELAY SERVICE Technical Regulations § 78.108 Minimum path lengths for fixed links. (a...) Minimum path length (km) 12,200 to 13,250 5 Above 17,700 N/A (b) For paths shorter than those specified...

  13. 47 CFR 78.108 - Minimum path lengths for fixed links.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Minimum path lengths for fixed links. 78.108... CABLE TELEVISION RELAY SERVICE Technical Regulations § 78.108 Minimum path lengths for fixed links. (a...) Minimum path length (km) 12,200 to 13,250 5 Above 17,700 N/A (b) For paths shorter than those specified...

  14. 47 CFR 78.108 - Minimum path lengths for fixed links.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Minimum path lengths for fixed links. 78.108... CABLE TELEVISION RELAY SERVICE Technical Regulations § 78.108 Minimum path lengths for fixed links. (a...) Minimum path length (km) 12,200 to 13,250 5 Above 17,700 N/A (b) For paths shorter than those specified...

  15. 47 CFR 78.108 - Minimum path lengths for fixed links.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Minimum path lengths for fixed links. 78.108... CABLE TELEVISION RELAY SERVICE Technical Regulations § 78.108 Minimum path lengths for fixed links. (a...) Minimum path length (km) 12,200 to 13,250 5 Above 17,700 N/A (b) For paths shorter than those specified...

  16. 47 CFR 78.108 - Minimum path lengths for fixed links.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Minimum path lengths for fixed links. 78.108... CABLE TELEVISION RELAY SERVICE Technical Regulations § 78.108 Minimum path lengths for fixed links. (a...) Minimum path length (km) 12,200 to 13,250 5 Above 17,700 N/A (b) For paths shorter than those specified...

  17. Path Length Fluctuations Derived from Site Testing Interferometer Data

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Nessel, James A.; Morse, Jacquelynne R.

    2010-01-01

    To evaluate possible sites for NASA's proposed Ka-band antenna array, the NASA Glenn Research Center has constructed atmospheric phase monitors (APM) which directly measure the tropospheric phase stability. These instruments observe an unmodulated 20.2 GHz beacon signal broadcast from a geostationary satellite (Anik F2) and measure the phase difference between the signals received by the two antennas. Two APM's have been deployed, one at the NASA Deep Space Network (DSN) Tracking Complex in Goldstone, California, and the other at the NASA White Sands Complex, in Las Cruces, New Mexico. Two station-years of atmospheric phase fluctuation data have been collected at Goldstone since operations commenced in May 2007 and 0.5 station-years of data have been collected at White Sands since operations began February 2009. With identical instruments operating simultaneously, we can directly compare the phase stability at the two sites. Phase stability is analyzed statistically in terms of the root-mean-square (rms) of the tropospheric path length fluctuations over 10 min blocks. Correlation between surface wind speed and relative humidity with interferometer phase are discussed. For 2 years, the path length fluctuations at the DSN site in Goldstone, California, have been better than 757 micrometer (with reference to a 300 m baseline and to Zenith) for 90 percent of the time. For the 6 months of data collected at White Sands, New Mexico, the path length fluctuations have been better than 830 micrometers (with reference to a 300 m baseline and to Zenith) for 90 percent of the time. This type of data analysis, as well as many other site quality characteristics (e.g., rain attenuation, infrastructure, etc.), will be used to determine the suitability of both sites for NASA s future communication services at Ka-band using an array of antennas.

  18. 47 CFR 74.644 - Minimum path lengths for fixed links.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Minimum path lengths for fixed links. 74.644... Auxiliary Stations § 74.644 Minimum path lengths for fixed links. (a) The distance between end points of a... accordance with the equation set forth below. Frequency band(MHz) Minimum path length(km) Below 1,990 n/a...

  19. 47 CFR 74.644 - Minimum path lengths for fixed links.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Minimum path lengths for fixed links. 74.644... Auxiliary Stations § 74.644 Minimum path lengths for fixed links. (a) The distance between end points of a... accordance with the equation set forth below. Frequency band(MHz) Minimum path length(km) Below 1,990 n/a...

  20. 47 CFR 74.644 - Minimum path lengths for fixed links.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Minimum path lengths for fixed links. 74.644... Auxiliary Stations § 74.644 Minimum path lengths for fixed links. (a) The distance between end points of a... accordance with the equation set forth below. Frequency band(MHz) Minimum path length(km) Below 1,990 n/a...

  1. Path Length Entropy Analysis of Diastolic Heart Sounds

    PubMed Central

    Griffel, B.; Zia, M. K.; Fridman, V.; Saponieri, C.; Semmlow, J. L.

    2013-01-01

    Early detection of coronary artery disease (CAD) using the acoustic approach, a noninvasive and cost-effective method, would greatly improve the outcome of CAD patients. To detect CAD, we analyze diastolic sounds for possible CAD murmurs. We observed diastolic sounds to exhibit 1/f structure and developed a new method, path length entropy (PLE) and a scaled version (SPLE), to characterize this structure to improve CAD detection. We compare SPLE results to Hurst exponent, Sample entropy and Multi-scale entropy for distinguishing between normal and CAD patients. SPLE achieved a sensitivity-specificity of 80%–81%, the best of the tested methods. However, PLE and SPLE are not sufficient to prove nonlinearity, and evaluation using surrogate data suggests that our cardiovascular sound recordings do not contain significant nonlinear properties. PMID:23930808

  2. Light absorption cell combining variable path and length pump

    DOEpatents

    Prather, William S.

    1993-01-01

    A device for use in making spectrophotometric measurements of fluid samples. In particular, the device is a measurement cell containing a movable and a fixed lens with a sample of the fluid therebetween and through which light shines. The cell is connected to a source of light and a spectrophotometer via optic fibers. Movement of the lens varies the path length and also pumps the fluid into and out of the cell. Unidirectional inlet and exit valves cooperate with the movable lens to assure a one-way flow of fluid through the cell. A linear stepper motor controls the movement of the lens and cycles it from a first position closer to the fixed lens and a second position farther from the fixed lens, preferably at least 10 times per minute for a nearly continuous stream of absorption spectrum data.

  3. Light absorption cell combining variable path and length pump

    DOEpatents

    Prather, W.S.

    1993-12-07

    A device is described for use in making spectrophotometric measurements of fluid samples. In particular, the device is a measurement cell containing a movable and a fixed lens with a sample of the fluid there between and through which light shines. The cell is connected to a source of light and a spectrophotometer via optic fibers. Movement of the lens varies the path length and also pumps the fluid into and out of the cell. Unidirectional inlet and exit valves cooperate with the movable lens to assure a one-way flow of fluid through the cell. A linear stepper motor controls the movement of the lens and cycles it from a first position closer to the fixed lens and a second position farther from the fixed lens, preferably at least 10 times per minute for a nearly continuous stream of absorption spectrum data. 2 figures.

  4. Long-length contaminated equipment disposal process path document

    SciTech Connect

    McCormick, W.A.

    1998-09-30

    The first objective of the LLCE Process Path Document is to guide future users of this system on how to accomplish the cradle-to-grave process for the disposal of long-length equipment. Information will be provided describing the function and approach to each step in the process. Pertinent documentation, prerequisites, drawings, procedures, hardware, software, and key interfacing organizations will be identified. The second objective is related to the decision to lay up the program until funding is made available to complete it or until a need arises due to failure of an important component in a waste tank. To this end, the document will identify work remaining to be completed for each step of the process and open items or issues that remain to be resolved.

  5. Automated path length and M{sub 56} measurements at Jefferson Lab

    SciTech Connect

    Hardy, D.; Tang, J.; Legg, R.

    1997-08-01

    Accurate measurement of path length and path length changes versus momentum (M{sub 56}) are critical for maintaining minimum beam energy spread in the CEBAF (Continuous Electron Beam Accelerator Facility) accelerator at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). The relative path length for each circuit of the beam (1256m) must be equal within 1.5 degrees of 1497 MHz RF phase. A relative path length measurement is made by measuring the relative phases of RF signals from a cavity that is separately excited for each pass of a 4.2 {mu}s pulsed beam. This method distinguishes the path length to less than 0.5 path length error. The development of a VME based automated measurement system for path length and M{sub 56} has contributed to faster machine setup time and has the potential for use as a feedback parameter for automated control.

  6. An Exact Algebraic Evaluation of Path-Length Difference for Two-Source Interference

    ERIC Educational Resources Information Center

    Hopper, Seth; Howell, John

    2006-01-01

    When studying wave interference, one often wants to know the difference in path length for two waves arriving at a common point P but coming from adjacent sources. For example, in many contexts interference maxima occur where this path-length difference is an integer multiple of the wavelength. The standard approximation for the path-length…

  7. Laser Metrology for an Optical-Path-Length Modulator

    NASA Technical Reports Server (NTRS)

    Gursel, Yekta

    2005-01-01

    Laser gauges have been developed to satisfy requirements specific to monitoring the amplitude of the motion of an optical-path-length modulator that is part of an astronomical interferometer. The modulator includes a corner-cube retroreflector driven by an electromagnetic actuator. During operation of the astronomical interferometer, the electromagnet is excited to produce linear reciprocating motion of the corner-cube retroreflector at an amplitude of 2 to 4 mm at a frequency of 250, 750, or 1,250 Hz. Attached to the corner-cube retroreflector is a small pick-off mirror. To suppress vibrations, a counterweight having a mass equal to that of the corner-cube retroreflector and pick-off mirror is mounted on another electromagnetic actuator that is excited in opposite phase. Each gauge is required to measure the amplitude of the motion of the pick-off mirror, assuming that the motions of the pick-off mirror and the corner-cube retroreflector are identical, so as to measure the amplitude of motion of the corner- cube retroreflector to within an error of the order of picometers at each excitation frequency. Each gauge is a polarization-insensitive heterodyne interferometer that includes matched collimators, beam separators, and photodiodes (see figure). The light needed for operation of the gauge comprises two pairs of laser beams, the beams in each pair being separated by a beat frequency of 80 kHz. The laser beams are generated by an apparatus, denoted the heterodyne plate, that includes stabilized helium-neon lasers, acousto-optical modulators, and associated optical and electronic subsystems. The laser beams are coupled from the heterodyne plate to the collimators via optical fibers.

  8. Estimation of partial optical path length in the brain in subject-specific head models for near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, Kotaro; Kurihara, Kazuki; Kawaguchi, Hiroshi; Obata, Takayuki; Ito, Hiroshi; Okada, Eiji

    2016-04-01

    Three-dimensional head models with the structures constructed from the MR head images of 40 volunteers were constructed to analyze light propagation in the subject-specific head models. The mean optical path length in the head and the partial optical path length in the brain at 13 fiducial points for each volunteer were estimated to evaluate the intersubject and spatial variability in the optical path lengths. Although the intersubject variability in the optical path lengths is very high, the spatial variability in the average of the mean optical path length and partial optical path length is similar to the previously reported data. The mean optical path length in the head increases, whereas the partial optical path length in the brain decreases with an increase in the depth of the brain surface. The partial optical path length is highly correlated with the depth of the brain surface in comparison to the mean optical path length in the head.

  9. COMPARISON BETWEEN PATH LENGTHS TRAVELED BY SOLAR ELECTRONS AND IONS IN GROUND-LEVEL ENHANCEMENT EVENTS

    SciTech Connect

    Tan, Lun C.; Malandraki, Olga E.; Patsou, Ioanna; Papaioannou, Athanasios; Reames, Donald V.; Ng, Chee K.; Wang, Linghua

    2013-05-01

    We have examined the Wind/3DP/SST electron and Wind/EPACT/LEMT ion data to investigate the path length difference between solar electrons and ions in the ground-level enhancement (GLE) events in solar cycle 23. Assuming that the onset time of metric type II or decameter-hectometric (DH) type III radio bursts is the solar release time of non-relativistic electrons, we have found that within an error range of {+-}10% the deduced path length of low-energy ({approx}27 keV) electrons from their release site near the Sun to the 1 AU observer is consistent with the ion path length deduced by Reames from the onset time analysis. In addition, the solar longitude distribution and IMF topology of the GLE events examined are in favor of the coronal mass ejection-driven shock acceleration origin of observed non-relativistic electrons. We have also found an increase of electron path lengths with increasing electron energies. The increasing rate of path lengths is correlated with the pitch angle distribution (PAD) of peak electron intensities locally measured, with a higher rate corresponding to a broader PAD. The correlation indicates that the path length enhancement is due to the interplanetary scattering experienced by first arriving electrons. The observed path length consistency implies that the maximum stable time of magnetic flux tubes, along which particles transport, could reach 4.8 hr.

  10. Comparison Between Path Lengths Traveled by Solar Electrons and Ions in Ground-Level Enhancement Events

    NASA Technical Reports Server (NTRS)

    Tan, Lun C.; Malandraki, Olga E.; Reames, Donald; NG, Chee K.; Wang, Linghua; Patsou, Ioanna; Papaioannou, Athanasios

    2013-01-01

    We have examined the Wind/3DP/SST electron and Wind/EPACT/LEMT ion data to investigate the path length difference between solar electrons and ions in the ground-level enhancement (GLE) events in solar cycle 23. Assuming that the onset time of metric type II or decameter-hectometric (DH) type III radio bursts is the solar release time of non-relativistic electrons, we have found that within an error range of plus or minus 10% the deduced path length of low-energy (approximately 27 keV) electrons from their release site near the Sun to the 1 AU observer is consistent with the ion path length deduced by Reames from the onset time analysis. In addition, the solar longitude distribution and IMF topology of the GLE events examined are in favor of the coronal mass ejection-driven shock acceleration origin of observed non-relativistic electrons.We have also found an increase of electron path lengths with increasing electron energies. The increasing rate of path lengths is correlated with the pitch angle distribution (PAD) of peak electron intensities locally measured, with a higher rate corresponding to a broader PAD. The correlation indicates that the path length enhancement is due to the interplanetary scattering experienced by first arriving electrons. The observed path length consistency implies that the maximum stable time of magnetic flux tubes, along which particles transport, could reach 4.8 hr.

  11. Comparison between Path Lengths Traveled by Solar Electrons and Ions in Ground-Level Enhancement Events

    NASA Astrophysics Data System (ADS)

    Tan, Lun C.; Malandraki, Olga E.; Reames, Donald V.; Ng, Chee K.; Wang, Linghua; Patsou, Ioanna; Papaioannou, Athanasios

    2013-05-01

    We have examined the Wind/3DP/SST electron and Wind/EPACT/LEMT ion data to investigate the path length difference between solar electrons and ions in the ground-level enhancement (GLE) events in solar cycle 23. Assuming that the onset time of metric type II or decameter-hectometric (DH) type III radio bursts is the solar release time of non-relativistic electrons, we have found that within an error range of ±10% the deduced path length of low-energy (~27 keV) electrons from their release site near the Sun to the 1 AU observer is consistent with the ion path length deduced by Reames from the onset time analysis. In addition, the solar longitude distribution and IMF topology of the GLE events examined are in favor of the coronal mass ejection-driven shock acceleration origin of observed non-relativistic electrons. We have also found an increase of electron path lengths with increasing electron energies. The increasing rate of path lengths is correlated with the pitch angle distribution (PAD) of peak electron intensities locally measured, with a higher rate corresponding to a broader PAD. The correlation indicates that the path length enhancement is due to the interplanetary scattering experienced by first arriving electrons. The observed path length consistency implies that the maximum stable time of magnetic flux tubes, along which particles transport, could reach 4.8 hr.

  12. Elastic transducers incorporating finite-length optical paths

    NASA Astrophysics Data System (ADS)

    Peters, Kara J.; Washabaugh, Peter D.

    1995-08-01

    Frequently, when designing a structure to incorporate integrated sensors, one sacrifices the stiffness of the system to improve sensitivity. However, the use of interferometric displacement sensors that tessellate throughout the volume of a structure has the potential to allow the precision and range of the component measurement to scale with the geometry of the device rather than the maximum strain in the structure. The design of stiff structures that measure all six resultant-load components is described. In addition, an advanced torsion sensor and a linear acceleration transducer are also discussed. Finally, invariant paths are presented that allow the in situ integrity of a structural volume to be monitored with a single pair of displacement sensors.

  13. Extinction measurement with open-path cavity ring-down technique of variable cavity length.

    PubMed

    Cui, Hao; Li, Bincheng; Han, Yanling; Wang, Jing; Gao, Chunming; Wang, Yafei

    2016-06-13

    Open-path cavity ring down (OPCRD) technique with variable cavity length was developed to measure optical extinction including scattering and absorption of air in laboratory environment at 635 nm wavelength. By moving the rear cavity mirror of the ring-down cavity to change cavity length, ring-down time with different cavity lengths was experimentally obtained and the dependence of total cavity loss on cavity length was determined. The extinction coefficient of air was determined by the slope of linear dependence of total cavity loss on cavity length. The extinction coefficients of air with different particle concentrations at 635 nm wavelength were measured to be from 10.46 to 84.19 Mm-1 (ppm/m) in a normal laboratory environment. This variable-cavity-length OPCRD technique can be used for absolute extinction measurement and real-time environmental monitoring without closed-path sample cells and background measurements. PMID:27410351

  14. All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.

    PubMed

    Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis

    2013-05-20

    This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation. PMID:23736401

  15. Chord-length and free-path distribution functions for many-body systems

    SciTech Connect

    Lu, B. ); Torquato, S. )

    1993-04-15

    We study fundamental morphological descriptors of disordered media (e.g., heterogeneous materials, liquids, and amorphous solids): [ital the] [ital chord]-[ital length] [ital distribution] [ital function] [ital p]([ital z]) and the [ital free]-[ital path] [ital distribution] [ital function] [ital p]([ital z],[ital a]). For concreteness, we will speak in the language of heterogeneous materials composed of two different materials or phases.'' The probability density function [ital p]([ital z]) describes the distribution of chord lengths in the sample and is of great interest in stereology. For example, the first moment of [ital p]([ital z]) is the mean intercept length'' or mean chord length.'' The chord-length distribution function is of importance in transport phenomena and problems involving discrete free paths'' of point particles (e.g., Knudsen diffusion and radiative transport). The free-path distribution function [ital p]([ital z],[ital a]) takes into account the finite size of a simple particle of radius [ital a] undergoing discrete free-path motion in the heterogeneous material and we show that it is actually the chord-length distribution function for the system in which the pore space'' is the space available to a finite-sized particle of radius [ital a]. Thus it is shown that [ital p]([ital z])=[ital p]([ital z],0). We demonstrate that the functions [ital p]([ital z]) and [ital p]([ital z],[ital a]) are related to another fundamentally important morphological descriptor of disordered media, namely, the so-called lineal-path function [ital L]([ital z]) studied by us in previous work [Phys. Rev. A [bold 45], 922 (1992)]. The lineal path function gives the probability of finding a line segment of length [ital z] wholly in one of the phases'' when randomly thrown into the sample.

  16. Relations between ac-dc components and optical path length in photoplethysmography

    NASA Astrophysics Data System (ADS)

    Lee, Chungkeun; Sik Shin, Hang; Lee, Myoungho

    2011-07-01

    Photoplethysmography is used in various areas such as vital sign measurement, vascular characteristics analysis, and autonomic nervous system assessment. Photoplethysmographic signals are composed of ac and dc, but it is difficult to find research about the interaction of photoplethysmographic components. This study suggested a model equation combining two Lambert-Beer equations at the onset and peak points of photoplethysmography to evaluate ac characteristics, and verified the model equation through simulation and experiment. In the suggested equation, ac was dependent on dc and optical path length. In the simulation, dc was inversely proportionate to ac sensitivity (slope), and ac and optical path length were proportionate. When dc increased from 10% to 90%, stabilized ac decreased from 1 to 0.89 +/- 0.21, and when optical path length increased from 10% to 90%, stabilized ac increased from 1 to 1.53 +/- 0.40.

  17. Cesium oscillator strengths measured with a multiple-path-length absorption cell

    NASA Technical Reports Server (NTRS)

    Exton, R. J.

    1976-01-01

    Absorption-oscillator-strength measurements for the principal series in cesium were measured using a multiple-path-length cell. The optical arrangement included a movable transverse path for checking the uniformity of the alkali density along the length of the cell and which also allowed strength measurements to be made simultaneously on both strong and weak lines. The strengths measured on the first 10 doublets indicate an increasing trend in the doublet ratio. The individual line strengths are in close agreement with the high resolution measurements of Pichler (1974) and with the calculations of Norcross (1973).

  18. Speckle reduction in optical coherence tomography by "path length encoded" angular compounding.

    PubMed

    Iftimia, N; Bouma, B E; Tearney, G J

    2003-04-01

    Speckle, the dominant factor reducing image quality in optical coherence tomography (OCT), limits the ability to identify cellular structures that are essential for diagnosis of a variety of diseases. We describe a new high-speed method for implementing angular compounding by path length encoding (ACPE) for reducing speckle in OCT images. By averaging images obtained at different incident angles, with each image encoded by path length, ACPE maintains high-speed image acquisition and requires minimal modifications to OCT probe optics. ACPE images obtained from tissue phantoms and human skin in vivo demonstrate a qualitative improvement over traditional OCT and an increased SNR that correlates well with theory. PMID:12683852

  19. Path Length Control in a Nulling Coronagraph with a MEMS Deformable Mirror and a Calibration Interferometer

    NASA Technical Reports Server (NTRS)

    Rao, Shanti R.; Wallacea, J. Kent; Samuele, Rocco; Chakrabarti, Supriya; Cook, Timothy; Hicks, Brian; Jung, Paul; Lane, Benjamin; Levine, B. Martin; Mendillo, Chris; Schmidtlin, Edouard; Shao, Mike; Stewart, Jason B.

    2008-01-01

    We report progress on a nulling coronagraph intended for direct imaging of extrasolar planets. White light is suppressed in an interferometer, and phase errors are measured by a second interferometer. A 1020-pixel MEMS deformable mirror in the first interferometer adjusts the path length across the pupil. A feedback control system reduces deflections of the deformable mirror to order of 1 nm rms.

  20. Achromatic recirculated chicane with fixed geometry and independently variable path length and momentum compaction

    DOEpatents

    Douglas, David R.; Neil, George R.

    2005-04-26

    A particle beam recirculated chicane geometry that, through the inducement of a pair of 180 degree bends directed by the poles of a pair of controllable magnetic fields allows for variation of dipole position, return loop radii and steering/focussing, thereby allowing the implementation of independent variation of path length and momentum compaction.

  1. 47 CFR 74.644 - Minimum path lengths for fixed links.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Minimum path lengths for fixed links. 74.644 Section 74.644 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Television Broadcast Auxiliary Stations § 74.644...

  2. 47 CFR 74.644 - Minimum path lengths for fixed links.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Minimum path lengths for fixed links. 74.644 Section 74.644 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Television Broadcast Auxiliary Stations § 74.644...

  3. [A path-length correction method on biochemical parameter nondestructive measuring of folium].

    PubMed

    Zhang, Qian-Xuan; Zhang, Guang-Jun; Li, Qing-Bo

    2010-05-01

    Vis/NIR spectroscopy technology is capable of analyzing the content of biochemical parameter in folium rapidly and nondestructively. In the process of spectrum analysis, the variations in path-length between different samples exist, with the random light scattering and leaf thickness perturbations, which influence the precision of quantitative analysis model. In order to resolve this problem, an improved path-length correction method based on Extended Multiplicative Scattering Correction is presented. In this paper, firstly the theory of EMSC algorithm is deduced. EMSC method incorporates both chemical terms and wavelength functions to help realize the efficient separation of path-length and interest concentration. Secondly two experiments were implemented to demonstrate the validity of the method. In Experiment 1, sixteen samples of different thickness but almost the same chlorophyll content were selected, and how the path-length affects the spectrum was compared, after EMSC preprocessing, the variable coefficient of spectrum could approach the repeatability error of spectrometer. In Experiment 2, thirty-two samples of different thickness and chlorophyll content were selected. PLS model established using cross validation was employed to evaluate the efficiency of the presented algorithm. Before the preprocessing, the root mean squared error of prediction is 3.9 SPAD with 5 principal components. After preprocessing, the predicted root mean squared error is 2.2 SPAD with 12 principal components. The results indicate that the improved EMSC preprocessing method could exactly eliminate the spectrum difference caused by the path-length variations between different foliums, enhance the sensitivity of concentration and spectral data, and increase the precision of calibrated model. PMID:20672624

  4. Photon path length distributions for cloudy skies  oxygen A-Band measurements and model calculations

    NASA Astrophysics Data System (ADS)

    Funk, O.; Pfeilsticker, K.

    2003-03-01

    This paper addresses the statistics underlying cloudy sky radiative transfer (RT) by inspection of the distribution of the path lengths of solar photons. Recent studies indicate that this approach is promising, since it might reveal characteristics about the diffusion process underlying atmospheric radiative transfer (Pfeilsticker, 1999). Moreover, it uses an observable that is directly related to the atmospheric absorption and, therefore, of climatic relevance. However, these studies are based largely on the accuracy of the measurement of the photon path length distribution (PPD). This paper presents a refined analysis method based on high resolution spectroscopy of the oxygen A-band. The method is validated by Monte Carlo simulation atmospheric spectra. Additionally, a new method to measure the effective optical thickness of cloud layers, based on fitting the measured differential transmissions with a 1-dimensional (discrete ordinate) RT model, is presented. These methods are applied to measurements conducted during the cloud radar inter-comparison campaign CLARE’98, which supplied detailed cloud structure information, required for the further analysis. For some exemplary cases, measured path length distributions and optical thicknesses are presented and backed by detailed RT model calculations. For all cases, reasonable PPDs can be retrieved and the effects of the vertical cloud structure are found. The inferred cloud optical thicknesses are in agreement with liquid water path measurements.

  5. Path-length measurement performance evaluation of polarizing laser interferometer prototype

    NASA Astrophysics Data System (ADS)

    Li, Yu-qiong; Luo, Zi-ren; Liu, He-shan; Dong, Yu-hui; Jin, Gang

    2015-02-01

    The space laser interferometer has been considered the most promising means for detecting gravitational waves and improving the accuracy and spatial resolution of the Earth's gravity model. An on-ground polarizing laser interferometer prototype equipped with one reference interferometer and two measurement interferometers having equal-length arms is presented in the paper. The laser interferometer prototype is designed as the demonstration of a Chinese space laser interferometer antenna in the future, of which the path-length measurement performance evaluation and preliminary noise analysis are investigated here. The results show that the path-length measurement sensitivity is better than 200 pm/Hz½ in the frequency band of 10 mHz-1 Hz, and the sensitivity of measuring the motion of a sinusoidally driven testmass is better than 100 pm within the frequency regime of 1 mHz-1 Hz. In this way, laboratory activities have demonstrated the feasibility of this prototype to measure tiny path-length fluctuations of the simulated testmass. As a next step, adopting an integrated design of optics and optical substrate to enhance the stability of the laser interferometer is being planned, and other key techniques included in the space laser interferometer such as laser pointing modulation and laser phase-locking control are to be implanted into this prototype are under consideration.

  6. Tapered laser rods as a means of minimizing the path length of trapped barrel mode rays

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Payne, Stephen A.; Mercer, Ian; Perry, Michael D.

    2005-08-30

    By tapering the diameter of a flanged barrel laser rod over its length, the maximum trapped path length of a barrel mode can be dramatically reduced, thereby reducing the ability of the trapped spontaneous emission to negatively impact laser performance through amplified spontaneous emission (ASE). Laser rods with polished barrels and flanged end caps have found increasing application in diode array end-pumped laser systems. The polished barrel of the rod serves to confine diode array pump light within the rod. In systems utilizing an end-pumping geometry and such polished barrel laser rods, the pump light that is introduced into one or both ends of the laser rod, is ducted down the length of the rod via the total internal reflections (TIRs) that occur when the light strikes the rod's barrel. A disadvantage of using polished barrel laser rods is that such rods are very susceptible to barrel mode paths that can trap spontaneous emission over long path lengths. This trapped spontaneous emission can then be amplified through stimulated emission resulting in a situation where the stored energy available to the desired lasing mode is effectively depleted, which then negatively impacts the laser's performance, a result that is effectively reduced by introducing a taper onto the laser rod.

  7. Modeling the average shortest-path length in growth of word-adjacency networks

    NASA Astrophysics Data System (ADS)

    Kulig, Andrzej; DroŻdŻ, Stanisław; Kwapień, Jarosław; OświÈ©cimka, Paweł

    2015-03-01

    We investigate properties of evolving linguistic networks defined by the word-adjacency relation. Such networks belong to the category of networks with accelerated growth but their shortest-path length appears to reveal the network size dependence of different functional form than the ones known so far. We thus compare the networks created from literary texts with their artificial substitutes based on different variants of the Dorogovtsev-Mendes model and observe that none of them is able to properly simulate the novel asymptotics of the shortest-path length. Then, we identify the local chainlike linear growth induced by grammar and style as a missing element in this model and extend it by incorporating such effects. It is in this way that a satisfactory agreement with the empirical result is obtained.

  8. Correlation between weighted spectral distribution and average path length in evolving networks.

    PubMed

    Jiao, Bo; Shi, Jianmai; Wu, Xiaoqun; Nie, Yuanping; Huang, Chengdong; Du, Jing; Zhou, Ying; Guo, Ronghua; Tao, Yerong

    2016-02-01

    The weighted spectral distribution (WSD) is a metric defined on the normalized Laplacian spectrum. In this study, synchronic random graphs are first used to rigorously analyze the metric's scaling feature, which indicates that the metric grows sublinearly as the network size increases, and the metric's scaling feature is demonstrated to be common in networks with Gaussian, exponential, and power-law degree distributions. Furthermore, a deterministic model of diachronic graphs is developed to illustrate the correlation between the slope coefficient of the metric's asymptotic line and the average path length, and the similarities and differences between synchronic and diachronic random graphs are investigated to better understand the correlation. Finally, numerical analysis is presented based on simulated and real-world data of evolving networks, which shows that the ratio of the WSD to the network size is a good indicator of the average path length. PMID:26931591

  9. Round-Trip System Available to Measure Path Length Variation in Korea VLBI System for Geodesy

    NASA Technical Reports Server (NTRS)

    Oh, Hongjong; Kondo, Tetsuro; Lee, Jinoo; Kim, Tuhwan; Kim, Myungho; Kim, Suchul; Park, Jinsik; Ju, Hyunhee

    2010-01-01

    The construction project of Korea Geodetic VLBI officially started in October 2008. The construction of all systems will be completed by the end of 2011. The project was named Korea VLBI system for Geodesy (KVG), and its main purpose is to maintain the Korea Geodetic Datum. In case of the KVG system, an observation room with an H-maser frequency standard is located in a building separated from the antenna by several tens of meters. Therefore KVG system will adopt a so-called round-trip system to transmit reference signals to the antenna with reduction of the effect of path length variations. KVG s round-trip system is designed not only to use either metal or optical fiber cables, but also to measure path length variations directly. We present this unique round trip system for KVG.

  10. Correlation between weighted spectral distribution and average path length in evolving networks

    NASA Astrophysics Data System (ADS)

    Jiao, Bo; Shi, Jianmai; Wu, Xiaoqun; Nie, Yuanping; Huang, Chengdong; Du, Jing; Zhou, Ying; Guo, Ronghua; Tao, Yerong

    2016-02-01

    The weighted spectral distribution (WSD) is a metric defined on the normalized Laplacian spectrum. In this study, synchronic random graphs are first used to rigorously analyze the metric's scaling feature, which indicates that the metric grows sublinearly as the network size increases, and the metric's scaling feature is demonstrated to be common in networks with Gaussian, exponential, and power-law degree distributions. Furthermore, a deterministic model of diachronic graphs is developed to illustrate the correlation between the slope coefficient of the metric's asymptotic line and the average path length, and the similarities and differences between synchronic and diachronic random graphs are investigated to better understand the correlation. Finally, numerical analysis is presented based on simulated and real-world data of evolving networks, which shows that the ratio of the WSD to the network size is a good indicator of the average path length.

  11. Modeling the average shortest-path length in growth of word-adjacency networks.

    PubMed

    Kulig, Andrzej; Drożdż, Stanisław; Kwapień, Jarosław; Oświȩcimka, Paweł

    2015-03-01

    We investigate properties of evolving linguistic networks defined by the word-adjacency relation. Such networks belong to the category of networks with accelerated growth but their shortest-path length appears to reveal the network size dependence of different functional form than the ones known so far. We thus compare the networks created from literary texts with their artificial substitutes based on different variants of the Dorogovtsev-Mendes model and observe that none of them is able to properly simulate the novel asymptotics of the shortest-path length. Then, we identify the local chainlike linear growth induced by grammar and style as a missing element in this model and extend it by incorporating such effects. It is in this way that a satisfactory agreement with the empirical result is obtained. PMID:25871160

  12. Depth-resolved photothermal optical coherence tomography by local optical path length change measurement (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Makita, Shuichi; Hong, Young-Joo; Li, En; Yasuno, Yoshiaki

    2016-03-01

    Photothermal OCT has been emerged to contrast absorbers in biological tissues. The tissues response to photothermal excitation as change of thermal strain and refractive index. To resolve the depth of absorption agents, the measurements of the local thermal strain change and local refractive index change due to photothermal effect is required. In this study, we developed photothermal OCT for depth-resolved absorption contrast imaging. The phase-resolved OCT can measure the axial strain change and local refractive index change as local optical path length change. A swept-source OCT system is used with a wavelength swept laser at 1310 nm with a scanning rate of 50 kHz. The sensitivity of 110 dB is achieved. At the sample arm, the excitation beam from a fiber-coupled laser diode of 406 nm wavelength is combined with the OCT probe beam co-linearly. The slowly modulated excitation beam around 300 Hz illuminate biological tissues. M-mode scan is applied during one-period modulation duration. The local optical path length change is measured by temporal and axial phase difference. The theoretical prediction of the photothermal response is derived and in good agreement with experimental results. In the case of slow modulation, the delay of photothermal response can be neglected. The local path length changes are averaged over the half period of the excitation modulation, and then demodulated. This method exhibits 3-dB gain in the sensitivity of the local optical path length change measurement over the direct Fourier transform method. In vivo human skin imaging of endogenous absorption agent will be demonstrated.

  13. Short path length pQCD corrections to energy loss in the quark gluon plasma

    NASA Astrophysics Data System (ADS)

    Kolbe, Isobel; Horowitz, W. A.

    2016-01-01

    The twin identifications of high-pT enhancement and low-pT collective behaviour in the shockingly small systems of interacting particles created in pA collisions calls for a detailed theoretical energy loss analysis. We study the way in which energy is dissipated in the QGP created in pA collisions by calculating the short path length corrections to the DGLV energy loss formulae that have produced excellent predictions for AA collisions. We find that, shockingly, because of the large formation time assumption (used in the DGLV calculation), a highly non-trivial cancellation of correction terms results in a null short path length correction to the DGLV energy loss formula. We investigate the effect of relaxing the large formation time assumption in the final stages of the calculation and find, because of the separation distance between production and scattering centre is integrated over from 0 to ∞, ≳ 100% corrections, even in the large path length approximation employed by DGLV.

  14. A Run-Length Encoding Approach for Path Analysis of C. elegans Search Behavior

    PubMed Central

    Kim, Hongkyun; Furst, Jacob

    2016-01-01

    The nematode Caenorhabditis elegans explores the environment using a combination of different movement patterns, which include straight movement, reversal, and turns. We propose to quantify C. elegans movement behavior using a computer vision approach based on run-length encoding of step-length data. In this approach, the path of C. elegans is encoded as a string of characters, where each character represents a path segment of a specific type of movement. With these encoded string data, we perform k-means cluster analysis to distinguish movement behaviors resulting from different genotypes and food availability. We found that shallow and sharp turns are the most critical factors in distinguishing the differences among the movement behaviors. To validate our approach, we examined the movement behavior of tph-1 mutants that lack an enzyme responsible for serotonin biosynthesis. A k-means cluster analysis with the path string-encoded data showed that tph-1 movement behavior on food is similar to that of wild-type animals off food. We suggest that this run-length encoding approach is applicable to trajectory data in animal or human mobility data. PMID:27462364

  15. Visibility oscillation in a multimode laser interferometer signal and its use in optimizing path lengths

    NASA Astrophysics Data System (ADS)

    Ruden, E. L.; Camacho, J. F.; Lynn, A. G.

    2013-10-01

    The interference signal visibility V (difference to sum ratio of intensities at maximum and minimum interference) of an interferometer that uses a multimode laser is here derived for a given laser gain profile and spectral mode separation as a function of the difference ZS between the probe and reference beam optical path lengths and the spectral separation kS between the center of the laser gain profile and the nearest laser mode of higher frequency. kS has a significant effect on V for a given ZS. This parameter, in lasers where it sweeps freely across the gain profile, and other effects, such as various misalignments and optical coupling inefficiencies, render V alone an unreliable parameter for quantifying ZS (for the purpose of reducing it, say). However, the difference to sum ratio of the maximum and minimum V due to variations in kS for a given ZS is an intrinsic property of the laser insensitive to configurational details. Parameter W so defined, therefore, proves very useful for balancing path lengths. This is of particular importance for systems where probe and/or reference beams are transmitted via long single mode optical fibers, so this application is detailed. Optical path lengths within such fibers often cannot be measured to sufficient accuracy by spatial path length measurements due to fiber nonuniformity resulting in variations in the mode's group velocity (needed to convert to optical path length). Two examples are provided using different makes and models of 0.633 μm HeNe lasers with similar specifications. In the first case, the function W(ZS) is calculated directly from the laser's published gain profile and mode separation. In the second case, W is determined empirically for a range of ZS values for a laser with an unknown gain profile in a (heterodyned) interferometer whose interference signal oscillates between maximum and minimum intensity at 80 MHz due to the reference beam's optical frequency being acousto-optically upshifted by that

  16. Ray tracing based path-length calculations for polarized light tomographic imaging

    NASA Astrophysics Data System (ADS)

    Manjappa, Rakesh; Kanhirodan, Rajan

    2015-09-01

    A ray tracing based path length calculation is investigated for polarized light transport in a pixel space. Tomographic imaging using polarized light transport is promising for applications in optical projection tomography of small animal imaging and turbid media with low scattering. Polarized light transport through a medium can have complex effects due to interactions such as optical rotation of linearly polarized light, birefringence, di-attenuation and interior refraction. Here we investigate the effects of refraction of polarized light in a non-scattering medium. This step is used to obtain the initial absorption estimate. This estimate can be used as prior in Monte Carlo (MC) program that simulates the transport of polarized light through a scattering medium to assist in faster convergence of the final estimate. The reflectance for p-polarized (parallel) and s-polarized (perpendicular) are different and hence there is a difference in the intensities that reach the detector end. The algorithm computes the length of the ray in each pixel along the refracted path and this is used to build the weight matrix. This weight matrix with corrected ray path length and the resultant intensity reaching the detector for each ray is used in the algebraic reconstruction (ART) method. The proposed method is tested with numerical phantoms for various noise levels. The refraction errors due to regions of different refractive index are discussed, the difference in intensities with polarization is considered. The improvements in reconstruction using the correction so applied is presented. This is achieved by tracking the path of the ray as well as the intensity of the ray as it traverses through the medium.

  17. Length Dependent Thermal Conductivity Measurements Yield Phonon Mean Free Path Spectra in Nanostructures

    PubMed Central

    Zhang, Hang; Hua, Chengyun; Ding, Ding; Minnich, Austin J.

    2015-01-01

    Thermal conductivity measurements over variable lengths on nanostructures such as nanowires provide important information about the mean free paths (MFPs) of the phonons responsible for heat conduction. However, nearly all of these measurements have been interpreted using an average MFP even though phonons in many crystals possess a broad MFP spectrum. Here, we present a reconstruction method to obtain MFP spectra of nanostructures from variable-length thermal conductivity measurements. Using this method, we investigate recently reported length-dependent thermal conductivity measurements on SiGe alloy nanowires and suspended graphene ribbons. We find that the recent measurements on graphene imply that 70% of the heat in graphene is carried by phonons with MFPs longer than 1 micron. PMID:25764977

  18. Length dependent thermal conductivity measurements yield phonon mean free path spectra in nanostructures.

    PubMed

    Zhang, Hang; Hua, Chengyun; Ding, Ding; Minnich, Austin J

    2015-01-01

    Thermal conductivity measurements over variable lengths on nanostructures such as nanowires provide important information about the mean free paths (MFPs) of the phonons responsible for heat conduction. However, nearly all of these measurements have been interpreted using an average MFP even though phonons in many crystals possess a broad MFP spectrum. Here, we present a reconstruction method to obtain MFP spectra of nanostructures from variable-length thermal conductivity measurements. Using this method, we investigate recently reported length-dependent thermal conductivity measurements on SiGe alloy nanowires and suspended graphene ribbons. We find that the recent measurements on graphene imply that 70% of the heat in graphene is carried by phonons with MFPs longer than 1 micron. PMID:25764977

  19. Cosmic-ray propagation in the Galaxy and in the heliosphere - The path-length distribution at low energy

    NASA Technical Reports Server (NTRS)

    Garcia-Munoz, M.; Simpson, J. A.; Guzik, T. G.; Wefel, J. P.; Margolis, S. H.

    1987-01-01

    The energy dependence of the path-length distribution of cosmic rays at low energies, below relativistic velocities, is studied, and its implications for models of cosmic-ray confinement and propagation in the Galaxy and Galactic halo, including the effects of a possible Galactic wind, are studied. It is found that the mean free path in Galactic propagation must be fully energy-dependent, with the mean of an exponential path-length distribution increasing with increasing energy below 1 GeV per nucleon and decreasing with increasing energy above 1 GeV per nucleon. This indicates that, at low energies, diffusion is not the controlling process. The path-length distribution is not purely exponential but is depleted in short path lengths at low energies. This depletion is energy-dependent, being largest at low energies and decreasing with increasing energy.

  20. Determinants of daily path length in black and gold howler monkeys (Alouatta caraya) in northeastern Argentina.

    PubMed

    Raño, Mariana; Kowalewski, Martin M; Cerezo, Alexis M; Garber, Paul A

    2016-08-01

    Models used to explain the social organization of primates suggest that variation in daily path length (DPL) is a response to variation in resource distribution and the intensity of intragroup feeding competition. However, daily path length may be affected by a number of other factors including the availability and distribution of nutritionally complementary food items, temperature which can influence activity budget, patterns of subgrouping, and the frequency and function of intergroup encounters. In this 6-month study (total 495 hr of quantitative data), we examined daily path lengths in two neighboring groups of black and gold howler monkeys (Alouatta caraya) inhabiting a semi-deciduous gallery forest in San Cayetano (27° 30'S, 58° 41'W), in the northwest province of Corrientes, Argentina. Both study groups were of similar size and composition. We identified relationships across groups between time spent feeding on fruits, leaves, and flowers, the number of trees visited, group spread, frequency of intergroup encounters, mean daily temperature, and DPL. Our results suggest that variation in food availability had a significant impact on howler ranging behavior by increasing DPL under conditions of high immature and mature fruit availability, and by decreasing DPL with increased availability and increased time invested in feeding on mature leaves. These results do not support the contention that a reduction in food availability or an increase in within-group feeding competition increased DPL in black and gold howler monkeys. DPL in black and gold howlers is influenced by several interrelated factors. In this regard we suggest that models of socio-ecology and ecological constraints need to reconsider how factors such as individual nutritional requirements, social tolerance and group cohesion, and the spatial and temporal availability of preferred and nearby food resources influence primate ranging behavior. Am. J. Primatol. 78:825-837, 2016. © 2016 Wiley

  1. On the path length of an excess electron interacted with optical phonons in a molecular chain

    NASA Astrophysics Data System (ADS)

    Lakhno, V. D.

    2008-08-01

    We show that in a molecular chain with dispersionless phonons at zero temperature, a “quasistationary” moving soliton state of an excess electron is possible. As the soliton velocity vanishes, the path length of the excess electron exponentially tends to infinity. It is demonstrated that in the presence of dispersion, when the soliton initial velocity exceeds the maximum group velocity of the chain, the soliton slows down until it reaches the maximum group velocity and then moves stationarily at this maximum group velocity. A conclusion is made of the fallacy of some works were the existence of moving polarons in a dispersionless medium is considered infeasible.

  2. Contact surface motion paths associated with leg length inequality following unilateral total hip replacement.

    PubMed

    Budenberg, Sarah; Redmond, Anthony; White, Derek; Grainger, Andrew; O'Connor, Philip; Stone, Martin H; Stewart, Todd D

    2012-12-01

    In the past, there has been little research into leg length inequality (LLI) and its effect on hip arthroplasty bearing longevity. This investigation aimed to determine the effects of post-operative LLI on hip motions during gait and to postulate the subsequent influence on the wear of the artificial hip joint replacement. Motion data from a clinical gait analysis were processed with an in-house computational model to plot graphs showing the movement of loci of 20 points on the femoral head during one gait cycle for two cohorts: 19 LLI patients and 38 normal healthy patients. Loci paths were quantified by calculating the aspect ratio (AR) of the path shape. It was found that on average, LLI patients had a reduction in flexion/extension and abduction/adduction. Furthermore, the AR of LLI patients was found to be 8% smaller than the normal group. The shorter, more multidirectional, motion paths in LLI patients would suggest the potential for greater wear in a polyethylene bearing compared to an asymptomatic, non-LLI patient. The results have potential implications towards preclinical wear testing of joint replacements. PMID:23636960

  3. The effect of path length and display size on memory for spatial information.

    PubMed

    Guérard, Katherine; Tremblay, Sébastien

    2012-01-01

    In serial memory for spatial information, some studies showed that recall performance suffers when the distance between successive locations increases relatively to the size of the display in which they are presented (the path length effect; e.g., Parmentier et al., 2005) but not when distance is increased by enlarging the size of the display (e.g., Smyth & Scholey, 1994). In the present study, we examined the effect of varying the absolute and relative distance between to-be-remembered items on memory for spatial information. We manipulated path length using small (15″) and large (64″) screens within the same design. In two experiments, we showed that distance was disruptive mainly when it is varied relatively to a fixed reference frame, though increasing the size of the display also had a small deleterious effect on recall. The insertion of a retention interval did not influence these effects, suggesting that rehearsal plays a minor role in mediating the effects of distance on serial spatial memory. We discuss the potential role of perceptual organization in light of the pattern of results. PMID:22246063

  4. New method for path-length equalization of long single-mode fibers for interferometry

    NASA Astrophysics Data System (ADS)

    Anderson, M.; Monnier, J. D.; Ozdowy, K.; Woillez, J.; Perrin, G.

    2014-07-01

    The ability to use single mode (SM) fibers for beam transport in optical interferometry offers practical advantages over conventional long vacuum pipes. One challenge facing fiber transport is maintaining constant differential path length in an environment where environmental thermal variations can lead to cm-level variations from day to night. We have fabricated three composite cables of length 470 m, each containing 4 copper wires and 3 SM fibers that operate at the astronomical H band (1500-1800 nm). Multiple fibers allow us to test performance of a circular core fiber (SMF28), a panda-style polarization-maintaining (PM) fiber, and a lastly a specialty dispersion-compensated PM fiber. We will present experimental results using precision electrical resistance measurements of the of a composite cable beam transport system. We find that the application of 1200 W over a 470 m cable causes the optical path difference in air to change by 75 mm (+/- 2 mm) and the resistance to change from 5.36 to 5.50Ω. Additionally, we show control of the dispersion of 470 m of fiber in a single polarization using white light interference fringes (λc=1575 nm, Δλ=75 nm) using our method.

  5. A volumetric approach to path-length measurements is essential when treating radiotherapy with modulated beams

    SciTech Connect

    Forde, Elizabeth; Booth, Jeremy; Leech, Michelle

    2014-07-01

    The established dosimetric benefits of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy have lead to their increased use in prostate radiotherapy. Complimenting these techniques, volumetric image guidance has supported increased positional accuracy. In addition, 3-dimensional image guidance has also allowed for assessment of potential dosimetric variation that can be attributed to a deformation of either internal or external structures, such as rectal distension or body contour. Compounding these issues is the variation of tissue density through which the new field position passes and also the variation of dose across a modulated beam. Despite the growing level of interest in this area, there are only a limited number of articles that examine the effect of a variation in beam path length, particularly across a modulated field. IMRT and volumetric-modulated radiation therapy (VMAT) fields are dynamic in nature, and the dose gradient within these fields is variable. Assessment of variation of path length away from the beam's central axis and across the entire field is vital where there is considerable variation of dose within the field, such as IMRT and VMAT. In these cases, reliance on the traditional central axis to focus skin distances is no longer appropriate. This article discusses these more subtle challenges that may have a significant clinical effect if left unrecognized and undervalued.

  6. The Sensitivity of Sediment Path-Lengths to Channel Morphology: Results from Physical Models of Braided Rivers

    NASA Astrophysics Data System (ADS)

    Kasprak, A.; Ashmore, P.; Peirce, S.; Wheaton, J. M.

    2013-12-01

    The travel distances of coarse sediment in gravel-bed rivers during floods, or their path-lengths, exhibit strong dependencies on the arrangement of geomorphic units they are sourced from, routed through or around, and finally deposited on. Despite previous research on both braiding and single-thread meandering streams, a coherent rule set which relates particle path lengths to morphology remains elusive; such a rule set has the potential to vastly simplify models which seek to predict sediment transport or morphodynamics in these channels. Here we seek to understand the sensitivity of particle path-length distributions to morphology via a physical model of a braided stream, by using fluorescent tracer particles to track sediment path-lengths. These flume experiments provide a rich dataset composed of before-and-after bed photogrammetry, along with high-resolution photography and high-speed video documentation of particle deposition and mobility. Initial analyses indicate a strong coupling between particle path-length and the spatial arrangement of in-channel geomorphic units, with bar heads and point bars frequently acting as sink locations for tracer particles. This is interesting as it suggests that morphodynamics are in part contingent on morphology with strong positive feedbacks on hydraulics, deposition and negative feedbacks on path-length. Several mechanisms of braiding were captured in the simulations as erosional source processes for the tracers, including chute cutoff of point bars, bank erosion, channel incision, and bar edge trimming. These results may help inform the development of morphodynamic models for braided rivers which rely on particle path-lengths to simplify sediment transport algorithms, and such relations between channel morphology and path-length hold the potential to benefit numerous other modeling efforts, as well as provide a heuristic framework with which to understand fluvial morphodynamics.

  7. Comparison between solar electron and ion path lengths traveled during the Ground-Level Enhancement events in solar cycle 23

    NASA Astrophysics Data System (ADS)

    Malandraki, Olga; Tan, Lun; Reames, Donald; Ng, Chee; Wang, Linghua; Patsou, Ioanna; Papaioannou, Athanasios

    2014-05-01

    The inconsistency of electron and ion path lengths during Solar Energetic Particle (SEP) events remains an open issue. In order to investigate the difference between the electron and ion path lengths during the Ground-Level Enhancement (GLE) events in solar cycle 23, electron and ion data from the WIND/3DP/SST and WIND/EPACT/LEMT instruments respectively have been used. The electron path lengths were determined for the GLEs in solar cycle 23 assuming that the solar release time of non-relativistic electrons is well represented by the onset time of metric type II or decametre-hectometric (DH) type III radio bursts. The values estimated for low-energy electrons (~ 27 keV) were compared to the ion path lengths deduced by Reames for the GLEs in solar cycle 23 based on the onset-time analysis and consistency within an error range of 10% was found. In addition, the electron path lengths were found to increase with increasing electron energies, with the increasing rate of path lengths corresponding to broader position angle distribution (PAD) of electrons, which suggests that electron path length enhancement is due to interplanetary scattering experienced by first-arriving electrons. Furthermore, the solar longitude distribution and IMF topology of the GLE events examined support that the non-relativistic electrons observed have been accelerated in shocks driven by CMEs. Finally, it should be stressed that the observed path length consistency leads to stability of magnetic flux tubes along which particles travel, with a maximum stability time of ~ 4.8 hours, which could be very important for forecasting since, based on the observed onset time of the electron event, it is possible to observe the arrival and duration of the proton event.

  8. Two Upper Bounds for the Weighted Path Length of Binary Trees. Report No. UIUCDCS-R-73-565.

    ERIC Educational Resources Information Center

    Pradels, Jean Louis

    Rooted binary trees with weighted nodes are structures encountered in many areas, such as coding theory, searching and sorting, information storage and retrieval. The path length is a meaningful quantity which gives indications about the expected time of a search or the length of a code, for example. In this paper, two sharp bounds for the total…

  9. DIC image reconstruction using an energy minimization framework to visualize optical path length distribution

    PubMed Central

    Koos, Krisztian; Molnár, József; Kelemen, Lóránd; Tamás, Gábor; Horvath, Peter

    2016-01-01

    Label-free microscopy techniques have numerous advantages such as low phototoxicity, simple setup and no need for fluorophores or other contrast materials. Despite their advantages, most label-free techniques cannot visualize specific cellular compartments or the location of proteins and the image formation limits quantitative evaluation. Differential interference contrast (DIC) is a qualitative microscopy technique that shows the optical path length differences within a specimen. We propose a variational framework for DIC image reconstruction. The proposed method largely outperforms state-of-the-art methods on synthetic, artificial and real tests and turns DIC microscopy into an automated high-content imaging tool. Image sets and the source code of the examined algorithms are made publicly available. PMID:27453091

  10. Beam splitter and method for generating equal optical path length beams

    DOEpatents

    Qian, Shinan; Takacs, Peter

    2003-08-26

    The present invention is a beam splitter for splitting an incident beam into first and second beams so that the first and second beams have a fixed separation and are parallel upon exiting. The beam splitter includes a first prism, a second prism, and a film located between the prisms. The first prism is defined by a first thickness and a first perimeter which has a first major base. The second prism is defined by a second thickness and a second perimeter which has a second major base. The film is located between the first major base and the second major base for splitting the incident beam into the first and second beams. The first and second perimeters are right angle trapezoidal shaped. The beam splitter is configured for generating equal optical path length beams.

  11. Determining average path length and average trapping time on generalized dual dendrimer

    NASA Astrophysics Data System (ADS)

    Li, Ling; Guan, Jihong

    2015-03-01

    Dendrimer has wide number of important applications in various fields. In some cases during transport or diffusion process, it transforms into its dual structure named Husimi cactus. In this paper, we study the structure properties and trapping problem on a family of generalized dual dendrimer with arbitrary coordination numbers. We first calculate exactly the average path length (APL) of the networks. The APL increases logarithmically with the network size, indicating that the networks exhibit a small-world effect. Then we determine the average trapping time (ATT) of the trapping process in two cases, i.e., the trap placed on a central node and the trap is uniformly distributed in all the nodes of the network. In both case, we obtain explicit solutions of ATT and show how they vary with the networks size. Besides, we also discuss the influence of the coordination number on trapping efficiency.

  12. Acoustic method for measuring the sound speed of gases over small path lengths.

    PubMed

    Olfert, J S; Checkel, M D; Koch, C R

    2007-05-01

    Acoustic "phase shift" methods have been used in the past to accurately measure the sound speed of gases. In this work, a phase shift method for measuring the sound speed of gases over small path lengths is presented. We have called this method the discrete acoustic wave and phase detection (DAWPD) method. Experimental results show that the DAWPD method gives accurate (+/-3.2 ms) and predictable measurements that closely match theory. The sources of uncertainty in the DAWPD method are examined and it is found that ultrasonic reflections and changes in the frequency ratio of the transducers (the ratio of driving frequency to resonant frequency) can be major sources of error. Experimentally, it is shown how these sources of uncertainty can be minimized. PMID:17552851

  13. DIC image reconstruction using an energy minimization framework to visualize optical path length distribution.

    PubMed

    Koos, Krisztian; Molnár, József; Kelemen, Lóránd; Tamás, Gábor; Horvath, Peter

    2016-01-01

    Label-free microscopy techniques have numerous advantages such as low phototoxicity, simple setup and no need for fluorophores or other contrast materials. Despite their advantages, most label-free techniques cannot visualize specific cellular compartments or the location of proteins and the image formation limits quantitative evaluation. Differential interference contrast (DIC) is a qualitative microscopy technique that shows the optical path length differences within a specimen. We propose a variational framework for DIC image reconstruction. The proposed method largely outperforms state-of-the-art methods on synthetic, artificial and real tests and turns DIC microscopy into an automated high-content imaging tool. Image sets and the source code of the examined algorithms are made publicly available. PMID:27453091

  14. Simulation of experimental investigations of X-ray spectral path lengths on Iskra-5 laser facility

    NASA Astrophysics Data System (ADS)

    Bel'kov, S. A.; Sharov, O. O.

    2011-10-01

    We describe an improved Slater average-ion model employed in the numerical-theoretical analysis of experimental data, which were obtained in the investigation of X-ray spectral path lengths performed on the Iskra-5 laser facility at the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF). The proposed model permits determining the spectral characteristics of the X-ray radiation with an accuracy of a few electronvolts. We outline the results of simulations of experiments with X-ray radiation-heated aluminium and germanium specimens of initial thickness of ~0.1 mm, in which absorption lines arising from 1s—2p transitions in Al and the absorption band arising from 2p—3d transitions in Ge were recorded.

  15. Simulation of experimental investigations of X-ray spectral path lengths on Iskra-5 laser facility

    SciTech Connect

    Bel'kov, S A; Sharov, O O

    2011-10-31

    We describe an improved Slater average-ion model employed in the numerical-theoretical analysis of experimental data, which were obtained in the investigation of X-ray spectral path lengths performed on the Iskra-5 laser facility at the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF). The proposed model permits determining the spectral characteristics of the X-ray radiation with an accuracy of a few electronvolts. We outline the results of simulations of experiments with X-ray radiation-heated aluminium and germanium specimens of initial thickness of {approx}0.1 mm, in which absorption lines arising from 1s-2p transitions in Al and the absorption band arising from 2p-3d transitions in Ge were recorded.

  16. Correlations between psychometric schizotypy, scan path length, fixations on the eyes and face recognition.

    PubMed

    Hills, Peter J; Eaton, Elizabeth; Pake, J Michael

    2016-01-01

    Psychometric schizotypy in the general population correlates negatively with face recognition accuracy, potentially due to deficits in inhibition, social withdrawal, or eye-movement abnormalities. We report an eye-tracking face recognition study in which participants were required to match one of two faces (target and distractor) to a cue face presented immediately before. All faces could be presented with or without paraphernalia (e.g., hats, glasses, facial hair). Results showed that paraphernalia distracted participants, and that the most distracting condition was when the cue and the distractor face had paraphernalia but the target face did not, while there was no correlation between distractibility and participants' scores on the Schizotypal Personality Questionnaire (SPQ). Schizotypy was negatively correlated with proportion of time fixating on the eyes and positively correlated with not fixating on a feature. It was negatively correlated with scan path length and this variable correlated with face recognition accuracy. These results are interpreted as schizotypal traits being associated with a restricted scan path leading to face recognition deficits. PMID:25835241

  17. The distribution of path lengths of self avoiding walks on Erdős–Rényi networks

    NASA Astrophysics Data System (ADS)

    Tishby, Ido; Biham, Ofer; Katzav, Eytan

    2016-07-01

    We present an analytical and numerical study of the paths of self avoiding walks (SAWs) on random networks. Since these walks do not retrace their paths, they effectively delete the nodes they visit, together with their links, thus pruning the network. The walkers hop between neighboring nodes, until they reach a dead-end node from which they cannot proceed. Focusing on Erdős–Rényi networks we show that the pruned networks maintain a Poisson degree distribution, {p}t(k), with an average degree, < k{> }t, that decreases linearly in time. We enumerate the SAW paths of any given length and find that the number of paths, {n}T({\\ell }), increases dramatically as a function of {\\ell }. We also obtain analytical results for the path-length distribution, P({\\ell }), of the SAW paths which are actually pursued, starting from a random initial node. It turns out that P({\\ell }) follows the Gompertz distribution, which means that the termination probability of an SAW path increases with its length.

  18. Nearly arc-length tool path generation and tool radius compensation algorithm research in FTS turning

    NASA Astrophysics Data System (ADS)

    Zhao, Minghui; Zhao, Xuesen; Li, Zengqiang; Sun, Tao

    2014-08-01

    In the non-rotational symmetrical microstrcture surfaces generation using turning method with Fast Tool Servo(FTS), non-uniform distribution of the interpolation data points will lead to long processing cycle and poor surface quality. To improve this situation, nearly arc-length tool path generation algorithm is proposed, which generates tool tip trajectory points in nearly arc-length instead of the traditional interpolation rule of equal angle and adds tool radius compensation. All the interpolation points are equidistant in radial distribution because of the constant feeding speed in X slider, the high frequency tool radius compensation components are in both X direction and Z direction, which makes X slider difficult to follow the input orders due to its large mass. Newton iterative method is used to calculate the neighboring contour tangent point coordinate value with the interpolation point X position as initial value, in this way, the new Z coordinate value is gotten, and the high frequency motion components in X direction is decomposed into Z direction. Taking a typical microstructure with 4μm PV value for test, which is mixed with two 70μm wave length sine-waves, the max profile error at the angle of fifteen is less than 0.01μm turning by a diamond tool with big radius of 80μm. The sinusoidal grid is machined on a ultra-precision lathe succesfully, the wavelength is 70.2278μm the Ra value is 22.81nm evaluated by data points generated by filtering out the first five harmonics.

  19. Finding the biased-shortest path with minimal congestion in networks via linear-prediction of queue length

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Ren, Gang; Liu, Yang

    2016-06-01

    In this paper, we propose a biased-shortest path method with minimal congestion. In the method, we use linear-prediction to estimate the queue length of nodes, and propose a dynamic accepting probability function for nodes to decide whether accept or reject the incoming packets. The dynamic accepting probability function is based on the idea of homogeneous network flow and is developed to enable nodes to coordinate their queue length to avoid congestion. A path strategy incorporated with the linear-prediction of the queue length and the dynamic accepting probability function of nodes is designed to allow packets to be automatically delivered on un-congested paths with short traveling time. Our method has the advantage of low computation cost because the optimal paths are dynamically self-organized by nodes in the delivering process of packets with local traffic information. We compare our method with the existing methods such as the efficient path method (EPS) and the optimal path method (OPS) on the BA scale-free networks and a real example. The numerical computations show that our method performs best for low network load and has minimum run time due to its low computational cost and local routing scheme.

  20. Continuous correction of differential path length factor in near-infrared spectroscopy.

    PubMed

    Talukdar, Tanveer; Moore, Jason H; Diamond, Solomon G

    2013-05-01

    In continuous-wave near-infrared spectroscopy (CW-NIRS), changes in the concentration of oxyhemoglobin and deoxyhemoglobin can be calculated by solving a set of linear equations from the modified Beer-Lambert Law. Cross-talk error in the calculated hemodynamics can arise from inaccurate knowledge of the wavelength-dependent differential path length factor (DPF). We apply the extended Kalman filter (EKF) with a dynamical systems model to calculate relative concentration changes in oxy- and deoxyhemoglobin while simultaneously estimating relative changes in DPF. Results from simulated and experimental CW-NIRS data are compared with results from a weighted least squares (WLSQ) method. The EKF method was found to effectively correct for artificially introduced errors in DPF and to reduce the cross-talk error in simulation. With experimental CW-NIRS data, the hemodynamic estimates from EKF differ significantly from the WLSQ (p < 0.001). The cross-correlations among residuals at different wavelengths were found to be significantly reduced by the EKF method compared to WLSQ in three physiologically relevant spectral bands 0.04 to 0.15 Hz, 0.15 to 0.4 Hz and 0.4 to 2.0 Hz (p < 0.001). This observed reduction in residual cross-correlation is consistent with reduced cross-talk error in the hemodynamic estimates from the proposed EKF method. PMID:23640027

  1. Continuous correction of differential path length factor in near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Talukdar, Tanveer; Moore, Jason H.; Diamond, Solomon G.

    2013-05-01

    In continuous-wave near-infrared spectroscopy (CW-NIRS), changes in the concentration of oxyhemoglobin and deoxyhemoglobin can be calculated by solving a set of linear equations from the modified Beer-Lambert Law. Cross-talk error in the calculated hemodynamics can arise from inaccurate knowledge of the wavelength-dependent differential path length factor (DPF). We apply the extended Kalman filter (EKF) with a dynamical systems model to calculate relative concentration changes in oxy- and deoxyhemoglobin while simultaneously estimating relative changes in DPF. Results from simulated and experimental CW-NIRS data are compared with results from a weighted least squares (WLSQ) method. The EKF method was found to effectively correct for artificially introduced errors in DPF and to reduce the cross-talk error in simulation. With experimental CW-NIRS data, the hemodynamic estimates from EKF differ significantly from the WLSQ (p<0.001). The cross-correlations among residuals at different wavelengths were found to be significantly reduced by the EKF method compared to WLSQ in three physiologically relevant spectral bands 0.04 to 0.15 Hz, 0.15 to 0.4 Hz and 0.4 to 2.0 Hz (p<0.001). This observed reduction in residual cross-correlation is consistent with reduced cross-talk error in the hemodynamic estimates from the proposed EKF method.

  2. Continuous correction of differential path length factor in near-infrared spectroscopy

    PubMed Central

    Moore, Jason H.; Diamond, Solomon G.

    2013-01-01

    Abstract. In continuous-wave near-infrared spectroscopy (CW-NIRS), changes in the concentration of oxyhemoglobin and deoxyhemoglobin can be calculated by solving a set of linear equations from the modified Beer-Lambert Law. Cross-talk error in the calculated hemodynamics can arise from inaccurate knowledge of the wavelength-dependent differential path length factor (DPF). We apply the extended Kalman filter (EKF) with a dynamical systems model to calculate relative concentration changes in oxy- and deoxyhemoglobin while simultaneously estimating relative changes in DPF. Results from simulated and experimental CW-NIRS data are compared with results from a weighted least squares (WLSQ) method. The EKF method was found to effectively correct for artificially introduced errors in DPF and to reduce the cross-talk error in simulation. With experimental CW-NIRS data, the hemodynamic estimates from EKF differ significantly from the WLSQ (p<0.001). The cross-correlations among residuals at different wavelengths were found to be significantly reduced by the EKF method compared to WLSQ in three physiologically relevant spectral bands 0.04 to 0.15 Hz, 0.15 to 0.4 Hz and 0.4 to 2.0 Hz (p<0.001). This observed reduction in residual cross-correlation is consistent with reduced cross-talk error in the hemodynamic estimates from the proposed EKF method. PMID:23640027

  3. A microfabricated fixed path length silicon sample holder improves background subtraction for cryoSAXS

    PubMed Central

    Hopkins, Jesse B.; Katz, Andrea M.; Meisburger, Steve P.; Warkentin, Matthew A.; Thorne, Robert E.; Pollack, Lois

    2015-01-01

    The application of small-angle X-ray scattering (SAXS) for high-throughput characterization of biological macromolecules in solution is limited by radiation damage. By cryocooling samples, radiation damage and required sample volumes can be reduced by orders of magnitude. However, the challenges of reproducibly creating the identically sized vitrified samples necessary for conventional background subtraction limit the widespread adoption of this method. Fixed path length silicon sample holders for cryoSAXS have been microfabricated to address these challenges. They have low background scattering and X-ray absorption, require only 640 nl of sample, and allow reproducible sample cooling. Data collected in the sample holders from a nominal illuminated sample volume of 2.5 nl are reproducible down to q ≃ 0.02 Å−1, agree with previous cryoSAXS work and are of sufficient quality for reconstructions that match measured crystal structures. These sample holders thus allow faster, more routine cryoSAXS data collection. Additional development is required to reduce sample fracturing and improve data quality at low q. PMID:26089749

  4. Optical study of thin-film photovoltaic cells with apparent optical path length

    NASA Astrophysics Data System (ADS)

    Cho, Changsoon; Jeong, Seonju; Lee, Jung-Yong

    2016-09-01

    Extending the insufficient optical path length (OPL) in thin-film photovoltaic cells (PVs) is the key to achieving a high power conversion efficiency (PCE) in devices. Here, we introduce the apparent OPL (AOPL) as a figure of merit for light absorbing capability in thin-film PVs. The optical characteristics such as the structural effects and angular responses in thin-film PVs were analyzed in terms of the AOPL. Although the Lambertian scattering surface yields a broadband absorption enhancement in thin-film PVs, the enhancement is not as effective as in thick-film PVs. On the other hand, nanophotonic schemes are introduced as an approach to increasing the single-pass AOPL by inducing surface plasmon resonance. The scheme using periodic metal gratings is proved to increase the AOPL in a narrow wavelength range and specific polarization, overcoming the Yablonovitch limit. The AOPL calculation can be also adopted in the experimental analysis and a maximum AOPL of 4.15d (where d is the active layer thickness) is exhibited in the absorption band edge region of PTB7:PC70BM-based polymer PVs.

  5. Suppression of infrared absorption in nanostructured metals by controlling Faraday inductance and electron path length.

    PubMed

    Han, Sang Eon

    2016-02-01

    Nanostructured metals have been intensively studied for optical applications over the past few decades. However, the intrinsic loss of metals has limited the optical performance of the metal nanostructures in diverse applications. In particular, light concentration in metals by surface plasmons or other resonances causes substantial absorption in metals. Here, we avoid plasmonic excitations for low loss and investigate methods to further suppress loss in nanostructured metals. We demonstrate that parasitic absorption in metal nanostructures can be significantly reduced over a broad band by increasing the Faraday inductance and the electron path length. For an example structure, the loss is reduced in comparison to flat films by more than an order of magnitude over most of the very broad spectrum between short and long wavelength infrared. For a photodetector structure, the fraction of absorption in the photoactive material increases by two orders of magnitude and the photoresponsivity increases by 15 times because of the selective suppression of metal absorption. These findings could benefit many metal-based applications that require low loss such as photovoltaics, photoconductive detectors, solar selective surfaces, infrared-transparent defrosting windows, and other metamaterials. PMID:26906830

  6. Changes in diffusion path length with old age in diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Bonnéry, Clément; Leclerc, Paul-Olivier; Desjardins, Michèle; Hoge, Rick; Bherer, Louis; Pouliot, Philippe; Lesage, Frédéric

    2012-05-01

    Diffuse, optical near infrared imaging is increasingly being used in various neurocognitive contexts where changes in optical signals are interpreted through activation maps. Statistical population comparison of different age or clinical groups rely on the relative homogeneous distribution of measurements across subjects in order to infer changes in brain function. In the context of an increasing use of diffuse optical imaging with older adult populations, changes in tissue properties and anatomy with age adds additional confounds. Few studies investigated these changes with age. Duncan et al. measured the so-called diffusion path length factor (DPF) in a large population but did not explore beyond the age of 51 after which physiological and anatomical changes are expected to occur [Pediatr. Res. 39(5), 889-894 (1996)]. With increasing interest in studying the geriatric population with optical imaging, we studied changes in tissue properties in young and old subjects using both magnetic resonance imaging (MRI)-guided Monte-Carlo simulations and time-domain diffuse optical imaging. Our results, measured in the frontal cortex, show changes in DPF that are smaller than previously measured by Duncan et al. in a younger population. The origin of these changes are studied using simulations and experimental measures.

  7. Water-equivalent path length calibration of a prototype proton CT scanner

    PubMed Central

    Hurley, R. F.; Schulte, R. W.; Bashkirov, V. A.; Wroe, A. J.; Ghebremedhin, A.; Sadrozinski, H. F.-W.; Rykalin, V.; Coutrakon, G.; Koss, P.; Patyal, B.

    2012-01-01

    Purpose: The authors present a calibration method for a prototype proton computed tomography (pCT) scanner. The accuracy of these measurements depends upon careful calibration of the energy detector used to measure the residual energy of the protons that passed through the object. Methods: A prototype pCT scanner with a cesium iodide (CsI(Tl)) crystal calorimeter was calibrated by measuring the calorimeter response for protons of 200 and 100 MeV initial energies undergoing degradation in polystyrene plates of known thickness and relative stopping power (RSP) with respect to water. Calibration curves for the two proton energies were obtained by fitting a second-degree polynomial to the water-equivalent path length versus calorimeter response data. Using the 100 MeV calibration curve, the RSP values for a variety of tissue-equivalent materials were measured and compared to values obtained from a standard depth-dose range shift measurement using a water-tank. A cylindrical water phantom was scanned with 200 MeV protons and its RSP distribution was reconstructed using the 200 MeV calibration. Results: It is shown that this calibration method produces measured RSP values of various tissue-equivalent materials that agree to within 0.5% of values obtained using an established water-tank method. The mean RSP value of the water phantom reconstruction was found to be 0.995 ± 0.006. Conclusions: The method presented provides a simple and reliable procedure for calibration of a pCT scanner. PMID:22559614

  8. Pillar cuvettes: capillary-filled, microliter quartz cuvettes with microscale path lengths for optical spectroscopy.

    PubMed

    Holzner, Gregor; Kriel, Frederik Hermanus; Priest, Craig

    2015-05-01

    The goal of most analytical techniques is to reduce the lower limit of detection; however, it is sometimes necessary to do the opposite. High sample concentrations or samples with high molar absorptivity (e.g., dyes and metal complexes) often require multiple dilution steps or laborious sample preparation prior to spectroscopic analysis. Here, we demonstrate dilution-free, one-step UV-vis spectroscopic analysis of high concentrations of platinum(IV) hexachloride in a micropillar array, that is, "pillar cuvette". The cuvette is spontaneously filled by wicking of the liquid sample into the micropillar array. The pillar height (thus, the film thickness) defines the optical path length, which was reduced to between 10 and 20 μm in this study (3 orders of magnitude smaller than in a typical cuvette). Only one small droplet (∼2 μL) of sample is required, and the dispensed volume need not be precise or even known to the analyst for accurate spectroscopy measurements. For opaque pillars, we show that absorbance is linearly related to platinum concentration (the Beer-Lambert Law). For fully transparent or semitransparent pillars, the measured absorbance was successfully corrected for the fractional surface coverage of the pillars and the transmittance of the pillars and reference. Thus, both opaque and transparent pillars can be applied to absorbance spectroscopy of high absorptivity, microliter samples. It is also shown here that the pillar array has a useful secondary function as an integrated (in-cuvette) filter for particulates. For pillar cuvette measurements of platinum solutions spiked with 6 μm diameter polystyrene spheres, filtered and unfiltered samples gave identical spectra. PMID:25844800

  9. A Multi-Baseline 12 GHz Atmospheric Phase Interferometer with One Micron Path Length Sensitivity

    NASA Astrophysics Data System (ADS)

    Kimberk, Robert S.; Hunter, Todd R.; Leiker, Patrick S.; Blundell, Raymond; Nystrom, George U.; Petitpas, Glen R.; Test, John; Wilson, Robert W.; Yamaguchi, Paul; Young, Kenneth H.

    2012-12-01

    We have constructed a five station 12 GHz atmospheric phase interferometer (API) for the Submillimeter Array (SMA) located near the summit of Mauna Kea, Hawaii. Operating at the base of unoccupied SMA antenna pads, each station employs a commercial low noise mixing block coupled to a 0.7 m off-axis satellite dish which receives a broadband, white noise-like signal from a geostationary satellite. The signals are processed by an analog correlator to produce the phase delays between all pairs of stations with projected baselines ranging from 33-261 m. Each baseline's amplitude and phase is measured continuously at a rate of 8 kHz, processed, averaged and output at 10 Hz. Further signal processing and data reduction is accomplished with a Linux computer, including the removal of the diurnal motion of the target satellite. The placement of the stations below ground level with an environmental shield combined with the use of low temperature coefficient, buried fiber optic cables provides excellent system stability. The sensitivity in terms of rms path length is 1.3 microns which corresponds to phase deviations of about 1° of phase at the highest operating frequency of the SMA. The two primary data products are: (1) standard deviations of observed phase over various time scales, and (2) phase structure functions. These real-time statistical data measured by the API in the direction of the satellite provide an estimate of the phase front distortion experienced by the concurrent SMA astronomical observations. The API data also play an important role, along with the local opacity measurements and weather predictions, in helping to plan the scheduling of science observations on the telescope.

  10. Water-equivalent path length calibration of a prototype proton CT scanner

    SciTech Connect

    Hurley, R. F.; Schulte, R. W.; Bashkirov, V. A.; Wroe, A. J.; Ghebremedhin, A.; Sadrozinski, H. F.-W.; Rykalin, V.; Coutrakon, G.; Koss, P.; Patyal, B.

    2012-05-15

    Purpose: The authors present a calibration method for a prototype proton computed tomography (pCT) scanner. The accuracy of these measurements depends upon careful calibration of the energy detector used to measure the residual energy of the protons that passed through the object. Methods: A prototype pCT scanner with a cesium iodide (CsI(Tl)) crystal calorimeter was calibrated by measuring the calorimeter response for protons of 200 and 100 MeV initial energies undergoing degradation in polystyrene plates of known thickness and relative stopping power (RSP) with respect to water. Calibration curves for the two proton energies were obtained by fitting a second-degree polynomial to the water-equivalent path length versus calorimeter response data. Using the 100 MeV calibration curve, the RSP values for a variety of tissue-equivalent materials were measured and compared to values obtained from a standard depth-dose range shift measurement using a water-tank. A cylindrical water phantom was scanned with 200 MeV protons and its RSP distribution was reconstructed using the 200 MeV calibration. Results: It is shown that this calibration method produces measured RSP values of various tissue-equivalent materials that agree to within 0.5% of values obtained using an established water-tank method. The mean RSP value of the water phantom reconstruction was found to be 0.995 {+-} 0.006. Conclusions: The method presented provides a simple and reliable procedure for calibration of a pCT scanner.

  11. Estimation of Path Length Reduction Factor by Using One Year Rain Attenuation Statistics over a Line of Sight Link Operating at 28.75 GHz in Amritsar (INDIA)

    NASA Astrophysics Data System (ADS)

    Sharma, Parshotam; Hudiara, Inderjit Singh; Singh, Maninder Lal

    2011-02-01

    The effect of environmental factors in general and rain droplets in particular, on microwave propagation is a very well known fact now. If the rain droplets are present in an inhomogeneous way across the path length of the microwave communication system then, a new concept of path length reduction factor is introduced which accounts for the inhomogeneous nature of the rain droplets along the path length of the microwave signal. The present paper presents results of path length reduction factor using data on attenuation levels obtained on a LOS link operating at 28.75 GHz in Amritsar region and its comparison with Crane's and ITU-R's model.

  12. Correlation between seismic events and anomalous `VLF day-length' for west-east and east-west propagation paths

    NASA Astrophysics Data System (ADS)

    Ray, Suman; Chakrabarti, Sandip Kumar; Sasmal, Sudipta

    We present results of year-long analysis of VLF signals, both for VTX-Malda (`west-east' propagation path) and VTX-Pune (`east-west' propagation path). We analyzed whole year data of 2008 and 2009 for VTX-Malda and VTX-Pune propagation path, respectively. In both the cases we found that `VLF day-length' (defined as time difference between sunset terminator time and sunrise terminator time) became anomalously high 1-2 days before an earthquake. Besides this year-long study we have also done some case by case analysis. On 9th January, 2009 an earthquake of magnitude 5.5 occurred at Carlsberg Ridge (latitude 10.3(°) N, longitude 57.1(°) E). In a separate incident, on 3rd November, 2009, another earthquake of magnitude 5.4 occurred at Andaman Islands (latitude 14.1(°) N, longitude 93.1(°) E). We analyze VLF signals for VTX-Pune (`east-west’ propagation path) propagation path around these two earthquake days and found that for both of these cases, the `VLF-day-length' became anomalously high two days before the event. This agrees well with statistical analysis based on year-long data for VTX-Pune path. Furthermore, during time period of June, 2010, two major earthquakes of low-depth ( 10Km) and high magnitude (M>5) occurred near NWC-Salt Lake (east-west propagation path) propagation paths. First one occurred on 13th June, 2010 at Nicobar Islands, India (latitude 7.8(°) N, longitude 92.0(°) E). Its magnitude was 5.1 (in Richter scale). The second one of magnitude 6.0 (in Richter Scale) occurred on 19th June, 2010 at Andaman Islands, India (latitude 13.4(°) N, longitude 93.0(°) E). For both of these two earthquakes, we found that VLF-day-length, became anomalously high one day before earthquakes. We claim that these were pre-cursors of the earthquakes which occurred in Andaman and Nicober Islands.

  13. Geographical effects on the path length and the robustness in complex networks

    NASA Astrophysics Data System (ADS)

    Hayashi, Yukio; Matsukubo, Jun

    2006-06-01

    The short paths between any two nodes and the robustness of connectivity are advanced properties of scale-free (SF) networks; however, they may be affected by geographical constraints in realistic situations. We consider geographical networks with the SF structure based on planar triangulation for online routings, and suggest scaling relations between the average distance or number of hops on the optimal paths and the network size. We also show that the tolerance to random failures and attacks on hubs is weakened in geographical networks, and that even then it is possible for the extremely vulnerable ones to be improved by adding with the local exchange of links.

  14. Quantifying Path Length: Fourth-Grade Children's Developing Abstractions for Linear Measurement

    ERIC Educational Resources Information Center

    Barrett, Jeffrey E.; Clements, Douglas H.

    2003-01-01

    This article describes how children build increasingly abstract knowledge of linear measurement, emphasizing ways they relate space and number. Assessments indicate children struggle to understand measurement, especially concepts related to complex paths as in perimeter tasks. This article draws on developmental accounts of children's knowledge of…

  15. Oblique chirp sounding and modeling of ionospheric HF channel at paths of different length and orientation

    NASA Astrophysics Data System (ADS)

    Vertogradov, G. G.; Vertogradov, V. G.; Uryadov, V. P.

    2007-05-01

    [1] The results of systematic observations during 2005 of the main characteristics of HF propagation at a network of paths of oblique linear frequency modulation (LFM) sounding of the ionosphere are presented. The values of the maximum observed frequency (MOF) are calculated using the IRI 2001 model and the effective sunspot number W eff. It is shown that the difference between the predicted and measured monthly mean values does not exceed 12%. It is found that at all propagation paths, quasiperiodic variations of MOF are almost always observed. The amplitude of the MOF variations in the daytime can reach 2 MHz. A spectral analysis of the MOF variations at the midlatitude paths Cyprus-Rostov-on-Don and Inskip-Rostov-on-Don is performed. It is shown that the spectra of the MOF fluctuations have a well-pronounced linear structure. The power of spectral components of MOF fluctuations is concentrated in the 20-90 min range. Analyzing the dynamics of motion of z-type features on a trace of the high-angle ray, the periods of traveling ionospheric disturbances (TID) are determined and found to be 15-30 min. It is found that the TID with such periods correlate well with the sunset and sunrise for the middle point of the path. Modeling of oblique sounding (OS) ionograms at the presence of TID is performed taking into account the procedure of LFM signal processing. On the basis of the comparison of the experimental and calculated data, parameters of middle-scale wave disturbances responsible for the formation of z-type features in OS ionograms are determined.

  16. Phrase Length Matters: The Interplay between Implicit Prosody and Syntax in Korean "Garden Path" Sentences

    ERIC Educational Resources Information Center

    Hwang, Hyekyung; Steinhauer, Karsten

    2011-01-01

    In spoken language comprehension, syntactic parsing decisions interact with prosodic phrasing, which is directly affected by phrase length. Here we used ERPs to examine whether a similar effect holds for the on-line processing of written sentences during silent reading, as suggested by theories of "implicit prosody." Ambiguous Korean sentence…

  17. Linear and quadratic dispersion characterization of millimeter-length fibers and waveguides using common-path interferometry.

    PubMed

    Mohammed, W; Meier, J; Galle, M; Qian, L; Aitchison, J S; Smith, P W E

    2007-11-15

    We measured linear and quadratic dispersion on millimeter-length fibers, waveguides, and nanowires based on common-path spectral interferometry. We obtained the linear dispersion parameter, beta', with a relative precision of 1.45 x 10(-4), and extracted the quadratic dispersion parameter, beta'', from the Taylor expansion of beta' x beta'' values show a discrepancy of < 1% when compared with simulation as well as with measurement results obtained by a conventional Michelson interferometer. Using this method, we experimentally confirmed the sign inversion of the group velocity dispersion of AlGaAs nanowires for what is believed to be the first time. PMID:18026291

  18. Radiometric correction of atmospheric path length fluctuations in interferometric experiments. [in radio astronomy

    NASA Technical Reports Server (NTRS)

    Resch, G. M.; Hogg, D. E.; Napier, P. J.

    1984-01-01

    To support very long baseline interferometric experiments, a system has been developed for estimating atmospheric water vapor path delay. The system consists of dual microwave radiometers, one operating at 20.7 GHz and the other at 31.4 GHz. The measured atmospheric brightness temperatures at these two frequencies yield the estimate of the precipitable water present in both vapor and droplets. To determine the accuracy of the system, a series of observations were undertaken, comparing the outputs of two water vapor radiometers with the phase variation observed with two connected elements of the very large array (VLA). The results show that: (1) water vapor fluctuations dominate the residual VLA phase and (2) the microwave radiometers can measure and correct these effects. The rms phase error after correction is typically 15 deg at a wavelength of 6 cm, corresponding to an uncertainty in the path delay of 0.25 cm. The residual uncertainty is consistent with the stability of the microwave radiometer but is still considerably larger than the stability of the VLA. The technique is less successful under conditions of heavy cloud.

  19. Simulating the Effect of Modulated Tool-Path Chip Breaking On Surface Texture and Chip Length

    SciTech Connect

    Smith, K.S.; McFarland, J.T.; Tursky, D. A.; Assaid, T. S.; Barkman, W. E.; Babelay, Jr., E. F.

    2010-04-30

    One method for creating broken chips in turning processes involves oscillating the cutting tool in the feed direction utilizing the CNC machine axes. The University of North Carolina at Charlotte and the Y-12 National Security Complex have developed and are refining a method to reliably control surface finish and chip length based on a particular machine's dynamic performance. Using computer simulations it is possible to combine the motion of the machine axes with the geometry of the cutting tool to predict the surface characteristics and map the surface texture for a wide range of oscillation parameters. These data allow the selection of oscillation parameters to simultaneously ensure broken chips and acceptable surface characteristics. This paper describes the machine dynamic testing and characterization activities as well as the computational method used for evaluating and predicting chip length and surface texture.

  20. Thermodynamic length, time, speed, and optimum path to minimize entropy production

    NASA Astrophysics Data System (ADS)

    Diósi, L.; Kulacsy, K.; Lukács, B.; Rácz, A.

    1996-12-01

    In addition to the Riemannian metricization of the thermodynamic state space, local relaxation times offer a natural time scale, too. Generalizing existing proposals, we relate a thermodynamic time scale to the standard kinetic coefficients of irreversible thermodynamics. The notion of thermodynamic speed is generalized to higher dimensions. Criteria for minimum entropy production in slow, slightly irreversible processes are discussed. Euler-Lagrange equations are derived for optimum thermodynamic control for fixed clock time period as well as for fixed thermodynamic time period. It is emphasized that the correct derivation of the principle of constant thermodynamic speed, proposed earlier by others, requires the entropy minimization at fixed thermodynamic time instead of clock-time. Most remarkably, optimum paths are Riemannian geodesics which would not be the case had we used ordinary time. To interpret thermodynamic time, an easy-to-implement stepwise algorithm is constructed to realize control at constant thermodynamic speed. Thermodynamic time is shown to correspond to the number of steps, and the sophisticated task of determining thermodynamic time in real control problems is achieved by measuring ordinary intensive variables.

  1. Imaging and timing performance of 1 cm x 1 cm position-sensitive solid-state photomultiplier

    NASA Astrophysics Data System (ADS)

    Dokhale, P.; Schmall, J.; Stapels, C.; Christian, J.; Cherry, S. R.; Squillante, M. R.; Shah, K.

    2013-02-01

    We have designed and built a large-area 1cm × 1cm position-sensitive solid-state photomultiplier (PS-SSPM) for use in detector design for medical imaging applications. Our new large-area PS-SSPM concept implements resistive network between the micro-pixels, which are photodiodes operated in Geiger mode, called Geiger Photodiodes (GPDs), to provide continuous position sensitivity. Here we present imaging and timing performance of the large-area PS-SSPM for different temperatures and operating biases to find the optimum operating parameters for the device in imaging applications. A detector module was built by coupling a polished 8 × 8 LYSO array, with 1 × 1 × 20 mm3 elements, to a 1 × 1 cm2 PS-SSPM. Flood images recorded at room temperature show good crystal separation as all 64 elements were separated from each other. Cooling the device at 10 °C showed significant improvement. The device optimum bias voltage was ~ 4.5V over breakdown voltage. The coincidence timing resolution was improved significantly by increasing the operating bias, as well as by lowering the temperature to 0 °C. Results show excellent imaging performance and good timing response with a large-area PS-SSPM device.

  2. Temperature-dependent ballistic transport in a channel with length below the scattering-limited mean free path

    NASA Astrophysics Data System (ADS)

    Arora, Vijay K.; Zainal Abidin, Mastura Shafinaz; Tan, Michael L. P.; Riyadi, Munawar A.

    2012-03-01

    The temperature-dependent ballistic transport, using nonequilibrium Arora distribution function (NEADF), is shown to result in mobility degradation with reduction in channel length, in direct contrast to expectation of a collision-free transport. The ballistic mean free path (mfp) is much higher than the scattering-limited long-channel mfp, yet the mobility is amazingly lower. High-field effects, converting stochastic velocity vectors to streamlined ones, are found to be negligible when the applied voltage is less than the critical voltage appropriate for a ballistic mfp, especially at cryogenic temperatures. Excellent agreement with the experimental data on a metal-oxide-semiconductor field-effect transistor is obtained. The applications of NEADF are shown to cover a wide spectrum, covering regimes from the scattering-limited to ballistic, from nondegenerate to degenerate, from nanowire to bulk, from low- to high-temperature, and from a low electric field to an extremely high electric field.

  3. Investigation of an implantable dosimeter for single-point water equivalent path length verification in proton therapy

    PubMed Central

    Lu, Hsiao-Ming; Mann, Greg; Cascio, Ethan

    2010-01-01

    Purpose:In vivo range verification in proton therapy is highly desirable. A recent study suggested that it was feasible to use point dose measurement for in vivo beam range verification in proton therapy, provided that the spread-out Bragg peak dose distribution is delivered in a different and rather unconventional manner. In this work, the authors investigate the possibility of using a commercial implantable dosimeter with wireless reading for this particular application. Methods: The traditional proton treatment technique delivers all the Bragg peaks required for a SOBP field in a single sequence, producing a constant dose plateau across the target volume. As a result, a point dose measurement anywhere in the target volume will produce the same value, thus providing no information regarding the water equivalent path length to the point of measurement. However, the same constant dose distribution can be achieved by splitting the field into a complementary pair of subfields, producing two oppositely “sloped” depth-dose distributions, respectively. The ratio between the two distributions can be a sensitive function of depth and measuring this ratio at a point inside the target volume can provide the water equivalent path length to the dosimeter location. Two types of field splits were used in the experiment, one achieved by the technique of beam current modulation and the other by manipulating the location and width of the beam pulse relative to the range modulator track. Eight MOSFET-based implantable dosimeters at four different depths in a water tank were used to measure the dose ratios for these field pairs. A method was developed to correct the effect of the well-known LET dependence of the MOSFET detectors on the depth-dose distributions using the columnar recombination model. The LET-corrected dose ratios were used to derive the water equivalent path lengths to the dosimeter locations to be compared to physical measurements. Results: The implantable

  4. Carma 1 CM Line Survey of Orion-Kl

    NASA Astrophysics Data System (ADS)

    Friedel, Douglas; Looney, Leslie; Corby, Joanna F.; Remijan, Anthony

    2015-06-01

    We have conducted the first 1 cm (27-35 GHz) line survey of the Orion-KL region by an array. With a primary beam of ˜4.5 arcminutes, the survey looks at a region ˜166,000 AU (0.56 pc) across. The data have a resolution of ˜6 arcseconds on the sky and 97.6 kHz(1.07-0.84 km/s) in frequency. This region of frequency space is much less crowded than at 3mm or 1mm frequencies and contains the fundamental transitions of several complex molecular species, allowing us to probe the largest extent of the molecular emission. We present the initial results, and comparison to 3mm results, from several species including, dimethyl ether [(CH_3)_2O], ethyl cyanide [C_2H_5CN], acetone [(CH_3)_2CO], SO, and SO_2.

  5. Column Path Length Measurements Using a Multi-Frequency, Intensity-Modulated Continuous-Wave (IM-CW) Laser Absorption Spectrometer

    NASA Astrophysics Data System (ADS)

    Harrison, F. W.; Lin, B.; Browell, E. V.; Dobler, J.; McGregor, D.; Kooi, S. A.; Collins, J. E.

    2012-12-01

    Accurate understanding of carbon balance in the environment is critical to projections of the future evolution of the Earth's climate. As a result, the NRC Decadal Survey (DS) of Earth Science and Applications from Space identified Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) as a mid-term (Tier II) mission. The active space remote measurement of the column CO2 mixing ratio (XCO2) for the ASCENDS mission requires the simultaneous measurement of the CO2 and O2 number density and the column path length over which they are measured in order to derive the average XCO2 column. This paper presents methods for measuring the path lengths of the CO2 and O2 measurements that are inherent to the Multi-Functional Fiber Laser Lidar (MFLL), a laser absorption spectrometer (LAS) system under development for the ASCENDS mission. The MFLL is a multi-frequency intensity-modulated continuous-wave (IM-CW) LAS operating near 1.57 and 1.26 μm that uses a range-encoded modulation technique to minimize bias from thin clouds in the CO2 and O2 column measurements while simultaneously measuring the path length to the surface and to intervening cloud layers. This paper discusses the latest MFLL ground and flight test results. During these tests, range-encoded modulation techniques were demonstrated for path length measurements and the MFLL remote CO2 column measurements were evaluated against in situ CO2 measurements. This paper describes the encoding techniques employed, presents an approach for obtaining column path length measurements during CO2 retrievals, and presents the accuracy and precision of the technique. Measurement of path length meeting ASCENDS requirements of approximately 2-m precision were obtained in ground testing and demonstrated during flights over Railroad Valley, NV.

  6. Preliminary simulation of hyporheic hydrology suggests systematic changes in hyporheic flow path length and residence time in response to reach-scale channel restoration in Meacham Creek, OR

    NASA Astrophysics Data System (ADS)

    Amerson, B. E.; Poole, G.

    2011-12-01

    Hyporheic hydrologic response to stream restoration has typically focused on hydrodynamics associated with individual features or habitat units rather than whole reaches. Here we present preliminary results from MODFLOW simulations that compare modeled hyporheic hydrology prior to and after major channel reconfiguration associated with a recently completed reach-scale channel restoration on Meacham Creek in northeastern Oregon. Our model was parameterized using LiDAR floodplain surface elevation data and empirically-derived estimates of aquifer properties. Results show that groundwater flow path length and cumulative residence time distributions are apt to be altered by channel reconfiguration. For example, our model shows that the relatively high-gradient and straight baseline channel is dominated by either short or long flow path lengths, with relatively few medium length flow paths. In contrast, the proposed restoration channel is more sinuous and has a lower gradient. Our modeling suggests that the restoration channel will have a broader distribution of flow path lengths and residence times. We used model results to select well locations for intensive monitoring of groundwater surface elevation and temperature. Monitoring will continue through 2012 and is designed to evaluate model predictions as well as to document the effects of the channel restoration on surface water-groundwater interactions and concomitant effects on water temperature.

  7. Actinic defect counting statistics over 1 cm2 area of EUVL mask blank

    SciTech Connect

    Jeong, Seongtae; Lai, Chih-Wei; Rekawa, Seno; Walton, Chris W.; Bokor, Jeffrey

    2000-02-18

    As a continuation of comparison experiments between EUV inspection and visible inspection of defects on EUVL mask blanks, we report on the result of an experiment where the EUV defect inspection tool is used to perform at-wavelength defect counting over 1 cm{sup 2} of EUVL mask blank. Initial EUV inspection found five defects over the scanned area and the subsequent optical scattering inspection was able to detect all of the five defects. Therefore, if there are any defects that are only detectable by EUV inspection, the density is lower than the order of unity per cm2. An upgrade path to substantially increase the overall throughput of the EUV inspection system is also identified in the manuscript.

  8. High-efficiency high-power diode laser beam shaping and focusing with constant optical-path length equalization

    NASA Astrophysics Data System (ADS)

    Bonora, Stefano; Villoresi, Paolo

    2006-04-01

    ) the maximum optical efficiency in the beam shaping process, 2) the optimal equalization of the beam parameter product for the two axes, 3) the use of few optical elements and 4) a very compact size. These goals are addressed by a scheme that splits the collimated beam from the laser diode into different portions while the length of the optical paths of each sub element is kept constant, and by the subsequent use of short focal length aspheric lenses for the focalization of the transformed beam. Each sub-beam is deflected by a couple of plane parallel mirrors, whose normal is directed to equalize the BPP without any mutual shadowing. An optimal solution can be easily envisaged for a laser source of common size of 0.7 x 10 mm. The condition on equal optical path length has the noticeable property of placing the virtual position of the individual portions into which the original beam is split at the same distance with respect to target. Thanks to this, their subsequent focusing is unaffected by the axial displacement of the common solution by the stepped mirrors. In fact, to correct this effect, this latter technique requires the use of a prism pair, involving complexity, size enlargement and higher costs. In this work both an extensive ray tracing and optical analysis is presented as well as the experimental characterization of an experimental model. Moreover, we also report on the technique for the realization of th tilted-face plane mirrors of which is composed our beam shaping device. The scheme of beam shaping here reported can be extended to higher power beam by means of the technique of the beam combination by polarization coupling or that of the optical beam compression. Examples of theses developments are discussed in the paper, and experimental results presented. The most direct applications of the class of optical devices here reported are the high power diode laser direct application in material processing or manufacturing, the coupling into multimode optical

  9. Multispectral reflectance imaging of brain activation in rodents: methodological study of the differential path length estimations and first in vivo recordings in the rat olfactory bulb

    NASA Astrophysics Data System (ADS)

    Renaud, Rémi; Martin, Claire; Gurden, Hirac; Pain, Frédéric

    2012-01-01

    Dynamic maps of relative changes in blood volume and oxygenation following brain activation are obtained using multispectral reflectance imaging. The technique relies on optical absorption modifications linked to hemodynamic changes. The relative variation of hemodynamic parameters can be quantified using the modified Beer-Lambert Law if changes in reflected light intensities are recorded at two wavelengths or more and the differential path length (DP) is known. The DP is the mean path length in tissues of backscattered photons and varies with wavelength. It is usually estimated using Monte Carlo simulations in simplified semi-infinite homogeneous geometries. Here we consider the use of multilayered models of the somatosensory cortex (SsC) and olfactory bulb (OB), which are common physiological models of brain activation. Simulations demonstrate that specific DP estimation is required for SsC and OB, specifically for wavelengths above 600 nm. They validate the hypothesis of a constant path length during activation and show the need for specific DP if imaging is performed in a thinned-skull preparation. The first multispectral reflectance imaging data recorded in vivo during OB activation are presented, and the influence of DP on the hemodynamic parameters and the pattern of oxymetric changes in the activated OB are discussed.

  10. Multispectral reflectance imaging of brain activation in rodents: methodological study of the differential path length estimations and first in vivo recordings in the rat olfactory bulb.

    PubMed

    Renaud, Rémi; Martin, Claire; Gurden, Hirac; Pain, Frédéric

    2012-01-01

    Dynamic maps of relative changes in blood volume and oxygenation following brain activation are obtained using multispectral reflectance imaging. The technique relies on optical absorption modifications linked to hemodynamic changes. The relative variation of hemodynamic parameters can be quantified using the modified Beer-Lambert Law if changes in reflected light intensities are recorded at two wavelengths or more and the differential path length (DP) is known. The DP is the mean path length in tissues of backscattered photons and varies with wavelength. It is usually estimated using Monte Carlo simulations in simplified semi-infinite homogeneous geometries. Here we consider the use of multilayered models of the somatosensory cortex (SsC) and olfactory bulb (OB), which are common physiological models of brain activation. Simulations demonstrate that specific DP estimation is required for SsC and OB, specifically for wavelengths above 600 nm. They validate the hypothesis of a constant path length during activation and show the need for specific DP if imaging is performed in a thinned-skull preparation. The first multispectral reflectance imaging data recorded in vivo during OB activation are presented, and the influence of DP on the hemodynamic parameters and the pattern of oxymetric changes in the activated OB are discussed. PMID:22352662

  11. Monitoring of Atmospheric Hydrogen Peroxide in Houston Using Long Path-Length Laser-Based Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanchez, N. P.; Cao, Y.; Jiang, W.; Tittel, F. K.; Griffin, R. J.

    2014-12-01

    Hydrogen peroxide (H2O2) is a relevant atmospheric species mainly formed by recombination of hydroperoxyl radicals. H2O2 participates in the formation of sulfate aerosol by in-cloud oxidation of S(IV) to S(VI) and has been associated with the generation of multi-functional water soluble organic compounds in atmospheric particulate matter. Furthermore, H2O2 plays an important role in the oxidative capacity of the atmosphere as it acts as a reservoir for HOx radicals (OH and HO2). Particular conditions in the Houston area (e.g. extensive presence of petrochemical industry and high ozone and humidity levels) indicate the potential relevance of this species at this location. Despite its atmospheric relevance, no reports on the levels of H2O2 in Houston have been presented previously in the scientific literature. Determination of atmospheric H2O2 usually has been conducted based on transfer of the gas-phase H2O2 to the liquid phase prior to quantification by techniques such as fluorescence spectroscopy. Although these methods allow detection of H2O2 at the sub-ppb level, they present some limitations including the interference from other atmospheric constituents and potential sampling artifacts. In this study, a high sensitivity sensor based on long-path absorption spectroscopy using a distributed-feedback quantum cascade laser was developed and used to conduct direct gas-phase H2O2 monitoring in Houston. The sensor, which targets a strong H2O2 absorption line (~7.73 μm) with no interference from other atmospheric species, was deployed at a ground level monitoring station near the University of Houston main campus during summer 2014. The performance of this novel sensor was evaluated by side-by-side comparison with a fluorescence-based instrument typically used for atmospheric monitoring of H2O2. H2O2 levels were determined, and time series of H2O2 mixing ratios were generated allowing insight into the dynamics, trends, and atmospheric inter-relations of H2O2 in the

  12. Application of maximum likelihood estimator in nano-scale optical path length measurement using spectral-domain optical coherence phase microscopy

    PubMed Central

    Motaghian Nezam, S. M. R.; Joo, C; Tearney, G. J.; de Boer, J. F.

    2009-01-01

    Spectral-domain optical coherence phase microscopy (SD-OCPM) measures minute phase changes in transparent biological specimens using a common path interferometer and a spectrometer based optical coherence tomography system. The Fourier transform of the acquired interference spectrum in spectral-domain optical coherence tomography (SD-OCT) is complex and the phase is affected by contributions from inherent random noise. To reduce this phase noise, knowledge of the probability density function (PDF) of data becomes essential. In the present work, the intensity and phase PDFs of the complex interference signal are theoretically derived and the optical path length (OPL) PDF is experimentally validated. The full knowledge of the PDFs is exploited for optimal estimation (Maximum Likelihood estimation) of the intensity, phase, and signal-to-noise ratio (SNR) in SD-OCPM. Maximum likelihood (ML) estimates of the intensity, SNR, and OPL images are presented for two different scan modes using Bovine Pulmonary Artery Endothelial (BPAE) cells. To investigate the phase accuracy of SD-OCPM, we experimentally calculate and compare the cumulative distribution functions (CDFs) of the OPL standard deviation and the square root of the Cramér-Rao lower bound (1/2SNR) over 100 BPAE images for two different scan modes. The correction to the OPL measurement by applying ML estimation to SD-OCPM for BPAE cells is demonstrated. PMID:18957999

  13. Imaging (NIRI) and quantitation (NIRS) in tissue using time-resolved spectrophotometry: the impact of statistically and dynamically variable optical path lengths

    NASA Astrophysics Data System (ADS)

    Benaron, David A.; Ho, David C.; Rubinsky, Boris; Shannon, Mark

    1993-09-01

    Near-infrared spectroscopy (NIRS) and near-infrared optical imaging (NIRI) are two medical techniques under development, respectively offering the ability to use light to noninvasively quantitate metabolite concentration and to image structure within the human body. Due to the dual effects of scattering and absorbance, quantitative measurement using NIRS and reconstruction of deep-tissue structure using NIRI have been problematic. Significant advances have occurred, however, over the past few years that have brought these measurements closer to reality. In this paper, we present several of the areas in which our laboratory has made progress, and discuss the relevance of these contributions in the light of work by other laboratories. With regard to NIR spectroscopy, it now appears both practical and necessary to take into account the length of the paths taken by light in order to derive deep-tissue estimates of pigment concentrations such as hemoglobin. With regard to NIR imaging, path corrected approaches offer improved resolution, and have been used successfully by our group and others to image phantoms, animals, and now humans. Different simplifications have been used in order to accomplish separately spectroscopy and imaging, but it is hoped that a common method will allow combination of the two techniques in order to achieve spatially resolved quantitative optical measurements.

  14. Advancements in Algorithms for the Retrieval of CO2 Column Amount and Path Length Using an Intensity-Modulated Continuous-Wave Lidar

    NASA Astrophysics Data System (ADS)

    Harrison, F. W.; Lin, B.; Ismail, S.; Nehrir, A. R.; Dobler, J. T.; Browell, E. V.; Kooi, S. A.; Campbell, J. F.; Obland, M. D.; Yang, M. M.; Meadows, B.

    2014-12-01

    This paper presents an overview of the methods for the retrieval of carbon dioxide (CO2) and oxygen (O2) column amounts and their associated path lengths measured by the Multi-Functional Fiber Laser Lidar (MFLL) and the ASCENDS CarbonHawk Experiment Simulator (ACES). MFLL and ACES are multi-frequency, Intensity-Modulated, Continuous-Wave (IM-CW) Lidar systems developed as proof-of-concept demonstrators for NASA's Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The National Research Council identified ASCENDS in 2007 as an important mid-term decadal survey mission to provide measurements critical to improved projections of the Earth's future climate. The ASCENDS measurement requirements have evolved significantly since first proposed by the NRC as has our understanding of the IM-CW measurement technique we propose for use by ASCENDS. To meet these requirements, both MFLL and ACES transmit wavelengths near 1.57 and 1.26 μm modulated with range-encoded signals to minimize bias from thin clouds in the CO2 and O2 column measurements while simultaneously measuring the path length to the surface and to intervening cloud layers. In preparation for the ASCENDS mission, the MFLL has been deployed on 13 airborne field campaigns since 2005, including the latest series of flights in August 2014. NASA also flew the ACES instrument as a technology demonstrator in 2014. In this paper we describe the current ASCENDS retrieval technique and present the accuracy and precision of the measurements obtained using this technique. We also present a reanalysis of the 2011 MFLL measurements and compare the results previously reported to the reanalysis. Reanalysis yields range precisions of less that one meter from an altitude of 12 kilometers from the CO2 offline channel with 1.6 watts of transmitted power.

  15. Variable path length spectrophotometric probe

    DOEpatents

    O'Rourke, Patrick E.; McCarty, Jerry E.; Haggard, Ricky A.

    1992-01-01

    A compact, variable pathlength, fiber optic probe for spectrophotometric measurements of fluids in situ. The probe comprises a probe body with a shaft having a polished end penetrating one side of the probe, a pair of optic fibers, parallel and coterminous, entering the probe opposite the reflecting shaft, and a collimating lens to direct light from one of the fibers to the reflecting surface of the shaft and to direct the reflected light to the second optic fiber. The probe body has an inlet and an outlet port to allow the liquid to enter the probe body and pass between the lens and the reflecting surface of the shaft. A linear stepper motor is connected to the shaft to cause the shaft to advance toward or away from the lens in increments so that absorption measurements can be made at each of the incremental steps. The shaft is sealed to the probe body by a bellows seal to allow freedom of movement of the shaft and yet avoid leakage from the interior of the probe.

  16. Detection of Thermal 2 cm and 1 cm Formaldehyde Emission in NGC 7538

    NASA Astrophysics Data System (ADS)

    Yuan, Liang; Araya, E. D.; Hofner, P.; Kurtz, S.; Pihlstrom, Y.

    2011-05-01

    Formaldehyde is a tracer of high density gas in massive star forming regions. The K-doublet lines from the three lowest rotational energy levels of ortho-formaldehyde correspond to wavelengths of 6, 2 and 1 cm. Thermal emission of these transitions is rare, and maser emission has only been detected in the 6 cm line. NGC 7538 is an active site of massive star formation in the Galaxy, and one of only a few regions known to harbor 6 cm formaldehyde (H2CO) masers. Using the NRAO 100 m Green Bank Telescope (GBT), we detected 2 cm H2CO emission toward NGC 7538 IRS1. The velocity of the 2 cm H2CO line is very similar to the velocity of one of the 6 cm H2CO masers but the linewidth is greater. To investigate the nature of the 2 cm emission, we conducted observations of the 1 cm H2CO transition, and obtained a cross-scan map of the 2 cm line. We detected 1 cm emission and found that the 2 cm emission is extended (greater than 30"), which implies brightness temperatures of ˜0.2 K. Assuming optically thin emission, LTE, and that the 1 cm and 2 cm lines originate from the same volume of gas, both these detections are consistent with thermal emission of gas at ˜30 K. We conclude that the 1 cm and 2 cm H2CO lines detected with the GBT are thermal, which implies molecular densities above ˜105 cm-3. LY acknowledges support from WIU. PH acknowledges partial support from NSF grant AST-0908901.

  17. SU-E-J-141: Activity-Equivalent Path Length Approach for the 3D PET-Based Dose Reconstruction in Proton Therapy

    SciTech Connect

    Attili, A; Vignati, A; Giordanengo, S; Kraan, A; Dalmasso, F; Battistoni, G

    2015-06-15

    Purpose: Ion beam therapy is sensitive to uncertainties from treatment planning and dose delivery. PET imaging of induced positron emitter distributions is a practical approach for in vivo, in situ verification of ion beam treatments. Treatment verification is usually done by comparing measured activity distributions with reference distributions, evaluated in nominal conditions. Although such comparisons give valuable information on treatment quality, a proper clinical evaluation of the treatment ultimately relies on the knowledge of the actual delivered dose. Analytical deconvolution methods relating activity and dose have been studied in this context, but were not clinically applied. In this work we present a feasibility study of an alternative approach for dose reconstruction from activity data, which is based on relating variations in accumulated activity to tissue density variations. Methods: First, reference distributions of dose and activity were calculated from the treatment plan and CT data. Then, the actual measured activity data were cumulatively matched with the reference activity distributions to obtain a set of activity-equivalent path lengths (AEPLs) along the rays of the pencil beams. Finally, these AEPLs were used to deform the original dose distribution, yielding the actual delivered dose. The method was tested by simulating a proton therapy treatment plan delivering 2 Gy on a homogeneous water phantom (the reference), which was compared with the same plan delivered on a phantom containing inhomogeneities. Activity and dose distributions were were calculated by means of the FLUKA Monte Carlo toolkit. Results: The main features of the observed dose distribution in the inhomogeneous situation were reproduced using the AEPL approach. Variations in particle range were reproduced and the positions, where these deviations originated, were properly identified. Conclusions: For a simple inhomogeneous phantom the 3D dose reconstruction from PET

  18. A novel method for patient exit and entrance dose prediction based on water equivalent path length measured with an amorphous silicon electronic portal imaging device.

    PubMed

    Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex

    2010-01-21

    In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions. PMID:20019398

  19. Correlation of electron path lengths observed in the highly wound outer region of magnetic clouds with the slab fraction of magnetic turbulence in the dissipation range

    SciTech Connect

    Tan, Lun C.; Shao, Xi; Reames, Donald V.; Ng, Chee K.; Wang, Linghua

    2014-05-10

    Three magnetic cloud events, in which solar impulsive electron events occurred in their outer region, are employed to investigate the difference of path lengths L {sub 0eIII} traveled by non-relativistic electrons from their release site near the Sun to the observer at 1 AU, where L {sub 0eIII} = v {sub l} × (t {sub l} – t {sub III}), v {sub l} and t {sub l} being the velocity and arrival time of electrons in the lowest energy channel (∼27 keV) of the Wind/3DP/SST sensor, respectively, and t {sub III} being the onset time of type III radio bursts. The deduced L {sub 0eIII} value ranges from 1.3 to 3.3 AU. Since a negligible interplanetary scattering level can be seen in both L {sub 0eIII} > 3 AU and ∼1.2 AU events, the difference in L {sub 0eIII} could be linked to the turbulence geometry (slab or two-dimensional) in the solar wind. By using the Wind/MFI magnetic field data with a time resolution of 92 ms, we examine the turbulence geometry in the dissipation range. In our examination, ∼6 minutes of sampled subintervals are used in order to improve time resolution. We have found that, in the transverse turbulence, the observed slab fraction is increased with an increasing L {sub 0eIII} value, reaching ∼100% in the L {sub 0eIII} > 3 AU event. Our observation implies that when only the slab spectral component exists, magnetic flux tubes (magnetic surfaces) are closed and regular for a very long distance along the transport route of particles.

  20. A novel method for patient exit and entrance dose prediction based on water equivalent path length measured with an amorphous silicon electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex

    2010-01-01

    In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.

  1. Changes in Search Path Complexity and Length During Learning of a Virtual Water Maze: Age Differences and Differential Associations with Hippocampal Subfield Volumes.

    PubMed

    Daugherty, Ana M; Bender, Andrew R; Yuan, Peng; Raz, Naftali

    2016-06-01

    Impairment of hippocampus-dependent cognitive processes has been proposed to underlie age-related deficits in navigation. Animal studies suggest a differential role of hippocampal subfields in various aspects of navigation, but that hypothesis has not been tested in humans. In this study, we examined the association between volume of hippocampal subfields and age differences in virtual spatial navigation. In a sample of 65 healthy adults (age 19-75 years), advanced age was associated with a slower rate of improvement operationalized as shortening of the search path over 25 learning trials on a virtual Morris water maze task. The deficits were partially explained by greater complexity of older adults' search paths. Larger subiculum and entorhinal cortex volumes were associated with a faster decrease in search path complexity, which in turn explained faster shortening of search distance. Larger Cornu Ammonis (CA)1-2 volume was associated with faster distance shortening, but not in path complexity reduction. Age differences in regional volumes collectively accounted for 23% of the age-related variance in navigation learning. Independent of subfield volumes, advanced age was associated with poorer performance across all trials, even after reaching the asymptote. Thus, subiculum and CA1-2 volumes were associated with speed of acquisition, but not magnitude of gains in virtual maze navigation. PMID:25838036

  2. Towards Next Generation TATB-based Explosives by Understanding Voids and Microstructure from 10 nm to 1 cm

    SciTech Connect

    Willey, T M; Overturf, G

    2009-03-26

    TATB-based explosives have been investigated on length scales spanning several orders of magnitude, from just under 10 nm to larger than 1 cm. This has been accomplished using a combination of ultra-small angle x-ray scattering (USAXS), ultra-small angle neutron scattering (USANS), and x-ray computed tomography (XRCT). USAXS determines distributions the smallest structures including hot-spot voids from hundreds of nanometers to a few microns, USANS extends this range to about 10 microns, and two variants of XRCT cover sizes from microns to centimeters. Several examples are presented for LX-17, a triaminotrinitrobenzene based plastic bonded explosive using Kel-F 800. As an extension of previous USAXS results, in these proceedings, an alternate binder results in a more uniform microstructure for the PBX, useful towards design of next-generation TATB-based explosives. These data are an important step to understanding microstructural mechanisms that affect the mechanical properties of TATB-based explosives, and provide complete a comprehensive characterization of the structure of LX-17 from nanometers to centimeters that can be used as empirical input to computational models of detonation, and in determining the relationship between voids and microstructure to detonation properties.

  3. A l% and 1cm Perspective Leads to a Novel CDOM Absorption Algorithm

    NASA Technical Reports Server (NTRS)

    Morrow, J. H.; Hooker, S. B.; Matsuoka, A.

    2012-01-01

    A next-generation in-water profiler designed to measure the apparent optical properties of seawater was developed and validated across a wide dynamic range of water properties. This new Compact-Optical Profiling System (C-OPS) design uses a novel, kite-shaped, free-falling backplane with adjustable buoyancy and is based on 19 state-of-the-art microradiometers, spanning 320-780 nm. Data collected as part of the field commissioning were of a previously unachievable quality and showed that systematic uncertainties in the sampling protocols were discernible at the 1% optical and 1cm depth resolution levels. A sensitivity analysis as a function of three water types, established by the peak in the remote sensing reflectance spectra, revealed which water types and spectral domains were the most indicative of data acquisition uncertainties. The unprecedented vertical resolution of C-OPS measurements provided near-surface data products at the spectral endpoints with a quality level that has not been obtainable. The improved data allowed development of an algorithm for predicting the spectral absorption due to chromophoric dissolved organic matter (CDOM) using ratios of diffuse attenuation coefficients with over 99% of the variance in the data explained.

  4. Characterization of cucurbita maxima phloem serpin-1 (CmPS-1). A developmentally regulated elastase inhibitor.

    PubMed

    Yoo, B C; Aoki, K; Xiang, Y; Campbell, L R; Hull, R J; Xoconostle-Cázares, B; Monzer, J; Lee, J Y; Ullman, D E; Lucas, W J

    2000-11-10

    We report on the molecular, biochemical, and functional characterization of Cucurbita maxima phloem serpin-1 (CmPS-1), a novel 42-kDa serine proteinase inhibitor that is developmentally regulated and has anti-elastase properties. CmPS-1 was purified to near homogeneity from C. maxima (pumpkin) phloem exudate and, based on microsequence analysis, the cDNA encoding CmPS-1 was cloned. The association rate constant (k(a)) of phloem-purified and recombinant His(6)-tagged CmPS-1 for elastase was 3.5 +/- 1.6 x 10(5) and 2.7 +/- 0.4 x 10(5) m(-)(1) s(-)(1), respectively. The fraction of complex-forming CmPS-1, X(inh), was estimated at 79%. CmPS-1 displayed no detectable inhibitory properties against chymotrypsin, trypsin, or thrombin. The elastase cleavage sites within the reactive center loop of CmPS-1 were determined to be Val(347)-Gly(348) and Val(350)-Ser(351) with a 3:2 molar ratio. In vivo feeding assays conducted with the piercing-sucking aphid, Myzus persicae, established a close correlation between the developmentally regulated increase in CmPS-1 within the phloem sap and the reduced ability of these insects to survive and reproduce on C. maxima. However, in vitro feeding experiments, using purified phloem CmPS-1, failed to demonstrate a direct effect on aphid survival. Likely roles of this novel phloem serpin in defense against insects/pathogens are discussed. PMID:10960478

  5. Azimuthal anisotropy of π⁰ production in Au+Au collisions at sqrt((s)NN)=200  GeV: path-length dependence of jet quenching and the role of initial geometry.

    PubMed

    Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Aoki, K; Aramaki, Y; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bickley, A A; Bok, J S; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Camacho, C M; Campbell, S; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Connors, M; Constantin, P; Csanád, M; Csörgo, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Hanks, J; Han, R; Hartouni, E P; Haslum, E; Hayano, R; Heffner, M; Hegyi, S; Hemmick, T K; Hester, T; He, X; Hill, J C; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ide, J; Ikeda, Y; Imai, K; Inaba, M; Isenhower, D; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Ivanischev, D; Jacak, B V; Jia, J; Jin, J; Johnson, B M; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kang, J H; Kapustinsky, J; Karatsu, K; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kim, B I; Kim, D H; Kim, D J; Kim, E J; Kim, E; Kim, S H; Kim, Y J; Kinney, E; Kiriluk, K; Kiss, A; Kistenev, E; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kotchetkov, D; Kozlov, A; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K; Lee, K S; Leitch, M J; Leite, M A L; Leitner, E; Lenzi, B; Liebing, P; Linden Levy, L A; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Li, X; Love, B; Luechtenborg, R; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; Means, N; Meredith, B; Miake, Y; Mignerey, A C; Mikeš, P; Miki, K; Milov, A; Mishra, M; Mitchell, J T; Mohanty, A K; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Nouicer, R; Nyanin, A S; O'Brien, E; Oda, S X; Ogilvie, C A; Okada, K; Oka, M; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, I H; Park, J; Park, S K; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Semenov, A Yu; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Sparks, N A; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sziklai, J; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tarján, P; Themann, H; Thomas, T L; Togawa, M; Toia, A; Tomášek, L; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Vinogradov, A A; Virius, M; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Wood, J P; Woody, C L; Wright, R M; Wysocki, M; Xie, W; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; Young, G R; Younus, I; You, Z; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zolin, L

    2010-10-01

    We have measured the azimuthal anisotropy of π⁰ production for 1path-length dependence steeper than what is implied by current PQCD energy-loss models show reasonable agreement with the data. PMID:21230825

  6. Azimuthal Anisotropy of pi Production in Au+Au Collisions at s_NN = 200 GeV: Path-length Dependence of Jet-Quenching and the Role of Initial Geometry

    SciTech Connect

    Adare, A.; Awes, Terry C; Cianciolo, Vince; Efremenko, Yuri; Enokizono, Akitomo; Read Jr, Kenneth F; Silvermyr, David O; Sorensen, Soren P; Stankus, Paul W; PHENIX, Collaboration

    2010-01-01

    We have measured the azimuthal anisotropy of {pi}{sup 0} production for 1 < p{sub T} < 18 GeV/c for Au+Au collisions at {radical}s{sub NN} = 200 GeV. The observed anisotropy shows a gradual decrease for 3 {approx}< p {approx}< 7-10 GeV/c, but remains positive beyond 10 GeV/c. The magnitude of this anisotropy is underpredicted, up to at least {approx}10 GeV/c, by current perturbative QCD (PQCD) energy-loss model calculations. An estimate of the increase in anisotropy expected from initial-geometry modification due to gluon saturation effects and fluctuations is insufficient to account for this discrepancy. Calculations that implement a path-length dependence steeper than what is implied by current PQCD energy-loss models show reasonable agreement with the data.

  7. Azimuthal Anisotropy of {pi}{sup 0} Production in Au+Au Collisions at {radical}(s{sub NN})=200 GeV: Path-Length Dependence of Jet Quenching and the Role of Initial Geometry

    SciTech Connect

    Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kinney, E.; Kiriluk, K.; Linden Levy, L. A.; Nagle, J. L.; Rosen, C. A.; Seele, J.; Wysocki, M.; Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.; Aidala, C.; Datta, A.

    2010-10-01

    We have measured the azimuthal anisotropy of {pi}{sup 0} production for 1path-length dependence steeper than what is implied by current PQCD energy-loss models show reasonable agreement with the data.

  8. Characterizing transport current defects in 1-cm-wide YBa[sub 2]Cu[sub 3]O[sub 7-delta] coated conductors.

    SciTech Connect

    Brown, G. W.; Hawley, M. E.; Peterson, E. J.; Coulter, J. Y.; Dowden, P. C.; Arendt, P. N.; Foltyn, S. R.; Mueller, F. M.

    2001-01-01

    We have used a low temperature magnetic imaging system to determine current pathways in 5 cm long 'good' and 'bad' regions of a 1-cm-wide YBa2Cu3O7-{delta} coated conductor. The good and bad regions were identified with 4 point probe measurements taken at 1 cm intervals along the tape length. The current density map from the good region showed the expected edge peaked structure, similar to that seen in previous work on high quality test samples grown on single crystal substrates. The structure was also consistent with theoretical understanding of thin film superconductors where demagnetizing effects are strong. The maps from the bad region showed that the current was primarily confined to the right half of the sample. The left half carried only a small current that reached saturation quickly. Effectively halving the sample width quantitatively explains the critical current measured in that section. Spatially resolved xray analysis with 1 mm resolution was used to further characterize the bad section and suggested an abnormally large amount of a-axis YBCO present. This may be the result of non-uniform heating leading to a low deposition temperature in that area.

  9. Record CW-brightness from a single 20% fill-factor 1-cm laser-diode bar at 20°C

    NASA Astrophysics Data System (ADS)

    Chin, A. K.; Knapczyk, M. T.; Jacob, J. H.; Eppich, H.; Lang, K. D.; Chin, R. H.; Dogan, M.

    2011-03-01

    A record, 250W, CW output-power has been achieved for a single, 1cm-wide, 3.5mm cavity-length, 20% fill-factor, 976nm, laser-diode bar operated at 20°C. The remarkable laser-bar performance was in part the result of a novel EPIC (Enhanced Performance Impingement Cooler) heat-sink with a thermal resistance of 0.16K/W. The superb thermal management resulted in record brightness for a laser bar, i.e. a slow-axis divergence of 10° (95% power containment angle) was achieved at 200W output-power. A coupling efficiency of ~74% into a 200μm core, 0.22NA fiber was achieved.

  10. Path Finder

    2014-01-07

    PathFinder is a graph search program, traversing a directed cyclic graph to find pathways between labeled nodes. Searches for paths through ordered sequences of labels are termed signatures. Determining the presence of signatures within one or more graphs is the primary function of Path Finder. Path Finder can work in either batch mode or interactively with an analyst. Results are limited to Path Finder whether or not a given signature is present in the graph(s).

  11. Dependence of the absorption of pulsed CO{sub 2}-laser radiation by silane on wavenumber, fluence, pulse duration, temperature, optical path length, and pressure of absorbing and nonabsorbing gases

    SciTech Connect

    Blazejowski, J.; Gruzdiewa, L.; Rulewski, J.; Lampe, F.W.

    1995-05-15

    The absorption of three lines [{ital P}(20), 944.2 cm{sup {minus}1}; {ital P}(14), 949.2 cm{sup {minus}1}; and {ital R}(24), 978.5 cm{sup {minus}1}] of the pulsed CO{sub 2} laser (00{sup 0}1--10{sup 0}0 transition) by SiH{sub 4} was measured at various pulse energy, pulse duration, temperature, optical path length, and pressure of the compound and nonabsorbing foreign gases. In addition, low intensity infrared absorption spectrum of silane was compared with high intensity absorption characteristics for all lines of the pulsed CO{sub 2} laser. The experimental dependencies show deviations from the phenomenological Beer--Lambert law which can be considered as arising from the high intensity of an incident radiation and collisions of absorbing molecules with surroundings. These effects were included into the expression, being an extended form of the Beer--Lambert law, which reasonably approximates all experimental data. The results, except for extending knowledge on the interaction of a high power laser radiation with matter, can help understanding and planning processes leading to preparation of silicon-containing technologically important materials.

  12. Geodesy by radio interferometry - Effects of atmospheric modeling errors on estimates of baseline length

    NASA Technical Reports Server (NTRS)

    Davis, J. L.; Herring, T. A.; Shapiro, I. I.; Rogers, A. E. E.; Elgered, G.

    1985-01-01

    Analysis of very long baseline interferometry data indicates that systematic errors in prior estimates of baseline length, of order 5 cm for approximately 8000-km baselines, were due primarily to mismodeling of the electrical path length of the troposphere and mesosphere ('atmospheric delay'). Here observational evidence for the existence of such errors in the previously used models for the atmospheric delay is discussed, and a new 'mapping' function for the elevation angle dependence of this delay is developed. The delay predicted by this new mapping function differs from ray trace results by less than approximately 5 mm, at all elevations down to 5 deg elevation, and introduces errors into the estimates of baseline length of less than about 1 cm, for the multistation intercontinental experiment analyzed here.

  13. Shortest Paths.

    ERIC Educational Resources Information Center

    Shore, M. L.

    1980-01-01

    There are many uses for the shortest path algorithm presented which are limited only by our ability to recognize when a problem may be converted into the shortest path in a graph representation. (Author/TG)

  14. Optical path control in the MAM testbed

    NASA Technical Reports Server (NTRS)

    Regehr, M. W.; Hines, B.; Holmes, B.

    2003-01-01

    Future space-based optical interferometers will require control of the optical path delay to accomplish some or all of the three objectives: balancing the optical path in the two arms to within a tolerance corresponding to the coherence length of the star light being observed, modulating the optical path in order to observe the phase of the star light interference fringe, and modulating the path length in order to reduce the effect of cyclic errors in the laser metrology system used to measure the optical path length in the two arms of the interferometer.

  15. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).

    PubMed

    Li, Chih-Hao; Benedick, Andrew J; Fendel, Peter; Glenday, Alexander G; Kärtner, Franz X; Phillips, David F; Sasselov, Dimitar; Szentgyorgyi, Andrew; Walsworth, Ronald L

    2008-04-01

    Searches for extrasolar planets using the periodic Doppler shift of stellar spectral lines have recently achieved a precision of 60 cm s(-1) (ref. 1), which is sufficient to find a 5-Earth-mass planet in a Mercury-like orbit around a Sun-like star. To find a 1-Earth-mass planet in an Earth-like orbit, a precision of approximately 5 cm s(-1) is necessary. The combination of a laser frequency comb with a Fabry-Pérot filtering cavity has been suggested as a promising approach to achieve such Doppler shift resolution via improved spectrograph wavelength calibration, with recent encouraging results. Here we report the fabrication of such a filtered laser comb with up to 40-GHz (approximately 1-A) line spacing, generated from a 1-GHz repetition-rate source, without compromising long-term stability, reproducibility or spectral resolution. This wide-line-spacing comb, or 'astro-comb', is well matched to the resolving power of high-resolution astrophysical spectrographs. The astro-comb should allow a precision as high as 1 cm s(-1) in astronomical radial velocity measurements. PMID:18385734

  16. Path ANalysis

    SciTech Connect

    Snell, Mark K.

    2007-07-14

    The PANL software determines path through an Adversary Sequence Diagram (ASD) with minimum Probability of Interruption, P(I), given the ASD information and data about site detection, delay, and response force times. To accomplish this, the software generates each path through the ASD, then applies the Estimate of Adversary Sequence Interruption (EASI) methodology for calculating P(I) to each path, and keeps track of the path with the lowest P(I). Primary use is for training purposes during courses on physical security design. During such courses PANL will be used to demonstrate to students how more complex software codes are used by the US Department of Energy to determine the most-vulnerable paths and, where security needs improvement, how such codes can help determine physical security upgrades.

  17. Path ANalysis

    2007-07-14

    The PANL software determines path through an Adversary Sequence Diagram (ASD) with minimum Probability of Interruption, P(I), given the ASD information and data about site detection, delay, and response force times. To accomplish this, the software generates each path through the ASD, then applies the Estimate of Adversary Sequence Interruption (EASI) methodology for calculating P(I) to each path, and keeps track of the path with the lowest P(I). Primary use is for training purposes duringmore » courses on physical security design. During such courses PANL will be used to demonstrate to students how more complex software codes are used by the US Department of Energy to determine the most-vulnerable paths and, where security needs improvement, how such codes can help determine physical security upgrades.« less

  18. Prospective randomized trial comparing shock wave lithotripsy and flexible ureterorenoscopy for lower pole stones smaller than 1 cm.

    PubMed

    Sener, Nevzat Can; Imamoglu, M Abdurrahim; Bas, Okan; Ozturk, Ufuk; Goktug, H N Goksel; Tuygun, Can; Bakirtas, Hasan

    2014-04-01

    In this study, we aimed to compare the success and complications of flexible ureterorenoscopy (F-URS) with its advanced technology and the accomplished method of shock wave lithotripsy (SWL) in the treatment of lower pole stones smaller than 1 cm. One hundred and forty patients were randomized as 70 undergoing SWL (Group 1) and 70 undergoing F-URS (Group 2). Patients were evaluated by plain X-ray and urinary ultrasound 1 week and after 3 months following SWL. The same procedure was done for F-URS patients 1 week after surgery and after 3 months. Success rates were established the day following the procedure and after 3 months. Fragmentation less than 3 mm was considered success. Mean operative time was 44 ± 7.4 min for Group 2 and mean fluoroscopy duration was 51 ± 12 s. In F-URS group, all the patients were stone free after 3 months (100 %). Group 1 had 2.7 ± 0.4 sessions of SWL. Sixty-four patients were stone free in that group after 3 months (91.5 %). The procedure yielded significant success in FURS group, even though patients underwent SWL for 2.7 ± 0.4 sessions and F-URS for 1 session (p < 0.05). With higher success and similar complication rates, fewer sessions per treatment, and advances in technology and experience, we believe F-URS has a potential to be the first treatment option over SWL in the future. PMID:24220692

  19. Path Pascal

    NASA Technical Reports Server (NTRS)

    Campbell, R. H.; Kolstad, R. B.; Holle, D. F.; Miller, T. J.; Krause, P.; Horton, K.; Macke, T.

    1983-01-01

    Path Pascal is high-level experimental programming language based on PASCAL, which incorporates extensions for systems and real-time programming. Pascal is extended to treat real-time concurrent systems.

  20. Time optimal paths for high speed maneuvering

    SciTech Connect

    Reister, D.B.; Lenhart, S.M.

    1993-01-01

    Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.

  1. SU-F-19A-05: Experimental and Monte Carlo Characterization of the 1 Cm CivaString 103Pd Brachytherapy Source

    SciTech Connect

    Reed, J; Micka, J; Culberson, W; DeWerd, L; Rivard, M

    2014-06-15

    Purpose: To determine the in-air azimuthal anisotropy and in-water dose distribution for the 1 cm length of the CivaString {sup 103}Pd brachytherapy source through measurements and Monte Carlo (MC) simulations. American Association of Physicists in Medicine Task Group No. 43 (TG-43) dosimetry parameters were also determined for this source. Methods: The in-air azimuthal anisotropy of the source was measured with a NaI scintillation detector and simulated with the MCNP5 radiation transport code. Measured and simulated results were normalized to their respective mean values and compared. The TG-43 dose-rate constant, line-source radial dose function, and 2D anisotropy function for this source were determined from LiF:Mg,Ti thermoluminescent dosimeter (TLD) measurements and MC simulations. The impact of {sup 103}Pd well-loading variability on the in-water dose distribution was investigated using MC simulations by comparing the dose distribution for a source model with four wells of equal strength to that for a source model with strengths increased by 1% for two of the four wells. Results: NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy showed that ≥95% of the normalized data were within 1.2% of the mean value. TLD measurements and MC simulations of the TG-43 dose-rate constant, line-source radial dose function, and 2D anisotropy function agreed to within the experimental TLD uncertainties (k=2). MC simulations showed that a 1% variability in {sup 103}Pd well-loading resulted in changes of <0.1%, <0.1%, and <0.3% in the TG-43 dose-rate constant, radial dose distribution, and polar dose distribution, respectively. Conclusion: The CivaString source has a high degree of azimuthal symmetry as indicated by the NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy. TG-43 dosimetry parameters for this source were determined from TLD measurements and MC simulations. {sup 103}Pd well

  2. Multi-Criteria Path Finding

    NASA Astrophysics Data System (ADS)

    Mohammadi, E.; Hunter, A.

    2012-07-01

    Path finding solutions are becoming a major part of many GIS applications including location based services and web-based GIS services. Most traditional path finding solutions are based on shortest path algorithms that tend to minimize the cost of travel from one point to another. These algorithms make use of some cost criteria that is usually an attribute of the edges in the graph network. Providing one shortest path limits user's flexibility when choosing a possible route, especially when more than one parameter is utilized to calculate cost (e.g., when length, number of traffic lights, and number of turns are used to calculate network cost.) K shortest path solutions tend to overcome this problem by providing second, third, and Kth shortest paths. These algorithms are efficient as long as the graphs edge weight does not change dynamically and no other parameters affect edge weights. In this paper we try to go beyond finding shortest paths based on some cost value, and provide all possible paths disregarding any parameter that may affect total cost. After finding all possible paths, we can rank the results by any parameter or combination of parameters, without a substantial increase in time complexity.

  3. Tapped-Hole Vent Path

    NASA Technical Reports Server (NTRS)

    Chandler, J. A.

    1983-01-01

    Long helical vent path cools and releases hot pyrotechnical gas that exits along its spiraling threads. Current design uses 1/4-28 threads with outer diameter of stud reduced by 0.025 in. (0.62 mm). To open or close gassampler bottle, pyrotechnic charges on either one side or other of valve cylinder are actuated. Gases vented slowly over long path are cool enough to present no ignition hazard. Vent used to meter flow in refrigeration, pneumaticcontrol, and fluid-control systems by appropriately adjusting size and length of vent path.

  4. Optical Path, Phase, and Interference

    NASA Astrophysics Data System (ADS)

    Newburgh, Ronald

    2005-11-01

    A powerful tool in wave optics is the concept of optical path length, a notion usually introduced with Fermat's principle.1-3 The analysis of Fermat's principle requires the application of the calculus of variations and the concept of an extremum, ideas too advanced for beginning students. However, the concept has proven its usefulness in the analysis4 of interference experiments such as those of Michelson and Fabry-Perot. In this paper we shall show how optical path length can aid in the analysis of a modified two-slit Young experiment.

  5. A Random Walk on a Circular Path

    ERIC Educational Resources Information Center

    Ching, W.-K.; Lee, M. S.

    2005-01-01

    This short note introduces an interesting random walk on a circular path with cards of numbers. By using high school probability theory, it is proved that under some assumptions on the number of cards, the probability that a walker will return to a fixed position will tend to one as the length of the circular path tends to infinity.

  6. Shortest Paths between Shortest Paths and Independent Sets

    NASA Astrophysics Data System (ADS)

    Kamiński, Marcin; Medvedev, Paul; Milanič, Martin

    We study problems of reconfiguration of shortest paths in graphs. We prove that the shortest reconfiguration sequence can be exponential in the size of the graph and that it is NP-hard to compute the shortest reconfiguration sequence even when we know that the sequence has polynomial length. Moreover, we also study reconfiguration of independent sets in three different models and analyze relationships between these models, observing that shortest path reconfiguration is a special case of independent set reconfiguration in perfect graphs, under any of the three models. Finally, we give polynomial results for restricted classes of graphs (even-hole-free and P 4-free graphs).

  7. Automatic Control Of Length Of Welding Arc

    NASA Technical Reports Server (NTRS)

    Iceland, William F.

    1991-01-01

    Nonlinear relationships among current, voltage, and length stored in electronic memory. Conceptual microprocessor-based control subsystem maintains constant length of welding arc in gas/tungsten arc-welding system, even when welding current varied. Uses feedback of current and voltage from welding arc. Directs motor to set position of torch according to previously measured relationships among current, voltage, and length of arc. Signal paths marked "calibration" or "welding" used during those processes only. Other signal paths used during both processes. Control subsystem added to existing manual or automatic welding system equipped with automatic voltage control.

  8. Outcomes of high-dose intensity-modulated radiotherapy alone with 1 cm planning target volume posterior margin for localized prostate cancer

    PubMed Central

    2013-01-01

    Background Clinically localized prostate cancer may be treated by different approaches of radiation therapy. The aim of this study was to report the results of disease control and toxicity in patients with clinically localized prostate cancer treated with high dose IMRT alone with 1 cm PTV posterior margin. Methods From September 2001 to April 2008, 140 patients with localized prostate cancer were treated with definitive IMRT (dose ≥ 74 Gy) without hormone therapy. Outcomes were measured from the conclusion of radiotherapy. Biochemical failure was defined as PSA nadir + 2.0 ng/dL. Toxicities were assessed using the NCI-CTCAE-version 3.0. Median follow-up was 58 months. Results Biochemical failure occurred in 13.6% of patients. Actuarial 5-year biochemical control rates were 91.7%, 82.5% and 85.9% for low-, intermediate-, and high-risk patients, respectively. Stage T2 patients presented a risk of biochemical failure almost three times higher than stage T1 (RR = 2.91; 95% CI: 1.04; 8.17). Distant metastases occurred in 3 (2%) patients. Five-year metastasis-free and overall survivals were 96% and 97.5%, respectively. Late grade 3 genitourinary and gastrointestinal toxicity rates were, respectively, 1.6% and 3%. Conclusion High-dose IMRT alone with 1 cm posterior PTV margin was effective and safe for patients with localized prostate cancer. PMID:24314072

  9. Opportunity's Path

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This Long Term Planning graphic was created from a mosaic of navigation camera images overlain by a polar coordinate grid with the center point as Opportunity's original landing site. The blue dots represent the rover position at various locations.

    The red dots represent the center points of the target areas for the instruments on the rover mast (the panoramic camera and miniature thermal emission spectrometer). Opportunity visited Stone Mountain on Feb. 5. Stone Mountain was named after the southernmost point of the Appalachian Mountains outside of Atlanta, Ga. On Earth, Stone Mountain is the last big mountain before the Piedmont flatlands, and on Mars, Stone Mountain is at one end of Opportunity Ledge. El Capitan is a target of interest on Mars named after the second highest peak in Texas in Guadaloupe National Park, which is one of the most visited outcrops in the United States by geologists. It has been a training ground for students and professional geologists to understand what the layering means in relation to the formation of Earth, and scientists will study this prominent point of Opportunity Ledge to understand what the layering means on Mars.

    The yellow lines show the midpoint where the panoramic camera has swept and will sweep a 120-degree area from the three waypoints on the tour of the outcrop. Imagine a fan-shaped wedge from left to right of the yellow line.

    The white contour lines are one meter apart, and each drive has been roughly about 2-3 meters in length over the last few sols. The large white blocks are dropouts in the navigation camera data.

    Opportunity is driving along and taking a photographic panorama of the entire outcrop. Scientists will stitch together these images and use the new mosaic as a 'base map' to decide on geology targets of interest for a more detailed study of the outcrop using the instruments on the robotic arm. Once scientists choose their targets of interest, they plan to study the outcrop for roughly five to

  10. Continuously variable focal length lens

    DOEpatents

    Adams, Bernhard W; Chollet, Matthieu C

    2013-12-17

    A material preferably in crystal form having a low atomic number such as beryllium (Z=4) provides for the focusing of x-rays in a continuously variable manner. The material is provided with plural spaced curvilinear, optically matched slots and/or recesses through which an x-ray beam is directed. The focal length of the material may be decreased or increased by increasing or decreasing, respectively, the number of slots (or recesses) through which the x-ray beam is directed, while fine tuning of the focal length is accomplished by rotation of the material so as to change the path length of the x-ray beam through the aligned cylindrical slows. X-ray analysis of a fixed point in a solid material may be performed by scanning the energy of the x-ray beam while rotating the material to maintain the beam's focal point at a fixed point in the specimen undergoing analysis.

  11. Path Separability of Graphs

    NASA Astrophysics Data System (ADS)

    Diot, Emilie; Gavoille, Cyril

    In this paper we investigate the structural properties of k-path separable graphs, that are the graphs that can be separated by a set of k shortest paths. We identify several graph families having such path separability, and we show that this property is closed under minor taking. In particular we establish a list of forbidden minors for 1-path separable graphs.

  12. Approximate sample sizes required to estimate length distributions

    USGS Publications Warehouse

    Miranda, L.E.

    2007-01-01

    The sample sizes required to estimate fish length were determined by bootstrapping from reference length distributions. Depending on population characteristics and species-specific maximum lengths, 1-cm length-frequency histograms required 375-1,200 fish to estimate within 10% with 80% confidence, 2.5-cm histograms required 150-425 fish, proportional stock density required 75-140 fish, and mean length required 75-160 fish. In general, smaller species, smaller populations, populations with higher mortality, and simpler length statistics required fewer samples. Indices that require low sample sizes may be suitable for monitoring population status, and when large changes in length are evident, additional sampling effort may be allocated to more precisely define length status with more informative estimators. ?? Copyright by the American Fisheries Society 2007.

  13. Repeated 1-cm Resolution Topographic and 2.5-mm Resolution Photomosiac Surveys of Benthic Communities and Fine Scale Bedforms in Monterey Canyon

    NASA Astrophysics Data System (ADS)

    Caress, D. W.; Hobson, B.; Thomas, H. J.; Henthorn, R.; Martin, E. J.; Bird, L.; Risi, M.; Troni, G.; Paull, C. K.; Rock, S.; Padial, J. A.; Hammond, M. M.

    2014-12-01

    The Monterey Bay Aquarium Research Institute has developed a low altitude, ROV-based seafloor mapping system that combines lidar laser ranging, multibeam sonar, and stereo photographic imagery. When operated at a 3-m altitude, this system maps seafloor topography with a 1-cm lateral resolution and simultaneously collects 2.5-mm resolution color photography. We have twice mapped an 80-m by 80-m area of a chemosynthetic clam community located at 2850-m depth in the Monterey Canyon axis. Both the topography and the photomosaics resolve changes in the clam community over a six-month interval. Many individual animals have moved, and tracks of those animals are visible in the lidar topography. No other changes in the seafloor at this site can be discerned. We have also performed single surveys of bedforms and scours at both 1850-m and 2850-m depths in Monterey Canyon. The highest resolution bathymetry data are collected using a 3DatDepth SL1 lidar laser scanner. This system has a 30° field of view and ranges continuously, achieving a 1 cm sounding spacing at a 3 m altitude and 0.3 m/s speed. Bathymetry data are also collected using a 400-kHz Reson 7125 multibeam sonar. This configuration produces 512 beams across a 135° wide swath; each beam has a 0.5° acrosstrack by 1.0° alongtrack angular width. At a 3-m altitude, the nadir beams have a 2.5 cm acrosstrack and 5 cm alongtrack footprint. Dual Prosilica GX1920 2.4 Mpixel color cameras provide color stereo photography of the seafloor. Illumination is provided by dual xenon strobes. The camera housings have been fitted with corrective optics achieving a 90° field of view with less than 1% distortion. At a 3-m altitude the raw image pixels have a 2.5 mm resolution. Position and attitude data are provided by a Kearfott SeaDevil Inertial Navigation System (INS) integrated with a 300 kHz Teledyne RD Instruments Doppler velocity log (DVL). A separate Paroscientific pressure sensor is mounted adjacent to the INS. The INS

  14. Global path planning of mobile robots using a memetic algorithm

    NASA Astrophysics Data System (ADS)

    Zhu, Zexuan; Wang, Fangxiao; He, Shan; Sun, Yiwen

    2015-08-01

    In this paper, a memetic algorithm for global path planning (MAGPP) of mobile robots is proposed. MAGPP is a synergy of genetic algorithm (GA) based global path planning and a local path refinement. Particularly, candidate path solutions are represented as GA individuals and evolved with evolutionary operators. In each GA generation, the local path refinement is applied to the GA individuals to rectify and improve the paths encoded. MAGPP is characterised by a flexible path encoding scheme, which is introduced to encode the obstacles bypassed by a path. Both path length and smoothness are considered as fitness evaluation criteria. MAGPP is tested on simulated maps and compared with other counterpart algorithms. The experimental results demonstrate the efficiency of MAGPP and it is shown to obtain better solutions than the other compared algorithms.

  15. Comprehensive Characterization of Voids and Microstructure in TATB-based Explosives from 10 nm to 1 cm: Effects of Temperature Cycling and Compressive Creep

    SciTech Connect

    Willey, T M; Lauderbach, L; Gagliardi, F; Cunningham, B; Lorenz, K T; Lee, J I; van Buuren, T; Call, R; Landt, L; Overturf, G

    2010-02-26

    This paper outlines the characterization of voids and Microstructure in TATB-based Explosives over several orders of magnitude, from sizes on the order of 10 nm to about 1 cm. This is accomplished using ultra small angle x-ray scattering to investigate voids from a few nm to a few microns, ultra small angle neutron scattering for voids from 100 nm to 10 microns, and x-ray computed microtomography to investigate microstructure from a few microns to a few centimeters. The void distributions of LX-17 are outlined, and the microstructure of LX-17 is presented. Temperature cycling and compressive creep cause drastically different damage to the microstructure. Temperature cycling leads to a volume expansion (ratchet growth) in TATB-based explosives, and x-ray scattering techniques that are sensitive to sizes up to a few microns indicated changes to the void volume distribution that had previously accounted for most, but not all of the change in density. This paper presents the microstructural damage larger than a few microns caused by ratchet growth. Temperature cycling leads to void creation in the binder poor regions associated with the interior portion of formulated prills. Conversely, compressive creep causes characteristically different changes to microstructure; fissures form at binder-rich prill boundaries prior to mechanical failure.

  16. Crack-path effect on material toughness

    NASA Technical Reports Server (NTRS)

    Rubinstein, Asher A.

    1990-01-01

    The main features of a toughening mechanism associated with a curvilinear crack path are examined using a model consisting of a macrocrack in a brittle solid with a curvilinear segment at the crack tip. A numerical procedure for finite and semiinfinite cracks is formulated and evaluated using an example which has an exact solution (a finite crack in the form of a circular arc in a uniform stress field). It is shown that, for a relatively small amplitude of crack path oscillations, the toughening ratio can be taken equal to the ratio of the corresponding crack path lengths.

  17. The absolute path command

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  18. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  19. Extremal paths on a random Cayley tree

    NASA Astrophysics Data System (ADS)

    Majumdar, Satya N.; Krapivsky, P. L.

    2000-12-01

    We investigate the statistics of extremal path(s) (both the shortest and the longest) from the root to the bottom of a Cayley tree. The lengths of the edges are assumed to be independent identically distributed random variables drawn from a distribution ρ(l). Besides, the number of branches from any node is also random. Exact results are derived for arbitrary distribution ρ(l). In particular, for the binary \\{0,1\\} distribution ρ(l)=pδl,1+(1-p)δl,0, we show that as p increases, the minimal length undergoes an unbinding transition from a ``localized'' phase to a ``moving'' phase at the critical value, p=pc=1-b-1, where b is the average branch number of the tree. As the height n of the tree increases, the minimal length saturates to a finite constant in the localized phase (ppc) where the velocity vmin(p) is determined via a front selection mechanism. At p=pc, the minimal length grows with n in an extremely slow double-logarithmic fashion. The length of the maximal path, on the other hand, increases linearly as vmax(p)n for all p. The maximal and minimal velocities satisfy a general duality relation, vmin(p)+vmax(1-p)=1, which is also valid for directed paths on finite-dimensional lattices.

  20. Two-path plasmonic interferometer with integrated detector

    DOEpatents

    Dyer, Gregory Conrad; Shaner, Eric A.; Aizin, Gregory

    2016-03-29

    An electrically tunable terahertz two-path plasmonic interferometer with an integrated detection element can down convert a terahertz field to a rectified DC signal. The integrated detector utilizes a resonant plasmonic homodyne mixing mechanism that measures the component of the plasma waves in-phase with an excitation field that functions as the local oscillator in the mixer. The plasmonic interferometer comprises two independently tuned electrical paths. The plasmonic interferometer enables a spectrometer-on-a-chip where the tuning of electrical path length plays an analogous role to that of physical path length in macroscopic Fourier transform interferometers.

  1. Cooperative organic mine avoidance path planning

    NASA Astrophysics Data System (ADS)

    McCubbin, Christopher B.; Piatko, Christine D.; Peterson, Adam V.; Donnald, Creighton R.; Cohen, David

    2005-06-01

    The JHU/APL Path Planning team has developed path planning techniques to look for paths that balance the utility and risk associated with different routes through a minefield. Extending on previous years' efforts, we investigated real-world Naval mine avoidance requirements and developed a tactical decision aid (TDA) that satisfies those requirements. APL has developed new mine path planning techniques using graph based and genetic algorithms which quickly produce near-minimum risk paths for complicated fitness functions incorporating risk, path length, ship kinematics, and naval doctrine. The TDA user interface, a Java Swing application that obtains data via Corba interfaces to path planning databases, allows the operator to explore a fusion of historic and in situ mine field data, control the path planner, and display the planning results. To provide a context for the minefield data, the user interface also renders data from the Digital Nautical Chart database, a database created by the National Geospatial-Intelligence Agency containing charts of the world's ports and coastal regions. This TDA has been developed in conjunction with the COMID (Cooperative Organic Mine Defense) system. This paper presents a description of the algorithms, architecture, and application produced.

  2. Apparent optical properties of the Canadian Beaufort Sea - Part 2: The 1% and 1 cm perspective in deriving and validating AOP data products

    NASA Astrophysics Data System (ADS)

    Hooker, S. B.; Morrow, J. H.; Matsuoka, A.

    2013-07-01

    A next-generation in-water profiler designed to measure the apparent optical properties (AOPs) of seawater was developed and validated across a wide dynamic range of in-water properties. The new free-falling instrument, the Compact-Optical Profiling System (C-OPS), was based on sensors built with a cluster of 19 state-of-the-art microradiometers spanning 320-780 nm and a novel kite-shaped backplane. The new backplane includes tunable ballast, a hydrobaric buoyancy chamber, plus pitch and roll adjustments, to provide unprecedented stability and vertical resolution in near-surface waters. A unique data set was collected as part of the development activity plus the first major field campaign that used the new instrument, the Malina expedition to the Beaufort Sea in the vicinity of the Mackenzie River outflow. The data were of sufficient resolution and quality to show that errors - more correctly, uncertainties - in the execution of data sampling protocols were measurable at the 1% and 1 cm level with C-OPS. A theoretical sensitivity analysis as a function of three water types established by the peak in the remote sensing reflectance spectrum, Rrs(λ), revealed which water types and which parts of the spectrum were the most sensitive to data acquisition uncertainties. Shallow riverine waters were the most sensitive water type, and the ultraviolet and near-infrared spectral end members, which are critical to next-generation satellite missions, were the most sensitive parts of the spectrum. The sensitivity analysis also showed how the use of data products based on band ratios significantly mitigated the influence of data acquisition uncertainties. The unprecedented vertical resolution provided high-quality data products, which supported an alternative classification capability based on the spectral diffuse attenuation coefficient, Kd(λ). The Kd(320) and Kd(780) data showed how complex coastal systems can be distinguished two-dimensionally and how near-ice water masses

  3. Comparative characterization of a recombinant Volvariella volvacea endoglucanase I (EG1) with its truncated catalytic core (EG1-CM), and their impact on the bio-treatment of cellulose-based fabrics.

    PubMed

    Wu, Shufang; Ding, Shaojun; Zhou, Rui; Li, Zhongzheng

    2007-07-15

    Recombinant Volvariella volvacea endoglucanase 1 (EG1) and its catalytic module (EG1-CM) were obtained by expression in Pichia pastoris, purified by two-step chromatography, and the catalytic activities and binding capacities were compared. EG1 and EG1-CM exhibited very similar specific activities towards the soluble substrates carboxymethyl cellulose, lichenan and mannan, and insoluble H(3)PO(4) acid-swollen cellulose, whereas the specific activities of EG1-CM towards the insoluble substrates alpha-cellulose, Avicel and filter paper were approximately 58, 43 and 38%, respectively compared to EG1. No increase in reducing sugar release was detected in the reaction mixture supernatants after 50h exposure of filter paper, Avicel or alpha-cellulose to EG1-CM, whereas increases in the total reducing sugar equivalents (i.e. reducing sugar released into solution together with new reducing ends generated in the cellulosic substrates) in reaction mixtures were observed after 1h. In reaction mixtures containing EG1, soluble reducing sugar equivalents were detected in supernatants after 3h incubation with the insoluble cellulosic substrates. EG1-CM did not adsorb to Avicel, and the binding capacities of EG1-CM towards filter paper and H(3)PO(4) acid-swollen cellulose were 27.9-33.3% and 29.6-60.6%, respectively of values obtained with EG1 within the range of total added protein. In enzymatic deinking experiments, the ink removal rate in EG1-CM-treated samples was only slightly higher (approximately 8%), than that of untreated controls, whereas that of the EG1-treated samples was 100% higher. Bio-stoning of denim with EG1-CM resulted in increases of 48% and 40% in weight loss and indigo dye removal, respectively compared with untreated controls. These increases were considerably lower than the corresponding values of 219% and 133% obtained when samples were treated with EG1. PMID:17610980

  4. Path optimization with limited sensing ability

    NASA Astrophysics Data System (ADS)

    Kang, Sung Ha; Kim, Seong Jun; Zhou, Haomin

    2015-10-01

    We propose a computational strategy to find the optimal path for a mobile sensor with limited coverage to traverse a cluttered region. The goal is to find one of the shortest feasible paths to achieve the complete scan of the environment. We pose the problem in the level set framework, and first consider a related question of placing multiple stationary sensors to obtain the full surveillance of the environment. By connecting the stationary locations using the nearest neighbor strategy, we form the initial guess for the path planning problem of the mobile sensor. Then the path is optimized by reducing its length, via solving a system of ordinary differential equations (ODEs), while maintaining the complete scan of the environment. Furthermore, we use intermittent diffusion, which converts the ODEs into stochastic differential equations (SDEs), to find an optimal path whose length is globally minimal. To improve the computation efficiency, we introduce two techniques, one to remove redundant connecting points to reduce the dimension of the system, and the other to deal with the entangled path so the solution can escape the local traps. Numerical examples are shown to illustrate the effectiveness of the proposed method.

  5. Path optimization with limited sensing ability

    SciTech Connect

    Kang, Sung Ha Kim, Seong Jun Zhou, Haomin

    2015-10-15

    We propose a computational strategy to find the optimal path for a mobile sensor with limited coverage to traverse a cluttered region. The goal is to find one of the shortest feasible paths to achieve the complete scan of the environment. We pose the problem in the level set framework, and first consider a related question of placing multiple stationary sensors to obtain the full surveillance of the environment. By connecting the stationary locations using the nearest neighbor strategy, we form the initial guess for the path planning problem of the mobile sensor. Then the path is optimized by reducing its length, via solving a system of ordinary differential equations (ODEs), while maintaining the complete scan of the environment. Furthermore, we use intermittent diffusion, which converts the ODEs into stochastic differential equations (SDEs), to find an optimal path whose length is globally minimal. To improve the computation efficiency, we introduce two techniques, one to remove redundant connecting points to reduce the dimension of the system, and the other to deal with the entangled path so the solution can escape the local traps. Numerical examples are shown to illustrate the effectiveness of the proposed method.

  6. Functional scoliosis caused by leg length discrepancy

    PubMed Central

    Daniszewska, Barbara; Zolynski, Krystian

    2010-01-01

    Introduction Leg length discrepancy (LLD) causes pelvic obliquity in the frontal plane and lumbar scoliosis with convexity towards the shorter extremity. Leg length discrepancy is observed in 3-15% of the population. Unequalized lower limb length discrepancy leads to posture deformation, gait asymmetry, low back pain and discopathy. Material and methods In the years 1998-2006, 369 children, aged 5 to 17 years (209 girls, 160 boys) with LLD-related functional scoliosis were treated. An external or internal shoe lift was applied. Results Among 369 children the discrepancy of 0.5 cm was observed in 27, 1 cm in 329, 1.5 cm in 9 and 2 cm in 4 children. During the first follow-up examination, within 2 weeks, the adjustment of the spine to new static conditions was noted and correction of the curve in 316 examined children (83.7%). In 53 children (14.7%) the correction was observed later and was accompanied by slight low back pain. The time needed for real equalization of limbs was 3 to 24 months. The time needed for real equalization of the discrepancy was 11.3 months. Conclusions Leg length discrepancy equalization results in elimination of scoliosis. Leg length discrepancy < 2 cm is a static disorder; that is why measurements should be performed in a standing position using blocks of adequate thickness and the position of the posterior superior iliac spine should be estimated. PMID:22371777

  7. Path optimization for oil probe

    NASA Astrophysics Data System (ADS)

    Smith, O'Neil; Rahmes, Mark; Blue, Mark; Peter, Adrian

    2014-05-01

    We discuss a robust method for optimal oil probe path planning inspired by medical imaging. Horizontal wells require three-dimensional steering made possible by the rotary steerable capabilities of the system, which allows the hole to intersect multiple target shale gas zones. Horizontal "legs" can be over a mile long; the longer the exposure length, the more oil and natural gas is drained and the faster it can flow. More oil and natural gas can be produced with fewer wells and less surface disturbance. Horizontal drilling can help producers tap oil and natural gas deposits under surface areas where a vertical well cannot be drilled, such as under developed or environmentally sensitive areas. Drilling creates well paths which have multiple twists and turns to try to hit multiple accumulations from a single well location. Our algorithm can be used to augment current state of the art methods. Our goal is to obtain a 3D path with nodes describing the optimal route to the destination. This algorithm works with BIG data and saves cost in planning for probe insertion. Our solution may be able to help increase the energy extracted vs. input energy.

  8. The universal path integral

    NASA Astrophysics Data System (ADS)

    Lloyd, Seth; Dreyer, Olaf

    2016-02-01

    Path integrals calculate probabilities by summing over classical configurations of variables such as fields, assigning each configuration a phase equal to the action of that configuration. This paper defines a universal path integral, which sums over all computable structures. This path integral contains as sub-integrals all possible computable path integrals, including those of field theory, the standard model of elementary particles, discrete models of quantum gravity, string theory, etc. The universal path integral possesses a well-defined measure that guarantees its finiteness. The probabilities for events corresponding to sub-integrals can be calculated using the method of decoherent histories. The universal path integral supports a quantum theory of the universe in which the world that we see around us arises out of the interference between all computable structures.

  9. Robot path planning using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Cleghorn, Timothy F.; Baffes, Paul T.; Wang, Liu

    1988-01-01

    Robot path planning can refer either to a mobile vehicle such as a Mars Rover, or to an end effector on an arm moving through a cluttered workspace. In both instances there may exist many solutions, some of which are better than others, either in terms of distance traversed, energy expended, or joint angle or reach capabilities. A path planning program has been developed based upon a genetic algorithm. This program assumes global knowledge of the terrain or workspace, and provides a family of good paths between the initial and final points. Initially, a set of valid random paths are constructed. Successive generations of valid paths are obtained using one of several possible reproduction strategies similar to those found in biological communities. A fitness function is defined to describe the goodness of the path, in this case including length, slope, and obstacle avoidance considerations. It was found that with some reproduction strategies, the average value of the fitness function improved for successive generations, and that by saving the best paths of each generation, one could quite rapidly obtain a collection of good candidate solutions.

  10. Multilayer Active Control For Structural Damping And Optical-Path Regulation

    NASA Technical Reports Server (NTRS)

    Rahman, Zahidul H.; Spanos, John T.; Fanson, James L.

    1995-01-01

    Two active-control concepts incorporated into system for suppression of vibrations in truss structure and regulation of length of optical path on structure to nanometer level. Optical-path-length-control subsystem contains two feedback control loops to obtain active damping in wide amplitude-and-frequency range. Concept described in more detail in number of previous articles, including "Stabilizing Optical-Path Length on a Vibrating Structure" (NPO-19040), "Controllable Optical Delay Line for Stellar Interferometry" (NPO-18686), "Test Bed for Control of Optical-Path Lengths" (NPO-18487).

  11. Arc Length Gone Global

    ERIC Educational Resources Information Center

    Boudreaux, Gregory M.; Wells, M. Scott

    2007-01-01

    Everyone with a thorough knowledge of single variable calculus knows that integration can be used to find the length of a curve on a given interval, called its arc length. Fortunately, if one endeavors to pose and solve more interesting problems than simply computing lengths of various curves, there are techniques available that do not require an…

  12. Measuring Thermodynamic Length

    SciTech Connect

    Crooks, Gavin E

    2007-09-07

    Thermodynamic length is a metric distance between equilibrium thermodynamic states. Among other interesting properties, this metric asymptotically bounds the dissipation induced by a finite time transformation of a thermodynamic system. It is also connected to the Jensen-Shannon divergence, Fisher information, and Rao's entropy differential metric. Therefore, thermodynamic length is of central interestin understanding matter out of equilibrium. In this Letter, we will consider how to denethermodynamic length for a small system described by equilibrium statistical mechanics and how to measure thermodynamic length within a computer simulation. Surprisingly, Bennett's classic acceptance ratio method for measuring free energy differences also measures thermodynamic length.

  13. Tornado intensity estimated from damage path dimensions.

    PubMed

    Elsner, James B; Jagger, Thomas H; Elsner, Ian J

    2014-01-01

    The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s(-1) for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width. PMID:25229242

  14. Tornado Intensity Estimated from Damage Path Dimensions

    PubMed Central

    Elsner, James B.; Jagger, Thomas H.; Elsner, Ian J.

    2014-01-01

    The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s−1 for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width. PMID:25229242

  15. Minimal entropy probability paths between genome families.

    PubMed

    Ahlbrandt, Calvin; Benson, Gary; Casey, William

    2004-05-01

    We develop a metric for probability distributions with applications to biological sequence analysis. Our distance metric is obtained by minimizing a functional defined on the class of paths over probability measures on N categories. The underlying mathematical theory is connected to a constrained problem in the calculus of variations. The solution presented is a numerical solution, which approximates the true solution in a set of cases called rich paths where none of the components of the path is zero. The functional to be minimized is motivated by entropy considerations, reflecting the idea that nature might efficiently carry out mutations of genome sequences in such a way that the increase in entropy involved in transformation is as small as possible. We characterize sequences by frequency profiles or probability vectors, in the case of DNA where N is 4 and the components of the probability vector are the frequency of occurrence of each of the bases A, C, G and T. Given two probability vectors a and b, we define a distance function based as the infimum of path integrals of the entropy function H( p) over all admissible paths p(t), 0 < or = t< or =1, with p(t) a probability vector such that p(0)=a and p(1)=b. If the probability paths p(t) are parameterized as y(s) in terms of arc length s and the optimal path is smooth with arc length L, then smooth and "rich" optimal probability paths may be numerically estimated by a hybrid method of iterating Newton's method on solutions of a two point boundary value problem, with unknown distance L between the abscissas, for the Euler-Lagrange equations resulting from a multiplier rule for the constrained optimization problem together with linear regression to improve the arc length estimate L. Matlab code for these numerical methods is provided which works only for "rich" optimal probability vectors. These methods motivate a definition of an elementary distance function which is easier and faster to calculate, works on non

  16. Multi optical path generator for fiber optic strain sensors multiplexing

    NASA Astrophysics Data System (ADS)

    Luo, Hao; Yuan, Yonggui; Yuan, Libo

    2015-07-01

    A multi optical path generator based on a tunable long Fabry-Perot optical fiber cavity is proposed and demonstrated. It would be used in an optical fiber sensing system which could multiplex a number of fiber sensors with different gauge lengths. Using this optical path generator, we can get a sequence of light beams with different optical paths, which will be coupled to the fiber sensor array in the sensing system. The multi optical path lengths generated by the device are analyzed and discussed. And the relative intensity of the corresponding light beam is calculated. The multiplexing capability caused by the optical path generator is discussed and the experimental results are confirmed this. The system can be used in strain or deformation sensing for smart structure health monitoring.

  17. Topological analysis of polymeric melts: Chain-length effects and fast-converging estimators for entanglement length

    NASA Astrophysics Data System (ADS)

    Hoy, Robert S.; Foteinopoulou, Katerina; Kröger, Martin

    2009-09-01

    Primitive path analyses of entanglements are performed over a wide range of chain lengths for both bead spring and atomistic polyethylene polymer melts. Estimators for the entanglement length Ne which operate on results for a single chain length N are shown to produce systematic O(1/N) errors. The mathematical roots of these errors are identified as (a) treating chain ends as entanglements and (b) neglecting non-Gaussian corrections to chain and primitive path dimensions. The prefactors for the O(1/N) errors may be large; in general their magnitude depends both on the polymer model and the method used to obtain primitive paths. We propose, derive, and test new estimators which eliminate these systematic errors using information obtainable from the variation in entanglement characteristics with chain length. The new estimators produce accurate results for Ne from marginally entangled systems. Formulas based on direct enumeration of entanglements appear to converge faster and are simpler to apply.

  18. Cane Technique: Modifying the Touch Technique for Full Path Coverage

    ERIC Educational Resources Information Center

    Uslan, Mark M.

    1978-01-01

    Measurements of height of cane hand, cane length, step size, and forearm length of 17 cane using blind (14-21 years old) Ss were taken for the purpose of testing the hypothesis that the touch technique does not provide 100 percent path coverage. (Author)

  19. A Path to Discovery

    ERIC Educational Resources Information Center

    Stegemoller, William; Stegemoller, Rebecca

    2004-01-01

    The path taken and the turns made as a turtle traces a polygon are examined to discover an important theorem in geometry. A unique tool, the Angle Adder, is implemented in the investigation. (Contains 9 figures.)

  20. Tortuous path chemical preconcentrator

    DOEpatents

    Manginell, Ronald P.; Lewis, Patrick R.; Adkins, Douglas R.; Wheeler, David R.; Simonson, Robert J.

    2010-09-21

    A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.

  1. Neandertal clavicle length

    PubMed Central

    Trinkaus, Erik; Holliday, Trenton W.; Auerbach, Benjamin M.

    2014-01-01

    The Late Pleistocene archaic humans from western Eurasia (the Neandertals) have been described for a century as exhibiting absolutely and relatively long clavicles. This aspect of their body proportions has been used to distinguish them from modern humans, invoked to account for other aspects of their anatomy and genetics, used in assessments of their phylogenetic polarities, and used as evidence for Late Pleistocene population relationships. However, it has been unclear whether the usual scaling of Neandertal clavicular lengths to their associated humeral lengths reflects long clavicles, short humeri, or both. Neandertal clavicle lengths, along with those of early modern humans and latitudinally diverse recent humans, were compared with both humeral lengths and estimated body masses (based on femoral head diameters). The Neandertal do have long clavicles relative their humeri, even though they fall within the ranges of variation of early and recent humans. However, when scaled to body masses, their humeral lengths are relatively short, and their clavicular lengths are indistinguishable from those of Late Pleistocene and recent modern humans. The few sufficiently complete Early Pleistocene Homo clavicles seem to have relative lengths also well within recent human variation. Therefore, appropriately scaled clavicular length seems to have varied little through the genus Homo, and it should not be used to account for other aspects of Neandertal biology or their phylogenetic status. PMID:24616525

  2. Determinants of gap length in esophageal atresia with tracheoesophageal fistula and the impact of gap length on outcome

    PubMed Central

    Rassiwala, Muffazzal; Choudhury, Subhasis Roy; Yadav, Partap Singh; Jhanwar, Praveen; Agarwal, Raghu Prakash; Chadha, Rajiv; Debnath, Pinaki Ranjan

    2016-01-01

    Aim: This study was aimed at identifying factors which may affect the gap length in cases of esophageal atresia with tracheoesophageal fistula (EA-TEF) and whether gap length plays any role in determining the outcome. Materials and Methods: All consecutive cases of EA-TEF were included and different patient parameters were recorded. Plain radiographs with a nasogastric tube in the upper esophagus were taken. Patients were grouped into T1-T2; T2-T3; T3-T4; and T4 depending on the thoracic vertebral level of the arrest of the tube. During surgery, the gap length between the pouches was measured using a Vernier caliper and the patients were grouped into A, B, and C (gap length >2.1 cm; >1-≤2 cm and ≤1 cm). The operative gap groups were compared with the radiography groups and the other recorded parameters. Results: Total numbers of cases were 69. Birth weight was found to be significantly lower in Group A (mean = 2.14 kg) as compared to Group B (mean = 2.38 kg) and Group C patients (mean = 2.49 kg) (P = 0.016). The radiographic groups compared favorably with the intraoperative gap length groups (P < 0.001). The need for postoperative ventilation (70.83% in Group A vs. 36.84% in Group C, P = 0.032) and mortality (62.5%, 26.9% and 15.8% in Group A, B, and C, respectively, P = 0.003) co-related significantly with the gap length. Conclusion: Birth weight had a direct reciprocal relationship with the gap length. Radiographic assessment correlated with intraoperative gap length. Higher gap length was associated with increased need for postoperative ventilation and poor outcome. PMID:27365907

  3. Gravity-dependent signal path variation in a large VLBI telescope modelled with a combination of surveying methods

    NASA Astrophysics Data System (ADS)

    Sarti, Pierguido; Abbondanza, C.; Vittuari, L.

    2009-11-01

    The very long baseline interferometry (VLBI) antenna in Medicina (Italy) is a 32-m AZ-EL mount that was surveyed several times, adopting an indirect method, for the purpose of estimating the eccentricity vector between the co-located VLBI and Global Positioning System instruments. In order to fulfill this task, targets were located in different parts of the telescope’s structure. Triangulation and trilateration on the targets highlight a consistent amount of deformation that biases the estimate of the instrument’s reference point up to 1 cm, depending on the targets’ locations. Therefore, whenever the estimation of accurate local ties is needed, it is critical to take into consideration the action of gravity on the structure. Furthermore, deformations induced by gravity on VLBI telescopes may modify the length of the path travelled by the incoming radio signal to a non-negligible extent. As a consequence, differently from what it is usually assumed, the relative distance of the feed horn’s phase centre with respect to the elevation axis may vary, depending on the telescope’s pointing elevation. The Medicina telescope’s signal path variation Δ L increases by a magnitude of approximately 2 cm, as the pointing elevation changes from horizon to zenith; it is described by an elevation-dependent second-order polynomial function computed as, according to Clark and Thomsen (Techical report, 100696, NASA, Greenbelt, 1988), a linear combination of three terms: receiver displacement Δ R, primary reflector’s vertex displacement Δ V and focal length variations Δ F. Δ L was investigated with a combination of terrestrial triangulation and trilateration, laser scanning and a finite element model of the antenna. The antenna gain (or auto-focus curve) Δ G is routinely determined through astronomical observations. A surprisingly accurate reproduction of Δ G can be obtained with a combination of Δ V, Δ F and Δ R.

  4. Sampling diffusive transition paths

    SciTech Connect

    F. Miller III, Thomas; Predescu, Cristian

    2006-10-12

    We address the problem of sampling double-ended diffusive paths. The ensemble of paths is expressed using a symmetric version of the Onsager-Machlup formula, which only requires evaluation of the force field and which, upon direct time discretization, gives rise to a symmetric integrator that is accurate to second order. Efficiently sampling this ensemble requires avoiding the well-known stiffness problem associated with sampling infinitesimal Brownian increments of the path, as well as a different type of stiffness associated with sampling the coarse features of long paths. The fine-features sampling stiffness is eliminated with the use of the fast sampling algorithm (FSA), and the coarse-feature sampling stiffness is avoided by introducing the sliding and sampling (S&S) algorithm. A key feature of the S&S algorithm is that it enables massively parallel computers to sample diffusive trajectories that are long in time. We use the algorithm to sample the transition path ensemble for the structural interconversion of the 38-atom Lennard-Jones cluster at low temperature.

  5. Sampling diffusive transition paths.

    PubMed

    Miller, Thomas F; Predescu, Cristian

    2007-04-14

    The authors address the problem of sampling double-ended diffusive paths. The ensemble of paths is expressed using a symmetric version of the Onsager-Machlup formula, which only requires evaluation of the force field and which, upon direct time discretization, gives rise to a symmetric integrator that is accurate to second order. Efficiently sampling this ensemble requires avoiding the well-known stiffness problem associated with the sampling of infinitesimal Brownian increments of the path, as well as a different type of stiffness associated with the sampling of the coarse features of long paths. The fine-feature sampling stiffness is eliminated with the use of the fast sampling algorithm, and the coarse-feature sampling stiffness is avoided by introducing the sliding and sampling (S&S) algorithm. A key feature of the S&S algorithm is that it enables massively parallel computers to sample diffusive trajectories that are long in time. The authors use the algorithm to sample the transition path ensemble for the structural interconversion of the 38-atom Lennard-Jones cluster at low temperature. PMID:17444696

  6. Coefficients of Effective Length.

    ERIC Educational Resources Information Center

    Edwards, Roger H.

    1981-01-01

    Under certain conditions, a validity Coefficient of Effective Length (CEL) can produce highly misleading results. A modified coefficent is suggested for use when empirical studies indicate that underlying assumptions have been violated. (Author/BW)

  7. Length Paradox in Relativity

    ERIC Educational Resources Information Center

    Martins, Roberto de A.

    1978-01-01

    Describes a thought experiment using a general analysis approach with Lorentz transformations to show that the apparent self-contradictions of special relativity concerning the length-paradox are really non-existant. (GA)

  8. [Sonographic leg length measurement].

    PubMed

    Holst, A; Thomas, W

    1989-03-01

    After brief presentation of the clinical and radiological methods to measure the leg length and the leg length difference the authors outline the new diagnostic method for measuring the leg length and the leg length difference by means of real time sonography. Postmortem tests and clinical examples show that ultrasound is ideal to determine exactly the length of femur and tibia. The joint gaps on the hip, knee and upper ankle joint can be demonstrated by means of a 5 MHz linear scanner. A 1 mm strong metal bar on the skin and under the scanner is placed at right angles to the longitudinal axis of the body so that the bar can be seen in the centre. A measuring device gives the distances of the joint gaps in cm so that the difference correspond to the real length of femur and tibia. This standardised measuring is done by a particularly developed bearing and measuring device. The results of the sonographical measurements on 20 corpses and checking after consecutive dissections showed in 75% of cases a 100% sonographic measuring accuracy of the total leg length. The separately considered results for femur (85%) and tibia (90) were even better. The maximum sonographic measuring fault was 1.0 cm for the femur (in one case) and 0.5 cm for the tibia, respectively. All sonographic measurements were performed with the Sonoline SL-1 of the Siemens Company (Erlangen, W-Germany). Thus, sonographical measuring of the leg length offers a reliable, non-invasive method that can be repeated as often as necessary and is simply executed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2652268

  9. Editorial: Redefining Length

    SciTech Connect

    Sprouse, Gene D.

    2011-07-15

    Technological changes have moved publishing to electronic-first publication where the print version has been relegated to simply another display mode. Distribution in HTML and EPUB formats, for example, changes the reading environment and reduces the need for strict pagination. Therefore, in an effort to streamline the calculation of length, the APS journals will no longer use the printed page as the determining factor for length. Instead the journals will now use word counts (or word equivalents for tables, figures, and equations) to establish length; for details please see http://publish.aps.org/authors/length-guide. The title, byline, abstract, acknowledgment, and references will not be included in these counts allowing authors the freedom to appropriately credit coworkers, funding sources, and the previous literature, bringing all relevant references to the attention of readers. This new method for determining length will be easier for authors to calculate in advance, and lead to fewer length-associated revisions in proof, yet still retain the quality of concise communication that is a virtue of short papers.

  10. Paths correlation matrix.

    PubMed

    Qian, Weixian; Zhou, Xiaojun; Lu, Yingcheng; Xu, Jiang

    2015-09-15

    Both the Jones and Mueller matrices encounter difficulties when physically modeling mixed materials or rough surfaces due to the complexity of light-matter interactions. To address these issues, we derived a matrix called the paths correlation matrix (PCM), which is a probabilistic mixture of Jones matrices of every light propagation path. Because PCM is related to actual light propagation paths, it is well suited for physical modeling. Experiments were performed, and the reflection PCM of a mixture of polypropylene and graphite was measured. The PCM of the mixed sample was accurately decomposed into pure polypropylene's single reflection, pure graphite's single reflection, and depolarization caused by multiple reflections, which is consistent with the theoretical derivation. Reflection parameters of rough surface can be calculated from PCM decomposition, and the results fit well with the theoretical calculations provided by the Fresnel equations. These theoretical and experimental analyses verify that PCM is an efficient way to physically model light-matter interactions. PMID:26371930

  11. Mobile transporter path planning

    NASA Technical Reports Server (NTRS)

    Baffes, Paul; Wang, Lui

    1990-01-01

    The use of a genetic algorithm (GA) for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the space station which must be able to reach any point of the structure autonomously. Elements of the genetic algorithm are explored in both a theoretical and experimental sense. Specifically, double crossover, greedy crossover, and tournament selection techniques are examined. Additionally, the use of local optimization techniques working in concert with the GA are also explored. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research.

  12. Coherence-path duality relations for N paths

    NASA Astrophysics Data System (ADS)

    Hillery, Mark; Bagan, Emilio; Bergou, Janos; Cottrell, Seth

    2016-05-01

    For an interferometer with two paths, there is a relation between the information about which path the particle took and the visibility of the interference pattern at the output. The more path information we have, the smaller the visibility, and vice versa. We generalize this relation to a multi-path interferometer, and we substitute two recently defined measures of quantum coherence for the visibility, which results in two duality relations. The path information is provided by attaching a detector to each path. In the first relation, which uses an l1 measure of coherence, the path information is obtained by applying the minimum-error state discrimination procedure to the detector states. In the second, which employs an entropic measure of coherence, the path information is the mutual information between the detector states and the result of measuring them. Both approaches are quantitative versions of complementarity for N-path interferometers. Support provided by the John Templeton Foundation.

  13. Following the Path

    ERIC Educational Resources Information Center

    Rodia, Becky

    2004-01-01

    This article profiles Diane Stanley, an author and illustrator of children's books. Although she was studying to be a medical illustrator in graduate school, Stanley's path changed when she got married and had children. As she was raising her children, she became increasingly enamored of the colorful children's books she would check out of the…

  14. An Unplanned Path

    ERIC Educational Resources Information Center

    McGarvey, Lynn M.; Sterenberg, Gladys Y.; Long, Julie S.

    2013-01-01

    The authors elucidate what they saw as three important challenges to overcome along the path to becoming elementary school mathematics teacher leaders: marginal interest in math, low self-confidence, and teaching in isolation. To illustrate how these challenges were mitigated, they focus on the stories of two elementary school teachers--Laura and…

  15. Fast orthogonal transforms and generation of Brownian paths

    PubMed Central

    Leobacher, Gunther

    2012-01-01

    We present a number of fast constructions of discrete Brownian paths that can be used as alternatives to principal component analysis and Brownian bridge for stratified Monte Carlo and quasi-Monte Carlo. By fast we mean that a path of length n can be generated in O(nlog(n)) floating point operations. We highlight some of the connections between the different constructions and we provide some numerical examples. PMID:23471545

  16. Document Length Normalization.

    ERIC Educational Resources Information Center

    Singhal, Amit; And Others

    1996-01-01

    Describes a study that investigated document retrieval relevance based on document length in an experimental text collection. Topics include term weighting and document ranking, retrieval strategies such as the vector-space cosine match, and a modified technique called the pivoted cosine normalization. (LRW)

  17. Nonaffine chain and primitive path deformation in crosslinked polymers

    NASA Astrophysics Data System (ADS)

    Davidson, J. D.; Goulbourne, N. C.

    2016-08-01

    Chains in a polymer network deform nonaffinely at small length scales due to the ability for extensive microscopic rearrangement. Classically, the conformations of an individual chain can be described solely by an end-to-end length. This picture neglects interchain interactions and therefore does not represent the behavior of a real polymer network. The primitive path concept provides the additional detail to represent interchain entanglements, and techniques have recently been developed to identify the network of primitive paths in a polymer simulation. We use coarse-grained molecular dynamics (MD) to track both chain end-to-end and primitive path deformation in crosslinked polymer networks. The range of simulated materials includes short chain unentangled networks to long, entangled chain networks. Both chain end-to-end and primitive path length are found to be linear functions of the applied deformation, and a simple relationship describes the behavior of a network in response to large stretch uniaxial, pure shear, and equi-biaxial deformations. As expected, end-to-end chain length deformation is nonaffine for short chain networks, and becomes closer to affine for networks of long, entangled chains. However, primitive path deformation is found to always be nonaffine, even for long, entangled chains. We demonstrate how the microscopic constraints of crosslinks and entanglements affect nonaffine chain deformation as well as the simulated elastic behavior of the different networks.

  18. Nonadiabatic transition path sampling

    NASA Astrophysics Data System (ADS)

    Sherman, M. C.; Corcelli, S. A.

    2016-07-01

    Fewest-switches surface hopping (FSSH) is combined with transition path sampling (TPS) to produce a new method called nonadiabatic path sampling (NAPS). The NAPS method is validated on a model electron transfer system coupled to a Langevin bath. Numerically exact rate constants are computed using the reactive flux (RF) method over a broad range of solvent frictions that span from the energy diffusion (low friction) regime to the spatial diffusion (high friction) regime. The NAPS method is shown to quantitatively reproduce the RF benchmark rate constants over the full range of solvent friction. Integrating FSSH within the TPS framework expands the applicability of both approaches and creates a new method that will be helpful in determining detailed mechanisms for nonadiabatic reactions in the condensed-phase.

  19. Nonadiabatic transition path sampling.

    PubMed

    Sherman, M C; Corcelli, S A

    2016-07-21

    Fewest-switches surface hopping (FSSH) is combined with transition path sampling (TPS) to produce a new method called nonadiabatic path sampling (NAPS). The NAPS method is validated on a model electron transfer system coupled to a Langevin bath. Numerically exact rate constants are computed using the reactive flux (RF) method over a broad range of solvent frictions that span from the energy diffusion (low friction) regime to the spatial diffusion (high friction) regime. The NAPS method is shown to quantitatively reproduce the RF benchmark rate constants over the full range of solvent friction. Integrating FSSH within the TPS framework expands the applicability of both approaches and creates a new method that will be helpful in determining detailed mechanisms for nonadiabatic reactions in the condensed-phase. PMID:27448877

  20. Four paths of competition

    SciTech Connect

    Studness, C.M.

    1995-05-01

    The financial community`s focus on utility competition has been riveted on the proceedings now in progress at state regulatory commissions. The fear that something immediately damaging will come out of these proceedings seems to have diminished in recent months, and the stock market has reacted favorably. However, regulatory developments are only one of four paths leading to competition; the others are the marketplace, the legislatures, and the courts. Each could play a critical role in the emergence of competition.

  1. An accelerated line-by-line option for MODTRAN combining on-the-fly generation of line center absorption within 0.1 cm-1 bins and pre-computed line tails

    NASA Astrophysics Data System (ADS)

    Berk, Alexander; Conforti, Patrick; Hawes, Fred

    2015-05-01

    A Line-By-Line (LBL) option is being developed for MODTRAN6. The motivation for this development is two-fold. Firstly, when MODTRAN is validated against an independent LBL model, it is difficult to isolate the source of discrepancies. One must verify consistency between pressure, temperature and density profiles, between column density calculations, between continuum and particulate data, between spectral convolution methods, and more. Introducing a LBL option directly within MODTRAN will insure common elements for all calculations other than those used to compute molecular transmittances. The second motivation for the LBL upgrade is that it will enable users to compute high spectral resolution transmittances and radiances for the full range of current MODTRAN applications. In particular, introducing the LBL feature into MODTRAN will enable first-principle calculations of scattered radiances, an option that is often not readily available with LBL models. MODTRAN will compute LBL transmittances within one 0.1 cm-1 spectral bin at a time, marching through the full requested band pass. The LBL algorithm will use the highly accurate, pressure- and temperature-dependent MODTRAN Padé approximant fits of the contribution from line tails to define the absorption from all molecular transitions centered more than 0.05 cm-1 from each 0.1 cm-1 spectral bin. The beauty of this approach is that the on-the-fly computations for each 0.1 cm-1 bin will only require explicit LBL summing of transitions centered within a 0.2 cm-1 spectral region. That is, the contribution from the more distant lines will be pre-computed via the Padé approximants. The status of the LBL effort will be presented. This will include initial thermal and solar radiance calculations, validation calculations, and self-validations of the MODTRAN band model against its own LBL calculations.

  2. PATHS groundwater hydrologic model

    SciTech Connect

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  3. Spirit's Path to Bonneville

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Scientists created this overlay map by laying navigation and panoramic camera images taken from the surface of Mars on top of one of Spirit's descent images taken as the spacecraft descended to the martian surface. The map was created to help track the path that Spirit has traveled through sol 44 and to put into perspective the distance left to travel before reaching the edge of the large crater nicknamed 'Bonneville.'

    The area boxed in yellow contains the ground images that have been matched to and layered on top of the descent image. The yellow line shows the path that Spirit has traveled and the red dashed line shows the intended path for future sols. The blue circles highlight hollowed areas on the surface, such as Sleepy Hollow, near the lander, and Laguna Hollow, the sol 45 drive destination. Scientists use these hollowed areas - which can be seen in both the ground images and the descent image - to correctly match up the overlay.

    Field geologists on Earth create maps like this to assist them in tracking their observations.

  4. Far-from-equilibrium measurements of thermodynamic length

    SciTech Connect

    Feng, Edward H.; Crooks, Gavin E.

    2008-11-05

    Thermodynamic length is a path function that generalizes the notion of length to the surface of thermodynamic states. Here, we show how to measure thermodynamic length in far-from-equilibrium experiments using the work fluctuation relations. For these microscopic systems, it proves necessary to define the thermodynamic length in terms of the Fisher information. Consequently, the thermodynamic length can be directly related to the magnitude of fluctuations about equilibrium. The work fluctuation relations link the work and the free energy change during an external perturbation on a system. We use this result to determine equilibrium averages at intermediate points of the protocol in which the system is out-of-equilibrium. This allows us to extend Bennett's method to determine the potential of mean force, as well as the thermodynamic length, in single molecule experiments.

  5. Method for Veterbi decoding of large constraint length convolutional codes

    NASA Technical Reports Server (NTRS)

    Hsu, In-Shek (Inventor); Truong, Trieu-Kie (Inventor); Reed, Irving S. (Inventor); Jing, Sun (Inventor)

    1988-01-01

    A new method of Viterbi decoding of convolutional codes lends itself to a pipline VLSI architecture using a single sequential processor to compute the path metrics in the Viterbi trellis. An array method is used to store the path information for NK intervals where N is a number, and K is constraint length. The selected path at the end of each NK interval is then selected from the last entry in the array. A trace-back method is used for returning to the beginning of the selected path back, i.e., to the first time unit of the interval NK to read out the stored branch metrics of the selected path which correspond to the message bits. The decoding decision made in this way is no longer maximum likelihood, but can be almost as good, provided that constraint length K in not too small. The advantage is that for a long message, it is not necessary to provide a large memory to store the trellis derived information until the end of the message to select the path that is to be decoded; the selection is made at the end of every NK time unit, thus decoding a long message in successive blocks.

  6. Critical Path Web Site

    NASA Technical Reports Server (NTRS)

    Robinson, Judith L.; Charles, John B.; Rummel, John A. (Technical Monitor)

    2000-01-01

    Approximately three years ago, the Agency's lead center for the human elements of spaceflight (the Johnson Space Center), along with the National Biomedical Research Institute (NSBRI) (which has the lead role in developing countermeasures) initiated an activity to identify the most critical risks confronting extended human spaceflight. Two salient factors influenced this activity: first, what information is needed to enable a "go/no go" decision to embark on extended human spaceflight missions; and second, what knowledge and capabilities are needed to address known and potential health, safety and performance risks associated with such missions. A unique approach was used to first define and assess those risks, and then to prioritize them. This activity was called the Critical Path Roadmap (CPR) and it represents an opportunity to develop and implement a focused and evolving program of research and technology designed from a "risk reduction" perspective to prevent or minimize the risks to humans exposed to the space environment. The Critical Path Roadmap provides the foundation needed to ensure that human spaceflight, now and in the future, is as safe, productive and healthy as possible (within the constraints imposed on any particular mission) regardless of mission duration or destination. As a tool, the Critical Path Roadmap enables the decisionmaker to select from among the demonstrated or potential risks those that are to be mitigated, and the completeness of that mitigation. The primary audience for the CPR Web Site is the members of the scientific community who are interested in the research and technology efforts required for ensuring safe and productive human spaceflight. They may already be informed about the various space life sciences research programs or they may be newcomers. Providing the CPR content to potential investigators increases the probability of their delivering effective risk mitigations. Others who will use the CPR Web Site and its content

  7. Critical Path Web Site

    NASA Technical Reports Server (NTRS)

    Robinson, Judith L.; Charles, John B.; Rummel, John A. (Technical Monitor)

    2000-01-01

    Approximately three years ago, the Agency's lead center for the human elements of spaceflight (the Johnson Space Center), along with the National Biomedical Research Institute (NSBRI) (which has the lead role in developing countermeasures) initiated an activity to identify the most critical risks confronting extended human spaceflight. Two salient factors influenced this activity: first, what information is needed to enable a "go/no go" decision to embark on extended human spaceflight missions; and second, what knowledge and capabilities are needed to address known and potential health, safety and performance risks associated with such missions. A unique approach was used to first define and assess those risks, and then to prioritize them. This activity was called the Critical Path Roadmap (CPR) and it represents an opportunity to develop and implement a focused and evolving program of research and technology designed from a "risk reduction" perspective to prevent or minimize the risks to humans exposed to the space environment. The Critical Path Roadmap provides the foundation needed to ensure that human spaceflight, now and in the future, is as safe, productive and healthy as possible (within the constraints imposed on any particular mission) regardless of mission duration or destination. As a tool, the Critical Path Roadmap enables the decision maker to select from among the demonstrated or potential risks those that are to be mitigated, and the completeness of that mitigation. The primary audience for the CPR Web Site is the members of the scientific community who are interested in the research and technology efforts required for ensuring safe and productive human spaceflight. They may already be informed about the various space life sciences research programs or they may be newcomers. Providing the CPR content to potential investigators increases the probability of their delivering effective risk mitigations. Others who will use the CPR Web Site and its

  8. Thermoalgebras and path integral

    NASA Astrophysics Data System (ADS)

    Khanna, F. C.; Malbouisson, A. P. C.; Malbouisson, J. M. C.; Santana, A. E.

    2009-09-01

    Using a representation for Lie groups closely associated with thermal problems, we derive the algebraic rules of the real-time formalism for thermal quantum field theories, the so-called thermo-field dynamics (TFD), including the tilde conjugation rules for interacting fields. These thermo-group representations provide a unified view of different approaches for finite-temperature quantum fields in terms of a symmetry group. On these grounds, a path integral formalism is constructed, using Bogoliubov transformations, for bosons, fermions and non-abelian gauge fields. The generalization of the results for quantum fields in (S1)d×R topology is addressed.

  9. Path Integrals and Supersolids

    NASA Astrophysics Data System (ADS)

    Ceperley, D. M.

    2008-11-01

    Recent experiments by Kim and Chan on solid 4He have been interpreted as discovery of a supersolid phase of matter. Arguments based on wavefunctions have shown that such a phase exists, but do not necessarily apply to solid 4He. Imaginary time path integrals, implemented using Monte Carlo methods, provide a definitive answer; a clean system of solid 4He should be a normal quantum solid, not one with superfluid properties. The Kim-Chan phenomena must be due to defects introduced when the solid is formed.

  10. JAVA PathFinder

    NASA Technical Reports Server (NTRS)

    Mehhtz, Peter

    2005-01-01

    JPF is an explicit state software model checker for Java bytecode. Today, JPF is a swiss army knife for all sort of runtime based verification purposes. This basically means JPF is a Java virtual machine that executes your program not just once (like a normal VM), but theoretically in all possible ways, checking for property violations like deadlocks or unhandled exceptions along all potential execution paths. If it finds an error, JPF reports the whole execution that leads to it. Unlike a normal debugger, JPF keeps track of every step how it got to the defect.

  11. Portage and Path Dependence*

    PubMed Central

    Bleakley, Hoyt; Lin, Jeffrey

    2012-01-01

    We examine portage sites in the U.S. South, Mid-Atlantic, and Midwest, including those on the fall line, a geomorphological feature in the southeastern U.S. marking the final rapids on rivers before the ocean. Historically, waterborne transport of goods required portage around the falls at these points, while some falls provided water power during early industrialization. These factors attracted commerce and manufacturing. Although these original advantages have long since been made obsolete, we document the continuing importance of these portage sites over time. We interpret these results as path dependence and contrast explanations based on sunk costs interacting with decreasing versus increasing returns to scale. PMID:23935217

  12. Portage and Path Dependence.

    PubMed

    Bleakley, Hoyt; Lin, Jeffrey

    2012-05-01

    We examine portage sites in the U.S. South, Mid-Atlantic, and Midwest, including those on the fall line, a geomorphological feature in the southeastern U.S. marking the final rapids on rivers before the ocean. Historically, waterborne transport of goods required portage around the falls at these points, while some falls provided water power during early industrialization. These factors attracted commerce and manufacturing. Although these original advantages have long since been made obsolete, we document the continuing importance of these portage sites over time. We interpret these results as path dependence and contrast explanations based on sunk costs interacting with decreasing versus increasing returns to scale. PMID:23935217

  13. Length of stain dosimeter

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E. (Inventor)

    1994-01-01

    Payload customers for the Space Shuttle have recently expressed concerns about the possibility of their payloads at an adjacent pad being contaminated by plume effluents from a shuttle at an active pad as they await launch on an inactive pad. As part of a study to satisfy such concerns a ring of inexpensive dosimeters was deployed around the active pad at the inter-pad distance. However, following a launch, dosimeters cannot be read for several hours after the exposure. As a consequence factors such as different substrates, solvent systems, and possible volatilization of HCl from the badges were studied. This observation led to the length of stain (LOS) dosimeters of this invention. Commercial passive LOS dosimeters are sensitive only to the extent of being capable of sensing 2 ppm to 20 ppm if the exposure is 8 hours. To map and quantitate the HCl generated by Shuttle launches, and in the atmosphere within a radius of 1.5 miles from the active pad, a sensitivity of 2 ppm HCl in the atmospheric gases on an exposure of 5 minutes is required. A passive length of stain dosimeter has been developed having a sensitivity rendering it capable of detecting a gas in a concentration as low as 2 ppm on an exposure of five minutes.

  14. Internet's critical path horizon

    NASA Astrophysics Data System (ADS)

    Valverde, S.; Solé, R. V.

    2004-03-01

    Internet is known to display a highly heterogeneous structure and complex fluctuations in its traffic dynamics. Congestion seems to be an inevitable result of user's behavior coupled to the network dynamics and it effects should be minimized by choosing appropriate routing strategies. But what are the requirements of routing depth in order to optimize the traffic flow? In this paper we analyse the behavior of Internet traffic with a topologically realistic spatial structure as described in a previous study [S.-H. Yook et al., Proc. Natl Acad. Sci. USA 99, 13382 (2002)]. The model involves self-regulation of packet generation and different levels of routing depth. It is shown that it reproduces the relevant key, statistical features of Internet's traffic. Moreover, we also report the existence of a critical path horizon defining a transition from low-efficient traffic to highly efficient flow. This transition is actually a direct consequence of the web's small world architecture exploited by the routing algorithm. Once routing tables reach the network diameter, the traffic experiences a sudden transition from a low-efficient to a highly-efficient behavior. It is conjectured that routing policies might have spontaneously reached such a compromise in a distributed manner. Internet would thus be operating close to such critical path horizon.

  15. Hausdorff dimension of a particle path in a quantum manifold

    SciTech Connect

    Nicolini, Piero; Niedner, Benjamin

    2011-01-15

    After recalling the concept of the Hausdorff dimension, we study the fractal properties of a quantum particle path. As a novelty we consider the possibility for the space where the particle propagates to be endowed with a quantum-gravity-induced minimal length. We show that the Hausdorff dimension accounts for both the quantum mechanics uncertainty and manifold fluctuations. In addition the presence of a minimal length breaks the self-similarity property of the erratic path of the quantum particle. Finally we establish a universal property of the Hausdorff dimension as well as the spectral dimension: They both depend on the amount of resolution loss which affects both the path and the manifold when quantum gravity fluctuations occur.

  16. An Optimal Level of Adding Edges for a Simple Path to a Complete K-ary Tree

    NASA Astrophysics Data System (ADS)

    Sawada, Kiyoshi

    2010-10-01

    This study proposes a model of adding edges of forming a simple path to a level of depth N in a complete K-ary (K≥3) tree of height H under giving priority to edges between two nodes of which the deepest common ancestor is deeper. An optimal depth N* is obtained by maximizing the total shortening path length which is the sum of shortening lengths of shortest paths between every pair of all nodes in the complete K-ary tree.

  17. Modified Sagnac interferometer for contact-free length measurement of a direct absorption cell.

    PubMed

    Elandaloussi, Hadj; Rouillé, Christian; Marie-Jeanne, Patrick; Janssen, Christof

    2016-03-10

    Accurate path length measurements in absorption cells are recurrent requirements in quantitative molecular absorption spectroscopy. A new twin path laser interferometer for length measurements in a simple direct path absorption geometry is presented, along with a full uncertainty budget. The path in an absorption cell is determined by measuring the optical path length change due to the diminution of the refractive index when the cell originally filled with nitrogen gas is evacuated. The performance of the instrument based on a stabilized HeNe laser is verified by comparison with the results of direct mechanical length measurements of a roughly 45 mm long, specially designed absorption cell. Due to a resolution of about 1/300 of a HeNe fringe, an expanded (coverage factor k=2) uncertainty of 16 μm in the length measurement is achieved, providing an expanded relative uncertainty of 3.6·10⁻⁴ for the length of our test absorption cell. This value is about 8 times lower than what has been reported previously. The instrument will be useful for precision measurements of absorption cross sections of strong absorbers which require short light paths, such as ozone, halogen oxides, sulfur dioxide, and volatile organic compounds in the UV. PMID:26974791

  18. 757 Path Loss Measurements

    NASA Technical Reports Server (NTRS)

    Horton, Kent; Huffman, Mitch; Eppic, Brian; White, Harrison

    2005-01-01

    Path Loss Measurements were obtained on three (3) GPS equipped 757 aircraft. Systems measured were Marker Beacon, LOC, VOR, VHF (3), Glide Slope, ATC (2), DME (2), TCAS, and GPS. This data will provide the basis for assessing the EMI (Electromagnetic Interference) safety margins of comm/nav (communication and navigation) systems to portable electronic device emissions. These Portable Electronic Devices (PEDs) include all devices operated in or around the aircraft by crews, passengers, servicing personnel, as well as the general public in the airport terminals. EMI assessment capability is an important step in determining if one system-wide PED EMI policy is appropriate. This data may also be used comparatively with theoretical analysis and computer modeling data sponsored by NASA Langley Research Center and others.

  19. Interactive cutting path analysis programs

    NASA Technical Reports Server (NTRS)

    Weiner, J. M.; Williams, D. S.; Colley, S. R.

    1975-01-01

    The operation of numerically controlled machine tools is interactively simulated. Four programs were developed to graphically display the cutting paths for a Monarch lathe, Cintimatic mill, Strippit sheet metal punch, and the wiring path for a Standard wire wrap machine. These programs are run on a IMLAC PDS-ID graphic display system under the DOS-3 disk operating system. The cutting path analysis programs accept input via both paper tape and disk file.

  20. Slip length crossover on a graphene surface

    SciTech Connect

    Liang, Zhi; Keblinski, Pawel

    2015-04-07

    Using equilibrium and non-equilibrium molecular dynamics simulations, we study the flow of argon fluid above the critical temperature in a planar nanochannel delimited by graphene walls. We observe that, as a function of pressure, the slip length first decreases due to the decreasing mean free path of gas molecules, reaches the minimum value when the pressure is close to the critical pressure, and then increases with further increase in pressure. We demonstrate that the slip length increase at high pressures is due to the fact that the viscosity of fluid increases much faster with pressure than the friction coefficient between the fluid and the graphene. This behavior is clearly exhibited in the case of graphene due to a very smooth potential landscape originating from a very high atomic density of graphene planes. By contrast, on surfaces with lower atomic density, such as an (100) Au surface, the slip length for high fluid pressures is essentially zero, regardless of the nature of interaction between fluid and the solid wall.

  1. Kinetic paths, time scale, and underlying landscapes: A path integral framework to study global natures of nonequilibrium systems and networks

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Zhang, Kun; Wang, Erkwang

    2010-09-01

    We developed a general framework to quantify three key ingredients for dynamics of nonequilibrium systems through path integrals in length space. First, we identify dominant kinetic paths as the ones with optimal weights, leading to effective reduction of dimensionality or degrees of freedom from exponential to polynomial so large systems can be treated. Second, we uncover the underlying nonequilibrium potential landscapes from the explorations of the state space through kinetic paths. We apply our framework to a specific example of nonequilibrium network system: lambda phage genetic switch. Two distinct basins of attractions emerge. The dominant kinetic paths from one basin to another are irreversible and do not follow the usual steepest descent or gradient path along the landscape. It reflects the fact that the dynamics of nonequilibrium systems is not just determined by potential gradient but also the residual curl flux force, suggesting experiments to test theoretical predictions. Third, we have calculated dynamic transition time scales from one basin to another critical for stability of the system through instantons. Theoretical predictions are in good agreements with wild type and mutant experiments. We further uncover the correlations between the kinetic transition time scales and the underlying landscape topography: the barrier heights along the dominant paths. We found that both the dominant paths and the landscape are relatively robust against the influences of external environmental perturbations and the system tends to dissipate less with less fluctuations. Our general framework can be applied to other nonequilibrium systems.

  2. Reconfigurable data path processor

    NASA Technical Reports Server (NTRS)

    Donohoe, Gregory (Inventor)

    2005-01-01

    A reconfigurable data path processor comprises a plurality of independent processing elements. Each of the processing elements advantageously comprising an identical architecture. Each processing element comprises a plurality of data processing means for generating a potential output. Each processor is also capable of through-putting an input as a potential output with little or no processing. Each processing element comprises a conditional multiplexer having a first conditional multiplexer input, a second conditional multiplexer input and a conditional multiplexer output. A first potential output value is transmitted to the first conditional multiplexer input, and a second potential output value is transmitted to the second conditional multiplexer output. The conditional multiplexer couples either the first conditional multiplexer input or the second conditional multiplexer input to the conditional multiplexer output, according to an output control command. The output control command is generated by processing a set of arithmetic status-bits through a logical mask. The conditional multiplexer output is coupled to a first processing element output. A first set of arithmetic bits are generated according to the processing of the first processable value. A second set of arithmetic bits may be generated from a second processing operation. The selection of the arithmetic status-bits is performed by an arithmetic-status bit multiplexer selects the desired set of arithmetic status bits from among the first and second set of arithmetic status bits. The conditional multiplexer evaluates the select arithmetic status bits according to logical mask defining an algorithm for evaluating the arithmetic status bits.

  3. Precise estimation of tropospheric path delays with GPS techniques

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.

    1990-01-01

    Tropospheric path delays are a major source of error in deep space tracking. However, the tropospheric-induced delay at tracking sites can be calibrated using measurements of Global Positioning System (GPS) satellites. A series of experiments has demonstrated the high sensitivity of GPS to tropospheric delays. A variety of tests and comparisons indicates that current accuracy of the GPS zenith tropospheric delay estimates is better than 1-cm root-mean-square over many hours, sampled continuously at intervals of six minutes. These results are consistent with expectations from covariance analyses. The covariance analyses also indicate that by the mid-1990s, when the GPS constellation is complete and the Deep Space Network is equipped with advanced GPS receivers, zenith tropospheric delay accuracy with GPS will improve further to 0.5 cm or better.

  4. Path Integral Simulations of Graphene

    NASA Astrophysics Data System (ADS)

    Yousif, Hosam

    2007-10-01

    Some properties of graphene are explored using a path integral approach. The path integral method allows us to simulate relatively large systems using monte carlo techniques and extract thermodynamic quantities. We simulate the effects of screening a large external charge potential, as well as conductivity and charge distributions in graphene sheets.

  5. Collabortive Authoring of Walden's Paths

    SciTech Connect

    Li, Yuanling; Bogen II, Paul Logasa; Pogue, Daniel; Furuta, Richard Keith; Shipman, Frank Major

    2012-01-01

    This paper presents a prototype of an authoring tool to allow users to collaboratively build, annotate, manage, share and reuse collections of distributed resources from the World Wide Web. This extends on the Walden’s Path project’s work to help educators bring resources found on the World Wide Web into a linear contextualized structure. The introduction of collaborative authoring feature fosters collaborative learning activities through social interaction among participants, where participants can coauthor paths in groups. Besides, the prototype supports path sharing, branching and reusing; specifically, individual participant can contribute to the group with private collections of knowledge resources; paths completed by group can be shared among group members, such that participants can tailor, extend, reorder and/or replace nodes to have sub versions of shared paths for different information needs.

  6. A flight investigation with a STOL airplane flying curved, descending instrument approach paths

    NASA Technical Reports Server (NTRS)

    Benner, M. S.; Mclaughlin, M. D.; Sawyer, R. H.; Vangunst, R.; Ryan, J. L.

    1974-01-01

    A flight investigation using a De Havilland Twin Otter airplane was conducted to determine the configurations of curved, 6 deg descending approach paths which would provide minimum airspace usage within the requirements for acceptable commercial STOL airplane operations. Path configurations with turns of 90 deg, 135 deg, and 180 deg were studied; the approach airspeed was 75 knots. The length of the segment prior to turn, the turn radius, and the length of the final approach segment were varied. The relationship of the acceptable path configurations to the proposed microwave landing system azimuth coverage requirements was examined.

  7. Path planning and execution monitoring for a planetary rover

    NASA Technical Reports Server (NTRS)

    Gat, Erann; Slack, Marc G.; Miller, David P.; Firby, R. James

    1990-01-01

    A path planner and an execution monitoring planner that will enable the rover to navigate to its various destinations safely and correctly while detecting and avoiding hazards are described. An overview of the complete architecture is given. Implementation and testbeds are described. The robot can detect unforseen obstacles and take appropriate action. This includes having the rover back away from the hazard and mark the area as untraversable in the in the rover's internal map. The experiments have consisted of paths roughly 20 m in length. The architecture works with a large variety of rover configurations with different kinematic constraints.

  8. Length-adaptive graph search for automatic segmentation of pathological features in optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Keller, Brenton; Cunefare, David; Grewal, Dilraj S.; Mahmoud, Tamer H.; Izatt, Joseph A.; Farsiu, Sina

    2016-07-01

    We introduce a metric in graph search and demonstrate its application for segmenting retinal optical coherence tomography (OCT) images of macular pathology. Our proposed "adjusted mean arc length" (AMAL) metric is an adaptation of the lowest mean arc length search technique for automated OCT segmentation. We compare this method to Dijkstra's shortest path algorithm, which we utilized previously in our popular graph theory and dynamic programming segmentation technique. As an illustrative example, we show that AMAL-based length-adaptive segmentation outperforms the shortest path in delineating the retina/vitreous boundary of patients with full-thickness macular holes when compared with expert manual grading.

  9. Long-path atmospheric measurements using dual frequency comb measurements

    NASA Astrophysics Data System (ADS)

    Waxman, Eleanor; Cossel, Kevin; Truong, Gar-Wing; Giorgetta, Fabrizio; Swann, William; Coddington, Ian; Newbury, Nathan

    2016-04-01

    The dual frequency comb spectrometer is a new tool for performing atmospheric trace gas measurements. This instrument is capable of measuring carbon dioxide, methane, and water with extremely high resolution in the region between 1.5 and 2.1 microns in the near-IR. It combines the high resolution of a laboratory-based FTIR instrument with the portability of a long-path DOAS system. We operate this instrument at path lengths of a few kilometers, thus bridging the spatial resolution of in-situ point sensors and the tens of square kilometer footprints of satellites. This spatial resolution is ideal for measuring greenhouse gas emissions from cities. Here we present initial long-path integrated column measurements of the greenhouse gases water, carbon dioxide, and methane in an urban environment. We present a time series with 5 minute time resolution over a 2 kilometer path in Boulder, Colorado at the urban-rural interface. We validate this data via a comparison with an in-situ greenhouse gas monitor co-located along the measurement path and show that we agree well on the baseline concentration but that we are significantly less sensitive to local point source emission that have high temporal variability, making this instrument ideal for measurements of average city-wide emissions. We additionally present progress towards measurements over an 11 kilometer path over downtown Boulder to measure the diurnal flux of greenhouse gases across the city.

  10. Finding reaction paths using the potential energy as reaction coordinate.

    PubMed

    Aguilar-Mogas, Antoni; Giménez, Xavier; Bofill, Josep Maria

    2008-03-14

    The intrinsic reaction coordinate curve (IRC), normally proposed as a representation of a reaction path, is parametrized as a function of the potential energy rather than the arc-length. This change in the parametrization of the curve implies that the values of the energy of the potential energy surface points, where the IRC curve is located, play the role of reaction coordinate. We use Caratheodory's relation to derive in a rigorous manner the proposed parametrization of the IRC path. Since this Caratheodory's relation is the basis of the theory of calculus of variations, then this fact permits to reformulate the IRC model from this mathematical theory. In this mathematical theory, the character of the variational solution (either maximum or minimum) is given through the Weierstrass E-function. As proposed by Crehuet and Bofill [J. Chem. Phys. 122, 234105 (2005)], we use the minimization of the Weierstrass E-function, as a function of the potential energy, to locate an IRC path between two minima from an arbitrary curve on the potential energy surface, and then join these two minima. We also prove, from the analysis of the Weierstrass E-function, the mathematical bases for the algorithms proposed to locate the IRC path. The proposed algorithm is applied to a set of examples. Finally, the algorithm is used to locate a discontinuous, or broken, IRC path, namely, when the path connects two first order saddle points through a valley-ridged inflection point. PMID:18345872

  11. Finding reaction paths using the potential energy as reaction coordinate

    NASA Astrophysics Data System (ADS)

    Aguilar-Mogas, Antoni; Giménez, Xavier; Bofill, Josep Maria

    2008-03-01

    The intrinsic reaction coordinate curve (IRC), normally proposed as a representation of a reaction path, is parametrized as a function of the potential energy rather than the arc-length. This change in the parametrization of the curve implies that the values of the energy of the potential energy surface points, where the IRC curve is located, play the role of reaction coordinate. We use Carathéodory's relation to derive in a rigorous manner the proposed parametrization of the IRC path. Since this Carathéodory's relation is the basis of the theory of calculus of variations, then this fact permits to reformulate the IRC model from this mathematical theory. In this mathematical theory, the character of the variational solution (either maximum or minimum) is given through the Weierstrass E-function. As proposed by Crehuet and Bofill [J. Chem. Phys. 122, 234105 (2005)], we use the minimization of the Weierstrass E-function, as a function of the potential energy, to locate an IRC path between two minima from an arbitrary curve on the potential energy surface, and then join these two minima. We also prove, from the analysis of the Weierstrass E-function, the mathematical bases for the algorithms proposed to locate the IRC path. The proposed algorithm is applied to a set of examples. Finally, the algorithm is used to locate a discontinuous, or broken, IRC path, namely, when the path connects two first order saddle points through a valley-ridged inflection point.

  12. Measurement of Debye length in laser-produced plasma.

    NASA Technical Reports Server (NTRS)

    Ehler, W.

    1973-01-01

    The Debye length of an expanded plasma created by placing an evacuated chamber with an entrance slit in the path of a freely expanding laser produced plasma was measured, using the slab geometry. An independent measurement of electron density together with the observed value for the Debye length also provided a means for evaluating the plasma electron temperature. This temperature has applications in ascertaining plasma conductivity and magnetic field necessary for confinement of the laser produced plasma. Also, the temperature obtained would be useful in analyzing electron-ion recombination rates in the expanded plasma and the dynamics of the cooling process of the plasma expansion.

  13. Pathways with PathWhiz.

    PubMed

    Pon, Allison; Jewison, Timothy; Su, Yilu; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Wilson, Michael; Wishart, David S

    2015-07-01

    PathWhiz (http://smpdb.ca/pathwhiz) is a web server designed to create colourful, visually pleasing and biologically accurate pathway diagrams that are both machine-readable and interactive. As a web server, PathWhiz is accessible from almost any place and compatible with essentially any operating system. It also houses a public library of pathways and pathway components that can be easily viewed and expanded upon by its users. PathWhiz allows users to readily generate biologically complex pathways by using a specially designed drawing palette to quickly render metabolites (including automated structure generation), proteins (including quaternary structures, covalent modifications and cofactors), nucleic acids, membranes, subcellular structures, cells, tissues and organs. Both small-molecule and protein/gene pathways can be constructed by combining multiple pathway processes such as reactions, interactions, binding events and transport activities. PathWhiz's pathway replication and propagation functions allow for existing pathways to be used to create new pathways or for existing pathways to be automatically propagated across species. PathWhiz pathways can be saved in BioPAX, SBGN-ML and SBML data exchange formats, as well as PNG, PWML, HTML image map or SVG images that can be viewed offline or explored using PathWhiz's interactive viewer. PathWhiz has been used to generate over 700 pathway diagrams for a number of popular databases including HMDB, DrugBank and SMPDB. PMID:25934797

  14. Pathways with PathWhiz

    PubMed Central

    Pon, Allison; Jewison, Timothy; Su, Yilu; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Wilson, Michael; Wishart, David S.

    2015-01-01

    PathWhiz (http://smpdb.ca/pathwhiz) is a web server designed to create colourful, visually pleasing and biologically accurate pathway diagrams that are both machine-readable and interactive. As a web server, PathWhiz is accessible from almost any place and compatible with essentially any operating system. It also houses a public library of pathways and pathway components that can be easily viewed and expanded upon by its users. PathWhiz allows users to readily generate biologically complex pathways by using a specially designed drawing palette to quickly render metabolites (including automated structure generation), proteins (including quaternary structures, covalent modifications and cofactors), nucleic acids, membranes, subcellular structures, cells, tissues and organs. Both small-molecule and protein/gene pathways can be constructed by combining multiple pathway processes such as reactions, interactions, binding events and transport activities. PathWhiz's pathway replication and propagation functions allow for existing pathways to be used to create new pathways or for existing pathways to be automatically propagated across species. PathWhiz pathways can be saved in BioPAX, SBGN-ML and SBML data exchange formats, as well as PNG, PWML, HTML image map or SVG images that can be viewed offline or explored using PathWhiz's interactive viewer. PathWhiz has been used to generate over 700 pathway diagrams for a number of popular databases including HMDB, DrugBank and SMPDB. PMID:25934797

  15. Paths with more turns are perceived as longer: misperceptions with map-based and abstracted path stimuli.

    PubMed

    Brunyé, Tad T; Mahoney, Caroline R; Taylor, Holly A

    2015-04-01

    When navigating, people tend to overestimate distances when routes contain more turns, termed the route-angularity effect. Three experiments examined the source and generality of this effect. The first two experiments examined whether route-angularity effects occur while viewing maps and might be related to sex differences or sense of direction. The third experiment tested whether the route-angularity effect would occur with stimuli devoid of spatial context, reducing influences of environmental experience and visual complexity. In the three experiments, participants (N=1,552; M=32.2 yr.; 992 men, 560 women) viewed paths plotted on maps (Exps. 1 and 2) or against a blank background (Exp. 3). The depicted paths were always the same overall length, but varied in the number of turns (from 1 to 7) connecting an origin and destination. Participants were asked to estimate the time to traverse each path (Exp. 1) or the length of each path (Exps. 2 and 3). The Santa Barbara Sense of Direction questionnaire was administered to assess whether overall spatial sense of direction would be negatively related to the magnitude of the route-angularity effect. Repeated-measures analyses of variance (ANOVAs) indicated that paths with more turns elicited estimates of greater distance and travel times, whether they were depicted on maps or blank backgrounds. Linear regressions also indicated that these effects were significantly larger in those with a relatively low sense of direction. The results support the route-angularity effect and extend it to paths plotted on map-based stimuli. Furthermore, because the route-angularity effect was shown with paths plotted against blank backgrounds, route-angularity effects are not specific to understanding environments and may arise at the level of visual perception. PMID:25799028

  16. 14 CFR 23.57 - Takeoff path.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Takeoff path. 23.57 Section 23.57... path. For each commuter category airplane, the takeoff path is as follows: (a) The takeoff path extends... completed; and (1) The takeoff path must be based on the procedures prescribed in § 23.45; (2) The...

  17. 14 CFR 23.57 - Takeoff path.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Takeoff path. 23.57 Section 23.57... path. For each commuter category airplane, the takeoff path is as follows: (a) The takeoff path extends... completed; and (1) The takeoff path must be based on the procedures prescribed in § 23.45; (2) The...

  18. Path Integrals on Ultrametric Spaces.

    NASA Astrophysics Data System (ADS)

    Blair, Alan

    A framework for the study of path integrals on adelic spaces is developed, and it is shown that a family of path space measures on the localizations of an algebraic number field may, under certain conditions, be combined to form a global path space measure on its adele ring. An operator on the field of p-adic numbers analogous to the harmonic oscillator operator is then analyzed, and used to construct an Ornstein-Uhlenbeck type process on the adele ring of the rationals. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.).

  19. Temporary epiphyseodesis for limb-length discrepancy

    PubMed Central

    Siedhoff, Markus; Ridderbusch, Karsten; Breyer, Sandra; Stücker, Ralf; Rupprecht, Martin

    2014-01-01

    Background and purpose — For the treatment of leg-length discrepancies (LLDs) of between 2 and 5 cm in adolescent patients, several epiphyseodesis options exist and various complications have been reported. We reviewed the 8- to 15-year outcome after temporary epiphyseodesis in patients with LLD. Patients and methods — 34 children with LLD of up to 5 cm were included in the study. Mean age at epiphyseodesis was 12.8 (10–16) years. Temporary epiphyseodesis was performed with Blount staples or 8-plates. The LLD was reviewed preoperatively, at the time of implant removal, and at follow-up. Every child had reached skeletal maturity at follow-up. Long-standing anteroposterior radiographs were analyzed with respect to the mechanical axis and remaining LLD at the time of follow-up. Possible complications were noted. Results — The mean LLD changed from 2.3 (0.9–4.5) cm to 0.8 (–1.0 to 2.6) cm at follow-up (p < 0.001). 21 patients had a final LLD of < 1 cm, and 10 had LLD of < 0.5 cm. At the time of follow-up, in 32 patients the mechanical axis crossed within Steven’s zone 1. No deep infections or neurovascular lesions were seen. 4 implant failures occurred, which were managed by revision. Interpretation — Temporary epiphyseodesis is an effective and safe option for the treatment of LLD. The timing of the procedure has to be chosen according to the remaining growth, facilitating a full correction of the LLD. If inaccurate placement of staples is avoided, substantial differences between the mechanical axes of both legs at skeletal maturity are rare. PMID:25191935

  20. IMPEDANCE OF FINITE LENGTH RESISTOR

    SciTech Connect

    KRINSKY, S.; PODOBEDOV, B.; GLUCKSTERN, R.L.

    2005-05-15

    We determine the impedance of a cylindrical metal tube (resistor) of radius a, length g, and conductivity {sigma}, attached at each end to perfect conductors of semi-infinite length. Our main interest is in the asymptotic behavior of the impedance at high frequency, k >> 1/a. In the equilibrium regime, , the impedance per unit length is accurately described by the well-known result for an infinite length tube with conductivity {sigma}. In the transient regime, ka{sup 2} >> g, we derive analytic expressions for the impedance and wakefield.

  1. An algorithm to find critical execution paths of software based on complex network

    NASA Astrophysics Data System (ADS)

    Huang, Guoyan; Zhang, Bing; Ren, Rong; Ren, Jiadong

    2015-01-01

    The critical execution paths play an important role in software system in terms of reducing the numbers of test date, detecting the vulnerabilities of software structure and analyzing software reliability. However, there are no efficient methods to discover them so far. Thus in this paper, a complex network-based software algorithm is put forward to find critical execution paths (FCEP) in software execution network. First, by analyzing the number of sources and sinks in FCEP, software execution network is divided into AOE subgraphs, and meanwhile, a Software Execution Network Serialization (SENS) approach is designed to generate execution path set in each AOE subgraph, which not only reduces ring structure's influence on path generation, but also guarantees the nodes' integrity in network. Second, according to a novel path similarity metric, similarity matrix is created to calculate the similarity among sets of path sequences. Third, an efficient method is taken to cluster paths through similarity matrices, and the maximum-length path in each cluster is extracted as the critical execution path. At last, a set of critical execution paths is derived. The experimental results show that the FCEP algorithm is efficient in mining critical execution path under software complex network.

  2. Path Generation of Regular Polygon Using a Geared-Parallelogram Mechanism

    NASA Astrophysics Data System (ADS)

    Lin, S.; Fan, Y.; Ren, Z.; Hanke, U.

    The paper proposes a geared-parallelogram mechanism (GPM) for path generation of regular polygon. The model presents the structural features of the mechanism as shown in Fig. 1 which forms the basis for the guiding features of its path and also for the guiding function in its kinematic parameters and dimensions. It is shown from the analysis results that length l2 has an effect on the size of the path, the initial phase θ on path direction and transmission ratio k on number of polygon sides. More important is that length ratio λ plays a crucial role in path curvature and defines indirectly the straightness for the regular polygon of path generation. In order to generate the path of regular polygon, some available value ranges of each parameter have been suggested. An example to solve path generation task with such mechanism using the method presented in this paper is given, through which a practical procedure to develop a synthesis tool for generating a regular polygon path will be provided. Fig. 1 Structural diagram of GPM

  3. Scattering theory with path integrals

    SciTech Connect

    Rosenfelder, R.

    2014-03-15

    Starting from well-known expressions for the T-matrix and its derivative in standard nonrelativistic potential scattering, I rederive recent path-integral formulations due to Efimov and Barbashov et al. Some new relations follow immediately.

  4. A Deterministic Approximation Algorithm for Maximum 2-Path Packing

    NASA Astrophysics Data System (ADS)

    Tanahashi, Ruka; Chen, Zhi-Zhong

    This paper deals with the maximum-weight 2-path packing problem (M2PP), which is the problem of computing a set of vertex-disjoint paths of length 2 in a given edge-weighted complete graph so that the total weight of edges in the paths is maximized. Previously, Hassin and Rubinstein gave a randomized cubic-time approximation algorithm for M2PP which achieves an expected ratio of 35/67 - ε ≈ 0.5223 - ε for any constant ε > 0. We refine their algorithm and derandomize it to obtain a deterministic cubic-time approximation algorithm for the problem which achieves a better ratio (namely, 0.5265 - ε for any constant ε > 0).

  5. Dynamical anisotropy of the optical propagation paths

    NASA Astrophysics Data System (ADS)

    Arsenyan, Tatiana I.; Pisklin, Maksim V.; Suhareva, Natalia A.; Zotov, Aleksey M.

    2015-11-01

    Dynamics of laser beam intensity profile spatial modulations over a model tropospheric path with the controlled meteorological parameters was studied. Influence of the underlying surface temperature as well as the side wind load were considered. The increase of dynamic anisotropic disturbances saturation with the path length was observed. Spatio-temporal correlation characteristics of the directivity pattern in the signal beam registration plane were obtained. Proposed method of the experimental samples analysis on the base of chronogram with the following definition of the dynamic structure tensors array allows to estimate local and averaged projections of the flow velocities over the chosen spatio-temporal region and to restore their geometry in the zone of intersection with the signal beam. Additional characteristics suggested for the diagonalized local structure tensors such as local energy capacity and local structuredness are informative for the estimation of the inhomogeneities spatial dimensions, time of access through the section considered, the dynamics of energetic jets. The concepts of rotational and translational dynamic anisotropy are introduced to discriminate the types of the changes of the local ellipsoids axes orientation as well as their values. Rotational anisotropy shows itself in the changes of the local ellipsoids orientation, thus characterizing the illumination variation over the beam cross-section. Translational anisotropy describes the difference between the axes values for local ellipsoids.

  6. Line Lengths and Starch Scores.

    ERIC Educational Resources Information Center

    Moriarty, Sandra E.

    1986-01-01

    Investigates readability of different line lengths in advertising body copy, hypothesizing a normal curve with lower scores for shorter and longer lines, and scores above the mean for lines in the middle of the distribution. Finds support for lower scores for short lines and some evidence of two optimum line lengths rather than one. (SKC)

  7. Constructing Overlay Networks with Short Paths and Low Communication Cost

    NASA Astrophysics Data System (ADS)

    Makikawa, Fuminori; Tsuchiya, Tatsuhiro; Kikuno, Tohru

    A Peer-To-Peer (P2P) application uses an overlay network which is a virtual network constructed over the physical network. Traditional overlay construction methods do not take physical location of nodes into consideration, resulting in a large amount of redundant traffic. Some proximity-aware construction methods have been proposed to address this problem. These methods typically connect nearby nodes in the physical network. However, as the number of nodes increases, the path length of a route between two distant nodes rapidly increases. To alleviate this problem, we propose a technique which can be incorporated in existing overlay construction methods. The idea behind this technique is to employ long links to directly connect distant nodes. Through simulation experiments, we show that using our proposed technique, networks can achieve small path length and low communication cost while maintaining high resiliency to failures.

  8. Path selection process utilizing rapid estimation scheme. [for Martian rover

    NASA Technical Reports Server (NTRS)

    Ring, H.; Shen, C. N.

    1978-01-01

    The paper describes the use of a rapid estimation scheme for path selection by a roving vehicle. Essentially, the evaluation procedure simulates movement of the rover over each of several corridors lying radially outward from the scanning position. Two levels of corridors are used, and the path selection scheme selects the optimal primary corridor according to a dynamic programming algorithm. In the present version, the length of the corridors is variable. The rapid estimation scheme provides information to define corridor dimensions. This corridor structure, which varies as a function of the terrain, eliminates the need for backtracking, except in certain extreme cases. Computer results are promising in that obstacles were avoided while corridor lengths were kept to a maximum where safety permitted.

  9. Characterizing Reactive Flow Paths in Fractured Cement

    NASA Astrophysics Data System (ADS)

    Wenning, Q. C.; Huerta, N. J.; Hesse, M. A.; Bryant, S. L.

    2011-12-01

    Geologic carbon sequestration can be a viable method for reducing anthropogenic CO2 flux into the atmosphere. However, the technology must be economically feasible and pose acceptable risk to stakeholders. One key risk is CO2 leakage out of the storage reservoir. Potential driving forces for leakage are the overpressure due to CO2 injection and the buoyancy of free phase CO2. Potential hazards of leakage are contamination of Underground Sources of Drinking Water or the atmosphere and would be deemed an unacceptable risk. Wells potentially provide a fast path for leakage from the reservoir. While the well's cement casing is reactive with CO2 and CO2-saturated brine, the low cement matrix permeability and slow diffusion rate make it unlikely that CO2 will escape through a properly constructed wellbore. However, highly permeable fractures with micrometer scale apertures can occur in cement casings. Reactions that occur in the flow in these fractures can either be self-limiting or self-enhancing. Therefore, understanding the reactive flow is critical to understanding of leakage evolution through these fractures. The goal of our work is to characterize the modification of the flow paths in the fracture due to reaction with acidic brine. With this aim we have characterized both the initial flow path of un-reactive flow and the final flow path after introduction of low-pH acid along the same fracture. Class H cement cores 3-6 cm in length and 2.5 cm diameter are created and a single natural and unique fracture is produced in each core using the Brazilian method. Our experimental fluid is injected at a constant rate into the cement core housed in a Hassler Cell under confining pressure. A solution of red dye and deionized water is pumped through the fracture to stain the un-reactive flow paths. Deionized water is then pumped through the core to limit diffusion of the dye into non-flowing portions of the fracture. After staining the initial flow path, low pH water due to

  10. Computing Path Tables for Quickest Multipaths In Computer Networks

    SciTech Connect

    Grimmell, W.C.

    2004-12-21

    We consider the transmission of a message from a source node to a terminal node in a network with n nodes and m links where the message is divided into parts and each part is transmitted over a different path in a set of paths from the source node to the terminal node. Here each link is characterized by a bandwidth and delay. The set of paths together with their transmission rates used for the message is referred to as a multipath. We present two algorithms that produce a minimum-end-to-end message delay multipath path table that, for every message length, specifies a multipath that will achieve the minimum end-to-end delay. The algorithms also generate a function that maps the minimum end-to-end message delay to the message length. The time complexities of the algorithms are O(n{sup 2}((n{sup 2}/logn) + m)min(D{sub max}, C{sub max})) and O(nm(C{sub max} + nmin(D{sub max}, C{sub max}))) when the link delays and bandwidths are non-negative integers. Here D{sub max} and C{sub max} are respectively the maximum link delay and maximum link bandwidth and C{sub max} and D{sub max} are greater than zero.

  11. Logarithmic Sobolev Inequalities on Path Spaces Over Riemannian Manifolds

    NASA Astrophysics Data System (ADS)

    Hsu, Elton P.

    Let Wo(M) be the space of paths of unit time length on a connected, complete Riemannian manifold M such that γ(0) =o, a fixed point on M, and ν the Wiener measure on Wo(M) (the law of Brownian motion on M starting at o).If the Ricci curvature is bounded by c, then the following logarithmic Sobolev inequality holds:

  12. Dynamic behavior of shortest path routing algorithms for communication networks

    NASA Astrophysics Data System (ADS)

    Bertsekas, D. P.

    1980-06-01

    Several proposed routing algorithms for store and forward communication networks, including one currently in operation in the ARPANET, route messages along shortest paths computed by using some set of link lengths. When these lengths depend on current traffic conditions as they must in an adaptive algorithm, dynamic behavior questions such as stability convergence, and speed of convergence are of interest. This paper is the first attempt to analyze systematically these issues. It is shown that minimum queuing delay path algorithms tend to exhibit violent oscillatory behavior in the absence of a damping mechanism. The oscillations can be damped by means of several types of schemes, two of which are analyzed in this paper. In the first scheme a constant bias is added to the queuing delay thereby providing a preference towards paths with a small number of links. In the second scheme the effects of several past routings are averaged as, for example, when the link lengths are computed and communicated asynchronously throughout the network.

  13. Spreading lengths of Hermite polynomials

    NASA Astrophysics Data System (ADS)

    Sánchez-Moreno, P.; Dehesa, J. S.; Manzano, D.; Yáñez, R. J.

    2010-03-01

    The Renyi, Shannon and Fisher spreading lengths of the classical or hypergeometric orthogonal polynomials, which are quantifiers of their distribution all over the orthogonality interval, are defined and investigated. These information-theoretic measures of the associated Rakhmanov probability density, which are direct measures of the polynomial spreading in the sense of having the same units as the variable, share interesting properties: invariance under translations and reflections, linear scaling and vanishing in the limit that the variable tends towards a given definite value. The expressions of the Renyi and Fisher lengths for the Hermite polynomials are computed in terms of the polynomial degree. The combinatorial multivariable Bell polynomials, which are shown to characterize the finite power of an arbitrary polynomial, play a relevant role for the computation of these information-theoretic lengths. Indeed these polynomials allow us to design an error-free computing approach for the entropic moments (weighted Lq-norms) of Hermite polynomials and subsequently for the Renyi and Tsallis entropies, as well as for the Renyi spreading lengths. Sharp bounds for the Shannon length of these polynomials are also given by means of an information-theoretic-based optimization procedure. Moreover, the existence of a linear correlation between the Shannon length (as well as the second-order Renyi length) and the standard deviation is computationally proved. Finally, the application to the most popular quantum-mechanical prototype system, the harmonic oscillator, is discussed and some relevant asymptotical open issues related to the entropic moments, mentioned previously, are posed.

  14. When does length cause the word length effect?

    PubMed

    Jalbert, Annie; Neath, Ian; Bireta, Tamra J; Surprenant, Aimée M

    2011-03-01

    The word length effect, the finding that lists of short words are better recalled than lists of long words, has been termed one of the benchmark findings that any theory of immediate memory must account for. Indeed, the effect led directly to the development of working memory and the phonological loop, and it is viewed as the best remaining evidence for time-based decay. However, previous studies investigating this effect have confounded length with orthographic neighborhood size. In the present study, Experiments 1A and 1B revealed typical effects of length when short and long words were equated on all relevant dimensions previously identified in the literature except for neighborhood size. In Experiment 2, consonant-vowel-consonant (CVC) words with a large orthographic neighborhood were better recalled than were CVC words with a small orthographic neighborhood. In Experiments 3 and 4, using two different sets of stimuli, we showed that when short (1-syllable) and long (3-syllable) items were equated for neighborhood size, the word length effect disappeared. Experiment 5 replicated this with spoken recall. We suggest that the word length effect may be better explained by the differences in linguistic and lexical properties of short and long words rather than by length per se. These results add to the growing literature showing problems for theories of memory that include decay offset by rehearsal as a central feature. PMID:21171805

  15. Path coloring on the Mesh

    SciTech Connect

    Rabani, Y.

    1996-12-31

    In the minimum path coloring problem, we are given a list of pairs of vertices of a graph. We are asked to connect each pair by a colored path. Paths of the same color must be edge disjoint. Our objective is to minimize the number of colors used. This problem was raised by Aggarwal et al and Raghavan and Upfal as a model for routing in all-optical networks. It is also related to questions in circuit routing. In this paper, we improve the O (ln N) approximation result of Kleinberg and Tardos for path coloring on the N x N mesh. We give an O(1) approximation algorithm to the number of colors needed, and a poly(ln ln N) approximation algorithm to the choice of paths and colors. To the best of our knowledge, these are the first sub-logarithmic bounds for any network other than trees, rings, or trees of rings. Our results are based on developing new techniques for randomized rounding. These techniques iteratively improve a fractional solution until it approaches integrality. They are motivated by the method used by Leighton, Maggs, and Rao for packet routing.

  16. Vehicle path-planning in three dimensions using optics analogs for optimizing visibility and energy cost

    NASA Technical Reports Server (NTRS)

    Rowe, Neil C.; Lewis, David H.

    1989-01-01

    Path planning is an important issue for space robotics. Finding safe and energy-efficient paths in the presence of obstacles and other constraints can be complex although important. High-level (large-scale) path planning for robotic vehicles was investigated in three-dimensional space with obstacles, accounting for: (1) energy costs proportional to path length; (2) turn costs where paths change trajectory abruptly; and (3) safety costs for the danger associated with traversing a particular path due to visibility or invisibility from a fixed set of observers. Paths optimal with respect to these cost factors are found. Autonomous or semi-autonomous vehicles were considered operating either in a space environment around satellites and space platforms, or aircraft, spacecraft, or smart missiles operating just above lunar and planetary surfaces. One class of applications concerns minimizing detection, as for example determining the best way to make complex modifications to a satellite without being observed by hostile sensors; another example is verifying there are no paths (holes) through a space defense system. Another class of applications concerns maximizing detection, as finding a good trajectory between mountain ranges of a planet while staying reasonably close to the surface, or finding paths for a flight between two locations that maximize the average number of triangulation points available at any time along the path.

  17. Localization and phase coherence length in the Lloyd model

    NASA Astrophysics Data System (ADS)

    Rodrigues, D. E.; Pastawski, H. M.; Weisz, J. F.

    1986-12-01

    The coefficient for exponential attenuation of the averaged Green function [limδ-->0~av~e-κR] is calculated for several infinite lattices in one, two, and three dimensions with a diagonal Lorentzian disorder of site energies (Lloyd model). In the limit of extended states, l=κ-1 coincidences with the phase coherence length and with the mean free path associated with ||k> states. In the opposite limit, that of strongly localized states, the inequality κ>=γ is almost satisfied as an equality where γ is the inverse localization length. Our results for κ are the same as those calculated by Johnston and Kunz who associate their results with γ, that is, with the localization length. This leads us to reinterpret their results and to conclude that, when the dimensionality is higher than 2, there is still a strong possibility of a mobility edge in this model.

  18. The Edge-Disjoint Path Problem on Random Graphs by Message-Passing

    PubMed Central

    2015-01-01

    We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length. PMID:26710102

  19. The Edge-Disjoint Path Problem on Random Graphs by Message-Passing.

    PubMed

    Altarelli, Fabrizio; Braunstein, Alfredo; Dall'Asta, Luca; De Bacco, Caterina; Franz, Silvio

    2015-01-01

    We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length. PMID:26710102

  20. Gas-path seal technology

    NASA Technical Reports Server (NTRS)

    Zuk, J.

    1976-01-01

    Improved gas-path seals are needed for better fuel economy, longer performance retention, and lower maintenance, particularly in advanced, high-performance gas turbine engines. Problems encountered in gas-path sealing are described, as well as new blade-tip sealing approaches for high-pressure compressors and turbines. These include a lubricant coating for conventional, porous-metal, rub-strip materials used in compressors. An improved hot-press metal alloy shows promise to increase the operating surface temperatures of high-pressure-turbine, blade-tip seals to 1450 K (2150 F). Three ceramic seal materials are also described that have the potential to allow much higher gas-path surface operating temperatures than are possible with metal systems.

  1. Balanced Paths in Colored Graphs

    NASA Astrophysics Data System (ADS)

    Bianco, Alessandro; Faella, Marco; Mogavero, Fabio; Murano, Aniello

    We consider finite graphs whose edges are labeled with elements, called colors, taken from a fixed finite alphabet. We study the problem of determining whether there is an infinite path where either (i) all colors occur with the same asymptotic frequency, or (ii) there is a constant which bounds the difference between the occurrences of any two colors for all prefixes of the path. These two notions can be viewed as refinements of the classical notion of fair path, whose simplest form checks whether all colors occur infinitely often. Our notions provide stronger criteria, particularly suitable for scheduling applications based on a coarse-grained model of the jobs involved. We show that both problems are solvable in polynomial time, by reducing them to the feasibility of a linear program.

  2. 14 CFR 25.111 - Takeoff path.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Takeoff path. 25.111 Section 25.111... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.111 Takeoff path. (a) The takeoff path... and VFTO is reached, whichever point is higher. In addition— (1) The takeoff path must be based on...

  3. 14 CFR 25.111 - Takeoff path.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Takeoff path. 25.111 Section 25.111... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.111 Takeoff path. (a) The takeoff path... and VFTO is reached, whichever point is higher. In addition— (1) The takeoff path must be based on...

  4. 14 CFR 25.111 - Takeoff path.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Takeoff path. 25.111 Section 25.111... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.111 Takeoff path. (a) The takeoff path... and VFTO is reached, whichever point is higher. In addition— (1) The takeoff path must be based on...

  5. 14 CFR 25.111 - Takeoff path.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Takeoff path. 25.111 Section 25.111... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.111 Takeoff path. (a) The takeoff path... and VFTO is reached, whichever point is higher. In addition— (1) The takeoff path must be based on...

  6. 14 CFR 23.57 - Takeoff path.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Takeoff path. 23.57 Section 23.57... path. For normal, utility, and acrobatic category multiengine jets of more than 6,000 pounds maximum weight and commuter category airplanes, the takeoff path is as follows: (a) The takeoff path extends...

  7. 14 CFR 23.57 - Takeoff path.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Takeoff path. 23.57 Section 23.57... path. For normal, utility, and acrobatic category multiengine jets of more than 6,000 pounds maximum weight and commuter category airplanes, the takeoff path is as follows: (a) The takeoff path extends...

  8. 14 CFR 23.57 - Takeoff path.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Takeoff path. 23.57 Section 23.57... path. Link to an amendment published at 76 FR 75753, December 2, 2011. For each commuter category airplane, the takeoff path is as follows: (a) The takeoff path extends from a standing start to a point...

  9. 14 CFR 25.111 - Takeoff path.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Takeoff path. 25.111 Section 25.111... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.111 Takeoff path. (a) The takeoff path... and VFTO is reached, whichever point is higher. In addition— (1) The takeoff path must be based on...

  10. Calculating Least Risk Paths in 3d Indoor Space

    NASA Astrophysics Data System (ADS)

    Vanclooster, A.; De Maeyer, Ph.; Fack, V.; Van de Weghe, N.

    2013-08-01

    Over the last couple of years, research on indoor environments has gained a fresh impetus; more specifically applications that support navigation and wayfinding have become one of the booming industries. Indoor navigation research currently covers the technological aspect of indoor positioning and the modelling of indoor space. The algorithmic development to support navigation has so far been left mostly untouched, as most applications mainly rely on adapting Dijkstra's shortest path algorithm to an indoor network. However, alternative algorithms for outdoor navigation have been proposed adding a more cognitive notion to the calculated paths and as such adhering to the natural wayfinding behaviour (e.g. simplest paths, least risk paths). These algorithms are currently restricted to outdoor applications. The need for indoor cognitive algorithms is highlighted by a more challenged navigation and orientation due to the specific indoor structure (e.g. fragmentation, less visibility, confined areas…). As such, the clarity and easiness of route instructions is of paramount importance when distributing indoor routes. A shortest or fastest path indoors not necessarily aligns with the cognitive mapping of the building. Therefore, the aim of this research is to extend those richer cognitive algorithms to three-dimensional indoor environments. More specifically for this paper, we will focus on the application of the least risk path algorithm of Grum (2005) to an indoor space. The algorithm as proposed by Grum (2005) is duplicated and tested in a complex multi-storey building. The results of several least risk path calculations are compared to the shortest paths in indoor environments in terms of total length, improvement in route description complexity and number of turns. Several scenarios are tested in this comparison: paths covering a single floor, paths crossing several building wings and/or floors. Adjustments to the algorithm are proposed to be more aligned to the

  11. Speckle imaging over horizontal paths

    NASA Astrophysics Data System (ADS)

    Carrano, Carmen J.

    2002-09-01

    Atmospheric aberrations reduce the resolution and contrast in surveillance images recorded over horizontal or slant paths. This paper describes our recent horizontal and slant-path imaging experiments of extended scenes as well as the results obtained using speckle imaging. The experiments were performed with an 8-inch diameter telescope placed on either a rooftop or hillside and cover ranges of interest from 0.5 km up to 10 km. The scenery includes resolution targets, people, vehicles, and other structures. The improvement in image quality using speckle imaging is dramatic in many cases, and depends significantly upon the atmospheric conditions. We quantify resolution improvement through modulation transfer function measurement comparisons.

  12. Speckle Imaging Over Horizontal Paths

    SciTech Connect

    Carrano, C J

    2002-05-21

    Atmospheric aberrations reduce the resolution and contrast in surveillance images recorded over horizontal or slant paths. This paper describes our recent horizontal and slant path imaging experiments of extended scenes as well as the results obtained using speckle imaging. The experiments were performed with an 8-inch diameter telescope placed on either a rooftop or hillside and cover ranges of interest from 0.5 km up to 10 km. The scenery includes resolution targets, people, vehicles, and other structures. The improvement in image quality using speckle imaging is dramatic in many cases, and depends significantly upon the atmospheric conditions. We quantify resolution improvement through modulation transfer function measurement comparisons.

  13. Multiple paths in complex tasks

    NASA Technical Reports Server (NTRS)

    Galanter, Eugene; Wiegand, Thomas; Mark, Gloria

    1987-01-01

    The relationship between utility judgments of subtask paths and the utility of the task as a whole was examined. The convergent validation procedure is based on the assumption that measurements of the same quantity done with different methods should covary. The utility measures of the subtasks were obtained during the performance of an aircraft flight controller navigation task. Analyses helped decide among various models of subtask utility combination, whether the utility ratings of subtask paths predict the whole tasks utility rating, and indirectly, whether judgmental models need to include the equivalent of cognitive noise.

  14. Long-path-length experimental studies of longitudinal phenomena in intense beams

    NASA Astrophysics Data System (ADS)

    Beaudoin, Brian

    2015-11-01

    Intense charged particle beams are nonneutral plasmas and they can support a host of plasma waves and instabilities. For a long beam bunch, the longitudinal physics can often be reasonably described by a 1-D cold-fluid model, with a geometry factor to account for the transverse effects. The plasma physics of such beams has been extensively studied theoretically and computationally for decades, but until recently, the only experimental measurements were carried out on relatively short linacs. This work reviews experimental studies over the past 5 years on the U. Maryland Electron Ring, investigating longitudinal phenomena, for the first time, over time scales of hundreds and thousands of plasma periods. These results are in good agreement with theory and simulation. Topics that will be discussed are: Longitudinal confinement of a long bunch using barrier fields. The generation of space charge waves from barrier field mismatches, their propagation along the bunch and reflection at the beam ends, as well as their long-term dissipation. The characterization of solitary waves from density/velocity perturbations in the center of the bunch. Compression of solitary wave trains with velocity ``tilts'' (head-to-tail gradient). Observation of a multi-stream instability driven by the longitudinal merging of bunches and the characterization of the onset of the instability with a PIC code. The shock-wave compression of a bunch using rapidly-moving barrier fields.

  15. Dependence of length of free path of flare particles on energy

    NASA Astrophysics Data System (ADS)

    Daybog, Y. I.; Kurt, V. G.; Stolpovskiy, V. G.

    1985-09-01

    An analysis is made of the time profiles of fluxes of protons and alpha particles in the 0.1 to 100 MeV/nucleaon range, detected by Prognoz-6 in the solar-flare events of September 24, October 9 and 12, November 22, December 27, 1977. It is shown that a harmonic expansion of the measured field cannot be used to calculate the transport characteristics of solar cosmic rays (SCR). This is evidently due to the fact that the usual procedure for determining the power spectrum of IMF fluctuations does not make it possible to identify the type of inhomogeneity (wave, oscillation, or discontinuity) on which SCR-scattering occurs.

  16. Long path-length experimental studies of longitudinal phenomena in intense beams

    NASA Astrophysics Data System (ADS)

    Beaudoin, B. L.; Haber, I.; Kishek, R. A.; Bernal, S.; Koeth, T. W.

    2016-05-01

    Intense charged particle beams are nonneutral plasmas as they can support a host of plasma waves and instabilities. The longitudinal physics, for a long beam, can often be reasonably described by a 1-D cold-fluid model with a geometry factor to account for the transverse effects. The plasma physics of such beams has been extensively studied theoretically and computationally for decades, but until recently, the only experimental measurements were carried out on relatively short linacs. This work reviews experimental studies over the past five years on the University of Maryland Electron Ring, investigating longitudinal phenomena over time scales of thousands of plasma periods, illustrating good agreement with simulations.

  17. On the Distribution of Free Path Lengths for the Periodic Lorentz Gas III

    NASA Astrophysics Data System (ADS)

    Caglioti, Emanuele; Golse, François

    For r(0,1), let Zr={xR2|dist(x,Z2)>r/2} and define τr(x,v)=inf{t>0|x+tv∂Zr}. Let Φr(t) be the probability that τr(x,v)>=t for x and v uniformly distributed in Zr and §1 respectively. We prove in this paper that as t-->+∞. This result improves upon the bounds on Φr in Bourgain-Golse-Wennberg [Commun. Math. Phys. 190, 491-508 (1998)]. We also discuss the applications of this result in the context of kinetic theory.

  18. Career Paths in Environmental Sciences

    EPA Science Inventory

    Career paths, current and future, in the environmental sciences will be discussed, based on experiences and observations during the author's 40 + years in the field. An emphasis will be placed on the need for integrated, transdisciplinary systems thinking approaches toward achie...

  19. Choosing the Path with Honor.

    ERIC Educational Resources Information Center

    Arredondo, Michael

    2002-01-01

    The author describes the difficulties of achieving his life-long dream of going to an Ivy League college, and how his Shawnee grandfather advised him to acquire the white man's skills and bring them back to his people. He advises young Native Americans to choose the more difficult, yet honorable path of serving their own people. (TD)

  20. Perceived Shrinkage of Motion Paths

    ERIC Educational Resources Information Center

    Sinico, Michele; Parovel, Giulia; Casco, Clara; Anstis, Stuart

    2009-01-01

    We show that human observers strongly underestimate a linear or circular trajectory that a luminous spot follows in the dark. At slow speeds, observers are relatively accurate, but, as the speed increases, the size of the path is progressively underestimated, by up to 35%. The underestimation imposes little memory load and does not require…

  1. Career Paths of Academic Deans.

    ERIC Educational Resources Information Center

    Wolverton, Mimi; Gonzales, Mary Jo

    This paper examines various career paths leading to deanship and considers the implications of the findings for women and minorities who aspire to this position. The paper is part of a larger study of academic deanship conducted by the Center for Academic Leadership at Washington State University between October 1996 and January 1997. Data for the…

  2. Employer Resource Manual. Project Path.

    ERIC Educational Resources Information Center

    Kane, Karen R.; Del George, Eve

    Project Path at Illinois' College of DuPage was established to provide pre-employment training and career counseling for disabled students. To encourage the integration of qualified individuals with disabilities into the workplace, the project compiled this resource manual for area businesses, providing tips for interacting with disabled people…

  3. Persistence Length of Stable Microtubules

    NASA Astrophysics Data System (ADS)

    Hawkins, Taviare; Mirigian, Matthew; Yasar, M. Selcuk; Ross, Jennifer

    2011-03-01

    Microtubules are a vital component of the cytoskeleton. As the most rigid of the cytoskeleton filaments, they give shape and support to the cell. They are also essential for intracellular traffic by providing the roadways onto which organelles are transported, and they are required to reorganize during cellular division. To perform its function in the cell, the microtubule must be rigid yet dynamic. We are interested in how the mechanical properties of stable microtubules change over time. Some ``stable'' microtubules of the cell are recycled after days, such as in the axons of neurons or the cilia and flagella. We measured the persistence length of freely fluctuating taxol-stabilized microtubules over the span of a week and analyzed them via Fourier decomposition. As measured on a daily basis, the persistence length is independent of the contour length. Although measured over the span of the week, the accuracy of the measurement and the persistence length varies. We also studied how fluorescently-labeling the microtubule affects the persistence length and observed that a higher labeling ratio corresponded to greater flexibility. National Science Foundation Grant No: 0928540 to JLR.

  4. Does length or neighborhood size cause the word length effect?

    PubMed

    Jalbert, Annie; Neath, Ian; Surprenant, Aimée M

    2011-10-01

    Jalbert, Neath, Bireta, and Surprenant (2011) suggested that past demonstrations of the word length effect, the finding that words with fewer syllables are recalled better than words with more syllables, included a confound: The short words had more orthographic neighbors than the long words. The experiments reported here test two predictions that would follow if neighborhood size is a more important factor than word length. In Experiment 1, we found that concurrent articulation removed the effect of neighborhood size, just as it removes the effect of word length. Experiment 2 demonstrated that this pattern is also found with nonwords. For Experiment 3, we factorially manipulated length and neighborhood size, and found only effects of the latter. These results are problematic for any theory of memory that includes decay offset by rehearsal, but they are consistent with accounts that include a redintegrative stage that is susceptible to disruption by noise. The results also confirm the importance of lexical and linguistic factors on memory tasks thought to tap short-term memory. PMID:21461875

  5. When Does Length Cause the Word Length Effect?

    ERIC Educational Resources Information Center

    Jalbert, Annie; Neath, Ian; Bireta, Tamra J.; Surprenant, Aimee M.

    2011-01-01

    The word length effect, the finding that lists of short words are better recalled than lists of long words, has been termed one of the benchmark findings that any theory of immediate memory must account for. Indeed, the effect led directly to the development of working memory and the phonological loop, and it is viewed as the best remaining…

  6. Effective Cavity Length of Gyrotrons

    NASA Astrophysics Data System (ADS)

    Thumm, Manfred

    2014-12-01

    Megawatt-class gyrotron oscillators for electron cyclotron heating and non-inductive current drive (ECH&CD) in magnetically confined thermonuclear fusion plasmas have relatively low cavity quality factors in the range of 1000 to 2000. The effective length of their cavities cannot be simply deduced from the cavity electric field profile, since this has by far not a Gaussian shape. The present paper presents a novel method to estimate the effective length of a gyrotron cavity just from the eigenvalue of the operating TEm,n mode, the cavity radius and the exact oscillation frequency which may be numerically computed or precisely measured. This effective cavity length then can be taken to calculate the Fresnel parameter in order to confirm that the cavity is not too short so that the transverse structure of any mode in the cavity is the same as that of the corresponding mode in a long circular waveguide with the same diameter.

  7. Graduated compression stockings: knee length or thigh length.

    PubMed

    Benkö, T; Cooke, E A; McNally, M A; Mollan, R A

    2001-02-01

    The mechanisms by which graduated compression stockings prevent deep venous thrombosis are not completely understood. In the current study the physiologic effect of low-pressure graduated compression stockings on the venous blood flow in the lower limb and the practical aspects of their use were assessed. Patients having elective orthopaedic surgery at a university orthopaedic department were randomized into five groups to wear two different types of graduated compression stockings in thigh and knee lengths. Patients in the fifth control group did not wear graduated compression stockings. Venous occlusion strain gauge plethysmography was used to measure venous flow. After 20-minutes bed rest there was a highly significant increase in venous capacitance and venous outflow in patients in all of the four groups wearing stockings. There was no difference in the mean of the percentage change of venous capacitance in patients in the four groups wearing stockings. The knee length Brevet stockings were less efficient in increasing the venous outflow. There was no significant change in the venous capacitance and venous outflow in patients in the control group. Visual assessment of the fit and use of stockings was done, and patients' subjective opinion of comfort was sought. The knee length graduated compression stockings wrinkled significantly less, and significantly fewer patients reported discomfort with them. All stockings were reported to be difficult to use. Thigh and knee length stockings have a significant effect on decreasing venous stasis of the lower limb. Knee length graduated compression stockings are similarly efficient in decreasing venous stasis, but they are more comfortable to wear, and they wrinkle less. PMID:11210954

  8. Walking on inclines: how do desert ants monitor slope and step length

    PubMed Central

    Seidl, Tobias; Wehner, Rüdiger

    2008-01-01

    Background During long-distance foraging in almost featureless habitats desert ants of the genus Cataglyphis employ path-integrating mechanisms (vector navigation). This navigational strategy requires an egocentric monitoring of the foraging path by incrementally integrating direction, distance, and inclination of the path. Monitoring the latter two parameters involves idiothetic cues and hence is tightly coupled to the ant's locomotor behavior. Results In a kinematic study of desert ant locomotion performed on differently inclined surfaces we aimed at pinpointing the relevant mechanisms of estimating step length and inclination. In a behavioral experiment with ants foraging on slippery surfaces we broke the otherwise tightly coupled relationship between stepping frequency and step length and examined the animals' ability to monitor distances covered even under those adverse conditions. We show that the ants' locomotor system is not influenced by inclined paths. After removing the effect of speed, slope had only marginal influence on kinematic parameters. Conclusion From the obtained data we infer that the previously proposed monitoring of angles of the thorax-coxa joint is not involved in inclinometry. Due to the tiny variations in cycle period, we also argue that an efference copy of the central pattern generator coding the step length in its output frequency will most likely not suffice for estimating step length and complementing the pedometer. Finally we propose that sensing forces acting on the ant's legs could provide the desired neuronal correlate employed in monitoring inclination and step length. PMID:18518946

  9. Coherence length of neutron superfluids

    SciTech Connect

    De Blasio, F.V.; Hjorth-Jensen, M.; Lazzari, G.; Baldo, M.; Schulze, H.

    1997-10-01

    The coherence length of superfluid neutron matter is calculated from the microscopic BCS wave function of a Cooper pair in momentum space making use of recent nucleon-nucleon potential models and including polarization (RPA) effects. We find as our main result that the coherence length is proportional to the Fermi momentum to pairing gap ratio, in good agreement with simple estimates used in the literature, with a nearly interaction independent constant of proportionality. Our calculations can be applied to the problem of inhomogeneous superfluidity of hadronic matter in the crust of a neutron star. {copyright} {ital 1997} {ital The American Physical Society}

  10. Overview of bunch length measurements.

    SciTech Connect

    Lumpkin, A. H.

    1999-02-19

    An overview of particle and photon beam bunch length measurements is presented in the context of free-electron laser (FEL) challenges. Particle-beam peak current is a critical factor in obtaining adequate FEL gain for both oscillators and self-amplified spontaneous emission (SASE) devices. Since measurement of charge is a standard measurement, the bunch length becomes the key issue for ultrashort bunches. Both time-domain and frequency-domain techniques are presented in the context of using electromagnetic radiation over eight orders of magnitude in wavelength. In addition, the measurement of microbunching in a micropulse is addressed.

  11. Enzymatic reaction paths as determined by transition path sampling

    NASA Astrophysics Data System (ADS)

    Masterson, Jean Emily

    Enzymes are biological catalysts capable of enhancing the rates of chemical reactions by many orders of magnitude as compared to solution chemistry. Since the catalytic power of enzymes routinely exceeds that of the best artificial catalysts available, there is much interest in understanding the complete nature of chemical barrier crossing in enzymatic reactions. Two specific questions pertaining to the source of enzymatic rate enhancements are investigated in this work. The first is the issue of how fast protein motions of an enzyme contribute to chemical barrier crossing. Our group has previously identified sub-picosecond protein motions, termed promoting vibrations (PVs), that dynamically modulate chemical transformation in several enzymes. In the case of human heart lactate dehydrogenase (hhLDH), prior studies have shown that a specific axis of residues undergoes a compressional fluctuation towards the active site, decreasing a hydride and a proton donor--acceptor distance on a sub-picosecond timescale to promote particle transfer. To more thoroughly understand the contribution of this dynamic motion to the enzymatic reaction coordinate of hhLDH, we conducted transition path sampling (TPS) using four versions of the enzymatic system: a wild type enzyme with natural isotopic abundance; a heavy enzyme where all the carbons, nitrogens, and non-exchangeable hydrogens were replaced with heavy isotopes; and two versions of the enzyme with mutations in the axis of PV residues. We generated four separate ensembles of reaction paths and analyzed each in terms of the reaction mechanism, time of barrier crossing, dynamics of the PV, and residues involved in the enzymatic reaction coordinate. We found that heavy isotopic substitution of hhLDH altered the sub-picosecond dynamics of the PV, changed the favored reaction mechanism, dramatically increased the time of barrier crossing, but did not have an effect on the specific residues involved in the PV. In the mutant systems

  12. Active stabilization of a fiber-optic two-photon interferometer using continuous optical length control.

    PubMed

    Cho, Seok-Beom; Kim, Heonoh

    2016-05-16

    The practical realization of long-distance entanglement-based quantum communication systems strongly rely on the observation of highly stable quantum interference between correlated single photons. This task must accompany active stabilization of the optical path lengths within the single-photon coherence length. Here, we provide two-step interferometer stabilization methods employing continuous optical length control and experimentally demonstrate two-photon quantum interference using an actively stabilized 6-km-long fiber-optic Hong-Ou-Mandel interferometer. The two-step active control techniques are applied for measuring highly stable two-photon interference fringes by scanning the optical path-length difference. The obtained two-photon interference visibilities with and without accidental subtraction are found to be approximately 90.7% and 65.4%, respectively. PMID:27409920

  13. Effect of deformation path sequence on the behavior of nanoscale copper bicrystal interfaces.

    SciTech Connect

    Spearot, Douglas E.; Jacob, Karl I.; Plimpton, Steven James; McDowell, David Lynn

    2005-06-01

    Molecular dynamics calculations are performed to study the effect of deformation sequence and history on the inelastic behavior of copper interfaces on the nanoscale. An asymmetric 45 deg tilt bicrystal interface is examined, representing an idealized high-angle grain boundary interface. The interface model is subjected to three different deformation paths: tension then shear, shear then tension, and combined proportional tension and shear. Analysis shows that path-history dependent material behavior is confined within a finite layer of deformation around the bicrystal interface. The relationships between length scale and interface properties, such as the thickness of the path-history dependent layer and the interface strength, are discussed in detail.

  14. Path querying system on mobile devices

    NASA Astrophysics Data System (ADS)

    Lin, Xing; Wang, Yifei; Tian, Yuan; Wu, Lun

    2006-01-01

    Traditional approaches to path querying problems are not efficient and convenient under most circumstances. A more convenient and reliable approach to this problem has to be found. This paper is devoted to a path querying solution on mobile devices. By using an improved Dijkstra's shortest path algorithm and a natural language translating module, this system can help people find the shortest path between two places through their cell phones or other mobile devices. The chosen path is prompted in text of natural language, as well as a map picture. This system would be useful in solving best path querying problems and have potential to be a profitable business system.

  15. Physarum can compute shortest paths.

    PubMed

    Bonifaci, Vincenzo; Mehlhorn, Kurt; Varma, Girish

    2012-09-21

    Physarum polycephalum is a slime mold that is apparently able to solve shortest path problems. A mathematical model has been proposed by Tero et al. (Journal of Theoretical Biology, 244, 2007, pp. 553-564) to describe the feedback mechanism used by the slime mold to adapt its tubular channels while foraging two food sources s(0) and s(1). We prove that, under this model, the mass of the mold will eventually converge to the shortest s(0)-s(1) path of the network that the mold lies on, independently of the structure of the network or of the initial mass distribution. This matches the experimental observations by Tero et al. and can be seen as an example of a "natural algorithm", that is, an algorithm developed by evolution over millions of years. PMID:22732274

  16. Folded path LWIR system for SWAP constrained platforms

    NASA Astrophysics Data System (ADS)

    Fleet, Erin F.; Wilson, Michael L.; Linne von Berg, Dale; Giallorenzi, Thomas; Mathieu, Barry

    2014-06-01

    Folded path reflection and catadioptric optics are of growing interest, especially in the long wave infrared (LWIR), due to continuing demands for reductions in imaging system size, weight and power (SWAP). We present the optical design and laboratory data for a 50 mm focal length low f/# folded-path compact LWIR imaging system. The optical design uses 4 concentric aspheric mirrors, each of which is described by annular aspheric functions well suited to the folded path design space. The 4 mirrors are diamond turned onto two thin air-spaced aluminum plates which can be manually focused onto the uncooled LWIR microbolometer array detector. Stray light analysis will be presented to show how specialized internal baffling can be used to reduce stray light propagation through the folded path optical train. The system achieves near diffraction limited performance across the FOV with a 15 mm long optical train and a 5 mm back focal distance. The completed system is small enough to reside within a 3 inch diameter ball gimbal.

  17. Squeezed states and path integrals

    NASA Technical Reports Server (NTRS)

    Daubechies, Ingrid; Klauder, John R.

    1992-01-01

    The continuous-time regularization scheme for defining phase-space path integrals is briefly reviewed as a method to define a quantization procedure that is completely covariant under all smooth canonical coordinate transformations. As an illustration of this method, a limited set of transformations is discussed that have an image in the set of the usual squeezed states. It is noteworthy that even this limited set of transformations offers new possibilities for stationary phase approximations to quantum mechanical propagators.

  18. Modelling and implementation of a fixed-length-extension to measure fluorescent intensity in bioprocesses using an optical sensor

    NASA Astrophysics Data System (ADS)

    Sardesai, Neha; Al-Adhami, Mustafa; Rao, Govind; Kostov, Yordan

    2016-05-01

    Fluorescent proteins are often used as reporters of protein concentration in biology and biomedicine applications. They can be detected using a fluorimeter equipped with fiber optics for ease of access. However, small changes in the path length due to change in the position, or immersion depth of the optical fiber results in large changes in readings. To alleviate the situation, the fiber is equipped with a fixed-length-extension that provides constant path length. The operation of the fiber equipped fluorimeter is theoretically modelled and practically verified in this paper.

  19. Accelerating cleanup: Paths to closure

    SciTech Connect

    Edwards, C.

    1998-06-30

    This document was previously referred to as the Draft 2006 Plan. As part of the DOE`s national strategy, the Richland Operations Office`s Paths to Closure summarizes an integrated path forward for environmental cleanup at the Hanford Site. The Hanford Site underwent a concerted effort between 1994 and 1996 to accelerate the cleanup of the Site. These efforts are reflected in the current Site Baseline. This document describes the current Site Baseline and suggests strategies for further improvements in scope, schedule and cost. The Environmental Management program decided to change the name of the draft strategy and the document describing it in response to a series of stakeholder concerns, including the practicality of achieving widespread cleanup by 2006. Also, EM was concerned that calling the document a plan could be misconstrued to be a proposal by DOE or a decision-making document. The change in name, however, does not diminish the 2006 vision. To that end, Paths to Closure retains a focus on 2006, which serves as a point in time around which objectives and goals are established.

  20. CO sub 2 -laser ablation of Bi-Sr-Ca-Cu oxide by millisecond pulse lengths

    SciTech Connect

    Meskoob, M.; Honda, T.; Safari, A.; Wachtman, J.B.; Danforth, S. ); Wilkens, B.J. )

    1990-03-15

    We have achieved ablation of Bi-Sr-Ca-Cu oxide from single targets of superconducting pellets by CO{sub 2}-laser pulses of l ms length to grow superconducting thin films. Upon annealing, the 6000-A thin films have a {ital T}{sub {ital c}} (onset) of 90 K and zero resistance at 78 K. X-ray diffraction patterns indicate the growth of single-phase thin films. This technique allows growth of uniform single-phase superconducting thin films of lateral area greater than 1 cm{sup 2}.

  1. Electron Inelastic-Mean-Free-Path Database

    National Institute of Standards and Technology Data Gateway

    SRD 71 NIST Electron Inelastic-Mean-Free-Path Database (PC database, no charge)   This database provides values of electron inelastic mean free paths (IMFPs) for use in quantitative surface analyses by AES and XPS.

  2. Copper foil provides uniform heat sink path

    NASA Technical Reports Server (NTRS)

    Phillips, I. E., Jr.; Schreihans, F. A.

    1966-01-01

    Thermal path prevents voids and discontinuities which make heat sinks in electronic equipment inefficient. The thermal path combines the high thermal conductivity of copper with the resiliency of silicone rubber.

  3. The aerospace long-path multiple reflection cell facility

    NASA Astrophysics Data System (ADS)

    Herr, K. C.; Ortega, L. J.; Robbins, R. G.; Durso, S. S.; Young, R. M.; Urevig, D. S.; Rice, C. J.

    1982-08-01

    Aerospace long-path infrared absorption cell is described. This facility is a multiple-pass modified White cell which can be operated at any temperature between 170 K and room temperature with path lengths from 60 m up to 4 km. The cell itself is an 11-m long double-walled aluminum dewar. The spectral coverage extends from visible to 50 microns using as a source either a high temperature black body or a tunable diode laser. An internal 20 kV flash photolysis system permits detection and kinetic studies of transient species. This combination of characteristics makes the system ideally suited to study a wide variety of upper and lower atmospheric phenomena under realistic conditions as well as other phenomena requiring low concentrations or high sensitivity.

  4. Hypergeometric -Functions, Hurwitz Numbers and Enumeration of Paths

    NASA Astrophysics Data System (ADS)

    Harnad, J.; Orlov, A. Yu.

    2015-08-01

    A multiparametric family of 2D Toda -functions of hypergeometric type is shown to provide generating functions for composite, signed Hurwitz numbers that enumerate certain classes of branched coverings of the Riemann sphere and paths in the Cayley graph of S n . The coefficients in their series expansion over products of power sum symmetric functions in the two sets of Toda flow parameters and powers of the l + m auxiliary parameters are shown to enumerate fold branched covers of the Riemann sphere with specified ramification profiles and at a pair of points, and two sets of additional branch points, satisfying certain additional conditions on their ramification profile lengths. The first group consists of l branch points, with ramification profile lengths fixed to be the numbers ; the second consists of m further groups of "coloured" branch points, of variable number, for which the sums of the complements of the ramification profile lengths within the groups are fixed to equal the numbers . The latter are counted with signs determined by the parity of the total number of such branch points. The coefficients are also shown to enumerate paths in the Cayley graph of the symmetric group S n generated by transpositions, starting, as in the usual double Hurwitz case, at an element in the conjugacy class of cycle type and ending in the class of type , with the first l consecutive subsequences of transpositions strictly monotonically increasing, and the subsequent subsequences of transpositions weakly increasing.

  5. Multiple Paths to Encephalization and Technical Civilizations

    NASA Astrophysics Data System (ADS)

    Schwartzman, David; Middendorf, George

    2011-12-01

    We propose consideration of at least two possible evolutionary paths for the emergence of intelligent life with the potential for technical civilization. The first is the path via encephalization of homeothermic animals; the second is the path to swarm intelligence of so-called superorganisms, in particular the social insects. The path to each appears to be facilitated by environmental change: homeothermic animals by decreased climatic temperature and for swarm intelligence by increased oxygen levels.

  6. Welding arc length control system

    NASA Technical Reports Server (NTRS)

    Iceland, William F. (Inventor)

    1993-01-01

    The present invention is a welding arc length control system. The system includes, in its broadest aspects, a power source for providing welding current, a power amplification system, a motorized welding torch assembly connected to the power amplification system, a computer, and current pick up means. The computer is connected to the power amplification system for storing and processing arc weld current parameters and non-linear voltage-ampere characteristics. The current pick up means is connected to the power source and to the welding torch assembly for providing weld current data to the computer. Thus, the desired arc length is maintained as the welding current is varied during operation, maintaining consistent weld penetration.

  7. Softness Correlations Across Length Scales

    NASA Astrophysics Data System (ADS)

    Ivancic, Robert; Shavit, Amit; Rieser, Jennifer; Schoenholz, Samuel; Cubuk, Ekin; Durian, Douglas; Liu, Andrea; Riggleman, Robert

    In disordered systems, it is believed that mechanical failure begins with localized particle rearrangements. Recently, a machine learning method has been introduced to identify how likely a particle is to rearrange given its local structural environment, quantified by softness. We calculate the softness of particles in simulations of atomic Lennard-Jones mixtures, molecular Lennard-Jones oligomers, colloidal systems and granular systems. In each case, we find that the length scale characterizing spatial correlations of softness is approximately a particle diameter. These results provide a rationale for why localized rearrangements--whose size is presumably set by the scale of softness correlations--might occur in disordered systems across many length scales. Supported by DOE DE-FG02-05ER46199.

  8. Variable focal length deformable mirror

    DOEpatents

    Headley, Daniel; Ramsey, Marc; Schwarz, Jens

    2007-06-12

    A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

  9. Critical Length Limiting Superlow Friction

    NASA Astrophysics Data System (ADS)

    Ma, Ming; Benassi, Andrea; Vanossi, Andrea; Urbakh, Michael

    2015-02-01

    Since the demonstration of superlow friction (superlubricity) in graphite at nanoscale, one of the main challenges in the field of nano- and micromechanics was to scale this phenomenon up. A key question to be addressed is to what extent superlubricity could persist, and what mechanisms could lead to its failure. Here, using an edge-driven Frenkel-Kontorova model, we establish a connection between the critical length above which superlubricity disappears and both intrinsic material properties and experimental parameters. A striking boost in dissipated energy with chain length emerges abruptly due to a high-friction stick-slip mechanism caused by deformation of the slider leading to a local commensuration with the substrate lattice. We derived a parameter-free analytical model for the critical length that is in excellent agreement with our numerical simulations. Our results provide a new perspective on friction and nanomanipulation and can serve as a theoretical basis for designing nanodevices with superlow friction, such as carbon nanotubes.

  10. Evaluation of the Learning Path Specification

    ERIC Educational Resources Information Center

    Janssen, Jose; Berlanga, Adriana J.; Koper, Rob

    2011-01-01

    Flexible lifelong learning requires that learners can compare and select learning paths that best meet individual needs, not just in terms of learning goals, but also in terms of planning, costs etc. To this end a learning path specification was developed, which describes both the contents and the structure of any learning path, be it formal,…

  11. Performance Analysis of Path Planning Modeling

    NASA Astrophysics Data System (ADS)

    Wang, Zhirui; Li, Shuanghong; Zhang, Ying; Du, Qiaoling

    Ant colony system (ACS) algorithm was applied to the path planning for the robot. In the same working environment, path planning based on MAKLINK graph theory and Voronoi diagram were simulated and compared. MAKLINK graph theory is appropriate to apply to precise searching in small-scale district, and Voronoi diagram is suitable for fast path planning in a large area.

  12. No oculomotor plant, no final common path.

    PubMed

    Miller, Joel

    2003-12-01

    The assumption that there is an oculomotor plant, a fixed relationship between motoneuron firing rate and eye position, is disproved by brainstem recording studies showing that this relationship depends on which supernuclear subsystem determines firing rate. But it remains possible that there is a final common path (FCP), a fixed relationship between firing rate and muscle force. But then, brainstem recording studies predict that lateral rectus (LR) forces (and probably medial rectus (MR) forces, as well) will be higher in converged than in unconverged gaze for a given eye position. We recently measured these forces and found that they are slightly lower in convergence, disproving the FCP hypothesis. Thus, even the relationship between motoneuron firing rate and muscle force is under supernuclear control. What peripheral oculomotor articulations could vary the relationship of firing rate to muscle force?: (1) Actively movable EOM pulleys could alter oculorotary muscle force for a given oculorotory innervation by altering muscle lengths. (2) 'Outer' motoneurons may function as gamma efferents in conjunction with palisade endings and non-twitch global EOM fibers. (3) Complex nonlinear interactions likely arise among both parallel and serially connected muscle fibers. PMID:14730457

  13. Optical path correlator for low-coherence multiplexing fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Yuan, Yonggui; Wu, Bing; Yang, Jun; Yuan, Libo

    2011-05-01

    Based on a cavity length tunable fiber loop resonator, a multi-beam optical path difference is generated. It can be used to match and correlate the reflective signals from the partial reflective ends of each sensing fiber gauge. The correlation signals corresponding to the sensing gauge lengths. And the shift of the correlation peak related with the fiber sensing gauge elongation caused by strain or temperature. Therefore, it can be used to measure distributed strain or deformation for smart structural monitoring.

  14. Characterizing the Evolutionary Path(s) to Early Homo

    PubMed Central

    Schroeder, Lauren; Roseman, Charles C.; Cheverud, James M.; Ackermann, Rebecca R.

    2014-01-01

    Numerous studies suggest that the transition from Australopithecus to Homo was characterized by evolutionary innovation, resulting in the emergence and coexistence of a diversity of forms. However, the evolutionary processes necessary to drive such a transition have not been examined. Here, we apply statistical tests developed from quantitative evolutionary theory to assess whether morphological differences among late australopith and early Homo species in Africa have been shaped by natural selection. Where selection is demonstrated, we identify aspects of morphology that were most likely under selective pressure, and determine the nature (type, rate) of that selection. Results demonstrate that selection must be invoked to explain an Au. africanus—Au. sediba—Homo transition, while transitions from late australopiths to various early Homo species that exclude Au. sediba can be achieved through drift alone. Rate tests indicate that selection is largely directional, acting to rapidly differentiate these taxa. Reconstructions of patterns of directional selection needed to drive the Au. africanus—Au. sediba—Homo transition suggest that selection would have affected all regions of the skull. These results may indicate that an evolutionary path to Homo without Au. sediba is the simpler path and/or provide evidence that this pathway involved more reliance on cultural adaptations to cope with environmental change. PMID:25470780

  15. Attention trees and semantic paths

    NASA Astrophysics Data System (ADS)

    Giusti, Christian; Pieroni, Goffredo G.; Pieroni, Laura

    2007-02-01

    In the last few decades several techniques for image content extraction, often based on segmentation, have been proposed. It has been suggested that under the assumption of very general image content, segmentation becomes unstable and classification becomes unreliable. According to recent psychological theories, certain image regions attract the attention of human observers more than others and, generally, the image main meaning appears concentrated in those regions. Initially, regions attracting our attention are perceived as a whole and hypotheses on their content are formulated; successively the components of those regions are carefully analyzed and a more precise interpretation is reached. It is interesting to observe that an image decomposition process performed according to these psychological visual attention theories might present advantages with respect to a traditional segmentation approach. In this paper we propose an automatic procedure generating image decomposition based on the detection of visual attention regions. A new clustering algorithm taking advantage of the Delaunay- Voronoi diagrams for achieving the decomposition target is proposed. By applying that algorithm recursively, starting from the whole image, a transformation of the image into a tree of related meaningful regions is obtained (Attention Tree). Successively, a semantic interpretation of the leaf nodes is carried out by using a structure of Neural Networks (Neural Tree) assisted by a knowledge base (Ontology Net). Starting from leaf nodes, paths toward the root node across the Attention Tree are attempted. The task of the path consists in relating the semantics of each child-parent node pair and, consequently, in merging the corresponding image regions. The relationship detected in this way between two tree nodes generates, as a result, the extension of the interpreted image area through each step of the path. The construction of several Attention Trees has been performed and partial

  16. Link prediction based on path entropy

    NASA Astrophysics Data System (ADS)

    Xu, Zhongqi; Pu, Cunlai; Yang, Jian

    2016-08-01

    Information theory has been taken as a prospective tool for quantifying the complexity of complex networks. In this paper, first we study the information entropy or uncertainty of a path using the information theory. After that, we apply the path entropy to the link prediction problem in real-world networks. Specifically, we propose a new similarity index, namely Path Entropy (PE) index, which considers the information entropies of shortest paths between node pairs with penalization to long paths. Empirical experiments demonstrate that PE index outperforms the mainstream of link predictors.

  17. Relations between Coherence and Path Information.

    PubMed

    Bagan, Emilio; Bergou, János A; Cottrell, Seth S; Hillery, Mark

    2016-04-22

    We find two relations between coherence and path information in a multipath interferometer. The first builds on earlier results for the two-path interferometer, which used minimum-error state discrimination between detector states to provide the path information. For visibility, which was used in the two-path case, we substitute a recently defined l_{1} measure of quantum coherence. The second is an entropic relation in which the path information is characterized by the mutual information between the detector states and the outcome of the measurement performed on them, and the coherence measure is one based on relative entropy. PMID:27152780

  18. Relations between Coherence and Path Information

    NASA Astrophysics Data System (ADS)

    Bagan, Emilio; Bergou, János A.; Cottrell, Seth S.; Hillery, Mark

    2016-04-01

    We find two relations between coherence and path information in a multipath interferometer. The first builds on earlier results for the two-path interferometer, which used minimum-error state discrimination between detector states to provide the path information. For visibility, which was used in the two-path case, we substitute a recently defined l1 measure of quantum coherence. The second is an entropic relation in which the path information is characterized by the mutual information between the detector states and the outcome of the measurement performed on them, and the coherence measure is one based on relative entropy.

  19. Multiple order common path spectrometer

    NASA Technical Reports Server (NTRS)

    Newbury, Amy B. (Inventor)

    2010-01-01

    The present invention relates to a dispersive spectrometer. The spectrometer allows detection of multiple orders of light on a single focal plane array by splitting the orders spatially using a dichroic assembly. A conventional dispersion mechanism such as a defraction grating disperses the light spectrally. As a result, multiple wavelength orders can be imaged on a single focal plane array of limited spectral extent, doubling (or more) the number of spectral channels as compared to a conventional spectrometer. In addition, this is achieved in a common path device.

  20. Communication path for extreme environments

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C. (Inventor); Betts, Bradley J. (Inventor)

    2010-01-01

    Methods and systems for using one or more radio frequency identification devices (RFIDs), or other suitable signal transmitters and/or receivers, to provide a sensor information communication path, to provide location and/or spatial orientation information for an emergency service worker (ESW), to provide an ESW escape route, to indicate a direction from an ESW to an ES appliance, to provide updated information on a region or structure that presents an extreme environment (fire, hazardous fluid leak, underwater, nuclear, etc.) in which an ESW works, and to provide accumulated thermal load or thermal breakdown information on one or more locations in the region.

  1. Staff detection with stable paths.

    PubMed

    Dos Santos Cardoso, Jaime; Capela, Artur; Rebelo, Ana; Guedes, Carlos; Pinto da Costa, Joaquim

    2009-06-01

    The preservation of musical works produced in the past requires their digitalization and transformation into a machine-readable format. The processing of handwritten musical scores by computers remains far from ideal. One of the fundamental stages to carry out this task is the staff line detection. We investigate a general-purpose, knowledge-free method for the automatic detection of music staff lines based on a stable path approach. Lines affected by curvature, discontinuities, and inclination are robustly detected. Experimental results show that the proposed technique consistently outperforms well-established algorithms. PMID:19372615

  2. Telomere length in Hepatitis C.

    PubMed

    Kitay-Cohen, Y; Goldberg-Bittman, L; Hadary, R; Fejgin, M D; Amiel, A

    2008-11-01

    Telomeres are nucleoprotein structures located at the termini of chromosomes that protect the chromosomes from fusion and degradation. Hepatocyte cell-cycle turnover may be a primary mechanism of telomere shortening in hepatitis C virus (HCV) infection, inducing fibrosis and cellular senescence. HCV infection has been recognized as potential cause of B-cell lymphoma and hepatocellular carcinoma. The present study sought to assess relative telomere length in leukocytes from patients with chronic HCV infection, patients after eradication of HCV infection (in remission), and healthy controls. A novel method of manual evaluation was applied. Leukocytes derived from 22 patients with chronic HCV infection and age- and sex-matched patients in remission and healthy control subjects were subjected to a fluorescence-in-situ protocol (DAKO) to determine telomere fluorescence intensity and number. The relative, manual, analysis of telomere length was validated against findings on applied spectral imaging (ASI) in a random sample of study and control subjects. Leukocytes from patients with chronic HCV infection had shorter telomeres than leukocytes from patients in remission and healthy controls. On statistical analysis, more cells with low signal intensity on telomere FISH had shorter telomeres whereas more cells with high signal intensity had longer telomeres. The findings were corroborated by the ASI telomere software. Telomere shortening in leukocytes from patients with active HCV infection is probably due to the lower overall telomere level rather than higher cell cycle turnover. Manual evaluation is an accurate and valid method of assessing relative telomere length between patients with chronic HCV infection and healthy subjects. PMID:18992639

  3. Arithmetic area for m planar Brownian paths

    NASA Astrophysics Data System (ADS)

    Desbois, Jean; Ouvry, Stéphane

    2012-05-01

    We pursue the analysis made in Desbois and Ouvry (2011 J. Stat. Mech. P05024) on the arithmetic area enclosed by m closed Brownian paths. We pay particular attention to the random variable Sn1, n2,..., nm(m), which is the arithmetic area of the set of points, also called winding sectors, enclosed n1 times by path 1, n2 times by path 2,..., and nm times by path m. Various results are obtained in the asymptotic limit m\\to \\infty . A key observation is that, since the paths are independent, one can use in the m-path case the SLE information, valid in the one-path case, on the zero-winding sectors arithmetic area.

  4. Mechanics of the crack path formation

    NASA Technical Reports Server (NTRS)

    Rubinstein, Asher A.

    1991-01-01

    A detailed analysis of experimentally obtained curvilinear crack path trajectories formed in a heterogeneous stress field is presented. Experimental crack path trajectories were used as data for the numerical simulations, recreating the actual stress field governing the development of the crack path. Thus, the current theories of crack curving and kinking could be examined by comparing them with the actual stress field parameters as they develop along the experimentally observed crack path. The experimental curvilinear crack path trajectories were formed in the tensile specimens with a hole positioned in the vicinity of a potential crack path. The numerical simulation, based on the solution of equivalent boundary value problems with the possible perturbations of the crack path, is presented.

  5. Mechanics of the crack path formation

    NASA Technical Reports Server (NTRS)

    Rubinstein, Asher A.

    1989-01-01

    A detailed analysis of experimentally obtained curvilinear crack path trajectories formed in a heterogeneous stress field is presented. Experimental crack path trajectories were used as data for numerical simulations, recreating the actual stress field governing the development of the crack path. Thus, the current theories of crack curving and kinking could be examined by comparing them with the actual stress field parameters as they develop along the experimentally observed crack path. The experimental curvilinear crack path trajectories were formed in the tensile specimens with a hole positioned in the vicinity of a potential crack path. The numerical simulation, based on the solution of equivalent boundary value problems with the possible perturbations of the crack path, is presented here.

  6. The NIST Length Scale Interferometer

    PubMed Central

    Beers, John S.; Penzes, William B.

    1999-01-01

    The National Institute of Standards and Technology (NIST) interferometer for measuring graduated length scales has been in use since 1965. It was developed in response to the redefinition of the meter in 1960 from the prototype platinum-iridium bar to the wavelength of light. The history of the interferometer is recalled, and its design and operation described. A continuous program of modernization by making physical modifications, measurement procedure changes and computational revisions is described, and the effects of these changes are evaluated. Results of a long-term measurement assurance program, the primary control on the measurement process, are presented, and improvements in measurement uncertainty are documented.

  7. The Length of Time's Arrow

    SciTech Connect

    Feng, Edward H.; Crooks, Gavin E.

    2008-08-21

    An unresolved problem in physics is how the thermodynamic arrow of time arises from an underlying time reversible dynamics. We contribute to this issue by developing a measure of time-symmetry breaking, and by using the work fluctuation relations, we determine the time asymmetry of recent single molecule RNA unfolding experiments. We define time asymmetry as the Jensen-Shannon divergencebetween trajectory probability distributions of an experiment and its time-reversed conjugate. Among other interesting properties, the length of time's arrow bounds the average dissipation and determines the difficulty of accurately estimating free energy differences in nonequilibrium experiments.

  8. Vowel-related tongue movements in speech: straight or curved paths? (L).

    PubMed

    Löfqvist, Anders

    2011-03-01

    This paper examines tongue movements between the two vowels in sequences of vowel-labial consonant-vowel, addressing the question whether the movement is a straight line or a curved path. Native speakers of Japanese and Italian served as subjects. The linguistic material consisted of words where the bilabial consonant was either long or short. The inclusion of words with different consonant lengths was motivated by earlier findings that the tongue movement is often longer when the consonant is long, which may be due to a more curved movement path. Tongue movements were recorded using a three-transmitter magnetometer system. To assess the movement path, the movement magnitude was calculated in two ways, as a straight line, the Euclidean distance, and as the actual path, obtained by summing the individual Euclidean distances between successive samples from movement onset to offset. The ratio between the path and the Euclidean distance is 1 when the movement is a straight line and greater than 1 when the path is curved. Results show that in virtually all 21 cases examined the ratio was very close to 1 and in most cases 1.2 or less. There was no reliable influence of consonant length on the ratio. PMID:21428476

  9. Path statistics, memory, and coarse-graining of continuous-time random walks on networks.

    PubMed

    Manhart, Michael; Kion-Crosby, Willow; Morozov, Alexandre V

    2015-12-01

    Continuous-time random walks (CTRWs) on discrete state spaces, ranging from regular lattices to complex networks, are ubiquitous across physics, chemistry, and biology. Models with coarse-grained states (for example, those employed in studies of molecular kinetics) or spatial disorder can give rise to memory and non-exponential distributions of waiting times and first-passage statistics. However, existing methods for analyzing CTRWs on complex energy landscapes do not address these effects. Here we use statistical mechanics of the nonequilibrium path ensemble to characterize first-passage CTRWs on networks with arbitrary connectivity, energy landscape, and waiting time distributions. Our approach can be applied to calculating higher moments (beyond the mean) of path length, time, and action, as well as statistics of any conservative or non-conservative force along a path. For homogeneous networks, we derive exact relations between length and time moments, quantifying the validity of approximating a continuous-time process with its discrete-time projection. For more general models, we obtain recursion relations, reminiscent of transfer matrix and exact enumeration techniques, to efficiently calculate path statistics numerically. We have implemented our algorithm in PathMAN (Path Matrix Algorithm for Networks), a Python script that users can apply to their model of choice. We demonstrate the algorithm on a few representative examples which underscore the importance of non-exponential distributions, memory, and coarse-graining in CTRWs. PMID:26646868

  10. Path statistics, memory, and coarse-graining of continuous-time random walks on networks

    NASA Astrophysics Data System (ADS)

    Manhart, Michael; Kion-Crosby, Willow; Morozov, Alexandre V.

    2015-12-01

    Continuous-time random walks (CTRWs) on discrete state spaces, ranging from regular lattices to complex networks, are ubiquitous across physics, chemistry, and biology. Models with coarse-grained states (for example, those employed in studies of molecular kinetics) or spatial disorder can give rise to memory and non-exponential distributions of waiting times and first-passage statistics. However, existing methods for analyzing CTRWs on complex energy landscapes do not address these effects. Here we use statistical mechanics of the nonequilibrium path ensemble to characterize first-passage CTRWs on networks with arbitrary connectivity, energy landscape, and waiting time distributions. Our approach can be applied to calculating higher moments (beyond the mean) of path length, time, and action, as well as statistics of any conservative or non-conservative force along a path. For homogeneous networks, we derive exact relations between length and time moments, quantifying the validity of approximating a continuous-time process with its discrete-time projection. For more general models, we obtain recursion relations, reminiscent of transfer matrix and exact enumeration techniques, to efficiently calculate path statistics numerically. We have implemented our algorithm in PathMAN (Path Matrix Algorithm for Networks), a Python script that users can apply to their model of choice. We demonstrate the algorithm on a few representative examples which underscore the importance of non-exponential distributions, memory, and coarse-graining in CTRWs.

  11. Telomere length and cardiovascular aging.

    PubMed

    Fyhrquist, Frej; Saijonmaa, Outi

    2012-06-01

    Telomeres are located at the end of chromosomes. They are composed of repetitive TTAGGG tandem repeats and associated proteins of crucial importance for telomere function. Telomeric DNA is shortened by each cell division until a critical length is achieved and the cell enters senescence and eventually apoptosis. Telomeres are therefore considered a 'biological clock' of the cell. Telomerase adds nucleotides to telomeric DNA thereby contributing to telomere maintenance, genomic stability, functions, and proliferative capacity of the cell. In certain rare forms of progeria, point mutations within the telomere lead to accelerated telomere attrition and premature aging. Endogenous factors causing telomere shortening are aging, inflammation, and oxidative stress. Leukocyte telomere length (LTL) shortening is inhibited by estrogen and endogenous antioxidants. Accelerated telomere attrition is associated with cardiovascular risk factors such as age, gender, obesity, smoking, sedentary life-style, excess alcohol intake, and even mental stress. Cardiovascular (CV) diseases and CV aging are usually but not invariably associated with shorter telomeres than in healthy subjects. LTL appears to be a biomarker of CV aging, reflecting the cumulative burden of endogenous and exogenous factors negatively affecting LTL. Whether accelerated telomere shortening is cause or consequence of CV aging and disease is not clear. PMID:22713142

  12. Path Integration: Effect of Curved Path Complexity and Sensory System on Blindfolded Walking

    PubMed Central

    Koutakis, Panagiotis; Mukherjee, Mukul; Vallabhajosula, Srikant; Blanke, Daniel J.; Stergiou, Nicholas

    2012-01-01

    Path integration refers to the ability to integrate continuous information of the direction and distance travelled by the system relative to the origin. Previous studies have investigated path integration through blindfolded walking along simple paths such as straight line and triangles. However, limited knowledge exists regarding the role of path complexity in path integration. Moreover, little is known about how information from different sensory input systems (like vision and proprioception) contributes to accurate path integration. The purpose of the current study was to investigate how sensory information and curved path complexity affect path integration. Forty blindfolded participants had to accurately reproduce a curved path and return to the origin. They were divided into four groups that differed in the curved path, circle (simple) or figure-eight (complex), and received either visual (previously seen) or proprioceptive (previously guided) information about the path before they reproduced it. The dependent variables used were average trajectory error, walking speed, and distance travelled. The results indicated that (a) both groups that walked on a circular path and both groups that received visual information produced greater accuracy in reproducing the path. Moreover, the performance of the group that received proprioceptive information and later walked on a figure-eight path was less accurate than their corresponding circular group. The groups that had the visual information also walked faster compared to the group that had proprioceptive information. Results of the current study highlight the roles of different sensory inputs while performing blindfolded walking for path integration. PMID:22840893

  13. Finding the complete path and weight enumerators of convolutional codes

    NASA Technical Reports Server (NTRS)

    Onyszchuk, I.

    1990-01-01

    A method for obtaining the complete path enumerator T(D, L, I) of a convolutional code is described. A system of algebraic equations is solved, using a new algorithm for computing determinants, to obtain T(D, L, I) for the (7,1/2) NASA standard code. Generating functions, derived from T(D, L, I) are used to upper bound Viterbi decoder error rates. This technique is currently feasible for constraint length K less than 10 codes. A practical, fast algorithm is presented for computing the leading nonzero coefficients of the generating functions used to bound the performance of constraint length K less than 20 codes. Code profiles with about 50 nonzero coefficients are obtained with this algorithm for the experimental K = 15, rate 1/4, code in the Galileo mission and for the proposed K = 15, rate 1/6, 2-dB code.

  14. Modulated Tool-Path (MTP) Chip Breaking System

    SciTech Connect

    Graham, K. B.

    2010-04-01

    The Modulated Tool-Path (MTP) Chip Breaking System produces user-selectable chip lengths and workpiece finishes and is compatible with any material, workpiece shape, and depth of cut. The MTP chip breaking system consistently creates the desired size of chips regardless of workpiece size, shape, or material, and the machine operator does not need to make any adjustments during the machining operation. The system's programmer configures the part program that commands the machine tool to move in a specific fashion to deliver the desired part size, shape, chip length, and workpiece surface finish. The MTP chip breaking system helps manufacturers avoid the detrimental effects of continuous chips, including expensive repair costs, delivery delays, and hazards to personnel.

  15. Integrated assignment and path planning

    NASA Astrophysics Data System (ADS)

    Murphey, Robert A.

    2005-11-01

    A surge of interest in unmanned systems has exposed many new and challenging research problems across many fields of engineering and mathematics. These systems have the potential of transforming our society by replacing dangerous and dirty jobs with networks of moving machines. This vision is fundamentally separate from the modern view of robotics in that sophisticated behavior is realizable not by increasing individual vehicle complexity, but instead through collaborative teaming that relies on collective perception, abstraction, decision making, and manipulation. Obvious examples where collective robotics will make an impact include planetary exploration, space structure assembly, remote and undersea mining, hazardous material handling and clean-up, and search and rescue. Nonetheless, the phenomenon driving this technology trend is the increasing reliance of the US military on unmanned vehicles, specifically, aircraft. Only a few years ago, following years of resistance to the use of unmanned systems, the military and civilian leadership in the United States reversed itself and have recently demonstrated surprisingly broad acceptance of increasingly pervasive use of unmanned platforms in defense surveillance, and even attack. However, as rapidly as unmanned systems have gained acceptance, the defense research community has discovered the technical pitfalls that lie ahead, especially for operating collective groups of unmanned platforms. A great deal of talent and energy has been devoted to solving these technical problems, which tend to fall into two categories: resource allocation of vehicles to objectives, and path planning of vehicle trajectories. An extensive amount of research has been conducted in each direction, yet, surprisingly, very little work has considered the integrated problem of assignment and path planning. This dissertation presents a framework for studying integrated assignment and path planning and then moves on to suggest an exact

  16. Ligand chain length conveys thermochromism.

    PubMed

    Ganguly, Mainak; Panigrahi, Sudipa; Chandrakumar, K R S; Sasmal, Anup Kumar; Pal, Anjali; Pal, Tarasankar

    2014-08-14

    Thermochromic properties of a series of non-ionic copper compounds have been reported. Herein, we demonstrate that Cu(II) ion with straight-chain primary amine (A) and alpha-linolenic (fatty acid, AL) co-jointly exhibit thermochromic properties. In the current case, we determined that thermochromism becomes ligand chain length-dependent and at least one of the ligands (A or AL) must be long chain. Thermochromism is attributed to a balanced competition between the fatty acids and amines for the copper(II) centre. The structure-property relationship of the non-ionic copper compounds Cu(AL)2(A)2 has been substantiated by various physical measurements along with detailed theoretical studies based on time-dependent density functional theory. It is presumed from our results that the compound would be a useful material for temperature-sensor applications. PMID:24943491

  17. Geometry of area without length

    NASA Astrophysics Data System (ADS)

    Ho, Pei-Ming; Inami, Takeo

    2016-01-01

    To define a free string by the Nambu-Goto action, all we need is the notion of area, and mathematically the area can be defined directly in the absence of a metric. Motivated by the possibility that string theory admits backgrounds where the notion of length is not well defined but a definition of area is given, we study space-time geometries based on the generalization of a metric to an area metric. In analogy with Riemannian geometry, we define the analogues of connections, curvatures, and Einstein tensor. We propose a formulation generalizing Einstein's theory that will be useful if at a certain stage or a certain scale the metric is ill defined and the space-time is better characterized by the notion of area. Static spherical solutions are found for the generalized Einstein equation in vacuum, including the Schwarzschild solution as a special case.

  18. The path to adaptive microsystems

    NASA Astrophysics Data System (ADS)

    Zolper, John C.; Biercuk, Michael J.

    2006-05-01

    Scaling trends in microsystems are discussed frequently in the technical community, providing a short-term perspective on the future of integrated microsystems. This paper looks beyond the leading edge of technological development, focusing on new microsystem design paradigms that move far beyond today's systems based on static components. We introduce the concept of Adaptive Microsystems and outline a path to realizing these systems-on-a-chip. The role of DARPA in advancing future components and systems research is discussed, and specific DARPA efforts enabling and producing adaptive microsystems are presented. In particular, we discuss efforts underway in the DARPA Microsystems Technology Office (MTO) including programs in novel circuit architectures (3DIC), adaptive imaging and sensing (AFPA, VISA, MONTAGE, A-to-I) and reconfigurable RF/Microwave devices (SMART, TFAST, IRFFE).

  19. The Logic Behind Feynman's Paths

    NASA Astrophysics Data System (ADS)

    García Álvarez, Edgardo T.

    The classical notions of continuity and mechanical causality are left in order to reformulate the Quantum Theory starting from two principles: (I) the intrinsic randomness of quantum process at microphysical level, (II) the projective representations of symmetries of the system. The second principle determines the geometry and then a new logic for describing the history of events (Feynman's paths) that modifies the rules of classical probabilistic calculus. The notion of classical trajectory is replaced by a history of spontaneous, random and discontinuous events. So the theory is reduced to determining the probability distribution for such histories accordingly with the symmetries of the system. The representation of the logic in terms of amplitudes leads to Feynman rules and, alternatively, its representation in terms of projectors results in the Schwinger trace formula.

  20. Flexible-Path Human Exploration

    NASA Technical Reports Server (NTRS)

    Sherwood, B.; Adler, M.; Alkalai, L.; Burdick, G.; Coulter, D.; Jordan, F.; Naderi, F.; Graham, L.; Landis, R.; Drake, B.; Hoffman, S.; Grunsfeld, J.; Seery, B. D.

    2010-01-01

    In the fourth quarter of 2009 an in-house, multi-center NASA study team briefly examined "Flexible Path" concepts to begin understanding characteristics, content, and roles of potential missions consistent with the strategy proposed by the Augustine Committee. We present an overview of the study findings. Three illustrative human/robotic mission concepts not requiring planet surface operations are described: assembly of very large in-space telescopes in cis-lunar space; exploration of near Earth objects (NEOs); exploration of Mars' moon Phobos. For each, a representative mission is described, technology and science objectives are outlined, and a basic mission operations concept is quantified. A fourth type of mission, using the lunar surface as preparation for Mars, is also described. Each mission's "capability legacy" is summarized. All four illustrative missions could achieve NASA's stated human space exploration objectives and advance human space flight toward Mars surface exploration. Telescope assembly missions would require the fewest new system developments. NEO missions would offer a wide range of deep-space trip times between several months and two years. Phobos exploration would retire several Marsclass risks, leaving another large remainder set (associated with entry, descent, surface operations, and ascent) for retirement by subsequent missions. And extended lunar surface operations would build confidence for Mars surface missions by addressing a complementary set of risks. Six enabling developments (robotic precursors, ISS exploration testbed, heavy-lift launch, deep-space-capable crew capsule, deep-space habitat, and reusable in-space propulsion stage) would apply across multiple program sequence options, and thus could be started even without committing to a specific mission sequence now. Flexible Path appears to be a viable strategy, with meaningful and worthy mission content.

  1. Extracting Critical Path Graphs from MPI Applications

    SciTech Connect

    Schulz, M

    2005-07-27

    The critical path is one of the fundamental runtime characteristics of a parallel program. It identifies the longest execution sequence without wait delays. In other words, the critical path is the global execution path that inflicts wait operations on other nodes without itself being stalled. Hence, it dictates the overall runtime and knowing it is important to understand an application's runtime and message behavior and to target optimizations. We have developed a toolset that identifies the critical path of MPI applications, extracts it, and then produces a graphical representation of the corresponding program execution graph to visualize it. To implement this, we intercept all MPI library calls, use the information to build the relevant subset of the execution graph, and then extract the critical path from there. We have applied our technique to several scientific benchmarks and successfully produced critical path diagrams for applications running on up to 128 processors.

  2. Landscape and Flux Framework for Non-Equilibrium Networks: Kinetic Paths and Rate Dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Jin

    2012-02-01

    We developed a general framework to quantify three key ingredients for dynamics of nonequilibrium systems through path integrals in length space. First, we identify dominant kinetic paths as the ones with optimal weights, leading to effective reduction of dimensionality or degrees of freedom from exponential to polynomial so large systems can be treated. Second, we uncover the underlying nonequilibrium potential landscapes from the explorations of the state space through kinetic paths. We apply our framework to a specific example of nonequilibrium network system: lambda phage genetic switch. Two distinct basins of attractions emerge. The dominant kinetic paths from one basin to another are irreversible and do not follow the usual steepest descent or gradient path along the landscape. It reflects the fact that the dynamics of nonequilibrium systems is not just determined by potential gradient but also the residual curl flux force, suggesting experiments to test theoretical predictions. Third, we have calculated dynamic transition time scales from one basin to another critical for stability of the system through instantons. Theoretical predictions are in good agreements with wild type and mutant experiments.We further uncover the correlations between the kinetic transition time scales and the underlying landscape topography: the barrier heights along the dominant paths. We found that both the dominant paths and the landscape are relatively robust against the influences of external environmental perturbations and the system tends to dissipate less with less fluctuations. Our theoretical framework is general and can be applied to other nonequilibrium systems.

  3. Path Complexity in Virtual Water Maze Navigation: Differential Associations with Age, Sex, and Regional Brain Volume.

    PubMed

    Daugherty, Ana M; Yuan, Peng; Dahle, Cheryl L; Bender, Andrew R; Yang, Yiqin; Raz, Naftali

    2015-09-01

    Studies of human navigation in virtual maze environments have consistently linked advanced age with greater distance traveled between the start and the goal and longer duration of the search. Observations of search path geometry suggest that routes taken by older adults may be unnecessarily complex and that excessive path complexity may be an indicator of cognitive difficulties experienced by older navigators. In a sample of healthy adults, we quantify search path complexity in a virtual Morris water maze with a novel method based on fractal dimensionality. In a two-level hierarchical linear model, we estimated improvement in navigation performance across trials by a decline in route length, shortening of search time, and reduction in fractal dimensionality of the path. While replicating commonly reported age and sex differences in time and distance indices, a reduction in fractal dimension of the path accounted for improvement across trials, independent of age or sex. The volumes of brain regions associated with the establishment of cognitive maps (parahippocampal gyrus and hippocampus) were related to path dimensionality, but not to the total distance and time. Thus, fractal dimensionality of a navigational path may present a useful complementary method of quantifying performance in navigation. PMID:24860019

  4. Path of Carbon in Photosynthesis III.

    DOE R&D Accomplishments Database

    Benson, A. A.; Calvin, M.

    1948-06-01

    Although the overall reaction of photosynthesis can be specified with some degree of certainty (CO{sub 2} + H{sub 2}O + light {yields} sugars + possibly other reduced substances), the intermediates through which the carbon passes during the course of this reduction have, until now, been largely a matter of conjecture. The availability of isotopic carbon, that is, a method of labeling the carbon dioxide, provides the possibility of some very direct experiments designed to recognize these intermediates and, perhaps, help to understand the complex sequence and interplay of reactions which must constitute the photochemical process itself. The general design of such experiments is an obvious one, namely the exposure of the green plant to radioactive carbon dioxide and light under a variety of conditions and for continually decreasing lengths of time, followed by the identification of the compounds into which the radioactive carbon is incorporated under each condition and time period. From such data it is clear that in principle, at least, it should be possible to establish the sequence of compounds in time through which the carbon passes on its path from carbon dioxide to the final products. In the course of shortening the photosynthetic times, one times, one ultimately arrives at the condition of exposing the plants to the radioactive carbon dioxide with a zero illumination time, that is, in the dark. Actually, in the work the systematic order of events was reversed, and they have begun by studying first the dark fixation and then the shorter photosynthetic times. The results of the beginnings of this sort of a systematic investigation are given in Table I which includes three sets of experiments, namely a dark fixation experiment and two photosynthetic experiments, one of 30 seconds duration and the other of 60 seconds duration.

  5. Going up in time and length scales in modeling polymers

    NASA Astrophysics Data System (ADS)

    Grest, Gary S.

    Polymer properties depend on a wide range of coupled length and time scales, with unique macroscopic viscoelastic behavior stemming from interactions at the atomistic level. The need to probe polymers across time and length scales and particularly computational modeling is inherently challenging. Here new paths to probing long time and length scales including introducing interactions into traditional bead-spring models and coarse graining of atomistic simulations will be compared and discussed. Using linear polyethylene as a model system, the degree of coarse graining with two to six methylene groups per coarse-grained bead derived from a fully atomistic melt simulation were probed. We show that the degree of coarse graining affects the measured dynamic. Using these models we were successful in probing highly entangled melts and were able reach the long-time diffusive regime which is computationally inaccessible using atomistic simulations. We simulated the relaxation modulus and shear viscosity of well-entangled polyethylene melts for scaled times of 500 µs. Results for plateau modulus are in good agreement with experiment. The long time and length scale is coupled to the macroscopic viscoelasticity where the degree of coarse graining sets the minimum length scale instrumental in defining polymer properties and dynamics. Results will be compared to those obtained from simple bead-spring models to demonstrate the additional insight that can be gained from atomistically inspired coarse grained models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. A note on the path interval distance.

    PubMed

    Coons, Jane Ivy; Rusinko, Joseph

    2016-06-01

    The path interval distance accounts for global congruence between locally incongruent trees. We show that the path interval distance provides a lower bound for the nearest neighbor interchange distance. In contrast to the Robinson-Foulds distance, random pairs of trees are unlikely to be maximally distant from one another under the path interval distance. These features indicate that the path interval distance should play a role in phylogenomics where the comparison of trees on a fixed set of taxa is becoming increasingly important. PMID:27040521

  7. Geodesics on path spaces and double category

    NASA Astrophysics Data System (ADS)

    Chatterjee, Saikat

    2016-09-01

    Let M be a Riemannian manifold and 𝒫M be the space of all smooth paths on M. We describe geodesics on path space 𝒫M. Normal neighborhoods on 𝒫M have been discussed. We identify paths on M under “back-track” equivalence. Under this identification, we show that if M is complete, then geodesics on the path space yield a double category. This double category has a natural interpretation in terms of the worldsheets generated by freely moving (without any external force) strings.

  8. Test Compression for Robust Testable Path Delay Fault Testing Using Interleaving and Statistical Coding

    NASA Astrophysics Data System (ADS)

    Namba, Kazuteru; Ito, Hideo

    This paper proposes a method providing efficient test compression. The proposed method is for robust testable path delay fault testing with scan design facilitating two-pattern testing. In the proposed method, test data are interleaved before test compression using statistical coding. This paper also presents test architecture for two-pattern testing using the proposed method. The proposed method is experimentally evaluated from several viewpoints such as compression rates, test application time and area overhead. For robust testable path delay fault testing on 11 out of 20 ISCAS89 benchmark circuits, the proposed method provides better compression rates than the existing methods such as Huffman coding, run-length coding, Golomb coding, frequency-directed run-length (FDR) coding and variable-length input Huffman coding (VIHC).

  9. Thermodynamic Metrics and Optimal Paths

    SciTech Connect

    Sivak, David; Crooks, Gavin

    2012-05-08

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  10. A wide angle low coherence interferometry based eye length optometer

    NASA Astrophysics Data System (ADS)

    Meadway, Alexander; Siegwart, John; Wildsoet, Christine; Norton, Thomas; Zhang, Yuhua

    2015-03-01

    Interest in eye growth regulation has burgeoned with the rise in myopia prevalence world-wide. Eye length and eye shape are fundamental metrics for related research, but current in vivo measurement techniques are generally limited to the optical axis of the eye. We describe a high resolution, time domain low coherence interferometry based optometer for measuring the eye length of small animals over a wide field of view. The system is based upon a Michelson interferometer using a superluminescent diode as a source, including a sample arm and a reference arm. The sample arm is split into two paths by a polarisation beam splitter; one focuses the light on the cornea and the other focuses the light on the retina. This method has a high efficiency of detection for reflections from both surfaces. The reference arm contains a custom high speed linear motor with 25 mm stroke and equipped with a precision displacement encoder. Light reflected from the cornea and the retina is combined with the reference beam to generate low coherence interferograms. Two galvo scanners are employed to steer the light to different angles so that the eye length over a field of view of 20° × 20° can be measured. The system has an axial resolution of 6.8 μm (in air) and the motor provides accurate movement, allowing for precise and repeatable measurement of coherence peak positions. Example scans from a tree shrew are presented.

  11. Minimal length uncertainty and accelerating universe

    NASA Astrophysics Data System (ADS)

    Farmany, A.; Mortazavi, S. S.

    2016-06-01

    In this paper, minimal length uncertainty is used as a constraint to solve the Friedman equation. It is shown that, based on the minimal length uncertainty principle, the Hubble scale is decreasing which corresponds to an accelerating universe.

  12. Gerbertian paths for the Jubilee

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino

    2015-04-01

    Gerbert before becoming Pope Sylvester II came several times in Rome, as reported in his Letters and in the biography of Richerus. Eight places in Rome can be connected with Gerbertian memories. 1. The Cathedral of St. John in the Lateran where the gravestone of his tumb is still preserved near the Holy Door; 2. the “Basilica Hierusalem” (Santa Croce) where Gerbert had the stroke on May 3rd 1003 which lead him to death on May 12th; 3. the Aventine hill, with the church of the Knights of Malta in the place where the palace of the Ottonian Emperors was located; 4. the church of St. Bartholomew in the Tiber Island built in 997 under Otto III; 5. the Obelisk of Augustus in Montecitorio to remember the relationship between Gerbert, Astronomy and numbers which led the birth of the legends on Gerbert magician; 6. St. Mary Major end of the procession of August 15, 1000; 7. St. Paul outside the walls with the iconography of the Popes and 8. St. Peter's tumb end of all Romaei pilgrimages. This Gerbertian path in Rome suggests one way to accomplish the pilgrimage suggested by Pope Francis in the Bulla Misericordiae Vultus (14) of indiction of the new Jubilee.

  13. Path integral for inflationary perturbations

    NASA Astrophysics Data System (ADS)

    Prokopec, Tomislav; Rigopoulos, Gerasimos

    2010-07-01

    The quantum theory of cosmological perturbations in single-field inflation is formulated in terms of a path integral. Starting from a canonical formulation, we show how the free propagators can be obtained from the well-known gauge-invariant quadratic action for scalar and tensor perturbations, and determine the interactions to arbitrary order. This approach does not require the explicit solution of the energy and momentum constraints, a novel feature which simplifies the determination of the interaction vertices. The constraints and the necessary imposition of gauge conditions is reflected in the appearance of various commuting and anticommuting auxiliary fields in the action. These auxiliary fields are not propagating physical degrees of freedom but need to be included in internal lines and loops in a diagrammatic expansion. To illustrate the formalism we discuss the tree-level three-point and four-point functions of the inflaton perturbations, reproducing the results already obtained by the methods used in the current literature. Loop calculations are left for future work.

  14. Precision Cleaning - Path to Premier

    NASA Technical Reports Server (NTRS)

    Mackler, Scott E.

    2008-01-01

    ITT Space Systems Division s new Precision Cleaning facility provides critical cleaning and packaging of aerospace flight hardware and optical payloads to meet customer performance requirements. The Precision Cleaning Path to Premier Project was a 2007 capital project and is a key element in the approved Premier Resource Management - Integrated Supply Chain Footprint Optimization Project. Formerly precision cleaning was located offsite in a leased building. A new facility equipped with modern precision cleaning equipment including advanced process analytical technology and improved capabilities was designed and built after outsourcing solutions were investigated and found lacking in ability to meet quality specifications and schedule needs. SSD cleans parts that can range in size from a single threaded fastener all the way up to large composite structures. Materials that can be processed include optics, composites, metals and various high performance coatings. We are required to provide verification to our customers that we have met their particulate and molecular cleanliness requirements and we have that analytical capability in this new facility. The new facility footprint is approximately half the size of the former leased operation and provides double the amount of throughput. Process improvements and new cleaning equipment are projected to increase 1st pass yield from 78% to 98% avoiding $300K+/yr in rework costs. Cost avoidance of $350K/yr will result from elimination of rent, IT services, transportation, and decreased utility costs. Savings due to reduced staff expected to net $4-500K/yr.

  15. Decision paths in complex tasks

    NASA Technical Reports Server (NTRS)

    Galanter, Eugene

    1991-01-01

    Complex real world action and its prediction and control has escaped analysis by the classical methods of psychological research. The reason is that psychologists have no procedures to parse complex tasks into their constituents. Where such a division can be made, based say on expert judgment, there is no natural scale to measure the positive or negative values of the components. Even if we could assign numbers to task parts, we lack rules i.e., a theory, to combine them into a total task representation. We compare here two plausible theories for the amalgamation of the value of task components. Both of these theories require a numerical representation of motivation, for motivation is the primary variable that guides choice and action in well-learned tasks. We address this problem of motivational quantification and performance prediction by developing psychophysical scales of the desireability or aversiveness of task components based on utility scaling methods (Galanter 1990). We modify methods used originally to scale sensory magnitudes (Stevens and Galanter 1957), and that have been applied recently to the measure of task 'workload' by Gopher and Braune (1984). Our modification uses utility comparison scaling techniques which avoid the unnecessary assumptions made by Gopher and Braune. Formula for the utility of complex tasks based on the theoretical models are used to predict decision and choice of alternate paths to the same goal.

  16. 28 CFR 551.4 - Hair length.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Hair length. 551.4 Section 551.4 Judicial... Hair length. (a) The Warden may not restrict hair length if the inmate keeps it neat and clean. (b) The Warden shall require an inmate with long hair to wear a cap or hair net when working in food service...

  17. 28 CFR 551.4 - Hair length.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Hair length. 551.4 Section 551.4 Judicial... Hair length. (a) The Warden may not restrict hair length if the inmate keeps it neat and clean. (b) The Warden shall require an inmate with long hair to wear a cap or hair net when working in food service...

  18. 28 CFR 551.4 - Hair length.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Hair length. 551.4 Section 551.4 Judicial... Hair length. (a) The Warden may not restrict hair length if the inmate keeps it neat and clean. (b) The Warden shall require an inmate with long hair to wear a cap or hair net when working in food service...

  19. 28 CFR 551.4 - Hair length.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Hair length. 551.4 Section 551.4 Judicial... Hair length. (a) The Warden may not restrict hair length if the inmate keeps it neat and clean. (b) The Warden shall require an inmate with long hair to wear a cap or hair net when working in food service...

  20. 28 CFR 551.4 - Hair length.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Hair length. 551.4 Section 551.4 Judicial... Hair length. (a) The Warden may not restrict hair length if the inmate keeps it neat and clean. (b) The Warden shall require an inmate with long hair to wear a cap or hair net when working in food service...

  1. Evaluation of Calcine Disposition Path Forward

    SciTech Connect

    Birrer, S.A.; Heiser, M.B.

    2003-02-26

    This document describes an evaluation of the baseline and two alternative disposition paths for the final disposition of the calcine wastes stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory. The pathways are evaluated against a prescribed set of criteria and a recommendation is made for the path forward.

  2. Evaluation of Calcine Disposition - Path Forward

    SciTech Connect

    Steve Birrer

    2003-02-01

    This document describes an evaluation of the baseline and two alternative disposition paths for the final disposition of the calcine wastes stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory. The pathways are evaluated against a prescribed set of criteria and a recommendation is made for the path forward.

  3. The path dependence of deformation texture development

    SciTech Connect

    Takeshita, T.; Kocks, U.F.; Wenk, H.R.

    1987-01-01

    It is demonstrated for the case of three different strain paths, all of which end up with the same, elongated specimen shape, that the texture developed during straining is path dependent. This is true both for experiments on aluminum polycrystals and for simulations using the LApp code.

  4. The Path of Carbon in Photosynthesis VI.

    DOE R&D Accomplishments Database

    Calvin, M.

    1949-06-30

    This paper is a compilation of the essential results of our experimental work in the determination of the path of carbon in photosynthesis. There are discussions of the dark fixation of photosynthesis and methods of separation and identification including paper chromatography and radioautography. The definition of the path of carbon in photosynthesis by the distribution of radioactivity within the compounds is described.

  5. Career Path Guide for Adult Career Choices.

    ERIC Educational Resources Information Center

    Case, Clydia

    Intended for adults who are considering career choices or changes, this booklet provides opportunities for self-study and reflection in six career paths. The booklet begins with tips for long-term career survival and myths and realities of career planning. After a brief career survey, readers are introduced to six career paths: arts and…

  6. Adaptively Ubiquitous Learning in Campus Math Path

    ERIC Educational Resources Information Center

    Shih, Shu-Chuan; Kuo, Bor-Chen; Liu, Yu-Lung

    2012-01-01

    The purposes of this study are to develop and evaluate the instructional model and learning system which integrate ubiquitous learning, computerized adaptive diagnostic testing system and campus math path learning. The researcher first creates a ubiquitous learning environment which is called "adaptive U-learning math path system". This system…

  7. Diffraction in the semiclassical approximation to Feynman's path integral representation of the Green function

    NASA Astrophysics Data System (ADS)

    Schaden, Martin; Spruch, Larry

    2004-09-01

    We derive the semiclassical approximation to Feynman's path integral representation of the energy Green function of a massless particle in the shadow region of an ideal obstacle in a medium. The wavelength of the particle is assumed to be comparable to or smaller than any relevant length of the problem. Classical paths with extremal length partially creep along the obstacle and their fluctuations are subject to non-holonomic constraints. If the medium is a vacuum, the asymptotic contribution from a single classical path of overall length L to the energy Green function at energy E is that of a non-relativistic particle of mass E/ c2 moving in the two-dimensional space orthogonal to the classical path for a time τ= L/ c. Dirichlet boundary conditions at the surface of the obstacle constrain the motion of the particle to the exterior half-space and result in an effective time-dependent but spatially constant force that is inversely proportional to the radius of curvature of the classical path. We relate the diffractive, classically forbidden motion in the "creeping" case to the classically allowed motion in the "whispering gallery" case by analytic continuation in the curvature of the classical path. The non-holonomic constraint implies that the surface of the obstacle becomes a zero-dimensional caustic of the particle's motion. We solve this problem for extremal rays with piecewise constant curvature and provide uniform asymptotic expressions that are approximately valid in the penumbra as well as in the deep shadow of a sphere.

  8. Shortest path and Schramm-Loewner Evolution

    PubMed Central

    Posé, N.; Schrenk, K. J.; Araújo, N. A. M.; Herrmann, H. J.

    2014-01-01

    We numerically show that the statistical properties of the shortest path on critical percolation clusters are consistent with the ones predicted for Schramm-Loewner evolution (SLE) curves for κ = 1.04 ± 0.02. The shortest path results from a global optimization process. To identify it, one needs to explore an entire area. Establishing a relation with SLE permits to generate curves statistically equivalent to the shortest path from a Brownian motion. We numerically analyze the winding angle, the left passage probability, and the driving function of the shortest path and compare them to the distributions predicted for SLE curves with the same fractal dimension. The consistency with SLE opens the possibility of using a solid theoretical framework to describe the shortest path and it raises relevant questions regarding conformal invariance and domain Markov properties, which we also discuss. PMID:24975019

  9. A temporal ant colony optimization approach to the shortest path problem in dynamic scale-free networks

    NASA Astrophysics Data System (ADS)

    Yu, Feng; Li, Yanjun; Wu, Tie-Jun

    2010-02-01

    A large number of networks in the real world have a scale-free structure, and the parameters of the networks change stochastically with time. Searching for the shortest paths in a scale-free dynamic and stochastic network is not only necessary for the estimation of the statistical characteristics such as the average shortest path length of the network, but also challenges the traditional concepts related to the “shortest path” of a network and the design of path searching strategies. In this paper, the concept of shortest path is defined on the basis of a scale-free dynamic and stochastic network model, and a temporal ant colony optimization (TACO) algorithm is proposed for searching for the shortest paths in the network. The convergence and the setup for some important parameters of the TACO algorithm are discussed through theoretical analysis and computer simulations, validating the effectiveness of the proposed algorithm.

  10. Infrared Pulse-laser Long-path Absorption Measurement of Carbon Dioxide Using a Raman-shifted Dye Laser

    NASA Technical Reports Server (NTRS)

    Minato, Atsushi; Sugimoto, Nobuo; Sasano, Yasuhiro

    1992-01-01

    A pulsed laser source is effective in infrared laser long-path absorption measurements when the optical path length is very long or the reflection from a hard target is utilized, because higher signal-to-noise ratio is obtained in the detection of weak return signals. We have investigated the performance of a pulse-laser long-path absorption system using a hydrogen Raman shifter and a tunable dye laser pumped by a Nd:YAG laser, which generates second Stokes radiation in the 2-micron region.

  11. Transitioning to a Narrow Path: The Impact of Fear of Falling in Older Adults

    PubMed Central

    Dunlap, Pamela; Perera, Subashan; VanSwearingen, Jessie M.; Wert, David; Brach, Jennifer S.

    2011-01-01

    Background Everyday ambulation requires navigation of variable terrain, transitions from wide to narrow pathways, and avoiding obstacles. While the effect of age on the transition to a narrow path has been examined briefly, little is known about the impact of fear of falling on gait during the transition to a narrow path. The purpose was to examine the effect of age and fear of falling on gait during transition to a narrow path. Methods In 31 young, mean age = 25.3 years, and 30 older adults, mean age = 79.6 years, step length, step time, step width and gait speed were examined during usual and transition to narrow pathway using an instrumented walkway. Findings During the transition to narrow walk condition, fearful older adults compared to young had a wider step width (.06 m vs. .04 m) prior to the narrow path and took shorter steps (.53 m vs .72 m, p<.001). Compared to non-fearful older adults, fearful older adults walked slower and took shorter steps during narrow path walking (gait speed: 1.1 m/s vs .82 m/s, p=.01; step length: .60 m vs .47 m, p=.03). In young and non-fearful older adults narrow path gait was similar to usual gait. Whereas older adults who were fearful, walked slower (.82 m/s vs .91 m/s, p=.001) and took shorter steps (.44 m vs .53 m, p=.004) during narrow path walking compared to usual walking. Interpretation Changes in gait characteristics with transitioning to a narrow pathway were greater for fear of falling than for age. PMID:21944475

  12. Path Planning Using a Hybrid Evolutionary Algorithm Based on Tree Structure Encoding

    PubMed Central

    Wang, Siao-En; Guo, Jian-Horn

    2014-01-01

    A hybrid evolutionary algorithm using scalable encoding method for path planning is proposed in this paper. The scalable representation is based on binary tree structure encoding. To solve the problem of hybrid genetic algorithm and particle swarm optimization, the “dummy node” is added into the binary trees to deal with the different lengths of representations. The experimental results show that the proposed hybrid method demonstrates using fewer turning points than traditional evolutionary algorithms to generate shorter collision-free paths for mobile robot navigation. PMID:24971389

  13. Path planning using a hybrid evolutionary algorithm based on tree structure encoding.

    PubMed

    Ju, Ming-Yi; Wang, Siao-En; Guo, Jian-Horn

    2014-01-01

    A hybrid evolutionary algorithm using scalable encoding method for path planning is proposed in this paper. The scalable representation is based on binary tree structure encoding. To solve the problem of hybrid genetic algorithm and particle swarm optimization, the "dummy node" is added into the binary trees to deal with the different lengths of representations. The experimental results show that the proposed hybrid method demonstrates using fewer turning points than traditional evolutionary algorithms to generate shorter collision-free paths for mobile robot navigation. PMID:24971389

  14. Evolution paths for advanced automation

    NASA Technical Reports Server (NTRS)

    Healey, Kathleen J.

    1990-01-01

    As Space Station Freedom (SSF) evolves, increased automation and autonomy will be required to meet Space Station Freedom Program (SSFP) objectives. As a precursor to the use of advanced automation within the SSFP, especially if it is to be used on SSF (e.g., to automate the operation of the flight systems), the underlying technologies will need to be elevated to a high level of readiness to ensure safe and effective operations. Ground facilities supporting the development of these flight systems -- from research and development laboratories through formal hardware and software development environments -- will be responsible for achieving these levels of technology readiness. These facilities will need to evolve support the general evolution of the SSFP. This evolution will include support for increasing the use of advanced automation. The SSF Advanced Development Program has funded a study to define evolution paths for advanced automaton within the SSFP's ground-based facilities which will enable, promote, and accelerate the appropriate use of advanced automation on-board SSF. The current capability of the test beds and facilities, such as the Software Support Environment, with regard to advanced automation, has been assessed and their desired evolutionary capabilities have been defined. Plans and guidelines for achieving this necessary capability have been constructed. The approach taken has combined indepth interviews of test beds personnel at all SSF Work Package centers with awareness of relevant state-of-the-art technology and technology insertion methodologies. Key recommendations from the study include advocating a NASA-wide task force for advanced automation, and the creation of software prototype transition environments to facilitate the incorporation of advanced automation in the SSFP.

  15. The behavioural final common path.

    PubMed

    McFarland, D J; Sibly, R M

    1975-05-15

    In this paper it is argued that any model of the motivational (i.e. reversible) processes governing the behaviour of an animal can be represented by means of isoclines in a multidimensional 'causal-factor space'. The argument is axiomatic, based upon the two prime assumptions: that (1) it is always possible to classify the behavioural repertoire of a species in such a way that the classes are mutually exclusive in the sense that the members of different classes cannot occur simultaneously, and (2) these incompatible actions are uniquely determined by a particular set of causal factors. The isoclines join all points in the space which present a given 'degree of competitiveness' of a particular 'candidate' for overt behavioural expression. The competition between candidates is an inevitable consequence of the fact that animals cannot 'do more than one thing at a time', and is envisaged as taking place in the behavioural final common path. An empirical method of determining the motivational state (i.e. point in causal-factor space) is outlined. This is a 'relative' method, independent of the arbitrary calibration of the axes of the causal-factor space. It is shown that an arbitrary scale of measurement along any two axes of the causal-factor space is all that is necessary for empirical determination of the shape of a motivational isocline. Experiments in which this method has been applied to the measurement of hunger and thirst in doves are outlined, and the results are discussed in terms of their implications for motivation theory in general. PMID:239416

  16. The Path of Human Evolution

    NASA Astrophysics Data System (ADS)

    Feibel, C. S.

    2004-12-01

    A complex series of evolutionary steps, contingent upon a dynamic environmental context and a long biological heritage, have led to the ascent of Homo sapiens as a dominant component of the modern biosphere. In a field where missing links still abound and new discoveries regularly overturn theoretical paradigms, our understanding of the path of human evolution has made tremendous advances in recent years. Two major trends characterize the development of the hominin clade subsequent to its origins with the advent of upright bipedalism in the Late Miocene of Africa. One is a diversification into two prominent morphological branches, each with a series of 'twigs' representing evolutionary experimentation at the species or subspecies level. The second important trend, which in its earliest manifestations cannot clearly be ascribed to one or the other branch, is the behavioral complexity of an increasing reliance on technology to expand upon limited inherent morphological specializations and to buffer the organism from its environment. This technological dependence is directly associated with the expansion of hominin range outside Africa by the genus Homo, and is accelerated in the sole extant form Homo sapiens through the last 100 Ka. There are interesting correlates between the evolutionary and behavioral patterns seen in the hominin clade and environmental dynamics of the Neogene. In particular, the tempo of morphological and behavioral innovation may be tracking major events in Neogene climatic development as well as reflecting intervals of variability or stability. Major improvements in analytical techniques, coupled with important new collections and a growing body of contextual data are now making possible the integration of global, regional and local environmental archives with an improved biological understanding of the hominin clade to address questions of coincidence and causality.

  17. Path integral duality modified propagators in spacetimes with constant curvature

    SciTech Connect

    Kothawala, Dawood; Padmanabhan, T.; Sriramkumar, L.; Shankaranarayanan, S.

    2009-08-15

    The hypothesis of path integral duality provides a prescription to evaluate the propagator of a free, quantum scalar field in a given classical background, taking into account the existence of a fundamental length, say, the Planck length L{sub P} in a locally Lorentz invariant manner. We use this prescription to evaluate the duality modified propagators in spacetimes with constant curvature (exactly in the case of one spacetime, and in the Gaussian approximation for another two), and show that (i) the modified propagators are ultraviolet finite, (ii) the modifications are nonperturbative in L{sub P}, and (iii) L{sub P} seems to behave like a 'zero point length' of spacetime intervals such that <{sigma}{sup 2}(x,x{sup '})>=[{sigma}{sup 2}(x,x{sup '})+O(1)L{sub P}{sup 2}], where {sigma}(x,x{sup '}) is the geodesic distance between the two spacetime points x and x{sup '}, and the angular brackets denote (a suitable) average over the quantum gravitational fluctuations. We briefly discuss the implications of our results.

  18. Robotic path planning for surgeon skill evaluation in minimally-invasive sinus surgery.

    PubMed

    Ahmidi, Narges; Hager, Gregory D; Ishii, Lisa; Gallia, Gary L; Ishii, Masaru

    2012-01-01

    We observe that expert surgeons performing MIS learn to minimize their tool path length and avoid collisions with vital structures. We thus conjecture that an expert surgeon's tool paths can be predicted by minimizing an appropriate energy function. We hypothesize that this reference path will be closer to an expert with greater skill, as measured by an objective measurement instrument such as objective structured assessment of technical skill (OSATS). To test this hypothesis, we have developed a surgical path planner (SPP) for functional endoscopic sinus surgery (FESS). We measure the similarity between an automatically generated reference path and surgical motions of subjects. We also develop a complementary similarity metric by translating tool motion to a coordinate-independent coding of motion, which we call the descriptive curve coding (DCC) method. We evaluate our methods on surgical motions recorded from FESS training tasks. The results show that the SPP reference path predicts the OSATS scores with 88% accuracy. We also show that motions coded with DCC predict OSATS scores with 90% accuracy. Finally, the combination of SPP and DCC identifies surgical skill with 93% accuracy. PMID:23285585

  19. UAV path planning using artificial potential field method updated by optimal control theory

    NASA Astrophysics Data System (ADS)

    Chen, Yong-bo; Luo, Guan-chen; Mei, Yue-song; Yu, Jian-qiao; Su, Xiao-long

    2016-04-01

    The unmanned aerial vehicle (UAV) path planning problem is an important assignment in the UAV mission planning. Based on the artificial potential field (APF) UAV path planning method, it is reconstructed into the constrained optimisation problem by introducing an additional control force. The constrained optimisation problem is translated into the unconstrained optimisation problem with the help of slack variables in this paper. The functional optimisation method is applied to reform this problem into an optimal control problem. The whole transformation process is deduced in detail, based on a discrete UAV dynamic model. Then, the path planning problem is solved with the help of the optimal control method. The path following process based on the six degrees of freedom simulation model of the quadrotor helicopters is introduced to verify the practicability of this method. Finally, the simulation results show that the improved method is more effective in planning path. In the planning space, the length of the calculated path is shorter and smoother than that using traditional APF method. In addition, the improved method can solve the dead point problem effectively.

  20. Methodology for Augmenting Existing Paths with Additional Parallel Transects

    SciTech Connect

    Wilson, John E.

    2013-09-30

    Visual Sample Plan (VSP) is sample planning software that is used, among other purposes, to plan transect sampling paths to detect areas that were potentially used for munition training. This module was developed for application on a large site where existing roads and trails were to be used as primary sampling paths. Gap areas between these primary paths needed to found and covered with parallel transect paths. These gap areas represent areas on the site that are more than a specified distance from a primary path. These added parallel paths needed to optionally be connected together into a single path—the shortest path possible. The paths also needed to optionally be attached to existing primary paths, again with the shortest possible path. Finally, the process must be repeatable and predictable so that the same inputs (primary paths, specified distance, and path options) will result in the same set of new paths every time. This methodology was developed to meet those specifications.

  1. Nonholonomic catheter path reconstruction using electromagnetic tracking

    NASA Astrophysics Data System (ADS)

    Lugez, Elodie; Sadjadi, Hossein; Akl, Selim G.; Fichtinger, Gabor

    2015-03-01

    Catheter path reconstruction is a necessary step in many clinical procedures, such as cardiovascular interventions and high-dose-rate brachytherapy. To overcome limitations of standard imaging modalities, electromagnetic tracking has been employed to reconstruct catheter paths. However, tracking errors pose a challenge in accurate path reconstructions. We address this challenge by means of a filtering technique incorporating the electromagnetic measurements with the nonholonomic motion constraints of the sensor inside a catheter. The nonholonomic motion model of the sensor within the catheter and the electromagnetic measurement data were integrated using an extended Kalman filter. The performance of our proposed approach was experimentally evaluated using the Ascension's 3D Guidance trakStar electromagnetic tracker. Sensor measurements were recorded during insertions of an electromagnetic sensor (model 55) along ten predefined ground truth paths. Our method was implemented in MATLAB and applied to the measurement data. Our reconstruction results were compared to raw measurements as well as filtered measurements provided by the manufacturer. The mean of the root-mean-square (RMS) errors along the ten paths was 3.7 mm for the raw measurements, and 3.3 mm with manufacturer's filters. Our approach effectively reduced the mean RMS error to 2.7 mm. Compared to other filtering methods, our approach successfully improved the path reconstruction accuracy by exploiting the sensor's nonholonomic motion constraints in its formulation. Our approach seems promising for a variety of clinical procedures involving reconstruction of a catheter path.

  2. Automated flight path planning for virtual endoscopy.

    PubMed

    Paik, D S; Beaulieu, C F; Jeffrey, R B; Rubin, G D; Napel, S

    1998-05-01

    In this paper, a novel technique for rapid and automatic computation of flight paths for guiding virtual endoscopic exploration of three-dimensional medical images is described. While manually planning flight paths is a tedious and time consuming task, our algorithm is automated and fast. Our method for positioning the virtual camera is based on the medial axis transform but is much more computationally efficient. By iteratively correcting a path toward the medial axis, the necessity of evaluating simple point criteria during morphological thinning is eliminated. The virtual camera is also oriented in a stable viewing direction, avoiding sudden twists and turns. We tested our algorithm on volumetric data sets of eight colons, one aorta and one bronchial tree. The algorithm computed the flight paths in several minutes per volume on an inexpensive workstation with minimal computation time added for multiple paths through branching structures (10%-13% per extra path). The results of our algorithm are smooth, centralized paths that aid in the task of navigation in virtual endoscopic exploration of three-dimensional medical images. PMID:9608471

  3. Steering Chiral Swimmers along Noisy Helical Paths

    NASA Astrophysics Data System (ADS)

    Friedrich, Benjamin M.; Jülicher, Frank

    2009-08-01

    Chemotaxis along helical paths towards a target releasing a chemoattractant is found in sperm cells and many microorganisms. We discuss the stochastic differential geometry of the noisy helical swimming path of a chiral swimmer. A chiral swimmer equipped with a simple feedback system can navigate in a concentration gradient of chemoattractant. We derive an effective equation for the alignment of helical paths with a concentration gradient which is related to the alignment of a dipole in an external field and discuss the chemotaxis index.

  4. The terminal area automated path generation problem

    NASA Technical Reports Server (NTRS)

    Hsin, C.-C.

    1977-01-01

    The automated terminal area path generation problem in the advanced Air Traffic Control System (ATC), has been studied. Definitions, input, output and the interrelationships with other ATC functions have been discussed. Alternatives in modeling the problem have been identified. Problem formulations and solution techniques are presented. In particular, the solution of a minimum effort path stretching problem (path generation on a given schedule) has been carried out using the Newton-Raphson trajectory optimization method. Discussions are presented on the effect of different delivery time, aircraft entry position, initial guess on the boundary conditions, etc. Recommendations are made on real-world implementations.

  5. ADÈLIC Path Space Integrals

    NASA Astrophysics Data System (ADS)

    Blair, Alan D.

    A framework for the study of path integrals on adèlic spaces is developed, and it is shown that a family of path space measures on the localizations of an algebraic number field may, under certain conditions, be combined to form a global path space measure on its adèle ring. An operator on the field of p-adic numbers analogous to the harmonic oscillator operator is then analyzed, and used to construct an Ornstein-Uhlenbeck type process on the adèle ring of the rationals.

  6. Path planning strategies for autonomous ground vehicles

    NASA Astrophysics Data System (ADS)

    Gifford, Kevin Kent

    Several key issues involved with the planning and executing of optimally generated paths for autonomous vehicles are addressed. Two new path planning algorithms are developed, and examined, which effectively minimize replanning as unmapped hazards are encountered. The individual algorithms are compared via extensive simulation. The search strategy results are implemented and tested using the University of Colorado's autonomous vehicle test-bed, RoboCar, and results show the advantages of solving the single-destination all-paths problem for autonomous vehicle path planning. Both path planners implement a graph search methodology incorporating dynamic programming that solves the single-destination shortest-paths problem. Algorithm 1, termed DP for dynamic programming, searches a state space where each state represents a potential vehicle location in a breadth-first fashion expanding from the goal to all potential start locations in the state space. Algorithm 2, termed DP*, couples the heuristic search power of the well-known A* search procedure (Nilsson-80) with the dynamic programming principle applied to graph searching to efficiently make use of overlapping subproblems. DP* is the primary research contribution of the work contained within this thesis. The advantage of solving the single-destination shortest-paths problem is that the entire terrain map is solved in terms of reaching a specified goal. Therefore, if the robot is diverted from the pre-planned path, an alternative path is already computed. The search algorithms are extended to include a probabilistic approach using empirical loss functions to incorporate terrain map uncertainties into the path considering terrain planning process. The results show the importance of considering terrain uncertainty. If the map representation ignores uncertainty by marking any area with less than perfect confidence as unpassable or assigns it the worst case rating, then the paths are longer than intuitively necessary. A

  7. The desert ant odometer: a stride integrator that accounts for stride length and walking speed.

    PubMed

    Wittlinger, Matthias; Wehner, Rüdiger; Wolf, Harald

    2007-01-01

    Desert ants, Cataglyphis, use path integration as a major means of navigation. Path integration requires measurement of two parameters, namely, direction and distance of travel. Directional information is provided by a celestial compass, whereas distance measurement is accomplished by a stride integrator, or pedometer. Here we examine the recently demonstrated pedometer function in more detail. By manipulating leg lengths in foraging desert ants we could also change their stride lengths. Ants with elongated legs ('stilts') or shortened legs ('stumps') take larger or shorter strides, respectively, and misgauge travel distance. Travel distance is overestimated by experimental animals walking on stilts, and underestimated by animals walking on stumps - strongly indicative of stride integrator function in distance measurement. High-speed video analysis was used to examine the actual changes in stride length, stride frequency and walking speed caused by the manipulations of leg length. Unexpectedly, quantitative characteristics of walking behaviour remained almost unaffected by imposed changes in leg length, demonstrating remarkable robustness of leg coordination and walking performance. These data further allowed normalisation of homing distances displayed by manipulated animals with regard to scaling and speed effects. The predicted changes in homing distance are in quantitative agreement with the experimental data, further supporting the pedometer hypothesis. PMID:17210957

  8. Controlling Arc Length in Plasma Welding

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.

    1986-01-01

    Circuit maintains arc length on irregularly shaped workpieces. Length of plasma arc continuously adjusted by control circuit to maintain commanded value. After pilot arc is established, contactor closed and transfers arc to workpiece. Control circuit then half-wave rectifies ac arc voltage to produce dc control signal proportional to arc length. Circuit added to plasma arc welding machines with few wiring changes. Welds made with circuit cleaner and require less rework than welds made without it. Beads smooth and free of inclusions.

  9. Dither Cavity Length Controller with Iodine Locking

    NASA Astrophysics Data System (ADS)

    Lawson, Marty; Eloranta, Ed

    2016-06-01

    A cavity length controller for a seeded Q-switched frequency doubled Nd:YAG laser is constructed. The cavity length controller uses a piezo-mirror dither voltage to find the optimum length for the seeded cavity. The piezo-mirror dither also dithers the optical frequency of the output pulse. [1]. This dither in optical frequency is then used to lock to an Iodine absorption line.

  10. Measuring Crack Length in Coarse Grain Ceramics

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Ghosn, Louis J.

    2010-01-01

    Due to a coarse grain structure, crack lengths in precracked spinel specimens could not be measured optically, so the crack lengths and fracture toughness were estimated by strain gage measurements. An expression was developed via finite element analysis to correlate the measured strain with crack length in four-point flexure. The fracture toughness estimated by the strain gaged samples and another standardized method were in agreement.

  11. IRIS Optical Instrument and Light Paths

    NASA Video Gallery

    The optical portion of the instrument and the light paths from the primary and secondary mirror of the telescope assembly into the spectrograph. The spectrograph then breaks the light into 2 Near U...

  12. Exploring Zika's Path Through the Placenta

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_159075.html Exploring Zika's Path Through the Placenta Researchers find the virus ... research seems to shed light on how the Zika virus infects, but doesn't kill, placenta cells. ...

  13. Exploring Zika's Path Through the Placenta

    MedlinePlus

    ... nih.gov/medlineplus/news/fullstory_159075.html Exploring Zika's Path Through the Placenta Researchers find the virus ... research seems to shed light on how the Zika virus infects, but doesn't kill, placenta cells. ...

  14. Orbital Path of the International Space Station

    NASA Video Gallery

    Astronauts Don Pettit, Andre Kuipers and Dan Burbank explain the orbital path of the International Space Station. Earth video credit: Image Science and Analysis Laboratory, NASA's Johnson Space Cen...

  15. Animation: Path of 2010 Solar Eclipse

    NASA Video Gallery

    On Sunday, 2010 July 11, a total eclipse of the Sun is visible from within a narrow corridor that traverses Earth's southern hemisphere. The path of the Moon's umbral shadow crosses the South Pacif...

  16. Local-time representation of path integrals

    NASA Astrophysics Data System (ADS)

    Jizba, Petr; Zatloukal, Václav

    2015-12-01

    We derive a local-time path-integral representation for a generic one-dimensional time-independent system. In particular, we show how to rephrase the matrix elements of the Bloch density matrix as a path integral over x -dependent local-time profiles. The latter quantify the time that the sample paths x (t ) in the Feynman path integral spend in the vicinity of an arbitrary point x . Generalization of the local-time representation that includes arbitrary functionals of the local time is also provided. We argue that the results obtained represent a powerful alternative to the traditional Feynman-Kac formula, particularly in the high- and low-temperature regimes. To illustrate this point, we apply our local-time representation to analyze the asymptotic behavior of the Bloch density matrix at low temperatures. Further salient issues, such as connections with the Sturm-Liouville theory and the Rayleigh-Ritz variational principle, are also discussed.

  17. Identifying decohering paths in closed quantum systems

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas

    1990-01-01

    A specific proposal is discussed for how to identify decohering paths in a wavefunction of the universe. The emphasis is on determining the correlations among subsystems and then considering how these correlations evolve. The proposal is similar to earlier ideas of Schroedinger and of Zeh, but in other ways it is closer to the decoherence functional of Griffiths, Omnes, and Gell-Mann and Hartle. There are interesting differences with each of these which are discussed. Once a given coarse-graining is chosen, the candidate paths are fixed in this scheme, and a single well defined number measures the degree of decoherence for each path. The normal probability sum rules are exactly obeyed (instantaneously) by these paths regardless of the level of decoherence. Also briefly discussed is how one might quantify some other aspects of classicality. The important role that concrete calculations play in testing this and other proposals is stressed.

  18. Nonclassical Paths in Quantum Interference Experiments

    NASA Astrophysics Data System (ADS)

    Sawant, Rahul; Samuel, Joseph; Sinha, Aninda; Sinha, Supurna; Sinha, Urbasi

    2014-09-01

    In a double slit interference experiment, the wave function at the screen with both slits open is not exactly equal to the sum of the wave functions with the slits individually open one at a time. The three scenarios represent three different boundary conditions and as such, the superposition principle should not be applicable. However, most well-known text books in quantum mechanics implicitly and/or explicitly use this assumption that is only approximately true. In our present study, we have used the Feynman path integral formalism to quantify contributions from nonclassical paths in quantum interference experiments that provide a measurable deviation from a naive application of the superposition principle. A direct experimental demonstration for the existence of these nonclassical paths is difficult to present. We find that contributions from such paths can be significant and we propose simple three-slit interference experiments to directly confirm their existence.

  19. Riemann Curvature Tensor and Closed Geodesic Paths

    ERIC Educational Resources Information Center

    Morganstern, Ralph E.

    1977-01-01

    Demonstrates erroneous results obtained if change in a vector under parallel transport about a closed path in Riemannian spacetime is made in a complete circuit rather than just half a circuit. (Author/SL)

  20. Numerical evaluation of Feynman path integrals

    NASA Astrophysics Data System (ADS)

    Baird, William Hugh

    1999-11-01

    The notion of path integration developed by Feynman, while an incredibly successful method of solving quantum mechanical problems, leads to frequently intractable integrations over an infinite number of paths. Two methods now exist which sidestep this difficulty by defining "densities" of actions which give the relative number of paths found at different values of the action. These densities are sampled by computer generation of paths and the propagators are found to a high degree of accuracy for the case of a particle on the infinite half line and in a finite square well in one dimension. The problem of propagation within a two dimensional radial well is also addressed as the precursor to the problem of a particle in a stadium (quantum billiard).

  1. Pi Bond Orders and Bond Lengths

    ERIC Educational Resources Information Center

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  2. Required length of guardrails before hazards.

    PubMed

    Tomasch, E; Sinz, W; Hoschopf, H; Gobald, M; Steffan, H; Nadler, B; Nadler, F; Strnad, B; Schneider, F

    2011-11-01

    One way to protect against impacts during run-off-road accidents with infrastructure is the use of guardrails. However, real-world accidents indicate that vehicles can leave the road and end up behind the guardrail. These vehicles have no possibility of returning to the lane. Vehicles often end up behind the guardrail because the length of the guardrails installed before hazards is too short; this can lead to a collision with a shielded hazard. To identify the basic speed for determining the necessary length of guardrails, we analyzed the speed at which vehicles leave the roadway from the ZEDATU (Zentrale Datenbank Tödlicher Unfälle) real-world accidents database. The required length of guardrail was considered the length that reduces vehicle speed at a maximum theoretically possible deceleration of 0.3g behind the barrier based on real-world road departure speed. To determine the desired length of a guardrail ahead of a hazard, we developed a relationship between guardrail length and the speed at which vehicles depart the roadway. If the initial elements are flared away from the carriageway, the required length will be reduced by up to an additional 30% The ZEDATU database analysis showed that extending the current length of guardrails to the evaluated required length would reduce the number of fatalities among occupants of vehicles striking bridge abutments by approximately eight percent. PMID:21819841

  3. Invariant length of a cosmic string

    NASA Astrophysics Data System (ADS)

    Anderson, Malcolm R.

    1990-06-01

    The world sheet of a cosmic string is characterized by a function l, invariant under both coordinate and gauge transformations, which can be interpreted as the ``invariant length'' of the string. In flat space, l reduces to the invariant length of Vachaspati and Vilenkin, and gives an upper bound for the actual length of the string, and a lower bound for its energy, as measured by any inertial observer. In curved spacetime, time variations in the invariant length divide naturally into two parts: one due to the tidal tensor at points exterior to the world sheet and one due to the tidal tensor at points on the world sheet itself.

  4. Evolutionary paths to mammalian cochleae.

    PubMed

    Manley, Geoffrey A

    2012-12-01

    Evolution of the cochlea and high-frequency hearing (>20 kHz; ultrasonic to humans) in mammals has been a subject of research for many years. Recent advances in paleontological techniques, especially the use of micro-CT scans, now provide important new insights that are here reviewed. True mammals arose more than 200 million years (Ma) ago. Of these, three lineages survived into recent geological times. These animals uniquely developed three middle ear ossicles, but these ossicles were not initially freely suspended as in modern mammals. The earliest mammalian cochleae were only about 2 mm long and contained a lagena macula. In the multituberculate and monotreme mammalian lineages, the cochlea remained relatively short and did not coil, even in modern representatives. In the lineage leading to modern therians (placental and marsupial mammals), cochlear coiling did develop, but only after a period of at least 60 Ma. Even Late Jurassic mammals show only a 270 ° cochlear coil and a cochlear canal length of merely 3 mm. Comparisons of modern organisms, mammalian ancestors, and the state of the middle ear strongly suggest that high-frequency hearing (>20 kHz) was not realized until the early Cretaceous (~125 Ma). At that time, therian mammals arose and possessed a fully coiled cochlea. The evolution of modern features of the middle ear and cochlea in the many later lineages of therians was, however, a mosaic and different features arose at different times. In parallel with cochlear structural evolution, prestins in therian mammals evolved into effective components of a new motor system. Ultrasonic hearing developed quite late-the earliest bat cochleae (~60 Ma) did not show features characteristic of those of modern bats that are sensitive to high ultrasonic frequencies. PMID:22983571

  5. No-Loss Transportation of Water Droplets by Patterning a Desired Hydrophobic Path on a Superhydrophobic Surface.

    PubMed

    Hu, Haibao; Yu, Sixiao; Song, Dong

    2016-07-26

    The directional transportation of droplets on solid surfaces is essential in a wide range of engineering applications. It is convenient to guide liquid droplets in a given direction by utilizing the gradient of wettability, by which the binding forces can be produced. In contrast to the mass-loss transportation of a droplet moving along hydrophilic paths on a horizontal superhydrophobic surface, we present no-loss transportation by fabricating a hydrophobic path on the same surface under tangential wind. In experimental exploration and theoretical analysis, the conditions of no-loss transportation of a droplet are mainly considered. We demonstrate that the lower (or upper) critical wind velocity, under which the droplet starts on the path (or is derailed from the path), is determined by the width of the path, the length of the contact area in the direction parallel to the path, the drift angle between the path and the wind direction, and the surface wettability of the pattern. Meanwhile, the no-loss transportation of water droplets along the desired path zigzagging on a superhydrophobic surface can be achieved steadily under appropriate conditions. We anticipate that such robust no-loss transportation will find an extensive range of applications. PMID:27359261

  6. Create three distinct career paths for innovators.

    PubMed

    O'Connor, Gina Colarelli; Corbett, Andrew; Pierantozzi, Ron

    2009-12-01

    Large companies say they Create Three Distinct want to be Career Paths for Innovators innovative, but they fundamentally mismanage their talent. Expecting innovators to grow along with their projects-from discovery to incubation to acceleration--sets them up to fail. Most people excel at one of the phases, not all three. By allowing innovation employees to develop career paths suited to their strengths, companies will create a sustainable innovation function. PMID:19968059

  7. Quantifying tight-gas sandstone permeability via critical path analysis

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Torres-Verdín, Carlos; Skaggs, Todd H.

    2016-06-01

    Rock permeability has been actively investigated over the past several decades by the geosciences community. However, its accurate estimation still presents significant technical challenges, particularly in spatially complex rocks. In this short communication, we apply critical path analysis (CPA) to estimate permeability in porous rocks from measured mercury intrusion porosimetry and electrical conductivity data. Theoretical estimations of various CPA-based models are then compared to experimental measurements using eighteen tight-gas sandstones. Except for two of the samples, we find permeability estimations performed with the Skaggs model (assuming pore diameter independent of its length) more accurate than other models, within a factor of two of the measured permeabilities. We discuss some plausible sources of the uncertainties.

  8. Dislocation mean free paths and strain hardening of crystals.

    PubMed

    Devincre, B; Hoc, T; Kubin, L

    2008-06-27

    Predicting the strain hardening properties of crystals constitutes a long-standing challenge for dislocation theory. The main difficulty resides in the integration of dislocation processes through a wide range of time and length scales, up to macroscopic dimensions. In the present multiscale approach, dislocation dynamics simulations are used to establish a dislocation-based continuum model incorporating discrete and intermittent aspects of plastic flow. This is performed through the modeling of a key quantity, the mean free path of dislocations. The model is then integrated at the scale of bulk crystals, which allows for the detailed reproduction of the complex deformation curves of face-centered cubic crystals. Because of its predictive ability, the proposed framework has a large potential for further applications. PMID:18583605

  9. Biopsychosocial determinants of pregnancy length and fetal growth.

    PubMed

    St-Laurent, Jennifer; De Wals, Philippe; Moutquin, Jean-Marie; Niyonsenga, Theophile; Noiseux, Manon; Czernis, Loretta

    2008-05-01

    The causes and mechanisms related to preterm delivery and intrauterine growth restriction are poorly understood. Our objective was to assess the direct and indirect effects of psychosocial and biomedical factors on the duration of pregnancy and fetal growth. A self-administered questionnaire was distributed to pregnant women attending prenatal ultrasound clinics in nine hospitals in the Montérégie region in the province of Quebec, Canada, from November 1997 to May 1998. Prenatal questionnaires were linked with birth certificates. Theoretical models explaining pregnancy length and fetal growth were developed and tested, using path analysis. In order to reduce the number of variables from the questionnaire, a principal component analysis was performed, and the three most important new dimensions were retained as explanatory variables in the final models. Data were available for 1602 singleton pregnancies. The biophysical score, covering both maternal age and the pre-pregnancy body mass index, was the only variable statistically associated with pregnancy length. Smoking, obstetric history, maternal health and biophysical indices were direct predictors of fetal growth. Perceived stress, social support and self-esteem were not directly related to pregnancy outcomes, but were determinants of smoking and the above-mentioned biomedical variables. More studies are needed to identify the mechanisms by which adverse psychosocial factors are translated into adverse biological effects. PMID:18426519

  10. The bound coherent neutron scattering lengths of the oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Fischer, Henry E.; Simonson, J. Mike; Neuefeind, Jörg C.; Lemmel, Hartmut; Rauch, Helmut; Zeidler, Anita; Salmon, Philip S.

    2012-12-01

    The technique of neutron interferometry was used to measure the bound coherent neutron scattering length bcoh of the oxygen isotopes 17O and 18O. From the measured difference in optical path between two water samples, either H217O or H218O versus H2natO, where nat denotes the natural isotopic composition, we obtain bcoh,17O = 5.867(4) fm and bcoh,18O = 6.009(5) fm, based on the accurately known value of bcoh,natO = 5.805(4) fm which is equal to bcoh,16O within the experimental uncertainty. Our results for bcoh,17O and bcoh,18O differ appreciably from the standard tabulated values of 5.6(5) fm and 5.84(7) fm, respectively. In particular, our measured scattering-length contrast of 0.204(3) fm between 18O and natO is nearly a factor of 6 greater than the tabulated value, which renders feasible neutron diffraction experiments using 18O isotope substitution and thereby offers new possibilities for measuring the partial structure factors of oxygen-containing compounds, such as water.

  11. The bound coherent neutron scattering length of the oxygen isotopes

    SciTech Connect

    Fischer, Henry E; Simonson, J Michael {Mike}; Neuefeind, Joerg C; Lemmel, Hartmut; Rauch, Helmut; Zeidler, Anita; Salmon, Phil

    2012-01-01

    The technique of neutron interferometry was used to measure the bound coherent neutron scattering length bcoh of the oxygen isotopes 17O and 18O. From the measured difference in optical path between two water samples, either H2 17O or H2 18O versus H2 natO, where nat denotes the natural isotopic composition, we obtain bcoh , 17O = 5.867(4) fm and bcoh , 18O = 6.009(5) fm, based on the accurately known value of bcoh , natO = 5.805(4) fm which is equal to bcoh , 16O within the experimental uncertainty. Our results for bcoh , 17O and bcoh , 18O differ appreciably from the standard tabulated values of 5.6(5) fm and 5.84(7) fm, respectively. In particular, our measured scattering length contrast of 0.204(3) fm between 18O and natO is nearly a factor of 6 greater than the tabulated value, which renders feasible neutron diffraction experiments using 18O isotope substitution and thereby offers new possibilites for measuring the partial structure factors of oxygen-containing compounds, such as water.

  12. Length scale effects on percolation of geometrically complex nanocomposites

    NASA Astrophysics Data System (ADS)

    Hoffman, T. J.; Stevens, D. R.; Roberts, W. A.; Gorga, R. E.; Clarke, L. I.

    2008-10-01

    With growing interest in materials that include nanostructures the focus on nanocomposites (a polymer-based matrix that is enhanced by a nanometer sized particle) has grown. Electrospun nanocomposites contain a complex geometry including fiber sizes of 200 nm arranged in a random mat with a porosity of >= 70%. Composites utilize connected paths of particles throughout the sample to enhance the mechanical and electrical properties of the matrix. Previous literature has shown, in the case of continuous films, that this percolation phenomenon is affected by the sample size. This work aims to investigate these length scale effects within a complex morphology, such as a nanofiber mat. For a clear understanding of the change in percolation vs. length scale we fabricated interdigitated electrodes (IDEs) with a finger spacing of 10 to 100 μm, electrospun mats onto the IDEs, and performed electrical conductance measurements. In addition, computation simulations of the experimental systems were undertaken. I will discuss our results and the role sample size/shape plays on 1) the percolation threshold and 2) the conductivity vs. doping fraction curve.

  13. TATP stand-off detection with open path: FTIR techniques

    NASA Astrophysics Data System (ADS)

    Fischer, C.; Pohl, T.; Weber, K.; Vogel, A.; van Haren, G.; Schweikert, W.

    2012-10-01

    TATP is a very easy to synthesize [9], sensitive, high explosive [10] and high volatile explosive [1, 3, 7] with great absorption in the IR Spectra [4, 5, 6]. In this project we detect TATP gas traces with open path FTIR - techniques. The first project phase was to construct and build a heatable multi-reflection cell with adjustable optical path length and a heatable intake to evaporate solid TATP samples. In this cell reference TATP - spectra were collected under controlled conditions with a Bruker FTIR system (Typ OPAG 33). The next step was to find out how the TATP gas will be diluted in the ambient air and validate some physical properties which are described inconsistently in literature e.g. evaporation rates. We constructed a special double - T shaped chamber with stabile air conditions. In this chamber the dispersion kinetics of the TATP vapour could be tested. It turned out that the TATP vapours has the tendency to drop down. Therefore the highest TATP - concentrations were measured below the TATP sample. During the investigation for this study it turned out, that some materials scrub the TATP- vapour out of the air, e.g. Metals, fabric, leather. In the second phase of the project successful open path FTIR- measurements were taken in ambient air and will be continued with different system configurations of the OPAG 33 to lower the detection limits. Also successful measurements were taken in indoor ambient air with a Hyper spectral camera (passive FTIR with array sensor) to detect TATP in solid and gaseous phase. This technique allows detecting TATP and identifying the TATP source. The poster shows some selected results of the continued research.

  14. Multi-Level Indoor Path Planning Method

    NASA Astrophysics Data System (ADS)

    Xiong, Q.; Zhu, Q.; Zlatanova, S.; Du, Z.; Zhang, Y.; Zeng, L.

    2015-05-01

    Indoor navigation is increasingly widespread in complex indoor environments, and indoor path planning is the most important part of indoor navigation. Path planning generally refers to finding the most suitable path connecting two locations, while avoiding collision with obstacles. However, it is a fundamental problem, especially for 3D complex building model. A common way to solve the issue in some applications has been approached in a number of relevant literature, which primarily operates on 2D drawings or building layouts, possibly with few attached attributes for obstacles. Although several digital building models in the format of 3D CAD have been used for path planning, they usually contain only geometric information while losing abundant semantic information of building components (e.g. types and attributes of building components and their simple relationships). Therefore, it becomes important to develop a reliable method that can enhance application of path planning by combining both geometric and semantic information of building components. This paper introduces a method that support 3D indoor path planning with semantic information.

  15. Equivalence of trans paths in ion channels

    NASA Astrophysics Data System (ADS)

    Alvarez, Juan; Hajek, Bruce

    2006-04-01

    We explore stochastic models for the study of ion transport in biological cells. Analysis of these models explains and explores an interesting feature of ion transport observed by biophysicists. Namely, the average time it takes ions to cross certain ion channels is the same in either direction, even if there is an electric potential difference across the channels. It is shown for simple single ion models that the distribution of a path (i.e., the history of location versus time) of an ion crossing the channel in one direction has the same distribution as the time-reversed path of an ion crossing the channel in the reverse direction. Therefore, not only is the mean duration of these paths equal, but other measures, such as the variance of passage time or the mean time a path spends within a specified section of the channel, are also the same for both directions of traversal. The feature is also explored for channels with interacting ions. If a system of interacting ions is in reversible equilibrium (net flux is zero), then the equivalence of the left-to-right trans paths with the time-reversed right-to-left trans paths still holds. However, if the system is in equilibrium, but not reversible equilibrium, then such equivalence need not hold.

  16. Path integral Monte Carlo on a lattice. II. Bound states.

    PubMed

    O'Callaghan, Mark; Miller, Bruce N

    2016-07-01

    The equilibrium properties of a single quantum particle (qp) interacting with a classical gas for a wide range of temperatures that explore the system's behavior in the classical as well as in the quantum regime is investigated. Both the qp and the atoms are restricted to sites on a one-dimensional lattice. A path integral formalism developed within the context of the canonical ensemble is utilized, where the qp is represented by a closed, variable-step random walk on the lattice. Monte Carlo methods are employed to determine the system's properties. To test the usefulness of the path integral formalism, the Metropolis algorithm is employed to determine the equilibrium properties of the qp in the context of a square well potential, forcing the qp to occupy bound states. We consider a one-dimensional square well potential where all atoms on the lattice are occupied with one atom with an on-site potential except for a contiguous set of sites of various lengths centered at the middle of the lattice. Comparison of the potential energy, the energy fluctuations, and the correlation function are made between the results of the Monte Carlo simulations and the numerical calculations. PMID:27575090

  17. Lineal-path function for random heterogeneous materials

    SciTech Connect

    Lu, B. ); Torquato, S. )

    1992-01-15

    A fundamental morphological measure of two-phase heterogenous materials is what we refer to as the lineal-path function {ital L}({ital z}). This quantity gives the probability that a line segment of length {ital z} is wholly in one of the phases, say phase 1, when randomly thrown into the sample. For three-dimensional systems, we observe that {ital L}({ital z}) is also equivalent to the area fraction of phase 1 measured from the projected image onto a plane: a problem of long-standing interest in stereology. We develop a theoretical means of representing and computing the lineal-path function {ital L}({ital z}) for distributions of {ital D}-dimensional spheres with arbitrary degree of penetrability using statistical-mechanical concepts. In order to test our theoretical results, we determined {ital L}({ital z}) from Monte Carlo simulations for the case of three-dimensional systems of spheres and found very good agreement between theory and the Monte Carlo calculations.

  18. Scaling properties of evolutionary paths in a biophysical model of protein adaptation.

    PubMed

    Manhart, Michael; Morozov, Alexandre V

    2015-07-01

    The enormous size and complexity of genotypic sequence space frequently requires consideration of coarse-grained sequences in empirical models. We develop scaling relations to quantify the effect of this coarse-graining on properties of fitness landscapes and evolutionary paths. We first consider evolution on a simple Mount Fuji fitness landscape, focusing on how the length and predictability of evolutionary paths scale with the coarse-grained sequence length and alphabet. We obtain simple scaling relations for both the weak- and strong-selection limits, with a non-trivial crossover regime at intermediate selection strengths. We apply these results to evolution on a biophysical fitness landscape that describes how proteins evolve new binding interactions while maintaining their folding stability. We combine the scaling relations with numerical calculations for coarse-grained protein sequences to obtain quantitative properties of the model for realistic binding interfaces and a full amino acid alphabet. PMID:26020812

  19. Scaling properties of evolutionary paths in a biophysical model of protein adaptation

    NASA Astrophysics Data System (ADS)

    Manhart, Michael; Morozov, Alexandre V.

    2015-07-01

    The enormous size and complexity of genotypic sequence space frequently requires consideration of coarse-grained sequences in empirical models. We develop scaling relations to quantify the effect of this coarse-graining on properties of fitness landscapes and evolutionary paths. We first consider evolution on a simple Mount Fuji fitness landscape, focusing on how the length and predictability of evolutionary paths scale with the coarse-grained sequence length and alphabet. We obtain simple scaling relations for both the weak- and strong-selection limits, with a non-trivial crossover regime at intermediate selection strengths. We apply these results to evolution on a biophysical fitness landscape that describes how proteins evolve new binding interactions while maintaining their folding stability. We combine the scaling relations with numerical calculations for coarse-grained protein sequences to obtain quantitative properties of the model for realistic binding interfaces and a full amino acid alphabet.

  20. A comparison of organs at risk doses in GYN intracavitary brachytherapy for different tandem lengths and bladder volumes.

    PubMed

    Siavashpour, Zahra; Aghamiri, Mahmoud Reza; Jaberi, Ramin; ZareAkha, Naser; Dehghan Manshadi, Hamid Reza; Kirisits, Christian; Sedaghat, Mahbod

    2016-01-01

    The purpose of this study was to investigate the concurrent effects of tandem length and bladder volume on dose to pelvic organs at risk (OARs) in HDR intracavitary brachytherapy treatment of cervical cancer. Twenty patients with locally advanced cervical cancer were selected for brachytherapy using Rotterdam applicators. The patients were CT scanned twice with empty and full bladder. Two treatment plans were prepared on each of the image sets. Patients were categorized into two groups; those treated with a tandem length of 4 cm or smaller (T ≤ 4 cm) and those with tandem length larger than 4 cm (T > 4 cm). Only one tandem tip angle of 30° was studied. Dose-volume histograms (DVHs) of OARs were calculated and compared. Bladder dose was significantly affected by both bladder volume and tandem physical length for T ≤ 4 cm. This was reflected on the values obtained for D2cm³, D1cm³, and D0.1cm³ for both empty and full bladder cases. When T > 4 cm, no correlation could be established between variations in bladder dose and blad-der volume. Rectum dose was generally lower when the bladder was empty and T > 4 cm. Dose to sigmoid was increased when T > 4 cm; this increase was larger when the bladder was full. Our results suggest that, for tandems longer than 4 cm, keeping the bladder empty may reduce the dose to rectum and sigmoid. This is contrary to cases where a shorter than 4 cm tandem is used in which a full bladder (about 50-120 cm³) tends to result in a lower dose to rectum and sigmoid. Attention should be given to doses to sigmoid with long tandem lengths, as a larger tandem generally results in a larger dose to sigmoid. PMID:27167253

  1. LENGTH SCALE OF TURBULENCE ABOVE ROUGH SURFACES

    EPA Science Inventory

    Results of analyses of data for two urban sites and a rural site suggest that the mixing length can be represented by the integral length scale of the turbulence derived from vertical velocity spectra. The result is apparently universal and permits the shear production of turbule...

  2. The chain-length dependence test.

    PubMed

    Stone, Matthew T; Heemstra, Jennifer M; Moore, Jeffrey S

    2006-01-01

    Trends obtained from systematic studies based on chain-length variation have provided valuable insight and understanding into the behavior of m-phenylene ethynylene foldamers. The generalization of this experimental approach, the chain-length dependence test, is useful for studying solution conformation, packing in the solid state, specific intrachain interactions, and the contributions of end groups to a particular property. PMID:16411735

  3. Telomere length in early life predicts lifespan

    PubMed Central

    Heidinger, Britt J.; Blount, Jonathan D.; Boner, Winnie; Griffiths, Kate; Metcalfe, Neil B.; Monaghan, Pat

    2012-01-01

    The attrition of telomeres, the ends of eukaryote chromosomes, is thought to play an important role in cell deterioration with advancing age. The observed variation in telomere length among individuals of the same age is therefore thought to be related to variation in potential longevity. Studies of this relationship are hampered by the time scale over which individuals need to be followed, particularly in long-lived species where lifespan variation is greatest. So far, data are based either on simple comparisons of telomere length among different age classes or on individuals whose telomere length is measured at most twice and whose subsequent survival is monitored for only a short proportion of the typical lifespan. Both approaches are subject to bias. Key studies, in which telomere length is tracked from early in life, and actual lifespan recorded, have been lacking. We measured telomere length in zebra finches (n = 99) from the nestling stage and at various points thereafter, and recorded their natural lifespan (which varied from less than 1 to almost 9 y). We found telomere length at 25 d to be a very strong predictor of realized lifespan (P < 0.001); those individuals living longest had relatively long telomeres at all points at which they were measured. Reproduction increased adult telomere loss, but this effect appeared transient and did not influence survival. Our results provide the strongest evidence available of the relationship between telomere length and lifespan and emphasize the importance of understanding factors that determine early life telomere length. PMID:22232671

  4. Precise Measurement of Effective Focal Length

    NASA Technical Reports Server (NTRS)

    Wise, T. D.; Young, J. B.

    1983-01-01

    Computerized instrument measures effective focal lengths to 0.01 percent accuracy. Laser interferometers measure mirror angle and stage coordinate y in instrument for accurate measurment of focal properties of optical systems. Operates under computer control to measure effective focal length, focal surface shape, modulation transfer function, and astigmatism.

  5. An In Vitro Comparison of Root Canal Transportation by Reciproc File With and Without Glide Path

    PubMed Central

    Nazarimoghadam, Kiumars; Daryaeian, Mohammad; Ramazani, Nahid

    2014-01-01

    Objective: The aim of ideal canal preparation is to prevent iatrogenic aberrations such as transportation. The aim of this study was to evaluate the root canal transportation by Reciproc file with and without glide path. Materials and Methods: Thirty acrylic-resin blocks with a curvature of 60° and size#10 (2% taper) were assigned into two groups (n= 15). In group 1, the glide path was performed using stainless steel k-files size#10 and 15 at working length In group 2, canals were prepared with Reciproc file system at working length. By using digital imaging software (AutoCAD 2008), the pre-instrumentation and post-instrumentation digital images were superimposed over, taking the landmarks as reference points. Then the radius of the internal and external curve of the specimens was calculated at three α, β and γ points (1mm to apex as α, 3mm to apex as β, and 5mm to apex as γ). The data were statically analyzed using the independent T-test and Mann-Whitney U test by SPSS version 16. Results: Glide path was found significant for only external curve in the apical third of the canal; that is, 5mm to apex (P=0.005). But in the other third, canal modification was not significant (P> 0.008). Conclusion: Canal transportation in the apical third of the canal seems to be significantly reduced when glide path is performed using reciprocating files. PMID:25628682

  6. Signal optimization, noise reduction, and systematic error compensation methods in long-path DOAS measurements

    NASA Astrophysics Data System (ADS)

    Simeone, Emilio; Donati, Alessandro

    1998-12-01

    The increment of the exploitable optical path represents one of the most important efforts in the differential optical absorption spectroscopy (DOAS) instruments improvement. The methods that allow long path measurements in the UV region are presented and discussed in this paper. These methods have been experimented in the new Italian DOAS instrument - SPOT - developed and manufactured by Kayser Italia. The system was equipped with a tele-controlled optical shuttle on the light source unit, allowing background radiation measurement. Wavelength absolute calibration of spectra by means of a collimated UV beam from a mercury lamp integrated in the telescope has been exploited. Besides, possible thermal effects on the dispersion coefficients of the holographic grating have been automatically compensated by means of a general non-linear fit during the spectral analysis session. Measurements in bistatic configuration have been performed in urban areas at 1300 m and 2200 m in three spectral windows from 245 to 380 nm. Measurements with these features are expected in the other spectral windows on path lengths ranging from about 5 to 10 km in urban areas. The DOAS technique can be used in field for very fast measurements in the 245-275 nm spectral range, on path lengths up to about 2500 m.

  7. Numerical analysis of the crack growth path in the cement mantle of the reconstructed acetabulum.

    PubMed

    Benbarek, Smaïl; Bachir Bouiadjra, Bel Abbes; El Mokhtar, Bouziane Mohamed; Achour, Tarik; Serier, Boualem

    2013-01-01

    In this study, we use the finite element method to analyze the propagation's path of the crack in the orthopedic cement of the total hip replacement. In fact, a small python statement was incorporated with the Abaqus software to do in loop the following operations: extracting the crack propagation direction from the previous study using the maximal circumferential stresses criterion, drawing the new path, meshing and calculating again (stresses and fracture parameters). The loop is broken when the user's desired crack length is reached (number of propagations) or the value of the mode I stress intensity factor is negative. Results show that the crack propagation's path can be influenced by human body posture. The existing of a cavity in the vicinity of the crack can change its propagation path or can absolutely attract it enough to meet it. Crack can propagate in the outward direction (toward the acetabulum bone) and cannot propagate in the opposite direction, the mode I stress intensity factor increases with the crack length and that of mode II vanishes. PMID:25428108

  8. Route-segment odometry and its interactions with global path-integration.

    PubMed

    Collett, Thomas S; Collett, Matthew

    2015-06-01

    Insects such as desert ants and honeybees use visual memories to travel along familiar routes between their nest and a food-site. We trained Cataglyphis fortis foragers along a two-segment route to investigate whether they encode the lengths of route segments over which visual cues remain approximately constant. Our results support earlier studies suggesting that such route-segment odometry exists, and allows an individual to stop using a visual route memory at an appropriate point, even in the absence of any change in the visual surroundings. But we find that the behavioural effects of route-segment odometry are often complicated by interactions with guidance from the global path-integration system. If route-segment odometry and path-integration agree, they act together to produce a precise signal for search. If the endpoint of route-segment odometry arrives first, it does not trigger search but its effect can persist and cause guidance by path-integration to end early. Conversely, if ants start with their path-integration state at zero, they follow a route memory for no more than 3 m, irrespective of the route-segment length. A possible explanation for these results is that if one guidance system is made to overshoot its endpoint, it can cause the other to be cut short. PMID:25904159

  9. On the Distribution of Free Path Lengthsfor the Periodic Lorentz Gas

    NASA Astrophysics Data System (ADS)

    Bourgain, Jean; Golse, François; Wennberg, Bernt

    Consider the domain and let the free path length be defined as The distribution of values of is studied in the limit as for all . It is shown that the value is critical for this problem: in other words, the limiting behavior of depends only on whether γ is larger or smaller than .

  10. Infiltration Flow Path Distributions in Unsaturated Rocks

    NASA Astrophysics Data System (ADS)

    Tokunaga, T. K.; Olson, K. R.; Wan, J.

    2004-12-01

    Spatial distributions of infiltration flow paths through rock formations are complex networks that determine flow velocities, control rates of natural geochemical reactions in the subsurface, as well as rates of contaminant transport to underlying groundwater. Despite these important consequences, distributions of infiltration paths and locally fast seepage rates through rocks are not well understood. Laboratory-based studies on fractured rocks cannot easily be conducted on systems large enough to include sufficient fracture network complexity, so that inferences of field-scale flux distributions cannot be reliably made. Field-based studies to date have permitted quantification of only a small fraction of the flow distribution, typically while imposing extremely high fluxes, and therefore have not allowed comprehensive delineation of flow distributions expected under natural recharge. Based on hydraulic scaling considerations, we hypothesize that unsaturated flow path distributions in rock deposits will be similar to those occurring in fractured rock formations under low overall infiltration rates. Talus rock deposits and mine waste rock piles control flow and transport into their respective underlying groundwaters. All of these reasons motivated infiltration experiments in rock packs. Experiments have been conducted on 4 different rock types and system scales ranging from 1 to 46 rock layers. Our experiments showed that infiltration through rocks conforms to no previously reported behavior in soils, and that flow paths do not progressively converge into fewer and fewer flow paths. Instead, a fundamentally different hydraulic structure develops, having an exponential (geometric) flux distribution, with the characteristic scale determined by the characteristic rock size. Although the phenomena are very different, the evolution of flow path distributions and local seepage rate distributions is predictable based on a statistical mechanical model for energy

  11. High reflected cubic cavity as long path absorption cell for infrared gas sensing

    NASA Astrophysics Data System (ADS)

    Yu, Jia; Gao, Qiang; Zhang, Zhiguo

    2014-10-01

    One direct and efficient method to improve the sensitivity of infrared gas sensors is to increase the optical path length of gas cells according to Beer-Lambert Law. In this paper, cubic shaped cavities with high reflected inner coating as novel long path absorption cells for infrared gas sensing were developed. The effective optical path length (EOPL) for a single cubic cavity and tandem cubic cavities were investigated based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) measuring oxygen P11 line at 763 nm. The law of EOPL of a diffuse cubic cavity in relation with the reflectivity of the coating, the port fraction and side length of the cavity was obtained. Experimental results manifested an increase of EOPL for tandem diffuse cubic cavities as the decrease of port fraction of the connecting aperture f', and the EOPL equaled to the sum of that of two single cubic cavities at f'<0.01. The EOPL spectra at infrared wavelength range for different inner coatings including high diffuse coatings and high reflected metallic thin film coatings were deduced.

  12. Influence of sample length to magneto-impedance effect in electrodeposited [Cu/Ni80Fe20]3 multilayer wires at low frequency

    NASA Astrophysics Data System (ADS)

    Ismail, Nuryani, Purnama, Budi

    2016-02-01

    A Magneto-impedance (MI) effect has been investigated in electrodeposited wires composed of non-magnetic conductive core coated by a soft ferromagnetic layer. In this work, a 460 µm Cu wire is coated with three soft ferromagnetic layers of Ni80Fe20 sandwiched by a thin Cu layer. The MI effect has been measured as a function of the sample length in low frequency (20 kHz - 100 kHz). The MI ratio raises by increasing the wire length; it increases approximately 400% by the increases the length of wire from 1 cm to 4 cm. This work also shows a significant increase in the field sensitivity by increasing the wire length significantly.

  13. DNA computing the Hamiltonian path problem.

    PubMed

    Lee, C M; Kim, S W; Kim, S M; Sohn, U

    1999-10-31

    The directed Hamiltonian path (DHP) problem is one of the hard computational problems for which there is no practical algorithm on a conventional computer available. Many problems, including the traveling sales person problem and the longest path problem, can be translated into the DHP problem, which implies that an algorithm for DHP can also solve all the translated problems. To study the robustness of the laboratory protocol of the pioneering DNA computing for the DHP problem performed by Leonard Adleman (1994), we investigated how the graph size, multiplicity of the Hamiltonian paths, and the size of oligonucleotides that encode the vertices would affect the laboratory procedures. We applied Adleman's protocol with 18-mer oligonucleotide per node to a graph with 8 vertices and 14 edges containing two Hamiltonian paths (Adleman used 20-mer oligonucleotides for a graph with 7 nodes, 14 edges and one Hamiltonian path). We found that depending on the graph characteristics such as the number of short cycles, the oligonucleotide size, and the hybridization conditions that used to encode the graph, the protocol should be executed with different parameters from Adleman's. PMID:10597033

  14. Multiple Manifold Clustering Using Curvature Constrained Path

    PubMed Central

    Babaeian, Amir; Bayestehtashk, Alireza; Bandarabadi, Mojtaba

    2015-01-01

    The problem of multiple surface clustering is a challenging task, particularly when the surfaces intersect. Available methods such as Isomap fail to capture the true shape of the surface near by the intersection and result in incorrect clustering. The Isomap algorithm uses shortest path between points. The main draw back of the shortest path algorithm is due to the lack of curvature constrained where causes to have a path between points on different surfaces. In this paper we tackle this problem by imposing a curvature constraint to the shortest path algorithm used in Isomap. The algorithm chooses several landmark nodes at random and then checks whether there is a curvature constrained path between each landmark node and every other node in the neighborhood graph. We build a binary feature vector for each point where each entry represents the connectivity of that point to a particular landmark. Then the binary feature vectors could be used as a input of conventional clustering algorithm such as hierarchical clustering. We apply our method to simulated and some real datasets and show, it performs comparably to the best methods such as K-manifold and spectral multi-manifold clustering. PMID:26375819

  15. Unbiased sampling of lattice Hamilton path ensembles

    NASA Astrophysics Data System (ADS)

    Mansfield, Marc L.

    2006-10-01

    Hamilton paths, or Hamiltonian paths, are walks on a lattice which visit each site exactly once. They have been proposed as models of globular proteins and of compact polymers. A previously published algorithm [Mansfield, Macromolecules 27, 5924 (1994)] for sampling Hamilton paths on simple square and simple cubic lattices is tested for bias and for efficiency. Because the algorithm is a Metropolis Monte Carlo technique obviously satisfying detailed balance, we need only demonstrate ergodicity to ensure unbiased sampling. Two different tests for ergodicity (exact enumeration on small lattices, nonexhaustive enumeration on larger lattices) demonstrate ergodicity unequivocally for small lattices and provide strong support for ergodicity on larger lattices. Two other sampling algorithms [Ramakrishnan et al., J. Chem. Phys. 103, 7592 (1995); Lua et al., Polymer 45, 717 (2004)] are both known to produce biases on both 2×2×2 and 3×3×3 lattices, but it is shown here that the current algorithm gives unbiased sampling on these same lattices. Successive Hamilton paths are strongly correlated, so that many iterations are required between statistically independent samples. Rules for estimating the number of iterations needed to dissipate these correlations are given. However, the iteration time is so fast that the efficiency is still very good except on extremely large lattices. For example, even on lattices of total size 10×10×10 we are able to generate tens of thousands of uncorrelated Hamilton paths per hour of CPU time.

  16. Path analysis in genetic epidemiology: a critique.

    PubMed Central

    Karlin, S; Cameron, E C; Chakraborty, R

    1983-01-01

    Path analysis, a form of general linear structural equation models, is used in studies of human genetics data to discern genetic, environmental, and cultural factors contributing to familial resemblance. It postulates a set of linear and additive parametric relationships between phenotypes and genetic and cultural variables and then essentially uses the assumption of multivariate normality to estimate and perform tests of hypothesis on parameters. Such an approach has been advocated for the analysis of genetic epidemiological data by D. C. Rao, N. Morton, C. R. Cloninger, L. J. Eaves, and W. E. Nance, among others. This paper reviews and evaluates the formulations, assumptions, methodological procedures, interpretations, and applications of path analysis. To give perspective, we begin with a discussion of path analysis as it occurs in the form of general linear causal models in several disciplines of the social sciences. Several specific path analysis models applied to lipoprotein concentrations, IQ, and twin data are then reviewed to keep the presentation self-contained. The bulk of the critical discussion that follows is directed toward the following four facets of path analysis: (1) coherence of model specification and applicability to data; (2) plausibility of modeling assumptions; (3) interpretability and utility of the model; and (4) validity of statistical and computational procedures. In the concluding section, a brief discussion of the problem of appropriate model selection is presented, followed by a number of suggestions of essentially model-free alternative methods of use in the treatment of complex structured data such as occurs in genetic epidemiology. PMID:6349335

  17. Cornered Quadtrees/Octrees and Multiple Gateways Between Each Two Nodes; A Structure for Path Planning in 2D and 3D Environments

    NASA Astrophysics Data System (ADS)

    Namdari, Mohammad Hasan; Hejazi, Seyed Reza; Palhang, Maziar

    2016-06-01

    In this paper, modified versions of quadtree/octree, as structures used in path planning, are proposed which we call them cornered quadtree/octree. Also a new method of creating paths in quadtrees/octrees, once quadrants/octants to be passed are determined, is proposed both to improve traveled distance and path smoothness. In proposed modified versions of quadtree/octree, four corner cells of quadrants and eight corner voxels of octants are also considered as nodes of the graph to be searched for finding the shortest path. This causes better quadrant/octant selection during graph search relative to simple quadtrees and octrees. On the other hand, after that all quadrants/octants are determined, multiple gateways are nominated between each two selected nodes and path is constructed by passing through the gateway which its selection leads in shorter and smoother path. Proposed structures in this paper alongside the utilized path construction approach, creates better paths in terms of path length than those created if simple trees are used, somehow equal to the quality of the achieved paths by framed trees, meanwhile interestingly, consumed time and memory in our proposed method are closer to the used time and memory if simple trees are used.

  18. a Modified Genetic Algorithm for Finding Fuzzy Shortest Paths in Uncertain Networks

    NASA Astrophysics Data System (ADS)

    Heidari, A. A.; Delavar, M. R.

    2016-06-01

    In realistic network analysis, there are several uncertainties in the measurements and computation of the arcs and vertices. These uncertainties should also be considered in realizing the shortest path problem (SPP) due to the inherent fuzziness in the body of expert's knowledge. In this paper, we investigated the SPP under uncertainty to evaluate our modified genetic strategy. We improved the performance of genetic algorithm (GA) to investigate a class of shortest path problems on networks with vague arc weights. The solutions of the uncertain SPP with considering fuzzy path lengths are examined and compared in detail. As a robust metaheuristic, GA algorithm is modified and evaluated to tackle the fuzzy SPP (FSPP) with uncertain arcs. For this purpose, first, a dynamic operation is implemented to enrich the exploration/exploitation patterns of the conventional procedure and mitigate the premature convergence of GA technique. Then, the modified GA (MGA) strategy is used to resolve the FSPP. The attained results of the proposed strategy are compared to those of GA with regard to the cost, quality of paths and CPU times. Numerical instances are provided to demonstrate the success of the proposed MGA-FSPP strategy in comparison with GA. The simulations affirm that not only the proposed technique can outperform GA, but also the qualities of the paths are effectively improved. The results clarify that the competence of the proposed GA is preferred in view of quality quantities. The results also demonstrate that the proposed method can efficiently be utilized to handle FSPP in uncertain networks.

  19. Measuring Phonon Mean Free Path Distributions by Probing Quasiballistic Phonon Transport in Grating Nanostructures

    NASA Astrophysics Data System (ADS)

    Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang

    2015-11-01

    Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.

  20. Measuring Phonon Mean Free Path Distributions by Probing Quasiballistic Phonon Transport in Grating Nanostructures.

    PubMed

    Zeng, Lingping; Collins, Kimberlee C; Hu, Yongjie; Luckyanova, Maria N; Maznev, Alexei A; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A; Chen, Gang

    2015-01-01

    Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials. PMID:26612032

  1. Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures

    DOE PAGESBeta

    Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; et al

    2015-11-27

    Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domainmore » thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.« less

  2. Numerical evidence of mixing in rooms using the free path temporal distribution.

    PubMed

    Billon, Alexis; Embrechts, Jean-Jacques

    2011-09-01

    The ergodic propriety of a room has strong effects on its reverberation. If the room is ergodic, the reverberation can be broken up in two steps: a deterministic process followed by a stochastic one. The late reverberation can be then modeled by a reverberation algorithm instead of more computationally consuming methods. In this study, the free path temporal distribution obtained by ray-tracing is used as an indicator of the room's mixing: the energetic average of the path lengths is computed at each time step. Ergodic rooms are thus characterized by rapidly convergent distributions. The free path value becomes independent of time. On the other hand, path selection mechanism and orbits are observed in non-ergodic rooms. The transition time from the deterministic process to the stochastic one is also studied through the evaluation of the room's time constant. It is shown that its value depends only on the mean free path and the boundaries scattering value. An empirical expression is obtained which agrees well with simulations carried out in a concert hall. This transition time from a deterministic model to a stochastic one can be used to speed up the acoustical predictions and auralizations in ergodic rooms. PMID:21895079

  3. Measuring Phonon Mean Free Path Distributions by Probing Quasiballistic Phonon Transport in Grating Nanostructures

    PubMed Central

    Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang

    2015-01-01

    Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials. PMID:26612032

  4. Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures

    SciTech Connect

    Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang

    2015-11-27

    Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.

  5. Lineal-path function for random heterogeneous materials. II. Effect of polydispersivity

    SciTech Connect

    Lu, B. ); Torquato, S. Department of Chemical Engineering, North Carolina State University, Raleigh, North Carolina 27695-7910 )

    1992-05-15

    The lineal-path function {ital L}({ital z}) for two-phase heterogeneous media gives the probability of finding a line segment of length {ital z} wholly in one of the phases, say phase 1, when randomly thrown into the sample. The function {ital L}({ital z}) is equivalent to the area fraction of phase 1 measured from the projected image of a slab of the material of thickness {ital z} onto a plane. The lineal-path function is of interest in stereology and is an important morphological descriptor in determining the transport properties of heterogeneous media. We develop a means to represent and compute {ital L}({ital z}) for distributions of {ital D}-dimensional spheres with a polydispersivity in size, thereby extending an earlier analysis by us for monodispersed-sphere systems. Exact analytical expressions for {ital L}({ital z}) in the case of fully penetrable polydispersed spheres for arbitrary dimensionality are obtained. In the instance of totally impenetrable polydispersed spheres, we develop accurate approximations for the lineal-path function that apply over a wide range of volume fractions. The lineal-path function was found to be quite sensitive to polydispersivity for {ital D}{ge}2. We demonstrate how the measurement of the lineal-path function can yield the particle-size distribution of the particulate system, thus establishing a method to obtain the latter quantity.

  6. A structure-dynamic approach to cortical organization: number of paths and accessibility.

    PubMed

    Rodrigues, Francisco A; da Fontoura Costa, Luciano

    2009-09-30

    A structure-dynamic approach to cortical systems is reported which is based on the number of paths and the accessibility of each node. The latter measurement is obtained by performing self-avoiding random walks in the respective networks, so as to simulate dynamics, and then calculating the entropies of the transition probabilities for walks starting from each node. Cortical networks of three species, namely cat, macaque and humans, are studied considering structural and dynamical aspects. It is verified that the human cortical network presents the highest accessibility and number of paths (in terms of z-scores). The correlation between the number of paths and accessibility is also investigated as a mean to quantify the level of independence between paths connecting pairs of nodes in cortical networks. By comparing the cortical networks of cat, macaque and humans, it is verified that the human cortical network tends to present the largest number of independent paths of length larger than four. These results suggest that the human cortical network is potentially the most resilient to brain injures. PMID:19591866

  7. Geodesic paths for quantum many-body systems

    NASA Astrophysics Data System (ADS)

    Tomka, Michael; Souza, Tiago; Rosenberg, Steve; Kolodrubetz, Michael; Polkovnikov, Anatoli

    The quantum length is a distance between parameter-dependent eigenstates of an adiabatically driven quantum system. Its associated metric has many intriguing properties, for example it is related to the fidelity susceptibility, an important quantity in the study of quantum phase transitions. The metric also appears as the leading adiabatic correction of the energy fluctuations of a quantum system and gives rise to a time-energy uncertainty principle and a geometric interpretation of time. The adiabatic response of an open quantum system can as well be expressed through this metric. Further, the quantum length introduces the notion of Riemannian geometry to the manifold of eigenstates and hence allows one to define geodesics in parameter space. We study the geodesics in parameter space of certain quantum many-body systems, emerging from this quantum distance. These geodesic paths provide a well-defined optimal control protocol on how to drive the system's parameters in time, to get from one eigenstate to another. Generating optimal evolution plays a central role in quantum information technology, adiabatic quantum computing and quantum metrology. Swiss National Science Foundation (SNSF).

  8. Spectral attenuation length of scintillating fibers

    NASA Astrophysics Data System (ADS)

    Drexlin, Guido; Eberhard, Veit; Hunkel, Dirk; Zeitnitz, B.

    1995-02-01

    A double spectrometer allows the precise measurement of the spectral attenuation length of scintillating fibers. Exciting the fibers with a N 2-laser at different points and measuring the wavelength dependent light intensity on both ends of the fiber simultaneously, enables a measurement of the attenuation length which is practically independent of systematic uncertainties. The experimental setup can additionally be used for the measurement of the relative light output. Six types of scintillating fibers from four manufactures (Bicron, Kuraray, Pol.Hi.Tech, and Plastifo) were tested. For different fibers the wavelength dependent attenuation lengths were measured from 0.3 m up to 20 m with an accuracy as good as 1%.

  9. Regulation of Flagellar Length in Chlamydomonas

    PubMed Central

    Wilson, Nedra F.; Iyer, Janaki Kannan; Buchheim, Julie A.; Meek, William

    2008-01-01

    Chlamydomonas reinhardtii has two apically localized flagella that are maintained at an equal and appropriate length. Assembly and maintenance of flagella requires a microtubule-based transport system known as intraflagellar transport (IFT). During IFT, proteins destined for incorporation into or removal from a flagellum are carried along doublet microtubules via IFT particles. Regulation of IFT activity therefore is pivotal in determining the length of a flagellum. Reviewed is our current understanding of the role of IFT and signal transduction pathways in the regulation of flagellar length. PMID:18692148

  10. A Note on Solar Cycle Length Estimates

    NASA Astrophysics Data System (ADS)

    Vaquero, J. M.; García, J. A.; Gallego, M. C.

    2006-05-01

    Recently, new estimates of the solar cycle length (SCL) have been calculated using the Zurich Sunspot Number (R Z) and the Regression-Fourier-Calculus (RFC)-method, a mathematically rigorous method involving multiple regression, Fourier approximation, and analytical expressions for the first derivative. In this short contribution, we show estimates of the solar cycle length using the RFC-method and the Group Sunspot Number (R G) instead the R Z. Several authors have showed the advantages of R G for the analysis of sunspot activity before 1850. The use of R G solves some doubtful solar cycle length estimates obtained around 1800 using R Z.

  11. Three-Dimensional Path Planning and Guidance of Leg Vascular Based on Improved Ant Colony Algorithm in Augmented Reality.

    PubMed

    Gao, Ming-ke; Chen, Yi-min; Liu, Quan; Huang, Chen; Li, Ze-yu; Zhang, Dian-hua

    2015-11-01

    Preoperative path planning plays a critical role in vascular access surgery. Vascular access surgery has superior difficulties and requires long training periods as well as precise operation. Yet doctors are on different leves, thus bulky size of blood vessels is usually chosen to undergo surgery and other possible optimal path is not considered. Moreover, patients and surgeons will suffer from X-ray radiation during the surgical procedure. The study proposed an improved ant colony algorithm to plan a vascular optimal three-dimensional path with overall consideration of factors such as catheter diameter, vascular length, diameter as well as the curvature and torsion. To protect the doctor and patient from exposing to X-ray long-term, the paper adopted augmented reality technology to register the reconstructed vascular model and physical model meanwhile, locate catheter by the electromagnetic tracking system and used Head Mounted Display to show the planning path in real time and monitor catheter push procedure. The experiment manifests reasonableness of preoperative path planning and proves the reliability of the algorithm. The augmented reality experiment real time and accurately displays the vascular phantom model, planning path and the catheter trajectory and proves the feasibility of this method. The paper presented a useful and feasible surgical scheme which was based on the improved ant colony algorithm to plan vascular three-dimensional path in augmented reality. The study possessed practical guiding significance in preoperative path planning, intraoperative catheter guiding and surgical training, which provided a theoretical method of path planning for vascular access surgery. It was a safe and reliable path planning approach and possessed practical reference value. PMID:26319273

  12. Quantum state of wormholes and path integral

    SciTech Connect

    Garay, L.J. )

    1991-08-15

    The quantum state of a wormhole can be represented by a path integral over all asymptotically Euclidean four-geometries and all matter fields which have prescribed values, the arguments of the wave function, on a three-surface {ital S} which divides the spacetime manifold into two disconnected parts. The ground-state wave function is picked out by requiring that there be no matter excitations in the asymptotic region. Once the path integrals over the lapse and shift functions are evaluated, the requirement that the spacetime be asymptotically Euclidean can be accomplished by fixing the asymptotic gravitational momentum in the remaining path integral. It is claimed that no wave function exists which corresponds to asymptotic field configurations such that the effective gravitational constant is negative in the asymptotic region. The wormhole wave functions are worked out in minisuperspace models with massless minimal and conformal scalar fields.

  13. A taxonomy of integral reaction path analysis

    SciTech Connect

    Grcar, Joseph F.; Day, Marcus S.; Bell, John B.

    2004-12-23

    W. C. Gardiner observed that achieving understanding through combustion modeling is limited by the ability to recognize the implications of what has been computed and to draw conclusions about the elementary steps underlying the reaction mechanism. This difficulty can be overcome in part by making better use of reaction path analysis in the context of multidimensional flame simulations. Following a survey of current practice, an integral reaction flux is formulated in terms of conserved scalars that can be calculated in a fully automated way. Conditional analyses are then introduced, and a taxonomy for bidirectional path analysis is explored. Many examples illustrate the resulting path analysis and uncover some new results about nonpremixed methane-air laminar jets.

  14. Fermionic path integrals and local anomalies

    NASA Astrophysics Data System (ADS)

    Roepstorff, G.

    2003-05-01

    No doubt, the subject of path integrals proved to be an immensely fruitful human, i.e. Feynman's idea. No wonder it is more timely than ever. Some even claim that it is the most daring, innovative and revolutionary idea since the days of Heisenberg and Bohr. It is thus likely to generate enthusiasm, if not addiction among physicists who seek simplicity together with perfection. Professor Devreese's long-lasting interest in, if not passion on the subject stems from his firm conviction that, beyond being the tool of choice, path integration provides the key to all quantum phenomena, be it in solid state, atomic, molecular or particle physics as evidenced by the impressive list of publications at the address http://lib.ua.ac.be/AB/a867.html. In this note, I review a pitfall of fermionic path integrals and a way to get around it in situations relevant to the Standard Model of particle physics.

  15. Paths to Licensure: Things Physicists Should Know

    NASA Astrophysics Data System (ADS)

    Stewart, Gay; Stewart, John

    2016-03-01

    The path to licensure can be quite complicated, and can thwart a physics department's efforts to produce more and better prepared high school physics teachers. Each state has different pathways to licensure. Acronyms like CAEP and SPA are not within the normal physicist's vocabulary. Some understanding of this topic can allow physics faculty advisers to help our students so that fewer are derailed on their path to the classroom, or take a path that will leave them less well prepared if they do find themselves there. Examples of different approaches that work within state licensure systems from two different states will be presented. Physics teacher preparation efforts in both Arkansas and West Virginia have been supported in part by the Physics Teacher Education Coalition (PhysTEC).

  16. Self-calibrating common-path interferometry.

    PubMed

    Porras-Aguilar, Rosario; Falaggis, Konstantinos; Ramirez-San-Juan, Julio C; Ramos-Garcia, Ruben

    2015-02-01

    A quantitative phase measuring technique is presented that estimates the object phase from a series of phase shifted interferograms that are obtained in a common-path configuration with unknown phase shifts. The derived random phase shifting algorithm for common-path interferometers is based on the Generalized Phase Contrast theory [pl. Opt.40(2), 268 (2001)10.1063/1.1404846], which accounts for the particular image formation and includes effects that are not present in two-beam interferometry. It is shown experimentally that this technique can be used within common-path configurations employing nonlinear liquid crystal materials as self-induced phase filters for quantitative phase imaging without the need of phase shift calibrations. The advantages of such liquid crystal elements compared to spatial light modulator based solutions are given by the cost-effectiveness, self-alignment, and the generation of diminutive dimensions of the phase filter size, giving unique performance advantages. PMID:25836191

  17. Experimental observation of a fundamental length scale of waves in random media.

    PubMed

    Barkhofen, S; Metzger, J J; Fleischmann, R; Kuhl, U; Stöckmann, H-J

    2013-11-01

    Waves propagating through a weakly scattering random medium show a pronounced branching of the flow accompanied by the formation of freak waves, i.e., extremely intense waves. Theory predicts that this strong fluctuation regime is accompanied by its own fundamental length scale of transport in random media, parametrically different from the mean free path or the localization length. We show numerically how the scintillation index can be used to assess the scaling behavior of the branching length. We report the experimental observation of this scaling using microwave transport experiments in quasi-two-dimensional resonators with randomly distributed weak scatterers. Remarkably, the scaling range extends much further than expected from random caustics statistics. PMID:24237521

  18. Gate length dependence of the shallow trench isolation leakage current in an irradiated deep submicron NMOSFET

    NASA Astrophysics Data System (ADS)

    Zhangli, Liu; Zhiyuan, Hu; Zhengxuan, Zhang; Hua, Shao; Ming, Chen; Dawei, Bi; Bingxu, Ning; Shichang, Zou

    2011-06-01

    The effects of gamma irradiation on the shallow trench isolation (STI) leakage currents in a 0.18 μm technology are investigated. NMOSFETs with different gate lengths are irradiated at several dose levels. The threshold voltage shift is negligible in all of the devices due to the very thin oxide thickness. However, an increase in the off-state leakage current is observed for all of the devices. We believe that the leakage is induced by the drain-to-source leakage path along the STI sidewall, which is formed by the positive trapped charge in the STI oxide. Also, we found that the leakage is dependent on the device's gate length. The three-transistor model (one main transistor with two parasitic transistors) can provide us with a brief understanding of the dependence on gate length.

  19. Length-dependent thermal conductivity in suspended single-layer graphene

    NASA Astrophysics Data System (ADS)

    Xu, Xiangfan; Pereira, Luiz F. C.; Wang, Yu; Wu, Jing; Zhang, Kaiwen; Zhao, Xiangming; Bae, Sukang; Tinh Bui, Cong; Xie, Rongguo; Thong, John T. L.; Hong, Byung Hee; Loh, Kian Ping; Donadio, Davide; Li, Baowen; Özyilmaz, Barbaros

    2014-04-01

    Graphene exhibits extraordinary electronic and mechanical properties, and extremely high thermal conductivity. Being a very stable atomically thick membrane that can be suspended between two leads, graphene provides a perfect test platform for studying thermal conductivity in two-dimensional systems, which is of primary importance for phonon transport in low-dimensional materials. Here we report experimental measurements and non-equilibrium molecular dynamics simulations of thermal conduction in suspended single-layer graphene as a function of both temperature and sample length. Interestingly and in contrast to bulk materials, at 300 K, thermal conductivity keeps increasing and remains logarithmically divergent with sample length even for sample lengths much larger than the average phonon mean free path. This result is a consequence of the two-dimensional nature of phonons in graphene, and provides fundamental understanding of thermal transport in two-dimensional materials.

  20. 14 CFR 171.267 - Glide path automatic monitor system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Glide path automatic monitor system. 171... Landing System (ISMLS) § 171.267 Glide path automatic monitor system. (a) The ISMLS glide path equipment... control points when any of the following occurs: (1) A shift of the mean ISMLS glide path angle...

  1. 14 CFR 23.61 - Takeoff flight path.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Takeoff flight path. 23.61 Section 23.61... flight path. For each commuter category airplane, the takeoff flight path must be determined as follows: (a) The takeoff flight path begins 35 feet above the takeoff surface at the end of the...

  2. 14 CFR 23.61 - Takeoff flight path.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Takeoff flight path. 23.61 Section 23.61... flight path. For each commuter category airplane, the takeoff flight path must be determined as follows: (a) The takeoff flight path begins 35 feet above the takeoff surface at the end of the...

  3. 14 CFR 171.267 - Glide path automatic monitor system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Glide path automatic monitor system. 171... Landing System (ISMLS) § 171.267 Glide path automatic monitor system. (a) The ISMLS glide path equipment... control points when any of the following occurs: (1) A shift of the mean ISMLS glide path angle...

  4. 14 CFR 171.267 - Glide path automatic monitor system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Glide path automatic monitor system. 171... Landing System (ISMLS) § 171.267 Glide path automatic monitor system. (a) The ISMLS glide path equipment... control points when any of the following occurs: (1) A shift of the mean ISMLS glide path angle...

  5. 14 CFR 171.267 - Glide path automatic monitor system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Glide path automatic monitor system. 171... Landing System (ISMLS) § 171.267 Glide path automatic monitor system. (a) The ISMLS glide path equipment... control points when any of the following occurs: (1) A shift of the mean ISMLS glide path angle...

  6. 14 CFR 23.61 - Takeoff flight path.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Takeoff flight path. 23.61 Section 23.61... flight path. Link to an amendment published at 76 FR 75753, December 2, 2011. For each commuter category airplane, the takeoff flight path must be determined as follows: (a) The takeoff flight path begins 35...

  7. 14 CFR 171.267 - Glide path automatic monitor system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Glide path automatic monitor system. 171... Landing System (ISMLS) § 171.267 Glide path automatic monitor system. (a) The ISMLS glide path equipment... control points when any of the following occurs: (1) A shift of the mean ISMLS glide path angle...

  8. An Adaptive Path Planning Algorithm for Cooperating Unmanned Air Vehicles

    SciTech Connect

    Cunningham, C.T.; Roberts, R.S.

    2000-09-12

    An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.

  9. Adaptive path planning algorithm for cooperating unmanned air vehicles

    SciTech Connect

    Cunningham, C T; Roberts, R S

    2001-02-08

    An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.

  10. Path Analysis: A Link between Family Theory and Reseach.

    ERIC Educational Resources Information Center

    Rank, Mark R.; Sabatelli, Ronald M.

    This paper discusses path analysis and the applicability of this methodology to the field of family studies. The statistical assumptions made in path analysis are presented along with a description of the two types of models within path analysis, i.e., recursive and non-recursive. Methods of calculating in the path model and the advantages of…

  11. Which coordinate system for modelling path integration?

    PubMed

    Vickerstaff, Robert J; Cheung, Allen

    2010-03-21

    Path integration is a navigation strategy widely observed in nature where an animal maintains a running estimate, called the home vector, of its location during an excursion. Evidence suggests it is both ancient and ubiquitous in nature, and has been studied for over a century. In that time, canonical and neural network models have flourished, based on a wide range of assumptions, justifications and supporting data. Despite the importance of the phenomenon, consensus and unifying principles appear lacking. A fundamental issue is the neural representation of space needed for biological path integration. This paper presents a scheme to classify path integration systems on the basis of the way the home vector records and updates the spatial relationship between the animal and its home location. Four extended classes of coordinate systems are used to unify and review both canonical and neural network models of path integration, from the arthropod and mammalian literature. This scheme demonstrates analytical equivalence between models which may otherwise appear unrelated, and distinguishes between models which may superficially appear similar. A thorough analysis is carried out of the equational forms of important facets of path integration including updating, steering, searching and systematic errors, using each of the four coordinate systems. The type of available directional cue, namely allothetic or idiothetic, is also considered. It is shown that on balance, the class of home vectors which includes the geocentric Cartesian coordinate system, appears to be the most robust for biological systems. A key conclusion is that deducing computational structure from behavioural data alone will be difficult or impossible, at least in the absence of an analysis of random errors. Consequently it is likely that further theoretical insights into path integration will require an in-depth study of the effect of noise on the four classes of home vectors. PMID:19962387

  12. Improved source path localisation in ring applicators and the clinical impact for gynecological brachytherapy

    PubMed Central

    Humer, Irene; Kirisits, Christian; Berger, Daniel; Trnková, Petra; Pötter, Richard

    2015-01-01

    Purpose The path of subsequent dwell positions of an afterloader source being moved through a ring applicator for cervix cancer brachytherapy deviates from an ideal circle and the position of marker wires. This can lead to deviations of several millimetres between real and assumed dwell positions for treatment planning with simplified source path models. The aim of this study was to test video- and autoradiography-based methods for source path determination, and to study the influence of dwell position accuracy on dose-volume histogram (DVH)-parameters. Material and methods Videos of the exact motion of the source wire through three different (r = 26, 30, 34 mm) computed tomography/magnetic resonance (CT/MR) compatible plastic ring applicators were recorded. Observed dwell positions covering the whole length of each applicators channel were used to adjust the circular source path model. The agreement of the true source positions derived from video analysis with those of the corrected circular source path was verified using autoradiography. The impact of an accurate source path definition on dose planning was analysed by simulating clinically relevant uncertainties in 10 clinical treatment plans. Results Depending on the ring size, source path diameters had to be increased by 0.5-1.0 mm in order to achieve acceptable maximum differences between observed and corrected dwell positions (1.3-2.0 mm). Autoradiography analysis showed a positional accuracy within ± 3 mm (extended standard deviation k = 2). For shifts of ± 2.5 mm for even all dwell positions, the systematic and random variation of the D2cm3 for bladder, rectum, and sigmoid was within 3%, while the impact on DVH uncertainties was much smaller for clinical target volume (CTV)HR and gross tumour volume (GTV). Conclusions It is strongly advised to verify the real source path for ring applicators during acceptance testing in order to assure accurate source path definition and dose planning. Autoradiography can

  13. Bonded Paths and van der Waals Interactions in Orpiment, As2S3

    SciTech Connect

    Gibbs, Gerald V.; Wallace, Adam F.; Zallen, Richard; Downs, R. T.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.

    2010-06-17

    Bond critical properties and bond paths have been calculated for the thioarsenide molecular crystal orpiment, As2S3. In addition to the intramolecular As-S bond paths and van der Waals As-S and S-S bond paths within the layers, intermolecular S-S, As-S and As-As van der Waals paths exist between the layers. The S-S bond paths between the layers are identified with the main interlayer restoring forces responsible for the vibrational internal-mode splitting and the low frequency rigid layer modes previously documented in infrared and Raman studies of orpiment. These S-S bond paths are comparable with those calculated for orthorhombic native sulfur and the As4Sn (n = 3,4,5) molecules for several arsenide molecular crystals. The As-S bond paths show that the two nonequivalent arsenic atoms are each coordinated by a highly distorted octahedral array of sulfur atoms. The octahedra consist of three As-S intramolecular bonded interactions and three longer van der Waals interactions (two intramolecular and one intermolecular). One of the arsenic atoms is also coordinated by an arsenic atom in an interlayer As-As bonded interaction. Laplacian isosurface envelopes calculated for the arsenic and sulfur atoms are comparable with those calculated for native arsenic and orthorhombic sulfur. The intermolecular As-S bond paths connect Lewis acid domains on arsenic and an Lewis base domains on sulfur. Van der Waals interactions are traditionally defined as attractive interactions other than those ascribed to bond formation. However, theoretical evidence and arguments, as well as the connection between the bond paths and the vibrational spectra, indicate that the van der Waals interactions in orpiment are directed bonded interactions in the Slater sense. The experimental bond lengths for the As-S and S-S bonded interactions decrease nonlinearly with the increasing value of the electron density at the bond critical point, concomitant with a decrease in the bonded radii of arsenic and

  14. Characteristic length of the knotting probability revisited

    NASA Astrophysics Data System (ADS)

    Uehara, Erica; Deguchi, Tetsuo

    2015-09-01

    We present a self-avoiding polygon (SAP) model for circular DNA in which the radius of impermeable cylindrical segments corresponds to the screening length of double-stranded DNA surrounded by counter ions. For the model we evaluate the probability for a generated SAP with N segments having a given knot K through simulation. We call it the knotting probability of a knot K with N segments for the SAP model. We show that when N is large the most significant factor in the knotting probability is given by the exponentially decaying part exp(-N/NK), where the estimates of parameter NK are consistent with the same value for all the different knots we investigated. We thus call it the characteristic length of the knotting probability. We give formulae expressing the characteristic length as a function of the cylindrical radius rex, i.e. the screening length of double-stranded DNA.

  15. Impedance of finite length resistive cylinder

    NASA Astrophysics Data System (ADS)

    Krinsky, S.; Podobedov, B.; Gluckstern, R. L.

    2004-11-01

    We determine the impedance of a cylindrical metal tube (resistor) of radius a, length g, and conductivity σ attached at each end to perfect conductors of semi-infinite length. Our main interest is in the asymptotic behavior of the impedance at high frequency (k≫1/a). In the equilibrium regime, ka2≪g, the impedance per unit length is accurately described by the well-known result for an infinite length tube with conductivity σ. In the transient regime, ka2≫g, where the contribution of transition radiation arising from the discontinuity in conductivity is important, we derive an analytic expression for the impedance and compute the short-range wakefield. The analytic results are shown to agree with numerical evaluation of the impedance.

  16. Method of continuously determining crack length

    NASA Technical Reports Server (NTRS)

    Prabhakaran, Ramamurthy (Inventor); Lopez, Osvaldo F. (Inventor)

    1993-01-01

    The determination of crack lengths in an accurate and straight forward manner is very useful in studying and preventing load created flaws and cracks. A crack length sensor according to the present invention is fabricated in a rectangular or other geometrical form from a conductive powder impregnated polymer material. The long edges of the sensor are silver painted on both sides and the sensor is then bonded to a test specimen via an adhesive having sufficient thickness to also serve as an insulator. A lead wire is connected to each of the two outwardly facing silver painted edges. The resistance across the sensor changes as a function of the crack length in the specimen and sensor. The novel aspect of the present invention includes the use of relatively uncomplicated sensors and instrumentation to effectively measure the length of generated cracks.

  17. Phase coherence length in silicon photonic platform.

    PubMed

    Yang, Yisu; Ma, Yangjin; Guan, Hang; Liu, Yang; Danziger, Steven; Ocheltree, Stewart; Bergman, Keren; Baehr-Jones, Tom; Hochberg, Michael

    2015-06-29

    We report for the first time two typical phase coherence lengths in highly confined silicon waveguides fabricated in a standard CMOS foundry's multi-project-wafer shuttle run in the 220nm silicon-on-insulator wafer with 248nm lithography. By measuring the random phase fluctuations of 800 on-chip silicon Mach-Zehnder interferometers across the wafer, we extracted, with statistical significance, the coherence lengths to be 4.17 ± 0.42 mm and 1.61 ± 0.12 mm for single mode strip waveguide and rib waveguide, respectively. We present a new experimental method to quantify the phase coherence length. The theory model is verified by both our and others' experiments. Coherence length is expected to become one key parameter of the fabrication non-uniformity to guide the design of silicon photonics. PMID:26191700

  18. Carbon Nanotubes: Measuring Dispersion and Length

    SciTech Connect

    Fagan, Jeffrey A.; Bauer, Barry J.; Hobbie, Erik K.; Becker, Matthew L.; Hight-Walker, Angela; Simpson, Jeffrey R.; Chun, Jaehun; Obrzut, Jan; Bajpai, Vardhan; Phelan, Fred R.; Simien, Daneesh; Yeon Huh, Ji; Migler, Kalman B.

    2011-03-01

    Advanced technological uses of single-wall carbon nanotubes (SWCNTs) rely on the production of single length and chirality populations that are currently only available through liquid phase post processing. The foundation of all of these processing steps is the attainment of individualized nanotube dispersion in solution; an understanding of the collodial properties of the dispersed SWCNTs can then be used to designed appropriate conditions for separations. In many instances nanotube size, particularly length, is especially active in determining the achievable properties from a given population, and thus there is a critical need for measurement technologies for both length distribution and effective separation techniques. In this Progress Report, we document the current state of the art for measuring dispersion and length populations, including separations, and use examples to demonstrate the desirability of addressing these parameters.

  19. Path planning for everday robotics with SANDROS

    SciTech Connect

    Watterberg, P.; Xavier, P.; Hwang, Y.

    1997-02-01

    We discuss the integration of the SANDROS path planner into a general robot simulation and control package with the inclusion of a fast geometry engine for distance calculations. This creates a single system that allows the path to be computed, simulated, and then executed on the physical robot. The architecture and usage procedures are presented. Also, we present examples of its usage in typical environments found in our organization. The resulting system is as easy to use as the general simulation system (which is in common use here) and is fast enough (example problems are solved in seconds) to be used interactively on an everyday basis.

  20. Optical tomography with discretized path integral.

    PubMed

    Yuan, Bingzhi; Tamaki, Toru; Kushida, Takahiro; Mukaigawa, Yasuhiro; Kubo, Hiroyuki; Raytchev, Bisser; Kaneda, Kazufumi

    2015-07-01

    We present a framework for optical tomography based on a path integral. Instead of directly solving the radiative transport equations, which have been widely used in optical tomography, we use a path integral that has been developed for rendering participating media based on the volume rendering equation in computer graphics. For a discretized two-dimensional layered grid, we develop an algorithm to estimate the extinction coefficients of each voxel with an interior point method. Numerical simulation results are shown to demonstrate that the proposed method works well. PMID:26839903

  1. Mars PathFinder Rover Traverse Image

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This figure contains an azimuth-elevation projection of the 'Gallery Panorama.' The original Simple Cylindrical mosaic has been reprojected to the inside of a sphere so that lines of constant azimuth radiate from the center and lines of constant elevation are concentric circles. This projection preserves the resolution of the original panorama. Overlaid onto the projected Martian surface is a delineation of the Sojourner rover traverse path during the 83 Sols (Martian days) of Pathfinder surface operations. The rover path was reproduced using IMP camera 'end of day' and 'Rover movie' image sequences and rover vehicle telemetry data as references.

  2. Practical path planning among movable obstacles

    SciTech Connect

    Chen, Pang C.; Hwang, Yong K.

    1990-09-05

    Path planning among movable obstacles is a practical problem that is in need of a solution. In this paper an efficient heuristic algorithm that uses a generate-and-test paradigm: a good'' candidate path is hypothesized by a global planner and subsequently verified by a local planner. In the process of formalizing the problem, we also present a technique for modeling object interactions through contact. Our algorithm has been tested on a variety of examples, and was able to generate solutions within 10 seconds. 5 figs., 27 refs.

  3. Gas Path Sealing in Turbine Engines

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P.

    1978-01-01

    A survey of gas path seals is presented with particular attention given to sealing clearance effects on engine component efficiency. The effects on compressor pressure ratio and stall margin are pointed out. Various case-rotor relative displacements, which affect gas path seal clearances, are identified. Forces produced by nonuniform sealing clearances and their effect on rotor stability are discussed qualitatively, and recent work on turbine-blade-tip sealing for high temperature is described. The need for active clearance control and for engine structural analysis is discussed. The functions of the internal-flow system and its seals are reviewed.

  4. A Comparison of Two Path Planners for Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Tarokh, M.; Shiller, Z.; Hayati, S.

    1999-01-01

    The paper presents two path planners suitable for planetary rovers. The first is based on fuzzy description of the terrain, and genetic algorithm to find a traversable path in a rugged terrain. The second planner uses a global optimization method with a cost function that is the path distance divided by the velocity limit obtained from the consideration of the rover static and dynamic stability. A description of both methods is provided, and the results of paths produced are given which show the effectiveness of the path planners in finding near optimal paths. The features of the methods and their suitability and application for rover path planning are compared

  5. Cold bose gases with large scattering lengths.

    PubMed

    Cowell, S; Heiselberg, H; Mazets, I E; Morales, J; Pandharipande, V R; Pethick, C J

    2002-05-27

    We calculate the energy and condensate fraction for a dense system of bosons interacting through an attractive short range interaction with positive s-wave scattering length a. At high densities n>a(-3), the energy per particle, chemical potential, and square of the sound speed are independent of the scattering length and proportional to n(2/3), as in Fermi systems. The condensate is quenched at densities na(3) approximately 1. PMID:12059466

  6. Electron Effective-Attenuation-Length Database

    National Institute of Standards and Technology Data Gateway

    SRD 82 NIST Electron Effective-Attenuation-Length Database (PC database, no charge)   This database provides values of electron effective attenuation lengths (EALs) in solid elements and compounds at selected electron energies between 50 eV and 2,000 eV. The database was designed mainly to provide EALs (to account for effects of elastic-eletron scattering) for applications in surface analysis by Auger-electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS).

  7. Nucleosome repeat lengths and columnar chromatin structure.

    PubMed

    Trifonov, Edward N

    2016-06-01

    Thorough quantitative study of nucleosome repeat length (NRL) distributions, conducted in 1992 by J. Widom, resulted in a striking observation that the linker lengths between the nucleosomes are quantized. Comparison of the NRL average values with the MNase cut distances predicted from the hypothetical columnar structure of chromatin (this work) shows a close correspondence between the two. This strongly suggests that the NRL distribution, actually, reflects the dominant role of columnar chromatin structure common for all eukaryotes. PMID:26208520

  8. Fragment Length of Circulating Tumor DNA

    PubMed Central

    Underhill, Hunter R.; Kitzman, Jacob O.; Hellwig, Sabine; Welker, Noah C.; Daza, Riza; Gligorich, Keith M.; Rostomily, Robert C.; Shendure, Jay

    2016-01-01

    Malignant tumors shed DNA into the circulation. The transient half-life of circulating tumor DNA (ctDNA) may afford the opportunity to diagnose, monitor recurrence, and evaluate response to therapy solely through a non-invasive blood draw. However, detecting ctDNA against the normally occurring background of cell-free DNA derived from healthy cells has proven challenging, particularly in non-metastatic solid tumors. In this study, distinct differences in fragment length size between ctDNAs and normal cell-free DNA are defined. Human ctDNA in rat plasma derived from human glioblastoma multiforme stem-like cells in the rat brain and human hepatocellular carcinoma in the rat flank were found to have a shorter principal fragment length than the background rat cell-free DNA (134–144 bp vs. 167 bp, respectively). Subsequently, a similar shift in the fragment length of ctDNA in humans with melanoma and lung cancer was identified compared to healthy controls. Comparison of fragment lengths from cell-free DNA between a melanoma patient and healthy controls found that the BRAF V600E mutant allele occurred more commonly at a shorter fragment length than the fragment length of the wild-type allele (132–145 bp vs. 165 bp, respectively). Moreover, size-selecting for shorter cell-free DNA fragment lengths substantially increased the EGFR T790M mutant allele frequency in human lung cancer. These findings provide compelling evidence that experimental or bioinformatic isolation of a specific subset of fragment lengths from cell-free DNA may improve detection of ctDNA. PMID:27428049

  9. Process for fabricating continuous lengths of superconductor

    DOEpatents

    Kroeger, Donald M.; List, III, Frederick A.

    1998-01-01

    A process for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor precursor between said first substrate ribbon and said second substrates ribbon. The layered superconductor precursor is then heat treated to form a super conductor layer.

  10. Combined measurements of modulus and length and their correlation for different amorphous alloys

    SciTech Connect

    Porscha, B.; Neuhaeuser, H.

    1995-03-15

    Combined measurements of length and modulus change on the same specimen of Ni{sub 78}Si{sub 8}B{sub 14}, Cu{sub 64}Ti{sub 36} and Co{sub 66}Fe{sub 4}(MoSiB){sub 30} are presented. These properties are sensitive to different aspects of structural changes during relaxation in the amorphous state. The change of length is mainly sensitive to the topological long range relaxation. The change of the eigenfrequency is mainly sensitive to atomic rearrangements changing the chemical short range order. The results of the correlation between the effect of relaxation of frequency versus that of length can be described as follows: the observed structural relaxation in the amorphous states of each material can be divided up into two regimes. The first regime (I) with a prevailing change of eigenfrequency is attributed to short range rearrangements of the chemically different atomic species in the material; the second regime (II) with a larger amount of length change is interpreted as a long range topological relaxation with enhanced loss of free volume. This interpretation is supported by a comparison of the diffusion coefficients at the characteristic transition temperature {Tc} between the regimes I and II. It shows that the average diffusion path lengths of the possible diffusors below the characteristic temperature are in the order of 2 to 5 next neighbor distances, i.e., diffusion is only possible in a short range changing the species of neighboring atoms. Above {Tc}, the average diffusion path lengths are in the order of 5 to 50 next neighbor distances suggesting long range relaxation rearrangements by a diffusion process preferentially connected with the annihilation of free volume.

  11. Tracheoesophageal fistula length decreases over time.

    PubMed

    Jiang, Nancy; Kearney, Ann; Damrose, Edward J

    2016-07-01

    The objectives of this study were to demonstrate that the length of the tracheoesophageal voice prosthesis changes over time and to determine whether the prosthesis length over time increased, decreased, or showed no predictable change in size. A retrospective chart review was performed at a tertiary care referral center. Patients who underwent either primary or secondary tracheoesophageal puncture between January 2006 and August 2014 were evaluated. Patients were excluded if the tracheoesophageal prosthesis size was not consistently recorded or if they required re-puncturing for an extruded prosthesis. Data analyzed included patient demographics and the length of the tracheoesophageal voice prosthesis at each change. A total of 37 patients were identified. The mean age was 64 years. Seventy-six percent were male. 24 % underwent primary tracheoesophageal puncture and 76 % underwent secondary tracheoesophageal puncture. The length of the prosthesis decreased over time (median Kendall correlation coefficient = -0.60; mean = -0.44) and this correlation between length and time was significant (p = 0.00085). Therefore, in conclusion, tracheoesophageal prosthesis length is not constant over time. The tracheoesophageal wall thins, necessitating placement of shorter prostheses over time. Patients with a tracheoesophageal voice prosthesis will require long-term follow-up and repeat sizing of their prosthesis. Successful tracheoesophageal voicing will require periodic reevaluation of these devices, and insurers must, therefore, understand that long-term professional care will be required to manage these patients and their prostheses. PMID:26951219

  12. Dynamical Length-Regulation of Microtubules

    NASA Astrophysics Data System (ADS)

    Melbinger, Anna; Reese, Louis; Frey, Erwin

    2012-02-01

    Microtubules (MTs) are vital constituents of the cytoskeleton. These stiff filaments are not only needed for mechanical support. They also fulfill highly dynamic tasks. For instance MTs build the mitotic spindle, which pulls the doubled set of chromosomes apart during mitosis. Hence, a well-regulated and adjustable MT length is essential for cell division. Extending a recently introduced model [1], we here study length-regulation of MTs. Thereby we account for both spontaneous polymerization and depolymerization triggered by motor proteins. In contrast to the polymerization rate, the effective depolymerization rate depends on the presence of molecular motors at the tip and thereby on crowding effects which in turn depend on the MT length. We show that these antagonistic effects result in a well-defined MT length. Stochastic simulations and analytic calculations reveal the exact regimes where regulation is feasible. Furthermore, the adjusted MT length and the ensuing strength of fluctuations are analyzed. Taken together, we make quantitative predictions which can be tested experimentally. These results should help to obtain deeper insights in the microscopic mechanisms underlying length-regulation. [4pt] [1] L.Reese, A.Melbinger, E.Frey, Biophys. J., 101, 9, 2190 (2011)

  13. On horizontal coherence estimates from path integral theory for sound propagation through random ocean sound-speed perturbations.

    PubMed

    Colosi, John A

    2013-10-01

    Previously published results from path integral theory for the horizontal coherence length utilized an empirical relation for the phase structure function density that was quite different from path integral results obtained for depth and time coherence where the phase structure function density was expanded to second order in the lag. This letter presents a result for horizontal coherence length which carries out the quadratic expansion and analytically solves the integral equations. Some simple calculations of horizontal coherence length demonstrate the differences between the present and old expressions. In contrast to the empirical result the present expression shows the expected one over square-root range and one over frequency scalings. The results also show more clearly how transverse coherence is sensitive to the space-time scales of internal waves and other environmental parameters. PMID:24116509

  14. Nanoscale three-dimensional reconstruction of elastic and inelastic mean free path lengths by electron holographic tomography

    SciTech Connect

    Lubk, A.; Wolf, D.; Kern, F.; Röder, F.; Lichte, H.; Prete, P.; Lovergine, N.

    2014-10-27

    Electron holography at medium resolution simultaneously probes projected electrostatic and magnetostatic potentials as well as elastic and inelastic attenuation coefficients with a spatial resolution of a few nanometers. In this work, we derive how the elastic and inelastic attenuation can be disentangled. Using that result, we perform the first three dimensional tomographic reconstruction of potential and (in)elastic attenuation in parallel. The technique can be applied to distinguish between functional potentials and composition changes in nanostructures, as demonstrated using the example of a GaAs—Al{sub 0.33}Ga{sub 0.67}As core-shell nanowire.

  15. The Fourier-Kelvin Stellar Interferometer (FKSI) Nulling Testbed II: Closed-loop Path Length Metrology And Control Subsystem

    NASA Technical Reports Server (NTRS)

    Frey, B. J.; Barry, R. K.; Danchi, W. C.; Hyde, T. T.; Lee, K. Y.; Martino, A. J.; Zuray, M. S.

    2006-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer in the near to mid-infrared spectral region (3-8 microns), and will be a scientific and technological pathfinder for upcoming missions including TPF-I/DARWIN, SPECS, and SPIRIT. At NASA's Goddard Space Flight Center, we have constructed a symmetric Mach-Zehnder nulling testbed to demonstrate techniques and algorithms that can be used to establish and maintain the 10(exp 4) null depth that will be required for such a mission. Among the challenges inherent in such a system is the ability to acquire and track the null fringe to the desired depth for timescales on the order of hours in a laboratory environment. In addition, it is desirable to achieve this stability without using conventional dithering techniques. We describe recent testbed metrology and control system developments necessary to achieve these goals and present our preliminary results.

  16. WITHDRAWN: Variations of maximum mouth-opening capacity and condylar path length during growth period in children.

    PubMed

    Reicheneder, Claudia; Gedrange, Tomas; Baqaien, Mouayyad; Müβig, Dieter

    2007-05-01

    This article has been withdrawn consistent with Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). The Publisher apologizes for any inconvenience this may cause. PMID:18951771

  17. Finding the optimal-path maps for path planning across weighted regions

    SciTech Connect

    Rowe, N.C.; Alexander, R.S.

    2000-02-01

    Optimal-path maps tell robots or people the best way to reach a goal point from anywhere in a known terrain area, eliminating most of the need to plan during travel. The authors address the construction of optimal-path maps for two-dimensional polygonal weighted-region terrain, terrain partitioned into polygonal areas such that the cost per unit of distance traveled is homogeneous and isotropic within each area. This is useful for overland route planning across varied ground surfaces and vegetation. The authors propose a new algorithm that recursively partitions terrain into regions of similar optimal-path behavior, and defines corresponding path subspaces for these regions. This process constructs a piecewise-smooth function of terrain position whose gradient direction is everywhere the optimal-path direction, permitting quick path finding. The algorithm used is more complicated than the current path-caching and wavefront-propagation algorithms, but it gives more accurate maps requiring less space to represent. Experiments with an implementation confirm the practicality of the authors' algorithm.

  18. Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems

    NASA Astrophysics Data System (ADS)

    Kröger, Martin

    2005-06-01

    We present an algorithm which returns a shortest path and related number of entanglements for a given configuration of a polymeric system in 2 or 3 dimensions. Rubinstein and Helfand, and later Everaers et al. introduced a concept to extract primitive paths for dense polymeric melts made of linear chains (a multiple disconnected multibead 'path'), where each primitive path is defined as a path connecting the (space-fixed) ends of a polymer under the constraint of non-interpenetration (excluded volume) between primitive paths of different chains, such that the multiple disconnected path fulfills a minimization criterion. The present algorithm uses geometrical operations and provides a—model independent—efficient approximate solution to this challenging problem. Primitive paths are treated as 'infinitely' thin (we further allow for finite thickness to model excluded volume), and tensionless lines rather than multibead chains, excluded volume is taken into account without a force law. The present implementation allows to construct a shortest multiple disconnected path (SP) for 2D systems (polymeric chain within spherical obstacles) and an optimal SP for 3D systems (collection of polymeric chains). The number of entanglements is then simply obtained from the SP as either the number of interior kinks, or from the average length of a line segment. Further, information about structure and potentially also the dynamics of entanglements is immediately available from the SP. We apply the method to study the 'concentration' dependence of the degree of entanglement in phantom chain systems. Program summaryTitle of program:Z Catalogue number:ADVG Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVG Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Silicon Graphics (Irix), Sun (Solaris), PC (Linux) Operating systems or monitors under which the

  19. Folded-path optical analysis gas cell

    DOEpatents

    Carangelo, R.M.; Wright, D.D.

    1995-08-08

    A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal foci coincidence and thereby to increase the radiation energy throughput characteristic of the cell. 10 figs.

  20. Ambivalent Journey: Teacher Career Paths in Oman

    ERIC Educational Resources Information Center

    Chapman, David W.; Al-Barwani, Thuwayba; Al Mawali, Fathiya; Green, Elizabeth

    2012-01-01

    This study investigated the career paths of 625 university graduates who prepared to be secondary school teachers in Oman, their assessment of their current work situation, and the extent to which their initial commitment to teaching was related to their subsequent career satisfaction and intention to remain in teaching. While nearly all graduates…