Science.gov

Sample records for 1-d gel electrophoresis

  1. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique

    PubMed Central

    2015-01-01

    Background DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. Results We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. Conclusions This work presents an

  2. Quality control and stability studies with the monoclonal antibody, trastuzumab: application of 1D- vs. 2D-gel electrophoresis.

    PubMed

    Nebija, Dashnor; Noe, Christian R; Urban, Ernst; Lachmann, Bodo

    2014-04-15

    Recombinant monoclonal antibodies (rmAbs) are medicinal products obtained by rDNA technology. Consequently, like other biopharmaceuticals, they require the extensive and rigorous characterization of the quality attributes, such as identity, structural integrity, purity and stability. The aim of this work was to study the suitability of gel electrophoresis for the assessment of charge heterogeneity, post-translational modifications and the stability of the therapeutic, recombinant monoclonal antibody, trastuzumab. One-dimensional, SDS-PAGE, under reducing and non-reducing conditions, and two-dimensional gel electrophoresis were used for the determination of molecular mass (Mr), the isoelectric point (pI), charge-related isoform patterns and the stability of trastuzumab, subjected to stressed degradation and long-term conditions. For the assessment of the influence of glycosylation in the charge heterogeneity pattern of trastuzumab, an enzymatic deglycosylation study has been performed using N-glycosidase F and sialidase, whereas carboxypeptidase B was used for the lysine truncation study. Experimental data documented that 1D and 2D gel electrophoresis represent fast and easy methods to evaluate the quality of biological medicinal products. Important stability parameters, such as the protein aggregation, can be assessed, as well.

  3. One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE).

    PubMed

    Brunelle, Julie L; Green, Rachel

    2014-01-01

    This protocol describes a denaturing polyacrylamide gel system utilizing sodium dodecyl sulfate (SDS) to separate protein molecules based on size as first described by Laemmli (1970). SDS-PAGE can be used to monitor protein purifications, check the purity of samples, and to estimate molecular weights for unknown proteins.

  4. Pulse Field Gel Electrophoresis

    PubMed Central

    Sharma-Kuinkel, Batu K.; Rude, Thomas H.; Fowler, Vance G.

    2015-01-01

    Pulse Field Gel Electrophoresis (PFGE) is a powerful genotyping technique used for the separation of large DNA molecules (entire genomic DNA) after digesting it with unique restriction enzymes and applying to a gel matrix under the electric field that periodically changes direction. PFGE is a variation of agarose gel electrophoresis that permits analysis of bacterial DNA fragments over an order of magnitude larger than that with conventional restriction enzyme analysis. It provides a good representation of the entire bacterial chromosome in a single gel with a highly reproducible restriction profile, providing clearly distinct and well-resolved DNA fragments. PMID:25682374

  5. Pulse Field Gel Electrophoresis.

    PubMed

    Sharma-Kuinkel, Batu K; Rude, Thomas H; Fowler, Vance G

    2016-01-01

    Pulse Field Gel Electrophoresis (PFGE) is a powerful genotyping technique used for the separation of large DNA molecules (entire genomic DNA) after digesting it with unique restriction enzymes and applying to a gel matrix under the electric field that periodically changes direction. PFGE is a variation of agarose gel electrophoresis that permits analysis of bacterial DNA fragments over an order of magnitude larger than that with conventional restriction enzyme analysis. It provides a good representation of the entire bacterial chromosome in a single gel with a highly reproducible restriction profile, providing clearly distinct and well-resolved DNA fragments.

  6. Agarose gel electrophoresis.

    PubMed

    Smith, D R

    1993-01-01

    After digestion of DNA with a restriction enzyme (Chapter 50), it is usually necessary, for both preparative and analytical purposes, to separate and visualize the products. In most cases, where the products are between 200 and 20,000 bp long, this is achieved by agarose gel electrophoresis. Agarose is a linear polymer that is extracted from seaweed and sold as a white powder. The powder is melted in buffer and allowed to cool, whereby the agarose forms a gel by hydrogen bonding. The hardened matrix contains pores, the size of which depends on the concentration of agarose. The concentration of agarose is referred to as a percentage of agarose to volume of buffer (w/v), and agarose gels are normally in the range of 0.3 to 3%. Many different apparatus arrangements have been devised to run agarose gels; for example, they can be run horizontally or vertically, and the current can be conducted by wicks or the buffer solution. However, today, the "submarine" gel system is almost universally used. In this method, the agarose gel is formed on a supporting plate, and then the plate is submerged into a tank containing a suitable electrophoresis buffer. Wells are preformed in the agarose gel with the aid of a "comb" that is inserted into the cooling agarose before the agarose has gelled. Into these wells are loaded the sample to be analyzed, which has been mixed with a dense solution (a loading buffer) to ensure that the sample sinks into the wells.

  7. Copolymers For Capillary Gel Electrophoresis

    SciTech Connect

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  8. Conducting polymer electrodes for gel electrophoresis.

    PubMed

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  9. Fluorescence detection for gel and capillary electrophoresis

    SciTech Connect

    Hogan, B.

    1992-07-21

    First, an indirect fluorescence detection system for the separation of proteins via gel electrophoresis. Quantities as low as 50 nanograms of bovine serum albumin and soybean trypsin inhibitor are separated and detected visually without the need for staining of the analytes. This is very similar to levels of protein commonly separated with gel electrophoresis.

  10. SDS-Polyacrylamide Gel Electrophoresis of Proteins.

    PubMed

    Sambrook, Joseph; Russell, David W

    2006-09-01

    INTRODUCTIONThis protocol describes the separation of proteins by SDS-polyacrylamide gel electrophoresis. SDS is used with a reducing agent and heat to dissociate the proteins. SDS-polypeptide complexes form and migrate through the gels according to the size of the polypeptide. By using markers of known molecular weight, the molecular weight of the polypeptide chain(s) can be estimated.

  11. A Simple Vertical Slab Gel Electrophoresis Apparatus.

    ERIC Educational Resources Information Center

    Carter, J. B.; And Others

    1983-01-01

    Describes an inexpensive, easily constructed, and safe vertical slab gel kit used routinely for sodium dodecyl sulphate-polyacrylamide gel electrophoresis research and student experiments. Five kits are run from a single transformer. Because toxic solutions are used, students are given plastic gloves and closely supervised during laboratory…

  12. Electrokinetics of nanoparticle gel-electrophoresis.

    PubMed

    Hill, Reghan J

    2016-09-28

    Gel-electrophoresis has been demonstrated in recent decades to successfully sort a great variety of nanoparticles according to their size, charge, surface chemistry, and corona architecture. However, quantitative theoretical interpetations have been limited by the number and complexity of factors that influence particle migration. Theoretical models have been fragmented and incomplete with respect to their counterparts for free-solution electrophoresis. This paper unifies electrokinetic models that address complex nanoparticle corona architectures, corona and gel charge regulation (e.g., by the local pH), multi-component electrolytes, and non-linear electrostatics and relaxation effects. By comprehensively addressing the electrokinetic aspects of the more general gel-electrophoresis problem, in which short-ranged steric interactions are significant, a stage is set to better focus on the physicochemical and steric factors. In this manner, it is envisioned that noparticle gel-electrophoresis may eventually be advanced from a nanoparticle-characterization tool to one that explicitly probes the short-ranged interactions of nanoparticles with soft networks, such as synthetic gels and biological tissues. In this paper, calculations are undertaken that identify a generalized Hückel limit for nanoparticles in low-conductivity gels, and a new Smoluchowski limit for polyelectrolyte-coated particles in high-conductivity gels that is independent of the gel permeability. Also of fundamental interest is a finite, albeit small, electrophoretic mobility for uncharged particles in charged gels. Electrophoretic mobilities and drag coefficients (with electroviscous effects) for nanoparticles bearing non-uniform coronas show that relaxation effects are typically weak for the small nanoparticles (radius ≈3-10 nm) to which gel-electrophoresis has customarily been applied, but are profound for the larger nanoparticles (radius ≳ 40 nm in low conductivity gels) to which passivated gel-electrophoresis

  13. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    SciTech Connect

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  14. Nondenaturing agarose gel electrophoresis of RNA.

    PubMed

    Rio, Donald C; Ares, Manuel; Hannon, Gregory J; Nilsen, Timothy W

    2010-06-01

    INTRODUCTION Perhaps the most important and certainly the most often used technique in RNA analysis is gel electrophoresis. Because RNAs are negatively charged, they migrate toward the anode in the presence of electric current. The gel acts as a sieve to selectively impede the migration of the RNA in proportion to its mass, given that its mass is generally proportional to its charge. Because mass is approximately related to chain length, the length of an RNA is more generally determined by its migration. In addition, topology (i.e., circularity) can affect migration, making RNAs appear longer on the gel than they actually are. There are two common types of gel: polyacrylamide and agarose. For most applications involving RNAs of < or =600 nucleotides, denaturing acrylamide gels are most appropriate. In contrast, agarose gels are generally used to analyze RNAs of > or =600 nucleotides, and are especially useful for analysis of mRNAs (e.g., by Northern blotting). RNA analysis on agarose gels is essentially identical to DNA analysis (except that the gel boxes used must be dedicated to RNA work or to other ribonuclease-free work). Here we describe the use of straightforward Tris borate, EDTA (TBE) gels for routine analysis. These gels are appropriate for determining the quantity and integrity of RNA before using it for other applications. This procedure should not be used to determine size with accuracy, because the RNA will not remain in its extended state throughout the run.

  15. Nonlinear gel electrophoresis: an analogy with ideal fluid flow.

    PubMed

    Dennison, C; Phillips, A M; Nevin, J M

    1983-12-01

    The behavior of electrolytes undergoing electrophoresis in various shaped gels was investigated using bromphenol blue as a model electrolyte. The results suggest that during gel electrophoresis, small electrolytes behave in a manner analogous to the flow of ideal, irrotational fluids.

  16. Comparative proteomics and difference gel electrophoresis.

    PubMed

    Minden, Jonathan

    2007-12-01

    The goal of comparative proteomics is to analyze proteome changes in response to development, disease, or environment. This is a two-step process in which proteins within cellular extracts are first fractionated to reduce sample complexity, and then the proteins are identified by mass spectrometry. Two-dimensional electrophoresis (2DE) is the long-time standard for protein separation, but it has suffered from poor reproducibility and limited sensitivity. Difference gel electrophoresis (DIGE), in which two protein samples are separately labeled with different fluorescent dyes and then co-electrophoresed on the same 2DE gel, was developed to overcome the reproducibility and sensitivity limitations. In this essay, I discuss the principles of comparative proteomics and the development of DIGE.

  17. Gel Electrophoresis of Gold-DNA Nanoconjugates

    DOE PAGES

    Pellegrino, T.; Sperling, R. A.; Alivisatos, A. P.; ...

    2007-01-01

    Gold-DNA conjugates were investigated in detail by a comprehensive gel electrophoresis study based on 1200 gels. A controlled number of single-stranded DNA of different length was attached specifically via thiol-Au bonds to phosphine-stabilized colloidal gold nanoparticles. Alternatively, the surface of the gold particles was saturated with single stranded DNA of different length either specifically via thiol-Au bonds or by nonspecific adsorption. From the experimentally determined electrophoretic mobilities, estimates for the effective diameters of the gold-DNA conjugates were derived by applying two different data treatment approaches. The first method is based on making a calibration curve for the relation between effectivemore » diameters and mobilities with gold nanoparticles of known diameter. The second method is based on Ferguson analysis which uses gold nanoparticles of known diameter as reference database. Our study shows that effective diameters derived from gel electrophoresis measurements are affected with a high error bar as the determined values strongly depend on the method of evaluation, though relative changes in size upon binding of molecules can be detected with high precision. Furthermore, in this study, the specific attachment of DNA via gold-thiol bonds to Au nanoparticles is compared to nonspecific adsorption of DNA. Also, the maximum number of DNA molecules that can be bound per particle was determined.« less

  18. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, Joseph W.; Carrano, Anthony V.; Davidson, James C.; Koo, Jackson C.

    1998-01-01

    A hybrid slab-microchannel gel electrophoresis system. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate.

  19. Increase in local protein concentration by field-inversion gel electrophoresis.

    PubMed

    Tsai, Henghang; Leung, Hon-Chiu Eastwood

    2012-01-01

    Proteins that migrate through cross-linked polyacrylamide gels (PAGs) under the influence of a constant electric field experience negative factors, such as diffusion and nonspecific trapping in the gel matrix. These negative factors reduce protein concentrations within a defined gel volume with increasing migration distance and, therefore, decrease protein recovery efficiency. Here, we describe the enhancement of protein separation efficiency up to twofold in conventional one-dimensional PAG electrophoresis (1D PAGE), two-dimensional (2D) PAGE, and native PAGE by implementing pulses of inverted electric field during gel electrophoresis.

  20. Using Gel Electrophoresis To Illustrate Protein Diversity and Isoelectric Point.

    ERIC Educational Resources Information Center

    Browning, Mark; Vanable, Joseph

    2002-01-01

    Demonstrates the differences in protein structures by focusing on isoelectric point with an experiment that is observable under certain pH levels in gel electrophoresis. Explains the electrophoresis procedure and reports results of the experiments. (YDS)

  1. Agarose gel electrophoresis and polyacrylamide gel electrophoresis for visualization of simple sequence repeats.

    PubMed

    Anderson, James; Wright, Drew; Meksem, Khalid

    2013-01-01

    In the modern age of genetic research there is a constant search for ways to improve the efficiency of plant selection. The most recent technology that can result in a highly efficient means of selection and still be done at a low cost is through plant selection directed by simple sequence repeats (SSRs or microsatellites). The molecular markers are used to select for certain desirable plant traits without relying on ambiguous phenotypic data. The best way to detect these is the use of gel electrophoresis. Gel electrophoresis is a common technique in laboratory settings which is used to separate deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) by size. Loading DNA and RNA onto gels allows for visualization of the size of fragments through the separation of DNA and RNA fragments. This is achieved through the use of the charge in the particles. As the fragments separate, they form into distinct bands at set sizes. We describe the ability to visualize SSRs on slab gels of agarose and polyacrylamide gel electrophoresis.

  2. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, J.W.; Carrano, A.V.; Davidson, J.C.; Koo, J.C.

    1998-05-05

    A hybrid slab-microchannel gel electrophoresis system is described. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate. 4 figs.

  3. The gel electrophoresis markup language (GelML) from the Proteomics Standards Initiative.

    PubMed

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2010-09-01

    The Human Proteome Organisation's Proteomics Standards Initiative has developed the GelML (gel electrophoresis markup language) data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for MS data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications.

  4. Inexpensive and Safe DNA Gel Electrophoresis Using Household Materials

    ERIC Educational Resources Information Center

    Ens, S.; Olson, A. B.; Dudley, C.; Ross, N. D., III; Siddiqi, A. A.; Umoh, K. M.; Schneegurt, M. A.

    2012-01-01

    Gel electrophoresis is the single most important molecular biology technique and it is central to life sciences research, but it is often too expensive for the secondary science classroom or homeschoolers. A simple safe low-cost procedure is described here that uses household materials to construct and run DNA gel electrophoresis. Plastic…

  5. A method for horizontal polyacrylamide slab gel electrophoresis.

    PubMed

    Bellomy, G R; Record, M T

    1989-01-01

    We present a simplified method of preparation of polyacrylamide gels which is totally analogous to the procedure now widely used to pour and run horizontal agarose gels. The acrylamide is poured into an open air gel mold consisting of a glass plate with a masking tape border and a comb. It is subsequently run in a submarine horizontal electrophoresis apparatus. The electrophoretic mobility and resolution of DNA fragments obtained in such gels are identical to results obtained with gels poured and run in the vertical configuration. Numerous advantages of horizontal polyacrylamide gel electrophoresis are discussed.

  6. An update on conformation sensitive gel electrophoresis.

    PubMed

    Ganguly, Arupa

    2002-04-01

    Conformation-sensitive gel electrophoresis (CSGE) was developed as a method of heteroduplex analysis to screen large multi-exon genes for sequence variation. The novelty of the method was in the use of a non-proprietary acrylamide gel matrix that used 1,4-bis (acrolyl) piperazine (BAP) as a cross linker with ethylene glycol and formamide as mildly denaturing solvents. The denaturing environment enhances the conformation polymorphism present in DNA heteroduplexes containing variations as small as single nucleotide polymorphisms (SNPs). CSGE has also been adapted for use on a fluorescent platform (F-CSGE) that resulted in higher throughput and sensitivity. Variation in sensitivity of CSGE has been studied extensively. The results demonstrate that the nature of the mismatched base in a defined sequence context has the most profound effect on the conformation of the heteroduplex. Additionally, the size of the PCR product, as well as the location of the mismatch within the PCR product, are two important parameters that determine the resolution of the mismatch-containing heteroduplexes during CSGE. Like any other mutation scanning technique, CSGE can have limited resolution of two closely linked sequence variations. For specific genes, like BRCA1 and BRCA2 where multiple SNPs are present in the coding sequence, each CSGE shift has to be sequenced to define the exact nature of the sequence change. In conclusion, CSGE scanning provides a powerful, cost-efficient way to scan genes with high sensitivity and specificity.

  7. Nondenaturing electrophoresis of lipoproteins in agarose and polyacrylamide gradient gels

    SciTech Connect

    Shore, V.G.

    1989-12-19

    The plasma lipoproteins frequently are classified according to density and/or electrophoretic mobility. The lipoprotein classes differ characteristically also in particle size and apolipoprotein composition. Each class is heterogeneous in size and composition as well. Nondenaturing electrophoresis in agarose gels and polyacrylamide gradient gels are complementary analytical methods for classification of lipoproteins and determining distribution profiles of the major classes. In addition, gradient gel electrophoresis (GGE) has a high resolving capability for subfractionating each class according to particle size. Combination of gel electrophoresis with immunoblotting yields information on heterogeneity in apolipoprotein distribution. 14 refs., 6 figs., 3 tabs.

  8. DNA gel electrophoresis: the reptation model(s).

    PubMed

    Slater, Gary W

    2009-06-01

    DNA gel electrophoresis has been the most important experimental tool to separate DNA fragments for several decades. The introduction of PFGE in the 1980s and capillary gel electrophoresis in the 1990s made it possible to study, map and sequence entire genomes. Explaining how very large DNA molecules move in a gel and why PFGE is needed to separate them has been an active field of research ever since the launch of the journal Electrophoresis. This article presents a personal and historical overview of the development of the theory of gel electrophoresis, focusing on the reptation model, the band broadening mechanisms, and finally the factors that limit the read length and the resolution of electrophoresis-based sequencing systems. I conclude with a short discussion of some of the questions that remain unanswered.

  9. RNA conformational changes analyzed by comparative gel electrophoresis.

    PubMed

    Eschbach, Sébastien H; Lafontaine, Daniel A

    2014-01-01

    The study of biologically relevant native RNA structures is important to understand their cellular function(s). Native gel electrophoresis provides information about such native structures in solution as a function of experimental conditions. The application of native gel electrophoresis in a comparative manner allows to obtain precise information on relative angles subtended between given pair of stems in an RNA molecule. By adapting this approach, it is possible to obtain very specific structural information such as the amplitude of dihedral angles and helical rotation. As an example, we will describe how native gel electrophoresis can be used to study the folding of the S-adenosylmethionine (SAM) sensing riboswitch.

  10. Two-dimensional agarose gel electrophoresis of DNA topoisomers.

    PubMed

    Roca, Joaquim

    2009-01-01

    The electrophoretic velocity of a duplex DNA ring is mainly determined by its overall shape. Consequently, DNA topoisomers of opposite supercoiling handedness can have identical gel velocity, and topoisomers highly supercoiled cannot be separated beyond some point. These problems are overcome by two-dimensional agarose gel electrophoresis, which involves two successive electrophoresis steps in one gel slab. The first and second electrophoresis steps are conducted in orthogonal directions with different concentrations of DNA intercalating agents. These compounds alter the overall shape of the DNA and, thereby, change the relative mobility of individual DNA topoisomers.

  11. Gel Electrophoresis on a Budget to Dye for

    ERIC Educational Resources Information Center

    Yu, Julie H.

    2010-01-01

    Gel electrophoresis is one of the most important tools used in molecular biology and has facilitated the entire field of genetic engineering by enabling the separation of nucleic acids and proteins. However, commercial electrophoresis kits can cost up to $800 for each setup, which is cost prohibitive for most classroom budgets. This article…

  12. Modified gel preparation for distinct DNA fragment analysis in agarose gel electrophoresis.

    PubMed

    Lee, S V; Bahaman, A R

    2010-08-01

    Agarose gel electrophoresis is the standard method that is used to separate, identify, and purify DNA fragments. However, this method is time-consuming and capable of separating limited range of fragments. A new technique of gel preparation was developed to improve the DNA fragment analysis via electrophoresis.

  13. Pulsed-field gel electrophoresis of bacterial chromosomes.

    PubMed

    Mawer, Julia S P; Leach, David R F

    2013-01-01

    The separation of fragments of DNA by agarose gel electrophoresis is integral to laboratory life. Nevertheless, standard agarose gel electrophoresis cannot resolve fragments bigger than 50 kb. Pulsed-field gel electrophoresis is a technique that has been developed to overcome the limitations of standard agarose gel electrophoresis. Entire linear eukaryotic chromosomes, or large fragments of a chromosome that have been generated by the action of rare-cutting restriction endonucleases, can be separated using this technique. As a result, pulsed-field gel electrophoresis has many applications, from karyotype analysis of microbial genomes, to the analysis of chromosomal strand breaks and their repair intermediates, to the study of DNA replication and the identification of origins of replication. This chapter presents a detailed protocol for the preparation of Escherichia coli chromosomal DNA that has been embedded in agarose plugs, digested with the rare-cutting endonuclease NotI, and separated by contour-clamped homogeneous field electrophoresis. The principles in this protocol can be applied to the separation of all fragments of DNA whose size range is between 40 kb and 1 Mb.

  14. How it all began: a personal history of gel electrophoresis.

    PubMed

    Smithies, Oliver

    2012-01-01

    Arne Tiselius' moving boundary electrophoresis method was still in general use in 1951 when this personal history begins, although zonal electrophoresis with a variety of supporting media (e.g., filter paper or starch grains) was beginning to replace it. This chapter is an account of 10 years of experiments carried out by the author during which molecular sieving gel electrophoresis was developed and common genetic variants of two proteins, haptoglobin and transferrin, were discovered in normal individuals. Most of the figures are images of pages from the author's laboratory notebooks, which are still available, so that some of the excitement of the time and the humorous moments are perhaps apparent. Alkaline gels, acidic gels with and without denaturants, vertical gels, two-dimensional gels, and gels with differences in starch concentration are presented. The subtle details that can be discerned in these various gels played an indispensable role in determining the nature of the change in the haptoglobin gene (Hp) that leads to the polymeric series characteristic of Hp ( 2 ) /Hp ( 2 ) homozygotes. Where possible, the names of scientific friends who made this saga of gel electrophoresis so memorable and enjoyable are gratefully included.

  15. Gel Electrophoresis--The Easy Way for Students

    ERIC Educational Resources Information Center

    VanRooy, Wilhelmina; Sultana, Khalida

    2010-01-01

    This article describes a simple, inexpensive, easy to conduct gel-electrophoresis activity using food dyes. It is an alternative to the more expensive counterparts which require agarose gel, DNA samples, purchased chamber and Tris-borate-EDTA buffer. We suggest some learning activities for senior biology students along with comments on several…

  16. Purification of radiolabeled RNA products using denaturing gel electrophoresis

    PubMed Central

    Adachi, Hironori; Yu, Yi-Tao

    2014-01-01

    This unit discusses a basic method for purification of radiolabeled RNAs using denaturing polyacrylamide gel electrophoresis. The method consists of a number of experimental procedures, including total RNA preparation from yeast cells, isolation of a specific RNA from total yeast RNA, RNA 3' terminal labeling using nucleotide (5’[32P]pCp) addition (via ligation), denaturing (8 M urea) polyacrylamide gel electrophoresis, and RNA extraction from the gel slice. Key points for achieving good electrophoretic separation of RNA are also discussed. PMID:24510465

  17. Gel Electrophoresis of Gold-DNA Nano-Conjugates

    SciTech Connect

    Pellegrino, T.; Sperling, R.A.; Alivisatos, A.P.; Parak, W.J.

    2006-01-10

    Single stranded DNA of different lengths and different amounts was attached to colloidal phosphine stabilized Au nanoparticles. The resulting conjugates were investigated in detail by a gel electrophoresis study based on 1200 gels. We demonstrate how these experiments help to understand the binding of DNA to Au particles. In particular we compare specific attachment of DNA via gold-thiol bonds with nonspecific adsorption of DNA. The maximum number of DNA molecules that can be bound per particle was determined. We also compare several methods to used gel electrophoresis for investigating the effective diameter of DNA-Au conjugates, such as using a calibration curve of particles with known diameters and Ferguson plots.

  18. A simple gel electrophoresis method for separating polyhedral gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Suhee; Lee, Hye Jin

    2015-07-01

    In this paper, a simple approach to separate differently shaped and sized polyhedral gold nanoparticles (NPs) within colloidal solutions via gel electrophoresis is described. Gel running parameters for separating efficiently gold NPs including gel composition, added surfactant types and applied voltage were investigated. The plasmonic properties and physical structure of the separated NPs extracted from the gel matrix were then investigated using transmission electron microscopy (TEM) and UV-vis spectrophotometry respectively. Data analysis revealed that gel electrophoresis conditions of a 1.5 % agarose gel with 0.1 % sodium dodecyl sulfate (SDS) surfactant under an applied voltage of 100 V resulted in the selective isolation of ~ 50 nm polyhedral shaped gold nanoparticles. Further efforts are underway to apply the method to purify biomolecule-conjugated polyhedral Au NPs that can be readily used for NP-enhanced biosensing platforms.

  19. Electric birefrigence imaging of DNA in agarose electrophoresis gels

    SciTech Connect

    Lanan, M.

    1992-01-01

    Electric birefringence imaging (EBI) provides sensitive, non-invasive detection of double-stranded DNA in agarose gels. Quasi-monochromatic, visible light is transmitted through an electrophoresis gel which is placed between plastic film polarizers. A slow-scan video camera equipped with a 12 bit A/D converter records the images. Under electrophoresis running conditions, hydrodynamically-induced gel distortion is shown to be the major source of birefringence for fragments smaller than 23 kbp. The birefringence generated approximates the DNA concentration gradient in the electric field direction. The stress-optic coefficient of 1% agarose gel is measured by mechanical compression and used to evaluate the magnitude of the induced stress on the gel during electrophoresis. Multi-linear regression analysis is used to quantitatively test the model for EBI signals. Birefringence attributed to localized electrokinetic gel distortion and to intrinsic DNA birefringence is studied by fitting ethidium bromide fluorescence profiles to EBI results. Fluorescence polarization imaging is used to assess the influence of localized gel distortion on nucleic acid orientation across a fragment band. It is shown that DNA aligns parallel, on average, with an applied electric field independent of its location within a band. Both EBI sensitivity and quantitation are improved through image processing techniques which separate the DNA Kerr effect and induced electrokinetic distortion contributions. Under standard electrophoresis conditions, detection limits of 8 ng DNA per well are obtained in hydroxyethylated agarose without signal averaging. Maintaining constant gel temperature is shown to improve the quality of the images. Stress patterns in agarose gels during DC and field-inversion gel electrophoresis (FIGE) of nucleic acid fragments of varying sizes are mapped using EBI. In addition, online EBI monitoring during FIGE of megabase pair DNA size standards is demonstrated.

  20. Agarose gel electrophoresis for the separation of DNA fragments.

    PubMed

    Lee, Pei Yun; Costumbrado, John; Hsu, Chih-Yuan; Kim, Yong Hoon

    2012-04-20

    Agarose gel electrophoresis is the most effective way of separating DNA fragments of varying sizes ranging from 100 bp to 25 kb(1). Agarose is isolated from the seaweed genera Gelidium and Gracilaria, and consists of repeated agarobiose (L- and D-galactose) subunits(2). During gelation, agarose polymers associate non-covalently and form a network of bundles whose pore sizes determine a gel's molecular sieving properties. The use of agarose gel electrophoresis revolutionized the separation of DNA. Prior to the adoption of agarose gels, DNA was primarily separated using sucrose density gradient centrifugation, which only provided an approximation of size. To separate DNA using agarose gel electrophoresis, the DNA is loaded into pre-cast wells in the gel and a current applied. The phosphate backbone of the DNA (and RNA) molecule is negatively charged, therefore when placed in an electric field, DNA fragments will migrate to the positively charged anode. Because DNA has a uniform mass/charge ratio, DNA molecules are separated by size within an agarose gel in a pattern such that the distance traveled is inversely proportional to the log of its molecular weight(3). The leading model for DNA movement through an agarose gel is "biased reptation", whereby the leading edge moves forward and pulls the rest of the molecule along(4). The rate of migration of a DNA molecule through a gel is determined by the following: 1) size of DNA molecule; 2) agarose concentration; 3) DNA conformation(5); 4) voltage applied, 5) presence of ethidium bromide, 6) type of agarose and 7) electrophoresis buffer. After separation, the DNA molecules can be visualized under uv light after staining with an appropriate dye. By following this protocol, students should be able to: Understand the mechanism by which DNA fragments are separated within a gel matrix Understand how conformation of the DNA molecule will determine its mobility through a gel matrix Identify an agarose solution of appropriate

  1. Nanoparticle gel electrophoresis: bare charged spheres in polyelectrolyte hydrogels.

    PubMed

    Li, Fei; Hill, Reghan J

    2013-03-15

    Nanoparticle gel electrophoresis has recently emerged as an attractive means of separating and characterizing nanoparticles. Consequently, a theory that accounts for electroosmotic flow in the gel, and coupling of the nanoparticle and hydrogel electrostatics and hydrodynamics, is required, particularly for gels in which the mesh size is comparable to or smaller than the particle radii. Here, we present an electrokinetic model for charged, spherical colloidal particles undergoing electrophoresis in charged (polyelectrolyte) hydrogels: the gel-electrophoresis analogue of Henry's theory for electrophoresis in Newtonian electrolytes. We compare numerically exact solutions of the model with several independent asymptotic approximations, identifying regions in the parameter space where these approximations are accurate or break down. As previously assumed in the literature, Henry's formula, modified by the addition of a constant electroosmotic flow mobility, is accurate only for nanoparticles that are small compared to the hydrogel mesh size. We derived an exact analytical solution of the full model by judiciously modifying the theory of Allison et al. for uncharged gels, drawing on the superposition methodology of Doane et al. to account for hydrogel charge. This furnishes accurate and economical mobility predictions for the entire parameter space. The present model suggests that nanoparticle size separations (with diameters ≲40 nm) are optimal at low ionic strength, with a gel mesh size that is selected according to the particle charging mechanism. For weakly charged particles, optimal size separation is achieved when the Brinkman screening length is matched to the mean particle size.

  2. Inexpensive and safe DNA gel electrophoresis using household materials.

    PubMed

    Ens, S; Olson, A B; Dudley, C; Ross, N D; Siddiqi, A A; Umoh, K M; Schneegurt, M A

    2012-01-01

    Gel electrophoresis is the single most important molecular biology technique and it is central to life sciences research, but it is often too expensive for the secondary science classroom or homeschoolers. A simple safe low-cost procedure is described here that uses household materials to construct and run DNA gel electrophoresis. Plastic containers are fitted with aluminum foil electrodes and 9-V batteries to run food-grade agar-agar gels using aquarium pH buffers and then stained with gentian violet. This activity was tested in a high school biology classroom with significantly positive responses on postactivity reflective surveys. The electrophoresis activity addresses several Life Science Content Standard C criteria, including aspects of cell biology, genetics, and evolution. It also can be used to teach aspects of motion and force in the physical science classroom.

  3. THERMAL DETECTION OF DNA AND PROTEINS DURING GEL ELECTROPHORESIS

    SciTech Connect

    R. JOHNSTON

    2000-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to try to detect unstained, untagged, unlabeled DNA bands in real-time during gel electrophoresis using simple thermal measurements. The technical and ES&H advantages to this approach could potentially be quite significant, especially given the extreme importance of gel electrophoresis to a wide variety of practical and research fields. The project was unable to demonstrate sufficient thermal sensitivity to detect DNA bands. It is clear that we still do not understand the gel electrophoresis phenomenon very well. The temperature control techniques developed during the course of this project have other useful applications.

  4. Sample collection system for gel electrophoresis

    SciTech Connect

    Olivares, Jose A.; Stark, Peter C.; Dunbar, John M.; Hill, Karen K.; Kuske, Cheryl R.; Roybal, Gustavo

    2004-09-21

    An automatic sample collection system for use with an electrophoretic slab gel system is presented. The collection system can be used with a slab gel have one or more lanes. A detector is used to detect particle bands on the slab gel within a detection zone. Such detectors may use a laser to excite fluorescently labeled particles. The fluorescent light emitted from the excited particles is transmitted to low-level light detection electronics. Upon the detection of a particle of interest within the detection zone, a syringe pump is activated, sending a stream of buffer solution across the lane of the slab gel. The buffer solution collects the sample of interest and carries it through a collection port into a sample collection vial.

  5. Properties of nucleic acid staining dyes used in gel electrophoresis.

    PubMed

    Haines, Alicia M; Tobe, Shanan S; Kobus, Hilton J; Linacre, Adrian

    2015-03-01

    Nucleic acid staining dyes are used for detecting nucleic acids in electrophoresis gels. Historically, the most common dye used for gel staining is ethidium bromide, however due to its toxicity and mutagenicity other dyes that are safer to the user and the environment are preferred. This Short Communication details the properties of dyes now available and their sensitivity for detection of DNA and their ability to permeate the cell membrane. It was found that GelRed™ was the most sensitive and safest dye to use with UV light excitation, and both GelGreen™ and Diamond™ Nucleic Acid Dye were sensitive and the safer dyes using blue light excitation.

  6. Enhanced detection of gold nanoparticles in agarose gel electrophoresis.

    PubMed

    Hasenoehrl, Carina; Alexander, Colleen M; Azzarelli, Nicholas N; Dabrowiak, James C

    2012-04-01

    Gel electrophoresis is a powerful tool in gold nanoparticle (AuNP) research. While the technique is sensitive to the size, charge, and shape of particles, its optimal performance requires a relatively large amount of AuNP in the loading wells for visible detection of bands. We here describe a novel and more sensitive method for detecting AuNPs in agarose gels that involves staining the gel with the common organic fluorophore fluorescein, to produce AuNP band intensities that are linear with nanoparticle concentration and almost an order of magnitude larger than those obtained without staining the gel.

  7. Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis

    PubMed Central

    Murphy, Sandra; Dowling, Paul; Ohlendieck, Kay

    2016-01-01

    The pioneering work by Patrick H. O’Farrell established two-dimensional gel electrophoresis as one of the most important high-resolution protein separation techniques of modern biochemistry (Journal of Biological Chemistry 1975, 250, 4007–4021). The application of two-dimensional gel electrophoresis has played a key role in the systematic identification and detailed characterization of the protein constituents of skeletal muscles. Protein changes during myogenesis, muscle maturation, fibre type specification, physiological muscle adaptations and natural muscle aging were studied in depth by the original O’Farrell method or slightly modified gel electrophoretic techniques. Over the last 40 years, the combined usage of isoelectric focusing in the first dimension and sodium dodecyl sulfate polyacrylamide slab gel electrophoresis in the second dimension has been successfully employed in several hundred published studies on gel-based skeletal muscle biochemistry. This review focuses on normal and physiologically challenged skeletal muscle tissues and outlines key findings from mass spectrometry-based muscle proteomics, which was instrumental in the identification of several thousand individual protein isoforms following gel electrophoretic separation. These muscle-associated protein species belong to the diverse group of regulatory and contractile proteins of the acto-myosin apparatus that forms the sarcomere, cytoskeletal proteins, metabolic enzymes and transporters, signaling proteins, ion-handling proteins, molecular chaperones and extracellular matrix proteins. PMID:28248237

  8. Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis.

    PubMed

    Murphy, Sandra; Dowling, Paul; Ohlendieck, Kay

    2016-09-09

    The pioneering work by Patrick H. O'Farrell established two-dimensional gel electrophoresis as one of the most important high-resolution protein separation techniques of modern biochemistry (Journal of Biological Chemistry1975, 250, 4007-4021). The application of two-dimensional gel electrophoresis has played a key role in the systematic identification and detailed characterization of the protein constituents of skeletal muscles. Protein changes during myogenesis, muscle maturation, fibre type specification, physiological muscle adaptations and natural muscle aging were studied in depth by the original O'Farrell method or slightly modified gel electrophoretic techniques. Over the last 40 years, the combined usage of isoelectric focusing in the first dimension and sodium dodecyl sulfate polyacrylamide slab gel electrophoresis in the second dimension has been successfully employed in several hundred published studies on gel-based skeletal muscle biochemistry. This review focuses on normal and physiologically challenged skeletal muscle tissues and outlines key findings from mass spectrometry-based muscle proteomics, which was instrumental in the identification of several thousand individual protein isoforms following gel electrophoretic separation. These muscle-associated protein species belong to the diverse group of regulatory and contractile proteins of the acto-myosin apparatus that forms the sarcomere, cytoskeletal proteins, metabolic enzymes and transporters, signaling proteins, ion-handling proteins, molecular chaperones and extracellular matrix proteins.

  9. Difference gel electrophoresis (DIGE) using CyDye DIGE fluor minimal dyes.

    PubMed

    Chakravarti, Bulbul; Gallagher, Sean R; Chakravarti, Deb N

    2005-02-01

    One- and two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (1- and 2-D SDS-PAGE) have been widely used for the separation and quantitative estimation of proteins. Following electrophoresis, the gels are stained appropriately to visualize the proteins. Difference gel electrophoresis (DIGE) is a new technique in which different protein samples, individually labeled with specific CyDyes, are combined together followed by electrophoresis and post electrophoretic co-detection and co-analysis on the same gel. CyDye DIGE fluor minimal dyes, which consist of three different CyDyes with different spectral characteristics, have been widely used for such purposes. The technique is highly sensitive with a wide dynamic range for detection of proteins and compatible with state-of-the-art protein identification techniques using mass spectrometry. Although DIGE is mainly used to compare differential expression of various protein samples using 2-D SDS-PAGE, 1-D DIGE also has important applications in quantitative proteomic studies.

  10. Pulsed-field gel electrophoresis typing of Staphylococcus aureus isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pulsed-field gel electrophoresis (PFGE) is the most applied and effective genetic typing method for epidemiological studies and investigation of foodborne outbreaks caused by different pathogens, including Staphylococcus aureus. The technique relies on analysis of large DNA fragments generated by th...

  11. Dynamics of DNA molecules under gel electrophoresis

    SciTech Connect

    Kotaka, Tadao, Adachi, Shiro; Shikata, Toshiyuki

    1993-12-31

    Electrophoretic mobilities {mu} of double stranded linear DNAs were examined in agarose gels subjected to a biased sinusoidal field (BSF) that utilizes a sinusoidal field of strength E{sub s} and frequency f superposed on a steady bias field of strength E{sub b}. Under BSF with E{sub s} {much_gt} E{sub b}. DNA fragments with the size M > 20 kbp exhibited peculiar behavior which the authors called a pin down phenomenon in that the {mu} shows a minimum {mu}{sub p} at a particular f{sub p} (pin down frequency) specific to M, C{sub gel} and the field strengths. The dynamics of DNA molecules under such pin-down conditions were examined by direct observation via fluorescence microscopy as well as dynamic electric birefringence.

  12. Two-dimensional gel electrophoresis: vertical isoelectric focusing.

    PubMed

    Dorri, Yaser

    2012-01-01

    Two-dimensional gel electrophoresis (2-DE) is one of the most powerful tools for separating proteins based on their size and charge. 2-DE is very useful to separate two proteins with identical molecular weights but different charges, which cannot be achieved with just sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Here, a simpler and easier version of 2-DE is presented which is also faster than all the currently available techniques. In this modified version of 2-DE, isoelectric focusing is carried out in the first dimension using a vertical SDS-PAGE apparatus. Following the first-dimensional IEF, each individual lane is excised from the IEF gel and, after a 90° rotation, is inserted into a second-dimensional SDS-PAGE, which can be stained with Coomassie Brilliant Blue for protein analysis or immunoblotted for further analysis. This version of IEF can be run in less than 2 h compared to the overnight run required by O'Farrell's method. Difficult tube gel casting and gel extrusion as well as tube gel distortion are eliminated in our method. This method is simpler, faster, and inexpensive. Both dimensions can be done on the same SDS-PAGE apparatus, and up to ten samples can be run simultaneously using one gel.

  13. Insight of Saffron Proteome by Gel-Electrophoresis.

    PubMed

    Paredi, Gianluca; Raboni, Samanta; Marchesani, Francesco; Ordoudi, Stella A; Tsimidou, Maria Z; Mozzarelli, Andrea

    2016-01-29

    Saffron is a spice comprised of the dried stigmas and styles of Crocus sativus L. flowers and, since it is very expensive, it is frequently adulterated. So far, proteomic tools have never been applied to characterize the proteome of saffron or identify possible cases of fraud. In this study, 1D-Gel Electrophoresis was carried out to characterize the protein profile of (i) fresh stigmas and styles of the plant; (ii) dried stigmas and styles from different geographical origins (Spanish, Italian, Greek and Iranian) that had been stored for various periods of time after their processing; and (iii) two common plant adulterants, dried petals of Carthamus tinctorius L. and dried fruits of Gardenia jasminoides Ellis. A selective protein extraction protocol was applied to avoid interference from colored saffron metabolites, such as crocins, during electrophoretic analyses of saffron. We succeeded in separating and assigning the molecular weights to more than 20 proteins. In spite of the unavailability of the genome of saffron, we were able to identify five proteins by Peptide Mass Fingerprinting: phosphoenolpyruvate carboxylase 3, heat shock cognate 70 KDa protein, crocetin glucosyltransferase 2, α-1,4-glucan-protein synthase and glyceraldehydes-3-phosphate dehydrogenase-2. Our findings indicate that (i) few bands are present in all saffron samples independently of origin and storage time, with amounts that significantly vary among samples and (ii) aging during saffron storage is associated with a reduction in the number of detectable bands, suggesting that proteases are still active. The protein pattern of saffron was quite distinct from those of two common adulterants, such as the dried petals of Carthamus tinctorius and the dried fruits of Gardenia jasminoides indicating that proteomic analyses could be exploited for detecting possible frauds.

  14. Thermally reversible gels in electrophoresis. I - Matrix characterization

    NASA Technical Reports Server (NTRS)

    Righetti, Pier Giorgio; Snyder, Robert S.

    1988-01-01

    Two series of thermally reversible hydrogen-bonded gels have been characterized: (5 pct) PVA-(4 pct) PEG and (5 pct) PVA-(0.04 pct) borate gels. They both have extremely low melting points (16-17 C) and could be of potential interest for recovery of proteins after preparative electrophoresis. The PVA-borate gels can be exploited in the pH range 7-11 by progressively increasing the borate content in the pH interval 8 to 7 and concomitantly decreasing the borate levels in the pH zone 8 to 11. It is hypothesized that the low melting point of these gels is due to the fact that they are sparingly and sparsely hydrogen bonded along the PVA chain: on the average, 1 OH group out of 3 or 4 OH groups in the PVA polymer should be engaged in H-bond formation.

  15. Pulsed field gel electrophoresis on frozen tumour tissue sections.

    PubMed Central

    Boultwood, J.; Kaklamanis, L.; Gatter, K. C.; Wainscoat, J. S.

    1992-01-01

    The application of pulsed field gel electrophoresis (PFGE) to the molecular genetic analysis of solid tumours has been restricted by the requirement for whole single cells as a DNA source. A simple technique which allows for the direct analysis of histologically characterised solid tumour material by pulsed field gel electrophoresis was developed. Single frozen tissue sections obtained from colonic carcinoma specimens were embedded without further manipulation in molten, low melting temperature agarose. The tumour DNA contained within the agarose plug was subjected to restriction enzyme digestion and PFGE. Sufficient high molecular weight DNA is yielded by this method to obtain a hybridisation signal with a single copy probe. Histological examination of adjacent tissue sections may also be carried out, permitting correlation between molecular analysis and tumour histology. Images PMID:1401187

  16. Blood grouping based on PCR methods and agarose gel electrophoresis.

    PubMed

    Sell, Ana Maria; Visentainer, Jeane Eliete Laguila

    2015-01-01

    The study of erythrocyte antigens continues to be an intense field of research, particularly after the development of molecular testing methods. More than 300 specificities have been described by the International Society for Blood Transfusion as belonging to 33 blood group systems. The polymerase chain reaction (PCR) is a central tool for red blood cells (RBC) genotyping. PCR and agarose gel electrophoresis are low cost, easy, and versatile in vitro methods for amplifying defined target DNA (RBC polymorphic region). Multiplex-PCR, AS-PCR (Specific Allele Polymerase Chain Reaction), and RFLP-PCR (Restriction Fragment Length Polymorphism-Polymerase Chain Reaction) techniques are usually to identify RBC polymorphisms. Furthermore, it is an easy methodology to implement. This chapter describes the PCR methodology and agarose gel electrophoresis to identify the polymorphisms of the Kell, Duffy, Kidd, and MNS blood group systems.

  17. Separation of long RNA by agarose-formaldehyde gel electrophoresis.

    PubMed

    Mansour, Farrah H; Pestov, Dimitri G

    2013-10-01

    We describe a method to facilitate electrophoretic separation of high-molecular-weight RNA species, such as ribosomal RNAs and their precursors, on agarose-formaldehyde gels. Two alternative "pK-matched" buffer systems were substituted for the traditionally used Mops-based conductive medium. The key advantages include shortened run times, a 5-fold reduction in formaldehyde concentration, a significantly improved resolution of long RNAs, and consistency in separation. The new procedure has a streamlined work flow that helps to minimize errors and is broadly applicable to agarose gel electrophoresis of RNA samples and their subsequent analysis by Northern blotting.

  18. Polyacrylamide gel electrophoresis of intact bacteriophage T4D particles.

    PubMed Central

    Childs, J D; Birnboim, H C

    1975-01-01

    A method for the electrophoresis of intact bacteriophage T4D particles through polyacrylamide gels has been developed. It was found that phage particles will migrate through dilute polyacrylamide gels (less than 2.1%) in the presence of a low concentration of MgCl2. As few as 5 x 10(9) phage particles can be seen directly as a light-scattering band during the course of electrophoresis. The band can also be detected by scanning gels at 260 to 265 nm or by eluting viable phage particles from gel slices. A new mutant (eph1) has been identified on the basis of its decreased electrophoretic mobility compared with that of the wild type; mutant particles migrated 14% slower than the wild type particles at pH 8.3 and 35% slower at pH 5.0. The isoelectric points of both the wild type and eph1 mutant were found to be between pH 4.0 and 5.0. Particles of T4 with different head lengths were also studied. Petite particles (heads 20% shorter than normal) migrated at the same rate as normal-size particles. Giant particles, heterogenous with respect to head length (two to nine times normal), migrated faster than normal-size particles as a diffuse band. This diffuseness was due to separation within the band of particles having mobilities ranging from 8 to 35% faster than those of normal-size particles. These observations extend the useful range of polyacrylamide gel electrophoresis to include much larger particles than have previously been studied, including most viruses. Images PMID:240037

  19. Molecular transport in collagenous tissues measured by gel electrophoresis.

    PubMed

    Hunckler, Michael D; Tilley, Jennifer M R; Roeder, Ryan K

    2015-11-26

    Molecular transport in tissues is important for drug delivery, nutrient supply, waste removal, cell signaling, and detecting tissue degeneration. Therefore, the objective of this study was to investigate gel electrophoresis as a simple method to measure molecular transport in collagenous tissues. The electrophoretic mobility of charged molecules in tissue samples was measured from relative differences in the velocity of a cationic dye passing through an agarose gel in the absence and presence of a tissue section embedded within the gel. Differences in electrophoretic mobility were measured for the transport of a molecule through different tissues and tissue anisotropy, or the transport of different sized molecules through the same tissue. Tissue samples included tendon and fibrocartilage from the proximal (tensile) and distal (compressive) regions of the bovine flexor tendon, respectively, and bovine articular cartilage. The measured electrophoretic mobility was greatest in the compressive region of the tendon (fibrocartilage), followed by the tensile region of tendon, and lowest in articular cartilage, reflecting differences in the composition and organization of the tissues. The anisotropy of tendon was measured by greater electrophoretic mobility parallel compared with perpendicular to the predominate collagen fiber orientation. Electrophoretic mobility also decreased with increased molecular size, as expected. Therefore, the results of this study suggest that gel electrophoresis may be a useful method to measure differences in molecular transport within various tissues, including the effects of tissue type, tissue anisotropy, and molecular size.

  20. Higher sensitivity of capillary electrophoresis in detecting hemoglobin A2'compared to traditional gel electrophoresis.

    PubMed

    Oleske, Deanna Alicia; Huang, Richard Sheng Poe; Dasgupta, Amitava; Nguyen, Andy; Wahed, Amer

    2014-01-01

    HbA2' (also called Hb B2) is the most common delta-globin chain defect and is reported to occur in 1-2% of the African American population. The major clinical significance of HbA2' is that the failure to detect it might lead to an underestimation of the total HbA2, leading to failure to diagnose β-thalassemia minor. In order to diagnose β-thalassemia minor, both HbA2 and HbA2' levels must be combined.Hb A2' accounts for a small percentage (1-2%) of the total hemoglobin in heterozygotes. It is difficult to detect this small amount by traditional gel electrophoresis. Using HPLC Hb A2' is easily detected as it produces a minor peak in the S window. Other conditions which might interfere with detection of HbA2' by HPLC include Hb S trait or Hb SS disease (Hb A2' hidden in the S peak), transfused Hb SS (Hb S peak may be very small), Hb C trait or Hb CC disease (glycosylated Hb C elutes in the S window), and Hb G (Hb G2 elutes in the S window). All of the above conditions, including Hb A2', occur most commonly in the same ethnic group (African American). We reviewed 654 consecutive cases over a period of three months for the presence of Hb A2' in our laboratory where capillary electrophoresis is used as the primary diagnostic tool. We detected seven cases (1.07 %) of HbA2'. In contrast, we did not detect any HbA2' using conventional gel electrophoresis in the last one year (2,580 cases). Although in none of the seven cases the sum of Hb A2 and Hb A2' exceeded 3.5%, we believe that capillary electrophoresis allows for a better detection of Hb A2' than gel electrophoresis and HPLC.

  1. Simultaneous immunoblotting analysis with activity gel electrophoresis and 2-D gel electrophoresis.

    PubMed

    Lee, Der-Yen; Chang, Geen-Dong

    2015-01-01

    Diffusion blotting method can couple immunoblotting analysis with another biochemical technique in a single polyacrylamide gel, however, with lower transfer efficiency as compared to the conventional electroblotting method. Thus, with diffusion blotting, protein blots can be obtained from an SDS polyacrylamide gel for zymography assay, from a native polyacrylamide gel for electrophoretic mobility shift assay (EMSA) or from a 2-D polyacrylamide gel for large-scale screening and identification of a protein marker. Thereafter, a particular signal in zymography, electrophoretic mobility shift assay, and 2-dimensional gel can be confirmed or identified by simultaneous immunoblotting analysis with a corresponding antiserum. These advantages make diffusion blotting desirable when partial loss of transfer efficiency can be tolerated or be compensated by a more sensitive immunodetection reaction using enhanced chemiluminescence detection.

  2. Graphitic carbon nitride embedded hydrogels for enhanced gel electrophoresis.

    PubMed

    Zarei, Mohammad; Ahmadzadeh, Hossein; Goharshadi, Elaheh K; Farzaneh, Ali

    2015-08-05

    Here, we show, for the first time, the use of graphitic carbon nitride (g-C3N4) nanosheets to improve the resolution and efficiency of protein separation in gel electrophoresis. By loading 0.04% (m/v) g-C3N4 nanosheets into the polyacrylamide gel at 25 °C, the thermal conductivity increased approximately 80% which resulted in 20% reduction in Joule heating and overall increase of separation efficiency. Also, polymerization of acrylamide occurred in the absence of tetramethylethylenediamine (TEMED) when the polyacrylamide gel contained g-C3N4 nanosheets. Hence, the g-C3N4 act simultaneously as a polymerization catalyst as well as heat sinks to lower Joule heating effect on band broadening.

  3. Gel and free solution electrophoresis of variably charged polymers.

    PubMed

    Hoagland, D A; Smisek, D L; Chen, D Y

    1996-06-01

    To assess the role of charge density on polyelectrolyte mobility, both gel and free solution electrophoresis experiments are performed on poly(acrylic acid) and acrylic acid/acrylamide copolymers. Control of charge density for poly-(acrylic acid) is achieved through solution pH, while control for acrylic acid/ acrylamide copolymers is obtained through chain composition. In either approach, the effective fraction of charged repeat units can be varied from 0 to 100% without a major interruption of solvent quality. Polyelectrolyte mobility in the presence of a monovalent counterion is observed to rise linearly with charge density when this density is low. A transition to charge density independence then occurs over a surprisingly narrow window of charge density. For vinyl polymers of the sort examined here, the transition occurs when 35-40% of the repeat units are charged. These observations are qualitatively consistent with the free solution electrophoresis model proposed by Manning and several previous data sets. An unexpected overlap of normalized gel and free solution data reveals that the charge density exerts a comparable influence in either environment. Results from the present study help define the experimental conditions in which electrophoresis can provide polymer separation by charge density and those in which the method can provide polymer separation by molecular weight.

  4. A continuous acetic acid system for polyacrylamide gel electrophoresis of gliadins and other prolamines.

    PubMed

    Clements, R L

    1988-02-01

    A polyacrylamide gel electrophoresis system buffered by acetic acid alone was developed for electrophoresis of prolamines. When applied to gliadin electrophoresis, the acetic acid system produces more bands than does a conventional aluminum lactate-lactic acid system (using 12% acrylamide gels). The acetic acid system is relatively simple, requiring a single buffer component that is universally available in high purity.

  5. Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution.

    PubMed

    Stellwagen, Nancy C

    2009-06-01

    This review describes the electrophoresis of curved and normal DNA molecules in agarose gels, polyacrylamide gels and in free solution. These studies were undertaken to clarify why curved DNA molecules migrate anomalously slowly in polyacrylamide gels but not in agarose gels. Two milestone papers are cited, in which Ferguson plots were used to estimate the effective pore size of agarose and polyacrylamide gels. Subsequent studies on the effect of the electric field on agarose and polyacrylamide gel matrices, DNA interactions with the two gel matrices, and the effect of curvature on the free solution mobility of DNA are also described. The combined results suggest that the anomalously slow mobilities observed for curved DNA molecules in polyacrylamide gels are primarily due to preferential interactions of curved DNAs with the polyacrylamide gel matrix; the restrictive pore size of the matrix is of lesser importance. In free solution, DNA mobilities increase with increasing molecular mass until leveling off at a plateau value of (3.17 +/- 0.01) x 10(-4) cm2/V s in 40 mM Tris-acetate-EDTA buffer at 20 degrees C. Curved DNA molecules migrate anomalously slowly in free solution as well as in polyacrylamide gels, explaining why the Ferguson plots of curved and normal DNAs containing the same number of base pairs extrapolate to different mobilities at zero gel concentration.

  6. Two-dimensional gel electrophoresis in bacterial proteomics.

    PubMed

    Curreem, Shirly O T; Watt, Rory M; Lau, Susanna K P; Woo, Patrick C Y

    2012-05-01

    Two-dimensional gel electrophoresis (2-DE) is a gel-based technique widely used for analyzing the protein composition of biological samples. It is capable of resolving complex mixtures containing more than a thousand protein components into individual protein spots through the coupling of two orthogonal biophysical separation techniques: isoelectric focusing (first dimension) and polyacrylamide gel electrophoresis (second dimension). 2-DE is ideally suited for analyzing the entire expressed protein complement of a bacterial cell: its proteome. Its relative simplicity and good reproducibility have led to 2-DE being widely used for exploring proteomics within a wide range of environmental and medically-relevant bacteria. Here we give a broad overview of the basic principles and historical development of gel-based proteomics, and how this powerful approach can be applied for studying bacterial biology and physiology. We highlight specific 2-DE applications that can be used to analyze when, where and how much proteins are expressed. The links between proteomics, genomics and mass spectrometry are discussed. We explore how proteomics involving tandem mass spectrometry can be used to analyze (post-translational) protein modifications or to identify proteins of unknown origin by de novo peptide sequencing. The use of proteome fractionation techniques and non-gel-based proteomic approaches are also discussed. We highlight how the analysis of proteins secreted by bacterial cells (secretomes or exoproteomes) can be used to study infection processes or the immune response. This review is aimed at non-specialists who wish to gain a concise, comprehensive and contemporary overview of the nature and applications of bacterial proteomics.

  7. System for loading slab-gel holders for electrophoresis separation

    DOEpatents

    Anderson, Norman G.; Anderson, Norman L.

    1979-01-01

    A slab-gel loading system includes a prismatic chamber for filling a plurality of slab-gel holders simultaneously. Each slab-gel holder comprises a pair of spaced apart plates defining an intermediate volume for gel containment. The holders are vertically positioned in the chamber with their major surfaces parallel to the chamber end walls. A liquid inlet is provided at the corner between the bottom and a side wall of the chamber for distributing a polymerizable monomer solution or a coagulable colloidal solution into each of the holders. The chamber is rotatably supported so that filling can begin with the corner having the liquid inlet directed downwardly such that the solution is gently funneled upwardly, without mixing, along the diverging side and bottom surfaces. As filling proceeds, the chamber is gradually rotated to position the bottom wall in a horizontal mode. The liquid filling means includes a plastic envelope with a septum dividing it into two compartments for intermixing two solutions of different density and thereby providing a liquid flow having a density gradient. The resulting gels have a density gradient between opposite edges for subsequent use in electrophoresis separations.

  8. Challenges of glycoprotein analysis by microchip capillary gel electrophoresis.

    PubMed

    Engel, Nicole; Weiss, Victor U; Wenz, Christian; Rüfer, Andreas; Kratzmeier, Martin; Glück, Susanne; Marchetti-Deschmann, Martina; Allmaier, Günter

    2015-08-01

    Glycosylations severely influence a protein's biological and physicochemical properties. Five exemplary proteins with varying glycan moieties were chosen to establish molecular weight (MW) determination (sizing), quantitation, and sensitivity of detection for microchip capillary gel electrophoresis (MCGE). Although sizing showed increasing deviations from literature values (SDS-PAGE or MALDI-MS) with a concomitant higher degree of analyte glycosylation, the reproducibility of MW determination and accuracy of quantitation with high sensitivity and reliability were demonstrated. Additionally, speed of analysis together with the low level of analyte consumption render MCGE attractive as an alternative to conventional SDS-PAGE.

  9. Electrophoresis for genotyping: temporal thermal gradient gel electrophoresis for profiling of oligonucleotide dissociation.

    PubMed Central

    Day, I N; O'Dell, S D; Cash, I D; Humphries, S E; Weavind, G P

    1995-01-01

    Traditional use of an oligonucleotide probe to determine genotype depends on perfect base pairing to a single-stranded target which is stable to a higher temperature than when imperfect binding occurs due to a mismatch in the target sequence. Bound oligonucleotide is detected at a predetermined single temperature 'snapshot' of the melting profile, allowing the distinction of perfect from imperfect base pairing. In heterozygotes, the presence of the alternative sequence must be verified with a second oligonucleotide complementary to the variant. Here we describe a system of real-time variable temperature electrophoresis during which the oligonucleotide dissociates from its target. In 20% polyacrylamide the target strand has minimal mobility and released oligonucleotide migrates extremely quickly so that the 'freed' rather than the 'bound' is displayed. The full profile of oligonucleotide dissociation during gel electrophoresis is represented along the gel track, and a single oligonucleotide is sufficient to confirm heterozygosity, since the profile displays two separate peaks. Resolution is great, with use of short track lengths enabling analysis of dense arrays of samples. Each gel track can contain a different target or oligonucleotide and the temperature gradient can accommodate oligonucleotides of different melting temperatures. This provides a convenient system to examine the interaction of many different oligonucleotides and target sequences simultaneously and requires no prior knowledge of the mutant sequence(s) nor of oligonucleotide melting temperatures. The application of the technique is described for screening of a hotspot for mutations in the LDL receptor gene in patients with familial hypercholesterolaemia. Images PMID:7630718

  10. Biochemical Identification of the Two Races of Radopholus similis by Polyacrylamide Gel Electrophoresis.

    PubMed

    Huettel, R N; Dickson, D W; Kaplan, D T

    1983-07-01

    Analysis of proteins of the banana and citrus race of Radopholus similis was carried out by several different types of polyacrylamide gel electrophoresis. These included standard slab gel, SDS slab gel, gradient slab gel, and two-ditnensional slab gel electrophoresis. A major band difference was detected between the two races by slab gel electrophoresis. However, several other poorly resolved but consistent hands of high molecular weight proteins near the gel origin also were considered as diagnostic. Resolution of protein bands was greatly improved by SDS and gradient slab gel electrophoresis, but no differences could be detected among the proteins resolved between the two rares with these techniques. Two-dimensional gels revealed a large number of proteins, but background staining obscured them hindering interpretation. When nematode races were reared on three different host plants, no differences in protein patterns were detected between them, indicating host preferences does not play a role in determining the types proteins occurring in these nematodes.

  11. Comparison between agarose gel electrophoresis and capillary electrophoresis for variable numbers of tandem repeat typing of Mycobacterium tuberculosis.

    PubMed

    Yokoyama, Eiji; Kishida, Kazunori; Uchimura, Masako; Ichinohe, Sadato

    2006-06-01

    Variable numbers of tandem repeat (VNTR) typing of Mycobacterium tuberculosis was performed on 54 strains including 23 strains derived from 9 outbreaks. PCR amplicon sizes of 12 mycobacterial interspersed repetitive unit tandem repeat loci were measured using both agarose gel electrophoresis and capillary electrophoresis. Similarities using agarose gel electrophoresis of Euclidian distances among the 23 strains derived from the 9 outbreaks were significantly lower than that using capillary electrophoresis (Wilcoxon signed ranks test, P < 0.01). By clustering analysis using unweighted pair group method using arithmetic averages, all of the 23 strains derived from the 9 outbreaks were each clustered with more than 90% similarities based on the distance using capillary electrophoresis. In contrast, differential clusters with more than 90% similarity were observed with only 7 strains derived from 3 outbreaks when analyzed by agarose gel electrophoresis. These results indicated that measurement of PCR amplicon size of tandem repeat loci should be carried out using capillary electrophoresis and that agarose gel electrophoresis is not suitable for clustering analysis of M. tuberculosis VNTR typing.

  12. Optimal processing for gel electrophoresis images: Applying Monte Carlo Tree Search in GelApp.

    PubMed

    Nguyen, Phi-Vu; Ghezal, Ali; Hsueh, Ya-Chih; Boudier, Thomas; Gan, Samuel Ken-En; Lee, Hwee Kuan

    2016-08-01

    In biomedical research, gel band size estimation in electrophoresis analysis is a routine process. To facilitate and automate this process, numerous software have been released, notably the GelApp mobile app. However, the band detection accuracy is limited due to a band detection algorithm that cannot adapt to the variations in input images. To address this, we used the Monte Carlo Tree Search with Upper Confidence Bound (MCTS-UCB) method to efficiently search for optimal image processing pipelines for the band detection task, thereby improving the segmentation algorithm. Incorporating this into GelApp, we report a significant enhancement of gel band detection accuracy by 55.9 ± 2.0% for protein polyacrylamide gels, and 35.9 ± 2.5% for DNA SYBR green agarose gels. This implementation is a proof-of-concept in demonstrating MCTS-UCB as a strategy to optimize general image segmentation. The improved version of GelApp-GelApp 2.0-is freely available on both Google Play Store (for Android platform), and Apple App Store (for iOS platform).

  13. Detection of serum proteins by native polyacrylamide gel electrophoresis using Blue Sepharose CL-6B-containing stacking gels.

    PubMed

    Muratsubaki, Haruhiro; Satake, Kaoru; Yamamoto, Yasuhisa; Enomoto, Keiichiro

    2002-08-15

    Analysis of serum proteins by native polyacrylamide gel electrophoresis is difficult because albumin is abundant in serum and interferes with the resolution of other proteins, especially alpha-antitrypsin which has mobility that is very similar to that of albumin. We present here a method in which serum proteins are separated by polyacrylamide gel electrophoresis using stacking gels containing Blue Sepharose CL-6B, which has a high affinity for albumin, lipoproteins, kinases, and pyridine-nucleotide-dependent oxidoreductases. During electrophoresis, proteins that bind to Blue Sepharose CL-6B stay in the stacking gel and do not migrate into the separating gel. As a consequence, certain proteins, including alpha(1)-antitrypsin, can be detected as clear bands. This method overcomes the requirement for fractionation of serum samples prior to electrophoresis to remove albumin and allows the simultaneous analysis of many samples.

  14. Analysis of strains of Campylobacter fetus by pulsed-field gel electrophoresis.

    PubMed Central

    Fujita, M; Fujimoto, S; Morooka, T; Amako, K

    1995-01-01

    Campylobacter fetus chromosomal DNA from 21 strains was analyzed by pulsed-field gel electrophoresis. The fingerprint patterns generated with SmaI and SalI were distinctive. Using the profiles obtained by pulsed-field gel electrophoresis, we established the phylogenetic dendrogram of C. fetus to identify the genetic relationship of the strains. PMID:7650215

  15. DNA Length Ranges Exhibiting Distinct Separation Mechanisms in Gel Electrophoresis

    NASA Astrophysics Data System (ADS)

    Beheshti, A.; van Winkle, D. H.; Rill, R. L.

    2003-03-01

    Electrophoresis was performed on double stranded DNA ranging from 200 to 194,000 bp in agarose gel concentrations from 0.4% - 1.3%. The electric field was varied from 0.62 to 6.21 V/cm. A wide range of electric fields and gel concentrations were used to study how the new interpolation equation, frac1μ(L) = frac1μL - (frac1μL - frac1μ_s)e^-L/γ (where μ_L, μ_s, and γ are independent free fitting parameters), helps to distinguish among different mechanisms of molecular transport. This exponential relation fits well when there is a smooth transition from Ogston sieving to reptation. These transitions are distinguished by so-called ``reptation plots" (plotting 3μ L/μ_rc vs. L) (J. Rousseau, G. Drouin, and G. W. Slater, Phys Rev Lett. 1997, 79, 1945-1948). Fits deviate from the data more than two characteristic trends are observed in the reptation plots. The failure of the fits to follow the data appears to be a consequence of another separation mechanism, ``entropic trapping," occurring between the sieving and reptation regimes. The boundaries between length and field ranges where different separation mechanisms dominate are extracted from reptation plots of the best fits and the data. ``Phase diagrams" expressing these boundaries are derived.

  16. Renaturation of enzymes after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate

    SciTech Connect

    Lacks, S.A.; Springhorn, S.S.

    1980-08-10

    A number of enzymes, including amylases, dehydrogenases, and proteases, were shown to be renaturable after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Enzyme activity was detected in situ by action on substrates introduced into the gel and subsequent staining of either the product or unreacted substrate. Enzymes appeared to recover activity as soon as the detergent diffused out of the gel. Renatured enzymes were retained in gels after electrophoresis longer than native enzymes which had been subjected to electrophoresis in the absence of detergent. Re-electrophoresis of the renatured enzymes showed that part of the retained activity was physically anchored to the gel, possibly by the folding of polypeptides around the gel matrix as the enzymes were renatured.

  17. A gel electrophoresis loading system to prevent laboratory contamination by amplification products.

    PubMed

    Adey, Nils B; Emery, Dale B; Bosh, Derek D; Parry, Robert J

    2014-10-01

    Pipet tip loading of polymerase chain reaction (PCR) and other amplification products into an electrophoresis gel represents a potential source of laboratory contamination. We have developed a prototype of the gel contamination control system (GelCCS) that enables gel loading by bottom puncture of PCR tubes. Puncture occurs within a sealed gel casing, preventing contamination of the surrounding environment. The system was designed for inexpensive manufacture so that after the results are visualized, the gel casing and PCR tubes are discarded intact with the amplification products sealed inside. We demonstrate that gel loading is reliable and that the resulting bands are equivalent in appearance to manually loaded gels.

  18. Misincorporation during DNA synthesis, analyzed by gel electrophoresis.

    PubMed Central

    Hillebrand, G G; McCluskey, A H; Abbott, K A; Revich, G G; Beattie, K L

    1984-01-01

    A method has been developed for simultaneous comparison of the propensity of a DNA polymerase to misincorporate at different points on a natural template-primer. In this method elongation of a [5'-32P] primer, annealed to a bacteriophage template strand, is carried out in the presence of only three dNTPs (highly purified by HPLC). Under these conditions the rate of primer elongation (monitored by gel electrophoresis/autoradiography) is limited by the rate of misincorporation at template positions complementary to the missing dNTP. Variations in the rate of elongation (revealed by autoradiographic banding patterns) reflect variations in the propensity for misincorporation at different positions along the template. The effect on primer elongation produced by addition of a chemically modified dNTP to 'minus' reactions reveals the mispairing potential of the modified nucleotide during DNA synthesis. By use of this electrophoretic assay of misincorporation we have demonstrated that the fidelity of E. coli DNA polymerase I varies greatly at different positions along a natural template, and that BrdUTP and IodUTP can be incorporated in place of dCTP during chain elongation catalyzed by this enzyme. Images PMID:6326053

  19. Resolution of high molecular weight proteins in dependence on electric field strength in polyacrylamide gel electrophoresis.

    PubMed

    Starita-Geribaldi, M; Houri, A

    1997-01-01

    Resolution of high molecular weight proteins, in the upper region of polyacrylamide gels, was studied in relation to the type of electric field. Separations by constant field gel electrophoresis (CFGE) were compared to those in pulsed oscillatory high-performance electrophoresis (POPE), a novel technique which allows electrophoresis at high field strengths owing to a novel local field distribution. This distribution contributes to structural and mechanical stability of the gel with resultant well-reproducible separation, enhanced resolution, and higher absolute mobility of proteins in POPE.

  20. Analysis of variations in band positions for normalization in across-gel denaturing gradient gel electrophoresis.

    PubMed

    Matsushita, Yuko; Yamamura, Kohji; Morimoto, Sho; Bao, Zhihua; Kurose, Daisuke; Sato, Ikuo; Yoshida, Shigenobu; Tsushima, Seiya

    2015-05-01

    Variation in band position between gels is a well-known problem in denaturing gradient gel electrophoresis (DGGE). However, few reports have evaluated the degree of variation in detail. In this study, we investigated the variation in band positions of DNA samples extracted from soil, normalized using reference positions within marker lanes for DGGE in three organismal (bacterial, fungal, and nematode) conditions. For sample lanes, marker DNA (as a control) and sample DNA were used. The test for normality of distribution showed that the position data of a large percentage of bands were normally distributed but not for certain bands. For the normally-distributed data, their variations [standard deviation of marker bands (SDM) and standard deviation of sample bands (SDS), respectively] were assessed. For all organismal conditions, the degree of within-gel variation were similar between SDMs and SDSs, while between-gel variations in SDSs were larger than those in SDMs. Due to the large effect of between-gel variations, the total variations in SDSs were more varied between sample bands, and the mean variations of all sample bands were higher than those in the markers. We found that the total variation in the fungal and nematode SDSs decreased when the intervals between marker bands were narrowed, suggesting that band interval is important for reducing total variation in normalized band positions. For the non-normally distributed data, the distribution was examined in detail. This study provided detailed information on the variation of band positions, which could help to optimize markers for reducing band position variation, and could aid in the accurate identification of bands in across-gel DGGE analyses.

  1. Congruence between starch gel and polyacrylamide gel electrophoresis in detecting allozyme variation in pulmonate land slugs.

    PubMed

    Geenen, Sofie; Jordaens, Kurt; Castilho, Rita; Backeljau, Thierry

    2003-02-01

    The predominantly selfing slug species Arion (Carinarion) fasciatus, A. (C.) silvaticus and A. (C.) circumscriptus are native in Europe and have been introduced into North America, where each species consists of a single, homozygous multilocus genotype (strain), as defined by starch gel electrophoresis (SGE) of allozymes. In Europe, the "one strain per species" hypothesis does not hold since polyacrylamide gel electrophoresis (PAGE) of allozymes uncovered 46 strains divided over the three species. However, electrophoretic techniques may differ in their ability to detect allozyme variation. Therefore, several Carinarion populations from both continents were screened by applying the two techniques simultaneously on the same individual slugs and enzyme loci. SGE and PAGE yielded exactly the same results, so that the different degree of variation in North American and European populations cannot be attributed to differences in resolving power between SGE and PAGE. We found four A. (C.) silvaticus strains in North America indicating that in this region the "one strain per species" hypothesis also cannot be maintained. Hence, the discrepancies between previous electrophoretic studies on Carinarion are most likely due to sampling artefacts and possible founder effects.

  2. Binding of lithium dodecyl sulfate to polyacrylamide gel at 4 degrees C perturbs electrophoresis of proteins.

    PubMed

    Kubo, K; Takagi, T

    1986-07-01

    Although polyacrylamide gel has no affinity to lithium dodecyl sulfate (LDS) at 25 degrees C, the gel maximally binds 17 mg of LDS per gram dry weight at 4 degrees C. When polyacrylamide gel electrophoresis is carried out at 4 degrees C in the presence of LDS instead of sodium dodecyl sulfate (SDS) using a continuous buffer system, migration of proteins with lower molecular weight is accelerated as a result of the deficiency of LDS in the frontal region of the gel. When the gel is saturated with LDS, electrophoresis in the presence of LDS at 4 degrees C shows a resolution higher than that of SDS-polyacrylamide gel electrophoresis at 25 degrees C.

  3. Rapid (ten-minute) pore-gradient electrophoresis of proteins and peptides in Micrograd gels.

    PubMed

    Wrigley, C W; Margolis, J

    1992-01-01

    Precast gradient gels of short migration length (25 mm) have been developed to provide rapid electrophoretic separation without loss of resolution. These Micrograd gels have been prepared in gel ranges (conventional and unique) to match pore-gradient electrophoresis conditions to proteins/peptides ranging in size from several hundreds to millions. The Hylinx Micrograd gel combines an extreme gel range (6 to 48% polyacrylamide) with a novel crosslinker to provide sieving of polypeptides, and pore-limit electrophoresis of the smallest proteins (e.g. insulin monomer). All gel ranges (such as 3 to 30%) provide zone sharpening in routine analysis of conventional protein mixtures (e.g. serum) within 10 min electrophoresis at 200 to 300 volts. The gels are thin (1 mm) and thus stain quickly, but the gel cassette is of conventional overall width (83 mm), thus fitting many apparatus designs and accommodating 12 samples. The gels are finding valuable use in screening applications, requiring the electrophoretic analysis of many samples, and in cases where a rapid answer is needed, such as monitoring protein purification. The gels have proved particularly useful, in-house, for the latter application in developing Gradipore's new large-scale preparative electrophoresis system, the Gradiflow.

  4. The latest advancements in proteomic two-dimensional gel electrophoresis analysis applied to biological samples.

    PubMed

    Santucci, Laura; Bruschi, Maurizio; Ghiggeri, Gian Marco; Candiano, Giovanni

    2015-01-01

    Two-dimensional gel electrophoresis (2DE) is one of the fundamental approaches in proteomics for the separation and visualization of complex protein mixtures. Proteins can be analyzed by 2DE using isoelectric focusing (IEF) in the first dimension, combined to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension, gel staining (silver and Coomassie), image analysis, and 2DE gel database. High-resolution 2DE can resolve up to 5,000 different proteins simultaneously (∼2,000 proteins routinely), and detect and quantify <1 ng of protein per spot. Here, we describe the latest developments for a more complete analysis of biological fluids.

  5. Analysis of Dictyostelium discoideum inositol pyrophosphate metabolism by gel electrophoresis.

    PubMed

    Pisani, Francesca; Livermore, Thomas; Rose, Giuseppina; Chubb, Jonathan Robert; Gaspari, Marco; Saiardi, Adolfo

    2014-01-01

    The social amoeba Dictyostelium discoideum was instrumental in the discovery and early characterization of inositol pyrophosphates, a class of molecules possessing highly-energetic pyrophosphate bonds. Inositol pyrophosphates regulate diverse biological processes and are attracting attention due to their ability to control energy metabolism and insulin signalling. However, inositol pyrophosphate research has been hampered by the lack of simple experimental procedures to study them. The recent development of polyacrylamide gel electrophoresis (PAGE) and simple staining to resolve and detect inositol pyrophosphate species has opened new investigative possibilities. This technology is now commonly applied to study in vitro enzymatic reactions. Here we employ PAGE technology to characterize the D. discoideum inositol pyrophosphate metabolism. Surprisingly, only three major bands are detectable after resolving acidic extract on PAGE. We have demonstrated that these three bands correspond to inositol hexakisphosphate (IP₆ or Phytic acid) and its derivative inositol pyrophosphates, IP₇ and IP₈. Biochemical analyses and genetic evidence were used to establish the genuine inositol phosphate nature of these bands. We also identified IP₉ in D. discoideum cells, a molecule so far detected only from in vitro biochemical reactions. Furthermore, we discovered that this amoeba possesses three different inositol pentakisphosphates (IP₅) isomers, which are largely metabolised to inositol pyrophosphates. Comparison of PAGE with traditional Sax-HPLC revealed an underestimation of the cellular abundance of inositol pyrophosphates by traditional methods. In fact our study revealed much higher levels of inositol pyrophosphates in D. discoideum in the vegetative state than previously detected. A three-fold increase in IP₈ was observed during development of D. discoideum a value lower that previously reported. Analysis of inositol pyrophosphate metabolism using ip6k null amoeba

  6. [THE USE OF THE COMMERCIAL APPARATUS DUAL GEL MODULE FOR THE TWO-DIMENSIONAL POLYACRYLAMIDE GEL ELECTROPHORESIS].

    PubMed

    Evteeva, I N; Starkova, T Yu; Artemov, A V; Barlev, N A

    2015-01-01

    Two-dimensional gel electrophoresis, continues to be one of the fundamental methods to study the biological protein diversity. This method described by O'Farrell in 1975 includes two following steps: isoelectric focusing in the first dimension and polyacrylamide gel electrophoretic fractionation of proteins according to their molecular weight in the second dimension. In this manuscript we described several technical parameters of the commercial apparatus Dual Gel Module for the gel electrophoresis by means of which it is possible to accomplish the electrophoretic protein fractionation in both dimensions. The distribution of the highly purified commercial proteins used as molecular standards in the detection system of the apparatus Dual Gel Module was identical to the commercial strips of the device GE Healthcare, USA.

  7. Proteome profile of zebrafish caudal fin based on one-dimensional gel electrophoresis LCMS/MS and two-dimensional gel electrophoresis MALDI MS/MS analysis.

    PubMed

    Singh, Sachin K; Lakshmi, Mula G Meena; Saxena, Sandeep; Swamy, Cherukuvada V Brahmendra; Idris, Mohammed M

    2011-01-01

    Zebrafish (Danio rerio) is the widely used vertebrate model animal for understanding the complexity of development and disease process. Zebrafish has been also extensively used in understanding the mechanism of regeneration for its extensive capability of regenerating fins and other tissues. We have analyzed the proteome profile of zebrafish caudal fin in its native state based on one-dimensional gel electrophoresis LCMS/MS and two-dimensional gel electrophoresis MS/MS analyses. A total of 417 proteins were identified as zebrafish fin tissue specific, which includes 397 proteins identified based on one-dimensional gel electrophoresis LCMS/MS analysis and 101 proteins identified based on two-dimensional gel electrophoresis MALDI MS/MS. The proteins mapped to the zebrafish fin tissue were shown to be involved in various biological activities related to development, apoptosis, signaling and metabolic process. Focal adhesion, regulation of actin cytoskeleton, cancer-related pathways, mitogen-activated protein kinase signaling, antigen processing and presentation, and proteasome are some of the important pathways associated with the identified proteome data set of the zebrafish fin.

  8. pI-Control in Comparative Fluorescence Gel Electrophoresis (CoFGE) using amphoteric azo dyes

    PubMed Central

    Hanneken, Marina; Šlais, Karel; König, Simone

    2015-01-01

    Amphoteric azo dyes were used for internal control of pI values in Comparative two-dimensional Fluorescence Gel Electrophoresis (CoFGE) [1]. The 2D-gel images of separated Escherichia coli proteins as well as those of colored amphoteric dyes separated by isoelectric focussing are presented. The latter were used to correct for variation in the first electrophoretic dimension and further improve protein coordinate assignment in 2D-gel electrophoresis. Data tables are supplied to demonstrate pI-value calibration and the effect on the assignment of protein spot coordinates. PMID:26217748

  9. pI-Control in Comparative Fluorescence Gel Electrophoresis (CoFGE) using amphoteric azo dyes.

    PubMed

    Hanneken, Marina; Šlais, Karel; König, Simone

    2015-06-01

    Amphoteric azo dyes were used for internal control of pI values in Comparative two-dimensional Fluorescence Gel Electrophoresis (CoFGE) [1]. The 2D-gel images of separated Escherichia coli proteins as well as those of colored amphoteric dyes separated by isoelectric focussing are presented. The latter were used to correct for variation in the first electrophoretic dimension and further improve protein coordinate assignment in 2D-gel electrophoresis. Data tables are supplied to demonstrate pI-value calibration and the effect on the assignment of protein spot coordinates.

  10. Investigation of the repair of single-strand breaks in human DNA using alkaline gel electrophoresis

    SciTech Connect

    Kovacs, E.; Langemann, H. )

    1990-11-01

    Unstimulated lymphocytes from eight healthy persons were exposed to 10-, 30-, and 100-Gy doses of 60Co gamma radiation. The repair of damaged DNA was measured by (1) alkaline gel electrophoresis (extracted DNA loaded on 0.25% agarose gel, run at 1 V/cm for 39-44 h) at 0, 1, and 2 h after exposure and (2) incorporation of (3H)thymidine into unstimulated lymphocytes in the presence of 2 mM hydroxyurea 1 and 2 h after exposure. Both methods--alkaline gel electrophoresis and thymidine incorporation--showed that repair was completed within 2 h.

  11. Analyzing RNA and DNA folding using temperature gradient gel electrophoresis (TGGE) with application to in vitro selections.

    PubMed

    Chadalavada, Durga M; Bevilacqua, Philip C

    2009-01-01

    Gel electrophoresis is a ubiquitous separation technique in nucleic acid biochemistry. Denaturing gel electrophoresis separates nucleic acids on the basis of length, while native gel electrophoresis separates nucleic acids on the basis of both shape and length. Temperature gradient gel electrophoresis (TGGE), in which a temperature gradient is present across the gel, combines the advantages of denaturing and native gel electrophoresis by having native gel-like properties at low temperatures and denaturing gel-like properties at high temperatures. We describe here the techniques of perpendicular and parallel TGGE and some of their applications. Isolation of stable and unstable RNA and DNA sequences from combinatorial libraries is accomplished with TGGE-SELEX, while thermodynamic characterization of an RNA tertiary motif is performed by perpendicular TGGE-melts. Specific examples are chosen from the literature to illustrate the methods. TGGE provides a powerful biophysical approach for analyzing RNA and DNA that complements more traditional methodologies.

  12. Modification of gel architecture and TBE/TAE buffer composition to minimize heating during agarose gel electrophoresis.

    PubMed

    Sanderson, Brian A; Araki, Naoko; Lilley, Jennifer L; Guerrero, Gilberto; Lewis, L Kevin

    2014-06-01

    Agarose gel electrophoresis of DNA and RNA is routinely performed using buffers containing either Tris, acetate, and EDTA (TAE) or Tris, borate, and EDTA (TBE). Gels are run at a low, constant voltage (∼10 V/cm) to minimize current and asymmetric heating effects, which can induce band artifacts and poor resolution. In this study, alterations of gel structure and conductive media composition were analyzed to identify factors causing higher electrical currents during horizontal slab gel electrophoresis. Current was reduced when thinner gels and smaller chamber buffer volumes were used, but was not influenced by agarose concentration or the presence of ethidium bromide. Current was strongly dependent on the amount and type of EDTA used and on the concentrations of the major acid-base components of each buffer. Interestingly, resolution and the mobilities of circular versus linear plasmid DNAs were also affected by the chemical form and amount of EDTA. With appropriate modifications to gel structure and buffer constituents, electrophoresis could be performed at high voltages (20-25 V/cm), reducing run times by up to 3-fold. The most striking improvements were observed with small DNAs and RNAs (10-100 bp): high voltages and short run times produced sharper bands and higher resolution.

  13. Sodium dodecyl sulfate-agarose gel electrophoresis for the detection and isolation of amyloid curli fibers.

    PubMed

    Sitaras, Chris; Naghavi, Mahsa; Herrington, Muriel B

    2011-01-15

    Curli are amyloid-like fibers on the surface of some strains of Escherichia coli and Salmonella enteritidis. We tested the use of horizontal sodium dodecyl sulfate (SDS)-agarose gel electrophoresis to detect, isolate, and quantitate curli. Cell extracts fractionated in SDS-agarose gels and stained with Coomassie blue exhibited a soluble fraction that entered the gel and an insoluble fraction that remained in the well. Much more insoluble material was observed with curli-proficient strains than with strains that do not make curli. Both highly purified curli and the insoluble material isolated from an SDS-agarose gel could be dissociated into monomers when treated with formic acid. For quantitation, we immobilized samples in SDS-agarose prior to electrophoresis. This avoids losses during the staining of the gel. Our methods provide a rapid and simple fractionation of curli using equipment that is readily available.

  14. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    SciTech Connect

    Zhang, J.S.; Giometti, C.S.; Tollaksen, S.L.

    1989-04-25

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower and of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a DC power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. A high percentage extraction of proteins is achieved. The extracted proteins can be removed and subjected to partial digestion by trypsin or the like, followed by two-dimensional electrophoresis, resulting in a gel slab having a pattern of peptide gel spots which can be cored out and subjected to electrophoretic extraction to extract individual peptides.

  15. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    SciTech Connect

    Zhang, Jian-Shi; Giometti, Carol S.; Tollaksen, Sandra L.

    1989-01-01

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a DC power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. A high percentage extraction of proteins is achieved. The extracted proteins can be removed and subjected to partial digestion by trypsin or the like, followed by two-dimensional electrophoresis, resulting in a gel slab having a pattern of peptide gel spots which can be cored out and subjected to electrophoretic extraction to extract individual peptides.

  16. Single-molecule measurements of trapped and migrating circular DNA during electrophoresis in agarose gels.

    PubMed

    Cole, Kenneth D; Gaigalas, Adolfas; Akerman, Björn

    2006-11-01

    The effect of agarose gel concentration and field strength on the electrophoretic trapping of open (relaxed) circular DNA was investigated using microscopic measurements of individual molecules stained with a fluorescent dye. Three open circles with sizes of 52.5, 115, and 220 kbp were trapped by the electric field (6 V/cm) and found to be predominately fixed and stretched at a single point in the gel. The length of the stretched circles did not significantly change with agarose concentration of the gels (mass fractions of 0.0025, 0.01, and 0.02). The relaxation kinetics of the trapped circles was also measured in the gels. The relaxation of the large open circles was found to be a slow process, taking several seconds. The velocity and average length of the 52.5 kbp open circles and 48.5 kbp linear DNA were measured during electrophoresis in the agarose gels. The velocity increased when the agarose concentrations were lowered, but the average length of the open-circle DNA (during electrophoresis) did not significantly change with agarose gel concentrations. The circles move through the gels by cycles of stretching and relaxation during electrophoresis. Linear dichroism was also used to investigate the trapping and alignment of the 52.5 kbp open circles. The results in this study provide information that can be used to improve electrophoretic separations of circular DNA, an important form of genetic material and commonly used to clone DNA.

  17. Analysis of supercoiled DNA by agarose gel electrophoresis using low-conducting sodium threonine medium.

    PubMed

    Ishido, Tomomi; Ishikawa, Mitsuru; Hirano, Ken

    2010-05-01

    We describe a new low-ionic-strength sodium threonine (STh) medium with the advantage of avoiding relative DNA band migration changes following electrophoresis of supercoiled DNA in agarose gel when substituted for the standard conductive medium of TBE (Tris-boric acid-ethylenediaminetetraacetic acid [EDTA]) or TAE (Tris-acetic acid-EDTA) or the low-ionic-strength sodium boric acid medium. Low-ionic-strength STh medium provided better resolution, less heat generation, and prevention of relative migration order changes among linear, covalently closed circular-, and open circular-formed DNA in the range of 2-10 kilobase pairs in 1% agarose gel electrophoresis.

  18. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    SciTech Connect

    Zhang, Jian-Shi; Giometti, C.S.; Tollaksen, S.L.

    1987-09-04

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a dc power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. 8 figs.

  19. Ink-native electrophoresis: an alternative to blue-native electrophoresis more suitable for in-gel detection of enzymatic activity.

    PubMed

    Kaneko, Keisuke; Sueyoshi, Noriyuki; Kameshita, Isamu; Ishida, Atsuhiko

    2013-09-15

    Blue-native electrophoresis (BNE) is a useful technique for analyzing protein complexes, but the Coomassie brilliant blue (CBB) dye used in BNE often hampers in-gel detection of enzymatic activity. Here we report an improved method, termed ink-native electrophoresis (INE), in which Pelikan 4001 fountain pen ink is used as a charge-shifting agent instead of CBB. INE is more suitable than BNE for in-gel detection of protein kinase activity after polyacrylamide gel electrophoresis (PAGE), and its performance in protein complex separation is comparable to that of conventional BNE. INE may provide a powerful tool to isolate and analyze various protein complexes.

  20. Capillary electrophoresis of peptides and proteins with plug of Pluronic gel.

    PubMed

    Sedlakova, P; Svobodova, J; Miksik, I

    2006-07-24

    Electromigration capillary methods are promising techniques in proteomics and they are still under research. We used a partial filling approach, i.e. a combination of gel and non-gel separation mechanisms in a single dimension. We tried using an interesting gel, Pluronic F 127, which can be considered as a surfactant capable of self-association both with isotropic and anisotropic gels. The Pluronic was inserted inside the capillary as a plug at the start of the capillary, and it provided separation at the first time. Separation by this gel was achieved according to molecular weight and/or hydrophobicity. The applicability of this method was demonstrated in the separation of real samples-peptides arising from collagen after CNBr or collagenase cleavage and albumin after trypsin cleavage (peptide mapping). Some peptides and proteins were selectively retained by the Pluronic gel. These interactions with the gel did not depended on their molecular weight alone, but they probably depend on a combination of both principles. It was confirmed that capillary electrophoresis with Pluronic plug can give us another new separation option, complementary to free solution capillary electrophoresis. The CE method presented here, consisting of a partial filling approach with combine gel and non-gel separation mechanisms seemed to be a promising method for the separation of complex mixtures of peptides.

  1. Effect of ultrasound on the separation of DNA fragments in agarose gel electrophoresis

    SciTech Connect

    Ma, Yinfa; Yeung, E.S. )

    1990-06-01

    Since its first use in 1966 interest in and the applications of electrophoresis of DNA fragments in agarose gel have grown rapidly. Nowadays, agarose gel electrophoresis has become a standard technique with high resolving power for the analysis of DNA structure, for example for the determination of the length of DNA fragments obtained by the action of restriction enzymes. The electrophoretic mobility ({mu}) of DNA fragments is influenced by various parameters-molecular weight, gel concentration, temperature, electric field, and DNA-agarose affinity. A comprehensive study of the influence of these main parameters has been reported. In this paper, the authors investigate a new effect on the electrophoretic mobility of DNA fragments in agarose gels, viz. the influence of ultrasound.

  2. Reovirus-specific polypeptides: analysis using discontinuous gel electrophoresis.

    PubMed Central

    Cross, R K; Fields, B N

    1976-01-01

    The electrophoretic analysis of reovirus-specific polypeptides in infected cells using a discontinuous gel system has allowed the resolution of additional viral-specific polypeptides, including one large-sized gamma3 and two (or possibly three) medium-sized (mu3, mu4, mu5(?)) species. The proteins designated mu0, sigma1, and sigma2 based on electrophoretic mobility in gel systems containing phosphate-urea correspond to mu4, sigma2, and sigma1, respectively, when analyzed in systems containing Tris-glycine. It is likely that protein modifications (phosphorylation and glycosylation) are responsible for at least some of these differences. Images PMID:950684

  3. Rapid high-resolution electrophoresis of multimeric von Willebrand Factor using a thermopiloted gel apparatus.

    PubMed

    Smejkal, Gary B; Shainoff, John R; Kottke-Marchant, Kandice M

    2003-02-01

    Rapid and highly reproducible nonreducing agarose gel electrophoresis (NRAGE) of von Willebrand Factor (vWF) multimers was performed using a thermostated minigel apparatus that monitors and precisely controls internal gel temperature. The substitution of lithium dodecyl sulfate (LiDS) for sodium dodecyl sulfate (SDS) allowed electrophoresis to be performed below the 16 degrees C Krafft point of SDS and facilitated NRAGE of vWF over the entire range of 0-35 degrees C. Internal gel temperature was regulated by a thermocouple probe inserted directly into the gel during electrophoresis which interfaced with a thermopilot that continually measures and adjusts temperature to within +/- 0.5 degrees C. At 10 degrees C operative temperature, NRAGE at 1.5% agarose concentration was completed in 20 min at 250 V. Electrophoresis could be performed in only 10 min at 500 V, but at such high voltages, localized temperature fluctuations as much as 6 degrees C resulted in perturbation of banding patterns in those vicinities. In the optimized method, both high molecular weight multimers and proteolytic fragments of vWF were separable suggesting clinical applicability of this system for the diagnosis of von Willebrand Disease and thrombotic thrombocytopenic purpura.

  4. [The development of an image analysis system of medical electrophoresis and DNA gel].

    PubMed

    Zhu, S; Gao, Y

    1998-07-01

    This thesis introduced a kind of computerized image analysis system of medical electrophoresis and DNA gel, which have a high performance/price ratio. Moreover, it gives a detailed presentation of how to eliminate the background obstruction by the conjunction of hardware and software.

  5. Analysis of soybean embryonic axis proteins by two-dimensional gel electrophoresis and mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A proteomic approach based on two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) for protein separation and subsequent mass spectrometry (MS) for protein identification was applied to establish a proteomic reference map for the soybean embryonic axis. Proteins were extracted from dissecte...

  6. Aligning Goals, Assessments, and Activities: An Approach to Teaching PCR and Gel Electrophoresis

    ERIC Educational Resources Information Center

    Phillips, Allison R.; Robertson, Amber L.; Batzli, Janet; Harris, Michelle; Miller, Sarah

    2008-01-01

    Polymerase chain reaction (PCR) and gel electrophoresis have become common techniques used in undergraduate molecular and cell biology labs. Although students enjoy learning these techniques, they often cannot fully comprehend and analyze the outcomes of their experiments because of a disconnect between concepts taught in lecture and experiments…

  7. Introducing Proteomics in the Undergraduate Curriculum: A Simple 2D Gel Electrophoresis Exercise with Serum Proteins

    ERIC Educational Resources Information Center

    Kim, Thomas D.; Craig, Paul A.

    2010-01-01

    Two-dimensional gel electrophoresis (2DGE) remains an important tool in the study of biological systems by proteomics. While the use of 2DGE is commonplace in research publications, there are few instructional laboratories that address the use of 2DGE for analyzing complex protein samples. One reason for this lack is the fact that the preparation…

  8. A simple monolithic column electroelution for protein recovery from gel electrophoresis.

    PubMed

    Li, Guo-Qing; Shao, Jing; Guo, Chen-Gang; Dong, Jing-Yu; Fan, Liu-Yin; Cao, Cheng-Xi

    2012-11-01

    Protein recovery from gel electrophoresis plays an important role in functional genomics and proteomics but faces a series of issues (e.g., complex procedure, low recovery, long experimental time). In this study, a monolithic column electroelution (MCE) was developed for protein recovery from gel electrophoresis. With the model proteins of bovine serum albumin (BSA), hemoglobin (Hb), and myoglobin (Mb), the developed device and method were compared with common electroelution procedures in agarose gel electrophoresis (AGE). The comparative experiments revealed that (i) the protein recovery achieved with the developed device was greater than 83%, much higher than the 41% to 50% achieved with the common devices; (ii) the running time to obtain 70% recovery was approximately 15 min, evidently shorter than the 240 min with the common devices; and (iii) the device and procedure were simple and less time-consuming as compared with those of the common devices. It was observed that the serum protein bands cut from polyacrylamide gel electrophoresis could be transferred into solution in 15 to 30 min with 82% yield. The device, along with its relevant procedure, has potential use in protein extraction and proteomics as well as in DNA studies.

  9. Beverage-Agarose Gel Electrophoresis: An Inquiry-Based Laboratory Exercise with Virtual Adaptation

    ERIC Educational Resources Information Center

    Cunningham, Steven C.; McNear, Brad; Pearlman, Rebecca S.; Kern, Scott E.

    2006-01-01

    A wide range of literature and experience has shown that teaching methods that promote active learning, such as inquiry-based approaches, are more effective than those that rely on passive learning. Gel electrophoresis, one of the most common laboratory techniques in molecular biology, has a wide range of applications in the life sciences. As…

  10. Performance comparison of capillary and agarose gel electrophoresis for the identification and characterization of monoclonal immunoglobulins.

    PubMed

    McCudden, Christopher R; Mathews, Stephanie P; Hainsworth, Shirley A; Chapman, John F; Hammett-Stabler, Catherine A; Willis, Monte S; Grenache, David G

    2008-03-01

    The objective of this study was to compare gel- and capillary-based serum protein electrophoresis methods to identify and characterize monoclonal immunoglobulins (M proteins). Five reviewers interpreted 149 consecutively ordered serum specimens following agarose gel electrophoresis (AGE), capillary electrophoresis (CE), immunofixation electrophoresis (IFE), and subtraction immunotyping (IT). As a screening test for detecting M proteins, AGE and CE displayed similar sensitivity (91% and 92%, respectively). CE was less specific (74%) than AGE (81%). An analysis of interinterpreter agreement revealed that interpretations were more consistent using gel-based methods than capillary-based methods, with 80% of the gel interpretations being in complete (5/5) agreement compared with 67% of the capillary interpretations. After implementing the capillary-based methods, the number of tests per reportable result increased (from 1.58 to 1.73). CE is an analytically suitable alternative to AGE, but laboratories implementing it will need to continue IFE testing to characterize all M proteins detected by CE.

  11. Disposable pen-shaped capillary gel electrophoresis cartridge for fluorescence detection of bio-molecules

    NASA Astrophysics Data System (ADS)

    Amirkhanian, Varoujan; Tsai, Shou-Kuan

    2014-03-01

    We introduce a novel and cost-effective capillary gel electrophoresis (CGE) system utilizing disposable pen-shaped gelcartridges for highly efficient, high speed, high throughput fluorescence detection of bio-molecules. The CGE system has been integrated with dual excitation and emission optical-fibers with micro-ball end design for fluorescence detection of bio-molecules separated and detected in a disposable pen-shaped capillary gel electrophoresis cartridge. The high-performance capillary gel electrophoresis (CGE) analyzer has been optimized for glycoprotein analysis type applications. Using commercially available labeling agent such as ANTS (8-aminonapthalene-1,3,6- trisulfonate) as an indicator, the capillary gel electrophoresis-based glycan analyzer provides high detection sensitivity and high resolving power in 2-5 minutes of separations. The system can hold total of 96 samples, which can be automatically analyzed within 4-5 hours. This affordable fiber optic based fluorescence detection system provides fast run times (4 minutes vs. 20 minutes with other CE systems), provides improved peak resolution, good linear dynamic range and reproducible migration times, that can be used in laboratories for high speed glycan (N-glycan) profiling applications. The CGE-based glycan analyzer will significantly increase the pace at which glycoprotein research is performed in the labs, saving hours of preparation time and assuring accurate, consistent and economical results.

  12. Separation of Recombinant Therapeutic Proteins Using Capillary Gel Electrophoresis and Capillary Isoelectric Focusing.

    PubMed

    De Jong, Caitlyn A G; Risley, Jessica; Lee, Alexis K; Zhao, Shuai Sherry; Chen, David D Y

    2016-01-01

    Detailed step-by-step methods for protein separation techniques based on capillary electrophoresis (CE) are described in this chapter. Focus is placed on two techniques, capillary gel electrophoresis (CGE) and capillary isoelectric focusing (cIEF). CGE is essentially gel electrophoresis, performed in a capillary, where a hydrogel is used as a sieving matrix to separate proteins or peptides based on size. cIEF separates proteins or peptides based on their isoelectric point (pI), the pH at which the protein or peptide bears no charges. Detailed protocols and steps (including capillary preparation, sample preparation, CE separation conditions, and detection) for both CGE and cIEF presented so that readers can follow the described methods in their own labs.

  13. Analysis of rRNA gene methylation in Arabidopsis thaliana by CHEF-Conventional 2D gel electrophoresis

    PubMed Central

    Mohannath, Gireesha; Pikaard, Craig S.

    2017-01-01

    Summary Contour-clamped homogenous electric field (CHEF) gel electrophoresis, a variant of Pulsed-field gel electrophoresis (PFGE), is a powerful technique for resolving large fragments of DNA (10 kb to 9 Mb). CHEF has many applications including the physical mapping of chromosomes, artificial chromosomes and sub-chromosomal DNA fragments, etc. Here we describe the use of CHEF and two-dimensional gel electrophoresis to analyze rRNA gene methylation patterns within the two ~ 4 million base pair nucleolus organizer regions (NORs) of Arabidopsis thaliana. The method involves CHEF gel electrophoresis of agarose-embedded DNA following restriction endonuclease digestion to cut the NORs into large but resolvable segments, followed by digestion with methylation-sensitive restriction endonucleases and conventional (or CHEF) gel electrophoresis, in a second dimension. Resulting products are then detected by Southern blotting or PCR analyses capable of discriminating rRNA gene subtypes. PMID:27576719

  14. Analysis of rRNA Gene Methylation in Arabidopsis thaliana by CHEF-Conventional 2D Gel Electrophoresis.

    PubMed

    Mohannath, Gireesha; Pikaard, Craig S

    2016-01-01

    Contour-clamped homogenous electric field (CHEF) gel electrophoresis, a variant of Pulsed-field gel electrophoresis (PFGE), is a powerful technique for resolving large fragments of DNA (10 kb-9 Mb). CHEF has many applications including the physical mapping of chromosomes, artificial chromosomes, and sub-chromosomal DNA fragments, etc. Here, we describe the use of CHEF and two-dimensional gel electrophoresis to analyze rRNA gene methylation patterns within the two ~4 million base pair nucleolus organizer regions (NORs) of Arabidopsis thaliana. The method involves CHEF gel electrophoresis of agarose-embedded DNA following restriction endonuclease digestion to cut the NORs into large but resolvable segments, followed by digestion with methylation-sensitive restriction endonucleases and conventional (or CHEF) gel electrophoresis, in a second dimension. Resulting products are then detected by Southern blotting or PCR analyses capable of discriminating rRNA gene subtypes.

  15. Ag-nanoparticle fractionation by low melting point agarose gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Guarrotxena, Nekane; Braun, Gary

    2012-10-01

    The separation of surface-enhanced raman scattering (SERS)-active Ag-multi-nanoparticle (NP) assemblies by low melting point agarose gel electrophoresis was accomplished here by controlling surface charge using NP capping agents, and the pore size of agarose gel matrix. Detailed transmission electron microscopy analysis of excised gel fractions showed dimers and small clusters to have the greatest SERS activity and a mobility in between the monomers and large aggregates. This strategy enables one to: (1) stabilize small multispherical Ag clusters against further aggregation during purification; (2) fractionate and recover spherical assemblies by nuclearity; and (3) analyze SERS-enhancements for each fraction to optimize purification conditions.

  16. Plasmid DNA topology assayed by two-dimensional agarose gel electrophoresis.

    PubMed

    Schvartzman, Jorge B; Martínez-Robles, María-Luisa; Hernández, Pablo; Krimer, Dora B

    2013-01-01

    Two-dimensional (2D) agarose gel electrophoresis is nowadays one of the best methods available to analyze DNA molecules with different masses and shapes. The possibility to use nicking enzymes and intercalating agents to change the twist of DNA during only one or in both runs, improves the capacity of 2D gels to discern molecules that apparently may look alike. Here we present protocols where 2D gels are used to understand the structure of DNA molecules and its dynamics in living cells. This knowledge is essential to comprehend how DNA topology affects and is affected by all the essential functions that DNA is involved in: replication, transcription, repair and recombination.

  17. Charge heterogeneity study of a Fc-fusion protein, abatacept, using two-dimensional gel electrophoresis.

    PubMed

    Nebija, D; Noe, C R; Lachmann, B

    2015-08-01

    Medicinal products obtained by recombinant DNA technology are complex molecules and demonstrate a high degree of molecular heterogeneity. Charge heterogeneity and isoform pattern of this class of medicines, are parameters important for their quality, safety, and efficacy. In this study we report the application of two-dimensional gel electrophoresis (2-D electrophoresis) for the quality assessment, identification, charge heterogeneity and isoform pattern study of recombinant protein, CTLA4-Ig (abatacept), which has been selected as an example of the drug class, known as Fc-fusion proteins. In order to achieve an efficient separation of this complex analyte,2-D electrophoresis was optimized employing different experimental conditions regarding the selection of an immobilized pH gradient (IPG), sample pretreatment, presentation and detection procedure. Experimental datadocumented that 2-D electrophoresis is a suitable method for the assessment of identity, purity, structural integrity, isoform pattern and to monitor charge heterogeneity and post-translational glycosylation of the Fc-fusion protein, abatacept.

  18. A random-walk model for retardation of interacting species during gel electrophoresis: implications for gel-shift assays.

    PubMed Central

    Belotserkovskii, B P; Johnston, B H

    1997-01-01

    We recently showed that intermolecular DNA triplexes can form during gel electrophoresis when a faster migrating single strand overtakes a slower migrating band containing a duplex of appropriate sequence. We proposed a model to account for the resulting apparent comigration of triplexes with the duplex band when the lifetime of the triplex is much shorter than the time of electrophoresis. The model predicts that short-lived complexes can be detected by a gel-shift assay if the faster migrating component of the complex is labeled, a slower migrating component is in excess, and the complex itself migrates more slowly than either of the components. In this case the labeled component, after dissociation from the complex, overtakes a slower migrating band of the free, unlabeled second component and can be captured by the unlabeled component and again retarded; after dissociation of the newly formed complex the cycle is repeated. If the concentration of unlabeled component in the band is larger than some critical value (c(cr)), most of the labeled component becomes trapped in this band during the entire time of gel electrophoresis, thus effectively comigrating with the slower migrating unlabeled component. We call this mechanism of comigration "cyclic capture and dissociation" (CCD). Here we present a quantitative analysis of the model of CCD comigration which predicts that CCD comigration can be used not only for the detection of relatively short-lived complexes, but also for estimation of the specificity of complex formation. Images FIGURE 1 FIGURE 4 PMID:9284297

  19. Tris-acetate polyacrylamide gradient gel electrophoresis for the analysis of protein oligomerization.

    PubMed

    Cubillos-Rojas, Monica; Schneider, Taiane; Sánchez-Tena, Susana; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis

    2016-02-01

    Here we report a new approach for studying protein oligomerization in cells using a single electrophoresis gel. We combined the use of a crosslinking reagent for sample preparation, such as glutaraldehyde, with the analysis of oligomers by Tris-acetate polyacrylamide gel electrophoresis. The use of a 3-15% Tris-acetate polyacrylamide gradient gel allows for the simultaneous analysis of proteins of masses ranging from 10 to 500 kDa. We showed the usefulness of this method for analyzing endogenous p53 oligomerization with high resolution and sensitivity in human cells. Oligomerization analysis was dependent on the crosslinker concentration used. We also showed that this method could be used to study the regulation of oligomerization. In all experiments, Tris-acetate polyacrylamide gel electrophoresis proved to be a robust, manageable, and cost- and time-efficient method that provided excellent results using a single gel. This approach can be easily extrapolated to the study of other oligomers. All of these features make this method a highly useful tool for the analysis of protein oligomerization.

  20. Enhanced Resolution of DNA Separation Using Agarose Gel Electrophoresis Doped with Graphene Oxide.

    PubMed

    Li, Jialiang; Yang, Yushi; Mao, Zhou; Huang, Wenjie; Qiu, Tong; Wu, Qingzhi

    2016-12-01

    In this work, a novel agarose gel electrophoresis strategy has been developed for separation of DNA fragments by doping graphene oxide (GO) into agarose gel. The results show that the addition of GO into agarose gel significantly improved the separation resolution of DNA fragments by increasing the shift distances of both the single DNA fragments and the adjacent DNA fragments and completely eliminating the background noise derived from the diffusion of the excessive ethidium bromide (EB) dye in the gel after electrophoresis. The improved resolution of DNA fragments in GO-doped agarose gel could be attributed to the successive adsorption-desorption processes between DNA fragments and GO sheets, while the elimination of the background noise could be attributed to the adsorption of the excessive EB dye on the surface of GO sheets and high fluorescence quenching efficiency of GO. These results provide promising potential for graphene and its derivate utilized in various electrophoresis techniques for separation and detection of DAN fragments and other biomolecules.

  1. Enhanced Resolution of DNA Separation Using Agarose Gel Electrophoresis Doped with Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Li, Jialiang; Yang, Yushi; Mao, Zhou; Huang, Wenjie; Qiu, Tong; Wu, Qingzhi

    2016-09-01

    In this work, a novel agarose gel electrophoresis strategy has been developed for separation of DNA fragments by doping graphene oxide (GO) into agarose gel. The results show that the addition of GO into agarose gel significantly improved the separation resolution of DNA fragments by increasing the shift distances of both the single DNA fragments and the adjacent DNA fragments and completely eliminating the background noise derived from the diffusion of the excessive ethidium bromide (EB) dye in the gel after electrophoresis. The improved resolution of DNA fragments in GO-doped agarose gel could be attributed to the successive adsorption-desorption processes between DNA fragments and GO sheets, while the elimination of the background noise could be attributed to the adsorption of the excessive EB dye on the surface of GO sheets and high fluorescence quenching efficiency of GO. These results provide promising potential for graphene and its derivate utilized in various electrophoresis techniques for separation and detection of DAN fragments and other biomolecules.

  2. Model and computer simulations of the motion of DNA molecules during pulse field gel electrophoresis

    SciTech Connect

    Smith, S.B.; Bustamante, C. ); Heller, C. )

    1991-05-28

    A model is presented for the motion of individual molecules of DNA undergoing pulse field gel electrophoresis (PFGE). The molecule is represented by a chain of charged beads connected by entropic springs, and the gel is represented by a segmented tube surrounding the beads. This model differs from earlier reptation/tube models in that the tube is allowed to leak in certain places and the chain can double over and flow out of the side of the tube in kinks. It is found that these kinks often lead to the formation of U shapes, which are a major source of retardation in PFGE. The results of computer simulations using this model are compared with real DNA experimental results for the following cases: steady field motion as seen in fluorescence microscopy, mobility in steady fields, mobility in transverse field alternation gel electrophoresis (TFAGE), mobility in field inversion gel electrophoresis (FIGE), and linear dichroism (LD) of DNA in agarose gels during PFGE. Good agreement between the simulations and the experimental results is obtained.

  3. Using in situ rheology to characterize the microstructure in photopolymerized polyacrylamide gels for DNA electrophoresis.

    PubMed

    Wang, Jian; Ugaz, Victor M

    2006-09-01

    Photopolymerized cross-linked polyacrylamide hydrogels are attractive sieving matrix formulations for DNA electrophoresis owing to their rapid polymerization times and the potential to locally tailor the gel pore structure through spatial variation of illumination intensity. This capability is especially important in microfluidic systems, where photopolymerization allows gel matrices to be precisely positioned within complex microchannel networks. Separation performance is also directly related to the nanoscale gel pore structure, which is in turn strongly influenced by polymerization kinetics. Unfortunately, detailed studies of the interplay among polymerization kinetics, mechanical properties, and structural morphology are lacking in photopolymerized hydrogel systems. In this paper, we address this issue by performing a series of in situ dynamic small-amplitude oscillatory shear measurements during photopolymerization of cross-linked polyacrylamide electrophoresis gels to investigate the relationship between rheology and parameters associated with the gelation environment including UV intensity, monomer and cross-linker composition, and reaction temperature. In general, we find that the storage modulus G' increases with increasing initial monomer concentration, cross-linker concentration, and polymerization temperature. The steady-state value of G', however, exhibits a more complex dependence on UV intensity that varies with gel concentration. A simple model based on rubber elasticity theory is used to obtain estimates of the average gel pore size that are in surprisingly good agreement with corresponding data obtained from analysis of DNA electrophoretic mobility in gels cast under identical polymerization conditions.

  4. Topological patterns in two-dimensional gel electrophoresis of DNA knots

    PubMed Central

    Michieletto, Davide; Marenduzzo, Davide; Orlandini, Enzo

    2015-01-01

    Gel electrophoresis is a powerful experimental method to probe the topology of DNA and other biopolymers. Although there is a large body of experimental work that allows us to accurately separate different topoisomers of a molecule, a full theoretical understanding of these experiments has not yet been achieved. Here we show that the mobility of DNA knots depends crucially and subtly on the physical properties of the gel and, in particular, on the presence of dangling ends. The topological interactions between these and DNA molecules can be described in terms of an “entanglement number” and yield a nonmonotonic mobility at moderate fields. Consequently, in 2D electrophoresis, gel bands display a characteristic arc pattern; this turns into a straight line when the density of dangling ends vanishes. We also provide a novel framework to accurately predict the shape of such arcs as a function of molecule length and topological complexity, which may be used to inform future experiments. PMID:26351668

  5. Fractionation of SWNT/nucleic acid complexes by agarose gel electrophoresis.

    PubMed

    Vetcher, Alexandre A; Srinivasan, Srimeenakshi; Vetcher, Ivan A; Abramov, Semen M; Kozlov, Mikhail; Baughman, Ray H; Levene, Stephen D

    2006-08-28

    We show that aqueous dispersions of single-walled carbon nanotubes (SWNTs), prepared with the aid of nucleic acids (NAs) such as RNA or DNA, can be separated into fractions using agarose gel electrophoresis. In a DC electric field, SWNT/NA complexes migrate in the gel in the direction of positive potential to form well-defined bands. Raman spectroscopy as a function of band position shows that nanotubes having different spectroscopic properties possess different electrophoretic mobilities. The migration patterns for SWNT/RNA and SWNT/DNA complexes differ. Parallel elution of the SWNT/NA complexes from the gel during electrophoresis and subsequent characterization by AFM reveals differences in nanotube diameter, length and curvature. The results suggest that fractionation of nanotubes can be achieved by this procedure. We discuss factors affecting the mobility of the nanotube complexes and propose analytical applications of this technique.

  6. A computerized methodology for improved virus typing by PCR-RFLP gel electrophoresis.

    PubMed

    Maramis, Christos F; Delopoulos, Anastasios N; Lambropoulos, Alexandros F

    2011-08-01

    The analysis of digitized images from polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP)gel electrophoresis examinations is a popular method for virus typing, i.e., for identifying the virus type(s) that have infected an investigated biological sample. However, being mostly manual, the conventional virus typing protocol remains laborious, time consuming, and error prone. In order to overcome these shortcomings,we propose a computerized methodology for improving virus typing via PCR-RFLP gel electrophoresis. A novel realistic observation model of the viral DNA motion on the gel matrix is employed to assist in exploiting additional virus-related information in comparison to the conventional approaches. The extracted rich information is fed to a novel typing algorithm, resulting in faster and more accurate decisions. The proposed methodology is evaluated for the case of the human papillomavirus typing on a dataset of 80 real and 1500 simulated samples, producing very satisfactory results.Ind

  7. Topological patterns in two-dimensional gel electrophoresis of DNA knots.

    PubMed

    Michieletto, Davide; Marenduzzo, Davide; Orlandini, Enzo

    2015-10-06

    Gel electrophoresis is a powerful experimental method to probe the topology of DNA and other biopolymers. Although there is a large body of experimental work that allows us to accurately separate different topoisomers of a molecule, a full theoretical understanding of these experiments has not yet been achieved. Here we show that the mobility of DNA knots depends crucially and subtly on the physical properties of the gel and, in particular, on the presence of dangling ends. The topological interactions between these and DNA molecules can be described in terms of an "entanglement number" and yield a nonmonotonic mobility at moderate fields. Consequently, in 2D electrophoresis, gel bands display a characteristic arc pattern; this turns into a straight line when the density of dangling ends vanishes. We also provide a novel framework to accurately predict the shape of such arcs as a function of molecule length and topological complexity, which may be used to inform future experiments.

  8. Single nucleus versus single-cell gel electrophoresis: kinetics of DNA track formation.

    PubMed

    Afanasieva, Katerina; Chopei, Marianna; Sivolob, Andrei

    2015-04-01

    Single-cell gel electrophoresis, or the comet assay, is usually performed with nucleoids prepared after a lysis of either whole cells (more often) or isolated cell nuclei (rarely). Electrophoretic properties of the second type of nucleoids have never been investigated carefully. We measured the kinetics of the DNA exit from nuclei-derived nucleoids in comparison with cell-derived nucleoids. The results show that general organization of the nuclei-derived nucleoids is not changed very much in comparison with nucleoids commonly obtained from whole cells. At the same time, in contrast to the cell-derived nucleoids, for which the exit is stepwise and cooperative, the DNA exit from the nuclei-derived nucleoids can be described by a simple monomolecular kinetics. This difference is probably due to agarose penetration into nuclei (but not into cells) before polymerization of the agarose gel. We suggest that single-nucleus gel electrophoresis may be a way for the comet assay standardization.

  9. Pulsed field electrophoresis for the separation of protein-sodium dodecyl sulfate-complexes in polyacrylamide gels.

    PubMed

    Houri, A; Starita-Geribaldi, M

    1994-01-01

    Polyacrylamide gel electrophoresis of proteins was studied using a pulsed-current mode. A new "local field" distribution was used to correct the gel patterns and optimize migration. A corrective field was applied at fixed 2 s intervals to a constant field, inducing a complex relaxation mechanism. Calculated variations in the local field directions decreased the electric strain on the gel during the run, with resultant optimum gel structure. The relaxation mechanism was found to enhance the absolute mobility of proteins with shorter running times compared to constant field gel electrophoresis (CFGE) and other pulsed field techniques. The enhancement of molecular mobility was explored by transverse pore gradient gel electrophoresis. Ferguson curves which exhibited a convex shape in CFGE were linearized by the new pulsed-field method named pulsed oscillatory high-performance electrophoresis (POPE).

  10. Transient association of the DNA-ligand complex during gel electrophoresis.

    PubMed

    Protozanova, E; Macgregor, R B

    1999-07-01

    DNA frayed wires are extremely stable multistranded complexes arising from the association of oligonucleotides with long terminal runs of consecutive guanines. Frayed wires originating from d(A15G15) have multiple binding sites for short complementary oligonucleotides such as dT10. We examine unusual band patterns obtained when complexes formed between dT10 and DNA frayed wires are resolved on nondenaturing polyacrylamide gels. Since the lifetime of the dT10-frayed wire complexes is shorter than the time of the gel run, the interaction between the components during the gel electrophoresis affects their band patterns. We have conducted chasing experiments to show that (i) the binding of dT10 to the frayed wires can occur during gel electrophoresis, and (ii) dissociation of the complexes occurs during the gel run. Rapid repetitive dissociation-reassociation of the complexes leads to a constant partitioning of dT10 between their binding sites within frayed wires. Consequently, complexes composed of frayed wires and various numbers of bound ligands appear on the gel as a single well-defined band. The mobilities of these bands decrease continuously with the concentration of the ligand reaching saturation when all the binding sites are occupied. This characteristic pattern is observed only for relatively unstable interactions. Longer ligands, i.e., oligonucleotides with higher affinity towards the binding sites, cease to exhibit the dynamic character of interaction during gel electrophoresis. These ligands form long-lived complexes with the frayed wires that appear on the gel as faint smeared bands reflecting the presence of multiple stable complexes.

  11. Optimization of large gel 2D electrophoresis for proteomic studies of skeletal muscle.

    PubMed

    Reed, Patrick W; Densmore, Allison; Bloch, Robert J

    2012-04-01

    We describe improved methods for large format, two-dimensional gel electrophoresis (2DE) that improve protein solubility and recovery, minimize proteolysis, and reduce the loss of resolution due to contaminants and manipulations of the gels, and thus enhance quantitative analysis of protein spots. Key modifications are: (i) the use of 7 M urea and 2 M thiourea, instead of 9 M urea, in sample preparation and in the tops of the gel tubes; (ii) standardized deionization of all solutions containing urea with a mixed bed ion exchange resin and removal of urea from the electrode solutions; and (iii) use of a new gel tank and cooling device that eliminate the need to run two separating gels in the SDS dimension. These changes make 2DE analysis more reproducible and sensitive, with minimal artifacts. Application of this method to the soluble fraction of muscle tissues reliably resolves ~1800 protein spots in adult human skeletal muscle and over 2800 spots in myotubes.

  12. Protein profiling using two-dimensional difference gel electrophoresis (2-D DIGE).

    PubMed

    Feret, Renata; Lilley, Kathryn S

    2014-02-03

    2-D DIGE relies on pre-electrophoretic labeling of samples with one of three spectrally distinct fluorescent dyes, followed by electrophoresis of all samples in one 2-D gel. The dye-labeled samples are then viewed individually by scanning the gel at different wavelengths, which circumvents problems with gel-to-gel variation and spot matching between gels. Image analysis programs are used to generate volume ratios for each spot, which essentially describe the intensity of a particular spot in each test sample, and thus enable protein abundance level changes to be identified and quantified. This unit describes the 2-D DIGE procedure including sample preparation from various cell types, labeling of proteins, and points to consider in the downstream processing of fluorescently labeled samples.

  13. Trapping and breaking of in vivo nicked DNA during pulsed field gel electrophoresis.

    PubMed

    Khan, Sharik R; Kuzminov, Andrei

    2013-12-15

    Pulsed field gel electrophoresis (PFGE) offers a high-resolution approach to quantify chromosomal fragmentation in bacteria, measured as percentage of chromosomal DNA entering the gel. The degree of separation in pulsed field gel (PFG) depends on the size of DNA as well as various conditions of electrophoresis such as electric field strength, time of electrophoresis, switch time, and buffer composition. Here we describe a new parameter, the structural integrity of the sample DNA itself, that influences its migration through PFGs. We show that subchromosomal fragments containing both spontaneous and DNA damage-induced nicks are prone to breakage during PFGE. Such breakage at single-strand interruptions results in artifactual decrease in molecular weight of linear DNA making accurate determination of the number of double-strand breaks difficult. Although breakage of nicked subchromosomal fragments is field strength independent, some high-molecular-weight subchromosomal fragments are also trapped within wells under the standard PFGE conditions. This trapping can be minimized by lowering the field strength and increasing the time of electrophoresis. We discuss how breakage of nicked DNA may be mechanistically linked to trapping. Our results suggest how to optimize conditions for PFGE when quantifying chromosomal fragmentation induced by DNA damage.

  14. Determination of the Genetic Diversity of Different Bioluminescent Bacteria by Pulsed-Field Gel Electrophoresis (PFGE)

    PubMed Central

    Ersoy Omeroglu, Esra

    2015-01-01

    Background: There are 4 different genera (i.e. Vibrio, Aliivibrio, Photobacterium, and Shewanella) in the new classification of bioluminescent bacteria. The mechanism of bioluminescence has yet to be fully elucidated. Therefore, the determination of physiological and genetic characteristics of bioluminescent bacteria isolated from different sources is very important. Pulsed-Field Gel Electrophoresis (PFGE) has the highest discriminatory power among the different molecular typing methods for the investigation of the clonal relationships between bacteria. For the PFGE analysis of bioluminescent bacteria, the NotI-HF™ is the method of choice among the restriction enzymes. Objectives: The present study aimed to determine genetic relatedness via PFGE in 41 bioluminescent bacteria (belonging to 10 different species) isolated and identified from various marine sources. Materials and Methods: Different bioluminescent bacteria (i.e. Vibrio gigantis, V. azureus, V. harveyi, V. lentus, V. crassostreae, V. orientalis, Aliivibrio logei, A. fischeri, Shewanella woodyi, and Photobacterium kishitanii) were analyzed by PFGE using the NotI-HF™ restriction enzyme. The whole DNA of the strains embedded into the agarose plugs was digested with enzyme at 37°C for 30 minutes. CHEF-Mapper PFGE system was used for electrophoresis and band profile of the strains for the NotI-HF™ restriction enzyme were analyzed by Bio-Profil-1D++ software (Vilber Lourmat) at 10% homology coefficient. Results: Although all experiments were performed three times, four of forty-one bioluminescent strains (V. gigantis E-16, H-16 and S3W46 strains and A. fischeri E-4 strain) could not be typed by PFGE technique with NotI-HF™ enzyme. While only two strains (V. crassostreae H-12 and H-19 strains) were exhibiting same band pattern profiles (100% genome homology), thirty-six different PFGE band patterns were obtained. Pattern homologies changed between 66% - 92%, 73% - 83% and 49% - 100% for V. gigantis, V

  15. Aligning Goals, Assessments, and Activities: An Approach to Teaching PCR and Gel Electrophoresis

    PubMed Central

    Robertson, Amber L.; Batzli, Janet; Harris, Michelle; Miller, Sarah

    2008-01-01

    Polymerase chain reaction (PCR) and gel electrophoresis have become common techniques used in undergraduate molecular and cell biology labs. Although students enjoy learning these techniques, they often cannot fully comprehend and analyze the outcomes of their experiments because of a disconnect between concepts taught in lecture and experiments done in lab. Here we report the development and implementation of novel exercises that integrate the biological concepts of DNA structure and replication with the techniques of PCR and gel electrophoresis. Learning goals were defined based on concepts taught throughout the cell biology lab course and learning objectives specific to the PCR and gel electrophoresis lab. Exercises developed to promote critical thinking and target the underlying concepts of PCR, primer design, gel analysis, and troubleshooting were incorporated into an existing lab unit based on the detection of genetically modified organisms. Evaluative assessments for each exercise were aligned with the learning goals and used to measure student learning achievements. Our analysis found that the exercises were effective in enhancing student understanding of these concepts as shown by student performance across all learning goals. The new materials were particularly helpful in acquiring relevant knowledge, fostering critical-thinking skills, and uncovering prevalent misconceptions. PMID:18316813

  16. Peptide fractionation by SDS-free polyacrylamide gel electrophoresis for proteomic analysis via DF-PAGE.

    PubMed

    Ramos, Yassel; Besada, Vladimir; Castellanos-Serra, Lila

    2012-01-01

    Here we present a procedure for peptide fractionation by SDS-free polyacrylamide gel electrophoresis, based on discontinuous buffer systems. In the absence of SDS, peptide migration depends both on their molecular mass and on their net charge at the electrophoresis pH. By selecting the separation pH, peptide mobility is modulated. In the original discontinuous buffer system (Tris/glycine), peptides that migrate to the anode have pI values below 6.8 and distribute along the lane in a pI decreasing order, while at acidic pH, as that afforded by histidine/MOPS buffer system, peptides with pI below 5.5 are fractionated. Separation at acid pH is particularly useful for recovering phosphopeptides as well as other highly negatively charged peptides, as those containing sialic or sulfate substituents. Both separation conditions in Tris/glycine and in histidine/MOPS are applicable to proteomic studies, by dual-fractionation polyacrylamide gel electrophoresis (DF-PAGE). First, complex protein samples are separated via SDS-PAGE, and after in-gel proteolysis, peptides are loaded on a second SDS-free gel, where they are separated as described here.

  17. Aligning goals, assessments, and activities: an approach to teaching PCR and gel electrophoresis.

    PubMed

    Phillips, Allison R; Robertson, Amber L; Batzli, Janet; Harris, Michelle; Miller, Sarah

    2008-01-01

    Polymerase chain reaction (PCR) and gel electrophoresis have become common techniques used in undergraduate molecular and cell biology labs. Although students enjoy learning these techniques, they often cannot fully comprehend and analyze the outcomes of their experiments because of a disconnect between concepts taught in lecture and experiments done in lab. Here we report the development and implementation of novel exercises that integrate the biological concepts of DNA structure and replication with the techniques of PCR and gel electrophoresis. Learning goals were defined based on concepts taught throughout the cell biology lab course and learning objectives specific to the PCR and gel electrophoresis lab. Exercises developed to promote critical thinking and target the underlying concepts of PCR, primer design, gel analysis, and troubleshooting were incorporated into an existing lab unit based on the detection of genetically modified organisms. Evaluative assessments for each exercise were aligned with the learning goals and used to measure student learning achievements. Our analysis found that the exercises were effective in enhancing student understanding of these concepts as shown by student performance across all learning goals. The new materials were particularly helpful in acquiring relevant knowledge, fostering critical-thinking skills, and uncovering prevalent misconceptions.

  18. Two methods that facilitate autoradiography of small /sup 32/P-labeled DNA fragments following electrophoresis in agarose gels

    SciTech Connect

    Cockerill, P.N.

    1988-02-01

    Two methods which permit detection by autoradiography of small /sup 32/P-labeled DNA fragments resolved by agarose gel electrophoresis are described. Agarose gel electrophoresis poses problems for autoradiography as (i) the gels are normally too thick to allow autoradiography without being dried first, and (ii) fragments of DNA of 1000 bp or less in length are readily lost during drying. In this study DNA fragments as small as 121 bp have been retained in agarose gels upon drying. This has been achieved by either (i) first fixing the DNA with the cationic detergent cetyltrimethylammonium bromide, or (ii) drying the agarose gels onto Zeta-Probe charge-modified membranes.

  19. Passivated gel electrophoresis of charged nanospheres by light-scattering video tracking.

    PubMed

    Zhu, Xiaoming; Mason, Thomas G

    2014-08-15

    Gel electrophoresis (gel-EP) has been used for decades to separate charged biopolymers, such as DNA, RNA, and proteins, yet propagation of other charged colloidal objects, such as nanoparticles, during gel-EP has been studied comparatively little. Simply introducing anionic nanoparticles, such as sulfate-stabilized polystyrene nanospheres, in standard large-pore agarose gels commonly used for biomolecules does not automatically ensure propagation or size-separation because attractive interactions can exist between the gel and the nanoparticles. Whereas altering the surfaces of the nanoparticles is a possible solution, here, by contrast, we show that treating a common type I-A low-electroendoosmosis agarose gel with a passivation agent, such as poly-(ethyleneglycol), enables charged nanoparticles to propagate through large-pore passivated gels in a highly reproducible manner. Moreover, by taking advantage of the significant optical scattering from the nanoparticles, which is not easily measurable for biopolymers, relative to scattering from the gel, we perform real-time, light-scattering, video-tracking gel-EP. Continuous optical measurements of the propagation of bands of uniformly sized nanospheres in passivated gels provides the propagation distance, L, and velocity, v, as a function of time for different sphere radii, electric field strengths, gel concentrations, and passivation agent concentrations. The steady-state particle velocities vary linearly with applied electric field strength, E, for small E, but these velocities become non-linear for larger E, suggesting that strongly driven nanoparticles can become elastically trapped in the smaller pores of the gel, which act like blind holes, in a manner that thermal fluctuations cannot overcome. Based on this assumption, we introduce a simple model that fits the measured v(E) in both linear and non-linear regimes over a relevant range of applied voltages.

  20. Statistical analysis of image data provided by two-dimensional gel electrophoresis for discovery proteomics.

    PubMed

    Crossett, Ben; Edwards, Alistair V G; White, Melanie Y; Cordwell, Stuart J

    2008-01-01

    Standardized methods for the solubilization of proteins prior to proteomics analyses incorporating two-dimensional gel electrophoresis (2-DE) are essential for providing reproducible data that can be subjected to rigorous statistical interrogation for comparative studies investigating disease-genesis. In this chapter, we discuss the imaging and image analysis of proteins separated by 2-DE, in the context of determining protein abundance alterations related to a change in biochemical or biophysical conditions. We then describe the principles behind 2-DE gel statistical analysis, including subtraction of background noise, spot detection, gel matching, spot quantitation for data comparison, and statistical requirements to create meaningful gel data sets. We also emphasize the need to develop reproducible and robust protocols for protein sample preparation and 2-DE itself.

  1. Analysis of photoaffinity-labeled aryl hydrocarbon receptor heterogeneity by two-dimensional gel electrophoresis

    SciTech Connect

    Perdew, G.H.; Hollenback, C.E. )

    1990-07-03

    The level of charge heterogeneity in the aryl hydrocarbon receptor (AhR) was examined by high-resolution denaturing two-dimensional (2D) gel electrophoresis. Hepa 1c1c7 cell cytosolic fraction was photoaffinity-labeled with 2-azido-3-({sup 125}I)-iodo-7,8-dibromodibenzo-p-dioxin and applied to isoelectric focusing (IEF) tube gels. After optimization of focusing conditions a broad peak of radioactivity was detected in the apparent pI range of 5.2-5.7. IEF tube gels were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by visualization of the radiolabeled AhR by autoradiography; three distinct isoforms were detected. The same 2D electrophoretic isoform pattern was obtained when the AhR from Hepa 1c1c7 was photoaffinity-labeled in cell culture. BP{sup r}Cl cells, a mutant line derived from Hepa 1c1c7 cells, contain an AhR that is unable to bind to DNA. Photoaffinity-labeled BP{sup r}Cl cytosolic fractions were subjected to 2D gel electrophoretic analysis resulting in essentially the same molecular weight and isoform pattern as seen in Hepa 1c1c7 cytosol. This result would suggest that if a mutation is present in the BP{sup r}Cl AhR it has not caused a significant change in its IEF pattern, although a small shift in the pI values was observed. Two-dimensional gel electrophoresis of photoaffinity-labeled cytosolic fractions from HeLa cells, the rat liver tumor cell line McA-RH777, and buffalo rat thymus revealed three isoforms, essentially the same isoform pattern as in Hepa 1c1c7 cells. This would indicate that despite the considerable molecular weight polymorphism between species the level of charge heterogeneity is high conserved.

  2. Differentiation of human and animal strains of Streptococcus dysgalactiae by pulsed-field gel electrophoresis.

    PubMed

    Bert, F; Branger, C; Poutrel, B; Lambert-Zechovsky, N

    1997-05-01

    The genetic diversity among 54 human isolates and 33 animal isolates belonging to the species Streptococcus dysgalactiae (20 alpha-haemolytic Streptococcus dysgalactiae, 23 Streptococcus equisimilis, 43 group G streptococci and one group L streptococcus) was evaluated by macrorestriction analysis of chromosomal DNA with SmaI and resolution by pulsed-field gel electrophoresis. This technique revealed a high degree of intraspecies polymorphism, leading to the differentiation of 80 distinct banding patterns, and identified the presence of two major clusters, one containing isolates of human origin and the other isolates of animal origin. These results suggest than human and animal isolates of S.dysgalactiae are genetically distinct, and support the recent proposal of the subspecies S. dysgalactiae subsp. equisimilis for human isolates. The heterogeneity revealed within isolates from the same host type indicates that pulsed-field gel electrophoresis is a powerful epidemiological tool for studying S. dysgalactiae infections.

  3. Separation of glutathione transferase subunits from Proteus vulgaris by two-dimensional gel electrophoresis.

    PubMed

    Hong, Giaming; Chien, Yi-Chih; Chien, Cheng-I

    2003-10-01

    Cytosolic glutathione transferases of Proteus vulgaris were purified by affinity chromatography and characterized by two-dimensional gel electrophoresis. Four different subunits were identified, and each subunit contained a different molecular mass, ranging from 26.2 kDa to 28.5 kDa; a different pI value, ranging from 8.2 to 9.4; and a different amount of protein fraction, ranging from 10% to 56%. All four subunits existed as basic proteins (pI > 7.0). From these results, we concluded that multiple forms of glutathione transferase enzymes existed in Proteus vulgaris, and four different glutathione transferase subunits were separated by 2-D gel electrophoresis.

  4. Two-dimensional agarose gel electrophoresis for analysis of DNA replication.

    PubMed

    Villwock, Sandra K; Aparicio, Oscar M

    2014-01-01

    The initiation, elongation, and termination of DNA replication are each associated with distinct, nonlinear DNA structures that can be resolved and identified by two-dimensional (2D) agarose gel electrophoresis. This method involves: isolation of genomic DNA while preserving fragile replication structures, digestion of the DNA with a restriction enzyme, separation of DNA by size and shape through two distinct stages of agarose gel electrophoresis, and Southern blotting to probe for the specific sequence(s) of interest. The method has been most commonly used to determine the activity level of putative replication origin-containing sequences, and has also been used to analyze replication timing, fork progression, fork pausing, fork stalling and collapse, termination, and recombinational repair.

  5. Coupling isoelectric focusing gel electrophoresis to mass spectrometry by electrostatic spray ionization.

    PubMed

    Qiao, Liang; Tobolkina, Elena; Liu, Baohong; Girault, Hubert H

    2013-05-07

    Gel electrophoresis has been used for decades as a high-resolution separation technique for proteins and protein isomers but has been limited in the coupling with MS because of low throughput and poor automaticity compared with LC-MS. In this work, we have developed an ambient ionization strategy, electrostatic spray ionization, for in situ ionization of proteins or peptides inside a surfactant-free polyacrylamide gel. The samples can be first separated by isoelectric focusing in a gel and then quickly in situ detected by scanning the gel with the electrostatic spray ionization mass spectrometry. With this strategy, nanograms of proteins or peptides inside a band are enough to be ionized for MS detection. This method for protein/peptide spots visualization is sensitive, providing sample molecular weight information while avoiding spot staining and chemical extraction procedures that can introduce contaminants and sample loss. Proof-of-principle results have demonstrated that the electrostatic spray ionization can produce sample ions from a complex background, and with a spatial resolution matching the isoelectric focusing, it is therefore a good choice to couple directly isoelectric focusing gel electrophoresis with mass spectrometry.

  6. Microplate array diagonal gel electrophoresis for cohort studies of microsatellite loci.

    PubMed

    Chen, Xiao-he; O'Dell, Sandra D; Day, Ian N M

    2002-05-01

    After PCR amplification, we have achieved precise sizing of trinucleotide and tetranucleotide microsatellite alleles on 96-well open-faced polyacrylamide microplate array diagonal gel electrophoresis (MADGE) gels: two tetranucleotide repeats, HUMTHOI (five alleles 248-263 bp) and DYS390 (eight alleles 200-228 bp), and DYS392, a trinucleotide repeat (eight alleles 210-231 bp). A gel matrix of Duracryl, a high mechanical strength polyacrylamide derivative, and appropriate ionic conditions provide the 1.3%-1.5% band resolution required. No end-labeling of primers is needed, as the sensitive Vistra Green intercalating dye is used for the visualization of bands. Co-run markers bracketing the PCR fragments ensure accurate sizing without inter-lane variability. Electrophoresis of multiple gels in a thermostatically controlled tank allows up to 1000 samples to be run in 90 min. Gel images were analyzed using a Fluorlmager 595 fluorescent scanning system, and alleles were identified using Phoretix software for band migration measurement and Microsoft Excel to compute fragment sizes. Estimated sizes were interpolated precisely to achieve accurate binning. Microsatellite-MADGE represents a utilitarian methodfor high-throughput genotyping in cohort studies, using standard laboratory equipment.

  7. Analyses of mouse and Drosophila proteins by two-dimensional gel electrophoresis.

    PubMed

    Lee, C Y; Charles, D; Bronson, D; Griffin, M; Bennett, L

    1979-11-01

    Two-dimensional gel electrophoresis was employed for the protein analysis of several different mouse tissues and Drosophila. The number of protein spots detected with conventional protein dye staining techniques ranged from 110 in erythrocyte lysate to 320 in liver homogenate. Strain variation of protein spots on the gels was examined in five different tissues from two strains of inbred mice (DBA/2J and C57BL/6J) and their F1 hybrids. The protein spots which exhibited strain variation were shown to be autosomally inherited and to follow Mendelian genetics. From these analyses, it was shown that the frequencies of protein variations between these two strains of mice vary from 1 to 5% with the tissue examined. During the course of this study, the protein spots corresponding to nine muscle proteins and three testis enzymes from the mouse as well as two Drosophila enzymes were assigned on two-dimensional gels of their respective homogenates. Radioisotope labelling of Drosophila and autoradiography of the two-dimensional gels were also performed to improve the sensitivity and resolution of the technique. The potential application of two-dimensional gel electrophoresis for mutant screening as well as biochemical genetic studies is discussed.

  8. Detection of connexins in liver cells using sodiumdodecylsulfate polyacrylamide gel electrophoresis and immunoblot analysis

    PubMed Central

    Willebrords, Joost; Maes, Michaël; Yanguas, Sara Crespo; Cogliati, Bruno; Vinken, Mathieu

    2016-01-01

    Summary Since connexin expression is partly regulated at the protein level, immunoblot analysis represents a frequently addressed technique in the connexin research field. The present chapter describes the set-up of an immunoblot procedure, including protein extraction and quantification from biological samples, gel electrophoresis, protein transfer and immunoblotting, which is optimized for analysis of connexins in liver tissue. In essence, proteins are separated on a polyacrylamide gel using sodiumdodecylsulfate followed by transfer of proteins on a nitrocellulose membrane. The latter allows specific detection of connexins with antibodies combined with revelation through enhanced chemiluminescence. PMID:27207285

  9. Protein differences between normal and oligospermic human sperm demonstrated by two-dimensional gel electrophoresis.

    PubMed

    Morgentaler, A; Schopperle, W M; Crocker, R H; DeWolf, W C

    1990-11-01

    Protein expression by sperm obtained from men with normal semen analysis and men with oligospermia were evaluated by two-dimensional gel electrophoresis. Proteins were solubilized in a 9.5 M urea/2% Nonidet-P40 (LKB, Bromma, Sweden) lysis buffer and underwent second dimension separation on 10 to 16% polyacrylamide gradient gels. A set of 36 invariant proteins was identified in all normospermic samples, whereas 8 of 10 evaluable oligospermic samples lacked 1 or more of the invariant proteins. Proteins absent in oligospermic samples may be critical to normal sperm function and may serve as markers for infertility.

  10. Identification of Methanococcus Jannaschii Proteins in 2-D Gel Electrophoresis Patterns by Mass Spectrometry

    DOE R&D Accomplishments Database

    Liang, X.

    1998-06-10

    The genome of Methanococcus jannaschii has been sequenced completely and has been found to contain approximately 1,770 predicted protein-coding regions. When these coding regions are expressed and how their expression is regulated, however, remain open questions. In this work, mass spectrometry was combined with two-dimensional gel electrophoresis to identify which proteins the genes produce under different growth conditions, and thus investigate the regulation of genes responsible for functions characteristic of this thermophilic representative of the methanogenic Archaea.

  11. Molecular Characterization of Clostridium tetani Strains by Pulsed-Field Gel Electrophoresis and Colony PCR

    PubMed Central

    Plourde-Owobi, Lucile; Seguin, Delphine; Baudin, Marie-Anne; Moste, Catherine; Rokbi, Bachra

    2005-01-01

    Pulsed-field gel electrophoresis and PCR were applied for the first time to the molecular characterization of Clostridium tetani. Among five strains tested, one (CN1339) turned out to contain a mixture of two genetically different clones and two (D11 and G761) to contain bacteria differing by the presence or absence of the 74-kb plasmid harboring the tetX gene. PMID:16151158

  12. Molecular characterization of Clostridium tetani strains by pulsed-field gel electrophoresis and colony PCR.

    PubMed

    Plourde-Owobi, Lucile; Seguin, Delphine; Baudin, Marie-Anne; Moste, Catherine; Rokbi, Bachra

    2005-09-01

    Pulsed-field gel electrophoresis and PCR were applied for the first time to the molecular characterization of Clostridium tetani. Among five strains tested, one (CN1339) turned out to contain a mixture of two genetically different clones and two (D11 and G761) to contain bacteria differing by the presence or absence of the 74-kb plasmid harboring the tetX gene.

  13. Confirmation of soybean plastid rRNAs by formaldehyde denaturing agarose gel electrophoresis.

    PubMed

    Zhu, Y Q; Zheng, Y; Chen, H B; Huang, L Q

    2014-10-27

    Owing to their prokaryotic origin, plastid rRNAs are mainly 23s/16s/5s rRNAs. We present a novel plant RNA isolation method in this paper. Also, not only the eukaryotic 28s (26s, 25s)/18s rRNAs but the prokaryotic 26s/23s rRNAs as well were demonstrated in a single sample for the first time by formaldehyde denaturing agarose gel electrophoresis.

  14. Micropreparative capillary gel electrophoresis of DNA: rapid expressed sequence tag library construction.

    PubMed

    Shi, Liang; Khandurina, Julia; Ronai, Zsolt; Li, Bi-Yu; Kwan, Wai King; Wang, Xun; Guttman, András

    2003-01-01

    A capillary gel electrophoresis based automated DNA fraction collection technique was developed to support a novel DNA fragment-pooling strategy for expressed sequence tag (EST) library construction. The cDNA population is first cleaved by BsaJ I and EcoR I restriction enzymes, and then subpooled by selective ligation with specific adapters followed by polymerase chain reaction (PCR) amplification and labeling. Combination of this cDNA fingerprinting method with high-resolution capillary gel electrophoresis separation and precise fractionation of individual cDNA transcript representatives avoids redundant fragment selection and concomitant repetitive sequencing of abundant transcripts. Using a computer-controlled capillary electrophoresis device the transcript representatives were separated by their size and fractions were automatically collected in every 30 s into 96-well plates. The high resolving power of the sieving matrix ensured sequencing grade separation of the DNA fragments (i.e., single-base resolution) and successful fraction collection. Performance and precision of the fraction collection procedure was validated by PCR amplification of the collected DNA fragments followed by capillary electrophoresis analysis for size and purity verification. The collected and PCR-amplified transcript representatives, ranging up to several hundred base pairs, were then sequenced to create an EST library.

  15. Product-selective blot: a technique for measuring enzyme activities in large numbers of samples and in native electrophoresis gels

    SciTech Connect

    Thompson, G.A.; Davies, H.M.; McDonald, N.

    1985-08-01

    A method termed product-selective blotting has been developed for screening large numbers of samples for enzyme activity. The technique is particularly well suited to detection of enzymes in native electrophoresis gels. The principle of the method was demonstrated by blotting samples from glutaminase or glutamate synthase reactions into an agarose gel embedded with ion-exchange resin under conditions favoring binding of product (glutamate) over substrates and other substances in the reaction mixture. After washes to remove these unbound substances, the product was measured using either fluorometric staining or radiometric techniques. Glutaminase activity in native electrophoresis gels was visualized by a related procedure in which substrates and products from reactions run in the electrophoresis gel were blotted directly into a resin-containing image gel. Considering the selective-binding materials available for use in the image gel, along with the possible detection systems, this method has potentially broad application.

  16. Capillary zone electrophoresis of soil humic acid fractions obtained by coupling size-exclusion chromatography and polyacrylamide gel electrophoresis.

    PubMed

    Cavani, Luciano; Ciavatta, Claudio; Trubetskaya, Olga E; Reznikova, Olga I; Afanas'eva, Gaida V; Trubetskoj, Oleg A

    2003-01-03

    Capillary zone electrophoresis (CZE) was used for characterisation of soil humic acid (HA) fractions obtained by coupling size-exclusion chromatography with polyacrylamide gel electrophoresis, on the basis of their molecular size and electrophoretic mobility. CZE was conducted using several low alkaline buffers as background electrolyte (BGE): 50 mM carbonate, pH 9.0; 50 mM phosphate, pH 8.5; 50 mM borate, pH 8.3; 50 mM Tris-borate+1 mM EDTA+7 M urea+0.1% sodium dodecyl sulphate (SDS), pH 8.3. Independently of BGE conditions, the effective electrophoretic mobility of HA fractions were in good agreement with their molecular size. The better resolution of HA were obtained in Tris-borate-EDTA buffer with urea and SDS. This results indicated that CZE, mostly with BGE-contained disaggregating agents, is useful for separating HAs in fractions with different molecular sizes.

  17. Detection of metals in proteins by means of polyacrylamide gel electrophoresis and laser ablation-inductively coupled plasma-mass spectrometry: application to selenium.

    PubMed

    Chéry, Cyrille C; Günther, Detlef; Cornelis, Rita; Vanhaecke, Frank; Moens, Luc

    2003-10-01

    The capabilities of laser ablation-inductively coupled plasma-mass spectrometry for the detection of trace elements in a gel after gel electrophoresis were systematically studied. Figures of merit, such as limit of detection, linearity, and repeatability, were evaluated for various elements (Li, V, Cr, Mn, Ni, Cu, Zn, As, Se, Mo, Pd, Ag, Cd, Pt, Tl, Pb). Two ablation strategies were followed: single hole drilling, relevant for ablation of spots after two-dimensional (2-D) separations, and ablation with translation, i.e., on a line, relevant for one-dimensional (1-D) separations. This technique was applied to the detection of selenoproteins in red blood cells extracts after a 1-D separation (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and the detection of selenium-containing proteins in yeast after 2-D electrophoresis (2-DE). The detection procedure was further improved by using the dynamic reaction cell technology, which allowed the removal of the Ar_2(+) interference and hence the use of the most abundant Se isotope, (80)Se. Reaction gases were compared (methane, carbon monoxide, ammonia, oxygen and the combination of argon (collision gas) and hydrogen (reaction gas)). In each instance, the reaction cell parameters were optimized in order to obtain the lowest detection limit for Se (as (80)Se(+), (82)Se(+) or (77)Se(+); and as (80)Se(16)O(+), (82)Se(16)O(+) or (77)Se(16)O(+) with O(2) as the reaction gas). Carbon monoxide was found to offer the best performance. The detection limit with the use of DRC and He as transport gas was 0.07 microg Se g(-1) gel with single hole drilling and 0.15 microg Se g(-1) gel for ablation with translation.

  18. Comparative fluorescence two-dimensional gel electrophoresis using a gel strip sandwich assembly for the simultaneous on-gel generation of a reference protein spot grid.

    PubMed

    Ackermann, Doreen; Wang, Weiqun; Streipert, Benjamin; Geib, Birgit; Grün, Lothar; König, Simone

    2012-05-01

    The comparison of proteins separated on 2DE is difficult due to gel-to-gel variability. Here, a method named comparative fluorescence gel electrophoresis (CoFGE) is presented, which allows the generation of an artificial protein grid in parallel to the separation of an analytical sample on the same gel. Different fluorescent stains are used to distinguish sample and marker on the gel. The technology combines elements of 1DE and 2DE. Special gel combs with V-shaped wells are placed in a stacking gel above the pI strip. Proteins separated on the pI strip are electrophoresed at the same time as marker proteins (commercially available purified protein of different molecular weight) placed in V-wells. In that way, grids providing approximately 100 nodes as landmarks for the determination of protein spot coordinates are generated. Data analysis is possible with commercial 2DE software capable of warping. The method improves comparability of 2DE protein gels, because they are generated in combination with regular in-gel anchor points formed by protein standards. This was shown here for two comparative experiments with three gels each using Escherichia coli lysate. For a set of 47 well-defined samples spots, the deviation of the coordinates was improved from 7% to less than 1% applying warping using the marker grid. Conclusively, as long as the same protein markers, the same size of pI-strips and the same technology are used, gel matching is reproducibly possible. This is an important advancement for projects involving comparison of 2DE-gels produced over several years and in different laboratories.

  19. Accurate quantification of DNA methylation of DRD4 applying capillary gel electrophoresis with LIF detection.

    PubMed

    Goedecke, Simon; Schlosser, Sabrina; Mühlisch, Jörg; Hempel, Georg; Frühwald, Michael C; Wünsch, Bernhard

    2009-04-01

    Aberrant DNA methylation of gene promoters may be investigated by an array of different technologies. Besides DNA sequencing techniques following bisulfite treatment and determination of overall methylation by quantification of 5-methylcytosine/cytosine ratio following DNA hydrolysis, most approaches rely on PCR amplification of a defined template and subsequent analysis by conventional gel electrophoresis. As an additional analytical tool, a capillary gel electrophoresis method has been developed to quantify the methylation in combined bisulfite restriction analysis products of the gene dopamine receptor D4 (DRD4). Analyses were carried out in a bare fused-silica capillary dynamically coated with a 1% w/w solution of PVA (M(r)=72,000). A buffer (pH 7.3) containing 3% w/w 2-hydroxyethylcellulose (M(nu) approximately 90,000 g/mol) was used as sieving matrix. With 1/x weighted regression the accuracy (bias) of the method is within +/-10% and the precision (expressed as RSD) also meets the common acceptance criteria of 15% (20% near lower LOQ). It overcomes the limitations of standard gel electrophoresis, which allows only one single run per analysis and requires large amounts of DNA. Therefore, the method represents a valuable tool for routine quantitative analysis of the methylation status of DRD4 and other target genes.

  20. Capillary blotting of glycosaminoglycans on nitrocellulose membranes after agarose-gel electrophoresis separation.

    PubMed

    Volpi, Nicola; Maccari, Francesca

    2009-01-01

    A method for the blotting and immobilizing of several nonsulfated and sulfated complex polysaccharides on membranes made hydrophilic and positively charged by cationic detergent after their separation by conventional agarose gel electrophoresis is illustrated. This new approach to the study of glycosaminoglycans (GAGs) utilizes the capacity of agarose gel electrophoresis to separate single species of polysaccharides from mixtures and the membrane technology for further preparative and analytical uses.Nitrocellulose membranes are derivatized with the cationic detergent cetylpyridinium chloride and mixtures of GAGs are capillary blotted after their separation in agarose gel electrophoresis. Single purified species of variously sulfated polysaccharides are transferred on derivatized membranes with an efficiency of 100% and stained with alcian blue (irreversible staining) and toluidine blue (reversible staining). This enables a lower amount limit of detection of 0.1 microg. Nonsulfated polyanions, for example hyaluronic acid, may also be transferred to membranes with a limit of detection of approximately 0.1-0.5 microg after irreversible or reversible staining. The membranes may be stained with reversible staining and the same lanes are used for immunological detection or other applications.

  1. Improved agarose gel electrophoresis method and molecular mass calculation for high molecular mass hyaluronan.

    PubMed

    Cowman, Mary K; Chen, Cherry C; Pandya, Monika; Yuan, Han; Ramkishun, Dianne; LoBello, Jaclyn; Bhilocha, Shardul; Russell-Puleri, Sparkle; Skendaj, Eraldi; Mijovic, Jovan; Jing, Wei

    2011-10-01

    The molecular mass of the polysaccharide hyaluronan (HA) is an important determinant of its biological activity and physicochemical properties. One method currently used for the analysis of the molecular mass distribution of an HA sample is gel electrophoresis. In the current work, an improved agarose gel electrophoresis method for analysis of high molecular mass HA is presented and validated. HA mobility in 0.5% agarose minigels was found to be linearly related to the logarithm of molecular mass in the range from approximately 200 to 6000 kDa. A sample load of 2.5 μg for polydisperse HA samples was employed. Densitometric scanning of stained gels allowed analysis of the range of molecular masses present in the sample as well as calculation of weight-average and number-average values. The method was validated for a polydisperse HA sample with a weight-average molecular mass of approximately 2000 kDa. Excellent agreement was found between the weight-average molecular mass determined by electrophoresis and that determined by rheological measurement of the solution viscosity. The revised method was then used to show that heating solutions of HA at 100°C, followed by various cooling procedures, had no effect on the HA molecular mass distribution.

  2. DNA electrophoresis in agarose gels: A new mobility vs. DNA length dependence

    NASA Astrophysics Data System (ADS)

    Beheshti, Afshin

    2002-04-01

    Separations were performed on double stranded DNA (dsDNA) using electrophoresis. Electrophoresis is the steady transport of particles under the influence of an external electric field. Double stranded DNA fragments ranging in length from 200 base pairs (bp) to 194,000 bp (0.34 nm = 1 bp) were electrophoresed at agarose gel concentrations T = 0.4%--1.5%. The electric field was varied from 0.62 V/cm to 6.21 V/cm. A wide range of electric fields and gel concentrations were used to study the usefulness of a new interpolation equation, 1mL =1mL-( 1mL-1 ms)e-L/g , where mL,ms , and g are independent free fitting parameters. The long length mobility limit is interpreted as mL , the short length mobility limit is ms , and g is the crossover between the long length limit and the short length limit. This exponential relation fit very well (chi2 ≥ 0.999) when there are two smooth transitions observed in the "reptation plots" (plotting 3mL/m∘ vs. L) (J. Rousseau, G. Drouin, and G. W. Slater, Phys Rev Lett. 1997, 79, 1945--1948). Fits deviate from the data when three different slopes were observed in the reptation plots. Reptation plots were used to determine a phase diagram for dsDNA migration regimes. The phase diagrams define different regions where mechanisms for molecular transport affect the migration of dsDNA in agarose gels during electrophoresis. The parameters from the equation have also been interpreted to provide a physical description of the structure of the agarose gel by calculating the pore sizes. The relations between the values for the pore sizes and the phase diagrams are interpreted to better understand the migration of the DNA through agarose gels.

  3. Optimization of separation and detection schemes for DNA with pulsed field slab gel and capillary electrophoresis

    SciTech Connect

    McGregor, David A.

    1993-07-01

    The purpose of the Human Genome Project is outlined followed by a discussion of electrophoresis in slab gels and capillaries and its application to deoxyribonucleic acid (DNA). Techniques used to modify electroosmotic flow in capillaries are addressed. Several separation and detection schemes for DNA via gel and capillary electrophoresis are described. Emphasis is placed on the elucidation of DNA fragment size in real time and shortening separation times to approximate real time monitoring. The migration of DNA fragment bands through a slab gel can be monitored by UV absorption at 254 nm and imaged by a charge coupled device (CCD) camera. Background correction and immediate viewing of band positions to interactively change the field program in pulsed-field gel electrophoresis are possible throughout the separation. The use of absorption removes the need for staining or radioisotope labeling thereby simplifying sample preparation and reducing hazardous waste generation. This leaves the DNA in its native state and further analysis can be performed without de-staining. The optimization of several parameters considerably reduces total analysis time. DNA from 2 kb to 850 kb can be separated in 3 hours on a 7 cm gel with interactive control of the pulse time, which is 10 times faster than the use of a constant field program. The separation of ΦX174RF DNA-HaeIII fragments is studied in a 0.5% methyl cellulose polymer solution as a function of temperature and applied voltage. The migration times decreased with both increasing temperature and increasing field strength, as expected. The relative migration rates of the fragments do not change with temperature but are affected by the applied field. Conditions were established for the separation of the 271/281 bp fragments, even without the addition of intercalating agents. At 700 V/cm and 20°C, all fragments are separated in less than 4 minutes with an average plate number of 2.5 million per meter.

  4. An evaluation of the SPIFE 3000 semi-automated gel electrophoresis system for the identification of hemoglobin variants and comparison of relative electrophoretic mobilities with manual gel electrophoresis methods.

    PubMed

    Hoyer, J D; Markley, K M; Savedra, M E; Kubik, K S; Scheidt, R M

    2010-06-01

    Laboratory identification of hemoglobin (Hb) variants can involve multiple techniques. The use of semi-automated instruments that perform gel electrophoresis and staining, such as the SPIFE 3000 electrophoresis system, can greatly reduce the labor required for these commonly used techniques. We performed a comparison of the method involved in SPIFE 3000 system with those of manual gel electrophoresis. A total of 22 540 samples were analyzed using the SPIFE 3000, and compared with mobilities on cellulose acetate and citrate agar gels using standard manual methods. The results were compared using relative electrophoretic mobilities (REM). Of the 191 Hb variants identified, only 13 had REM that differed from manual electrophoresis when analyzed using the SPIFE 3000 system. One variant (Hb O-Indonesia) showed different mobility on both acid and alkaline gels, two (Hb E, Hb Sunshine Seth) on alkaline gel only, and 10 (Hbs N-Baltimore, N-Seattle, O-Arab, Shelby, Summer Hill, Tak, Hasharon, M-Iwate, Q-Iran, and Setif) on acid gels only. The SPIFE 3000 semi-automated electrophoresis system produces similar results when compared with those of standard manual electrophoresis methods.

  5. Glutamine Synthetase Regulation, Adenylylation State, and Strain Specificity Analyzed by Polyacrylamide Gel Electrophoresis

    PubMed Central

    Bender, Robert A.; Streicher, Stanley L.

    1979-01-01

    We used polyacrylamide gel electrophoresis to examine the regulation and adenylylation states of glutamine synthetases (GSs) from Escherichia coli (GSE) and Klebsiella aerogenes (GSK). In gels containing sodium dodecyl sulfate (SDS), we found that GSK had a mobility which differed significantly from that of GSE. In addition, for both GSK and GSE, adenylylated subunits (GSK-adenosine 5′-monophosphate [AMP] and GSE-AMP) had lesser mobilities in SDS gels than did the corresponding non-adenylylated subunits. The order of mobilities was GSK-AMP < GSK < GSE-AMP < GSE. We were able to detect these mobility differences with purified and partially purified preparations of GS, crude cell extracts, and whole cell lysates. SDS gel electrophoresis thus provided a means of estimating the adenylylation state and the quantity of GS present independent of enzymatic activity measurements and of determining the strain origin. Using SDS gels, we showed that: (i) the constitutively produced GS in strains carrying the glnA4 allele was mostly adenylylated, (ii) the GS-like polypeptide produced by strains carrying the glnA51 allele was indistinguishable from wild-type GSK, and (iii) strains carrying the glnA10 allele contained no polypeptide having the mobility of GSK or GSK-AMP. Using native polyacrylamide gels, we detected the increased amount of dodecameric GS present in cells grown under nitrogen limitation compared with cells grown under conditions of nitrogen excess. In native gels there was neither a significant difference in the mobilities of adenylylated and non-adenylylated GSs nor a GS-like protein in cells carrying the glnA10 allele. Images PMID:33958

  6. Cytoplasmic polyhedrosis virus classification by electropherotype; validation by serological analyses and agarose gel electrophoresis.

    PubMed

    Mertens, P P; Crook, N E; Rubinstein, R; Pedley, S; Payne, C C

    1989-01-01

    Serological analyses of several different cytoplasmic polyhedrosis viruses (CPVs), including two type 1 CPVs from Bombyx mori, type 1 CPV from Dendrolimus spectabilis, type 12 CPV from Autographa gamma, type 2 CPV from Inachis io, type 5 CPV from Orgyia pseudotsugata and type 5 CPV from Heliothis armigera, demonstrated a close correlation between the antigenic properties of the polyhedrin or virus particle structural proteins and the genomic dsRNA electropherotypes. The dsRNAs of these viruses were analysed by electrophoresis in 3% and 10% polyacrylamide gels with a discontinuous Tris-HCl/Tris-glycine buffer system or by 1% agarose gel electrophoresis using a continuous Tris-acetate-EDTA buffer system. Electrophoretic analysis in agarose gels was found to be the most suitable for the classification of CPV isolates into electropherotypes, and the results obtained showed a close correlation with the observed antigenic relationships between different virus isolates. However, electrophoretic analysis in 10% polyacrylamide gels was most sensitive for the detection of intra-type variation and the presence of mixed virus isolates.

  7. An effective placental cotyledons proteins extraction method for 2D gel electrophoresis.

    PubMed

    Tan, Niu J; Daim, Leona D J; Jamil, Amilia A M; Mohtarrudin, Norhafizah; Thilakavathy, Karuppiah

    2017-03-01

    Effective protein extraction is essential especially in producing a well-resolved proteome on 2D gels. A well-resolved placental cotyledon proteome, with good reproducibility, have allowed researchers to study the proteins underlying the physiology and pathophysiology of pregnancy. The aim of this study is to determine the best protein extraction protocol for the extraction of protein from placental cotyledons tissues for a two-dimensional gel electrophoresis (2D-GE). Based on widely used protein extraction strategies, 12 different extraction methodologies were carefully selected, which included one chemical extraction, two mechanical extraction coupled protein precipitations, and nine chemical extraction coupled protein precipitations. Extracted proteins were resolved in a one-dimensional gel electrophoresis and 2D-GE; then, it was compared with set criteria: extraction efficacy, protein resolution, reproducibility, and recovery efficiency. Our results revealed that a better profile was obtained by chemical extraction in comparison to mechanical extraction. We further compared chemical extraction coupled protein precipitation methodologies, where the DNase/lithium chloride-dense sucrose homogenization coupled dichloromethane-methanol precipitation (DNase/LiCl-DSH-D/MPE) method showed good protein extraction efficiency. This, however, was carried out with the best protein resolution and proteome reproducibility on 2D-gels. DNase/LiCl-DSH-D/MPE was efficient in the extraction of proteins from placental cotyledons tissues. In addition, this methodology could hypothetically allow the protein extraction of any tissue that contains highly abundant lipid and glycogen.

  8. A Sol-Gel-Modified Poly(methyl methacrylate) Electrophoresis Microchip with a Hydrophilic Channel Wall

    SciTech Connect

    Chen, Gang; Xu, Xuejiao; Lin, Yuehe; Wang, Joseph

    2007-07-27

    A sol-gel method was employed to fabricate a poly(methyl methacrylate) (PMMA) electrophoresis microchip that contains a hydrophilic channel wall. To fabricate such a device, tetraethoxysilane (TEOS) was injected into the PMMA channel and was allowed to diffuse into the surface layer for 24 h. After removing the excess TEOS, the channel was filled with an acidic solution for 3 h. Subsequently, the channel was flushed with water and was pretreated in an oven to obtain a sol-gel-modified PMMA microchip. The water contact angle for the sol-gel-modified PMMA was 27.4° compared with 66.3° for the pure PMMA. In addition, the electro-osmotic flow increased from 2.13×10-4 cm2 V-1 s-1 for the native-PMMA channel to 4.86×10-4 cm2 V-1 s-1 for the modified one. The analytical performance of the sol-gel-modified PMMA microchip was demonstrated for the electrophoretic separation of several purines, coupled with amperometric detection. The separation efficiency of uric acid increased to 74 882.3 m-1 compared with 14 730.5 m-1 for native-PMMA microchips. The result of this simple modification is a significant improvement in the performance of PMMA for microchip electrophoresis and microfluidic applications.

  9. Proteomic Profiling Of Two-Dimensional Gel Electrophoresis Protein Expression Data

    NASA Astrophysics Data System (ADS)

    Ahmad, Norhaiza; Zhang, J.; Brown, P. J.; James, D. C.; Birch, J. R.; Racher, A. J.; Smales, C. M.

    2008-01-01

    We have undertaken two-dimensional gel electrophoresis (2-DE) proteomic profiling on a series of cell lines with different recombinant antibody production rates. Due to the nature of 2-DE proteomic investigations there will always be `process variability' factors in any data set collected in this way. Some of this variation will arise during sample preparation, gel running and staining, while further variation will arise from the gel analysis procedure. Therefore, in order to identify all significant changes in protein expression between biological samples when analysed by 2-DE, the system precision or `error', and how this correlates to protein abundance, must be known. Only then can the system be considered robust and investigators accurately and confidently report all observable statistically significant changes in protein expression. We introduce an expression variability test to identify protein spots whose expression correlates with increased antibody production. The results have highlighted a small number of candidate proteins for further investigation.

  10. Band broadening in gel electrophoresis: scaling laws for the dispersion coefficient measured by FRAP.

    PubMed

    Tinland, B; Pernodet, N; Pluen, A

    1998-10-05

    We determined quantitatively the band broadening effect during gel electrophoresis by measuring the longitudinal dispersion coefficient Dx, with a fluorescence recovery after photobleaching setup, coupled to an electrophoretic cell. We carried out measurements as a function of the electric field, the average pore size, and the molecular length of DNA fragments. Our results are in good agreement with the predictions of the biased reptation model with fluctuations described by T. A. Duke et al. [(1992) Physics Review Letters, vol. 69, pp. 3260-3263]. This agreement is observed on single-stranded DNA [persistence length approximately equal to 4 nm; B. Tinland et al. (1997) Macromolecules, vol. 30, pp. 5763-5765] in polyacrylamide gels and on double-stranded DNA (persistence length approximately equal to 50 nm) in agarose gels, two systems where the ratio between the average pore size and the Kuhn length is larger than 1.

  11. Gel electrophoresis of DNA partially denatured at the ends: what are the dominant conformations?

    PubMed

    Sean, David; Slater, Gary W

    2013-03-01

    Gel electrophoresis of a partially denatured dsDNA fragment is studied using Langevin Dynamics computer simulations. For simplicity, the denatured ssDNA sections are placed at the ends of the fragment in a symmetrical fashion. A squid-like conformation is found to sometimes cause the fragment to completely block in the gel. In fact, this conformation is the principal cause of the steep reduction in mobility observed in the simulations. As the field is increased, it is found that the occurrence of this conformation dominates the migration dynamics. Although the squid conformation seems to be more stable at high fields, the field can eventually force the fragments to thread through the gel pores regardless. We qualitatively explore the behavior of this squid-like conformation across a range of fields and degrees of denaturation, and we discuss the relevance of our findings for TGGE.

  12. Comparative Analysis of Denaturing Gradient Gel Electrophoresis and Temporal Temperature Gradient Gel Electrophoresis Profiles as a Tool for the Differentiation of Candida Species

    PubMed Central

    Mohammadi, Parisa; Hamidkhani, Aida; Asgarani, Ezat

    2015-01-01

    Background: Candida species are usually opportunistic organisms that cause acute to chronic infections when conditions in the host are favorable. Accurate identification of Candida species is an essential pre-requisite for improved therapeutic strategy. Identification of Candida species by conventional methods is time-consuming with low sensitivity, yet molecular approaches have provided an alternative way for early diagnosis of invasive candidiasis. Denaturing gradient gel electrophoresis (DGGE) and temporal temperature gradient gel electrophoresis (TTGE) are polymerase chain reaction (PCR)-based approaches that are used for studying the community structure of microorganisms. By using these methods, simultaneous identification of multiple yeast species will be possible and reliable results will be obtained quickly. Objectives: In this study, DGGE and TTGE methods were set up and evaluated for the detection of different Candida species, and their results were compared. Materials and Methods: Five different Candida species were cultured on potato dextrose agar medium for 24 hours. Next, total DNA was extracted by the phenol-chloroform method. Two sets of primers, ITS3-GC/ITS4 and NL1-GC/LS2 were applied to amplify the desired regions. The amplified fragments were then used to analyze DGGE and TTGE profiles. Results: The results showed that NL1-GC/LS2 primer set could yield species-specific amplicons, which were well distinguished and allowed better species discrimination than that generated by the ITS3-GC/ITS4 primer set, in both DGGE and TTGE profiles. All five Candida species were discriminated by DGGE and TTGE using the NL1-GC/LS2 primer set. Conclusions: Comparison of DGGE and TTGE profiles obtained from NL1-GC/LS2 amplicons exhibited the same patterns. Although both DGGE and TTGE techniques are capable of detecting Candida species, TTGE is recommended because of easier performance and lower costs. PMID:26568801

  13. Sol-gel chemistry-based Ucon-coated columns for capillary electrophoresis.

    PubMed

    Hayes, J D; Malik, A

    1997-07-18

    A sol-gel chemistry-based novel approach for the preparation of a Ucon-coated fused-silica capillary column in capillary electrophoresis is presented. In this approach the sol-gel process is carried out inside 25 microm I.D. fused-silica capillaries. The sol solution contained appropriate quantities of an alkoxide-based sol-gel precursor, a polymeric coating material (Ucon), a crosslinking reagent, a surface derivatizing reagent, controlled amounts of water and a catalyst dissolved in a suitable solvent system. The coating procedure involves filling a capillary with the sol solution and allowing the sol-gel process to proceed for an optimum period. Hydrolysis of the alkoxide precursor and polycondensation of the hydrolyzed products with the surface silanol groups and the hydroxy-terminated Ucon molecules lead to the formation of a surface-bonded sol-gel coating on the inner walls of the capillary. The thickness of the coated film can be controlled by varying the reaction time, coating solution composition and experimental conditions. Commercial availability of high purity sol-gel precursors (e.g., TEOS 99.999%), the ease of coating, run-to-run and column-to-column reproducibility, and long column lifetimes make sol-gel coating chemistry very much suitable for being applied in analytical microseparations column technology. Test samples of basic proteins and nucleotides were used to evaluate the column performance. These results show that the sol-gel coating scheme has allowed for the generation of bio-compatible surfaces characterized by high separation efficiencies in CE. For different types of solutes, the sol-gel coated Ucon column consistently provided migration time R.S.D. values of the order of 0.5%.

  14. The Sensitivity of Gel Electrophoresis as a Detector of Genetic Variation

    PubMed Central

    Ramshaw, John A. M.; Coyne, Jerry A.; Lewontin, R. C.

    1979-01-01

    Three experiments based on an idea of Youderian have been performed to determine the proportions and kinds of amino acid substitutions that are detected by gel electrophoresis when applied to surveys of protein variation in populations. The experiments involved applying the sequential method of electrophoresis under several conditions of pH and gel concentration to a large sample of human hemoglobins with known amino acid substitutions. In the first experiment, a random sample of 20 different hemoglobin variants was studied, and these were separated into 17 distinct electrophoretic classes by three sequential gel conditions, thus giving a detectability of 85%. A single pass under standard conditions detected eight classes. The second experiment compared groups of substitutions that were chemically identical, but in different positions in the α and β chains, while the third experiment compared pairs of substitutions that were charge equivalent, but chemically different at the same chain position. The sequential method distinguished 90% of all chemically identical substitutions when they were at different chain locations, and four out of five charge equivalent but chemically different substitutions at the same site. Examination of the location of each substitution in the three-dimensional structure of hemoglobins showed that interior substitutions usually are less different from Hb A than are surface substitutions and that local interactions with chain and spatial neighbors are sufficient to distinguish substitutions in very similar positions on the outside of the molecule. The "charge ladder" model of electrophoretic classes is clearly incorrect, and it appears that sequential gel electrophoresis as practiced in our Drosophila surveys has detected a substantial fraction of amino acid substitutions if hemoglobin is regarded as a model. This estimate may be modified as other molecules beside hemoglobin are subjected to similar calibration experiments. PMID:546674

  15. Mutations and a polymorphism in the factor VIII gene discovered by denaturing gradient gel electrophoresis

    SciTech Connect

    Kogan, S.; Gitschier, J. )

    1990-03-01

    Hemophilia A results from mutations in the gene coding for coagulation factor VIII. The authors gradient gel electrophoresis to screen for mutations in the region of the factor VIII gene coding for the first acidic domain. Amplification primers were designed employing the MELTMAP computer program to optimize the ability to detect mutations. Screening of amplified DNA from 228 unselected hemophilia A patients revealed two mutations and one polymorphism. Rescreening the same population by making heteroduplexes between amplified patient and control samples prior to electrophoresis revealed one additional mutation. The mutations include two missense and one 4-base-pair deletion, and each mutation was found in patients with severe hemophilia. The polymorphism, located adjacent to the adenine branch site in intron 7, is useful for genetic prediction in some cases where the Bcl I and Xba I polymorphisms are uninformative. These results suggest that DNA amplification and denaturing gradient gel electrophoresis should be an excellent strategy for identifying mutations and polymorphisms in defined regions of the factor VIII gene and other large genes.

  16. Single universal primer multiplex ligation-dependent probe amplification with sequencing gel electrophoresis analysis.

    PubMed

    Shang, Ying; Zhu, Pengyu; Xu, Wentao; Guo, Tianxiao; Tian, Wenying; Luo, Yunbo; Huang, Kunlun

    2013-12-15

    In this study, a novel single universal primer multiplex ligation-dependent probe amplification (SUP-MLPA) technique that uses only one universal primer to perform multiplex polymerase chain reaction (PCR) was developed. Two reversely complementary common sequences were designed on the 5' or 3' end of the ligation probes (LPs), which allowed the ligation products to be amplified through only a single universal primer (SUP). SUP-MLPA products were analyzed on sequencing gel electrophoresis with extraordinary resolution. This method avoided the high expenses associated with capillary electrophoresis, which was the commonly used detection instrument. In comparison with conventional multiplex PCR, which suffers from low sensitivity, nonspecificity, and amplification disparity, SUP-MLPA had higher specificity and sensitivity and a low detection limit of 0.1 ng for detecting single crop species when screening the presence of genetically modified crops. We also studied the effect of different lengths of stuffer sequences on the probes for the first time. Through comparing the results of quantitative PCR, the LPs with different stuffer sequences did not affect the ligation efficiency, which further increased the multiplicity of this assay. The improved SUP-MLPA and sequencing gel electrophoresis method will be useful for food and animal feed identification, bacterial detection, and verification of genetic modification status of crops.

  17. Detection of genotoxic insult as DNA strand breaks in fish blood cells by agarose gel electrophoresis

    SciTech Connect

    Theodorakis, C.W. ); D'Surney, S.J. . Dept. of Biology); Shugart, L.R. . Environmental Sciences Division)

    1994-07-01

    DNA, isolated from the blood cells of bluegill sunfish (Lepomis macrochirus) exposed in the lab to bedded sediment collected from a site contaminated with genotoxic compounds (i.e., PAHs, PCBs, and heavy metals), was examined for strand breakage by agarose gel electrophoresis. Before electrophoresis the blood cells were embedded in agarose plugs and incubated with proteinase. After electrophoresis under both neutral (pH 7) or alkaline (pH 12) conditions, the median molecular length (MML) of the DNA distributed in the gel was determined. These quantitative measures were used to estimate the difference in the number of double- and single-strand breaks between DNA preparations. Both types of strand breakage were found to be greater in fish exposed to sediment contaminated with genotoxic compounds as compared to nonexposed fish. A statistically significant correlation was demonstrated between the MML value obtained by the electrophoretic assay reported here and the F value (measure of DNA double-strandedness) obtained by the alkaline unwinding assay.

  18. Accuracy of two-color peak-height-encoded DNA sequencing by capillary gel electrophoresis and laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Bay, Sue; Starke, Heather; Elliott, John; Dovichi, Norman J.

    1993-06-01

    The two-color peak-height encoded DNA sequencing technique was evaluated with six clones taken from the malaria genome. This technique produced a sequencing accuracy of at least 97.5%. Capillary gel electrophoresis, using a modest voltage of 200 V/cm, showed a three- fold increase in speed and higher efficiency compared to conventional slab gel technique.

  19. Nanostructured Copolymer Gels for dsDNA Separation by Capillary Electrophoresis

    PubMed Central

    Wan, Fen; Zhang, Jun; Lau, Angela; Tan, Sarah; Burger, Christian; Chu, Benjamin

    2010-01-01

    Pluronics copolymers are triblock copolymers of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) and are able to form many different ordered nanostructures at appropriate polymer concentrations and temperatures in selective solvents. These nano-structured ‘gels’ showed desirable criteria when used as DNA separation media, especially in microchip electrophoresis, including dynamic coating ability and viscosity switchable property. A ternary system of F127 (E99P69E99)/TBE buffer/1-butanol was selected as a model system to test the sieving performance of different nanostructures in separating dsDNA by capillary electrophoresis. The lattice structures were determined by small-angle x-ray scattering with quasi-lattice crystal parameters being calculated according to the x-ray scattering data. Viscosity measurements showed the sol-gel transition phenomena. In addition to the cubic structure, successful electrophoretic separation of dsDNA in 2-D hexagonal packed cylinders was achieved. Results showed that without further optimization, ΦX174 DNA-Hae III digest was well separated within 15 minutes in a 7-cm separation channel, by using F127/TBE/1-butanol gel with a 2-D hexagonal structure. A mechanism for DNA separations by those gels with both hydrophilic and hydrophobic domains is discussed. PMID:19053068

  20. Unhooking dynamics of U-shaped DNA molecule undergoing gel electrophoresis.

    PubMed

    Song, L; Maestre, M F

    1991-08-01

    It has been found that DNA molecules are often hooked around obstacles in a U-shaped configuration in gel electrophoresis. To understand the dynamics of the unhooking of U-shaped DNA molecules undergoing gel electrophoresis, we have examined the length changes of the longer and shorter arms of the U-shape as a function of time. Two types of unhooking have been found. In one type, the length changes of both arms are expontential in time but with different time constants. In another type, the length changes of the shorter arm is exponential and that of the longer one is linear with time. The interpretation is that the extent of stretch of the spring-like DNA chain decreases as the length difference between the two arms increases during the unhooking processes, and that the frictions at the pivot point can be relatively large depending upon the local structure of the gel. The friction coefficient at the pivot point is estimated to be nu 0 = (2.98 +/- 1.42)x10(-5) g/sec.

  1. Gel electrophoresis of a charge-regulated, bi-functional particle.

    PubMed

    Hsu, Jyh-Ping; Huang, Chih-Hua; Tseng, Shiojenn

    2013-03-01

    Adopting a Brinkman fluid model, we analyzed the electrophoresis of a charged-regulated, bi-functional particle containing both acidic and basic functional groups in a gel solution. Both the long-range hydrodynamic effect arising from the liquid drag and the short-range steric effect from particle-polymer interaction are considered. The type of particle considered is capable of simulating both biocolloids such as microorganisms and cells, and particles with adsorbed polyelectrolyte or membrane layer. Our model describes successfully the experimental data in the literature. The presence of gel has the effect of reducing the particle mobility and alleviating double-layer polarization so that the particle behavior is less complicated than that in the case where gel is absent. On the other hand, both the quantitative and qualitative behaviors of a particle depend highly on solution pH and background salt concentration, yielding interesting and significant results. These results provide valuable information for both experimental data interpretation and electrophoresis devices design.

  2. Response surface methodology-based optimisation of agarose gel electrophoresis for screening and electropherotyping of rotavirus.

    PubMed

    Mishra, Vikas; Nag, Vijaya Lakshmi; Tandon, Ritu; Awasthi, Shally

    2010-04-01

    Management of rotavirus diarrhoea cases and prevention of nosocomial infection require rapid diagnostic method at the patient care level. Diagnostic tests currently available are not routinely used due to economic or sensitivity/specificity constraints. Agarose-based sieving media and running conditions were modulated by using central composite design and response surface methodology for screening and electropherotyping of rotaviruses. The electrophoretic resolution of rotavirus genome was calculated from input parameters characterising the gel matrix structure and running conditions. Resolution of rotavirus genome was calculated by densitometric analysis of the gel. The parameters at critical values were able to resolve 11 segmented rotavirus genome. Better resolution and electropherotypic variation in 11 segmented double-stranded RNA genome of rotavirus was detected at 1.96% (w/v) agarose concentration, 0.073 mol l(-1) ionic strength of Tris base-boric acid-ethylenediamine tetraacetic acid buffer (1.4x) and 4.31 h of electrophoresis at 4.6 V cm(-1) electric field strength. Modified agarose gel electrophoresis can replace other methods as a simplified alternative for routine detection of rotavirus where it is not in practice.

  3. Dispersion functions and factors that determine resolution for DNA sequencing by gel electrophoresis

    SciTech Connect

    Sutherland, J.C.; Reynolds, K.J.; Fisk, D.J.

    1996-04-01

    The number of bases that can be read in a single run by a DNA sequencing instrument that detects fluorophore labeled DNA arriving at a ``finish-line`` located a fixed distance from the starting wells is influenced by numerous parameters. Strategies for improving the length-of-read of a DNA sequencer can be based on quantitative models of the separation of DNA by gel electrophoresis. The dispersion function of the electrophoretic system--the relationship between molecular contour length and time of arrival at the detector--is useful in characterizing the performance of a DNA sequencer. We adapted analytical representations of dispersion functions, originally developed for snapshot imaging of DNA gels, (samples electrophoresed for constant time), to finish-line imaging, and demonstrated that a logistic-type function with non-integral exponent is required to describe the experimental data. We use this dispersion function to determine the resolution length and resolving power of a LI-COR DNA sequencing system and a custom built capillary gel electrophoresis system, and discuss the factors that presently limit the number of bases that can be determined reliably in a single sequencing run.

  4. Measurement of DNA damage using agarose gel electrophoresis and electronic imaging

    SciTech Connect

    Sutherland, J.C.; Bergman, A.M.; Chen, Chun-Zhang; Monteleone, D.C.; Trunk, J.; Sutherland, B.M.

    1988-01-01

    Damage done to DNA by ultraviolet (uv) light, gamma rays and other carcinogens can be quantified using agarose gel electrophororesis. Agents that either produce strand breaks directly or that produce lesions that can be enzymatically or chemically converted to strand breaks can be studied. The method requires: (1) accurate measurement of the disribution of mass of DNA as a function of the distance of migration in the gel, (2) determination of the dispersion function of the electrophoresis system and (3) calculation of weighted averages of these functions by a computer. Less than 50 ng of DNA are required and the DNA need not be labeled with a radioactive tracer. Hence, the damage and repair of DNA in non-dividing cells and intact organisms---including humans---can be studied. Initial applications have focused on the quantitation of cyclobutyl pyrimidine dimers in the DNA of uv irradiated human skin. The sensitivity of lesion detection is increased by unidirectional pulsed field electrophoresis and other methods that separate longer DNA molecules. Replacing photographic detection of ethidium fluorescence by electronic imaging increases the accuracy of the measurement and the speed of data analysis. Quantitative electronic imaging of gel fluorescence offers advantages over photography in other areas of molecular biology, medicine and biotechnology. 26 refs., 5 figs.

  5. DNA electrophoresis in tri-block copolymer gels--experiments and Brownian dynamics simulation

    NASA Astrophysics Data System (ADS)

    Wei, Ling; van Winkle, David H.

    2015-03-01

    The mobility of double-stranded DNA ladders in Pluronics®P105, P123 and F127, was measured by two-dimensional gel electrophoresis. Pluronics®are triblock copolymers which form gel-like phases of micelles arranged with cubic order at room temperature. A 10 base pair and a 25 base pair DNA ladder were used as samples in gel electrophoresis. The monotonically decreasing mobility with increasing length observed in the agarose separations is not observed in separations in Pluronics®. Rather, a complicated dependence of mobility on DNA length is observed, where mobility vs. length increases for short DNA molecules then decreases for longer molecules. There is also a variation of mobility with length correlated to the micelle diameter. Brownian dynamics simulations of a discrete wormlike chain model were performed to simulate short DNA molecules migrating in free solution and in a face-centered cubic matrix. By incorporating hydrodynamic interactions, the trend of simulated length-dependent mobility qualitatively agrees with experimental measurements.

  6. Megabase-scale mapping of the HLA gene complex by pulsed field gel electrophoresis

    SciTech Connect

    Lawrance, S.K.; Smith, C.L.; Srivastava, R.; Cantor, C.R.; Weissman, S.M.

    1987-03-13

    In the study of the genetic structure of mammalian chromosomes, there exists a resolution gap between molecular cloning experiments and meiotic linkage analyses. This gap has discouraged attempts to construct full-scale genetic maps of mammalian chromosomes. The organization of the human major histocompatibility complex was examined within this range by pulsed field gel electrophoresis. The data obtained indicate that the complex spans over 3000 kilobases and enable the construction of a megabase-scale molecular map. These results indicate that the techniques employed in DNA extraction, enzymatic digestion, electrophoresis, and hybridization are suitable for the efficient analysis of megabase regions of mammalian chromosomes and effectively bridge the resolution gap between molecular cloning and classical genetics.

  7. An inexpensive microslab gel DNA electrophoresis system with real-time fluorescence detection.

    PubMed

    Chen, Xiaojia; Ugaz, Victor M

    2006-02-01

    In this paper, we describe the construction of a simple yet powerful gel electrophoresis apparatus that can be used to perform size-selective separations of DNA fragments in virtually any laboratory. This system employs a microslab gel format with a novel gel casting technique that eliminates the need for delicate combs to define sample loading wells. The compact size of the microslab gel format allows rapid separations to be performed at low voltages using submicroliter sample volumes. Real time fluorescence detection of the migrating DNA fragments is accomplished using an inexpensive digital microscope that directly connects to any PC with a USB interface. The microscope is readily adaptable for this application by replacing its white light source with a blue light-emitting diode (LED) and adding an appropriate emission filter. Both polyacrylamide and agarose gels can be used as separation matrices. Separation performance was characterized using standard dsDNA ladders, and correct sizing of a 191 bp PCR product was achieved in 15 min. The low cost and simplicity of this system makes it ideally suited for use in a variety of laboratory and educational settings.

  8. Performing isoelectric focusing and simultaneous fractionation of proteins on a rotary valve followed by sodium dodecyl-polyacrylamide gel electrophoresis.

    PubMed

    Wang, Wei; Lu, Joann J; Gu, Congying; Zhou, Lei; Liu, Shaorong

    2013-07-16

    In this technical note, we design and fabricate a novel rotary valve and demonstrate its feasibility for performing isoelectric focusing and simultaneous fractionation of proteins, followed by sodium dodecyl-polyacrylamide gel electrophoresis. The valve has two positions. In one position, the valve routes a series of capillary loops together into a single capillary tube where capillary isoelectric focusing (CIEF) is performed. By switching the valve to another position, the CIEF-resolved proteins in all capillary loops are isolated simultaneously, and samples in the loops are removed and collected in vials. After the collected samples are briefly processed, they are separated via sodium dodecyl-polyacrylamide gel electrophoresis (SDS-PAGE, the second-D separation) on either a capillary gel electrophoresis instrument or a slab-gel system. The detailed valve configuration is illustrated, and the experimental conditions and operation protocols are discussed.

  9. Two Dimensional Gel Electrophoresis of Insulin Secretory Granule Proteins from Biosynthetically-Labeled Pancreatic Islets.

    PubMed

    Guest, Paul C

    2017-01-01

    Pulse-chase radiolabeling of cells with radioactive amino acids is a common method for tracking the biosynthesis of proteins. Radiolabeled newly synthesized proteins can be analyzed by a number of techniques such as two dimensional gel electrophoresis (2DE). This chapter presents a protocol for the biosynthetic labeling of pancreatic islets with (35)S-methionine in the presence of basal and stimulatory concentrations of glucose, followed by subcellular fractionation to produce a secretory granule fraction and analysis of the granule protein contents by 2DE. This provides a means of determining whether or not the biosynthetic rates of the entire granule constituents are coordinately regulated.

  10. 2D Gel Electrophoresis of Insulin Secretory Granule Proteins from Biosynthetically Labelled Pancreatic Islets.

    PubMed

    Guest, Paul C

    2017-01-01

    Pulse radiolabelling of cells with radioactive amino acids such is a common method for investigating the biosynthetic rates of proteins. In this way, the abundance of newly synthesized proteins can be determined by several proteomic techniques including 2D gel electrophoresis (2DE). This chapter describes a protocol for labelling pancreatic islets with (35)S-methionine in the presence of low and high concentrations of glucose, followed by subcellular fractionation enrichment of secretory granule proteins and analysis of the granule protein contents by 2DE. This demonstrated that the biosynthetic rates of most of the granule proteins are co-ordinately regulated in the presence of stimulatory glucose concentrations.

  11. TWO-DIMENSIONAL GEL ELECTROPHORESIS ANALYSIS OF BROWN ALGAL PROTEIN EXTRACTS(1).

    PubMed

    Contreras, Loretto; Ritter, Andrés; Dennett, Geraldine; Boehmwald, Freddy; Guitton, Nathalie; Pineau, Charles; Moenne, Alejandra; Potin, Philippe; Correa, Juan A

    2008-10-01

    High-quality protein extracts are required for proteomic studies, a field that is poorly developed for marine macroalgae. A reliable phenol extraction protocol using Scytosiphon gracilis Kogame and Ectocarpus siliculosus (Dillwyn) Lyngb. (Phaeophyceae) as algal models resulted in high-quality protein extracts. The performance of the new protocol was tested against four methods available for vascular plants and a seaweed. The protocol, which includes an initial step to remove salts from the algal tissues, allowed the use of highly resolving two-dimensional gel electrophoresis (2-DE) protein analyses, providing the opportunity to unravel potentially novel physiological processes unique to this group of marine organisms.

  12. Measurement of DNA damage in individual cells using the Single Cell Gel Electrophoresis (Comet) assay.

    PubMed

    Hartley, Janet M; Spanswick, Victoria J; Hartley, John A

    2011-01-01

    The Single Cell Gel Electrophoresis (Comet) assay is a simple, versatile and sensitive method for measuring DNA damage in individual cells, allowing the determination of heterogeneity of response within a cell population. The basic alkaline technique described is for the determination of DNA strand break damage and its repair at a single cell level. Specific modifications to the method use a lower pH ('neutral' assay), or allow the measurement of DNA interstrand cross-links. It can be further adapted to, for example, study specific DNA repair mechanisms, be combined with fluorescent in situ hybridisation, or incorporate lesion specific enzymes.

  13. Application of denaturing gradient gel electrophoresis to detect DNA sequence differences encoding apolipoprotein E isoforms

    SciTech Connect

    Parker, S.; Angelico, M.C.; Laffel, L.; Krolewski, A.S. Harvard Medical School, Boston, MA )

    1993-04-01

    Apolipoprotein E (apoE) plays an important role in plasma lipid metabolism. Three common isoforms of this protein have been identified by the isoelectric focusing method. In this report the authors describe a new method for distinguishing these isoforms. Their method employs PCR amplification of the DNA sequence of exon 4 in the apoE gene followed by denaturing gradient gel electrophoresis (DGGE) to distinguish its different melting characteristics. Identification of the ApoE isoforms through DNA melting behavior rather than protein charge differences eliminates the problems associated with isoelectric focusing and facilitates screening for additional mutations at the apoE locus. 12 refs., 2 figs.

  14. Quantitation of pyrimidine dimer contents of nonradioactive deoxyribonucleic acid by electrophoresis in alkaline agarose gels

    SciTech Connect

    Sutherland, B.M.; Shih, A.G.

    1983-02-15

    We have developed a method of quantitating the pyrimidine dimer content of nonradioactive DNAs. DNA samples are treated with the UV-endonuclease from Micrococcus luteus and then separated according to molecular weight by electrophoresis on alkaline agarose gels. From their migration relative to known molecular weight standards, their median molecular weight and thus the number of dimers per DNA molecule in each sample can be calculated. Results of action spectra for dimer formation in T7 bacteriophage measured by this method agree well with action spectra for T7 killing. In addition, the method gives dimer yields in good agreement with those obtained by others using alkaline sucrose gradient sedimentation.

  15. Genetic profiling of Klebsiella pneumoniae: comparison of pulsed field gel electrophoresis and random amplified polymorphic DNA

    PubMed Central

    Ashayeri-Panah, Mitra; Eftekhar, Fereshteh; Ghamsari, Maryam Mobarak; Parvin, Mahmood; Feizabadi, Mohammad Mehdi

    2013-01-01

    In this study, the discriminatory power of pulsed field gel electrophoresis (PFGE) and random amplified polymorphic DNA (RAPD) methods for subtyping of 54 clinical isolates of Klebsiella pneumoniae were compared. All isolates were typeable by RAPD, while 3.6% of them were not typeable by PFGE. The repeatability of both typing methods were 100% with satisfying reproducibility (≥ 95%). Although the discriminatory power of PFGE was greater than RAPD, both methods showed sufficient discriminatory power (DI > 0.95) which reflects the heterogeneity among the K. pneumoniae isolates. An optimized RAPD protocol is less technically demanding and time consuming that makes it a reliable typing method and competitive with PFGE. PMID:24516423

  16. Molecular subtyping of Clostridium botulinum by pulsed-field gel electrophoresis.

    PubMed

    Lúquez, Carolina; Joseph, Lavin A; Maslanka, Susan E

    2015-01-01

    Pulsed-field gel electrophoresis (PFGE) has been extensively used to estimate the genetic diversity of Clostridium botulinum. In addition, PFGE is the standard method for investigating foodborne outbreaks associated with various enteric pathogens, including C. botulinum. PFGE can be used to exclude a suspected but not confirmed food source when the patterns of the food and clinical isolates are different. Indistinguishable PFGE patterns may also be useful for linking isolates between patients or to a food source, but results must be interpreted within an epidemiological context to ensure isolates are truly related. Here, we describe a standardized laboratory protocol for molecular subtyping of C. botulinum by PFGE.

  17. Accommodating brightness and exposure levels in densitometry of stained polyacrylamide electrophoresis gels

    SciTech Connect

    Tan, Han Yen; Ng, Tuck Wah; Liew, Oi Wah

    2010-03-20

    Flatbed scanner densitometers can be operated under various illumination and recording exposure levels. In this work, we show that optical density measurement accuracy, sensitivity, and stability of stained polyacrylamide electrophoresis gel densitometry are crucially dependent on these two factors (brightness and exposure level), notwithstanding that the source is monochromatic, spatially uniform, and the measurements are made using an accurately calibrated step wedge in tandem. We further outline a method to accommodate the intensity deviations over a range of illumination and exposure levels in order to maintain sensitivity and repeatability in the computed optical densities. Comparisons were also made with results from a commercial densitometer.

  18. The Use of Gel Electrophoresis to Study the Reactions of Activated Amino Acids with Oligonucleotides

    NASA Technical Reports Server (NTRS)

    Zieboll, Gerhard; Orgel, Leslie E.

    1994-01-01

    We have used gel electrophoresis to study the primary covalent addition of amino acids to oligonu-cleotides or their analogs and the subsequent addition of further molecules of the amino acids to generate peptides covalently linked to the oligonucleotides. We have surveyed the reactions of a variety of amino acids with the phosphoramidates derived from oligonucleotide 5 inches phosphates and ethylenediamine. We find that arginine and amino acids can interact with oligonucleotidesl through stacking interactions react most efficiently. D- and L-amino acids give indistinguishable families of products.

  19. Plasmid DNA replication and topology as visualized by two-dimensional agarose gel electrophoresis.

    PubMed

    Schvartzman, J B; Martínez-Robles, M L; Hernández, P; Krimer, D B

    2010-01-01

    During the last 20 years, two-dimensional agarose gel electrophoresis combined with other techniques such as Polymerase Chain Reaction, helicase assay and electron microscopy, helped to characterize plasmid DNA replication and topology. Here we describe some of the most important findings that were made using this method including the characterization of uni-directional replication, replication origin interference, DNA breakage at the forks, replication fork blockage, replication knotting, replication fork reversal, the interplay of supercoiling and catenation and other changes in DNA topology that take place as replication progresses.

  20. Analysis of mucosal mucins separated by SDS-urea agarose polyacrylamide composite gel electrophoresis.

    PubMed

    Issa, Samah M A; Schulz, Benjamin L; Packer, Nicolle H; Karlsson, Niclas G

    2011-12-01

    Efficient separation of mucins (200 kDa-2 MDa) was demonstrated using gradient SDS agarose/polyacrylamide composite gel electrophoresis (SDS-AgPAGE). Inclusion of urea (SDS-UAgPAGE) in the gels casting were shown to have no effect on the migration of mucins in the gel and allowed casting of gel at room temperature. This simplified the procedure for multiple casting of agarose polyacrylamide gradients and increased reproducibility of these gels. Hence, the implementation of urea makes the technique applicable for high throughput isolation and screening of mucin oligosaccharides by LC-MS after releasing the oligosaccharides from isolated, blotted mucin subpopulations. It was also shown that the urea addition had no effect on other supporting applications such as western and lectin blotting. In addition, identification of the mucin protein after tryptic digestion and LC-MS was possible and no protein carbamylation due to the presence of urea in the gel was detected. LC-MS software developed for metabolomic analysis was used for O-linked oligosaccharide detection and differential display of various mucin samples. Using this method, heterogeneous glycosylation of mucins and mucin-type molecules isolated by SDS-AgPAGE and SDS-UAgPAGE was shown to consist of more than 80 different components in a single band, and in the extreme cases, up to 300-500 components (MUC5B/AC from saliva and sputum and). Metabolomic software was also used to show that the migration of mucin isoforms within the gel is due to heterogeneous size distribution of the oligosaccharides, with the slower migrating bands enriched in high-molecular-weight oligosaccharides.

  1. Comparison between a second generation automated multicapillary electrophoresis system with an automated agarose gel electrophoresis system for the detection of M-components.

    PubMed

    Larsson, Anders; Hansson, Lars-Olof

    2008-01-01

    During the last decade, capillary electrophoresis (CE) has emerged as an interesting alternative to traditional analysis of serum, plasma and urine proteins by agarose gel electrophoresis. Initially there was a considerable difference in resolution between the two methods but the quality of CE has improved significantly. We thus wanted to evaluate a second generation of automated multicapillary instruments (Capillarys, Sebia, Paris, France) and the high resolution (HR) buffer for serum or plasma protein analysis with an automated agarose gel electrophoresis system for the detection of M-components. The comparison between the two systems was performed with patients samples with and without M-components. The comparison included 76 serum samples with M-components > 1 g/L. There was a total agreement between the two methods for detection of these M-components. When studying samples containing oligoclonal bands/small M-components, there were differences between the two systems. The capillary electrophoresis system detected a slightly higher number of samples with oligoclonal bands but the two systems found oligoclonal bands in different samples. When looking at resolution, the agarose gel electrophoresis system yielded a slightly better resolution in the alpha and beta regions, but it required an experienced interpreter to be able to benefit from the increased resolution. The capillary electrophoresis has shorter turn-around times and bar-code reader that allows positive sample identification. The Capillarys in combination with HR buffer gives better resolution of the alpha and beta regions than the same instrument with the beta1-beta2+ buffer or the Paragon CZE2000 (Beckman) which was the first generation of capillary electrophoresis systems.

  2. Analysis of mitochondrial respiratory chain supercomplexes using blue native polyacrylamide gel electrophoresis (BN-PAGE)

    PubMed Central

    Jha, Pooja; Wang, Xu; Auwerx, Johan

    2016-01-01

    Mitochondria are cellular organelles that produce energy in the form of ATP through a process termed oxidative phosphorylation (OXPHOS), which occurs via the protein complexes of the electron transport chain (ETC). In recent years it has become unequivocally clear that mitochondrial complexes of the ETC are not static entities in the inner mitochondrial membrane. These complexes are dynamic and in mammals they aggregate in different stoichiometric combinations to form supercomplexes (SCs) or respirasomes. It has been proposed that the net respiration is more efficient via SCs than via isolated complexes. However, it still needs to be determined whether the activity of a particular SC is associated with a disease etiology. Here we describe a simplified method to visualize and assess in-gel activity of SCs and the individual complexes with a good resolution on blue native polyacrylamide gel electrophoresis (BN-PAGE). PMID:26928661

  3. Interlaboratory Agreement of Pulsed-Field Gel Electrophoresis Identification of Leptospira Serovars

    PubMed Central

    Mende, Katrin; Galloway, Renee L.; Becker, Sara J.; Beckius, Miriam L.; Murray, Clinton K.; Hospenthal, Duane R.

    2013-01-01

    Leptospirosis may be caused by > 250 Leptospira serovars. Serovar classification is a complex task that most laboratories cannot perform. We assessed the interlaboratory reproducibility of a pulsed-field gel electrophoresis (PFGE) identification technique developed by the Centers for Disease Control and Prevention (CDC). Blinded exchange of 93 Leptospiraceae strains occurred between San Antonio Military Medical Center (SAMMC) and the CDC. PFGE was performed and gel images were analyzed and compared with patterns present in each laboratory's database (CDC database: > 800 strain patterns; SAMMC database: > 300 strain patterns). Overall, 93.7% (74 of 79) of strains present in each receiving laboratory's database were correctly identified. Five isolates were misidentified, and two isolates did not match serovar PFGE patterns in the receiving laboratory's database. Patterns for these seven isolates were identical between laboratories; four serovars represented misidentified reference strains. The PFGE methodology studied showed excellent interlaboratory reproducibility, enabling standardization and data sharing between laboratories. PMID:23817329

  4. Use of Two-Dimensional Polyacrylamide Gel Electrophoresis to Identify and Classify Rhizobium Strains

    PubMed Central

    Roberts, Gary P.; Leps, Walter T.; Silver, Lin E.; Brill, Winston J.

    1980-01-01

    Fifty-seven strains of various Rhizobium species were analyzed by two-dimensional gel electrophoresis. Since the protein pattern on such gels is a reflection of the genetic background of the tested strains, similarities in pattern allowed us to estimate the relatedness between these strains. All group II rhizobia (slow growing) were closely related and were very distinct from group I rhizobia (fast growing). Rhizobium meliloti strains formed a distinct group. The collection of R. leguminosarum and R. trifolii strains together formed another distinct group. Although there were some similarities within the R. phaseoli, sesbania rhizobia, and lotus rhizobia, the members within these seemed much more diverse than the members of the above groups. The technique also is useful to determine whether two unknown strains are identical. Images PMID:16345514

  5. Improved detection of amylase activity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with copolymerized starch.

    PubMed

    Martínez, T F; Alarcón, F J; Díaz-López, M; Moyano, F J

    2000-08-01

    An improved method, based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for detection of amylase activity is described. This method will allow better characterization of certain amylases than that obtained by the Davis technique. The main features of the technique are: (i) identification of amylase bands and molecular mass determination are possible in the same gel; (ii) the hydrolysis of copolymerized substrate during electrophoretic separation is prevented using very low temperatures instead of inactivating agents such as chelating agents; and (iii) the technique is applicable to reveal amylase activity in a wide range of biological samples. The method is not useful for enzymes sensitive to SDS and for high molecular mass amylases.

  6. A model of the DNA transient orientation overshoot during gel electrophoresis

    SciTech Connect

    Lim, H.A. ); Slater, G.W.; Noolandi, J. )

    1990-01-01

    Linear dichroism and electric birefringence measurements show that when an electric field is applied to a DNA molecule at equilibrium in an agarose gel, the isotropic molecular conformation quickly orients in the field direction, reaching first a maximum overshoot'' orientation before it relaxes towards a somewhat less oriented but still anisotropic steady-state conformation. We present here a simple analytical model of this overshoot effect together with numerical results from a computer simulation of gel electrophoresis. The predicted dependence of the overshoot time and orientation upon field intensity and molecular size are in good agreement with experimental results. The dynamics of the overshoot involves U-shape conformations that disappear only after the internal elastic forces completely dominate the electric forces. It is also predicted that a different overshoot regime takes place for low electric fields and small molecular sizes, and that a primary and a secondary overshoot may appear for very large molecules.

  7. Assaying cooperativity of protein-DNA interactions using agarose gel electrophoresis.

    PubMed

    Williams, Tanya L; Levy, Daniel L

    2013-01-01

    DNA-binding proteins play essential roles in many cellular processes. Understanding on a molecular level how these proteins interact with their cognate sequences can provide important functional insights. Here, we describe a band shift assay in agarose gel to assess the mode of protein binding to a DNA molecule containing multiple protein-binding sites. The basis for the assay is that protein-DNA complexes display retarded gel electrophoresis mobility, due to their increased molecular weight relative to free DNA. The degree of retardation is higher with increasing numbers of bound protein molecules, thereby allowing resolution of complexes with differing protein-DNA stoichiometries. The DNA is radiolabeled to allow for visualization of both unbound DNA and all the different DNA-protein complexes. We present a quantitative analysis to determine whether protein binding to multiple sites within the same DNA molecule is independent or cooperative.

  8. Agarose gel purification of PCR products for denaturing gradient gel electrophoresis results in GC-clamp deletion.

    PubMed

    Sun, Guowei; Xiao, Jinzhou; Lu, Man; Wang, Hongming; Chen, Xiaobing; Yu, Yongxin; Pan, Yingjie; Wang, Yongjie

    2015-01-01

    The 16S ribosomal RNA (rRNA) gene of marine archaeal samples was amplified using a nested PCR approach, and the V3 region of 16S rRNA gene of crab gut microbiota (CGM) was amplified using the V3 universal primer pair with a guanine and cytosine (GC)-clamp. Unpurified PCR products (UPPs), products purified from reaction solution (PPFSs), and products purified from gel (PPFGs) of above two DNA samples were used for denaturing gradient gel electrophoresis (DGGE) analysis, respectively. In contrast to almost identical band patterns shared by both the UPP and PPFS, the PPFGs were barely observed on the DGGE gel for both the marine archaea and CGM samples. Both PPFS and PPFG of CGM V3 regions were subjected to cloning. A small amount of positive clones was obtained for PPFS, but no positive clones were observed for PPFG. The melt curve and direct sequencing analysis of PPFS and PPFG of E. coli V3 region indicated that the Tm value of PPFG (82.35 ± 0.19 °C) was less than that of PPFS (83.81 ± 0.11 °C), and the number of shorter GC-clamps was significant higher in PPFG than in PPFS. The ultraviolet exposure experiment indicated that the ultraviolet was not responsible for the deletion of the GC-clamps. We conclude that the gel purification method is not suitable for DGGE PCR products or even other GC-rich DNA samples.

  9. Studies on the bioactivity of radioiodinated highly purified bovine thyrotropin: analytical polyacrylamide gel electrophoresis

    SciTech Connect

    Takai, N.A.; Filetti, S.; Rapoport, B.

    1981-01-01

    Highly purified bovine TSH (stored in solution at -70 C) was radioiodinated by the stoichiometric chloroamine-T method. The iodinated material ws subjected to analytical polyacrylamide disc gel electrophoresis. TSH was eluted from gel slices (1 mm width) and was analyzed for radioactivity and bioactivity. The latter was determined using the cultured thyroid cell cAMP response assay. Radioactivity in the TSH preparation migrated separately from bioactivity, but concordant with the protein bands observed in gels run in parallel. Further studies performed on bovine TSH purified in our laboratory, as well as on a different TSH preparation of exceptionally high potency (both stored as lyophilized powder) revealed a different pattern, with TSH bioactivity and radioactivity eluting concurrently. Iodination of TSH did not alter its electrophoretic migration on disc gel electrophoresis. In all preparations polymorphism of TSH bioactivity was observed, with at least four separate protein bands containing TSH bioactivity being present in our preparation. The relationship between the degree of iodination and retention of TSH bioactivity was examined. Incorporation of /sup 125/I into TSH was greatly different at two different concentrations of chloramine-T. Despite this, however, the progressive loss of TSH bioactivity was similar at both concentrations, indicating that incorporation of iodine into the TSH molecule is not itself responsible for the decrease in bioactivity. These studies indicate variability among different TSH preparations in terms of their retention of bioactivity. Significant loss of TSH bioactivity appears to occur during storage in solution. The damage to the biological activity of TSH during the iodination procedure is more likely related to the oxidation process than to the incorporation of iodine.

  10. Combining high-throughput MALDI-TOF mass spectrometry and isoelectric focusing gel electrophoresis for virtual 2D gel-based proteomics.

    PubMed

    Lohnes, Karen; Quebbemann, Neil R; Liu, Kate; Kobzeff, Fred; Loo, Joseph A; Ogorzalek Loo, Rachel R

    2016-07-15

    The virtual two-dimensional gel electrophoresis/mass spectrometry (virtual 2D gel/MS) technology combines the premier, high-resolution capabilities of 2D gel electrophoresis with the sensitivity and high mass accuracy of mass spectrometry (MS). Intact proteins separated by isoelectric focusing (IEF) gel electrophoresis are imaged from immobilized pH gradient (IPG) polyacrylamide gels (the first dimension of classic 2D-PAGE) by matrix-assisted laser desorption/ionization (MALDI) MS. Obtaining accurate intact masses from sub-picomole-level proteins embedded in 2D-PAGE gels or in IPG strips is desirable to elucidate how the protein of one spot identified as protein 'A' on a 2D gel differs from the protein of another spot identified as the same protein, whenever tryptic peptide maps fail to resolve the issue. This task, however, has been extremely challenging. Virtual 2D gel/MS provides access to these intact masses. Modifications to our matrix deposition procedure improve the reliability with which IPG gels can be prepared; the new procedure is described. Development of this MALDI MS imaging (MSI) method for high-throughput MS with integrated 'top-down' MS to elucidate protein isoforms from complex biological samples is described and it is demonstrated that a 4-cm IPG gel segment can now be imaged in approximately 5min. Gel-wide chemical and enzymatic methods with further interrogation by MALDI MS/MS provide identifications, sequence-related information, and post-translational/transcriptional modification information. The MSI-based virtual 2D gel/MS platform may potentially link the benefits of 'top-down' and 'bottom-up' proteomics.

  11. Comparative analyses of amplicon migration behavior in differing denaturing gradient gel electrophoresis (DGGE) systems

    NASA Astrophysics Data System (ADS)

    Thornhill, D. J.; Kemp, D. W.; Sampayo, E. M.; Schmidt, G. W.

    2010-03-01

    Denaturing gradient gel electrophoresis (DGGE) is commonly utilized to identify and quantify microbial diversity, but the conditions required for different electrophoretic systems to yield equivalent results and optimal resolution have not been assessed. Herein, the influence of different DGGE system configuration parameters on microbial diversity estimates was tested using Symbiodinium, a group of marine eukaryotic microbes that are important constituents of coral reef ecosystems. To accomplish this, bacterial clone libraries were constructed and sequenced from cultured isolates of Symbiodinium for the ribosomal DNA internal transcribed spacer 2 (ITS2) region. From these, 15 clones were subjected to PCR with a GC clamped primer set for DGGE analyses. Migration behaviors of the resulting amplicons were analyzed using a range of conditions, including variation in the composition of the denaturing gradient, electrophoresis time, and applied voltage. All tests were conducted in parallel on two commercial DGGE systems, a C.B.S. Scientific DGGE-2001, and the Bio-Rad DCode system. In this context, identical nucleotide fragments exhibited differing migration behaviors depending on the model of apparatus utilized, with fragments denaturing at a lower gradient concentration and applied voltage on the Bio-Rad DCode system than on the C.B.S. Scientific DGGE-2001 system. Although equivalent PCR-DGGE profiles could be achieved with both brands of DGGE system, the composition of the denaturing gradient and application of electrophoresis time × voltage must be appropriately optimized to achieve congruent results across platforms.

  12. Poultry digestive microflora biodiversity as indicated by denaturing gradient gel electrophoresis.

    PubMed

    Hume, M E; Kubena, L F; Edrington, T S; Donskey, C J; Moore, R W; Ricke, S C; Nisbet, D J

    2003-07-01

    Populations of digestive microflora in chickens change with age and are affected by diet, stressors, and performance enhancers. Culturing techniques used to profile a bacterial community inadvertently select for some organisms while excluding others. Several molecular-based techniques have been used to profile mixed microbial populations on the basis of DNA extracted from the entire community. Denaturing gradient gel electrophoresis was used in the present study to examine PCR-amplified fragments (amplicons) of a 16S ribosomal DNA variable region from predominant digestive bacteria. The objective of the study was to examine changes in digestive microbial communities of developing Leghorn chicks and molted Leghorn hens. Dendrograms of amplicon patterns indicated approximately 51% similarity between cecal bacteria composition in Leghorn chicks less than 20 d old and chicks greater than 20 d old. Cecal communities in Leghorn chicks given a competitive exclusion culture exhibited 21% correlation at all ages with those in control chicks. Nonmolted and molted hens had 40% similarity between cecal communities, whereas diets with low calcium (0.8% wt/wt) and excess zinc (2,800 mg/kg) lessened population differences (90% similarity). Results indicated the potential usefulness of the molecular-based denaturing gradient gel electrophoresis to monitor changes in digestive bacterial communities in chickens.

  13. A tunable isoelectric focusing via moving reaction boundary for two-dimensional gel electrophoresis and proteomics.

    PubMed

    Guo, Chen-Gang; Shang, Zhi; Yan, Jian; Li, Si; Li, Guo-Qing; Liu, Rong-Zhong; Qing, Ying; Fan, Liu-Yin; Xiao, Hua; Cao, Cheng-Xi

    2015-05-01

    Routine native immobilized pH gradient isoelectric focusing (IPG-IEF) and two-dimensional gel electrophoresis (2DE) are still suffering from unfortunate reproducibility, poor resolution (caused by protein precipitation) and instability in characterization of intact protein isoforms and posttranslational modifications. Based on the concept of moving reaction boundary (MRB), we firstly proposed a tunable non-IPG-IEF system to address these issues. By choosing proper pairs of catholyte and anolyte, we could achieve desired cathodic and anodic migrating pH gradients in non-IPG-IEF system, effectively eliminating protein precipitation and uncertainty of quantitation existing in routine IEF and 2DE, and enhancing the resolution and sensitivity of IEF. Then, an adjustable 2DE system was developed by combining non-IPG-IEF with polyacrylamide gel electrophoresis (PAGE). The improved 2DE was evaluated by testing model proteins and colon cancer cell lysates. The experiments revealed that (i) a tunable pH gradient could be designed via MRB; (ii) up to 1.65 fold improvement of resolution was achieved via non-IPG-IEF; (iii) the sensitivity of developed techniques was increased up to 2.7 folds; and (iv) up to about 16.4% more protein spots could be observed via the adjustable 2DE as compared with routine one. The developed techniques might contribute to complex proteome research, especially for screening of biological marker and analysis of extreme acidic/alkaline proteins.

  14. Evaluation of agarose gel electrophoresis for characterization of silver nanoparticles in industrial products.

    PubMed

    Jimenez, Maria S; Luque-Alled, Jose M; Gomez, Teresa; Castillo, Juan R

    2016-05-01

    Agarose gel electrophoresis (AGE) has been used extensively for characterization of pure nanomaterials or mixtures of pure nanomaterials. We have evaluated the use of AGE for characterization of Ag nanoparticles (NPs) in an industrial product (described as strong antiseptic). Influence of different stabilizing agents (PEG, SDS, and sodium dodecylbenzenesulfonate), buffers (TBE and Tris Glycine), and functionalizing agents (mercaptosuccinic acid (TMA) and proteins) has been investigated for the characterization of AgNPs in the industrial product using different sizes-AgNPs standards. The use of 1% SDS, 0.1% TMA, and Tris Glycine in gel, electrophoresis buffer and loading buffer led to the different sizes-AgNPs standards moved according to their size/charge ratio (obtaining a linear relationship between apparent mobility and mean diameter). After using SDS and TMA, the behavior of the AgNPs in the industrial product (containing a casein matrix) was completely different, being not possible their size characterization. However we demonstrated that AGE with LA-ICP-MS detection is an alternative method to confirm the protein corona formation between the industrial product and two proteins (BSA and transferrin) maintaining NPs-protein binding (what is not possible using SDS-PAGE).

  15. Agarose-gel electrophoresis for the quality assurance and purity of heparin formulations.

    PubMed

    Volpi, Nicola; Buzzega, Dania

    2012-01-01

    The adulteration of raw heparin (Hep) with a synthetic oversulfated chondroitin sulfate (OSCS) not found in nature produced in 2007-2008 a global crisis giving rise to the development of additional, new and specific methods for its quality assurance and purity. In this study, a simple and sensitive agarose-gel electrophoresis method has been developed for the visualization of OSCS in Hep samples along with other natural glycosaminoglycans possibly present as "process-related impurities", in particular dermatan sulfate (DS) and chondroitin sulfate (CS). Agarose-gel electrophoresis under non-conventional conditions is able to separate OSCS from Hep with its two components, the slow-moving and fast-moving species, DS and CS by performing separation for 15 h (overnight) and under high voltage (100 mA, ∼200 V). Densitometric scanning enabled us to calculate a limit of detection of ∼0.5 μg OSCS with a linear behaviour from 0.1 to 5 μg, comparable to CS/DS. Contaminated samples from Hep manufacturers were analyzed and quantitative data were found comparable to previous studies. Due to its capacity to process many samples in a single run and to the equipment commonly available in laboratories, this analytical method would be suitable for the identification and quantification of contamination by other polysaccharides, in particular OSCS and DS, within Hep preparations and formulations.

  16. Use of pulsed-field gel electrophoresis to measure DNA damage and repair

    SciTech Connect

    Scicchitano, D.A. New York Univ., New York )

    1991-03-11

    A method is described here for the analysis of single-strand break formation and repair in genomic DNA. The procedure involves exposing cells to a DNA-damaging agent, allowing time for recovery, and embedding the cells in agarose. After lysis and digestion with a protease, the DNA, which remains in the agarose plug, is denatured with glyoxal and separated by pulsed-field gel electrophoresis. The DNA in the gel is then transferred to a support membrane and quantitated with a radioanalytic imaging system to determine the average size of the DNA at each time point of recovery. The results indicate that the repair of methyl-induced breaks in total genomic DNA is approximately 80% complete in 48 hr in CHO B11 and ARL 14 cells exposed to dimethyl sulfate. These results are in agreement with those obtained by using other techniques like alkaline sucrose sedimentation. The method developed and described here has several advantages over existing techniques for repair measurements: It can be used to monitor genotoxic agents that nick DNA, to study the removal of breaks from genomic DNA, and to test for repair of damage in specific domains of chromatin that would be too large to examine by conventional electrophoresis.

  17. A control method to inspect the compositional authenticity of Minas Frescal cheese by gel electrophoresis.

    PubMed

    Magenis, Renata B; Prudêncio, Elane S; Molognoni, Luciano; Daguer, Heitor

    2014-08-20

    This study introduces a qualitative method to inspect the compositional authenticity of white nonripened cheeses like Minas Frescal, a typical Brazilian cheese, especially when irregular replacement of milk by whey is suspected. A sodium dodecyl sulfate gel electrophoresis (SDS-PAGE) method, followed by image densitometry, was validated. Cheeses were freeze-dried to electrophoresis, and β-lactoglobulin (β-LG) was chosen as the adulteration marker. In gel trypsin digestion followed by matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry provided its identification. Cheeses with a minimum of 14 mg·g(-1) of β-LG are considered to be adulterated. The method shows satisfactory precision with a detection limit of 7 mg·g(-1). Forty-two commercial samples from inspected establishments were then assessed and subjected to cluster analysis. Compliant and noncompliant groups were set with 24 (57%) authentic samples and 18 (43%) adulterated samples, respectively, showing that proper analytical monitoring is required to inhibit this practice.

  18. An improved method for Southern DNA and Northern RNA blotting using a Mupid-2 Mini-Gel electrophoresis unit.

    PubMed

    Furuya, Hirokazu; Yamada, Takeshi; Ikezoe, Koji; Ohyagi, Yasumasa; Fukumaki, Yasuyuki; Fujii, Naoki

    2006-08-31

    An improved method for Southern DNA and Northern RNA blotting using the Mupid-2 Mini-Gel System is described. We get sharp and clear bands in Southern and Northern blotting after only 30 min short gel electrophoresis instead of the several hours large gel electrophoresis of conventional methods. The high electrical voltage with a pulse-like current of the Mupid-2 Mini-Gel System also allows reduction of the amount of formaldehyde, a harmful reagent, from the gel running buffer in RNA blotting. This minor modification of DNA and RNA blotting technique enables us to perform the complete experimental procedure more quickly economically in less space, than conventional Southern and Northern blotting, as well as using an extremely small amount of formaldehyde in RNA blotting.

  19. Acrylamide-agarose copolymers: improved resolution of high molecular mass proteins in two-dimensional gel electrophoresis.

    PubMed

    Roncada, Paola; Cretich, Marina; Fortin, Riccardo; Agosti, Susanna; De Franceschi, Lucia; Greppi, Gian Franco; Turrini, Francesco; Carta, Franco; Turri, Stefano; Levi, Marinella; Chiari, Marcella

    2005-06-01

    A method was developed in order to analyse high molecular mass proteins by two-dimensional (2-D) electrophoresis using a copolymer of acrylamide and allyl agarose instead of Bis cross-linked polyacrylamide (PA) gels in sodium dodecyl sulphate-electrophoresis. In this work, the matrix composition was optimised to improve the resolution of proteins larger than 200 kDa. The new gel type does not entrap large proteins and protein complexes at the application site. Mechanical properties were investigated through rheological measurements, which suggested the formation of a highly entangled elastomeric soft gel. A high 2-D resolution of proteins, extracted from membranes of red blood cells, was obtained in these gels. An example of tryptic digestion, peptide extraction and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry was reported. The results demonstrate that the new gel is fully compatible with mass spectrometry protein analysis.

  20. Analysis of Soluble Proteins in Natural Cordyceps sinensis from Different Producing Areas by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis and Two-dimensional Electrophoresis

    PubMed Central

    Li, Chun-Hong; Zuo, Hua-Li; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Qian, Zheng-Ming; Li, Wen-Jia; Xia, Zhi-Ning; Yang, Feng-Qing

    2017-01-01

    Background: As one of the bioactive components in Cordyceps sinensis (CS), proteins were rarely used as index components to study the correlation between the protein components and producing areas of natural CS. Objective: Protein components of 26 natural CS samples produced in Qinghai, Tibet, and Sichuan provinces were analyzed and compared to investigate the relationship among 26 different producing areas. Materials and Methods: Proteins from 26 different producing areas were extracted by Tris-HCl buffer with Triton X-100, and separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). Results: The SDS-PAGE results indicated that the number of protein bands and optical density curves of proteins in 26 CS samples was a bit different. However, the 2-DE results showed that the numbers and abundance of protein spots in protein profiles of 26 samples were obviously different and showed certain association with producing areas. Conclusions: Based on the expression values of matched protein spots, 26 batches of CS samples can be divided into two main categories (Tibet and Qinghai) by hierarchical cluster analysis. SUMMARY The number of protein bands and optical density curves of proteins in 26 Cordyceps sinensis samples were a bit different on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profilesNumbers and abundance of protein spots in protein profiles of 26 samples were obvious different on two-dimensional electrophoresis mapsTwenty-six different producing areas of natural Cordyceps sinensis samples were divided into two main categories (Tibet and Qinghai) by Hierarchical cluster analysis based on the values of matched protein spots. Abbreviations Used: SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, Cordyceps sinensis: CS, TCMs: Traditional Chinese medicines PMID:28250651

  1. Superoxide dismutase isozyme detection using two-dimensional gel electrophoresis zymograms.

    PubMed

    Niyomploy, Ploypat; Srisomsap, Chantragan; Chokchaichamnankit, Daranee; Vinayavekhin, Nawaporn; Karnchanatat, Aphichart; Sangvanich, Polkit

    2014-03-01

    Superoxide dismutases (SODs) are ubiquitous antioxidant enzymes involved in cell protection from reactive oxygen species. Their antioxidant activities make them of interest to applied biotechnology industries and are usually sourced from plants. SODs are also involved in stress signaling responses in plants, and can be used as indicators of these responses. In this article, a suitable method for the separation of different SOD isoforms using two-dimensional-gel electrophoresis (2D-GE) zymograms is reported. The method was developed with a SOD standard from bovine erythrocytes and later applied to extracts from Stemona tuberosa. The first (non-denaturing isoelectric focusing) and second (denaturing sodium dodecylsulphate-polyacrylamide gel electrophoresis) dimensions of duplicate 2D-GE gels were stained with either Coomassie brilliant blue G-250 for total protein visualization, or SOD activity (zymogram) using riboflavin/nitroblue tetrazolium. For confirmation, putative SOD activity positive spots were subject to trypsin digestion and nano-liquid chromatography tandem mass spectrometry, followed by searching the MASCOT database for potential identification. The method could separate different SOD isoforms from a plant extract and at least partially maintain or allow renaturation to the native forms of the enzyme. Peptide sequencing of the 2D-GE suggested that the SODs were resolved correctly, identifying the control CuZn-SOD from bovine erythrocytes. The two SODs from S. tuberosa tubers were found to be likely homologous of a CuZn-SOD. SOD detection and isoform separation by 2D-GE zymograms was efficient and reliable. The method is likely applicable to SOD detection from plants or other organisms. Moreover, a similar approach could be developed for detection of other important enzymes in the future.

  2. Triton X-114 cloud point extraction to subfractionate blood plasma proteins for two-dimensional gel electrophoresis.

    PubMed

    Jessen, Flemming; Wulff, Tune

    2015-09-15

    A simple and reproducible procedure for enrichment of a plasma protein subfraction suitable for two-dimensional polyacrylamide gel electrophoresis (2DE) was developed, using a Triton X-114-based cloud point extraction (CPE). Appropriate conditions for such a CPE procedure were found by SDS-PAGE to be a plasma protein concentration of about 10mg/ml in 3% (w/v) Triton X-114. 2DE of proteins obtained by CPE of 400 μl of human plasma revealed about 200 spots constituting a spot pattern very different from the pattern of total plasma. The CPE procedure only had a limited contribution to the technical variation. Identification of about 60 spots, representing only 22 proteins, revealed that several proteins in the obtained subfraction were present in more isoforms or modifications. Among these were apolipoproteins (A-1, D, E, L1, and M), haptoglobin-related protein, phosphatidylcholine-sterol acyltransferase, serum amyloid A, and serum paraoxonase/arylesterase 1, which are proteins of a hydrophobic nature, as in plasma they relate to lipoprotein particles. Thus, Triton X-114-based CPE is a simple plasma prefractionation tool, attractive for detailed 2DE studies of hydrophobic plasma proteins and their isoforms or modifications.

  3. High-resolution gel electrophoresis and sodium dodecyl sulphate-agarose gel electrophoresis on urine samples for qualitative analysis of proteinuria in dogs.

    PubMed

    Giori, Luca; Tricomi, Flavia Marcella; Zatelli, Andrea; Roura, Xavier; Paltrinieri, Saverio

    2011-07-01

    The aims of the current study were to assess whether sodium dodecyl sulphate-agarose gel electrophoresis (SDS-AGE) and high-resolution electrophoresis (HRE) can identify dogs with a urinary protein-to-creatinine ratio (UPC ratio) >0.2 and whether HRE can provide preliminary information about the type of proteinuria, using SDS-AGE as a reference method. HRE and SDS-AGE were conducted on 87 urine samples classified according to the International Renal Interest Society as non-proteinuric (NP; UPC ratio: <0.20; 32/87), borderline proteinuric (BP; UPC ratio: 0.21-0.50; 15/87), or proteinuric (P; UPC ratio: >0.51; 40/87). SDS-AGE and HRE were positive in 14 out of 32 and 3 out of 32 NP samples and in 52 out of 55 and 40 out of 55 samples with a UPC ratio >0.20, respectively. The concordance between HRE or SDS and UPC ratio was comparable (κ = 0.59; κ = 0.55). However, specificity (90%) and positive likelihood ratio (7.76) were higher for HRE than for SDS-AGE (56% and 2.16) while sensitivity was lower (73% vs. 94%). The analysis of HRE results revealed that a percentage of albumin >41.4% and an albumin/α(1)-globulin ratio (alb/α(1) ratio) >1.46 can identify samples classified by SDS-AGE as affected by glomerular proteinuria while a percentage of α(1)-globulin >40.8% and an alb/α(1) ratio <0.84 can identify samples classified by SDS-AGE as affected by tubular proteinuria. In conclusion, both SDS-AGE and HRE could misclassify samples with a UPC ratio higher or lower than 0.20. Therefore, UPC ratio must always be determined before conducting these tests. The percentage of albumin and α(1)-globulin or the alb/α(1) ratio determined by HRE can provide preliminary information about the origin of proteinuria.

  4. Staining-free gel electrophoresis-based multiplex enzyme assay using DNA and peptide dual-functionalized gold nanoparticles.

    PubMed

    Zhao, Wenting; Yao, Chunlei; Luo, Xiaoteng; Lin, Li; Hsing, I-Ming

    2012-04-01

    We report a simple staining-free gel electrophoresis method to simultaneously probe protease and nuclease. Utilizing gold nanoparticles (Au-NPs) dual-functionalized with DNA and peptide, the presence and concentration of nuclease and protease are determined concurrently from the relative position and intensity of the bands in the staining-free gel electrophoresis. The use of Au-NPs eliminates the need for staining processes and enables naked eye detection, while a mononucleotide-mediated approach facilitates the synthesis of DNA/peptide conjugated Au-NPs and simplifies the operation procedures. Multiplex detection and quantification of DNase I and trypsin are successfully demonstrated.

  5. Determination of DNA methylation by COBRA: a comparative study of CGE with LIF detection and conventional gel electrophoresis.

    PubMed

    Goedecke, Simon; Schlosser, Sabrina; Mühlisch, Jörg; Hempel, Georg; Frühwald, Michael C; Wünsch, Bernhard

    2009-09-01

    DNA methylation as an epigenetic modification of the human genome is under emphatic investigation. Several studies have demonstrated a role of DNA methylation in oncogenesis. In conjunction with histone modifications, DNA methylation may cause the formation of heterochromatin and thus mediate the inactivation of gene transcription. It is important to develop methods that allow for an accurate quantification of the amount of DNA methylation in particular DNA regions, to gain information concerning the threshold of methylation levels necessary for gene inactivation. In this article, a CGE method with on-column LIF detection using SYBR Green is compared with a conventional slab-gel electrophoresis. We thus investigate the validity to analyze DNA methylation in the samples of a combined bisulfite restriction analysis. It is demonstrated that CGE is superior to gel electrophoresis in means of linearity, precision, accuracy, automatization (high throughput), and sample consumption. However, gel electrophoresis is easier to perform (simple devices, no PC usage), and the running costs are comparatively low. A further advantage of CGE is the sparse use of toxic compounds (MeOH and SYBR Green), whereas gel electrophoresis is performed in polyacrylamide gels with ethidium bromide staining.

  6. Characterization of nosocomial Serratia marcescens isolates: comparison of Fourier-transform infrared spectroscopy with pulsed-field gel electrophoresis of genomic DNA fragments and multilocus enzyme electrophoresis.

    PubMed

    Irmscher, H M; Fischer, R; Beer, W; Seltmann, G

    1999-07-01

    A total of 66 Serratia marcescens isolates from 46 patients was investigated by macrorestriction using XbaI followed by pulsed-field gel electrophoresis. 7 restriction fragment patterns attributable to more than one patient and 9 individual patterns were identified. The isolates were additionally characterized by multilocus enzyme electrophoresis and Fourier-transform infrared spectroscopy. The macrorestriction patterns and the multilocus enzyme electrophoresis patterns corresponded fairly well while the classifications derived from these methods were not completely congruent. The grouping achieved by Fourier-transform infrared spectroscopy on the basis of high (> 1000) and moderately high heterogeneity values (300) was consistent with the macrorestriction results. Grouping on a lower heterogeneity level did not contribute to further discrimination. In general, Fourier-transform infrared spectroscopy was less discriminatory than the two other methods, but easier to perform. Therefore, laboratories equipped with the necessary devices may use it to rapidly select bacterial isolates for macrorestriction or other well established characterization procedures.

  7. Cu2+-assisted two dimensional charge-mass double focusing gel electrophoresis and mass spectrometric analysis of histone variants.

    PubMed

    Zhang, Wenyang; Tang, Xuemei; Ding, Mengjie; Zhong, Hongying

    2014-12-10

    Abundant isoforms and dynamic posttranslational modifications cause the separation and identification of histone variants to be experimentally challenging. To meet this need, we employ two-dimensional electrophoretic gel separation followed by mass spectrometric detection which takes advantage of the chelation of Cu(2+) with amino acid residues exposed on the surfaces of the histone proteins. Acid-extracted rat liver histones were first mixed with CuSO4 solution and then separated in one dimension with triton-acid-urea (TAU) gel electrophoresis and in a second dimension using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The separations result from both the changes in charge and mass upon Cu(2+) chelation. Identities of each separated gel bands were obtained by using matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). It was found that the migration of H3 histone isoforms of rat liver is markedly affected by the use of Cu(2+) ions.

  8. Campylobacter coli pulsed field gel electrophoresis genotypic diversity among sows and piglets in a farrowing barn.

    PubMed

    Hume, Michael E; Droleskey, Robert E; Sheffield, Cynthia L; Harvey, Roger B

    2002-08-01

    Genotypes of Campylobacter coli isolates from feces of three sows and rectal swabs of 17 piglets were examined by pulsed field gel electrophoresis (PFGE). All of the animals originated from a single farrowing barn of a farrow-to-finish swine operation. Five Campylobacter colonies were picked from a single agar plate for each sample after broth enrichment and growth on Campy-Cefex agar. Genotypes were examined by PFGE after genomic DNA digestion with SmaI and SacII restriction endonucleases. Twenty SmaI genotypes and 12 SacII genotypes were detected among 99 Campylobacter coli isolates. There was no pattern of shared genotypes between sows and their respective piglets, nor between littermates. Results indicate that a high number of Campylobacter genotypes may coexist in related pigs from a single housing facility.

  9. Proteomic profiling of the mesenteric lymph after hemorrhagic shock: Differential gel electrophoresis and mass spectrometry analysis

    PubMed Central

    2011-01-01

    Experiments show that upon traumatic injury the composition of mesenteric lymph changes such that it initiates an immune response that can ultimately result in multiple organ dysfunction syndrome (MODS). To identify candidate protein mediators of this process we carried out a quantitative proteomic study on mesenteric lymph from a well characterized rat shock model. We analyzed three animals using analytical 2D differential gel electrophoresis. Intra-animal variation for the majority of protein spots was minor. Functional clustering of proteins revealed changes arising from several global classes that give novel insight into fundamental mechanisms of MODS. Mass spectrometry based proteomic analysis of proteins in mesenteric lymph can effectively be used to identify candidate mediators and loss of protective agents in shock models. PMID:21906351

  10. Pulsed-field gel electrophoresis analysis of multicellular DNA double-strand break damage and repair.

    PubMed

    Joshi, Nina; Grant, Stephen G

    2014-01-01

    This assay quantifies the extent of double-strand break (DSB) DNA damage in cell populations embedded in agarose and analyzed for migratory DNA using pulsed-field gel electrophoresis with ethidium bromide staining. The assay can measure preexisting damage as well as induction of DSB by chemical (e.g., bleomycin), physical (e.g., X-irradiation), or biological (e.g., restriction enzymes) agents. By incubating the cells under physiological conditions prior to processing, the cells can be allowed to repair DSB, primarily via the process of nonhomologous end joining. The amount of repair, corresponding to the repair capacity of the treated cells, is then quantified by determining the ratio of the fractions of activity released in the lanes in comparison to the total amount of DNA fragmentation following determination of an optimal exposure for maximum initial fragmentation. Repair kinetics can also be analyzed through a time-course regimen.

  11. Two-dimensional fluorescence difference gel electrophoresis analysis of Listeria monocytogenes submitted to a redox shock.

    PubMed

    Ignatova, Maria; Guével, Blandine; Com, Emmanuelle; Haddad, Nabila; Rossero, Albert; Bogard, Philippe; Prévost, Hervé; Guillou, Sandrine

    2013-02-21

    The influence of redox alteration on the growth and proteomic pattern of Listeria monocytogenes was investigated. A redox shock was induced in cultures by addition of 3mM ferricyanide (FeCN) and 6mM dithiothreitol (DTT) to increase or to decrease respectively the redox potential naturally occurring at the beginning of growth. In both conditions, the reducing and oxidizing redox shock had a strong influence, decreasing the maximum growth rate by half compared to a control culture. The proteomic analysis of L. monocytogenes performed by two-dimensional difference gel electrophoresis (2D-DIGE) exhibited twenty-three proteins differentially expressed (P<0.05), among these, many were oxidoreductases, and proteins involved in cellular metabolism (glycolysis, protein synthesis), detoxification (kat) or adhesion (Lmo1634).

  12. Protein expression of sensory and motor nerves: Two-dimensional gel electrophoresis and mass spectrometry.

    PubMed

    Ren, Zhiwu; Wang, Yu; Peng, Jiang; Zhang, Li; Xu, Wenjing; Liang, Xiangdang; Zhao, Qing; Lu, Shibi

    2012-02-15

    The present study utilized samples from bilateral motor branches of the femoral nerve, as well as saphenous nerves, ventral roots, and dorsal roots of the spinal cord, to detect differential protein expression using two-dimensional gel electrophoresis and nano ultra-high performance liquid chromatography electrospray ionization mass spectrometry tandem mass spectrometry techniques. A mass spectrum was identified using the Mascot search. Results revealed differential expression of 11 proteins, including transgelin, Ig kappa chain precursor, plasma glutathione peroxidase precursor, an unnamed protein product (gi|55628), glyceraldehyde-3-phosphate dehydrogenase-like protein, lactoylglutathione lyase, adenylate kinase isozyme 1, two unnamed proteins products (gi|55628 and gi|1334163), and poly(rC)-binding protein 1 in motor and sensory nerves. Results suggested that these proteins played roles in specific nerve regeneration following peripheral nerve injury and served as specific markers for motor and sensory nerves.

  13. Molecular Typing by Pulsed-Field Gel Electrophoresis of Spanish Animal and Human Listeria monocytogenes Isolates

    PubMed Central

    Vela, A. I.; Fernandez-Garayzabal, J. F.; Vazquez, J. A.; Latre, M. V.; Blanco, M. M.; Moreno, M. A.; de la Fuente, L.; Marco, J.; Franco, C.; Cepeda, A.; Rodriguez Moure, A. A.; Suarez, G.; Dominguez, L.

    2001-01-01

    A total of 153 strains of Listeria monocytogenes isolated from different sources (72 from sheep, 12 from cattle, 18 from feedstuffs, and 51 from humans) in Spain from 1989 to 2000 were characterized by pulsed-field gel electrophoresis. The strains of L. monocytogenes displayed 55 pulsotypes. The 84 animal, 51 human, and 18 feedstuff strains displayed 31, 29, and 7 different pulsotypes, respectively, indicating a great genetic diversity among the Spanish L. monocytogenes isolates studied. L. monocytogenes isolates from clinical samples and feedstuffs consumed by the diseased animals were analyzed in 21 flocks. In most cases, clinical strains from different animals of the same flock had identical pulsotypes, confirming the existence of a listeriosis outbreak. L. monocytogenes strains with pulsotypes identical to those of clinical strains were isolated from silage, potatoes, and maize stalks. This is the first study wherein potatoes and maize stalks are epidemiologically linked with clinical listeriosis. PMID:11722943

  14. Characterization of Listeria monocytogenes isolates from cattle and ground beef by pulsed-field gel electrophoresis.

    PubMed

    Foerster, Claudia; Vidal, Lorena; Troncoso, Miriam; Figueroa, Guillermo

    2012-01-01

    The aims of this study were to determine the occurrence of Listeria monocytogenes in cattle feces and ground beef, to characterize these strains by pulsed-field gel electrophoresis and to compare them to three listeria strains found in humans. Cattle from different origins (n = 250) and ground beef obtained from supermarkets (n = 40) were sampled. The results show low occurrence in cattle feces (0.4 %) but a higher presence in ground beef (37 %). An important part of the ground beef strains (80 %) had > 95 % similarity with a strain isolated from a human sporadic case and the ATCC 19115 used as control. The strain isolated from cattle feces had 93 % similarity to clone 009, previously associated with a listeriosis outbreak related to cheese. Cattle and ground beef can harbor virulent L. monocytogenes strains. Further studies in animals and animal products are needed to improve listeriosis control.

  15. An exactly solvable Ogston model of gel electrophoresis: X. Application to high-field separation techniques.

    PubMed

    Gauthier, Michel G; Slater, Gary W

    2003-01-01

    Recently, we generalized our lattice model of gel electrophoresis to study the net velocity of particles being pulled by a high-intensity electric field through an arbitrary distribution of immobile obstacles (Gauthier, M. G., Slater, G. W., J. Chem. Phys. 2002, 117, 6745-6756). In this article, we show how the high-field version of our model can be used to compare the velocity of particles with different electric charges and/or physical sizes. We then investigate specific two-dimensional distributions of obstacles that can be used to separate particles, e.g., in a microfluidic device. More precisely, we compare the velocity of differently charged or sized analytes in sieving, trapping and deflecting systems to model various electrophoretic separation techniques. In particular, we study the nonlinear effects present in ratchet systems and how they can be combined with time-asymmetric pulsed fields to provide new modes of separation.

  16. Molecular analysis of chromosomal rearrangements using pulsed field gel electrophoresis and somatic cell hybrids

    SciTech Connect

    Davis, L.M. )

    1991-01-01

    Many human genetic diseases, including some cancers, are characterized by consistent chromosome abnormalities, such as deletions and translocations. Analyses of these mutations often prove crucial to the eventual cloning and characterization of the gene(s) responsible for the disease. Two methods for analyzing these chromosome abnormalities have been developed in recent years: somatic cell hybridization and pulsed field gel electrophoresis (PFGE). Somatic cell hybridization is a technique for segregating an aberrant chromosome from its normal homologue in a cell derived from an unrelated species, which is usually a rodent. Demonstrations of these analytic techniques are presented, using as an example chromosomal abnormalities involving human chromosome band 11p13, the locus for the Wilms' tumor, aniridia, genitourinary abnormality, and mental retardation (WAGR) syndrome.

  17. Microdisc gel electrophoresis in sodium dodecyl sulfate of organic material from rat otoconial complexes

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Pote, K. G.; Rarey, K. E.; Verma, L. M.

    1981-01-01

    The gravity receptors of all vertebrates utilize a 'test mass' consisting of a complex arrangement of mineral and organic substance that lies over the sensory receptor areas. In most vertebrates, the mineral is a polymorph of calcium carbonate in the form of minute, single crystals called otoconia. An investigation is conducted to determine the number of proteins in otoconial complexes and their molecular weights. The investigation makes use of a microdisk gel electrophoresis method reported by Gainer (1971). The most important finding of the reported research is that analysis of the proteins of the organic material of the otoconial complexes is possible when sensitive microanalytical methods are employed. Further modification of the basic technique employed and the inclusion of other sensitive staining methods should mean that, in the future, protein separation by molecular weight will be possible in sample pools containing only two otoconial masses.

  18. Horizontal comparative fluorescence two-dimensional gel electrophoresis for improved spot coordinate detection.

    PubMed

    Hanneken, Marina; König, Simone

    2014-04-01

    Vertical comparative 2D fluorescence gel electrophoresis (CoFGE) has recently been shown to increase the reproducibility of coordinate assignment for protein spots, in particular in singular experiments, which cannot be investigated using DIGE. The method applies a standardized marker grid formed by a set of purified proteins to the sample proteome in a conglomerate of 1DE, 2DE, and DIGE. Here, improvements are demonstrated by transferring CoFGE to horizontal 2DE. These include the elimination of the protein modification by residual acrylamide monomer unavoidable in vertical CoFGE, reduced buffer volumes, and highly efficient laboratory procedures. Spot patterns are well defined and can be easily analyzed using commercially available warping algorithms. With horizontal CoFGE also a correction for changes in pI was introduced using a third fluorescent dye. Horizontal CoFGE holds high promises in comparative proteomics.

  19. Analysis of Replicating Mitochondrial DNA by In Organello Labeling and Two-Dimensional Agarose Gel Electrophoresis.

    PubMed

    Holt, Ian J; Kazak, Lawrence; Reyes, Aurelio; Wood, Stuart R

    2016-01-01

    Our understanding of the mechanisms of DNA replication in a broad range of organisms and viruses has benefited from the application of two-dimensional agarose gel electrophoresis (2D-AGE). The method resolves DNA molecules on the basis of size and shape and is technically straightforward. 2D-AGE sparked controversy in the field of mitochondria when it revealed replicating molecules with lengthy tracts of RNA, a phenomenon never before reported in nature. More recently, radioisotope labeling of the DNA in the mitochondria has been coupled with 2D-AGE. In its first application, this procedure helped to delineate the "bootlace mechanism of mitochondrial DNA replication," in which processed mitochondrial transcripts are hybridized to the lagging strand template at the replication fork as the leading DNA strand is synthesized. This chapter provides details of the method, how it has been applied to date and concludes with some potential future applications of the technique.

  20. Analyzing modifiers of protein aggregation in C. elegans by native agarose gel electrophoresis.

    PubMed

    Holmberg, Mats; Nollen, Ellen A A

    2013-01-01

    The accumulation of specific aggregation-prone proteins during aging is thought to be involved in several diseases, most notably Alzheimer's and Parkinson's disease as well as polyglutamine expansion disorders such as Huntington's disease. Caenorhabditis elegans disease models with transgenic expression of fluorescently tagged aggregation-prone proteins have been used to screen for genetic modifiers of aggregation. To establish the role of modifying factors in the generation of aggregation intermediates, a method has been developed using native agarose gel electrophoresis (NAGE) that enables parallel screening of aggregation patterns of fluorescently labeled aggregation-prone proteins. Together with microscopy-based genetic screens this method can be used to identify modifiers of protein aggregation and characterize their molecular function. Although described here for analyzing aggregates in C. elegans, NAGE can be adjusted for use in other model organisms as well as for cultured cells.

  1. Conformational Entropy Mechanism for Periodic Motion of DNA under Constant-Field Gel Electrophoresis

    NASA Astrophysics Data System (ADS)

    Azuma, Ryuzo; Takayama, Hajime

    2006-06-01

    Entropic elasticity of a single charged polymer undergoing gel electrophoresis is a fundamental theme of polymer statistical physics since the discovery of “periodic” behavior in constant field gel electrophoresis (CFGE). In the present work we address the problem numerically by two steps. In the first step, we carry out Brownian dynamics (BD) simulations on CFGE by solving semi-microscopic Langevin equations of a polymer consisting of beads separated by a mean distance much smaller than the Kuhn length. Results are analyzed based on coarse-graining over the Kuhn length scale. We show the averaged elongation-contraction motion involves asymmetric V-shaped configurations whose shorter arm length depends on the field and the temperature consistently with what is expected when the BD chain is described by the freely-jointed chain (FJC) model with a suitable Kuhn length. To our knowledge, this is the first numerical confirmation of the FJC model itself from a submicroscopic description of polymer motion. The saturation of chain mobility in high fields agrees well with the nonlinear dependence of this shorter arm length on the field. In the second step, we discuss the periodic elongation-contraction motion of the coarse-grained chain by such a simplified model as a one-dimensional chain consisting of beads, elastic strings, and obstacles. The results from these two chain models indicate that the periodic elongation-contraction motion of DNA under CFGE is self-organized by a balance between the field force and the conformational entropic force.

  2. Combining ligation reaction and capillary gel electrophoresis to obtain reliable long DNA probes.

    PubMed

    García-Cañas, Virginia; Mondello, Monica; Cifuentes, Alejandro

    2011-05-01

    New DNA amplification methods are continuously developed for sensitive detection and quantification of specific DNA target sequences for, e.g. clinical, environmental or food applications. These new applications often require the use of long DNA oligonucleotides as probes for target sequences hybridization. Depending on the molecular technique, the length of DNA probes ranges from 40 to 450 nucleotides, solid-phase chemical synthesis being the strategy generally used for their production. However, the fidelity of chemical synthesis of DNA decreases for larger DNA probes. Defects in the oligonucleotide sequence result in the loss of hybridization efficiency, affecting the sensitivity and selectivity of the amplification method. In this work, an enzymatic procedure has been developed as an alternative to solid-phase chemical synthesis for the production of long oligonucleotides. The enzymatic procedure for probe production was based on ligation of short DNA sequences. Long DNA probes were obtained from smaller oligonucleotides together with a short sequence that acts as bridge stabilizing the molecular complex for DNA ligation. The ligation reactions were monitored by capillary gel electrophoresis with laser-induced fluorescence detection (CGE-LIF) using a bare fused-silica capillary. The capillary gel electrophoresis-LIF method demonstrated to be very useful and informative for the characterization of the ligation reaction, providing important information about the nature of some impurities, as well as for the fine optimization of the ligation conditions (i.e. ligation cycles, oligonucleotide and enzyme concentration). As a result, the yield and quality of the ligation product were highly improved. The in-lab prepared DNA probes were used in a novel multiplex ligation-dependent genome amplification (MLGA) method for the detection of genetically modified maize in samples. The great possibilities of the whole approach were demonstrated by the specific and sensitive

  3. Pulsed-field gel electrophoresis patterns of Escherichia coli O157 isolates from Kansas feedlots.

    PubMed

    Sargeant, J M; Shi, X; Sanderson, M W; Renter, D G; Nagaraja, T G

    2006-01-01

    This study investigated the prevalence and distribution of Escherichia coli O157 genetic types within and among feedlots using pulsed-field gel electrophoresis to separate XbaI-digested DNA. The study population consisted of 300 pens of cattle in 30 feedlots in Kansas that were sampled (feces, water, and water sediment) within a month of being shipped for slaughter. The prevalence of E. coli O157 was 8.5% in feces, 3.1% in water, and 4.5% in water sediment samples. A total of 424 E. coli O157 isolates were characterized by pulsed-field gel electrophoresis, and 139 subtypes (100% Dice similarity with no band differences) were identified. The majority of subtypes (70/139) was identified only once, but nine were identified 10 or more times. Identical subtypes were recovered from both feces and water tanks in 10 feedlots. The majority of subtypes were identified in only one feedlot, and the number of subtypes ranged from one to 23 within a feedlot and from one to seven within a pen. There were 10 feedlots with at least 15 positive samples. In these 10 feedlots, the most common subtype accounted for 16.9-78.6% of the isolates. Common subtypes differed among feedlots. In eight of the 10 feedlots, the most common subtype was identified in multiple pens. The results support a complex ecology for E. coli O157 in feedlot operations, with factors associated with exposure and transmission likely acting at a common level for multiple feedlots, within feedlots, and within pens of cattle.

  4. Gel electrophoresis of polyphenol oxidase with instant identification by in situ blotting.

    PubMed

    Cheng, Tsai-Mu; Huang, Pei-Chen; Pan, Ju-Pin; Lin, Kuan-Yu; Mao, Simon J T

    2007-04-15

    Polyphenol oxidase (PPO) or tyrosinase is an important and ubiquitous enzyme responsible for browning in plants and melanization in animals. The molecular size of the plant PPO is varied among the species and its activity can be enhanced by a variety of anionic detergents. In the present study, we developed a simple method for the first-step identification of PPO in fruit and vegetable extracts. First, 3mm chromatographic paper was immersed in 0.5% (w/v) catechol solution as an immobilized PPO substrate. After running the extract with 10% sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), one side of the glass plate was removed. The plate was immediately laid on top of the dried catechol-paper. A dark-brown band corresponding to PPO was visualized within 1 min and was further confirmed by a conventional Western blot using an antibody prepared against mushroom PPO. It also reveals that some vegetation (such as tomato, radish, and oriental melon) with low or no detectable activity in a conventional enzyme assay actually possessed marked levels of PPO activity when assessed by PAGE-blot. We propose that an inhibitor is associated with PPO in some plants; the inhibitor, however, is dissociated during the electrophoresis. Therefore, in addition to identify the molecular form of PPO, the present technique may explore the existence of PPO inhibitor(s) in plants. The detail of the method with respect to its relevance for searching a natural PPO inhibitor is described and discussed.

  5. Sodium dodecyl sulfate-polyacrylamide gel protein electrophoresis of freshwater photosynthetic sulfur bacteria.

    PubMed

    Osuna, M Begoña; Casamayor, Emilio O

    2011-01-01

    Sodium dodecyl sulfate-polyacrylamide gel protein electrophoresis (SDS-PAGE) was carried out using different bacterial strains of the photosynthetic sulfur bacteria Chlorobium, Thiocapsa, Thiocystis, and Chromatium cultured in the laboratory, and the natural blooms in two karstic lakes (Lake Cisó and Lake Vilar, NE Spain) where planktonic photosynthetic bacteria (purple and green sulfur bacteria) massively developed accounting for most of the microbial biomass. Several extraction, solubilization, and electrophoresis methods were tested to develop an optimal protocol for the best resolution of the SDS-PAGE. Protein composition from different water depths and at different times of the year was visualized within a molecular mass range between 100 and 15 kDa yielding up to 20 different protein bands. Protein banding patterns were reproducible and changed in time and with depth in agreement with changes in photosynthetic bacteria composition. When a taxonomically stable community was followed in time, differences were observed in the intensity but not in the composition of the SDS-PAGE banding pattern. Three environmental variables directly related to the activity of sulfur bacteria (light, oxygen, and sulfide concentrations) had a significant effect on protein banding patterns and explained 33% of the variance. Changes in natural protein profiles of the bacterial blooms agreed with changes in species composition and in the in situ metabolic state of the populations.

  6. Separation of chromosomal DNA molecules from C.albicans by pulsed field gel electrophoresis.

    PubMed Central

    Snell, R G; Wilkins, R J

    1986-01-01

    Modifications have been made to standard pulse field gel electrophoresis (PFGE) systems to enable very large DNA molecules to be resolved. The single most important modification was to elevate the temperature of electrophoresis to 35 degrees C. This enabled the largest Saccharomyces cerevisiae chromosome to be reproducibly resolved. More impressively, it enabled the DNA of Candida albicans to be clearly resolved into six bands, a feat which was very difficult at lower temperatures. Even so, optimal resolution could only be obtained by carefully adjusting field voltages and switching times. The DNA from the two largest C. albicans chromosomes, which was estimated to be at least 5-10Mbp in size, ran somewhat anomalously, giving fuzzy bands which did not migrate in the direction of the average electric field. That the highest molecular weight band was a distinct chromosome was demonstrated by specific hybridisation to the C. albicans ADE2 gene probe. With further fine tuning, the PFGE system described here should be capable of resolving DNA from the smallest human chromosomes. Images PMID:3520483

  7. Molecular Fingerprinting of Dairy Microbial Ecosystems by Use of Temporal Temperature and Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Ogier, J.-C.; Lafarge, V.; Girard, V.; Rault, A.; Maladen, V.; Gruss, A.; Leveau, J.-Y.; Delacroix-Buchet, A.

    2004-01-01

    Numerous microorganisms, including bacteria, yeasts, and molds, constitute the complex ecosystem present in milk and fermented dairy products. Our aim was to describe the bacterial ecosystem of various cheeses that differ by production technology and therefore by their bacterial content. For this purpose, we developed a rapid, semisystematic approach based on genetic profiling by temporal temperature gradient electrophoresis (TTGE) for bacteria with low-G+C-content genomes and denaturing gradient gel electrophoresis (DGGE) for those with medium- and high-G+C-content genomes. Bacteria in the unknown ecosystems were assigned an identity by comparison with a comprehensive bacterial reference database of ∼150 species that included useful dairy microorganisms (lactic acid bacteria), spoilage bacteria (e.g., Pseudomonas and Enterobacteriaceae), and pathogenic bacteria (e.g., Listeria monocytogenes and Staphylococcus aureus). Our analyses provide a high resolution of bacteria comprising the ecosystems of different commercial cheeses and identify species that could not be discerned by conventional methods; at least two species, belonging to the Halomonas and Pseudoalteromonas genera, are identified for the first time in a dairy ecosystem. Our analyses also reveal a surprising difference in ecosystems of the cheese surface versus those of the interior; the aerobic surface bacteria are generally G+C rich and represent diverse species, while the cheese interior comprises fewer species that are generally low in G+C content. TTGE and DGGE have proven here to be powerful methods to rapidly identify a broad range of bacterial species within dairy products. PMID:15345452

  8. Enhanced detergent extraction for analysis of membrane proteomes by two-dimensional gel electrophoresis

    PubMed Central

    Churchward, Matthew A; Butt, R Hussain; Lang, John C; Hsu, Kimberly K; Coorssen, Jens R

    2005-01-01

    Background The analysis of hydrophobic membrane proteins by two-dimensional gel electrophoresis has long been hampered by the concept of inherent difficulty due to solubility issues. We have optimized extraction protocols by varying the detergent composition of the solubilization buffer with a variety of commercially available non-ionic and zwitterionic detergents and detergent-like phospholipids. Results After initial analyses by one-dimensional SDS-PAGE, quantitative two-dimensional analyses of human erythrocyte membranes, mouse liver membranes, and mouse brain membranes, extracted with buffers that included the zwitterionic detergent MEGA 10 (decanoyl-N-methylglucamide) and the zwitterionic lipid LPC (1-lauroyl lysophosphatidylcholine), showed selective improvement over extraction with the common 2-DE detergent CHAPS (3 [(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate). Mixtures of the three detergents showed additive improvements in spot number, density, and resolution. Substantial improvements in the analysis of a brain membrane proteome were observed. Conclusion This study demonstrates that an optimized detergent mix, coupled with rigorous sample handling and electrophoretic protocols, enables simple and effective analysis of membrane proteomes using two-dimensional electrophoresis. PMID:15941475

  9. DNA damage by carbon nanotubes using the single cell gel electrophoresis technique.

    PubMed

    Zeni, Olga; Scarfì, Maria Rosaria

    2010-01-01

    The single-cell gel electrophoresis (SCGE) or comet assay is a simple and sensitive method for quantitatively measuring DNA breakage and repair in individual cells. It can be applied to proliferating and non-proliferating cells and cells of those tissues, which are the first contact sites for mutagenic/carcinogenic substances. In this technique, cells are embedded in agarose, lysed, subjected to electrophoresis, and stained with a fluorescent DNA-binding dye. Cells with increased DNA damage display increased DNA migration from the nucleus toward the anode, which resembles the shape of a comet. The migration is observed by fluorescence microscopy after staining with a fluorescent DNA-binding dye, and the intensity of the comet tail reflects the number of DNA breaks. The assay is performed in almost all eukaryotic cells and has applications in many fields, including genetic toxicology, biomonitoring, ecotoxicology, medical, and nutritional research. The assay is a very sensitive tool to investigate the effect of carbon nanotubes on DNA of human cells in vitro. This chapter describes a procedure to perform the comet assay, in its alkaline version, on cell cultures treated with carbon nanotubes.

  10. Whole blood assay for trypsin activity using polyanionic focusing gel electrophoresis.

    PubMed

    Lefkowitz, Roy B; Schmid-Schönbein, Geert W; Heller, Michael J

    2010-07-01

    The measurement of trypsin activity directly in blood is important for the development of novel diagnostics and for biomedical research. Presently, most degradative enzyme assays require sample preparation, making them time consuming, costly, and less accurate. We recently demonstrated a simple and rapid electrophoretic assay for the measurement of trypsin activity directly in whole blood. This assay utilizes a charge-changing fluorescent peptide substrate that produces a positively charged fluorescent product fragment upon cleavage by the target enzyme. This fragment is then rapidly separated from whole blood by electrophoresis and quantified with a fluorescent detector. In this study, we demonstrate that polyanionic poly-L-glutamic acid-doped polyacrylamide gels can focus the fluorescent cleavage product and markedly improve the LODs of the assay. A LOD of 2 pg in 6 microL (0.3 ng/mL) in whole human blood was achieved after a 1-h reaction of enzyme and substrate followed by 10 min of electrophoresis. This is 50- to 200-fold better than the estimated reference levels for trypsin (15-60 ng/mL) in blood. This straightforward technique now allows for the rapid measurement of clinically relevant levels of trypsin activity in microliter volumes of whole blood, providing a useful tool for the development of novel point-of-care diagnostics.

  11. Separation and recovery of nucleic acids with improved biological activity by acid-degradable polyacrylamide gel electrophoresis.

    PubMed

    Kim, Yoon Kyung; Kwon, Young Jik

    2010-05-01

    One of the fundamental challenges in studying biomacromolecules (e.g. nucleic acids and proteins) and their complexes in a biological system is isolating them in their structurally and functionally intact forms. Electrophoresis offers convenient and efficient separation and analysis of biomacromolecules but recovery of separated biomacromolecules is a significant challenge. In this study, DNAs of various sizes were separated by electrophoresis in an acid-degradable polyacrylamide gel. Almost 100% of the nucleic acids were recovered after the identified gel bands were hydrolyzed under a mildly acidic condition and purified using anion exchange resin. Further concentration by centrifugal filtration and a second purification using ion exchange column chromatography yielded 44-84% of DNA. The second conventional (non-degradable) gel electrophoresis confirmed that the nucleic acids recovered from acid-degradable gel bands preserved their electrophoretic properties through acidic gel hydrolysis, purification, and concentration processes. The plasmid DNA recovered from acid-degradable gel transfected cells significantly more efficiently than the starting plasmid DNA (i.e. improved biological activity via acid-degradable PAGE). Separation of other types of nucleic acids such as small interfering RNA using this convenient and efficient technique was also demonstrated.

  12. Use of pulsed-field gel electrophoresis for epidemiological study of Escherichia coli O157:H7 during a food-borne outbreak.

    PubMed Central

    Johnson, J M; Weagant, S D; Jinneman, K C; Bryant, J L

    1995-01-01

    Food and patient isolates from an Escherichia coli O157:H7 outbreak associated with undercooked ground beef were characterized by pulsed-field gel electrophoresis and Shiga-like toxin genotype. Pulsed-field gel electrophoresis confirmed the epidemiologically implicated source of the two-state outbreak and differentiated between outbreak and sporadic strains. PMID:7618896

  13. Measurement of oxidatively-induced clustered DNA lesions using a novel adaptation of single cell gel electrophoresis (comet assay).

    PubMed

    Georgakilas, Alexandros G; Holt, Stewart M; Hair, Jessica M; Loftin, Charles W

    2010-12-01

    The two basic groups of complex DNA damage are double-strand breaks (DSBs) and non-DSB oxidatively-induced clustered DNA lesions (OCDLs). The single-cell gel electrophoresis (SCGE) or comet assay has been widely used for the detection of low levels of various types of DNA lesions including single-strand breaks (SSBs), DSBs, and oxidized bases per individual cell. There are limited data on the use of the comet assay for the detection of non-DSB clustered DNA lesions using different repair enzymes as enzymatic probes. This unit discusses a novel adaptation of the comet assay used to measure these unique types of lesions. Until now OCDL yields have been measured using primarily pulsed-field agarose gel electrophoresis. The advantages offered by the current approach are: (1) measurement of OCDL levels per individual cell; (2) use of a small number of cells (∼10,000) and relatively low doses of ionizing radiation (1 to 2 Gy) or low levels of oxidative stress, which are not compatible with standard agarose gel electrophoresis; and finally, (3) the assay is fast and allows direct comparison with pulsed-field gel electrophoresis results.

  14. Application of multiplex PCR, pulsed-field gel electrophoresis (PFGE), and BOX-PCR for molecular analysis of enterococci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of the study was to use band-based molecular methods including BOX-PCR (Polymerase Chain Reaction) and Pulsed-Field Gel Electrophoresis (PFGE) to determine if genetically related enterococci were found among different stores, food types, or years. Enterococci were also characterized f...

  15. Genetic diversity demonstrated by pulsed field gel electrophoresis of Salmonella enterica isolates obtained from diverse sources in Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to determine the genetic diversity of Salmonella isolates recovered from a variety of sources using pulsed-field gel electrophoresis (PFGE) to assess their possible relatedness. Salmonella was isolated from ca. 52% of samples from a pepper var. Bell production system. A to...

  16. Electrophoresis of /sup 35/S-labeled proteoglycans of polyacrylamide-agarose composite gels and their visualization by fluorography

    SciTech Connect

    Carney, S.L.; Bayliss, M.T.; Collier, J.M.; Muir, H.

    1986-01-01

    Techniques for the electrophoresis of /sup 35/S-labeled proteoglycans on polyacrylamide-agarose gel slabs and subsequent fixation, impregnation, and fluorography of such electrophoretograms have been developed. The procedure permits the examination of newly synthesized proteoglycan subspecies using a rapid technique, previously unavailable for these labeled molecules.

  17. Serum protein electrophoresis by using high-resolution agarose gel in clinically healthy and Aspergillus species-infected falcons.

    PubMed

    Kummrow, Maya; Silvanose, Christudas; Di Somma, Antonio; Bailey, Thomas A; Vorbrüggen, Susanne

    2012-12-01

    Serum protein electrophoresis has gained importance in avian medicine during the past decade. Interpretation of electrophoretic patterns should be based on species-specific reference intervals and the electrophoresis gel system. In this study, serum protein electrophoresis by using high-resolution agarose gels was performed on blood samples collected from 105 falcons, including peregrine falcons (Falco peregrinus), gyrfalcons (Falco rusticolus), saker falcons (Falco cherrug), red-naped shaheens (Falco pelegrinoides babylonicus), and hybrid falcons, that were submitted to the Dubai Falcon Hospital (Dubai, United Arab Emirates) between 2003 and 2006. Reference values were established in clinically healthy birds and compared with values from falcons infected with Aspergillus species (n = 32). Falcons with confirmed aspergillosis showed significantly lower prealbumin values, which is a novel finding. Prealbumin has been documented in many avian species, but further investigation is required to illuminate the diagnostic significance of this negative acute-phase protein.

  18. Denaturing gradient gel electrophoresis profiling of bacterial communities composition in Arabian Sea.

    PubMed

    Singh, Sanjay Kumar; Ramaiah, Nagappa

    2011-05-01

    Denaturing gradient gel electrophoresis (DGGE) was used to elucidate spatial and temporal variations in bacterial community composition (BCC) from four locations along the central west coast of India. DNA extracts from 36 water samples collected from surface, mid-depth (-10 m) and dose to bottom (-20 m) during premonsoon, postmonsoon, monsoon were analyzed by PCRfor amplifying variable region of 16S rRNAgene and subsequently through DGGE. Prominent bands were excised, cloned and sequenced indicated the preponderance of gammaproteobacteria, bacteroidetes and cyanobacteria. Non-metric dimensional scaling of the DGGE gels indicated that the spatial variations in BCC were prominent among the sampling locations. Temporal variations in the BCC appear to be influenced by monsoonal processes. The canonical correspondence analyses suggest that the concentration of chlorophyll a and nitrate are two important environmental factors for both spatial and temporal variations in BCC. Chlorophyll a seems to be impart a top-down control of BCC while nitrate, the bottom-up control. Our results also suggest that BCC can vary over a small geographic distance in highly dynamic, seasonally predisposed tropical coastal waters.

  19. Nested PCR-denaturing gradient gel electrophoresis analysis of human skin microbial diversity with age.

    PubMed

    Li, Wei; Han, Lei; Yu, Pengbo; Ma, Chaofeng; Wu, Xiaokang; Xu, Jiru

    2014-01-01

    To determine whether the composition and structure of skin microbiota differ with age, cutaneous bacteria were isolated from the axillary fossa of 37 healthy human adults in two age groups (old people and young adults). Bacterial genomic DNA was extracted and characterized by nested PCR-denaturing gradient gel electrophoresis (PCR-DGGE) with primers specifically targeting V3 region of the 16S rRNA gene. The excised gel bands were sequenced to identify bacterial categories. The total bacteria, Staphylococcus spp., Staphylococcus epidermidis and Corynebacterium spp. were further enumerated by quantitative PCR. There were no significant differences in the species diversity profiles between age groups. The similarity index was lower across age groups than that it was intra-group. This indicates that the composition of skin flora is more similar to others of the same age than across age groups. While Staphylococcus spp. and Corynebacterium spp. were the dominant bacteria in both groups, sequencing and quantitative PCR revealed that skin bacterial composition differed by age. The copy number of total bacteria and Corynebacterium spp. were significantly lower in younger subjects, whereas there were no statistical differences in the quantity of Staphylococcus spp. and Staphylococcus epidermidis. These results suggest that the skin flora undergo both quantitative and qualitative changes related to aging.

  20. Microfluidic polyacrylamide gel electrophoresis with in situ immunoblotting for native protein analysis.

    PubMed

    He, Mei; Herr, Amy E

    2009-10-01

    We introduce an automated immunoblotting method that reports protein electrophoretic mobility and identity in a single streamlined microfluidic assay. Native polyacrylamide gel electrophoresis (PAGE) was integrated with subsequent in situ immunoblotting. Integration of three PA gel elements into a glass microfluidic chip achieved multiple functions, including (1) rapid protein separation via on-chip PAGE, (2) directed electrophoretic transfer of resolved protein peaks to an in-line blotting membrane, and (3) high-efficiency identification of the transferred proteins using antibody-functionalized blotting membranes. In-chip blotting membranes were photopatterned with biotinylated antibody using streptavidin polyacrylamide (PA) thus yielding postseparation sample analysis. No pressure driven flow or fluid valving was required, as the assay was operated by electrokinetically programmed control. A model sample of fluorescently labeled BSA (negative control), alpha-actinin, and prostate specific antigen (PSA) was selected to develop and characterize the assay. A 5 min assay time was required without operator intervention. Optimization of the blotting membrane (geometry, operation, and composition) yielded a detection limit of approximately 0.05 pg (alpha-actinin peak). An important additional blotting fabrication strategy was developed and characterized to allow vanishingly small antibody consumption (approximately 1 microg), as well as end-user customization of the blotting membrane after device fabrication and storage. This first report of rapid on-chip protein PAGE integrated with in situ immunoblotting forms the basis for a sensitive, automated approach applicable to numerous forms of immunoblotting.

  1. Culture-independent analysis of probiotic products by denaturing gradient gel electrophoresis.

    PubMed

    Temmerman, R; Scheirlinck, I; Huys, G; Swings, J

    2003-01-01

    In order to obtain functional and safe probiotic products for human consumption, fast and reliable quality control of these products is crucial. Currently, analysis of most probiotics is still based on culture-dependent methods involving the use of specific isolation media and identification of a limited number of isolates, which makes this approach relatively insensitive, laborious, and time-consuming. In this study, a collection of 10 probiotic products, including four dairy products, one fruit drink, and five freeze-dried products, were subjected to microbial analysis by using a culture-independent approach, and the results were compared with the results of a conventional culture-dependent analysis. The culture-independent approach involved extraction of total bacterial DNA directly from the product, PCR amplification of the V3 region of the 16S ribosomal DNA, and separation of the amplicons on a denaturing gradient gel. Digital capturing and processing of denaturing gradient gel electrophoresis (DGGE) band patterns allowed direct identification of the amplicons at the species level. This whole culture-independent approach can be performed in less than 30 h. Compared with culture-dependent analysis, the DGGE approach was found to have a much higher sensitivity for detection of microbial strains in probiotic products in a fast, reliable, and reproducible manner. Unfortunately, as reported in previous studies in which the culture-dependent approach was used, a rather high percentage of probiotic products suffered from incorrect labeling and yielded low bacterial counts, which may decrease their probiotic potential.

  2. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis

    PubMed Central

    Choi, Hoseok; Choi, Bomi; Seo, Ju Tae; Lee, Kyung Jin; Gye, Myung Chan; Kim, Young-Pil

    2016-01-01

    Assaying the glycogen synthase kinase-3 (GSK3) activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed) peptide substrate for GSK3 was employed, a distinct mobility shift in the fluorescent bands on the agarose was observed by GSK3-induced phosphorylation of the primed peptides. The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts. PMID:27092510

  3. Immunoreactivity and two-dimensional gel-electrophoresis characterization of Egyptian cobra venom proteome.

    PubMed

    Almehdar, Hussein Abduelrahman; Adel-Sadek, Mahmoud Abass; Redwan, Elrashdy Moustafa

    2015-01-01

    The first and second (two) dimensional gel electrophoresis has a broad protein resolution power. It was used to separate and identify cobra venom proteome. The importance of characterizing venom proteins contents from the Egyptian elapidae, specifically neurotoxins, is based on the need to produce effective anti-venom. About 30-55distinct protein spots were identified on silver stained two-dimensional gels. Around two-thirds of the venom proteins displayed low a molecular weight and a migration into hydrophobic side. The venoms from Naja haja and Naja nigricollus showed 45-55 spots, while Walternnesia aegyptia had less (31-37) spots. The commercial prepared polyclonal antivenom had a strong signal for anionic and cationic venom protein spots with molecular weight 20-115 kDa. However, it showed weak or non immunoreactivity toward anionic low molecular weight spots (2.5-15 kDa). These results suggest the need to change the immunization schedule to include low molecular weight toxin-proteomes as separate dose or sequester injection.

  4. Theory of DNA electrophoresis in physical gels and entangled polymer solutions

    NASA Astrophysics Data System (ADS)

    Duke, Thomas; Viovy, Jean Louis

    1994-03-01

    A scaling theory is presented for the electrophoretic mobility of DNA in sieving media that form dynamically evolving meshworks, such as physical gels and solutions of entangled polymers. In such media, the topological constraints on the DNA's motion are perpetually changing as cross links break and rejoin or as the polymers diffuse. It is shown that if the rate of constraint release falls within a certain range (which depends on the field strength), fractionation can be extended to higher molecular weights than would be feasible using a permanent gel of equivalent pore size. This improvement is a consequence of the disruptive effect that constraint release has on the mechanism of molecular orientation. Numerical simulations support the predictions of the theory. The possibility of realizing such a system in practice, with the aim of improving on current electrophoresis methods, is commented upon. It is suggested that semidilute polymer solutions may be a versatile medium for the rapid separation of long single-stranded DNA molecules, and the particular quality of solution required is identified.

  5. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis.

    PubMed

    Choi, Hoseok; Choi, Bomi; Seo, Ju Tae; Lee, Kyung Jin; Gye, Myung Chan; Kim, Young-Pil

    2016-04-16

    Assaying the glycogen synthase kinase-3 (GSK3) activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed) peptide substrate for GSK3 was employed, a distinct mobility shift in the fluorescent bands on the agarose was observed by GSK3-induced phosphorylation of the primed peptides. The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts.

  6. A novel multi-scale Hessian based spot enhancement filter for two dimensional gel electrophoresis images.

    PubMed

    Shamekhi, Sina; Miran Baygi, Mohammad Hossein; Azarian, Bahareh; Gooya, Ali

    2015-11-01

    Two dimensional gel electrophoresis (2DGE) is a useful method for studying proteins in a wide variety of applications including identifying post-translation modification (PTM), biomarker discovery, and protein purification. Computerized segmentation and detection of the proteins are the two main processes that are carried out on the scanned image of the gel. Due to the complexities of 2DGE images and the presence of artifacts, the segmentation and detection of protein spots in these images are non-trivial, and involve supervised and time consuming processes. This paper introduces a new spot filter for enhancing, and separating the closely overlapping spots of protein in 2DGE images based on the multi-scale eigenvalue analysis of the image Hessian. Using a Gaussian spot model, we have derived closed form equations to compute the eigen components of the image Hessian of two overlapping spots in a multi-scale fashion. Based on this analysis, we have proposed a novel filter that suppresses the overlapping area and results in a better spot separation. The performance of the proposed filter has been evaluated on the synthetic and real 2DGE images. The comparison with three conventional techniques and a commercial software package reveals the superiority and effectiveness of the proposed filter.

  7. A Two-Dimensional Difference Gel Electrophoresis (2D-DIGE) Protocol for Studies of Neural Precursor Cells.

    PubMed

    Guest, Paul C

    2017-01-01

    This chapter describes the basics of two-dimensional difference gel electrophoresis (2D-DIGE) for multiplex analysis of up to distinct proteomes. The example given describes the analysis of undifferentiated and differentiated neural precursor cells labelled with fluorescent Cy3 and Cy5 dyes in comparison to a pooled standard labelled with Cy2. After labelling, the proteomes are mixed together and electrophoresed on the same 2D gels. Scanning the gels at wavelengths specific for each dye allows direct overlay of the two different proteomes and the differences in abundance of specific protein spots can be determined through comparison to the pooled standard.

  8. Serum alkaline phosphatase isoenzymes in laboratory beagle dogs detected by polyacrylamide-gel disk electrophoresis.

    PubMed

    Hatayama, Kazuhisa; Nishihara, Yoshito; Kimura, Sayaka; Goto, Ken; Nakamura, Daichi; Wakita, Atsushi; Urasoko, Yoshinaka

    2011-10-01

    Serum alkaline phosphatase (ALP) activity is frequently measured in toxicity studies. Itoh et al. (2002) reported that a commercially available polyacrylamide-gel (PAG) disk electrophoresis kit used in humans (AlkPhor System, Jokoh Co., Ltd., Tokyo, Japan) for identifying serum ALP isoenzymes was useful for veterinary clinicopathological diagnosis in mongrel dogs. In the present study, based on the report of Itoh et al. (2002), we tried to expand the application range of this kit to laboratory beagle dogs which are commonly used in toxicity studies. In order to identify the origin of each ALP isoenzyme, tissue ALP extracts from the liver, bone and small intestine and serum samples were treated with neuraminidase, anti-small intestinal ALP antibody, ALP inhibitor levamisole and/or wheat germ agglutinin (WGA). The main serum ALP isoenzymes in 5-month-old intact beagle dogs were bone-derived (bone and atypical ALP: corresponding to human variant bone ALP) and they tended to decrease with age. However, liver-derived ALP isoenzyme greatly increased in the serum of cholestasis model dogs. The cholestasis model dogs also had a large molecular ALP detected in the resolving gel. This ALP could be originated from intestinal ALP or corticosteroid-induced ALP (CALP), because the activity remained even after levamisole inhibition. CALP was observed in intact laboratory beagle dogs with individual differences. These results suggest that the present method is a useful tool for detecting serum ALP isoenzymes in laboratory beagle dogs and concomitant levamisole inhibition with another gel is applicable for the evaluation of organ toxicity.

  9. Mucin Agarose Gel Electrophoresis: Western Blotting for High-molecular-weight Glycoproteins.

    PubMed

    Ramsey, Kathryn A; Rushton, Zachary L; Ehre, Camille

    2016-06-14

    Mucins, the heavily-glycosylated proteins lining mucosal surfaces, have evolved as a key component of innate defense by protecting the epithelium against invading pathogens. The main role of these macromolecules is to facilitate particle trapping and clearance while promoting lubrication of the mucosa. During protein synthesis, mucins undergo intense O-glycosylation and multimerization, which dramatically increase the mass and size of these molecules. These post-translational modifications are critical for the viscoelastic properties of mucus. As a result of the complex biochemical and biophysical nature of these molecules, working with mucins provides many challenges that cannot be overcome by conventional protein analysis methods. For instance, their high-molecular-weight prevents electrophoretic migration via regular polyacrylamide gels and their sticky nature causes adhesion to experimental tubing. However, investigating the role of mucins in health (e.g., maintaining mucosal integrity) and disease (e.g., hyperconcentration, mucostasis, cancer) has recently gained interest and mucins are being investigated as a therapeutic target. A better understanding of the production and function of mucin macromolecules may lead to novel pharmaceutical approaches, e.g., inhibitors of mucin granule exocytosis and/or mucolytic agents. Therefore, consistent and reliable protocols to investigate mucin biology are critical for scientific advancement. Here, we describe conventional methods to separate mucin macromolecules by electrophoresis using an agarose gel, transfer protein into nitrocellulose membrane, and detect signal with mucin-specific antibodies as well as infrared fluorescent gel reader. These techniques are widely applicable to determine mucin quantitation, multimerization and to test the effects of pharmacological compounds on mucins.

  10. A rapid and efficient two-step gel electrophoresis method for the purification of major rye grass pollen allergens.

    PubMed

    Levy, D; Davies, J; O'Hehir, R; Suphioglu, C

    2001-06-01

    Purified proteins are mandatory for molecular, immunological and cellular studies. However, purification of proteins from complex mixtures requires specialised chromatography methods (i.e., gel filtration, ion exchange, etc.) using fast protein liquid chromatography (FPLC) or high-performance liquid chromatography (HPLC) systems. Such systems are expensive and certain proteins require two or more different steps for sufficient purity and generally result in low recovery. The aim of this study was to develop a rapid, inexpensive and efficient gel-electrophoresis-based protein purification method using basic and readily available laboratory equipment. We have used crude rye grass pollen extract to purify the major allergens Lol p 1 and Lol p 5 as the model protein candidates. Total proteins were resolved on large primary gel and Coomassie Brilliant Blue (CBB)-stained Lol p 1/5 allergens were excised and purified on a secondary "mini"-gel. Purified proteins were extracted from unstained separating gels and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot analyses. Silver-stained SDS-PAGE gels resolved pure proteins (i.e., 875 microg of Lol p 1 recovered from a 8 mg crude starting material) while immunoblot analysis confirmed immunological reactivity of the purified proteins. Such a purification method is rapid, inexpensive, and efficient in generating proteins of sufficient purity for use in monoclonal antibody (mAb) production, protein sequencing and general molecular, immunological, and cellular studies.

  11. Stabilization of thin-layer agarose gels after isoelectric focusing with polyacrylamide enables reverse imidazole-zinc staining and facilitates two-dimensional gel electrophoresis.

    PubMed

    Hellman, Jukka

    2008-09-01

    Large-pore-size agarose gels provide excellent resolving capacity for high molecular weight biomolecules. Thin-layer agarose isoelectric focusing (IEF) gels on polyester support films are especially useful for the separation of large proteins based on their pI in native conformation, but the method has suffered from the lack of detection methods compatible with agarose gels in hydrated form. Recently, an acrylamide copolymerization method was reported to enable mass-spectrometry-compatible silver staining and in-gel digestion of proteins. In this study, the method was further applied by demonstrating successful reverse imidazole-zinc staining of thin-layer agarose IEF gels copolymerized with acrylamide. The sensitivity of the reverse staining method on the composite gel at its best equaled the sensitivity of the traditional dried agarose silver staining method. Owing to the increased durability and reversible detection, the reverse-stained first-dimension gel could be conveniently prepared for the second-dimension sodium dodecyl sulfate polyacrylamide gel electrophoresis by reduction and alkylation. In addition, the micropreparative generation of tryptic peptides of Coomassie brilliant blue R-250 stained proteins in the composite gel is demonstrated.

  12. Disease proteomics of high-molecular-mass proteins by two-dimensional gel electrophoresis with agarose gels in the first dimension (Agarose 2-DE).

    PubMed

    Oh-Ishi, Masamichi; Maeda, Tadakazu

    2007-04-15

    Agarose gel is the preferred electrophoretic medium currently used for separating high molecular mass (HMM) proteins (MW>100 kDa). Agarose gels are widely used for both SDS-agarose gel electrophoresis and agarose isoelectric focusing (IEF). A two-dimensional gel electrophoresis method employing agarose gels in the first dimension (agarose 2-DE) that is sufficiently good at separating up to 1.5mg of HMM proteins with molecular masses as large as 500 kDa has been used to separate proteins from various diseased tissues and cells. Although resolution of the agarose 2-DE pattern always depends on the tissue being analyzed, sample preparation procedures including (i) protein extraction with an SDS sample buffer; (ii) ultracentrifugation of a tissue homogenate; and (iii) 1% SDS in both stacking and separation gels of the second-dimension SDS-PAGE gel, are generally effective for HMM protein detection. In a comprehensive prostate cancer proteome study using agarose 2-DE, the HMM region of the gel was rich in proteins of particular gene/protein expression groups (39.1% of the HMM proteins but only 28.4% of the LMM ones were classified as transcription/translation-related proteins). Examples include transcription factors, DNA or RNA binding proteins, and ribosomal proteins. To understand oxidative stress-induced cellular damage at the protein level, a novel proteomic method, in which protein carbonyls were derivatized with biotin hydrazide followed by agarose 2-DE, was useful for detecting HMM protein carbonyls in tissues of both a diabetes model Ostuka Long-Evans Tokushima Fatty (OLETF) rat and a control Long-Evans Tokushima Otsuka (LETO) rat. In this paper, we review the use of agarose gels for separation of HMM proteins and disease proteomics of HMM proteins in general, with particular attention paid to our proteome analyzes based on the use of agarose 2-DE for protein separation followed by the use of mass spectrometry for protein identification.

  13. Multicapillary gel electrophoresis based analysis of genetic variants in the WFS1 gene.

    PubMed

    Elek, Zsuzsanna; Dénes, Réka; Prokop, Susanne; Somogyi, Anikó; Yowanto, Handy; Luo, Jane; Souquet, Manfred; Guttman, András; Rónai, Zsolt

    2016-09-01

    The WFS1 gene is one of the thoroughly investigated targets in diabetes research, variants of the gene were suggested to be the genetic components of the common forms (type 1 and type 2) of diabetes. Our project focused on the analysis of polymorphisms (rs4689388, rs148797429, rs4273545) localized in the WFS1 promoter region. Although submarine gel electrophoresis based approaches were also employed in the genetic tests, it was demonstrated that multicapillary electrophoresis offers a state of the art approach for reliable high-throughput SNP and VNTR analysis. Association studies were carried out in a case-control setup. Luciferase reporter assay was employed to test the effect of the investigated loci on the activity of gene expression in vitro. Significant association could be demonstrated between all three polymorphisms and type 2 diabetes in both allele- and genotype-wise settings even using Bonferroni correction. It is notable; however, that the three loci were in strong linkage disequilibrium, thus the observed associations cannot be considered as separate effects. Molecular analyses showed that the rs4273545 GT SNP played a role in the regulation of transcription in vitro. However, this effect took place only in the presence of the region including the rs148797429 site, although this latter locus did not have its own impact on the regulation of gene expression. The paper provides genotyping protocols readily applicable in any multiplex SNP and VNTR analyses, moreover confirms and extends previous results about the role of WFS1 polymorphisms in the genetic risk of diabetes mellitus.

  14. Enzymatic assessment of cholesterol on electrophoresis gels for estimating HDL size distribution and plasma concentrations of HDL subclasses[S

    PubMed Central

    Toledo-Ibelles, Paola; García-Sánchez, Cynthia; Ávila-Vazzini, Nydia; Carreón-Torres, Elizabeth; Posadas-Romero, Carlos; Vargas-Alarcón, Gilberto; Pérez-Méndez, Oscar

    2010-01-01

    The aim of this study was to develop an enzymatic cholesterol staining method to determine HDL subclasses in a polyacrylamide gradient gel electrophoresis, which further allows staining by protein in the same electrophoresis lane. HDLs from 120 healthy individuals were separated through nondenaturing PAGE. HDLs were stained for cholesterol using an enzymatic semisolid mixture. Once the gels were unstained, they were stained again for proteins with Coomassie blue. The proportions of HDL subclasses were determined by densitometry. HDL subclasses were transformed to concentrations using as reference HDL-cholesterol plasma levels. This method is comparable in linearity and reproducibility to Coomassie blue staining, although it provides quantitative data. As expected, HDL size distribution shifted toward larger particles when determined by cholesterol as compared with protein. With this method, we observed different proportions of HDL subclasses between men and women as compared with Coomassie blue staining. We described a method to determine HDL size distribution by enzymatic cholesterol staining on polyacrylamide gels. The method allows the quantification of the cholesterol plasma concentration of each HDL subclass with the possibility to further stain the protein in the same sample. The combination of HDL staining by cholesterol and protein on electrophoresis gels provides information that may have clinical relevance. PMID:20097938

  15. A multichannel gel electrophoresis and continuous fraction collection apparatus for high-throughput protein separation and characterization.

    PubMed

    Choi, Megan; Nordmeyer, Robert A; Cornell, Earl; Dong, Ming; Biggin, Mark D; Jin, Jian

    2010-01-01

    To facilitate a direct interface between protein separation by PAGE and protein identification by mass spectrometry, we developed a multichannel system that continuously collects fractions as protein bands migrate off the bottom of gel electrophoresis columns. The device was constructed using several short linear gel columns, each of a different percent acrylamide, to achieve a separation power similar to that of a long gradient gel. A "Counter Free-Flow" elution technique then allows continuous and simultaneous fraction collection from multiple channels at low cost. We demonstrate that rapid, high-resolution separation of a complex protein mixture can be achieved on this system using SDS-PAGE. In a 2.5 h electrophoresis run, for example, each sample was separated and eluted into 48-96 fractions over a mass range of approximately 10-150 kDa; sample recovery rates were 50% or higher; each channel was loaded with up to 0.3 mg of protein in 0.4 mL; and a purified band was eluted in two to three fractions (200 microL/fraction). Similar results were obtained when running native gel electrophoresis, but protein aggregation limited the loading capacity to about 50 microg per channel and reduced resolution.

  16. A multi-channel gel electrophoresis and continuous fraction collection apparatus for high throughput protein separation and characterization

    SciTech Connect

    Choi, Megan; Nordmeyer, Robert A.; Cornell, Earl; Dong, Ming; Biggin, Mark D.; Jin, Jian

    2009-10-02

    To facilitate a direct interface between protein separation by PAGE and protein identification by mass spectrometry, we developed a multichannel system that continuously collects fractions as protein bands migrate off the bottom of gel electrophoresis columns. The device was constructed using several short linear gel columns, each of a different percent acrylamide, to achieve a separation power similar to that of a long gradient gel. A Counter Free-Flow elution technique then allows continuous and simultaneous fraction collection from multiple channels at low cost. We demonstrate that rapid, high-resolution separation of a complex protein mixture can be achieved on this system using SDS-PAGE. In a 2.5 h electrophoresis run, for example, each sample was separated and eluted into 48-96 fractions over a mass range of 10-150 kDa; sample recovery rates were 50percent or higher; each channel was loaded with up to 0.3 mg of protein in 0.4 mL; and a purified band was eluted in two to three fractions (200 L/fraction). Similar results were obtained when running native gel electrophoresis, but protein aggregation limited the loading capacity to about 50 g per channel and reduced resolution.

  17. The use of biphasic linear ramped pulsed field gel electrophoresis to quantify DNA damage based on fragment size distribution

    SciTech Connect

    Lawrence, T.S.; Normolle, D.P.; Davis, M.A.; Maybaum, J.

    1993-10-20

    The development of biphasic linear pulse ramping gel electrophoresis has permitted resolution of DNA fragments from 200 Kbp to 6 Mbp in a single gel. We used this technique to measure radiation-induced DNA damage based on fragment size. Human colon cancer cells (HT29 and LS174T) and Chinese hamster ovary cells were embedded in agarose, deproteinized, irradiated with 5-80 Gy, and assessed for DNA double strand breakage using pulsed field gel electrophoresis. The frequency of DNA double strand breakage determined using a previously published method was compared to the breakage frequency calculated using the fragment size distribution. Both methods produced similar estimates for breakage frequency of approximately 5 {times} 10{sup {minus}9} breaks Gy{sup {minus}1} bp{sup {minus}1}. These findings suggest that biphasic linear pulse ramping gel electrophoresis can yield a quantitative estimate of DNA fragment distribution resulting from irradiation. The ability to quantify the distribution of DNA fragment sizes produced by irradiation should yield information concerning the mechanisms of both DNA double strand break induction and repair. 16 refs., 5 figs.

  18. Microbial Community Structure of Korean Cabbage Kimchi and Ingredients with Denaturing Gradient Gel Electrophoresis.

    PubMed

    Hong, Sung Wook; Choi, Yun-Jeong; Lee, Hae-Won; Yang, Ji-Hee; Lee, Mi-Ai

    2016-06-28

    Kimchi is a traditional Korean fermented vegetable food, the production of which involves brining of Korean cabbage, blending with various other ingredients (red pepper powder, garlic, ginger, salt-pickled seafood, etc.), and fermentation. Recently, kimchi has also become popular in the Western world because of its unique taste and beneficial properties such as antioxidant and antimutagenic activities, which are derived from the various raw materials and secondary metabolites of the fermentative microorganisms used during production. Despite these useful activities, analysis of the microbial community present in kimchi has received relatively little attention. The objective of this study was to evaluate the bacterial community structure from the raw materials, additives, and final kimchi product using the culture-independent method. Specifically, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the 16S rRNA partial sequences of the microflora. One primer set for bacteria, 341F(GC)-518R, reliably produced amplicons from kimchi and its raw materials, and these bands were clearly separated on a 35-65% denaturing gradient gel. Overall, 117 16S rRNA fragments were identified by PCR-DGGE analysis. Pediococcus pentosaceus, Leuconostoc citreum, Leuconostoc gelidum, and Leuconostoc mesenteroides were the dominant bacteria in kimchi. The other strains identified were Tetragenococcus, Pseudomonas, Weissella, and uncultured bacterium. Comprehensive analysis of these microorganisms could provide a more detailed understanding of the biologically active components of kimchi and help improve its quality. PCR-DGGE analysis can be successfully applied to a fermented food to detect unculturable or other species.

  19. Nitroproteins in Human Astrocytomas Discovered by Gel Electrophoresis and Tandem Mass Spectrometry.

    PubMed

    Peng, Fang; Li, Jianglin; Guo, Tianyao; Yang, Haiyan; Li, Maoyu; Sang, Shushan; Li, Xuejun; Desiderio, Dominic M; Zhan, Xianquan

    2015-12-01

    Protein tyrosine nitration is involved in the pathogenesis of highly fatal astrocytomas, a type of brain cancer. To understand the molecular mechanisms of astrocytomas and to discover new biomarkers/therapeutic targets, we sought to identify nitroproteins in human astrocytoma tissue. Anti-nitrotyrosine immunoreaction-positive proteins from a high-grade astrocytoma tissue were detected with two-dimensional gel electrophoresis (2DGE)-based nitrotyrosine immunoblots, and identified with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Fifty-seven nitrotyrosine immunopositive protein spots were detected. A total of 870 proteins (nitrated and non-nitrated) in nitrotyrosine-immunopositive 2D gel spots were identified, and 18 nitroproteins and their 20 nitrotyrosine sites were identified with MS/MS analysis. These nitroproteins participate in multiple processes, including drug-resistance, signal transduction, cytoskeleton, transcription and translation, cell proliferation and apoptosis, immune response, phenotypic dedifferentiation, cell migration, and metastasis. Among those nitroproteins that might play a role in astrocytomas was nitro-sorcin, which is involved in drug resistance and metastasis and might play a role in the spread and treatment of an astrocytoma. Semiquantitative immune-based measurements of different sorcin expressions were found among different grades of astrocytomas relative to controls, and a semiquantitative increased nitration level in high-grade astrocytoma relative to control. Nitro-β-tubulin functions in cytoskeleton and cell migration. Semiquantitative immunoreactivity of β-tubulin showed increased expression among different grades of astrocytomas relative to controls and semiquantitatively increased nitration level in high-grade astrocytoma relative to control. Each nitroprotein was rationalized and related to the corresponding functional system to provide new insights into tyrosine nitration and its potential role in the

  20. Nitroproteins in Human Astrocytomas Discovered by Gel Electrophoresis and Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Peng, Fang; Li, Jianglin; Guo, Tianyao; Yang, Haiyan; Li, Maoyu; Sang, Shushan; Li, Xuejun; Desiderio, Dominic M.; Zhan, Xianquan

    2015-12-01

    Protein tyrosine nitration is involved in the pathogenesis of highly fatal astrocytomas, a type of brain cancer. To understand the molecular mechanisms of astrocytomas and to discover new biomarkers/therapeutic targets, we sought to identify nitroproteins in human astrocytoma tissue. Anti-nitrotyrosine immunoreaction-positive proteins from a high-grade astrocytoma tissue were detected with two-dimensional gel electrophoresis (2DGE)-based nitrotyrosine immunoblots, and identified with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Fifty-seven nitrotyrosine immunopositive protein spots were detected. A total of 870 proteins (nitrated and non-nitrated) in nitrotyrosine-immunopositive 2D gel spots were identified, and 18 nitroproteins and their 20 nitrotyrosine sites were identified with MS/MS analysis. These nitroproteins participate in multiple processes, including drug-resistance, signal transduction, cytoskeleton, transcription and translation, cell proliferation and apoptosis, immune response, phenotypic dedifferentiation, cell migration, and metastasis. Among those nitroproteins that might play a role in astrocytomas was nitro-sorcin, which is involved in drug resistance and metastasis and might play a role in the spread and treatment of an astrocytoma. Semiquantitative immune-based measurements of different sorcin expressions were found among different grades of astrocytomas relative to controls, and a semiquantitative increased nitration level in high-grade astrocytoma relative to control. Nitro-β-tubulin functions in cytoskeleton and cell migration. Semiquantitative immunoreactivity of β-tubulin showed increased expression among different grades of astrocytomas relative to controls and semiquantitatively increased nitration level in high-grade astrocytoma relative to control. Each nitroprotein was rationalized and related to the corresponding functional system to provide new insights into tyrosine nitration and its potential role in the

  1. Serial displacement chromatofocusing and its applications in multidimensional chromatography and gel electrophoresis: II. Experimental results.

    PubMed

    Shen, Hong; Li, Xiang; Bieberich, Charles; Frey, Douglas D

    2009-02-06

    Part I of this study investigated the theory and basic characteristics of "serial displacement chromatofocusing" (SDC). In Part II of this study, SDC is applied to two prototype applications which have potential uses in proteomics and related areas involving the analysis of complex analyte mixtures. In the first application, SDC was used as a prefractionation method prior to two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) to separate a human prostate cancer cell lysate. It was observed that the resolution achieved in narrow-pI-range 2D-PAGE was improved when using SDC prefractionation, so that SDC may be useful as a low-cost, high-speed, and highly scalable alternative to electrophoretic prefractionation methods for 2D-PAGE. The second application involves the use of SDC as the first dimension, and reversed-phase chromatography as the second dimension, to produce a novel, fully automated, two-dimensional high-performance liquid chromatography technique. The method was shown to have performance advantages over one-dimensional reversed-phase chromatography for peptide separations.

  2. Genetic variability among Chlamydia trachomatis reference and clinical strains analyzed by pulsed-field gel electrophoresis.

    PubMed Central

    Rodriguez, P; Allardet-Servent, A; de Barbeyrac, B; Ramuz, M; Bebear, C

    1994-01-01

    Pulsed-field gel electrophoresis (PFGE) was applied to Chlamydia trachomatis reference strains representing each of the 18 serovars and to 29 clinical isolates from genital specimens collected in Bordeaux, France, or Malmö, Sweden. Comparison of the fingerprint patterns of the reference strains revealed a high level of polymorphism of the total DNA when SmaI was used (14 profiles), whereas the other enzymes, Sse8387I and ApaI, showed fewer differences. Some serovars, considered to be closely related on the basis of their antigenic determinants located on the major outer membrane protein (MOMP), such as D and Da or I and Ia, were shown to be different after PFGE of their genomic DNAs. However, serovars B and Ba and serovars L2 and L2a had identical patterns after analysis with the three endonucleases. When applied to clinical isolates, which were typed by restriction fragment length polymorphism analysis of the MOMP gene, PFGE allowed the detection of intragenotype polymorphisms and showed the identity of two strains successively isolated from the same patient. This technique seems to be an efficient tool for epidemiological studies when used in addition to serotyping or genotyping by restriction fragment length polymorphism analysis of the MOMP gene. Images PMID:7883878

  3. Assessment of microbial populations dynamics in a blue cheese by culturing and denaturing gradient gel electrophoresis.

    PubMed

    Alegría, Angel; González, Renata; Díaz, Mario; Mayo, Baltasar

    2011-03-01

    The composition and development of microbial population during the manufacture and ripening of two batches of a blue-veined cheese was examined by culturing and polymerase chain reaction (PCR) denaturing gradient gel electrophoresis (DGGE) (PCR-DGGE). Nine selective and/or differential media were used to track the cultivable populations of total and indicator microbial groups. For PCR-DGGE, the V3 hyper variable region of the bacterial 16S rRNA gene and the eukaryotic D1 domain of 28S rDNA were amplified with universal primers, specific for prokaryotes and eukaryotes, respectively. Similarities and differences between the results obtained by the culturing and the molecular method were recorded for some populations. Culturing analysis allows minority microbial groups (coliforms, staphylococci) to be monitored, although in this study PCR-DGGE identified a population of Streptococcus thermophilus that went undetected by culturing. These results show that the characterization of the microbial populations interacting and evolving during the cheese-making process is improved by combining culturing and molecular methods.

  4. Monitoring the lactic acid bacterial diversity during shochu fermentation by PCR-denaturing gradient gel electrophoresis.

    PubMed

    Endo, Akihito; Okada, Sanae

    2005-03-01

    The presence of lactic acid bacteria (LAB) during shochu fermentation was monitored by PCR-denaturing gradient gel electrophoresis (DGGE) and by bacteriological culturing. No LAB were detected from fermented mashes by PCR-DGGE using a universal bacterial PCR primer set. However, PCR-DGGE using a new primer specific for the 16S rDNA of Lactococcus, Streptococcus, Tetragenococcus, Enterococcus, and Vagococcus and two primers specific for the 16S rDNA of Lactobacillus, Pediococcus, Leuconostoc, and Weissella revealed that Enterococcus faecium, Lactobacillus casei, Lactobacillus fermentum, Lactobacillus nagelii, Lactobacillus plantarum, Lactococcus lactis, Leuconostoc citreum, Leuconostoc mesenteroides, and Weissella cibaria inhabited in shochu mashes. It was also found that the LAB community composition during shochu fermentation changed after the main ingredient and water were added during the fermentation process. Therefore, we confirmed that PCR-DGGE using all three primers specific for groups of LAB together was well suited to the study of the LAB diversity in shochu mashes. The results of DGGE profiles were similar to the results of bacteriological culturing. In conclusion, LAB are present during shochu fermentation but not dominant.

  5. Brownian dynamics studies on DNA gel electrophoresis. II. ``Defect'' dynamics in the elongation-contraction motion

    NASA Astrophysics Data System (ADS)

    Azuma, Ryuzo

    2002-10-01

    By means of the Brownian dynamics (BD) method of simulations we have developed, we study the dynamics of individual DNA molecules which are undergoing constant field gel electrophoresis (CFGE), focusing on the relevance of the "defect" concept due to de Gennes in CFGE. The corresponding objects, which we call slack beads (s-beads), are explicitly introduced in our BD model. In equilibrium under a vanishing field, the distance between s-beads and their hopping range is found to be randomly distributed following a Poisson distribution. In strong fields, where a chain undergoes elongation-contraction motion, s-beads are observed to be alternately annihilated in elongation and created in the contraction of the chain. On the other hand, the distribution of hopping ranges of s-beads does not differ much from that in equilibrium. The results indicate that in the elongation-contraction motion of the chain, a large number of random movements of s-beads are involved. We have also confirmed that these features of s-beads agree qualitatively with those of s-monomers in the extended bond fluctuation model (EBFM) which we recently proposed. This agreement strongly supports the stochastic semilocal movement of s-monomers which we a priori introduced into the EBFM.

  6. A high-definition native polyacrylamide gel electrophoresis system for the analysis of membrane complexes.

    PubMed

    Ladig, Roman; Sommer, Maik S; Hahn, Alexander; Leisegang, Matthias S; Papasotiriou, Dimitrios G; Ibrahim, Mohamed; Elkehal, Rajae; Karas, Michael; Zickermann, Volker; Gutensohn, Michael; Brandt, Ulrich; Klösgen, Ralf Bernd; Schleiff, Enrico

    2011-07-01

    Native polyacrylamide gel electrophoresis (PAGE) is an important technique for the analysis of membrane protein complexes. A major breakthrough was the development of blue native (BN-) and high resolution clear native (hrCN-) PAGE techniques. Although these techniques are very powerful, they could not be applied to all systems with the same resolution. We have developed an alternative protocol for the analysis of membrane protein complexes of plant chloroplasts and cyanobacteria, which we termed histidine- and deoxycholate-based native (HDN-) PAGE. We compared the capacity of HDN-, BN- and hrCN-PAGE to resolve the well-studied respiratory chain complexes in mitochondria of bovine heart muscle and Yarrowia lipolytica, as well as thylakoid localized complexes of Medicago sativa, Pisum sativum and Anabaena sp. PCC7120. Moreover, we determined the assembly/composition of the Anabaena sp. PCC7120 thylakoids and envelope membranes by HDN-PAGE. The analysis of isolated chloroplast envelope complexes by HDN-PAGE permitted us to resolve complexes such as the translocon of the outer envelope migrating at approximately 700 kDa or of the inner envelope of about 230 and 400 kDa with high resolution. By immunodecoration and mass spectrometry of these complexes we present new insights into the assembly/composition of these translocation machineries. The HDN-PAGE technique thus provides an important tool for future analyses of membrane complexes such as protein translocons.

  7. Typing of Methicillin Resistant Staphylococcus Aureus Using DNA Fingerprints by Pulsed-field Gel Electrophoresis

    PubMed Central

    Rebic, Velma; Budimir, Ana; Aljicevic, Mufida; Bektas, Sabaheta; Vranic, Sabina Mahmutovic; Rebic, Damir

    2016-01-01

    Background: Methicillin resistant Staphylococcus aureus (MRSA) is responsible for a wide spectrum of nosocomial and community associated infections worldwide. The aim of this study was to analyze MRSA strains from the general population in Canton Sarajevo, B&H. Methods: Our investigation including either phenotypic and genotypic markers such as antimicrobial resistance, pulsed-field gel electrophoresis (PFGE), SCC typing, and Panton-Valentine leukocidin (PVL) detection. Results: Antimicrobial susceptibility: all MRSA isolates were resistant to the β-lactam antibiotics tested, and all isolates were susceptible trimethoprim sulphamethoxazole, rifampicin, fusidic acid, linezolid and vancomycin. Sixty-eight per cent of the MRSA isolates were resistant to erythromycin, 5% to clindamycin, 5% to gentamicin and 4% to ciprofloxacin. After the PFGE analysis, the isolates were grouped into five similarity groups: A-E. The largest number of isolates belonged to one of two groups: C: 60 (60%) and D: 27 (27%). In both groups C and D, SCCmec type IV was predominant (60% and 88, 8%, respectively). A total of 24% of the isolates had positive expression of PVL genes, while 76% showed a statistically significantly greater negative expression of PVL genes. Conclusion: SCCmec type IV, together with the susceptibility profile and PFGE grouping, is considered to be typical of CA-MRSA PMID:27708486

  8. Application of preparative disk gel electrophoresis for antigen purification from inclusion bodies.

    PubMed

    Okegawa, Yuki; Koshino, Masanori; Okushima, Teruya; Motohashi, Ken

    2016-02-01

    Specific antibodies are a reliable tool to examine protein expression patterns and to determine the protein localizations within cells. Generally, recombinant proteins are used as antigens for specific antibody production. However, recombinant proteins from mammals and plants are often overexpressed as insoluble inclusion bodies in Escherichia coli. Solubilization of these inclusion bodies is desirable because soluble antigens are more suitable for injection into animals to be immunized. Furthermore, highly purified proteins are also required for specific antibody production. Plastidic acetyl-CoA carboxylase (ACCase: EC 6.4.1.2) from Arabidopsis thaliana, which catalyzes the formation of malonyl-CoA from acetyl-CoA in chloroplasts, formed inclusion bodies when the recombinant protein was overexpressed in E. coli. To obtain the purified protein to use as an antigen, we applied preparative disk gel electrophoresis for protein purification from inclusion bodies. This method is suitable for antigen preparation from inclusion bodies because the purified protein is recovered as a soluble fraction in electrode running buffer containing 0.1% sodium dodecyl sulfate that can be directly injected into immune animals, and it can be used for large-scale antigen preparation (several tens of milligrams).

  9. Two-dimensional difference gel electrophoresis (DiGE) analysis of plasmas from dengue fever patients.

    PubMed

    Albuquerque, Lidiane M; Trugilho, Monique R O; Chapeaurouge, Alex; Jurgilas, Patrícia B; Bozza, Patrícia T; Bozza, Fernando A; Perales, Jonas; Neves-Ferreira, Ana G C

    2009-12-01

    Dengue fever is the world's most important arthropod-born viral disease affecting humans. To contribute to a better understanding of its pathogenesis, this study aims to identify proteins differentially expressed in plasmas from severe dengue fever patients relative to healthy donors. The use of 2-D Fluorescence Difference Gel Electrophoresis to analyze plasmas depleted of six high-abundance proteins (albumin, IgG, antitrypsin, IgA, transferrin and haptoglobin) allowed for the detection of 73 differentially expressed protein spots (n = 13, p < 0.01), of which 37 could be identified by mass spectrometry. These 37 spots comprised a total of 14 proteins, as follows: 7 had increased expression in plasmas from dengue fever patients (C1 inhibitor, alpha1-antichymotrypsin, vitamin D-binding protein, fibrinogen gamma-chain, alpha1-acid glycoprotein, apolipoprotein J and complement component C3c), while 7 others had decreased expression in the same samples (alpha-2 macroglobulin, prothrombin, histidine-rich glycoprotein, apolipoproteins A-IV and A-I, transthyretin and complement component C3b). The possible involvement of these proteins in the inflammatory process triggered by dengue virus infection and in the repair mechanisms of vascular damage occurring in this pathology is discussed in this study.

  10. Agarose Gel Electrophoresis Reveals Structural Fluidity of a Phage T3 DNA Packaging Intermediate

    PubMed Central

    Serwer, Philip; Wright, Elena T.

    2012-01-01

    We find a new aspect of DNA packaging-associated structural fluidity for phage T3 capsids. The procedure is (1) glutaraldehyde cross-linking of in vivo DNA packaging intermediates for stabilization of structure and then (2) determining of effective radius by two-dimensional agarose gel electrophoresis (2d-AGE). The intermediates are capsids with incompletely packaged DNA (ipDNA) and without an external DNA segment; these intermediates are called ipDNA-capsids. We initially increase production of ipDNA-capsids by raising NaCl concentration during in vivo DNA packaging. By 2d-AGE, we find a new state of contracted shell for some particles of one previously identified ipDNA-capsid. The contracted shell-state is found when ipDNA length/mature DNA length (F) is above 0.17, but not at lower F. Some contracted-shell ipDNA-capsids have the phage tail; others do not. The contracted-shell ipDNA-capsids are explained by premature DNA maturation cleavage that makes accessible a contracted-shell intermediate of a cycle of the T3 DNA packaging motor. The analysis of ipDNA-capsids, rather than intermediates with uncleaved DNA, provides a simplifying strategy for a complete biochemical analysis of in vivo DNA packaging. PMID:22222979

  11. Optimisation of a 2-D gel electrophoresis protocol for the human-pathogenic fungus Aspergillus fumigatus.

    PubMed

    Kniemeyer, Olaf; Lessing, Franziska; Scheibner, Olaf; Hertweck, Christian; Brakhage, Axel A

    2006-03-01

    Aspergillus fumigatus is the most important airborne fungal pathogen causing life-threatening infections in immunosuppressed patients. One of the important questions concerning A. fumigatus is the identification of pathogenicity determinants. To obtain a comprehensive overview about the proteins produced at different physiological conditions that are related to the infectious process a proteomic approach has been applied. Here, 2-D gel electrophoresis for filamentous fungi was optimised concerning removal of interfering compounds, protein extraction and separation methods. A trichloroacetic acid-based precipitation method of proteins with their subsequent solubilisation by the use of a combination of CHAPS with a second sulfobetaine detergent gave the best results. The optimised protocol was evaluated by the analysis of the proteomes of A. fumigatus grown on two different carbon sources, i.e., glucose and ethanol. Carbon catabolite repression has not been studied in detail at the protein level in A. fumigatus yet. In addition, growth on ethanol leads to activation of the glyoxylate cycle which was shown to be essential for pathogenesis in bacteria and fungi. In A. fumigatus, differential patterns of enzymes of the gluconeogenesis, glyoxylate cycle and ethanol degradation pathway during growth on glucose and ethanol were observed.

  12. Polyacrylamide gel disc electrophoresis of alkaline phosphatase isoenzymes in bone and liver disease.

    PubMed Central

    Warnes, T W; Hine, P; Kay, G

    1976-01-01

    Acrylamide gel disc electrophoresis provides a reliable and reasonably rapid method of differentiating the raised serum alkaline phosphatase (AP) of bone origin from that of liver origin. The technique has been placed for the first time on a semiquantitative basis. Measurement of both band width and band position effectively distinguishes the bone from the liver isoenzyme, but band width provides superior discrimination. An origin band was seen in none of the normal subjects and in only 7% of patients with bone disease but was present in 78% of patients with liver disease, a highly significant increase. Fifty percent of normal individuals had a small-intestinal band in serum taken two hours after a meal, as did 35% of patients with liver disease, but the incidence of intestinal bands in bone disease was only 11%, significantly less than in the other two groups. The genetic control of small-intestinal AP in serum has been confirmed, but it has been demonstrated that the decrease of intestinal AP in bone disorders is not genetically determined. Images PMID:977779

  13. Pulsed-field gel electrophoresis and ribotype profiles of clinical and environmental Vibrio vulnificus isolates.

    PubMed Central

    Tamplin, M L; Jackson, J K; Buchrieser, C; Murphree, R L; Portier, K M; Gangar, V; Miller, L G; Kaspar, C W

    1996-01-01

    Vibrio vulnificus belongs to the autochthonous bacterial flora of warm estuarine waters. It can cause life-threatening extraintestinal disease in persons who have underlying illness and who consume raw shellfish or contact wounds with estuarine water. Currently, very little is known about genetic diversity within this species. In this report, we describe high-level variation in restriction fragment length polymorphism profiles among 53 clinical and 78 environmental isolates, as determined by pulsed-field gel electrophoresis. In contrast, ribotype profiles showed greater similarity. When combined ribotype profiles of clinical and environmental isolates were analyzed, four predominant clusters were observed. Interestingly, a low number (16%) of clinical isolates were found in cluster C, compared with clusters A, B, and D (range, 50 to 83%). In addition, 83% of all Hawaiian isolates were located in a single cluster, indicating a possible relationship between geography and genotype. We also report that spontaneous translucent colonial morphotypes were distinct by both restriction fragment length polymorphism and biochemical profiles, compared with opaque parent strains. PMID:8837412

  14. Indirect fluorometric detection techniques on thin layer chromatography and effect of ultrasound on gel electrophoresis

    SciTech Connect

    Yinfa, Ma.

    1990-12-10

    Thin-layer chromatography (TLC) is a broadly applicable separation technique. It offers many advantages over high performance liquid chromatography (HPLC), such as easily adapted for two-dimensional separation, for whole-column'' detection and for handling multiple samples, etc. However, due to its draggy development of detection techniques comparing with HPLC, TLC has not received the attention it deserves. Therefore, exploring new detection techniques is very important to the development of TLC. It is the principal of this dissertation to present a new detection method for TLC -- indirect fluorometric detection method. This detection technique is universal sensitive, nondestructive, and simple. This will be described in detail from Sections 1 through Section 5. Section 1 and 3 describe the indirect fluorometric detection of anions and nonelectrolytes in TLC. In Section 2, a detection method for cations based on fluorescence quenching of ethidium bromide is presented. In Section 4, a simple and interesting TLC experiment is designed, three different fluorescence detection principles are used for the determination of caffeine, saccharin and sodium benzoate in beverages. A laser-based indirect fluorometric detection technique in TLC is developed in Section 5. Section 6 is totally different from Sections 1 through 5. An ultrasonic effect on the separation of DNA fragments in agarose gel electrophoresis is investigated. 262 refs.

  15. Demonstration of structural polymorphism among MB3 light chains by two-dimensional gel electrophoresis.

    PubMed

    Ishikawa, N; Kasahara, M; Ikeda, H; Ogasawara, K; Hawkin, S; Takenouchi, T; Wakisaka, A; Kikuchi, Y; Aizawa, M

    1985-01-01

    The heavy and light chain subunits of MB3 molecules were isolated from KT2 (DKT2, DR4, MB3 homozygous), ER (Dw4, DR4, MB3 homozygous), JMe (Dw5, DR5, MB3 homozygous), EBV-Sh (DSh, DRw6.2, MB3 homozygous), and EBV-Ky (DKy, DRw9, MB3 homozygous) cells and were compared with one another by two-dimensional gel electrophoresis. The MB3 light chains from KT2, ER, and EBV-Ky cells were clearly different in terms of their isoelectric points, whereas those from ER, JMe, and EBV-Sh cells were indistinguishable. No differences in charge or m.w. were noted for the MB3 heavy chains from the five cell lines. Thus, three out of the five MB3-positive, D/DR-disparate cell lines were found to express structurally distinct MB3 molecules, demonstrating that MB3 is a public serologic specificity shared by at least three structurally distinct MB (human I-A-like) molecules. Because the DR light chain subunits isolated from EBV-Wa, KT2, ER, JMe, EBV-Sh, and EBV-Ky cells differed from one another in their isoelectric points, the DR light chains were apparently more polymorphic than the MB3 light chains.

  16. Epidemiological Validation of Pulsed-Field Gel Electrophoresis Patterns for Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Blanc, D. S.; Struelens, M. J.; Deplano, A.; De Ryck, R.; Hauser, P. M.; Petignat, C.; Francioli, P.

    2001-01-01

    To determine the stability of pulsed-field gel electrophoresis (PFGE) patterns of methicillin-resistant Staphylococcus aureus in the nosocomial setting, we analyzed isolates from long-term carriers (>1 month) and from patients involved in well-defined nosocomial epidemics. The number of fragment differences between the first isolate and subsequent isolates in long-term carriers showed a bimodal distribution, with one group having 0 to 6 fragment differences and the other group having 14 to 24 fragment differences. The PFGE patterns of isolates involved in epidemics also presented a similar bimodal distribution of the number of fragment differences. Typing these isolates with another molecular method (inter-IS256 PCR) showed that isolates of the first group (i.e., with 1 to 6 fragment differences) were clonally related, whereas the second group (with 14 to 24 fragment differences) could be considered genetically different. Among long-term carriers with clonally related isolates, 74 of 84 (88%) of consecutive isolates showed indistinguishable patterns, whereas 10 of 84 (12%) showed related patterns differing by one to six fragments. Moreover, the frequency of apparition of related patterns is higher when the time between the first and the subsequent isolate is longer. During seven nosocomial epidemics lasting from 1 to 15 months, only 2 of 120 isolates (1.7%) showed a pattern which was different, although related, from the predominant one involved in each of these outbreaks. PMID:11574553

  17. The limitations of pulsed-field gel electrophoresis for analysis of Yersinia enterocolitica isolates.

    PubMed

    Gilpin, B J; Robson, B; Lin, S; Hudson, J A; Weaver, L; Dufour, M; Strydom, H

    2014-09-01

    This study describes the analysis of 432 isolates of Yersinia enterocolitica by pulsed-field gel electrophoresis (PFGE). PFGE had a high level of discrimination with biotype 1A isolates (Simpson's Diversity Index 0.997), but with the clinically important biotypes 2, 3 and 4, the discriminatory ability of PFGE was so low as to severely limit its usefulness (DI <0.6). For biotypes 2, 3 and 4, 79% or more of isolates of each biotype were of just three different PFGE profiles. Because of this, four known outbreaks of yersiniosis would not have been identified by PFGE analysis. However, a previously unrecognized potential outbreak of yersiniosis caused by biotype 4 isolates was identified on the basis of a rare PFGE genotype with spatial and temporal clustering. We conclude that PFGE has a very limited application to the genotyping of Y. enterocolitica biotypes 2, 3 and 4, and inferences based on finding indistinguishable PFGE profiles among cases or between cases and sources need to be substantiated using alternative typing tools, or strong epidemiological evidence.

  18. Application of pulsed-field gel electrophoresis to identify potential outbreaks of campylobacteriosis in New Zealand.

    PubMed

    Gilpin, Brent; Cornelius, Angela; Robson, Beth; Boxall, Naomi; Ferguson, Alan; Nicol, Carolyn; Henderson, Tom

    2006-02-01

    Since 2002, New Zealand's incidence of campylobacteriosis has exceeded 300 cases per 100,000 people per annum. To evaluate genetic variation in human isolates, 183 Campylobacter isolates were collected from a single clinical laboratory in Christchurch: 77 during an 8-week period in spring, and the rest 3 months later over a second 8-week period in autumn. Isolates were identified to the species level and subtyped using Penner serotyping (Campylobacter jejuni only) and pulsed-field gel electrophoresis (PFGE) using both SmaI and KpnI. Approximately two-thirds of the isolates could be grouped into clusters of between 2 and 26 isolates with indistinguishable SmaI and KpnI patterns. Less than 10% of the isolates were of the same type between the two sampling periods. The epidemiological relevance of the PFGE clusters was supported by temporal clustering, some spatial clustering, and some statistically significant demographic similarities among cases in a cluster. Conversely, patient cases yielding isolates which did not cluster with isolates from other cases were more likely to report recent overseas travel and less likely to live within larger urban centers. To identify whether these clusters actually represent common-source outbreaks, however, would require the detailed, rapid, and reiterative epidemiological investigation of cases within a PFGE cluster. The combined and timely application of subtyping and epidemiological investigation would appear to be a promising strategy for understanding campylobacteriosis in New Zealand.

  19. Characterization of Erwinia amylovora strains from Bulgaria by pulsed-field gel electrophoresis.

    PubMed

    Atanasova, Iliana; Urshev, Zoltan; Hristova, Petya; Bogatzevska, Nevena; Moncheva, Penka

    2012-01-01

    The aim of this study was to characterize genetically Bulgarian Erwinia amylovora strains using pulsed-field gel electrophoresis (PFGE) analysis. Fifty E. amylovora strains isolated from different hosts, locations, as well as in different years were analysed by PFGE after XbaI, SpeI, and XhoI digestion of the genomic DNA. The strains were distributed into four groups according to their XbaI-generated profile. About 82% of the strains displayed a PFGE profile identical to that of type Pt2. Three strains belonged to the Central Europe Pt1 type. Two new PFGE profiles, not reported so far, were established--one for a strain isolated from Malus domestica and another for all Fragaria spp. strains. The same grouping of the strains was obtained after analysis of the SpeI digestion patterns. On the basis of PFGE profiles, after XbaI and SpeI digestion, a genetic differentiation between the strains associated with subfamily Maloideae and subfamily Rosoideae was revealed. The presence of more than one PFGE profile in the population of E. amylovora in Bulgaria suggests a multiple source of inoculum.

  20. Genetic fingerprinting of Brevibacterium linens by pulsed-field gel electrophoresis and ribotyping.

    PubMed

    Lima, P T; Correia, A M

    2000-07-01

    Members of Brevibacterium linens display physiological features that are relevant for cheese production. The genomes of five B. linens strains deposited on culture collections were compared by examining large restriction fragments on pulsed-field gel electrophoresis and detection of polymorphism at the level of 16S rRNA genes. Pulsed-field analysis with the endonucleases DraI and AsnI showed a characteristic restriction profile for each strain and allowed the calculation of genome sizes ranging between 3.2 and 3.9 Mbp. No linear genomic elements were detected. Polymorphisms at the level of 16S rRNA genes were revealed by hybridization with an oligonucleotide probe complementary to a universal domain of the 16S genes. An EcoRI fragment of 1.4 kb was identified as common to all strains under study. According to the number of positive bands detected by the probe, at least four rRNA operons must be present on the genome of the B. linens strains here studied.

  1. Effects of Reusing Gel Electrophoresis and Electrotransfer Buffers on Western Blotting

    PubMed Central

    Omotola, Oluwabukola B.; Heda, Rajiv P.; Avery, Jamie

    2016-01-01

    SDS-PAGE and Western blotting are 2 of the most commonly used biochemical methods for protein analysis. Proteins are electrophoretically separated based on their MWs by SDS-PAGE and then electrotransferred to a solid membrane surface for subsequent protein-specific analysis by immunoblotting, a procedure commonly known as Western blotting. Both of these procedures use a salt-based buffer, with the latter procedure consisting of methanol as an additive known for its toxicity. Previous reports present a contradictory view in favor or against reusing electrotransfer buffer, also known as Towbin’s transfer buffer (TTB), with an aim to reduce the toxic waste. In this report, we present a detailed analysis of not only reusing TTB but also gel electrophoresis buffer (EB) on proteins of low to high MW range. Our results suggest that EB can be reused for at least 5 times without compromising the electrophoretic separation of mixture of proteins in an MW standard, BSA, and crude cell lysates. Additionally, reuse of EB did not affect the quality of subsequent Western blots. Successive reuse of TTB, on the other hand, diminished the signal of proteins of different MWs in a protein standard and a high MW membrane protein cystic fibrosis transmembrane-conductance regulator (CFTR) in Western blotting. PMID:27582639

  2. Gel electrophoresis using a selective radical for the separation of single-walled carbon nanotubes.

    PubMed

    Mesgari, Sara; Sundramoorthy, Ashok Kumar; Loo, Leslie S; Chan-Park, Mary B

    2014-01-01

    We have applied agarose gel electrophoresis (AGE) to single-walled carbon nanotubes (SWNTs) that have been pre-reacted with metallic-selective ionic radicals and then re-suspended with sodium cholate (SC) surfactant to obtain highly purified (up to 98%) semiconducting single-walled carbon nanotubes (s-SWNTs). The proposed combination method exploits the preferential reactivity with the metallic nanotube of the radicals generated from an azo naphthalene compound (Direct Blue 71(I)) to preferentially increase the surface charge, and therefore the electrophoretic mobilities, of the metallic nanotube population under the influence of the electric field in AGE. The excellent separation achieved was verified by UV-vis-NIR and Raman spectroscopy as well as by the performance of field effect transistors fabricated with semiconducting-enriched SWNTs. FETs fabricated with -assisted AGE-separated semiconducting nanotubes exhibited mobilities of ∼3.6 to 11.7 cm(2) V(-1) s(-1) and on/off ratios from 10(2) to 10(6).

  3. On the effects of intercalators in DNA condensation: a force spectroscopy and gel electrophoresis study.

    PubMed

    Rocha, M S; Cavalcante, A G; Silva, R; Ramos, E B

    2014-05-08

    In this work we have characterized the effects of the intercalator ethidium bromide (EtBr) on the DNA condensation process by using force spectroscopy and gel electrophoresis. We have tested two condensing agents: spermine (spm(4+)), a tetravalent cationic amine which promotes cation-induced DNA condensation, and poly(ethylene glycol) (PEG), a neutral polymer which promotes DNA ψ-condensation. Two different types of experiments were performed. In the first type, bare DNA molecules disperse in solution are first treated with EtBr for intercalation, and then the condensing agent is added to the sample with the purpose of verifying the effects of the intercalator in hindering DNA condensation. In the second experiment type, the bare DNA molecules are first condensed, and then the intercalator is added to the sample in order to verify its influence on the previously condensed DNA. The results obtained with the two different experimental techniques used agree very well, indicating that previously intercalated EtBr can hinder both cation-induced and ψ-condensation, being more efficient in the first case. On the other hand, EtBr has little effect on the previously formed cation-induced condensates, but is efficient in unfolding the ψ-condensates.

  4. Prokaryotic community composition revealed by denaturing gradient gel electrophoresis in the East Sea

    NASA Astrophysics Data System (ADS)

    Jang, Gwang Il; Choi, Dong Han

    2015-12-01

    To understand the temporal and spatial variation of the prokaryotic community in the East Sea, their composition was determined by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE)-sequencing techniques. The investigations were conducted twice annually in 2007 and 2009 in coastal and offshore stations. Prokaryotic abundance (PA), leucine incorporation rate, and other environmental parameters were also measured. By using the DGGE approach, we obtained 283 bacterial sequences and 160 archaeal sequences. The most frequently detected bacterial phylotypes during the investigations belonged to Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. However, their relative compositions differed in time and space. Although Alphaproteobacteria and Bacteroidetes were the dominant groups in the surface water in May 2007 and in May and October 2007, Gammaproteobacteria was dominant in mesopelagic samples. However, Gammaproteobacteria was overwhelmingly dominant in most samples in August 2009. Although Deltaproteobacteria was rarely found as a dominant bacterial group, it occupied the highest fraction in a mesopelagic sample in October 2007. Epsilonproteobacteria also showed a similar trend, although its maximal dominance was found in a mesopelagic sample in August 2009. The archaeal community was dominated overwhelmingly by members of the Euryarchaeota in most of the investigations. However, Nitrosopumilales was dominant in aphotic samples in August 2009. Further, their spatiotemporal composition at the family level changed more dynamically in the East Sea. These temporal and spatial distributions of the prokaryotic community were influenced mainly by seawater temperature and depth in the East Sea.

  5. CN-GELFrEE - Clear Native Gel-eluted Liquid Fraction Entrapment Electrophoresis.

    PubMed

    Melani, Rafael D; Seckler, Henrique S; Skinner, Owen S; Do Vale, Luis H F; Catherman, Adam D; Havugimana, Pierre C; Valle de Sousa, Marcelo; Domont, Gilberto B; Kelleher, Neil L; Compton, Philip D

    2016-02-29

    Protein complexes perform an array of crucial cellular functions. Elucidating their non-covalent interactions and dynamics is paramount for understanding the role of complexes in biological systems. While the direct characterization of biomolecular assemblies has become increasingly important in recent years, native fractionation techniques that are compatible with downstream analysis techniques, including mass spectrometry, are necessary to further expand these studies. Nevertheless, the field lacks a high-throughput, wide-range, high-recovery separation method for native protein assemblies. Here, we present clear native gel-eluted liquid fraction entrapment electrophoresis (CN-GELFrEE), which is a novel separation modality for non-covalent protein assemblies. CN-GELFrEE separation performance was demonstrated by fractionating complexes extracted from mouse heart. Fractions were collected over 2 hr and displayed discrete bands ranging from ~30 to 500 kDa. A consistent pattern of increasing molecular weight bandwidths was observed, each ranging ~100 kDa. Further, subsequent reanalysis of native fractions via SDS-PAGE showed molecular-weight shifts consistent with the denaturation of protein complexes. Therefore, CN-GELFrEE was proved to offer the ability to perform high-resolution and high-recovery native separations on protein complexes from a large molecular weight range, providing fractions that are compatible with downstream protein analyses.

  6. Agarose gel electrophoresis reveals structural fluidity of a phage T3 DNA packaging intermediate.

    PubMed

    Serwer, Philip; Wright, Elena T

    2012-01-01

    We find a new aspect of DNA packaging-associated structural fluidity for phage T3 capsids. The procedure is (i) glutaraldehyde cross-linking of in vivo DNA packaging intermediates for the stabilization of structure and then (ii) determining effective radius by two-dimensional agarose gel electrophoresis (2D-AGE). The intermediates are capsids with incompletely packaged DNA (ipDNA) and without an external DNA segment; these intermediates are called ipDNA-capsids. We initially increase the production of ipDNA-capsids by raising NaCl concentration during in vivo DNA packaging. By 2D-AGE, we find a new state of contracted shell for some particles of one previously identified ipDNA-capsid. The contracted shell-state is found when the ipDNA length/mature DNA length (F) is above 0.17, but not at lower F. Some contracted-shell ipDNA-capsids have the phage tail; others do not. The contracted-shell ipDNA-capsids are explained by premature DNA maturation cleavage that makes accessible a contracted-shell intermediate of a cycle of the T3 DNA packaging motor. The analysis of ipDNA-capsids, rather than intermediates with uncleaved DNA, provides a simplifying strategy for a complete biochemical analysis of in vivo DNA packaging.

  7. Model creation of moving redox reaction boundary in agarose gel electrophoresis by traditional potassium permanganate method.

    PubMed

    Xie, Hai-Yang; Liu, Qian; Li, Jia-Hao; Fan, Liu-Yin; Cao, Cheng-Xi

    2013-02-21

    A novel moving redox reaction boundary (MRRB) model was developed for studying electrophoretic behaviors of analytes involving redox reaction on the principle of moving reaction boundary (MRB). Traditional potassium permanganate method was used to create the boundary model in agarose gel electrophoresis because of the rapid reaction rate associated with MnO(4)(-) ions and Fe(2+) ions. MRB velocity equation was proposed to describe the general functional relationship between velocity of moving redox reaction boundary (V(MRRB)) and concentration of reactant, and can be extrapolated to similar MRB techniques. Parameters affecting the redox reaction boundary were investigated in detail. Under the selected conditions, good linear relationship between boundary movement distance and time were obtained. The potential application of MRRB in electromigration redox reaction titration was performed in two different concentration levels. The precision of the V(MRRB) was studied and the relative standard deviations were below 8.1%, illustrating the good repeatability achieved in this experiment. The proposed MRRB model enriches the MRB theory and also provides a feasible realization of manual control of redox reaction process in electrophoretic analysis.

  8. High resolution melt analysis (HRMA); a viable alternative to agarose gel electrophoresis for mouse genotyping.

    PubMed

    Thomsen, Nicole; Ali, Radiya G; Ahmed, Jehangir N; Arkell, Ruth M

    2012-01-01

    Most mouse genetics laboratories maintain mouse strains that require genotyping in order to identify the genetically modified animals. The plethora of mutagenesis strategies and publicly available mouse alleles means that any one laboratory may maintain alleles with random or targeted insertions of orthologous or unrelated sequences as well as random or targeted deletions and point mutants. Many experiments require that different strains be cross bred conferring the need to genotype progeny at more than one locus. In contrast to the range of new technologies for mouse mutagenesis, genotyping methods have remained relatively static with alleles typically discriminated by agarose gel electrophoresis of PCR products. This requires a large amount of researcher time. Additionally it is susceptible to contamination of future genotyping experiments because it requires that tubes containing PCR products be opened for analysis. Progress has been made with the genotyping of mouse point mutants because a range of new high-throughput techniques have been developed for the detection of Single Nucleotide Polymorphisms. Some of these techniques are suitable for genotyping point mutants but do not detect insertion or deletion alleles. Ideally, mouse genetics laboratories would use a single, high-throughput platform that enables closed-tube analysis to genotype the entire range of possible insertion and deletion alleles and point mutants. Here we show that High Resolution Melt Analysis meets these criteria, it is suitable for closed-tube genotyping of all allele types and current genotyping assays can be converted to this technology with little or no effort.

  9. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Chevreux, Sylviane; Solari, Pier Lorenzo; Roudeau, Stéphane; Deves, Guillaume; Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis; Ortega, Richard

    2009-11-01

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  10. First clinical isolates of Cronobacter spp. (Enterobacter sakazakii) in Argentina: characterization and subtyping by pulsed-field gel electrophoresis.

    PubMed

    Asato, Valeria C; Vilches, Viviana E; Pineda, María G; Casanueva, Enrique; Cane, Alejandro; Moroni, Mirian P; Brengi, Silvina P; Pichel, Mariana G

    2013-01-01

    Cronobacter species are opportunistic pathogens associated with severe infections in neonates and immunocompromised infants. From January 2009 through September 2010, two cases of neonatal infections associated with Cronobacter malonaticus and one case associated with Cronobacter sakazakii, two of them fatal, were reported in the same hospital. These are the first clinical isolates of Cronobacter spp. in Argentina. The objective of this work was to characterize and subtype clinical isolates of Cronobacter spp. in neonate patients, as well as to establish the genetic relationship between these isolates and the foodborne isolates previously identified in the country. Pulsed-field gel electrophoresis analysis showed a genetic relationship between the C. malonaticus isolates from two patients. Different results were found when the pulsed-field gel electrophoresis patterns of clinical isolates were compared with those deposited in the National Database of Cronobacter spp.

  11. Thermal denaturation of double-stranded nucleic acids: prediction of temperatures critical for gradient gel electrophoresis and polymerase chain reaction.

    PubMed Central

    Steger, G

    1994-01-01

    A program is described which calculates the thermal stability and the denaturation behaviour of double-stranded DNAs and RNAs up to a length of 1000 base pairs. The algorithm is based on recursive generation of conditional and a priori probabilities for base stacking. Output of the program may be compared directly to experimental results; thus the program may be used to optimize the nucleic acid fragments, the primers and the experimental conditions prior to experiments like polymerase chain reactions, temperature-gradient gel electrophoresis, denaturing-gradient gel electrophoresis and hybridizations. The program is available in three versions; the first version runs interactively on VAXstations producing graphics output directly, the second is implemented as part of the HUSAR package at GENIUSnet, the third runs on any computer producing text output which serves as input to available graphics programs. Images PMID:8052531

  12. Analysis of Telomere-Homologous DNA with Different Conformations Using 2D Agarose Electrophoresis and In-Gel Hybridization.

    PubMed

    Zhang, Zepeng; Hu, Qian; Zhao, Yong

    2017-01-01

    In mammalian cells, in addition to double-stranded telomeric DNA at chromosome ends, extra telomere-homologous DNA is present that adopts different conformations, including single-stranded G- or C-rich DNA, extrachromosomal circular DNA (T-circle), and telomeric complex (T-complex) with an unidentified structure. The formation of such telomere-homologous DNA is closely related to telomeric DNA metabolism and chromosome end protection by telomeres. Conventional agarose gel electrophoresis is unable to separate DNA based on conformation. Here, we introduce the method of two-dimensional (2D) agarose electrophoresis in combination with in-gel native/denatured hybridization to determine different conformations formed by telomere-homologous DNA.

  13. Multicolour hybrid nanoprobes of molecular beacon conjugated quantum dots: FRET and gel electrophoresis assisted target DNA detection

    NASA Astrophysics Data System (ADS)

    Kim, Joong Hyun; Chaudhary, Sumit; Ozkan, Mihrimah

    2007-05-01

    We have developed multicolour hybrid DNA probes employing green, yellow and orange colour quantum dot conjugated molecular beacons with black hole quencher 2. Optical and electrophoretic characterization revealed fluorescent energy transfer that follows the FRET mechanism with single nucleotide discrimination. Target DNA identification was observed to be highly sensitive up to 8 ng in gel electrophoresis. Comparison with the conventional organic dye SYBR Gold™ showed that our hybrid nanoprobes exhibit more stable performance with less background signal.

  14. Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes.

    PubMed

    Greenough, Lucia; Schermerhorn, Kelly M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Slatko, Barton E; Gardner, Andrew F

    2016-01-29

    Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3'-5' exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner.

  15. Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes

    PubMed Central

    Greenough, Lucia; Schermerhorn, Kelly M.; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Slatko, Barton E.; Gardner, Andrew F.

    2016-01-01

    Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3′-5′ exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner. PMID:26365239

  16. Electrophoresis '88

    SciTech Connect

    Schafer-Nielsen, C.

    1988-01-01

    This book contains the proceedings of the Sixth Meeting of the International Electrophoresis Society, held in July 1988 in Copenhagen. Papers are grouped into seven sections: Theoretical Developments, Isoelectric Focusing, Free-Flow Electrophoresis, Gel and Staining Techniques, Automated Densitometry, and Electrotransfer/Electrophoresis of DNA. The references date from the 1960s to the present. An author index is included.

  17. GELBANK : A database of annotated two-dimensional gel electrophoresis patterns of biological systems with completed genomes.

    SciTech Connect

    Babnigg, G.; Giometti, C. S.; Biosciences Division

    2004-01-01

    GELBANK is a publicly available database of two-dimensional gel electrophoresis (2DE) gel patterns of proteomes from organisms with known genome information (available at and ftp://bioinformatics.anl.gov/gelbank/). Currently it includes 131 completed, mostly microbial proteomes available from the National Center for Biotechnology Information. A web interface allows the upload of 2D gel patterns and their annotation for registered users. The images are organized by species, tissue type, separation method, sample type and staining method. The database can be queried based on protein or 2DE-pattern attributes. A web interface allows registered users to assign molecular weight and pH gradient profiles to their own 2D gel patterns as well as to link protein identifications to a given spot on the pattern. The website presents all of the submitted 2D gel patterns where the end-user can dynamically display the images or parts of images along with molecular weight, pH profile information and linked protein identification. A collection of images can be selected for the creation of animations from which the user can select sub-regions of interest and unlimited 2D gel patterns for visualization. The website currently presents 233 identifications for 81 gel patterns for Homo sapiens, Methanococcus jannaschii, Pyro coccus furiosus, Shewanella oneidensis, Escherichia coli and Deinococcus radiodurans.

  18. Monthly variations in ovine seminal plasma proteins analyzed by two-dimensional polyacrylamide gel electrophoresis.

    PubMed

    Cardozo, J A; Fernández-Juan, M; Forcada, F; Abecia, A; Muiño-Blanco, T; Cebrián-Pérez, J A

    2006-09-01

    This study was conducted to evaluate monthly changes in the ram seminal plasma protein profile using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) with a polyacrylamide linear gradient gel. Likewise, comparative analyses of the protein composition of ovine seminal plasma (SP) from ejaculates obtained along the year, and its relationship with sperm motility, viability and concentration of ejaculate were carried out. Western-blot analysis was performed to specifically detect P14, a ram SP protein postulated to be involved in sperm capacitation and gamete interaction [Barrios B, Fernández-Juan M, Muiño-Blanco T, Cebrián-Pérez JA. Immunocytochemical localization and biochemical characterization of two seminal plasma proteins which protect ram spermatozoa against cold-shock. J Androl 2005;26:539-49], and its variations along the year have also been established. The experiment was carried out from May 2003 to April 2004, with nine Rasa Aragonesa rams. Ejaculates obtained every 2 days were pooled and used for each assay, to avoid individual differences, and three two-dimensional SDS-PAGE gels were run for each month. The high resolution of the gradient gel allowed the image analysis software to detect around 252 protein spots, with pIs ranging from 4.2 to 7.6, and molecular weight (M(r)) from 12.5 to 83.9 kDa. Four protein spots (1, 2, 3 and 4) of low M(r) (15.1, 15.7, 15.9 and 21.0 kDa) and acidic pI (5.9, 5.3, 5.7 and 6.6), respectively, had the highest relative intensity in the SP map (11.2, 9.3, 4.7 and 7.7%, respectively). Spot 3 was more abundant (P<0.05) from May to December, and negatively correlated (P<0.05, r=-0.34) with sperm viability and concentration (P<0.05, r=0.36). Another 12 protein spots also had significant quantitative differences (P<0.05) along the year, and 17 protein spots, which correlated with some seminal quality parameter, did not show quantitative monthly changes. Western-blot analysis indicated that spots 1 and 2 reacted

  19. Application of temperature gradient gel electrophoresis to the characterization of a nitrifying bioaugmentation product.

    PubMed

    Fouratt, Melissa A; Rhodes, Jeremy S; Smithers, Charles M; Love, Nancy G; Stevens, Ann M

    2003-03-01

    The microbial population of a nitrifying bioaugmentation product (NBP) has been examined using a combination of conventional bacteriological methods and modern molecular techniques. Variable region 3 (V3) of the 16S rRNA genes of the bacteria in NBP was amplified via the polymerase chain reaction (PCR) with universal eubacterial primers and analyzed via temperature gradient gel electrophoresis (TGGE). Two of the predominant PCR products in NBP were purified from the TGGE gel matrix, reamplified via PCR and sequenced. Two nitrifying strains (NS500-9 and MPN2) that had been isolated from the NBP mixed consortium and grown in pure culture were found, via TGGE, to have identical 16S rRNA sequences to the PCR products under investigation. Nearly the full-length 16S rRNA genes from these two organisms were PCR-amplified, cloned, and sequenced in order to provide a basis for more accurate phylogenetic analysis. The two dominant organisms in the NBP, NS500-9 and MPN2, were thereby found to be most closely related to Nitrosomonas and Nitrobacter species, respectively, in the database. Samples from a laboratory-scale bioreactor, bioaugmented with NBP, were used in an attempt to correlate an increase in activity with a detectable shift in the population of NS500-9 and MPN2 via TGGE. No detectable shift in population was observed in these samples even though the system exhibited increased levels of nitrification. Therefore, the sensitivity of the TGGE system was also examined by determining the limits of detection when NBP was present in activated sludge. In biomass spiking experiments as well as in genomic DNA spiking experiments, it was found that NBP must be present at a level of at least 5% of the total population in order to be detected, whereas bioaugmentation at 1% of the total population was enough to yield significant improvements in nitrification efficiency. This study demonstrates how community profiling of an undefined microbial population via TGGE can be used to

  20. Regulation of the Escherichia coli L-arabinose operon studied by gel electrophoresis DNA binding assay.

    PubMed

    Hendrickson, W; Schleif, R F

    1984-09-25

    DNA binding properties of the proteins required for induction of the Escherichia coli L-arabinose operon were measured using a polyacrylamide gel electrophoresis assay. The mechanisms of induction and repression were studied by observing the multiple interactions of RNA polymerase, cyclic AMP receptor protein and araC protein with short DNA fragments containing either the araC or araBAD promoter regions. These studies show that binding of araC protein to the operator site, araO1, directly blocks RNA polymerase binding at the araC promoter, pC. We find that cyclic AMP receptor protein and araC protein do not bind co-operatively at their respective sites to linear DNA fragments containing the pBAD promoter. Nevertheless, both these positive effectors must be present on the DNA to stimulate binding of RNA polymerase. Additionally, binding of the proteins to the DNA is not sufficient; araC protein must also be in the inducing state, for RNA polymerase to bind. Equilibrium binding constraints and kinetics were determined for araC protein binding to the araI and the araO1 sites. In the presence of inducer, L-arabinose, araC protein binds with equal affinity to DNA fragments containing either of these sites. In the presence of anti-inducer, D-fucose, the affinity for both sites is reduced 40-fold. The apparent equilibrium binding constants for both states of the protein vary in parallel with the buffer salt concentration. This result suggests that the inducing and repressing forms of araC protein displace a similar number of cations upon binding DNA.

  1. Highly Sensitive Detection of S-Nitrosylated Proteins by Capillary Gel Electrophoresis with Laser Induced Fluorescence

    PubMed Central

    Wang, Siyang; Circu, Magdalena L.; Zhou, Hu; Figeys, Daniel; Aw, Tak Y.; Feng, June

    2011-01-01

    S-nitrosylated proteins are biomarkers of oxidative damage in aging and Alzheimer’s disease (AD). Here, we report a new method for detecting and quantifying nitrosylated proteins by capillary gel electrophoresis with laser induced fluorescence detection (CGE-LIF). Dylight 488 maleimide was used to specifically label thiol group (SH) after switching the S-nitrosothiol(S-NO) to SH in cysteine using the “fluorescence switch” assay. In vitro nitrosylation model-BSA subjected to S-nitrosoglutathione(GSNO) optimized the labeling reactions and characterized the response of the LIF detector. The method proves to be highly sensitive, detecting 1.3 picomolar (pM)concentration of nitrosothiols in nanograms of proteins, which is the lowest limit of detection of nitrosothiols reported to date. We further demonstrated the direct application of this method in monitoring protein nitrosylation damage in MQ mediated human colon adenocarcinoma cells. The nitrosothiol amounts in MQ treated and untreated cells are 14.8±0.2 and 10.4±0.5 pmol/mg of proteins, respectively. We also depicted nitrosylated protein electrophoretic profiles of brain cerebrum of 5-month-old AD transgenic (Tg) mice model. In Tg mice brain, 15.5±0.4 pmol of nitrosothiols/mg of proteins was quantified while wild type contained 11.7±0.3 pmol/mg proteins. The methodology is validated to quantify low levels of S-nitrosylated protein in complex protein mixtures from both physiological and pathological conditions. PMID:21820121

  2. Diversity of Proteolytic Clostridium botulinum Strains, Determined by a Pulsed-Field Gel Electrophoresis Approach

    PubMed Central

    Nevas, Mari; Lindström, Miia; Hielm, Sebastian; Björkroth, K. Johanna; Peck, Michael W.; Korkeala, Hannu

    2005-01-01

    Pulsed-field gel electrophoresis (PFGE) was applied to the study of the similarity of 55 strains of proteolytic Clostridium botulinum (C. botulinum group I) types A, AB, B, and F. Rare-cutting restriction enzymes ApaI, AscI, MluI, NruI, PmeI, RsrII, SacII, SmaI, and XhoI were tested for their suitability for the cleavage of DNA of five proteolytic C. botulinum strains. Of these enzymes, SacII, followed by SmaI and XhoI, produced the most convenient number of fragments for genetic typing and were selected for analysis of the 55 strains. The proteolytic C. botulinum species was found to be heterogeneous. In the majority of cases, PFGE enabled discrimination between individual strains of proteolytic C. botulinum types A and B. The different toxin types were discriminated at an 86% similarity level with both SacII and SmaI and at an 83% similarity level with XhoI. Despite the high heterogeneity, three clusters at a 95% similarity level consisting of more than three strains of different origin were noted. The strains of types A and B showed higher diversity than the type F organisms which formed a single cluster. According to this survey, PFGE is to be considered a useful tool for molecular epidemiological analysis of proteolytic C. botulinum types A and B. However, epidemiological conclusions based on PFGE data only should be made with discretion, since highly similar PFGE patterns were noticed, especially within the type B strains. PMID:15746333

  3. Diversity of proteolytic Clostridium botulinum strains, determined by a pulsed-field gel electrophoresis approach.

    PubMed

    Nevas, Mari; Lindström, Miia; Hielm, Sebastian; Björkroth, K Johanna; Peck, Michael W; Korkeala, Hannu

    2005-03-01

    Pulsed-field gel electrophoresis (PFGE) was applied to the study of the similarity of 55 strains of proteolytic Clostridium botulinum (C. botulinum group I) types A, AB, B, and F. Rare-cutting restriction enzymes ApaI, AscI, MluI, NruI, PmeI, RsrII, SacII, SmaI, and XhoI were tested for their suitability for the cleavage of DNA of five proteolytic C. botulinum strains. Of these enzymes, SacII, followed by SmaI and XhoI, produced the most convenient number of fragments for genetic typing and were selected for analysis of the 55 strains. The proteolytic C. botulinum species was found to be heterogeneous. In the majority of cases, PFGE enabled discrimination between individual strains of proteolytic C. botulinum types A and B. The different toxin types were discriminated at an 86% similarity level with both SacII and SmaI and at an 83% similarity level with XhoI. Despite the high heterogeneity, three clusters at a 95% similarity level consisting of more than three strains of different origin were noted. The strains of types A and B showed higher diversity than the type F organisms which formed a single cluster. According to this survey, PFGE is to be considered a useful tool for molecular epidemiological analysis of proteolytic C. botulinum types A and B. However, epidemiological conclusions based on PFGE data only should be made with discretion, since highly similar PFGE patterns were noticed, especially within the type B strains.

  4. Characterization of Mannheimia haemolytica in beef calves via nasopharyngeal culture and pulsed-field gel electrophoresis.

    PubMed

    Capik, Sarah F; White, Brad J; Lubbers, Brian V; Apley, Michael D; Mosier, Derek A; Larson, Robert L; Murray, Robert W

    2015-09-01

    Mannheimia haemolytica is a major bacterial component of bovine respiratory disease (BRD); unfortunately, very little is known about M. haemolytica transmission dynamics among cattle. Identifying potential variation in M. haemolytica populations over time and induction of nasopharyngeal colonization and subsequent shedding are 2 areas where knowledge is lacking. In our study, 2 separate loads of 20 mixed-origin, male calves were purchased through an order buyer on different dates. Deep nasopharyngeal cultures (NPC) were performed on all calves on arrival and, if M. haemolytica-negative, a second screening culture was obtained. Calves that were negative on 2 initial NPCs (NEG; n = 4) were subsequently challenged with a previously isolated field strain of M. haemolytica in both the upper and lower respiratory tract, individually housed, and then monitored for M. haemolytica shedding via NPCs at 0.5, 1, 3, 5, 7, and 9 days postchallenge. Naturally M. haemolytica-positive calves (2 per load) were kept for additional daily cultures (POS; n = 4). Individual calf M. haemolytica status for both the POS and NEG groups was inconsistent between study days. Additionally, pulsed-field gel electrophoresis performed on isolates from the positive cultures showed that the NEG calves did not shed the M. haemolytica challenge strain, but rather 2 distinct clusters of M. haemolytica were shared among POS and NEG calves regardless of their initial status. Although sample sizes were small, these findings illustrate how variable the results of a single nasopharyngeal swab can be and the challenges of using an individual culture to truly represent animal M. haemolytica status.

  5. A PCR-denaturing gradient gel electrophoresis approach to assess Fusarium diversity in asparagus.

    PubMed

    Yergeau, E; Filion, M; Vujanovic, V; St-Arnaud, M

    2005-02-01

    In North America, asparagus (Asparagus officinalis) production suffers from a crown and root rot disease mainly caused by Fusarium oxysporum f. sp. asparagi and F. proliferatum. Many other Fusarium species are also found in asparagus fields, whereas accurate detection and identification of these organisms, especially when processing numerous samples, is usually difficult and time consuming. In this study, a PCR-denaturing gradient gel electrophoresis (DGGE) method was developed to assess Fusarium species diversity in asparagus plant samples. Fusarium-specific PCR primers targeting a partial region of the translation elongation factor-1 alpha (EF-1 alpha) gene were designed, and their specificity was tested against genomic DNA extracted from a large collection of closely and distantly related organisms isolated from multiple environments. Amplicons of 450 bp were obtained from all Fusarium isolates, while no PCR product was obtained from non-Fusarium organisms. The ability of DGGE to discriminate between Fusarium taxa was tested over 19 different Fusarium species represented by 39 isolates, including most species previously reported from asparagus fields worldwide. The technique was effective to visually discriminate between the majority of Fusarium species and/or isolates tested in pure culture, while a further sequencing step permitted to distinguish between the few species showing similar migration patterns. Total genomic DNA was extracted from field-grown asparagus plants naturally infested with different Fusarium species, submitted to PCR amplification, DGGE analysis and sequencing. The two to four bands observed for each plant sample were all affiliated with F. oxysporum, F. proliferatum or F. solani, clearly supporting the reliability, sensitivity and specificity of this approach for the study of Fusarium diversity from asparagus plants samples.

  6. Subpopulations of liver coated vesicles resolved by preparative agarose gel electrophoresis

    SciTech Connect

    Kedersha, N.L.; Hill, D.F.; Kronquist, K.E.; Rome, L.H.

    1986-01-01

    Rat liver clathrin coated vesicles (CVs) were separated into several distinct subpopulations using non-sieving concentrations of agarose, which allowed the separation of species differing primarily in surface charge. Using preparative agarose electrophoresis, the CVs were recovered and analyzed for differences in morphology, coat protein composition, and stripped vesicle protein composition. Coat proteins from difference populations appeared identical on SDS PAGE, and triskelions stripped from the different populations showed the same mobility on the agarose gel, suggesting that the mobility differences observed in intact CVs were due to differences in the surface charge of underlying vesicles rather than to variations in their clathrin coats. Stripped CVs exhibited considerable heterogeneity when analyzed by Western blotting: the fast-migrating population was enriched in the mannose 6-phosphate receptor, secretory acetyl-choline esterase, and an M/sub r/ 195,000 glycoprotein. The slow-migrating population of CVs was enriched in the asialoglycoprotein receptor, and it appeared to contain all detectable concanavalin A-binding polypeptides as well as the bulk of detectable WGA-binding proteins. When CVs were prepared from /sup 125/I-asialoorosomucoid-perfused rat liver, ligand was found in the slow-migrating CVs, suggesting that these were endocytic in origin. Morphological differences were also observed: the fast-migrating population was enriched in smaller CVs, whereas the slow-migrating population exhibited an enrichment in larger CVs. As liver consists largely of hepatocytes, these subpopulations appear to originate from the same cell type and probably represent CVs of different intracellular origin and destination.

  7. Molecular epidemiology of Escherichia coli O157:H7 by pulsed-field gel electrophoresis and comparison with that by bacteriophage typing.

    PubMed Central

    Krause, U; Thomson-Carter, F M; Pennington, T H

    1996-01-01

    One hundred twenty-four Escherichia coli O157:H7 isolates were characterized by pulse-field gel electrophoresis, bacteriophage typing, and PCR of verotoxin genes. Diversity indices obtained--0.786 for phage types and 0.987 for pulsed-field gel electrophoresis types--demonstrated that phage typing falls below the critical value (0.9) required for confident interpretation of results. PMID:8815116

  8. Characterization of lactosylated proteins of infant formula powders using two-dimensional gel electrophoresis and nanoelectrospray mass spectrometry.

    PubMed

    Marvin, Laure F; Parisod, Véronique; Fay, Laurent B; Guy, Philippe A

    2002-08-01

    Infant formula powders were analyzed by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) to assess the whey proteins quality, which may be altered by the heat treatment used during the processing conditions. Lactosylation was found to be the major chemical modification occurring in whey proteins. In parallel, a two-dimensional (2-D) gel electrophoresis was performed on the milk sample and the entire protein patterns were analyzed by nano-ESI-MS after cutting the different gel spots and in-gel trypsin digestion. A highly selective and specific tandem MS technique has been developed to characterize and localize up to ten lactosylation sites in beta-lactoglobulin (beta-Lg) and alpha(S2)-casein. alpha-Lactalbumin (alpha-La), with five lactosylated peptides, was found to be an interesting protein marker in the milk powder sample to detect chemical modification induced by the processing/storage conditions.

  9. Carbon nanotubes-assisted polyacrylamide gel electrophoresis for enhanced separation of human serum proteins and application in liverish diagnosis.

    PubMed

    Jiang, Fubin; Wang, Yanan; Hu, Xinfang; Shao, Na; Na, Na; Delanghe, Joris R; Ouyang, Jin

    2010-11-01

    The application of pore-gradient polyacrylamide gel electrophoresis (PG-PAGE) incorporated with carbon nanotube modified by Triton X-100 and carboxylation so as to improve the separation of human serum proteins is reported. The novel PG-PAGE was made by adding water-soluble single-walled carbon nanotubes (CNTs) when preparing the polyacrylamide gel. Significant improvements in separation of complement C3 protein and haptoglobin (Hp) in human serum were achieved. It was estimated that the interactions between the hydrophilic groups on the proteins and the surface of the CNTs result in different adsorption kinetics of complement C3 and Hp subtype on the nanoparticles incorporated in the gel, thus enhancing the separation of the two proteins in serum. This new CNT matrix-assisted PG-PAGE method for enhanced separation of complement C3 and Hp in human serum was successfully applied to distinguish the samples from liverish patients and healthy people.

  10. Carbon nanotube-modified sodium dodecyl sulfate-polyacrylamide gel electrophoresis for molecular weight determination of proteins.

    PubMed

    Parthasarathy, Meera; Debgupta, Joyashish; Kakade, Bhalchandra; Ansary, Abu A; Islam Khan, M; Pillai, Vijayamohanan K

    2011-02-15

    The effect of incorporating carbon nanotubes (CNTs) in the gel matrix on the electrophoretic mobility of proteins based on their molecular weight differences was investigated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). More specifically, a reduction in standard deviation in the molecular weight calibration plots by 55% in the case of multiwalled carbon nanotubes (MWCNTs) and by 34% in the case of single-walled carbon nanotubes (SWCNTs) compared with that of pristine polyacrylamide gels was achieved after incorporating an insignificant amount of functionalized CNTs into the gel matrix. A mechanism based on a more uniform pore size distribution in CNT modified polyacrylamide gel matrix is proposed. Furthermore, the impact of SWCNTs and MWCNTs on the mobility of proteins in different molecular weight regimes at a given acrylamide concentration offers a tunable gel matrix in terms of the selection of molecular weight ranges of proteins. The robustness and excellent reproducibility of the CNT-PAGE protocol are expected to have a significant impact on the molecular weight determination of newly isolated proteins.

  11. Plasma protein electrophoresis in birds: comparison of a semiautomated agarose gel system with an automated capillary system.

    PubMed

    Roman, Yannick; Bomsel-Demontoy, Marie-Claude; Levrier, Julie; Chaste-Duvernoy, Daniel; Saint Jalme, Michel

    2013-06-01

    Plasma agarose gel electrophoresis (AGE) is recognized as a very reliable diagnostic tool in avian medicine. Within the last 10 years, new electrophoresis techniques such as capillary zone electrophoresis (CZE) have emerged in human laboratory medicine but have never been investigated in birds. To investigate the use of CZE in birds and to compare it with AGE, plasma samples from 30 roosters (Gallus gallus), 20 black kites (Milvus migrans), and 10 racing pigeons (Columba livia) were analyzed by both AGE and CZE. For the 3 species studied, values determined by AGE and CZE were well correlated for albumin and beta and gamma fractions whereas other values differed significantly. Values for alpha-3 fraction in the rooster, alpha-1 fraction in the black kite, and alpha fractions in the pigeon obtained by AGE were very well correlated with the prealbumin fraction values obtained by CZE. Repeatability and reproducibility appeared higher with CZE than with AGE. Although the interpretation of CZE electrophoresis patterns seems to produce results similar to those obtained with AGE, some proteins present in the alpha fraction measured with AGE migrated to the prealbumin fraction found with CZE. Although CZE requires the use of specific reference intervals and a much higher sample volume, this method has many advantages when compared with AGE, including better repeatability and reproducibility and higher analysis output.

  12. Lambda light chain myeloma with co-migrating paraprotein at beta region on agarose gel electrophoresis: a case report.

    PubMed

    Siti Sarah, M; Nor Aini, U; Nurismah, M I; Hafiza, A; Khalidah, M; Mokhtar, A B; Das, S

    2014-01-01

    Paraproteinemia is one of the diagnostic features of multiple myeloma. A commonly used method is the detection of paraprotein by agarose gel electrophoresis (AGE) followed by by immunofixation electrophoresis (IFE) to confirm monoclonality. Due to their smaller size, immunoglobulin A (IgA) and light chain only paraproteins may appear at the beta or even alpha 2 protein fractions. Here, we discuss a case report of a 47-year-old man who presented with pathological fracture of third thoracic (T3) vertebra. Serum protein electrophoresis (SPE) was initially reported as no paraprotein detected. However, a bone biopsy was reported to show plasma cell proliferation with light chain restriction. A repeat sample for protein electrophoresis together with IFE revealed lambda light chain paraprotein co-migrating at the beta region. The beta band plus paraprotein was quantitated as 4.3 g/L (7.0%), which was within normal limits of the beta protein fraction. Hence, it has to be remembered that if the SPE is negative, it does not necessarily mean that the paraprotein is absent in cases which are highly suspicious.

  13. Characterisation of rat and human tissue alkaline phosphatase isoforms by high-performance liquid chromatography and agarose gel electrophoresis.

    PubMed

    Dziedziejko, Violetta; Safranow, Krzysztof; Slowik-Zylka, Dorota; Machoy-Mokrzynska, Anna; Millo, Barbara; Machoy, Zygmunt; Chlubek, Dariusz

    2009-03-01

    Alkaline phosphatase (ALP) exists as several isoenzymes and many isoforms present in tissues and serum. The objective of this study was to separate tissue ALP forms in rats and humans and characterise their properties. The materials for the investigation were intestinal, bone, and liver tissue of rats and commercially available human preparations of tissue ALP. Two methods of separation were used: high-performance liquid chromatography (HPLC) and agarose gel electrophoresis. Using HPLC in the rat tissues, two ALP isoforms in the intestine, one in the bone, and three in the liver were identified. In humans three intestinal, two bone, and one liver isoform were resolved. Electrophoresis showed two ALP activity bands in rat intestine, one wide band in the bone, and three bands in the liver. ALP of human tissues was visualised as a single wide band, with a different mobility observed for each organ. In both species the presence of a form with properties characteristic of the bone isoform of the tissue-nonspecific isoenzyme was observed in the intestine. HPLC offers a higher resolution than electrophoresis with respect to tissue ALP fractions in rats and in humans, but electrophoresis visualises high-molecular-mass insoluble enzyme forms.

  14. Molecular Typing of Vibrio cholerae O1 Isolates from Thailand by Pulsed-field Gel Electrophoresis

    PubMed Central

    Tapchaisri, Pramuan; Na-Ubol, Mathukorn; Tiyasuttipan, Watcharee; Chaiyaroj, Sansanee C.; Yamasaki, Shinji; Wongsaroj, Thitima; Hayashi, Hideo; Nair, G. Balakrish; Chongsa-Nguan, Manas; Kurazono, Hisao; Chaicumpa, Wanpen

    2008-01-01

    The aim of the present study was to genotypically characterize Vibrio cholerae strains isolated from cholera patients in various provinces of Thailand. Two hundred and forty V. cholerae O1 strains, isolated from patients with cholera during two outbreaks, i.e. March 1999–April 2000 and December 2001–February 2002, in Thailand, were genotypically characterized by NotI digestion and pulsed-field gel electrophoresis (PFGE). In total, 17 PFGE banding patterns were found and grouped into four Dice-coefficient clusters (PF-I to PF-IV). The patterns of V. cholerae O1, El Tor reference strains from Australia, Peru, Romania, and the United States were different from the patterns of reference isolates from Asian countries, such as Bangladesh, India, and Thailand, indicating a close genetic relationship or clonal origin of the isolates in the same geographical region. The Asian reference strains, regardless of their biotypes and serogroups (classical O1, El Tor O1, O139, or O151), showed a genetic resemblance, but had different patterns from the strains collected during the two outbreaks in Thailand. Of 200 Ogawa strains collected during the first outbreak in Thailand, two patterns (clones)—PF-I and PF-II—predominated, while other isolates caused sporadic cases and were grouped together as pattern PF-III. PF-II also predominated during the second outbreak, but none of the 40 isolates (39 Inaba and 1 Ogawa) of the second outbreak had the pattern PF-I; a minority showed a new pattern—PF-IV, and others caused single cases, but were not groupable. In summary, this study documented the sustained appearance of the pathogenic V. cholerae O1 clone PF-II, the disappearance of clones PF-I and PF-III, and the emergence of new pathogenic clones during the two outbreaks of cholera. Data of the study on molecular characteristics of indigenous V. cholerae clinical isolates have public-health implications, not only for epidemic tracing of existing strains but also for the

  15. Investigating the formation of "molybdenum blues" with gel electrophoresis and mass spectrometry.

    PubMed

    Nakamura, Ippei; Miras, Haralampos N; Fujiwara, Aya; Fujibayashi, Masaru; Song, Yu-Fei; Cronin, Leroy; Tsunashima, Ryo

    2015-05-27

    The reduction of solutions of acidified molybdate leads to the formation of a family of nanostructured molybdenum blue (MB) wheels which are linked together in a series of complex reaction networks. These networks are complex because the species which define the nodes are extremely labile, unstable, and common to many different networks. Herein, we combine gel electrophoresis and electrospray ionization mass spectrometry (ESI-MS) to investigate the effect of the pH and the ratio of reactants and reducing agents, R (R = [S2O4(2-)]/[MoO4(2-)]), on the complex underlying set of equilibria that make up MBs. By mapping the reaction parameter space given by experimental variables such as pH, R, solvent medium, and type of counterion, we show that the species present range from nanostructured MB wheels (comprising ca. 154 Mo atoms) to smaller molecular capsules, [(SO3)2Mo(V)2Mo(VI)16O54](6-) ({S2Mo18}), and templated hexameric [(μ6-SO3)Mo(V)6O15(μ2-SO3)3](8-)({S4Mo6}) anions. The parallel effects of templation and reduction on the self-assembly process are discussed, taking into consideration the Lewis basicity of the template, the oxidation state of the Mo centers, and the polarity of the reaction medium. Finally, we report a new type of molecular cage (TBA)5[Na(SO3)2(PhPO3)4Mo(V)4Mo(VI)14O49]·nMeCN (1), templated by SO3(2-) anions and decorated by organic ligands. This discovery results from the exploration of the cooperative effect of two anions possessing comparable Lewis basicity, and we believe this constitutes a new synthetic approach for the design of new nanostructured molecular metal oxides and will lead to a greater understanding of the complex reaction networks underpinning the assembly of this family of nanoclusters.

  16. Population dynamics of two antilisterial cheese surface consortia revealed by temporal temperature gradient gel electrophoresis

    PubMed Central

    2010-01-01

    Background Surface contamination of smear cheese by Listeria spp. is of major concern for the industry. Complex smear ecosystems have been shown to harbor antilisterial potential but the microorganisms and mechanisms involved in the inhibition mostly remain unclear, and are likely related to complex interactions than to production of single antimicrobial compounds. Bacterial biodiversity and population dynamics of complex smear ecosystems exhibiting antilisterial properties in situ were investigated by Temporal temperature gradient gel electrophoresis (TTGE), a culture independent technique, for two microbial consortia isolated from commercial Raclette type cheeses inoculated with defined commercial ripening cultures (F) or produced with an old-young smearing process (M). Results TTGE revealed nine bacterial species common to both F and M consortia, but consortium F exhibited a higher diversity than consortium M, with thirteen and ten species, respectively. Population dynamics were studied after application of the consortia on fresh-produced Raclette cheeses. TTGE analyses revealed a similar sequential development of the nine species common to both consortia. Beside common cheese surface bacteria (Staphylococcus equorum, Corynebacterium spp., Brevibacterium linens, Microbacterium gubbeenense, Agrococcus casei), the two consortia contained marine lactic acid bacteria (Alkalibacterium kapii, Marinilactibacillus psychrotolerans) that developed early in ripening (day 14 to 20), shortly after the growth of staphylococci (day 7). A decrease of Listeria counts was observed on cheese surface inoculated at day 7 with 0.1-1 × 102 CFU cm-2, when cheeses were smeared with consortium F or M. Listeria counts went below the detection limit of the method between day 14 and 28 and no subsequent regrowth was detected over 60 to 80 ripening days. In contrast, Listeria grew to high counts (105 CFU cm-2) on cheeses smeared with a defined surface culture. Conclusions This work reports

  17. Purification and staining of intact yeast DNA chromosomes and real-time observation of their migration during gel electrophoresis.

    PubMed Central

    Gurrieri, S; Bustamante, C

    1997-01-01

    In the past few years, fluorescence microscopy has been used successfully to characterize the motion of intermediate-size DNA molecules (50-500 kbp) during steady- and pulsed-field gel electrophoresis. However, experimental difficulties had prevented the application of this technique to the direct observation of longer DNA chromosomes (1-2 Mbp). In the present study a particular procedure was followed for the purification and staining of chromosomal yeast DNA to protect it from shear forces. Also, a new highly fluorescent DNA-labelling dye, YOYO-1, was employed to improve brightness and contrast. Finally, the motion of such long DNA molecules (1-2 Mbp) was characterized under steady-field electrophoresis conditions. An accurate description of the molecular mechanisms of motion of such long molecules should provide the basis for a detailed analysis of the mechanisms responsible for DNA trapping. PMID:9337860

  18. Multiplex agarose gel electrophoresis system for variable number of tandem repeats genotyping: analysis example using Mycobacterium tuberculosis.

    PubMed

    Wada, Takayuki; Maeda, Shinji

    2013-04-01

    As one genotyping method for Mycobacterium tuberculosis, variable number of tandem repeats (VNTR) is a promising tool to trace the undefined transmission of tuberculosis, but it often requires large equipment such as a genetic analyzer for DNA fragment analysis or CE system to conduct systematic analyses. For convenient genotyping at low cost in laboratories, we designed a multiplex PCR system that is applicable to agarose gel electrophoresis using fluorescent PCR primers. For tuberculosis genotyping by VNTR, the copy quantities of minisatellite DNA must be determined in more than 12 loci. The system can halve laborious electrophoresis processes by presenting an image of two VNTR amplicons on a single lane. No expensive equipment is necessary for this method. Therefore, it is useful even in developing countries.

  19. Influence of one- and two-dimensional gel electrophoresis procedure on metal-protein bindings examined by electrospray ionization mass spectrometry, inductively coupled plasma mass spectrometry, and ultrafiltration.

    PubMed

    Schmidt, Anne-Christine; Störr, Bianca; Kummer, Nicolai-Alexeji

    2011-08-15

    Three independent methods, (i) electrospray ionization mass spectrometry (ESI-MS), (ii) carrying out the complete protein preparation procedure required for protein gel electrophoresis (GE) including extraction, precipitation, washing, and desalting with subsequent microwave digestion of the produced protein fractions for metal content quantification, and (iii) ultrafiltration for separating protein-bound and unbound metal fractions, were employed to elucidate the influences of protein sample preparation and GE running conditions on metal-protein bindings. A treatment of the protein solution with acetone instead of trichloroacetic acid or ammonium sulfate for precipitate formation led to a strongly enhanced metal binding capacity. The desalting step of the resolubilized protein sample caused a metal loss between 10 and 35%. The omission of some extraction buffer additives led to a diminished metal binding capacity of protein fractions obtained from the sample preparation procedure for GE, whereas a tenside addition to the protein solution inhibited metal-protein bindings. The binding stoichiometry of Cu and Zn-protein complexes determined by ESI-MS was influenced by the type of the metal salt which was applied to the protein solution. A higher pH value of the sample solution promoted the metal ion complexation by the proteins. Ultrafiltration experiments revealed a higher Cu- and Zn-binding capacity of the model protein lysozyme in both resolubilization buffers for 1D- and 2D-GE compared to the protein extraction buffer. Strongly diminished metal binding capacities of lysozyme were recorded in the running buffer of 1D-GE and in the gel staining solutions.

  20. Titanium Dioxide Photocatalytic Polymerization of Acrylamide for Gel Electrophoresis (TIPPAGE) of Proteins and Structural Identification by Mass Spectrometry.

    PubMed

    Zhang, Wenyang; Yuan, Zhiwei; Huang, Lulu; Kang, Jie; Jiang, Ruowei; Zhong, Hongying

    2016-02-11

    Polyacrylamide gel electrophoresis (PAGE) coupled with mass spectrometry has been well established for separating, identifying and quantifying protein mixtures from cell lines, tissues or other biological samples. The copolymerization process of acrylamide and bis-acrylamide is the key to mastering this powerful technique. In general, this is a vinyl addition reaction initiated by free radical-generating reagents such as ammonium persulfate (APS) and tetramethylethylenediamine (TEMED) under basic pH and degassing experimental condition. We report herein a photocatalytic polymerization approach that is based on photo-generated hydroxyl radicals with nanoparticles of titanium dioxide. It was shown that the polymerization process is greatly accelerated in acidic condition when ultraviolet light shots on the gel solution containing TiO2 nanoparticles without degassing. This feature makes it very useful in preparing Triton X-100 acid urea (TAU) gel that has been developed for separating basic proteins such as histones and variants in acidic experimental condition. Additionally, the presence of titanium dioxide in the gel not only improves mechanistic property of gels but also changes the migration pattern of different proteins that have different affinities to titanium dioxide.

  1. Titanium Dioxide Photocatalytic Polymerization of Acrylamide for Gel Electrophoresis (TIPPAGE) of Proteins and Structural Identification by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Wenyang; Yuan, Zhiwei; Huang, Lulu; Kang, Jie; Jiang, Ruowei; Zhong, Hongying

    2016-02-01

    Polyacrylamide gel electrophoresis (PAGE) coupled with mass spectrometry has been well established for separating, identifying and quantifying protein mixtures from cell lines, tissues or other biological samples. The copolymerization process of acrylamide and bis-acrylamide is the key to mastering this powerful technique. In general, this is a vinyl addition reaction initiated by free radical-generating reagents such as ammonium persulfate (APS) and tetramethylethylenediamine (TEMED) under basic pH and degassing experimental condition. We report herein a photocatalytic polymerization approach that is based on photo-generated hydroxyl radicals with nanoparticles of titanium dioxide. It was shown that the polymerization process is greatly accelerated in acidic condition when ultraviolet light shots on the gel solution containing TiO2 nanoparticles without degassing. This feature makes it very useful in preparing Triton X-100 acid urea (TAU) gel that has been developed for separating basic proteins such as histones and variants in acidic experimental condition. Additionally, the presence of titanium dioxide in the gel not only improves mechanistic property of gels but also changes the migration pattern of different proteins that have different affinities to titanium dioxide.

  2. Agarose and polyacrylamide gel electrophoresis methods for molecular mass analysis of 5- to 500-kDa hyaluronan.

    PubMed

    Bhilocha, Shardul; Amin, Ripal; Pandya, Monika; Yuan, Han; Tank, Mihir; LoBello, Jaclyn; Shytuhina, Anastasia; Wang, Wenlan; Wisniewski, Hans-Georg; de la Motte, Carol; Cowman, Mary K

    2011-10-01

    Agarose and polyacrylamide gel electrophoresis systems for the molecular mass-dependent separation of hyaluronan (HA) in the size range of approximately 5-500 kDa were investigated. For agarose-based systems, the suitability of different agarose types, agarose concentrations, and buffer systems was determined. Using chemoenzymatically synthesized HA standards of low polydispersity, the molecular mass range was determined for each gel composition over which the relationship between HA mobility and logarithm of the molecular mass was linear. Excellent linear calibration was obtained for HA molecular mass as low as approximately 9 kDa in agarose gels. For higher resolution separation, and for extension to molecular masses as low as approximately 5 kDa, gradient polyacrylamide gels were superior. Densitometric scanning of stained gels allowed analysis of the range of molecular masses present in a sample as well as calculation of weight-average and number-average values. The methods were validated for polydisperse HA samples with viscosity-average molecular masses of 112, 59, 37, and 22 kDa at sample loads of 0.5 μg (for polyacrylamide) to 2.5 μg (for agarose). Use of the methods for electrophoretic mobility shift assays was demonstrated for binding of the HA-binding region of aggrecan (recombinant human aggrecan G1-IGD-G2 domains) to a 150-kDa HA standard.

  3. Rheological and mechanical behavior of polyacrylamide hydrogels chemically crosslinked with allyl agarose for two-dimensional gel electrophoresis.

    PubMed

    Suriano, R; Griffini, G; Chiari, M; Levi, M; Turri, S

    2014-02-01

    Two-dimensional (2-D) gel electrophoresis currently represents one of the most standard techniques for protein separation. In addition to the most commonly employed polyacrylamide crosslinked hydrogels, acrylamide-agarose copolymers have been proposed as promising systems for separation matrices in 2-D electrophoresis, because of the good resolution of both high and low molecular mass proteins made possible by careful control and optimization of the hydrogel pore structure. As a matter of fact, a thorough understanding of the nature of the hydrogel pore structure as well as of the parameters by which it is influenced is crucial for the design of hydrogel systems with optimal sieving properties. In this work, a series of acrylamide-based hydrogels covalently crosslinked with different concentrations of allyl agarose (0.2-1%) is prepared and characterized by creep-recovery measurements, dynamic rheology and tensile tests, in the attempt to gain a clearer understanding of structure-property relationships in crosslinked polyacrylamide-based hydrogels. The rheological and mechanical properties of crosslinked acrylamide-agarose hydrogels are found to be greatly affected by crosslinker concentration. Dynamic rheological tests show that hydrogels with a percentage of allyl agarose between 0.2% and 0.6% have a low density of elastically effective crosslinks, explaining the good separation of high molecular mass proteins in 2-D gel electrophoresis. Over the same range of crosslinker concentration, creep-recovery measurements reveal the presence of non-permanent crosslinks in the hydrogel network that justifies the good resolution of low molecular mass proteins as well. In tensile tests, the hydrogel crosslinked with 0.4% of allyl agarose exhibits the best results in terms of mechanical strength and toughness. Our results show how the control of the viscoelastic and the mechanical properties of these materials allow the design of mechanically stable hydrogels with improved

  4. Two-Dimensional Gel Electrophoresis Image Analysis via Dedicated Software Packages.

    PubMed

    Maurer, Martin H

    2016-01-01

    Analyzing two-dimensional gel electrophoretic images is supported by a number of freely and commercially available software. Although the respective program is highly specific, all the programs follow certain standardized algorithms. General steps are: (1) detecting and separating individual spots, (2) subtracting background, (3) creating a reference gel and (4) matching the spots to the reference gel, (5) modifying the reference gel, (6) normalizing the gel measurements for comparison, (7) calibrating for isoelectric point and molecular weight markers, and moreover, (8) constructing a database containing the measurement results and (9) comparing data by statistical and bioinformatic methods.

  5. Two-dimensional difference gel electrophoresis applied for analytical proteomics: fundamentals and applications to the study of plant proteomics.

    PubMed

    Arruda, Sandra Cristina Capaldi; Barbosa, Herbert de Sousa; Azevedo, Ricardo Antunes; Arruda, Marco Aurélio Zezzi

    2011-10-21

    The present review reports the principles, fundamentals and some applications of two-dimensional difference gel electrophoresis for analytical proteomics based on plant proteome analysis, also emphasizing some advantages of 2-D DIGE over 2-D PAGE techniques. Some fluorescent protein labeling reagents, methods of protein labeling, models of 2-D DIGE experiments, and some limitations of this technique are presented and discussed in terms of 2-D DIGE plant proteomes. Finally, some practical applications of this technique are pointed out, emphasizing its potentialities in plant proteomics.

  6. DNA fingerprinting by pulsed-field gel electrophoresis to investigate a nosocomial pneumonia caused by Legionella bozemanii serogroup 1.

    PubMed Central

    Lück, P C; Helbig, J H; Hagedorn, H J; Ehret, W

    1995-01-01

    We typed 18 isolates of Legionella bozemanii obtained from clinical and environmental sources by pulsed-field gel electrophoresis. Each of the unrelated strains showed individual restriction patterns of the genomic DNA when either the SfiI or NotI restriction enzyme was used. One strain isolated from a patient with nosocomial legionellosis and two strains from the corresponding hospital water supply were indistinguishable, arguing for a transmission of L. bozemanii from the water supply to the patient. In conclusion, macrorestriction analysis is a valuable tool for studies of the molecular epidemiology of L. bozemanii. PMID:7618888

  7. Transmission of Citrobacter koseri from mother to infant documented by ribotyping and pulsed-field gel electrophoresis.

    PubMed

    Papasian, C J; Kinney, J; Coffman, S; Hollis, R J; Pfaller, M A

    1996-10-01

    We describe a case in which Citrobacter koseri (formerly C. diversus) was transmitted from a pregnant mother with chorioamnionitis and bacteremia to her infant who was bacteremic at birth and in apparent septic shock. Two highly discriminating molecular methods, ribotyping and pulsed field gel electrophoresis, were used to examine restriction fragment length polymorphisms within the genomic DNA of maternal and infant isolates. Both techniques identified the maternal and infant isolates as the same strain, distinct from epidemiologically unrelated controls, thus confirming their common origin.

  8. The association of serotype and pulsed-field gel electrophoresis genotype in isolates of Streptococcus pneumoniae isolated in Israel.

    PubMed

    Bar-Meir, M; Naaman, G; Assous, M; Korenman, Z; Valinsky, L; Picard, E

    2015-05-01

    The relationship between Streptococcus pneumoniae isolates causing invasive infections in children admitted to a single center in central Israel was examined by pulsed-field gel electrophoresis (PFGE) and serotyping. Although there was a close correlation between serotype and PFGE clone, the genetic diversity varied by serotype, with some genotypes comprising multiple serotypes. Additionally, clones C and D were associated with higher penicillin minimum inhibitory concentrations. Serotyping alone may be insufficient for epidemiological mapping of pneumococcal isolates in the era of pneumococcal conjugate polysaccharide vaccines.

  9. One-day pulsed-field gel electrophoresis protocol for rapid determination of emetic Bacillus cereus isolates.

    PubMed

    Kaminska, Paulina S; Fiedoruk, Krzysztof; Jankowska, Dominika; Mahillon, Jacques; Nowosad, Karol; Drewicka, Ewa; Zambrzycka, Monika; Swiecicka, Izabela

    2015-04-01

    Bacillus cereus, the Gram-positive and spore-forming ubiquitous bacterium, may cause emesis as the result of food intoxication with cereulide, a heat-stable emetic toxin. Rapid determination of cereulide-positive B. cereus isolates is of highest importance due to consequences of this intoxication for human health and life. Here we present a 1-day pulsed-field gel electrophoresis for emetic B. cereus isolates, which allows rapid and efficient determination of their genomic relatedness and helps determining the source of intoxication in case of outbreaks caused by these bacilli.

  10. A New Standard-Based Polynomial Interpolation (SBPIn) Method to Address Gel-to-Gel Variability for the Comparison of Multiple Denaturing Gradient Gel Electrophoresis Profile Matrices

    PubMed Central

    Valentín-Vargas, Alexis; Chorover, Jon; Maier, Raina M.

    2013-01-01

    The Standard-Based Polynomial Interpolation (SBPIn) method is a new simple three-step protocol proposed to address common gel-to-gel variations for the comparison of sample profiles across multiple DGGE gels. The advantages of this method include no requirement for additional software or modification of the standard DGGE protocol. PMID:23234884

  11. Differentiation between fresh and frozen-thawed sea bass (Dicentrarchus labrax) fillets using two-dimensional gel electrophoresis.

    PubMed

    Ethuin, Pierrette; Marlard, Sylvain; Delosière, Mylène; Carapito, Christine; Delalande, François; Van Dorsselaer, Alain; Dehaut, Alexandre; Lencel, Valérie; Duflos, Guillaume; Grard, Thierry

    2015-06-01

    This study aimed to identify a protein marker that can differentiate between fresh skinless and frozen-thawed sea bass (Dicentrarchus labrax) fillets using the two-dimensional polyacrylamide gel electrophoresis (2-DE) technique. Distinct gel patterns, due to proteins with low molecular weight and low isoelectric points, distinguished fresh fillets from frozen-thawed ones. Frozen-thawed fillets showed two specific protein spots as early as the first day of the study. However, these spots were not observed in fresh fillets until at least 13days of storage between 0 and 4°C, fillets were judged, beyond this period, fish were unfit for human consumption as revealed by complementary studies on fish spoilage indicators namely total volatile basic nitrogen and biogenic amines. Mass spectrometry identified the specific proteins as parvalbumin isoforms. Parvalbumins may thus be useful markers of differentiation between fresh and frozen-thawed sea bass fillets.

  12. Quantifying clustered DNA damage induction and repair by gel electrophoresis, electronic imaging and number average length analysis

    NASA Technical Reports Server (NTRS)

    Sutherland, Betsy M.; Georgakilas, Alexandros G.; Bennett, Paula V.; Laval, Jacques; Sutherland, John C.; Gewirtz, A. M. (Principal Investigator)

    2003-01-01

    Assessing DNA damage induction, repair and consequences of such damages requires measurement of specific DNA lesions by methods that are independent of biological responses to such lesions. Lesions affecting one DNA strand (altered bases, abasic sites, single strand breaks (SSB)) as well as damages affecting both strands (clustered damages, double strand breaks) can be quantified by direct measurement of DNA using gel electrophoresis, gel imaging and number average length analysis. Damage frequencies as low as a few sites per gigabase pair (10(9)bp) can be quantified by this approach in about 50ng of non-radioactive DNA, and single molecule methods may allow such measurements in DNA from single cells. This review presents the theoretical basis, biochemical requirements and practical aspects of this approach, and shows examples of their applications in identification and quantitation of complex clustered damages.

  13. Voltage-programming-based capillary gel electrophoresis for the fast detection of angiotensin-converting enzyme insertion/deletion polymorphism with high sensitivity.

    PubMed

    Woo, Nain; Kim, Su-Kang; Kang, Seong Ho

    2016-08-01

    A voltage-programming-based capillary gel electrophoresis method with a laser-induced fluorescence detector was developed for the fast and highly sensitive detection of DNA molecules related to angiotensin-converting enzyme insertion/deletion polymorphism, which has been reported to influence predisposition to various diseases such as cardiovascular disease, high blood pressure, myocardial infarction, and Alzheimer's disease. Various voltage programs were investigated for fast detection of specific DNA molecules of angiotensin-converting enzyme insertion/deletion polymorphism as a function of migration time and separation efficiency to establish the effect of voltage strength to resolution. Finally, the amplified products of the angiotensin-converting enzyme insertion/deletion polymorphism (190 and 490 bp DNA) were analyzed in 3.2 min without losing resolution under optimum voltage programming conditions, which were at least 75 times faster than conventional slab gel electrophoresis. In addition, the capillary gel electrophoresis method also successfully applied to the analysis of real human blood samples, although no polymorphism genes were detected by slab gel electrophoresis. Consequently, the developed voltage-programming capillary gel electrophoresis method with laser-induced fluorescence detection is an effective, rapid analysis technique for highly sensitive detection of disease-related specific DNA molecules.

  14. Apolipoprotein distribution in human lipoproteins separated by polyacrylamide gradient gel electrophoresis.

    PubMed

    Vézina, C A; Milne, R W; Weech, P K; Marcel, Y L

    1988-05-01

    The heterogeneity of serum lipoproteins (excluding very low density (VLDL) and intermediate density (IDL) lipoproteins) and that of lipoproteins secreted by HepG2 cells has been studied by immunoblot analysis of the apolipoprotein composition of the particles separated by polyacrylamide gradient gel electrophoresis (GGE) under nondenaturing conditions. The reactions of antibodies to apoA-I, apoA-II, apoE, apoB, apoD, and apoA-IV have revealed discrete bands of particles which differ widely in size and apolipoprotein composition. GGE of native serum lipoproteins demonstrated that apoA-II is present in lipoproteins of limited size heterogeneity (apparent molecular mass 345,000 to 305,000) and that apoB is present in low density lipoproteins (LDL) and absent from all smaller or denser lipoproteins. In contrast, serum apoA-I, E, D, and A-IV are present in very heterogeneous particles. Serum apoA-I is present mainly in particles of 305 to 130 kDa where it is associated with apoA-II, and in decreasing order of immunoreactivity in particles of 130-90 kDa, 56 kDa, 815-345 kDa, and finally within the size range of LDL, all regions where there is little detectable apoA-II. Serum apoE is present in three defined fractions, one within the size range of LDL, one containing heterogeneous particles between 640 and 345 kDa, and one defined fraction at 96 kDa. Serum apoD is also present in three defined fractions, one comigrating with LDL, one containing heterogeneous particles between 390 and 150 kDa, and one band on the migration front. Most of serum apoA-IV is contained in a band comigrating with albumin. GGE of centrifugally prepared LDL shows the presence of apoB, apoE, and apoD, but not that of apoA-I. However, the particles containing apoA-I, which, in serum, migrated within the LDL size range and as bands of 815 to 345 kDa, were recovered upon centrifugation in the d greater than 1.21 g/ml fraction. GGE of high density lipoproteins (HDL) indicated that most of apoA-I, A

  15. Development of an open source laboratory information management system for 2-D gel electrophoresis-based proteomics workflow

    PubMed Central

    Morisawa, Hiraku; Hirota, Mikako; Toda, Tosifusa

    2006-01-01

    Background In the post-genome era, most research scientists working in the field of proteomics are confronted with difficulties in management of large volumes of data, which they are required to keep in formats suitable for subsequent data mining. Therefore, a well-developed open source laboratory information management system (LIMS) should be available for their proteomics research studies. Results We developed an open source LIMS appropriately customized for 2-D gel electrophoresis-based proteomics workflow. The main features of its design are compactness, flexibility and connectivity to public databases. It supports the handling of data imported from mass spectrometry software and 2-D gel image analysis software. The LIMS is equipped with the same input interface for 2-D gel information as a clickable map on public 2DPAGE databases. The LIMS allows researchers to follow their own experimental procedures by reviewing the illustrations of 2-D gel maps and well layouts on the digestion plates and MS sample plates. Conclusion Our new open source LIMS is now available as a basic model for proteome informatics, and is accessible for further improvement. We hope that many research scientists working in the field of proteomics will evaluate our LIMS and suggest ways in which it can be improved. PMID:17018156

  16. Isolation and characterization of the pigment-protein complexes of Rhodopseudomonas sphaeroides by lithium dodecyl sulfate/polyacrylamide gel electrophoresis.

    PubMed

    Broglie, R M; Hunter, C N; Delepelaire, P; Niederman, R A; Chua, N H; Clayton, R K

    1980-01-01

    When purified photosynthetic membranes from Rhodopseudomonas sphaeroides were treated with lithium dodecyl sulfate and subjected to polyacrylamide gel electrophoresis at 4 degrees C, up to 11 pigment-protein complexes were resolved. Absorption spectra revealed that the smallest complex contained reaction center pigments and the others contained the antenna components B850 and B875 in various proportions. Of these antenna complexes, the largest was almost entirely B850 and the smallest contained only B875. After solubilization at 100 degrees C and electrophoresis on polyacrylamide gradient gels, the B850 complex gave rise to two polypeptide components migrating with apparent Mr of 10,000 and 8000, whereas with the B875 complex, two components were observed with apparent Mr of 12,000 and 8000. The reaction center complex gave rise to only the 24 and 21 kilodalton polypeptide subunits. Fluorescence emission spectra showed maxima at 872 and 902 nm for B850 and B875, respectively. Analyses of bacteriochlorophyll a and carotenoids indicated that, in the B875 complex, two molecules of each of these pigments are associated with the two polypeptides. The associations of B850 and B875 in large and small complexes obtained by lithium dodecyl sulfate treatment are consistent with models of their organization within the membrane.

  17. Identification of actinomycete communities in Antarctic soil from Barrientos Island using PCR-denaturing gradient gel electrophoresis.

    PubMed

    Learn-Han, L; Yoke-Kqueen, C; Shiran, M S; Vui-Ling, C M W; Nurul-Syakima, A M; Son, R; Andrade, H M

    2012-02-08

    The diversity of specific bacteria taxa, such as the actinomycetes, has not been reported from the Antarctic island of Barrientos. The diversity of actinomycetes was estimated with two different strategies that use PCR-denaturing gradient gel electrophoresis. First, a PCR was applied, using a group-specific primer that allows selective amplification of actinomycete sequences. Second, a nested-PCR approach was used that allows the estimation of the relative abundance of actinomycetes within the bacterial community. Molecular identification, which was based on 16S rDNA sequence analysis, revealed eight genera of actinomycetes, Actinobacterium, Actinomyces, an uncultured Actinomycete, Streptomyces, Leifsonia, Frankineae, Rhodococcus, and Mycobacterium. The uncultured Actinomyces sp and Rhodococcus sp appear to be the prominent genera of actinomycetes in Barrientos Island soil. PCR-denaturing gradient gel electrophoresis patterns were used to look for correlations between actinomycete abundance and environmental characteristics, such as type of rookery and vegetation. There was a significant positive correlation between type of rookery and abundance of actinomycetes; soil samples collected from active chinstrap penguin rookeries had the highest actinomycete abundance. Vegetation type, such as moss, which could provide a microhabitat for bacteria, did not correlate significantly with actinomycete abundance.

  18. Characterization of multidrug-resistant Escherichia coli by antimicrobial resistance profiles, plasmid replicon typing, and pulsed-field gel electrophoresis.

    PubMed

    Lindsey, Rebecca L; Frye, Jonathan G; Thitaram, Sutawee N; Meinersmann, Richard J; Fedorka-Cray, Paula J; Englen, Mark D

    2011-06-01

    The objective of this study was to examine the distribution of multidrug resistance in Escherichia coli in relation to plasmid replicon types, animal sources, and genotypes. E. coli isolates (n = 35) from seven different animal sources were selected and tested for susceptibility to 15 antimicrobials; pulsed-field gel electrophoresis was used to determine genetic relationships among the E. coli isolates. Plasmid types based on their incompatibility (Inc) replicon types were determined, and linkage disequilibrium analysis was performed for antimicrobial resistance profiles, replicon types, and animal source. A high degree of genotypic diversity was observed: 34 different pulsed-field gel electrophoresis types among the 35 isolates examined. Twelve different plasmid Inc types were detected, and all isolates carried at least one replicon type. IncF (n = 25; 71.4%) and IncFIB (n = 19; 54.3%) were the most common replicon types identified. Chloramphenicol resistance was significantly linked with four Inc types (A/C, FIIA, F, and Y), and amoxicillin/clavulanic acid was linked with three Inc types (B/O, P and Y). Resistance to any other antimicrobial was linked to two or fewer replicon types. The isolate source was linked with resistance to seven antimicrobials and IncI1. We conclude that commensal E. coli from animal sources are highly variable genotypically and are reservoirs of a diverse array of plasmids carrying antimicrobial resistance.

  19. Determination of the Mutagenicity Potential of Supermint Herbal Medicine by Single Cell Gel Electrophoresis in Rat Hepatocytes

    PubMed Central

    Kalantari, Heibatullah; Rezaei, Mohsen; Mahdavinia, Masoud; Kalantar, Mojtaba; Amanpour, Zivar; varnaseri, golnaz

    2012-01-01

    Purpose: The increasing use of herbal drugs and their easy availability have necessitated the use of mutagenicity test to analyze their toxicity and safety. The aim of this study was to evaluate the genotoxicity of Supermint herbal medicine in DNA breakage of rat hepatocytes in comparison with sodium dichromate by single cell gel electrophoresis technique or comet assay. Methods: Hepatocytes were prepared from male wistar rats and were counted and kept in a bioreactor for 30 minutes. Then cells were exposed to the Supermint herbal medicine at doses of 125, 250 and 500 µl/ml. Buffer 4 (incubation buffer) and sodium dichromate were used as negative and positive control for one hour respectively. Then cell suspension with low melting point agarose were put on precoated slides and covered with agarose gel. Then lysing, electrophoresis, neutralization and staining were carried out. Finally the slides were analyzed with fluorescence microscope. The parameter under this analysis was the type of migration which was determined according to Kobayashi pattern. Results: With increased dose of Supermint herbal medicine the DNA damage was slightly increased (P<0001). Conlusion: In overall compared to the positive control significant differences is observed which convinced that the crude extract of Supermint in vitro did not have mutagenic effect. Conlusion: In overall compared to the positive control significant differences is observed which convinced that the crude extract of Supermint in vitro did not have mutagenic effect. PMID:24312800

  20. Detection by denaturing gradient gel electrophoresis of ammonia-oxidizing bacteria in microcosms of crude oil-contaminated mangrove sediments.

    PubMed

    dos Santos, A C F; Marques, E L S; Gross, E; Souza, S S; Dias, J C T; Brendel, M; Rezende, R P

    2012-01-27

    Currently, the effect of crude oil on ammonia-oxidizing bacterium communities from mangrove sediments is little understood. We studied the diversity of ammonia-oxidizing bacteria in mangrove microcosm experiments using mangrove sediments contaminated with 0.1, 0.5, 1, 2, and 5% crude oil as well as non-contaminated control and landfarm soil from near an oil refinery in Camamu Bay in Bahia, Brazil. The evolution of CO(2) production in all crude oil-contaminated microcosms showed potential for mineralization. Cluster analysis of denaturing gradient gel electrophoresis-derived samples generated with primers for gene amoA, which encodes the functional enzyme ammonia monooxygenase, showed differences in the sample contaminated with 5% compared to the other samples. Principal component analysis showed divergence of the non-contaminated samples from the 5% crude oil-contaminated sediment. A Venn diagram generated from the banding pattern of PCR-denaturing gradient gel electrophoresis was used to look for operational taxonomic units (OTUs) in common. Eight OTUs were found in non-contaminated sediments and in samples contaminated with 0.5, 1, or 2% crude oil. A Jaccard similarity index of 50% was found for samples contaminated with 0.1, 0.5, 1, and 2% crude oil. This is the first study that focuses on the impact of crude oil on the ammonia-oxidizing bacterium community in mangrove sediments from Camamu Bay.

  1. Speciation of iodine-containing proteins in Nori seaweed by gel electrophoresis laser ablation ICP-MS.

    PubMed

    Romarís-Hortas, V; Bianga, J; Moreda-Piñeiro, A; Bermejo-Barrera, P; Szpunar, J

    2014-09-01

    An analytical approach providing an insight into speciation of iodine in water insoluble fraction of edible seaweed (Nori) was developed. The seaweed, harvested in the Galician coast (Northwestern Spain), contained 67.7±1.3 μg g(-1) iodine of which 25% was water soluble and could be identifies as iodide. Extraction conditions of water insoluble residue using urea, NaOH, SDS and Triton X-100 were investigated. The protein pellets obtained in optimized conditions (after precipitation of urea extracts with acetone), were digested with trypsin and protease XIV. Size exclusion chromatography-ICP-MS of both enzymatic digests demonstrated the occurrence of iodoaminoacids putatively present in proteins. Intact proteins could be separated by gel electrophoresis after an additional extraction of the protein extract with phenol. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) with laser ablation ICP-MS detection of (127)I indicated the presence of iodine in protein bands corresponding to molecular masses of 110 kDa, 40 kDa, 27 kDa, 20 kDa and 10 kDa. 2D IEF-SDS PAGE with laser ablation ICP-MS (127)I imaging allowed the detection of 5 iodine containing protein spots in the alkaline pI range.

  2. Proteomic study of muscle sarcoplasmic proteins using AUT-PAGE/SDS-PAGE as two-dimensional gel electrophoresis.

    PubMed

    Picariello, Gianluca; De Martino, Alessandra; Mamone, Gianfranco; Ferranti, Pasquale; Addeo, Francesco; Faccia, Michele; Spagnamusso, Salvatore; Di Luccia, Aldo

    2006-03-20

    In the present study, an alternative procedure for two-dimensional (2D) electrophoretic analysis in proteomic investigation of the most represented basic muscle water-soluble proteins is suggested. Our method consists of Acetic acid-Urea-Triton polyacrylamide gel (AUT-PAGE) analysis in the first dimension and standard sodium dodecyl sulphate polyacrylamide gel (SDS-PAGE) in the second dimension. Although standard two-dimensional Immobilized pH Gradient-Sodium Dodecyl-Sulphate (2D IPG-SDS) gel electrophoresis has been successfully used to study these proteins, most of the water-soluble proteins are spread on the alkaline part of the 2D map and are poorly focused. Furthermore, the similarity in their molecular weights impairs resolution of the classical approach. The addition of Triton X-100, a non-ionic detergent, into the gel induces a differential electrophoretic mobility of proteins as a result of the formation of mixed micelles between the detergent and the hydrophobic moieties of polypeptides, separating basic proteins with a criterion similar to reversed phase chromatography based on their hydrophobicity. The acid pH induces positive net charges, increasing with the isoelectric point of proteins, thus allowing enhanced resolution in the separation. By using 2D AUT-PAGE/SDS electrophoresis approach to separate water-soluble proteins from fresh pork and from dry-cured products, we could spread proteins over a greater area, achieving a greater resolution than that obtained by IPG in the pH range 3-10 and 6-11. Sarcoplasmic proteins undergoing proteolysis during the ripening of products were identified by Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI-ToF) mass spectrometry peptide mass fingerprinting in a easier and more effective way. Two-dimensional AUT-PAGE/SDS electrophoresis has allowed to simplify separation of sarcoplasmic protein mixtures making this technique suitable in the defining of quality of dry-cured pork products by immediate

  3. Comparison between pulsed-field and constant-field gel electrophoresis for measurement of DNA double-strand breaks in irradiated Chinese hamster ovary cells.

    PubMed

    Wlodek, D; Banáth, J; Olive, P L

    1991-11-01

    Pulsed-field gel electrophoresis (PFGE) is one of the most sensitive methods for detecting DNA double-strand breaks in mammalian cells. However, it has been observed that constant-field gel electrophoresis (CFGE), when optimized, can detect breaks with equal efficiency. The migration of DNA from the well and the separation of DNA molecules according to size appear to be different processes; only the latter requires the application of PFGE. CFGE is very sensitive and can detect DNA damage produced by less than 5 Gy of radiation. Low voltage (ca. 0.6 V/cm) during electrophoresis appears to be essential for the migration of the largest fraction of DNA from the agarose plug containing the cells; the electrophoresis run time, cell density in the plug, agarose concentration, nature of detergent and extent of radiolabelling are less important. It is concluded that CFGE is equally sensitive but more rapid and economical than PFGE for the measurement of DNA damage.

  4. Silver stain for detecting 10-femtogram quantities of protein after polyacrylamide gel electrophoresis.

    PubMed

    Ohsawa, K; Ebata, N

    1983-12-01

    A rapid and highly sensitive silver stain and color stain were developed for visualizing proteins. The procedure is simple and the bands were clear. This silver stain detects 100 pg quantities of proteins. In order to stain quickly, sensitively, and sharply a protein matrix in a gel, the repeated shrinkage and swelling gel was developed with a hyper- and hypotonic solution to remove the sodium dodecyl sulfate (SDS) from SDS-protein complex and to generate influx of staining solution into the gel. We have found that the silver staining method with the repeated exposure to hyper- and hypotonic solution and a narrow well produced 10 fg order of proteins.

  5. Resolution of 8-aminonaphthalene-1,3,6-trisulfonic acid-labeled glucose oligomers in polyacrylamide gel electrophoresis at low gel concentration.

    PubMed

    Cabanes-Macheteau, Marion; Chrambach, Andreas; Taverna, Myriam; Buzás, Zsuzsanna; Berna, Patrick

    2004-01-01

    A discontinuous Tris-Cl/acetate (OAc) buffer system, unprecedently containing OAc as the trailing constituent, and operative in polyacrylamide gel electrophoresis (PAGE) at low polyacrylamide concentration (T = 4.8%) is described in the paper. The characteristics of the electrophoretic system are illustrated by the resolution of fluorescent 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS)-labeled malto-oligosaccharides and dextran homopolymers. In this buffer system, the resolving phase is constituted by Tris-OAc behind a moving boundary formed between the leading chloride ion of Tris-HCl gel buffer and the trailing OAc ion provided by a catholyte of NH(4)OAc. In contrast with the results obtained with Tris-CI/glycinate buffer commonly used in electrophoresis, or with Tris-CI/borate, the best resolution of the glucose oligomers containing 1-4 glucose units in Tris-OAc, pH 8.8, ionic strength of 0.08, was obtained at 4.8% polyacrylamide concentration, using 0.5 M NH(4)OAc, pH 9.5 as the catholyte. Under those conditions, the ANTS-glucose oligomers were separated with mobilities decreasing from glucose to maltohexaose. The linear Ferguson plots (log relative mobility, R(f), vs.%T) of the glucose oligomers show that the surface net charge of those oligomers is inversely related to their sizes, given by the slopes, K(R), of the plots. The molecular weight of the oligomers is directly but nonlinearly related to K(R). The novel electrophoretic system illustrated here for separation of short ANTS-saccharides can be potentially applied to the resolution of other biomolecules such as rapidly migrating DNA, peptides or proteins.

  6. Highly sensitive fluorescent stain for detecting lipopolysaccharides in sodium dodecyl sulfate polyacrylamide gel electrophoresis.

    PubMed

    Wang, Xu; Zhou, Ayi; Cai, Wanhui; Yu, Dongdong; Zhu, Zhongxin; Jiang, Chengxi; Jin, Litai

    2015-08-01

    A sensitive and simple technique was developed for the visualization of gel-separated lipopolysaccharides by using a hydrazide derivative, UGF202. As low as 0.5-1 ng total LPS could be detected by UGF202 stain, which is 2- and 16-fold more sensitive than that of the commonly used Pro-Q Emerald 300 and Keenan et al. developed silver stain, respectively. The results indicated that UGF202 stain could be a good choice for LPS determination in polyacrylamide gels.

  7. The migration behaviour of DNA replicative intermediates containing an internal bubble analyzed by two-dimensional agarose gel electrophoresis.

    PubMed Central

    Schvartzman, J B; Martínez-Robles, M L; Hernández, P

    1993-01-01

    Initiation of DNA replication in higher eukaryotes is still a matter of controversy. Some evidence suggests it occurs at specific sites. Data obtained using two-dimensional (2D) agarose gel electrophoresis, however, led to the notion that it may occur at random in broad zones. This hypothesis is primarily based on the observation that several contiguous DNA fragments generate a mixture of the so-called 'bubble' and 'simple Y' patterns in Neutral/neutral 2D gels. The interpretation that this mixture of hybridisation patterns is indicative for random initiation of DNA synthesis relies on the assumption that replicative intermediates (RIs) containing an internal bubble where initiation occurred at different relative positions, generate comigrating signals. The latter, however, is still to be proven. We investigated this problem by analysing together, in the same 2D gel, populations of pBR322 RIs that were digested with different restriction endonucleases that cut the monomer only once at different locations. DNA synthesis begins at a specific site in pBR322 and progresses in a uni-directional manner. Thus, the main difference between these sets of RIs was the relative position of the origin. The results obtained clearly showed that populations of RIs containing an internal bubble where initiation occurred at different relative positions do not generate signals that co-migrate all-the-way in 2D gels. Despite this observation, however, our results support the notion that random initiation is indeed responsible for the peculiar 'bubble' signal observed in the case of several metazoan eukaryotes. Images PMID:8265365

  8. Establishment of two-dimensional gel electrophoresis profiles of the human acute promyelocytic leukemia cell line NB4.

    PubMed

    He, Pengcheng; Liu, Yanfeng; Zhang, Mei; Wang, Xiaoning; Wang, Huaiyu; Xi, Jieying; Wei, Kaihua; Wang, Hongli; Zhao, Jing

    2012-09-01

    To explore optimum conditions for establishing a two‑dimensional gel electrophoresis (2-DE) map of the human acute promyelocytic leukemia (APL) cell line NB4 and to analyze its protein profiles, we extracted total proteins from NB4 cells using cell disruption, liquid nitrogen freeze-thawing and fracturing by ultrasound, and quantified the extracted protein samples using Bradford's method. 2-DE was applied to separate the proteins, which were silver-stained in the gel. Well‑separated protein spots were selected from the gel using the ImageMaster™ 2D Platinum analysis system. Moreover, the effects of various protein sample sizes (140, 160 and 180 µg) on the 2-DE maps of the NB4 cells were determined and compared. Matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF-MS), peptide mass fingerprinting (PMF) and database searching were used to identify the proteins. When the quantity of loading proteins was 160 µg, clear, well-resolved, reproducible 2-DE proteomic profiles of the NB4 cells were obtained. The average number of protein spots in 3 gels was 1160±51 with an average matching rate of 81%. A total of 10 proteins were identified by mass spectrometry and database queries, certain proteins were products of oncogenes and others were involved in cell cycle regulation and signal transduction. In summary, 2-DE profiles of the proteome of NB4 cells were established and certain proteins were identified by MALDI-TOF-MS and PMF which lay the foundation of further proteomic research of NB4 cells. These data should be useful for establishing a human APL proteome database.

  9. Quantitation of yeast total proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis sample buffer for uniform loading.

    PubMed

    Sheen, Hyukho

    2016-04-01

    Proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer are difficult to quantitate due to SDS and reducing agents being in the buffer. Although acetone precipitation has long been used to clean up proteins from detergents and salts, previous studies showed that protein recovery from acetone precipitation varies from 50 to 100% depending on the samples tested. Here, this article shows that acetone precipitates proteins highly efficiently from SDS-PAGE sample buffer and that quantitative recovery is achieved in 5 min at room temperature. Moreover, precipitated proteins are resolubilized with urea/guanidine, rather than with SDS. Thus, the resolubilized samples are readily quantifiable with Bradford reagent without using SDS-compatible assays.

  10. Time-based distribution of Staphylococcus saprophyticus pulsed field gel-electrophoresis clusters in community-acquired urinary tract infections.

    PubMed

    Sousa, Viviane Santos de; Rabello, Renata Fernandes; Dias, Rubens Clayton da Silva; Martins, Ianick Souto; Santos, Luisa Barbosa Gomes da Silva dos; Alves, Elisabeth Mendes; Riley, Lee Woodford; Moreira, Beatriz Meurer

    2013-02-01

    The epidemiology of urinary tract infections (UTI) by Staphylococcus saprophyticus has not been fully characterised and strain typing methods have not been validated for this agent. To evaluate whether epidemiological relationships exist between clusters of pulsed field gel-electrophoresis (PFGE) genotypes of S. saprophyticus from community-acquired UTI, a cross-sectional surveillance study was conducted in the city of Rio de Janeiro, Brazil. In total, 32 (16%) female patients attending two walk-in clinics were culture-positive for S. saprophyticus. Five PFGE clusters were defined and evaluated against epidemiological data. The PFGE clusters were grouped in time, suggesting the existence of community point sources of S. saprophyticus. From these point sources, S. saprophyticus strains may spread among individuals.

  11. Separation and identification of Musa acuminate Colla (banana) leaf proteins by two-dimensional gel electrophoresis and mass spectrometry.

    PubMed

    Lu, Y; Qi, Y X; Zhang, H; Zhang, H Q; Pu, J J; Xie, Y X

    2013-12-19

    To establish a proteomic reference map of Musa acuminate Colla (banana) leaf, we separated and identified leaf proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Tryptic digests of 44 spots were subjected to peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. Three spots that were not identified by MALDI-TOF MS analysis were identified by searching against the NCBInr, SwissProt, and expressed sequence tag (EST) databases. We identified 41 unique proteins. The majority of the identified leaf proteins were found to be involved in energy metabolism. The results indicate that 2D-PAGE is a sensitive and powerful technique for the separation and identification of Musa leaf proteins. A summary of the identified proteins and their putative functions is discussed.

  12. High-throughput genotyping of CRISPR/Cas9-mediated mutants using fluorescent PCR-capillary gel electrophoresis

    PubMed Central

    Ramlee, Muhammad Khairul; Yan, Tingdong; Cheung, Alice M. S.; Chuah, Charles T. H.; Li, Shang

    2015-01-01

    Recent advances in the engineering of sequence-specific synthetic nucleases provide enormous opportunities for genetic manipulation of gene expression in order to study their cellular function in vivo. However, current genotyping methods to detect these programmable nuclease-induced insertion/deletion (indel) mutations in targeted human cells are not compatible for high-throughput screening of knockout clones due to inherent limitations and high cost. Here, we describe an efficient method of genotyping clonal CRISPR/Cas9-mediated mutants in a high-throughput manner involving the use of a direct lysis buffer to extract crude genomic DNA straight from cells in culture, and fluorescent PCR coupled with capillary gel electrophoresis. This technique also allows for genotyping of multiplexed gene targeting in a single clone. Overall, this time- and cost-saving technique is able to circumvent the limitations of current genotyping methods and support high-throughput screening of nuclease-induced mutants. PMID:26498861

  13. GC fractionation enhances microbial community diversity assessment and detection of minority populations of bacteria by denaturing gradient gel electrophoresis.

    PubMed

    Holben, William E; Feris, Kevin P; Kettunen, Anu; Apajalahti, Juha H A

    2004-04-01

    Effectively and accurately assessing total microbial community diversity is one of the primary challenges in modern microbial ecology. This is particularly true with regard to the detection and characterization of unculturable populations and those present only in low abundance. We report a novel strategy, GC fractionation combined with denaturing gradient gel electrophoresis (GC-DGGE), which combines mechanistically different community analysis approaches to enhance assessment of microbial community diversity and detection of minority populations of microbes. This approach employs GC fractionation as an initial step to reduce the complexity of the community in each fraction. This reduced complexity facilitates subsequent detection of diversity in individual fractions. DGGE analysis of individual fractions revealed bands that were undetected or only poorly represented when total bacterial community DNA was analyzed. Also, directed cloning and sequencing of individual bands from DGGE lanes corresponding to individual G+C fractions allowed detection of numerous phylotypes that were not recovered using a traditional random cloning and sequencing approach.

  14. Optimized Protocol for Protein Extraction from the Breast Tissue that is Compatible with Two-Dimensional Gel Electrophoresis.

    PubMed

    Zakharchenko, Olena; Greenwood, Christina; Alldridge, Louise; Souchelnytskyi, Serhiy

    2011-03-10

    Proteomics is a highly informative approach to analyze cancer-associated transformation in tissues. The main challenge to use a tissue for proteomics studies is the small sample size and difficulties to extract and preserve proteins. The choice of a buffer compatible with proteomics applications is also a challenge. Here we describe a protocol optimized for the most efficient extraction of proteins from the human breast tissue in a buffer compatible with two-dimensional gel electrophoresis (2D-GE). This protocol is based on mechanically assisted disintegration of tissues directly in the 2D-GE buffer. Our method is simple, robust and easy to apply in clinical practice. We demonstrate high quality of separation of proteins prepared according to the reported here protocol.

  15. Diagnosis of an outbreak of Salmonella typhimurium in chinchillas (Chinchilla lanigera) by pulsed-field gel electrophoresis.

    PubMed

    Gornatti Churria, Carlos D; Vigo, Germán B; Origlia, Javier; Campos, Josefina; Caffer, María; Píscopo, Miguel; Herrero Loyola, Miguel; Petruccelli, Miguel; Pichel, Mariana

    2014-01-01

    Adult chinchillas (Chinchilla lanigera) that had suddenly died in a commercial farm located in La Plata City, Buenos Aires Province, Argentina, in July 2012 were macroscopically, histopathologically, and microbiologically examined. Salmonella enterica serovar Typhimurium (S. Typhimurium) was isolated from the liver, spleen, heart, lungs, kidneys and intestines from each of the five animals evaluated. The five strains were susceptible to ampicillin, cephalotin, cefotaxime, nalidixic acid, gentamicin, streptomycin, chloramphenicol, fosfomycin, nitrofurantoin and trimethoprim-sulfamethoxazole, and resistant to tetracycline. Each of the five S. Typhimurium isolates was analyzed by XbaI- pulsed-field gel electrophoresis (PFGE), showing an identical electrophoretic profile with 15 defined bands, which was found to be identical to pattern ARJPXX01.0220 of the PulseNet Argentine National database of Salmonella PFGE patterns. This is the first work describing the postmortem diagnosis of an outbreak of salmonellosis in chinchillas by using molecular methods such as PFGE.

  16. Investigating Freshwater Periphyton Community Response to Uranium with Phospholipid Fatty Acid and Denaturing Gradient Gel Electrophoresis Analyses

    SciTech Connect

    Small, Jack A.; Bunn, Amoret L.; McKinstry, Craig A.; Peacock, A. D.; Miracle, Ann L.

    2008-04-01

    Periphyton communities can be used as monitors of ecosystem health and as indicators of contamination in lotic systems. Measures of biomass, community structure and genetic diversity were used to investigate impacts of uranium exposure on periphyton. Laboratory exposures of periphyton in river water amended with uranium were performed for 5 days, followed by 2 days of uranium depuration in unamended river water. Productivity as measured by biomass was not affected by concentrations up to 100 µg L-1 uranium. Phospholipid fatty acid (PLFA) profiles and denaturing gradient gel electrophoresis (DGGE) banding patterns found no changes in community or genetic structure related to uranium exposure. We suggest that the periphyton community as a whole is not impacted by exposures of uranium up to a dose of 100 µg L-1. These findings have significance for the assessment and prediction of uranium impacts on aquatic ecosystems.

  17. Structural analysis of mitochondrial DNA molecules from fungi and plants using moving pictures and pulsed-field gel electrophoresis.

    PubMed

    Bendich, A J

    1996-02-02

    The size and structure of mitochondrial DNA (mtDNA) molecules was investigated by conventional and pulsed-field gel electrophoresis (PFGE) and by analyzing moving pictures during electrophoresis of individual fluorescently labelled mtDNA molecules. Little or no mtDNA that migrated into the gel was found in circular form for fungi (Schizosaccharomyces pombe, Saccharomyces cerevisiae and Neurospora crassa) or plants (Brassica hirta, tobacco, voodoo lily and maize). Most mtDNA migrated as a smear of linear DNA sizes from about 50 to 100 or 250 kilobases (kb), depending on the species, irrespective of the size of the mitochondrial genome over a range of 0.06 to 570 kb. S. cerevisiae, B. hirta and tobacco also yielded a linear mtDNA fraction containing molecules > 1000 kb in size. About half the mtDNA remained in the well of the gel after PFGE. Moving pictures revealed that this well-bound (wb) mtDNA contained molecules larger than the genome size in linear form for all species (except N. crassa) and in multi-fibered, comet-like forms for most of the wb mtDNA of N. crassa and Sc. pombe. A minor amount of the wb mtDNA with visually interpretable structure was circular: circle sizes were both larger and smaller than the 80-kb genome of S. cerevisiae, larger than the 19-kb genome of Sc. pombe and smaller than the 208-kb and 570-kb genomes of B. hirta and maize, respectively. About 25 to 75% of the wb mtDNA from cultured tobacco cells was found in circles smaller than its genome size. Partial digestion of Sc. pombe mtDNA with restriction endonucleases that cleave once per genome revealed gel bands at about 38 kb and 19 kb with a smear of sizes between the bands and below the 19-kb band, suggesting a head-to-tail genomic concatemer as the most prominent form in extracted mtDNA. A pattern of bands with smears was also found for complete digests (with multiply cleaving enzymes) of mtDNA from Sc. pombe, S. cerevisiae and N. crassa, but bands without smears were found for

  18. Use of polyacrylamide gel moving boundary electrophoresis to enable low-power protein analysis in a compact microdevice.

    PubMed

    Duncombe, Todd A; Herr, Amy E

    2012-10-16

    In designing a protein electrophoresis platform composed of a single-inlet, single-outlet microchannel powered solely by voltage control (no pumps, values, injectors), we adapted the original protein electrophoresis format-moving boundary electrophoresis (MBE)-to a high-performance, compact microfluidic format. Key to the microfluidic adaptation is minimization of injection dispersion during sample injection. To reduce injection dispersion, we utilize a photopatterned free-solution-polyacrylamide gel (PAG) stacking interface at the head of the MBE microchannel. The nanoporous PAG molecular sieve physically induces a mobility shift that acts to enrich and sharpen protein fronts as proteins enter the microchannel. Various PAG configurations are characterized, with injection dispersion reduced by up to 85%. When employed for analysis of a model protein sample, microfluidic PAG MBE baseline-resolved species in 5 s and in a separation distance of less than 1 mm. PAG MBE thus demonstrates electrophoretic assays with minimal interfacing and sample handling, while maintaining separation performance. Owing to the short separation lengths needed in PAG MBE, we reduced the separation channel length to demonstrate an electrophoretic immunoassay powered with an off-the-shelf 9 V battery. The electrophoretic immunoassay consumed less than 3 μW of power and was completed in 30 s. To our knowledge, this is the lowest voltage and lowest power electrophoretic protein separation reported. Looking forward, we see the low-power PAG MBE as a basis for highly multiplexed protein separations (mobility shift screening assays) as well as for portable low-power diagnostic assays.

  19. Analysis of Genomic Diversity among Helicobacter pylori Strains Isolated from Iranian Children by Pulsed Field Gel Electrophoresis

    PubMed Central

    Falsafi, Tahereh; Sotoudeh, Nazli; Feizabadi, Mohammad-Mehdi; Mahjoub, Fatemeh

    2014-01-01

    Objective: Presence of genomic diversity among Helicobacter pylori (H. pylori) strains have been suggested by numerous investigators. Little is known about diversity of H. pylori strains isolated from Iranian children and their association with virulence of the strains. Our purpose was to assess the degree of genomic diversity among H. pylori strains isolated from Iranian-children, on the basis of vacA genotype, cagA status of the strains, sex, age as well as the pathological status of the patients. Methods: Genomic DNA from 44 unrelated H. pylori strains isolated during 1997–2009, was examined by pulse-field gel electrophoresis (PFGE). Pathological status of the patients was performed according to the modified Sydney-system and genotype/status of vacA/cagA genes was determined by PCR. PFGE was performed using XbaI restriction-endonuclease and the field inversion-gel electrophoresis system. Findings: No significant relationship was observed between the patterns of PFGE and the cagA/vacA status/genotype. Also no relationship was observed between age, sex, and pathological status of the children and the PFGE patterns of their isolates. Similar conclusion was obtained by Total Lab software. However, more relationship was observed between the strains isolated in the close period (1997–2009, 2001–2003, 2005–2007, and 2007–2009) and more difference was observed among those obtained in the distant periods (1997 and 2009). Conclusion: H. pylori strains isolated from children in Iran are extremely diverse and this diversity is not related to their virulence characteristics. Occurrence of this extreme diversity may be related to adaptation of H. pylori strains to variable living conditions during transmission between various host individuals. PMID:26019775

  20. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut (Juglans regia L.) proteins and protein fractionations.

    PubMed

    Mao, Xiaoying; Hua, Yufei; Chen, Guogang

    2014-01-27

    As a by-product of oil production, walnut proteins are considered as an additional source of plant protein for human food. To make full use of the protein resource, a comprehensive understanding of composition and characteristics of walnut proteins are required. Walnut proteins have been fractionated and characterized in this study. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut proteins and protein fractionations were analyzed. The proteins were sequentially separated into four fractions according to their solubility. Glutelin was the main component of the protein extract. The content of glutelin, albumin, globulin and prolamin was about 72.06%, 7.54%, 15.67% and 4.73% respectively. Glutelin, albumin and globulin have a balanced content of essential amino acids, except for methionine, with respect to the FAO pattern recommended for adults. SDS-PAGE patterns of albumin, globulin and glutelin showed several polypeptides with molecular weights 14.4 to 66.2 kDa. The pattern of walnut proteins in two-dimension electrophoresis (2-DE) showed that the isoelectric point was mainly in the range of 4.8-6.8. The results of size exclusion chromatogram indicated molecular weight of the major components of walnut proteins were between 3.54 and 81.76 kDa.

  1. Development and validation of a PulseNet standardized pulsed-field gel electrophoresis protocol for subtyping of Vibrio cholerae.

    PubMed

    Cooper, K L F; Luey, C K Y; Bird, M; Terajima, J; Nair, G B; Kam, K M; Arakawa, E; Safa, A; Cheung, D T; Law, C P; Watanabe, H; Kubota, K; Swaminathan, B; Ribot, E M

    2006-01-01

    PulseNet is a network that utilizes standardized pulsed-field gel electrophoresis (PFGE) protocols with the purpose of conducting laboratory-based surveillance of foodborne pathogens. PulseNet standardized PFGE protocols are subject to rigorous testing during the developmental phase and careful evaluation during a validation process assessing its robustness and reproducibility in different laboratories. Here we describe the development and validation of a rapid PFGE protocol for subtyping Vibrio cholerae for use in PulseNet International activities. While the protocol was derived from the existing PulseNet protocol for Escherichia coli O157, various aspects of this protocol were optimized for use with V. cholerae, most notably a change of the primary and secondary restriction enzyme to SfiI and NotI, respectively, and the use of a two-block electrophoresis program. External validation of this protocol was undertaken through a collaboration between three PulseNet Asia Pacific laboratories (Public Health Laboratory Centre, Hong Kong, National Institute of Infectious Diseases, Japan, and International Center for Diarrhoeal Diseases Research-Bangladesh) and PulseNet USA. Comparison of PFGE patterns generated by each of the participating laboratories demonstrated that the protocol is robust and reproducible.

  2. DNA electrophoresis in agarose gels: Effects of electric field and gel concentration on the exponential dependence of reciprocal mobility on DNA length

    NASA Astrophysics Data System (ADS)

    Beheshti, Afshin; van Winkle, David; Randolph, Rill

    2002-03-01

    Electrophoresis was performed on double stranded DNA fragments ranging in length from 200 bp to 48502 bp at agarose gel concentrations T = 0.5% - 1.5% and electric fields E = 0.71 V/cm to 5 V/cm. A wide range of electric fields and gel concentrations were used to find what range of conditions work with the new interpolation equation, 1/μ(L) = 1/μl - (1/μl - 1/μ_s)e^-L/γ. The equation fit extremely well (\\chi^2 >= 0.999) to data with E = 2.5 V/cm to 5 V/cm and for lower fields (E < 2.5 V/cm) at low gel concentrations (T = 0.5% and 0.7%). This exponential relation seemed to hold when there is a smooth transition from the Ogston sieving regime to the reptation regime when looking at the “reptation plots” (plotting 3μL/μo vs. L) (Rousseau, J., Drouin, G., and Slater, G. W., Phys Rev Lett. 1997, 79, 1945-1948). For separations of single-stranded DNA in polyacrylamide, similar reptation plots have a region with a negative slope between the Ogston sieving regime and the reptation regime which has been interpreted as the signature of entropic trapping. When separating double-stranded DNA in agarose it was observed that fits deviate from the data when three different slopes are observed in the reptation plots. Failure of the simple exponential relationship between reciprocal mobility and DNA length appears to be the consequence of entropic trapping.

  3. Resolution and identification of major peanut allergens using a combination of fluorescence two-dimensional differential gel electrophoresis, western blotting and Q-TOF mass spectrometry.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut allergy is triggered by several proteins known as allergens. The matching resolution and identification of major peanut allergens in 2D protein maps, was accomplished by the use of fluorescence two-dimensional differential gel electrophoresis (2D DIGE), Western blotting and quadrupole time-of...

  4. Proteomics analysis in mature seed of four peanut cultivars using two-dimensional gel electrophoresis reveals distinct differential expression of storage, anti-nutritive, and allergenic proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein profiles of total seed proteins isolated from mature seeds of four peanut cultivars, New Mexico Valencia C (NM Valencia C), Tamspan 90, Georgia Green, and NC-7, were studied using two-dimensional gel electrophoresis coupled with nano electrospray ionization liquid chromatography tandem mass ...

  5. Electrophoresis Gel Quantification with a Flatbed Scanner and Versatile Lighting from a Screen Scavenged from a Liquid Crystal Display (LCD) Monitor

    ERIC Educational Resources Information Center

    Yeung, Brendan; Ng, Tuck Wah; Tan, Han Yen; Liew, Oi Wah

    2012-01-01

    The use of different types of stains in the quantification of proteins separated on gels using electrophoresis offers the capability of deriving good outcomes in terms of linear dynamic range, sensitivity, and compatibility with specific proteins. An inexpensive, simple, and versatile lighting system based on liquid crystal display backlighting is…

  6. A comparison of non-typhoidal Salmonella from humans and food animals using pulsed-field gel electrophoresis and antimicrobial susceptibility patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonellosis is one of the most important foodborne diseases affecting humans. To characterize the relationship between Salmonella causing human infections and their food animal reservoirs, we compared pulsed-field gel electrophoresis (PFGE) and antimicrobial susceptibility patterns of non-typhoida...

  7. A comparison of BOX-PCR and pulsed-field gel electrophoresis to determine genetic relatedness of enterococci from different environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: The genetic relatedness of enterococci from poultry litter to enterococci from nearby surface water and groundwater in the Lower Fraser Valley regions of British Columbia, Canada was determined. Methods and Results: BOX-PCR and Pulsed-Field Gel Electrophoresis (PFGE) were used to subtype en...

  8. Quantification of DNA by Agarose Gel Electrophoresis and Analysis of the Topoisomers of Plasmid and M13 DNA Following Treatment with a Restriction Endonuclease or DNA Topoisomerase I

    ERIC Educational Resources Information Center

    Tweedie, John W.; Stowell, Kathryn M.

    2005-01-01

    A two-session laboratory exercise for advanced undergraduate students in biochemistry and molecular biology is described. The first session introduces students to DNA quantification by ultraviolet absorbance and agarose gel electrophoresis followed by ethidium bromide staining. The second session involves treatment of various topological forms of…

  9. Detection of reactive oxygen species-sensitive thiol proteins by redox difference gel electrophoresis: implications for mitochondrial redox signaling.

    PubMed

    Hurd, Thomas R; Prime, Tracy A; Harbour, Michael E; Lilley, Kathryn S; Murphy, Michael P

    2007-07-27

    Reactive oxygen species (ROS) produced by the mitochondrial respiratory chain can be a redox signal, but whether they affect mitochondrial function is unclear. Here we show that low levels of ROS from the respiratory chain under physiological conditions reversibly modify the thiol redox state of mitochondrial proteins involved in fatty acid and carbohydrate metabolism. As these thiol modifications were specific and occurred without bulk thiol changes, we first had to develop a sensitive technique to identify the small number of proteins modified by endogenous ROS. In this technique, redox difference gel electrophoresis, control, and redox-challenged samples are labeled with different thiol-reactive fluorescent tags and then separated on the same two-dimensional gel, enabling the sensitive detection of thiol redox modifications by changes in the relative fluorescence of the two tags within a single protein spot, followed by protein identification by mass spectrometry. Thiol redox modification affected enzyme activity, suggesting that the reversible modification of enzyme activity by ROS from the respiratory chain may be an important and unexplored mode of mitochondrial redox signaling.

  10. [Progress in combination of gel electrophoresis and laser ablation inductively coupled plasma mass spectrometry for trace elements determination in proteins].

    PubMed

    Wang, Ying; Guo, Yan-li; Yuan, Hong-lin; Wei, Yong-feng; Yan, Hong-tao; Chen, Hui-hui

    2012-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has become a very efficient and sensitive trace, ultratrace, and surface analytical technique for the in situ study of the concentration and distribution of the elements in life sciences with high spatial resolution. It is being used more and more frequently in biological, medical materials and protein research, which will lead to a better understanding of physiology and pathology process in cells and tissues. The present review mainly introduces the strategies of combination of gel electrophoresis (GE) with LA-ICP-MS for the quantification of trace elements in proteins, including the proteins separation, elements detection and calibration methods. The paper emphasizes the basic conditions of the proteins separation, focusing on the stability of proteins during GE and the treatment methods of staining and drying of the gel to enable successful detection of the elements by LA-ICP-MS. In addition, the application of GE-LA-ICP-MS in phosphoproteins, selenoproteins and metal-binding proteins is introduced in detail. The prospects and challenge for this technique are discussed as well for further study.

  11. A comparative method for protein extraction and 2-D gel electrophoresis from different tissues of Cajanus cajan

    PubMed Central

    Singh, Nisha; Jain, Neha; Kumar, Ram; Jain, Ajay; Singh, Nagendra K.; Rai, Vandna

    2015-01-01

    Pigeonpea is an important legume crop with high protein content. However, it is often subjected to various abiotic and biotic stresses. Proteomics is a state-of-the-art technique used to analyze the protein profiling of a tissue for deciphering the molecular entities that could be manipulated for developing crops resistant to these stresses. In this context, developing a comprehensive proteome profile from different vegetative and reproductive tissues has become mandatory. Although several protein extraction protocols from different tissues of diverse plant species have been reported, there is no report for pigeonpea. Here, we report tissue-specific protein extraction protocols representing vegetative (young leaves), and reproductive (flowers and seeds) organs and their subsequent analysis on 2-dimensional gel electrophoresis. The study explicitly demonstrated that the efficacy of a particular protein extraction protocol is dependent on the different tissues, such as leaves, flowers and seeds that differ in their structure and metabolic constituents. For instance, phenol-based protocol showed an efficacy toward higher protein yield, better spot resolution and a minimal streaking on 2-DE gel for both leaves and flowers. Protein extraction from seeds was best achieved by employing phosphate-TCA-acetone protocol. PMID:26300903

  12. A comparative method for protein extraction and 2-D gel electrophoresis from different tissues of Cajanus cajan.

    PubMed

    Singh, Nisha; Jain, Neha; Kumar, Ram; Jain, Ajay; Singh, Nagendra K; Rai, Vandna

    2015-01-01

    Pigeonpea is an important legume crop with high protein content. However, it is often subjected to various abiotic and biotic stresses. Proteomics is a state-of-the-art technique used to analyze the protein profiling of a tissue for deciphering the molecular entities that could be manipulated for developing crops resistant to these stresses. In this context, developing a comprehensive proteome profile from different vegetative and reproductive tissues has become mandatory. Although several protein extraction protocols from different tissues of diverse plant species have been reported, there is no report for pigeonpea. Here, we report tissue-specific protein extraction protocols representing vegetative (young leaves), and reproductive (flowers and seeds) organs and their subsequent analysis on 2-dimensional gel electrophoresis. The study explicitly demonstrated that the efficacy of a particular protein extraction protocol is dependent on the different tissues, such as leaves, flowers and seeds that differ in their structure and metabolic constituents. For instance, phenol-based protocol showed an efficacy toward higher protein yield, better spot resolution and a minimal streaking on 2-DE gel for both leaves and flowers. Protein extraction from seeds was best achieved by employing phosphate-TCA-acetone protocol.

  13. Semi-quantitative digital analysis of polymerase chain reaction-electrophoresis gel: Potential applications in low-income veterinary laboratories

    PubMed Central

    Antiabong, John F.; Ngoepe, Mafora G.; Abechi, Adakole S.

    2016-01-01

    Aim: The interpretation of conventional polymerase chain reaction (PCR) assay results is often limited to either positive or negative (non-detectable). The more robust quantitative PCR (qPCR) method is mostly reserved for quantitation studies and not a readily accessible technology in laboratories across developing nations. The aim of this study was to evaluate a semi-quantitative method for conventional PCR amplicons using digital image analysis of electrophoretic gel. The potential applications are also discussed. Materials and Methods: This study describes standard conditions for the digital image analysis of PCR amplicons using the freely available ImageJ software and confirmed using the qPCR assay. Results and Conclusion: Comparison of ImageJ analysis of PCR-electrophoresis gel and qPCR methods showed similar trends in the Fusobacterium necrophorum DNA concentration associated with healthy and periodontal disease infected wallabies (p≤0.03). Based on these empirical data, this study adds descriptive attributes (“more” or “less”) to the interpretation of conventional PCR results. The potential applications in low-income veterinary laboratories are suggested, and guidelines for the adoption of the method are also highlighted. PMID:27733792

  14. Diffusive transfer to membranes as an effective interface between gel electrophoresis and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ogorzalek Loo, Rachel R.; Mitchell, Charles; Stevenson, Tracy I.; Loo, Joseph A.; Andrews, Philip C.

    1997-12-01

    Diffusive transfer was examined as a blotting method to transfer proteins from polyacrylamide gels to membranes for ultraviolet matrix-assisted laser desorption ionization (MALDI) mass spectrometry. The method is well-suited for transfers from isoelectric focusing (IEF) gels. Spectra have been obtained for 11 pmol of 66 kDa albumin loaded onto an IEF gel and subsequently blotted to polyethylene. Similarly, masses of intact carbonic anhydrase and hemoglobin were obtained from 14 and 20 pmol loadings. This methodology is also compatible with blotting high molecular weight proteins, as seen for 6 pmol of the 150 kDa monoclonal antibody anti-[beta]-galactosidase transferred to Goretex. Polypropylene, Teflon, Nafion and polyvinylidene difluoride (PVDF) also produced good spectra following diffusive transfer. Only analysis from PVDF required that the membrane be kept wet prior to application of matrix. Considerations in mass accuracy for analysis from large-area membranes with continuous extraction and delayed extraction were explored, as were remedies for surface charging. Vapor phase CNBr cleavage was applied to membrane-bound samples for peptide mapping.

  15. Rapid determination of multi-locus sequence types of Listeria monocytogenes by microtemperature-gradient gel electrophoresis.

    PubMed

    Tominaga, Tatsuya

    2007-09-01

    This report presents a new method for identifying multi-locus sequence types of Listeria monocytogenes by microtemperature-gradient gel electrophoresis (mu-TGGE). Genomic comparison of L. monocytogenes serovar 1/2a strains EGD-e and F6854 allowed selection of novel polymorphic sequences lmo0386 and lmo0428 as optimum regions for mu-TGGE analysis, in addition to the previously identified lmo0297 gene. Sequence analysis of a total of 48 standard strains revealed that the strains could be grouped into 7 (lmo0386), 8 (lmo0428) and 12 (lmo0297) sequence types. The PCR products from 2, 4 and 4 sequence types of the lmo0386, lmo0428 and lmo0297 genes were selected as marker alleles, and mu-TGGE analysis of the mixture revealed adequate band separation on a single gel. Furthermore, the primer sets could be successfully mixed in a single tube for multiplex PCR, yielding a rapid and easy strategy for sequence type identification. For practical application, multiplex PCR was performed with Cy3-labeled primers against a sequence type-unknown sample isolated from meat. The resulting products were mixed with Cy5-labeled products of marker alleles whose sequence types were known, and mu-TGGE analysis was performed. Overlapping Cy3 and Cy5 patterns allowed identification of the sequence types at all 3 loci on a single gel. Moreover, the mu-TGGE analysis step took only 9 min. Thus, this novel method of multiplex PCR followed by mu-TGGE analysis could prove useful as a rapid and discriminative tool for tracing the strain types, contamination routes and sources of L. monocytogenes.

  16. Identification and Population Dynamics of Yeasts in Sourdough Fermentation Processes by PCR-Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Meroth, Christiane B.; Hammes, Walter P.; Hertel, Christian

    2003-01-01

    Four sourdoughs (A to D) were produced under practical conditions, using a starter obtained from a mixture of three commercially available sourdough starters and baker's yeast. The doughs were continuously propagated until the composition of the microbiota remained stable. A fungi-specific PCR-denaturing gradient gel electrophoresis (DGGE) system was established to monitor the development of the yeast biota. The analysis of the starter mixture revealed the presence of Candida humilis, Debaryomyces hansenii, Saccharomyces cerevisiae, and Saccharomyces uvarum. In sourdough A (traditional process with rye flour), C. humilis dominated under the prevailing fermentation conditions. In rye flour sourdoughs B and C, fermented at 30 and 40°C, respectively, S. cerevisiae became predominant in sourdough B, whereas in sourdough C the yeast counts decreased within a few propagation steps below the detection limit. In sourdough D, which corresponded to sourdough C in temperature but was produced with rye bran, Candida krusei became dominant. Isolates identified as C. humilis and S. cerevisiae were shown by randomly amplified polymorphic DNA-PCR analysis to originate from the commercial starters and the baker's yeast, respectively. The yeast species isolated from the sourdoughs were also detected by PCR-DGGE. However, in the gel, additional bands were visible. Because sequencing of these PCR fragments from the gel failed, cloning experiments with 28S rRNA amplicons obtained from rye flour were performed, which revealed Cladosporium sp., Saccharomyces servazii, S. uvarum, an unculturable ascomycete, Dekkera bruxellensis, Epicoccum nigrum, and S. cerevisiae. The last four species were also detected in sourdoughs A, B, and C. PMID:14660398

  17. Efficient method of protein extraction from Theobroma cacao L. roots for two-dimensional gel electrophoresis and mass spectrometry analyses.

    PubMed

    Bertolde, F Z; Almeida, A-A F; Silva, F A C; Oliveira, T M; Pirovani, C P

    2014-07-04

    Theobroma cacao is a woody and recalcitrant plant with a very high level of interfering compounds. Standard protocols for protein extraction were proposed for various types of samples, but the presence of interfering compounds in many samples prevented the isolation of proteins suitable for two-dimensional gel electrophoresis (2-DE). An efficient method to extract root proteins for 2-DE was established to overcome these problems. The main features of this protocol are: i) precipitation with trichloroacetic acid/acetone overnight to prepare the acetone dry powder (ADP), ii) several additional steps of sonication in the ADP preparation and extractions with dense sodium dodecyl sulfate and phenol, and iii) adding two stages of phenol extractions. Proteins were extracted from roots using this new protocol (Method B) and a protocol described in the literature for T. cacao leaves and meristems (Method A). Using these methods, we obtained a protein yield of about 0.7 and 2.5 mg per 1.0 g lyophilized root, and a total of 60 and 400 spots could be separated, respectively. Through Method B, it was possible to isolate high-quality protein and a high yield of roots from T. cacao for high-quality 2-DE gels. To demonstrate the quality of the extracted proteins from roots of T. cacao using Method B, several protein spots were cut from the 2-DE gels, analyzed by tandem mass spectrometry, and identified. Method B was further tested on Citrus roots, with a protein yield of about 2.7 mg per 1.0 g lyophilized root and 800 detected spots.

  18. On-line detection of proteins in gel electrophoresis by ultraviolet absorption and by native fluorescence utilizing a charge-coupled device imaging system

    SciTech Connect

    Koutny, L.B.; Yeung, E.S. )

    1993-01-15

    Slab-gel electrophoresis is the most common technique for the separation of high molecular weight biomolecules such a proteins. Acrylamide gels, as described by Laemmli, are generally the matrix of choice for the separation of SDS-denatured proteins via electrophoresis. Agarose gels, similar to those used for nucleic acids, are also useful for the separation of proteins but have not been widely applied. Agarose gels are advantageous for many reasons including simplicity of gel casting, easy sample recovery, and the fact that it is nontoxic to both the experimenter and the proteins. In the past, agarose was not used because of its poor resolving power at molecular weights below 40,000. New agarose gel systems are available that will resolve proteins ranging from 20,000 to 200,000 with or without SDS denaturing. In this study, agarose gel was chosen for its optical qualities and ability to be cast in an open system that can be imaged as the experiment is running. 17 refs., 7 figs.

  19. Evaluation of three-dimensional gel electrophoresis to improve quantitative profiling of complex proteomes.

    PubMed

    Colignon, Bertrand; Raes, Martine; Dieu, Marc; Delaive, Edouard; Mauro, Sergio

    2013-07-01

    Two-dimensional remains one of the main experimental approaches in proteome analysis. However, comigration of protein leads to several limitations: lack of accuracy in protein identification, impaired comparative quantification, and PTM detection. We have optimized a third additional step of in-gel separation to alleviate comigration associated drawbacks. Spot resolution is strikingly improved following this simple and rapid method and the positive impact on protein and peptide identification from MS/MS data, on the analysis of relative changes in protein abundance, and on the detection of PTM is described.

  20. Biochemical Identification of the Two Races of Radopholus similis by Starch Gel Electrophoresis.

    PubMed

    Huettel, R N; Dickson, D W; Kaplan, D T

    1983-07-01

    Analysis of genetic variation between the banana and the citrus races of Radopholus similis by starch gel eleclrophoresis demonstrated that 7 of 16 enzyme-encoding loci could be used for their diagnostic separation. The two races are closely related arid share approximately 75% of the enzymes evaluated. The level of dissimilarities o1 inherited bands indicates that no gene flow occurs between the races. Aldolase, alpha + beta esterase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, lactate dehydrogenase, malate dehydrogenase, and phosphoglucose isomerase are diagnostic markers of the races.

  1. Biochemical Identification of the Two Races of Radopholus similis by Starch Gel Electrophoresis

    PubMed Central

    Huettel, R. N.; Dickson, D. W.; Kaplan, D. T.

    1983-01-01

    Analysis of genetic variation between the banana and the citrus races of Radopholus similis by starch gel eleclrophoresis demonstrated that 7 of 16 enzyme-encoding loci could be used for their diagnostic separation. The two races are closely related arid share approximately 75% of the enzymes evaluated. The level of dissimilarities o1 inherited bands indicates that no gene flow occurs between the races. Aldolase, α + β esterase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, lactate dehydrogenase, malate dehydrogenase, and phosphoglucose isomerase are diagnostic markers of the races. PMID:19295814

  2. Using single-strand conformational polymorphism gel electrophoresis to analyze mutually exclusive alternative splicing.

    PubMed

    Celotto, Alicia M; Graveley, Brenton R

    2004-01-01

    Single-strand conformational polymorphism analysis has been used successfully to identify single nucleotide changes within sequences based on the fact that multidetection enhancement gels will separate molecules based on their conformation rather than their size. We have expanded the utility of this technique to analyze easily the alternative splicing of pre-mRNAs containing multiple mutually exclusive exons of the same size. We have used this technique to study the Caenorhabditis elegans let-2 gene containing two alternative exons and the Drosophilia melanogaster Dscam gene, which contains 12 mutually exclusive exons. The ease and the quantitative nature of this technique should be very useful.

  3. DNA double-strand breaks measured in individual cells subjected to gel electrophoresis

    SciTech Connect

    Olive, P.L.; Wlodek, D.; Banath, J.P. )

    1991-09-01

    Microscopic examination of individual mammalian cells embedded in agarose, subjected to electrophoresis, and stained with a fluorescent DNA-binding dye provides a novel way of measuring DNA damage and more importantly, of assessing heterogeneity in DNA damage within a mixed population of cells. With this method, DNA double-strand breaks can be detected in populations of cells exposed to X-ray doses as low as 5 Gy. The radiation dose-response relationship for initial formation of double-strand breaks was identical for cell lines irradiated in G1, regardless of their sensitivity to killing by ionizing radiation. However, for cells irradiated in S phase, DNA migration was significantly reduced. For Chinese hamster V79 cells, Chinese hamster ovary cells, WiDr human colon carcinoma cells, and L5178Y-R mouse lymphoblastoid cells, S-phase DNA appeared to be about 3 times less sensitive to X-ray damage than DNA from other phases of the cell cycle. However, for the very radiosensitive L5178Y-S cells, the migration of replicating DNA was reduced only slightly. For Chinese hamster V79 and Chinese hamster ovary cells, damage was repaired at a similar rate in all cells of the population, and 85% of the breaks were rejoined within 2 h after irradiation. The radiosensitive L5178Y-S cells repaired damage more slowly than V79 or Chinese hamster ovary cells; 2 h after exposure to 50 Gy, approximately 50% of the damage was still present.

  4. Proteomic profiling of sea bass muscle by two-dimensional gel electrophoresis and tandem mass spectrometry.

    PubMed

    Terova, Genciana; Pisanu, Salvatore; Roggio, Tonina; Preziosa, Elena; Saroglia, Marco; Addis, Maria Filippa

    2014-02-01

    In this study, the proteome profile of European sea bass (Dicentrarchus labrax) muscle was analyzed using two-dimensional electrophoresis (2-DE) and tandem mass spectrometry with the aim of providing a more detailed characterization of its specific protein expression profile. A highly populated and well-resolved 2-DE map of the sea bass muscle tissue was generated, and the corresponding protein identity was provided for a total of 49 abundant protein spots. Upon Ingenuity Pathway Analysis, the proteins mapped in the sea bass muscle profile were mostly related to glycolysis and to the muscle myofibril structure, together with other biological activities crucial to fish muscle metabolism and contraction, and therefore to fish locomotor performance. The data presented in this work provide important and novel information on the sea bass muscle tissue-specific protein expression, which can be useful for future studies aimed to improve seafood traceability, food safety/risk management and authentication analysis. This work is also important for understanding the proteome map of the sea bass toward establishing the animal as a potential model for muscular studies.

  5. Theory of gel electrophoresis in high fields: Evolution of a population of hernias

    NASA Astrophysics Data System (ADS)

    Long, Didier; Viovy, Jean-Louis

    1997-02-01

    We consider long polyelectrolytes that are initially at rest in a gel and suddenly submitted to a strong electric field. The evolution of the conformation regime is described up to the final disengagement from the initial tube. Just after the field has been applied, the chain adopts a comb-like conformation with several “hernias”, which evolve in competition with each other. As long as the conformation has many hernias, the distribution of their size follows a self-similar law, first described by Deutsch. The number of hernias decreases, and ultimately the chain disengages from its initial tube. Various predictions for the conformation of the chain in this last stage and for time constants are proposed. In particular, the disengagement times are found to follow a self-similar law in the size of the chains.

  6. Nanorods of Various Oxides and Hierarchically Structured Mesoporous Silica by Sol-Gel Electrophoresis

    SciTech Connect

    Limmer, Steven J.; Hubler, Timothy L.; Cao, Guozhong

    2003-01-02

    In this paper, we report the template-based growth of nanorods of oxides and hierarchically structured mesoporous silica, formed by means of a combination of sol-gel processing and elecrophoretic deposition. Both single metal oxides (TiO2) and complex oxides (Pb(Zr0.52Ti0.48)O3) have been grown by this method. This method has also been applied to the growth of nanorods of mesoporous silica having an ordered pore structure, where the pores are aligned parallel to the long axis of the nanorod. Uniformly sized nanorods of about 125-200 nm in diameter and 10 um in length were grown over large areas with near unidirectional alignment. Appropriate sol preparation yielded the desired stoichiometric chemical composition and crystal structure of the oxide nanorods, with a heat treatment (500-700 C for 15-30 min) for crystallization, densification and any necessary pyrolysis.

  7. Simultaneous Separation of Acidic and Basic Isoperoxidases in Wounded Potato Tissue by Acrylamide Gel Electrophoresis 1

    PubMed Central

    Borchert, Rolf; Decedue, Charles J.

    1978-01-01

    Preparation and use of a newly developed pH 4.3 horizontal thin layer acrylamide gel which permits the simultaneous separation of acidic and basic isoperoxidases in up to 30 samples is described. Use of cytochrome c, horseradish peroxidase, and a purified potato isoperoxidase as internal standards for a range in isoelectric points of peroxidases from pH 3 to 11 is introduced to facilitate comparison of results obtained with different materials and different methods. Distribution of tissue-specific isoperoxidases in different cell layers of wounded potato (Solanum tuberosum L.) tissue is shown and their purification described. Evidence for the in vitro degradation of basic potato isoperoxidases resulting in more acidic forms similar to isoperoxidases occurring in wounded potato tissue is presented. The significance of this observation for the postulated differential function of different isoperoxidases is discussed. ImagesFig. 1-3 PMID:16660608

  8. Separation and identification of peptides from gel-isolated membrane proteins using a microfabricated device for combined capillary electrophoresis/nanoelectrospray mass spectrometry.

    PubMed

    Li, J; Kelly, J F; Chernushevich, I; Harrison, D J; Thibault, P

    2000-02-01

    The coupling of microfabricated devices to nanoelectrospray mass spectrometers using both a triple quadrupole and a quadrupole time-of-flight mass spectrometer (QqTOF MS) is presented for the analysis of trace-level membrane proteins. Short disposable nanoelectrospray emitters were directly coupled to the chip device via a low dead volume connection. The analytical performance of this integrated device in terms of sensitivity and reproducibility was evaluated for standard peptide mixtures. A concentration detection limit ranging from 3.2 to 43.5 nM for different peptides was achieved in selected ion monitoring, thus representing a 10-fold improvement in sensitivity compared to that of microelectrospray using the same chip/mass spectrometer. Replicate injections indicated that reproducibility of migration time was typically less than 3.1% RSD whereas RSD values of 6-13% were observed on peak areas. Although complete resolution of individual components is not typically achieved for complex digests, the present chip capillary electrophoresis (chip-CE) device enabled proper sample cleanup and partial separation of multicomponent samples prior to mass spectral identification. Analyses of protein digests were typically achieved in less than 1.5 min with peak widths of 1.8-2.5 s (half-height definition) as indicated from individual reconstructed ion electropherograms. The application of this chip-CE/QqTOF MS system is further demonstrated for the identification of membrane proteins which form a subset of the Haemophilus influenzae proteome. Bands first separated by 1D-gel electrophoresis were excised and digested, and extracted tryptic peptides were loaded on the chip without any further sample cleanup or on-line adsorption preconcentration. Accurate molecular mass determination (< 5 ppm) in peptide-mapping experiments was obtained by introducing an internal standard via a postseparation channel. The analytical potential of this integrated device for the identification of

  9. Specific proteins synthesized during the viral lytic cycle in vaccinia virus-infected HeLa cells: analysis by high-resolution, two-dimensional gel electrophoresis

    SciTech Connect

    Carrasco, L.; Bravo, R.

    1986-05-01

    The proteins synthesized in vaccinia-infected HeLa cells have been analyzed at different times after infection by using two-dimensional gel electrophoresis. Vaccinia-infected cells present up to 198 polypeptides (138 acidic, isoelectric focusing; 60 basic, nonequilibrium pH gradient electrophoresis) not detected in control cells. Cells infected in the presence of cycloheximide show 81 additional polypeptides after cycloheximide removal, resulting in a total estimate of 279 proteins induced after vaccinia infection. The glycoproteins made at various time postinfection were also analyzed. At least 13 proteins labeled with (/sup 3/H)glucosamine were detected in vaccinia-infected HeLa cells.

  10. Specific proteins synthesized during the viral lytic cycle in vaccinia virus-infected HeLa cells: analysis by high-resolution, two-dimensional gel electrophoresis.

    PubMed Central

    Carrasco, L; Bravo, R

    1986-01-01

    The proteins synthesized in vaccinia-infected HeLa cells have been analyzed at different times after infection by using two-dimensional gel electrophoresis. Vaccinia-infected cells present up to 198 polypeptides (138 acidic, isoelectric focusing; 60 basic, nonequilibrium pH gradient electrophoresis) not detected in control cells. Cells infected in the presence of cycloheximide show 81 additional polypeptides after cycloheximide removal, resulting in a total estimate of 279 proteins induced after vaccinia infection. The glycoproteins made at various times postinfection were also analyzed. At least 13 proteins labeled with [3H]glucosamine were detected in vaccinia-infected HeLa cells. Images PMID:3701923

  11. Double-stranded cucumovirus associated RNA 5: which sequence variations may be detected by optical melting and temperature-gradient gel electrophoresis?

    PubMed

    Steger, G; Po, T; Kaper, J; Riesner, D

    1987-07-10

    Sequence variants of the double-stranded form of satellite RNAs of cucumber mosaic virus (dsCARNA 5) were analyzed for the possibility to experimentally detect minor nucleotide sequence changes. Denaturation maps (helix-probability versus position of the nucleotide in the sequence versus temperature) were calculated applying the Poland algorithm. Optical denaturation curves and temperature-gradient gel mobility curves were simulated using the denaturation maps and were compared with experimental results from optical melting and temperature-gradient gel electrophoresis (Tien Po et al., accompanying paper). Melting of the dsRNAs starts from both ends of the molecule in two transitions of low co-operativity, continues in the right part in a highly co-operative transition, and is finished in another highly co-operative transition including strand-separation. Whereas all parts of the molecule contribute uniformly to the optical melting curve, opening of the ends predominates in the retardation transition in gel electrophoresis. Detailed discussion of the influence of base pair changes in the sequence shows that a single base pair change may be detected by temperature-gradient gel electrophoresis, if it is located in certain favorable locations, whereas its detection in optical melting curves is possible only in very special cases. The systematic differences found in the accompanying paper between necrogenic and non-necrogenic dsCARNA 5 could be interpreted on the basis of such nucleotide sequence differences.

  12. Brownian dynamics studies on DNA gel electrophoresis. I. Numerical method and ``periodic'' behavior of elongation-contraction motions

    NASA Astrophysics Data System (ADS)

    Azuma, Ryuzo; Takayama, Hajime

    2002-10-01

    The dynamics of a DNA molecule which is undergoing constant field gel electrophoresis (CFGE) is studied by a Brownian dynamics simulation method we have developed. In the method a DNA molecule is modeled as a chain of spherical electrolyte beads and the gel as a three-dimensional array of immobile beads. With the constraint for the separation of each pair of bonded beads to be less than a certain fixed value, as well as with the excluded volume effect, the simultaneous Langevin equations of motion for the beads are solved by means of the Lagrangian multiplier method. The resultant mobilities μ as a function of electric field coincide satisfactorily with the corresponding experimental results, once the time, the length, and the field of the simulation are properly scaled. In relatively strong fields "periodic" behavior is found in the chain dynamics and is examined through the time evolution of the radius of the longer principal axis, Rl(t). It is found that the mean width of a peak in Rl(t), or a period of one elongation-contraction process of the chain, is proportional to the number of beads in the chain, M, while the mean period between two such adjacent peaks is independent of M for large M. These results, combined with the observation that the chain moves to the field direction by the distance proportional to M in each elongation-contraction motion, yield the saturation of mobility for large M. This explains the reason that CFGE cannot separate DNA according to their size L(∝M) for large L.

  13. An improved plant leaf protein extraction method for high resolution two-dimensional polyacrylamide gel electrophoresis and comparative proteomics.

    PubMed

    Alam, I; Sharmin, Sa; Kim, K-H; Kim, Y-G; Lee, Jj; Lee, B-H

    2013-02-01

    We report here a simple and universally applicable protocol for extracting high quality proteins from plant leaf tissues. The protocol provides improved resolution and reproducibility of two-dimensional polyacrylamide gel electrophoresis (2-DE) and reduces the time required to analyze samples. Partitioning rubisco by polyethylene glycol (PEG) fractionation provides clearer detection of low-abundance proteins. Co-extraction of interfering substances increases the sample conductivity, which results in poor electrophoretic separation. Re-extraction of PEG-fractionated samples with phenol effectively eliminated interfering substances, which results in optimal conductivity during separation in the first dimension of the isoelectric focusing. Smooth focusing reduces analysis time and provides superior resolution in 2-DE gels. Incubating the samples at -80° C instead of -20° C reduced protein precipitation time to 2-3 h. Removal of nonprotein contaminants and the use of sonication increased protein solubility without additional reagents. These changes enabled loading and separation of maximum amounts of proteins, which permitted improved protein identification by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). An immunological approach revealed that little or no ribulose-1, 5-bisphosphte bisphosphate carboxylase oxygenase was present in the PEG supernatant. In addition, low-abundance proteins, such as myelocytomatosis transcription factor (MYC) and alpha subunit of heterotrimeric guanine nucleotide-binding protein complex (Gα), were detected only in the modified PEG supernatant and not in the total protein. These results suggest that our protocol produced high quality proteins and made many low-abundant proteins available for proteomic analysis. The successful application of this protocol for analyzing the leaf proteomes of soybean, Miscanthus sinensis, barley, Chinese cabbage, peanut and tea (Camellia sinensis) suggests

  14. Texture analysis in gel electrophoresis images using an integrative kernel-based approach

    PubMed Central

    Fernandez-Lozano, Carlos; Seoane, Jose A.; Gestal, Marcos; Gaunt, Tom R.; Dorado, Julian; Pazos, Alejandro; Campbell, Colin

    2016-01-01

    Texture information could be used in proteomics to improve the quality of the image analysis of proteins separated on a gel. In order to evaluate the best technique to identify relevant textures, we use several different kernel-based machine learning techniques to classify proteins in 2-DE images into spot and noise. We evaluate the classification accuracy of each of these techniques with proteins extracted from ten 2-DE images of different types of tissues and different experimental conditions. We found that the best classification model was FSMKL, a data integration method using multiple kernel learning, which achieved AUROC values above 95% while using a reduced number of features. This technique allows us to increment the interpretability of the complex combinations of textures and to weight the importance of each particular feature in the final model. In particular the Inverse Difference Moment exhibited the highest discriminating power. A higher value can be associated with an homogeneous structure as this feature describes the homogeneity; the larger the value, the more symmetric. The final model is performed by the combination of different groups of textural features. Here we demonstrated the feasibility of combining different groups of textures in 2-DE image analysis for spot detection. PMID:26758643

  15. Wheat quality related differential expressions of albumins and globulins revealed by two-dimensional difference gel electrophoresis (2-D DIGE).

    PubMed

    Gao, Liyan; Wang, Aili; Li, Xiaohui; Dong, Kun; Wang, Ke; Appels, Rudi; Ma, Wujun; Yan, Yueming

    2009-12-01

    Comparative proteomics analysis offers a new approach to identify differential proteins among different wheat genotypes and developmental stages. In this study, the non-prolamin expression profiles during grain development of two common or bread wheat cultivars (Triticum aestivum L.), Jing 411 and Sunstate, with different quality properties were analyzed using two-dimensional difference gel electrophoresis (2-D DIGE). Five grain developmental stages during the post-anthesis period were sampled corresponding to the cumulative averages of daily temperatures ( degrees C: 156 degrees C, 250 degrees C, 354 degrees C, 447 degrees C and 749.5 degrees C). More than 400 differential protein spots detected at one or more of the developmental stages of the two cultivars were monitored, among which 230 proteins were identified by MS. Of the identified proteins, more than 85% were enzymes possessing different physiological functions. A total of 36 differential proteins were characterized between the two varieties, which are likely to be related to wheat quality attributes. About one quarter of the proteins identified expressed in multiple spots with different pIs and molecular masses, implying certain post-translational modifications (PTMs) of proteins such as phosphorylations and glycosylations. The results provide new insights into biochemical mechanisms for grain development and quality.

  16. Genetic diversity analysis of faba bean (Vicia faba L.) germplasms using sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

    PubMed

    Hou, W W; Zhang, X J; Shi, J B; Liu, Y J

    2015-10-30

    To investigate genetic diversity and relationships of 101 faba bean (Vicia faba L.), landraces and varieties from different provinces of China and abroad were analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). A total of 2625 unambiguous and stable bands from 101 germplasms were detected, and 36 different bands were classified according to the electrophoretic mobility patterns of the proteins as determined by the SDS-PAGE analysis, of which 16 were polymorphic. Besides the common bands, the protein bands of 92, 75, 62, 40, 34, 17, and 13 kDa presented the highest frequencies of 92.08, 90.10, 99.01, 95.05, 95.05, 98.02, and 95.05%, respectively. The other 29 polymorphic protein bands showed higher polymorphism with 16.09 polymorphic bands in average. The genetic similarity of the 101 genotypes tested varied from 0.6111 to 0.9722, with an average of 0.7122. Cluster analysis divided the 101 genotypes into six major clusters, which was consistent with the systematic classification of faba bean done in previous studies. The overall results indicated that SDS-PAGE was a useful tool for genetic diversity analysis and laid a solid foundation for future faba bean breeding.

  17. Monitoring the bacterial population dynamics in sourdough fermentation processes by using PCR-denaturing gradient gel electrophoresis.

    PubMed

    Meroth, Christiane B; Walter, Jens; Hertel, Christian; Brandt, Markus J; Hammes, Walter P

    2003-01-01

    Four sourdoughs (A to D) were produced under practical conditions by using a starter mixture of three commercially available sourdough starters and a baker's yeast constitutively containing various species of lactic acid bacteria (LAB). The sourdoughs were continuously propagated until the composition of the LAB flora remained stable. Two LAB-specific PCR-denaturing gradient gel electrophoresis (DGGE) systems were established and used to monitor the development of the microflora. Depending on the prevailing ecological conditions in the different sourdough fermentations, only a few Lactobacillus species were found to be competitive and became dominant. In sourdough A (traditional process with rye flour), Lactobacillus sanfranciscensis and a new species, L. mindensis, were detected. In rye flour sourdoughs B and C, which differed in the process temperature, exclusively L. crispatus and L. pontis became the predominant species in sourdough B and L. crispatus, L. panis, and L. frumenti became the predominant species in sourdough C. On the other hand, in sourdough D (corresponding to sourdough C but produced with rye bran), L. johnsonii and L. reuteri were found. The results of PCR-DGGE were consistent with those obtained by culturing, except for sourdough B, in which L. fermentum was also detected. Isolates of the species L. sanfranciscensis and L. fermentum were shown by randomly amplified polymorphic DNA-PCR analysis to originate from the commercial starters and the baker's yeast, respectively.

  18. Pulsed-Field Gel Electrophoresis Genotyping of Taylorella equigenitalis Isolates Collected in the United States from 1978 to 2010▿

    PubMed Central

    Aalsburg, Alan M.; Erdman, Matthew M.

    2011-01-01

    Taylorella equigenitalis is the etiologic agent of contagious equine metritis (CEM), a venereal disease of horses. A total of 82 strains of T. equigenitalis isolated in the United States were analyzed by pulsed-field gel electrophoresis (PFGE) after digestion of genomic DNA with restriction enzyme ApaI. Twenty-eight of those strains isolated from horses in the 2009 U.S. outbreak (CEM09) were further analyzed with NotI and NaeI enzymes. When ApaI alone was used for analysis, the 82 isolates clustered into 15 different genotypes that clearly defined groups of horses with known epidemiological connections. The PFGE profiles of the CEM09 isolates were indistinguishable after digestion with ApaI, NotI, and NaeI and did not match those of isolates from previous U.S. outbreaks in 1978 and 2006 or of any other isolate from the National Veterinary Services Laboratories (NVSL) culture library. Coupled with the fact that the CEM09 isolates are epidemiologically related, these results suggest a common source for the outbreak not linked to previous occurrences of CEM in the United States. PMID:21191049

  19. Temporal and spatial distribution of Cronobacter isolates in a milk powder processing plant determined by pulsed-field gel electrophoresis.

    PubMed

    Hein, Ingeborg; Gadzov, Boris; Schoder, Dagmar; Foissy, Helmut; Malorny, Burkhard; Wagner, Martin

    2009-03-01

    A milk powder processing line was sampled for the presence of Enterobacteriaceae and the opportunistic neonatal pathogen Cronobacter at six different sampling sites during an 11-month period. The highest number of Enterobacteriaceae-positive samples was recovered from the raw milk concentrate before pasteurization (78.2%) and from nonproduct samples of the processing line (86.5%), which included swabs from the drying tower and screw conveyers, swabs from the explosion chamber, waste water after the automated cleaning-in-place procedure, air filter cut-outs, and floor samples underneath the outlet of the packaging machine. The prepackaged and packaged final product was contaminated at a rate of 6.6% and 7.1%, respectively. The prevalence of Cronobacter in the prefinal product and the prepackaged and packaged final product was 14.3%, 3.8%, and 2.1%, respectively. Pulsed-field gel electrophoresis (PFGE) analysis of 133 Cronobacter isolates yielded 40 different PFGE profiles. Long-term persistence in the processing line of some of these PFGE profiles was observed. Comparison of the PFGE profiles recovered at different sampling sites revealed the supply air as a potential source for extrinsic Cronobacter contamination. In addition, recovery of the same PFGE profiles before and after CIP events followed by heat treatment indicated the inefficiency of these hygiene measures to completely eliminate Cronobacter from all areas of the processing line. This information provides an essential basis for developing control and prevention strategies concerning this opportunistic pathogen.

  20. Analysis of cell wall extracts of Candida albicans by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot techniques.

    PubMed Central

    Ponton, J; Jones, J M

    1986-01-01

    Cell walls of intact yeast- and mycelial-phase Candida albicans B311 were extracted with different compounds: dithiothreitol, dithiothreitol with protease, dithiothreitol with lyticase, and dithiothreitol with protease followed by beta-glucuronidase with chitinase. Extracts were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot techniques. Dithiothreitol extracts contained the most satisfactory array of components for study. Analysis of these extracts demonstrated that the outer cell wall layers of Candida blastoconidia and germ tubes contained a complex array of polysaccharides, glycoproteins, and proteins. The proteins contributed to a latticework stabilized by covalent bonds that was important in determining the porosity of the outer cell wall layers. When equivalent weights were analyzed, mycelial-phase extract contained a more varied array of proteins than did yeast-phase extract. Only a portion of proteins in mycelial-phase extract elicited antibody responses in hyperimmunized rabbits or infected humans. A polysaccharide-rich, high-molecular-weight component (migrating at a position that would correspond to proteins having molecular weights of 235,000 to 250,000) and a protein component (molecular weight, 19,000) were readily demonstrable in the mycelial-phase extract but could not be identified in the yeast-phase extract. Images PMID:3527986

  1. Evaluation of the discriminatory power of pulsed-field gel electrophoresis and PCR fingerprinting for epidemiologic typing of Candida species.

    PubMed

    Voss, Andreas; Pfaller, Michael A.; Hollis, Richard J.; Melchers, Willem J.G.; Meis, Jacques F.G.M.

    1998-02-01

    OBJECTIVE: To evaluate the discriminatory power of genotyping methods (PCR fingerprinting and pulsed-field gel electrophoresis) validated for Candida albicans in other Candida species. METHODS: Molecular typing methods are increasingly being applied for studies where the interpretation of data essentially relies on the typing results rather than epidemiologic data. In this situation, the discriminatory power (ability to identify differences among epidemiologically unrelated strains) of the typing method is important in allowing one to draw valid conclusions. By applying PCR fingerprinting, electrophoretic karyotyping, and restriction fragment endonuclease analysis using standard restriction enzymes and primers proven to be useful in previous studies, we evaluated whether the use of multiple genotyping methods is sufficient to delineate known unrelated strains among seven Candida species. RESULTS: All three methods identified individual genotypes for each of the seven Candida species studied. However, optimal strain delineation required the combined use of all three typing methods and was observed only within the small number of C. albicans and C. tropicalis isolates tested in this study. CONCLUSION: Typing assays that are able to delineate a certain Candida species may not be used blindly for other species of that genus. Regarding the limited number of strains tested, further validation of the discriminative power of genotyping methods (including in C. tropicalis) should be done.

  2. Differences between two clinical Staphylococcus capitis subspecies as revealed by biofilm, antibiotic resistance, and pulsed-field gel electrophoresis profiling.

    PubMed

    Cui, Bintao; Smooker, Peter M; Rouch, Duncan A; Daley, Andrew J; Deighton, Margaret A

    2013-01-01

    Coagulase-negative staphylococci have been identified as major causes of late-onset neonatal bacteremia in neonatal intensive care units. Sixty isolates of Staphylococcus capitis obtained from blood cultures of neonates between 2000 and 2005 were examined in this study. Biochemical analysis confirmed that 52 of these isolates belonged to the subsp. urealyticus, and the remaining 8 belonged to the subsp. capitis. Isolates of the predominant subsp. urealyticus clones were characterized by their resistance to penicillin, erythromycin, and oxacillin and their biofilm formation ability, whereas subsp. capitis isolates were generally antibiotic susceptible and biofilm negative. Pulsed-field gel electrophoresis (PFGE) after SacII digestion separated the 60 isolates into five major clusters. Sequence analysis showed that, in S. capitis, the ica operon plus the negative regulator icaR was 4,160 bp in length. PCRs demonstrated the presence of the ica operon in all isolates. Further analysis of five isolates (two biofilm-positive subsp. urealyticus, one biofilm-negative subsp. urealyticus, and two biofilm-negative subsp. capitis) revealed that the ica operons were identical in all of the biofilm-positive subsp. urealyticus strains; however, the biofilm-negative isolates showed variations. The distinctive phenotypic and genotypic characteristics revealed by this study may affect the epidemiology of the two subspecies of S. capitis in the clinical setting. These results may provide a better understanding of the contribution of these two species to bloodstream infections in neonates.

  3. Differences between fertilized and unfertilized chicken egg white proteins revealed by 2-dimensional gel electrophoresis-based proteomic analysis.

    PubMed

    Qiu, Ning; Liu, Wen; Ma, Meihu; Zhao, Lei; Li, Yuqi

    2013-03-01

    The egg white protein alterations during the early phase of chicken embryonic development were recently reported by our laboratory. Nevertheless, the original albumen differences between fresh unfertilized and fertilized chicken eggs have not been investigated. By using 2-dimensional gel electrophoresis (2-DE), coupled with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF MS/MS) method, 1 ovalbumin protein spot as well as 6 ovalbumin-related protein Y spots were identified showing more than 10-fold differences (P < 0.01) in abundance between fresh unfertilized and fertilized chicken egg whites. Six of these protein spots represented higher intensity in fertilized eggs through 2-DE analysis. It was thus concluded that ovalbumin protein family, especially ovalbumin-related protein Y, may play an important role in embryonic development, which still needs to be validated. This finding will provide insight into embryogenesis to improve our understanding of the functions of ovalbumin family proteins in regulating or supporting embryonic development.

  4. Variations among Japanese of the factor IX gene (F9) detected by PCR-denaturing gradient gel electrophoresis

    SciTech Connect

    Satoh, Chiyoko; Takahashi, Norio; Asakawa, Junichi; Hiyama, Keiko; Kodaira, Meiko )

    1993-01-01

    In the course of feasibility studies to examine the efficiencies and practicalities of various techniques for screening for genetic variations, the human coagulation factor IX (F9) genes of 63 Japanese families were examined by PCR-denaturing gradient gel electrophoresis (PCR-DGGE). Four target sequences with lengths of 983-2,891 bp from the F9 genes of 126 unrelated individuals from Hiroshima and their 100 children were amplified by PCR, digested with restriction enzymes to approximately 500-bp fragments, and examined by DGGE - a total of 6,724 bp being examined per individual. GC-rich sequences (GC-clamps) of 40 bp were attached to both ends of the target sequences, as far as was feasible. Eleven types of new nucleotide substitutions were detected in the population, none of which produced RFLPs or caused hemophilia B. By examining two target sequences in a single lane, approximately 8,000 bp in a diploid individual could be examined. This approach is very effective for the detection of variations in DNA and is applicable to large-scale population studies. 46 refs., 3 figs., 1 tab.

  5. Monitoring the Bacterial Population Dynamics in Sourdough Fermentation Processes by Using PCR-Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Meroth, Christiane B.; Walter, Jens; Hertel, Christian; Brandt, Markus J.; Hammes, Walter P.

    2003-01-01

    Four sourdoughs (A to D) were produced under practical conditions by using a starter mixture of three commercially available sourdough starters and a baker's yeast constitutively containing various species of lactic acid bacteria (LAB). The sourdoughs were continuously propagated until the composition of the LAB flora remained stable. Two LAB-specific PCR-denaturing gradient gel electrophoresis (DGGE) systems were established and used to monitor the development of the microflora. Depending on the prevailing ecological conditions in the different sourdough fermentations, only a few Lactobacillus species were found to be competitive and became dominant. In sourdough A (traditional process with rye flour), Lactobacillus sanfranciscensis and a new species, L. mindensis, were detected. In rye flour sourdoughs B and C, which differed in the process temperature, exclusively L. crispatus and L. pontis became the predominant species in sourdough B and L. crispatus, L. panis, and L. frumenti became the predominant species in sourdough C. On the other hand, in sourdough D (corresponding to sourdough C but produced with rye bran), L. johnsonii and L. reuteri were found. The results of PCR-DGGE were consistent with those obtained by culturing, except for sourdough B, in which L. fermentum was also detected. Isolates of the species L. sanfranciscensis and L. fermentum were shown by randomly amplified polymorphic DNA-PCR analysis to originate from the commercial starters and the baker's yeast, respectively. PMID:12514030

  6. Buffer optimization for high resolution of human lung cancer tissue proteins by two-dimensional gel electrophoresis.

    PubMed

    Lee, Kibeom; Pi, Kyungbae; Lee, Keeman

    2009-01-01

    A problem in proteomic analysis of lung cancer tissue is the presence of complex components of different histological backgrounds (squamous cell carcinoma, small cell lung carcinoma, and adenocarcinoma). The efficient solubilization of protein components before two-dimensional electrophoresis (2-DE) is a very critical. Poor solubilization has been associated with a failure to detect proteins and diffuse, streaked and/or trailing protein spots. Here, we have optimized the solubilization of human lung cancer tissue to increase protein resolution. Isoelectric focusing (IEF) rehydration buffer containing a thiourea-urea mixture provided superior resolution, whereas a buffer without thiourea yielded consistently poor results. In addition, IEF rehydration buffers containing CHAPS and DTT gave superior resolution, whereas buffers containing Nonidet P-40 (NP-40) and/or Triton X-100 did not. A tributylphosphine-containing buffer gave consistently poor results. Using optimized conditions, we used 2-D gel analysis of human lung cancer tissue to identify 11 differentially-expressed protein spots by MALDI-mass spectrometry. This study provides a methodological tool to study the complex mammalian proteomes.

  7. Seven New Mutations in hMSH2, an HNPCC Gene, Identified by Denaturing Gradient-Gel Electrophoresis

    PubMed Central

    Wijnen, Juul; Vasen, Hans; Khan, P. Meera; Menko, Fred H.; van der Klift, Heleen; van Leeuwen, Claus; van den Broek, Marianne; van Leeuwen-Cornelisse, Inge; Nagengast, Fokko; Meijers-Heijboer, Anne; Lindhout, Dick; Griffioen, Gerrit; Cats, Annemieke; Kleibeuker, Jan; Varesco, Liliana; Bertario, Lucio; Bisgaard, Marie Luise; Mohr, Jan; Fodde, Riccardo

    1995-01-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is a relatively common autosomal dominant cancer-susceptibility condition. The recent isolation of the DNA mismatch repair genes (hMSH2, hMLH1, hPMS1, and hPMS2) responsible for HNPCC has allowed the search for germ-line mutations in affected individuals. In this study we used denaturing gradient-gel electrophoresis to screen for mutations in the hMSH2 gene. Analysis of all the 16 exons of hMSH2, in 34 unrelated HNPCC kindreds, has revealed seven novel pathogenic germ-line mutations resulting in stop codons either directly or through frameshifts. Additionally, nucleotide substitutions giving rise to one missense, two silent, and one useful polymorphism have been identified. The proportion of families in which hMSH2 mutations were found is 21%. Although the spectrum of mutations spread at the hMSH2 gene among HNPCC patients appears extremely heterogeneous, we were not able to establish any correlation between the site of the individual mutations and the corresponding tumor spectrum. Our results indicate that, given the genomic size and organization of the hMSH2 gene and the heterogeneity of its mutation spectrum, a rapid and efficient mutation detection procedure is necessary for routine molecular diagnosis and presymptomatic detection of the disease in a clinical setup. ImagesFigure 1 PMID:7726159

  8. Analysis of HLA-DR from alveolar macrophages and blood monocytes by two-dimensional gel electrophoresis

    SciTech Connect

    Ferro, T.J.; Monos, D.S.; Spear, B.T.; Rossman, M.D.; Zmijewski, C.M.; Kamoun, M.; Daniele, R.P.

    1986-03-01

    Human blood monocytes (BM) are more effective than alveolar macrophages (AM) in promoting lymphocyte proliferation to antigen. To further understand these differences, the HLA-DR molecules synthesized by these two cell types were compared. AM were prepared by adherence of cells obtained by bronchoscopic lavage; BM were prepared by adherence of blood mononuclear cells from the same normal volunteer. Cells were cultured for 7 hours with /sup 3/H-leucine and HLA-DR was immunoprecipitated with the murine monoclonal antibody L243. Immunoprecipitates were analyzed by two-dimensional gel electrophoresis. In three experiments, protein synthetic rate was greater and more HLA-DR was immunoprecipitated per cell in BM than in AM. Isoelectric focusing showed identical charge variation for BM and AM. However, molecular weight analysis of AM HLA-DR revealed multiple bands of slightly different molecular weight for each beta-chain peptide, whereas only a single band occurred with BM HLA-DR. Neuraminidase treatment reduced the charge heterogeneity but did not affect the molecular weight differences. These findings may relate to the differential ability of AM and BM to promote lymphocyte proliferation to antigen.

  9. Succession of bacterial community structure along the Changjiang River determined by denaturing gradient gel electrophoresis and clone library analysis.

    PubMed

    Sekiguchi, Hiroyuki; Watanabe, Masataka; Nakahara, Tadaatsu; Xu, Baohua; Uchiyama, Hiroo

    2002-10-01

    Bacterial community structure along the Changjiang River (which is more than 2,500 km long) was studied by using denaturing gradient gel electrophoresis (DGGE) and clone library analysis of PCR-amplified 16S ribosomal DNA (rDNA) with universal bacterial primer sets. DGGE profiles and principal-component analysis (PCA) demonstrated that the bacterial community gradually changed from upstream to downstream in both 1998 and 1999. Bacterial diversity, as determined by the Shannon index (H'), gradually decreased from upstream to downstream. The PCA plots revealed that the differences in the bacterial communities among riverine stations were not appreciable compared with the differences in two adjacent lakes, Lake Dongting and Lake Poyang. The relative stability of the bacterial communities at the riverine stations was probably due to the buffering action of the large amount of water flowing down the river. Clone library analysis of 16S rDNA revealed that the dominant bacterial groups changed from beta-proteobacteria and the Cytophaga-Flexibacter-Bacteroides group upstream to high-G+C-content gram-positive bacteria downstream and also that the bacterial community structure differed among the stations in the river and the lakes. The results obtained in this study should provide a reference for future changes caused by construction of the Three Gorges Dam.

  10. Pulsed-field gel electrophoresis typing, antibiotic resistance, and plasmid profiles of Escherichia coli strains isolated from foods.

    PubMed

    Uysal, Ahmet; Durak, Yusuf

    2012-11-01

    Bacterial contamination in foods and antimicrobial resistance levels of common pathogenic strains causing food-borne disease are important in human health. Thus, typing technologies are important tools to determine primary sources of bacterial contamination. In this study, 40 Escherichia coli strains isolated from 85 food samples were evaluated in terms of genetic diversity, susceptibility to certain antibiotics, and plasmid profiles. Pulsed-field gel electrophoresis was used to identify the genetic relations of E. coli isolates. It was determined that the 40 E. coli strains revealed 32 different pulsotypes represented by 6 subtypes. Antibiotic susceptibility tests conducted by using a disc diffusion method against 15 antibiotics showed that although the isolates revealed 14 different types of resistance profiles, the strains showed the greatest resistance to ampicillin (77.5%), followed by ticarcillin-clavulanic acid (30%), tetracycline (22.5%), and cephalothin (14.5%). Plasmid isolations studies of the strains conducted by the method of alkaline lysis revealed that 18 (45%) of 40 E. coli strains contain 31 different plasmid bands ranging between 64.4 and 1 kb. The results showed that PFGE was a powerful method in tracking sources of food contamination and that the antibiotic resistance levels of food isolates were high and should be monitored.

  11. Genotypes, antibiogram, and pulsed-field gel electrophoresis profiles of Escherichia coli strains from piglets in Korea.

    PubMed

    Lee, Su In; Rayamahji, Nabin; Lee, Won Jung; Cha, Seung Bin; Shin, Min Kyung; Roh, Yu Mi; Yoo, Han Sang

    2009-07-01

    Adherence factors and enterotoxins are major virulence factors of enterotoxigenic Escherichia coli (ETEC). Antibiotics have been used frequently for the treatment and prevention of ETEC infection in piggeries worldwide, including Korea. Therefore, data on both virulence profiles and antibiotic resistance patterns are useful in the epidemiological study of ETEC. A total number of 198 E. coli field isolates were examined. The most prevalent pathotype was F1, followed by a combination of F1 and EAST1. All of the 71 isolates were resistant to more than 2 antibiotics used in a disk diffusion test, and 87.94% of the isolates were found to be resistant to more than 4 antibiotics. Investigations were also conducted to correlate the virulence gene profiles with antibiogram and pulsed-field gel electrophoresis (PFGE). Although a high degree of polymorphism was noted among strains having the same virulence patterns, the highest similarity pattern was observed carrying the same virulence profiles and similar antibiogram. Thus, investigation of both virulence profiles and antibiogram is essential to the epidemiological study of ETEC. Moreover, the PFGE method might be applicable as a tool to reveal genetic relatedness among E. coli strains from piggeries in Korea.

  12. A pulsed-field gel electrophoresis (PFGE) map of twelve loci on chromosome 11q11-q13

    SciTech Connect

    Petty, E.M.; Bale, A.E. ); Arnold, A. ); Marx, S.J. )

    1993-02-01

    We report a pulsed-field gel electrophoresis map of 12 loci on proximal human chromosome 11q. Linkage studies have shown that this region of chromosome 11 contains the genes for familial atopic disease (APY) and multiple endocrine neoplasia type I (MEN1) (4). A physical map containing polymorphic loci will aid in the isolation of these disease genes. The map reported here has two noncontiguous groups of loci accounting for 8 of the 12 loci evaluated. One group spans a maximum distance of 1600 kb and included D11S146, BCL1, PRAD1, INT2, and HSTF1. The other group includes FTY1, C1NH, and COX8. TCN1, PGA, and PYGM did not yield any comigrating fragments and could not be physically linked on this PFGE map. These data enhance previously published physical maps of proximal 11q by refining the localization of and distances between markers in the BCL1 region. Additionally, new information about the locations and physical relationships between FTH1, C1NH, and COX 8 is presented. 14 refs., 3 figs.

  13. Incidence and molecular epidemiology of Pseudomonas aeruginosa bacteremias in patients with acute leukemia: analysis by pulsed-field gel electrophoresis.

    PubMed

    Fanci, R; Paci, C; Anichini, P; Pecile, P; Marra, G; Casini, C; Nicoletti, P

    2003-10-01

    The incidence and molecular epidemiology of P. aeruginosa bacteremias, were monitored in patients with acute leukemia to define mechanisms of possible nosocomial transmission. From September 1997 to March 2001 febrile episodes were examined and blood isolates of P. aeruginosa were studied employing Pulsed-Field gel Electrophoresis (PFGE). Evaluation of DNA correlation was performed according to Tenover criteria. A total of 309 febrile episodes occurred in 187 patients. Of 139 organisms isolated in 116 bacteremias, 48% were gram negative bacilli (GNB); P. aeruginosa bacteremias were recorded in 34 (51%) of GNB sepsis. Evaluation of DNA correlation showed 2 related in 1997, 7 related in 1998, 10 related in 1999, 6 related in 2000-2001 (mainly closely and possibly related); therefore isolates closely related among themselves were also possibly related with other strains. About 60% of patients with related strains were hospitalized in the same room or in different rooms but became infected in the same period. Our data suggest a horizontal spread among the patients even if other sources were possible. The study assessed the usefulness of PFGE in bacteriological epidemiology.

  14. Application of temperature gradient gel electrophoresis to the study of yeast diversity in the estuary of the Tagus river, Portugal.

    PubMed

    Gadanho, Mário; Sampaio, José Paulo

    2004-12-01

    Temperature gradient gel electrophoresis (TGGE) was employed for the assessment of yeast diversity in the estuary of the Tagus river (Portugal). The molecular detection of yeasts was carried out directly from water samples and, in parallel, a cultivation approach by means of an enrichment step was employed. A nested PCR was employed to obtain a fungal amplicon containing the D2 domain of the 26S rRNA gene. For identification the TGGE bands were extracted, re-amplified, and sequenced. Fourteen fungal taxa were detected and all except one were yeasts. Most yeast sequences corresponded to members of the Ascomycota and only three belonged to the Basidiomycota. Five yeasts (four ascomycetes and one basidiomycete) could not be identified to the species level due to the uniqueness of their sequences. The number of species detected after enrichment was higher than the number of taxa found using the direct detection method. This suggests that some yeast populations are present in densities that are below the detection threshold of the method. With respect to the analysis of the yeast community structure, our results indicate that the dominant populations belong to Debaryomyces hansenii, Rhodotorula mucilaginosa, Cryptococcus longus, and to an uncultured basidiomycetous yeast phylogenetically close to Cr. longus. The combined analysis of direct detection and cultivation approaches indicates a similar community structure at the two sampled sites since nine species were present at both localities.

  15. Profiling of a microbial community under confined conditions in a fed-batch garbage decomposer by denaturing gradient gel electrophoresis.

    PubMed

    Horisawa, Sakae; Sakuma, Yoh; Nakamura, Yasunori; Doi, Shuichi

    2008-05-01

    In order to determine the conditions for the maximum performance of a fed-batch composting (FBC) reactor, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the microbial communities established under the confined conditions of moisture content and environmental temperature. To evaluate the effects of microbial community structures on the performance of FBC reactors, degradation experiments using small-scale reactors and model waste were conducted under confined environmental conditions. A high degradation rate was observed under a wide range of MC conditions (30-60%) and at higher than usual temperatures (30-50 degrees C). The microbial communities that formed in the experimental FBC reactors were analyzed by DGGE of PCR-amplified 16S rRNA genes. The DGGE banding patterns at the same level as the degradation rates were similar even if the environmental conditions were different. Sequence analysis of the DGGE bands revealed the primary microbes which act in the reactor.

  16. Frequencies of virulence genes and pulse field gel electrophoresis fingerprints in Escherichia coli isolates from canine pyometra.

    PubMed

    Maluta, Renato P; Borges, Clarissa A; Beraldo, Lívia G; Cardozo, Marita V; Voorwald, Fabiana A; Santana, André M; Rigobelo, Everlon C; Toniollo, Gilson H; Avila, Fernando A

    2014-11-01

    Escherichia coli is the most common bacterial agent isolated from canine pyometra. The frequencies of 24 virulence genes and pulsed field gel electrophoresis (PFGE) profiles were determined for 23 E. coli isolates from cases of canine pyometra in Brazil. The frequencies of virulence genes were 91.3% fimH, 91.3% irp-2, 82.6% fyuA, 56.5% iroN, 47.8% traT, 39.1% usp, 34.8% sfaD/E, 34.8% tsh, 30.4% papC, 30.4% hlyA, 26.1% papGIII, 26.1% cnf-1, 21.7% papE/F, 21.7% iss, 17.4% iutA, 17.4% ompT, 17.4% cvaC, 17.4% hlyF, 17.4% iucD, 13.0% iucC, 13.0% astA, 4.3% papGII, 0% afaB/C and 0% papGI. The high frequency of yersiniabactin (fyuA and irp2) and salmochelin (iroN) genes suggests that iron uptake systems might be important in the pathogenesis of canine pyometra. PFGE profiles of 19 isolates were heterogeneous, confirming that E. coli isolates from canine pyometra are unlikely to be epidemic clones.

  17. The use of pulsed-field gel electrophoresis to investigate the epidemiology of Mycoplasma bovis in French calf feedlots.

    PubMed

    Arcangioli, Marie-Anne; Aslan, Hamidé; Tardy, Florence; Poumarat, François; Le Grand, Dominique

    2012-04-01

    Mycoplasma bovis is a major cause of respiratory outbreaks in cattle feedlots. In this study pulsed-field gel electrophoresis (PFGE) was used to trace field strains and provide information on M. bovis patterns of spread in calf feedlots. The suitability of KpnI, MluI and SmaI restriction enzymes was assessed on different sets of strains. The discriminative power of the first two enzymes was first assessed using 28 epidemiologically unrelated strains; stability was 100% on multiple isolates from in vivo experimental infection. Thirty-nine field isolates from six feedlots were then evaluated. In contrast to the unique fingerprints displayed by the unrelated strains, the isolates from the feedlots showed identical patterns at the time of the outbreak of respiratory disease and 4 weeks later. The PFGE typing results suggest that M. bovis strains follow a clonal epidemic spread pattern at the herd level and that the same strain persists in calves of the herd after the clinical signs have disappeared.

  18. Genetic Diversity of Streptococcus suis Strains Isolated from Pigs and Humans as Revealed by Pulsed-Field Gel Electrophoresis

    PubMed Central

    Berthelot-Hérault, Florence; Marois, Corinne; Gottschalk, Marcelo; Kobisch, Marylène

    2002-01-01

    The genetic diversity of 123 Streptococcus suis strains of capsular types 2, 1/2, 3, 7, and 9, isolated from pigs in France and from humans in different countries, was evaluated by pulsed-field gel electrophoresis (PFGE) of DNA restricted with SmaI. The method was highly discriminative (D = 0.98), results were reproducible, and the PFGE analysis was easy to interpret. Among all S. suis strains, 74 PFGE patterns were shown. At 60% homology, three groups (A, B, and C) were identified, and at 69% homology, eight subgroups (a to h) were observed. Strains isolated from diseased pigs or from humans were statistically clustered in group B, especially in subgroup d. By contrast, S. suis strains isolated from clinically healthy pigs were preferentially included in subgroup b of group A. Relationships could be established between capsular types 1/2, 3, and 9 and groups A, e, and B, respectively. S. suis strains isolated from humans were homogeneous, and a very high level of association between these strains and four DNA patterns was observed. The PFGE used in this study is a very useful tool for evaluating the genetic diversity of S. suis strains, and it would be used for epidemiological investigations. PMID:11825980

  19. Genetic diversity of Streptococcus suis strains isolated from pigs and humans as revealed by pulsed-field gel electrophoresis.

    PubMed

    Berthelot-Hérault, Florence; Marois, Corinne; Gottschalk, Marcelo; Kobisch, Marylène

    2002-02-01

    The genetic diversity of 123 Streptococcus suis strains of capsular types 2, 1/2, 3, 7, and 9, isolated from pigs in France and from humans in different countries, was evaluated by pulsed-field gel electrophoresis (PFGE) of DNA restricted with SmaI. The method was highly discriminative (D = 0.98), results were reproducible, and the PFGE analysis was easy to interpret. Among all S. suis strains, 74 PFGE patterns were shown. At 60% homology, three groups (A, B, and C) were identified, and at 69% homology, eight subgroups (a to h) were observed. Strains isolated from diseased pigs or from humans were statistically clustered in group B, especially in subgroup d. By contrast, S. suis strains isolated from clinically healthy pigs were preferentially included in subgroup b of group A. Relationships could be established between capsular types 1/2, 3, and 9 and groups A, e, and B, respectively. S. suis strains isolated from humans were homogeneous, and a very high level of association between these strains and four DNA patterns was observed. The PFGE used in this study is a very useful tool for evaluating the genetic diversity of S. suis strains, and it would be used for epidemiological investigations.

  20. Diversity of pulsed-field gel electrophoresis patterns of cereulide-producing isolates of Bacillus cereus and Bacillus weihenstephanensis.

    PubMed

    Castiaux, Virginie; N'guessan, Elise; Swiecicka, Izabela; Delbrassinne, Laurence; Dierick, Katelijne; Mahillon, Jacques

    2014-04-01

    Bacillus cereus is an important foodborne pathogen causing diarrhoea, emesis and in, rare cases, lethal poisonings. The emetic syndrome is caused by cereulide, a heat-stable toxin. Originally considered as a rather homogenous group, the emetic strains have since been shown to display some diversity, including the existence of two clusters of mesophilic B. cereus and psychrotolerant B. weihenstephanensis. Using pulsed-field gel electrophoresis (PFGE) analysis, this research aimed to better understand the diversity and spatio-temporal occurrence of emetic strains originating from environmental or food niches vs. those isolated from foodborne cases. The diversity was evaluated using a set of 52 B. cereus and B. weihenstephanensis strains isolated between 2000 and 2011 in ten countries. PFGE analysis could discriminate 17 distinct profiles (pulsotypes). The most striking observations were as follows: (1) more than one emetic pulsotype can be observed in a single outbreak; (2) the number of distinct isolates involved in emetic intoxications is limited, and these potentially clonal strains frequently occurred in successive and independent food poisoning cases; (3) isolates from different countries displayed identical profiles; and (4) the cereulide-producing psychrotolerant B. weihenstephanensis were, so far, only isolated from environmental niches.

  1. Arcobacter species and their pulsed-field gel electrophoresis genotypes in Finnish raw milk during summer 2011.

    PubMed

    Revez, Joana; Huuskonen, Marianne; Ruusunen, Marjo; Lindström, Miia; Hänninen, Marja-Liisa

    2013-09-01

    The aim of this study was to investigate the occurrence of Arcobacter species in raw milk in Finland. A total of 177 raw milk samples, each from a separate farm, were examined from June to August 2011. Arcobacter species were isolated using an enrichment and selective detection procedure. Overall, 26 (15 % ) of the 177 samples yielded Arcobacter spp. Samples from 25 farms were positive for Arcobacter butzleri and from 1 farm for Arcobacter cryaerophilus. Moreover, both Arcobacter butzleri and A. cryaerophilus were recovered from 1 positive sample. To evaluate a possible genetic variability, one strain of A. butzleri from each farm and the A. cryaerophilus sample were analyzed by pulsed-field gel electrophoresis. Genotyping revealed that Arcobacter spp. populations are heterogeneous, and no dominant clone has spread in the investigated samples. Our study is the first report on the isolation of both A. butzleri and A. cryaerophilus in raw milk in Finland. Based on our findings, the presence of Arcobacter species in raw milk may pose a potential hazard for human health, in particular for consumers who prefer drinking unpasteurized milk.

  2. Design and Evaluation of PCR Primers for Analysis of Bacterial Populations in Wine by Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Lopez, Isabel; Ruiz-Larrea, Fernanda; Cocolin, Luca; Orr, Erica; Phister, Trevor; Marshall, Megan; VanderGheynst, Jean; Mills, David A.

    2003-01-01

    Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified ribosomal DNA (rDNA) is routinely used to compare levels of diversity of microbial communities and to monitor population dynamics. While using PCR-DGGE to examine the bacteria in wine fermentations, we noted that several commonly used PCR primers for amplifying bacterial 16S rDNA also coamplified yeast, fungal, or plant DNA present in samples. Unfortunately, amplification of nonbacterial DNA can result in a masking of bacterial populations in DGGE profiles. To surmount this problem, we developed two new primer sets for specific amplification of bacterial 16S rDNA in wine fermentation samples without amplification of eukaryotic DNA. One primer set, termed WLAB1 and WLAB2, amplified lactic acid bacteria, while another, termed WBAC1 and WBAC2, amplified both lactic acid bacterial and acetic acid bacterial populations found in wine. Primer specificity and efficacy were examined with DNA isolated from numerous bacterial, yeast, and fungal species commonly found in wine and must samples. Importantly, both primer sets effectively distinguished bacterial species in wine containing mixtures of yeast and bacteria. PMID:14602643

  3. Fate of a metal-resistant inoculum in contaminated and pristine soils assessed by denaturing gradient gel electrophoresis

    SciTech Connect

    Stephen, J.R.; Chang, Y.J.; MacNaughton, S.J.; Leung, K.T.; Flemming, C.A. . Center for Environmental Biotechnology); Whitaker, S.L.; Hicks, C.L. ); White, D.C. . Center for Environmental Biotechnology Oak Ridge National Lab., TN . Environmental Sciences Div.)

    1999-06-01

    Cesium, cadmium, cobalt, and strontium are four contaminants frequently found in soils at biotoxic levels. Introduction of certain nongenetically modified bacteria has been frequently suggested as a method for the immobilization of heavy metal contaminants in soil, thereby reducing runoff and bioavailability. In this study, the authors have used the polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) to track the survival of the five bacterial species added to soil microcosms with and without the addition of a mixture of these metals. The PCR primers targeted conserved regions of the 165 rDNA molecular present in all bacteria. The reaction products were shown to reflect the relative abundance of the bacteria both in mixtures of pure cultures and against a background of all the eubacterial species present in the soil following inoculation. Three of the species (Pseudomonas aeruginosa FRD-1, Shewanella putrifaciens 200, and Desulfovibrio vulgaris Hildenborough) decreased rapidly following inoculation into both soils. The proportion of Alcaligenes eutrophus CH34 remained at a constant level throughout the 8-week experiment in both soil treatments. Sphingomonas aromaticivorans B0695 showed toxic metal-dependent survival in that its relative abundance dropped rapidly in pristine soil but remained at approximately inoculation levels throughout the experiment in contaminated microcosms.

  4. Genotyping of Yersinia enterocolitica biotype 1A strains from clinical and nonclinical origins by pulsed-field gel electrophoresis.

    PubMed

    Campioni, Fábio; Falcão, Juliana P

    2014-06-01

    Yersinia enterocolitica biotype 1A (B1A) strains are considered mainly nonpathogenic. However, some studies considered strains of this biotype to be the causal agents of infections in humans and animals. In South America, there are no studies that have compared clinical and nonclinical strains of B1A typed by pulsed-field gel electrophoresis (PFGE) and none that have compared the capability of different enzymes on typing these strains. This study typed 51 Y. enterocolitica B1A strains isolated in Brazil and Chile by PFGE, testing the enzymes XbaI, NotI, and XhoI. The resulting dendrograms discriminated the strains in 47, 40, and 49 pulsotypes generated by the cleavage with the enzymes XbaI, NotI, and XhoI, respectively. The majority of the strains were grouped independently of their clinical or nonclinical origins. The high discriminatory power of PFGE confirmed the heterogeneity of B1A strains but could not divide the strains studied into clusters that differed in the frequency of some virulence genes as observed in studies using other methodologies.

  5. Evaluation of genotoxicity of the acute gamma radiation on earthworm Eisenia fetida using single cell gel electrophoresis technique (Comet assay).

    PubMed

    Sowmithra, K; Shetty, N J; Jha, S K; Chaubey, R C

    2015-12-01

    Earthworms (Eisenia fetida) most suitable biological indicators of radioactive pollution. Radiation-induced lesions in DNA can be considered to be molecular markers for early effects of ionizing radiation. Gamma radiation produces a wide spectrum of DNA. Some of these lesions, i.e., DNA strand breaks and alkali labile sites can be detected by the single-cell gel electrophoresis (SCGE) or comet assay by measuring the migration of DNA from immobilized nuclear DNA. E. fetida were exposed to different doses of gamma radiation, i.e., 1, 5, 10, 20, 30, 40 and 50Gy, and comet assay was performed for all the doses along with control at 1, 3 and 5h post irradiation to evaluate the genotoxicity of gamma radiation in this organism. The DNA damage was measured as percentage of comet tail DNA. A significant increase in DNA damage was observed in samples exposed to 5Gy and above, and the increase in DNA damage was dose dependent i.e., DNA damage was increased with increased doses of radiation. The highest DNA damage was noticed at 1h post irradiation and gradually decreased with time, i.e., at 3 and 5h post irradiation. The present study reveals that gamma radiation induces DNA damage in E. fetida and the comet assay is a sensitive and rapid method for its detection to detect genotoxicity of gamma radiation.

  6. Investigation on interaction of DNA and several cationic surfactants with different head groups by spectroscopy, gel electrophoresis and viscosity technologies.

    PubMed

    Guo, Qing; Zhang, Zhaohong; Song, Youtao; Liu, Shuo; Gao, Wei; Qiao, Heng; Guo, Lili; Wang, Jun

    2017-02-01

    In this study, the interaction between DNA and several cationic surfactants with different head groups such as ethyl hexadecyl dimethyl ammonium bromide (EHDAB), hexadecyl dimethyl benzyl ammonium chloride (HDBAC), and cetyl pyridinium bromide (CPB) were investigated by UV-vis absorption, fluorescence and circular dichroism (CD) spectroscopy, gel electrophoresis, and viscosity technologies. The results show that these cationic surfactants can interact with DNA and major binding modes are electrostatic and hydrophobic. Also, CPB and HDBAC molecules interact with DNA by partial intercalation, and CPB has slightly stronger intercalation than HDBAC, while EHDAB interacts with DNA by non-intercalation. The different head groups of the surfactant molecules can influence the interaction strength. CPB has the stronger interaction with DNA than the others. Moreover, surfactant concentration, the ratio of DNA and fluorescence probe, ionic strength can influence the interaction. The surfactants may interact with DNA by the competition reactions with BR for DNA-BR. The increase of ionic strength may favor the surface binding between DNA and surfactants to some extent. This work provides deep mechanistic insight on the toxicity of cationic surfactants with different head groups to DNA molecules.

  7. Electrophoresis. [in microgravity environment

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1977-01-01

    Ground-based techniques for electrophoresis take account of the need either to circumvent the effects of gravity to prevent convection, or to use gravity for fluid stabilization through artificial density gradients. The microgravity environments of orbiting spacecraft provides a new alternative for electrophoresis by avoiding the need for either of these two approaches. The paper presents some theoretical considerations concerning electrophoresis, examines certain experimental techniques (zone and high density gel electrophoresis, isoelectric focusing and isotachophoresis), and examines the electrophoresis of living cells.

  8. Isoelectric focusing of human hair keratins: correlation with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns and effect of cosmetic treatments.

    PubMed

    Rodriguez-Calvo, M S; Carracedo, A; Muñoz, I; Concheiro, L

    1992-03-01

    A new isoelectric focusing (IEF) technique in polyacrylamide gels with 6M urea and 1.5% Nonidet P40 has been developed to characterize human hair samples. The phenotypes demonstrated with this procedure has been correlated with the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns described by other authors. The method described can be applied in the forensic science analysis of a single human hair. Using the same IEF technique we have studied the changes in electrophoretic patterns of cosmetically treated hair. The characteristics of the modifications observed and its utility in forensic science work are also discussed in this paper.

  9. Two-dimensional electrophoresis of 1D-encoded B and D glutenin subunits in common wheats with similar omega gliadins.

    PubMed

    Masci, S; Porceddu, E; Lafiandra, D

    1991-08-01

    Gli-D1-encoded omega gliadins of bread wheats show little variation; their electrophoretic patterns can be classified into two main groups which broadly resemble the patterns found in the cultivars Chinese Spring and in Cheyenne. B and D subunits of low molecular weight glutenin encoded by the chromosome 1D loci Glu-D3 and Gli-D1, respectively, also showed little variation. D subunits were found only in bread wheats with "Chinese Spring-type" omega gliadins and they all exhibited the same electrophoretic pattern. This material also showed very similar B subunits. "Cheyenne-type" bread wheats displayed the same electrophoretic distribution of chromosome 1D-encoded B subunits, although they were slightly different from that found in Cheyenne itself.

  10. Comparison of diazo-coupling, formazan, and silver staining techniques for visualizing alkaline phosphatase isoenzymes after electrophoresis in homogeneous-pore and gradient-pore polyacrylamide gels.

    PubMed

    Hodson, A W; Skillen, A W

    1988-03-01

    Three techniques for visualization of alkaline phosphatase after polyacrylamide-gel electrophoresis are compared. These are diazo-dye simultaneous coupling with the substrate sodium naphthyl phosphate and 5-chloro-2-toluene diazonium chloride; formazan precipitation with the substrate 5-bromo-4-chloro-3-indolyl phosphate and 3-[4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide; and silver staining with the substrate sodium glycerophosphate. Each staining technique was tested with gradient-pore and homogeneous-pore acrylamide-gel electrophoresis. The main factors assessed are sensitivity; separation of the human serum alkaline phosphatase isoenzymes of the liver, bone, and intestinal types; and differences in substrate affinity, as well as the complexity of each technique. Using the three techniques only minor differences in substrate affinity are evident. There is some nonspecific staining with the diazo-coupling technique but not with the formazan and silver staining techniques. The differences, in the mobility of the liver, bone, and intestinal isoenzymes achieved by homogeneous-pore gel electrophoresis are sufficient to allow them to be clearly distinguished. However, only very small differences in mobility are found with gradient-pore gel electrophoresis, but the sharper bands in this medium allow much smaller amounts of activity to be detected. As little as 160 microU of enzyme can be visualized by the diazo technique. Silver staining gives an approximately fourfold increase in sensitivity over the formazan technique, which in turn gives a fourfold increase over the diazo technique. An important aspect of the silver staining technique is the potential of increasing sensitivity much further by improvements in the photographic physical development stage.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Optimization of Quantitative Proteomics Using 2-Dimensional Difference Gel Electrophoresis to Characterize Molecular Mechanisms of Chemical Warfare Nerve Agent Exposure in the Rat Brain

    DTIC Science & Technology

    2010-11-01

    protocol was optimized for whole rat brain, and purity was assessed using various biochemical assays. For isolation of mitochondria from brain...dependent hepatotoxicity . Journal of Biological Chemistry, 2004. 279(21): p. 22092-22101. 19. Mintz, H.A., et al., Morphological and biochemical ...Difference Gel Electrophoresis to Characterize Molecular Mechanisms of Chemical Warfare Nerve Agent Exposure in the Rat Brain Heidi M. Hoard

  12. Pulsed-field gel electrophoresis analysis of more than one clinical isolate of Campylobacter spp. from each of 49 patients in New Zealand.

    PubMed

    Gilpin, Brent; Robson, Beth; Lin, Susan; Scholes, Paula; On, Stephen

    2012-02-01

    Pulsed-field gel electrophoresis (PFGE) analysis demonstrated that while 76% of patients had only one genotype of campylobacter, 10% carried two different but related genotypes (Dice coefficients > 0.78), and 14% carried at least two unrelated genotypes (Dice coefficients < 0.65). This supports the clustering of Campylobacter isolates with similar PFGE patterns, highlights the need to analyze multiple isolates from both sources and patients, and confirms that caution should be exercised before epidemiological links between patients or sources are dismissed.

  13. The laboratory technology of discrete molecular separation: the historical development of gel electrophoresis and the material epistemology of biomolecular science, 1945-1970.

    PubMed

    Chiang, Howard Hsueh-hao

    2009-01-01

    Preparative and analytical methods developed by separation scientists have played an important role in the history of molecular biology. One such early method is gel electrophoresis, a technique that uses various types of gel as its supporting medium to separate charged molecules based on size and other properties. Historians of science, however, have only recently begun to pay closer attention to this material epistemological dimension of biomolecular science. This paper substantiates the historiographical thread that explores the relationship between modern laboratory practice and the production of scientific knowledge. It traces the historical development of gel electrophoresis from the mid-1940s to the mid-1960s, with careful attention to the interplay between technical developments and disciplinary shifts, especially the rise of molecular biology in this time-frame. Claiming that the early 1950s marked a decisive shift in the evolution of electrophoretic methods from moving boundary to zone electrophoresis, I reconstruct various trajectories in which scientists such as Oliver Smithies sought out the most desirable solid supporting medium for electrophoretic instrumentation. Biomolecular knowledge, I argue, emerged in part from this process of seeking the most appropriate supporting medium that allowed for discrete molecular separation and visualization. The early 1950s, therefore, marked not only an important turning point in the history of separation science, but also a transformative moment in the history of the life sciences as the growth of molecular biology depended in part on the epistemological access to the molecular realm available through these evolving technologies.

  14. Coupling sodium dodecyl sulfate-capillary polyacrylamide gel electrophoresis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry via a poly(tetrafluoroethylene) membrane.

    PubMed

    Lu, Joann J; Zhu, Zaifang; Wang, Wei; Liu, Shaorong

    2011-03-01

    Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) is a fundamental analytical technique for proteomic research, and SDS-capillary gel electrophoresis (CGE) is its miniaturized version. Compared to conventional slab-gel electrophoresis, SDS-CGE has many advantages such as increased separation efficiency, reduced separation time, and automated operation. SDS-CGE is not widely accepted in proteomic research primarily due to the difficulties in identifying the well-resolved proteins. MALDI-TOF-MS is an outstanding platform for protein identifications. Coupling the two would solve the problem but is extremely challenging because the MS detector has no access to the SDS-CGE-resolved proteins and the SDS interferes with MS detection. In this work we introduce an approach to address these issues. We discover that poly(tetrafluoroethylene) (PTFE) membranes are excellent materials for collecting SDS-CGE-separated proteins. We demonstrate that we can wash off the SDS bound to the collected proteins and identify these proteins on-membrane with MALDI-TOF-MS. We also show that we can immunoblot and Coomassie-stain the proteins collected on these membranes.

  15. Capillary and microchip gel electrophoresis for simultaneous detection of Salmonella pullorum and Salmonella gallinarum by rfbS allele-specific PCR.

    PubMed

    Jeon, Seonsook; Eo, Seong Kug; Kim, Yongseong; Yoo, Dong Jin; Kang, Seong Ho

    2007-09-30

    We report the use of capillary gel electrophoresis (CGE) based on a rfbS allele-specific polymerase chain reaction (PCR) for the analysis and simultaneous detection of Salmonella pullorum and Salmonella gallinarum, which are the major bacterial pathogens in poultry. rfbS allele-specific PCR was used to concurrently amplify two specific 147- and 187-bp DNA fragments for the simultaneous detection of S. pullorum and S. gallinarum at an annealing temperature of 54+/-1 degrees C and an MgCl(2) concentration of 2.8-5.6mM. Under an electric field of 333.3V/cm and a sieving matrix of 1.0% poly(ethyleneoxide) (M(r) 600000), the amplified PCR products were analyzed within 6min by CGE separation. This CGE assay could be translated to microchip format using programmed field strength gradients (PFSG). In the microchip gel electrophoresis with PFSG, both of the Salmonella analyses were completed within 30s, without decreasing the resolution efficiency. rfbS allele-specific PCR-microchip gel electrophoresis with the PFSG technique might be a new tool for the simultaneous detection of both S. pullorum and S. gallinarum, due to its ultra-speed and high efficiency.

  16. Simulating Electrophoresis.

    ERIC Educational Resources Information Center

    Moertel, Cheryl; Frutiger, Bruce

    1996-01-01

    Describes a DNA fingerprinting simulation that uses vegetable food coloring and plastic food containers instead of DNA and expensive gel electrophoresis chambers. Allows students to decipher unknown combinations of dyes in a method similar to that used to decipher samples of DNA in DNA fingerprint techniques. (JRH)

  17. A pulsed field gel electrophoresis (PFGE) study that suggests a major world-wide clone of Salmonella enterica serovar Enteritidis.

    PubMed

    Pang, Jen-Chieh; Chiu, Tsai-Hsin; Helmuth, Reiner; Schroeter, Andreas; Guerra, Beatriz; Tsen, Hau-Yang

    2007-05-30

    Since human infections by Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) have been increasing world-wide over the past years and epidemiological studies have implicated the consumption of meat, poultry, eggs and egg products, elucidation of the predominant subtypes for this Salmonella spp. is important. In this study, 107 poultry and food isolates of Salmonella Enteritidis obtained from Germany were analyzed by pulsed field gel electrophoresis (PFGE), and the subtypes were compared with those of the 124 human isolates obtained in Taiwan. Results showed that for these 107 poultry and food isolates, when XbaI, SpeI and NotI were used for chromosomal DNA digestion followed by PFGE analysis, a total of 19, 20 and 19 PFGE patterns, respectively, were identified. Of them, 51 (47.7%), 52 (48.6%) and 42 (39.3%) strains belong to a single pattern of X3, S3 and N3, respectively, and 34 strains belong to a pattern combination of X3S3N3, which was the major subtype. When PFGE patterns of these 107 German isolates were compared with those of the 124 human isolates obtained in Taiwan, pattern combination of X3S3N3 was found as the most common pattern shared by isolates from both areas. PT4 is a major phage type for German and Taiwan isolates. Although most of the X3S3N3 strains are of this phage type, some strains of other PFGE patterns are also of this phage type. Since strains used in this study were unrelated, i.e., they were isolated from different origins in areas geographically far apart from each other, the PFGE study suggests a major world-wide clone of S. enterica serovar Enteritidis.

  18. Exercise and Oxidative Damage in Nucleoid DNA Quantified Using Single Cell Gel Electrophoresis: Present and Future Application

    PubMed Central

    Davison, Gareth W.

    2016-01-01

    High intensity exercise can enhance the production of reactive oxygen and nitrogen free radical species, which may cause a number of perturbations to cellular integrity, including deoxyribonucleic acid (DNA) modification. In the absence of adequate DNA repair, it is theoretically possible that several biological disorders may ensue, in addition to premature aging. This striking hypothesis and supposition can only be realized in the presence of sound methodology for the quantification of DNA damage and repair. The alkaline single-cell gel electrophoresis or “comet assay” is a simple and reliable method for measuring the components of DNA stability in eukaryotic cells. The assay is commonly used in research associated with genotoxicology and in human bio-monitoring studies concerned with gene-environment interactions; but is currently less appreciated and under-utilized in the domain of exercise science. No exercise related study for example, has incorporated the comet assay combined with fluorescent in situ hybridization methodology to detect and investigate whole genome, telomeric DNA, or gene region-specific DNA damage and repair in cells. Our laboratory and others have used the comet assay in conjunction with lesion-specific endonucleases to measure DNA strand breaks and oxidized bases to confirm that high intensity exercise can damage and destabilize DNA. Thus, the primary function of this review is to highlight recent advances and innovation with the comet assay, in order to enhance our future understanding of the complex interrelationship between exercise and DNA modification in eukaryotic cells. A brief synopsis of the current literature addressing DNA stability as a function of continuous aerobic exercise is also included. PMID:27445841

  19. Genomic Diversity within the Genus Pediococcus as Revealed by Randomly Amplified Polymorphic DNA PCR and Pulsed-Field Gel Electrophoresis

    PubMed Central

    Simpson, P. J.; Stanton, C.; Fitzgerald, G. F.; Ross, R. P.

    2002-01-01

    The genomic diversity of 33 previously assigned strains from six species within the genus Pediococcus was assessed by randomly amplified polymorphic DNA (RAPD) PCR and pulsed-field-gel electrophoresis (PFGE). The RAPD PCR patterns produced by two separate random primers, termed P1 (ACGCGCCCT) and P2 (ATGTAACGCC), were compared by the Pearson correlation coefficient and the unweighted pair group method with arithmetic averages clustering algorithm. Pattern variations between repeat samples set a strain discrimination threshold of less than 70% similarity. P1 and P2 primers alone and in combination produced 14, 21, and 28 distinct patterns, respectively. When each strain was assigned with a type strain with which it shared the highest level of similarity, both primers grouped 17 of the 27 strains to their proposed species. PFGE following genomic digestion with the restriction enzymes ApaI, NotI, and AscI produced 30, 32, and 28 distinct macrorestriction patterns, respectively. Specific DNA fragments within the NotI and AscI macrorestriction patterns for each strain were observed that allowed 27 of the 33 strains to be assigned to their proposed species. For example, following digestion with AscI, all Pediococcus parvulus strains were characterized by two DNA fragments, one of approximately 220 kb and another between 700 and 800 kb. The exceptions correlated with those observed with both RAPD PCR primers and included three P. damnosus and two P. pentosaceus strains that grew at temperatures regarded as nonpermissive for their proposed species but not for those with which they grouped. PMID:11823217

  20. Association of Streptomyces community composition determined by PCR-denaturing gradient gel electrophoresis with indoor mold status.

    PubMed

    Johansson, Elisabet; Reponen, Tiina; Meller, Jarek; Vesper, Stephen; Yadav, Jagjit

    2014-12-01

    Both Streptomyces species and mold species have previously been isolated from moisture-damaged building materials; however, an association between these two groups of microorganisms in indoor environments is not clear. In this study, we used a culture-independent method, PCR-denaturing gradient gel electrophoresis (PCR-DGGE), to investigate the composition of the Streptomyces community in house dust. Twenty-three dust samples each from two sets of homes categorized as high-mold and low-mold based on mold-specific quantitative PCR analysis were used in the study. Taxonomic identification of prominent bands was performed by cloning and sequencing. Associations between DGGE amplicon band intensities and home mold status were assessed using univariate analyses as well as multivariate recursive partitioning (decision trees) to test the predictive value of combinations of bands intensities. In the final classification tree, a combination of two bands was significantly associated with mold status of the home (p = 0.001). The sequence corresponding to one of the bands in the final decision tree matched a group of Streptomyces species that included Streptomyces coelicolor and Streptomyces sampsonii, both of which have been isolated from moisture-damaged buildings previously. The closest match for the majority of sequences corresponding to a second band consisted of a group of Streptomyces species that included Streptomyces hygroscopicus, an important producer of antibiotics and immunosuppressors. Taken together, the study showed that DGGE can be a useful tool for identifying bacterial species that may be more prevalent in mold-damaged buildings.

  1. Two-Dimensional Differential Gel Electrophoresis to Identify Protein Biomarkers in Amniotic Fluid of Edwards Syndrome (Trisomy 18) Pregnancies

    PubMed Central

    Hsu, Te-Yao; Lin, Hao; Hung, Hsuan-Ning; Yang, Kuender D.; Ou, Chia-Yu; Tsai, Ching-Chang; Cheng, Hsin-Hsin; Chung, Su-Hai; Cheng, Bi-Hua; Wong, Yi-Hsun; Chou, An Kuo; Hsiao, Chang-Chun

    2016-01-01

    Background Edwards syndrome (ES) is a severe chromosomal abnormality with a prevalence of about 0.8 in 10,000 infants born alive. The aims of this study were to identify candidate proteins associated with ES pregnancies from amniotic fluid supernatant (AFS) using proteomics, and to explore the role of biological networks in the pathophysiology of ES. Methods AFS from six second trimester pregnancies with ES fetuses and six normal cases were included in this study. Fluorescence-based two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) were used for comparative proteomic analysis. The identified proteins were further validated by Western blotting and the role of biological networks was analyzed. Results Twelve protein spots were differentially expressed by more than 1.5-fold in the AFS of the ES pregnancies. MALDI-TOF/MS identified one up-regulated protein: apolipoprotein A1 (ApoA1), and four under-regulated proteins: vitamin D binding protein (VDBP), alpha-1-antitrypsin (A1AT), insulin-like growth factor-binding protein 1 (IGFBP-1), and transthyretin (TTR). Western blot and densitometric analysis of ApoA1, A1AT, IGFBP-1, and TTR confirmed the alteration of these proteins in the amniotic fluid samples. Biological network analysis revealed that the proteins of the ES AFS were involved mainly in lipid and hormone metabolism, immune response, and cardiovascular disease. Conclusions These five proteins may be involved in the pathogenesis of ES. Further studies are needed to explore. PMID:26752631

  2. Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry.

    PubMed

    Mears, Rainy; Craven, Rachel A; Hanrahan, Sarah; Totty, Nick; Upton, Carol; Young, Sarah L; Patel, Poulam; Selby, Peter J; Banks, Rosamonde E

    2004-12-01

    Exosomes are 40-100 nm vesicles released by numerous cell types and are thought to have a variety of roles depending on their origin. Exosomes derived from antigen presenting cells have been shown to be capable of initiating immune responses in vivo and eradicating established tumours in murine models. Tumour-derived exosomes can be utilised as a source of tumour antigen for cross-priming to T-cells and are thus of interest for use in anti-tumour immunotherapy. Further exploration into the protein composition of exosomes may increase our understanding of their potential roles in vivo and this study has examined the proteome of exosomes purified from cell supernatants of the melanoma cell lines MeWo and SK-MEL-28. The vesicular nature and size (30-100 nm) of the purified exosomes was confirmed by electron microscopy and sucrose density gradient centrifugation. Western blotting demonstrated the absence of calnexin and cytochrome c, verifying the purity of the exosome preparations, as well as enrichment of MHC class I and the tumour-associated antigens Mart-1 and Mel-CAM. The two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) protein profiles of exosomes from the two cell lines were highly comparable and strikingly different from the profiles of the total cell lysates. Mass spectrometric sequencing identified proteins present in 49 protein spots in the exosome lysates. Several of these have been identified previously in exosomes but some are novel, including p120 catenin, radixin, and immunoglobulin superfamily member 8 (PGRL). Proteins present in whole-cell lysates that were significantly reduced or excluded from exosomes were also identified and included several mitochondrial and lysosomal proteins, again confirming the proposed endosomal origin of exosomes. This study presents a starting point for future more in-depth protein studies of tumour-derived exosomes which will aid the understanding of their biogenesis and targeting for use in anti

  3. Association of Streptomyces community composition determined by PCR-denaturing gradient gel electrophoresis with indoor mold status

    PubMed Central

    Johansson, Elisabet; Reponen, Tiina; Meller, Jarek; Vesper, Stephen; Yadav, Jagjit

    2014-01-01

    Both Streptomyces species and mold species have previously been isolated from moisture-damaged building materials; however, an association between these two groups of microorganisms in indoor environments is not clear. In this study we used a culture-independent method, PCR denaturing gradient gel electrophoresis (PCR-DGGE) to investigate the composition of the Streptomyces community in house dust. Twenty-three dust samples each from two sets of homes categorized as high-mold and low-mold based on mold specific quantitative PCR-analysis were used in the study. Taxonomic identification of prominent bands was performed by cloning and sequencing. Associations between DGGE amplicon band intensities and home mold status were assessed using univariate analyses, as well as multivariate recursive partitioning (decision trees) to test the predictive value of combinations of bands intensities. In the final classification tree, a combination of two bands was significantly associated with mold status of the home (p = 0.001). The sequence corresponding to one of the bands in the final decision tree matched a group of Streptomyces species that included S. coelicolor and S. sampsonii, both of which have been isolated from moisture-damaged buildings previously. The closest match for the majority of sequences corresponding to a second band consisted of a group of Streptomyces species that included S. hygroscopicus, an important producer of antibiotics and immunosuppressors. Taken together, the study showed that DGGE can be a useful tool for identifying bacterial species that may be more prevalent in mold-damaged buildings. PMID:25331035

  4. Molecular genetic divergence of orang utan (Pongo pygmaeus) subspecies based on isozyme and two-dimensional gel electrophoresis.

    PubMed

    Janczewski, D N; Goldman, D; O'Brien, S J

    1990-01-01

    The orang utan (Pongo pygmaeus), as currently recognized, includes two geographically separated subspecies: Pongo pygmaeus pygmaeus, which resides on Borneo, and P. p. abelii, which inhabits Sumatra. At present, there is no known route of gene flow between the two populations except through captive individuals which have been released back into the wild over the last several decades. The two subspecies are differentiated by morphological and behavioral characters, and they can be distinguished by a subspecies specific pericentric chromosomal inversion. Nei-genetic distances were estimated between orang utan subspecies, gorilla, chimpanzee and humans using 44 isozyme loci and using 458 soluble fibroblast proteins which were resolved by two-dimensional gel electrophoresis. Phenetic analysis of both data sets supports the following conclusions: the orang utan subspecies distances are approximately 10 times closer to each other than they are to the African apes, and the orang utan subspecies are approximately as divergent as are the two chimpanzee species. Comparison of the genetic distances to genetic distance estimates done in the same laboratory under identical conditions reveals that the distance between Bornean vs. Sumatran orang utans is 5-10 times the distance measured between several pairs of subspecies including lions, cheetahs, and tigers. Near species level molecular genetic distances between orang utan subspecies would support the separate management of Bornean and Sumatran orang utans as evolutionary significant units (Ryder 1987). Evolutionary topologies were constructed from the distance data using both cladistic and phenetic methods. The majority of resulting trees affirmed previous molecular evolutionary studies that indicated that man and chimpanzee diverged from a common ancestor subsequent to the divergence of gorilla from the common ancestor.

  5. Use of pulsed-field gel electrophoresis to determine genomic diversity in strains of Helicobacter hepaticus from geographically distant locations.

    PubMed Central

    Saunders, K E; McGovern, K J; Fox, J G

    1997-01-01

    In 1992 a helical microorganism associated with chronic active hepatitis and a high incidence of hepatocellular tumors was identified in the hepatic parenchyma of A/JCr mice. By using biochemical tests, phenotypic characterization, and 16S rRNA gene sequence analysis, the organism was classified as a novel Helicobacter species and named Helicobacter hepaticus. Recent surveys completed in our laboratory indicate that H. hepaticus is widespread in academic and commercial mouse colonies. The aim of this study was to examine the H. hepaticus genome by pulsed-field gel electrophoresis (PFGE) to determine the degree of genomic variation and genomic size. This technique has been used to identify significant genomic diversity among strains of Helicobacter pylori and to demonstrate only slight genomic diversity among strains of Helicobacter mustelae. Genomic DNAs from 11 isolates of H. hepaticus from the United States, Germany, France, and The Netherlands were subjected to PFGE after digestion with SmaI. Isolates from three independent sources within the United States had very similar PFGE patterns, suggesting that the genomic DNAs of these isolates are conserved. Genomic DNA isolated from a fourth source within the United States had a PFGE pattern different from those of the other U.S. isolates. Isolates obtained from Germany, France, and The Netherlands had PFGE patterns that differed markedly from those of the U.S. isolates and from one another. The use of DNA fingerprinting may be useful in subsequent epidemiological studies of H. hepaticus when the source and method of spread of this murine pathogen need to be ascertained. By PFGE, the genomic size of H. hepaticus is estimated to be roughly 1.3 Mb, which compares to 1.67 Mb for H. pylori and 1.7 Mb for H. mustelae. PMID:9350747

  6. High-Resolution Differentiation of Cyanobacteria by Using rRNA-Internal Transcribed Spacer Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Janse, Ingmar; Meima, Marion; Kardinaal, W. Edwin A.; Zwart, Gabriel

    2003-01-01

    For many ecological studies of cyanobacteria, it is essential that closely related species or strains can be discriminated. Since this is often not possible by using morphological features, cyanobacteria are frequently studied by using DNA-based methods. A powerful method for analysis of the diversity and dynamics of microbial populations and for checking the purity and affiliation of cultivated strains is denaturing gradient gel electrophoresis (DGGE). We realized high-resolution discrimination of a variety of cyanobacteria by means of DGGE analysis of sections of the internal transcribed spacer between the 16S and 23S rRNA genes (rRNA-ITS). A forward primer specific for cyanobacteria, targeted at the 3′ end of the 16S rRNA gene, was designed. The combination of this primer and three different reverse primers targeted to the rRNA-ITS or to the 23S rRNA gene yielded PCR products of different sizes from cultures of all 16 cyanobacterial genera that were tested but not from other bacteria. DGGE profiles produced from the shortest section of rRNA-ITS consisted of one band for all but one cyanobacterial genera, and those generated from longer stretches of rRNA-ITS yielded DGGE profiles containing one to four bands. The suitability of DGGE for detecting intrageneric and intraspecific variation was tested by using strains of the genus Microcystis. Many strains could be discriminated by means of rRNA-ITS DGGE, and the resolution of this method was strikingly higher than that obtained with previously described methods. The applicability of the developed DGGE assays for analysis of cyanobacteria in field samples was demonstrated by using samples from freshwater lakes. The advantages and disadvantages associated with the use of each developed primer set are discussed. PMID:14602623

  7. A new method combining sequential immunoaffinity depletion and differential in gel electrophoresis to identify autoantibodies as cancer biomarkers.

    PubMed

    Grandjean, Marie; Dieu, Marc; Raes, Martine; Feron, Olivier

    2013-10-31

    Easily measurable biomarkers are urgently required to detect early stages of cancer progression. Autoantibodies (aAbs), as a component of the humoral immune response against tumor cells, have such potential of diagnostic markers since they are circulating and stable proteins, produced rapidly and easily amenable to in vitro dosage. The identification of aAbs is based on the characterization of tumor-associated antigens (TAA) against which they are directed. Here, we propose a new method for an unbiased identification of TAA and thereby of aAbs as cancer biomarkers. This method that we called sequential immunoaffinity depletion-differential in gel electrophoresis (SID-DIGE) is based on the immunodepletion of tumor cell lysates with IgG from control and tumor-bearing mice and direct matching of the flow throughs of these immunoaffinity separations on the same 2D format. This strategy reduces the complexity of the samples to be analyzed and maximizes the interest of assessing hundreds of proteins simultaneously. SID-DIGE has also the potential, contrary to existing serological proteome analysis (SERPA) techniques, to detect immunogenic proteins with conformational epitopes, including those resulting from post-translational modifications. Using a model of human colorectal tumors in mice for the proof of principle, we showed that SID-DIGE outperforms the conventional SERPA technique, with the identification of 7 common TAA (validating our approach) and 18 additional aAbs proving the potential of this new method. In particular, the identification of aAbs directed against key enzymes supporting glycolysis gives credential to the role of hypoxia as a major determinant of the tumor proteome and thus as a source of immunogenicity. Overall, the developed methodology allowed efficient screening of sera for the identification of aAbs as potential biomarkers.

  8. Pulsed-Field Gel Electrophoresis characterization of Listeria monocytogenes isolates from cheese manufacturing plants in São Paulo, Brazil.

    PubMed

    Barancelli, Giovana V; Camargo, Tarsila M; Gagliardi, Natália G; Porto, Ernani; Souza, Roberto A; Campioni, Fabio; Falcão, Juliana P; Hofer, Ernesto; Cruz, Adriano G; Oliveira, Carlos A F

    2014-03-03

    This study aimed to evaluate the occurrence of Listeria monocytogenes in cheese and in the environment of three small-scale dairy plants (A, B, C) located in the Northern region state of São Paulo, Brazil, and to characterize the isolates using conventional serotyping and PFGE. A total of 393 samples were collected and analyzed from October 2008 to September 2009. From these, 136 came from dairy plant A, where only L. seeligeri was isolated. In dairy plant B, 136 samples were analyzed, and L. innocua, L. seeligeri and L. welshimeri were isolated together with L. monocytogenes. In dairy plant C, 121 samples were analyzed, and L. monocytogenes and L. innocua were isolated. Cheese from dairy plants B and C were contaminated with Listeria spp, with L. innocua being found in Minas frescal cheese from both dairy plants, and L. innocua and L. monocytogenes in Prato cheese from dairy plant C. A total of 85 L. monocytogenes isolates were classified in 3 serotypes: 1/2b, 1/2c, and 4b, with predominance of serotype 4b in both dairy plants. The 85 isolates found in the dairy plants were characterized by genomic macrorestriction using ApaI and AscI with Pulsed Field Gel Electrophoresis (PFGE). Macrorestriction yielded 30 different pulsotypes. The presence of indistinguishable profiles repeatedly isolated during a 12-month period indicated the persistence of L. monocytogenes in dairy plants B and C, which were more than 100 km away from each other. Brine used in dairy plant C contained more than one L. monocytogenes lineage. The routes of contamination were identified in plants B and C, and highlighted the importance of using molecular techniques and serotyping to track L. monocytogenes sources of contamination, distribution, and routes of contamination in dairy plants, and to develop improved control strategies for L. monocytogenes in dairy plants and dairy products.

  9. Two-dimensional gel electrophoresis-based analysis provides global insights into the cotton ovule and fiber proteomes.

    PubMed

    Jin, Xiang; Wang, Limin; He, Liping; Feng, Weiqiang; Wang, Xuchu

    2016-02-01

    Proteomic analysis of upland cotton was performed to profile the global detectable proteomes of ovules and fibers using two-dimensional electrophoresis (2DE). A total of 1,203 independent protein spots were collected from representative 2DE gels, which were digested with trypsin and identified by matrix-assisted laser desorption and ionization-time-offlight/ time-of-flight (MALDI-TOF/TOF) mass spectrometry. The mass spectrometry or tandem mass spectrometry (MS or MS/MS) data were then searched against a local database constructed from Gossypium hirsutum genome sequences, resulting in successful identification of 975 protein spots (411 for ovules and 564 for fibers). Functional annotation analysis of the 975 identified proteins revealed that ovule-specific proteins were mainly enriched in functions related to fatty acid elongation, sulfur amino acid metabolism and post-replication repair, while fiber-specific proteins were enriched in functions related to root hair elongation, galactose metabolism and D-xylose metabolic processes. Further annotation analysis of the most abundant protein spots showed that 28.96% of the total proteins in the ovule were mainly located in the Golgi apparatus, endoplasmic reticulum, mitochondrion and ribosome, whereas in fibers, 27.02% of the total proteins were located in the cytoskeleton, nuclear envelope and cell wall. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses of the ovule-specific protein spots P61, P93 and P198 and fiber-specific protein spots 230, 477 and 511 were performed to validate the proteomics data. Protein-protein interaction network analyses revealed very different network cluster patterns between ovules and fibers. This work provides the largest protein identification dataset of 2DE-detectable proteins in cotton ovules and fibers and indicates potentially important roles of tissue-specific proteins, thus providing insights into the cotton ovule and fiber proteomes on a global scale.

  10. Analysis of Genetic Diversity of Streptococcus suis Clinical Isolates from Pigs in Spain by Pulsed-Field Gel Electrophoresis

    PubMed Central

    Vela, Ana I.; Goyache, Joaquin; Tarradas, Carmen; Luque, Inmaculada; Mateos, Ana; Moreno, Miguel A.; Borge, Carmen; Perea, J. Anselmo; Domínguez, Lucas; Fernández-Garayzábal, José F.

    2003-01-01

    Pulsed-field gel electrophoresis (PFGE) was used to investigate the diversity of Streptococcus suis isolates of various serotypes recovered from swine clinical samples in Spain. Capsular types 9 (64.9%) and 2 (14.8%) were the most frequently isolated serotypes followed by serotype 7 (5.9%) and serotype 8 (4.3%). The PFGE results of this study with 60 different pulsotypes indicate a great genetic diversity among the S. suis isolates, which is consistent with the broad distribution of S. suis in the swine population. Forty-five percent of the pulsotypes corresponded to single isolates, no pulsotype was common to all farms, and at least 3 different pulsotypes were isolated in 56% of herds in which more than 3 clinical isolates were analyzed. These results reveal a great diversity both between and within herds throughout the strains of S. suis studied, demonstrating that different strains of S. suis are associated with infection in pigs. Some pulsotypes were more frequently isolated and exhibited a wider distribution over herds than others, and were the unique or predominant strains in several herds, suggesting the existence of a prevalent or a few prevalent clones responsible for a large proportion of clinical cases. Overall, the great genetic heterogeneity of the clinical strains of S. suis, the isolation of different strains within the same herd, and the predominance of particular strains in some herds are evidence that infection by S. suis is a dynamic process and reinforce the idea that the epidemiology of S. suis infection is very complex. PMID:12791872

  11. Analysis of genetic diversity of Streptococcus suis clinical isolates from pigs in Spain by pulsed-field gel electrophoresis.

    PubMed

    Vela, Ana I; Goyache, Joaquin; Tarradas, Carmen; Luque, Inmaculada; Mateos, Ana; Moreno, Miguel A; Borge, Carmen; Perea, J Anselmo; Domínguez, Lucas; Fernández-Garayzábal, José F

    2003-06-01

    Pulsed-field gel electrophoresis (PFGE) was used to investigate the diversity of Streptococcus suis isolates of various serotypes recovered from swine clinical samples in Spain. Capsular types 9 (64.9%) and 2 (14.8%) were the most frequently isolated serotypes followed by serotype 7 (5.9%) and serotype 8 (4.3%). The PFGE results of this study with 60 different pulsotypes indicate a great genetic diversity among the S. suis isolates, which is consistent with the broad distribution of S. suis in the swine population. Forty-five percent of the pulsotypes corresponded to single isolates, no pulsotype was common to all farms, and at least 3 different pulsotypes were isolated in 56% of herds in which more than 3 clinical isolates were analyzed. These results reveal a great diversity both between and within herds throughout the strains of S. suis studied, demonstrating that different strains of S. suis are associated with infection in pigs. Some pulsotypes were more frequently isolated and exhibited a wider distribution over herds than others, and were the unique or predominant strains in several herds, suggesting the existence of a prevalent or a few prevalent clones responsible for a large proportion of clinical cases. Overall, the great genetic heterogeneity of the clinical strains of S. suis, the isolation of different strains within the same herd, and the predominance of particular strains in some herds are evidence that infection by S. suis is a dynamic process and reinforce the idea that the epidemiology of S. suis infection is very complex.

  12. Bulk and Rhizosphere Soil Bacterial Communities Studied by Denaturing Gradient Gel Electrophoresis: Plant-Dependent Enrichment and Seasonal Shifts Revealed

    PubMed Central

    Smalla, K.; Wieland, G.; Buchner, A.; Zock, A.; Parzy, J.; Kaiser, S.; Roskot, N.; Heuer, H.; Berg, G.

    2001-01-01

    The bacterial rhizosphere communities of three host plants of the pathogenic fungus Verticillium dahliae, field-grown strawberry (Fragaria ananassa Duch.), oilseed rape (Brassica napus L.), and potato (Solanum tuberosum L.), were analyzed. We aimed to determine the degree to which the rhizosphere effect is plant dependent and whether this effect would be increased by growing the same crops in two consecutive years. Rhizosphere or soil samples were taken five times over the vegetation periods. To allow a cultivation-independent analysis, total community DNA was extracted from the microbial pellet recovered from root or soil samples. 16S rDNA fragments amplified by PCR from soil or rhizosphere bacterium DNA were analyzed by denaturing gradient gel electrophoresis (DGGE). The DGGE fingerprints showed plant-dependent shifts in the relative abundance of bacterial populations in the rhizosphere which became more pronounced in the second year. DGGE patterns of oilseed rape and potato rhizosphere communities were more similar to each other than to the strawberry patterns. In both years seasonal shifts in the abundance and composition of the bacterial rhizosphere populations were observed. Independent of the plant species, the patterns of the first sampling times for both years were characterized by the absence of some of the bands which became dominant at the following sampling times. Bacillus megaterium and Arthrobacter sp. were found as predominant populations in bulk soils. Sequencing of dominant bands excised from the rhizosphere patterns revealed that 6 out of 10 bands resembled gram-positive bacteria. Nocardia populations were identified as strawberry-specific bands. PMID:11571180

  13. Genotoxicity of chlorpyrifos in freshwater fish Labeo rohita using Alkaline Single-cell Gel Electrophoresis (Comet) assay.

    PubMed

    Ismail, Muhammad; Khan, Qaiser Mahmood; Ali, Rahat; Ali, Tayyaba; Mobeen, Ameena

    2014-10-01

    Chlorpyrifos is a widely used insecticide of organophosphate group, which causes severe toxicological effects in non target aquatic organisms especially in fish. In the present study the genotoxic effects of sublethal concentrations of chlorpyrifos were observed in the erythrocytes and gill cells of Labeo rohita (commonly known as rohu) using the Alkaline Single-Cell Gel Electrophoresis (Comet) assay. Effects of chlorpyrifos on the behavior of the fish were also investigated. The 96 h LC50 value of chlorpyrifos, estimated by Trimmed Spearman-Karber (TSK) in static bioassay, was found to be 442.8 µg/L. On the basis of LC50 value, the fish were exposed to three sublethal concentrations of chlorpyrifos (SL-I ∼221.4 µg/L, SL- II ∼110.7 µg/L and SL-III ∼73.8 µg/L) for 96 h. Blood and gill samples were collected at every 24 h and were subjected to the Comet assay. The observed DNA damage was concentration dependent and time dependent and those levels of DNA damage in between the tested concentrations and times were significantly different (p < 0.01). It was also found that the gill cells are more sensitive to chlorpyrifos, though; it revealed more DNA damage as compared to the erythrocytes of fish. Fish exposed to different concentrations of chlorpyrifos showed different neurotoxic behavioral responses. It was concluded that chlorpyrifos is a genotoxic and neurotoxic insecticide causing DNA damage and neurotoxic effects in Labeo rohita.

  14. Diversity of Campylobacter isolates from retail poultry carcasses and from humans as demonstrated by pulsed-field gel electrophoresis.

    PubMed

    Dickins, M Avery; Franklin, Sharon; Stefanova, Rossina; Schutze, Gordon E; Eisenach, Kathleen D; Wesley, Irene; Cave, M Donald

    2002-06-01

    Campylobacter spp. are a major contaminant of poultry. Eating undercooked chicken and handling raw poultry have been identified as risk factors for campylobacteriosis in humans. Previous studies have found Campylobacter spp. on 90% of poultry carcasses. In the present study, pulsed-field gel electrophoresis (PFGE) was used to assess the genetic diversity of strains on retail poultry carcasses. PFGE patterns of isolates from campylobacteriosis cases were compared to those from the poultry isolates. Over a 1-year study period (March 2000 through February 2001), whole fresh young chickens (n = 72) were obtained from three retail outlets in an urban community in the south-central United States. Campylobacter spp. were isolated from 82% of these carcasses. Strains (n = 70) were defined on the basis of their PFGE pattern. Sixty-seven percent of the carcasses from which Campylobacter spp. were isolated were contaminated with more than one PFGE-distinguishable strain. During the 1-year study period, most of the PFGE patterns (59%) were limited to isolates obtained from a single carcass. Forty-one percent of the PFGE-distinguishable strains were recovered from more than one carcass. Ninety-seven percent of the carcasses contaminated with the same strain were purchased at the same time from the same store. To examine the degree of genetic stability, four strains were followed in vitro over an estimated 1,000 doublings. The PFGE pattern of one of these isolates underwent minor changes during in vitro growth. The data indicate extensive variability in the PFGE patterns of Campylobacter spp. isolated from humans and from poultry carcasses. In spite of difficulties caused by such diversity and the fact that some carcasses are contaminated with more than one strain, the pattern variation provides a useful method for linking a particular strain to its source.

  15. Diversity and dynamics of antibiotic-resistant bacteria in cheese as determined by PCR denaturing gradient gel electrophoresis.

    PubMed

    Flórez, Ana Belén; Mayo, Baltasar

    2015-12-02

    This work reports the composition and succession of tetracycline- and erythromycin-resistant bacterial communities in a model cheese, monitored by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). Bacterial 16S rRNA genes were examined using this technique to detect structural changes in the cheese microbiota over manufacturing and ripening. Total bacterial genomic DNA, used as a template, was extracted from cultivable bacteria grown without and with tetracycline or erythromycin (both at 25 μg ml(-1)) on a non-selective medium used for enumeration of total and viable cells (Plate Count agar with Milk; PCA-M), and from those grown on selective and/or differential agar media used for counting various bacterial groups; i.e., lactic acid bacteria (de Man, Rogosa and Sharpe agar; MRSA), micrococci and staphylococci (Baird-Parker agar; BPA), and enterobacteria (Violet Red Bile Glucose agar; VRBGA). Large numbers of tetracycline- and erythromycin-resistant bacteria were detected in cheese samples at all stages of ripening. Counts of antibiotic-resistant bacteria varied widely depending on the microbial group and the point of sampling. In general, resistant bacteria were 0.5-1.0 Log10 units fewer in number than the corresponding susceptible bacteria. The PCR-DGGE profiles obtained with DNA isolated from the plates for total bacteria and the different bacterial groups suggested Escherichia coli, Lactococcus lactis, Enterococcus faecalis and Staphylococcus spp. as the microbial types resistant to both antibiotics tested. This study shows the suitability of the PCR-DGGE technique for rapidly identifying and tracking antibiotic resistant populations in cheese and, by extension, in other foods.

  16. Comparison of multilocus sequence typing and pulsed-field gel electrophoresis for Salmonella spp. identification in surface water

    NASA Astrophysics Data System (ADS)

    Kuo, Chun Wei; Hao Huang, Kuan; Hsu, Bing Mu; Tsai, Hsien Lung; Tseng, Shao Feng; Kao, Po Min; Shen, Shu Min; Chou Chiu, Yi; Chen, Jung Sheng

    2013-04-01

    Salmonella is one of the most important pathogens of waterborne diseases with outbreaks from contaminated water reported worldwide. In addition, Salmonella spp. can survive for long periods in aquatic environments. To realize genotypes and serovars of Salmonella in aquatic environments, we isolated the Salmonella strains by selective culture plates to identify the serovars of Salmonella by serological assay, and identify the genotypes by Multilocus sequence typing (MLST) based on the sequence data from University College Cork (UCC), respectively. The results show that 36 stream water samples (30.1%) and 18 drinking water samples (23.3%) were confirmed the existence of Salmonella using culture method combined PCR specific invA gene amplification. In this study, 24 cultured isolates of Salmonella from water samples were classified to fifteen Salmonella enterica serovars. In addition, we construct phylogenetic analysis using phylogenetic tree and Minimum spanning tree (MST) method to analyze the relationship of clinical, environmental, and geographical data. Phylogenetic tree showed that four main clusters and our strains can be distributed in all. The genotypes of isolates from stream water are more biodiversity while comparing the Salmonella strains genotypes from drinking water sources. According to MST data, we can found the positive correlation between serovars and genotypes of Salmonella. Previous studies revealed that the result of Pulsed field gel electrophoresis (PFGE) method can predict the serovars of Salmonella strain. Hence, we used the MLST data combined phylogenetic analysis to identify the serovars of Salmonella strain and achieved effectiveness. While using the geographical data combined phylogenetic analysis, the result showed that the dominant strains were existed in whole stream area in rainy season. Keywords: Salmonella spp., MLST, phylogenetic analysis, PFGE

  17. Cytokine- or chemically derived nitric oxide alters the expression of proteins detected by two-dimensional gel electrophoresis in neonatal rat islets of Langerhans.

    PubMed

    John, N E; Andersen, H U; Fey, S J; Larsen, P M; Roepstorff, P; Larsen, M R; Pociot, F; Karlsen, A E; Nerup, J; Green, I C; Mandrup-Poulsen, T

    2000-11-01

    Interleukin-1beta (IL-1beta) treatment of neonatal rat islets for 24 h induces changes in the expression of 105 of 2,200 proteins, as determined previously by two-dimensional (2D) gel electrophoresis. Nitric oxide (NO) has been implicated as one of the mediators of IL-1beta effects in insulin-containing cell lines and rat islets. The aims of this study were 1) to determine the involvement of NO in IL-1beta-induced alterations in protein expression and 2) to investigate the effects of chemically generated NO on protein expression by 2D gel electrophoresis of neonatal rat islet samples. IL-1beta-induced NO production was prevented by incubation of islets in arginine-free medium supplemented with the arginine analog NG-nitro-L-arginine. [35S]methionine-labeled islet proteins were separated using 2D gel electrophoresis and analyzed using the BioImage computer program. Analysis revealed that the expression levels of 23 protein spots of the 105 protein spots, altered by prior treatment with IL-1beta (60 U/ml) alone, were significantly affected (P < 0.01 [n = 4] and P < 0.05 [n = 19]) when NO production was prevented. The effects of chemically generated NO were investigated by exposing islets to the NO donor GSNO (100 micromol/l) for 24 h before labeling with [35S]methionine and 2D gel electrophoresis. Computer-based analysis identified alterations in the expression of 19 of a total of 1,600 detectable proteins in GSNO-treated islets (P < 0.01). We conclude 1) that the expression of up to 42 proteins is altered by cytokine-induced or chemically generated NO in the precise experimental conditions chosen and 2) that the majority of proteins altered by prior treatment with IL-1beta may be the result of NO-independent IL-1beta-mediated regulation of gene expression. This study demonstrates that the combination of 2D gel electrophoresis and mass spectrometry is a powerful tool in the identification of beta-cell proteins involved in the response to toxic mediators.

  18. Detection and analysis of protein-protein interactions of organellar and prokaryotic proteomes by blue native and colorless native gel electrophoresis.

    PubMed

    Krause, Frank; Seelert, Holger

    2008-11-01

    Native gels enable the analysis of protein complexes on a proteome-wide scale in a single experiment. The protocols described in this unit are based on separation of protein complexes by blue native polyacrylamide electrophoresis (BN-PAGE), the most versatile native gel system, and the closely related milder colorless native PAGE (CN-PAGE). Both BN-PAGE and CN-PAGE are described on analytical to preparative scales. In addition, methods for subsequent analysis of protein complexes are given, including electroelution from native gels as well as denaturing and native two-dimensional PAGE. Finally, the removal of Coomassie dye from electroeluted proteins is detailed along with a discussion of fundamental considerations for the solubilization of membrane protein complexes from various biological samples, which are exemplified for mitochondria, chloroplasts (thylakoids), and cyanobacteria.

  19. Metal imaging in non-denaturating 2D electrophoresis gels by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for the detection of metalloproteins.

    PubMed

    Becker, J Susanne; Lobinski, Ryszard; Becker, J Sabine

    2009-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was developed as a powerful analytical technique for metal imaging of 2D gels for the detection of metalloproteins in rat kidney after electrophoretic separation. Protein complexes, extracted with water, were separated in their native state in the first and second dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, manganese and lead, were monitored by LA-ICP-MS after gel ablation by a focused laser beam in a way that the total surface of a selected fragment of the gel was totally ablated. The metal distribution of this part of the gel was then constructed by plotting the metal (isotope) signal intensity as a function of the x,y (isoelectric point, molecular mass) coordinates of the gel. The proteins at locations rich in metals were cut out, digested with trypsin and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS).

  20. Supported Molecular Matrix Electrophoresis.

    PubMed

    Matsuno, Yu-Ki; Kameyama, Akihiko

    2015-01-01

    Mucins are difficult to separate using conventional gel electrophoresis methods such as SDS-PAGE and agarose gel electrophoresis, owing to their large size and heterogeneity. On the other hand, cellulose acetate membrane electrophoresis can separate these molecules, but is not compatible with glycan analysis. Here, we describe a novel membrane electrophoresis technique, termed "supported molecular matrix electrophoresis" (SMME), in which a porous polyvinylidene difluoride (PVDF) membrane filter is used to achieve separation. This description includes the separation, visualization, and glycan analysis of mucins with the SMME technique.

  1. Development of a non-denaturing 2D gel electrophoresis protocol for screening in vivo uranium-protein targets in Procambarus clarkii with laser ablation ICP MS followed by protein identification by HPLC-Orbitrap MS.

    PubMed

    Xu, Ming; Frelon, Sandrine; Simon, Olivier; Lobinski, Ryszard; Mounicou, Sandra

    2014-10-01

    Limited knowledge about in vivo non-covalent uranium (U)-protein complexes is largely due to the lack of appropriate analytical methodology. Here, a method for screening and identifying the molecular targets of U was developed. The approach was based on non-denaturing 1D and 2D gel electrophoresis (ND-PAGE and ND-2D-PAGE (using ND-IEF as first dimension previously described)) in conjunction with laser ablation inductively coupled plasma mass spectrometry (LA-ICP MS) for the detection of U-containing proteins. The proteins were then identified by µbore HPLC-Orbitrap MS/MS. The method was applied to the analysis of cytosol of hepatopancreas (HP) of a model U-bioaccumulating organism (Procambarus clarkii). The imaging of uranium in 2D gels revealed the presence of 11 U-containing protein spots. Six protein candidates (i.e. ferritin, glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase, cytosolic manganese superoxide dismutase (Mn-SOD), glutathione S transferase D1 and H3 histone family protein) were then identified by matching with the data base of crustacea Decapoda species (e.g. crayfish). Among them, ferritin was the most important one. This strategy is expected to provide an insight into U toxicology and metabolism.

  2. Preparative 2D Gel Electrophoresis with Immobilized pH Gradients: IEF of Proteins in an IEF-Dedicated Electrophoresis Unit.

    PubMed

    Stochaj, Wayne R; Berkelman, Tom; Laird, Nancy

    2006-10-01

    INTRODUCTIONThis protocol describes a method for separating proteins based on their net charge using the technique of isoelectric focusing (IEF) on immobilized pH gradient (IPG) gels, providing the first dimension of the 2D separation. In this protocol, the IPG gels are focused using self-contained instruments for IEF. These high-voltage systems allow fewer manipulations of the IPG gels, resulting in less error, strip mix-up, contamination, air contact, or urea crystallization. Because rehydration and IEF can be performed consecutively within a single unit, these two steps can be performed unattended overnight. Finally, faster separations and sharper focusing are possible due to the higher voltage available in these instruments.

  3. Staining with highly sensitive Coomassie brilliant blue SeePico™ Stain after Flamingo™ fluorescent gel stain is useful for cancer proteomic analysis by means of two-dimensional gel electrophoresis.

    PubMed

    Kuramitsu, Yasuhiro; Hayashi, Eiko; Okada, Futoshi; Zhang, Xiulian; Tanaka, Toshiyuki; Ueyama, Yoshiya; Nakamura, Kazuyuki

    2010-10-01

    Highly sensitive Coomassie brilliant blue SeePico™ Stain was applied for proteomic analysis using two-dimensional gel electrophoresis (2-DE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). After staining with Flamingo™ Fluorescent Gel Stain, the images of the protein spots were analyzed, and 424 protein spots were detected. After washing with Milli-Q water three times, the gels were re-stained with SeePico™ Stain and the images of the protein spots were analyzed; 272 spots were detected. To assess whether SeePico™ Stain alters MS analysis, a spot was picked up and was analyzed by LC-MS/MS. The MS analysis showed good protein identification. These results show a possible role for SeePico™ Stain in cancer proteomics using 2-DE and MS.

  4. Population Genetic Structure of Listeria monocytogenes Strains as Determined by Pulsed-Field Gel Electrophoresis and Multilocus Sequence Typing

    PubMed Central

    Henri, Clémentine; Félix, Benjamin; Guillier, Laurent; Leekitcharoenphon, Pimlapas; Michelon, Damien; Mariet, Jean-François; Aarestrup, Frank M.; Mistou, Michel-Yves; Hendriksen, René S.

    2016-01-01

    ABSTRACT Listeria monocytogenes is a ubiquitous bacterium that may cause the foodborne illness listeriosis. Only a small amount of data about the population genetic structure of strains isolated from food is available. This study aimed to provide an accurate view of the L. monocytogenes food strain population in France. From 1999 to 2014, 1,894 L. monocytogenes strains were isolated from food at the French National Reference Laboratory for L. monocytogenes and classified according to the five risk food matrices defined by the European Food Safety Authority (EFSA). A total of 396 strains were selected on the basis of different pulsed-field gel electrophoresis (PFGE) clusters, serotypes, and strain origins and typed by multilocus sequence typing (MLST), and the MLST results were supplemented with MLST data available from Institut Pasteur, representing human and additional food strains from France. The distribution of sequence types (STs) was compared between food and clinical strains on a panel of 675 strains. High congruence between PFGE and MLST was found. Out of 73 PFGE clusters, the two most prevalent corresponded to ST9 and ST121. Using original statistical analysis, we demonstrated that (i) there was not a clear association between ST9 and ST121 and the food matrices, (ii) serotype IIc, ST8, and ST4 were associated with meat products, and (iii) ST13 was associated with dairy products. Of the two major STs, ST121 was the ST that included the fewest clinical strains, which might indicate lower virulence. This observation may be directly relevant for refining risk analysis models for the better management of food safety. IMPORTANCE This study showed a very useful backward compatibility between PFGE and MLST for surveillance. The results enabled better understanding of the population structure of L. monocytogenes strains isolated from food and management of the health risks associated with L. monocytogenes food strains. Moreover, this work provided an accurate view

  5. Use of pulsed-field gel electrophoresis to monitor a five-strain mixture of Listeria monocytogenes in frankfurter packages.

    PubMed

    Porto, Anna C S; Wonderling, Laura; Call, Jeffrey E; Luchansky, John B

    2003-08-01

    In a previous study, the viability of a five-strain mixture of Listeria monocytogenes (including Scott A [serotype 4b, clinical isolate], 101M [serotype 4b, beef-pork sausage isolate], F6854 [serotype 1/2a, turkey frankfurter isolate], H7776 [serotype 4b, frankfurter isolate], and MFS-2 [serotype 1/2a, pork plant isolate]) was monitored during refrigerated storage of frankfurters prepared with and without 3.0% added potassium lactate. Throughout a 90-day period of storage at 4 degrees C, the initial inoculum level of 20 CFU per package remained relatively constant in packages containing frankfurters prepared with potassium lactate, but pathogen counts increased to 4.6 log10 CFU in packages containing frankfurters prepared without added potassium lactate. To determine which of the five strains persisted under these conditions, randomly selected colonies obtained after 28 and 90 days of refrigerated storage of frankfurters were analyzed by pulsed-field gel electrophoresis (PFGE) with the restriction enzyme SmaI to generate distinct banding patterns for each of the five strains. Then, with the use of PFGE as a tool for identification, the percentages of the strains on days 28 and 90 of the growth study were compared. In the absence of any added potassium lactate in the product, 43% of the 58 isolates recovered on day 28 were identified as strain Scott A, 12% were identified as strain 101M, 22% were identified as strain F6854, 10% were identified as strain H7776, and 12% were identified as strain MFS-2. However, by day 90, an appreciable number (83%) of the 60 isolates analyzed were identified as strain MFS-2. In packages containing frankfurters formulated with 3.0% potassium lactate, all five strains were present at frequencies of 5 to 36% among the 19 isolates tested on day 28; however, by day 90, strain MFS-2 made up the statistical majority (63%) of the 27 isolates tested. The results of this study indicate that strain MFS-2, a serotype 1/2a isolate recovered from

  6. Erysipelothrix rhusiopathiae: genetic characterization of midwest US isolates and live commercial vaccines using pulsed-field gel electrophoresis.

    PubMed

    Opriessnig, T; Hoffman, L J; Harris, D L; Gaul, S B; Halbur, P G

    2004-03-01

    This is the first report of molecular characterization of US erysipelas field isolates and vaccine strains of Erysipelothrix rhusiopathiae by pulsed-field gel electrophoresis (PFGE). Erysipelas in pigs is mainly caused by E. rhusiopathiae serotypes 1a, 1b, and 2. In 2001, erysipelas reemerged as a clinical problem in pigs in the midwestern United States. In this work 90 erysipelas isolates (58 recent and 28 archived field isolates as well as 4 live-vaccine strains) were genetically characterized. Because of the limited availability of antiserum, 74/90 isolates (44/58 recent isolates) were serotyped. The serotype of the majority (79.6%) of the 44 recent isolates tested was determined to be 1a, 13.6% were serotype 1b, and 6.8% of recent isolates were serologically untypeable. Among all 90 isolates, 23 different PFGE patterns were identified. There were 43 isolates identified as serotype 1a with 4 genetic patterns: 38/43, 1A(I); 3/43, 1A(III); 1/43, 1B(V); and 1/43, 3B. Sixteen serotype 1b isolates had 11 unique genetic patterns: 4/16 were genotype 1B(III), 2/16 were genotype 3A(I), and 1/16 was in genotype groups 1A(V), 1A(VI), 1A(VII), 1B(I), 1B(IV), 1B(VII), 2, 4, and 5. Six genetic patterns were distinguished among the 10 serotype 2 isolates: 1A(IV) (1/10), 1A(V) (1/10), 1B(VI) (1/10), 2 (4/10), 7 (1/10), and 8 (2/8). Erysipelas vaccine strains (modified live) were similar to each other but different from current field strains, sharing 78.6% identity with the most prevalent genotype 1A(I) based on the PFGE-SmaI pattern. Compared with serotyping, PFGE genotyping is a more distinguishing technique, easy to perform and not dependent on the limited availability of antiserum.

  7. PhosphorImager enhancement of sedimentation equilibrium-quantitative polyacrylamide gel electrophoresis: a highly sensitive technique for quantitation of equilibrium gradients of individual components in mixtures.

    PubMed

    Darawshe, S; Merezhinskaya, N; Minton, A P

    1995-07-20

    The technique called sedimentation equilibrium-quantitative polyacrylamide gel electrophoresis (Darawshe et al. (1993) Anal. Biochem. 215, 236-242) has been extended to permit the quantitation and analysis of gradients of individual radiolabeled components in a mixture of radiolabeled solutes centrifuged to sedimentation equilibrium. Immediately following centrifugation, the contents of a sample tube are fractionated into aliquots corresponding to laminae of solution at different radial positions in the centrifuge. Following treatment with sodium dodecyl sulfate-containing buffer, a portion of each fraction is subjected to electrophoresis on a polyacrylamide gel. The gel is then incubated with a strong phosphor plate and subsequently scanned with a Molecular Dynamics PhosphorImage. The concentration of an individual radiolabeled component at a particular radial distance is proportional to the integrated intensity of the image of the radiolabeled band of that component in the fraction corresponding to that radial distance. Concentration gradients reconstructed in this fashion are interpreted in the context of conventional sedimentation equilibrium theory. The results of control experiments carried out with purified proteins of known molar mass and the measurement of the molar mass of a new, partially purified protein are reported.

  8. High-resolution separation and accurate size determination in pulsed-field gel electrophoresis of DNA. 1. DNA size standards and the effect of agarose and temperature

    SciTech Connect

    Mathew, M.K.; Smith, C.L.; Cantor, C.R. )

    1988-12-27

    Pulsed-field gel electrophoresis (PGF) subjects DNA alternately to two electrical fields to resolve DNA ranging from 10,000 base pairs (10 kb) to 10,000 kb in size. The separations are quite sensitive to a variety of experimental variables. This makes it critical to have a wide range of reliable size standards. A technique is described for preparing mixtures of bacteriophage DNA oligomers that span a size range from monomer to more than 30-mer. The relationship between size and mobility of oligomers of different bacteriophage DNA monomers is generally self-consistent. Thus, these samples can serve as primary length standards for DNAs ranging from 10 kb to more than 1,500 kb. They have been used to estimate the size of the chromosomal DNAs from various Saccharomyces cerevisiae strains and to test the effect of gel concentration and temperature on PFG. DNA resolution during PFG is slightly improved in agarose gels with small pore sizes, in contrast to continuous electrophoresis where the opposite is observed. PFG mobility is surprisingly sensitive to changes in the running temperature.

  9. Exploration of beer proteome using OFFGEL prefractionation in combination with two-dimensional gel electrophoresis with narrow pH range gradients.

    PubMed

    Konečná, Hana; Müller, Lukáš; Dosoudilová, Hana; Potěšil, David; Buršíková, Jana; Sedo, Ondrej; Márová, Ivana; Zdráhal, Zbyněk

    2012-03-14

    Two-dimensional gel electrophoresis in combination with mass spectrometry has already been applied successfully to study beer proteome. Due to the abundance of protein Z in beer samples, prefractionation techniques might help to improve beer proteome coverage. Proteins from four lager beers of different origins were separated by two-dimensional electrophoresis (2-DE) followed by tandem mass spectrometric analysis. Initially 52 proteins mostly from Hordeum vulgare (22 proteins) and Saccharomyces species (25 proteins) were identified. Preparative isoelectric focusing by OFFGEL Fractionator was applied prior to 2-DE to improve its resolution power. As a result of this combined approach, a total of 70 beer proteins from Hordeum vulgare (30 proteins), from Saccharomyces species (31 proteins), and from other sources (9 proteins) were identified. Of these, 37 proteins have not been previously reported in beer samples.

  10. Protein/RNA coextraction and small two-dimensional polyacrylamide gel electrophoresis for proteomic/gene expression analysis of renal cancer biopsies.

    PubMed

    Barbero, Giovanna; Carta, Franco; Giribaldi, Giuliana; Mandili, Giorgia; Crobu, Salvatore; Ceruti, Carlo; Fontana, Dario; Destefanis, Paolo; Turrini, Francesco

    2006-02-01

    A small amount of bioptic tissue ( approximately 5-10mg of fresh tissue) usually does not contain enough material to extract protein and RNA separately, to obtain preparative two-dimensional polyacrylamide gel electrophoresis (2-DE), and to identify a large number of separated proteins by MS. We tested a method, on small renal cancer specimens, for the coextraction of protein and RNA coupled with 2-DE and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) or quadrupole time-of-flight (Q-TOF) analysis. We coextracted 0.28+/-0.05mg of proteins and 2.5+/-0.33microg of RNA for each 10mg of renal carcinoma tissue. Small and large 2-DE gels were compared: they showed a similar number of spots, and it was possible to match each other; using small format gels, one-fifth of the protein amount was required to identify, by Q-TOF analysis, the same number of proteins identifiable in large-format gel using MALDI-TOF analysis. Quality of RNA coextracted with the proteins was tested by real-time PCR on a set of housekeeping genes. They were quantified with high amplification efficiency and specificity. In conclusion, using 5 to 10mg of fresh tissue, it was possible to perform comprehensive parallel proteomic and genomic analysis by high-resolution, small-format 2-DE gels, allowing approximately 300 proteins identification and 1000 genes expression analysis.

  11. Emergence of a mutL mutation causing multilocus sequence typing-pulsed-field gel electrophoresis discrepancy among Pseudomonas aeruginosa isolates from a cystic fibrosis patient.

    PubMed

    García-Castillo, María; Máiz, Luis; Morosini, María-Isabel; Rodríguez-Baños, Mercedes; Suarez, Lucrecia; Fernández-Olmos, Ana; Baquero, Fernando; Cantón, Rafael; del Campo, Rosa

    2012-05-01

    A multilocus sequence type (MLST) shift (from ST242 to ST996) was detected in Pseudomonas aeruginosa isolates with a uniform pulsed-field gel electrophoresis (PFGE) pattern obtained from a chronically colonized patient. MLST mutational change involved the mutL gene with the consequent emergence of a hypermutable phenotype. This observation challenges the required neutrality of mutL as an appropriate marker in MLST and alerts researchers to the limitations of MLST-only-based population studies in chronic infections under constant antibiotic selective pressure.

  12. 3,3',5,5'-tetramethylbenzidine/H2O2 staining is not specific for heme proteins separated by gel electrophoresis.

    PubMed

    Miller, D J; Nicholas, D J

    1984-08-01

    Staining of sodium dodecyl sulfate or lithium dodecyl sulfate gels with 3,3',5,5'-tetramethylbenzidine (TMBZ)/H2O2 after electrophoresis has frequently been used as a specific method of detecting heme proteins. That TMBZ is an electron donor for O2 reduction by the nonheme-soluble cytochrome oxidase/nitrite reductase from Nitrosomonas europaea is now shown; this protein is detected by the TMBZ/H2O2 method. A method for the determination of TMBZ oxidase activity is given; hence, the detection of artifactual staining due to proteins of this type is possible.

  13. Emergence of a mutL Mutation Causing Multilocus Sequence Typing–Pulsed-Field Gel Electrophoresis Discrepancy among Pseudomonas aeruginosa Isolates from a Cystic Fibrosis Patient

    PubMed Central

    García-Castillo, María; Máiz, Luis; Morosini, María-Isabel; Rodríguez-Baños, Mercedes; Suarez, Lucrecia; Fernández-Olmos, Ana; Baquero, Fernando; Cantón, Rafael

    2012-01-01

    A multilocus sequence type (MLST) shift (from ST242 to ST996) was detected in Pseudomonas aeruginosa isolates with a uniform pulsed-field gel electrophoresis (PFGE) pattern obtained from a chronically colonized patient. MLST mutational change involved the mutL gene with the consequent emergence of a hypermutable phenotype. This observation challenges the required neutrality of mutL as an appropriate marker in MLST and alerts researchers to the limitations of MLST-only-based population studies in chronic infections under constant antibiotic selective pressure. PMID:22322352

  14. A subtle calculation method for nanoparticle’s molar extinction coefficient: The gift from discrete protein-nanoparticle system on agarose gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Zhong, Ruibo; Yuan, Ming; Gao, Haiyang; Bai, Zhijun; Guo, Jun; Zhao, Xinmin; Zhang, Feng

    2016-03-01

    Discrete biomolecule-nanoparticle (NP) conjugates play paramount roles in nanofabrication, in which the key is to get the precise molar extinction coefficient of NPs. By making best use of the gift from a specific separation phenomenon of agarose gel electrophoresis (GE), amphiphilic polymer coated NP with exact number of bovine serum albumin (BSA) proteins can be extracted and further experimentally employed to precisely calculate the molar extinction coefficient of the NPs. This method could further benefit the evaluation and extraction of any other dual-component NP-containing bio-conjugates.

  15. An improved protocol for the preparation and restriction enzyme digestion of pulsed-field gel electrophoresis agarose plugs for the analysis of Legionella isolates.

    PubMed

    Chang, Bin; Amemura-Maekawa, Junko; Watanabe, Haruo

    2009-01-01

    Pulsed-field gel electrophoresis (PFGE), which determines the genomic relatedness of isolates, is currently used for the epidemiological investigation of infectious agents such as bacteria. In particular, this method has been used for the epidemiological investigation of Legionella outbreaks. However, it takes 4 days to complete a Legionella-PFGE analysis. Due to partial digestion and DNA damage, the reproducibility of the obtained fragment digestion patterns is poor for this pathogen. In this study, we report an improved protocol that takes only 2 days to complete and that allows clear discrimination of the restriction profile with higher reproducibility than that previously achieved.

  16. Recent advances in preparative electrophoresis

    NASA Technical Reports Server (NTRS)

    Mosher, Richard A.; Thormann, Wolfgang; Egen, Ned B.; Couasnon, Pascal; Sammons, David W.

    1987-01-01

    Various approaches for preparative electrophoresis, and three new instruments for preparative electrophoresis are discussed. Consideration is given to isoelectric focusing, isotachophoresis, and zone electrophoresis, three gel-based electrophoresis methods. The design, functions, and performance of the Elphor VaP 21 device of Hannig (1982), the shear-stabilized BIOSTREAM separator of Thompson (1983), and the recycling isoelectric focusing device are described.

  17. Two Electrophoresis Experiments for Freshmen in the Health Professions.

    ERIC Educational Resources Information Center

    Brabson, G. Dana; Waugh, David S.

    1986-01-01

    Describes procedures involved with paper electrophoresis separation of amino acids, gel electrophoresis separation of DNA, and design of an electrophoresis tank. Describes experiments using paper (amino acids) and gel (deoxyribonucleic acid fragments). Provides material lists, procedures, and discussion. (JM)

  18. Differential single nucleotide polymorphism-based analysis of an outbreak caused by Salmonella enterica serovar Manhattan reveals epidemiological details missed by standard pulsed-field gel electrophoresis.

    PubMed

    Scaltriti, Erika; Sassera, Davide; Comandatore, Francesco; Morganti, Marina; Mandalari, Carmen; Gaiarsa, Stefano; Bandi, Claudio; Zehender, Gianguglielmo; Bolzoni, Luca; Casadei, Gabriele; Pongolini, Stefano

    2015-04-01

    We retrospectively analyzed a rare Salmonella enterica serovar Manhattan outbreak that occurred in Italy in 2009 to evaluate the potential of new genomic tools based on differential single nucleotide polymorphism (SNP) analysis in comparison with the gold standard genotyping method, pulsed-field gel electrophoresis. A total of 39 isolates were analyzed from patients (n=15) and food, feed, animal, and environmental sources (n=24), resulting in five different pulsed-field gel electrophoresis (PFGE) profiles. Isolates epidemiologically related to the outbreak clustered within the same pulsotype, SXB_BS.0003, without any further differentiation. Thirty-three isolates were considered for genomic analysis based on different sets of SNPs, core, synonymous, nonsynonymous, as well as SNPs in different codon positions, by Bayesian and maximum likelihood algorithms. Trees generated from core and nonsynonymous SNPs, as well as SNPs at the second and first plus second codon positions detailed four distinct groups of isolates within the outbreak pulsotype, discriminating outbreak-related isolates of human and food origins. Conversely, the trees derived from synonymous and third-codon-position SNPs clustered food and human isolates together, indicating that all outbreak-related isolates constituted a single clone, which was in line with the epidemiological evidence. Further experiments are in place to extend this approach within our regional enteropathogen surveillance system.

  19. Phosphohydrolase activity of the isolated, brush-border membrane of Hymenolepis diminuta (Cestoda) following sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis.

    PubMed

    Pappas, P W

    1980-12-01

    Following electrophoresis of isolated, brush-border membranes of Hymenolepis diminuta on SDS-polyacrylamide gels, three distinct areas of alpha-naphthyl phosphate (NP) hydrolysis were detected; these corresponded to proteins with molecular weights of 106,800, 172,700, and greater than 340,000 Daltons. Hydrolysis of NP was inhibited by adenosine triphosphate, adenosine;5'-monophosphate, p-nitrophenyl-phosphate, glucose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-diphosphate, molybdate, ethylenediaminetetraacetate (EDTA), and ethyleneglycol-bis-(beta-amino-ethyl)-N,N'-tetraacetate (EGTA), but not by fluoride. Inhibition of NP hydrolysis by EDTA was relieved in the presence of Mg++ or Ca++. Heating the isolated, brush-border membrane in the presence of SDS for 5 min at 95 C destroyed all enzymatic activity. These characteristics indicated that the enzyme(s) responsible for NP hydrolysis (following separation of membrane proteins by SDS-polyacrylamide gel electrophoresis) were the same enzymes responsible for the phosphohydrolase activity associated with intact and solubilized, brush-border membrane preparations of H. diminuta.

  20. Fast molecular diagnostics of canine T-cell lymphoma by PCR and capillary gel electrophoresis with laser-induced fluorescence detector.

    PubMed

    Jeon, Seonsook; Lee, Mi-Jin; Park, Jinho; Kang, Seong Ho

    2007-07-01

    Lymphoma is the most common hematopoietic tumor in dogs and manifests as a proliferation of malignant lymphoid cells primarily affecting the lymph nodes or solid visceral organs. We describe the use of capillary gel electrophoresis (CGE) with a laser-induced fluorescence (LIF) detector based on polymerase chain reaction (PCR) to rapidly detect a disorder of the canine T-cell receptor gamma (TCRgamma) gene. After the PCR amplification of the specific TCR( gene in dogs, the 90-bp DNA fragment amplified was separated in a fused-silica capillary by CGE-LIF. Under an electric field of 375 V/cm and with a sieving matrix of 1.5% poly (ethyleneoxide) (M(r) 600,000), the amplified PCR products were analyzed within 4 min by CGE separation. When the CGE-LIF method was applied to real clinical samples of the specific DNA fragment of the TCR( gene, the migration time and the corrected peak area showed relative standard deviations (n=5) of 0.29% and 0.58%, respectively. Both methods of CGE-LIF and slab gel electrophoresis showed same results for nine clinical samples. This PCR/CGE-LIF technique may prove to be a new fast and simple tool for the rapid diagnosis of the PCR-amplified DNA of canine T-cell lymphoma.