Science.gov

Sample records for 1-d nanostructured metal-oxides

  1. Metal oxide nanostructures with hierarchical morphology

    SciTech Connect

    Ren, Zhifeng; Lao, Jing Yu; Banerjee, Debasish

    2007-11-13

    The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.

  2. One-dimensional metal oxide nanostructures for heterogeneous catalysis.

    PubMed

    Zhang, Qian; Wang, Hsin-Yi; Jia, Xinli; Liu, Bin; Yang, Yanhui

    2013-08-21

    Metal oxides are of paramount importance in heterogeneous catalysis as either supports or active phases. Controlled synthesis of one-dimensional (1D) metal oxide nanostructures has received enormous attention in heterogeneous catalysis due to the possibility of tailoring the properties of metal oxides by tuning their shapes, sizes, and compositions. This feature article highlights recent advances in shape controlled synthesis of 1D metal oxide nanostructures and their applications in heterogeneous catalysis, with the aim of introducing new insights into the heterogeneous catalyst design.

  3. Chemical Sensors Based on Metal Oxide Nanostructures

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun

    2006-01-01

    This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.

  4. Method for producing nanostructured metal-oxides

    DOEpatents

    Tillotson, Thomas M.; Simpson, Randall L.; Hrubesh, Lawrence W.; Gash, Alexander

    2006-01-17

    A synthetic route for producing nanostructure metal-oxide-based materials using sol-gel processing. This procedure employs the use of stable and inexpensive hydrated-metal inorganic salts and environmentally friendly solvents such as water and ethanol. The synthesis involves the dissolution of the metal salt in a solvent followed by the addition of a proton scavenger, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively. Using this method synthesis of metal-oxide nanostructured materials have been carried out using inorganic salts, such as of Fe.sup.3+, Cr.sup.3+, Al.sup.3+, Ga.sup.3+, In.sup.3+, Hf.sup.4+, Sn.sup.4+, Zr.sup.4+, Nb.sup.5+, W.sup.6+, Pr.sup.3+, Er.sup.3+, Nd.sup.3+, Ce.sup.3+, U.sup.3+ and Y.sup.3+. The process is general and nanostructured metal-oxides from the following elements of the periodic table can be made: Groups 2 through 13, part of Group 14 (germanium, tin, lead), part of Group 15 (antimony, bismuth), part of Group 16 (polonium), and the lanthanides and actinides. The sol-gel processing allows for the addition of insoluble materials (e.g., metals or polymers) to the viscous sol, just before gelation, to produce a uniformly distributed nanocomposites upon gelation. As an example, energetic nanocomposites of Fe.sub.xO.sub.y gel with distributed Al metal are readily made. The compositions are stable, safe, and can be readily ignited to thermitic reaction.

  5. A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors

    PubMed Central

    Zhai, Tianyou; Fang, Xiaosheng; Liao, Meiyong; Xu, Xijin; Zeng, Haibo; Yoshio, Bando; Golberg, Dmitri

    2009-01-01

    One-dimensional (1D) metal-oxide nanostructures are ideal systems for exploring a large number of novel phenomena at the nanoscale and investigating size and dimensionality dependence of nanostructure properties for potential applications. The construction and integration of photodetectors or optical switches based on such nanostructures with tailored geometries have rapidly advanced in recent years. Active 1D nanostructure photodetector elements can be configured either as resistors whose conductions are altered by a charge-transfer process or as field-effect transistors (FET) whose properties can be controlled by applying appropriate potentials onto the gates. Functionalizing the structure surfaces offers another avenue for expanding the sensor capabilities. This article provides a comprehensive review on the state-of-the-art research activities in the photodetector field. It mainly focuses on the metal oxide 1D nanostructures such as ZnO, SnO2, Cu2O, Ga2O3, Fe2O3, In2O3, CdO, CeO2, and their photoresponses. The review begins with a survey of quasi 1D metal-oxide semiconductor nanostructures and the photodetector principle, then shows the recent progresses on several kinds of important metal-oxide nanostructures and their photoresponses and briefly presents some additional prospective metal-oxide 1D nanomaterials. Finally, the review is concluded with some perspectives and outlook on the future developments in this area. PMID:22454597

  6. Nanostructured transition metal oxides useful for water oxidation catalysis

    DOEpatents

    Frei, Heinz M; Jiao, Feng

    2013-12-24

    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  7. Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries.

    PubMed

    Liu, Xue; Huang, Jia-Qi; Zhang, Qiang; Mai, Liqiang

    2017-02-03

    Lithium-sulfur (Li-S) batteries with high energy density and long cycle life are considered to be one of the most promising next-generation energy-storage systems beyond routine lithium-ion batteries. Various approaches have been proposed to break down technical barriers in Li-S battery systems. The use of nanostructured metal oxides and sulfides for high sulfur utilization and long life span of Li-S batteries is reviewed here. The relationships between the intrinsic properties of metal oxide/sulfide hosts and electrochemical performances of Li-S batteries are discussed. Nanostructured metal oxides/sulfides hosts used in solid sulfur cathodes, separators/interlayers, lithium-metal-anode protection, and lithium polysulfides batteries are discussed respectively. Prospects for the future developments of Li-S batteries with nanostructured metal oxides/sulfides are also discussed.

  8. Gas sensors based on one dimensional nanostructured metal-oxides: a review.

    PubMed

    Arafat, M M; Dinan, B; Akbar, Sheikh A; Haseeb, A S M A

    2012-01-01

    Recently one dimensional (1-D) nanostructured metal-oxides have attracted much attention because of their potential applications in gas sensors. 1-D nanostructured metal-oxides provide high surface to volume ratio, while maintaining good chemical and thermal stabilities with minimal power consumption and low weight. In recent years, various processing routes have been developed for the synthesis of 1-D nanostructured metal-oxides such as hydrothermal, ultrasonic irradiation, electrospinning, anodization, sol-gel, molten-salt, carbothermal reduction, solid-state chemical reaction, thermal evaporation, vapor-phase transport, aerosol, RF sputtering, molecular beam epitaxy, chemical vapor deposition, gas-phase assisted nanocarving, UV lithography and dry plasma etching. A variety of sensor fabrication processing routes have also been developed. Depending on the materials, morphology and fabrication process the performance of the sensor towards a specific gas shows a varying degree of success. This article reviews and evaluates the performance of 1-D nanostructured metal-oxide gas sensors based on ZnO, SnO(2), TiO(2), In(2)O(3), WO(x), AgVO(3), CdO, MoO(3), CuO, TeO(2) and Fe(2)O(3). Advantages and disadvantages of each sensor are summarized, along with the associated sensing mechanism. Finally, the article concludes with some future directions of research.

  9. Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review

    PubMed Central

    Arafat, M. M.; Dinan, B.; Akbar, Sheikh A.; Haseeb, A. S. M. A.

    2012-01-01

    Recently one dimensional (1-D) nanostructured metal-oxides have attracted much attention because of their potential applications in gas sensors. 1-D nanostructured metal-oxides provide high surface to volume ratio, while maintaining good chemical and thermal stabilities with minimal power consumption and low weight. In recent years, various processing routes have been developed for the synthesis of 1-D nanostructured metal-oxides such as hydrothermal, ultrasonic irradiation, electrospinning, anodization, sol-gel, molten-salt, carbothermal reduction, solid-state chemical reaction, thermal evaporation, vapor-phase transport, aerosol, RF sputtering, molecular beam epitaxy, chemical vapor deposition, gas-phase assisted nanocarving, UV lithography and dry plasma etching. A variety of sensor fabrication processing routes have also been developed. Depending on the materials, morphology and fabrication process the performance of the sensor towards a specific gas shows a varying degree of success. This article reviews and evaluates the performance of 1-D nanostructured metal-oxide gas sensors based on ZnO, SnO2, TiO2, In2O3, WOx, AgVO3, CdO, MoO3, CuO, TeO2 and Fe2O3. Advantages and disadvantages of each sensor are summarized, along with the associated sensing mechanism. Finally, the article concludes with some future directions of research. PMID:22969344

  10. Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review

    PubMed Central

    Sun, Yu-Feng; Liu, Shao-Bo; Meng, Fan-Li; Liu, Jin-Yun; Jin, Zhen; Kong, Ling-Tao; Liu, Jin-Huai

    2012-01-01

    Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called “small size effect”, yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given. PMID:22736968

  11. Nanostructured Metal Oxides for Stoichiometric Degradation of Chemical Warfare Agents.

    PubMed

    Štengl, Václav; Henych, Jiří; Janoš, Pavel; Skoumal, Miroslav

    2016-01-01

    Metal oxides have very important applications in many areas of chemistry, physics and materials science; their properties are dependent on the method of preparation, the morphology and texture. Nanostructured metal oxides can exhibit unique characteristics unlike those of the bulk form depending on their morphology, with a high density of edges, corners and defect surfaces. In recent years, methods have been developed for the preparation of metal oxide powders with tunable control of the primary particle size as well as of a secondary particle size: the size of agglomerates of crystallites. One of the many ways to take advantage of unique properties of nanostructured oxide materials is stoichiometric degradation of chemical warfare agents (CWAs) and volatile organic compounds (VOC) pollutants on their surfaces.

  12. The Development of Metal Oxide Chemical Sensing Nanostructures

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; VanderWal,R. L.; Xu, J. C.; Evans, L. J.; Berger, G. M.; Kulis, M. J.

    2008-01-01

    This paper discusses sensor development based on metal oxide nanostructures and microsystems technology. While nanostructures such as nanowires show significant potential as enabling materials for chemical sensors, a number of significant technical challenges remain. This paper discusses development to address each of these technical barriers: 1) Improved contact and integration of the nanostructured materials with microsystems in a sensor structure; 2) Control of nanostructure crystallinity to allow control of the detection mechanism; and 3) Widening the range of gases that can be detected by fabricating multiple nanostructured materials. A sensor structure composed of three nanostructured oxides aligned on a single microsensor has been fabricated and tested. Results of this testing are discussed and future development approaches are suggested. It is concluded that while this work lays the foundation for further development, these are the beginning steps towards realization of repeatable, controlled sensor systems using oxide based nanostructures.

  13. Functional Metal Oxide Nanostructures: Their Synthesis, Characterization, and Energy Applications

    NASA Astrophysics Data System (ADS)

    Iyer, Aparna

    This research focuses on studying metal oxides (MnO 2, Co3O4, MgO, Y2O3) for various applications including water oxidation and photocatalytic oxidation, developing different synthesis methodologies, and presenting detailed characterization studies of these metal oxides. This research consists of three major parts. The first part is studying novel applications and developing a synthesis method for manganese oxide nanomaterials. Manganese oxide materials were studied for renewable energy applications by using them as catalysts for water oxidation reactions. In this study, various crystallographic forms of manganese oxides (amorphous, 2D layered, 1D 2 x 2 tunnel structures) were evaluated for water oxidation catalysis. Amorphous manganese oxides (AMO) were found to be catalytically active for chemical and photochemical water oxidation compared to cryptomelane type tunnel manganese oxides (2 x 2 tunnels; OMS2) or layered birnessite (OL-1) materials. Detailed characterization was done to establish a correlation between the properties of the manganese oxide materials and their catalytic activities in water oxidation. The gas phase photocatalytic oxidation of 2-propanol under visible light was studied using manganese oxide 2 x 2 tunnel structures (OMS-2) as catalysts (Chapter 3). The reaction is 100% selective to acetone. As suggested by the photocatalytic and characterization data, important factors for the design of active OMS-2 photocatalysts are synthesis methodology, morphology, mixed valency and the release of oxygen from the OMS-2 structure. Manganese oxide octahedral molecular sieves (2 x 2 tunnels; OMS-2) with self-assembled dense or hollow sphere morphologies were fabricated via a room temperature ultrasonic atomization assisted synthesis (Chapter 4). The properties and catalytic activities of these newly developed materials were compared with that of OMS-2 synthesized by conventional reflux route. These materials exhibit exceptionally high catalytic activities

  14. Ammonia sensors based on metal oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Sekhar Rout, Chandra; Hegde, Manu; Govindaraj, A.; Rao, C. N. R.

    2007-05-01

    Ammonia sensing characteristics of nanoparticles as well as nanorods of ZnO, In2O3 and SnO2 have been investigated over a wide range of concentrations (1 800 ppm) and temperatures (100 300 °C). The best values of sensitivity are found with ZnO nanoparticles and SnO2 nanostructures. Considering all the characteristics, the SnO2 nanostructures appear to be good candidates for sensing ammonia, with sensitivities of 222 and 19 at 300 °C and 100 °C respectively for 800 ppm of NH3. The recovery and response times are respectively in the ranges 12 68 s and 22 120 s. The effect of humidity on the performance of the sensors is not marked up to 60% at 300 °C. With the oxide sensors reported here no interference for NH3 is found from H2, CO, nitrogen oxides, H2S and SO2.

  15. Chemically Modified Metal Oxide Nanostructure for Photoelectrochemical Water Splitting

    NASA Astrophysics Data System (ADS)

    Wang, Gongming

    Hydrogen gas is chemical fuel with high energy density, and represents a clean, renewable and carbon-free burning fuel, which has the potential to solve the more and more urgent energy crisis in today's society. Inspired by natural photosynthesis, artificial photosynthesis to generate hydrogen energy has attracted a lot of attentions in the field of chemistry, physics and material. Photoelectrochemical water splitting based on semiconductors represents a green and low cost method to generate hydrogen fuel. However, the current overall efficiency of solar to hydrogen is quite low, due to some intrinsic limitations such as bandgap, diffusion distance, carrier lifetime and photostability of semiconductors. Although nanostructured semiconductors can improve their photoelectrochemical water splitting performance to some extent, by increasing electrolyte accessible area and shortening minority carrier diffusion distance, nanostructure engineering cannot change their intrinsic electronic properties. Recent development in chemically modified nanostructures such as surface catalyst decoration, element doping, plasmonic modification and interfacial hetero-junction design have led to significant advancement in the photoelectrochemical water splitting, by improving surface reaction kinetics and charge separation, transportation and collection efficiency. In this thesis, I will give a detailed discussion on the chemically modified metal oxide nanostructures for photoelectrocemical hydrogen generation, with a focus on the element doping, hydrogen treatment and catalyst modification. I have demonstrated nitrogen doping on ZnO and Ti doping on hematite can improve their photoelectrochemical performance. In addition, we found hydrogen treatment is a general and effective method to improve the photocatalytic performance, by increasing their carrier desities. Hydrogen treatment has been demonstrated on TiO2, WO3 and BiVO4. In the end, we also used electrochemical catalyt to modify

  16. Methods of making metal oxide nanostructures and methods of controlling morphology of same

    DOEpatents

    Wong, Stanislaus S; Hongjun, Zhou

    2012-11-27

    The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.

  17. Sustainable synthesis, characterization, and applications of metal oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Tiano, Amanda Lyn

    Nanomaterials have attracted significant research focus due to their advantageous and unique properties (i.e. electronic, magnetic, optical, and mechanical) as compared with the bulk. Metal oxide nanostructures are of particular interest, as they are very robust and display high chemical and thermal stability, while offering a diverse array of fascinating properties. By reliably controlling the size, morphology, composition, and crystallinity of these nanostructures, their properties can be tuned for a specific purpose. These advantageous tailorable properties render them as ideal candidates for many applications such as catalysis, sensing, electronics, optoelectronics, energy storage, and even medicine. Driven by their increased popularity and potential applications, efforts to synthesize nanomaterials have moved toward environmentally-friendly methodologies, such as wet-chemical, molten-salt, hydrothermal, and sol-gel methods. We will discuss the green synthesis of strontium ruthenate (SrRuO 3), the yttrium manganese oxides (YMnO3 and YMn2O 5), and the magnetic spinel ferrites (MFe2O4 where 'M' is Mg, Fe, Co, Ni, Cu, and Zn) and our ability to reliably tune their properties for various applications. The effects of the molten salt parameters on the resulting particle size and morphology were explored for SrRuO 3 and the yttrium manganese oxides. For example, rapid cooling rates and the use of surfactants allowed us to produced faceted octahedra of SrRuO 3, which resulted in a 4-fold enhancement of their activity towards methanol oxidation with respect to smooth rounded particles. Similarly, using the hydrothermal method, we generated ferrite nanoparticles of different compositions and sizes. We investigated their potential as contrast agents for magnetic resonance imaging (MRI) and as photocatalysts, and observed significant differences as a function of both size and composition. Similarly, we will also examine surface and structural effects upon the electronic

  18. A Comprehensive Review of Glucose Biosensors Based on Nanostructured Metal-Oxides

    PubMed Central

    Rahman, Md. Mahbubur; Saleh Ahammad, A. J.; Jin, Joon-Hyung; Ahn, Sang Jung; Lee, Jae-Joon

    2010-01-01

    Nanotechnology has opened new and exhilarating opportunities for exploring glucose biosensing applications of the newly prepared nanostructured materials. Nanostructured metal-oxides have been extensively explored to develop biosensors with high sensitivity, fast response times, and stability for the determination of glucose by electrochemical oxidation. This article concentrates mainly on the development of different nanostructured metal-oxide [such as ZnO, Cu(I)/(II) oxides, MnO2, TiO2, CeO2, SiO2, ZrO2, and other metal-oxides] based glucose biosensors. Additionally, we devote our attention to the operating principles (i.e., potentiometric, amperometric, impedimetric and conductometric) of these nanostructured metal-oxide based glucose sensors. Finally, this review concludes with a personal prospective and some challenges of these nanoscaled sensors. PMID:22399911

  19. Plasmonic nanostructured metal-oxide-semiconductor reflection modulators.

    PubMed

    Olivieri, Anthony; Chen, Chengkun; Hassan, Sa'ad; Lisicka-Skrzek, Ewa; Tait, R Niall; Berini, Pierre

    2015-04-08

    We propose a plasmonic surface that produces an electrically controlled reflectance as a high-speed intensity modulator. The device is conceived as a metal-oxide-semiconductor capacitor on silicon with its metal structured as a thin patch bearing a contiguous nanoscale grating. The metal structure serves multiple functions as a driving electrode and as a grating coupler for perpendicularly incident p-polarized light to surface plasmons supported by the patch. Modulation is produced by charging and discharging the capacitor and exploiting the carrier refraction effect in silicon along with the high sensitivity of strongly confined surface plasmons to index perturbations. The area of the modulator is set by the area of the incident beam, leading to a very compact device for a strongly focused beam (∼2.5 μm in diameter). Theoretically, the modulator can operate over a broad electrical bandwidth (tens of gigahertz) with a modulation depth of 3 to 6%, a loss of 3 to 4 dB, and an optical bandwidth of about 50 nm. About 1000 modulators can be integrated over a 50 mm(2) area producing an aggregate electro-optic modulation rate in excess of 1 Tb/s. We demonstrate experimentally modulators operating at telecommunications wavelengths, fabricated as nanostructured Au/HfO2/p-Si capacitors. The modulators break conceptually from waveguide-based devices and belong to the same class of devices as surface photodetectors and vertical cavity surface-emitting lasers.

  20. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review.

    PubMed

    Zhi, Mingjia; Xiang, Chengcheng; Li, Jiangtian; Li, Ming; Wu, Nianqiang

    2013-01-07

    This paper presents a review of the research progress in the carbon-metal oxide composites for supercapacitor electrodes. In the past decade, various carbon-metal oxide composite electrodes have been developed by integrating metal oxides into different carbon nanostructures including zero-dimensional carbon nanoparticles, one-dimensional nanostructures (carbon nanotubes and carbon nanofibers), two-dimensional nanosheets (graphene and reduced graphene oxides) as well as three-dimensional porous carbon nano-architectures. This paper has described the constituent, the structure and the properties of the carbon-metal oxide composites. An emphasis is placed on the synergistic effects of the composite on the performance of supercapacitors in terms of specific capacitance, energy density, power density, rate capability and cyclic stability. This paper has also discussed the physico-chemical processes such as charge transport, ion diffusion and redox reactions involved in supercapacitors.

  1. Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications.

    PubMed

    Wang, Gongming; Ling, Yichuan; Li, Yat

    2012-11-07

    This review presents highlights of the latest results of studies directed at developing oxygen-deficient metal oxides, including TiO(2), WO(3), and α-Fe(2)O(3), nanostructures as electrode materials, which show significantly enhanced performance in applications for photoelectrochemical water oxidation. The enhanced photoelectrochemical performance is attributed to improved electrical conductivities by controlled incorporation of oxygen vacancies as shallow donors for metal oxides. We also discuss the potential of these oxygen-deficient metal oxides for other energy conversion and storage applications, such as photocatalytic reactions and charge storage.

  2. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries.

    PubMed

    Wu, Hao Bin; Chen, Jun Song; Hng, Huey Hoon; Lou, Xiong Wen David

    2012-04-21

    The search for new electrode materials for lithium-ion batteries (LIBs) has been an important way to satisfy the ever-growing demands for better performance with higher energy/power densities, improved safety and longer cycle life. Nanostructured metal oxides exhibit good electrochemical properties, and they are regarded as promising anode materials for high-performance LIBs. In this feature article, we will focus on three different categories of metal oxides with distinct lithium storage mechanisms: tin dioxide (SnO(2)), which utilizes alloying/dealloying processes to reversibly store/release lithium ions during charge/discharge; titanium dioxide (TiO(2)), where lithium ions are inserted/deinserted into/out of the TiO(2) crystal framework; and transition metal oxides including iron oxide and cobalt oxide, which react with lithium ions via an unusual conversion reaction. For all three systems, we will emphasize that creating nanomaterials with unique structures could effectively improve the lithium storage properties of these metal oxides. We will also highlight that the lithium storage capability can be further enhanced through designing advanced nanocomposite materials containing metal oxides and other carbonaceous supports. By providing such a rather systematic survey, we aim to stress the importance of proper nanostructuring and advanced compositing that would result in improved physicochemical properties of metal oxides, thus making them promising negative electrodes for next-generation LIBs.

  3. Nanostructured Metal Oxide Sorbents for the Collection and Recovery of Uranium from Seawater

    SciTech Connect

    Chouyyok, Wilaiwan; Warner, Cynthia L.; Mackie, Katherine E.; Warner, Marvin G.; Gill, Gary A.; Addleman, Raymond S.

    2016-02-07

    The ability to collect uranium from seawater offers the potential for a long-term green fuel supply for nuclear energy. However, extraction of uranium, and other trace minerals, is challenging due to the high ionic strength and low mineral concentrations in seawater. Herein we evaluate the use of nanostructured metal oxide sorbents for the collection and recovery of uranium from seawater. Chemical affinity, chemical adsorption capacity and kinetics of preferred sorbent materials were evaluated. High surface area manganese and iron oxide nanomaterials showed excellent performance for uranium collection from seawater. Inexpensive nontoxic carbonate solutions were demonstrated to be an effective and environmental benign method of stripping the uranium from the metal oxide sorbents. Various formats for the utilization of the nanostructured metals oxide sorbent materials are discussed including traditional and nontraditional methods such as magnetic separation. Keywords: Uranium, nano, manganese, iron, sorbent, seawater, magnetic, separations, nuclear energy

  4. Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

    PubMed Central

    Chen, Hongjun

    2014-01-01

    Summary To better utilize the sunlight for efficient solar energy conversion, the research on visible-light active photocatalysts has recently attracted a lot of interest. The photosensitization of transition metal oxides is a promising approach for achieving effective visible-light photocatalysis. This review article primarily discusses the recent progress in the realm of a variety of nanostructured photosensitizers such as quantum dots, plasmonic metal nanostructures, and carbon nanostructures for coupling with wide-bandgap transition metal oxides to design better visible-light active photocatalysts. The underlying mechanisms of the composite photocatalysts, e.g., the light-induced charge separation and the subsequent visible-light photocatalytic reaction processes in environmental remediation and solar fuel generation fields, are also introduced. A brief outlook on the nanostructure photosensitization is also given. PMID:24991507

  5. Nanostructured transition metal oxides for energy storage and conversion

    NASA Astrophysics Data System (ADS)

    Li, Qiang

    Lithium-ion batteries, supercapacitors and photovoltaic devices have been widely considered as the three major promising alternatives of fossil fuels facing upcoming depletion to power the 21th century. The conventional film configuration of electrochemical electrodes hardly fulfills the high energy and efficiency requirements because heavy electroactive material deposition restricts ion diffusion path, and lowers power density and fault tolerance. In this thesis, I demonstrate that novel nanoarchitectured transition metal oxides (TMOs), e.g. MnO2, V2O 5, and ZnO, and their relevant nanocomposites were designed, fabricated and assembled into devices to deliver superior electrochemical performances such as high energy and power densities, and rate capacity. These improvements could be attributed to the significant enhancement of surface area, shortened ion diffusion distances and facile penetration of electrolyte solution into open structures of networks as well as to the pseudocapacitance domination. The utilization of ForcespinningRTM, a newly developed nanofiber processing technology, for large-scale energy storage and conversion applications is emphasized. This process simplifies the tedious multi-step hybridization synthesis and facilitates the contradiction between the micro-batch production and the ease of large-scale manufacturing. Key Words: Transition metal oxides, energy storage and conversion, ForcespinningRTM, pseudocapacitance domination, high rate capacity

  6. Synthesis and characterization of different metal oxide nanostructures by simple electrolysis based oxidation of metals.

    PubMed

    Singh, Dinesh Pratap; Srivastava, Onkar Nath

    2009-09-01

    We report the Synthesis of different metal oxide (Cu2O, SnO2, Fe3O4 and PbO2) nanostructures by simple electrolysis based oxidation of metals (Cu, Sn, Fe and Pb). We have utilized the two electrode set up for the electrolysis and used different metal electrodes as anode and platinum as cathode. The synthesized nanomaterials were delaminated in the electrolyte. The microstructural characterization of synthesized materials in electrolytes after electrolysis at different electrode potentials revealed that the nanostructures strongly depend on the applied voltage between the electrodes. Various nanostructures (nanothreads, nanowires, nanocubes, nanotetrapods and hexagons-like) of metal oxides have been synthesized by this method. In case of copper electrode we have found nanothreads and nanowires of cuprous oxide. Tin electrode resulted nanothreads, nanotetrapod and nanocube like structures of tin oxide. Iron electrode resulted, nanowire like structures of iron oxide and lead sheet transformed into hexagon like and six petals like structures of lead oxide.

  7. Designing deoxidation inhibiting encapsulation of metal oxide nanostructures for fluidic and biological applications

    NASA Astrophysics Data System (ADS)

    Ghosh, Moumita; Ghosh, Siddharth; Seibt, Michael; Schaap, Iwan A. T.; Schmidt, Christoph F.; Mohan Rao, G.

    2016-12-01

    Due to their photoluminescence, metal oxide nanostructures such as ZnO nanostructures are promising candidates in biomedical imaging, drug delivery and bio-sensing. To apply them as label for bio-imaging, it is important to study their structural stability in a bio-fluidic environment. We have explored the effect of water, the main constituent of biological solutions, on ZnO nanostructures with scanning electron microscopy (SEM) and photoluminescence (PL) studies which show ZnO nanorod degeneration in water. In addition, we propose and investigate a robust and inexpensive method to encapsulate these nanostructures (without structural degradation) using bio-compatible non-ionic surfactant in non-aqueous medium, which was not reported earlier. This new finding is an immediate interest to the broad audience of researchers working in biophysics, sensing and actuation, drug delivery, food and cosmetics technology, etc.

  8. Core/shell nano-structuring of metal oxide semiconductors and their photocatalytic studies

    NASA Astrophysics Data System (ADS)

    Balakumar, S.; Rakkesh, R. Ajay

    2013-02-01

    Core/Shell Nanostructures of Metal Oxide Semiconductors (MOS) have attracted much attention because of their most fascinating tunable applications. These core shell morphologies can be easily engineered to enhance the unique properties of the metal-oxide nanostructures, which make them suitable as photocatalyst due to their high catalytic activity, substantial stability, and brilliant perspective in applications. This paper provides an overview on our work on the synthesis of some interesting core/ shell nanostructures of MOS such as ZnO-TiO2, ZnO-MoO3, and V2O5-TiO2 using a low temperature wet chemical route and hydrothermal techniques and their photocatalytic properties from the aspects of different shell materials and shell thicknesses. The effect of process parameters such as pH, temperature, and ratio of core and shell materials, was systematically studied. Here the evidence for the core shell formation with different shell thicknesses came from the X-ray diffraction peak intensities. The shell thickness variation was also confirmed by Transmission Electron Microscopic studies. Effect of shell thickness on optical band gap of the core shell fabricated was also investigated using DRS UV-Visible spectroscopy. A comprehensive study was carried out for the photocatalytic efficiency of core shell nanostructures by evaluating the photo-degradation of Acridine Orange (AO) dye in aqueous solution under visible and solar light irradiations. These results offered simple approaches to the nanoscale engineering and synthesis of MOS hybrid systems to serve as better photocatalytic materials.

  9. A hybrid metalloarsenate 3D framework-1D interrupted metal oxide.

    PubMed

    Hughes, Robert W; Gerrard, Lee A; Price, Daniel J; Weller, Mark T

    2003-06-30

    Complex metal arsenates of the stoichiometry M(1)(-)(x)()M'(6)(OH)(3)(AsO(4)H(2)(x)()(/3))(3)(HAsO(4)), M = M' = Co, Ni, have been synthesized under hydrothermal conditions. The two compounds display a very similar structural topology to that of the mineral dumortierite, an uncommon complex oxyborosilicate of aluminum. The hybrid structures consist of well separated, vacancy interrupted chains of face sharing MO(6) octahedra, with short M.M distances near 2.5 A, embedded in a metalloarsenate 3D framework having the topology of the aluminosilicate cancrinite. The framework also contains a quadruply bridging hydroxide ion. Magnetic susceptibility measurements reveal a strong antiferromagnetic interaction and magnetic transition to low temperature spin canted phases below 51 K (Co) and 42 K (Ni). The material may be considered as a zeotype framework structure templated by an interrupted one-dimensional metal oxide.

  10. Micro- and Nanostructured Metal Oxide Chemical Sensors for Volatile Organic Compounds

    NASA Technical Reports Server (NTRS)

    Alim, M. A.; Penn, B. G.; Currie, J. R., Jr.; Batra, A. K.; Aggarwal, M. D.

    2008-01-01

    Aeronautic and space applications warrant the development of chemical sensors which operate in a variety of environments. This technical memorandum incorporates various kinds of chemical sensors and ways to improve their performance. The results of exploratory investigation of the binary composite polycrystalline thick-films such as SnO2-WO3, SnO2-In2O3, SnO2-ZnO for the detection of volatile organic compound (isopropanol) are reported. A short review of the present status of the new types of nanostructured sensors such as nanobelts, nanorods, nanotube, etc. based on metal oxides is presented.

  11. Synthesis and Characterization of Nanostructure Transition Metal Oxides Extracted from Industrial Waste (EOFD) by Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Girisun, T. C. Sabari; Babeela, C.; Vidhya, V.

    2011-10-01

    Electric oil furnace dust (EOFD) is a solid waste generated in the collection of particulate material during steelmaking process in electric and oil furnaces. Over 7 million metric tons dust produced per annum in worldwide creates deep impacts like soil, ground water and ecology pollutions. This article reports the simple one step process for the extraction of nanostructured metal oxides from the industrial waste (EOFD) for the realization of low cost solar applications. By hydrothermal technique valuable metals were obtained in the form of metal oxides. Initially the presence of metals was identified by ICP analysis. XRD analysis confirms the formation of nano structured titanium oxide (TiO) along with traces of iron oxide (Fe2O3). The surface morphology and the particle size were analyzed by SEM analysis. Thus the metal oxides derived could be helpful to reduce the burden on the environment, increase the development of the source nano material and reduce the cost of raw materials for solar cell applications.

  12. Ion-sensing properties of 1D vanadium pentoxide nanostructures

    PubMed Central

    2012-01-01

    The application of one-dimensional (1D) V2O5·nH2O nanostructures as pH sensing material was evaluated. 1D V2O5·nH2O nanostructures were obtained by a hydrothermal method with systematic control of morphology forming different nanostructures: nanoribbons, nanowires and nanorods. Deposited onto Au-covered substrates, 1D V2O5·nH2O nanostructures were employed as gate material in pH sensors based on separative extended gate FET as an alternative to provide FET isolation from the chemical environment. 1D V2O5·nH2O nanostructures showed pH sensitivity around the expected theoretical value. Due to high pH sensing properties, flexibility and low cost, further applications of 1D V2O5·nH2O nanostructures comprise enzyme FET-based biosensors using immobilized enzymes. PMID:22709724

  13. Soft Nanoimprint Lithography for Direct Printing of Crystalline Metal Oxide Nanostructures

    NASA Astrophysics Data System (ADS)

    Kothari, Rohit; Beaulieu, Michael; Watkins, James

    2015-03-01

    We demonstrate a solution-based soft nanoimprint lithography technique to directly print dimensionally-stable crystalline metal oxide nanostructures. A patterned PDMS stamp is used in combination with a UV/thermal cure step to imprint a resist containing high concentrations of crystalline nanoparticles in an inorganic/organic binder phase. The as-imprinted nanostructures are highly crystalline and therefore undergo little shrinkage (less than 5% in some cases) upon thermal annealing. High aspect ratio nanostructures and sub-100 nm features are easily realized. Residual layer free direct imprinting (no etching) was achieved by choosing the resist with the appropriate surface energy to ensure dewetting at stamp-substrate interface. The technique was further extended to stack the nanostructures by deploying a layer-by-layer imprint strategy. The method is scalable and can produce large area device quality nanostructures in a rapid fashion at a low cost. CeO2, ITO and TiO2 nanopatterns are illustrated for their potential use in fuel cell electrodes, solar cell electrodes and photonic devices, respectively.

  14. Comparision between different metal oxide nanostructures and nanocomposites for sensing, energy generation, and energy harvesting

    NASA Astrophysics Data System (ADS)

    Willander, Magnus; Alnoor, Hatim; Elhag, Sami; Ibupoto, Zafar Hussain; Nour, Eiman Satti; Nur, Omer

    2016-02-01

    Highlights from research on different nanocomposites and nanostructures for sensing and other energy related applications will be presented. The synthesized nanostructures and nanocomposites presented here were all obtained using the low temperature (< 100 °C) chemical approach. Nanostructures featured by small foot-print and synthesized by the low temperature aqueous chemical approach allows the utilization of non-conventional solid and soft substrates like e.g. glass, plastic, textile and paper. We here present results from different metal oxide nanostructures employed for chemical sensing and some innovative energy related applications. Efficient sensitive and selective sensing of dopamine, melamine, and glucose are presented as some examples of self-powered sensors utilizing the electrochemical phenomenon i.e. transferring chemical energy into electrical signal. Further the use of nanomaterials for developing selfpowered devices utilizing mechanical ambient energy is presented via piezoelectric and triboelectric effects. Here the self-powered devices and systems were relying on utilizing the electormechanical phenomenon i.e. transferring ambient mechanical energy into useful electrical energy. Finally the visibility of nanomaterials prepared by the low temperature chemical synthesis as possible low cost replacement of Pt electrodes for hydrogen production is briefly presented and discussed.

  15. Fabrication of nanostructured metal oxide films with supercritical carbon dioxide: Processing and applications

    NASA Astrophysics Data System (ADS)

    You, Eunyoung

    Nanostructured metal oxide films have many applications in catalysis, microelectronics, microfluidics, photovoltaics and other fields. Since the performance of a device depends greatly on the structure of the material, the development of methodologies that enable prescriptive control of morphology are of great interest. The focus of this work is to control the structure and properties of the nanostructured metal oxide films using novel synthetic schemes in supercritical fluids and to use those films as key building components in alternative energy applications. A supercritical fluid is a substance at a temperature and pressure above its critical point. It typically exhibits gas-like transport properties and liquid-like densities. Supercritical fluid deposition (SFD) utilizes these properties of supercritical CO2 (scCO2) to deposit chemically pure metal, oxides and alloys of metal films. SFD is a chemical vapor deposition (CVD)-like process in the sense that it uses similar metal organic precursors and deposits films at elevated temperatures. Instead of vaporizing or subliming the precursors, they are dissolved in supercritical fluids. SFD has typically shown to exhibit higher precursor concentrations, lower deposition temperatures, conformal deposition of films on high aspect ratio features as compared to CVD. In2 O3, ZnO and SnO2 are attractive materials because they are used in transparent conductors. SFD of these materials were studied and In2 O3 deposition kinetics using tris(2,2,6,6-tetramethyl-3,5-heptanedionato) In (III) as precursor were determined. Growth rate dependence on the deposition temperature and the precursor concentrations were studied and the physicochemical and optical properties of In2 O3 films were characterized. Metal oxide nanochannels that can potentially be used for microfluidics have been fabricated by sequentially performing nanoimprint lithography (NIL) and SFD. NIL was used to pattern photoresist grating on substrates and SFD of TiO2

  16. Investigation of some new hydro(solvo)thermal synthesis routes to nanostructured mixed-metal oxides

    SciTech Connect

    Burnett, David L.; Harunsani, Mohammad H.; Kashtiban, Reza J.; Playford, Helen Y.; Sloan, Jeremy; Hannon, Alex C.; Walton, Richard I.

    2014-06-01

    We present a study of two new solvothermal synthesis approaches to mixed-metal oxide materials and structural characterisation of the products formed. The solvothermal oxidation of metallic gallium by a diethanolamine solution of iron(II) chloride at 240 °C produces a crystalline sample of a spinel-structured material, made up of nano-scale particles typically 20 nm in dimension. XANES spectroscopy at the K-edge shows that the material contains predominantly Fe{sup 2+} in an octahedral environment, but that a small amount of Fe{sup 3+} is also present. Careful analysis using transmission electron microscopy and powder neutron diffraction shows that the sample is actually a mixture of two spinel materials: predominantly (>97%) an Fe{sup 2+} phase Ga{sub 1.8}Fe{sub 1.2}O{sub 3.9}, but with a minor impurity phase that is iron-rich. In contrast, the hydrothermal reaction of titanium bis(ammonium lactato)dihydroxide in water with increasing amounts of Sn(IV) acetate allows nanocrystalline samples of the SnO{sub 2}–TiO{sub 2} solid solution to be prepared directly, as proved by powder XRD and Raman spectroscopy. - Graphical abstract: New solvothermal synthesis approaches to spinel and rutile mixed-metal oxides are reported. - Highlights: • Solvothermal oxidation of gallium metal in organic iron(II) solution gives a novel iron gallate spinel. • Hydrothermal reaction of titanium(IV) complex and tin(IV) acetate produces the complete SnO{sub 2}–TiO{sub 2} solid solution. • Nanostructured mixed-metal oxide phases are produced directly from solution.

  17. Metal oxide core shell nanostructures as building blocks for efficient light emission (SISGR)

    SciTech Connect

    Chang, Jane P; Dorman, James; Cheung, Cyrus

    2016-01-12

    The objective of this research is to synthesize core-shell nano-structured metal oxide materials and investigate their structural, electronic and optical properties to understand the microscopic pathways governing the energy conversion process, thereby controlling and improving their efficiency. Specifically, the goal is to use a single metal oxide core-shell nanostructure and a single excitation source to generate photons with long emission lifetime over the entire visible spectrum and when controlled at the right ratio, generating white light. In order to achieve this goal, we need to control the energy transfer between light emitting elements, which dictates the control of their interatomic spacing and spatial distribution. We developed an economical wet chemical process to form the nanostructured core and to control the thickness and composition of the shell layers. With the help from using DOE funded synchrotron radiation facility, we delineated the growth mechanism of the nano-structured core and the shell layers, thereby enhancing our understanding of structure-property relation in these materials. Using the upconversion luminescence and the lifetime measurements as effective feedback to materials sysnthes is and integration, we demonstrated improved luminescence lifetimes of the core-shell nano-structures and quantified the optimal core-multi-shell structure with optimum shell thickness and composition. We developed a rare-earths co-doped LaPO4 core-multishell structure in order to produce a single white light source. It was decided that the mutli-shell method would produce the largest increase in luminescence efficiency while limiting any energy transfer that may occur between the dopant ions. All samples resulted in emission spectra within the accepted range of white light generation based on the converted CIE color coordinates. The white light obtained varied between warm and cool white depending on the layering architecture, allowing for the

  18. Synthesis of Novel Nanostructured Lanthanum Cobalt Ferrite Mixed Metal Oxides by Sol-Gel

    NASA Astrophysics Data System (ADS)

    Teresita, V. Mary; Jeseentharani, V.; Josephine, B. Avila; Antony, S. Arul

    2013-04-01

    Properties of nanoscale materials are very interesting and these are either comparable to or superior to those of bulk. These materials are interesting due to their exciting size dependent optical, electronic, magnetic, thermal, mechanical and chemical properties. Different mole ratios of nanostructured mixed metal oxides of LaCoxFe1-xO3-δ (x = 0 to 1) were prepared by the sol-gel method by varying the mole ratios of iron and cobalt substrates. The compounds were sintered for 700°C in the tubular furnace for 8 h. The purity of the compounds was analyzed by TG-DTA. The compounds were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and scanning electron microscopy (SEM) studies were employed to study the structural phases, vibrational frequencies, surface morphology of the highest humidity sensing compounds.

  19. Flexible Photodetectors Based on 1D Inorganic Nanostructures

    PubMed Central

    Lou, Zheng

    2015-01-01

    Flexible photodetectors with excellent flexibility, high mechanical stability and good detectivity, have attracted great research interest in recent years. 1D inorganic nanostructures provide a number of opportunities and capabilities for use in flexible photodetectors as they have unique geometry, good transparency, outstanding mechanical flexibility, and excellent electronic/optoelectronic properties. This article offers a comprehensive review of several types of flexible photodetectors based on 1D nanostructures from the past ten years, including flexible ultraviolet, visible, and infrared photodetectors. High‐performance organic‐inorganic hybrid photodetectors, as well as devices with 1D nanowire (NW) arrays, are also reviewed. Finally, new concepts of flexible photodetectors including piezophototronic, stretchable and self‐powered photodetectors are examined to showcase the future research in this exciting field. PMID:27774404

  20. Enhancing Solar Cell Efficiencies through 1-D Nanostructures

    PubMed Central

    2009-01-01

    The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D) nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.

  1. Synthesis, Characterization and Applications of One-Dimensional Metal Oxide Nanostructures

    NASA Astrophysics Data System (ADS)

    Santulli, Alexander

    Nanomaterials have been of keen research interest, owing to their exciting and unique properties (e.g. optical, magnetic, electronic, and mechanical). These properties allow nanomaterials to have many applications in areas of medicine, alternative energy, catalysis, and information storage. In particular, one-dimensional (1D) nanomaterials are highly advantageous, owing to the inherent anisotropic nature, which allows for effective transport and study of properties on the nanoscale. More specifically, 1D metal oxide nanomaterials are of particular interest, owing to their high thermal and chemical stability, as well as their intriguing optical, electronic, and magnetic properties. Herein, we will investigate the synthesis and characterization of vanadium oxide, lithium niobate and chromium oxide. We will explore the methodologies utilized for the synthesis of these materials, as well as the overall properties of these unique nanomaterials. Furthermore, we will explore the application of titanium dioxide nanomaterials as the electron transport layer in dye sensitized solar cells (DSSCs), with an emphasis on the effect of the nanoscale morphology on the overall device efficiency.

  2. A study of the conductive properties of nanostructured metal oxide films

    NASA Astrophysics Data System (ADS)

    D'Olembert, Andre A.

    Fuel cells which were first employed in spacecraft, producing both electricity and water for astronaut consumption during the mid-1960's, are part of the ongoing pursuit for renewable energy sources, and environmentally compatible electric power generation. Recent enhancements in design and materials might establish fuel cells in a sustainable hydrogen energy economy (SHEE) as viable alternatives to the internal combustion engine. In tune with our principal objectives, this study investigates the conductive properties of metal-oxide thin films by developing a new deposition technique called dual channel ultrasonic spray pyrolysis (DC-USP). The DC-USP process has proved to be a reliable and cost-effective method to fabricate thin films. Extending the DC-USP technique, we have created a novel mixed ionic electronic conductor (MIEC) composed of two metal-oxides: lanthanum strontium ferrite and copper-doped bismuth vanadate (LSF.40:BiCuVOx.10). When the two materials are mixed, their grain boundary regions are heavily defected because of the dissimilarity of the two crystal structures, which maintain their integrity in the formed heterogenous composite. Oxygen ion diffusion occurs as it migrates through an ionic crystal, hopping from defect site to defect site. Furthermore, a nanostructured material - with crystallite grains less than 100 nm in diameter - will improve oxygen diffusion by increasing the density of defect sites. The rate of diffusion is increased as well as the quantity of diffusion pathways. Ultimately, as the ionic current density is increased, the total efficiency (nuSOFCtotal) of the solid oxide fuel cell (SOFC) can be improved. Therefore, the LSF-40:BiCuVOx.10 material can contribute to solve the major outstanding problem of the three-phase boundary (TPB) that limits the oxygen reduction reaction to within a microscopic region near the cathode-electrolyte interface in the SOFC device. Materials were tested and analyzed using atomic force microscopy

  3. Nanostructured metal-oxide-conducting polymer based ultracapacitors for energy storage

    NASA Astrophysics Data System (ADS)

    Sidhu, Navjot Kaur

    Ultracapacitors often called supercapacitors or electrochemical double layer capacitors are emerging with a potential reflecting great advancement in the energy storage systems over past several last years. Traditional and commercially used electrical energy storage technology consists of mainly the batteries. Capacitors and ultracapacitors offer limited utility by trade off between energy density and power density. Batteries, fuel cells deliver high energy density while electrostatic capacitor and ultracapacitors provide high power density. Research on future energy storage device with optimum combination of high energy and power density has gained momentum over recent few years. Ultracapacitors provide a tantalizing capability to achieve high energy while maintaining high power density device which can bridge the gap between batteries and conventional capacitors This research is focused on the synthesis of conducting polymers as well as its composites with the metal oxides as electrodes, their electrochemical and structural characterizations for use in ultracapacitor devices and modeling. An innovative aspect of this research is the use of the nanorods, nanotubes and similar nanotemplates in order to introduce the morphological changes in the electroactive electrodes. Using these approaches, this research aims at high surface area for dense energy storage through ion intercalation and oxidation state changes. For the nanocomposite electrode materials synthesis, electrochemical, chemical and solution methods have been used. For nanostructuring, thin film templates of TiO2 (titanium dioxide) nanotubes, ZnO (zinc oxide) nanorods and nanowires have been synthesized using hydrothermal and electro-etching techniques. Various electroactive electrode materials in this research are investigated. The materials system studied in this work are nanocomposites of ZnO, TiO2, Ppy (polypyrrole), MnO2 (manganese dioxide), Pedot (Poly (3,4-ethylene dioxythiophene). Further

  4. Catalyst-nanostructure interaction in the growth of 1-D ZnO nanostructures.

    PubMed

    Borchers, C; Müller, S; Stichtenoth, D; Schwen, D; Ronning, C

    2006-02-02

    Vapor-liquid-solid is a well-established process in catalyst guided growth of 1-D nanostructures, i.e., nanobelts and nanowires. The catalyst particle is generally believed to be in the liquid state during growth, and is the site for impinging molecules. The crystalline structure of the catalyst may not have any influence on the structure of the grown nanostructures. In this work, using Au guided growth of ZnO, we show that the interfaces between the catalyst droplet and the nanostructure grow in well-defined mutual crystallographic relationships. The nanostructure defines the crystallographic orientation of the solidifying Au droplet. Possible alloy, intermetallic, or eutectic phase formation during catalysis are elucidated with the help of a proposed ternary Au-Zn-O phase diagram.

  5. Surface Charge Transfer Doping via Transition Metal Oxides for Efficient p-Type Doping of II-VI Nanostructures.

    PubMed

    Xia, Feifei; Shao, Zhibin; He, Yuanyuan; Wang, Rongbin; Wu, Xiaofeng; Jiang, Tianhao; Duhm, Steffen; Zhao, Jianwei; Lee, Shuit-Tong; Jie, Jiansheng

    2016-11-22

    Wide band gap II-VI nanostructures are important building blocks for new-generation electronic and optoelectronic devices. However, the difficulty of realizing p-type conductivity in these materials via conventional doping methods has severely handicapped the fabrication of p-n homojunctions and complementary circuits, which are the fundamental components for high-performance devices. Herein, by using first-principles density functional theory calculations, we demonstrated a simple yet efficient way to achieve controlled p-type doping on II-VI nanostructures via surface charge transfer doping (SCTD) using high work function transition metal oxides such as MoO3, WO3, CrO3, and V2O5 as dopants. Our calculations revealed that these oxides were capable of drawing electrons from II-VI nanostructures, leading to accumulation of positive charges (holes injection) in the II-VI nanostructures. As a result, Fermi levels of the II-VI nanostructures were shifted toward the valence band regions after surface modifications, along with the large enhancement of work functions. In situ ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy characterizations verified the significant interfacial charge transfer between II-VI nanostructures and surface dopants. Both theoretical calculations and electrical transfer measurements on the II-VI nanostructure-based field-effect transistors clearly showed the p-type conductivity of the nanostructures after surface modifications. Strikingly, II-VI nanowires could undergo semiconductor-to-metal transition by further increasing the SCTD level. SCTD offers the possibility to create a variety of electronic and optoelectronic devices from the II-VI nanostructures via realization of complementary doping.

  6. Growth of Nanostructure of Metal Oxides by Laser Ablation and by SiO2 Assisted Thermal Evaporation

    NASA Astrophysics Data System (ADS)

    EL Nadi, Lotfia M.; Mehena, Galila; Omar, Mgdy M.; Moneim, Hussein A.; Taieb, Fakiha H. A.; Rahiem, Faried A.

    2007-02-01

    We report the results of growing nanostructures of gallium oxide and indium oxide by two methods. In the first one we applied laser ablation in air of pure graphite rod filled with Gallium or Indium metals. The ablated plume then deposited on SS substrates in air. In the second method the oxides were synthesized by thermal heating of the Ga or In metals mixed with powder of graphite and covered with SiO2 plates, supported by ceramic, in high temperature oven. The ablation method produced nanowires of Ga2O3 and nano particles of In2O3 developing in nanowires. . The solid carbon ablated from the graphite rod existing in the ablated plum as fine solid particles mixed with metal Ga or In melt in contact with oxygen gas in air, produced the growth of the metal oxide nano structures by solid -liquid-gas mechanism. The silica assisted catalytic growth oxides produce only nano particle of each metal. The reaction of the metals with SiO2 melt and graphite produced Si and carbon. The then formed Si carbide can effectively initiate vapor- liquid-solid growth of nano structure metal oxide. It seems that SiO2 in addition to the atmospheric oxygen provide the oxygen source for forming metal oxide nano dots.

  7. Morphology-tunable ultrafine metal oxide nanostructures uniformly grown on graphene and their applications in the photo-Fenton system

    NASA Astrophysics Data System (ADS)

    Shao, Penghui; Tian, Jiayu; Liu, Borui; Shi, Wenxin; Gao, Shanshan; Song, Yali; Ling, Mei; Cui, Fuyi

    2015-08-01

    Hybrid nanostructures of low-dimensional metal oxide (MO) semiconductors based on two-dimensional (2D) graphene nanosheets have been considered as one of the most promising nanomaterials for an extensive variety of applications. Unfortunately, it is still challenging to rationally design and fabricate MO/graphene hybrids with highly controllable nanostructures and desirable properties, which are of paramount importance for practical applications. Here, we report a novel, facile and ``green'' glycerol-mediated self-assembly method, using α-Fe2O3 semiconductor as an illustrative example, for the controlled growth of MO with a well-defined nanostructure on 2D graphene nanosheets. Based on this new method, we first demonstrate the ability to exquisitely tune the α-Fe2O3 nanostructure from zero-dimensional quantum dots (~3.2 nm) to one-dimensional mesoporous nanorods, and eventually to 2D mesoporous nanosheets over the entire surface of graphene nanosheets. A possible formation mechanism has been proposed based on the systematic investigation of the morphological evolution and growth processes of α-Fe2O3 on graphene. The as-synthesized samples exhibit excellent performance for the photo-Fenton treatment of polluted water at neutral pH under visible light irradiation. Moreover, TiO2 and Fe3O4 quantum dots (~5.2 and 3.3 nm, respectively) ultradispersed on graphene are also successfully synthesized by this method, demonstrating its versatility for the rational fabrication of novel MO/graphene hybrids with huge potential applications.Hybrid nanostructures of low-dimensional metal oxide (MO) semiconductors based on two-dimensional (2D) graphene nanosheets have been considered as one of the most promising nanomaterials for an extensive variety of applications. Unfortunately, it is still challenging to rationally design and fabricate MO/graphene hybrids with highly controllable nanostructures and desirable properties, which are of paramount importance for practical

  8. Probing structure-induced optical behavior in a new class of self-activated luminescent 0D/1D CaWO₄ metal oxide – CdSe nanocrystal composite heterostructures

    SciTech Connect

    Han, Jinkyu; McBean, Coray; Wang, Lei; Hoy, Jessica; Jaye, Cherno; Liu, Haiqing; Li, Zhuo-Qun; Sfeir, Matthew Y.; Fischer, Daniel A.; Taylor, Gordon T.; Misewich, James A.; Wong, Stanislaus S.

    2015-01-30

    In this report, we synthesize and characterize the structural and optical properties of novel heterostructures composed of (i) semiconducting nanocrystalline CdSe quantum dot (QDs) coupled with (ii) both one and zero-dimensional (1D and 0D) motifs of self-activated luminescence CaWO₄ metal oxides. Specifically, ~4 nm CdSe QDs have been anchored onto (i) high-aspect ratio 1D nanowires, measuring ~230 nm in diameter and ~3 μm in length, as well as onto (ii) crystalline 0D nanoparticles (possessing an average diameter of ~ 80 nm) of CaWO₄ through the mediation of 3-mercaptopropionic acid (MPA) as a connecting linker. Composite formation was confirmed by complementary electron microscopy and spectroscopy (i.e. IR and Raman) data. In terms of luminescent properties, our results show that our 1D and 0D heterostructures evince photoluminescence (PL) quenching and shortened PL lifetimes of CaWO₄ as compared with unbound CaWO₄. We propose that a photo-induced electron transfer process occurs from CaWO₄ to CdSe QDs, a scenario which has been confirmed by NEXAFS measurements and which highlights a decrease in the number of unoccupied orbitals in the conduction bands of CdSe QDs. By contrast, the PL signature and lifetimes of MPA-capped CdSe QDs within these heterostructures do not exhibit noticeable changes as compared with unbound MPA-capped CdSe QDs. The striking difference in optical behavior between CaWO₄ nanostructures and CdSe QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. In addition, the PL quenching behaviors for CaWO₄ within the heterostructure configuration were examined by systematically varying (i) the quantities and coverage densities of CdSe QDs as well as (ii) the intrinsic morphology (and by extension, the inherent crystallite size) of CaWO₄ itself.

  9. Nanostructural and Chemical Characterization of Supported Metal Oxide Catalysts by Aberration Corrected Analytical Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Wu

    Ox with WOx. As a consequence, the catalytic activity of the co-impregnated material is dramatically increased by more than two orders of magnitude. We further showed in Chapter 5 that the Keggin structure based on phosphotungstic acid hydrate (i.e. an ˜ 1nm P-WOx mixed oxide cluster) can be successfully immobilized on an amorphous SiO2 support surface. Such catalyst design experiments further support our postulated structure-activity model, in which WO x clusters mixed with some low valence heteroatoms are the most active entities for the methanol dehydration and n-pentane isomerization reactions. Another major theme of this thesis is the analysis of model double-supported metal oxide catalysts, in which a high surface area oxide support material (amorphous SiO2) is modified by the presence of a second metal oxide surface species (TiO2 or ZrO2) added to control the distribution and activity of the active surface WOx component. These complex double-supported metal oxide catalysts represent a very significant challenge in terms of structural characterization. A new electron microscopy characterization strategy was developed for this purpose which combined aberration corrected STEM imaging with concurrent EELS and XEDS analysis. We demonstrated that the various components in a double-supported WO3/TiO 2/SiO2 catalyst system can be effectively visualized using complementary HAADF and STEM-BF imaging within an aberration corrected STEM. Furthermore, when combined with chemical analysis by STEM-EELS and XEDS within the same STEM instrument, it is possible to map out the relative spatial distribution of all the metal oxide components within the WO3/TiO2/SiO 2 catalyst. By comparing the structures of a systematic set of WO 3/TiO2/SiO2 samples displaying high, intermediate and low activity for the methanol dehydration reaction, we showed that the acidic catalytic activity seems to benefit from having (i) a more localized electron density on the TiOx support and (ii) a larger WOx

  10. Quasi-one dimensional (Q1D) nanostructures: Synthesis, integration and device application

    NASA Astrophysics Data System (ADS)

    Chien, Chung-Jen

    Quasi-one-dimensional (Q1D) nanostructures such as nanotubes and nanowires have been widely regarded as the potential building blocks for nanoscale electronic, optoelectronic and sensing devices. In this work, the content can be divided into three categories: Nano-material synthesis and characterizations, alignment and integration, physical properties and application. The dissertation consists of seven chapters as following. Chapter 1 will give an introduction to low dimensional nano-materials. Chapter 2 explains the mechanism how Q1D nanostructure grows. Chapter 3 describes the methods how we horizontally and vertically align the Q1D nanostructure. Chapter 4 and 5 are the electrical and optical device characterization respectively. Chapter 6 demonstrates the integration of Q1D nanostructures and the device application. The last chapter will discuss the future work and conclusion of the thesis.

  11. Metal oxide thin films and nanostructures for self-cleaning applications: current status and future prospects

    NASA Astrophysics Data System (ADS)

    Ghanashyam Krishna, Mamidipudi; Vinjanampati, Madhurima; Dhar Purkayastha, Debarun

    2013-06-01

    Surfaces that exhibit reversible wettability toward water are extremely important for a variety of technological applications. In this context, the development of superhydrophobic and superhydrophilic surfaces for self-cleaning applications has been receiving a great deal of attention in the last few years. In this review, an overview of the current state-of-science and technology of self-cleaning surfaces is presented. The current understanding of physics of wetting leading to surfaces with predictive, controllable and reversible wettability is first presented. The review then focuses on materials, mainly metal oxides and their composites, employed for self-cleaning applications. It is shown that, although conventionally oxides and polymers are considered for self-cleaning applications, recent developments point toward the use of artificially engineered surfaces with hierarchical roughness. Applications of self-cleaning films in non-conventional areas such as protection of fabrics, solar cells and structures related to cultural heritage are discussed. The review ends with an outlook for the future in terms of science and technology of self-cleaning surfaces.

  12. Synthesis and characterization of hierarchically porous metal, metal oxide, and carbon monoliths with highly ordered nanostructure

    NASA Astrophysics Data System (ADS)

    Grano, Amy Janine

    Hierarchically porous materials are of great interest in such applications as catalysis, separations, fuel cells, and advanced batteries. One such way of producing these materials is through the process of nanocasting, in which a sacrificial template is replicated and then removed to form a monolithic replica. This replica consists of mesopores, which can be ordered or disordered, and bicontinuous macropores, which allow flow throughout the length of the monolith. Hierarchically porous metal oxide and carbon monoliths with an ordered mesopores system are synthesized for the first time via nanocasting. These replicas were used as supports for the deposition of silver particles and the catalytic efficiency was evaluated. The ordered silica template used in producing these monoliths was also used for an in-situ TEM study involving metal nanocasting, and an observation of the destruction of the silica template during nanocasting made. Two new methods of removing the silica template were developed and applied to the synthesis of copper, nickel oxide, and zinc oxide monoliths. Finally, hollow fiber membrane monoliths were examined via x-ray tomography in an attempt to establish the presence of this structure throughout the monolith.

  13. Controlled way to prepare quasi-1D nanostructures with complex chemical composition in porous anodic alumina.

    PubMed

    Lukatskaya, Maria R; Trusov, Lev A; Eliseev, Andrey A; Lukashin, Alexey V; Jansen, Martin; Kazin, Pavel E; Napolskii, Kirill S

    2011-02-28

    Herein we propose a novel approach to the preparation of quasi-1D nanostructures with various chemical compositions based on infiltration of colloidal solution into the asymmetric anodic alumina membrane. The proposed technique was successfully applied for the preparation of ordered arrays of the magnetically hard anisotropic hexaferrite nanostructures.

  14. Nanostructure-Directed Chemical Sensing: The IHSAB Principle and the Effect of Nitrogen and Sulfur Functionalization on Metal Oxide Decorated Interface Response

    PubMed Central

    Laminack, William I.; Gole, James L.

    2013-01-01

    The response matrix, as metal oxide nanostructure decorated n-type semiconductor interfaces are modified in situ through direct amination and through treatment with organic sulfides and thiols, is demonstrated. Nanostructured TiO2, SnOx, NiO and CuxO (x = 1,2), in order of decreasing Lewis acidity, are deposited to a porous silicon interface to direct a dominant electron transduction process for reversible chemical sensing in the absence of significant chemical bond formation. The metal oxide sensing sites can be modified to decrease their Lewis acidity in a process appearing to substitute nitrogen or sulfur, providing a weak interaction to form the oxynitrides and oxysulfides. Treatment with triethylamine and diethyl sulfide decreases the Lewis acidity of the metal oxide sites. Treatment with acidic ethane thiol modifies the sensor response in an opposite sense, suggesting that there are thiol (SH) groups present on the surface that provide a Brønsted acidity to the surface. The in situ modification of the metal oxides deposited to the interface changes the reversible interaction with the analytes, NH3 and NO. The observed change for either the more basic oxynitrides or oxysulfides or the apparent Brønsted acid sites produced from the interaction of the thiols do not represent a simple increase in surface basicity or acidity, but appear to involve a change in molecular electronic structure, which is well explained using the recently developed inverse hard and soft acids and bases (IHSAB) model. PMID:28348345

  15. Near-field effects and energy transfer in hybrid metal-oxide nanostructures

    PubMed Central

    Kuerbanjiang, Balati; Benel, Cahit; Papageorgiou, Giorgos; Goncalves, Manuel; Boneberg, Johannes; Leiderer, Paul; Ziemann, Paul; Marek, Peter; Hahn, Horst

    2013-01-01

    Summary One of the big challenges of the 21st century is the utilization of nanotechnology for energy technology. Nanoscale structures may provide novel functionality, which has been demonstrated most convincingly by successful applications such as dye-sensitized solar cells introduced by M. Grätzel. Applications in energy technology are based on the transfer and conversion of energy. Following the example of photosynthesis, this requires a combination of light harvesting, transfer of energy to a reaction center, and conversion to other forms of energy by charge separation and transfer. This may be achieved by utilizing hybrid nanostructures, which combine metallic and nonmetallic components. Metallic nanostructures can interact strongly with light. Plasmonic excitations of such structures can cause local enhancement of the electrical field, which has been utilized in spectroscopy for many years. On the other hand, the excited states in metallic structures decay over very short lifetimes. Longer lifetimes of excited states occur in nonmetallic nanostructures, which makes them attractive for further energy transfer before recombination or relaxation sets in. Therefore, the combination of metallic nanostructures with nonmetallic materials is of great interest. We report investigations of hybrid nanostructured model systems that consist of a combination of metallic nanoantennas (fabricated by nanosphere lithography, NSL) and oxide nanoparticles. The oxide particles were doped with rare-earth (RE) ions, which show a large shift between absorption and emission wavelengths, allowing us to investigate the energy-transfer processes in detail. The main focus is on TiO2 nanoparticles doped with Eu3+, since the material is interesting for applications such as the generation of hydrogen by photocatalytic splitting of water molecules. We use high-resolution techniques such as confocal fluorescence microscopy for the investigation of energy-transfer processes. The experiments

  16. Near-field effects and energy transfer in hybrid metal-oxide nanostructures.

    PubMed

    Herr, Ulrich; Kuerbanjiang, Balati; Benel, Cahit; Papageorgiou, Giorgos; Goncalves, Manuel; Boneberg, Johannes; Leiderer, Paul; Ziemann, Paul; Marek, Peter; Hahn, Horst

    2013-01-01

    One of the big challenges of the 21st century is the utilization of nanotechnology for energy technology. Nanoscale structures may provide novel functionality, which has been demonstrated most convincingly by successful applications such as dye-sensitized solar cells introduced by M. Grätzel. Applications in energy technology are based on the transfer and conversion of energy. Following the example of photosynthesis, this requires a combination of light harvesting, transfer of energy to a reaction center, and conversion to other forms of energy by charge separation and transfer. This may be achieved by utilizing hybrid nanostructures, which combine metallic and nonmetallic components. Metallic nanostructures can interact strongly with light. Plasmonic excitations of such structures can cause local enhancement of the electrical field, which has been utilized in spectroscopy for many years. On the other hand, the excited states in metallic structures decay over very short lifetimes. Longer lifetimes of excited states occur in nonmetallic nanostructures, which makes them attractive for further energy transfer before recombination or relaxation sets in. Therefore, the combination of metallic nanostructures with nonmetallic materials is of great interest. We report investigations of hybrid nanostructured model systems that consist of a combination of metallic nanoantennas (fabricated by nanosphere lithography, NSL) and oxide nanoparticles. The oxide particles were doped with rare-earth (RE) ions, which show a large shift between absorption and emission wavelengths, allowing us to investigate the energy-transfer processes in detail. The main focus is on TiO2 nanoparticles doped with Eu(3+), since the material is interesting for applications such as the generation of hydrogen by photocatalytic splitting of water molecules. We use high-resolution techniques such as confocal fluorescence microscopy for the investigation of energy-transfer processes. The experiments are

  17. Resonant electron tunneling and related charging phenomena in metal-oxide- p +-Si nanostructures

    NASA Astrophysics Data System (ADS)

    Vexler, M. I.; Kareva, G. G.; Illarionov, Yu. Yu.; Grekhov, I. V.

    2016-11-01

    The j- V characteristics of the Al/thermal or electrochemical SiO2(2-4 nm)/heavily doped p +-Si nanostructures operating as a resonant-tunneling diode were measured and theoretically analyzed. The characteristics have specific features in the form of current steps and peaks, which are caused by electron transport between the silicon valence band and metal through discrete levels of the quantum well formed by the p +-Si conduction band and SiO2/ p +-Si interface. Resonant tunneling through the surface state levels and the appearance of a charge near this interface under certain conditions are discussed.

  18. Synthesis, characterization and photocatalytic activity of 1D TiO2 nanostructures.

    PubMed

    Cabrera, Julieta; Alarcón, Hugo; López, Alcides; Candal, Roberto; Acosta, Dwight; Rodriguez, Juan

    2014-01-01

    Nanowire/nanorod TiO(2) structures of approximately 8 nm in diameter and around 1,000 nm long were synthesized by alkaline hydrothermal treatment of two different TiO(2) nanopowders. The first precursor was TiO(2) obtained by the sol-gel process (SG-TiO(2)); the second was the well-known commercial TiO(2) P-25 (P25-TiO(2)). Anatase-like 1D TiO(2) nanostructures were obtained in both cases. The one-dimensional (1D) nanostructures synthesized from SG-TiO(2) powders turned into rod-like nanostructures after annealing at 400 °C for 2 h. Conversely, the nanostructures synthesized from P25-TiO(2) preserved the tubular structure after annealing, displaying a higher Brunauer-Emmett-Teller surface area than the first system (279 and 97 m²/g, respectively). Despite the higher surface area shown by the 1D nanostructures, in both cases the photocatalytic activity was lower than for the P25-TiO(2) powder. However, the rod-like nanostructures obtained from SG-TiO(2) displayed slightly higher efficiency than the sol-gel prepared powders. The lower photocatalytic activity of the nanostructures with respect to P-25 can be associated with the lower crystallinity of 1D TiO(2) in both materials.

  19. Aerosol-Chemical Vapor Deposition Method For Synthesis of Nanostructured Metal Oxide Thin Films With Controlled Morphology

    SciTech Connect

    An, Woo-Jin; Thimsen, Elijah J.; Biswas, Pratim

    2010-01-07

    An aerosol-chemical vapor deposition (ACVD) was designed to deposit nanostructured metal oxide films with controlled morphologies. Characteristic times of the different processes governing deposition of the film were used to establish the relationship of process parameters to the resultant morphology of the film. Titanium dioxide (TiO{sub 2}) films were synthesized with different morphologies: dense, columnar, granular, and branched tree-type structures. The developed ACVD process was also used to deposit columnar nickel oxide (NiO) films. The various films with well-controlled characteristics (length, morphology) were used to establish the performance in solar energy applications, such as photosplitting of water to produce hydrogen. Columnar TiO{sub 2} films of 1.6 μm length with a platinum wire counter electrode resulted in 15.58% hydrogen production efficiencies under UV light illumination, which was 2.50 times higher than dense TiO{sub 2} films with a platinum wire counter electrode. On replacing the Pt counter electrode with a columnar NiO film, efficiencies of 10.98% were obtained.

  20. Chemical Control of Plasmons in Metal Chalcogenide and Metal Oxide Nanostructures.

    PubMed

    Mattox, Tracy M; Ye, Xingchen; Manthiram, Karthish; Schuck, P James; Alivisatos, A Paul; Urban, Jeffrey J

    2015-10-14

    The field of plasmonics has grown to impact a diverse set of scientific disciplines ranging from quantum optics and photovoltaics to metamaterials and medicine. Plasmonics research has traditionally focused on noble metals; however, any material with a sufficiently high carrier density can support surface plasmon modes. Recently, researchers have made great gains in the synthetic (both intrinsic and extrinsic) control over the morphology and doping of nanoscale oxides, pnictides, sulfides, and selenides. These synthetic advances have, collectively, blossomed into a new, emerging class of plasmonic metal chalcogenides that complement traditional metallic materials. Chalcogenide and oxide nanostructures expand plasmonic properties into new spectral domains and also provide a rich suite of chemical controls available to manipulate plasmons, such as particle doping, shape, and composition. New opportunities in plasmonic chalcogenide nanomaterials are highlighted in this article, showing how they may be used to fundamentally tune the interaction and localization of electromagnetic fields on semiconductor surfaces in a way that enables new horizons in basic research and energy-relevant applications.

  1. Chemical degradation of trimethyl phosphate as surrogate for organo-phosporus pesticides on nanostructured metal oxides

    SciTech Connect

    Štengl, Václav Henych, Jiří; Grygar, Tomáš; Pérez, Raúl

    2015-01-15

    Nanostructured TiO{sub 2} and mixed oxides of Ti and Fe, Hf, In, Mn or Zr -were prepared by homogeneous hydrolysis of aqueous solution of metal sulphates with urea. The oxides were characterised by X-ray powder diffraction (XRD), scanning electron microscopy, particle size distribution, surface area and porosity. The oxide materials consists of a few nanometre primary crystals (mainly anatase) arranged in a few micrometre regular spherical agglomerates with specific surface area 133–511 m{sup 2} g{sup −1}. The FTIR diffuse spectroscopy was used for monitoring chemical degradation of trimethylphosphate (TMP) as a surrogate for organo-phosphorus pesticides under ambient and higher temperatures. Undoped TiO{sub 2} and Ti,Mn-mixed oxide were most active in cleavage (hydrolysis) of CH{sub 3}O from TMP at room temperature and 100 °C. Cleavage of CH{sub 3}O in the other studied mixed oxides was not complete until temperature exceeds the boiling point of TMP.

  2. Probing structure-induced optical behavior in a new class of self-activated luminescent 0D/1D CaWO₄ metal oxide – CdSe nanocrystal composite heterostructures

    DOE PAGES

    Han, Jinkyu; McBean, Coray; Wang, Lei; ...

    2015-01-30

    In this report, we synthesize and characterize the structural and optical properties of novel heterostructures composed of (i) semiconducting nanocrystalline CdSe quantum dot (QDs) coupled with (ii) both one and zero-dimensional (1D and 0D) motifs of self-activated luminescence CaWO₄ metal oxides. Specifically, ~4 nm CdSe QDs have been anchored onto (i) high-aspect ratio 1D nanowires, measuring ~230 nm in diameter and ~3 μm in length, as well as onto (ii) crystalline 0D nanoparticles (possessing an average diameter of ~ 80 nm) of CaWO₄ through the mediation of 3-mercaptopropionic acid (MPA) as a connecting linker. Composite formation was confirmed by complementarymore » electron microscopy and spectroscopy (i.e. IR and Raman) data. In terms of luminescent properties, our results show that our 1D and 0D heterostructures evince photoluminescence (PL) quenching and shortened PL lifetimes of CaWO₄ as compared with unbound CaWO₄. We propose that a photo-induced electron transfer process occurs from CaWO₄ to CdSe QDs, a scenario which has been confirmed by NEXAFS measurements and which highlights a decrease in the number of unoccupied orbitals in the conduction bands of CdSe QDs. By contrast, the PL signature and lifetimes of MPA-capped CdSe QDs within these heterostructures do not exhibit noticeable changes as compared with unbound MPA-capped CdSe QDs. The striking difference in optical behavior between CaWO₄ nanostructures and CdSe QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. In addition, the PL quenching behaviors for CaWO₄ within the heterostructure configuration were examined by systematically varying (i) the quantities and coverage densities of CdSe QDs as well as (ii) the intrinsic morphology (and by extension, the inherent crystallite size) of CaWO₄ itself.« less

  3. Preparation and characterization of nanostructured metal oxides for application to biomass upgrading Polar (111) metal oxide surfaces for pyrolysis oil upgrading and lignin depolymerization

    NASA Astrophysics Data System (ADS)

    Finch, Kenneth

    2013-01-01

    Pyrolysis oil, or bio-oil, is one of the most promising methods to upgrade a variety of biomass to transportation fuels. Moving toward a more "green" catalytic process requires heterogeneous catalysis over homogeneous catalysis to avoid extraction solvent waste. Nanoscale catalysts are showing great promise due to their high surface area and unusual surfaces. Base catalyzed condensation reactions occur much quicker than acid catalyzed condensation reactions. However, MgO is slightly soluble in water and is susceptible to degradation by acidic environments, similar to those found in fast-pyrolysis oil. Magnesium oxide (111) has a highly active Lewis base surface, which can catalyze Claisen-Schmidt condensation reactions in the organic phase. It has been shown previously that carbon coating a catalyst, such as a metal oxide, provides integrity while leaving the catalytic activity intact. Here, carbon-coated MgO(111) will be discussed with regards to synthesis, characterization and application to bio-oil upgrading through model compounds. Raman spectroscopy and HR-TEM are used to characterize the thickness and carbon-bonding environment of the carbon coating. Propanal self-condensation reactions have been conducted in the aqueous phase with varying amounts of acetic acid present. Quantitative analysis by gas chromatography was completed to determine the catalytic activity of CC-MgO(111). ICP-OES analysis has been conducted to measure the magnesium concentration in the product solution and give insight into the leaching of the catalyst into the reaction solution.

  4. Bimetallic nanostructures as active Raman markers: gold-nanoparticle assembly on 1D and 2D silver nanostructure surfaces.

    PubMed

    Gunawidjaja, Ray; Kharlampieva, Eugenia; Choi, Ikjun; Tsukruk, Vladimir V

    2009-11-01

    It is demonstrated that bimetallic silver-gold anisotropic nanostructures can be easily assembled from various nanoparticle building blocks with well-defined geometries by means of electrostatic interactions. One-dimensional (1D) silver nanowires, two-dimensional (2D) silver nanoplates, and spherical gold nanoparticles are used as representative building blocks for bottom-up assembly. The gold nanoparticles are electrostatically bound onto the 1D silver nanowires and the 2D silver nanoplates to give bimetallic nanostructures. The unique feature of the resulting nanostructures is the particle-to-particle interaction that subjects absorbed analytes to an enhanced electromagnetic field with strong polarization dependence. The Raman activity of the bimetallic nanostructures is compared with that of the individual nanoparticle blocks by using rhodamine 6G solution as the model analyte. The Raman intensity of the best-performing silver-gold nanostructure is comparable with the dense array of silver nanowires and silver nanoplates that were prepared by means of the Langmuir-Blodgett technique. An optimized design of a single-nanostructure substrate for surface-enhanced Raman spectroscopy (SERS), based on a wet-assembly technique proposed here, can serve as a compact and low-cost alternative to fabricated nanoparticle arrays.

  5. Self-assembly of functional molecules into 1D crystalline nanostructures.

    PubMed

    Guo, Yanbing; Xu, Liang; Liu, Huibiao; Li, Yongjun; Che, Chi-Ming; Li, Yuliang

    2015-02-01

    Self-assembled functional nanoarchitectures are employed as important nanoscale building blocks for advanced materials and smart miniature devices to fulfill the increasing needs of high materials usage efficiency, low energy consumption, and high-performance devices. One-dimensional (1D) crystalline nanostructures, especially molecule-composed crystalline nanostructures, attract significant attention due to their fascinating infusion structure and functionality which enables the easy tailoring of organic molecules with excellent carrier mobility and crystal stability. In this review, we discuss the recent progress of 1D crystalline self-assembled nanostructures of functional molecules, which include both a small molecule-derived and a polymer-based crystalline nanostructure. The basic principles of the molecular structure design and the process engineering of 1D crystalline nanostructures are also discussed. The molecular building blocks, self-assembly structures, and their applications in optical, electrical, and photoelectrical devices are overviewed and we give a brief outlook on crucial issues that need to be addressed in future research endeavors.

  6. Localized self-heating in large arrays of 1D nanostructures.

    PubMed

    Monereo, O; Illera, S; Varea, A; Schmidt, M; Sauerwald, T; Schütze, A; Cirera, A; Prades, J D

    2016-03-07

    One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal efficiency was attributed to the small dimensions of the objects). Infrared thermography and Raman spectroscopy were used to map the temperature profiles of films based on random arrangements of carbon nanofibers during self-heating. Both the techniques demonstrate consistently that heating concentrates in small regions, the here-called "hot-spots". On correlating dynamic temperature mapping with electrical measurements, we also observed that these minute hot-spots rule the resistance values observed macroscopically. A physical model of a random network of 1D resistors helped us to explain this observation. The model shows that, for a given random arrangement of 1D nanowires, current spreading through the network ends up defining a set of spots that dominate both the electrical resistance and power dissipation. Such highly localized heating explains the high power savings observed in larger nanostructured systems. This understanding opens a path to design highly efficient self-heating systems, based on random or pseudo-random distributions of 1D nanostructures.

  7. Hyperbranched quasi-1D TiO2 nanostructure for hybrid organic-inorganic solar cells.

    PubMed

    Ghadirzadeh, Ali; Passoni, Luca; Grancini, Giulia; Terraneo, Giancarlo; Li Bassi, Andrea; Petrozza, Annamaria; Di Fonzo, Fabio

    2015-04-15

    The performance of hybrid solar cells is strongly affected by the device morphology. In this work, we demonstrate a poly(3-hexylthiophene-2,5-diyl)/TiO2 hybrid solar cell where the TiO2 photoanode comprises an array of tree-like hyperbranched quasi-1D nanostructures self-assembled from the gas phase. This advanced architecture enables us to increase the power conversion efficiency to over 1%, doubling the efficiency with respect to state of the art devices employing standard mesoporous titania photoanodes. This improvement is attributed to several peculiar features of this array of nanostructures: high interfacial area; increased optical density thanks to the enhanced light scattering; and enhanced crystallization of poly(3-hexylthiophene-2,5-diyl) inside the quasi-1D nanostructure.

  8. Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection

    SciTech Connect

    Phatak, Charudatta; Knoop, Ludvig de; Houdellier, Florent; Gatel, Christophe; Hytch, Martin J.; Masseboeuf, Aurelien

    2016-03-10

    One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as well as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Furthermore the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures.

  9. Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection

    DOE PAGES

    Phatak, Charudatta; Knoop, Ludvig de; Houdellier, Florent; ...

    2016-03-10

    One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as wellmore » as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Furthermore the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures.« less

  10. Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection

    SciTech Connect

    Phatak, C.; Knoop, L. de; Houdellier, F.; Gatel, C.; Hÿtch, M. J.; Masseboeuf, A.

    2016-05-01

    One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as well as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures.

  11. Optimization of synthesis protocols to control the nanostructure and the morphology of metal oxide thin films for memristive applications

    SciTech Connect

    Baldi, G. Bosi, M.; Attolini, G.; Berzina, T.; Mosca, R.; Ponraj, J. S.; Iannotta, S.

    2015-03-10

    We propose a multi-technique approach based on in-vacuum synthesis of metal oxides to optimize the memristive properties of devices that use a metal oxide thin film as insulating layer. Pulsed Microplasma Cluster Source (PMCS) is based on supersonic beams seeded by clusters of the metal oxide. Nanocrystalline TiO{sub 2} thin films can be grown at room temperature, controlling the oxide stoichiometry from titanium metal up to a significant oxygen excess. Pulsed Electron beam Deposition (PED) is suitable to grow crystalline thin films on large areas, a step towards producing device arrays with controlled morphology and stoichiometry. Atomic Layer Deposition (ALD) is a powerful technique to grow materials layer-by-layer, finely controlling the chemical and structural properties of the film up to thickness of 50-80 nm. We will present a few examples of metal-insulator-metal structures showing a pinched hysteresis loop in their current-voltage characteristic. The structure, stoichiometry and morphology of the metal oxide layer, either aluminum oxide or titanium dioxide, is investigated by means of scanning electron microscopy (SEM) and by Raman scattering.

  12. Localized self-heating in large arrays of 1D nanostructures

    NASA Astrophysics Data System (ADS)

    Monereo, O.; Illera, S.; Varea, A.; Schmidt, M.; Sauerwald, T.; Schütze, A.; Cirera, A.; Prades, J. D.

    2016-02-01

    One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal efficiency was attributed to the small dimensions of the objects). Infrared thermography and Raman spectroscopy were used to map the temperature profiles of films based on random arrangements of carbon nanofibers during self-heating. Both the techniques demonstrate consistently that heating concentrates in small regions, the here-called ``hot-spots''. On correlating dynamic temperature mapping with electrical measurements, we also observed that these minute hot-spots rule the resistance values observed macroscopically. A physical model of a random network of 1D resistors helped us to explain this observation. The model shows that, for a given random arrangement of 1D nanowires, current spreading through the network ends up defining a set of spots that dominate both the electrical resistance and power dissipation. Such highly localized heating explains the high power savings observed in larger nanostructured systems. This understanding opens a path to design highly efficient self-heating systems, based on random or pseudo-random distributions of 1D nanostructures.One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal

  13. Combustion synthesis as a novel method for production of 1-D SiC nanostructures.

    PubMed

    Huczko, Andrzej; Bystrzejewski, Michał; Lange, Hubert; Fabianowska, Agnieszka; Cudziło, Stanisław; Panas, Andrzej; Szala, Mateusz

    2005-09-01

    1-D nanostructures of cubic phase silicon carbide (beta-SiC) were efficiently produced by combustion synthesis of mixtures containing Si-containing compounds and halocarbons in a calorimetric bomb. The influence of the operating parameters on 1-D SiC formation yield was studied. The heat release, the heating rate, and the chamber pressure increase were monitored during the process. The composition and structural features of the products were characterized by elemental analysis, X-ray diffraction, differential thermal analysis/ thermogravimetric technique, Raman spectroscopy, scanning and transmission electron microscopy, and energy-dispersive X-ray spectrometry. This self-induced growth process can produce SiC nanofibers and nanotubes ca. 20-100 nm in diameter with the aspect ratio higher than 1000. Bulk scale Raman studies showed the product to be comprised of mostly cubic polytype of SiC and that finite size effects are present. We believe that the nucleation mechanism involving radical gaseous species is responsible for 1-D nanostructures growth. The present study has enlarged the family of nanofibers and nanotubes available and offers a possible, new general route to 1-D crystalline materials.

  14. Structural resistance of chemically modified 1-D nanostructured titanates in inorganic acid environment

    SciTech Connect

    Marinkovic, Bojan A.; Fredholm, Yann C.; Morgado, Edisson

    2010-10-15

    Sodium containing one-dimensional nanostructured layered titanates (1-D NSLT) were produced both from commercial anatase powder and Brazilian natural rutile mineral sands by alkali hydrothermal process. The 1-D NSLT were chemically modified with proton, cobalt or iron via ionic exchange and all products were additionally submitted to intensive inorganic acid aging (pH = 0.5) for 28 days. The morphology and crystal structure transformations of chemically modified 1-D NSLT were followed by transmission electron microscopy, powder X-ray diffraction, selected area electron diffraction and energy dispersive spectroscopy. It was found that the original sodium rich 1-D NSLT and cobalt substituted 1-D NSLT were completely converted to rutile nanoparticles, while the protonated form was transformed in a 70%-30% (by weight) anatase-rutile nanoparticles mixture, very similar to that of the well-known TiO{sub 2}-photocatalyst P25 (Degussa). The iron substituted 1-D NSLT presented better acid resistance as 13% of the original structure and morphology remained, the rest being converted in rutile. A significant amount of remaining 1-D NSLT was also observed after the acid treatment of the product obtained from rutile sand. The results showed that phase transformation of NSLT into titanium dioxide polymorph in inorganic acid conditions were controllable by varying the exchanged cations. Finally, the possibility to transform, through acid aging, 1-D NSLT obtained from Brazilian natural rutile sand into TiO{sub 2}-polymorphs was demonstrated for the first time to the best of authors' knowledge, opening path for producing TiO{sub 2}-nanoproducts with different morphologies through a simple process and from a low cost precursor.

  15. Characterization and thermal stability of cobalt-modified 1-D nanostructured trititanates

    NASA Astrophysics Data System (ADS)

    Morgado, Edisson; Marinkovic, Bojan A.; Jardim, Paula M.; de Abreu, Marco A. S.; Rizzo, Fernando C.

    2009-01-01

    One-dimensional (1-D) nanostructured sodium trititanates were obtained via alkali hydrothermal method and modified with cobalt via ion exchange at different Co concentrations. The resulting cobalt-modified trititanate nanostructures (Co-TTNS) were characterized by TGA, XRD, TEM/SAED, DRS-UV-Vis and N 2 adsorption techniques. Their general chemical formula was estimated as Na xCo y/2H 2-x-yTi 3O 7·nH 2O and they maintained the same nanostructured and multilayered nature of the sodium precursor, with the growth direction of nanowires and nanotubes along [010]. As a consequence of the Co 2+ incorporation replacing sodium between trititanate layers, two new diffraction lines became prominent and the interlayer distance was reduced with respect to that of the precursor sodium trititanate. Surface area was slightly increased with cobalt intake whereas pore size distribution was hardly affected. Besides, Co 2+ incorporation in trititanate crystal structure also resulted in enhanced visible light photon absorption as indicated by a strong band-gap narrowing. Morphological and structural thermal transformations of Co-TTNS started nearly 400 °C in air and the final products after calcination at 800 °C were found to be composed of TiO 2-rutile, CoTiO 3 and a bronze-like phase with general formula Na 2xTi 1-xCo xO 2.

  16. Self-sustained cycle of hydrolysis and etching at solution/solid interfaces: a general strategy to prepare metal oxide micro-/nanostructured arrays for high-performance electrodes.

    PubMed

    Zhang, Yingmeng; Zhang, Weixin; Yang, Zeheng; Gu, Heyun; Zhu, Qing; Yang, Shihe; Li, Mei

    2015-03-23

    Assembling micro-/nanostructured arrays on conducting substrates allows the integration of multiple functionalities into modern electronic devices. Herein, a novel self-sustained cycle of hydrolysis and etching (SCHE) is exploited to selectively synthesize an extensive series of metal oxide micro-/nanostructured arrays on a wide range of metal substrates, establishing the generality and efficacy of the strategy. To demonstrate the potential application of this method, the as-prepared NiO porous nanobelt array was directly used as the anode for lithium-ion batteries, exhibiting excellent capacity and rate capability. Conclusively, the SCHE strategy offers a systematic approach to design metal oxide micro-/nanostructured arrays on metal substrates, which are valuable not only for lithium-ion batteries but also for other energy conversion and storage systems and electronic devices at large.

  17. 3D and 2D structural characterization of 1D Al/Al2 O3 biphasic nanostructures.

    PubMed

    Miró, M Martinez; Veith, M; Lee, J; Soldera, F; Mücklich, F; Bennewitz, R; Aktas, C

    2015-05-01

    1D Al/Al2 O3 nanostructures have been synthesized by chemical vapour deposition (CVD) of the molecular precursor [(t) BuOAlH2 ]2 . The deposited nanostructures grow chaotically on the substrate forming a layer with a high porosity (80%). Depending on the deposition time, diverse nanostructured surfaces with different distribution densities were achieved. A three-dimensional (3D) reconstruction has been evaluated for every nanostructure density using the Focus Ion Beam (FIB) tomography technique and reconstruction software tools. Several structural parameters such as porosity, Euler number, geometrical tortuosity and aspect ratio have been quantified through the analysis with specified software of the reconstructions. Additionally roughness of the prepared surfaces has been characterized at micro- and nanoscale using profilometry and AFM techniques, respectively. While high aspects ratio around 20-30 indicates a strong anisotropy in the structure, high porosity values (around 80%) is observed as a consequence of highly tangled geometry of such 1D nanostructures.

  18. Wavelength modulated SERS hot spot distribution in 1D nanostructures on metal film

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Zeng, Xiping; Liu, Ting; Zhang, Xuemei; Wei, Hua; Huang, Yingzhou; Liu, Anping; Wang, Shuxia; Wen, Weijia

    2016-10-01

    Surface plasmons confining strong electromagnetic fields near metal surfaces, well-known as hot spots, provide an extremely efficient platform for surface-enhanced Raman scattering (SERS). In this work, SERS spectra of probing molecules in a silver particle-wire 1D nanostructure on a thin gold film are investigated. The Raman features of SERS spectra collected at the particle-wire joints exhibit an obvious wavelength dependence phenomenon. This result is confirmed electromagnetic field simulation, revealing that hot spot distribution is sensitively influenced by the wavelength of incident light at the joints. Further studies indicate this wavelength dependence of hot spot distribution is immune to influence from the geometric shape of the particle or the angle between wire and particle, which improves fabrication tolerance. This technology may have promising applications in surface plasmon related fields, such as ultrasensors, solar energy and selective surface catalysis.

  19. From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties.

    PubMed

    Alenezi, Mohammad R; Henley, Simon J; Emerson, Neil G; Silva, S Ravi P

    2014-01-07

    Facile and low cost hydrothermal routes are developed to fabricate three-dimensional (3D) hierarchical ZnO structures with high surface-to-volume ratios and an increased fraction of (0001) polar surfaces. Hierarchical ZnO nanowires (ZNWs) and nanodisks (ZNDs) assembled from initial ZnO nanostructures are prepared from sequential nucleation and growth following a hydrothermal process. These hierarchical ZnO structures display an enhancement of gas sensing performance and exhibit significantly improved sensitivity and fast response to acetone in comparison to other mono-morphological ZnO, such as nanoparticles, NWs, or NDs. In addition to the high surface-to-volume ratio due to its small size, the nanowire building blocks show the enhanced gas sensing properties mainly ascribed to the increased proportion of exposed active (0001) planes, and the formation of many nanojunctions at the interface between the initial ZnO nanostructure and secondary NWs. This work provides the route for structure induced enhancement of gas sensing performance by designing a desirable nanostructure, which could also be extended to synthesize other metal oxide nanostructures with superior gas sensing performance.

  20. Synthesis and Electron Field-Emission of 1-D Carbon-Related Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Shih, Han C.

    2002-10-01

    Carbon nanotubes, a new stable form of carbon that was first identified in 1991 [1], are fullerene-related structures which consist of graphitic cylinders closed at either end with caps containing pentagonal rings. Although carbon nanotube structures are closely related to graphite, the curvature, symmetry and small size induce marked deviations from the graphitic behavior. Various methods have been used to produce carbon nanotubes, e.g., arc-discharge, laser-vaporization, catalytic chemical vapor deposition, but too many impurities also be produced, such as fullerenes, carbon nanoparticles and amorphous carbons. The microwave plasma enhanced chemical vapor deposition (MPECVD) system has been used to grow carbon nanotubes in this work and other 1-D carbon-related nanostructured materials was synthesized by the electron cyclotron resonance (ECR) plasma system. Plasma is generated by microwave excitation at 2.45 GHz by a magnetron passes through a waveguide and fed perpendicularly through a quartz dome into an 875 G magnetic field generated by the coils surrounding the resonance volume that creates the ECR condition. The deposition chamber was pumped down to the base pressure of 6.7X10-4 Pa (5X10-6 Torr) with a turbomolecular pump for ECR-plasma and subatmospheric pressures for MPECVD by a rotary mechanical pump. Well-aligned carbon-related nanostructures have been synthesized in nanoporous alumina or silicon with a uniform diameter of 30-100 nm by microwave excited plasma of CH_4, C_2H_2, N_2, H2 and Ar precursors. Nickel nanowires not only serve as catalysts to decompose hydrocarbons to form nanostructures but also function as an electrical conductor for other advanced applications. A negative dc bias is always applied to the substrate to promote the flow of ion fluxes through the nanochannels of the template materials that facilitate the physical adsorption and subsequent chemical absorption in the formation of carbon- and carbon-nitride nanotubes[2]. The electron

  1. 1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability.

    PubMed

    Hao, Pin; Tian, Jian; Sang, Yuanhua; Tuan, Chia-Chi; Cui, Guanwei; Shi, Xifeng; Wong, C P; Tang, Bo; Liu, Hong

    2016-09-15

    The fabrication of supercapacitor electrodes with high energy density and excellent cycling stability is still a great challenge. A carbon aerogel, possessing a hierarchical porous structure, high specific surface area and electrical conductivity, is an ideal backbone to support transition metal oxides and bring hope to prepare electrodes with high energy density and excellent cycling stability. Therefore, NiCo2S4 nanotube array/carbon aerogel and NiCo2O4 nanoneedle array/carbon aerogel hybrid supercapacitor electrode materials were synthesized by assembling Ni-Co precursor needle arrays on the surface of the channel walls of hierarchical porous carbon aerogels derived from chitosan in this study. The 1D nanostructures grow on the channel surface of the carbon aerogel vertically and tightly, contributing to the enhanced electrochemical performance with ultrahigh energy density. The energy density of NiCo2S4 nanotube array/carbon aerogel and NiCo2O4 nanoneedle array/carbon aerogel hybrid asymmetric supercapacitors can reach up to 55.3 Wh kg(-1) and 47.5 Wh kg(-1) at a power density of 400 W kg(-1), respectively. These asymmetric devices also displayed excellent cycling stability with a capacitance retention of about 96.6% and 92% over 5000 cycles.

  2. Metal oxide nanostructures-containing organic polymer hybrid solar cells: Optimization of processing parameters on cell performance

    NASA Astrophysics Data System (ADS)

    Motaung, David E.; Makgwane, Peter R.; Ray, Suprakas Sinha

    2015-11-01

    We report the chemical synthesis of various ZnO nanostructures and TiO2 nanoparticles and their dispersion in a P3HT matrix. The photoluminescence studies revealed improved charge transport in the active layer of the optimized TiO2 nanoparticles at a wt. ratio of 0.33, which demonstrated enhanced effective exciton dissociation at the interfaces between the P3HT, ZnO and TiO2 domains. The influence of the synthesis reaction time for the various ZnO nanostructures and TiO2 nanoparticles on the solar cell performances was investigated by varying the TiO2 concentration. The device containing a 0.33 wt. ratio of TiO2 nanoparticles in ITO/SnO2/P3HT:ZnO(24-h):TiO2/MoO3/Al ternary system showed a maximum efficiency of 2.84% under AM 1.5G illumination.

  3. Controllable switching ratio in quantum dot/metal-metal oxide nanostructure based non-volatile memory device

    NASA Astrophysics Data System (ADS)

    Kannan, V.; Rhee, J. K.

    2012-07-01

    In this paper, we report a facile quantum dot/In-InOx(nanostructure)/quantum dot/In based non-volatile resistive memory device. The solution processed tri-layer structure exhibited bipolar resistive switching with a ratio of 100 between the high-resistance state and low-resistance state. The memory device was stable and functional even after 100,000 cycles of operation and it exhibited good retention characteristics. The ON/OFF switching ratio could be controlled by choosing appropriate metal in the structure. Memory operating mechanism is discussed based on charge trapping in quantum dots with InOx acting as barrier. A comparative study of memory devices consisting of aluminum and titanium in place of indium is presented. The possible reason for the variation in ON/OFF ratio is discussed on the size of the nano-sized grains of the middle metal layer.

  4. Metal oxide nanostructures synthesized on flexible and solid substrates and used for catalysts, UV detectors, and chemical sensors

    NASA Astrophysics Data System (ADS)

    Willander, Magnus; Sadollahkhani, Azar; Echresh, Ahmad; Nur, Omer

    2014-03-01

    In this paper we demonstrate the visibility of the low temperature chemical synthesis for developing device quality material grown on flexible and solid substrates. Both colorimetric sensors and UV photodetectors will be presented. The colorimetric sensors developed on paper were demonstrated for heavy metal detection, in particular for detecting copper ions in aqueous solutions. The demonstrated colorimetric copper ion sensors developed here are based on ZnO@ZnS core-shell nanoparticles (CSNPs). These sensors demonstrated an excellent low detection limit of less than 1 ppm of copper ions. Further the colorimetric sensors operate efficiently in a wide pH range between 4 and 11, and even in turbulent water. The CSNPs were additionally used as efficient photocatalytic degradation element and were found to be more efficient than pure ZnO nanoparticles (NPs). Also p-NiO/n-ZnO thin film/nanorods pn junctions were synthesized by a two-step synthesis process and were found to act as efficient UV photodetectors. Additionally we show the effect of the morphology of different CuO nanostructures on the efficiency of photo catalytic degradation of Congo red organic dye.

  5. Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures.

    PubMed

    Yu, Yiling; Cao, Linyou

    2012-06-18

    We present an intuitive, simple theoretical model, coupled leaky mode theory (CLMT), to analyze the light absorption of 2D, 1D, and 0D semiconductor nanostructures. This model correlates the light absorption of nanostructures to the optical coupling between incident light and leaky modes of the nanostructure. Unlike conventional methods such as Mie theory that requests specific physical features of nanostructures to evaluate the absorption, the CLMT model provides an unprecedented capability to analyze the absorption using eigen values of the leaky modes. Because the eigenvalue shows very mild dependence on the physical features of nanostructures, we can generally apply one set of eigenvalues calculated using a real, constant refractive index to calculations for the absorption of various nanostructures with different sizes, different materials, and wavelength-dependent complex refractive index. This CLMT model is general, simple, yet reasonably accurate, and offers new intuitive physical insights that the light absorption of nanostructures is governed by the coupling efficiency between incident light and leaky modes of the structure.

  6. Rapid synthesis of nanostructured metal-oxide films for solar energy applications by a flame aerosol reactor (FLAR)

    NASA Astrophysics Data System (ADS)

    Thimsen, Elijah; Rastgar, Neema; Biswas, Pratim

    2007-09-01

    Titanium dioxide films are a critical component of many next-generation low cost solar cells. Film morphology has been identified as an efficiency-limiting property. A gas phase, single-step, rapid, atmospheric-pressure process to synthesize TiO II films with controlled morphology is reported. The process is based on a flame aerosol reactor (FLAR). Two different morphologies were synthesized for this report, granular and columnar. The granular morphology consists of nanoparticles aggregated into fractal structures on the substrate, and is characterized by high surface area and poor electronic properties. The columnar morphology is highly crystalline; composed of 1D structures oriented normal to the substrate, characterized by lower surface area and superior electronic properties. Films with both morphologies are applied to a hydrogen-producing photo-watersplitting cell and a photovoltaic dye-sensitized solar cell. For watersplitting, the columnar morphology outperforms the granular by almost 2 orders of magnitude, achieving a uv-light to hydrogen conversion efficiency of about 11%. In contrast, for the dye-sensitized solar cell, the granular morphology outperforms the columnar, due to enhanced dye absorption arising from the larger TiO II surface area.

  7. One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues

    PubMed Central

    Choi, Kyoung Jin; Jang, Ho Won

    2010-01-01

    In this article, we review gas sensor application of one-dimensional (1D) metal-oxide nanostructures with major emphases on the types of device structure and issues for realizing practical sensors. One of the most important steps in fabricating 1D-nanostructure devices is manipulation and making electrical contacts of the nanostructures. Gas sensors based on individual 1D nanostructure, which were usually fabricated using electron-beam lithography, have been a platform technology for fundamental research. Recently, gas sensors with practical applicability were proposed, which were fabricated with an array of 1D nanostructures using scalable micro-fabrication tools. In the second part of the paper, some critical issues are pointed out including long-term stability, gas selectivity, and room-temperature operation of 1D-nanostructure-based metal-oxide gas sensors. PMID:22319343

  8. Method of making controlled morphology metal-oxides

    DOEpatents

    Ozcan, Soydan; Lu, Yuan

    2016-05-17

    A method of making metal oxides having a preselected morphology includes preparing a suspension that includes a solvent, polymeric nanostructures having multiplicities of hydroxyl surface groups and/or carboxyl surface groups, and a metal oxide precursor. The suspension has a preselected ratio of the polymeric nanostructures to the metal oxide precursor of at least 1:3, the preselected ratio corresponding to a preselected morphology. Subsequent steps include depositing the suspension onto a substrate, removing the solvent to form a film, removing the film from the substrate, and annealing the film to volatilize the polymeric nanostructures and convert the metal oxide precursor to metal oxide nanoparticles having the preselected morphology or to a metal oxide nanosheet including conjoined nanoparticles having the preselected morphology.

  9. Synthesis and Characterization of Nano-Structure Metal Oxides and Peroxides Prepared by Laser Ablation in Liquids

    NASA Astrophysics Data System (ADS)

    Drmosh, Qasem Ahmed Qasem

    Pulsed laser ablation technique was applied for synthesize of ZnO, ZnO 2 and SnO2 nanostructure using metallic target in different liquids. For this purpose, a laser emitting pulsed UV radiations generated by the third harmonic of Nd:YAG (λ= 355 nm) was applied. For the synthesis of ZnO nanoparticles (NPs), a high-purity metallic plate of Zn was fixed at the bottom of a glass cell in the presence of deionized water and was irradiated at different laser energies (80- 100- 120) mJ per pulse. The average sizes and lattice parameters of ZnO produced by this method were estimated by X-ray diffraction (XRD). ZnO nanoparticles were also produced by ablation of zinc target in the presence of deionized water mixed with two types of surfactants: cetyltrimethyl ammonium bromide (CTAB) and octaethylene glycol monododecyl (OGM). The results showed that the average grain sizes decreased from 38 nm in the case of deionized water to 27 nm and 19 nm in CTAB and OGM respectively. The PL emission in CTAB and OGM showed two peaks: the sharp UV emission at 380 nm and a broad visible peak ranging from 450 nm to 600 nm. Zinc peroxide (ZnO2) nanoparticles having grain size less than 5 nm were also synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3 % hydrogen peroxide H2O2 for the first time. The effect of surfactants on the optical and structure of ZnO2 was studied by applying different spectroscopic techniques. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7 nm, 3.7 nm, 3.3 nm and 2.8 nm in pure H2O2; and H2O 2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO2 nanoparticles prepared with and without surfactants showed characteristic peaks of ZnO2 absorption at 435-445 cm-1. FTIR spectrum also revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM

  10. Optical anisotropy of quasi-1D rare-earth silicide nanostructures on Si(001)

    NASA Astrophysics Data System (ADS)

    Chandola, S.; Speiser, E.; Esser, N.; Appelfeller, S.; Franz, M.; Dähne, M.

    2017-03-01

    Rare earth metals are known to interact strongly with Si(001) surfaces to form different types of silicide nanostructures. Using STM to structurally characterize Dy and Tb silicide nanostructures on vicinal Si(001), it will be shown that reflectance anisotropy spectroscopy (RAS) can be used as an optical fingerprint technique to clearly distinguish between the formation of a semiconducting two-dimensional wetting layer and the metallic one-dimensional nanowires. Moreover, the distinctive spectral features can be related to structural units of the nanostructures. RAS spectra of Tb and Dy nanostructures are found to show similar features.

  11. Graphene-assisted room-temperature synthesis of 2D nanostructured hybrid electrode materials: dramatic acceleration of the formation rate of 2D metal oxide nanoplates induced by reduced graphene oxide nanosheets.

    PubMed

    Sung, Da-Young; Gunjakar, Jayavant L; Kim, Tae Woo; Kim, In Young; Lee, Yu Ri; Hwang, Seong-Ju

    2013-05-27

    A new prompt room temperature synthetic route to 2D nanostructured metal oxide-graphene-hybrid electrode materials can be developed by the application of colloidal reduced graphene oxide (RGO) nanosheets as an efficient reaction accelerator for the synthesis of δ-MnO2 2D nanoplates. Whereas the synthesis of the 2D nanostructured δ-MnO2 at room temperature requires treating divalent manganese compounds with persulfate ions for at least 24 h, the addition of RGO nanosheet causes a dramatic shortening of synthesis time to 1 h, underscoring its effectiveness for the promotion of the formation of 2D nanostructured metal oxide. To the best of our knowledge, this is the first example of the accelerated synthesis of 2D nanostructured hybrid material induced by the RGO nanosheets. The observed acceleration of nanoplate formation upon the addition of RGO nanosheets is attributable to the enhancement of the oxidizing power of persulfate ions, the increase of the solubility of precursor MnCO3, and the promoted crystal growth of δ-MnO2 2D nanoplates. The resulting hybridization between RGO nanosheets and δ-MnO2 nanoplates is quite powerful not only in increasing the surface area of manganese oxide nanoplate but also in enhancing its electrochemical activity. Of prime importance is that the present δ-MnO2 -RGO nanocomposites show much superior electrode performance over most of 2D nanostructured manganate systems including a similar porous assembly of RGO and layered MnO2 nanosheets. This result underscores that the present RGO-assisted solution-based synthesis can provide a prompt and scalable method to produce nanostructured hybrid electrode materials.

  12. Self-assembly of 1-D n-type nanostructures based on naphthalene diimide-appended dipeptides.

    PubMed

    Shao, Hui; Nguyen, Tuan; Romano, Natalie C; Modarelli, David A; Parquette, Jon R

    2009-11-18

    n-Type 1D nanostructures are formed from the beta-sheet assembly of dipeptides bearing a 1,4,5,8-naphthalenetetracarboxylic acid diimide (NDI) side chain into either helical nanofibers or twisted nanoribbons. Amyloid-like 1-D helical nanofibers and twisted nanoribbons assemble in an aqueous solution depending on the placement of the NDI group. beta-Sheet-type hydrogen bonding and pi-pi association play important roles in directing the assembly process. A delicate balance between electrostatic repulsion and hydrophobic interactions is critical for self-assembly. Fluorescence lifetime and anisotropy experiments indicate that the nature of the intermolecular organization and packing within the nanostructures critically impacts intermolecular energy migration pi-electron delocalization.

  13. Significant enhancement of power conversion efficiency for dye sensitized solar cell using 1D/3D network nanostructures as photoanodes

    PubMed Central

    Wang, Hao; Wang, Baoyuan; Yu, Jichao; Hu, Yunxia; Xia, Chen; Zhang, Jun; Liu, Rong

    2015-01-01

    The single–crystalline TiO2 nanorod arrays with rutile phase have attracted much attention in the dye sensitized solar cells (DSSCs) applications because of their superior chemical stability, better electron transport properties, higher refractive index and low production cost. However, it suffers from a low surface area as compared with TiO2 nanoparticle films. In order to enlarge the surface area of TiO2 nanorod arrays, the 1D nanorods/3D nanotubes sample was synthesized using a facile two-step hydrothermal process involving hydrothermal growth 1D/3D nanorods and followed by post-etching treatment. In such bi-layer structure, the oriented TiO2 nanorods layer could provide direct pathway for fast electron transportation, and the 3D nanotubes layer offers a higher surface area for dye loading, therefore, the 1D nanorods/3D nanotubes photoanode exhibited faster electron transport and higher surface area than either 1D or 3D nanostructures alone, and an highest efficiency of 7.68% was achieved for the DSSCs based on 1D nanorods/3D nanotubes photoanode with further TiCl4 treatment. PMID:25800933

  14. Recent Progress in Self‐Supported Metal Oxide Nanoarray Electrodes for Advanced Lithium‐Ion Batteries

    PubMed Central

    Zhang, Feng

    2016-01-01

    The rational design and fabrication of electrode materials with desirable architectures and optimized properties has been demonstrated to be an effective approach towards high‐performance lithium‐ion batteries (LIBs). Although nanostructured metal oxide electrodes with high specific capacity have been regarded as the most promising alternatives for replacing commercial electrodes in LIBs, their further developments are still faced with several challenges such as poor cycling stability and unsatisfying rate performance. As a new class of binder‐free electrodes for LIBs, self‐supported metal oxide nanoarray electrodes have many advantageous features in terms of high specific surface area, fast electron transport, improved charge transfer efficiency, and free space for alleviating volume expansion and preventing severe aggregation, holding great potential to solve the mentioned problems. This review highlights the recent progress in the utilization of self‐supported metal oxide nanoarrays grown on 2D planar and 3D porous substrates, such as 1D and 2D nanostructure arrays, hierarchical nanostructure arrays, and heterostructured nanoarrays, as anodes and cathodes for advanced LIBs. Furthermore, the potential applications of these binder‐free nanoarray electrodes for practical LIBs in full‐cell configuration are outlined. Finally, the future prospects of these self‐supported nanoarray electrodes are discussed. PMID:27711259

  15. Recent Progress in Self-Supported Metal Oxide Nanoarray Electrodes for Advanced Lithium-Ion Batteries.

    PubMed

    Zhang, Feng; Qi, Limin

    2016-09-01

    The rational design and fabrication of electrode materials with desirable architectures and optimized properties has been demonstrated to be an effective approach towards high-performance lithium-ion batteries (LIBs). Although nanostructured metal oxide electrodes with high specific capacity have been regarded as the most promising alternatives for replacing commercial electrodes in LIBs, their further developments are still faced with several challenges such as poor cycling stability and unsatisfying rate performance. As a new class of binder-free electrodes for LIBs, self-supported metal oxide nanoarray electrodes have many advantageous features in terms of high specific surface area, fast electron transport, improved charge transfer efficiency, and free space for alleviating volume expansion and preventing severe aggregation, holding great potential to solve the mentioned problems. This review highlights the recent progress in the utilization of self-supported metal oxide nanoarrays grown on 2D planar and 3D porous substrates, such as 1D and 2D nanostructure arrays, hierarchical nanostructure arrays, and heterostructured nanoarrays, as anodes and cathodes for advanced LIBs. Furthermore, the potential applications of these binder-free nanoarray electrodes for practical LIBs in full-cell configuration are outlined. Finally, the future prospects of these self-supported nanoarray electrodes are discussed.

  16. Doped ZnO 1D nanostructures: synthesis, properties, and photodetector application.

    PubMed

    Hsu, Cheng-Liang; Chang, Shoou-Jinn

    2014-11-01

    In the past decades, the doping of ZnO one-dimensional nanostructures has attracted a great deal of attention due to the variety of possible morphologies, large surface-to-volume ratios, simple and low cost processing, and excellent physical properties for fabricating high-performance electronic, magnetic, and optoelectronic devices. This article mainly concentrates on recent advances regarding the doping of ZnO one-dimensional nanostructures, including a brief overview of the vapor phase transport method and hydrothermal method, as well as the fabrication process for photodetectors. The dopant elements include B, Al, Ga, In, N, P, As, Sb, Ag, Cu, Ti, Na, K, Li, La, C, F, Cl, H, Mg, Mn, S, and Sn. The various dopants which act as acceptors or donors to realize either p-type or n-type are discussed. Doping to alter optical properties is also considered. Lastly, the perspectives and future research outlook of doped ZnO nanostructures are summarized.

  17. Sonochemical synthesis of 0D, 1D, and 2D zinc oxide nanostructures in ionic liquids and their photocatalytic activity.

    PubMed

    Alammar, Tarek; Mudring, Anja-Verena

    2011-12-16

    Ultrasound synthesis of zinc oxide from zinc acetate and sodium hydroxide in ionic liquids (ILs) is a fast, facile, and effective, yet highly morphology- and size-selective route to zinc oxide nanostructures of various dimensionalities. No additional organic solvents, water, surfactants, or templating agents are required. Depending on the synthetic conditions, the selective manufacturing of 0D, 1D, and 2D ZnO nanostructures is possible: Whereas the formation of rodlike structures is typically favored, ZnO nanoparticles can be obtained either under strongly basic conditions or by use of ILs with a long alkyl chain, such as 1-n-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C(n)mim][Tf(2)N]; n>8). A short ultrasound irradiation time favors the formation of ZnO nanosheets. Prolonged irradiation leads to the conversion of the ZnO nanosheets into nanorods. In contrast, ionothermal synthesis (conventional heating) does not allow for morphology tuning by variation of the IL or other synthesis conditions, as the longer reaction times required lead always to the formation of well-developed hexagonal nanocrystals with prismatic tips. The ZnO nanostructures synthesized by using ultrasound were efficient photocatalysts in the photodegradation of methyl orange. The photoactivity was observed to be as high as 95 % for ZnO nanoparticles obtained in [C(10)mim][Tf(2)N].

  18. Simulation and optimization of 1-D periodic dielectric nanostructures for light-trapping.

    PubMed

    Wang, Peng; Menon, Rajesh

    2012-01-16

    Light-trapping is essential to improve the performance of thin-film solar cells. In this paper, we perform a parametric optimization of 1-D square and sinusoidal grating structures that act as nanophotonic scatterers to increase light absorption in ultra-thin (10nm) solar cells. Our optimization reveals that the short-circuit current density in a device of active-layer thickness 10nm can be improved by a factor of ~5 in the presence of the scattering structure. More complex geometries allow for increased degrees of design freedom and potentially high enhancement of light absorption.

  19. Atomic layer deposition of 1D and 2D nickel nanostructures on graphite.

    PubMed

    Ryu, Seung Wook; Yoon, Jaehong; Moon, Hyoung-Seok; Shong, Bonggeun; Kim, Hyungjun; Lee, Han-Bo-Ram

    2017-03-17

    One-dimensional (1D) nanowires (NWs) and two-dimensional (2D) thin films of Ni were deposited on highly ordered pyrolytic graphite (HOPG) by atomic layer deposition (ALD), using NH3 as a counter reactant. Thermal ALD using NH3 gas forms 1D NWs along step edges, while NH3 plasma enables the deposition of a continuous 2D film over the whole surface. The lateral and vertical growth rates of the Ni NWs are numerically modeled as a function of the number of ALD cycles. Pretreatment with NH3 gas promotes selectivity in deposition by the reduction of oxygenated functionalities on the HOPG surface. On the other hand, NH3 plasma pretreatment generates surface nitrogen species, and results in a morphological change in the basal plane of graphite, leading to active nucleation across the surface during ALD. The effects of surface nitrogen species on the nucleation of ALD Ni were theoretically studied by density functional theory calculations. Our results suggest that the properties of Ni NWs, such as their density and width, and the formation of Ni thin films on carbon surfaces can be controlled by appropriate use of NH3.

  20. A facile route for 3D aerogels from nanostructured 1D and 2D materials

    NASA Astrophysics Data System (ADS)

    Jung, Sung Mi; Jung, Hyun Young; Dresselhaus, Mildred S.; Jung, Yung Joon; Kong, Jing

    2012-11-01

    Aerogels have numerous applications due to their high surface area and low densities. However, creating aerogels from a large variety of materials has remained an outstanding challenge. Here, we report a new methodology to enable aerogel production with a wide range of materials. The method is based on the assembly of anisotropic nano-objects (one-dimensional (1D) nanotubes, nanowires, or two-dimensional (2D) nanosheets) into a cross-linking network from their colloidal suspensions at the transition from the semi-dilute to the isotropic concentrated regime. The resultant aerogels have highly porous and ultrafine three-dimensional (3D) networks consisting of 1D (Ag, Si, MnO2, single-walled carbon nanotubes (SWNTs)) and 2D materials (MoS2, graphene, h-BN) with high surface areas, low densities, and high electrical conductivities. This method opens up a facile route for aerogel production with a wide variety of materials and tremendous opportunities for bio-scaffold, energy storage, thermoelectric, catalysis, and hydrogen storage applications.

  1. Atomic layer deposition of 1D and 2D nickel nanostructures on graphite

    NASA Astrophysics Data System (ADS)

    Ryu, Seung Wook; Yoon, Jaehong; Moon, Hyoung-Seok; Shong, Bonggeun; Kim, Hyungjun; Lee, Han-Bo-Ram

    2017-03-01

    One-dimensional (1D) nanowires (NWs) and two-dimensional (2D) thin films of Ni were deposited on highly ordered pyrolytic graphite (HOPG) by atomic layer deposition (ALD), using NH3 as a counter reactant. Thermal ALD using NH3 gas forms 1D NWs along step edges, while NH3 plasma enables the deposition of a continuous 2D film over the whole surface. The lateral and vertical growth rates of the Ni NWs are numerically modeled as a function of the number of ALD cycles. Pretreatment with NH3 gas promotes selectivity in deposition by the reduction of oxygenated functionalities on the HOPG surface. On the other hand, NH3 plasma pretreatment generates surface nitrogen species, and results in a morphological change in the basal plane of graphite, leading to active nucleation across the surface during ALD. The effects of surface nitrogen species on the nucleation of ALD Ni were theoretically studied by density functional theory calculations. Our results suggest that the properties of Ni NWs, such as their density and width, and the formation of Ni thin films on carbon surfaces can be controlled by appropriate use of NH3.

  2. Engineering of lead chalcogenide nanostructures for carrier multiplication: Core/shell, 1D, and 2D

    NASA Astrophysics Data System (ADS)

    Lin, Qianglu

    Near infrared emitting semiconductors have been used widely in industry especially in solar-cell fabrications. The efficiency of single junction solar-cell can reach the Shockley-Queisser limit by using optimum band gap material such as silicon and cadmium telluride. The theoretical efficiency can be further enhanced through carrier multiplication, in which a high energy photon is absorbed and more than one electron-hole pair can be generated, reaching more than 100% quantum efficiency in the high energy region of sunlight. The realization of more than unity external quantum efficiency in lead selenide quantum dots solar cell has motivated vast investigation on lowering the carrier multiplication threshold and further improving the efficiency. This dissertation focuses on synthesis of lead chalcogenide nanostructures for their optical spectroscopy studies. PbSe/CdSe core/shell quantum dots were synthesized by cation exchange to obtain thick shells (up to 14 monolayers) for studies of visible and near infrared dual band emissions and carrier multiplication efficiency. By examining the reaction mechanism, a thermodynamic and a kinetic model are introduced to explain the vacancy driven cation exchange. As indicated by the effective mass model, PbSe/CdSe core/shell quantum dots has quasi-type-II band alignment, possessing electron delocalized through the entire quantum dot and hole localized in the core, which breaks down the symmetry of energy levels in the conduction and valence band, leading to hot-hole-assisted efficient multi-exciton generation and a lower carrier multiplication threshold to the theoretical value. For further investigation of carrier multiplication study, PbTe, possessing the highest efficiency among lead chalcogenides due to slow intraband cooling, is synthesized in one-dimensional and two-dimensional nanostructures. By using dodecanethiol as the surfactant, PbTe NRs can be prepared with high uniformity in width and resulted in fine quantum

  3. Synthesis of 1D Silica Nanostructures with Controllable Sizes Based on Short Anionic Peptide Self-Assembly.

    PubMed

    Wang, Shengjie; Cai, Qingwei; Du, Mingxuan; Xue, Junyi; Xu, Hai

    2015-09-10

    Artificial synthesis of silica under benign conditions is usually achieved by using cationic organic matrices as templates while the anionic analogues have not received enough consideration, albeit they are also functioning in biosilica formation. In this work, we report the design and self-assembly of an anionic peptide amphiphile (I3E) and the use of its self-assemblies as templates to synthesize 1D silica nanostructures with tunable sizes. We show that short I3E readily formed long nanofibrils in aqueous solution via a hierarchical self-assembly process. By using APTES and TEOS as silica precursors, we found that the I3E nanofibrils templated the production of silica nanotubes with a wide size distribution, in which the silica size regulation was achieved by tuning the interactions among the peptide template and silicon species. These results clearly illustrate a facile method for generating silica nanomaterials based on anionic matrices.

  4. Light-directing chiral liquid crystal nanostructures: from 1D to 3D.

    PubMed

    Bisoyi, Hari Krishna; Li, Quan

    2014-10-21

    Endowing external, remote, and dynamic control to self-organized superstructures with desired functionalities is a principal driving force in the bottom-up nanofabrication of molecular devices. Light-driven chiral molecular switches or motors in liquid crystal (LC) media capable of self-organizing into optically tunable one-dimensional (1D) and three-dimensional (3D) superstructures represent such an elegant system. As a consequence, photoresponsive cholesteric LCs (CLCs), i.e., self-organized 1D helical superstructures, and LC blue phases (BPs), i.e., self-organized 3D periodic cubic lattices, are emerging as a new generation of multifunctional supramolecular 1D and 3D photonic materials in their own right because of their fundamental academic interest and technological significance. These smart stimuli-responsive materials can be facilely fabricated from achiral LC hosts by the addition of a small amount of a light-driven chiral molecular switch or motor. The photoresponsiveness of these materials is a result of both molecular interaction and geometry changes in the chiral molecular switch upon light irradiation. The doped photoresponsive CLCs undergo light-driven pitch modulation and/or helix inversion, which has many applications in color filters, polarizers, all-optical displays, optical lasers, sensors, energy-saving smart devices, and so on. Recently, we have conceptualized and rationally synthesized different light-driven chiral molecular switches that have very high helical twisting powers (HTPs) and exhibit large changes in HTP in different states, thereby enabling wide phototunability of the systems by the addition of very small amounts of the molecular switches into commercially available achiral LCs. The light-driven chiral molecular switches are based on well-recognized azobenzene, dithienylcyclopentene, and spirooxazine derivatives. We have demonstrated high-resolution and lightweight photoaddressable displays without patterned electronics on

  5. Apoferritin fibers: a new template for 1D fluorescent hybrid nanostructures

    NASA Astrophysics Data System (ADS)

    Jurado, Rocío; Castello, Fabio; Bondia, Patricia; Casado, Santiago; Flors, Cristina; Cuesta, Rafael; Domínguez-Vera, José M.; Orte, Angel; Gálvez, Natividad

    2016-05-01

    Recently, research in the field of protein amyloid fibers has gained great attention due to the use of these materials as nanoscale templates for the construction of functional hybrid materials. The formation of apoferritin amyloid-like protein fibers is demonstrated herein for the first time. The morphology, size and stiffness of these one-dimensional structures are comparable to the fibers formed by β-lactoglobulin, a protein frequently used as a model in the study of amyloid-like fibrillar proteins. Nanometer-sized globular apoferritin is capable of self-assembling to form 1D micrometer-sized structures after being subjected to a heating process. Depending on the experimental conditions, fibers with different morphologies and sizes are obtained. The wire-like protein structure is rich in functional groups and allows chemical functionalization with diverse quantum dots (QD), as well as with different Alexa Fluor (AF) dyes, leading to hybrid fluorescent fibers with variable emission wavelengths, from green to near infrared, depending on the QD and AFs coupled. For fibers containing the pair AF488 and AF647, efficient fluorescence energy transfer from the covalently coupled donor (AF488) to acceptor tags (AF647) takes place. Apoferritin fibers are proposed here as a new promising template for obtaining hybrid functional materials.Recently, research in the field of protein amyloid fibers has gained great attention due to the use of these materials as nanoscale templates for the construction of functional hybrid materials. The formation of apoferritin amyloid-like protein fibers is demonstrated herein for the first time. The morphology, size and stiffness of these one-dimensional structures are comparable to the fibers formed by β-lactoglobulin, a protein frequently used as a model in the study of amyloid-like fibrillar proteins. Nanometer-sized globular apoferritin is capable of self-assembling to form 1D micrometer-sized structures after being subjected to a

  6. Nanostructured Metal Oxide Gas Sensors, a Survey of Applications Carried out at SENSOR Lab, Brescia (Italy) in the Security and Food Quality Fields

    PubMed Central

    Ponzoni, Andrea; Comini, Elisabetta; Concina, Isabella; Ferroni, Matteo; Falasconi, Matteo; Gobbi, Emanuela; Sberveglieri, Veronica; Sberveglieri, Giorgio

    2012-01-01

    In this work we report on metal oxide (MOX) based gas sensors, presenting the work done at the SENSOR laboratory of the CNR-IDASC and University of Brescia, Italy since the 80s up to the latest results achieved in recent times. In particular we report the strategies followed at SENSOR during these 30 years to increase the performance of MOX sensors through the development of different preparation techniques, from Rheotaxial Growth Thermal Oxidation (RGTO) to nanowire technology to address sensitivity and stability, and the development of electronic nose systems and pattern recognition techniques to address selectivity. We will show the obtained achievement in the context of selected applications such as safety and security and food quality control. PMID:23235445

  7. Hierarchical nanostructured noble metal/metal oxide/graphene-coated carbon fiber: in situ electrochemical synthesis and use as microelectrode for real-time molecular detection of cancer cells.

    PubMed

    Abdurhman, Abduraouf Alamer Mohamed; Zhang, Yan; Zhang, Guoan; Wang, Shuai

    2015-10-01

    We report the design and fabrication of a new type of nanohybrid microelectrode based on a hierarchical nanostructured Au/MnO2/graphene-modified carbon fiber (CF) via in situ electrochemical synthesis, which leads to better structural integration of different building blocks into the CF microelectrode. Our finding demonstrates that wrapping CF with graphene nanosheets has dramatically increased the surface area and electrical conductivity of the CF microelectrode. The subsequent template-free electrodeposition of MnO2 on graphene-wrapped CF gives rise to a porous nanonest architecture built up from twisted and intersectant MnO2 nanowires, which serves as an ideal substrate for the direct growth of Au nanoparticles. Owing to the structural merit and synergy effect between different components, the hierarchical nanostructured noble metal/metal oxide/graphene-coated CF demonstrates dramatically enhanced electrocatalytic activity. When used for nonenzymatic H2O2 sensing, the resultant modified microelectrode exhibits acceptable sensitivity, reproducibility, stability, and selectivity, which enable it to be used for real-time tracking H2O2 secretion in human cervical cancer cells. Graphical abstract A schematic illustration of preparation of hierarchical Au/MnO2/ERGO/CF nanohybrid electrode for real-time molecular detection of cancer cells.

  8. Metal oxide-polymer composites

    NASA Technical Reports Server (NTRS)

    Wellinghoff, Stephen T. (Inventor)

    1994-01-01

    A method of making metal oxide clusters in a single stage by reacting a metal oxide with a substoichiometric amount of an acid in the presence of an oxide particle growth terminator and solubilizer. A method of making a ceramer is also disclosed in which the metal oxide clusters are reacted with a functionalized polymer. The resultant metal oxide clusters and ceramers are also disclosed.

  9. Metal oxide-polymer composites

    NASA Technical Reports Server (NTRS)

    Wellinghoff, Stephen T. (Inventor)

    1997-01-01

    A method of making metal oxide clusters in a single stage by reacting a metal oxide with a substoichiometric amount of an acid in the presence of an oxide particle growth terminator and solubilizer. A method of making a ceramer is also disclosed in which the metal oxide clusters are reacted with a functionalized polymer. The resultant metal oxide clusters and ceramers are also disclosed.

  10. Controlling photoinduced electron transfer from PbS@CdS core@shell quantum dots to metal oxide nanostructured thin films.

    PubMed

    Zhao, H; Fan, Z; Liang, H; Selopal, G S; Gonfa, B A; Jin, L; Soudi, A; Cui, D; Enrichi, F; Natile, M M; Concina, I; Ma, D; Govorov, A O; Rosei, F; Vomiero, A

    2014-06-21

    N-type metal oxide solar cells sensitized by infrared absorbing PbS quantum dots (QDs) represent a promising alternative to traditional photovoltaic devices. However, colloidal PbS QDs capped with pure organic ligand shells suffer from surface oxidation that affects the long term stability of the cells. Application of a passivating CdS shell guarantees the increased long term stability of PbS QDs, but can negatively affect photoinduced charge transfer from the QD to the oxide and the resulting photoconversion efficiency (PCE). For this reason, the characterization of electron injection rates in these systems is very important, yet has never been reported. Here we investigate the photoelectron transfer rate from PbS@CdS core@shell QDs to wide bandgap semiconducting mesoporous films using photoluminescence (PL) lifetime spectroscopy. The different electron affinity of the oxides (SiO2, TiO2 and SnO2), the core size and the shell thickness allow us to fine tune the electron injection rate by determining the width and height of the energy barrier for tunneling from the core to the oxide. Theoretical modeling using the semi-classical approximation provides an estimate for the escape time of an electron from the QD 1S state, in good agreement with experiments. The results demonstrate the possibility of obtaining fast charge injection in near infrared (NIR) QDs stabilized by an external shell (injection rates in the range of 110-250 ns for TiO2 films and in the range of 100-170 ns for SnO2 films for PbS cores with diameters in the 3-4.2 nm range and shell thickness around 0.3 nm), with the aim of providing viable solutions to the stability issues typical of NIR QDs capped with pure organic ligand shells.

  11. Solution synthesis of metal oxides for electrochemical energy storage applications.

    PubMed

    Xia, Xinhui; Zhang, Yongqi; Chao, Dongliang; Guan, Cao; Zhang, Yijun; Li, Lu; Ge, Xiang; Bacho, Ignacio Mínguez; Tu, Jiangping; Fan, Hong Jin

    2014-05-21

    This article provides an overview of solution-based methods for the controllable synthesis of metal oxides and their applications for electrochemical energy storage. Typical solution synthesis strategies are summarized and the detailed chemical reactions are elaborated for several common nanostructured transition metal oxides and their composites. The merits and demerits of these synthesis methods and some important considerations are discussed in association with their electrochemical performance. We also propose the basic guideline for designing advanced nanostructure electrode materials, and the future research trend in the development of high power and energy density electrochemical energy storage devices.

  12. Controlling photoinduced electron transfer from PbS@CdS core@shell quantum dots to metal oxide nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Fan, Z.; Liang, H.; Selopal, G. S.; Gonfa, B. A.; Jin, L.; Soudi, A.; Cui, D.; Enrichi, F.; Natile, M. M.; Concina, I.; Ma, D.; Govorov, A. O.; Rosei, F.; Vomiero, A.

    2014-05-01

    N-type metal oxide solar cells sensitized by infrared absorbing PbS quantum dots (QDs) represent a promising alternative to traditional photovoltaic devices. However, colloidal PbS QDs capped with pure organic ligand shells suffer from surface oxidation that affects the long term stability of the cells. Application of a passivating CdS shell guarantees the increased long term stability of PbS QDs, but can negatively affect photoinduced charge transfer from the QD to the oxide and the resulting photoconversion efficiency (PCE). For this reason, the characterization of electron injection rates in these systems is very important, yet has never been reported. Here we investigate the photoelectron transfer rate from PbS@CdS core@shell QDs to wide bandgap semiconducting mesoporous films using photoluminescence (PL) lifetime spectroscopy. The different electron affinity of the oxides (SiO2, TiO2 and SnO2), the core size and the shell thickness allow us to fine tune the electron injection rate by determining the width and height of the energy barrier for tunneling from the core to the oxide. Theoretical modeling using the semi-classical approximation provides an estimate for the escape time of an electron from the QD 1S state, in good agreement with experiments. The results demonstrate the possibility of obtaining fast charge injection in near infrared (NIR) QDs stabilized by an external shell (injection rates in the range of 110-250 ns for TiO2 films and in the range of 100-170 ns for SnO2 films for PbS cores with diameters in the 3-4.2 nm range and shell thickness around 0.3 nm), with the aim of providing viable solutions to the stability issues typical of NIR QDs capped with pure organic ligand shells.N-type metal oxide solar cells sensitized by infrared absorbing PbS quantum dots (QDs) represent a promising alternative to traditional photovoltaic devices. However, colloidal PbS QDs capped with pure organic ligand shells suffer from surface oxidation that affects the

  13. Metal Oxide Nanomaterial QNAR Models: Available Structural Descriptors and Understanding of Toxicity Mechanisms

    PubMed Central

    Ying, Jiali; Zhang, Ting; Tang, Meng

    2015-01-01

    Metal oxide nanomaterials are widely used in various areas; however, the divergent published toxicology data makes it difficult to determine whether there is a risk associated with exposure to metal oxide nanomaterials. The application of quantitative structure activity relationship (QSAR) modeling in metal oxide nanomaterials toxicity studies can reduce the need for time-consuming and resource-intensive nanotoxicity tests. The nanostructure and inorganic composition of metal oxide nanomaterials makes this approach different from classical QSAR study; this review lists and classifies some structural descriptors, such as size, cation charge, and band gap energy, in recent metal oxide nanomaterials quantitative nanostructure activity relationship (QNAR) studies and discusses the mechanism of metal oxide nanomaterials toxicity based on these descriptors and traditional nanotoxicity tests. PMID:28347085

  14. Novel Photocatalytic Metal Oxides

    SciTech Connect

    Smith, Robert W.; Mei, Wai-Ning; Sabirianov, Renat; Wang, Lu

    2012-08-31

    The principal short-term objective is to develop improved solid-state photocatalysts for the decomposition of water into hydrogen gas using ultraviolet and visible solar radiation. We will pursue our objective by modeling candidate metal oxides through computer simulations followed by synthesis of promising candidates. We will characterize samples through standard experimental techniques. The long-term objective is to provide a more efficient source of hydrogen gas for fixed-site hydrogen fuel cells, particularly for energy users in remote locations.

  15. Synthesis of Nanostructured Carbides of Titanium and Vanadium from Metal Oxides and Ferroalloys Through High-energy Mechanical Milling and Heat Treatment

    NASA Astrophysics Data System (ADS)

    Basu, P.; Jian, P. F.; Seong, K. Y.; Seng, G. S.; Masrom, A. K.; Hussain, Z.; Aziz, A.

    2010-03-01

    Carbides of Ti and V have been synthesized directly from their oxides and ferroalloys through mechanical milling and heat treatment. The powder mixtures are milled in a planetary ball mill from 15-80 hours and subsequently heat treated at 1000-1300° C for TiO2-C mixtures, at 500-550° C for V2O5-C mixtures and at 600-1000° C for (Fe-V)-C mixtures. The milled and heat treated powders are characterized by SEM, EDAX, XRD, and BET techniques. Nanostructured TiC has been successfully synthesized under suitable processing conditions. However, carbides of vanadium is unidentified even though possibilities of V2O5-C reaction are indicated with an extent of induced amorphism in the powder mixture. Density, specific surface area and particle size of the milled and heat treated mixtures are correlated with heat treatment temperatures. Similar attempts are also made to synthesize vanadium carbides from industrial grade Fe-V.

  16. Transparent metal oxide nanowire transistors

    NASA Astrophysics Data System (ADS)

    Chen, Di; Liu, Zhe; Liang, Bo; Wang, Xianfu; Shen, Guozhen

    2012-05-01

    With the features of high mobility, a high electric on/off ratio and excellent transparency, metal oxide nanowires are excellent candidates for transparent thin-film transistors, which is one of the key technologies to realize transparent electronics. This article provides a comprehensive review of the state-of-the-art research activities that focus on transparent metal oxide nanowire transistors. It begins with the brief introduction to the synthetic methods for high quality metal oxide nanowires, and the typical nanowire transfer and printing techniques with emphasis on the simple contact printing methodology. High performance transparent transistors built on both single nanowires and nanowire thin films are then highlighted. The final section deals with the applications of transparent metal oxide nanowire transistors in the field of transparent displays and concludes with an outlook on the current perspectives and future directions of transparent metal oxide nanowire transistors.

  17. Transparent metal oxide nanowire transistors.

    PubMed

    Chen, Di; Liu, Zhe; Liang, Bo; Wang, Xianfu; Shen, Guozhen

    2012-05-21

    With the features of high mobility, a high electric on/off ratio and excellent transparency, metal oxide nanowires are excellent candidates for transparent thin-film transistors, which is one of the key technologies to realize transparent electronics. This article provides a comprehensive review of the state-of-the-art research activities that focus on transparent metal oxide nanowire transistors. It begins with the brief introduction to the synthetic methods for high quality metal oxide nanowires, and the typical nanowire transfer and printing techniques with emphasis on the simple contact printing methodology. High performance transparent transistors built on both single nanowires and nanowire thin films are then highlighted. The final section deals with the applications of transparent metal oxide nanowire transistors in the field of transparent displays and concludes with an outlook on the current perspectives and future directions of transparent metal oxide nanowire transistors.

  18. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    SciTech Connect

    Gash, A; Pantoya, M; Jr., J S; Zhao, L; Shea, K; Simpson, R; Clapsaddle, B

    2003-11-18

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology, affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Furthermore, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. As a result, the desired organic functionality is well dispersed throughout the composite material on the nanoscale. By introducing a fuel metal into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of these metal oxide/silicon oxide nanocomposites and their performance as energetic materials will be discussed.

  19. Continuous fabrication of scalable 2-dimensional (2D) micro- and nanostructures by sequential 1D mechanical patterning processes.

    PubMed

    Ok, Jong G; Panday, Ashwin; Lee, Taehwa; Jay Guo, L

    2014-12-21

    We present a versatile and simple methodology for continuous and scalable 2D micro/nano-structure fabrication via sequential 1D patterning strokes enabled by dynamic nano-inscribing (DNI) and vibrational indentation patterning (VIP) as well as a 'single-stroke' 2D patterning using a DNI tool in VIP.

  20. Thin film hydrous metal oxide catalysts

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  1. Spectromicroscopy for addressing the surface and electron transport properties of individual 1-d nanostructures and their networks.

    PubMed

    Kolmakov, Andrei; Potluri, Sai; Barinov, Alexei; Menteş, Tevfik O; Gregoratti, Luca; Niño, Miguel A; Locatelli, Andrea; Kiskinova, Maya

    2008-10-28

    Understanding size/dimensionality-dependent phenomena and processes relevant to chemical sensing and catalysis requires analytical methods with high surface sensitivity, which can exploit the structure and composition of nanomaterials at their natural length scales and working conditions. In the present study, we explored the potentials and complementary capabilities of several surface-sensitive microscopy approaches to shed light on the properties of individual SnO(2) nanowires and their networks. Our results demonstrate the unique opportunities provided by synchrotron-based photoelectron microscopies for surface-sensitive structural and chemical analysis, including in situ characterization of electron transport properties of a nanostructure wired as an active element in chemiresistor devices.

  2. Process for fabrication of metal oxide films

    SciTech Connect

    Tracy, C.E.; Benson, D.; Svensson, S.

    1990-07-17

    This invention is comprised of a method of fabricating metal oxide films from a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of metal oxides, e.g. electro-optically active transition metal oxides, at a high deposition rate. The presence of hydrogen during the plasma reaction enhances the deposition rate of the metal oxide. Various types of metal oxide films can be produced.

  3. Mesoporous metal oxide graphene nanocomposite materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Kou, Rong; Wang, Donghai

    2016-05-24

    A nanocomposite material formed of graphene and a mesoporous metal oxide having a demonstrated specific capacity of more than 200 F/g with particular utility when employed in supercapacitor applications. A method for making these nanocomposite materials by first forming a mixture of graphene, a surfactant, and a metal oxide precursor, precipitating the metal oxide precursor with the surfactant from the mixture to form a mesoporous metal oxide. The mesoporous metal oxide is then deposited onto a surface of the graphene.

  4. Facile synthesis of {alpha}-MnO{sub 2} one-dimensional (1D) nanostructure and energy storage ability studies

    SciTech Connect

    Yousefi, Taher; Golikand, Ahmad Nozad; Hossein Mashhadizadeh, Mohammad; Aghazadeh, Mustafa

    2012-06-15

    The dense manganese oxide nanorods with an extremely narrow distribution are synthesized at a low temperature using first cathodic electrodeposition subsequently heat treatment. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images show that the nanorods have bar shapes, and their average diameter is less than 50 nm. The Fourier transform infrared (FT-IR) study, the selected area electron diffraction (SAED) pattern in TEM images and the X-ray diffraction (XRD) result show that the nanorods are {alpha}-MnO{sub 2} single crystal. The results of N{sub 2} adsorption-desorption analysis indicate that the BET surface area of the {alpha}-MnO{sub 2} nanorods is 93 m{sup 2} g{sup -1}. By recording the potential-time curve during the electrodeposition process, it is revealed that water reduction reaction has a major role in the electrogeneration of base at the cathode surface under the applied electrochemical conditions. Finally, based on the H{sub 2} bubbling on the cathode surface, the mechanism of the formation and the growth of {alpha}-MnO{sub 2} nanorods are proposed and discussed. For the electrochemical supercapacitor application, electrochemically prepared {alpha}-MnO{sub 2} is found to be stable for a large number of cycles with high specific capacitance, 338 F g{sup -1} at a scan rate of 10 mV s{sup -1}. Finally, the charge-discharge mechanism is discussed. - Graphical abstract: Highlights: Black-Right-Pointing-Pointer New nanostructures of MnO{sub 2} is synthesized by simple method of cathodicelectrodeposition. Black-Right-Pointing-Pointer The product has unique one-dimensional morphology with average diameter size of 50 nm. Black-Right-Pointing-Pointer The experiment conditions (temperature, current density) has not been reported. Black-Right-Pointing-Pointer The one-nanostructures obtained without using of hard template or surfactant.

  5. Nanoscale limitations in metal oxide electrocatalysts for oxygen evolution.

    PubMed

    Viswanathan, Venkatasubramanian; Pickrahn, Katie L; Luntz, Alan C; Bent, Stacey F; Nørskov, Jens K

    2014-10-08

    Metal oxides are attractive candidates for low cost, earth-abundant electrocatalysts. However, owing to their insulating nature, their widespread application has been limited. Nanostructuring allows the use of insulating materials by enabling tunneling as a possible charge transport mechanism. We demonstrate this using TiO2 as a model system identifying a critical thickness, based on theoretical analysis, of about ∼4 nm for tunneling at a current density of ∼1 mA/cm(2). This is corroborated by electrochemical measurements on conformal thin films synthesized using atomic layer deposition (ALD) identifying a similar critical thickness. We generalize the theoretical analysis deriving a relation between the critical thickness and the location of valence band maximum relative to the limiting potential of the electrochemical surface process. The critical thickness sets the optimum size of the nanoparticle oxide electrocatalyst and this provides an important nanostructuring requirement for metal oxide electrocatalyst design.

  6. Glancing angle deposited villi-like nanostructures for enhanced chemo-resistive performances

    NASA Astrophysics Data System (ADS)

    Moon, Hi Gyu; Jung, Youngmo; Lee, Taikjin; Lee, Seok; Park, Hyung-Ho; Kim, Chulki; Kang, Chong-Yun

    Metal oxide nanostructures have attracted enormous attention for diverse applications such as solar cells, nanogenerators, nanolasers, optoelectronic devices and chemoresistive sensor. To achieve the enhanced electrical properties for these applications, one-dimensional (1D) metal oxide materials including nanowires, nanorods, nanotubes and nanobelts have been widely studied. However, the use of 1D nanomaterials as chemoresistive sensors is still in the beginning stage in how to integrate them. As an alternative, porous thin films based on 1D metal oxide nanostructures are considered as more desirable configuration due to their simplicity in synthesis, high reproducibility. In this study, we propose facile synthesis and self-assembled villi-like nanofingers (VLNF) WO3 thin films with large specific surface area on the SiO2/Si substrate. Room-temperature glancing angle deposition of WO3 by a simple controlling in both polar and azimuthal directions resulted in anisotropic nanostructures with large aspect ratio and porous structures with a relative surface area of 350 m2/g. Glancing angle deposited villi-like nanostructures for enhanced chemo-resistive performances.

  7. Metal oxide films on metal

    DOEpatents

    Wu, Xin D.; Tiwari, Prabhat

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  8. Methods for synthesizing metal oxide nanowires

    DOEpatents

    Sunkara, Mahendra Kumar; Kumar, Vivekanand; Kim, Jeong H.; Clark, Ezra Lee

    2016-08-09

    A method of synthesizing a metal oxide nanowire includes the steps of: combining an amount of a transition metal or a transition metal oxide with an amount of an alkali metal compound to produce a mixture; activating a plasma discharge reactor to create a plasma discharge; exposing the mixture to the plasma discharge for a first predetermined time period such that transition metal oxide nanowires are formed; contacting the transition metal oxide nanowires with an acid solution such that an alkali metal ion is exchanged for a hydrogen ion on each of the transition metal oxide nanowires; and exposing the transition metal oxide nanowires to the plasma discharge for a second predetermined time period to thermally anneal the transition metal oxide nanowires. Transition metal oxide nanowires produced using the synthesis methods described herein are also provided.

  9. Nanoscale Metal Oxide Semiconductors for Gas Sensing

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Evans, Laura; Xu, Jennifer C.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.

    2011-01-01

    A report describes the fabrication and testing of nanoscale metal oxide semiconductors (MOSs) for gas and chemical sensing. This document examines the relationship between processing approaches and resulting sensor behavior. This is a core question related to a range of applications of nanotechnology and a number of different synthesis methods are discussed: thermal evaporation- condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed, providing a processing overview to developers of nanotechnology- based systems. The results of a significant amount of testing and comparison are also described. A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. The TECsynthesized single-crystal nanowires offer uniform crystal surfaces, resistance to sintering, and their synthesis may be done apart from the substrate. The TECproduced nanowire response is very low, even at the operating temperature of 200 C. In contrast, the electrospun polycrystalline nanofiber response is high, suggesting that junction potentials are superior to a continuous surface depletion layer as a transduction mechanism for chemisorption. Using a catalyst deposited upon the surface in the form of nanoparticles yields dramatic gains in sensitivity for both nanostructured, one-dimensional forms. For the nanowire materials, the response magnitude and response rate uniformly increase with increasing operating temperature. Such changes are interpreted in terms of accelerated surface diffusional processes, yielding greater access to chemisorbed oxygen species and faster dissociative chemisorption, respectively. Regardless of operating temperature, sensitivity of the nanofibers is a factor of 10 to 100 greater than that of nanowires with the same catalyst for the same test condition. In summary, nanostructure appears critical to governing the reactivity, as measured by electrical

  10. Molecular Level Coating for Metal Oxide Particles

    NASA Technical Reports Server (NTRS)

    McDaniel, Patricia R. (Inventor); Saint Clair, Terry L. (Inventor)

    2000-01-01

    Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar aprotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper, making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.

  11. Molecular Level Coating of Metal Oxide Particles

    NASA Technical Reports Server (NTRS)

    McDaniel, Patricia R. (Inventor); St.Clair, Terry L. (Inventor)

    2002-01-01

    Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar osmotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing, synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper. making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.

  12. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    SciTech Connect

    Clapsaddle, B; Gash, A; Plantier, K; Pantoya, M; Jr., J S; Simpson, R

    2004-04-27

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. By introducing a fuel metal, such as aluminum, into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. In addition, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. These organic additives can cause the generation of gas upon ignition of the materials, therefore resulting in a composite material that can perform pressure/volume work. Furthermore, the desired organic functionality is well dispersed throughout the composite material on the nanoscale with the other components, and is therefore subject to the same increased reaction kinetics. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of iron(III) oxide/organosilicon oxide nanocomposites and their performance as energetic materials will be discussed.

  13. Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal

    PubMed Central

    Li, L. H.; Xiao, J.; Liu, P.; Yang, G. W.

    2015-01-01

    Transitional metal oxide nanoparticles as advanced environment and energy materials require very well absorption performance to apply in practice. Although most metal oxides are based on crystalline, high activities can also be achieved with amorphous phases. Here, we reported the adsorption behavior and mechanism of methyl blue (MB) on the amorphous transitional metal oxide (Fe, Co and Ni oxides) nanoparticles, and we demonstrated that the amorphousization of transitional metal oxide (Fe, Co and Ni oxides) nanoparticles driven by a novel process involving laser irradiation in liquid can create a super adsorption capability for MB, and the maximum adsorption capacity of the fabricated NiO amorphous nanostructure reaches up to 10584.6 mgg−1, the largest value reported to date for all MB adsorbents. The proof-of-principle investigation of NiO amorphous nanophase demonstrated the broad applicability of this methodology for obtaining new super dyes adsorbents. PMID:25761448

  14. Epitaxial Electrodeposition of Chiral Metal Oxide Films

    NASA Astrophysics Data System (ADS)

    Switzer, Jay

    2006-03-01

    Chirality is ubiquitous in Nature. One enantiomer of a molecule is often physiologically active, while the other enantiomer may be either inactive or toxic. Chiral surfaces offer the possibility of developing heterogeneous enantiospecific catalysts that can more readily be separated from the products and reused. Chiral surfaces might also serve as electrochemical sensors for chiral molecules- perhaps even implantable chiral sensors that could be used to monitor drug levels in the body. Our trick to produce chiral surfaces is to electrodeposit low symmetry metal oxide films with chiral orientations on achiral substrates (see, Nature 425, 490, 2003). The relationship between three-dimensional and two-dimensional chirality will be discussed. Chiral surfaces lack mirror or glide plane symmetry. It is possible to produce chiral surfaces of materials which do not crystallize in chiral space groups. We have deposited chiral orientations of achiral CuO onto single-crystal Au and Cu using both tartaric acid and the amino acids alanine and valine to control the handedness of the electrodeposited films. We will present results on the chiral recognition of molecules such as tartaric or malic acid and L-dopa on the chiral electrodeposited CuO. Initial work on the electrochemical biomineralization of chiral nanostructures of calcite will also be discussed.

  15. Method for plating with metal oxides

    SciTech Connect

    Silver, Gary L.; Martin, Frank S.

    1994-08-23

    A method of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate.

  16. Method for plating with metal oxides

    SciTech Connect

    Silver, G.L.; Martin, F.S.

    1994-08-23

    A method is disclosed of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate. 1 fig.

  17. Metal oxide composite dosimeter method and material

    DOEpatents

    Miller, Steven D.

    1998-01-01

    The present invention is a method of measuring a radiation dose wherein a radiation responsive material consisting essentially of metal oxide is first exposed to ionizing radiation. The metal oxide is then stimulating with light thereby causing the radiation responsive material to photoluminesce. Photons emitted from the metal oxide as a result of photoluminescence may be counted to provide a measure of the ionizing radiation.

  18. Graphene-supported metal oxide monolith

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Biener, Monika A.; Wang, Yinmin; Ye, Jianchao; Tylski, Elijah

    2017-01-10

    A composition comprising at least one graphene-supported metal oxide monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds, wherein the graphene sheets are coated by at least one metal oxide such as iron oxide or titanium oxide. Also provided is an electrode comprising the aforementioned graphene-supported metal oxide monolith, wherein the electrode can be substantially free of any carbon-black and substantially free of any binder.

  19. Metal-oxide-based energetic materials and synthesis thereof

    DOEpatents

    Tillotson, Thomas M. , Simpson; Randall L.; Hrubesh, Lawrence W.

    2006-01-17

    A method of preparing energetic metal-oxide-based energetic materials using sol-gel chemistry has been invented. The wet chemical sol-gel processing provides an improvement in both safety and performance. Essentially, a metal-oxide oxidizer skeletal structure is prepared from hydrolyzable metals (metal salts or metal alkoxides) with fuel added to the sol prior to gelation or synthesized within the porosity metal-oxide gel matrix. With metal salt precursors a proton scavenger is used to destabilize the sol and induce gelation. With metal alkoxide precursors standard well-known sol-gel hydrolysis and condensation reactions are used. Drying is done by standard sol-gel practices, either by a slow evaporation of the liquid residing within the pores to produce a high density solid nanocomposite, or by supercritical extraction to produce a lower density, high porous nanocomposite. Other ingredients may be added to this basic nanostructure to change physical and chemical properties, which include organic constituents for binders or gas generators during reactions, burn rate modifiers, or spectral emitters.

  20. A red metallic oxide photocatalyst

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoxiang; Randorn, Chamnan; Efstathiou, Paraskevi; Irvine, John T. S.

    2012-07-01

    Light absorption across the bandgap in semiconductors is exploited in many important applications such as photovoltaics, light emitting diodes and photocatalytic conversion. Metals differ from semiconductors in that there is no energy gap separating occupied and unoccupied levels; however, it is still possible to excite electrons between bands. This is evidenced by materials with metallic properties that are also strongly coloured. An important question is whether such coloured metals could be used in light harvesting or similar applications. The high conductivity of a metal would preclude sufficient electric field being available to separate photocarriers; however, the high carrier mobility in a metal might also facilitate kinetic charge separation. Here we clearly demonstrate for the first time the use of a red metallic oxide, Sr1-xNbO3 as an effective photocatalyst. The material has been used under visible light to photocatalyse the oxidation of methylene blue and both the oxidation and reduction of water assisted by appropriate sacrificial elements.

  1. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  2. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2015-06-30

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  3. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  4. Method for preparing hollow metal oxide microsphere

    DOEpatents

    Schmitt, C.R.

    1974-02-12

    Hollow refractory metal oxide microspheres are prepared by impregnating resinous microspheres with a metallic compound, drying the impregnated microspheres, heating the microspheres slowly to carbonize the resin, and igniting the microspheres to remove the carbon and to produce the metal oxide. Zirconium oxide is given as an example. (Official Gazette)

  5. Photodegradation of chlorofluorocarbon alternatives on metal oxide

    SciTech Connect

    Tanaka, K.; Hisanaga, T. )

    1994-05-01

    HCFC and HFC were photodegraded on metal oxides. Degradation rate on several metal oxides was in the order: TiO[sub 2] > ZnO > Fe[sub 2]O[sub 3] > kaolin [ge] SiO[sub 2] [ge] Al[sub 2]O[sub 3]. Principal degradation products were CO[sub 2], Cl[sup [minus

  6. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-12-13

    A method is described for depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates. 1 figure.

  7. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, Gary L.; Martin, Frank S.

    1994-12-13

    A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.

  8. Rational Concept for Reducing Growth Temperature in Vapor-Liquid-Solid Process of Metal Oxide Nanowires.

    PubMed

    Zhu, Zetao; Suzuki, Masaru; Nagashima, Kazuki; Yoshida, Hideto; Kanai, Masaki; Meng, Gang; Anzai, Hiroshi; Zhuge, Fuwei; He, Yong; Boudot, Mickaël; Takeda, Seiji; Yanagida, Takeshi

    2016-12-14

    Vapor-liquid-solid (VLS) growth process of single crystalline metal oxide nanowires has proven the excellent ability to tailor the nanostructures. However, the VLS process of metal oxides in general requires relatively high growth temperatures, which essentially limits the application range. Here we propose a rational concept to reduce the growth temperature in VLS growth process of various metal oxide nanowires. Molecular dynamics (MD) simulation theoretically predicts that it is possible to reduce the growth temperature in VLS process of metal oxide nanowires by precisely controlling the vapor flux. This concept is based on the temperature dependent "material flux window" that the appropriate vapor flux for VLS process of nanowire growth decreases with decreasing the growth temperature. Experimentally, we found the applicability of this concept for reducing the growth temperature of VLS processes for various metal oxides including MgO, SnO2, and ZnO. In addition, we show the successful applications of this concept to VLS nanowire growths of metal oxides onto tin-doped indium oxide (ITO) glass and polyimide (PI) substrates, which require relatively low growth temperatures.

  9. Atomic-layer-deposition-assisted formation of carbon nanoflakes on metal oxides and energy storage application.

    PubMed

    Guan, Cao; Zeng, Zhiyuan; Li, Xianglin; Cao, Xiehong; Fan, Yu; Xia, Xinhui; Pan, Guoxiang; Zhang, Hua; Fan, Hong Jin

    2014-01-29

    Nanostructured carbon is widely used in energy storage devices (e.g., Li-ion and Li-air batteries and supercapacitors). A new method is developed for the generation of carbon nanoflakes on various metal oxide nanostructures by combining atomic layer deposition (ALD) and glucose carbonization. Various metal oxide@nanoflake carbon (MO@f-C) core-branch nanostructures are obtained. For the mechanism, it is proposed that the ALD Al2 O3 and glucose form a composite layer. Upon thermal annealing, the composite layer becomes fragmented and moves outward, accompanied by carbon deposition on the alumina skeleton. When tested as electrochemical supercapacitor electrode, the hierarchical MO@f-C nanostructures exhibit better properties compared with the pristine metal oxides or the carbon coating without ALD. The enhancement can be ascribed to increased specific surface areas and electric conductivity due to the carbon flake coating. This peculiar carbon coating method with the unique hierarchical nanostructure may provide a new insight into the preparation of 'oxides + carbon' hybrid electrode materials for energy storage applications.

  10. Anomalous quantum efficiency for photoconduction and its power dependence in metal oxide semiconductor nanowires.

    PubMed

    Chen, R S; Wang, W C; Lu, M L; Chen, Y F; Lin, H C; Chen, K H; Chen, L C

    2013-08-07

    The quantum efficiency and carrier lifetime that decide the photoconduction (PC) efficiencies in the metal oxide semiconductor nanowires (NWs) have been investigated. The experimental result surprisingly shows that the SnO2, TiO2, WO3, and ZnO NWs reveal extraordinary quantum efficiencies in common, which are over one to three orders of magnitude lower than the theoretical expectation. The surface depletion region (SDR)-controlled photoconductivity is proposed to explain the anomalous quantum efficiency and its power dependence. The inherent difference between the metal oxide nanostructures such as carrier lifetime, carrier concentration, and dielectric constant leading to the distinct PC performance and behavior are also discussed.

  11. Metal oxides for optoelectronic applications.

    PubMed

    Yu, Xinge; Marks, Tobin J; Facchetti, Antonio

    2016-04-01

    Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III-V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p-n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories.

  12. Metal oxides for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Yu, Xinge; Marks, Tobin J.; Facchetti, Antonio

    2016-04-01

    Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III-V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p-n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories.

  13. Electronic Structure and Chemistry of Iron-Based Metal Oxide Nanostructured Materials: A NEXAFS Investigation of BiFeO3, Bi2Fe4O9, α-Fe2O3, γ-Fe2O3, and Fe/Fe3O4

    SciTech Connect

    Park,T.; Sambasivan, S.; Fischer, D.; Yoon, W.; Misewich, J.; Wong, S.

    2008-01-01

    We present a systematic and detailed near edge X-ray absorption fine structure (NEXAFS) experimental investigation of the electronic structure and chemistry of iron-based metal oxide nanostructured (FeMONS) materials including BiFeO3, Bi2Fe4O9, a-Fe2O3, ?-Fe2O3, and Fe/Fe3O4. Correlations of the electronic structure and structural chemistry of these intriguing nanomaterials are presented, ranging from the nano to the bulk scale. In this work, variations in the shape, position, and intensity of the O K-edge and Fe L-edge NEXAFS spectra have been analyzed in terms of electronic structure and surface chemistry of the FeMONS materials as compared with that of the bulk. We hypothesize that surface imperfection and surface strain anisotropies in nanoparticles induce distortion and site inequivalency of the oxygen Oh sites around the Fe ion located close to the surface, resulting in an increase in the degree of multiplicity as well as in nonstoichiometric effects in FeMONS materials.

  14. Structural Modification of Metal Oxide Nanoparticles in Chemical Vapor Synthesis and Related Properties

    NASA Astrophysics Data System (ADS)

    Lee, Jai-Sung; Lee, Chang-Woo; Lee, Kyoung-No

    2011-10-01

    This paper overviews recent studies on structural modification of metal oxide nanoparticles occurring in the process of chemical vapour condensation (CVC) and related peculiar properties. Hollow nanostructure is controlled at specific process conditions where the pressure in the reactor and the evaporation temperature play an important role in terms of kinematical equilibrium during particle formation and decomposition of precursors in the CVC reactor. As a natural consequence, particle properties also rely on a large surface area from the hollow nanostructure. In this review paper, phase transformation, chemical reactivity and microstructural evolution of nanoparticles are discussed based on hollow nanostructure.

  15. Spatially branched hierarchical ZnO nanorod-TiO2 nanotube array heterostructures for versatile photocatalytic and photoelectrocatalytic applications: towards intimate integration of 1D-1D hybrid nanostructures

    NASA Astrophysics Data System (ADS)

    Xiao, Fang-Xing; Hung, Sung-Fu; Tao, Hua Bing; Miao, Jianwei; Yang, Hong Bin; Liu, Bin

    2014-11-01

    Hierarchically ordered ZnO nanorods (NRs) decorated nanoporous-layer-covered TiO2 nanotube array (ZnO NRs/NP-TNTAs) nanocomposites have been prepared by an efficient, two-step anodization route combined with an electrochemical deposition strategy, by which monodispersed one-dimensional (1D) ZnO NRs were uniformly grown on the framework of NP-TNTAs. The crystal phases, morphologies, optical properties, photocatalytic as well as photoelectrocatalytic performances of the well-defined ZnO NRs/NP-TNTAs heterostructures were systematically explored to clarify the structure-property correlation. It was found that the ZnO NRs/NP-TNTAs heterostructure exhibits significantly enhanced photocatalytic and photoelectrocatalytic performances, along with favorable photostability toward degradation of organic pollutants under UV light irradiation, as compared to the single component counterparts. The remarkably enhanced photoactivity of ZnO NRs/NP-TNTAs heterostructure is ascribed to the intimate interfacial integration between ZnO NRs and NP-TNTAs substrate imparted by the unique spatially branched hierarchical structure, thereby contributing to the efficient transfer and separation of photogenerated electron-hole charge carriers. Moreover, the specific active species during the photocatalytic process was unambiguously determined and photocatalytic mechanism was tentatively presented. It is anticipated that our work could provide new insights for the construction of various hierarchical 1D-1D hybrid nanocomposites for extensive photocatalytic applications.Hierarchically ordered ZnO nanorods (NRs) decorated nanoporous-layer-covered TiO2 nanotube array (ZnO NRs/NP-TNTAs) nanocomposites have been prepared by an efficient, two-step anodization route combined with an electrochemical deposition strategy, by which monodispersed one-dimensional (1D) ZnO NRs were uniformly grown on the framework of NP-TNTAs. The crystal phases, morphologies, optical properties, photocatalytic as well as

  16. Ordered mesoporous metal oxides: synthesis and applications.

    PubMed

    Ren, Yu; Ma, Zhen; Bruce, Peter G

    2012-07-21

    Great progress has been made in the preparation and application of ordered mesoporous metal oxides during the past decade. However, the applications of these novel and interesting materials have not been reviewed comprehensively in the literature. In the current review we first describe different methods for the preparation of ordered mesoporous metal oxides; we then review their applications in energy conversion and storage, catalysis, sensing, adsorption and separation. The correlations between the textural properties of ordered mesoporous metal oxides and their specific performance are highlighted in different examples, including the rate of Li intercalation, sensing, and the magnetic properties. These results demonstrate that the mesoporosity has a direct impact on the properties and potential applications of such materials. Although the scope of the current review is limited to ordered mesoporous metal oxides, we believe that the information may be useful for those working in a number of fields.

  17. Three-Electrode Metal Oxide Reduction Cell

    DOEpatents

    Dees, Dennis W.; Ackerman, John P.

    2005-06-28

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  18. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, M.W.; Coronado, P.R.; Hair, L.M.

    1995-03-07

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.

  19. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, Michael W.; Coronado, Paul R.; Hair, Lucy M.

    1995-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.

  20. Metal Oxide Solubility and Molten Salt Corrosion.

    DTIC Science & Technology

    1982-03-29

    METAL OXIDE SOLUBILITY AND MOLTEN SALT CORROSION.(U) MAR 82 K H STERN UNCLASSI E DL R L-4772NL EL .2. MICROCOPY RESOLUTION TEST CHART NATIONAL BURALU...METAL OXIDE SOLUBILITY AND MOLTEN SALT Interim report on a continuing CORROSION NRL problem. S. PERFORMING a4. REPORT NUMlER 7. AuTtwORr) S. CONTRACT OR...EQUILIBRIA AND OXIDE SOLUTION RELATIONS IN MOLTEN SALTS ............................................. 2 IV. METHODS FOR DETERMINING SOLUBILITIES

  1. Process for etching mixed metal oxides

    DOEpatents

    Ashby, C.I.H.; Ginley, D.S.

    1994-10-18

    An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.

  2. Process for etching mixed metal oxides

    DOEpatents

    Ashby, Carol I. H.; Ginley, David S.

    1994-01-01

    An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.

  3. Three-electrode metal oxide reduction cell

    DOEpatents

    Dees, Dennis W.; Ackerman, John P.

    2008-08-12

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  4. Controlled growth of 1D and 2D ZnO nanostructures on 4H-SiC using Au catalyst.

    PubMed

    Dahiya, Abhishek Singh; Opoku, Charles; Alquier, Daniel; Poulin-Vittrant, Guylaine; Cayrel, Frederic; Graton, Olivier; Hue, Louis-Pascal Tran Huu; Camara, Nicolas

    2014-01-01

    A perfect control of nanostructure growth is a prerequisite for the development of electronic and optoelectronic device/systems. In this article, we demonstrate the growth of various ZnO-derived nanostructures, including well-ordered arrays of high aspect ratio single crystalline nanowires with preferred growth direction along the [0001] axis, nanowalls, and hybrid nanowire-nanowall structures. The growths of the various ZnO nanostructures have been carried out on SiC substrates in a horizontal furnace, using Au thin film as catalyst. From experimental observations, we have ascribed the growth mechanisms of the different ZnO nanostructures to be a combination of catalytic-assisted and non-catalytic-assisted vapor-liquid-solid (VLS) processes. We have also found that the different ZnO nanoarchitectures' material evolution is governed by a Zn cluster drift effects on the SiC surface mainly driven by growth temperature. Au thin film thickness, growth time, and temperature are the parameters to optimize in order to obtain the different ZnO nanoarchitectures.

  5. Controlled growth of 1D and 2D ZnO nanostructures on 4H-SiC using Au catalyst

    PubMed Central

    2014-01-01

    A perfect control of nanostructure growth is a prerequisite for the development of electronic and optoelectronic device/systems. In this article, we demonstrate the growth of various ZnO-derived nanostructures, including well-ordered arrays of high aspect ratio single crystalline nanowires with preferred growth direction along the [0001] axis, nanowalls, and hybrid nanowire-nanowall structures. The growths of the various ZnO nanostructures have been carried out on SiC substrates in a horizontal furnace, using Au thin film as catalyst. From experimental observations, we have ascribed the growth mechanisms of the different ZnO nanostructures to be a combination of catalytic-assisted and non-catalytic-assisted vapor–liquid-solid (VLS) processes. We have also found that the different ZnO nanoarchitectures' material evolution is governed by a Zn cluster drift effects on the SiC surface mainly driven by growth temperature. Au thin film thickness, growth time, and temperature are the parameters to optimize in order to obtain the different ZnO nanoarchitectures. PMID:25136283

  6. High surface area, electrically conductive nanocarbon-supported metal oxide

    DOEpatents

    Worsley, Marcus A.; Han, Thomas Yong-Jin; Kuntz, Joshua D.; Cervantes, Octavio; Gash, Alexander E.; Baumann, Theodore F.; Satcher, Jr., Joe H.

    2015-07-14

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

  7. Methods of producing adsorption media including a metal oxide

    DOEpatents

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  8. High surface area, electrically conductive nanocarbon-supported metal oxide

    SciTech Connect

    Worsley, Marcus A; Han, Thomas Yong-Jin; Kuntz, Joshua D; Cervanted, Octavio; Gash, Alexander E; Baumann, Theodore F; Satcher, Jr., Joe H

    2014-03-04

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

  9. Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems.

    PubMed

    Park, Min-Sik; Kim, Jeonghun; Kim, Ki Jae; Lee, Jong-Won; Kim, Jung Ho; Yamauchi, Yusuke

    2015-12-14

    Transition metal oxides possessing two kinds of metals (denoted as AxB3-xO4, which is generally defined as a spinel structure; A, B = Co, Ni, Zn, Mn, Fe, etc.), with stoichiometric or even non-stoichiometric compositions, have recently attracted great interest in electrochemical energy storage systems (ESSs). The spinel-type transition metal oxides exhibit outstanding electrochemical activity and stability, and thus, they can play a key role in realising cost-effective and environmentally friendly ESSs. Moreover, porous nanoarchitectures can offer a large number of electrochemically active sites and, at the same time, facilitate transport of charge carriers (electrons and ions) during energy storage reactions. In the design of spinel-type transition metal oxides for energy storage applications, therefore, nanostructural engineering is one of the most essential approaches to achieving high electrochemical performance in ESSs. In this perspective, we introduce spinel-type transition metal oxides with various transition metals and present recent research advances in material design of spinel-type transition metal oxides with tunable architectures (shape, porosity, and size) and compositions on the micro- and nano-scale. Furthermore, their technological applications as electrode materials for next-generation ESSs, including metal-air batteries, lithium-ion batteries, and supercapacitors, are discussed.

  10. Anomalous quantum efficiency for photoconduction and its power dependence in metal oxide semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Wang, W. C.; Lu, M. L.; Chen, Y. F.; Lin, H. C.; Chen, K. H.; Chen, L. C.

    2013-07-01

    The quantum efficiency and carrier lifetime that decide the photoconduction (PC) efficiencies in the metal oxide semiconductor nanowires (NWs) have been investigated. The experimental result surprisingly shows that the SnO2, TiO2, WO3, and ZnO NWs reveal extraordinary quantum efficiencies in common, which are over one to three orders of magnitude lower than the theoretical expectation. The surface depletion region (SDR)-controlled photoconductivity is proposed to explain the anomalous quantum efficiency and its power dependence. The inherent difference between the metal oxide nanostructures such as carrier lifetime, carrier concentration, and dielectric constant leading to the distinct PC performance and behavior are also discussed.The quantum efficiency and carrier lifetime that decide the photoconduction (PC) efficiencies in the metal oxide semiconductor nanowires (NWs) have been investigated. The experimental result surprisingly shows that the SnO2, TiO2, WO3, and ZnO NWs reveal extraordinary quantum efficiencies in common, which are over one to three orders of magnitude lower than the theoretical expectation. The surface depletion region (SDR)-controlled photoconductivity is proposed to explain the anomalous quantum efficiency and its power dependence. The inherent difference between the metal oxide nanostructures such as carrier lifetime, carrier concentration, and dielectric constant leading to the distinct PC performance and behavior are also discussed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01635h

  11. Ternary Self-Assembly of Ordered Metal Oxide-Graphene Nanocomposites for Electrochemical Energy Storage

    SciTech Connect

    Wang, Donghai; Kou, Rong; Choi, Daiwon; Yang, Zhenguo; Nie, Zimin; Li, Juan; Saraf, Laxmikant V.; Hu, Dehong; Zhang, Jiguang; Graff, Gordon L.; Liu, Jun; Pope, Michael A.; Aksay, Ilhan A.

    2010-02-25

    Surfactant or polymer directed self-assembly has been widely investigated to prepare nanostructured metal oxides, semiconductors and polymers, but this approach is mostly limited to two-phase materials, organic/inorganic hybrids, and nanoparticle or polymer-based nanocomposites. Self-assembled nanostructures from more complex, multiscale and multiphase building blocks have been explored with limited success. Here, we demonstrate a ternary self-assembly approach using graphene as fundamental building blocks to construct metal oxide-graphene nanocomposites. A new class of layered nanocomposites is formed containing stable, ordered alternating layers of nanocrystalline metal oxides with graphene/graphene stacks. Alternatively, the graphene material can be incorporated into liquid-crystal-templated nanoporous structures to form high surface area, conductive networks. The self-assembly method can be also used to fabricate free standing, flexible metal oxide-graphene nanocomposite films and electrodes. We investigate the Li-ion insertion properties of the self-assembled electrodes for energy storage and show that the SnO2-graphene nanocomposite films can achieve near theoretical specific energy density without a significant charge/discharge degradation.

  12. Mesoporous Transition Metal Oxides for Supercapacitors

    PubMed Central

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-01-01

    Recently, transition metal oxides, such as ruthenium oxide (RuO2), manganese dioxide (MnO2), nickel oxides (NiO) and cobalt oxide (Co3O4), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors. PMID:28347088

  13. Miniaturized ionization gas sensors from single metal oxide nanowires.

    PubMed

    Hernandez-Ramirez, Francisco; Prades, Juan Daniel; Hackner, Angelika; Fischer, Thomas; Mueller, Gerhard; Mathur, Sanjay; Morante, Joan Ramon

    2011-02-01

    Gas detection experiments were performed with individual tin dioxide (SnO2) nanowires specifically configured to observe surface ion (SI) emission response towards representative analyte species. These devices were found to work at much lower temperatures (T≈280 °C) and bias voltages (V≈2 V) than their micro-counterparts, thereby demonstrating the inherent potential of individual nanostructures in building functional nanodevices. High selectivity of our miniaturized sensors emerges from the dissimilar sensing mechanisms of those typical of standard resistive-type sensors (RES). Therefore, by employing this detection principle (SI) together with RES measurements, better selectivity than that observed in standard metal oxide sensors could be demonstrated. Simplicity and specificity of the gas detection as well as low-power consumption make these single nanowire devices promising technological alternatives to overcome the major drawbacks of solid-state sensor technologies.

  14. Large-Scale, Three–Dimensional, Free–Standing, and Mesoporous Metal Oxide Networks for High–Performance Photocatalysis

    PubMed Central

    Bai, Hua; Li, Xinshi; Hu, Chao; Zhang, Xuan; Li, Junfang; Yan, Yan; Xi, Guangcheng

    2013-01-01

    Mesoporous nanostructures represent a unique class of photocatalysts with many applications, including splitting of water, degradation of organic contaminants, and reduction of carbon dioxide. In this work, we report a general Lewis acid catalytic template route for the high–yield producing single– and multi–component large–scale three–dimensional (3D) mesoporous metal oxide networks. The large-scale 3D mesoporous metal oxide networks possess large macroscopic scale (millimeter–sized) and mesoporous nanostructure with huge pore volume and large surface exposure area. This method also can be used for the synthesis of large–scale 3D macro/mesoporous hierarchical porous materials and noble metal nanoparticles loaded 3D mesoporous networks. Photocatalytic degradation of Azo dyes demonstrated that the large–scale 3D mesoporous metal oxide networks enable high photocatalytic activity. The present synthetic method can serve as the new design concept for functional 3D mesoporous nanomaterials. PMID:23857595

  15. Nanopowder Metal Oxide for Photoluminescent Gas Sensing

    NASA Astrophysics Data System (ADS)

    Zhyrovetsky, V. M.; Popovych, D. I.; Savka, S. S.; Serednytski, A. S.

    2017-02-01

    Gas sensing properties of metal oxide nanopowders (ZnO, TiO2, WO3, SnO2) with average diameters of 40-60 nm were analyzed by room-temperature photoluminescence spectroscopy. The influence of gas environment (O2, N2, H2, CO, CO2) on the emission intensity was investigated for metal oxide nanopowders with surface doped by impurities (Pt, Ag, Au, Sn, Ni or Cu). Established physicochemical regularities of modification of surface electronic states of initial and doped nanopowders during gas adsorption. The nature of metal oxide nanopowder gas-sensing properties (adsorption capacity, sensitivity, selectivity) has been established and the design and optimal materials for the construction of the multi-component sensing matrix have been selected.

  16. Surface protected lithium-metal-oxide electrodes

    DOEpatents

    Thackeray, Michael M.; Kang, Sun-Ho

    2016-04-05

    A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.

  17. Extracting metals directly from metal oxides

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  18. Extracting metals directly from metal oxides

    DOEpatents

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  19. Direct electrochemical reduction of metal-oxides

    DOEpatents

    Redey, Laszlo I.; Gourishankar, Karthick

    2003-01-01

    A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

  20. Method for producing metal oxide nanoparticles

    DOEpatents

    Phillips, Jonathan; Mendoza, Daniel; Chen, Chun-Ku

    2008-04-15

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  1. Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures

    DOEpatents

    Quinby, Thomas C.

    1978-01-01

    Metal powders, metal oxide powders, and mixtures thereof of controlled particle size are provided by reacting an aqueous solution containing dissolved metal values with excess urea. Upon heating, urea reacts with water from the solution leaving a molten urea solution containing the metal values. The molten urea solution is heated to above about 180.degree. C. whereupon metal values precipitate homogeneously as a powder. The powder is reduced to metal or calcined to form oxide particles. One or more metal oxides in a mixture can be selectively reduced to produce metal particles or a mixture of metal and metal oxide particles.

  2. Robust hybrid elastomer/metal-oxide superhydrophobic surfaces.

    PubMed

    Hoshian, S; Jokinen, V; Franssila, S

    2016-08-21

    We introduce a new type of hybrid material: a nanostructured elastomer covered by a hard photoactive metal-oxide thin film resembling the exoskeleton of insects. It has extreme water repellency and fast self-recovery after damage. A new fabrication method for replicating high aspect ratio, hierarchical re-entrant aluminum structures into polydimethylsiloxane (PDMS) is presented. The method is based on a protective titania layer deposited by atomic layer deposition (ALD) on the aluminum template. The ALD titania transfers to the elastomeric scaffold via sacrificial release etching. The sacrificial release method allows for high aspect ratio, even 100 μm deep and successful release of overhanging structures, unlike conventional peeling. The ALD titania conformally covers the 3D multihierarchical structures of the template and protects the polymer during the release etch. Afterwards it prevents the high aspect ratio nanostructures from elasticity based collapse. The resulting nanostructured hybrid PDMS/titania replicas display robust superhydrophobicity without any further fluoro-coating or modification. Their mechanical and thermal robustness results from a thick nanostructured elastomeric layer which is conformally covered by ceramic titania instead of a monolayer hydrophobic coating. We have demonstrated the durability of these replicas against mechanical abrasion, knife scratches, rubbing, bending, peel tape test, high temperature annealing, UV exposure, water jet impingement and long term underwater storage. Though the material loses its superhydrophobicity in oxygen plasma exposure, a fast recovery from superhydrophilic to superhydrophobic can be achieved after 20 min UV irradiation. UV-assisted recovery is correlated with the high photoactivity of ALD titania film. This novel hybrid material will be applicable to the large area superhydrophobic surfaces in practical outdoor applications.

  3. Multi-metal oxide ceramic nanomaterial

    SciTech Connect

    O'Brien, Stephen; Liu, Shuangyi; Huang, Limin

    2016-06-07

    A convenient and versatile method for preparing complex metal oxides is disclosed. The method uses a low temperature, environmentally friendly gel-collection method to form a single phase nanomaterial. In one embodiment, the nanomaterial consists of Ba.sub.AMn.sub.BTi.sub.CO.sub.D in a controlled stoichiometry.

  4. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles

    PubMed Central

    Tvrdy, Kevin; Frantsuzov, Pavel A.; Kamat, Prashant V.

    2011-01-01

    Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO2, TiO2, and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO2) were not the same as those which showed the highest photocurrent (TiO2). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency. PMID:21149685

  5. Synthesis of Nanoporous Metals, Oxides, Carbides, and Sulfides: Beyond Nanocasting.

    PubMed

    Luc, Wesley; Jiao, Feng

    2016-07-19

    Nanoporous metal-based solids are of particular interest because they combine a large quantity of surface metal sites, interconnected porous networks, and nanosized crystalline walls, thus exhibiting unique physical and chemical properties compared to other nanostructures and bulk counterparts. Among all of the synthetic approaches, nanocasting has proven to be a highly effective method for the syntheses of metal oxides with three-dimensionally ordered porous structures and crystalline walls. A typical procedure involves a thermal annealing process of a porous silica template filled with an inorganic precursor (often a metal nitrate salt), which converts the precursor into a desired phase within the silica pores. The final step is the selective removal of the silica template in either a strong base or a hydrofluoric acid solution. In the past decade, nanocasting has become a popular synthetic approach and has enabled the syntheses of a variety of nanoporous metal oxides. However, there is still a lack of synthetic methods to fabricate nanoporous materials beyond simple metal oxides. Therefore, the development of new synthetic strategies beyond nanocasting has become an important direction. This Account describes new progress in the preparation of novel nanoporous metal-based solids for heterogeneous catalysis. The discussion begins with a method called dealloying, an effective method to synthesize nanoporous metals. The starting material is a metallic alloy containing two or more elements followed by a selective chemical or electrochemical leaching process that removes one of the preferential elements, resulting in a highly porous structure. Nanoporous metals, such as Cu, Ag, and CuTi, exhibit remarkable electrocatalytic properties in carbon dioxide reduction, oxygen reduction, and hydrogen evolution reactions. In addition, the syntheses of metal oxides with hierarchical porous structures are also discussed. On the basis of the choice of hard template, nanoporous

  6. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  7. 40 CFR 721.10500 - Acrylated mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant...

  8. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  9. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  10. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  11. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  12. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  13. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  14. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  15. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  16. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  17. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  18. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  19. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  20. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  1. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  2. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  3. 40 CFR 721.10500 - Acrylated mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant...

  4. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  5. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  6. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  7. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  8. Surface Chemistry of Nano-Structured Mixed Metal Oxide Films

    DTIC Science & Technology

    2012-12-11

    demonstrated that carbon -modified Mo(1 1 0), C–Mo(1 1 0), is up to 15 times more selective for the dehydrogenation of formic acid than Mo(1 1 0...Reflection absorption infrared spectroscopy (RAIRS) indicates that carbidic carbon blocks active sites for C–O bond cleavage, decreasing the rate of... hydrothermally synthesized single-crystalline hematite (α-Fe2O3) nanorods and investigated them as an anode material for Li-ion batteries. Electrodes prepared with

  9. NANOSTRUCTURED METAL OXIDE CATALYSTS VIA BUILDING BLOCK SYNTHESES

    SciTech Connect

    Craig E. Barnes

    2013-03-05

    A broadly applicable methodology has been developed to prepare new single site catalysts on silica supports. This methodology requires of three critical components: a rigid building block that will be the main structural and compositional component of the support matrix; a family of linking reagents that will be used to insert active metals into the matrix as well as cross link building blocks into a three dimensional matrix; and a clean coupling reaction that will connect building blocks and linking agents together in a controlled fashion. The final piece of conceptual strategy at the center of this methodology involves dosing the building block with known amounts of linking agents so that the targeted connectivity of a linking center to surrounding building blocks is obtained. Achieving targeted connectivities around catalytically active metals in these building block matrices is a critical element of the strategy by which single site catalysts are obtained. This methodology has been demonstrated with a model system involving only silicon and then with two metal-containing systems (titanium and vanadium). The effect that connectivity has on the reactivity of atomically dispersed titanium sites in silica building block matrices has been investigated in the selective oxidation of phenols to benezoquinones. 2-connected titanium sites are found to be five times as active (i.e. initial turnover frequencies) than 4-connected titanium sites (i.e. framework titanium sites).

  10. Antitumor Activities of Metal Oxide Nanoparticles

    PubMed Central

    Vinardell, Maria Pilar; Mitjans, Montserrat

    2015-01-01

    Nanoparticles have received much attention recently due to their use in cancer therapy. Studies have shown that different metal oxide nanoparticles induce cytotoxicity in cancer cells, but not in normal cells. In some cases, such anticancer activity has been demonstrated to hold for the nanoparticle alone or in combination with different therapies, such as photocatalytic therapy or some anticancer drugs. Zinc oxide nanoparticles have been shown to have this activity alone or when loaded with an anticancer drug, such as doxorubicin. Other nanoparticles that show cytotoxic effects on cancer cells include cobalt oxide, iron oxide and copper oxide. The antitumor mechanism could work through the generation of reactive oxygen species or apoptosis and necrosis, among other possibilities. Here, we review the most significant antitumor results obtained with different metal oxide nanoparticles.

  11. Reactor process using metal oxide ceramic membranes

    DOEpatents

    Anderson, Marc A.

    1994-01-01

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques.

  12. Reactor process using metal oxide ceramic membranes

    DOEpatents

    Anderson, M.A.

    1994-05-03

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques. 2 figures.

  13. Proton Coupled Electron Transfer Reactions at the Surface of Metal Oxide Nanomaterials

    NASA Astrophysics Data System (ADS)

    Braten, Miles N.

    Nanostructured metal oxide materials are found in many products and processes in our society today, but they play a particularly important role in the conversion and storage of energy. The materials are used as catalysts and redox active supports in devices such as dye sensitized solar cells, solid oxide fuel cells, and flow batteries, where they transfer and store electrons and charge balancing cations. Oftentimes electron transfer is modulated by the cations and when the cation is a proton, these redox reactions are known as proton coupled electron transfer (PCET) reactions. The work described in this dissertation focuses on understanding the PCET reactivity of nanocrystalline metal oxide materials. Chapter 1 introduces the concept of PCET and provides background information on the zinc oxide (ZnO) nanocrystals (NCs) which the majority of the research is focused on. Chapter 2 examines the chemistry that occurs during the photoreduction of ZnO NCs. Chapter 3 describes experiments probing how ZnO NC capping ligand concentration and NC size modulate PCET reaction rates. Chapter 4 describes experiments that compare the PCET reactivity of ZnO NCs with different numbers of electrons and protons stored on them. Chapter 5 describes attempts to observe the electrochemical reduction of ZnO NCs attached to gold electrodes. Finally, Chapter 6 contains attempts to identify a nanostructured metal oxide alkane oxidation catalyst for use in fuel cell.

  14. Reduction of metal oxides through mechanochemical processing

    DOEpatents

    Froes, Francis H.; Eranezhuth, Baburaj G.; Senkov, Oleg N.

    2000-01-01

    The low temperature reduction of a metal oxide using mechanochemical processing techniques. The reduction reactions are induced mechanically by milling the reactants. In one embodiment of the invention, titanium oxide TiO.sub.2 is milled with CaH.sub.2 to produce TiH.sub.2. Low temperature heat treating, in the range of 400.degree. C. to 700.degree. C., can be used to remove the hydrogen in the titanium hydride.

  15. Method for making monolithic metal oxide aerogels

    DOEpatents

    Coronado, Paul R.

    1999-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  16. Potentials and challenges of integration for complex metal oxides in CMOS devices and beyond

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Pham, C.; Chang, J. P.

    2015-02-01

    This review focuses on recent accomplishments on complex metal oxide based multifunctional materials and the potential they hold in advancing integrated circuits. It begins with metal oxide based high-κ materials to highlight the success of their integration since 45 nm complementary metal-oxide-semiconductor (CMOS) devices. By simultaneously offering a higher dielectric constant for improved capacitance as well as providing a thicker physical layer to prevent the quantum mechanical tunnelling of electrons, high-κ materials have enabled the continued down-scaling of CMOS based devices. The most recent technology driver has been the demand to lower device power consumption, which requires the design and synthesis of novel materials, such as complex metal oxides that exhibit remarkable tunability in their ferromagnetic, ferroelectric and multiferroic properties. These properties make them suitable for a wide variety of applications such as magnetoelectric random access memory, radio frequency band pass filters, antennae and magnetic sensors. Single-phase multiferroics, while rare, offer unique functionalities which have motivated much scientific and technological research to ascertain the origins of their multiferroicity and their applicability to potential devices. However, due to the weak magnetoelectric coupling for single-phase multiferroics, engineered multiferroic composites based on magnetostrictive ferromagnets interfacing piezoelectrics or ferroelectrics have shown enhanced multiferroic behaviour from effective strain coupling at the interface. In addition, nanostructuring of the ferroic phases has demonstrated further improvement in the coupling effect. Therefore, single-phase and engineered composite multiferroics consisting of complex metal oxides are reviewed in terms of magnetoelectric coupling effects and voltage controlled ferromagnetic properties, followed by a review on the integration challenges that need to be overcome to realize the

  17. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.

    PubMed

    Sassin, Megan B; Chervin, Christopher N; Rolison, Debra R; Long, Jeffrey W

    2013-05-21

    achieving characteristic EC charge-discharge timescales. For example, conductive carbon must often be combined with the poorly conductive metal oxides to provide long-range electron pathways through the electrode. However, the ad hoc mixing of discrete carbon and oxide powders into composite electrodes may not support optimal utilization or rate performance. As an alternative, nanoscale metal oxides of interest for ECs can be synthesized directly on the surfaces of nanostructured carbons, with the carbon surface acting as a sacrificial reductant when exposed to a solution-phase, oxidizing precursor of the desired metal oxide (e.g., MnO4(-) for MnO2). These redox deposition methods can be applied to advanced carbon nanoarchitectures with well-designed pore structures. These architectures promote effective electrolyte infiltration and ion transport to the nanoscale metal oxide domains within the electrode architecture, which further enhances high-rate operation.

  18. Surfactant-Templated Mesoporous Metal Oxide Nanowires

    DOE PAGES

    Luo, Hongmei; Lin, Qianglu; Baber, Stacy; ...

    2010-01-01

    We demore » monstrate two approaches to prepare mesoporous metal oxide nanowires by surfactant assembly and nanoconfinement via sol-gel or electrochemical deposition. For example, mesoporous Ta 2 O 5 and zeolite nanowires are prepared by block copolymer Pluronic 123-templated sol-gel method, and mesoporous ZnO nanowires are prepared by electrodeposition in presence of anionic surfactant sodium dodecyl sulfate (SDS) surfactant, in porous membranes. The morphologies of porous nanowires are studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses.« less

  19. Reactor vessel using metal oxide ceramic membranes

    DOEpatents

    Anderson, Marc A.; Zeltner, Walter A.

    1992-08-11

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane.

  20. Metal oxide membranes for gas separation

    DOEpatents

    Anderson, M.A.; Webster, E.T.; Xu, Q.

    1994-08-30

    A method for formation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation. 4 figs.

  1. Metal oxide membranes for gas separation

    DOEpatents

    Anderson, Marc A.; Webster, Elizabeth T.; Xu, Qunyin

    1994-01-01

    A method for permformation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation.

  2. Metal Oxide Materials and Decontamination Methodology

    DTIC Science & Technology

    1991-01-15

    polyoxometalates as photocatalysts for oxidative degradation. The abstract for this paper, reference 15, is as follows. This paper is undergoing revision and...substrates catalyzed by representative semiconductor metal oxides (anatase TiO2 , SnO2, cubic W03, and CdS) and photoredox active early transition metal...326"] = k4,I[THT]/k[TNT] + kic) is consistent with this data and the observation of saturation kinetics in TNT. Upon addition of 02, TiO2 (with or

  3. Preferential orientation of metal oxide superconducting materials

    DOEpatents

    Capone, Donald W.; Poeppel, Roger B.

    1991-01-01

    A polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0

  4. Microbial-mediated method for metal oxide nanoparticle formation

    DOEpatents

    Rondinone, Adam J.; Moon, Ji Won; Love, Lonnie J.; Yeary, Lucas W.; Phelps, Tommy J.

    2015-09-08

    The invention is directed to a method for producing metal oxide nanoparticles, the method comprising: (i) subjecting a combination of reaction components to conditions conducive to microbial-mediated formation of metal oxide nanoparticles, wherein said combination of reaction components comprise: metal-reducing microbes, a culture medium suitable for sustaining said metal-reducing microbes, an effective concentration of one or more surfactants, a reducible metal oxide component containing one or more reducible metal species, and one or more electron donors that provide donatable electrons to said metal-reducing microbes during consumption of the electron donor by said metal-reducing microbes; and (ii) isolating said metal oxide nanoparticles, which contain a reduced form of said reducible metal oxide component. The invention is also directed to metal oxide nanoparticle compositions produced by the inventive method.

  5. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  6. Surface studies of gas sensing metal oxides.

    PubMed

    Batzill, Matthias; Diebold, Ulrike

    2007-05-21

    The relation of surface science studies of single crystal metal oxides to gas sensing applications is reviewed. Most metal oxide gas sensors are used to detect oxidizing or reducing gases and therefore this article focuses on surface reduction processes and the interaction of oxygen with these surfaces. The systems that are discussed are: (i) the oxygen vacancy formation on the surface of the ion conductor CeO(2)(111); (ii) interaction of oxygen with TiO(2) (both adsorption processes and the incorporation of oxygen into the TiO(2)(110) lattice are discussed); (iii) the varying surface composition of SnO(2)(101) and its consequence for the adsorption of water; and (iv) Cu modified ZnO(0001)-Zn surfaces and its interaction with oxygen. These examples are chosen to give a comprehensive overview of surface science studies of different kinds of gas sensing materials and to illustrate the potential that surface science studies have to give fundamental insight into gas sensing phenomena.

  7. Nanostructures having high performance thermoelectric properties

    DOEpatents

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz

    2014-05-20

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  8. Nanostructures having high performance thermoelectric properties

    DOEpatents

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I.; Chen, Renkun; Delgado, Raul Diaz

    2015-12-22

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  9. Metal oxide electrocatalysts for alternative energy technologies

    NASA Astrophysics Data System (ADS)

    Pacquette, Adele Lawren

    This dissertation focuses on the development of metal oxide electrocatalysts with varying applications for alternative energy technologies. Interest in utilizing clean, renewable and sustainable sources of energy for powering the planet in the future has received much attention. This will address the growing concern of the need to reduce our dependence on fossil fuels. The facile synthesis of metal oxides from earth abundant metals was explored in this work. The electrocatalysts can be incorporated into photoelectrochemical devices, fuel cells, and other energy storage devices. The first section addresses the utilization of semiconductors that can harness solar energy for water splitting to generate hydrogen. An oxysulfide was studied in order to combine the advantageous properties of the stability of metal oxides and the visible light absorbance of metal chalcogenides. Bi 2O2S was synthesized under facile hydrothermal conditions. The band gap of Bi2O2S was smaller than that of its oxide counterpart, Bi2O3. Light absorption by Bi 2O2S was extended to the visible region (>600 nm) in comparison to Bi2O3. The formation of a composite with In 2O3 was formed in order to create a UV irradiation protective coating of the Bi2O2S. The Bi2O2S/In 2O3 composite coupled with a dye CrTPP(Cl) and cocatalysts Pt and Co3O4 was utilized for water splitting under light irradiation to generate hydrogen and oxygen. The second section focuses on improving the stability and light absorption of semiconductors by changing the shapes and morphologies. One of the limitations of semiconductor materials is that recombination of electron-hole pairs occur within the bulk of the materials instead of migration to the surface. Three-dimensional shapes, such as nanorods, can prevent this recombination in comparison to spherical particles. Hierarchical structures, such as dendrites, cubes, and multipods, were synthesized under hydrothermal conditions, in order to reduce recombination and improve

  10. Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Sun, Meng; Liu, Huijuan; Liu, Yang; Qu, Jiuhui; Li, Jinghong

    2015-01-01

    The development of low cost, durable and efficient nanocatalysts to substitute expensive and rare noble metals (e.g. Pt, Au and Pd) in overcoming the sluggish kinetic process of the oxygen reduction reaction (ORR) is essential to satisfy the demand for sustainable energy conversion and storage in the future. Graphene based transition metal oxide nanocomposites have extensively been proven to be a type of promising highly efficient and economic nanocatalyst for optimizing the ORR to solve the world-wide energy crisis. Synthesized nanocomposites exhibit synergetic advantages and avoid the respective disadvantages. In this feature article, we concentrate on the recent leading works of different categories of introduced transition metal oxides on graphene: from the commonly-used classes (FeOx, MnOx, and CoOx) to some rare and heat-studied issues (TiOx, NiCoOx and Co-MnOx). Moreover, the morphologies of the supported oxides on graphene with various dimensional nanostructures, such as one dimensional nanocrystals, two dimensional nanosheets/nanoplates and some special multidimensional frameworks are further reviewed. The strategies used to synthesize and characterize these well-designed nanocomposites and their superior properties for the ORR compared to the traditional catalysts are carefully summarized. This work aims to highlight the meaning of the multiphase establishment of graphene-based transition metal oxide nanocomposites and its structural-dependent ORR performance and mechanisms.

  11. A Green Strategy to Prepare Metal Oxide Superstructure from Metal-Organic Frameworks

    PubMed Central

    Song, Yonghai; Li, Xia; Wei, Changting; Fu, Jinying; Xu, Fugang; Tan, Hongliang; Tang, Juan; Wang, Li

    2015-01-01

    Metal or metal oxides with diverse superstructures have become one of the most promising functional materials in sensor, catalysis, energy conversion, etc. In this work, a novel metal-organic frameworks (MOFs)-directed method to prepare metal or metal oxide superstructure was proposed. In this strategy, nodes (metal ions) in MOFs as precursors to form ordered building blocks which are spatially separated by organic linkers were transformed into metal oxide micro/nanostructure by a green method. Two kinds of Cu-MOFs which could reciprocally transform by changing solvent were prepared as a model to test the method. Two kinds of novel CuO with three-dimensional (3D) urchin-like and 3D rods-like superstructures composed of nanoparticles, nanowires and nanosheets were both obtained by immersing the corresponding Cu-MOFs into a NaOH solution. Based on the as-formed CuO superstructures, a novel and sensitive nonenzymatic glucose sensor was developed. The small size, hierarchical superstructures and large surface area of the resulted CuO superstructures eventually contribute to good electrocatalytic activity of the prepared sensor towards the oxidation of glucose. The proposed method of hierarchical superstructures preparation is simple, efficient, cheap and easy to mass production, which is obviously superior to pyrolysis. It might open up a new way for hierarchical superstructures preparation. PMID:25669731

  12. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Kim, Jeom-Soo; Johnson, Christopher S.

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  13. Orbital physics in transition-metal oxides

    PubMed

    Tokura; Nagaosa

    2000-04-21

    An electron in a solid, that is, bound to or nearly localized on the specific atomic site, has three attributes: charge, spin, and orbital. The orbital represents the shape of the electron cloud in solid. In transition-metal oxides with anisotropic-shaped d-orbital electrons, the Coulomb interaction between the electrons (strong electron correlation effect) is of importance for understanding their metal-insulator transitions and properties such as high-temperature superconductivity and colossal magnetoresistance. The orbital degree of freedom occasionally plays an important role in these phenomena, and its correlation and/or order-disorder transition causes a variety of phenomena through strong coupling with charge, spin, and lattice dynamics. An overview is given here on this "orbital physics," which will be a key concept for the science and technology of correlated electrons.

  14. Method for producing metal oxide aerogels

    DOEpatents

    Tillotson, Thomas M.; Poco, John F.; Hrubesh, Lawrence W.; Thomas, Ian M.

    1995-01-01

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm.sup.3 and greater than 0.27g/cm.sup.3. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods.

  15. Method for producing metal oxide aerogels

    DOEpatents

    Tillotson, T.M.; Poco, J.F.; Hrubesh, L.W.; Thomas, I.M.

    1995-04-25

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm{sup 3} and greater than 0.27g/cm{sup 3}. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods. 8 figs.

  16. The Effect of Metal Oxide on Nanoparticles from Thermite Reactions

    ERIC Educational Resources Information Center

    Moore, Lewis Ryan

    2006-01-01

    The purpose of this research was to determine how metal oxide used in a thermite reaction can impact the production of nanoparticles. The results showed the presence of nanoparticles (less than 1 micron in diameter) of at least one type produced by each metal oxide. The typical particles were metallic spheres, which ranged from 300 nanometers in…

  17. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing

    PubMed Central

    Vander Wal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine activation energies for the catalyst-assisted systems. PMID:22408484

  18. Influence of metal oxides on the adsorption characteristics of PPy/metal oxides for Methylene Blue.

    PubMed

    Chen, Jie; Feng, Jiangtao; Yan, Wei

    2016-08-01

    In this paper, the pure PPy and PPy/metal oxide composites including PPy/SiO2, PPy/Al2O3, and PPy/Fe3O4 as well as PPy coated commercial SiO2 and Al2O3 (PPy/SiO2(C) and PPy/Al2O3(C)) were successfully synthetized via chemical oxidative polymerization in acid aqueous medium to investigate the influence of metal oxides on adsorption capacity and their adsorption characteristics for Methylene Blue (MB). The composites were characterized by Zeta potential analysis, BET analysis, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The results indicate that the metal oxides have great impact on textural properties, morphology, Zeta potential and PPy polymerization on their surface, further influence the adsorption capacity of their composites. The PPy/Al2O3(C) composite owns the highest specific surface area, rougher surface and most PPy content, and show the highest monolayer adsorption capacity reaching 134.77mg/g. In the adsorption characteristic studies, isotherm investigation shows an affinity order of PPy/metal oxides of PPy/Al2O3(C)>PPy/Al2O3>PPy/SiO2(C)>PPy/SiO2>PPy/Fe3O4>PPy, stating the affinity between PPy and MB was greatly improved by metal oxide, and Al2O3 owns high affinity for MB, followed by SiO2 and Fe3O4. Kinetic data of the composites selected (PPy/SiO2(C), PPy/Al2O3(C) and PPy/Fe3O4) were described more appropriately by the pseudo-second-order model, and the order of K2 is PPy/Al2O3>PPy/SiO2>PPy/Fe3O4, further showing a fast adsorption and good affinity of PPy/Al2O3(C) for MB. The regeneration method by HCl-elution and NaOH-activation was available, and the composites selected still owned good adsorption and desorption efficiency after six adsorption-desorption cycles.

  19. Tunable morphologies of indium tin oxide nanostructures using nanocellulose templates

    SciTech Connect

    Aytug, Tolga; Meyer, III, Harry M.; Ozcan, Soydan; Lu, Yuan; Poole, II, Joseph E.

    2015-01-01

    Metal oxide nanostructures have emerged as an important family of materials for various device applications. The performance is highly dependent on the morphology of the metal oxide nanostructures. Here we report a completely green approach to prepare indium tin oxide (ITO) nanoparticles using only water and cellulose nanofibril (CNF) in addition to the ITO precursor. Surface hydroxyl groups of the CNFs allow for efficient conjugation of ITO precursors (e.g., metal ions) in aqueous solution. The resulting CNF film allows for controllable spatial arrangement of metal oxide precursors, which results in tunable particle morphology (e.g., nanowires, nanospheres, and octahedral nanoparticles). These ITO nanoparticles can also form conductive and transparent ITO films. This study opens a new perspective on developing metal oxide nanostructures.

  20. Tunable morphologies of indium tin oxide nanostructures using nanocellulose templates

    DOE PAGES

    Aytug, Tolga; Meyer, III, Harry M.; Ozcan, Soydan; ...

    2015-01-01

    Metal oxide nanostructures have emerged as an important family of materials for various device applications. The performance is highly dependent on the morphology of the metal oxide nanostructures. Here we report a completely green approach to prepare indium tin oxide (ITO) nanoparticles using only water and cellulose nanofibril (CNF) in addition to the ITO precursor. Surface hydroxyl groups of the CNFs allow for efficient conjugation of ITO precursors (e.g., metal ions) in aqueous solution. The resulting CNF film allows for controllable spatial arrangement of metal oxide precursors, which results in tunable particle morphology (e.g., nanowires, nanospheres, and octahedral nanoparticles). Thesemore » ITO nanoparticles can also form conductive and transparent ITO films. This study opens a new perspective on developing metal oxide nanostructures.« less

  1. Microwave properties of thermochromic metal oxide surfaces

    NASA Astrophysics Data System (ADS)

    Ousbäck, Jan-Olof; Kariis, Hans

    2006-09-01

    Thermochromic metal oxides with a Mott transition, such as vanadium dioxide (VO II) exhibit an extensive alteration in their infrared reflectivity when heated above the transition temperature. For VO II the infrared reflectivity increases as the material becomes more metal-like above the transition temperature at 68°C. Given these dynamic electromagnetic properties in the IR-range, it is interesting to study the reflection of the material also in other wavelength ranges. The microwave properties of VO II as a function of temperature have been investigated here. Measurements were made with an automated network analyzer combined with an electrical heating unit. Reflection properties of VO II in the microwave region were determined. Above the transition temperature, an increase in the reflection of the surface was observed. The VO II became more metal-like in the whole measured microwave frequency range, as in the infrared region. It is concluded that VO II not only can be used to adapt the thermal emissivity of a surface but also to control the microwave reflectivity. Possible applications are switchable radomes, switchable radarabsorbers and heat protection for antenna apertures.

  2. Engineering Polarons at a Metal Oxide Surface

    NASA Astrophysics Data System (ADS)

    Yim, C. M.; Watkins, M. B.; Wolf, M. J.; Pang, C. L.; Hermansson, K.; Thornton, G.

    2016-09-01

    Polarons in metal oxides are important in processes such as catalysis, high temperature superconductivity, and dielectric breakdown in nanoscale electronics. Here, we study the behavior of electron small polarons associated with oxygen vacancies at rutile TiO2(110 ) , using a combination of low temperature scanning tunneling microscopy (STM), density functional theory, and classical molecular dynamics calculations. We find that the electrons are symmetrically distributed around isolated vacancies at 78 K, but as the temperature is reduced, their distributions become increasingly asymmetric, confirming their polaronic nature. By manipulating isolated vacancies with the STM tip, we show that particular configurations of polarons are preferred for given locations of the vacancies, which we ascribe to small residual electric fields in the surface. We also form a series of vacancy complexes and manipulate the Ti ions surrounding them, both of which change the associated electronic distributions. Thus, we demonstrate that the configurations of polarons can be engineered, paving the way for the construction of conductive pathways relevant to resistive switching devices.

  3. The Intriguing Properties of Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Hoch, Michael J. R.

    2007-05-01

    Since the discovery of high-temperature superconductivity in the cuprates twenty years ago, there has been a resurgence of interest in the transition metal oxides. Work on these systems has been driven both by the fascinating properties that these materials exhibit and by potential applications in technology. A brief general review of the perovskites and their electronic structures is given. This is followed by a discussion of the properties of magnetic oxide systems ABO3 (A=La; B=Mn or Co), specifically focusing on the doped manganites (e.g. La1-x SrxMnO3) and cobaltites (e.g. La1-xSrxCoO3), in which mixed valence states and double exchange are important. Competing electron localizing and delocalizing effects result in rich phase diagrams and interesting transport properties with large magnetoresistance effects. Nanoscale phase separation has been found for a range of x values using a variety of techniques, such as nuclear magnetic resonance and neutron scattering. These discoveries have provided an increased understanding of the role of the interacting magnetic, electronic and lattice structures in these systems.

  4. Metal oxide porous ceramic membranes with small pore sizes

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin

    1991-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  5. Metal oxide porous ceramic membranes with small pore sizes

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin

    1992-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  6. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors

    PubMed Central

    Wang, Chengxiang; Yin, Longwei; Zhang, Luyuan; Xiang, Dong; Gao, Rui

    2010-01-01

    Conductometric semiconducting metal oxide gas sensors have been widely used and investigated in the detection of gases. Investigations have indicated that the gas sensing process is strongly related to surface reactions, so one of the important parameters of gas sensors, the sensitivity of the metal oxide based materials, will change with the factors influencing the surface reactions, such as chemical components, surface-modification and microstructures of sensing layers, temperature and humidity. In this brief review, attention will be focused on changes of sensitivity of conductometric semiconducting metal oxide gas sensors due to the five factors mentioned above. PMID:22294916

  7. Method of producing solution-derived metal oxide thin films

    DOEpatents

    Boyle, Timothy J.; Ingersoll, David

    2000-01-01

    A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  8. Method of producing solution-derived metal oxide thin films

    SciTech Connect

    Boyle, T.J.; Ingersoll, D.

    2000-07-11

    A method is described for preparing metal oxide thin films by a solution method. A {beta}-metal {beta}-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  9. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOEpatents

    Poston, James A.

    1997-01-01

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  10. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOEpatents

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  11. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection

    PubMed Central

    Kanan, Sofian M.; El-Kadri, Oussama M.; Abu-Yousef, Imad A.; Kanan, Marsha C.

    2009-01-01

    A review of some papers published in the last fifty years that focus on the semiconducting metal oxide (SMO) based sensors for the selective and sensitive detection of various environmental pollutants is presented. PMID:22408500

  12. PLUTONIUM METAL: OXIDATION CONSIDERATIONS AND APPROACH

    SciTech Connect

    Estochen, E.

    2013-03-20

    Plutonium is arguably the most unique of all metals when considered in the combined context of metallurgical, chemical, and nuclear behavior. Much of the research in understanding behavior and characteristics of plutonium materials has its genesis in work associated with nuclear weapons systems. However, with the advent of applications in fuel materials, the focus in plutonium science has been more towards nuclear fuel applications, as well as long term storage and disposition. The focus of discussion included herein is related to preparing plutonium materials to meet goals consistent with non-proliferation. More specifically, the emphasis is on the treatment of legacy plutonium, in primarily metallic form, and safe handling, packaging, and transport to meet non-proliferation goals of safe/secure storage. Elevated temperature oxidation of plutonium metal is the treatment of choice, due to extensive experiential data related to the method, as the oxide form of plutonium is one of only a few compounds that is relatively simple to produce, and stable over a large temperature range. Despite the simplicity of the steps required to oxidize plutonium metal, it is important to understand the behavior of plutonium to ensure that oxidation is conducted in a safe and effective manner. It is important to understand the effect of changes in environmental variables on the oxidation characteristics of plutonium. The primary purpose of this report is to present a brief summary of information related to plutonium metal attributes, behavior, methods for conversion to oxide, and the ancillary considerations related to processing and facility safety. The information provided is based on data available in the public domain and from experience in oxidation of such materials at various facilities in the United States. The report is provided as a general reference for implementation of a simple and safe plutonium metal oxidation technique.

  13. Laboratory studies of refractory metal oxide smokes

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Nelson, R. N.; Donn, Bertram

    1989-01-01

    Studies of the properties of refractory metal oxide smokes condensed from a gas containing various combinations of SiH4, Fe(CO)5, Al(CH3)3, TiCl4, O2 and N2O in a hydrogen carrier stream at 500 K greater than T greater than 1500 K were performed. Ultraviolet, visible and infrared spectra of pure, amorphous SiO(x), FeO(x), AlO(x) and TiO(x) smokes are discussed, as well as the spectra of various co-condensed amorphous oxides, such as FE(x)SiO(y) or Fe(x)AlO(y). Preliminary studies of the changes induced in the infrared spectra of iron-containing oxide smokes by vacuum thermal annealing suggest that such materials become increasingly opaque in the near infrared with increased processing: hydration may have the opposite effect. More work on the processing of these materials is required to confirm such a trend: this work is currently in progress. Preliminary studies of the ultraviolet spectra of amorphous Si2O3 and MgSiO(x) smokes revealed no interesting features in the region from 200 to 300 nm. Studies of the ultraviolet spectra of both amorphous, hydrated and annealed SiO(x), TiO(x), AlO(x) and FeO(x) smokes are currently in progress. Finally, data on the oxygen isotopic composition of the smokes produced in the experiments are presented, which indicate that the oxygen becomes isotopically fractionated during grain condensation. Oxygen in the grains is as much as 3 percent per amu lighter than the oxygen in the original gas stream. The authors are currently conducting experiments to understand the mechanism by which fractionation occurs.

  14. Silicon Metal-Oxide-Semiconductor Quantum Devices

    NASA Astrophysics Data System (ADS)

    Nordberg, Eric

    This thesis presents stable quantum dots in a double gated silicon metal-oxide-semiconductor (MOS) system with an open-lateral geometry. In recent years, semiconductor lateral quantum dots have emerged as an appealing approach to quantum computing. Silicon offers the potential for very long electron spin decoherence times in these dots. Several important steps toward a functioning silicon-based electron spin qubit are presented, including stable Coulomb blockade within a quantum dot, a tunable double quantum dot, and integrated charge sensing. A fabrication process has been created to make low-disorder constrictions on relatively high mobility Si-MOS material and to facilitate essentially arbitrary gate geometries. Within this process, changes in mobility and charge defect densities are measured for critical process steps. This data was used to guide the fabrication of devices culminating, in this work, with a clean, stable quantum dot in a double-gated MOS system. Stable Coulomb-blockade behavior showing single-period conductance oscillations was observed in MOS quantum dots. Measured capacitances within each device and capacitances calculated via modeling are compared, showing that the measured Coulomb-blockade is consistent with a lithographically defined quantum dot, as opposed to a disorder dot within a single constriction. A tunable double dot is also observed. Laterally coupled charge sensing of quantum dots is highly desirable because it enables measurement even when conduction through the quantum dot itself is suppressed. Such charge sensing is demonstrated in this system. The current through a point contact constriction located near a quantum dot shows sharp 2% changes corresponding to charge transitions between the dot and a nearby lead. The coupling capacitance between the charge sensor and the quantum dot is extracted and agrees well with a capacitance model of the integrated sensor and quantum dot system.

  15. Structure, Bonding and Surface Chemistry of Metal Oxide Nanoclusters

    DTIC Science & Technology

    2015-06-23

    AFRL-OSR-VA-TR-2015-0191 Structure , Bonding and Surface Chemistry of Metal Oxide Nanoclusters Michael Duncan UNIVERSITY OF GEORGIA RESEARCH...2015 4. TITLE AND SUBTITLE Structure , Bonding and Surface Chemistry of Metal Oxide Nanoclusters 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1...Back (Rev. 8/98) DISTRIBUTION A: Distribution approved for public release. Final Report Project title: Structure , Bonding and Surface Chemistry of

  16. Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality.

    PubMed

    Joshi, Ravi K; Schneider, Jörg J

    2012-08-07

    This review will focus on the synthesis, arrangement, structural assembly, for current and future applications, of 1D nanomaterials (tubes, wires, rods) in 2D and 3D ordered arrangements. The ability to synthesize and arrange one dimensional nanomaterials into ordered 2D or 3D micro or macro sized structures is of utmost importance in developing new devices and applications of these materials. Micro and macro sized architectures based on such 1D nanomaterials (e.g. tubes, wires, rods) provide a platform to integrate nanostructures at a larger and thus manageable scale into high performance electronic devices like field effect transistors, as chemo- and biosensors, catalysts, or in energy material applications. Carbon based, metal oxide and metal based 1D arranged materials as well as hybrid or composite 1D materials of the latter provide a broad materials platform, offering a perspective for new entries into fascinating structures and future applications of such assembled architectures. These architectures allow bridging the gap between 1D nanostructures and the micro and macro world and are the basis for an assembly of 1D materials into higher hierarchy domains. This critical review is intended to provide an interesting starting point to view the current state of the art and show perspectives for future developments in this field. The emphasis is on selected nanomaterials and the possibilities for building three dimensional arrays starting from one dimensional building blocks. Carbon nanotubes, metal oxide nanotubes and nanowires (e.g. ZnO, TiO(2), V(2)O(5), Cu(2)O, NiO, Fe(2)O(3)), silicon and germanium nanowires, and group III-V or II-VI based 1D semiconductor nanostructures like GaS and GaN, pure metals as well as 1D hybrid materials and their higher organized architectures (foremost in 3D) will be focussed. These materials have been the most intensively studied within the last 5-10 years with respect to nano-micro integration aspects and their functional and

  17. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    DOEpatents

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.; Lloyd, Matthew T.; Widjonarko, Nicodemus Edwin; Miedaner, Alexander; Curtis, Calvin J.; Ginley, David S.; Olson, Dana C.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  18. GREENER PRODUCTION OF NOBLE METAL NANOSTRUCTURES AND NANOCOMPOSITES: RISK REDUCTION AND APPLICATIONS

    EPA Science Inventory

    The synthesis of nanometal/nano metal oxide/nanostructured polymer and their stabilization (through dispersant, biodegradable polymer) involves the use of natural renewable resources such plant material extract, biodegradable polymers, sugars, vitamins and finally efficient and s...

  19. Metal oxide-based transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Gillispie, Meagen Anne

    Transparent conducting oxides (TCOs) are important materials widely used for transparent contacts in flat panel displays, light emitting diodes, and solar cells. While Sn-doped In2O3 (ITO) continues to be the TCO of choice, the increasing cost of raw In has resulted in an increasing interest in developing In-free alternatives to ITO. In this work, two metal oxide systems were investigated for their viability as In-free TCO materials. First, Nb- or Ta-doped anatase TiO2 was selected due to the recent reports of high conductivity in pulse laser deposited (PLD) films. Thin films doped with either 15 mol% Nb or 20 mol% Ta were deposited on glass and SrTiO3 (STO) substrates using RF magnetron sputtering techniques. In all cases, maximum conductivity was achieved when the films crystallized in the anatase structure of TiO2. Films sputtered on STO possessed similar electrical and optical properties as PLD films on STO, yet at a much lower deposition temperature while films deposited on glass had much lower conductivity, due to dramatically reduced mobility. Two-dimensional x-ray diffraction analysis showed that doped TiO2 films sputter deposited on STO were biaxially textured along the (004) direction. This texturing was not observed in films deposited on glass, which were composed of randomly-oriented crystalline anatase. Biaxial texturing in the film helps to reduce grain boundary resistance, thereby increasing carrier mobility and further enhancing conductivity. The Cu-based delafossite system (CuBO2, B is a 3+ metal cation) was selected as the second TCO material system due to its natural p-type conductivity, a rarity among existing TCOs. Study of this system was two-pronged: (1) application of codoping techniques to achieve bipolar conductivity; and (2) investigate stability of mixed B cation delafossites. CuAlO2 and CuGaO2 were both codoped with varying ratios of donors and acceptors in an attempt to achieve bipolar conductivity. Very little change in the electrical

  20. In vitro evolution of a peptide with a hematite binding motif that may constitute a natural metal-oxide binding archetype.

    PubMed

    Lower, Brian H; Lins, Roberto D; Oestreicher, Zachery; Straatsma, Tjerk P; Hochella, Michael F; Shi, Liang; Lower, Steven K

    2008-05-15

    Phage-display technology was used to evolve peptides that selectively bind to the metal-oxide hematite (Fe2O3) from a library of approximately 3 billion different polypeptides. The sequences of these peptides contained the highly conserved amino acid motif, Ser/Thr-hydrophobic/aromatic-Ser/Thr-Pro-Ser/Thr. To better understand the nature of the peptide-metal oxide binding demonstrated by these experiments, molecular dynamics simulations were carried out for Ser-Pro-Ser at a hematite surface. These simulations show that hydrogen bonding occurs between the two serine amino acids and the hydroxylated hematite surface and that the presence of proline between the hydroxide residues restricts the peptide flexibility, thereby inducing a structural-binding motif. A search of published sequence data revealed that the binding motif (Ser/Thr-Pro-Ser/Thr) is adjacent to the terminal heme-binding domain of both OmcA and MtrC, which are outer membrane cytochromes from the metal-reducing bacterium Shewanella oneidensis MR-1. The entire five amino acid consensus sequence (Ser/Thr-hydrophobic/ aromatic-Ser/Thr-Pro-Ser/Thr) was also found as multiple copies in the primary sequences of metal-oxide binding proteins Sil1 and Sil2 from Thalassiosira pseudonana. We suggest that this motif constitutes a natural metal-oxide binding archetype that could be exploited in enzyme-based biofuel cell design and approaches to synthesize tailored metal-oxide nanostructures.

  1. Reactive metal-oxide interfaces: A microscopic view

    NASA Astrophysics Data System (ADS)

    Picone, A.; Riva, M.; Brambilla, A.; Calloni, A.; Bussetti, G.; Finazzi, M.; Ciccacci, F.; Duò, L.

    2016-03-01

    Metal-oxide interfaces play a fundamental role in determining the functional properties of artificial layered heterostructures, which are at the root of present and future technological applications. Magnetic exchange and magnetoelectric coupling, spin filtering, metal passivation, catalytic activity of oxide-supported nano-particles are just few examples of physical and chemical processes arising at metal-oxide hybrid systems, readily exploited in working devices. These phenomena are strictly correlated with the chemical and structural characteristics of the metal-oxide interfacial region, making a thorough understanding of the atomistic mechanisms responsible of its formation a prerequisite in order to tailor the device properties. The steep compositional gradient established upon formation of metal-oxide heterostructures drives strong chemical interactions at the interface, making the metal-oxide boundary region a complex system to treat, both from an experimental and a theoretical point of view. However, once properly mastered, interfacial chemical interactions offer a further degree of freedom for tuning the material properties. The goal of the present review is to provide a summary of the latest achievements in the understanding of metal/oxide and oxide/metal layered systems characterized by reactive interfaces. The influence of the interface composition on the structural, electronic and magnetic properties will be highlighted. Particular emphasis will be devoted to the discussion of ultra-thin epitaxial oxides stabilized on highly oxidizable metals, which have been rarely exploited as oxide supports as compared to the much more widespread noble and quasi noble metallic substrates. In this frame, an extensive discussion is devoted to the microscopic characterization of interfaces between epitaxial metal oxides and the Fe(001) substrate, regarded from the one hand as a prototypical ferromagnetic material and from the other hand as a highly oxidizable metal.

  2. A Tandem Catalyst with Multiple Metal Oxide Interfaces Produced by Atomic Layer Deposition.

    PubMed

    Ge, Huibin; Zhang, Bin; Gu, Xiaomin; Liang, Haojie; Yang, Huimin; Gao, Zhe; Wang, Jianguo; Qin, Yong

    2016-06-13

    Ideal heterogeneous tandem catalysts necessitate the rational design and integration of collaborative active sites. Herein, we report on the synthesis of a new tandem catalyst with multiple metal-oxide interfaces based on a tube-in-tube nanostructure using template-assisted atomic layer deposition, in which Ni nanoparticles are supported on the outer surface of the inner Al2 O3 nanotube (Ni/Al2 O3 interface) and Pt nanoparticles are attached to the inner surface of the outer TiO2 nanotube (Pt/TiO2 interface). The tandem catalyst shows remarkably high catalytic efficiency in nitrobenzene hydrogenation over Pt/TiO2 interface with hydrogen formed in situ by the decomposition of hydrazine hydrate over Ni/Al2 O3 interface. This can be ascribed to the synergy effect of the two interfaces and the confined nanospace favoring the instant transfer of intermediates. The tube-in-tube tandem catalyst with multiple metal-oxide interfaces represents a new concept for the design of highly efficient and multifunctional nanocatalysts.

  3. Metal oxide semiconductors for dye degradation

    SciTech Connect

    Adhikari, Sangeeta; Sarkar, Debasish

    2015-12-15

    Highlights: • Hydrothermal synthesis of monoclinic and hexagonal WO{sub 3} nanostructures. • Nanocuboid and nanofiber growth using different structure directing agents. • WO{sub 3}–ZnO nanocomposites for dye degradation under UV and visible light. • High photocatalytic efficiency is achieved by 10 wt% monoclinic WO{sub 3}. • WO{sub 3} assists to trap hole in UV and arrests electron in visible light irradiation. - Abstract: Organic contaminants are a growing threat to the environment that widely demands their degradation by high efficient photocatalysts. Thus, the proposed research work primely focuses on the efficient degradation of methyl orange using designed WO{sub 3}–ZnO photocatalysts under both UV and visible light irradiation. Two different sets of WO{sub 3} nanostructures namely, monoclinic WO{sub 3} (m-WO{sub 3}) and hexagonal WO{sub 3} (h-WO{sub 3}) synthesizes in presence of a different structure directing agents. A specific dispersion technique allows the intimate contact of as-synthesized WO{sub 3} and ultra-violet active commercial ZnO photocatalyst in different weight variations. ZnO nanocrystal in presence of an optimum 10 wt% m-WO{sub 3} shows a high degree of photocatalytic activity under both UV and visible light irradiation compared to counterpart h-WO{sub 3}. Symmetrical monoclinic WO{sub 3} assists to trap hole in UV, but electron arresting mechanism predominates in visible irradiation. Coupling of monoclinic nanocuboid WO{sub 3} with ZnO proves to be a promising photocatalyst in both wavelengths.

  4. A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures.

    PubMed

    Sang, Liwen; Liao, Meiyong; Sumiya, Masatomo

    2013-08-13

    Ultraviolet (UV) photodetectors have drawn extensive attention owing to their applications in industrial, environmental and even biological fields. Compared to UV-enhanced Si photodetectors, a new generation of wide bandgap semiconductors, such as (Al, In) GaN, diamond, and SiC, have the advantages of high responsivity, high thermal stability, robust radiation hardness and high response speed. On the other hand, one-dimensional (1D) nanostructure semiconductors with a wide bandgap, such as β-Ga2O3, GaN, ZnO, or other metal-oxide nanostructures, also show their potential for high-efficiency UV photodetection. In some cases such as flame detection, high-temperature thermally stable detectors with high performance are required. This article provides a comprehensive review on the state-of-the-art research activities in the UV photodetection field, including not only semiconductor thin films, but also 1D nanostructured materials, which are attracting more and more attention in the detection field. A special focus is given on the thermal stability of the developed devices, which is one of the key characteristics for the real applications.

  5. A Comprehensive Review of Semiconductor Ultraviolet Photodetectors: From Thin Film to One-Dimensional Nanostructures

    PubMed Central

    Sang, Liwen; Liao, Meiyong; Sumiya, Masatomo

    2013-01-01

    Ultraviolet (UV) photodetectors have drawn extensive attention owing to their applications in industrial, environmental and even biological fields. Compared to UV-enhanced Si photodetectors, a new generation of wide bandgap semiconductors, such as (Al, In) GaN, diamond, and SiC, have the advantages of high responsivity, high thermal stability, robust radiation hardness and high response speed. On the other hand, one-dimensional (1D) nanostructure semiconductors with a wide bandgap, such as β-Ga2O3, GaN, ZnO, or other metal-oxide nanostructures, also show their potential for high-efficiency UV photodetection. In some cases such as flame detection, high-temperature thermally stable detectors with high performance are required. This article provides a comprehensive review on the state-of-the-art research activities in the UV photodetection field, including not only semiconductor thin films, but also 1D nanostructured materials, which are attracting more and more attention in the detection field. A special focus is given on the thermal stability of the developed devices, which is one of the key characteristics for the real applications. PMID:23945739

  6. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect

    Dr. Ramana Reddy

    2012-04-12

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode

  7. Au/metal oxides for low temperature CO oxidation

    SciTech Connect

    Srinivas, G.; Wright, J.; Bai, C.S.; Cook, R.

    1996-12-31

    Oxidation of carbon monoxide is important for several operations including fuel cells and carbon dioxide lasers. Room temperature CO oxidation has been investigated on a series of Au/metal oxide catalysts at conditions typical of spacecraft atmospheres; CO = 50 ppm, CO{sub 2} = 7,000 ppm, H{sub 2}O = 40% (RH) at 25{degrees}C, balance = air, and gas hourly space velocities of 7,000-60,000 hr{sup -1}. The addition of Au increases the room temperature CO oxidation activity of the metal oxides dramatically. All the Au/metal oxides deactivate during the CO oxidation reaction, especially in the presence of CO{sub 2} in the feed. The stability of the Au/metal oxide catalysts decreases in the following order: TiO{sub 2} > Fe{sub 2}O{sub 3} > NiO > Co{sub 3}O{sub 4}. The stability appears to decrease with an increase in the basicity of the metal oxides. In situ FTIR of CO adsorption on Au/TiO{sub 2} at 25{degrees}C indicates the formation of adsorbed CO, carboxylate, and carbonate species on the catalyst surface.

  8. Asymmetric organic/metal(oxide) hybrid nanoparticles: synthesis and applications

    NASA Astrophysics Data System (ADS)

    He, Jie; Liu, Yijing; Hood, Taylor C.; Zhang, Peng; Gong, Jinlong; Nie, Zhihong

    2013-05-01

    Asymmetric particles (APs) with broken centrosymmetry are of great interest, due to the asymmetric surface properties and diverse functionalities. In particular, organic/metal(oxide) APs naturally combine the significantly different and complementary properties of organic and inorganic species, leading to their unique applications in various fields. In this review article, we highlighted recent advances in the synthesis and applications of organic/metal(oxide) APs. This type of APs is grounded on chemical or physical interactions between metal(oxide) NPs and organic small molecular or polymeric ligands. The synthetic methodologies were summarized in three categories, including the selective surface modifications, phase separation of mixed ligands on the surface of metal(oxide) NPs, and direct synthesis of APs. We further discussed the unique applications of organic/metal(oxide) APs in self-assembly, sensors, catalysis, and biomedicine, as a result of the distinctions between asymmetrically distributed organic and inorganic components. Finally, challenges and future directions are discussed in an outlook section.

  9. Method of physical vapor deposition of metal oxides on semiconductors

    DOEpatents

    Norton, David P.

    2001-01-01

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  10. Polymer-assisted deposition of metal-oxide films.

    PubMed

    Jia, Q X; McCleskey, T M; Burrell, A K; Lin, Y; Collis, G E; Wang, H; Li, A D Q; Foltyn, S R

    2004-08-01

    Metal oxides are emerging as important materials for their versatile properties such as high-temperature superconductivity, ferroelectricity, ferromagnetism, piezoelectricity and semiconductivity. Metal-oxide films are conventionally grown by physical and chemical vapour deposition. However, the high cost of necessary equipment and restriction of coatings on a relatively small area have limited their potential applications. Chemical-solution depositions such as sol-gel are more cost-effective, but many metal oxides cannot be deposited and the control of stoichiometry is not always possible owing to differences in chemical reactivity among the metals. Here we report a novel process to grow metal-oxide films in large areas at low cost using polymer-assisted deposition (PAD), where the polymer controls the viscosity and binds metal ions, resulting in a homogeneous distribution of metal precursors in the solution and the formation of uniform metal-organic films. The latter feature makes it possible to grow simple and complex crack-free epitaxial metal-oxides.

  11. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, Kevin C.; Kodas, Toivo T.

    1994-01-01

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said FIELD OF THE INVENTION The present invention relates to the field of film coating deposition techniques, and more particularly to the deposition of multicomponent metal oxide films by aerosol chemical vapor deposition. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  12. Asymmetric organic/metal(oxide) hybrid nanoparticles: synthesis and applications.

    PubMed

    He, Jie; Liu, Yijing; Hood, Taylor C; Zhang, Peng; Gong, Jinlong; Nie, Zhihong

    2013-06-21

    Asymmetric particles (APs) with broken centrosymmetry are of great interest, due to the asymmetric surface properties and diverse functionalities. In particular, organic/metal(oxide) APs naturally combine the significantly different and complementary properties of organic and inorganic species, leading to their unique applications in various fields. In this review article, we highlighted recent advances in the synthesis and applications of organic/metal(oxide) APs. This type of APs is grounded on chemical or physical interactions between metal(oxide) NPs and organic small molecular or polymeric ligands. The synthetic methodologies were summarized in three categories, including the selective surface modifications, phase separation of mixed ligands on the surface of metal(oxide) NPs, and direct synthesis of APs. We further discussed the unique applications of organic/metal(oxide) APs in self-assembly, sensors, catalysis, and biomedicine, as a result of the distinctions between asymmetrically distributed organic and inorganic components. Finally, challenges and future directions are discussed in an outlook section.

  13. Mixed transition-metal oxides: design, synthesis, and energy-related applications.

    PubMed

    Yuan, Changzhou; Wu, Hao Bin; Xie, Yi; Lou, Xiong Wen David

    2014-02-03

    A promising family of mixed transition-metal oxides (MTMOs) (designated as Ax B3-x O4 ; A, B=Co, Ni, Zn, Mn, Fe, etc.) with stoichiometric or even non-stoichiometric compositions, typically in a spinel structure, has recently attracted increasing research interest worldwide. Benefiting from their remarkable electrochemical properties, these MTMOs will play significant roles for low-cost and environmentally friendly energy storage/conversion technologies. In this Review, we summarize recent research advances in the rational design and efficient synthesis of MTMOs with controlled shapes, sizes, compositions, and micro-/nanostructures, along with their applications as electrode materials for lithium-ion batteries and electrochemical capacitors, and efficient electrocatalysts for the oxygen reduction reaction in metal-air batteries and fuel cells. Some future trends and prospects to further develop advanced MTMOs for next-generation electrochemical energy storage/conversion systems are also presented.

  14. Tuning Ferritin's Band Gap through Mixed Metal Oxide Nanoparticle Formation.

    PubMed

    Olsen, Cameron; Embley, Jacob; Hansen, Kameron; Henrichsen, Andrew; Peterson, J; Colton, John S; Watt, Richard

    2017-03-23

    This study uses the formation of a mixed metal oxide inside ferritin to tune the band gap energy of the ferritin mineral. The mixed metal oxide is composed of both Co and Mn, and is formed by reacting aqueous Co2+ with MnO4- in the presence of apoferritin. Altering the ratio between the two reactants allowed for controlled tuning of the band gap energies. All minerals formed were indirect band gap materials, with indirect band gap energies ranging from 0.52 to 1.30 eV. The direct transitions were also measured, with energy values ranging from 2.71 to 3.11 eV. Tuning the band gap energies of these samples changes the wavelengths absorbed by each mineral, increasing ferritin's potential in solar-energy harvesting. Additionally, the success of using MnO4- in ferritin mineral formation opens the possibility for new mixed metal oxide cores inside ferritin.

  15. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, M.T.; Scott, T.C.; Byers, C.H.

    1992-06-16

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed. 2 figs.

  16. Development of metal oxide impregnated stilbite thick film ethanol sensor

    NASA Astrophysics Data System (ADS)

    Mahabole, M. P.; Lakhane, M. A.; Choudhari, A. L.; Khairnar, R. S.

    2016-05-01

    This paper presents the study of the sensing efficiency of Titanium oxide/ Stilbite and Copper oxide /Stilbite composites towards detection of hazardous pollutants like ethanol. Stilbite based composites are prepared by physically mixing zeolite with metal oxides namely TiO2 and CuO with weight ratios of 25:75, 50:50 and 75:25. The resulting sensor materials are characterized by X-ray diffraction and Fourier Transform Infrared Spectroscopy techniques. Composite sensors are fabricated in the form of thick film by using screen printing technique. The effect of metal oxide concentration on various ethanol sensing parameters such as operating temperature, maximum uptake capacity and response/recovery time are investigated. The results indicate that metal oxide impregnated stilbite composites have great potential as low temperature ethanol sensor.

  17. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.

    1993-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  18. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.

    1992-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  19. Method of recovering volatile metals from material containing metal oxides

    SciTech Connect

    Santen, S.

    1984-12-18

    A method of reducing and recovering volatile metal from metal oxides comprising the steps of injecting metal oxide-containing material into a shaft reactor, simultaneously injecting reducing agent into said reactor, continuously maintaining said reactor substantially filled with coke, supplying thermal energy to the reactor, preferably by means of a plasma burner, such that at least some of the metal oxides are reduced to metal and melted or volatilized depending upon whether the metal is volatile. The melted metal is removed from the bottom of the reactor while the volatilized metal is permitted to flow upwardly through the shaft reactor in the form of metal vapor together with a gas flow. The coke in the shaft reactor through which the volatilized metal passes is maintained at a temperature in excess of 1000/sup 0/ C., thus screening the upper portion of the shaft reactor and the reactor top by means of the coke so as to prevent condensation of the volatilized metal.

  20. Magnetic and Orbital Structures in Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Khomskii, Daniel

    2002-03-01

    The interplay of different degrees of freedom (charge, spin, orbital, lattice) determine all the rich properties of transition metal oxides. In particular, spin and orbital orderings appear to be especially strongly coupled. At least this is the case in perovskite-like systems with (almost) 180-degree metal-oxygen-metal bonds. The coupled spins and orbitals in this case can be described by the effective Hamiltonian of the type H = A(S*S)+B(T*T)+C(S*S)(T*T), where S and T are the spin and pseudospin of an ion ( describing an orbital occupation). In conventional cases, e.g. in perovskites, the constants A, B, C are of the same order, which determines strong coupling between spins and orbitals. However this electronic mechanism is not the only one leading to orbital ordering. The conventional Jahn-Teller interaction can also contribute to the latter, and it is not always clear which mechanism dominates. In this talk I will consider two questions. The first is the possibility to describe different orbital (and charge) superstructures in oxides, in particular in manganites, using the electron-lattice (elastic) interaction [1]. One can show that due to specific features of these interactions, one can naturally get in this mechanism different superstructures, including stripes. The second question concerns the form which these mechanisms take in systems with more complicated crystal structures - notably in oxides with 90-degree bonds. To these systems belong in particular some systems with geometric frustrations, e.g. some spinels, or LiNiO2, NaNiO2. We show that the exchange interaction in case of orbital degeneracy has for these systems the form much different from the perovskites: spin and orbital degrees of freedom are essentially decoupled, orbital exchange being much stronger even in the absence of electron-lattice interaction. We obtain corresponding exchange Hamiltonian, and consider the orbital and spin structure in systems like LiNiO2 [2], in which, due to a

  1. Ultraviolet-induced erasable photochromism in bilayer metal oxide films

    NASA Astrophysics Data System (ADS)

    Terakado, Nobuaki; Tanaka, Keiji; Nakazawa, Akira

    2011-09-01

    We demonstrate that the optical transmittance of bilayer samples consisting of pyrolytically coated amorphous Mg-Sn-O and metal oxide films such as In 2O 3 and SnO 2 decreases upon ultraviolet illumination, but can be recovered by annealing in air at ˜300 ∘C. Spectral, structural, and compositional studies suggest that this photochromic phenomenon is induced by photoelectronic excitation in the Mg-Sn-O film, electron injection into the metal oxide, which becomes negatively charged, and subsequent formation of metallic particles, which absorb and/or scatter visible light.

  2. Growth mechanism of metal-oxide nanowires synthesized by electron beam evaporation: A self-catalytic vapor-liquid-solid process

    PubMed Central

    Yu, Hak Ki; Lee, Jong-Lam

    2014-01-01

    We report the growth mechanism of metal oxide nanostructures synthesized by electron beam evaporation. The condensed electron beam can easily decompose metal oxide sources that have a high melting point, thereby creating a self-catalytic metal nanodot for the vapor-liquid-solid process. The metal oxide nanostructures can be grown at a temperature just above the melting point of the self-catalyst by dissolving oxygen. The morphology of nanostructures, such as density and uniformity, strongly depends on the surface energy and surface migration energy of the substrate. The density of the self-catalytic metal nanodots increased with decreasing surface energies of the substrate due to the perfect wetting phenomenon of the catalytic materials on the high surface energy substrate. However, the surfaces with extremely low surface energy had difficulty producing the high density of self-catalyst nanodot, due to positive line tension, which increases the contact angle to >180°. Moreover, substrates with low surface migration energy, such as single layer graphene, make nanodots agglomerate to produce a less-uniform distribution compared to those produced on multi-layer graphene with high surface migration energy. PMID:25300518

  3. One-dimensional fossil-like γ-Fe2O3@carbon nanostructure: preparation, structural characterization and application as adsorbent for fast and selective recovery of gold ions from aqueous solution

    NASA Astrophysics Data System (ADS)

    Gunawan, Poernomo; Xiao, Wen; Hao Chua, Marcus Wen; Poh-Choo Tan, Cheryl; Ding, Jun; Zhong, Ziyi

    2016-10-01

    One-dimensional (1D) magnetic nanostructures with high thermal stability have important industrial applications, but their fabrication remains a big challenge. Herein we demonstrate a scalable approach for the preparation of stable 1D γ-Fe2O3@carbon, which is also applicable for other metal oxide-core and carbon-shell nanostructures, such as 1D TiO2@carbon. One-dimensional ferric oxyhydroxide (α-FeO(OH)) was initially prepared by a hydrothermal method, followed by carbon coating through hydrothermal treatment of the resulting metal oxide in glucose solution. After calcination in N2 gas at 500 °C and subsequent exposure to air, the initial carbon-coated 1D α-Fe2O3 was converted to 1D γ-Fe2O3@carbon, which was very stable without any observed changes even after 1.5 years of storage under ambient conditions. The materials were then used as adsorbents and found to be highly selective towards Au (III) adsorption, of which the maximum adsorption capacity is about 600 mg Au/g sorbent (1132 mg Au/g carbon). The spent sorbent containing Au after adsorption can be readily collected by applying a magnetic field due to the presence of the magnetic core, and the adsorbed Au particles are subsequently recovered after the combustion and dissolution of the sorbent. This work demonstrates not only a facile approach to the fabrication of robust 1D magnetic materials with a stable carbon shell, but also a possible cyanide-free process for the fast and selective recovery of gold from electronic waste and industrial water.

  4. Sol-gel metal oxide and metal oxide/polymer multilayers applied by meniscus coating

    SciTech Connect

    Britten, J.A.; Thomas, I.M.

    1993-10-01

    We are developing a meniscus coating process for manufacturing large-aperture dielectric multilayer high reflectors (HR`s) at ambient conditions from liquid suspensions. Using a lab-scale coater capable of coating 150 mm square substrates, we have produced several HR`s which give 99% + reflection with 24 layers and with edge effects confined to about 10 mm. In calendar 1993 we are taking delivery of an automated meniscus coating machine capable of coating substrates up to 400 mm wide and 600 mm long. The laser-damage threshold and failure stress of sol-gel thin films can be substantially increased through the use of soluble polymers which act as binders for the metal oxide particles comprising the deposited film. Refractive index control of the film is also possible through varying the polymer/oxide ratio. Much of our present effort present is in optimizing oxide particle/binder/solvent formulations for the high-index material. Films from colloidal zirconia strengthened with polyvinylpyrollidone (PVP) have given best results to date. An increase in the laser damage threshold (LDT) for single layers has been shown to significantly increase with increased polymer loading, but as yet the LDT for multilayer stacks remains low.

  5. Sonochemical water splitting in the presence of powdered metal oxides.

    PubMed

    Morosini, Vincent; Chave, Tony; Virot, Matthieu; Moisy, Philippe; Nikitenko, Sergey I

    2016-03-01

    Kinetics of hydrogen formation was explored as a new chemical dosimeter allowing probing the sonochemical activity of argon-saturated water in the presence of micro- and nano-sized metal oxide particles exhibiting catalytic properties (ThO2, ZrO2, and TiO2). It was shown that the conventional sonochemical dosimeter based on H2O2 formation is hardly applicable in such systems due to catalytic degradation of H2O2 at oxide surface. The study of H2 generation revealed that at low-frequency ultrasound (20 kHz) the sonochemical water splitting is greatly improved for all studied metal oxides. The highest efficiency is observed for relatively large micrometric particles of ThO2 which is assigned to ultrasonically-driven particle fragmentation accompanied by mechanochemical water molecule splitting. The nanosized metal oxides do not exhibit particle size reduction under ultrasonic treatment but nevertheless yield higher quantities of H2. The enhancement of sonochemical water splitting in this case is most probably resulting from better bubble nucleation in heterogeneous systems. At high-frequency ultrasound (362 kHz), the effect of metal oxide particles results in a combination of nucleation and ultrasound attenuation. In contrast to 20 kHz, micrometric particles slowdown the sonolysis of water at 362 kHz due to stronger attenuation of ultrasonic waves while smaller particles show a relatively weak and various directional effects.

  6. Development of techniques for processing metal-metal oxide systems

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.

    1976-01-01

    Techniques for producing model metal-metal oxide systems for the purpose of evaluating the results of processing such systems in the low-gravity environment afforded by a drop tower facility are described. Because of the lack of success in producing suitable materials samples and techniques for processing in the 3.5 seconds available, the program was discontinued.

  7. Integrated photo-responsive metal oxide semiconductor circuit

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzban D. (Inventor); Dargo, David R. (Inventor); Lyons, John C. (Inventor)

    1987-01-01

    An infrared photoresponsive element (RD) is monolithically integrated into a source follower circuit of a metal oxide semiconductor device by depositing a layer of a lead chalcogenide as a photoresistive element forming an ohmic bridge between two metallization strips serving as electrodes of the circuit. Voltage from the circuit varies in response to illumination of the layer by infrared radiation.

  8. Positron studies of metal-oxide-semiconductor structures

    SciTech Connect

    Au, H.L.; Asoka-Kumar, P.; Nielsen, B.; Lynn, K.G. )

    1993-03-15

    Positron annihilation spectroscopy provides a new probe to study the properties of interface traps in metal-oxide semiconductors (MOS). Using positrons, we have examined the behavior of the interface traps as a function of gate bias. We propose a simple model to explain the positron annihilation spectra from the interface region of a MOS capacitor.

  9. High-temperature Complementary Metal Oxide Semiconductors (CMOS)

    NASA Technical Reports Server (NTRS)

    Mcbrayer, J. D.

    1981-01-01

    The results of an investigation into the possibility of using complementary metal oxide semiconductor (CMOS) technology for high temperature electronics are presented. A CMOS test chip was specifically developed as the test bed. This test chip incorporates CMOS transistors that have no gate protection diodes; these diodes are the major cause of leakage in commercial devices.

  10. Making A Noble-Metal-On-Metal-Oxide Catalyst

    NASA Technical Reports Server (NTRS)

    Miller, Irvin M.; Davis, Patricia P.; Upchurch, Billy T.

    1989-01-01

    Catalyst exhibits superior performance in oxidation of CO in CO2 lasers. Two-step process developed for preparing platinum- or palladium-on-tin-oxide catalyst for recombination of CO and O2, decomposition products that occur in high-voltage discharge region of closed-cycle CO2 laser. Process also applicable to other noble-metal/metal-oxide combinations.

  11. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, K.C.; Kodas, T.T.

    1994-01-11

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.

  12. Synthesis of Lithium Metal Oxide Nanoparticles by Induction Thermal Plasmas

    PubMed Central

    Tanaka, Manabu; Kageyama, Takuya; Sone, Hirotaka; Yoshida, Shuhei; Okamoto, Daisuke; Watanabe, Takayuki

    2016-01-01

    Lithium metal oxide nanoparticles were synthesized by induction thermal plasma. Four different systems—Li–Mn, Li–Cr, Li–Co, and Li–Ni—were compared to understand formation mechanism of Li–Me oxide nanoparticles in thermal plasma process. Analyses of X-ray diffractometry and electron microscopy showed that Li–Me oxide nanoparticles were successfully synthesized in Li–Mn, Li–Cr, and Li–Co systems. Spinel structured LiMn2O4 with truncated octahedral shape was formed. Layer structured LiCrO2 or LiCoO2 nanoparticles with polyhedral shapes were also synthesized in Li–Cr or Li–Co systems. By contrast, Li–Ni oxide nanoparticles were not synthesized in the Li–Ni system. Nucleation temperatures of each metal in the considered system were evaluated. The relationship between the nucleation temperature and melting and boiling points suggests that the melting points of metal oxides have a strong influence on the formation of lithium metal oxide nanoparticles. A lower melting temperature leads to a longer reaction time, resulting in a higher fraction of the lithium metal oxide nanoparticles in the prepared nanoparticles.

  13. Multilevel metallization method for fabricating a metal oxide semiconductor device

    NASA Technical Reports Server (NTRS)

    Hollis, B. R., Jr.; Feltner, W. R.; Bouldin, D. L.; Routh, D. E. (Inventor)

    1978-01-01

    An improved method is described of constructing a metal oxide semiconductor device having multiple layers of metal deposited by dc magnetron sputtering at low dc voltages and low substrate temperatures. The method provides multilevel interconnections and cross over between individual circuit elements in integrated circuits without significantly reducing the reliability or seriously affecting the yield.

  14. Metal oxide charge transport material doped with organic molecules

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.

    2016-08-30

    Doping metal oxide charge transport material with an organic molecule lowers electrical resistance while maintaining transparency and thus is optimal for use as charge transport materials in various organic optoelectronic devices such as organic photovoltaic devices and organic light emitting devices.

  15. Metal Oxide Reduction Linked to Anaerobic Methane Oxidation.

    PubMed

    Oni, Oluwatobi E; Friedrich, Michael W

    2017-02-01

    Microbial methanotrophy is important in mitigating methane emissions to the atmosphere. Geochemical evidence suggests the occurrence of anaerobic methane oxidation with metal oxides in natural environments. A study has now identified, for the first time, novel freshwater archaea of the order Methanosarcinales that can oxidize methane with Fe(III) and Mn(IV) minerals as electron acceptors.

  16. CMOS array design automation techniques. [metal oxide semiconductors

    NASA Technical Reports Server (NTRS)

    Ramondetta, P.; Feller, A.; Noto, R.; Lombardi, T.

    1975-01-01

    A low cost, quick turnaround technique for generating custom metal oxide semiconductor arrays using the standard cell approach was developed, implemented, tested and validated. Basic cell design topology and guidelines are defined based on an extensive analysis that includes circuit, layout, process, array topology and required performance considerations particularly high circuit speed.

  17. Exposure characterization of metal oxide nanoparticles in the workplace.

    PubMed

    Curwin, Brian; Bertke, Steve

    2011-10-01

    This study presents exposure data for various metal oxides in facilities that produce or use nanoscale metal oxides. Exposure assessment surveys were conducted at seven facilities encompassing small, medium, and large manufacturers and end users of nanoscale (particles <0.1 μm diameter) metal oxides, including the oxides of titanium, magnesium, yttrium, aluminum, calcium, and iron. Half- and full-shift sampling consisting of various direct-reading and mass-based area and personal aerosol sampling was employed to measure exposure for various tasks. Workers in large facilities performing handling tasks had the highest mass concentrations for all analytes. However, higher mass concentrations occurred in medium facilities and during production for all analytes in area samples. Medium-sized facilities had higher particle number concentrations in the air, followed by small facilities for all particle sizes measured. Production processes generally had the highest particle number concentrations, particularly for the smaller particles. Similar to particle number, the medium-sized facilities and production process had the highest particle surface area concentration. TEM analysis confirmed the presence of the specific metal oxides particles of interest, and the majority of the particles were agglomerated, with the predominant particle size being between 0.1 and 1 μm. The greatest potential for exposure to workers occurred during the handling process. However, the exposure is occurring at levels that are well below established and proposed limits.

  18. Metal oxide semiconductor thin-film transistors for flexible electronics

    NASA Astrophysics Data System (ADS)

    Petti, Luisa; Münzenrieder, Niko; Vogt, Christian; Faber, Hendrik; Büthe, Lars; Cantarella, Giuseppe; Bottacchi, Francesca; Anthopoulos, Thomas D.; Tröster, Gerhard

    2016-06-01

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular

  19. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine an activation energy for the catalyst-assisted systems.

  20. Volatile organometallic complexes suitable for use in chemical vapor depositions on metal oxide films

    DOEpatents

    Giolando, Dean M.

    2003-09-30

    Novel ligated compounds of tin, titanium, and zinc are useful as metal oxide CVD precursor compounds without the detriments of extreme reactivity yet maintaining the ability to produce high quality metal oxide coating by contact with heated substrates.

  1. Π Band Dispersion along Conjugated Organic Nanowires Synthesized on a Metal Oxide Semiconductor

    PubMed Central

    2016-01-01

    Surface-confined dehalogenation reactions are versatile bottom-up approaches for the synthesis of carbon-based nanostructures with predefined chemical properties. However, for devices generally requiring low-conductivity substrates, potential applications are so far severely hampered by the necessity of a metallic surface to catalyze the reactions. In this work we report the synthesis of ordered arrays of poly(p-phenylene) chains on the surface of semiconducting TiO2(110) via a dehalogenative homocoupling of 4,4″-dibromoterphenyl precursors. The supramolecular phase is clearly distinguished from the polymeric one using low-energy electron diffraction and scanning tunneling microscopy as the substrate temperature used for deposition is varied. X-ray photoelectron spectroscopy of C 1s and Br 3d core levels traces the temperature of the onset of dehalogenation to around 475 K. Moreover, angle-resolved photoemission spectroscopy and tight-binding calculations identify a highly dispersive band characteristic of a substantial overlap between the precursor’s π states along the polymer, considered as the fingerprint of a successful polymerization. Thus, these results establish the first spectroscopic evidence that atomically precise carbon-based nanostructures can readily be synthesized on top of a transition-metal oxide surface, opening the prospect for the bottom-up production of novel molecule–semiconductor devices. PMID:27115554

  2. Rational design of hierarchical ZnO superstructures for efficient charge transfer: mechanistic and photovoltaic studies of hollow, mesoporous, cage-like nanostructures with compacted 1D building blocks.

    PubMed

    Chetia, Tridip Ranjan; Ansari, Mohammad Shaad; Qureshi, Mohammad

    2016-02-21

    Mesoporous and hollow zinc oxide (ZnO) hierarchical superstructures assembled with compact 1D building blocks that provide an efficient and faster transport pathway for photo-generated charge carriers have been synthesized using a biomass derived polysaccharide "alginic acid". To understand the interactions between the organic bio-template and inorganic growth units of ZnO in aqueous medium, the effects of additives such as the alginate ion (ALGI) and ammonium hydroxide (NH4OH), along with the controlled reaction conditions, are investigated using Field Emission Scanning Electron Microscopy (FESEM) and powder X-ray diffraction. Dynamic and steady-state photoluminescence measurements are carried out to understand the charge transfer processes in the compact 1D superstructures. Experimental analyses reveal that the alginate ions, under hydrothermal reaction conditions, act as a structure directing agent and assemble 1D ZnO nanorods (NRs) hierarchically while NH4OH assists the formation of ZnO growth units. A plausible mechanism for ZnO cage formation is proposed based on the experimental observations. Morphology dependent photovoltaic properties of ZnO heterostructures, i.e., for ZnO cages, ZnO NRs and ZnO PNPs, have been studied along with electrochemical impedance spectroscopy (EIS). Enhancement of ∼ 60% and ∼ 35% in power conversion efficiency (PCE) is observed in ZnO cage based devices as compared to ZnO NR- and ZnO PNP-based devices, respectively.

  3. 40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for...

  4. 40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for...

  5. 40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for...

  6. 40 CFR 721.10574 - Alkylcarboxy polyester acrylate reaction products with mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (PMN P-09-48) is subject to reporting under this section for...

  7. 40 CFR 721.10574 - Alkylcarboxy polyester acrylate reaction products with mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (PMN P-09-48) is subject to reporting under this section for...

  8. 40 CFR 721.10044 - Metal oxide, modified with alkyl and vinyl terminated polysiloxanes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Metal oxide, modified with alkyl and... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10044 Metal oxide, modified with alkyl... to reporting. (1) The chemical substance identified generically as metal oxide, modified with...

  9. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  10. 40 CFR 721.10044 - Metal oxide, modified with alkyl and vinyl terminated polysiloxanes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Metal oxide, modified with alkyl and... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10044 Metal oxide, modified with alkyl... to reporting. (1) The chemical substance identified generically as metal oxide, modified with...

  11. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  12. 40 CFR 721.10044 - Metal oxide, modified with alkyl and vinyl terminated polysiloxanes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Metal oxide, modified with alkyl and... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10044 Metal oxide, modified with alkyl... to reporting. (1) The chemical substance identified generically as metal oxide, modified with...

  13. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  14. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  15. 40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for...

  16. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  17. 40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for...

  18. Thin water film formation on metal oxide crystal surfaces.

    PubMed

    Gilbert, Benjamin; Katz, Jordan E; Rude, Bruce; Glover, T E; Hertlein, Marcus P; Kurz, Charles; Zhang, Xiaoyi

    2012-10-09

    Reactions taking place at hydrated metal oxide surfaces are of considerable environmental and technological importance. Surface-sensitive X-ray methods can provide structural and chemical information on stable interfacial species, but it is challenging to perform in situ studies of reaction kinetics in the presence of water. We have implemented a new approach to creating a micrometer-scale water film on a metal oxide surface by combining liquid and gas jets on a spinning crystal. The water films are stable indefinitely and sufficiently thin to allow grazing incidence X-ray reflectivity and spectroscopy measurements. The approach will enable studies of a wide range of surface reactions and is compatible with interfacial optical-pump/X-ray-probe studies.

  19. Metal-oxide Nanowires for Toxic Gas Detection

    SciTech Connect

    Devineni, D. P.; Stormo, S.; Kempf, W.; Schenkel, J.; Behanan, R.; Lea, Alan S.; Galipeau, David W.

    2007-01-02

    The feasibility of using Electric field enhanced oxidation (EFEO) to fabricate metal-oxide nanowires for sensing toxic gases was investigated. The effects of fabrication parameters such as film thickness, ambient relative humidity, atomic force microscope (AFM) tip bias voltage, force, scan speed and number of scans on the growth of nanowires were determined. The chemical composition of indium-oxide nanowires was verified using Auger electron spectroscopy. It was found that oxygen to indium ration was 1.69, 1.72, 1.71 and 1.84 at depths of 0, 1.3, 2.5, and 3.8 nm, which was near the 1.5:1 expected for stoichiometric indium-oxide film. Future work will include characterizing the electrical and gas sensing properties of the metal-oxide nanowires.

  20. Electrostatic potentials for metal-oxide surfaces and interfaces

    NASA Astrophysics Data System (ADS)

    Streitz, F. H.; Mintmire, J. W.

    1994-10-01

    As most technologically important metals will form oxides readily, any complete study of adhesion at real metal surfaces must include the metal-oxide interface. The role of this ubiquitous oxide layer cannot be overlooked, as the adhesive properties of the oxide or oxide-metal system can be expected to differ profoundly from the adhesive properties of a bare metal surface. We report on the development of a computational method for molecular-dynamics simulations, which explicitly includes variable charge transfer between anions and cations. This method is found to be capable of describing the elastic properties, surface energies, and surface relaxation of crystalline metal oxides accurately. We discuss in detail results using this method for α-alumina and several of its low-index faces.

  1. Acute tellurium toxicity from ingestion of metal-oxidizing solutions.

    PubMed

    Yarema, Mark C; Curry, Steven C

    2005-08-01

    Tellurium is an element used in the vulcanization of rubber and in metal-oxidizing solutions to blacken or tarnish metals. Descriptions of human toxicity from tellurium ingestion are rare. We report the clinical course of 2 children who ingested metal-oxidizing solutions containing substantial concentrations of tellurium. Clinical features included vomiting, black discoloration of the oral mucosa, and a garlic odor to the breath. One patient developed corrosive injury to the esophagus secondary to the high concentration of hydrochloric acid in the solution. Both patients recovered without serious sequelae, which is typical of tellurium toxicity. An awareness of situations in which children may be exposed to tellurium and its clinical presentation may assist clinicians in the diagnosis of this rare poisoning.

  2. Biocidal properties of metal oxide nanoparticles and their halogen adducts

    NASA Astrophysics Data System (ADS)

    Haggstrom, Johanna A.; Klabunde, Kenneth J.; Marchin, George L.

    2010-03-01

    Nanosized metal oxide halogen adducts possess high surface reactivities due to their unique surface morphologies. These adducts have been used as reactive materials against vegetative cells, such as Escherichia coli as well as bacterial endospores, including Bacillus subtilis and Bacillus anthracis (Δ Sterne strain). Here we report high biocidal activities against gram-positive bacteria, gram-negative bacteria, and endospores. The procedure consists of a membrane method. Transmission electron micrographs are used to compare nanoparticle-treated and untreated cells and spores. It is proposed that the abrasive character of the particles, the oxidative power of the halogens/interhalogens, and the electrostatic attraction between the metal oxides and the biological material are responsible for high biocidal activities. While some activity was demonstrated, bacterial endospores were more resistant to nanoparticle treatment than the vegetative bacteria.

  3. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; Foran, M.T.

    1984-01-06

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150 to 260/sup 0/C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO/sub 4/ and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect. 3 tables.

  4. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  5. Ion exchange properties of novel hydrous metal oxide materials

    SciTech Connect

    Gardner, T.J.; McLaughlin, L.I.

    1996-12-31

    Hydrous metal oxide (HMO) materials are inorganic ion exchangers which have many desirable characteristics for catalyst support applications, including high cation exchange capacity, anion exchange capability, high surface area, ease of adjustment of acidity and basicity, bulk or thin film preparation, and similar chemistry for preparation of various transition metal oxides. Cation exchange capacity is engineered into these materials through the uniform incorporation of alkali cations via manipulation of alkoxide chemistry. Specific examples of the effects of Na stoichiometry and the addition of SiO{sub 2} to hydrous titanium oxide (HTO) on ion exchange behavior will be given. Acid titration and cationic metal precursor complex exchange will be used to characterize the ion exchange behavior of these novel materials.

  6. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    DOEpatents

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  7. Metal oxide-encapsulated dye-sensitized photoanodes for dye-sensitized solar cells

    SciTech Connect

    Hupp, Joseph T.; Son, Ho-Jin

    2016-01-12

    Dye-sensitized semiconducting metal oxide films for photoanodes, photoanodes incorporating the films and DSCs incorporating the photoanodes are provided. Also provided are methods for making the dye sensitized semiconducting metal oxide films. The methods of making the films are based on the deposition of an encapsulating layer of a semiconducting metal oxide around the molecular anchoring groups of photosensitizing dye molecules adsorbed to a porous film of the semiconducting metal oxide. The encapsulating layer of semiconducting metal oxide is formed in such a way that it is not coated over the chromophores of the adsorbed dye molecules and, therefore, allows the dye molecules to remain electrochemically addressable.

  8. Method for continuous synthesis of metal oxide powders

    DOEpatents

    Berry, David A.; Haynes, Daniel J.; Shekhawat, Dushyant; Smith, Mark W.

    2015-09-08

    A method for the rapid and continuous production of crystalline mixed-metal oxides from a precursor solution comprised of a polymerizing agent, chelated metal ions, and a solvent. The method discharges solution droplets of less than 500 .mu.m diameter using an atomizing or spray-type process into a reactor having multiple temperature zones. Rapid evaporation occurs in a first zone, followed by mixed-metal organic foam formation in a second zone, followed by amorphous and partially crystalline oxide precursor formation in a third zone, followed by formation of the substantially crystalline mixed-metal oxide in a fourth zone. The method operates in a continuous rather than batch manner and the use of small droplets as the starting material for the temperature-based process allows relatively high temperature processing. In a particular embodiment, the first zone operates at 100-300.degree. C., the second zone operates at 300-700.degree. C., and the third operates at 700-1000.degree. C., and fourth zone operates at at least 700.degree. C. The resulting crystalline mixed-metal oxides display a high degree of crystallinity and sphericity with typical diameters on the order of 50 .mu.m or less.

  9. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring

    PubMed Central

    Fine, George F.; Cavanagh, Leon M.; Afonja, Ayo; Binions, Russell

    2010-01-01

    Metal oxide semiconductor gas sensors are utilised in a variety of different roles and industries. They are relatively inexpensive compared to other sensing technologies, robust, lightweight, long lasting and benefit from high material sensitivity and quick response times. They have been used extensively to measure and monitor trace amounts of environmentally important gases such as carbon monoxide and nitrogen dioxide. In this review the nature of the gas response and how it is fundamentally linked to surface structure is explored. Synthetic routes to metal oxide semiconductor gas sensors are also discussed and related to their affect on surface structure. An overview of important contributions and recent advances are discussed for the use of metal oxide semiconductor sensors for the detection of a variety of gases—CO, NOx, NH3 and the particularly challenging case of CO2. Finally a description of recent advances in work completed at University College London is presented including the use of selective zeolites layers, new perovskite type materials and an innovative chemical vapour deposition approach to film deposition. PMID:22219672

  10. Aerosol-spray diverse mesoporous metal oxides from metal nitrates

    PubMed Central

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-01-01

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances. PMID:25897988

  11. Unravelling Small-Polaron Transport in Metal Oxide Photoelectrodes.

    PubMed

    Rettie, Alexander J E; Chemelewski, William D; Emin, David; Mullins, C Buddie

    2016-02-04

    Transition-metal oxides are a promising class of semiconductors for the oxidation of water, a process that underpins both photoelectrochemical water splitting and carbon dioxide reduction. However, these materials are limited by very slow charge transport. This is because, unlike conventional semiconductors, material aspects of metal oxides favor the formation of slow-moving, self-trapped charge carriers: small polarons. In this Perspective, we seek to highlight the salient features of small-polaron transport in metal oxides, offer guidelines for their experimental characterization, and examine recent transport studies of two prototypical oxide photoanodes: tungsten-doped monoclinic bismuth vanadate (W:BiVO4) and titanium-doped hematite (Ti:α-Fe2O3). Analysis shows that conduction in both materials is well-described by the adiabatic small-polaron model, with electron drift mobility (distinct from the Hall mobility) values on the order of 10(-4) and 10(-2) cm(2) V(-1) s(-1), respectively. Future directions to build a full picture of charge transport in this family of materials are discussed.

  12. Trap-limited photovoltage in ultrathin metal oxide layers

    NASA Astrophysics Data System (ADS)

    Dittrich, Th.; Duzhko, V.; Koch, F.; Kytin, V.; Rappich, J.

    2002-04-01

    Photovoltage signals were observed at ultrathin metal oxide (TiO2,Cu2O, ZnO)/ metal structures by transient and spectral photovoltage (PV) techniques. The sign, the spectral behavior and the time-dependent relaxation of the PV are determined by the nature of the traps in the metal oxide layers. At lower temperatures, the relaxation of the PV signal in TiO2 layers is controlled by recombination due to the overlap of the wave functions of the spatially separated electrons and holes. At higher temperatures, thermal emission accelerates the recombination process. The Bohr radius of trapped holes, the tail of the exponential approximation of electronic states distribution above the valence band, the density of states at the valence band edge were obtained for TiO2 layers by using the proposed model of trap limited PV. The concept of trap limited PV gives a general tool for the investigation of excess carrier separation in ultrathin metal oxide or semiconductor layers with trap states.

  13. Optical properties of transition metal oxide quantum wells

    SciTech Connect

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-21

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO{sub 3}/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  14. Optical properties of transition metal oxide quantum wells

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-01

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO3/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  15. Aerosol-spray diverse mesoporous metal oxides from metal nitrates.

    PubMed

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-04-21

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances.

  16. Antimicrobial activity of the metals and metal oxide nanoparticles.

    PubMed

    Dizaj, Solmaz Maleki; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad Hossein; Adibkia, Khosro

    2014-11-01

    The ever increasing resistance of pathogens towards antibiotics has caused serious health problems in the recent years. It has been shown that by combining modern technologies such as nanotechnology and material science with intrinsic antimicrobial activity of the metals, novel applications for these substances could be identified. According to the reports, metal and metal oxide nanoparticles represent a group of materials which were investigated in respect to their antimicrobial effects. In the present review, we focused on the recent research works concerning antimicrobial activity of metal and metal oxide nanoparticles together with their mechanism of action. Reviewed literature indicated that the particle size was the essential parameter which determined the antimicrobial effectiveness of the metal nanoparticles. Combination therapy with the metal nanoparticles might be one of the possible strategies to overcome the current bacterial resistance to the antibacterial agents. However, further studies should be performed to minimize the toxicity of metal and metal oxide nanoparticles to apply as proper alternatives for antibiotics and disinfectants especially in biomedical applications.

  17. Physicochemical of pillared clays prepared by several metal oxides

    NASA Astrophysics Data System (ADS)

    Rinaldi, Nino; Kristiani, Anis

    2017-03-01

    Natural clays could be modified by the pillarization method, called as Pillared Clays (PILCs). PILCs have been known as porous materials that can be used for many applications, one of the fields is catalysis. PILCs as two dimensional materials are interesting because their structures and textural properties can be controlled by using a metal oxide as the pillar. Different metal oxide used as the pillar causes different properties results of pillared clays. Usually, natural smectite clays/bentonites are used as a raw material. Therefore, a series of bentonite pillared by metal oxides was prepared through pillarization method. Variation of metals pillared into bentonite are aluminium, chromium, zirconium, and ferro. The physicochemical properties of catalysts were characterized by using X-ray Diffraction (XRD), Thermo Gravimetric Analysis (TGA), Brunauer-Emmett-Teller (BET) and Barret-Joyner-Halenda (BJH) analysis, and Fourier transform infrared spectroscopy (FTIR) measurement. Noteworthy characterization results showed that different metals pillared into bentonite affected physical and chemical properties, i.e. basal spacing, surface area, pore size distribution, thermal stability and acidity.

  18. Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): finding the border of metal and metal oxides.

    PubMed

    Das, Raja; Pachfule, Pradip; Banerjee, Rahul; Poddar, Pankaj

    2012-01-21

    Herein, for the first time, we report a generalized strategy for the successful synthesis of highly crystalline metal and metal oxide nanoparticles embedded in a carbon matrix by the controlled thermolysis of metal organic frameworks (MOFs). The rationalized synthesis strategy of a broad range of metal and metal oxides nanoparticles, such as Cu/CuO, Co/Co(3)O(4), ZnO, Mn(2)O(3), MgO and CdS/CdO, by thermolysis of MOFs demonstrates for the first time that metal ions with a reduction potential of -0.27 volts or higher present in MOFs always form pure metal nanoparticles during thermolysis in N(2), whereas metal ions with a reduction potential lower than -0.27 volts form metal oxide nanoparticles during thermolysis in N(2). Another point of interest is the fact that we have found a unique relationship between the nanoparticle size and the distance between the secondary building units inside the MOF precursors. Interestingly, the crystallinity of the carbon matrix was also found to be greatly influenced by the environment (N(2) and air) during thermolysis. Moreover, these nanoparticles dispersed in a carbon matrix showed promising H(2) and CO(2) adsorption properties depending on the environment used for the thermolysis of MOFs.

  19. Crystalline nanoporous metal oxide thin films by post-synthetic hydrothermal transformation: SnO2 and TiO2.

    PubMed

    Shao, Shaofeng; Dimitrov, Momtchil; Guan, Naijia; Köhn, Ralf

    2010-10-01

    Nanostructured and nanoporous metal oxide thin films are rarely accessible by standard synthetic approaches but highly desired for many applications, e.g. as electrodes, transparent conducting coatings, sensors or surface catalysts. Template based sol–gel chemistry combined with post-synthetic hydrothermal treatment allows now the synthesis of nanocrystalline mesostructured porous thin films of metal oxides, e.g. tin oxide and titania. Even in cases where the crystallization cannot be induced highly stable thin films can be achieved, e.g. niobium oxide thin films. We demonstrate how the size of the nanocrystallites influences and stabilizes the mesostructure at temperatures as low as 100 C and thereby in the case of titania or tin dioxide even prevents it from deterioration at higher temperatures up to 400–600 C.

  20. Characterization and photocatalytic activities of C, N and S co-doped TiO(2) with 1D nanostructure prepared by the nano-confinement effect.

    PubMed

    Dong, Fan; Zhao, Weirong; Wu, Zhongbiao

    2008-09-10

    A novel method was developed for preparing high specific surface area (156.2 m(2) g(-1)) one-dimensional TiO(2) nanostructures co-doped with C, N and S by the nano-confinement effect. A nonmetal doping source (thiourea) was first intercalated into the inner space of H-titanate nanotubes prepared by the hydrothermal method, and then calcined at 450 °C for 2 h in air. The as-prepared C, N and S co-doped TiO(2) nanowires exhibited high visible light and enhanced UV-vis activities in photocatalytic degradation of toluene in the gas phase. The samples were characterized by x-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, fast Fourier transform analysis, x-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectra and photoluminescence. The results indicated that the anatase nanowires grew along the [101] direction. Doping TiO(2) nanowires with C, N and S could not only broaden the light adsorption spectra into the visible region (400-600 nm), but also inhibit the recombination of photo-induced carriers. A mechanism is proposed to elucidate the nano-confinement effect of H-titanate nanotubes in the formation of C, N and S co-doping. Based on this mechanism, the effect of C, N and S co-doping on the band structure of TiO(2) nanowires is also discussed.

  1. Fabrication of mesoporous metal oxide coated-nanocarbon hybrid materials via a polyol-mediated self-assembly process

    NASA Astrophysics Data System (ADS)

    Feng, Bingmei; Wang, Huixin; Wang, Dongniu; Yu, Huilong; Chu, Yi; Fang, Hai-Tao

    2014-11-01

    After clarifying the formation mechanism of a typical metal glycolate precipitate, Ti glycolate, in a polyol-mediated synthesis using acetone as a precipitation medium, we describe a simple template-free approach based on an ethylene glycol-mediated synthesis to fabricate mesoporous metal oxide coated-nanocarbon hybrid materials including TiO2 coated-carbon nanotube (CNT), SnO2 coated-CNT, Cu2O/CuO coated-CNT and TiO2 coated-graphene sheet (GS). In the approach, metal oxide precursors, metal glycolates, were first deposited on CNTs or GSs, and subsequently transformed to the metal oxide coatings by pyrolysis or hydrolysis. By a comparison between the characterization of two TiO2-CNT hybrid materials using carboxylated CNTs and pristine CNTs without carboxyl groups, the driving force for initiating the deposition of metal glycolates on the carboxylated CNTs is confirmed to be the hydrogen bonding between the carboxyl groups and the polymer chains in metal glycolate sols. The electrochemical performances of the mesoporous TiO2 coated-carboxylated CNTs and TiO2-pristine CNT hybrid materials were investigated. The results show that the mesoporous TiO2 coated-carboxylated CNT with a uniform core-shell nanostructure exhibits substantial improvement in the rate performance in comparison with its counterpart from 0.5 C to 100 C because of its higher electronic conductivity and shorter diffusion path for the lithium ion. At the extremely high rate of 100 C, the specific capacity of TiO2 of the former reaches 85 mA h g-1, twice as high as that of the latter.After clarifying the formation mechanism of a typical metal glycolate precipitate, Ti glycolate, in a polyol-mediated synthesis using acetone as a precipitation medium, we describe a simple template-free approach based on an ethylene glycol-mediated synthesis to fabricate mesoporous metal oxide coated-nanocarbon hybrid materials including TiO2 coated-carbon nanotube (CNT), SnO2 coated-CNT, Cu2O/CuO coated-CNT and TiO2

  2. Zinc stannate nanostructures: hydrothermal synthesis

    PubMed Central

    Baruah, Sunandan; Dutta, Joydeep

    2011-01-01

    Nanostructured binary semiconducting metal oxides have received much attention in the last decade owing to their unique properties rendering them suitable for a wide range of applications. In the quest to further improve the physical and chemical properties, an interest in ternary complex oxides has become noticeable in recent times. Zinc stannate or zinc tin oxide (ZTO) is a class of ternary oxides that are known for their stable properties under extreme conditions, higher electron mobility compared to its binary counterparts and other interesting optical properties. The material is thus ideal for applications from solar cells and sensors to photocatalysts. Among the different methods of synthesizing ZTO nanostructures, the hydrothermal method is an attractive green process that is carried out at low temperatures. In this review, we summarize the conditions leading to the growth of different ZTO nanostructures using the hydrothermal method and delve into a few of its applications reported in the literature. PMID:27877377

  3. Nanostructured core-shell electrode materials for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Jiang, Long-bo; Yuan, Xing-zhong; Liang, Jie; Zhang, Jin; Wang, Hou; Zeng, Guang-ming

    2016-11-01

    Core-shell nanostructure represents a unique system for applications in electrochemical energy storage devices. Owing to the unique characteristics featuring high power delivery and long-term cycling stability, electrochemical capacitors (ECs) have emerged as one of the most attractive electrochemical storage systems since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review aims to summarize recent progress on core-shell nanostructures for advanced supercapacitor applications in view of their hierarchical architecture which not only create the desired hierarchical porous channels, but also possess higher electrical conductivity and better structural mechanical stability. The core-shell nanostructures include carbon/carbon, carbon/metal oxide, carbon/conducting polymer, metal oxide/metal oxide, metal oxide/conducting polymer, conducting polymer/conducting polymer, and even more complex ternary core-shell nanoparticles. The preparation strategies, electrochemical performances, and structural stabilities of core-shell materials for ECs are summarized. The relationship between core-shell nanostructure and electrochemical performance is discussed in detail. In addition, the challenges and new trends in core-shell nanomaterials development have also been proposed.

  4. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2006-11-14

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0

  5. Reaction and spectroscopic study of supported metal oxide catalysts

    NASA Astrophysics Data System (ADS)

    Ramani, Narayanan C.

    The role of surface structure, cation reducibility, surface acidity and the effect of the support was examined in the reaction of 1-butene over well characterized, supported metal oxide catalysts. Cr, Mo and W oxides supported on SiOsb2 were used to study the effect of structure, surface acidity and cation reducibility in the isomerization and selective oxidation of 1-butene. Supported oxides of Mo on TiOsb2,\\ Alsb2Osb3 and SiOsb2 were used to understand the role of the support in the selective oxidation of 1-butene. The surface acidity of SiOsb2 supported Cr, Mo, W and V oxide catalysts was examined by pyridine adsorption. Existing theoretical models of acidity were compared against experimental data. Over Mo(VI)/SiOsb2 and W(VI)/SiOsb2, isomerization through both a Bronsted catalyzed pathway and an allylic pathway were observed, while only the allylic pathway was observed over Cr(VI)/SiOsb2. The greater reducibility of the Cr cation compared to Mo and W cations was identified as the reason for the allylic pathway being dominant over Cr(VI)/SiOsb2. Cation reducibility was again seen to play an important role in the selective oxidation of 1-butene over SiOsb2 supported metal oxides. The turn over frequencies for 1,3-butadiene formation followed the trend in red-ox ability, with Cr > Mo > W. The activity to 1,3-butadiene formation did not change with increasing weight loading of Mo over TiOsb2 and Alsb2Osb3 supports. An analysis of the turn over frequencies of the supports and the supported cations revealed that a support effect, through the bridging oxygen ligand, dominated the intrinsic cation reducibility of Mo for these catalysts. The existence of Bronsted acidity over SiOsb2 supported Cr, Mo and V oxides was shown by an analysis of the OH region of the infrared spectrum, and by the adsorption of 1-butene and pyridine. Existing theoretical models for Bronsted acidity over supported metal oxides were shown to be inadequate to describe the observed results over

  6. Activated Metal Oxide Surfaces as Highly Reactive Environments

    DTIC Science & Technology

    1990-08-03

    underway. " Synthesis of Ultra-High Surface Area Fe203 by Precipitation Methods Yong-Xi Li A series of precipitations of Fe(OH) 3 (from FeCl 3) at...Progress was also made on developing new aerogel procedures for synthesis of ultra-high surface area magnesium oxide. Finally,’ome metal oxide molecules...were studied in chemical reactions and by theoretical methods .-) Three students earned Ph.D. degrees and one an M.S. degree. A visiting professor and

  7. Container effect in nanocasting synthesis of mesoporous metal oxides.

    PubMed

    Sun, Xiaohong; Shi, Yifeng; Zhang, Peng; Zheng, Chunming; Zheng, Xinyue; Zhang, Fan; Zhang, Yichi; Guan, Naijia; Zhao, Dongyuan; Stucky, Galen D

    2011-09-21

    We report a general reaction container effect in the nanocasting synthesis of mesoporous metal oxides. The size and shape of the container body in conjunction with simply modifying the container opening accessibility can be used to control the escape rate of water and other gas-phase byproducts in the calcination process, and subsequently affect the nanocrystal growth of the materials inside the mesopore space of the template. In this way, the particle size, mesostructure ordering, and crystallinity of the final product can be systemically controlled. The container effect also explain some of the problems with reproducibility in previously reported results.

  8. Flexible Transition Metal Oxide Electronics and Imprint Lithography

    NASA Astrophysics Data System (ADS)

    Jackson, Warren B.

    The previous chapters have discussed inorganic low-deposition temperature materials suitable for flexible applications, such as amorphous and nano-crystalline-silicon (Si) and organic conductors. This chapter presents the results of a recently developed inorganic low-temperature materials system, transition metal oxides (TMOs), that appears to be a very promising, new high-performance flexible electronic materials system. An equally, if not more, important part of this chapter, is the presentation of self-aligned imprint lithography (SAIL) a new fabrication method for flexible substrates that solves the layer-to-layer alignment problem.

  9. Pollution performance of 110 kV metal oxide arresters

    SciTech Connect

    Chrzan, K.; Pohl, Z.; Grzybowski, S.; Koehler, W.

    1997-04-01

    Pollution test results of single unit 110 kV metal oxide surge arresters with porcelain housing according to the solid layer and salt fog methods are presented. During 6 hours of testing, the internal and external charge and maximum temperature along the varistor column were measured. The formation of single stable dry bands on the housing was often observed, especially during salt fog tests. In such cases, the varistor temperature can reach about 70 C. The simple electrical model of the arrester enabling calculations of voltages and currents as a function of arrester and pollution parameters is shown.

  10. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2004-01-13

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

  11. All-alkoxide synthesis of strontium-containing metal oxides

    DOEpatents

    Boyle, Timothy J.

    2001-01-01

    A method for making strontium-containing metal-oxide ceramic thin films from a precursor liquid by mixing a strontium neo-pentoxide dissolved in an amine solvent and at least one metal alkoxide dissolved in a solvent, said at least one metal alkoxide selected from the group consisting of alkoxides of calcium, barium, bismuth, cadmium, lead, titanium, tantalum, hafnium, tungsten, niobium, zirconium, yttrium, lanthanum, antimony, chromium and thallium, depositing a thin film of the precursor liquid on a substrate, and heating the thin film in the presence of oxygen at between 550 and 700.degree. C.

  12. Microelectronic components and metallic oxide studies and applications

    NASA Technical Reports Server (NTRS)

    Williams, L., Jr.

    1976-01-01

    The project involved work in two basic areas: (1) Evaluation of commercial screen printable thick film conductors, resistors, thermistors and dielectrics as well as alumina substrates used in hybird microelectronics industries. Results of tests made on materials produced by seven companies are presented. (2) Experimental studies on metallic oxides of copper and vanadium, in an effort to determine their electrochemical properties in crystalline, powder mixtures and as screen printable thick films constituted the second phase of the research effort. Oxide investigations were aimed at finding possible applications of these materials as switching devices memory elements and sensors.

  13. Generation of singlet oxygen on the surface of metal oxides

    NASA Astrophysics Data System (ADS)

    Kiselev, V. M.; Kislyakov, I. M.; Burchinov, A. N.

    2016-04-01

    Generation of singlet oxygen on the surface of metal oxides is studied. It is shown that, under conditions of heterogeneous photo-catalysis, along with the conventional mechanism of singlet oxygen formation due to the formation of electron-hole pairs in the oxide structure, there is an additional and more efficient mechanism involving direct optical excitation of molecular oxygen adsorbed on the oxide surface. The excited adsorbate molecule then interacts with the surface or with other adsorbate molecules. It is shown that, with respect to singlet oxygen generation, yttrium oxide is more than an order of magnitude more efficient than other oxides, including titanium dioxide.

  14. Synthesis of Metal Oxide Nanomaterials for Chemical Sensors by Molecular Beam Epitaxy

    SciTech Connect

    Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T; Thevuthasan, Suntharampillai

    2013-12-01

    Since the industrial revolution, detection and monitoring of toxic matter, chemical wastes, and air pollutants has become an important environmental issue. Thus, it leads to the development of chemical sensors for various environmental applications. The recent disastrous oil spills over the near-surface of ocean due to the offshore drilling emphasize the use of chemical sensors for prevention and monitoring of the processes that might lead to these mishaps.1, 2 Chemical sensors operated on a simple principle that the sensing platform undergoes a detectable change when exposed to the target substance to be sensed. Among all the types of chemical sensors, solid state gas sensors have attracted a great deal of attention due to their advantages such as high sensitivity, greater selectivity, portability, high stability and low cost.3, 4 Especially, semiconducting metal oxides such as SnO2, TiO2, and WO3 have been widely used as the active sensing platforms in solid state gas sensors.5 For the enhanced properties of solid state gas sensors, finding new sensing materials or development of existing materials will be needed. Thus, nanostructured materials such as nanotubes,6-8 nanowires,9-11 nanorods,12-15 nanobelts,16, 17 and nano-scale thin films18-23 have been synthesized and studied for chemical sensing applications.

  15. Metal oxide semiconductors for dye- and quantum-dot-sensitized solar cells.

    PubMed

    Concina, Isabella; Vomiero, Alberto

    2015-04-17

    This Review provides a brief summary of the most recent research developments in the synthesis and application of nanostructured metal oxide semiconductors for dye sensitized and quantum dot sensitized solar cells. In these devices, the wide bandgap semiconducting oxide acts as the photoanode, which provides the scaffold for light harvesters (either dye molecules or quantum dots) and electron collection. For this reason, proper tailoring of the optical and electronic properties of the photoanode can significantly boost the functionalities of the operating device. Optimization of the functional properties relies with modulation of the shape and structure of the photoanode, as well as on application of different materials (TiO2, ZnO, SnO2) and/or composite systems, which allow fine tuning of electronic band structure. This aspect is critical because it determines exciton and charge dynamics in the photoelectrochemical system and is strictly connected to the photoconversion efficiency of the solar cell. The different strategies for increasing light harvesting and charge collection, inhibiting charge losses due to recombination phenomena, are reviewed thoroughly, highlighting the benefits of proper photoanode preparation, and its crucial role in the development of high efficiency dye sensitized and quantum dot sensitized solar cells.

  16. Design of heterogeneous photocatalysts based on metal oxides to control the selectivity of chemical reactions.

    PubMed

    Maldotti, Andrea; Molinari, Alessandra

    2011-01-01

    Photocatalysis is particularly relevant in order to realize chemical transformations of interest in synthesis and, at the same time, to move towards a "sustainable chemistry" with a minimal environmental impact. Heterogeneous systems with well-defined textural characteristics represent a suitable means to tailor the selectivity of photocatalytic processes. Here, we summarize and classify the significant features of photocatalysts consisting of photoactive metal oxides dispersed on high-surface-area solid supports, or constrained inside their porous network. These systems are based on the use of titanium dioxide, highly dispersed oxides of titanium, chromium, vanadium, and polyoxotungstates. They share similar primary photoprocesses: light absorption induces a charge separation process with formation of positive holes able to oxidize organic substrates. A great number of the papers discussed here concern oxidation reactions carried out in the presence of O₂ for inducing partial oxidation of alcohols and monooxygenation of hydrocarbons. We also devote some attention to photocatalysis in the absence of O₂. In these conditions, the photogenerated charge separation offers the possibility to induce the formation of C-C and C-N bonds. We emphasize that the optimal tailoring of photoactive materials for synthetic purposes can be achieved by combining recent advances in the preparation of nanostructured materials with mechanistic knowledge derived from surface science and molecular level investigations.

  17. One-dimensional boron nanostructures: Prediction, synthesis, characterizations, and applications.

    PubMed

    Tian, Jifa; Xu, Zhichuan; Shen, Chengmin; Liu, Fei; Xu, Ningsheng; Gao, Hong-Jun

    2010-08-01

    One-dimensional (1D) boron nanostructures are very potential for nanoscale electronic devices since their physical properties including electric transport and field emission have been found very promising as compared to other well-developed 1D nanomaterials. In this article, we review the current progress that has been made on 1D boron nanostructures in terms of theoretical prediction, synthetic techniques, characterizations and potential applications. To date, the synthesis of 1D boron nanostructures has been well-developed. The popular structures include nanowires, nanobelts, and nanocones. Some of these 1D nanostructures exhibited improved electric transport properties over bulk boron materials as well as promising field emission properties. By current experimental findings, 1D boron nanostructures are promising to be one of core materials for future nanodevices. More efforts are expected to be made in future on the controlled growth of 1D boron nanostructures and tailoring their physical properties.

  18. Experimental study of compatibility of reduced metal oxides with thermal energy storage lining materials

    NASA Astrophysics Data System (ADS)

    El-Leathy, Abdelrahman; Danish, Syed Noman; Al-Ansary, Hany; Jeter, Sheldon; Al-Suhaibani, Zeyad

    2016-05-01

    Solid particles have been shown to be able to operate at temperatures higher than 1000 °C in concentrated solar power (CSP) systems with thermal energy storage (TES). Thermochemical energy storage (TCES) using metal oxides have also found to be advantageous over sensible and latent heat storage concepts. This paper investigates the compatibility of the inner lining material of a TES tank with the reduced metal oxide. Two candidate metal oxides are investigated against six candidate lining materials. XRD results for both the materials are investigated and compared before and after the reduction of metal oxide at 1000°C in the presence of lining material. It is found that the lining material rich in zirconia is suitable for such application. Silicon Carbide is also found non-reacting with one of the metal oxides so it needs to be further investigated with other candidate metal oxides.

  19. Water at Metal Oxide Interfaces: To Dissociate or Not to Dissociate?

    NASA Astrophysics Data System (ADS)

    Newberg, J. T.; Arble, C.; Goodwin, C.; Boscoboinik, A.; Tong, X.; Ferrari, A.; Giordano, L.

    2014-12-01

    Metal oxides are a major component of suspended aerosol particulate matter. The molecular level understanding of metal oxide surfaces has important implications in trace gas adsorption and/or chemical processing in atmospheric aerosol chemistry. The extent to which water molecularly adsorbs and/or dissociates at metal oxide interfaces under ambient conditions is becoming increasingly recognized through fundamental studies via spectroscopy and microscopy tools. We will be presenting recent efforts to understand the interfacial chemistry of metal oxide single crystal and thin film surfaces exposed to ambient water vapor conditions using in-vacuo X-ray Photoelectron Spectroscopy (XPS), ambient pressure XPS, scanning tunneling microscopy (STM), and computer simulations. Results highlight the importance of surface chemistry, metal oxide crystal termination, and external humidity conditions on the interfacial dynamics and chemistry of water at metal oxide interfaces.

  20. Solubility Behavior and Phase Stability of Transition Metal Oxides in Alkaline Hydrothermal Environments

    SciTech Connect

    S.E. Ziemniak

    2000-05-18

    The solubility behavior of transition metal oxides in high temperature water is interpreted by recognizing three types of chemical reaction equilibria: metal oxide hydration/dehydration, metal oxide dissolution and metal ion hydroxocomplex formation. The equilibria are quantified using thermodynamic concepts and the thermochemical properties of the metal oxides/ions representative of the most common constituents of construction metal alloys, i.e., element shaving atomic numbers between Z = 22 (Ti) and Z = 30 (Zn), are summarized on the basis of metal oxide solubility studies conducted in the laboratory. Particular attention is devoted to the uncharged metal ion hydrocomplex, M{sup Z}(OH){sub Z}(aq), since its thermochemical properties define minimum solubilities of the metal oxide at a given temperature. Experimentally-extracted values of standard partial molal entropy (S{sup 0}) for the transition metal ion neutral hydroxocomplex are shown to be influenced by ligand field stabilization energies and complex symmetry.

  1. Investigations of Transition Metal Oxide with the Perovskite Structure as Potential Multiferroics

    DTIC Science & Technology

    2008-10-01

    Investigation of Transition Metal Oxides with the Perovskite Structure as Potential Multiferroics by Virginia Lea Miller and Steven C. Tidrow...Adelphi, MD 20783-1197 ARL-TR-4621 October 2008 Investigation of Transition Metal Oxides with the Perovskite Structure as Potential...5b. GRANT NUMBER 4. TITLE AND SUBTITLE Investigation of Transition Metal Oxides with the Perovskite Structure as Potential Multiferroics 5c

  2. Generation and behavior of metal oxide colloids in PWR steam systems

    SciTech Connect

    Varsanik, R.G.

    1984-10-01

    This work reviews the curently available literature and research work on the generation and behavior of metal oxide colloids in PWR steam systems. The work of E. Matijevic et al on the generation and adhesion of iron and copper oxides is described. The role of colloid chemistry in the control of plant sludge and corrosion products is described. Factors affecting the adherence and re-entrainment of colloidal metal oxides along with possible methods for the control of metal oxide deposition are reviewed.

  3. The MSFC complementary metal oxide semiconductor (including multilevel interconnect metallization) process handbook

    NASA Technical Reports Server (NTRS)

    Bouldin, D. L.; Eastes, R. W.; Feltner, W. R.; Hollis, B. R.; Routh, D. E.

    1979-01-01

    The fabrication techniques for creation of complementary metal oxide semiconductor integrated circuits at George C. Marshall Space Flight Center are described. Examples of C-MOS integrated circuits manufactured at MSFC are presented with functional descriptions of each. Typical electrical characteristics of both p-channel metal oxide semiconductor and n-channel metal oxide semiconductor discrete devices under given conditions are provided. Procedures design, mask making, packaging, and testing are included.

  4. Inhibiting Metal Oxide Atomic Layer Deposition: Beyond Zinc Oxide.

    PubMed

    Sampson, Matthew D; Emery, Jonathan D; Pellin, Michael J; Martinson, Alex B F

    2017-04-05

    Atomic layer deposition (ALD) of several metal oxides is selectivity inhibited on alkanethiol self-assembled monolayers (SAMs) on Au, and the eventual nucleation mechanism is investigated. The inhibition ability of the SAM is significantly improved by the in situ H2-plasma pretreatment of the Au substrate prior to the gas-phase deposition of a long-chain alkanethiol, 1-dodecanethiol (DDT). This more rigorous surface preparation inhibits even aggressive oxide ALD precursors, including trimethylaluminum and water, for at least 20 cycles. We study the effect that the ALD precursor purge times, growth temperature, alkanethiol chain length, alkanethiol deposition time, and plasma treatment time have on Al2O3 ALD inhibition. This is the first example of Al2O3 ALD inhibition from a vapor-deposited SAM. The inhibitions of Al2O3, ZnO, and MnO ALD processes are compared, revealing the versatility of this selective surface treatment. Atomic force microscopy and grazing-incidence X-ray fluorescence further reveal insight into the mechanism by which the well-defined surface chemistry of ALD may eventually be circumvented to allow metal oxide nucleation and growth on SAM-modified surfaces.

  5. [Synthesis and characterization of mixed metal oxide pigments].

    PubMed

    Ding, Jie; Yue, Shi-juan; Liu, Cui-ge; Wei, Yong-ju; Meng, Tao; Jiang, Han-jie; Shi, Yong-zheng; Xu, Yi-zhuang; Yu, Jiang; Wu, Jin-guang

    2012-03-01

    In the present work, aluminum chloride and various soluble salts of doping ions were dissolved in water. In addition, urea and polyvinyl pyrrolidone (PVP) were also dissolved in the above aqueous solution under supersonic treatments. Then the solutions were heated to induce the hydrolysis of urea so that soluble aluminum and doping ions convert into insoluble hydroxide or carbonate gels. After calcinations, the obtained gels change to mixed metal oxide pigments whose color is related to type and concentrations of the doping ions. XRD characterization demonstrates that the diffraction patterns of the products are the same as that of alpha-alumina. Diffuse reflectance spectra of samples of the samples in UV-Vis regions show that the absorption bands for d-d transitions of the doping ions undergo considerable change as the coordinate environments change. In addition, L*, a* and b* values of the pigments were measured by using UV-Vis densitometer. SEM results indicate that the size of the pigment powders is in the range 200-300 nm. The pigments are quite stable since no evidence of dissolution was observed after the synthesized pigment is soaked for 24 hours. ICP test shows that very little amount of doped metal occurs in the corresponding filtrate. The above results suggest that these new kinds of mixed metal oxide pigments are stable, non-toxic, environmental friendly and they may be applicable in molten spinning process and provide a new chance for non-aqueous printing and dyeing industry.

  6. Silver nanowires-templated metal oxide for broadband Schottky photodetector

    NASA Astrophysics Data System (ADS)

    Patel, Malkeshkumar; Kim, Hong-Sik; Park, Hyeong-Ho; Kim, Joondong

    2016-04-01

    Silver nanowires (AgNWs)-templated transparent metal oxide layer was applied for Si Schottky junction device, which remarked the record fastest photoresponse of 3.4 μs. Self-operating AgNWs-templated Schottky photodetector showed broad wavelength photodetection with high responsivity (42.4 A W-1) and detectivity (2.75 × 1015 Jones). AgNWs-templated indium-tin-oxide (ITO) showed band-to-band excitation due to the internal photoemission, resulting in significant carrier collection performances. Functional metal oxide layer was formed by AgNWs-templated from ITO structure. The grown ITO above AgNWs has a cylindrical shape and acts as a thermal protector of AgNWs for high temperature environment without any deformation. We developed thermal stable AgNWs-templated transparent oxide devices and demonstrated the working mechanism of AgNWs-templated Schottky devices. We may propose the high potential of hybrid transparent layer design for various photoelectric applications, including solar cells.

  7. Miniaturized metal oxide pH sensors for bacteria detection.

    PubMed

    Uria, Naroa; Abramova, Natalia; Bratov, Andrey; Muñoz-Pascual, Francesc-Xavier; Baldrich, Eva

    2016-01-15

    It is well known that the metabolic activity of some microorganisms results in changes of pH of the culture medium, a phenomenon that can be used for detection and quantification of bacteria. However, conventional glass electrodes that are commonly used for pH measurements are bulky, fragile and expensive, which hinders their application in miniaturized systems and encouraged to the search for alternatives. In this work, two types of metal oxide pH sensors have been tested to detect the metabolic activity of the bacterium Escherichia coli (E. coli). These pH sensors were produced on silicon chips with platinum metal contacts, onto which thin layers of IrOx or Ta2O5 were incorporated by two different methods (electrodeposition and e-beam sputtering, respectively). In order to facilitate measurement in small sample volumes, an Ag/AgCl pseudo-reference was also screen-printed in the chip and was assayed in parallel to an external Ag/AgCl reference electrode. As it is shown, the developed sensors generated results indistinguishable from those provided by a conventional glass pH-electrode but could be operated in significantly smaller sample volumes. After optimization of the detection conditions, the metal oxide sensors are successfully applied for detection of increasing concentrations of viable E. coli, with detection of less than 10(3)cfu mL(-1) in undiluted culture medium in just 5h.

  8. Acoustic plane wave preferential orientation of metal oxide superconducting materials

    DOEpatents

    Tolt, Thomas L.; Poeppel, Roger B.

    1991-01-01

    A polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0metal oxide in the form of a ceramic slip which has not yet set, orientation of the crystal basal planes parallel with the direction of desired current flow is accomplished by an applied acoustic plane wave in the acoustic or ultrasonic frequency range (either progressive or standing) in applying a torque to each crystal particle. The ceramic slip is then set and fired by conventional methods to produce a conductor with preferentially oriented grains and substantially enhanced current carrying capacity.

  9. Interaction of Metal Oxides with Biomolecules: Implication in Astrobiology

    NASA Astrophysics Data System (ADS)

    Kamaluddin; Iqubal, Md. Asif

    2014-08-01

    Steps of chemical evolution have been designated as formation of biomonomers followed by their polymerization and then to modify in an organized structure leading to the formation of first living cell. Polymerization of biomonomers could have required some catalyst. In addition to clay, role of metal ions and metal complexes as prebiotic catalyst in the synthesis and polymerization of biomonomers cannot be ruled out. Metal oxides are important constituents of Earth crust and that of other planets. These oxides might have adsorbed organic molecules and catalyzed the condensation processes, which may have led to the formation of first living cell. Different studies were performed in order to investigate the role of metal oxides (especially oxides of iron and manganese) in chemical evolution. Iron oxides (goethite, akaganeite and hematite) as well as manganese oxides (MnO, Mn2O3, Mn3O4 and MnO2) were synthesized and their characterization was done using IR, powder XRD, FE-SEM and TEM. Role of above oxides was studied in the adsorption of ribose nucleotides, formation of nucleobases from formamide and oligomerization of amino acids. Above oxides of iron and manganese were found to have good adsorption affinity towards ribose nucleotides, high catalytic activity in the formation of several nucleobases from formamide and oligomerization of glycine and alanine. Characterization of products was performed using UV, IR, HPLC and ESI-MS techniques. Presence of hematite-water system on Mars has been suggested to be a positive indicator in the chemical evolution on Mars.

  10. Cyclic catalytic upgrading of chemical species using metal oxide materials

    DOEpatents

    White, James H; Schutte, Erick J; Rolfe, Sara L

    2013-05-07

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01metal oxides.

  11. Quantum Monte Carlo Calculations of Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Wagner, Lucas

    2006-03-01

    Quantum Monte Carlo is a powerful computational tool to study correlated systems, allowing us to explicitly treat many-body interactions with favorable scaling in the number of particles. It has been regarded as a benchmark tool for first and second row condensed matter systems, although its accuracy has not been thoroughly investigated in strongly correlated transition metal oxides. QMC has also historically suffered from the mixed estimator error in operators that do not commute with the Hamiltonian and from stochastic uncertainty, which make small energy differences unattainable. Using the Reptation Monte Carlo algorithm of Moroni and Baroni(along with contributions from others), we have developed a QMC framework that makes these previously unavailable quantities computationally feasible for systems of hundreds of electrons in a controlled and consistent way, and apply this framework to transition metal oxides. We compare these results with traditional mean-field results like the LDA and with experiment where available, focusing in particular on the polarization and lattice constants in a few interesting ferroelectric materials. This work was performed in collaboration with Lubos Mitas and Jeffrey Grossman.

  12. Magnetic preferential orientation of metal oxide superconducting materials

    DOEpatents

    Capone, D.W.; Dunlap, B.D.; Veal, B.W.

    1990-07-17

    A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) exhibits superconducting properties and is capable of conducting very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities. The highly anisotropic diamagnetic susceptibility of the polycrystalline metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state. 4 figs.

  13. Preferential orientation of metal oxide superconducting materials by mechanical means

    DOEpatents

    Capone, Donald W.

    1990-01-01

    A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0<.times.<0.5) is capable of accommodating very large current densities. By aligning the two-dimensional Cu--O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the metal oxide material to accommodate high current densities. The orthorhombic crystalline particles have a tendency to lie down on one of the longer sides, i.e., on the a- or b-direction. Aligning the crystals in this orientation is accomplished by mechanical working of the material such as by extrusion, tape casting or slip casting, provided a single crystal powder is used as a starting material, to provide a highly oriented, e.g., approximately 90% of the crystal particles have a common orientation, superconducting matrix capable of supporting large current densities.

  14. Preferential orientation of metal oxide superconducting materials by mechanical means

    DOEpatents

    Capone, D.W.

    1990-11-27

    A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) is capable of accommodating very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the metal oxide material to accommodate high current densities. The orthorhombic crystalline particles have a tendency to lie down on one of the longer sides, i.e., on the a- or b-direction. Aligning the crystals in this orientation is accomplished by mechanical working of the material such as by extrusion, tape casting or slip casting, provided a single crystal powder is used as a starting material, to provide a highly oriented, e.g., approximately 90% of the crystal particles have a common orientation, superconducting matrix capable of supporting large current densities. 3 figs.

  15. Cyclic Catalytic Upgrading of Chemical Species Using Metal Oxide Materials

    NASA Technical Reports Server (NTRS)

    White, James H. (Inventor); Schutte, Erick J. (Inventor); Rolfe, Sara L. (Inventor)

    2013-01-01

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce(sub x)B(sub y)B'(sub z)B''O(sub gamma; wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01metal oxides.

  16. Magnetic preferential orientation of metal oxide superconducting materials

    DOEpatents

    Capone, Donald W.; Dunlap, Bobby D.; Veal, Boyd W.

    1990-01-01

    A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state.

  17. Electrodeposition of one-dimensional nanostructures.

    PubMed

    She, Guangwei; Mu, Lixuan; Shi, Wensheng

    2009-01-01

    Electrodeposition is a simple and flexible method for the synthesis of one-dimensional (1D) nanostructures and has attracted more and more attention in recent years. 1D nanostructures of metals, semiconductors and polymers have been successfully fabricated by electrodeposition. Templates were often used in the electrochemical process to realize the 1D growth. On the other hand, some materials with intrinsic anisotropic crystal structures can also be prepared by the template-free electrochemical method. In this paper, we review the recent patents progress and offer some prospects of future directions in electrodeposition of 1D nanostructures.

  18. Heterogeneous photochemical reactions of a propylene-nitrogen dioxide-metal oxide-dry air system

    NASA Astrophysics Data System (ADS)

    Takeuchi, Koji; Ibusuki, Takashi

    Photochemical reactions of a C 3H 6-NO 2-air system in the presence of metal oxide were investigated. The metal oxides showing strong photooxidation activity were found to be n-type semiconductor oxides with the energy band gap around 3 eV. Formation of cyano-compounds (HCN and CH 3CN) was also observed and the activity can be explained in terms of the adsorptivity of NO onto metal oxides. Coalfired fly ash as a model of mixed metal oxides was also examined and their photocatalytic action was discussed.

  19. Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Marrs, Michael

    A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs

  20. Transtion metal oxides for solar water splitting devices

    NASA Astrophysics Data System (ADS)

    Smith, Adam M.

    Although the terrestrial flux of solar energy is enough to support human endeavors, storage of solar energy remains a significant challenge to large-scale implementation of solar energy production. One route to energy storage involves the capture and conversion of sunlight to chemical species such as molecular hydrogen and oxygen via water splitting devices. The oxygen evolution half-reaction particularly suffers from large kinetic overpotentials. Additionally, a photoactive material that exhibits stability in oxidizing conditions present during oxygen evolution represents a unique challenge for devices. These concerns can be potentially addressed with a metal oxide photoanode coupled with efficient water oxidation electrocatalysts. Despite decades of research, structure-composition to property relationships are still needed for the design of metal oxide oxygen evolution materials. This dissertation investigates transition metal oxide materials for the oxygen evolution portion of water splitting devices. Chapter I introduces key challenges for solar driven water splitting. Chapter II elucidates the growth mechanism of tungsten oxide (WOX) nanowires (NWs), a proposed photoanode material for water splitting. Key findings include (1) a planar defect-driven pseudo-one-dimensional growth mechanism and (2) morphological control through the supersaturation of vapor precursors. Result 1 is significant as it illustrates that common vapor-phase syntheses of WOX NWs depend on the formation of planar defects through NWs, which necessitates reconsideration of WOX as a photoanode. Chapter III presents work towards (1) single crystal WOX synthesis and characterization and (2) WOX NW device fabrication. Chapter IV makes use of the key result that WOX NWs are defect rich and therefore conductive in order to utilize them as a catalyst scaffold for oxygen evolution in acidic media. Work towards utilizing NW scaffolds include key results such as stability under anodic potentials and

  1. Resonant Ultrasound Studies of Complex Transition Metal Oxides

    SciTech Connect

    Dr. Henry Bass; Dr. J. R. Gladden

    2008-08-18

    Department of Energy EPSCoR The University of Mississippi Award: DE-FG02-04ER46121 Resonant Ultrasound Spectroscopy Studies of Complex Transition Metal Oxides The central thrust of this DOE funded research program has been to apply resonant ultrasound spectroscopy (RUS), an elegant and efficient method for determining the elastic stiffness constants of a crystal, to the complex and poorly understood class of materials known as transition metal oxides (TMOs). Perhaps the most interesting and challenging feature of TMOs is their strongly correlated behavior in which spin, lattice, and charge degrees of freedom are strongly coupled. Elastic constants are a measure of the interatomic potentials in a crystal and are thus sensitive probes into the atomic environment. This sensitivity makes RUS an ideal tool to study the coupling of phase transition order parameters to lattice strains. The most significant result of the project has been the construction of a high temperature RUS apparatus capable of making elastic constant measurements at temperatures as high as 1000 degrees Celsius. We have designed and built novel acoustic transducers which can operate as high as 600 degrees Celsius based on lithium niobate piezoelectric elements. For measurement between 600 to 1000 C, a buffer rod system is used in which the samples under test and transducers are separated by a rod with low acoustic attenuation. The high temperature RUS system has been used to study the charge order (CO) transition in transition metal oxides for which we have discovered a new transition occurring about 35 C below the CO transition. While the CO transition exhibits a linear coupling between the strain and order parameter, this new precursor transition shows a different coupling indicating a fundamentally different mechanism. We have also begun a study, in collaboration with the Jet Propulsion Laboratory, to study novel thermoelectric materials at elevated temperatures. These materials include silicon

  2. Bacterial adhesion to glass and metal-oxide surfaces.

    PubMed

    Li, Baikun; Logan, Bruce E

    2004-07-15

    Metal oxides can increase the adhesion of negatively-charged bacteria to surfaces primarily due to their positive charge. However, the hydrophobicity of a metal-oxide surface can also increase adhesion of bacteria. In order to understand the relative contribution of charge and hydrophobicity to bacterial adhesion, we measured the adhesion of 8 strains of bacteria, under conditions of low and high-ionic strength (1 and 100 mM, respectively) to 11 different surfaces and examined adhesion as a function of charge, hydrophobicity (water contact angle) and surface energy. Inorganic surfaces included three uncoated glass surfaces and eight metal-oxide thin films prepared on the upper (non-tin-exposed) side of float glass by chemical vapor deposition. The Gram-negative bacteria differed in lengths of lipopolysaccharides on their outer surface (three Escherichia coli strains), the amounts of exopolysaccharides (two Pseudomonas aeruginosa strains), and their known relative adhesion to sand grains (two Burkholderia cepacia strains). One Gram positive bacterium was also used that had a lower adhesion to glass than these other bacteria (Bacillus subtilis). For all eight bacteria, there was a consistent increase in adhesion between with the type of inorganic surface in the order: float glass exposed to tin (coded here as Si-Sn), glass microscope slide (Si-m), uncoated air-side float glass surface (Si-a), followed by thin films of (Co(1-y-z)Fe(y)Cr(z))3O4, Ti/Fe/O, TiO2, SnO2, SnO2:F, SnO2:Sb, A1(2)O3, and Fe2O3 (the colon indicates metal doping, a slash indicates that the metal is a major component, while the dash is used to distinguish surfaces). Increasing the ionic strength from 1 to 100 mM increased adhesion by a factor of 2.0 +/- 0.6 (73% of the sample results were within the 95% CI) showing electrostatic charge was important in adhesion. However, adhesion was not significantly correlated with bacterial charge and contact angle. Adhesion (A) of the eight strains was

  3. Improved Charge Transfer by Thin Metal Oxide Films

    NASA Astrophysics Data System (ADS)

    Irfan

    The field of electronics has an immense impact on our day to day life. Efficient charge transfer at the semiconductor and electrode interface is one of the most crucial issues for the performance of any electronic device. A lot of effort has been spent to address this issue. A counter intuitive phenomenon of insertion of a thin metal oxide film at the semiconductor and electrode interface has gained momentum recently. In the current thesis, based on results of several experiments, I will propose a prominent mechanism of performance improvement with such insertions. I will also demonstrate the applicability of such metal oxide thin films in many other systems. First, I will introduce the scope of the thesis in detail. I will also introduce the background to understand the electronic structure of organic semiconductors, along with the interface formation at the semiconductor/metal interface. Then, I will discuss the measurement techniques. I will start the discussion on results with the insertion of a thin layer of MoOx (a transition metal oxide) between indium tin oxide (ITO) and two well studied organic semiconductors. I will also demonstrate that the optimum insertion layer thickness is just a few nanometers. I will illustrate the importance of high vacuum during the deposition of such insertion layers. I will also discuss the method to recover work function of air exposed MoOx films. I will further demonstrate that a thin layer of MoOx can be utilized to dope C60 strongly p-type. Then, I will discuss the application of MoO x insertion layer in CdTe based solar cells. I will further show the application of MoOx and organic double-inter-layer in organic devices. At the end, I will discuss an intense oxygen plasma treatment on ITO films and demonstrate a method to achieve high work function ITO films. The mechanism of high work function and application in devices will also be explained in detail. Finally, I will summarize the thesis.

  4. Systematic synthesis of ZnO nanostructures.

    PubMed

    Li, Peng; Wang, Dingsheng; Wei, Zhe; Peng, Qing; Li, Yadong

    2013-03-11

    In this study, we report a simple solution-phase method to prepare ZnO nanostructures with controllable morphologies. By using oleylamine (OAm) and dodecanol (DDL) as solvents, zinc oxide nanocrystals with tunable sizes and diverse shapes (hexagonal pyramids, bulletlike, and pencil-like shapes) have been obtained under mild conditions. At the same time, the introduction of presynthesized gold nanocrystals can also lead to the hybrid nanostructures of gold-zinc oxide hexagonal nanopyramids. In addition, the possible formation mechanism of the as-prepared ZnO nanostructures has been investigated. Notably, the unique optical properties of the ZnO nanostructures with different sizes and shapes have also been discussed. We hope that this strategy will be a general and effective method for fabricating other metal oxide nanocrystals.

  5. NO2 sensitive Au gate metal-oxide-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Filippini, D.; Aragón, R.; Weimar, U.

    2001-08-01

    Au gate metal-oxide-semiconductor capacitors are sensitive to NO2 in air up to 200 ppm, depending on operating temperature (100 °C to 200 °C), gate thickness (50 to 900 nm), and morphology. In the absence of catalytic properties or lattice diffusivity, a model invoking molecular surface adsorption and grain boundary diffusion is proposed, which quantitatively describes the transient and steady state response of the devices. Sensitivity is given by the arrival of the diffusing species to the gate-dielectric interface, where capacitive coupling of the adsorbed molecules induces work function changes, which shift the flat band voltage positively, opposite that observed for H2 with Pd gates, consistently with an oxidizing, rather than reducing, character.

  6. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil

    2008-12-23

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0

  7. Metal oxide chemistry in solution: the early transition metal polyoxoanions.

    PubMed

    Day, V W; Klemperer, W G

    1985-05-03

    Many of the early transition elements form large polynuclear metal-oxygen anions containing up to 200 atoms or more. Although these polyoxoanions have been investigated for more than a century, detailed studies of structure and reactivity were not possible until the development of modern x-ray crystallographic and nuclear magnetic resonance spectroscopic techniques. Systematic studies of small polyoxoanions in inert, aprotic solvents have clarified many of the principles governing their structure and reactivity, and also have made possible the preparation of entirely new types of covalent derivatives such as CH(2)Mo(4)O(15)H(3-), C(5)H(5)TiMo(5)O(18)(3-), and (OC)(3)Mn(Nb(2)W(4)O(19))(3-). Since most early transition metal polyoxoanions have structures based on close-packed oxygen arrays containing interstitial metal centers, their chemistry offers a rare opportunity to study chemical transformations in detail on well-defined metal oxide surfaces.

  8. Thermodynamic properties of some metal oxide-zirconia systems

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1989-01-01

    Metal oxide-zirconia systems are a potential class of materials for use as structural materials at temperatures above 1900 K. These materials must have no destructive phase changes and low vapor pressures. Both alkaline earth oxide (MgO, CaO, SrO, and BaO)-zirconia and some rare earth oxide (Y2O3, Sc2O3, La2O3, CeO2, Sm2O3, Gd2O3, Yb2O3, Dy2O3, Ho2O3, and Er2O3)-zirconia system are examined. For each system, the phase diagram is discussed and the vapor pressure for each vapor species is calculated via a free energy minimization procedure. The available thermodynamic literature on each system is also surveyed. Some of the systems look promising for high temperature structural materials.

  9. Integration of Metal Oxide Nanowires in Flexible Gas Sensing Devices

    PubMed Central

    Comini, Elisabetta

    2013-01-01

    Metal oxide nanowires are very promising active materials for different applications, especially in the field of gas sensors. Advances in fabrication technologies now allow the preparation of nanowires on flexible substrates, expanding the potential market of the resulting sensors. The critical steps for the large-scale preparation of reliable sensing devices are the elimination of high temperatures processes and the stretchability of the entire final device, including the active material. Direct growth on flexible substrates and post-growth procedures have been successfully used for the preparation of gas sensors. The paper will summarize the procedures used for the preparation of flexible and wearable gas sensors prototypes with an overlook of the challenges and the future perspectives concerning this field. PMID:23955436

  10. Formaldehyde-methanol, metallic-oxide agents head scavengers list

    SciTech Connect

    Schaack, J.P.; Chan, F.

    1989-01-23

    Use of batch-operated chemical H/sub 2/S scavengers as an inexpensive gas-sweetening process may be an attractive alternative for moderately sour gas wells with small production remote from a gas-processing plant. This article begins a four-part series describing the most common H/sub 2/S scavengers available to the natural gas-producing industry. Advantages, disadvantages, health and safety aspects, case histories, design guidelines, and economics of these scavengers will be addressed. Currently available, nonregenerative scavengers for small-plant H/sub 2/S removal may be categorized into four groups: Formaldehyde-methanol-based, metallic oxide-based, caustic-based, and other processes.

  11. Lithium Metal Oxide Electrodes For Lithium Cells And Batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2004-01-20

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

  12. Breakdown voltage of metal-oxide resistors in liquid argon

    SciTech Connect

    Bagby, L. F.; Gollapinni, S.; James, C. C.; Jones, B. J.P.; Jostlein, H.; Lockwitz, S.; Naples, D.; Raaf, J. L.; Rameika, R.; Schukraft, A.; Strauss, T.; Weber, M. S.; Wolbers, S. A.

    2014-11-07

    We characterized a sample of metal-oxide resistors and measured their breakdown voltage in liquid argon by applying high voltage (HV) pulses over a 3 second period. This test mimics the situation in a HV-divider chain when a breakdown occurs and the voltage across resistors rapidly rise from the static value to much higher values. All resistors had higher breakdown voltages in liquid argon than their vendor ratings in air at room temperature. Failure modes range from full destruction to coating damage. In cases where breakdown was not catastrophic, subsequent breakdown voltages were lower in subsequent measuring runs. One resistor type withstands 131 kV pulses, the limit of the test setup.

  13. Metal oxide films with magnetically modulated nanoporous architectures

    NASA Astrophysics Data System (ADS)

    Grimes, Craig A.; Singh, R. S.; Dickey, Elizabeth; Varghese, Oomman

    2001-12-01

    A magnetically-driven method for controlling nano- dimensional porosity in sol gel derived metal oxide films, including TiO2, Al2O3, and SnO2, coated onto ferromagnetic amorphous substrates, such as the magnetically-soft Metglas alloys, is described. Based on the porous structures observed dependence on external magnetic field, a model is suggested to explain the phenomena. Under well-defined conditions it appears that the sol particles coming out of solution, and undergoing Brownian motion, follow the magnetic field lines oriented perpendicularly to the substrate surface associated with the magnetic domain walls of the substrate; hence the porosity developed during solvent evaporation correlates with the magnetic domain size.

  14. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    2001-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  15. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    1999-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  16. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  17. Biofouling of various metal oxides in marine environment

    NASA Astrophysics Data System (ADS)

    Kougo, T.; Kuroda, D.; Wada, N.; Ikegai, H.; Kanematsu, H.

    2012-03-01

    Biofouling has induced serious problems in various industrial fields such as marine structures, bio materials, microbially induced corrosion (MIC) etc. The effects of various metals on biofouling have been investigated so far and the mechanism has been clarified to some extent(1,2), and we proposed that Fe ion attracted lots of bacteria and formed biofilm very easily(3). In this study, we investigated the possibility for biofouling of Pseudomonas aeruginosa on various metal oxides such as Fe2O3, TiO2, WO3, AgO, Cr2O3 etc. And in addition of such a model experiment on laboratory scale, they were immersed into actual sea water as well as artificial sea water. As for the preparation of metal oxides, commercial oxide powders were used as starting material and those whose particle sizes were under 100 micrometers were formed into pellets by a press. Some of them were heated to 700 °C and sintered for 10 hours at the temperatures. After the calcinations, they were immersed into the culture of P. aeruginosa at 35 °C in about one week. After the immersion, they were taken out of the culture and the biofouling behaviors were observed by optical microscopy, low pressure scanning electron microscopy (low pressure SEM) etc. Biofouling is generally classified into several steps. Firstly, conditioning films composed of organic matters were formed on specimens. Then bacterial were attached to the specimen's surfaces, seeking for conditioning films as nutrition. Then bacteria formed biofilm on the specimens. In marine environment, more larger living matters such as shells etc would be attached to biofilms. However, in the culture media, only biofilms were formed.

  18. The mechanism of electroforming of metal oxide memristive switches.

    PubMed

    Joshua Yang, J; Miao, Feng; Pickett, Matthew D; Ohlberg, Douglas A A; Stewart, Duncan R; Lau, Chun Ning; Williams, R Stanley

    2009-05-27

    Metal and semiconductor oxides are ubiquitous electronic materials. Normally insulating, oxides can change behavior under high electric fields--through 'electroforming' or 'breakdown'--critically affecting CMOS (complementary metal-oxide-semiconductor) logic, DRAM (dynamic random access memory) and flash memory, and tunnel barrier oxides. An initial irreversible electroforming process has been invariably required for obtaining metal oxide resistance switches, which may open urgently needed new avenues for advanced computer memory and logic circuits including ultra-dense non-volatile random access memory (NVRAM) and adaptive neuromorphic logic circuits. This electrical switching arises from the coupled motion of electrons and ions within the oxide material, as one of the first recognized examples of a memristor (memory-resistor) device, the fourth fundamental passive circuit element originally predicted in 1971 by Chua. A lack of device repeatability has limited technological implementation of oxide switches, however. Here we explain the nature of the oxide electroforming as an electro-reduction and vacancy creation process caused by high electric fields and enhanced by electrical Joule heating with direct experimental evidence. Oxygen vacancies are created and drift towards the cathode, forming localized conducting channels in the oxide. Simultaneously, O(2-) ions drift towards the anode where they evolve O(2) gas, causing physical deformation of the junction. The problematic gas eruption and physical deformation are mitigated by shrinking to the nanoscale and controlling the electroforming voltage polarity. Better yet, electroforming problems can be largely eliminated by engineering the device structure to remove 'bulk' oxide effects in favor of interface-controlled electronic switching.

  19. Unveiling the complex electronic structure of amorphous metal oxides

    PubMed Central

    Århammar, C.; Pietzsch, Annette; Bock, Nicolas; Holmström, Erik; Araujo, C. Moyses; Gråsjö, Johan; Zhao, Shuxi; Green, Sara; Peery, T.; Hennies, Franz; Amerioun, Shahrad; Föhlisch, Alexander; Schlappa, Justine; Schmitt, Thorsten; Strocov, Vladimir N.; Niklasson, Gunnar A.; Wallace, Duane C.; Rubensson, Jan-Erik; Johansson, Börje; Ahuja, Rajeev

    2011-01-01

    Amorphous materials represent a large and important emerging area of material’s science. Amorphous oxides are key technological oxides in applications such as a gate dielectric in Complementary metal-oxide semiconductor devices and in Silicon-Oxide-Nitride-Oxide-Silicon and TANOS (TaN-Al2O3-Si3N4-SiO2-Silicon) flash memories. These technologies are required for the high packing density of today’s integrated circuits. Therefore the investigation of defect states in these structures is crucial. In this work we present X-ray synchrotron measurements, with an energy resolution which is about 5–10 times higher than is attainable with standard spectrometers, of amorphous alumina. We demonstrate that our experimental results are in agreement with calculated spectra of amorphous alumina which we have generated by stochastic quenching. This first principles method, which we have recently developed, is found to be superior to molecular dynamics in simulating the rapid gas to solid transition that takes place as this material is deposited for thin film applications. We detect and analyze in detail states in the band gap that originate from oxygen pairs. Similar states were previously found in amorphous alumina by other spectroscopic methods and were assigned to oxygen vacancies claimed to act mutually as electron and hole traps. The oxygen pairs which we probe in this work act as hole traps only and will influence the information retention in electronic devices. In amorphous silica oxygen pairs have already been found, thus they may be a feature which is characteristic also of other amorphous metal oxides.

  20. Low temperature synthesis of transition metal oxides containing surfactant ions

    NASA Astrophysics Data System (ADS)

    Janauer, Gerald Gilbert

    1998-11-01

    Recently there has been much interest in reacting vanadium oxides hydrothermally with cationic surfactants to form novel layered compounds. A series of new transition metal oxides, however, has also been formed at or near room temperature in open containers. Synthesis, characterization, and proposed mechanisms of formation are the focus of this work. Low temperature reactions of vanadium pentoxide and ammonium transition metallates with long chain amine surfactants, such as dodecyltrimethylammonium bromide yielded interesting new products many of which are layered phases. DTAsb4\\ Hsb2Vsb{10}Osb{28}. 8Hsb2O, a layered highly crystalline phase, is the first such phase for which a single crystal X-ray structure has been determined. The unit cell for this material was found to be triclinic with space group P1-, cell parameters a=9.8945(3)A, b=11.5962(1)A, c=21.9238(2)A, alpha=95.153(2)sp°,\\ beta=93.778(1)sp°, and gamma=101.360(1)sp°. Additionally, a novel tungsten, a molybdenum and a dichromate phase will be discussed. Both the tungsten and the dichromate materials were indexed from their powder diffraction patterns yielding monoclinic unit cells. The tungsten material was found to have a=50.56(4)A, b=54.41(4)A, c=13.12(1)A, and beta=99.21sp°. The dichromate compound was determined to have a=26.757(5)A, b=10.458(2)A, c=14.829(3)A and beta=98.01(1)sp°. Interlayer spacings for the lamellar dichromate and molybdenum phases were d001 = 28.7 A, and d001 = 22.9 A. The synthesis, characterization, composition, and structure of these transition metal oxide-surfactant materials will be discussed.

  1. Method of dissolving metal oxides with di- or polyphosphonic acid and a redundant

    DOEpatents

    Horwitz, Earl P.; Chiarizia, Renato

    1996-01-01

    A method of dissolving metal oxides using a mixture of a di- or polyphosphonic acid and a reductant wherein each is present in a sufficient amount to provide a synergistic effect with respect to the dissolution of metal oxides and optionally containing corrosion inhibitors and pH adjusting agents.

  2. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2015-04-28

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  3. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2014-09-16

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  4. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2013-10-22

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  5. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with mixed metal oxides (generic). 721.10148 Section 721.10148 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES... mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting....

  6. 40 CFR 721.10044 - Metal oxide, modified with alkyl and vinyl terminated polysiloxanes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Metal oxide, modified with alkyl and... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10044 Metal oxide, modified with...

  7. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with mixed metal oxides (generic). 721.10148 Section 721.10148 Protection of Environment ENVIRONMENTAL... mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed...

  8. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with mixed metal oxides (generic). 721.10148 Section 721.10148 Protection of Environment ENVIRONMENTAL... mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed...

  9. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    SciTech Connect

    Paranthaman, Mariappan Parans; Liu, Hansan; Brown, Gilbert M.; Sun, Xiao-Guang; Bi, Zhonghe

    2016-12-06

    Compositions and methods of making are provided for mesoporous metal oxide microspheres electrodes. The mesoporous metal oxide microsphere compositions comprise (a) microspheres with an average diameter between 200 nanometers (nm) and 10 micrometers (.mu.m); (b) mesopores on the surface and interior of the microspheres, wherein the mesopores have an average diameter between 1 nm and 50 nm and the microspheres have a surface area between 50 m.sup.2/g and 500 m.sup.2/g. The methods of making comprise forming composite powders. The methods may also comprise refluxing the composite powders in a basic solution to form an etched powder, washing the etched powder with an acid to form a hydrated metal oxide, and heat-treating the hydrated metal oxide to form mesoporous metal oxide microspheres.

  10. Nanostructured Metal Oxide Coatings for Electrochemical Energy Conversion and Storage Electrodes

    NASA Astrophysics Data System (ADS)

    Cordova, Isvar Abraxas

    The realization of an energy future based on safe, clean, sustainable, and economically viable technologies is one of the grand challenges facing modern society. Electrochemical energy technologies underpin the potential success of this effort to divert energy sources away from fossil fuels, whether one considers alternative energy conversion strategies through photoelectrochemical (PEC) production of chemical fuels or fuel cells run with sustainable hydrogen, or energy storage strategies, such as in batteries and supercapacitors. This dissertation builds on recent advances in nanomaterials design, synthesis, and characterization to develop novel electrodes that can electrochemically convert and store energy. Chapter 2 of this dissertation focuses on refining the properties of TiO2-based PEC water-splitting photoanodes used for the direct electrochemical conversion of solar energy into hydrogen fuel. The approach utilized atomic layer deposition (ALD); a growth process uniquely suited for the conformal and uniform deposition of thin films with angstrom-level thickness precision. ALD's thickness control enabled a better understanding of how the effects of nitrogen doping via NH3 annealing treatments, used to reduce TiO2's bandgap, can have a strong dependence on TiO2's thickness and crystalline quality. In addition, it was found that some of the negative effects on the PEC performance typically associated with N-doped TiO2 could be mitigated if the NH 3-annealing was directly preceded by an air-annealing step, especially for ultrathin (i.e., < 10 nm) TiO2 films. ALD was also used to conformally coat an ultraporous conductive fluorine-doped tin oxide nanoparticle (nanoFTO) scaffold with an ultrathin layer of TiO2. The integration of these ultrathin films and the oxide nanoparticles resulted in a heteronanostructure design with excellent PEC water oxidation photocurrents (0.7 mA/cm2 at 0 V vs. Ag/AgCl) and charge transfer efficiency. In Chapter 3, two innovative nanoarchitectures were engineered in order to enhance the pseudocapacitive energy storage of next generation supercapacitor electrodes. The morphology and quantity of MnO2 electrodeposits was controlled by adjusting the density of graphene foliates on a novel graphenated carbon nanotube (g-CNT) scaffold. This control enabled the nanocomposite supercapacitor electrode to reach a capacitance of 640 F/g, under MnO2 specific mass loading conditions (2.3 mg/cm2) that are higher than previously reported. In the second engineered nanoarchitecture, the electrochemical energy storage properties of a transparent electrode based on a network of solution-processed Cu/Ni cores/shell nanowires (NWs) were activated by electrochemically converting the Ni metal shell into Ni(OH)2. Furthermore, an adjustment of the molar percentage of Ni plated onto the Cu NWs was found to result in a tradeoff between capacitance, transmittance, and stability of the resulting nickel hydroxide-based electrode. The nominal area capacitance and power performance results obtained for this Cu/Ni(OH)2 transparent electrode demonstrates that it has significant potential as a hybrid supercapacitor electrode for integration into cutting edge flexible and transparent electronic devices.

  11. Role of metal oxide nanostructures in extracellular pH regulations

    NASA Astrophysics Data System (ADS)

    Lozhkomoev, Aleksandr S.

    2016-08-01

    A research area of great promise is the cancer treatment by regulating microenvironmental parameters of tumor cells using MgO and AlOOH. Magnesium hydroxide and aluminum oxyhydroxide (boehmite) are in the form of nanoplates and nanosheets. The morphology, structure, phases and electrokinetic properties of synthesized samples are analyzed using complex physical and chemical methods. We study how the pH of the culture medium—different when in contact with synthesized nanoplates—affects the viability of tumor cells. It is shown that MgO is more efficient in decreasing the tumor cell viability than AlOOH. In the case of magnesium hydroxide, the pH of the culture medium increases to 10.1; in the case of boehmite, to 7.7.

  12. Adsorption and Decomposition of CWA Simulants on Single Crystal and Nanostructured Metal Oxides

    DTIC Science & Technology

    2009-01-01

    also resides. 14 with pure TiO2 photocatalysts . Unlike traditional photocatalytic approaches for decomposing CWAs on titania, the Au- TiO2 system...Reaction Pathways on TiO2 8. Direct involvement of lattice oxygen in TiO2 surface chemistry 9. Thermal cycling and poisoning of TiO2 10. Catalytic...oxidation of DMMP on TiO2 -supported Au nanoparticles 11. Oxygen Activation 14. References Report Documentation Page Form ApprovedOMB No. 0704

  13. One‐Dimensional Ferroelectric Nanostructures: Synthesis, Properties, and Applications

    PubMed Central

    Liang, Longyue; Kang, Xueliang

    2016-01-01

    One‐dimensional (1D) ferroelectric nanostructures, such as nanowires, nanorods, nanotubes, nanobelts, and nanofibers, have been studied with increasing intensity in recent years. Because of their excellent ferroelectric, ferroelastic, pyroelectric, piezoelectric, inverse piezoelectric, ferroelectric‐photovoltaic (FE‐PV), and other unique physical properties, 1D ferroelectric nanostructures have been widely used in energy‐harvesting devices, nonvolatile random access memory applications, nanoelectromechanical systems, advanced sensors, FE‐PV devices, and photocatalysis mechanisms. This review summarizes the current state of 1D ferroelectric nanostructures and provides an overview of the synthesis methods, properties, and practical applications of 1D nanostructures. Finally, the prospects for future investigations are outlined. PMID:27812477

  14. Electronic, magnetic and topological properties of transition metal oxides

    NASA Astrophysics Data System (ADS)

    Quan, Yundi

    Transition metal oxides have been the ideal platform for designing materials with exotic properties due to the complex interplay between spin, charge, and orbital degrees of freedom which can be fine-tuned by varying pressure, temperature, and external magnetic field to give rise to novel phases. Transition metal oxides are also a challenge from the theoretical point of view. The (semi)local density approximation for the exchange correlation functional that is often used in density functional calculations fails to adequately describe the many-body effects of 3d and 4f electrons thereby leading to underestimated band gaps. Several techniques, such as hybrid functionals, dynamical mean field theory, and DFT+U, have been developed over the past few decades to account for the many-body effects of 3d and 4f electrons. The DFT+U method, which will be used extensively throughout this thesis, has proved to be very successful in modeling gap opening, structure optimization and predicting transport properties. Rare earth nickelates have attracted a lot of attention in recent years due to their complex phase diagram that arises from the competition between spin, charge, and orbital degrees of freedom. Of particular interest is the metal-insulator transition that occurs upon cooling for RNiO3 (R=rare earth, except for La) which was found to be accompanied by symmetry lowering, later theorized as the evidence for charge ordering. By using first principles calculations, we found that the charge difference between Ni ions in the "charge-ordered" phase is negligibly small, while various aspects such as core energy levels, spectral weight immediately above and below the Fermi level, and magnetic moments do differ. Using Wannier function analysis, the charge states of Ni ions in the lower symmetry structure are systematically studied and found to correlated to the number of Wannier charge centers at the Ni site. The same approach was applied to study the charge states of Ag I and Ag

  15. Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode.

    PubMed

    Davids, Paul S; Jarecki, Robert L; Starbuck, Andrew; Burckel, D Bruce; Kadlec, Emil A; Ribaudo, Troy; Shaner, Eric A; Peters, David W

    2015-12-01

    Direct rectification of electromagnetic radiation is a well-established method for wireless power conversion in the microwave region of the spectrum, for which conversion efficiencies in excess of 84% have been demonstrated. Scaling to the infrared or optical part of the spectrum requires ultrafast rectification that can only be obtained by direct tunnelling. Many research groups have looked to plasmonics to overcome antenna-scaling limits and to increase the confinement. Recently, surface plasmons on heavily doped Si surfaces were investigated as a way of extending surface-mode confinement to the thermal infrared region. Here we combine a nanostructured metallic surface with a heavily doped Si infrared-reflective ground plane designed to confine infrared radiation in an active electronic direct-conversion device. The interplay of strong infrared photon-phonon coupling and electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast electronic tunnelling in metal-oxide-semiconductor (MOS) structures. Infrared dispersion of SiO2 near a longitudinal optical (LO) phonon mode gives large transverse-field confinement in a nanometre-scale oxide-tunnel gap as the wavelength-dependent permittivity changes from 1 to 0, which leads to enhanced electromagnetic fields at material interfaces and a rectified displacement current that provides a direct conversion of infrared radiation into electric current. The spectral and electrical signatures of the nanoantenna-coupled tunnel diodes are examined under broadband blackbody and quantum-cascade laser (QCL) illumination. In the region near the LO phonon resonance, we obtained a measured photoresponsivity of 2.7 mA W(-1) cm(-2) at -0.1 V.

  16. A General and Mild Approach to Controllable Preparation of Manganese-Based Micro- and Nanostructured Bars for High Performance Lithium-Ion Batteries.

    PubMed

    Ma, Guo; Li, Sheng; Zhang, Weixin; Yang, Zeheng; Liu, Shulin; Fan, Xiaoming; Chen, Fei; Tian, Yuan; Zhang, Weibo; Yang, Shihe; Li, Mei

    2016-03-07

    One-dimensional (1D) micro- and nanostructured electrode materials with controllable phase and composition are appealing materials for use in lithium-ion batteries with high energy and power densities, but they are challenging to prepare. Herein, a novel ethanol-water mediated co-precipitation method by a chimie douce route (synthesis conducted under mild conditions) has been exploited to selectively prepare an extensive series of manganese-based electrode materials, manifesting the considerable generalizability and efficacy of the method. Moreover, by simply tuning the mixed solvent and reagents, transition metal oxide bars with differing aspect ratios and compositions were prepared with an unprecedented uniformity. Application prospects are demonstrated by Li-rich 0.5 Li2 MnO3 ⋅0.5 LiNi1/3 Co1/3 Mn1/3 O2 bars, which demonstrate excellent reversible capacity and rate capability thanks to the steerable nature of the synthesis and material quality. This work opens a new route to 1D micro- and nanostructured materials by customizing the precipitating solvent to orchestrate the crystallization process.

  17. Transition-Metal Oxides in Warm Circumstellar Environments

    NASA Astrophysics Data System (ADS)

    Schmidt, Mirosław R.; Kaminski, Tomasz; Tylenda, Romuald

    2013-06-01

    We report on detections and simulations of electronic bands of transition-metal oxides, i.e. ScO, TiO, VO, CrO, YO, and of AlO, in spectra of two red novae V838 Mon and V4332 Sgr. These objects experienced a stellar merger event in 2002 and 1994, respectively, and have very rich circumstellar environments abundant in dust and molecules. We analyzed optical spectra of V838 Mon which show a presence of outflowing material. In this object, electronic systems of oxides are observed in absorption against a photospheric spectrum which resembles that of a late-type supergiant. We present simulations of the absorption bands which allowed us to derive the excitation temperatures of 300-500 K and constrain column densities, which turned out to be very high. Among many interesting features discovered, we identified forbidden transitions of TiO in the b^1Π-X^3Δ and c^{1}Φ-X^{3}Δ systems, which are seen owing to the high column densities and the relatively low temperatures. In the case of the older red nova V4332 Sgr, the main object is surrounded by a circumstellar disc which is seen almost edge-on and obscures the central star. The molecular spectra are seen in emission in this object, what is very unusual in astrophysical sources observed at optical wavelengths. We show that these emission bands arise owing to the special geometry of the star-disk system and that radiative pumping is responsible for excitation of the molecules. From the shapes of the rotational contours, we derive temperatures of about 120 K in this object. Remarkably, the spectra of V4332 Sgr contain features of CrO, which is the first identified signature of this molecule in an astrophysical object. In addition to the excitation and radiative-transfer analysis of the molecular spectra, we discuss chemical pathways that could lead to the observed variety of metal oxides seen in these enigmatic sources. T. Kaminski, M. Schmidt, R. Tylenda, M. Konacki, and M. Gromadzki ApJSuppl., {182} (33), 2009. T

  18. Biodegradable, polymer encapsulated, metal oxide particles for MRI-based cell tracking.

    PubMed

    Shapiro, Erik M

    2015-01-01

    Metallic particles have shaped the use of magnetic resonance imaging (MRI) for molecular and cellular imaging. Although these particles have generally been developed for extracellular residence, either as blood pool contrast agents or targeted contrast agents, the coopted use of these particles for intracellular labeling has grown over the last 20 years. Coincident with this growth has been the development of metal oxide particles specifically intended for intracellular residence, and innovations in the nature of the metallic core. One promising nanoparticle construct for MRI-based cell tracking is polymer encapsulated metal oxide nanoparticles. Rather than a polymer coated metal oxide nanocrystal of the core: shell type, polymer encapsulated metal oxide nanoparticles cluster many nanocrystals within a polymer matrix. This nanoparticle composite more efficiently packages inorganic nanocrystals, affording the ability to label cells with more inorganic material. Further, for magnetic nanocrystals, the clustering of multiple magnetic nanocrystals within a single nanoparticle enhances r2 and r2* relaxivity. Methods for fabricating polymer encapsulated metal oxide nanoparticles are facile, yielding both varied compositions and synthetic approaches. This review presents a brief history into the use of metal oxide particles for MRI-based cell tracking and details the development and use of biodegradable, polymer encapsulated, metal oxide nanoparticles and microparticles for MRI-based cell tracking.

  19. Biodegradable, polymer encapsulated, metal oxide particles for MRI-based cell tracking

    PubMed Central

    Shapiro, Erik M.

    2014-01-01

    Metallic particles have shaped the use of MRI for molecular and cellular imaging. While these particles have generally been developed for extracellular residence, either as blood pool contrast agents or targeted contrast agents, the coopted use of these particles for intracellular labeling has grown over the last 20 years. Coincident with this growth has been the development of metal oxide particles specifically intended for intracellular residence, and innovations in the nature of the metallic core. One promising nanoparticle construct for MRI-based cell tracking is polymer encapsulated metal oxide nanoparticles. Rather than a polymer coated metal oxide nanocrystal of the core:shell type, polymer encapsulated metal oxide nanoparticles cluster many nanocrystals within a polymer matrix. This nanoparticle composite more efficiently packages inorganic nanocrystals, affording the ability to label cells with more inorganic material. Further, for magnetic nanocrystals, the clustering of multiple magnetic nanocrystals within a single nanoparticle enhances r2 and r2* relaxivity. Methods for fabricating polymer encapsulated metal oxide nanoparticles are facile, yielding both varied compositions and synthetic approaches. This review presents a brief history into the use of metal oxide particles for MRI-based cell tracking and details the development and use of biodegradable, polymer encapsulated, metal oxide nano- and microparticles for MRI-based cell tracking. PMID:24753150

  20. Plasmonically sensitized metal-oxide electron extraction layers for organic solar cells

    PubMed Central

    Trost, S.; Becker, T.; Zilberberg, K.; Behrendt, A.; Polywka, A.; Heiderhoff, R.; Görrn, P.; Riedl, T.

    2015-01-01

    ZnO and TiOx are commonly used as electron extraction layers (EELs) in organic solar cells (OSCs). A general phenomenon of OSCs incorporating these metal-oxides is the requirement to illuminate the devices with UV light in order to improve device characteristics. This may cause severe problems if UV to VIS down-conversion is applied or if the UV spectral range (λ < 400 nm) is blocked to achieve an improved device lifetime. In this work, silver nanoparticles (AgNP) are used to plasmonically sensitize metal-oxide based EELs in the vicinity (1–20 nm) of the metal-oxide/organic interface. We evidence that plasmonically sensitized metal-oxide layers facilitate electron extraction and afford well-behaved highly efficient OSCs, even without the typical requirement of UV exposure. It is shown that in the plasmonically sensitized metal-oxides the illumination with visible light lowers the WF due to desorption of previously ionosorbed oxygen, in analogy to the process found in neat metal oxides upon UV exposure, only. As underlying mechanism the transfer of hot holes from the metal to the oxide upon illumination with hν < Eg is verified. The general applicability of this concept to most common metal-oxides (e.g. TiOx and ZnO) in combination with different photoactive organic materials is demonstrated. PMID:25592174

  1. Functionalization of Titanium Alloy Surface by Graphene Nanoplatelets and Metal Oxides: Corrosion Inhibition.

    PubMed

    Mondal, Jayanta; Aarik, Lauri; Kozlova, Jekaterina; Niilisk, Ahti; Mändar, Hugo; Mäeorg, Uno; Simões, Alda; Sammelselg, Väino

    2015-09-01

    Corrosion inhibition of metallic substrates is an important and crucial step for great economical as well as environmental savings. In this paper, we introduce an extra thin effective corrosion inhibitive material having layered structure designed for protection and functionalization of Ti Grade 5 alloy substrates. The coating consists of a first layer made of thin graphene nanoplatelets, on top of which a multilayer Al2O3 and TiO2 films is applied by low-temperature atomic layer deposition. The amorphous structure of the metal oxide films was confirmed by micro-Raman and X-ray diffraction analysis. Corrosion inhibition ability of the prepared coatings was analyzed by open circuit potential, potentiodynamic plot and by voltammetric analysis, in aqueous potassium bromide solution. The open circuit potential of the graphene-metal oxide coated substrate showed much passive nature than bare substrate or graphene coated or only metal oxide coated substrates. The localized corrosion potential of the graphene-metal oxide coated, only metal oxide coated, and bare substrates were found 5.5, 3.0, and 1.1 V, respectively. In addition, corrosion current density values of the graphene-metal oxide and only metal oxide coated substrates showed much more passive nature than the bare and graphene coated substrates. Long immersion test in the salt solution further clarified the effective corrosion inhibition of the graphene-metal oxide coated substrate. The analyzed results reflect that the graphene-metal oxide films can be used to prepare better and effective corrosion inhibition coatings for the Ti Grade 5 alloy to increase their lifetime.

  2. Ultrafast response sensor to formaldehyde gas based on metal oxide.

    PubMed

    Choi, N-J; Lee, H-K; Moon, S E; Kim, J; Yang, W S

    2014-08-01

    Thick film semiconductor gas sensors based on indium oxide were fabricated on Si substrate. The sensing materials on Si substrate were characterized using optical microscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM), and so on. They were very fine and uniform and we found out that particle sizes were about 20~30 nm through XRD analysis. Gas responses of fabricated sensors were measured in a chamber where gas flow was controlled by mass flow controller (MFC). Their resistance changes were monitored in real time by using data acquisition board and personal computer. Gas response characteristics were examined for formaldehyde (HCHO) gas which was known as the cause of sick building syndrome. Particularly, the sensors showed responses to formaldehyde gas at sub ppm (cf, standard of natural environment in building is about 80 ppb by ministry of environment in Korea), as a function of operating temperatures and gas concentrations. Also, we investigated sensitivity, repetition, selectivity, response speed and reproducibility of the sensors. The lowest detection limit is HCHO 25 ppb and sensitivity at 800 ppb is over 25% at 350 °C operating temperature. The response time (8 s) and recovery time (15 s) to HCHO gas at 200 ppb were very fast compared to other commercial products in flow type measurement condition. Repetition measurement was very good with ±3% in full measurement range. The fabricated metal oxide gas sensor showed good performance to HCHO gas and proved that it could be adaptable to indoor environment in building.

  3. Extrusion of metal oxide superconducting wire, tube or ribbon

    DOEpatents

    Dusek, Joseph T.

    1993-01-01

    A process for extruding a superconducting metal oxide composition YBa.sub.2 Cu.sub.3 O.sub.7-x provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6-85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87-355 mil has also been produced. Flat ribbons have been produced in the range of 10-125 mil thick by 100-500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.

  4. Extrusion of metal oxide superconducting wire, tube or ribbon

    DOEpatents

    Dusek, Joseph T.

    1993-10-05

    A process for extruding a superconducting metal oxide composition YBa.sub.2 Cu.sub.3 O.sub.7-x provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6-85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87-355 mil has also been produced. Flat ribbons have been produced in the range of 10-125 mil thick by 100-500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.

  5. Optical waveguides using PDMS-metal oxide hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Arash; Middlebrook, Christopher T.; Mullins, Michael E.

    2015-03-01

    Development of passive and active polymer based optical materials for high data rate waveguide routing and interconnects has gained increased attention because of their excellent properties such as low absorption, cost savings, and ease in fabrication. However, optical polymers are typically limited in the range of their refraction indices. Combining polymeric and inorganic optical materials provides advantages for as development of nano-composites with higher refractive indices with the possibility of being used as an active optical component. In this paper a new composite material is proposed based on polymer-metal oxide nano-composites for use as optical wave guiding structures and components. PDMS (Polydimethylsiloxane) is utilized for the polymer portion while the inorganic material is titanium dioxide. Refraction indices as high as 1.74 have been reported using these composites. For PDMS-TiO2 hybrids, the higher the ratio of titanium dioxide to PDMS, the higher the resulting refractive index. The index of refraction as a function of the PDMS:TiO2 ratio is reported with an emphasis on use as optical waveguide devices. Absorption spectrum of the nano-composites is measured showing low absorption at 850 nm and high absorption in the UV regime for direct UV laser/light curing. Prototype multimode waveguides are fabricated using soft imprint embossing that is compatible with the low viscosity nano-composite material. Cross dimensional shape and profile show the potential for full scale development utilizing the material set.

  6. Formation of porous metal oxides in the anodization process.

    PubMed

    Sample, C; Golovin, A A

    2006-10-01

    A theory of the formation of nanoscale porous structures in oxides of metals grown by anodization is developed. It is shown that a growing oxide layer can become unstable which yields the formation of a spatially irregular array of pores. The instability is shown to result from a nonlinear dependence of electrochemical kinetics at the metal-oxide and oxide-electrolyte interfaces on the overpotential which is governed by the Butler-Volmer relation. The conditions for the instability of the oxide layer are found. The dependence of the oxide conductivity on the electric field is taken into account and is shown to have a destabilizing effect. A weakly nonlinear analysis is performed and it shows that the system evolution near the instability threshold is described by the Kuramoto-Sivashinsky equation. Farther from threshold, in the long-wave approximation, a system of strongly nonlinear equations is derived and solved numerically; this system describes the formation of deep irregular pores. In a particular case, a self-similar solution describing the propagation of a pore with a paraboloidal shape is found.

  7. Protonation enthalpies of metal oxides from high temperature electrophoresis

    SciTech Connect

    Rodriguez-Santiago, V; Fedkin, Mark V.; Lvov, Serguei N.

    2012-01-01

    Surface protonation reactions play an important role in the behavior of mineral and colloidal systems, specifically in hydrothermal aqueous environments. However, studies addressing the reactions at the solid/liquid interface at temperatures above 100 C are scarce. In this study, newly and previously obtained high temperature electrophoresis data (up to 260 C) zeta potentials and isoelectric points for metal oxides, including SiO2, SnO2, ZrO2, TiO2, and Fe3O4, were used in thermodynamic analysis to derive the standard enthalpies of their surface protonation. Two different approaches were used for calculating the protonation enthalpy: one is based on thermodynamic description of the 1-pKa model for surface protonation, and another one on a combination of crystal chemistry and solvation theories which link the relative permittivity of the solid phase and the ratio of the Pauling bond strength and bond length to standard protonation enthalpy. From this analysis, two expressions relating the protonation enthalpy to the relative permittivity of the solid phase were obtained.

  8. Protonation enthalpies of metal oxides from high temperature electrophoresis.

    SciTech Connect

    Rodriguez-Santiago, V; Fedkin, Mark V; Lvov, Serguei N.

    2012-01-01

    Surface protonation reactions play an important role in the behavior of mineral and colloidal systems, specifically in hydrothermal aqueous environments. However, studies addressing the reactions at the solid/liquid interface at temperatures above 100 C are scarce. In this study, newly and previously obtained high temperature electrophoresis data (up to 260 C) - zeta potentials and isoelectric points - for metal oxides, including SiO{sub 2}, SnO{sub 2}, ZrO{sub 2}, TiO{sub 2}, and Fe{sub 3}O{sub 4}, were used in thermodynamic analysis to derive the standard enthalpies of their surface protonation. Two different approaches were used for calculating the protonation enthalpy: one is based on thermodynamic description of the 1-pKa model for surface protonation, and another one - on a combination of crystal chemistry and solvation theories which link the relative permittivity of the solid phase and the ratio of the Pauling bond strength and bond length to standard protonation enthalpy. From this analysis, two expressions relating the protonation enthalpy to the relative permittivity of the solid phase were obtained.

  9. Extrusion of metal oxide superconducting wire, tube or ribbon

    SciTech Connect

    Dusek, J.T.

    1990-01-01

    A process and apparatus for extruding a superconducting metal oxide composition YBa{sub 2}Cu{sub 3}O{sub 7-x} provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6--85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87--335 mil has also been produced. Flat ribbons have been produced in the range of 10--125 mil thick by 100--500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.

  10. Single-photon imaging in complementary metal oxide semiconductor processes

    PubMed Central

    Charbon, E.

    2014-01-01

    This paper describes the basics of single-photon counting in complementary metal oxide semiconductors, through single-photon avalanche diodes (SPADs), and the making of miniaturized pixels with photon-counting capability based on SPADs. Some applications, which may take advantage of SPAD image sensors, are outlined, such as fluorescence-based microscopy, three-dimensional time-of-flight imaging and biomedical imaging, to name just a few. The paper focuses on architectures that are best suited to those applications and the trade-offs they generate. In this context, architectures are described that efficiently collect the output of single pixels when designed in large arrays. Off-chip readout circuit requirements are described for a variety of applications in physics, medicine and the life sciences. Owing to the dynamic nature of SPADs, designs featuring a large number of SPADs require careful analysis of the target application for an optimal use of silicon real estate and of limited readout bandwidth. The paper also describes the main trade-offs involved in architecting such chips and the solutions adopted with focus on scalability and miniaturization. PMID:24567470

  11. Glass Frit Filters for Collecting Metal Oxide Nanoparticles

    NASA Technical Reports Server (NTRS)

    Ackerman, John; Buttry, Dan; Irvine, Geoffrey; Pope, John

    2005-01-01

    Filter disks made of glass frit have been found to be effective as means of high-throughput collection of metal oxide particles, ranging in size from a few to a few hundred nanometers, produced in gas-phase condensation reactors. In a typical application, a filter is placed downstream of the reactor and a valve is used to regulate the flow of reactor exhaust through the filter. The exhaust stream includes a carrier gas, particles, byproducts, and unreacted particle-precursor gas. The filter selectively traps the particles while allowing the carrier gas, the byproducts, and, in some cases, the unreacted precursor, to flow through unaffected. Although the pores in the filters are much larger than the particles, the particles are nevertheless trapped to a high degree: Anecdotal information from an experiment indicates that 6-nm-diameter particles of MnO2 were trapped with greater than 99-percent effectiveness by a filtering device comprising a glass-frit disk having pores 70 to 100 micrometer wide immobilized in an 8-cm-diameter glass tube equipped with a simple twist valve at its downstream end.

  12. Pseudopotentials for quantum Monte Carlo studies of transition metal oxides

    SciTech Connect

    Krogel, Jaron T.; Santana Palacio, Juan A.; Reboredo, Fernando A.

    2016-02-22

    Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentials to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.

  13. Spin-Orbital Entangled States in Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Oleś, Andrzej M.

    The phenomenon of spin-orbital entanglement which occurs in superexchange models for transition metal oxides is introduced and explained. We present its consequences in the RVO_3 Mott insulators, with R=La,Pr,\\cdots ,Yb,Lu, and show that entanglement occurs here in excited states of the spin-orbital d^2 model and determines: (i) the temperature dependence of low-energy optical spectral weight, (ii) the phase diagram of the RVO_3 perovskites, and (iii) the dimerization observed in the magnon excitations in YVO_3. Entangled ground states occur in two other model systems: (i) the bilayer d^9 (Kugel-Khomskii) model, and (ii) the d^1 model on the triangular frustrated lattice. In such cases even the predictions concerning the magnetic exchange constants based on the mean field decoupling of spin and orbital operators are incorrect. On the example of a single hole doped to a Mott insulator with coexisting antiferromagnetic and alternating t_{2g} orbital order we show that transport is hindered by spin-orbital excitations. It is suggested that spin-orbital entanglement in Mott insulators might be controlled by doping, leading to orbital disordered states with possible new opportunities for thermoelectric applications.

  14. Study on Metal/Metal oxide/Graphene Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Feng, Ying; Khalid Zahir, Raja

    2013-03-01

    Metal/metal-oxide/graphene (Metal = Al, Ti, Hf, Zr) tunnel junctions were fabricated by transferring single-layer graphene grown by chemical vapor deposition on Cu onto metal strips by either a wet or dry approach. The metal strips were prepared by dc magnetron sputtering through a shadow mask and were exposed to air for about 10 minutes for native oxides to grow prior to the transfer. Good tunneling properties were observed for all the junctions fabricated by either means of graphene transfer. The zero-bias resistance of these junctions all increases with time to a final value, indicating continuing oxidation of the metals with a self-limited oxidation rate. Some junctions show the final area-normalized zero-bias resistances and self-limited oxidation time scales for Al, Ti, Hf, Zr are about 0.15, 0.2, 6000, 1000 k Ωcm2 and 25, 90, 6, 9 hour, respectively. The tunneling spectra were studied at various temperature down to 4.2 K and analyzed by the Brinkman-Dynes-Rowell model to get the height and width of the tunnel barriers, taking into account the electron structure of graphene. The junctions are good candidates for chemical sensing applications.

  15. Cyclic catalytic upgrading of chemical species using metal oxide materials

    NASA Technical Reports Server (NTRS)

    White, James H. (Inventor); Schutte, Erick J. (Inventor); Rolfe, Sara L. (Inventor)

    2010-01-01

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having one of the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, or Fe; B''=Cu; 0.01

  16. APCVD Transition Metal Oxides - Functional Layers in "Smart windows"

    NASA Astrophysics Data System (ADS)

    Gesheva, K. A.; Ivanova, T. M.; Bodurov, G. K.

    2014-11-01

    Transition metal oxides (TMO) exhibit electrochromic effect. Under a small voltage they change their optical transmittance from transparent to collored (absorbing) state. The individual material can manifest its electrochromic properties only when it is part of electrochromic (EC) multilayer system. Smart window is controlling the energy of solar flux entering the building or car and makes the interiors comfortable and energy utilization more effective. Recently the efforts of material researchers in this field are directed to price decreasing. APCVD technology is considered as promissing as this process permits flowthrough large-scale production process. The paper presents results on device optimization based on WO3-MoO3 working electrode. Extensive research reveals that WO3-MoO3 structure combines positive features of single oxides: excellent electrochromic performance of WO3 and better kinetic properties of MoO3 deposition. The achieved color efficiency of APCVD WO3-MoO3 films is 200cm2/C and optical modulation of 65-70% are practically favorable electrochromic characteristics. To respond to low cost requirement, the expensive hexacarbonyl can be replaced with acetylacetonate. We have started with this precursor to fabricate mixed WxV1-xO3 films. The films possess excellent surface coverage and high growth-rate. CVD deposition of VO2, a promissing thermochromic thin film material is also presented.

  17. Mechanistic aspects of photooxidation of polyhydroxylated molecules on metal oxides.

    SciTech Connect

    Shkrob, I. A.; Marin, T. M.; Sevilla, M. D.; Chemerisov, S.

    2011-03-24

    Polyhydroxylated molecules, including natural carbohydrates, are known to undergo photooxidation on wide-gap transition-metal oxides irradiated by ultraviolet light. In this study, we examine mechanistic aspects of this photoreaction on aqueous TiO{sub 2}, {alpha}-FeOOH, and {alpha}-Fe{sub 2}O{sub 3} particles using electron paramagnetic resonance (EPR) spectroscopy and site-selective deuteration. We demonstrate that the carbohydrates are oxidized at sites involved in the formation of oxo bridges between the chemisorbed carbohydrate molecule and metal ions at the oxide surface. This bridging inhibits the loss of water (which is the typical reaction of the analogous free radicals in bulk solvent) promoting instead a rearrangement that leads to elimination of the formyl radical. For natural carbohydrates, the latter reaction mainly involves carbon-1, whereas the main radical products of the oxidation are radical arising from H atom loss centered on carbon-1, -2, and -3 sites. Photoexcited TiO{sub 2} oxidizes all of the carbohydrates and polyols, whereas {alpha}-FeOOH oxidizes some of the carbohydrates, and {alpha}-Fe{sub 2}O{sub 3} is unreactive. These results serve as a stepping stone for understanding the photochemistry on mineral surfaces of more complex biomolecules such as nucleic acids.

  18. Cyclic catalytic upgrading of chemical species using metal oxide materials

    DOEpatents

    White, James H.; Schutte, Erick J.; Rolfe, Sara L.

    2010-11-02

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having one of the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, or Fe; B''=Cu; 0.01

  19. Comparative Metal Oxide Nanoparticle Toxicity Using Embryonic Zebrafish

    PubMed Central

    Wehmas, Leah C.; Anders, Catherine; Chess, Jordan; Punnoose, Alex; Pereira, Cliff B.; Greenwood, Juliet A.; Tanguay, Robert L.

    2015-01-01

    Engineered metal oxide nanoparticles (MO NPs) are finding increasing utility in the medical field as anticancer agents. Before validation of in vivo anticancer efficacy can occur, a better understanding of whole-animal toxicity is required. We compared the toxicity of seven widely used semiconductor MO NPs made from zinc oxide (ZnO), titanium dioxide, cerium dioxide and tin dioxide prepared in pure water and in synthetic seawater using a five-day embryonic zebrafish assay. We hypothesized that the toxicity of these engineered MO NPs would depend on physicochemical properties. Significant agglomeration of MO NPs in aqueous solutions is common making it challenging to associate NP characteristics such as size and charge with toxicity. However, data from our agglomerated MO NPs suggests that the elemental composition and dissolution potential are major drivers of toxicity. Only ZnO caused significant adverse effects of all MO particles tested, and only when prepared in pure water (point estimate median lethal concentration = 3.5–9.1 mg/L). This toxicity was life stage dependent. The 24 h toxicity increased greatly (~22.7 fold) when zebrafish exposures started at the larval life stage compared to the 24 hour toxicity following embryonic exposure. Investigation into whether dissolution could account for ZnO toxicity revealed high levels of zinc ion (40–89% of total sample) were generated. Exposure to zinc ion equivalents revealed dissolved Zn2+ may be a major contributor to ZnO toxicity. PMID:26029632

  20. Porous metal oxide microspheres from ion exchange resin

    NASA Astrophysics Data System (ADS)

    Picart, S.; Parant, P.; Caisso, M.; Remy, E.; Mokhtari, H.; Jobelin, I.; Bayle, J. P.; Martin, C. L.; Blanchart, P.; Ayral, A.; Delahaye, T.

    2015-07-01

    This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Those mixed oxide ceramics are one of the materials envisaged for americium transmutation in sodium fast neutron reactors. The advantage of such microsphere precursor compared to classical oxide powder is the diminution of the risk of fine dissemination which can be critical for the handling of highly radioactive powders such as americium based oxides and the improvement of flowability for the filling of compaction chamber. Those millimetric oxide microspheres incorporating uranium and americium were synthesized and characterizations showed a very porous microstructure very brittle in nature which occurred to be adapted to shaping by compaction. Studies allowed to determine an optimal heat treatment with calcination temperature comprised between 700-800 °C and temperature rate lower than 2 °C/min. Oxide Precursors were die-pressed into pellets and then sintered under air to form regular ceramic pellets of 95% of theoretical density (TD) and of homogeneous microstructure. This study validated thus the scientific feasibility of the CRMP process to prepare bearing americium target in a powder free manner.

  1. Pseudopotentials for quantum Monte Carlo studies of transition metal oxides

    DOE PAGES

    Krogel, Jaron T.; Santana Palacio, Juan A.; Reboredo, Fernando A.

    2016-02-22

    Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentialsmore » to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.« less

  2. Wannier function analysis of charge states in transition metal oxides

    NASA Astrophysics Data System (ADS)

    Quan, Yundi; Pickett, Warren

    2015-03-01

    The charge (or oxidation) state of a cation has been a crucial concept in analyzing the electronic and magnetic properties of oxides as well as interpreting ``charge ordering'' metal-insulator transitions. In recent years a few methods have been proposed for the objective identification of charge states, beyond the conventional (and occasionally subjective) use of projected densities of states, weighted band structures (fatbands), and Born effective charges. In the past two decades Wannier functions (WFs) and particularly maximally localized WFs (MLWFs), have become an indispensable tool for several different purposes in electronic structure studies. These developments have motivated us to explore the charge state picture from the perspective of MLWFs. We will illustrate with a few transition metal oxide examples such as AgO and YNiO3 that the shape, extent, and location of the charge centers of the MLWFs provide insights into how cation-oxygen hybridization determines chemical bonding, charge distribution, and ``charge ordering.'' DOE DE-FG02-04ER46111.

  3. Hydrous metal oxide catalysts for oxidation of hydrocarbons

    SciTech Connect

    Miller, J.E.; Dosch, R.G.; McLaughlin, L.I.

    1993-07-01

    This report describes work performed at Sandia under a CRADA with Shell Development of Houston, Texas aimed at developing hydrous metal oxide (HMO) catalysts for oxidation of hydrocarbons. Autoxidation as well as selective oxidation of 1-octene was studied in the presence of HMO catalysts based on known oxidation catalysts. The desired reactions were the conversion of olefin to epoxides, alcohols, and ketones, HMOs seem to inhibit autoxidation reactions, perhaps by reacting with peroxides or radicals. Attempts to use HMOs and metal loaded HMOs as epoxidation catalysts were unsuccessful, although their utility for this reaction was not entirely ruled out. Likewise, alcohol formation from olefins in the presence of HMO catalysts was not achieved. However, this work led to the discovery that acidified HMOs can lead to carbocation reactions of hydrocarbons such as cracking. An HMO catalyst containing Rh and Cu that promotes the reaction of {alpha}-olefins with oxygen to form methyl ketones was identified. Although the activity of the catalyst is relatively low and isomerization reactions of the olefin simultaneously occur, results indicate that these problems may be addressed by eliminating mass transfer limitations. Other suggestions for improving the catalyst are also made. 57 refs.

  4. Solid-state synthesis of embedded single-crystal metal oxide and phosphate nanoparticles and in situ crystallization.

    PubMed

    Díaz, C; Valenzuela, M L; Bravo, D; Dickinson, C; O'Dwyer, C

    2011-10-01

    A new solid state organometallic route to embedded nanoparticle-containing inorganic materials is shown, through pyrolysis of metal-containing derivatives of cyclotriphosphazenes. Pyrolysis in air and at 800 °C of new molecular precursors gives individual single-crystal nanoparticles of SiP(2)O(7), TiO(2), P(4)O(7,) WP(2)O(7) and SiO(2), depending on the precursor used. High resolution transmission electron microscopy investigations reveal, in most cases, perfect single crystals of metal oxides and the first nanostructures of negative thermal expansion metal phosphates with diameters in the range 2-6 nm for all products. While all nanoparticles are new by this method, WP(2)O(7) and SiP(2)O(7) nanoparticles are reported for the first time. In situ recrystallization formation of nanocrystals of SiP(2)O(7) was also observed due to electron beam induced reactions during measurements of the nanoparticulate pyrolytic products SiO(2) and P(4)O(7). The possible mechanism for the formation of the nanoparticles at much lower temperatures than their bulk counterparts in both cases is discussed. Degrees of stabilization from the formation of P(4)O(7) affects the nanocrystalline products: nanoparticles are observed for WP(2)O(7), with coalescing crystallization occurring for the amorphous host in which SiP(2)O(7) crystals form as a solid within a solid. The approach allows the simple formation of multimetallic, monometallic, metal-oxide and metal phosphate nanocrystals embedded in an amorphous dielectric. The method and can be extended to nearly any metal capable of successful coordination as an organometallic to allow embedded nanoparticle layers and features to be deposited or written on surfaces for application as high mobility pyrophosphate lithium-ion cathode materials, catalysis and nanocrystal embedded dielectric layers.

  5. Combinatorial search for improved metal oxide oxygen evolution electrocatalysts in acidic electrolytes.

    PubMed

    Seley, David; Ayers, Katherine; Parkinson, B A

    2013-02-11

    A library of electrocatalysts for water electrolysis under acidic conditions was created by ink jet printing metal oxide precursors followed by pyrolysis in air to produce mixed metal oxides. The compositions were then screened in acidic electrolytes using a pH sensitive fluorescence indicator that became fluorescent due to the pH change at the electrode surface because of the release of protons from water oxidation. The most promising materials were further characterized by measuring polarization curves and Tafel slopes as anodes for water oxidation. Mixed metal oxides that perform better than the iridium oxide standard were identified.

  6. Method of making metal oxide ceramic membranes with small pore sizes

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin

    1992-01-01

    A method for the production of metal oxide ceramic membranes is composed of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  7. INVESTIGATION ON DURABILITY AND REACTIVITY OF PROMISING METAL OXIDE SORBENTS DURING SULFIDATION AND REGENERATION. QUARTERLY AND FINAL REPORT

    SciTech Connect

    K.C. KWON

    1998-08-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at high pressures and high temperatures. Metal oxides such as zinc titanate oxides, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide, were found to be promising sorbents in comparison with other removal methods such as membrane separations and reactive membrane separations. Some metal oxide sorbents exhibited the quite favorable performance in terms of attrition resistance and sulfur capacity. Experiments on removal reaction of H{sub 2}S from coal gas mixtures with formulated metal oxide sorbents were conducted in a batch reactor or a differential reactor. The objectives of this research project are to formulate promising metal oxide sorbents for removal of sulfur from coal gas mixtures, to find initial reaction kinetics for the metal oxide-hydrogen sulfide heterogeneous reaction system, to obtain effects of hydrogen, nitrogen and moisture on dynamic absorption and equilibrium absorption at various absorption temperatures. Promising durable metal oxide sorbents with high-sulfur-absorbing capacity were formulated by mixing active metal oxide powders with inert metal oxide powders, and calcining these powder mixtures. The Research Triangle Institute (RTI), a sub-contractor of this research project, will also prepare promising metal oxide sorbents for this research project, plan experiments on removal of sulfur compounds from coal gases with metal oxide, and review experimental results.

  8. Complimentary Metal Oxide Semiconductor (CMOS)-Memristor Hybrid Nanoelectronics

    DTIC Science & Technology

    2011-06-01

    N+ N+ M1M1 P+ N- P- P N+ N M1M1 (d) TEOS open (e) SiN open with TEOS as hardmask (f) Oxidation N-Well P-Well P P+ N N+ M1M1 P+ N-Well P-Well P N...N+ M1M1 P+ N- P- P N+ N M1M1 (d) TEOS open (e) SiN open with TEOS as hardmask (f) Oxidation N-Well P-Well P+ P+ N+ N+ M1M1 N-Well P-Well P+ P+ N

  9. Meeting in New Orleans: An Assessment of the Fate of Metal Oxide Nanomaterials in Porous Media

    EPA Science Inventory

    This work assesses potential aqueous environmental metal oxide nanomaterial self-aggregation through the application of recent developments in surface complexation theory with historical DLVO procedures. Findings include: 1) nanomaterials with a Hamaker constant as large as 1E-1...

  10. Radiation hardening of metal-oxide semi-conductor (MOS) devices by boron

    NASA Technical Reports Server (NTRS)

    Danchenko, V.

    1974-01-01

    Technique using boron effectively protects metal-oxide semiconductor devices from ionizing radiation without using shielding materials. Boron is introduced into insulating gate oxide layer at semiconductor-insulator interface.

  11. Non-uniform Solute Segregation at Semi-Coherent Metal/Oxide Interfaces

    NASA Astrophysics Data System (ADS)

    Choudhury, Samrat; Aguiar, Jeffery A.; Fluss, Michael J.; Hsiung, Luke L.; Misra, Amit; Uberuaga, Blas P.

    2015-08-01

    The properties and performance of metal/oxide nanocomposites are governed by the structure and chemistry of the metal/oxide interfaces. Here we report an integrated theoretical and experimental study examining the role of interfacial structure, particularly misfit dislocations, on solute segregation at a metal/oxide interface. We find that the local oxygen environment, which varies significantly between the misfit dislocations and the coherent terraces, dictates the segregation tendency of solutes to the interface. Depending on the nature of the solute and local oxygen content, segregation to misfit dislocations can change from attraction to repulsion, revealing the complex interplay between chemistry and structure at metal/oxide interfaces. These findings indicate that the solute chemistry at misfit dislocations is controlled by the dislocation density and oxygen content. Fundamental thermodynamic concepts - the Hume-Rothery rules and the Ellingham diagram - qualitatively predict the segregation behavior of solutes to such interfaces, providing design rules for novel interfacial chemistries.

  12. Regenerable MgO promoted metal oxide oxygen carriers for chemical looping combustion

    DOEpatents

    Siriwardane, Ranjani V.; Miller, Duane D.

    2014-08-19

    The disclosure provides an oxygen carrier comprised of a plurality of metal oxide particles in contact with a plurality of MgO promoter particles. The MgO promoter particles increase the reaction rate and oxygen utilization of the metal oxide when contacting with a gaseous hydrocarbon at a temperature greater than about 725.degree. C. The promoted oxide solid is generally comprised of less than about 25 wt. % MgO, and may be prepared by physical mixing, incipient wetness impregnation, or other methods known in the art. The oxygen carrier exhibits a crystalline structure of the metal oxide and a crystalline structure of MgO under XRD crystallography, and retains these crystalline structures over subsequent redox cycles. In an embodiment, the metal oxide is Fe.sub.2O.sub.3, and the gaseous hydrocarbon is comprised of methane.

  13. Non-uniform solute segregation at semi-coherent metal/oxide interfaces

    SciTech Connect

    Choudhury, Samrat; Aguiar, Jeffery A.; Fluss, Michael J.; Hsiung, Luke L.; Misra, Amit; Uberuaga, Blas P.

    2015-08-26

    The properties and performance of metal/oxide nanocomposites are governed by the structure and chemistry of the metal/oxide interfaces. Here we report an integrated theoretical and experimental study examining the role of interfacial structure, particularly misfit dislocations, on solute segregation at a metal/oxide interface. We find that the local oxygen environment, which varies significantly between the misfit dislocations and the coherent terraces, dictates the segregation tendency of solutes to the interface. Depending on the nature of the solute and local oxygen content, segregation to misfit dislocations can change from attraction to repulsion, revealing the complex interplay between chemistry and structure at metal/oxide interfaces. These findings indicate that the solute chemistry at misfit dislocations is controlled by the dislocation density and oxygen content. As a result, fundamental thermodynamic concepts – the Hume-Rothery rules and the Ellingham diagram – qualitatively predict the segregation behavior of solutes to such interfaces, providing design rules for novel interfacial chemistries.

  14. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    PubMed

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-18

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  15. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers

    NASA Astrophysics Data System (ADS)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  16. Porous carbon and carbon/metal oxide microfibers with well-controlled pore structure and interface.

    PubMed

    Shi, Qihui; Liang, Hongjun; Feng, Dan; Wang, Jianfang; Stucky, Galen D

    2008-04-16

    A "brick-and-mortar" assembly approach for creating porous carbon and carbon/metal oxide fibers on the micron scale with well-defined pore structure and interface is presented. A series of monodisperse silica@polyacrylonitrile (PAN) and silica@metal oxide@PAN core/shell particles were synthesized by emulsion polymerization and assembled into organic-inorganic composite fibers through a simple ice-templating strategy with the assistance of polyvinyl alcohol. Porous carbon and carbon/metal oxide fibers with well-controlled pores and interfaces were created by oxidative stabilization and carbonization of composite fibers followed by removal of silica cores with hydrofluoric acid or concentrated alkali. The pore structure and the carbon/metal oxide interfaces of the fibers impart to the fibers' lightweight and potential applications in catalysis, electrochemical energy, and gas or liquid separations and storage.

  17. The atomic level journey from aqueous polyoxometalate to metal oxide

    SciTech Connect

    Hou, Yu; Fast, Dylan B.; Ruther, Rose E.; Amador, Jenn M.; Fullmer, Lauren B.; Decker, Shawn R.; Zakharov, Lev N.; Dolgos, Michelle R. Nyman, May

    2015-01-15

    Aqueous precursors tailored for the deposition of thin film materials are desirable for sustainable, simple, low energy production of advanced materials. Yet the simple practice of using aqueous precursors is complicated by the multitude of interactions that occur between ions and water during dehydration. Here we use lithium polyoxoniobate salts to investigate the fundamental interactions in the transition from precursor cluster to oxide film. Small-angle X-ray scattering of solutions, total X-ray scattering of intermediate gels, and morphological and structural characterization of the lithium niobate thin films reveal the atomic level transitions between these states. The studies show that (1) lithium–[H{sub 2}Nb{sub 6}O{sub 19}]{sup 6−} has drastically different solution behaviour than lithium–[Nb{sub 6}O{sub 19}]{sup 8−}, linked to the precursor salt structure (2) in both compositions, the intermediate gel preserves the polyoxoniobate clusters and show similar local order and (3) the morphology and phases of deposited films reflect the ions behaviour throughout the journey from cluster solution to metal oxide. - Graphical abstract: Aqueous lithium polyoxoniobate salts were used to prepare lithium niobate (LiNbO{sub 3}) thin films. Fundamental studies were performed to investigate the interactions in the transition from precursor cluster to the oxide film. It was found that acid–base and ion-association chemistries of the aqueous and gel systems significantly affect the key processes in this atom-level journey. - Highlights: • Lithium polyoxoniobate clusters were synthesized with control over Li:Nb ratio as precursors for LiNbO{sub 3} films. • X-ray scattering studies in solution and the solid-state revealed differences controlled by Li:Nb ratio. • Film deposition studies revealed phase, composition and morphology is controlled by Li:Nb ratio. • Cluster to film transformation was revealed using total X-ray scattering and TGA.

  18. Epitaxial electrodeposition of chiral and spintronic metal oxides

    NASA Astrophysics Data System (ADS)

    Kothari, Hiten Mahendra

    This dissertation presents an investigation of the electrodeposition of epitaxial and polycrystalline functional metal oxide films on conducting polycrystalline and single crystal substrates. In the first part of the study, electrodeposited CuO films are shown to be enantiospecific catalysts. In the second part of the study, Fe3O4 films are electrodeposited with a magnetoresistance of ˜-6 % at 300 K in a field of 9 T. Synthesis, separation and detection of enantiomers are of great interest to the pharmaceutical industry. Heterogeneous catalysts are easily separated and reduce the cost of the process. Electrodeposited epitaxial films of CuO onto achiral Au and Cu single crystals using chiral precursors to complex Cu(II) are shown to be enantiospecific catalysts. CuO electrodeposits with a chiral orientation, even though the material does not crystallize in a chiral space group. The chirality of the electrodeposited films is dictated at the molecular level by the chiral solution precursors. X-ray diffraction pole figures and azimuthal scans, in conjunction with stereographic projections, are used to determine the absolute configuration and the enantiomeric excess of the chiral CuO films. Polycrystalline and epitaxial films of magnetite are electrodeposited on polycrystalline and Au(111) surfaces by the electrochemical reduction of a Fe(III)-triethanolamine complex in alkaline solution. Room temperature MR values of ˜-6.5 and -6% are obtained in a magnetic field of 9 T with the field parallel and perpendicular to the film plane, respectively. The observed MR behavior is consistent with the reported model of tunneling transport of spin polarized electrons across antiferromagnetic grain boundaries.

  19. Fingerprints of spin-orbital entanglement in transition metal oxides.

    PubMed

    Oleś, Andrzej M

    2012-08-08

    The concept of spin-orbital entanglement on superexchange bonds in transition metal oxides is introduced and explained on several examples. It is shown that spin-orbital entanglement in superexchange models destabilizes the long-range (spin and orbital) order and may lead either to a disordered spin-liquid state or to novel phases at low temperature which arise from strongly frustrated interactions. Such novel ground states cannot be described within the conventionally used mean field theory which separates spin and orbital degrees of freedom. Even in cases where the ground states are disentangled, spin-orbital entanglement occurs in excited states and may become crucial for a correct description of physical properties at finite temperature. As an important example of this behaviour we present spin-orbital entanglement in the RV O(3) perovskites, with R = La,Pr,…,Y b,Lu, where the finite temperature properties of these compounds can be understood only using entangled states: (i) the thermal evolution of the optical spectral weights, (ii) the dependence of the transition temperatures for the onset of orbital and magnetic order on the ionic radius in the phase diagram of the RV O(3) perovskites, and (iii) the dimerization observed in the magnon spectra for the C-type antiferromagnetic phase of Y V O(3). Finally, it is shown that joint spin-orbital excitations in an ordered phase with coexisting antiferromagnetic and alternating orbital order introduce topological constraints for the hole propagation and will thus radically modify the transport properties in doped Mott insulators where hole motion implies simultaneous spin and orbital excitations.

  20. Pulsed laser deposition of transition metal oxides for secondary batteries

    SciTech Connect

    Striebel, K.A.; Deng, C.Z.; Cairns, E.J.

    1995-12-31

    Pulsed laser deposition has been used to prepare thin films of several complex metal oxides of significance in secondary batteries from a single stoichiometric target with a substrate temperature of 600 C in the presence of 200 mtorr O{sub 2}. Films of the candidate bifunctional air electrocatalysts, for metal air batteries, La{sub 0.6}Ca{sub 0.4}CoO{sub 3}, La{sub 0.6}Sr{sub 0.4}CoO{sub 3}, La{sub 0.6}Ca{sub 0.4}MnO{sub 3} and La{sub 0.6}Sr{sub 0.4}MnO{sub 3} were prepared on glassy carbon substrates. Glassy carbon was found to either erode during the ablation process (with the cobaltates) or cause film cracking after deposition because of its extremely low coefficient of thermal expansion. The use of stainless steel substrates yielded 0.3 {micro}m-thick dense films of La{sub 0.6}Ca{sub 0.4}CoO{sub 3} and La{sub 0.6}Ca{sub 0.4}MnO{sub 3} which were suitable for electrochemical measurements in concentrated alkaline electrolytes. LiMn{sub 2}O{sub 4} and LiCoO{sub 2} films were prepared at thickness` of 0.3 {micro}m and 1.5 {micro}m. The 0.3 {micro}m-thick films delivered 176 mC/cm{sup 2}-{micro}m and 323 mC/cm{sup 2} for LiMn{sub 2}O{sub 4} and LiCoO{sub 2}, respectively, in 1 M LiClO{sub 4}/PC.

  1. Gas Sensing Properties of ZnO-SnO2 Nanostructures.

    PubMed

    Chen, Weigen; Li, Qianzhu; Xu, Lingna; Zeng, Wen

    2015-02-01

    One-dimensional (1D) semiconductor metal oxide nanostructures have attracted increasing attention in electrochemistry, optics, magnetic, and gas sensing fields for the good properties. N-type low dimensional semiconducting oxides such as SnO2 and ZnO have been known for the detection of inflammable or toxic gases. In this paper, we fabricated the ZnO-SnO2 and SnO2 nanoparticles by hydrothermal synthesis. Microstructure characterization was performed using X-ray diffraction (XRD) and surface morphologies for both the pristine and doped samples were observed using field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Then we made thin film gas sensor to study the gas sensing properties of ZnO-SnO2 and SnO2 gas sensor to H2 and CO. A systematic comparison study reveals an enhanced gas sensing performance for the sensor made of SnO2 and ZnO toward H2 and CO over that of the commonly applied undecorated SnO2 nanoparticles. The improved gas sensing properties are attributed to the size of grains and pronounced electron transfer between the compound nanostructures and the absorbed oxygen species as well as to the heterojunctions of the ZnO nanoparticles to the SnO2 nanoparticles, which provide additional reaction rooms. The results represent an advance of compound nanostructures in further enhancing the functionality of gas sensors, and this facile method could be applicable to many sensing materials, offering a new avenue and direction to detect gases of interest based on composite tin oxide nanoparticles.

  2. Experimental Methodology for Determining Optimum Process Parameters for Production of Hydrous Metal Oxides by Internal Gelation

    SciTech Connect

    Collins, J.L.

    2005-10-28

    The objective of this report is to describe a simple but very useful experimental methodology that was used to determine optimum process parameters for preparing several hydrous metal-oxide gel spheres by the internal gelation process. The method is inexpensive and very effective in collection of key gel-forming data that are needed to prepare the hydrous metal-oxide microspheres of the best quality for a number of elements.

  3. Development of Novel Magnetic Metal Oxide Films and Carbon Nanotube Materials for Magnetic Device Applications

    DTIC Science & Technology

    2015-01-23

    Development of Novel Magnetic Metal Oxide Films and Carbon Nanotube Materials for Magnetic Device Applications Earlier wereport the successful...ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Nanomagnetics, carbon nanotubes , multilayer materials, spin...Development of Novel Magnetic Metal Oxide Films and Carbon Nanotube Materials for Magnetic Device Applications Report Title Earlier wereport the

  4. Systematic Investigations of Biomimetic Catalysts in the Synthesis of Reactive Metal Oxide Nanoparticle Networks

    DTIC Science & Technology

    2012-09-01

    titania and alumina, (2) to entrap biological agents within the matrixes of these oxides, and (3) to control the morphology of the biomimetically...precipitated titania through biomimetic agent composition. These metal oxides are of interest as potential decontaminating substrates for the hydrolysis...biomimetic agents will precipitate metal oxides beyond silica, show that it is possible to entrap enzymes within the titania matrix and retain activity

  5. Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@C Core-Shell Composites via Combustion Waves.

    PubMed

    Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2016-02-23

    The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5-20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures.

  6. Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@C Core-Shell Composites via Combustion Waves

    NASA Astrophysics Data System (ADS)

    Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2016-02-01

    The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5–20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures.

  7. Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@C Core-Shell Composites via Combustion Waves

    PubMed Central

    Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2016-01-01

    The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5–20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures. PMID:26902260

  8. Nanoscaled tin dioxide films processed from organotin-based hybrid materials: an organometallic route toward metal oxide gas sensors

    NASA Astrophysics Data System (ADS)

    Renard, Laetitia; Babot, Odile; Saadaoui, Hassan; Fuess, Hartmut; Brötz, Joachim; Gurlo, Aleksander; Arveux, Emmanuel; Klein, Andreas; Toupance, Thierry

    2012-10-01

    Nanocrystalline tin dioxide (SnO2) ultra-thin films were obtained employing a straightforward solution-based route that involves the calcination of bridged polystannoxane films processed by the sol-gel process from bis(triprop-1-ynylstannyl)alkylene and -arylene precursors. These films have been thoroughly characterized by FTIR, contact angle measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force (AFM) and scanning electron (SEM) microscopies. Annealing at a high temperature gave 30-35 nm thick cassiterite SnO2 films with a mean crystallite size ranging from 4 to 7 nm depending on the nature of the organic linker in the distannylated compound used as a precursor. In the presence of H2 and CO gases, these layers led to highly sensitive, reversible and reproducible responses. The sensing properties were discussed in regard to the crystallinity and porosity of the sensing body that can be tuned by the nature of the precursor employed. Organometallic chemistry combined with the sol-gel process therefore offers new possibilities toward metal oxide nanostructures for the reproducible and sensitive detection of combustible and toxic gases.Nanocrystalline tin dioxide (SnO2) ultra-thin films were obtained employing a straightforward solution-based route that involves the calcination of bridged polystannoxane films processed by the sol-gel process from bis(triprop-1-ynylstannyl)alkylene and -arylene precursors. These films have been thoroughly characterized by FTIR, contact angle measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force (AFM) and scanning electron (SEM) microscopies. Annealing at a high temperature gave 30-35 nm thick cassiterite SnO2 films with a mean crystallite size ranging from 4 to 7 nm depending on the nature of the organic linker in the distannylated compound used as a precursor. In the presence of H2 and CO gases, these layers led to highly sensitive, reversible and reproducible

  9. Production and Characterization of Silicon Nanostructures for the Advancement of Novel Energetic Formulations

    DTIC Science & Technology

    2008-12-01

    the reduced sensitivity to ESD event in comparison with that of other nanothermites such as CuO-Al, Bi2O3 -Al, WO3-Al etc. 3.6 Future...Perspective of Si Nanostructures in Energetics It is expected that mixing traditional metal oxides like CuO, Bi2O3 , WO3 etc with high aspect ratio Si

  10. High-energy-surface engineered metal oxide micro- and nanocrystallites and their applications.

    PubMed

    Kuang, Qin; Wang, Xue; Jiang, Zhiyuan; Xie, Zhaoxiong; Zheng, Lansun

    2014-02-18

    Because many physical and chemical processes occur at surfaces, surface atomic structure is a critical factor affecting the properties of materials. Due to the presence of high-density atomic steps and edges and abundant unsaturated coordination sites, micro- and nanocrystallites with high-energy surfaces usually exhibit greater reactivity than those with low-energy surfaces. However, high-energy crystal surfaces are usually lost during crystal growth as the total surface energy is minimized. Therefore, the selective exposure of high-energy facets at the surface of micro- and nanocrystallites is an important and challenging research topic. Metal oxides play important roles in surface-associated applications, including catalysis, gas sensing, luminescence, and antibiosis. The synthesis of metal oxide micro- and nanocrystallites with specific surfaces, particularly those with high surface energies, is more challenging than the synthesis of metal crystals due to the presence of strong metal-oxygen bonds and diverse crystal structures. In this Account, we briefly summarize recent progress in the surface-structure-controlled synthesis of several typical metal oxide micro- and nanocrystallites, including wurtzite ZnO, anatase TiO2, rutile SnO2, and rocksalt-type metal oxides. We also discuss the improvement of surface properties, focusing on high-energy surfaces. Because of the huge quantity and diverse structure of metal oxides, this Account is not intended to be comprehensive. Instead, we discuss salient features of metal oxide micro- and nanocrystallites using examples primarily from our group. We first discuss general strategies for tuning the surface structure of metal oxide micro- and nanocrystallites, presenting several typical examples. For each example, we describe the basic crystallographic characteristics as well as the thermodynamic (i.e., tuning surface energy) or kinetic (i.e., tuning reaction rates) strategies we have used to synthesize micro- and

  11. Active metal oxides and polymer hybrids as biomaterials

    NASA Astrophysics Data System (ADS)

    Jarrell, John D.

    Bone anchored prosthetic attachments, like other percutaneous devices, suffer from poor soft tissue integration, seen as chronic inflammation, infection, epithelial downgrowth and regression. We looked at the use of metal oxides as bioactive agents that elicit different bioresponses, ranging from cell attachment, tissue integration and reduction of inflammation to modulation of cell proliferation, morphology and microbe killing. This study presents a novel method for creating titanium oxide and polydimethylsiloxane (PDMS) hybrid coated microplates for high throughput biological, bacterial and photocatalytic screening that overcomes several limitations of using bulk metal samples. Titanium oxide coatings were doped with silver, zinc, vanadium, aluminum, calcium and phosphorous, while PDMS was doped with titanium, vanadium and silver and subjected to hydrothermal heat treatment to determine the influence of chemistry and crystallinity on the viability, proliferation and adhesion of human fibroblasts, keratinocytes and Hela cells. Also explored was the influence of Ag and Zn doping on E. coli proliferation. We determined how titanium concentration in hybrids and silver doping influenced the photocatalytic degradation of methylene blue by coatings. A combined sub/percutaneous, polyurethane device was developed and implanted into the backs of CD hairless rats to investigate how optimized coatings influenced soft tissue integration in vivo. We demonstrate that the bioresponse of cells to coatings is controlled by elemental doping (V & Ag) and that planktonic bacterial growth was greatly reduced or stopped by Ag, but not Zn doping. Hydrothermal heat treatments (65 °C and 121 °C) did not greatly influence cellular bioresponse to coatings. We discovered a range of temperature resistant (up to 400 °C), solid state dispersions with enhanced ability to block full spectrum photon transmission and degrade methylene using medical x-rays, UV, visible and infrared photons. We

  12. The electrochemisty of surface modified <10 nm metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Roberts, Joseph J. P.

    Chapter One provides a general introduction of the research on metal oxide nanoparticles (MOx), highlighting their synthesis, surface modification, and functionalization. Emphasis is given to the different synthetic route for producing small (<10 nm) MOx nanoparticles with narrow size distributions. Different methods for modifying their surface with small organic molecules are discussed with focus given to silanes and phosphates. Furthermore, functionalizing surface modified nanoparticles for specific functions is addressed, with markers for analytically relevant nanoscale quantification being the primary focus. Chapter Two describes in detail the thermal degradation synthesis used for the generation of small MOx nanoparticles. It demonstrates the versatile of the synthesis by successfully synthesizing ZrO 2 and IrO2 nanoparticles. Preliminary work involving the formation of Bi2S3, Bi2O3, and RuO2 nanomaterials is also addressed. The solvothermal synthesis of indium tin oxide (ITO) is also shown for comparison to ITO produced by thermal degradation. Chapter Three details the surface modification of ITO nanoparticles and subsequent electrochemical tagging with a ferrocene moiety. ITO nanoparticles were synthesized via thermal degradation. These nanoparticles underwent a ligand exchange with a covalently binding mondentate silane terminated with a primary amine. Acyl chloride coupling between the amine and chlorocarbonylferrocene provided an electrochemical tag to quantify the level of surface modification. Electrochemisty of the quasi-diffusing nanoparticles was evaluated via cyclic voltammetry (CV), chronoamperometry (CA), and mircodisk electrode (microE) experiments. Chapter Four investigates spectroscopic tagging of ITO and ZrO2 nanoparticles as well as electrochemical tagging of ZrO 2 and IrO2 nanoparticles. An unbound azo-dye was synthesized and attempts were made to attach the dye to the surface of ITO nanoparticles. Imine couple between a spectroscopic tag

  13. (S)TEM analysis of functional transition metal oxides

    NASA Astrophysics Data System (ADS)

    Chi, Miaofang

    Perovskite vanadates (AVO3) form an ideal family to study the structure-property relationships in transition metal oxides because their physical properties can easily be tailored by varying the A-site cations. (S)TEM is an ideal tool for this type of study due to its capacity for simultaneous imaging and chemical analysis. Determination of the oxidation state of vanadium in complex oxides have been carried out by electron energy loss spectroscopy. SrVO3/LaAlO3 is then studied both experimentally and theoretically as a prototype system. Extra electrons have been detected on the interface layer, and further proven to originate mainly from a change in the local bonding configuration of V at the La-O terminated substrate surface. Cr-containing stainless steel deposited with a LaCrO3 thin-film layer is a promising interconnect material of Solid Oxide Fuel Cells (SOFC). Our investigation on its microstructural evolution reveals that the LaCrO 3 thin film plays a role in inhibiting the growth of an oxide layer on the metal surface and thus protects the surface of the stainless steel. Ca-doped LaCoO3 is a promising SOFC cathode material. The domain structures and the oxidation state of Co in Ca-doped LaCoO3, which are directly related to its mechanical properties and electronic conductivity, are investigated by in-situ TEM and EELS. The formation of microcracks is observed during thermal cycles. Ca-doping in LaCoO3 is shown to not only improve the electronic conductivity of the material, but is also likely to strengthen the grain boundaries. The realization of its application in SOFCs depends on depressing the ferroelastisity to reduce strain formation during thermal cycles. The application of the (S)TEM techniques used for studying the perovskite systems are further extended to other compounds containing transition metal elements. The refractory minerals from Comet 81 P/Wild-2 are studied to investigate the formation of the early solar system. A relatively high Ti3+/Ti 4

  14. One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis.

    PubMed

    Xiao, Fang-Xing; Miao, Jianwei; Tao, Hua Bing; Hung, Sung-Fu; Wang, Hsin-Yi; Yang, Hong Bin; Chen, Jiazang; Chen, Rong; Liu, Bin

    2015-05-13

    Semiconductor-based photocatalysis and photoelectrocatalysis have received considerable attention as alternative approaches for solar energy harvesting and storage. The photocatalytic or photoelectrocatalytic performance of a semiconductor is closely related to the design of the semiconductor at the nanoscale. Among various nanostructures, one-dimensional (1D) nanostructured photocatalysts and photoelectrodes have attracted increasing interest owing to their unique optical, structural, and electronic advantages. In this article, a comprehensive review of the current research efforts towards the development of 1D semiconductor nanomaterials for heterogeneous photocatalysis and photoelectrocatalysis is provided and, in particular, a discussion of how to overcome the challenges for achieving full potential of 1D nanostructures is presented. It is anticipated that this review will afford enriched information on the rational exploration of the structural and electronic properties of 1D semiconductor nanostructures for achieving more efficient 1D nanostructure-based photocatalysts and photoelectrodes for high-efficiency solar energy conversion.

  15. Template-assisted synthesis of III-nitride and metal-oxide nano-heterostructures using low-temperature atomic layer deposition for energy, sensing, and catalysis applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Biyikli, Necmi; Ozgit-Akgun, Cagla; Eren, Hamit; Haider, Ali; Uyar, Tamer; Kayaci, Fatma; Guler, Mustafa Ozgur; Garifullin, Ruslan; Okyay, Ali K.; Ulusoy, Gamze M.; Goldenberg, Eda

    2015-08-01

    Recent experimental research efforts on developing functional nanostructured III-nitride and metal-oxide materials via low-temperature atomic layer deposition (ALD) will be reviewed. Ultimate conformality, a unique propoerty of ALD process, is utilized to fabricate core-shell and hollow tubular nanostructures on various nano-templates including electrospun nanofibrous polymers, self-assembled peptide nanofibers, metallic nanowires, and multi-wall carbon nanotubes (MWCNTs). III-nitride and metal-oxide coatings were deposited on these nano-templates via thermal and plasma-enhanced ALD processes with thickness values ranging from a few mono-layers to 40 nm. Metal-oxide materials studied include ZnO, TiO2, HfO2, ZrO2, and Al2O3. Standard ALD growth recipes were modified so that precursor molecules have enough time to diffuse and penetrate within the layers/pores of the nano-template material. As a result, uniform and conformal coatings on high-surface area nano-templates were demonstrated. Substrate temperatures were kept below 200C and within the self-limiting ALD window, so that temperature-sensitive template materials preserved their integrity III-nitride coatings were applied to similar nano-templates via plasma-enhanced ALD (PEALD) technique. AlN, GaN, and InN thin-film coating recipes were optimized to achieve self-limiting growth with deposition temperatures as low as 100C. BN growth took place only for >350C, in which precursor decomposition occured and therefore growth proceeded in CVD regime. III-nitride core-shell and hollow tubular single and multi-layered nanostructures were fabricated. The resulting metal-oxide and III-nitride core-shell and hollow nano-tubular structures were used for photocatalysis, dye sensitized solar cell (DSSC), energy storage and chemical sensing applications. Significantly enhanced catalysis, solar efficiency, charge capacity and sensitivity performance are reported. Moreover, core-shell metal-oxide and III-nitride materials

  16. Thermal Stability Limits of Imidazolium Ionic Liquids Immobilized on Metal-Oxides.

    PubMed

    Babucci, Melike; Akçay, Aslı; Balci, Volkan; Uzun, Alper

    2015-08-25

    Thermal stability limits of 33 imidazolium ionic liquids (ILs) immobilized on three of the most commonly used high surface area metal-oxides, SiO2, γ-Al2O3, and MgO, were investigated. ILs were chosen from a family of 13 cations and 18 anions. Results show that the acidity of C2H of an imidazolium ring is one of the key factors controlling the thermal stability. An increase in C2H bonding strength of ILs leads to an increase in their stability limits accompanied by a decrease in interionic energy. Systematic changes in IL structure, such as changes in electronic structure and size of anion/cation, methylation on C2 site, and substitution of alkyl groups on the imidazolium ring with functional groups have significant effects on thermal stability limits. Furthermore, thermal stability limits of ILs are influenced strongly by acidic character of the metal-oxide surface. Generally, as the point of zero charge (PZC) of the metal-oxide increases from SiO2 to MgO, the interactions of IL and metal-oxide dominate over interionic interactions, and metal-oxide becomes the significant factor controlling the stability limits. However, thermal stability limits of some ILs show the opposite trend, as the chemical activities of the cation functional group or the electron donating properties of the anion alter IL/metal-oxide interactions. Results presented here can help in choosing the most suitable ILs for materials involving ILs supported on metal-oxides, such as for supported ionic liquid membranes (SILM) in separation applications or for solid catalyst with ionic liquid layer (SCILL) and supported ionic liquid phase (SILP) catalysts in catalysis.

  17. Spin-on metal oxide materials with high etch selectivity and wet strippability

    NASA Astrophysics Data System (ADS)

    Yao, Huirong; Mullen, Salem; Wolfer, Elizabeth; McKenzie, Douglas; Rahman, Dalil; Cho, JoonYeon; Padmanaban, Munirathna; Petermann, Claire; Hong, SungEun; Her, YoungJun

    2016-03-01

    Metal oxide or metal nitride films are used as hard mask materials in semiconductor industry for patterning purposes due to their excellent etch resistances against the plasma etches. Chemical vapor deposition (CVD) or atomic layer deposition (ALD) techniques are usually used to deposit the metal containing materials on substrates or underlying films, which uses specialized equipment and can lead to high cost-of-ownership and low throughput. We have reported novel spin-on coatings that provide simple and cost effective method to generate metal oxide films possessing good etch selectivity and can be removed by chemical agents. In this paper, new spin-on Al oxide and Zr oxide hard mask formulations are reported. The new metal oxide formulations provide higher metal content compared to previously reported material of specific metal oxides under similar processing conditions. These metal oxide films demonstrate ultra-high etch selectivity and good pattern transfer capability. The cured films can be removed by various chemical agents such as developer, solvents or wet etchants/strippers commonly used in the fab environment. With high metal MHM material as an underlayer, the pattern transfer process is simplified by reducing the number of layers in the stack and the size of the nano structure is minimized by replacement of a thicker film ACL. Therefore, these novel AZ® spinon metal oxide hard mask materials can potentially be used to replace any CVD or ALD metal, metal oxide, metal nitride or spin-on silicon-containing hard mask films in 193 nm or EUV process.

  18. Nanoscaled tin dioxide films processed from organotin-based hybrid materials: an organometallic route toward metal oxide gas sensors.

    PubMed

    Renard, Laetitia; Babot, Odile; Saadaoui, Hassan; Fuess, Hartmut; Brötz, Joachim; Gurlo, Aleksander; Arveux, Emmanuel; Klein, Andreas; Toupance, Thierry

    2012-11-07

    Nanocrystalline tin dioxide (SnO(2)) ultra-thin films were obtained employing a straightforward solution-based route that involves the calcination of bridged polystannoxane films processed by the sol-gel process from bis(triprop-1-ynylstannyl)alkylene and -arylene precursors. These films have been thoroughly characterized by FTIR, contact angle measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force (AFM) and scanning electron (SEM) microscopies. Annealing at a high temperature gave 30-35 nm thick cassiterite SnO(2) films with a mean crystallite size ranging from 4 to 7 nm depending on the nature of the organic linker in the distannylated compound used as a precursor. In the presence of H(2) and CO gases, these layers led to highly sensitive, reversible and reproducible responses. The sensing properties were discussed in regard to the crystallinity and porosity of the sensing body that can be tuned by the nature of the precursor employed. Organometallic chemistry combined with the sol-gel process therefore offers new possibilities toward metal oxide nanostructures for the reproducible and sensitive detection of combustible and toxic gases.

  19. Constructing 3D branched nanowire coated macroporous metal oxide electrodes with homogeneous or heterogeneous compositions for efficient solar cells.

    PubMed

    Wu, Wu-Qiang; Xu, Yang-Fan; Rao, Hua-Shang; Feng, Hao-Lin; Su, Cheng-Yong; Kuang, Dai-Bin

    2014-05-05

    Light-harvesting and charge collection have attracted increasing attention in the domain of photovoltaic cells, and can be facilitated dramatically by appropriate design of a photonic nanostructure. However, the applicability of current light-harvesting photoanode materials with single component and/or morphology (such as, particles, spheres, wires, sheets) is still limited by drawbacks such as insufficient electron-hole separation and/or light-trapping. Herein, we introduce a universal method to prepare hierarchical assembly of macroporous material-nanowire coated homogenous or heterogeneous metal oxide composite electrodes (TiO2 -TiO2 , SnO2 -TiO2 , and Zn2 SnO4 -TiO2 ; homogenous refers to a material in which the nanowire and the macroporous material have the same composition, i.e. both are TiO2 . Heterogeneous refers to a material in which the nanowires and the macroporous material have different compositions). The dye-sensitized solar cell based on a TiO2 -macroporous material-TiO2 -nanowire homogenous composition electrode shows an impressive conversion efficiency of 9.51 %, which is much higher than that of pure macroporous material-based photoelectrodes to date.

  20. Rational synthesis of multifunctional mixed metal oxides by hydrothermal techniques

    NASA Astrophysics Data System (ADS)

    Stampler, Evan Scott

    solid solutions with the formulae AgAl1-xGaxO2 and AgSc1-xInxO2 and five mixed B-site silver delafossites with the formulae AgBe0.5Ti0.5O2, AgMg0.5Ti0.5O2, AgNi0.5Ti 0.5O2, AgCu0.5Ti0.5O2, and AgZn0.5Ti0.5O2 at a reaction temperature of 210°C. The former were observed when the solubilities of both B-site trivalent cations were ≥ 10-5 M and the difference in the solubilities of the B-site cations was approximately one order of magnitude. The enhanced reactivity of the soluble H2TiO3 precursor and relatively high solubility of the divalent metal oxides ([M2+] ≥ 10 -5 M) led to the formation of the co-substituted silver delafossites.

  1. Electronic transitions and multiferroicity in transition metal oxides

    NASA Astrophysics Data System (ADS)

    Zhou, Haidong

    Four systems have been studied for the localized-itinerant electronic transition in transition-metal oxides: (i) In CaV1- xTixO3, substitution of Ti(IV) introduces Anderson-localized states below a mobility edge mu c that increases with x, crossing epsilon F in the range 0.2 < x< 0.4 and also transforms the strong-correlation fluctuations to localized V(IV): t1e0 configurations for x ≥ 0.1. (ii) The properties of LaTiO3+delta reveal that a hole-poor, strongly correlated electronic phase coexists with a hole-rich, itinerant-electron phase. With delta ≥ 0.03, the hole-rich phase exists as a minority phase of isolated, mobile itinerant-electron clusters embedded in the hole-poor phase. With delta ≥ 0.08, isolated hole-poor clusters are embedded in an itinerant-electron matrix. As delta > 0.08 increases, the hole-poor clusters become smaller and more isolated until they are reduced to super-paramagnetic strong-correlation fluctuations by delta = 0.12. (iii) The data of Y1-xLaxTiO 3 appears to distinguish an itinerant-electron antiferromagnetic phase in the La-rich samples from a localized-electron ferromagnetic phase with a cooperative Jahn-Teller distortion in the Y-rich phase. (iv) The transition at Tt in Mg[Ti2]O4 is a semiconductor-semiconductor transition associated with Ti-Ti dimerization instabilities. The dimerization is caused by lattice instabilities resulting from a double-well Ti-Ti bond potential at a crossover from localized to itinerant electronic behavior. RMn1-xGaxO 3 (R = Ho, Y) and Ho1-xY xMnO3 have been studied for the multiferroicity of RMnO3. Ga doping raises the ferrielectric Curie temperature TC and the Mn-spin reorientation temperature TSR while lowering TN of the Mn spins and the Ho magnetic ordering temperature T 2. The data show an important coupling between the Mn3+-ion and HO3+-ion spins as well as a TSR that is driven by a cooperative MnO5 site rotation and R 3+-ion displacements that modify the c lattice parameter. The data also

  2. An in situ oxidation route to fabricate graphene nanoplate-metal oxide composites

    SciTech Connect

    Chen Sheng; Zhu Junwu; Wang Xin

    2011-06-15

    We report our studies on an improved soft chemical route to directly fabricate graphene nanoplate-metal oxide (Ag{sub 2}O, Co{sub 3}O{sub 4}, Cu{sub 2}O and ZnO) composites from the in situ oxidation of graphene nanoplates. By virtue of H{sup +} from hydrolysis of the metal nitrate aqueous solution and NO{sub 3}{sup -}, only a small amount of functional groups were introduced, acting as anchor sites and consequently forming the graphene nanoplate-metal oxide composites. The main advantages of this approach are that it does not require cumbersome oxidation of graphite in advance and no need to reduce the composites due to the lower oxidation degree. The microstructures of as-obtained metal oxides on graphene nanoplates can be dramatically controlled by changing the reaction parameters, opening up the possibility for processing the optical and electrochemical properties of the graphene-based nanocomposites. - graphical abstract: An improved soft chemical route to directly fabricate graphene nanoplate-metal oxide composites is reported from the in situ oxidation of graphene nanoplates. Highlights: > An improved soft chemical route to directly fabricate graphene nanoplate-metal oxide composites. > The microstructures can be controlled by changing the reaction parameters. > It does not require oxidation of graphite in advance and no need to reduce the composites due to the lower oxidation degree.

  3. Photoluminescence of cadmium selenide-based quantum dots in the presence of a metal oxide

    NASA Astrophysics Data System (ADS)

    Patty, Kira D.

    Quantum dots (QDs) are semiconductor nanocrystals that self-assemble from solution and come in a variety of shapes, sizes, and materials. Due to their extremely small sizes, QDs exhibit atom-like quantum mechanical properties that make them highly desirable for many applications and for fundamental research in quantum mechanics. Further, when continuously irradiated, the intensity of QD emissions can increase over time; a phenomenon referred to as photo-induced fluorescence enhancement (PFE). For almost every application that deals with the optics of QDs, the enhancement of their quantum efficiency and control of their photoluminescence properties is highly desirable. This research explores how the presence of a metal oxide can alter the photoluminescence of CdSe-based colloidal QDs. The results show that certain QDs can become dramatically brighter when a metal oxide is present and this brightening occurs at the single QD level. Further, the results demonstrate that different metal oxides can interact uniquely with different types of QD structures. These effects were analyzed in terms of the photo-induced processes that drive PFE within the QDs and how those processes can be altered by the photo-catalytic properties of the metal oxides. In particular, this research shows that a metal oxide can act to stabilize the fluorescence of certain QDs over time even under conditions that generally lead to a reduction in the QDs' brightness. These results are unprecedented in the literature and represent a critical first step toward developing new techniques to tailor the photoluminescence of colloidal QDs.

  4. Design Principles for Metal Oxide Redox Materials for Solar-Driven Isothermal Fuel Production

    PubMed Central

    Michalsky, Ronald; Botu, Venkatesh; Hargus, Cory M; Peterson, Andrew A; Steinfeld, Aldo

    2015-01-01

    The performance of metal oxides as redox materials is limited by their oxygen conductivity and thermochemical stability. Predicting these properties from the electronic structure can support the screening of advanced metal oxides and accelerate their development for clean energy applications. Specifically, reducible metal oxide catalysts and potential redox materials for the solar-thermochemical splitting of CO2 and H2O via an isothermal redox cycle are examined. A volcano-type correlation is developed from available experimental data and density functional theory. It is found that the energy of the oxygen-vacancy formation at the most stable surfaces of TiO2, Ti2O3, Cu2O, ZnO, ZrO2, MoO3, Ag2O, CeO2, yttria-stabilized zirconia, and three perovskites scales with the Gibbs free energy of formation of the bulk oxides. Analogously, the experimental oxygen self-diffusion constants correlate with the transition-state energy of oxygen conduction. A simple descriptor is derived for rapid screening of oxygen-diffusion trends across a large set of metal oxide compositions. These general trends are rationalized with the electronic charge localized at the lattice oxygen and can be utilized to predict the surface activity, the free energy of complex bulk metal oxides, and their oxygen conductivity. PMID:26855639

  5. Physical electrochemistry of nanostructured devices.

    PubMed

    Bisquert, Juan

    2008-01-07

    This Perspective reviews recent developments in experimental techniques and conceptual methods applied to the electrochemical properties of metal-oxide semiconductor nanostructures and organic conductors, such as those used in dye-sensitized solar cells, high-energy batteries, sensors, and electrochromic devices. The aim is to provide a broad view of the interpretation of electrochemical and optoelectrical measurements for semiconductor nanostructures (sintered colloidal particles, nanorods, arrays of quantum dots, etc.) deposited or grown on a conducting substrate. The Fermi level displacement by potentiostatic control causes a broad change of physical properties such as the hopping conductivity, that can be investigated over a very large variation of electron density. In contrast to traditional electrochemistry, we emphasize that in nanostructured devices we must deal with systems that depart heavily from the ideal, Maxwell-Boltzmann statistics, due to broad distributions of states (energy disorder) and interactions of charge carriers, therefore the electrochemical analysis must be aided by thermodynamics and statistical mechanics. We discuss in detail the most characteristic densities of states, the chemical capacitance, and the transport properties, specially the chemical diffusion coefficient, mobility, and generalized Einstein relation.

  6. Band gap tuning in transition metal oxides by site-specific substitution

    DOEpatents

    Lee, Ho Nyung; Chisholm, Jr., Matthew F; Jellison, Jr., Gerald Earle; Singh, David J; Choi, Woo Seok

    2013-12-24

    A transition metal oxide insulator composition having a tuned band gap includes a transition metal oxide having a perovskite or a perovskite-like crystalline structure. The transition metal oxide includes at least one first element selected form the group of Bi, Ca, Ba, Sr, Li, Na, Mg, K, Pb, and Pr; and at least one second element selected from the group of Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Hf, Ta, W, Re, Os, Ir, and Pt. At least one correlated insulator is integrated into the crystalline structure, including REMO.sub.3, wherein RE is at least one Rare Earth element, and wherein M is at least one element selected from the group of Co, V, Cr, Ni, Mn, and Fe. The composition is characterized by a band gap of less of 4.5 eV.

  7. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis.

    PubMed

    Smith, Rodney D L; Prévot, Mathieu S; Fagan, Randal D; Zhang, Zhipan; Sedach, Pavel A; Siu, Man Kit Jack; Trudel, Simon; Berlinguette, Curtis P

    2013-04-05

    Large-scale electrolysis of water for hydrogen generation requires better catalysts to lower the kinetic barriers associated with the oxygen evolution reaction (OER). Although most OER catalysts are based on crystalline mixed-metal oxides, high activities can also be achieved with amorphous phases. Methods for producing amorphous materials, however, are not typically amenable to mixed-metal compositions. We demonstrate that a low-temperature process, photochemical metal-organic deposition, can produce amorphous (mixed) metal oxide films for OER catalysis. The films contain a homogeneous distribution of metals with compositions that can be accurately controlled. The catalytic properties of amorphous iron oxide prepared with this technique are superior to those of hematite, whereas the catalytic properties of a-Fe(100-y-z)Co(y)Ni(z)O(x) are comparable to those of noble metal oxide catalysts currently used in commercial electrolyzers.

  8. Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: hints from nano-QSAR studies.

    PubMed

    Gajewicz, Agnieszka; Schaeublin, Nicole; Rasulev, Bakhtiyor; Hussain, Saber; Leszczynska, Danuta; Puzyn, Tomasz; Leszczynski, Jerzy

    2015-05-01

    The production of nanomaterials increases every year exponentially and therefore the probability these novel materials that they could cause adverse outcomes for human health and the environment also expands rapidly. We proposed two types of mechanisms of toxic action that are collectively applied in a nano-QSAR model, which provides governance over the toxicity of metal oxide nanoparticles to the human keratinocyte cell line (HaCaT). The combined experimental-theoretical studies allowed the development of an interpretative nano-QSAR model describing the toxicity of 18 nano-metal oxides to the HaCaT cell line, which is a common in vitro model for keratinocyte response during toxic dermal exposure. The comparison of the toxicity of metal oxide nanoparticles to bacteria Escherichia coli (prokaryotic system) and a human keratinocyte cell line (eukaryotic system), resulted in the hypothesis that different modes of toxic action occur between prokaryotic and eukaryotic systems.

  9. Surface functionalization by gold nanoparticles and its prospects for application in conductometric metal oxide gas sensors

    NASA Astrophysics Data System (ADS)

    Korotcenkov, G.; Brinzari, V.; Cho, B. K.

    2017-03-01

    Approaches to surface functionalizing by gold nanoparticles of metal oxides aimed for gas sensors applications are discussed in this paper. It is demonstrated that surface modification by gold nanoparticles is accompanied by improvement of sensor performance. However, analysis of obtained results has shown that the achievement of strong improvement of gas sensor parameters is not a trivial task. For its reduction, it is necessary to ensure several specific conditions related to the size and density of gold clusters on the surface of metal oxide crystallites, the state of gold in the cluster, and to the properties of the metal oxide support used. It is also demonstrated that additional studies are required before conductometric gas sensors modified by gold nanoclusters will appear in gas-sensor market.

  10. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    DOEpatents

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A; Brown, Gilbert M

    2014-12-16

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions comprise (a) microspheres with an average diameter between 200 nanometers (nm) and 10 micrometers (.mu.m); (b) mesopores on the surface and interior of the microspheres, wherein the mesopores have an average diameter between 1 nm and 50 nm and the microspheres have a surface area between 50 m.sup.2/g and 500 m.sup.2/g, and wherein the composition has an electrical conductivity of at least 1.times.10.sup.-7 S/cm at 25.degree. C. and 60 MPa. The methods of making comprise forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least one method selected from the group consisting of: (i) annealing in a reducing atmosphere, (ii) doping with an aliovalent element, and (iii) coating with a coating composition.

  11. Slip casting and extruding shapes of rhenium with metal oxide additives. 1: Feasibility demonstration

    NASA Technical Reports Server (NTRS)

    Barr, F. A.; Page, R. J.

    1986-01-01

    The feasibility of fabricating small rhenium parts with metal oxide additives by means of slip casting and extrusion techniques is described. The metal oxides, ZrO2 and HfO2 were stabilized into the cubic phase with Y2O3. Additions of metal oxide to the rhenium of up to 15 weight percent were used. Tubes of 17 mm diameter with 0.5 mm walls were slip cast by adapting current ceramic oxide techniques. A complete cast double conical nozzle demonstrated the ability to meet shapes and tolerances. Extrusion of meter long tubing lengths of 3.9 mm o.d. x 2.3 mm i.d. final dimension is documented. Sintering schedules are presented to produce better than 95% of theoretical density parts. Finished machining was found possible were requried by electric discharge machining and diamond grinding.

  12. Environment-dependent photochromism of silver nanoparticles interfaced with metal-oxide films

    NASA Astrophysics Data System (ADS)

    Fu, Shencheng; Sun, Shiyu; Zhang, Xintong; Zhang, Cen; Zhao, Xiaoning; Liu, Yichun

    2015-12-01

    Different metal-oxide films were fabricated by radio frequency magnetron sputtering. Further, a layer of silver nanoparticles (NPs) was deposited on the surface of the substrate by physical sputtering. Photochromism of the silver/metal-oxide nanocomposite films were investigated in situ under the irradiation of a linearly-polarized green laser beam (532 nm). Silver NPs were found to be easily photo-dissolved on the n-type metal-oxide films. By changing experimental conditions, it was also verified that both oxygen and humidity accelerate the photochromism of silver NPs. The corresponding micro-mechanism on charge separation and Ag+-ions mobility was also discussed. These results provided theoretical basis for the application of silver NPs in biological, chemical and medical areas.

  13. Photocatalytic Water Oxidation over Metal Oxide Nanosheets Having a Three-Layer Perovskite Structure.

    PubMed

    Oshima, Takayoshi; Eguchi, Miharu; Maeda, Kazuhiko

    2016-02-19

    Metal oxide nanosheets having a three-layer perovskite structure were studied as photocatalysts for water oxidation in the presence of IO3 (-) as a reversible electron acceptor. This work examined the effects of the lateral dimensions and composition of the nanosheets as well as metal oxide co-catalysts deposited on the restacked nanosheets. Depositing metal oxides capable of promoting reduction reactions on the nanosheets were found to promote the water oxidation activity. In contrast, the lateral dimensions and the degree of crystallinity of the nanosheets had little effect on the activity. Experimental results demonstrated that the reduction of IO3 (-) is the rate-limiting step in this reaction and that nanosheets with less distorted structures are advantageous with regard to increasing both light absorption and the mobility of photoexcited charge carriers.

  14. Oxidized film structure and method of making epitaxial metal oxide structure

    DOEpatents

    Gan, Shupan [Richland, WA; Liang, Yong [Richland, WA

    2003-02-25

    A stable oxidized structure and an improved method of making such a structure, including an improved method of making an interfacial template for growing a crystalline metal oxide structure, are disclosed. The improved method comprises the steps of providing a substrate with a clean surface and depositing a metal on the surface at a high temperature under a vacuum to form a metal-substrate compound layer on the surface with a thickness of less than one monolayer. The compound layer is then oxidized by exposing the compound layer to essentially oxygen at a low partial pressure and low temperature. The method may further comprise the step of annealing the surface while under a vacuum to further stabilize the oxidized film structure. A crystalline metal oxide structure may be subsequently epitaxially grown by using the oxidized film structure as an interfacial template and depositing on the interfacial template at least one layer of a crystalline metal oxide.

  15. Soft-chemical synthesis and electrochemical characterization of multicomponent Mn(1-x-y)Co(x)Ni(y)O2 nanostructures.

    PubMed

    Kim, Tae Woo; Lee, Sun Hee; Hwang, Seong-Ju; Hyun, Sang Hoon; Choy, Jin-Ho

    2007-11-01

    Nanostructured Mn(1-x-y)Co(x)Ni(y)O2 metal oxides are synthesized by one-pot hydrothermal reaction at low temperature. From powder X-ray diffraction and field emission-scanning electron microscopic analyses, it is found that the crystal structure and crystal morphology of the present materials are tunable by the control of the composition of precursor. 1D nanowires with alpha-MnO2-type structure are prepared with low substitution rate of Co and Ni, while the increase of substituent contents leads to the formation of delta-MnO2-structured 3D nanospheres consisting of 2D nanoplates. According to X-ray absorption near edge spectroscopy and chemical analyses, mixed valent Co(III)/Co(IV) and divalent Ni(II) ions are stabilized in the octahedral Mn sites of alpha-MnO2- and delta-MnO2-structures. The electrochemical measurements clearly demonstrate that the present nanostructured materials show promising electrode performances for lithium secondary batteries.

  16. Observation of complete space-charge-limited transport in metal-oxide-graphene heterostructure

    SciTech Connect

    Chen, Wei; Wang, Fei; Fang, Jingyue; Wang, Guang; Qin, Shiqiao; Zhang, Xue-Ao E-mail: xazhang@nudt.edu.cn; Wang, Chaocheng; Wang, Li E-mail: xazhang@nudt.edu.cn

    2015-01-12

    The metal-oxide-graphene heterostructures have abundant physical connotations. As one of the most important physical properties, the electric transport property of the gold-chromium oxide-graphene heterostructure has been studied. The experimental measurement shows that the conductive mechanism is dominated by the space-charge-limited transport, a kind of bulk transport of an insulator with charge traps. Combining the theoretical analysis, some key parameters such as the carrier mobility and trap energy also are obtained. The study of the characteristics of the metal-oxide-graphene heterostructures is helpful to investigate the graphene-based electronic and photoelectric devices.

  17. Superconductors and Complex Transition Metal Oxides for Tunable THz Plasmonic Metamaterials

    SciTech Connect

    Singh, Ranjan; Xiong, Jie; Azad, Md A.; Yang, Hao; Trugman, Stuart A.; Jia, Quanxi; Taylor, Antoinette; Chen, Houtong

    2012-07-13

    The outline of this presentation are: (1) Motivation - Non-tunability of metal metamaterials; (2) Superconductors for temperature tunable metamaterials; (3) Ultrafast optical switching in superconductor metamaterials; (4) Controlling the conductivity with infrared pump beam; (5) Complex metal oxides as active substrates - Strontium Titanate; and (6) Conclusion. Conclusions are: (1) High Tc superconductors good for tunable and ultrafast metamaterials; (2) Large frequency and amplitude tunability in ultrathin superconductor films; (3) Such tunable properties cannot be accessed using metals; (4) Complex metal oxides can be used as active substrates - large tunability; (5) Complex oxides fail to address the issue of radiation losses in THz metamaterials.

  18. Method for the carbothermic reduction of metal oxides using solar energy

    SciTech Connect

    Gibson, J.O.; Gibson, M.G.

    1984-09-18

    An apparatus and process are disclosed for utilizing solar radiation and the energy contained therein for the carbothermic reduction of a metal oxide to a metal carbide. The apparatus comprises a reflective surface which collects and focuses solar radiation onto a focal mirror which consequentially reflects and focuses the solar light rays into a reaction chamber through a Fresnel lens and a transparent window provided on the chamber. The solar light rays are focused by the reflective surface focal mirror and Fresnel lens such that the energy absorbed by reactants in the reaction chamber is sufficient for the carbothermic reduction of the metal oxide.

  19. Atomic-Scale Tuning of Layered Binary Metal Oxides for High Temperature Moving Assemblies

    DTIC Science & Technology

    2015-06-01

    AFRL-OSR-VA-TR-2015-0166 Atomic -Scale Tuning of Layered Binary Metal OxideS ASHLIE MARTINI UNIVERSITY OF CALIFORNIA MERCED Final Report 06/01/2015...COVERED (From - To)      01-05-2012 to 30-04-2015 4.  TITLE AND SUBTITLE Atomic -Scale Tuning of Layered Binary Metal Oxides for High Temperature Moving...understand, at an atomic level, the material properties that influence the thermal, mechanical and tribological behavior of intrinsically layered binary

  20. Numerical study of Resonant inelastic x-ray scattering for cuprates and transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Jia, Chunjing; Wang, Yao; Chen, Cheng-Chien; Moritz, Brian; Devereaux, Thomas

    A theoretical understanding of resonant inelastic x-ray scattering (RIXS) measurements on cuprates and other transition-metal oxides remains an important yet challenging topic, especially for its ability to resolve the momentum and photon-polarization dependence of low energy elementary excitations. Here we present our exact diagonalization studies for RIXS spectra at the Cu L-edge for cuprates, with a focus on the dependence of both incoming and outgoing photon polarization and incoming photon energy. A more general method for calculating RIXS on other transition-metal oxides (such as NiO), which includes the multiplet and charge-transfer effects, will also be discussed.