Science.gov

Sample records for 1-d reference model

  1. Minimum 1-D P-wave velocity reference model for Northern Iran

    NASA Astrophysics Data System (ADS)

    Rezaeifar, Meysam; Diehl, Tobias; Kissling, Edi

    2016-04-01

    Uniform high-precision earthquake location is of importance in a seismically active area like northern Iran where the earthquake catalogue is a prerequisite for seismic hazard assessment and tectonic interpretation. We compile a complete and consistent local earthquake data set for the northern Iran region, using information from two independently operating seismological networks, Iran Seismological Center (IRSC) network, administered by the Geophysical Institute of Tehran University, and Iran Broadband network administered by International Institute of Engineering Earthquake and Seismology (IIEES). Special care is taken during the merging process to reduce the number of errors in the data, including station parameters, event pairing, phase identification, and to the assessment of quantitative observation uncertainties. The derived P-wave 1D-velocity model for Northern Iran may serve for consistent routine high-precision earthquake location and as initial reference model for 3D seismic tomography.

  2. Calibration of a 1D/1D urban flood model using 1D/2D model results in the absence of field data.

    PubMed

    Leandro, J; Djordjević, S; Chen, A S; Savić, D A; Stanić, M

    2011-01-01

    Recently increased flood events have been prompting researchers to improve existing coupled flood-models such as one-dimensional (1D)/1D and 1D/two-dimensional (2D) models. While 1D/1D models simulate sewer and surface networks using a one-dimensional approach, 1D/2D models represent the surface network by a two-dimensional surface grid. However their application raises two issues to urban flood modellers: (1) stormwater systems planning/emergency or risk analysis demands for fast models, and the 1D/2D computational time is prohibitive, (2) and the recognized lack of field data (e.g. Hunter et al. (2008)) causes difficulties for the calibration/validation of 1D/1D models. In this paper we propose to overcome these issues by calibrating a 1D/1D model with the results of a 1D/2D model. The flood-inundation results show that: (1) 1D/2D results can be used to calibrate faster 1D/1D models, (2) the 1D/1D model is able to map the 1D/2D flood maximum extent well, and the flooding limits satisfactorily in each time-step, (3) the 1D/1D model major differences are the instantaneous flow propagation and overestimation of the flood-depths within surface-ponds, (4) the agreement in the volume surcharged by both models is a necessary condition for the 1D surface-network validation and (5) the agreement of the manholes discharge shapes measures the fitness of the calibrated 1D surface-network.

  3. Brady 1D seismic velocity model ambient noise prelim

    SciTech Connect

    Mellors, Robert J.

    2013-10-25

    Preliminary 1D seismic velocity model derived from ambient noise correlation. 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 km. Poorly constrained with increasing depth.

  4. Modeling an electric motor in 1-D

    NASA Technical Reports Server (NTRS)

    Butler, Thomas G.

    1991-01-01

    Quite often the dynamicist will be faced with having an electric drive motor as a link in the elastic path of a structure such that the motor's characteristics must be taken into account to properly represent the dynamics of the primary structure. He does not want to model it so accurately that he could get detailed stress and displacements in the motor proper, but just sufficiently to represent its inertia loading and elastic behavior from its mounting bolts to its drive coupling. Described here is how the rotor and stator of such a motor can be adequately modeled as a colinear pair of beams.

  5. GIS-BASED 1-D DIFFUSIVE WAVE OVERLAND FLOW MODEL

    SciTech Connect

    KALYANAPU, ALFRED; MCPHERSON, TIMOTHY N.; BURIAN, STEVEN J.

    2007-01-17

    This paper presents a GIS-based 1-d distributed overland flow model and summarizes an application to simulate a flood event. The model estimates infiltration using the Green-Ampt approach and routes excess rainfall using the 1-d diffusive wave approximation. The model was designed to use readily available topographic, soils, and land use/land cover data and rainfall predictions from a meteorological model. An assessment of model performance was performed for a small catchment and a large watershed, both in urban environments. Simulated runoff hydrographs were compared to observations for a selected set of validation events. Results confirmed the model provides reasonable predictions in a short period of time.

  6. Non-cooperative Brownian donkeys: A solvable 1D model

    NASA Astrophysics Data System (ADS)

    Jiménez de Cisneros, B.; Reimann, P.; Parrondo, J. M. R.

    2003-12-01

    A paradigmatic 1D model for Brownian motion in a spatially symmetric, periodic system is tackled analytically. Upon application of an external static force F the system's response is an average current which is positive for F < 0 and negative for F > 0 (absolute negative mobility). Under suitable conditions, the system approaches 100% efficiency when working against the external force F.

  7. Nonlocal order parameters for the 1D Hubbard model.

    PubMed

    Montorsi, Arianna; Roncaglia, Marco

    2012-12-07

    We characterize the Mott-insulator and Luther-Emery phases of the 1D Hubbard model through correlators that measure the parity of spin and charge strings along the chain. These nonlocal quantities order in the corresponding gapped phases and vanish at the critical point U(c)=0, thus configuring as hidden order parameters. The Mott insulator consists of bound doublon-holon pairs, which in the Luther-Emery phase turn into electron pairs with opposite spins, both unbinding at U(c). The behavior of the parity correlators is captured by an effective free spinless fermion model.

  8. Nonlocal Order Parameters for the 1D Hubbard Model

    NASA Astrophysics Data System (ADS)

    Montorsi, Arianna; Roncaglia, Marco

    2012-12-01

    We characterize the Mott-insulator and Luther-Emery phases of the 1D Hubbard model through correlators that measure the parity of spin and charge strings along the chain. These nonlocal quantities order in the corresponding gapped phases and vanish at the critical point Uc=0, thus configuring as hidden order parameters. The Mott insulator consists of bound doublon-holon pairs, which in the Luther-Emery phase turn into electron pairs with opposite spins, both unbinding at Uc. The behavior of the parity correlators is captured by an effective free spinless fermion model.

  9. Evaluating 1d Seismic Models of the Lunar Interior

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Thorne, M. S.; Weber, R. C.; Schmerr, N. C.

    2012-12-01

    A four station seismic network was established on the Moon from 1969 to 1977 as part of the Apollo Lunar Surface Experiment Package (ALSEP). A total of nine 1D seismic velocity models were generated using a variety of different techniques. In spite of the fact that these models were generated from the same data set, significant differences exist between them. We evaluate these models by comparing predicted travel-times to published catalogs of lunar events. We generate synthetic waveform predictions for 1D lunar models using a modified version of the Green's Function of the Earth by Minor Integration (GEMINI) technique. Our results demonstrate that the mean square errors between predicted and measured P-wave travel times are smaller than those for S-wave travel times in all cases. Moreover, models fit travel times for artificial and meteoroid impacts better than for shallow and deep moonquakes. Overall, models presented by Nakamura [Nakamura, 1983] and Garcia et al. [Garcia et al., 2011] predicted the observed travel times better than all other models and were comparable in their explanation of travel-times. Nevertheless, significant waveform differences exist between these models. In particular, the seismic velocity structure of the lunar crust and regolith strongly affect the waveform characteristics predicted by these models. Further complexity is added by possible mantle discontinuity structure that exists in a subset of these models. We show synthetic waveform predictions for these models demonstrating the role that crustal structure has in generating long duration seismic coda inherent in the lunar waveforms.

  10. 1-D blood flow modelling in a running human body.

    PubMed

    Szabó, Viktor; Halász, Gábor

    2017-04-10

    In this paper an attempt was made to simulate blood flow in a mobile human arterial network, specifically, in a running human subject. In order to simulate the effect of motion, a previously published immobile 1-D model was modified by including an inertial force term into the momentum equation. To calculate inertial force, gait analysis was performed at different levels of speed. Our results show that motion has a significant effect on the amplitudes of the blood pressure and flow rate but the average values are not effected significantly.

  11. Constitutive modeling and control of 1D smart composite structures

    NASA Astrophysics Data System (ADS)

    Briggs, Jonathan P.; Ostrowski, James P.; Ponte-Castaneda, Pedro

    1998-07-01

    Homogenization techniques for determining effective properties of composite materials may provide advantages for control of stiffness and strain in systems using hysteretic smart actuators embedded in a soft matrix. In this paper, a homogenized model of a 1D composite structure comprised of shape memory alloys and a rubber-like matrix is presented. With proportional and proportional/integral feedback, using current as the input state and global strain as an error state, implementation scenarios include the use of tractions on the boundaries and a nonlinear constitutive law for the matrix. The result is a simple model which captures the nonlinear behavior of the smart composite material system and is amenable to experiments with various control paradigms. The success of this approach in the context of the 1D model suggests that the homogenization method may prove useful in investigating control of more general smart structures. Applications of such materials could include active rehabilitation aids, e.g. wrist braces, as well as swimming/undulating robots, or adaptive molds for manufacturing processes.

  12. Benchmarks and models for 1-D radiation transport in stochastic participating media

    SciTech Connect

    Miller, David Scott

    2000-08-01

    Benchmark calculations for radiation transport coupled to a material temperature equation in a 1-D slab and 1-D spherical geometry binary random media are presented. The mixing statistics are taken to be homogeneous Markov statistics in the 1-D slab but only approximately Markov statistics in the 1-D sphere. The material chunk sizes are described by Poisson distribution functions. The material opacities are first taken to be constant and then allowed to vary as a strong function of material temperature. Benchmark values and variances for time evolution of the ensemble average of material temperature energy density and radiation transmission are computed via a Monte Carlo type method. These benchmarks are used as a basis for comparison with three other approximate methods of solution. One of these approximate methods is simple atomic mix. The second approximate model is an adaptation of what is commonly called the Levermore-Pomraning model and which is referred to here as the standard model. It is shown that recasting the temperature coupling as a type of effective scattering can be useful in formulating the third approximate model, an adaptation of a model due to Su and Pomraning which attempts to account for the effects of scattering in a stochastic context. This last adaptation shows consistent improvement over both the atomic mix and standard models when used in the 1-D slab geometry but shows limited improvement in the 1-D spherical geometry. Benchmark values are also computed for radiation transmission from the 1-D sphere without material heating present. This is to evaluate the performance of the standard model on this geometry--something which has never been done before. All of the various tests demonstrate the importance of stochastic structure on the solution. Also demonstrated are the range of usefulness and limitations of a simple atomic mix formulation.

  13. Benchmarks and models for 1-D radiation transport in stochastic participating media

    NASA Astrophysics Data System (ADS)

    Miller, David Scott

    Benchmark calculations for radiation transport coupled to a material temperature equation in a 1-D slab and 1-D spherical geometry binary random media are presented. The mixing statistics are taken to be homogeneous Markov statistics in the 1-D slab but only approximately Markov statistics in the 1-D sphere. The material chunk sizes are described by Poisson distribution functions. The material opacities are first taken to be constant and then allowed to vary as a strong function of material temperature. Benchmark values and variances for time evolution of the ensemble average of material temperature energy density and radiation transmission are computed via a Monte Carlo type method. These benchmarks are used as a basis for comparison with three other approximate methods of solution. One of these approximate methods is simple atomic mix. The second approximate model is an adaptation of what is commonly called the Levermore-Pomraning model and which is referred to here as the standard model. It is shown that recasting the temperature coupling as a type of effective scattering can be useful in formulating the third approximate model, an adaptation of a model due to Su and Pomraning which attempts to account for the effects of scattering in a stochastic context. This last adaptation shows consistent improvement over both the atomic mix and standard models when used in the 1-D slab geometry but shows limited improvement in the 1-D spherical geometry. Benchmark values are also computed for radiation transmission from the 1-D sphere without material heating present. This is to evaluate the performance of the standard model on this geometry-something which has never been done before. All of the various tests demonstrate the importance of stochastic structure on the solution. Also demonstrated are the range of usefulness and limitations of a simple atomic mix formulation.

  14. Combinatorial approach to exactly solve the 1D Ising model

    NASA Astrophysics Data System (ADS)

    Seth, Swarnadeep

    2017-01-01

    The Ising model is a well known statistical model which can be solved exactly by various methods. The most familiar one is the transfer matrix method. Sometimes it can be difficult to approach the open boundary case rather than periodic boundary ones in higher dimensions. But physically it is more intuitive to study the open boundary case, as it gives a closer view of the real system. We have introduced a new method called the pairing method to determine the exact partition function for the simplest case, a 1D Ising lattice. This method simplifies the problem's complexities and reduces it to a pure combinatorial problem. The study also reveals that it is possible to apply this pairing method in the case of a 2D square lattice. The obtained results agree perfectly with the values in the literature and this new approach provides an algorithmic insight to deal with such problems.

  15. Examination of 1D Solar Cell Model Limitations Using 3D SPICE Modeling: Preprint

    SciTech Connect

    McMahon, W. E.; Olson, J. M.; Geisz, J. F.; Friedman, D. J.

    2012-06-01

    To examine the limitations of one-dimensional (1D) solar cell modeling, 3D SPICE-based modeling is used to examine in detail the validity of the 1D assumptions as a function of sheet resistance for a model cell. The internal voltages and current densities produced by this modeling give additional insight into the differences between the 1D and 3D models.

  16. Lanczos diagonalizations of the 1-D Peierls-Hubbard model

    SciTech Connect

    Loh, E.Y.; Campbell, D.K.; Gammel, J.T.

    1989-01-01

    In studies of interacting electrons in reduced dimensions'' one is trapped between the Scylla of exponential growth of the number of states in any exact many-body basis and the Charybdis of the failure of mean-field theories to capture adequately the effects of interactions. In the present article we focus on one technique -- the Lanczos method -- which, at least in the case of the 1-D Peierls-Hubbard model, appears to allow us to sail the narrow channel between these two hazards. In contrast to Quantum Monte Carlo methods, which circumvent the exponential growth of states by statistical techniques and importance sampling, the Lanczos approach attacks this problem head-on by diagonalizing the full Hamiltonian. Given the restrictions of present computers, this approach is thus limited to studying finite clusters of roughly 12--14 sites. Fortunately, in one dimension, such clusters are usually sufficient for extracting many of the properties of the infinite system provided that one makes full use of the ability to vary the boundary conditions. In this article we shall apply the Lanczos methodology and novel phase randomization'' techniques to study the 1-D Peierls-Hubbard model, with particular emphasis on the optical absorption properties, including the spectrum of absorptions as a function of photon energy. Despite the discreteness of the eigenstates in our finite clusters, we are able to obtain optical spectra that, in cases where independent tests can be made, agree well with the known exact results for the infinite system. Thus we feel that this combination of techniques represents an important and viable means of studying many interesting novel materials involving strongly correlated electrons. 26 refs., 6 figs.

  17. Cavitation Influence in 1D Part-load Vortex Models

    NASA Astrophysics Data System (ADS)

    Dörfler, P. K.

    2016-11-01

    Residual swirl in the draft tube of Francis turbines may cause annoying low- frequency pulsation of pressure and power output, in particular during part-load operation. A 1D analytical model for these dynamic phenomena would enable simulation by some conventional method for computing hydraulic transients. The proper structure of such a model has implications for the prediction of prototype behaviour based on laboratory tests. The source of excitation as well as the dynamic transmission behaviour of the draft tube flow may both be described either by lumped or distributed parameters. The distributed version contains more information and, due to limited possibilities of identification, some data must be estimated. The distributed cavitation compliance is an example for this dilemma. In recent publications, the customary assumption of a constant wave speed has produced dubious results. The paper presents a more realistic model for distributed compressibility. The measured influence of the Thoma number is applied with the local cavitation factor. This concept is less sensitive to modelling errors and explains both the Thoma and Froude number influence. The possible effect of the normally unknown non-condensable gas content in the vortex cavity is shortly commented. Its measurement in future tests is recommended. It is also recommended to check the available analytical vortex models for possible dispersion effects.

  18. 1-D Modeling of Massive Particle Injection (MPI) in Tokamaks

    NASA Astrophysics Data System (ADS)

    Wu, W.; Parks, P. B.; Izzo, V. A.

    2008-11-01

    A 1-D Fast Current Quench (FCQ) model is developed to study current evolution and runaway electron suppression under massive density increase. The model consists of coupled toroidal electric field and energy equations, and it is solved numerically for DIII-D and ITER operating conditions. Simulation results suggest that fast shutdown by D2 liquid jet/pellet injection is in principle achievable for the desired plasma cooling time (˜15 ms for DIII-D and ˜50 ms for ITER) under ˜150x or higher densification. The current density and pressure profile are practically unaltered during the initial phase of jet propagation when dilution cooling dominates. With subsequent radiation cooling, the densified discharge enters the strongly collisional regime where Pfirsch-Schluter thermal diffusion can inhibit current contraction on the magnetic axis. Often the 1/1 kink instability, addressed by Kadomtsev's magnetic reconnection model, can be prevented. Our results are compared with NIMROD simulations in which the plasma is suddenly densified by ˜100x and experiences instantaneous dilution cooling, allowing for use of actual (lower) Lundquist numbers.

  19. Modeling shear band interaction in 1D torsion

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda; Hanina, Erez

    2017-01-01

    When two shear bands are being formed at close distance from each other they interact, and further development of one of them may be quenched down. As a result there should be a minimum distance between shear bands. In the literature there are at least three analytical models for this minimum distance. Predictions of these models do not generally agree with each other and with test results. Recently we developed a 1D numerical scheme to predict the formation of shear bands in a torsion test of a thin walled pipe. We validated our code by reproducing results of the pioneering experiments of Marchand and Duffy, and then used it to investigate the mechanics of shear localization and shear band formation. We describe our shear band code in a separate publication, and here we use it only as a tool to investigate the interaction between two neighboring shear bands during the process of their formation. We trigger the formation of shear bands by specifying two perturbations of the initial strength. We vary the perturbations in terms of their amplitude and/or their width. Usually, the stronger perturbation triggers a faster developing shear band, which then prevails and quenches the development of the other shear band. We change the distance between the two shear bands and find, that up to a certain distance one of the shear bands becomes fully developed, and the other stays only partially developed. Beyond this distance the two shear bands are both fully developed. Finally, we check the influence of certain material and loading parameters on the interaction between the two shear bands, and compare the results to predictions of the analytical models from the literature.

  20. Reference Man anatomical model

    SciTech Connect

    Cristy, M.

    1994-10-01

    The 70-kg Standard Man or Reference Man has been used in physiological models since at least the 1920s to represent adult males. It came into use in radiation protection in the late 1940s and was developed extensively during the 1950s and used by the International Commission on Radiological Protection (ICRP) in its Publication 2 in 1959. The current Reference Man for Purposes of Radiation Protection is a monumental book published in 1975 by the ICRP as ICRP Publication 23. It has a wealth of information useful for radiation dosimetry, including anatomical and physiological data, gross and elemental composition of the body and organs and tissues of the body. The anatomical data includes specified reference values for an adult male and an adult female. Other reference values are primarily for the adult male. The anatomical data include much data on fetuses and children, although reference values are not established. There is an ICRP task group currently working on revising selected parts of the Reference Man document.

  1. The Reference Encounter Model.

    ERIC Educational Resources Information Center

    White, Marilyn Domas

    1983-01-01

    Develops model of the reference interview which explicitly incorporates human information processing, particularly schema ideas presented by Marvin Minsky and other theorists in cognitive processing and artificial intelligence. Questions are raised concerning use of content analysis of transcribed verbal protocols as methodology for studying…

  2. Reference Model Development

    SciTech Connect

    Jepsen, Richard

    2011-11-02

    Presentation from the 2011 Water Peer Review in which principal investigator discusses project progress to develop a representative set of Reference Models (RM) for the MHK industry to develop baseline cost of energy (COE) and evaluate key cost component/system reduction pathways.

  3. Quasi 1D Modeling of Mixed Compression Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Woolwine, Kyle J.

    2012-01-01

    The AeroServoElasticity task under the NASA Supersonics Project is developing dynamic models of the propulsion system and the vehicle in order to conduct research for integrated vehicle dynamic performance. As part of this effort, a nonlinear quasi 1-dimensional model of the 2-dimensional bifurcated mixed compression supersonic inlet is being developed. The model utilizes computational fluid dynamics for both the supersonic and subsonic diffusers. The oblique shocks are modeled utilizing compressible flow equations. This model also implements variable geometry required to control the normal shock position. The model is flexible and can also be utilized to simulate other mixed compression supersonic inlet designs. The model was validated both in time and in the frequency domain against the legacy LArge Perturbation INlet code, which has been previously verified using test data. This legacy code written in FORTRAN is quite extensive and complex in terms of the amount of software and number of subroutines. Further, the legacy code is not suitable for closed loop feedback controls design, and the simulation environment is not amenable to systems integration. Therefore, a solution is to develop an innovative, more simplified, mixed compression inlet model with the same steady state and dynamic performance as the legacy code that also can be used for controls design. The new nonlinear dynamic model is implemented in MATLAB Simulink. This environment allows easier development of linear models for controls design for shock positioning. The new model is also well suited for integration with a propulsion system model to study inlet/propulsion system performance, and integration with an aero-servo-elastic system model to study integrated vehicle ride quality, vehicle stability, and efficiency.

  4. 1-D Radiative-Convective Model for Terrestrial Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Leung, Cecilia W. S.; Robinson, Tyler D.

    2016-10-01

    We present a one dimensional radiative-convective model to study the thermal structure of terrestrial exoplanetary atmospheres. The radiative transfer and equilibrium chemistry in our model is based on similar methodologies in models used for studying Extrasolar Giant Planets (Fortney et al. 2005b.) We validated our model in the optically thin and thick limits, and compared our pressure-temperature profiles against the analytical solutions of Robinson & Catling (2012). For extrasolar terrestrial planets with pure hydrogen atmospheres, we evaluated the effects of H2-H2 collision induced absorption and identified the purely roto-translational band in our modeled spectra. We also examined how enhanced atmospheric metallicities affect the temperature structure, chemistry, and spectra of terrestrial exoplanets. For a terrestrial extrasolar planet whose atmospheric compostion is 100 times solar orbiting a sun-like star at 2 AU, our model resulted in a reducing atmosphere with H2O, CH4, and NH3 as the dominant greenhouse gases.

  5. Validation of 1-D transport and sawtooth models for ITER

    SciTech Connect

    Connor, J.W.; Turner, M.F.; Attenberger, S.E.; Houlberg, W.A.

    1996-12-31

    In this paper the authors describe progress on validating a number of local transport models by comparing their predictions with relevant experimental data from a range of tokamaks in the ITER profile database. This database, the testing procedure and results are discussed. In addition a model for sawtooth oscillations is used to investigate their effect in an ITER plasma with alpha-particles.

  6. Kinetic and Stochastic Models of 1D yeast ``prions"

    NASA Astrophysics Data System (ADS)

    Kunes, Kay

    2005-03-01

    Mammalian prion proteins (PrP) are of public health interest because of mad cow and chronic wasting diseases. Yeasts have proteins, which can undergo similar reconformation and aggregation processes to PrP; yeast ``prions" are simpler to experimentally study and model. Recent in vitro studies of the SUP35 protein (1), showed long aggregates and pure exponential growth of the misfolded form. To explain this data, we have extended a previous model of aggregation kinetics along with our own stochastic approach (2). Both models assume reconformation only upon aggregation, and include aggregate fissioning and an initial nucleation barrier. We find for sufficiently small nucleation rates or seeding by small dimer concentrations that we can achieve the requisite exponential growth and long aggregates.

  7. Kinetic Model for 1D aggregation of yeast ``prions''

    NASA Astrophysics Data System (ADS)

    Kunes, Kay; Cox, Daniel; Singh, Rajiv

    2004-03-01

    Mammalian prion proteins (PrP) are of public health interest because of mad cow and chronic wasting diseases. Yeast have proteins which can undergo similar reconformation and aggregation processes to PrP; yeast forms are simpler to experimentally study and model. Recent in vitro studies of the SUP35 protein(1), showed long aggregates and pure exponential growth of the misfolded form. To explain this data, we have extended a previous model of aggregation kinetics(2). The model assumes reconformation only upon aggregation, and includes aggregate fissioning and an initial nucleation barrier. We find for sufficiently small nucleation rates or seeding by small dimer concentrations that we can achieve the requisite exponential growth and long aggregates. We will compare to a more realistic stochastic kinetics model and present prelimary attempts to describe recent experiments on SUP35 strains. *-Supported by U.S. Army Congressionally Mandated Research Fund. 1) P. Chien and J.S. Weissman, Nature 410, 223 (2001); http://online.kitp.ucsb.edu/online/bionet03/collins/. 2) J. Masel, V.A.> Jansen, M.A. Nowak, Biophys. Chem. 77, 139 (1999).

  8. Preliminary reference Earth model

    NASA Astrophysics Data System (ADS)

    Dziewonski, Adam M.; Anderson, Don L.

    1981-06-01

    A large data set consisting of about 1000 normal mode periods, 500 summary travel time observations, 100 normal mode Q values, mass and moment of inertia have been inverted to obtain the radial distribution of elastic properties, Q values and density in the Earth's interior. The data set was supplemented with a special study of 12 years of ISC phase data which yielded an additional 1.75 × 10 6 travel time observations for P and S waves. In order to obtain satisfactory agreement with the entire data set we were required to take into account anelastic dispersion. The introduction of transverse isotropy into the outer 220 km of the mantle was required in order to satisfy the shorter period fundamental toroidal and spheroidal modes. This anisotropy also improved the fit of the larger data set. The horizontal and vertical velocities in the upper mantle differ by 2-4%, both for P and S waves. The mantle below 220 km is not required to be anisotropic. Mantle Rayleigh waves are surprisingly sensitive to compressional velocity in the upper mantle. High S n velocities, low P n velocities and a pronounced low-velocity zone are features of most global inversion models that are suppressed when anisotropy is allowed for in the inversion. The Preliminary Reference Earth Model, PREM, and auxiliary tables showing fits to the data are presented.

  9. 1D finite volume model of unsteady flow over mobile bed

    NASA Astrophysics Data System (ADS)

    Zhang, Shiyan; Duan, Jennifer G.

    2011-07-01

    SummaryA one dimensional (1D) finite volume method (FVM) model was developed for simulating unsteady flow, such as dam break flow, and flood routing over mobile alluvium. The governing equation is the modified 1D shallow water equation and the Exner equation that take both bed load and suspended load transport into account. The non-equilibrium sediment transport algorithm was adopted in the model, and the van Rijn method was employed to calculate the bed-load transport rate and the concentration of suspended sediment at the reference level. Flux terms in the governing equations were discretised using the upwind flux scheme, Harten et al. (1983) (HLL) and HLLC schemes, Roe's scheme and the Weighted Average Flux (WAF) schemes with the Double Minmod and Minmod flux limiters. The model was tested under a fixed bed condition to evaluate the performance of several different numerical schemes and then applied to an experimental case of dam break flow over a mobile bed and a flood event in the Rillito River, Tucson, Arizona. For dam break flow over movable bed, all tested schemes were proved to be capable of reasonably simulating water surface profiles, but failed to accurately capture the hydraulic jump. The WAF schemes produced slight spurious oscillations at the water surface and bed profiles and over-estimated the scour depth. When applying the model to the Rillito River, the simulated results generally agreed well with the field measurements of flow discharges and bed elevation changes. Modeling results of bed elevation changes were sensitive to the suspended load recovery coefficient and the bed load adaptation length, which require further theoretical and experimental investigations.

  10. GaAs solar cell photoresponse modeling using PC-1D V2.1

    NASA Technical Reports Server (NTRS)

    Huber, D. A.; Olsen, L. C.; Dunham, G.; Addis, F. W.

    1991-01-01

    Photoresponse data of high efficiency GaAs solar cells were analyzed using PC-1D V2.1. The approach required to use PC-1D for photoresponse data analysis, and the physical insights gained from performing the analysis are discussed. In particular, the effect of Al(x)Ga(1-x)As heteroface quality was modeled. Photoresponse or spectral quantum efficiency is an important tool in characterizing material quality and predicting cell performance. The strength of the photoresponse measurement lies in the ability to precisely fit the experimental data with a physical model. PC-1D provides a flexible platform for calculations based on these physical models.

  11. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model

    PubMed Central

    Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G

    2015-01-01

    CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical. PMID:25751125

  12. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model.

    PubMed

    Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G

    2015-01-01

    CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical.

  13. Full Waveform 3D Synthetic Seismic Algorithm for 1D Layered Anelastic Models

    NASA Astrophysics Data System (ADS)

    Schwaiger, H. F.; Aldridge, D. F.; Haney, M. M.

    2007-12-01

    Numerical calculation of synthetic seismograms for 1D layered earth models remains a significant aspect of amplitude-offset investigations, surface wave studies, microseismic event location approaches, and reflection interpretation or inversion processes. Compared to 3D finite-difference algorithms, memory demand and execution time are greatly reduced, enabling rapid generation of seismic data within workstation or laptop computational environments. We have developed a frequency-wavenumber forward modeling algorithm adapted to realistic 1D geologic media, for the purpose of calculating seismograms accurately and efficiently. The earth model consists of N layers bounded by two halfspaces. Each layer/halfspace is a homogeneous and isotropic anelastic (attenuative and dispersive) solid, characterized by a rectangular relaxation spectrum of absorption mechanisms. Compressional and shear phase speeds and quality factors are specified at a particular reference frequency. Solution methodology involves 3D Fourier transforming the three coupled, second- order, integro-differential equations for particle displacements to the frequency-horizontal wavenumber domain. An analytic solution of the resulting ordinary differential system is obtained. Imposition of welded interface conditions (continuity of displacement and stress) at all interfaces, as well as radiation conditions in the two halfspaces, yields a system of 6(N+1) linear algebraic equations for the coefficients in the ODE solution. An optimized inverse 2D Fourier transform to the space domain gives the seismic wavefield on a horizontal plane. Finally, three-component seismograms are obtained by accumulating frequency spectra at designated receiver positions on this plane, followed by a 1D inverse FFT from angular frequency ω to time. Stress-free conditions may be applied at the top or bottom interfaces, and seismic waves are initiated by force or moment density sources. Examples reveal that including attenuation

  14. Reference and Standard Atmosphere Models

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Roberts, Barry C.; Vaughan, William W.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    This paper describes the development of standard and reference atmosphere models along with the history of their origin and use since the mid 19th century. The first "Standard Atmospheres" were established by international agreement in the 1920's. Later some countries, notably the United States, also developed and published "Standard Atmospheres". The term "Reference Atmospheres" is used to identify atmosphere models for specific geographical locations. Range Reference Atmosphere Models developed first during the 1960's are examples of these descriptions of the atmosphere. This paper discusses the various models, scopes, applications and limitations relative to use in aerospace industry activities.

  15. Column Testing and 1D Reactive Transport Modeling to Evaluate Uranium Plume Persistence Processes

    SciTech Connect

    Johnson, Raymond H.; Morrison, Stan; Morris, Sarah; Tigar, Aaron; Dam, William; Dayvault, Jalena

    2016-04-26

    Motivation for Study: Natural flushing of contaminants at various U.S. Department of Energy Office of Legacy Management sites is not proceeding as quickly as predicted (plume persistence) Objectives: Help determine natural flushing rates using column tests. Use 1D reactive transport modeling to better understand the major processes that are creating plume persistence Approach: Core samples from under a former mill tailings area Tailings have been removed. Column leaching using lab-prepared water similar to nearby Gunnison River water. 1D reactive transport modeling to evaluate processes

  16. A versatile compact model for ballistic 1D transistor: GNRFET and CNTFET comparison

    NASA Astrophysics Data System (ADS)

    Frégonèse, Sébastien; Maneux, Cristell; Zimmer, Thomas

    2010-11-01

    This paper presents a versatile compact model dedicated to 1D transistors in order to predict the ultimate performances of nano-device-based circuits. We have developed a thermionic charge model based on the non-parabolic-energy-dispersion-relation NPEDR. The model is valid for both CNTFET and GNRFET. Model results are compared with GNRFET NEGF simulations. Then, GNRFET and CNTFET performances are analysed through two circuit demonstrators such as a ring oscillator circuit and 6T RAM.

  17. Accuracy of 1D microvascular flow models in the limit of low Reynolds numbers.

    PubMed

    Pindera, Maciej Z; Ding, Hui; Athavale, Mahesh M; Chen, Zhijian

    2009-05-01

    We describe results of numerical simulations of steady flows in tubes with branch bifurcations using fully 3D and reduced 1D geometries. The intent is to delineate the range of validity of reduced models used for simulations of flows in microcapillary networks, as a function of the flow Reynolds number Re. Results from model problems indicate that for Re less than 1 and possibly as high as 10, vasculatures may be represented by strictly 1D Poiseuille flow geometries with flow variation in the axial dimensions only. In that range flow rate predictions in the different branches generated by 1D and 3D models differ by a constant factor, independent of Re. When the cross-sectional areas of the branches are constant these differences are generally small and appear to stem from an uncertainty of how the individual branch lengths are defined. This uncertainty can be accounted for by a simple geometrical correction. For non-constant cross-sections the differences can be much more significant. If additional corrections for the presence of branch junctions and flow area variations are not taken into account in 1D models of complex vasculatures, the resultant flow predictions should be interpreted with caution.

  18. Interfacing the NRL 1-D High Vertical Resolution Aerosol Model with COAMPS

    DTIC Science & Technology

    2016-06-13

    TERM GOALS Identify, understand and quantify all the physical processes that govern the aerosols in the marine environment and develop a...size and composition distributions are required. Many of the aerosol source, sink and transformation processes are highly dependent on meteorological...parameters such as wind speed, humidity profile, clouds, precipitation scavenging, etc. The NRL 1-D aerosol- processes model includes all these

  19. HYDRUS-1D Modeling of an Irrigated Agricultural Plot with Application to Aquifer Recharge Estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variety of methods are available for estimating aquifer recharge in semi-arid regions, each with advantages and disadvantages. We are investigating a procedure for estimating recharge in an irrigated basin. The method involves computing irrigation return flows based on HYDRUS-1D modeling of root z...

  20. ABSTRACTION OF INFORMATION FROM 2- AND 3-DIMENSIONAL PORFLOW MODELS INTO A 1-D GOLDSIM MODEL - 11404

    SciTech Connect

    Taylor, G.; Hiergesell, R.

    2010-11-16

    The Savannah River National Laboratory has developed a 'hybrid' approach to Performance Assessment modeling which has been used for a number of Performance Assessments. This hybrid approach uses a multi-dimensional modeling platform (PorFlow) to develop deterministic flow fields and perform contaminant transport. The GoldSim modeling platform is used to develop the Sensitivity and Uncertainty analyses. Because these codes are performing complementary tasks, it is incumbent upon them that for the deterministic cases they produce very similar results. This paper discusses two very different waste forms, one with no engineered barriers and one with engineered barriers, each of which present different challenges to the abstraction of data. The hybrid approach to Performance Assessment modeling used at the SRNL uses a 2-D unsaturated zone (UZ) and a 3-D saturated zone (SZ) model in the PorFlow modeling platform. The UZ model consists of the waste zone and the unsaturated zoned between the waste zone and the water table. The SZ model consists of source cells beneath the waste form to the points of interest. Both models contain 'buffer' cells so that modeling domain boundaries do not adversely affect the calculation. The information pipeline between the two models is the contaminant flux. The domain contaminant flux, typically in units of moles (or Curies) per year from the UZ model is used as a boundary condition for the source cells in the SZ. The GoldSim modeling component of the hybrid approach is an integrated UZ-SZ model. The model is a 1-D representation of the SZ, typically 1-D in the UZ, but as discussed below, depending on the waste form being analyzed may contain pseudo-2-D elements. A waste form at the Savannah River Site (SRS) which has no engineered barriers is commonly referred to as a slit trench. A slit trench, as its name implies, is an unlined trench, typically 6 m deep, 6 m wide, and 200 m long. Low level waste consisting of soil, debris, rubble, wood

  1. 1D and 2D urban dam-break flood modelling in Istanbul, Turkey

    NASA Astrophysics Data System (ADS)

    Ozdemir, Hasan; Neal, Jeffrey; Bates, Paul; Döker, Fatih

    2014-05-01

    Urban flood events are increasing in frequency and severity as a consequence of several factors such as reduced infiltration capacities due to continued watershed development, increased construction in flood prone areas due to population growth, the possible amplification of rainfall intensity due to climate change, sea level rise which threatens coastal development, and poorly engineered flood control infrastructure (Gallegos et al., 2009). These factors will contribute to increased urban flood risk in the future, and as a result improved modelling of urban flooding according to different causative factor has been identified as a research priority (Gallegos et al., 2009; Ozdemir et al. 2013). The flooding disaster caused by dam failures is always a threat against lives and properties especially in urban environments. Therefore, the prediction of dynamics of dam-break flows plays a vital role in the forecast and evaluation of flooding disasters, and is of long-standing interest for researchers. Flooding occurred on the Ayamama River (Istanbul-Turkey) due to high intensity rainfall and dam-breaching of Ata Pond in 9th September 2009. The settlements, industrial areas and transportation system on the floodplain of the Ayamama River were inundated. Therefore, 32 people were dead and millions of Euros economic loses were occurred. The aim of this study is 1 and 2-Dimensional flood modelling of the Ata Pond breaching using HEC-RAS and LISFLOOD-Roe models and comparison of the model results using the real flood extent. The HEC-RAS model solves the full 1-D Saint Venant equations for unsteady open channel flow whereas LISFLOOD-Roe is the 2-D shallow water model which calculates the flow according to the complete Saint Venant formulation (Villanueva and Wright, 2006; Neal et al., 2011). The model consists a shock capturing Godunov-type scheme based on the Roe Riemann solver (Roe, 1981). 3 m high resolution Digital Surface Model (DSM), natural characteristics of the pond

  2. Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System

    PubMed Central

    2011-01-01

    Background Zero-dimensional (lumped parameter) and one dimensional models, based on simplified representations of the components of the cardiovascular system, can contribute strongly to our understanding of circulatory physiology. Zero-D models provide a concise way to evaluate the haemodynamic interactions among the cardiovascular organs, whilst one-D (distributed parameter) models add the facility to represent efficiently the effects of pulse wave transmission in the arterial network at greatly reduced computational expense compared to higher dimensional computational fluid dynamics studies. There is extensive literature on both types of models. Method and Results The purpose of this review article is to summarise published 0D and 1D models of the cardiovascular system, to explore their limitations and range of application, and to provide an indication of the physiological phenomena that can be included in these representations. The review on 0D models collects together in one place a description of the range of models that have been used to describe the various characteristics of cardiovascular response, together with the factors that influence it. Such models generally feature the major components of the system, such as the heart, the heart valves and the vasculature. The models are categorised in terms of the features of the system that they are able to represent, their complexity and range of application: representations of effects including pressure-dependent vessel properties, interaction between the heart chambers, neuro-regulation and auto-regulation are explored. The examination on 1D models covers various methods for the assembly, discretisation and solution of the governing equations, in conjunction with a report of the definition and treatment of boundary conditions. Increasingly, 0D and 1D models are used in multi-scale models, in which their primary role is to provide boundary conditions for sophisticate, and often patient-specific, 2D and 3D models

  3. Constraint on the 1D earth model near core-mantle boundary by free core nutation

    NASA Astrophysics Data System (ADS)

    Huang, Chengli; Zhang, Mian

    2015-04-01

    Free core nutation (FCN) is a normal mode of the rotating earth with fluid outer core (FOC). Its period depends on the physics of the mantle and FOC, especially the parameters near core-mantle boundary (CMB), like the density and elastic (Lame) parameters. FCN period can be determined very accurately by VLBI and superconductive tidal gravimetry, but the theoretical calculation results of FCN period from traditional approaches and 1D earth model (like PREM) deviate significantly from the accurate observation. Meanwhile, the influence of the uncertainty of a given earth model on nutation has never been studied before. In this work, a numerical experiment is presented to check this problem, and we want to see whether FCN can provide a constraint on the construction of a 1D earth model, especially on the gradient of material density near CMB.

  4. Thermodynamic nature of vitrification in a 1D model of a structural glass former

    SciTech Connect

    Semenov, A. N.

    2015-07-28

    We propose a new spin-glass model with no positional quenched disorder which is regarded as a coarse-grained model of a structural glass-former. The model is analyzed in the 1D case when the number N of states of a primary cell is large. For N → ∞, the model exhibits a sharp freezing transition of the thermodynamic origin. It is shown both analytically and numerically that the glass transition is accompanied by a significant growth of a static length scale ξ pointing to the structural (equilibrium) nature of dynamical slowdown effects in supercooled liquids.

  5. SILVA: EDF two-phase 1D annular model of a CFB boiler furnace

    SciTech Connect

    Montat, D.; Fauquet, P.; Lafanechere, L.; Bursi, J.M.

    1997-12-31

    Aiming to improve its knowledge of CFB boilers, EDF has initiated a R and D program including: laboratory work on mock-ups, numerical modelling and on-site tests in CFB power plants. One of the objectives of this program is the development of a comprehensive steady-state 1D model of the solid circulation loop, named SILVA, for plant operation and design evaluation purposes. This paper describes its mathematical and physical modelling. Promising validation of the model on cold mock-up and industrial CFB is presented.

  6. Thermodynamic nature of vitrification in a 1D model of a structural glass former

    NASA Astrophysics Data System (ADS)

    Semenov, A. N.

    2015-07-01

    We propose a new spin-glass model with no positional quenched disorder which is regarded as a coarse-grained model of a structural glass-former. The model is analyzed in the 1D case when the number N of states of a primary cell is large. For N → ∞, the model exhibits a sharp freezing transition of the thermodynamic origin. It is shown both analytically and numerically that the glass transition is accompanied by a significant growth of a static length scale ξ pointing to the structural (equilibrium) nature of dynamical slowdown effects in supercooled liquids.

  7. Thermodynamic nature of vitrification in a 1D model of a structural glass former.

    PubMed

    Semenov, A N

    2015-07-28

    We propose a new spin-glass model with no positional quenched disorder which is regarded as a coarse-grained model of a structural glass-former. The model is analyzed in the 1D case when the number N of states of a primary cell is large. For N → ∞, the model exhibits a sharp freezing transition of the thermodynamic origin. It is shown both analytically and numerically that the glass transition is accompanied by a significant growth of a static length scale ξ pointing to the structural (equilibrium) nature of dynamical slowdown effects in supercooled liquids.

  8. Density matrix spectra and order parameters in the 1D extended Hubbard model

    NASA Astrophysics Data System (ADS)

    Yu, Wing Chi; Gu, Shi-Jian; Lin, Hai-Qing

    2016-09-01

    Without any knowledge of the symmetry existing in a system, we derive the exact forms of the order parameters which show long-range correlations in the ground state of the one-dimensional (1D) extended Hubbard model using a quantum information approach. Our work demonstrates that the quantum information approach can help us to find the explicit form of the order parameter, which could not be derived systematically via traditional methods in the condensed matter theory.

  9. Box model and 1D longitudinal model of flow and transport in Bosten Lake, China

    NASA Astrophysics Data System (ADS)

    Li, Ning; Kinzelbach, Wolfgang; Li, WenPeng; Dong, XinGuang

    2015-05-01

    Bosten Lake in the southeast of Yanqi Catchment, China, supports the downstream agricultural and natural environments. Over the last few decades the intensive agricultural activities in Yanqi Catchment resulted in decreased lake levels and deteriorated lake water quality. A two-box model is constructed to understand the evolution of lake level and salinity between 1958 and 2008. The two-box model of the lake indicates that the evaporation does have the same trend as the observed lake area and the annual average evaporation agrees with the value obtained from the Penman-Monteith approach. To achieve a correct salt balance, the ratio of outflow concentration and average lake concentration has to be around 0.7. This is due to the incomplete mixing of the lake caused by short-circuiting between tributary inflow and the main outflow via the pump stations abstracting water from the lake. This short-circuiting is investigated in more detail by a 1D numerical flow and transport model of the lake calibrated with observations of lake level and lake concentrations. The distributed model reproduces the correct time-varying outflow concentration. It is used for the assessment of two basic management options: increasing river discharge (by water saving irrigation, reduction of phreatic evaporation or reduction of agricultural area) and diverting saline drainage water to the desert. Increasing river discharge to the lake by 20% reduces the east basin salt concentration by 0.55 kg/m3, while capturing all the drainage water and discharging it to depressions instead of the lake reduces the east basin salt concentration by 0.63 kg/m3. A combination of increasing river inflow and decreasing drainage salt flux is sufficient to bring future lake TDS below the required 1 kg/m3, to keep a lake level that sustains the lake ecosystem, and to supply more water for downstream development and ecosystem rehabilitation.

  10. Ozone reference models for CIRA

    NASA Astrophysics Data System (ADS)

    Keating, G. M.; Young, D. F.; Pitts, M. C.

    The data bases and computational techniques used in recent models of the O3 distribution in the earth atmosphere are described, summarizing the results of ongoing efforts to define an O3 reference model for incorporation into CIRA. Consideration is given to the analysis of data from satellite instruments (Nimbus 7 LIMS, TOMS, and SBUV; SME UVS and IR; and AE-2 SAGE) to construct models of total column O3 and vertical O3 structure. The satellite-based model predictions are then compared with balloon, rocket, and umkehr measurements in extensive graphs: good agreement is demonstrated both among the satellite data sets and between satellite and nonsatellite data sets.

  11. A Systematic Comparison between 1-D and 3-D Hemodynamics in Compliant Arterial Models

    PubMed Central

    Xiao, Nan; Alastruey, Jordi; Figueroa, C. Alberto

    2015-01-01

    SUMMARY In this article, we present a systematic comparison of computational hemodynamics in arterial models with deformable vessel walls using a one-dimensional (1-D) and a three-dimensional (3-D) method. The simulations were performed using a series of idealized compliant arterial models representing the common carotid artery, thoracic aorta, aortic bifurcation, and full aorta from the arch to the iliac bifurcation. The formulations share identical outflow boundary conditions and have compatible material laws. We also present an iterative algorithm to select the parameters for the outflow boundary conditions using the 1-D theory to achieve a desired systolic and diastolic pressure at a particular vessel. This 1-D/3-D framework can be used to efficiently determine material and boundary condition parameters for 3-D subject-specific arterial models with deformable vessel walls. Finally, we explore the impact of different anatomical features and hemodynamic conditions on the numerical predictions. The results show good agreement between the two schemes, especially during the diastolic phase of the cycle. PMID:24115509

  12. Emergent 1d Ising Behavior in AN Elementary Cellular Automaton Model

    NASA Astrophysics Data System (ADS)

    Kassebaum, Paul G.; Iannacchione, Germano S.

    The fundamental nature of an evolving one-dimensional (1D) Ising model is investigated with an elementary cellular automaton (CA) simulation. The emergent CA simulation employs an ensemble of cells in one spatial dimension, each cell capable of two microstates interacting with simple nearest-neighbor rules and incorporating an external field. The behavior of the CA model provides insight into the dynamics of coupled two-state systems not expressible by exact analytical solutions. For instance, state progression graphs show the causal dynamics of a system through time in relation to the system's entropy. Unique graphical analysis techniques are introduced through difference patterns, diffusion patterns, and state progression graphs of the 1D ensemble visualizing the evolution. All analyses are consistent with the known behavior of the 1D Ising system. The CA simulation and new pattern recognition techniques are scalable (in both dimension, complexity, and size) and have many potential applications such as complex design of materials, control of agent systems, and evolutionary mechanism design.

  13. Verification and comparison of four numerical schemes for a 1D viscoelastic blood flow model.

    PubMed

    Wang, Xiaofei; Fullana, Jose-Maria; Lagrée, Pierre-Yves

    2015-01-01

    A reliable and fast numerical scheme is crucial for the 1D simulation of blood flow in compliant vessels. In this paper, a 1D blood flow model is incorporated with a Kelvin-Voigt viscoelastic arterial wall. This leads to a nonlinear hyperbolic-parabolic system, which is then solved with four numerical schemes, namely: MacCormack, Taylor-Galerkin, monotonic upwind scheme for conservation law and local discontinuous Galerkin. The numerical schemes are tested on a single vessel, a simple bifurcation and a network with 55 arteries. The numerical solutions are checked favorably against analytical, semi-analytical solutions or clinical observations. Among the numerical schemes, comparisons are made in four important aspects: accuracy, ability to capture shock-like phenomena, computational speed and implementation complexity. The suitable conditions for the application of each scheme are discussed.

  14. RANS computations for identification of 1-D cavitation model parameters: application to full load cavitation vortex rope

    NASA Astrophysics Data System (ADS)

    Alligné, S.; Decaix, J.; Müller, A.; Nicolet, C.; Avellan, F.; Münch, C.

    2016-11-01

    Due to the massive penetration of alternative renewable energies, hydropower is a key energy conversion technology for stabilizing the electrical power network by using hydraulic machines at off design operating conditions. At full load, the axisymmetric cavitation vortex rope developing in Francis turbines acts as an internal source of energy, leading to an instability commonly referred to as selfexcited surge. 1-D models are developed to predict this phenomenon and to define the range of safe operating points for a hydropower plant. These models involve several parameters that have to be calibrated using experimental and numerical data. The present work aims to identify these parameters with URANS computations with a particular focus on the fluid damping rising when the cavitation volume oscillates. Two test cases have been investigated: a cavitation flow in a Venturi geometry without inlet swirl and a reduced scale model of a Francis turbine operating at full load conditions. The cavitation volume oscillation is forced by imposing an unsteady outlet pressure conditions. By varying the frequency of the outlet pressure, the resonance frequency is determined. Then, the pressure amplitude and the resonance frequency are used as two objectives functions for the optimization process aiming to derive the 1-D model parameters.

  15. Nested 1D-2D approach for urban surface flood modeling

    NASA Astrophysics Data System (ADS)

    Murla, Damian; Willems, Patrick

    2015-04-01

    Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of

  16. Optimisation of A 1d-ecosystem Model To Observations In The North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Schartau, M.; Oschlies, A.

    An optimisation experiment is performed with a vertically resolved, nitrogen based ecosystem model, comprising four state variables (1D-NPZD model): dissolved inor- ganic nitrogen (N), phytoplankton (P), herbivorous zooplankton (Z) and detritus (D). Parameter values of the NPZD-model are optimised while regarding observational data from three locations in the North Atlantic simultaneously: Bermuda Atlantic Time-series Study (BATS), data of the North Atlantic Bloom Experiment (NABE) and observations from Ocean Weather Ship-India (OWS-INDIA). The simultaneous opti- misation yields a best parameter set which can be utilized for basin wide simulations in coupled physical-biological (general circulation) models of the North Atlantic. After optimisation of the 1D-NPZD model, systematic discrepancies between 14C-fixation rates and modelled primary production are emphasized. Using the optimal parame- ter estimates for coupled 3D-simulations, the biogeochemical fluxes show substantial differences in contrast to previous model results. For instance, rapid recycling of or- ganic matter enhances primary production rates. This becomes most evident within the oligotrophic regions of the subtropical gyre.

  17. Evaluation of 2 1-D cloud models for the analysis of VAS soundings

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D.

    1984-01-01

    Evaluation of the satellite Visual Infrared Spin Scan Radiometer Atmospheric Sounder (VISSR) has begun to document several of its critical shortcomings as far as numerical cloud models are concerned: excessive smoothing of thermal inversions; imprecise measurement of boundary layer moisture; and tendency to exaggerate atmospheric stability. The sensitivity of 1-D cloud models to their required inputs is stressed with special attention to those parameters obtained from atmospheric soundings taken by the VAS or rawinsonde. In addition to performing model experiments using temperature and moisture profiles having the general characteristics of VAS soundings, standard input sensitivity tests were made and 1-D model performance was compared with observations and the results of a 2-D model experiment using AVE/VAS data (Atmospheric Variability Experiment). Although very encouraging, the results are not sufficient to make any specific conclusions. In general, the VAS soundings are likely to be inadequate to provide the cloud base (and subcloud layer) information needed for inputs to current cumulus models. Above cloud base, the tendency to exaggerate the stability of the atmosphere requires solution before meaningful model experiments are run.

  18. Testing a 1-D Analytical Salt Intrusion Model and the Predictive Equation in Malaysian Estuaries

    NASA Astrophysics Data System (ADS)

    Gisen, Jacqueline Isabella; Savenije, Hubert H. G.

    2013-04-01

    Little is known about the salt intrusion behaviour in Malaysian estuaries. Study on this topic sometimes requires large amounts of data especially if a 2-D or 3-D numerical models are used for analysis. In poor data environments, 1-D analytical models are more appropriate. For this reason, a fully analytical 1-D salt intrusion model, based on the theory of Savenije in 2005, was tested in three Malaysian estuaries (Bernam, Selangor and Muar) because it is simple and requires minimal data. In order to achieve that, site surveys were conducted in these estuaries during the dry season (June-August) at spring tide by moving boat technique. Data of cross-sections, water levels and salinity were collected, and then analysed with the salt intrusion model. This paper demonstrates a good fit between the simulated and observed salinity distribution for all three estuaries. Additionally, the calibrated Van der Burgh's coefficient K, Dispersion coefficient D0, and salt intrusion length L, for the estuaries also displayed a reasonable correlations with those calculated from the predictive equations. This indicates that not only is the salt intrusion model valid for the case studies in Malaysia but also the predictive model. Furthermore, the results from this study describe the current state of the estuaries with which the Malaysian water authority in Malaysia can make decisions on limiting water abstraction or dredging. Keywords: salt intrusion, Malaysian estuaries, discharge, predictive model, dispersion

  19. 1D-3D hybrid modeling-from multi-compartment models to full resolution models in space and time.

    PubMed

    Grein, Stephan; Stepniewski, Martin; Reiter, Sebastian; Knodel, Markus M; Queisser, Gillian

    2014-01-01

    Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator-which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to the

  20. Quantum Nucleation of Phase Slips in a 1D Model of a Superfluid

    SciTech Connect

    Freire, J.A.; Arovas, D.P.; Levine, H.

    1997-12-01

    We use a 1D model of a superfluid based on the Gross-Pitaevskii Lagrangian to illustrate a general numerical method designed to find quantum tunneling rates in extended bosonic systems. Specifically, we study flow past an obstacle and directly solve the imaginary time dynamics to find the {open_quotes}bounce{close_quotes} solution connected with the decay of the metastable laminar state via phase slip nucleation. The action for the tunneling configuration goes to zero at the threshold (in superfluid velocity) for classical production of these slips. Applications to other processes are briefly discussed. {copyright} {ital 1997} {ital The American Physical Society}

  1. Simulations of Edge Effect in 1D Spin Crossover Compounds by Atom-Phonon Coupling Model

    NASA Astrophysics Data System (ADS)

    Linares, J.; Chiruta, D.; Jureschi, C. M.; Alayli, Y.; Turcu, C. O.; Dahoo, P. R.

    2016-08-01

    We used the atom-phonon coupling model to explain and illustrate the behaviour of a linear nano-chain of molecules. The analysis of the system's behaviour was performed using Free Energy method, and by applying Monte Carlo Metropolis (MCM) method which take into account the phonon contribution. In particular we tested both the MCM algorithm and the dynamic-matrix method and we expose how the thermal behaviour of a 1D spin crossover system varies as a function of different factors. Furthermore we blocked the edge atoms of the chain in its high spin state to study the effect on the system's behaviour.

  2. Optimal modeling of 1D azimuth correlations in the context of Bayesian inference

    NASA Astrophysics Data System (ADS)

    De Kock, Michiel B.; Eggers, Hans C.; Trainor, Thomas A.

    2015-09-01

    Analysis and interpretation of spectrum and correlation data from high-energy nuclear collisions is currently controversial because two opposing physics narratives derive contradictory implications from the same data, one narrative claiming collision dynamics is dominated by dijet production and projectile-nucleon fragmentation, the other claiming collision dynamics is dominated by a dense, flowing QCD medium. Opposing interpretations seem to be supported by alternative data models, and current model-comparison schemes are unable to distinguish between them. There is clearly need for a convincing new methodology to break the deadlock. In this study we introduce Bayesian inference (BI) methods applied to angular correlation data as a basis to evaluate competing data models. For simplicity the data considered are projections of two-dimensional (2D) angular correlations onto a 1D azimuth from three centrality classes of 200-GeV Au-Au collisions. We consider several data models typical of current model choices, including Fourier series (FS) and a Gaussian plus various combinations of individual cosine components. We evaluate model performance with BI methods and with power-spectrum analysis. We find that FS-only models are rejected in all cases by Bayesian analysis, which always prefers a Gaussian. A cylindrical quadrupole cos(2 ϕ ) is required in some cases but rejected for 0%-5%-central Au-Au collisions. Given a Gaussian centered at the azimuth origin, "higher harmonics" cos(m ϕ ) for m >2 are rejected. A model consisting of Gaussian +dipole cos(ϕ )+quadrupole cos(2 ϕ ) provides good 1D data descriptions in all cases.

  3. Survey of Multi-Material Closure Models in 1D Lagrangian Hydrodynamics

    SciTech Connect

    Maeng, Jungyeoul Brad; Hyde, David Andrew Bulloch

    2015-07-28

    Accurately treating the coupled sub-cell thermodynamics of computational cells containing multiple materials is an inevitable problem in hydrodynamics simulations, whether due to initial configurations or evolutions of the materials and computational mesh. When solving the hydrodynamics equations within a multi-material cell, we make the assumption of a single velocity field for the entire computational domain, which necessitates the addition of a closure model to attempt to resolve the behavior of the multi-material cells’ constituents. In conjunction with a 1D Lagrangian hydrodynamics code, we present a variety of both the popular as well as more recently proposed multi-material closure models and survey their performances across a spectrum of examples. We consider standard verification tests as well as practical examples using combinations of fluid, solid, and composite constituents within multi-material mixtures. Our survey provides insights into the advantages and disadvantages of various multi-material closure models in different problem configurations.

  4. Multiscale Modeling Techniques for Plasma: 1D Scaling Results and Application to Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Shay, Michael; Drake, J.

    2005-10-01

    We examine a novel simulation scheme called ``equation free projective integration'' which has the potential to allow global simulations which still include microscale physics, a necessary ingredient in order to model multiscale problems. Such codes could be used to examine the global effects of reconnection and turbulence in tokamaks, the Earth's magnetosphere, and the solar corona. Using this method to simulate the propagation and steepening of a 1D ion acoustic wave, we have already achieved excellent agreement between full particle codes and equation free with a factor of 20 speed-up. In this method of simulation, the global plasma variables stepped forward in time are not time-integrated directly using dynamical differential equations, hence the name ``equation free.'' Instead, these variables are represented on a microgrid using a kinetic simulation. This microsimulation is integrated forward long enough to determine the time derivatives of the global plasma variables, which are then used to integrate forward the global variables with much larger timesteps. Results will be presented of the successful application of equation free to 1-D ion acoustic wave steepening with a PIC code serving as the underlying kinetic model. Initial results of this technique applied to magnetic reconnection will also be discussed.

  5. EFDC1D - A ONE DIMENSIONAL HYDRODYNAMIC AND SEDIMENT TRANSPORT MODEL FOR RIVER AND STREAM NETWORKS: MODEL THEORY AND USERS GUIDE

    EPA Science Inventory

    This technical report describes the new one-dimensional (1D) hydrodynamic and sediment transport model EFDC1D. This model that can be applied to stream networks. The model code and two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional unstea...

  6. Stability of Blowup for a 1D Model of Axisymmetric 3D Euler Equation

    NASA Astrophysics Data System (ADS)

    Do, Tam; Kiselev, Alexander; Xu, Xiaoqian

    2016-10-01

    The question of the global regularity versus finite- time blowup in solutions of the 3D incompressible Euler equation is a major open problem of modern applied analysis. In this paper, we study a class of one-dimensional models of the axisymmetric hyperbolic boundary blow-up scenario for the 3D Euler equation proposed by Hou and Luo (Multiscale Model Simul 12:1722-1776, 2014) based on extensive numerical simulations. These models generalize the 1D Hou-Luo model suggested in Hou and Luo Luo and Hou (2014), for which finite-time blowup has been established in Choi et al. (arXiv preprint. arXiv:1407.4776, 2014). The main new aspects of this work are twofold. First, we establish finite-time blowup for a model that is a closer approximation of the three-dimensional case than the original Hou-Luo model, in the sense that it contains relevant lower-order terms in the Biot-Savart law that have been discarded in Hou and Luo Choi et al. (2014). Secondly, we show that the blow-up mechanism is quite robust, by considering a broader family of models with the same main term as in the Hou-Luo model. Such blow-up stability result may be useful in further work on understanding the 3D hyperbolic blow-up scenario.

  7. GE SBWR stability analysis using TRAC-BF1 1-D kinetics model

    SciTech Connect

    Lu, S.; Baratta, A.J.; Robinson, G.E.

    1996-07-01

    GE`s simplified boiling water reactor, with its unique feature of using natural circulation to remove the heat from the reactor core, is a complicated dynamic system. Previous work by authors using the TRAC-BF1 code and a point kinetics model predicted that an SBWR may experience large amplitude power oscillation under certain low pressure and high power operating conditions. To further confirm the existence of this power oscillation and explore the dynamic spatial reactor power distribution, the TRAC-BF1 1-D kinetics model was used. The results show that an instability exists and the power oscillation starting time and maximum peak power are different from the point kinetics results.

  8. Fluid friction and wall viscosity of the 1D blood flow model.

    PubMed

    Wang, Xiao-Fei; Nishi, Shohei; Matsukawa, Mami; Ghigo, Arthur; Lagrée, Pierre-Yves; Fullana, Jose-Maria

    2016-02-29

    We study the behavior of the pulse waves of water into a flexible tube for application to blood flow simulations. In pulse waves both fluid friction and wall viscosity are damping factors, and difficult to evaluate separately. In this paper, the coefficients of fluid friction and wall viscosity are estimated by fitting a nonlinear 1D flow model to experimental data. In the experimental setup, a distensible tube is connected to a piston pump at one end and closed at another end. The pressure and wall displacements are measured simultaneously. A good agreement between model predictions and experiments was achieved. For amplitude decrease, the effect of wall viscosity on the pulse wave has been shown as important as that of fluid viscosity.

  9. One-electron singular spectral features of the 1D Hubbard model at finite magnetic field

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Čadež, T.

    2017-01-01

    The momentum, electronic density, spin density, and interaction dependences of the exponents that control the (k , ω)-plane singular features of the σ = ↑ , ↓ one-electron spectral functions of the 1D Hubbard model at finite magnetic field are studied. The usual half-filling concepts of one-electron lower Hubbard band and upper Hubbard band are defined in terms of the rotated electrons associated with the model Bethe-ansatz solution for all electronic density and spin density values and the whole finite repulsion range. Such rotated electrons are the link of the non-perturbative relation between the electrons and the pseudofermions. Our results further clarify the microscopic processes through which the pseudofermion dynamical theory accounts for the one-electron matrix elements between the ground state and excited energy eigenstates.

  10. Nanoelectronic Modeling (NEMO): Moving from commercial grade 1-D simulation to prototype 3-D simulation

    NASA Astrophysics Data System (ADS)

    Klimeck, Gerhard

    2001-03-01

    The quantum mechanical functionality of commercially pursued heterostructure devices such as resonant tunneling diodes (RTDs), quantum well infrared photodetectors, and quantum well lasers are enabled by material variations on an atomic scale. The creation of these heterostructure devices is realized in a vast design space of material compositions, layer thicknesses and doping profiles. The full experimental exploration of this design space is unfeasible and a reliable design tool is needed. The Nanoelectronic Modeling tool (NEMO) is one of the first commercial grade attempts for such a modeling tool. NEMO was developed as a general-purpose quantum mechanics-based 1-D device design and analysis tool from 1993-97 by the Central Research Laboratory of Texas Instruments (later Raytheon Systems). NEMO enables(R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, J. Appl. Phys. 81), 7845 (1997). the fundamentally sound inclusion of the required(G. Klimeck et al.), in the 1997 55th Annual Device Research Conference Digest, (IEEE, NJ, 1997), p. 92^,(R. C. Bowen et al.), J. Appl. Phys 81, 3207 (1997). physics: bandstructure, scattering, and charge self-consistency based on the non-equilibrium Green function approach. A new class of devices which require full 3-D quantum mechanics based models is starting to emerge: quantum dots, or in general semiconductor based deca-nano devices. We are currently building a 3-D modeling tool based on NEMO to include the important physics to understand electronic stated in such superscaled structures. This presentation will overview various facets of the NEMO 1-D tool such electron transport physics in RTDs, numerical technology, software engineering and graphical user interface. The lessons learned from that work are now entering the NEMO 3-D development and first results using the NEMO 3-D prototype will be shown. More information about

  11. A world-line framework for 1D topological conformal σ-models

    NASA Astrophysics Data System (ADS)

    Baulieu, L.; Holanda, N. L.; Toppan, F.

    2015-11-01

    We use world-line methods for pseudo-supersymmetry to construct sl(2|1)-invariant actions for the (2, 2, 0) chiral and (1, 2, 1) real supermultiplets of the twisted D-module representations of the sl(2|1) superalgebra. The derived one-dimensional topological conformal σ-models are invariant under nilpotent operators. The actions are constructed for both parabolic and hyperbolic/trigonometric realizations (with extra potential terms in the latter case). The scaling dimension λ of the supermultiplets defines a coupling constant, 2λ + 1, the free theories being recovered at λ = - /1 2 . We also present, generalizing previous works, the D-module representations of one-dimensional superconformal algebras induced by N = ( p , q ) pseudo-supersymmetry acting on (k, n, n - k) supermultiplets. Besides sl(2|1), we obtain the superalgebras A(1, 1), D(2, 1; α), D(3, 1), D(4, 1), A(2, 1) from (p, q) = (1, 1), (2, 2), (3, 3), (4, 4), (5, 1), at given k, n and critical values of λ.

  12. The Reference Forward Model (RFM)

    NASA Astrophysics Data System (ADS)

    Dudhia, Anu

    2017-01-01

    The Reference Forward Model (RFM) is a general purpose line-by-line radiative transfer model, currently supported by the UK National Centre for Earth Observation. This paper outlines the algorithms used by the RFM, focusing on standard calculations of terrestrial atmospheric infrared spectra followed by a brief summary of some additional capabilities and extensions to microwave wavelengths and extraterrestrial atmospheres. At its most basic level - the 'line-by-line' component - it calculates molecular absorption cross-sections by applying the Voigt lineshape to all transitions up to ±25 cm-1 from line-centre. Alternatively, absorptions can be directly interpolated from various forms of tabulated data. These cross-sections are then used to construct infrared radiance or transmittance spectra for ray paths through homogeneous cells, plane-parallel or circular atmospheres. At a higher level, the RFM can apply instrumental convolutions to simulate measurements from Fourier transform spectrometers. It can also calculate Jacobian spectra and so act as a stand-alone forward model within a retrieval scheme. The RFM is designed for robustness, flexibility and ease-of-use (particularly by the non-expert), and no claims are made for superior accuracy, or indeed novelty, compared to other line-by-line codes. Its main limitations at present are a lack of scattering and simplified modelling of surface reflectance and line-mixing.

  13. 1D numerical model of muddy subaqueous and subaerial debris flows

    USGS Publications Warehouse

    Imran, J.; Parker, G.; Locat, J.; Lee, H.

    2001-01-01

    A 1D numerical model of the downslope flow and deposition of muddy subaerial and subaqueous debris flows is presented. The model incorporates the Herschel-Bulkley and bilinear rheologies of viscoplastic fluid. The more familiar Bingham model is integrated into the Herschel-Bulkley rheological model. The conservation equations of mass and momentum of single-phase laminar debris flow are layer-integrated using the slender flow approximation. They are then expressed in a Lagrangian framework and solved numerically using an explicit finite difference scheme. Starting from a given initial shape, a debris flow is allowed to collapse and propagate over a specified topography. Comparison between the model predictions and laboratory experiments shows reasonable agreement. The model is used to study the effect of the ambient fluid density, initial shape of the failed mass, and rheological model on the simulated propagation of the front and runout characteristics of muddy debris flows. It is found that initial failure shape influence the front velocity but has little bearing on the final deposit shape. In the Bingham model, the excess of shear stress above the yield strength is proportional to the strain rate to the first power. This exponent is free to vary in the Herschel-Bulkley model. When it is set at a value lower than unity, the resulting final deposits are thicker and shorter than in the case of the Bingham rheology. The final deposit resulting from the bilinear model is longer and thinner than that from the Bingham model due to the fact that the debris flow is allowed to act as a Newtonian fluid at low shear rate in the bilinear model.

  14. 2D Biotope Mapping Using Combined LIDAR, Topographic Survey And Segmented 1D Flow Modelling

    NASA Astrophysics Data System (ADS)

    Entwistle, N. S.; Heritage, G. L.; Milan, D. J.

    2009-12-01

    Reach averaged habitat availability models such as PHABSIM are limited due principally to their failure to adequately map hydraulic habitat distribution at a representative scale. A lack of morphologic data, represented in the form of sparse geometric cross-sections fails to generate the necessary detail. Advances in data collection, improved spatial modelling algorithms and the advent of cross-section based segmentation routines in 1D hydraulic models provides the opportunity to revisit the issue of hydraulic habitat mapping and modelling. This paper presents a combined technique for habitat characterisation at the sub-bar scale is presented for the River Rede, Northumberland, UK. Terrestrial LIDAR data of floodplain, banks and exposed bar surfaces at an average 0.05 m spacing are combined with sparser total station survey data of submerged morphologic features. These data are interpolated to create a uniform DEM grid at 0.2 m spacing (adequate to detect the smallest variation in hydraulic habitat in this system). The data grid were then imported into the HECRAS 1D hydraulic model to generate a 2 m spaced series of cross-sections along a 220 m sinuous single thread reach exhibiting pool - riffle point-bar morphology. The hydraulic segmentation routine then generated estimates of depth averaged flow velocity, flow depth and sub unit discharge for 40 sub-divisions of the flow width for a series of flows from 0.5 m3s-1 up to bankfull flow of approximately 9 m3s-1. The resultant hydraulic data were exported in the project coordinate system and plotted to reveal the 2D pattern of hydraulic biotopes present across the range of flows modelled. The results reveal broadly realistic patterns consistent with previous empirical studies and compare well with LIDAR based biotope maps. Analysis of the temporal pattern of biotope change indicates that biotope diversity and complexity is at a maximum at lower flows and across shallower area (riffles) and that these dominate the

  15. Initial Stage of the Microwave Ionization Wave Within a 1D Model

    NASA Astrophysics Data System (ADS)

    Semenov, V. E.; Rakova, E. I.; Glyavin, M. Yu.; Nusinovich, G. S.

    2016-05-01

    The dynamics of the microwave breakdown in a gas is simulated numerically within a simple 1D model which takes into account such processes as the impact ionization of gas molecules, the attachment of electrons to neutral molecules, and plasma diffusion. Calculations are carried out for different spatial distributions of seed electrons with account for reflection of the incident electromagnetic wave from the plasma. The results reveal considerable dependence of the ionization wave evolution on the relation between the field frequency and gas pressure, as well as on the existence of extended rarefied halo of seed electrons. At relatively low gas pressures (or high field frequencies), the breakdown process is accompanied by the stationary ionization wave moving towards the incident electromagnetic wave. In the case of a high gas pressure (or a relatively low field frequency), the peculiarities of the breakdown are associated with the formation of repetitive jumps of the ionization front.

  16. Method of single expression: an exact solution for wavelength scale 1D photonic structure computer modeling

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, Hovik V.; Knyazyan, Tamara M.

    2003-12-01

    The principles of the method of single expression (MSE) for boundary problems solution in classical electrodynamics are presented. In the MSE the solution of the Helmholtz's equation is presented in the special form of a single expression describing resultant amplitude and phase distributions in the medium. This form of solution presenation permits to pass over the restrictions of the superposition principle and to solve both linear and nonlinear problems with ths same ease. In the MSE the Helmholtz's equation is reformulated to the set of first order differential equations and the boundary problem is solved numerically. No approximations are implied either in Helmholtz's equation or in boundary conditions. Using the MSE steady-state boundary problems are modeled for wavelength scale multilayer and modulated 1D photonic structures including amplification and nonuniformity evoked by intense electromagnetic field.

  17. Very preliminary reference Moon model

    NASA Astrophysics Data System (ADS)

    Garcia, Raphaël F.; Gagnepain-Beyneix, Jeannine; Chevrot, Sébastien; Lognonné, Philippe

    2011-09-01

    The deep structure of the Moon is a missing piece to understand the formation and evolution of the Earth-Moon system. Despite the great amount of information brought by the Apollo passive seismic experiment (ALSEP), the lunar structure below deep moonquakes, which occur around 900 km depth, remains largely unknown. We construct a reference Moon model which incorporates physical constraints, and fits both geodesic (lunar mass and polar moment of inertia, and Love numbers) and seismological (body wave arrivals measured by Apollo network) data. In this model, the core radius is constrained by the detection of S waves reflected from the core. In a first step, for each core radius, a radial model of the lunar interior, including P and S wave velocities and density, is inverted from seismic and geodesic data. In a second step, the core radius is determined from the detection of shear waves reflected on the lunar core by waveform stacking of deep moonquake Apollo records. This detection has been made possible by careful data selection and processing, including a correction of the gain of horizontal sensors based on the principle of energy equipartition inside the coda of lunar seismic records, and a precise alignment of SH waveforms by a non-linear inversion method. The Very Preliminary REference MOON model (VPREMOON) obtained here has a core radius of 380 ± 40 km and an average core mass density of 5200 ± 1000 kg/m 3. The large error bars on these estimates are due to the poorly constrained S-wave velocity profile at the base of the mantle and to mislocation errors of deep moonquakes. The detection of horizontally polarized S waves reflected from the core and the absence of detection of vertically polarized S waves favour a liquid state in the outermost part of the core. All these results are consistent, within their error bars, with previous estimates based on lunar rotation dissipation ( Williams et al., 2001) and on lunar induced magnetic moment ( Hood et al., 1999).

  18. Multiscale Modeling Techniques for Plasmas: 1D Scaling Results and Application to Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Shay, M. A.; Dorland, B.; Drake, J. F.; Stantchev, G.

    2005-12-01

    We examine a novel simulation scheme called "equation free projective integration"[1] which has the potential to allow global simulations which still include microscale physics, a necessary ingredient in order to model multiscale problems. Such codes could be used to examine the global effects of reconnection and turbulence in the Earth's magnetosphere, and the solar corona, as well as in laboratory Tokamaks. Using this method to simulate the propagation and steepening of a 1D ion acoustic wave, we have already achieved excellent agreement between full particle codes and equation free with a factor of 20 speed-up. This speedup appears to scale linearly with system size, so large scale 2D and 3D simulations using this method will show a speedup of 100 or more. In this method of simulation, the global plasma variables stepped forward in time are not time-integrated directly using dynamical differential equations, hence the name "equation free." Instead, these variables are represented on a microgrid using a kinetic simulation. This microsimulation is integrated forward long enough to determine the time derivatives of the global plasma variables, which are then used to integrate forward the global variables with much larger timesteps. Results will be presented of the successful application of equation free to 1-D ion acoustic wave steepening with a PIC code serving as the underlying kinetic model. Initial results of this technique applied to magnetic reconnection will also be discussed. 1 I. G. Kevrekidis et. al., Equation-free multiscale computation: Enabling microscopic simulators to perform system-level tasks, arXiv:physics/0209043.

  19. Kinetic study of run-away burn in ICF capsule using a quasi-1D model

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun; Molvig, K.; Albright, B. J.; Dodd, E. S.; Hoffman, N. M.; Vold, E. L.; Kagan, G.

    2016-10-01

    The effect of reduced fusion reactivity resulting from the loss of fuel ions in the Gamow peak in the ignition, run-away burn and disassembly stages of an inertial confinement fusion D-T capsule is investigated with a quasi-1D hybrid model that includes kinetic ions, fluid electrons and Planckian radiation photons. The fuel ion loss through the Knudsen effect at the fuel-pusher interface is accounted for by a local-loss model developed in Molvig et al.. The tail refilling and relaxation of the fuel ion distribution are evolved with a nonlinear Fokker-Planck solver. The Krokhin & Rozanov model is used for the finite alpha range beyond the fuel region, while alpha heating to the fuel ions and the fluid electrons is modeled kinetically. For an energetic pusher (40kJ), the simulation shows that the reduced fusion reactivity can lead to substantially lower ion temperature during run-away burn, while the final yield decreases more modestly. Possible improvements to the present model, including the non-Planckian radiation emission and alpha-driven fuel disassembly, are discussed. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Work supported by the ASC TBI project at LANL.

  20. HELIOS-CR A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling

    NASA Astrophysics Data System (ADS)

    Macfarlane, J. J.; Golovkin, I. E.; Woodruff, P. R.

    2006-05-01

    HELIOS-CR is a user-oriented 1D radiation-magnetohydrodynamics code to simulate the dynamic evolution of laser-produced plasmas and z-pinch plasmas. It includes an in-line collisional-radiative (CR) model for computing non-LTE atomic level populations at each time step of the hydrodynamics simulation. HELIOS-CR has been designed for ease of use, and is well-suited for experimentalists, as well as graduate and undergraduate student researchers. The energy equations employed include models for laser energy deposition, radiation from external sources, and high-current discharges. Radiative transport can be calculated using either a multi-frequency flux-limited diffusion model, or a multi-frequency, multi-angle short characteristics model. HELIOS-CR supports the use of SESAME equation of state (EOS) tables, PROPACEOS EOS/multi-group opacity data tables, and non-LTE plasma properties computed using the inline CR modeling. Time-, space-, and frequency-dependent results from HELIOS-CR calculations are readily displayed with the HydroPLOT graphics tool. In addition, the results of HELIOS simulations can be post-processed using the SPECT3D Imaging and Spectral Analysis Suite to generate images and spectra that can be directly compared with experimental measurements. The HELIOS-CR package runs on Windows, Linux, and Mac OSX platforms, and includes online documentation. We will discuss the major features of HELIOS-CR, and present example results from simulations.

  1. On constitutive functions for hindered settling velocity in 1-D settler models: Selection of appropriate model structure.

    PubMed

    Torfs, Elena; Balemans, Sophie; Locatelli, Florent; Diehl, Stefan; Bürger, Raimund; Laurent, Julien; François, Pierre; Nopens, Ingmar

    2017-03-01

    Advanced 1-D models for Secondary Settling Tanks (SSTs) explicitly account for several phenomena that influence the settling process (such as hindered settling and compression settling). For each of these phenomena a valid mathematical expression needs to be selected and its parameters calibrated to obtain a model that can be used for operation and control. This is, however, a challenging task as these phenomena may occur simultaneously. Therefore, the presented work evaluates several available expressions for hindered settling based on long-term batch settling data. Specific attention is paid to the behaviour of these hindered settling functions in the compression region in order to evaluate how the modelling of sludge compression is influenced by the choice of a certain hindered settling function. The analysis shows that the exponential hindered settling forms, which are most commonly used in traditional SST models, not only account for hindered settling but partly lump other phenomena (compression) as well. This makes them unsuitable for advanced 1-D models that explicitly include each phenomenon in a modular way. A power-law function is shown to be more appropriate to describe the hindered settling velocity in advanced 1-D SST models.

  2. Testing the accuracy of a 1-D volcanic plume model in estimating mass eruption rate

    USGS Publications Warehouse

    Mastin, Larry G.

    2014-01-01

    During volcanic eruptions, empirical relationships are used to estimate mass eruption rate from plume height. Although simple, such relationships can be inaccurate and can underestimate rates in windy conditions. One-dimensional plume models can incorporate atmospheric conditions and give potentially more accurate estimates. Here I present a 1-D model for plumes in crosswind and simulate 25 historical eruptions where plume height Hobs was well observed and mass eruption rate Mobs could be calculated from mapped deposit mass and observed duration. The simulations considered wind, temperature, and phase changes of water. Atmospheric conditions were obtained from the National Center for Atmospheric Research Reanalysis 2.5° model. Simulations calculate the minimum, maximum, and average values (Mmin, Mmax, and Mavg) that fit the plume height. Eruption rates were also estimated from the empirical formula Mempir = 140Hobs4.14 (Mempir is in kilogram per second, Hobs is in kilometer). For these eruptions, the standard error of the residual in log space is about 0.53 for Mavg and 0.50 for Mempir. Thus, for this data set, the model is slightly less accurate at predicting Mobs than the empirical curve. The inability of this model to improve eruption rate estimates may lie in the limited accuracy of even well-observed plume heights, inaccurate model formulation, or the fact that most eruptions examined were not highly influenced by wind. For the low, wind-blown plume of 14–18 April 2010 at Eyjafjallajökull, where an accurate plume height time series is available, modeled rates do agree better with Mobs than Mempir.

  3. Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling

    NASA Astrophysics Data System (ADS)

    Godolt, M.; Grenfell, J. L.; Kitzmann, D.; Kunze, M.; Langematz, U.; Patzer, A. B. C.; Rauer, H.; Stracke, B.

    2016-07-01

    Context. The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. The applicability of one-dimensional (1D) climate models for the estimation of the HZ boundaries has been questioned by recent three-dimensional (3D) climate studies. While 3D studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for extrasolar planets. Aims: We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like extrasolar planets by comparing our 1D model results to those of 3D climate studies in the literature. We vary the two important planetary properties, surface albedo and relative humidity, in the 1D model. These depend on climate feedbacks that are not treated self-consistently in most 1D models. Methods: We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. We compared the results to those of 3D model calculations available in the literature and investigated to what extent the 1D model can approximate the surface temperatures calculated by the 3D models. Results: The 1D parameter study results in a large range of climates possible for an Earth-sized planet with an Earth-like atmosphere and water reservoir at a certain stellar insolation. At some stellar insolations the full spectrum of climate states could be realized, i.e., uninhabitable conditions due to surface temperatures that are too high or too low as well as habitable surface conditions, depending only on the relative humidity and surface albedo assumed. When

  4. A 1-D evolutionary model for icy satellites, applied to Enceladus

    NASA Astrophysics Data System (ADS)

    Malamud, Uri; Prialnik, Dina

    2016-04-01

    We develop a long-term 1-D evolution model for icy satellites that couples multiple processes: water migration and differentiation, geochemical reactions and silicate phase transitions, compaction by self-gravity, and ablation. The model further considers the following energy sources and sinks: tidal heating, radiogenic heating, geochemical energy released by serpentinization or absorbed by mineral dehydration, gravitational energy and insolation, and heat transport by conduction, convection, and advection. We apply the model to Enceladus, by guessing the initial conditions that would render a structure compatible with present-day observations, assuming the initial structure to have been homogeneous. Assuming the satellite has been losing water continually along its evolution, we postulate that it was formed as a more massive, more icy and more porous satellite, and gradually transformed into its present day state due to sustained long-term tidal heating. We consider several initial compositions and evolution scenarios and follow the evolution for the age of the Solar System, testing the present day model results against the available observational constraints. Our model shows the present configuration to be differentiated into a pure icy mantle, several tens of km thick, overlying a rocky core, composed of dehydrated rock at the center and hydrated rock in the outer part. For Enceladus, it predicts a higher rock/ice mass ratio than previously assumed and a thinner ice mantle, compatible with recent estimates based on gravity field measurements. Although, obviously, the model cannot be used to explain local phenomena, it sheds light on the internal structure invoked in explanations of localized features and activities.

  5. Significance of flow clustering and sequencing on sediment transport: 1D sediment transport modelling

    NASA Astrophysics Data System (ADS)

    Hassan, Kazi; Allen, Deonie; Haynes, Heather

    2016-04-01

    This paper considers 1D hydraulic model data on the effect of high flow clusters and sequencing on sediment transport. Using observed flow gauge data from the River Caldew, England, a novel stochastic modelling approach was developed in order to create alternative 50 year flow sequences. Whilst the observed probability density of gauge data was preserved in all sequences, the order in which those flows occurred was varied using the output from a Hidden Markov Model (HMM) with generalised Pareto distribution (GP). In total, one hundred 50 year synthetic flow series were generated and used as the inflow boundary conditions for individual flow series model runs using the 1D sediment transport model HEC-RAS. The model routed graded sediment through the case study river reach to define the long-term morphological changes. Comparison of individual simulations provided a detailed understanding of the sensitivity of channel capacity to flow sequence. Specifically, each 50 year synthetic flow sequence was analysed using a 3-month, 6-month or 12-month rolling window approach and classified for clusters in peak discharge. As a cluster is described as a temporal grouping of flow events above a specified threshold, the threshold condition used herein is considered as a morphologically active channel forming discharge event. Thus, clusters were identified for peak discharges in excess of 10%, 20%, 50%, 100% and 150% of the 1 year Return Period (RP) event. The window of above-peak flows also required cluster definition and was tested for timeframes 1, 2, 10 and 30 days. Subsequently, clusters could be described in terms of the number of events, maximum peak flow discharge, cumulative flow discharge and skewness (i.e. a description of the flow sequence). The model output for each cluster was analysed for the cumulative flow volume and cumulative sediment transport (mass). This was then compared to the total sediment transport of a single flow event of equivalent flow volume

  6. 1D-coupled photochemical model of neutrals, cations and anions in the atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Dobrijevic, M.; Loison, J. C.; Hickson, K. M.; Gronoff, G.

    2016-04-01

    Many models with different characteristics have been published so far to study the chemical processes at work in Titan's atmosphere. Some models focus on neutral species in the stratosphere or ionic species in the ionosphere, but few of them couple all the species throughout the whole atmosphere. Very few of these emphasize the importance of uncertainties in the chemical scheme and study their propagation in the model. We have developed a new 1D-photochemical model of Titan's atmosphere coupling neutral species with positive and negative ions from the lower atmosphere up to the ionosphere and have compared our results with observations to have a comprehensive view of the chemical processes driving the composition of the stratosphere and ionosphere of Titan. We have updated the neutral, positive ion and negative ion chemistry and have improved the description of N2 photodissociation by introducing high resolution N2 absorption cross sections. We performed for the first time an uncertainty propagation study in a fully coupled ion-neutral model. We determine how uncertainties on rate constants on both neutral and ionic reactions influence the model results and pinpoint the key reactions responsible for this behavior. We find very good agreement between our model results and observations in both the stratosphere and in the ionosphere for most neutral compounds. Our results are also in good agreement with an average INMS mass spectrum and specific flybys in the dayside suggesting that our chemical model (for both neutral and ions) provides a good approximation of Titan's atmospheric chemistry as a whole. Our uncertainty propagation study highlights the difficulty to interpret the INMS mass spectra for masses 14, 31, 41 and we identified the key reactions responsible for these ambiguities. Despite an overall improvement in the chemical model, disagreement for some specific compounds (HC3N, C2H5CN, C2H4) highlights the role that certain physical processes could play

  7. 1D-3D hybrid modeling—from multi-compartment models to full resolution models in space and time

    PubMed Central

    Grein, Stephan; Stepniewski, Martin; Reiter, Sebastian; Knodel, Markus M.; Queisser, Gillian

    2014-01-01

    Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator—which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to

  8. CO2 conversion in a gliding arc plasma: 1D cylindrical discharge model

    NASA Astrophysics Data System (ADS)

    Wang, Weizong; Berthelot, Antonin; Kolev, Stanimir; Tu, Xin; Bogaerts, Annemie

    2016-12-01

    CO2 conversion by a gliding arc plasma is gaining increasing interest, but the underlying mechanisms for an energy-efficient process are still far from understood. Indeed, the chemical complexity of the non-equilibrium plasma poses a challenge for plasma modeling due to the huge computational load. In this paper, a one-dimensional (1D) gliding arc model is developed in a cylindrical frame, with a detailed non-equilibrium CO2 plasma chemistry set, including the CO2 vibrational kinetics up to the dissociation limit. The model solves a set of time-dependent continuity equations based on the chemical reactions, as well as the electron energy balance equation, and it assumes quasi-neutrality in the plasma. The loss of plasma species and heat due to convection by the transverse gas flow is accounted for by using a characteristic frequency of convective cooling, which depends on the gliding arc radius, the relative velocity of the gas flow with respect to the arc and on the arc elongation rate. The calculated values for plasma density and plasma temperature within this work are comparable with experimental data on gliding arc plasma reactors in the literature. Our calculation results indicate that excitation to the vibrational levels promotes efficient dissociation in the gliding arc, and this is consistent with experimental investigations of the gliding arc based CO2 conversion in the literature. Additionally, the dissociation of CO2 through collisions with O atoms has the largest contribution to CO2 splitting under the conditions studied. In addition to the above results, we also demonstrate that lumping the CO2 vibrational states can bring a significant reduction of the computational load. The latter opens up the way for 2D or 3D models with an accurate description of the CO2 vibrational kinetics.

  9. Parameter sensitivities in a 1-D model for DMS and sulphur cycling in the upper ocean

    NASA Astrophysics Data System (ADS)

    Steiner, N.; Denman, K.

    2008-07-01

    We have developed a marine DMS (dimethylsulfide) module and implemented it in a 1-D coupled atmosphere-ocean-biogeochemical model. In developing the marine sulphur model we have found that several parameters used in the model are not known to even an order of magnitude. Our approach is used to test the model's sensitivity to these parameters. A parameter change of ±25% is applied to test the respective range of changes in the DMS fluxes. The model is run for a 3-year time period as well as for the time period of the Subarctic Ecosystem Response to Iron Enrichment Study (SERIES) in July 2002. The simulated seasonal cycle is in agreement with available observations: Near surface DMS concentrations vary from 1.5nmolL-1 in winter to 13.5nmolL-1 in summer. Simulated DMS production is found to be most sensitive to variations of the S:N ratio and the bacterial consumption rate of DMS. Implementing light or UV limited bacterial activity shows a negligible effect in winter and increases DMS concentrations by 0.2- 0.6nmolL-1 in summer. Similarly a yield increase under UV stress increases summer values by 1- 2nmolL-1. The simulated diel cycle in surface DMS concentration is no more than 2.5nmolL-1, even when light-dependent changes in bacterial activity are considered. Simulating the DMS response to iron fertilization with the standard run leads to overestimation during an initial bloom of small phytoplankton. While implementing light-dependent bacterial activity has a minor effect, the implementation of yields that depend on nutrient availability significantly improves the results. The model confirms earlier results showing the importance of including atmospheric DMS concentrations in gas flux calculations when there are high surface concentrations and small atmospheric boundary layer heights. Simulated summer concentrations in the upper layer can be underestimated by 2nmolL-1 or more if the atmospheric concentration is set to zero. Our study shows that inclusion of

  10. Virtual Reference, Real Money: Modeling Costs in Virtual Reference Services

    ERIC Educational Resources Information Center

    Eakin, Lori; Pomerantz, Jeffrey

    2009-01-01

    Libraries nationwide are in yet another phase of belt tightening. Without an understanding of the economic factors that influence library operations, however, controlling costs and performing cost-benefit analyses on services is difficult. This paper describes a project to develop a cost model for collaborative virtual reference services. This…

  11. Open boundary conditions for the Diffuse Interface Model in 1-D

    NASA Astrophysics Data System (ADS)

    Desmarais, J. L.; Kuerten, J. G. M.

    2014-04-01

    New techniques are developed for solving multi-phase flows in unbounded domains using the Diffuse Interface Model in 1-D. They extend two open boundary conditions originally designed for the Navier-Stokes equations. The non-dimensional formulation of the DIM generalizes the approach to any fluid. The equations support a steady state whose analytical approximation close to the critical point depends only on temperature. This feature enables the use of detectors at the boundaries switching between conventional boundary conditions in bulk phases and a multi-phase strategy in interfacial regions. Moreover, the latter takes advantage of the steady state approximation to minimize the interface-boundary interactions. The techniques are applied to fluids experiencing a phase transition and where the interface between the phases travels through one of the boundaries. When the interface crossing the boundary is fully developed, the technique greatly improves results relative to cases where conventional boundary conditions can be used. Limitations appear when the interface crossing the boundary is not a stable equilibrium between the two phases: the terms responsible for creating the true balance between the phases perturb the interior solution. Both boundary conditions present good numerical stability properties: the error remains bounded when the initial conditions or the far field values are perturbed. For the PML, the influence of its main parameters on the global error is investigated to make a compromise between computational costs and maximum error. The approach can be extended to multiple spatial dimensions.

  12. Modelling Hydrology of a Single Bioretention System with HYDRUS-1D

    PubMed Central

    Meng, Yingying; Wang, Huixiao; Chen, Jiangang; Zhang, Shuhan

    2014-01-01

    A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems. PMID:25133240

  13. Modelling hydrology of a single bioretention system with HYDRUS-1D.

    PubMed

    Meng, Yingying; Wang, Huixiao; Chen, Jiangang; Zhang, Shuhan

    2014-01-01

    A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems.

  14. Results and limits in the 1-D analytical modeling for the asymmetric DG SOI MOSFET

    NASA Astrophysics Data System (ADS)

    Cobianu, O.; Glesner, M.

    2008-05-01

    This paper presents the results and the limits of 1-D analytical modeling of electrostatic potential in the low-doped p type silicon body of the asymmetric n-channel DG SOI MOSFET, where the contribution to the asymmetry comes only from p- and n-type doping of polysilicon used as the gate electrodes. Solving Poisson's equation with boundary conditions based on the continuity of normal electrical displacement at interfaces and the presence of a minimum electrostatic potential by using the Matlab code we have obtained a minimum potential with a slow variation in the central zone of silicon with the value pinned around 0.46 V, where the applied VGS voltage varies from 0.45 V to 0.95 V. The paper states clearly the validity domain of the analytical solution and the important effect of the localization of the minimum electrostatic potential value on the potential variation at interfaces as a function of the applied VGS voltage.

  15. Column Testing and 1D Reactive Transport Modeling to Evaluate Uranium Plume Persistence Processes

    NASA Astrophysics Data System (ADS)

    Johnson, R. H.; Morrison, S.; Morris, S.; Tigar, A.; Dam, W. L.; Dayvault, J.

    2015-12-01

    At many U.S. Department of Energy Office of Legacy Management sites, 100 year natural flushing was selected as a remedial option for groundwater uranium plumes. However, current data indicate that natural flushing is not occurring as quickly as expected and solid-phase and aqueous uranium concentrations are persistent. At the Grand Junction, Colorado office site, column testing was completed on core collected below an area where uranium mill tailings have been removed. The total uranium concentration in this core was 13.2 mg/kg and the column was flushed with laboratory-created water with no uranium and chemistry similar to the nearby Gunnison River. The core was flushed for a total of 91 pore volumes producing a maximum effluent uranium concentration of 6,110 μg/L at 2.1 pore volumes and a minimum uranium concentration of 36.2 μg/L at the final pore volume. These results indicate complex geochemical reactions at small pore volumes and a long tailing affect at greater pore volumes. Stop flow data indicate the occurrence of non-equilibrium processes that create uranium concentration rebound. These data confirm the potential for plume persistence, which is occurring at the field scale. 1D reactive transport modeling was completed using PHREEQC (geochemical model) and calibrated to the column test data manually and using PEST (inverse modeling calibration routine). Processes of sorption, dual porosity with diffusion, mineral dissolution, dispersion, and cation exchange were evaluated separately and in combination. The calibration results indicate that sorption and dual porosity are major processes in explaining the column test data. These processes are also supported by fission track photographs that show solid-phase uranium residing in less mobile pore spaces. These procedures provide valuable information on plume persistence and secondary source processes that may be used to better inform and evaluate remedial strategies, including natural flushing.

  16. 1-D/3-D geologic model of the Western Canada Sedimentary Basin

    USGS Publications Warehouse

    Higley, D.K.; Henry, M.; Roberts, L.N.R.; Steinshouer, D.W.

    2005-01-01

    The 3-D geologic model of the Western Canada Sedimentary Basin comprises 18 stacked intervals from the base of the Devonian Woodbend Group and age equivalent formations to ground surface; it includes an estimated thickness of eroded sediments based on 1-D burial history reconstructions for 33 wells across the study area. Each interval for the construction of the 3-D model was chosen on the basis of whether it is primarily composed of petroleum system elements of reservoir, hydrocarbon source, seal, overburden, or underburden strata, as well as the quality and areal distribution of well and other data. Preliminary results of the modeling support the following interpretations. Long-distance migration of hydrocarbons east of the Rocky Mountains is indicated by oil and gas accumulations in areas within which source rocks are thermally immature for oil and (or) gas. Petroleum systems in the basin are segmented by the northeast-trending Sweetgrass Arch; hydrocarbons west of the arch were from source rocks lying near or beneath the Rocky Mountains, whereas oil and gas east of the arch were sourced from the Williston Basin. Hydrocarbon generation and migration are primarily due to increased burial associated with the Laramide Orogeny. Hydrocarbon sources and migration were also influenced by the Lower Cretaceous sub-Mannville unconformity. In the Peace River Arch area of northern Alberta, Jurassic and older formations exhibit high-angle truncations against the unconformity. Potential Paleozoic though Mesozoic hydrocarbon source rocks are in contact with overlying Mannville Group reservoir facies. In contrast, in Saskatchewan and southern Alberta the contacts are parallel to sub-parallel, with the result that hydrocarbon source rocks are separated from the Mannville Group by seal-forming strata within the Jurassic. Vertical and lateral movement of hydrocarbons along the faults in the Rocky Mountains deformed belt probably also resulted in mixing of oil and gas from numerous

  17. A 1-D radiative conductive model to study the SOIR/VEx thermal profiles

    NASA Astrophysics Data System (ADS)

    Mahieux, Arnaud; Erwin, Justin T.; Chamberlain, Sarah; Robert, Séverine; Carine Vandaele, Ann; Wilquet, Valérie; Thomas, Ian; Yelle, Roger V.; Bertaux, Jean-Loup

    2015-04-01

    SOIR is an infrared spectrometer on board Venus Express that probes the Venus terminator region since 2006. The measurements are taken on the morning and evening sides of the terminator, covering all latitudes from the North Pole to the South Pole. Its wavelength range - 2.2 to 4.3 μm - allows a detailed chemical inventory of the Venus atmosphere [1-5], such as CO2, CO, H2O, HCl, HF, SO2 and aerosols. CO2 is detected from 70 km up to 165 km, CO from 70 km to 140 km, and the minor species typically below 110 km down to 70 km. Number density profiles of these species are computed from the measured spectra. Temperature profiles are obtained while computing the spectral inversion of the CO2 spectra combined with the hydrostatic law [6]. These temperature measurements show a striking permanent temperature minimum (at 125 km) and a weaker temperature maximum (over 100-115 km). The time variability of the CO2 density profiles spans over two orders of magnitude, and a clear trend is seen with latitude. The temperature variations are also important, of the order of 35 K for a given pressure level, but the latitude variation are small. Miss-RT, a 1D radiative transfer model has been developed to reproduce the SOIR terminator profiles, derived from the Mars thermosphere code presented in [7]. This model has been expanded to better account for the CO2, CO, and O non-LTE radiative heating and cooling processes which have to be considered in the dense atmosphere of Venus. Radiative cooling by minor species detected by SOIR (e.g. HCl, SO2, and H2O) are found to be small in comparison to the 15 μm CO2 cooling. Aerosol cooling in the 60-90km altitude range may be important to the thermal balance. There is a good agreement between the 1D model temperature profile and the mean SOIR temperature profile. Further we can suggest parameters that can be adjusted to improve the agreement between the model and measurements. The remaining differences can be attributed to the atmosphere

  18. A standard satellite control reference model

    NASA Technical Reports Server (NTRS)

    Golden, Constance

    1994-01-01

    This paper describes a Satellite Control Reference Model that provides the basis for an approach to identify where standards would be beneficial in supporting space operations functions. The background and context for the development of the model and the approach are described. A process for using this reference model to trace top level interoperability directives to specific sets of engineering interface standards that must be implemented to meet these directives is discussed. Issues in developing a 'universal' reference model are also identified.

  19. Dynamical Models of SAURON and CALIFA Galaxies: 1D and 2D Rotational Curves

    NASA Astrophysics Data System (ADS)

    Kalinova, Veselina; van de Ven, G.; Lyubenova, M.; Falcon-Barroso, J.; van den Bosch, R.

    2013-01-01

    The mass of a galaxy is the most important parameter to understand its structure and evolution. The total mass we can infer by constructing dynamical models that fit the motion of the stars and gas in the galaxy. The dark matter content then follows after subtracting the luminous matter inferred from colors and/or spectra. Here, we present the mass distribution of a sample of 18 late-type spiral (Sb-Sd) galaxies, using two-dimensional stellar kinematics obtained with the integral-field spectrograph SAURON. The observed second order velocity moments of these galaxies are fitted with solutions of the Axisymmetric Jeans equations and give us an accurate estimation of the mass-to-light ratio profiles and rotational curves. The rotation curves of the galaxies are obtained by the Asymmetric Drift Correction (ADC) and Multi-Gaussian Expansion (MGE) methods, corresponding to one- and two-dimensional mass distribution. Their comparison shows that the mass distribution based on the 2D stellar kinematics is much more reliable than 1D one. SAURON integral field of view looks at the inner parts of the galaxies in contrast with CALIFA survey. CALIFA survey provides PMAS/PPAK integral-field spectroscopic data of ~ 600 nearby galaxies as part of the Calar Alto Legacy Integral Field Area. We show the first CALIFA dynamical models of different morphological type of galaxies, giving the clue about the mass distribution of galaxies through the whole Hubble sequence and their evolution from the blue cloud to the red sequence.

  20. Relationship between Pulmonary Airflow and Resistance in Patients with Airway Narrowing Using An 1-D Network Resistance and Compliance Model

    NASA Astrophysics Data System (ADS)

    Choi, Sanghun; Choi, Jiwoong; Hoffman, Eric; Lin, Ching-Long

    2016-11-01

    To predict the proper relationship between airway resistance and regional airflow, we proposed a novel 1-D network model for airway resistance and acinar compliance. First, we extracted 1-D skeletons at inspiration images, and generated 1-D trees of CT unresolved airways with a volume filling method. We used Horsfield order with random heterogeneity to create diameters of the generated 1-D trees. We employed a resistance model that accounts for kinetic energy and viscous dissipation (Model A). The resistance model is further coupled with a regional compliance model estimated from two static images (Model B). For validation, we applied both models to a healthy subject. The results showed that Model A failed to provide airflows consistent with air volume change, whereas Model B provided airflows consistent with air volume change. Since airflows shall be regionally consistent with air volume change in patients with normal airways, Model B was validated. Then, we applied Model B to severe asthmatic subjects. The results showed that regional airflows were significantly deviated from air volume change due to airway narrowing. This implies that airway resistance plays a major role in determining regional airflows of patients with airway narrowing. Support for this study was provided, in part, by NIH Grants U01 HL114494, R01 HL094315, R01 HL112986, and S10 RR022421.

  1. A 1-D model of the nonlinear dynamics of the human lumbar intervertebral disc

    NASA Astrophysics Data System (ADS)

    Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J.

    2017-01-01

    Lumped parameter models of the spine have been developed to investigate its response to whole body vibration. However, these models assume the behaviour of the intervertebral disc to be linear-elastic. Recently, the authors have reported on the nonlinear dynamic behaviour of the human lumbar intervertebral disc. This response was shown to be dependent on the applied preload and amplitude of the stimuli. However, the mechanical properties of a standard linear elastic model are not dependent on the current deformation state of the system. The aim of this study was therefore to develop a model that is able to describe the axial, nonlinear quasi-static response and to predict the nonlinear dynamic characteristics of the disc. The ability to adapt the model to an individual disc's response was a specific focus of the study, with model validation performed against prior experimental data. The influence of the numerical parameters used in the simulations was investigated. The developed model exhibited an axial quasi-static and dynamic response, which agreed well with the corresponding experiments. However, the model needs further improvement to capture additional peculiar characteristics of the system dynamics, such as the change of mean point of oscillation exhibited by the specimens when oscillating in the region of nonlinear resonance. Reference time steps were identified for specific integration scheme. The study has demonstrated that taking into account the nonlinear-elastic behaviour typical of the intervertebral disc results in a predicted system oscillation much closer to the physiological response than that provided by linear-elastic models. For dynamic analysis, the use of standard linear-elastic models should be avoided, or restricted to study cases where the amplitude of the stimuli is relatively small.

  2. Reducing the number of parameters in 1D arterial blood flow modeling: less is more for patient-specific simulations.

    PubMed

    Epstein, Sally; Willemet, Marie; Chowienczyk, Phil J; Alastruey, Jordi

    2015-07-01

    Patient-specific one-dimensional (1D) blood flow modeling requires estimating model parameters from available clinical data, ideally acquired noninvasively. The larger the number of arterial segments in a distributed 1D model, the greater the number of input parameters that need to be estimated. We investigated the effect of a reduction in the number of arterial segments in a given distributed 1D model on the shape of the simulated pressure and flow waveforms. This is achieved by systematically lumping peripheral 1D model branches into windkessel models that preserve the net resistance and total compliance of the original model. We applied our methodology to a model of the 55 larger systemic arteries in the human and to an extended 67-artery model that contains the digital arteries that perfuse the fingers. Results show good agreement in the shape of the aortic and digital waveforms between the original 55-artery (67-artery) and reduced 21-artery (37-artery) models. Reducing the number of segments also enables us to investigate the effect of arterial network topology (and hence reflection sites) on the shape of waveforms. Results show that wave reflections in the thoracic aorta and renal arteries play an important role in shaping the aortic pressure and flow waves and in generating the second peak of the digital pressure and flow waves. Our novel methodology is important to simplify the computational domain while maintaining the precision of the numerical predictions and to assess the effect of wave reflections.

  3. Reducing the number of parameters in 1D arterial blood flow modeling: less is more for patient-specific simulations

    PubMed Central

    Epstein, Sally; Willemet, Marie; Chowienczyk, Phil J.

    2015-01-01

    Patient-specific one-dimensional (1D) blood flow modeling requires estimating model parameters from available clinical data, ideally acquired noninvasively. The larger the number of arterial segments in a distributed 1D model, the greater the number of input parameters that need to be estimated. We investigated the effect of a reduction in the number of arterial segments in a given distributed 1D model on the shape of the simulated pressure and flow waveforms. This is achieved by systematically lumping peripheral 1D model branches into windkessel models that preserve the net resistance and total compliance of the original model. We applied our methodology to a model of the 55 larger systemic arteries in the human and to an extended 67-artery model that contains the digital arteries that perfuse the fingers. Results show good agreement in the shape of the aortic and digital waveforms between the original 55-artery (67-artery) and reduced 21-artery (37-artery) models. Reducing the number of segments also enables us to investigate the effect of arterial network topology (and hence reflection sites) on the shape of waveforms. Results show that wave reflections in the thoracic aorta and renal arteries play an important role in shaping the aortic pressure and flow waves and in generating the second peak of the digital pressure and flow waves. Our novel methodology is important to simplify the computational domain while maintaining the precision of the numerical predictions and to assess the effect of wave reflections. PMID:25888513

  4. Empirical Reference Models for COSPAR International Reference Atmosphere (CIRA)

    NASA Astrophysics Data System (ADS)

    Drob, Douglas; Emmert, John; Picone, Michael

    Openly distributed atmospheric reference models are an essential tool for scientific research and operational activities. To meet the needs of all users, such models must utilize rigorous statistical methods and the most comprehensive and reliable data sets in their development. Two such models that meet these requirements are the Naval Research Laboratory, Mass Spectrometer Incoherent Scatter Extended (NRLMSISE-00) and Horizontal Wind Model (HWM-93) empirical reference models. The NRLMSISE-00 model and its predecessors are based on 35 years of empirical modeling experience and over 40 years of research measurements. These global models are well documented and extend from the ground to the exosphere, providing estimates of neutral temperature, density, and major neutral species composition as a function of geographic location, day of year, time of day, and geomagnetic and solar activity conditions. Relative to the most comprehensive span of datasets available these models have the smallest bias and root mean square deviations of any climatological reference model built to date, although there are a few limitations in the 80 to 120 km region. The less advanced HWM-93 model, based on the same statistical methodologies and general mathematical formulation of the NRLMSISE-00 model, provides climatological estimates of the horizontal wind fields over the same variables and range of conditions as the NRLMSISE-00 model. The availability of several new long term data sets, including satellite wind measurements from the WINDII instrument onboard the UARS satellite, as well as ground-based optical Fabery-Perot measurements, provide the opportunity to make significant refinements to the existing model. Initial results from an improved HWM will be shown for altitudes between 100 and 500 km. Improvement in the model's ability to represent the seasonal changes, solar forcing, geomagnetic forcing, diurnal variation, and vertical structure of horizontal winds of the region is

  5. Development of a 1D canopy module to couple mesoscale meteorogical model with building energy model

    NASA Astrophysics Data System (ADS)

    Mauree, Dasaraden; Kohler, Manon; Blond, Nadège; Clappier, Alain

    2013-04-01

    The actual global warming, highlighted by the scientific community, is due to the greenhouse gases emissions resulting from our energy consumption. This energy is mainly produced in cities (about 70% of the total energy use). Around 36% of this energy are used in buildings (residential/tertiary) and this accounts for about 20% of the greenhouse gases emissions. Moreover, the world population is more and more concentrated in urban areas, 50% of the actual world population already lives in cities and this ratio is expected to reach 70% by 2050. With the obviously increasing responsibility of cities in climate change in the future, it is of great importance to go toward more sustainable cities that would reduce the energy consumption in urban areas. The energy use inside buildings is driven by two factors: (1) the level of comfort wished by the inhabitants and (2) the urban climate. On the other hand, the urban climate is influenced by the presence of buildings. Indeed, artificial surfaces of urban areas modify the energy budget of the Earth's surface and furthermore, heat is released into the atmosphere due to the energy used by buildings. Modifications at the building scale (micro-scale) can thus have an influence on the climate of the urban areas and surroundings (meso-scale), and vice and versa. During the last decades, meso-scale models have been developed to simulate the atmospheric conditions for domain of 100-1000km wide with a resolution of few kilometers. Due to their low resolution, the effects of small obstacles (such as buildings, trees, ...) near the ground are not reproduced properly and parameterizations have been developed to represent such effects in meso-scale models. On the other side, micro-scale models have a higher resolution (around 1 meter) and consequently can better simulate the impact of obstacles on the atmospheric heat flux exchanges with the earth surface. However, only a smaller domain (less than 1km) can be simulated for the same

  6. Diesel Engine performance improvement in a 1-D engine model using Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Karra, Prashanth

    2015-12-01

    A particle swarm optimization (PSO) technique was implemented to improve the engine development and optimization process to simultaneously reduce emissions and improve the fuel efficiency. The optimization was performed on a 4-stroke 4-cylinder GT-Power based 1-D diesel engine model. To achieve the multi-objective optimization, a merit function was defined which included the parameters to be optimized: Nitrogen Oxides (NOx), Nonmethyl hydro carbons (NMHC), Carbon Monoxide (CO), Brake Specific Fuel Consumption (BSFC). EPA Tier 3 emissions standards for non-road diesel engines between 37 and 75 kW of output were chosen as targets for the optimization. The combustion parameters analyzed in this study include: Start of main Injection, Start of Pilot Injection, Pilot fuel quantity, Swirl, and Tumble. The PSO was found to be very effective in quickly arriving at a solution that met the target criteria as defined in the merit function. The optimization took around 40-50 runs to find the most favourable engine operating condition under the constraints specified in the optimization. In a favourable case with a high merit function values, the NOx+NMHC and CO values were reduced to as low as 2.9 and 0.014 g/kWh, respectively. The operating conditions at this point were: 10 ATDC Main SOI, -25 ATDC Pilot SOI, 0.25 mg of pilot fuel, 0.45 Swirl and 0.85 tumble. These results indicate that late main injections preceded by a close, small pilot injection are most favourable conditions at the operating condition tested.

  7. 1D fluid model of the dielectric barrier discharge in chlorine

    NASA Astrophysics Data System (ADS)

    Avtaeva, Svetlana

    2016-09-01

    The 1D fluid model of the dielectric barrier discharge (DBD) in pure chlorine is developed. The discharge is excited in 8 mm gas gap between quartz dielectric layers of 2 mm thickness covered metallic electrodes. The source voltage US =U0 sin ωt with a frequency 100 kHz and amplitude 8 kV is applied to the electrodes. Chlorine pressure is varied from 15 to 100 Torr. At pressure of 15 Torr a breakdown appears with voltage drop across the discharge gap about 1 kV whereas at 100 Torr it appears with voltage drop about 2 kV. After the first current spike some lower current spikes are observes with chlorine pressure of 100 Torr and large in number current spikes of about identical magnitude are observed with the pressure of 15 Torr. The maximal current density at all pressures reaches about 4 mA/cm.2Total density of surface charge deposited on the electrodes during a half-cycle decreases with chlorine pressure because duration of the current spike discharge phase reduces with chlorine pressure. The average power density inputted in the discharge is 2.5-5.8 W/cm3 per a cycle. The Cl2 plasma is electronegative, the most abundant ions are Cl2+and Cl-. It is shown, that ions get about 95% of the discharge power as electrons get about 5% of the discharge power. 67-97% of the electron power is spending for dissociation and ionization of Cl2 molecules. Emission of Cl* atoms and Cl2*molecules is weak.

  8. Testing the early Mars H2-CO2 greenhouse hypothesis with a 1-D photochemical model

    NASA Astrophysics Data System (ADS)

    Batalha, Natasha; Domagal-Goldman, Shawn D.; Ramirez, Ramses; Kasting, James F.

    2015-09-01

    A recent study by Ramirez et al. (Ramirez, R.M. et al. [2014]. Nat. Geosci. 7(1), 59-63. http://www.nature.com/doifinder/10.1038/ngeo2000 (accessed 16.09.14)) demonstrated that an atmosphere with 1.3-4 bar of CO2 and H2O, in addition to 5-20% H2, could have raised the mean annual and global surface temperature of early Mars above the freezing point of water. Such warm temperatures appear necessary to generate the rainfall (or snowfall) amounts required to carve the ancient martian valleys. Here, we use our best estimates for early martian outgassing rates, along with a 1-D photochemical model, to assess the conversion efficiency of CO, CH4, and H2S to CO2, SO2, and H2. Our outgassing estimates assume that Mars was actively recycling volatiles between its crust and interior, as Earth does today. H2 production from serpentinization and deposition of banded iron-formations is also considered. Under these assumptions, maintaining an H2 concentration of ˜1-2% by volume is achievable, but reaching 5% H2 requires additional H2 sources or a slowing of the hydrogen escape rate below the diffusion limit. If the early martian atmosphere was indeed H2-rich, we might be able to see evidence of this in the rock record. The hypothesis proposed here is consistent with new data from the Curiosity Rover, which show evidence for a long-lived lake in Gale Crater near Mt. Sharp. It is also consistent with measured oxygen fugacities of martian meteorites, which show evidence for progressive mantle oxidation over time.

  9. Impact of Mars Water Ice Clouds and Thermal Aerosol Enforcement to the Shortscale Climate Dynamics: Evidence from 1-D Model

    NASA Astrophysics Data System (ADS)

    Rodin, A. V.; Clancy, R. T.; Wilson, R. J.; Richardson, M.; Wolff, M.; Woods, S.

    1997-07-01

    Ground-based observations of Mars atmospheric temperatures, water, and aerosols have suggested that water ice clouds may regulate vertical distribution of dust and, hence, the global radiation balance, with strong seasonal forcing (Clancy et al., 1996). Under specific Martian conditions, condensation of atmospheric water occurs on the dust as Aitken cores, without external sources, dust is efficiently confined below the saturation level of water vapor. This in turn forces the thermal regime and the saturation conditions, particularly around the aphelion northern summer (Clancy et al., 1996). This effect is studied with two 1-D models, a time marching simulation (time step is 4 min), and reduced local steady-state model. Both models treat aerosol particle microphysics, turbulent transport and thermal enforcement interactively, including radiation transfer consistent with derived aerosol vertical and size distributions. Simulations show that in the aphelion season, when clouds are formed below or near 10 km, strong nonlinearity of cloud thermal feedback results in nonuniqueness of a steady-state solution with water vapor saturation level varying by as high as 5-7 km. Such model behavior appears related to observations of rapid variations of a global-average, lower atmosphere temperature over the planet in northern summer (Clancy, 1997). The stability of thermal equilibrium state is controlled by water vapor abundance and the strength of the dust source at the surface. Time marching simulations provide access to the dynamics of seasonal global dust storm relaxation that may play an important role in interannual climate variations on Mars. References: Clancy, R.T., A.W. Grossman, M.J. Wolff, P.B. James, Y.N. Billawala, B.J. Sandor, S.W. Lee, and D.J. Rudy. Water vapor saturation at low altitudes around Mars aphelion: A key to Mars climate? Icarus, 122, 36-62, 1996.

  10. A 1-D modelling of climatic and chemical effects of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Vupputuri, R. K. R.; Higuchi, K.; Hengeveld, H. G.

    1995-09-01

    A coupled 1-D time-dependent radiative-convective-photochemical diffusion model which extends from the surface to 60 km is used to investigate the potential impact of greenhouse trace gas emissions on long-term changes in global climate, atmospheric ozone and surface UV-B radiation, taking into accoont the influence of aerosol loading into the atmosphere from major volcanic eruptions, of thermal inertia of the upper mixed layer of the ocean and of other radiativephotochemical feedback mechanisms. Experiments are carried out under global and annual average insolation and cloudiness conditions. The transient calculations are made for three different growth scenarios for increase in trace gas concentrations. Scenario 1, which begins in 1850, uses the best estimate values for future trace gas concentrations of CO2, CH4, N2O, CFC-11, CFC-12 and tropospheric O3, based on current observational trends. Scenarios 2 and 3, which begin in 1990, assume lower and upper ranges, respectively, of observed growth rates to estimate future concentrations. The transient response of the model for Scenario 1 suggests that surface warming of the ocean mixed layer of about 1 K should have taken place between 1850 and 1990 due to a combined increase of atmospheric CO2 and other trace gases. For the three scenarios considered in this study, the cumulative surface warming induced by all major trace gases for the period 1850 to 2080 ranges from 2.7 K to 8.2 K with the best estimate value of 5 K. The results indicate that the direct and the indirect chemistry-climate interactions of non-CO2 trace gases contribute significantly to the cumulative surface warming (up to 65% by the year 2080). The thermal inertia of a mixed layer of the ocean is shown to have the effect of delaying equilibrium surface warming by almost three decades with an e-folding time of about 5 years. The volcanic aerosols which would result from major volcanic eruptions play a significant role by interrupting the long

  11. SAM Photovoltaic Model Technical Reference

    SciTech Connect

    Gilman, P.

    2015-05-27

    This manual describes the photovoltaic performance model in the System Advisor Model (SAM). The U.S. Department of Energy’s National Renewable Energy Laboratory maintains and distributes SAM, which is available as a free download from https://sam.nrel.gov. These descriptions are based on SAM 2015.1.30 (SSC 41).

  12. 1D Runoff-runon stochastic model in the light of queueing theory : heterogeneity and connectivity

    NASA Astrophysics Data System (ADS)

    Harel, M.-A.; Mouche, E.; Ledoux, E.

    2012-04-01

    Runoff production on a hillslope during a rainfall event may be simplified as follows. Given a soil of constant infiltrability I, which is the maximum amount of water that the soil can infiltrate, and a constant rainfall intensity R, runoff is observed where R is greater than I. The infiltration rate equals the infiltrability when runoff is produced, R otherwise. When ponding time, topography, and overall spatial and temporal variations of physical parameters, such as R and I, are neglected, the runoff equation remains simple. In this study, we consider soils of spatially variable infiltrability. As runoff can re-infiltrate on down-slope areas of higher infiltrabilities (runon), the resulting process is highly non-linear. The stationary runoff equation is: Qn+1 = max(Qn + (R - In)*Δx , 0) where Qn is the runoff arriving on pixel n of size Δx [L2/T], R and In the rainfall intensity and infiltrability on that same pixel [L/T]. The non-linearity is due to the dependence of infiltration on R and Qn, that is runon. This re-infiltration process generates patterns of runoff along the slope, patterns that organise and connect to each other differently depending on the rainfall intensity and the nature of the soil heterogeneity. The runoff connectivity, assessed using the connectivity function of Allard (1993), affects greatly the dynamics of the runoff hillslope. Our aim is to assess, in a stochastic framework, the runoff organization on 1D slopes with random infiltrabilities (log-normal, exponential, bimodal and uniform distributions) by means of theoretical developments and numerical simulations. This means linking the nature of soil heterogeneity with the resulting runoff organisation. In term of connectivity, we investigate the relations between structural (infiltrability) and functional (runoff) connectivity. A theoretical framework based on the queueing theory is developed. We implement the idea of Jones et al. (2009), who remarked that the above formulation is

  13. Reference Inflow Characterization for River Resource Reference Model (RM2)

    SciTech Connect

    Neary, Vincent S

    2011-12-01

    Sandia National Laboratory (SNL) is leading an effort to develop reference models for marine and hydrokinetic technologies and wave and current energy resources. This effort will allow the refinement of technology design tools, accurate estimates of a baseline levelized cost of energy (LCoE), and the identification of the main cost drivers that need to be addressed to achieve a competitive LCoE. As part of this effort, Oak Ridge National Laboratory was charged with examining and reporting reference river inflow characteristics for reference model 2 (RM2). Published turbulent flow data from large rivers, a water supply canal and laboratory flumes, are reviewed to determine the range of velocities, turbulence intensities and turbulent stresses acting on hydrokinetic technologies, and also to evaluate the validity of classical models that describe the depth variation of the time-mean velocity and turbulent normal Reynolds stresses. The classical models are found to generally perform well in describing river inflow characteristics. A potential challenge in river inflow characterization, however, is the high variability of depth and flow over the design life of a hydrokinetic device. This variation can have significant effects on the inflow mean velocity and turbulence intensity experienced by stationary and bottom mounted hydrokinetic energy conversion devices, which requires further investigation, but are expected to have minimal effects on surface mounted devices like the vertical axis turbine device designed for RM2. A simple methodology for obtaining an approximate inflow characterization for surface deployed devices is developed using the relation umax=(7/6)V where V is the bulk velocity and umax is assumed to be the near-surface velocity. The application of this expression is recommended for deriving the local inflow velocity acting on the energy extraction planes of the RM2 vertical axis rotors, where V=Q/A can be calculated given a USGS gage flow time

  14. 1-D seismic velocity model and hypocenter relocation using double difference method around West Papua region

    SciTech Connect

    Sabtaji, Agung E-mail: agung.sabtaji@bmkg.go.id; Nugraha, Andri Dian

    2015-04-24

    West Papua region has fairly high of seismicity activities due to tectonic setting and many inland faults. In addition, the region has a unique and complex tectonic conditions and this situation lead to high potency of seismic hazard in the region. The precise earthquake hypocenter location is very important, which could provide high quality of earthquake parameter information and the subsurface structure in this region to the society. We conducted 1-D P-wave velocity using earthquake data catalog from BMKG for April, 2009 up to March, 2014 around West Papua region. The obtained 1-D seismic velocity then was used as input for improving hypocenter location using double-difference method. The relocated hypocenter location shows fairly clearly the pattern of intraslab earthquake beneath New Guinea Trench (NGT). The relocated hypocenters related to the inland fault are also observed more focus in location around the fault.

  15. A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber

    SciTech Connect

    Lee, Andrew; Miller, David C.

    2012-01-01

    A general one-dimensional (1-D), three-region model for a bubbling fluidized-bed adsorber with internal heat exchangers has been developed. The model can predict the hydrodynamics of the bed and provides axial profiles for all temperatures, concentrations, and velocities. The model is computationally fast and flexible and allows for any system of adsorption and desorption reactions to be modeled, making the model applicable to any adsorption process. The model has been implemented in both gPROMS and Aspen Custom Modeler, and the behavior of the model has been verified.

  16. On Fractional Model Reference Adaptive Control

    PubMed Central

    Shi, Bao; Dong, Chao

    2014-01-01

    This paper extends the conventional Model Reference Adaptive Control systems to fractional ones based on the theory of fractional calculus. A control law and an incommensurate fractional adaptation law are designed for the fractional plant and the fractional reference model. The stability and tracking convergence are analyzed using the frequency distributed fractional integrator model and Lyapunov theory. Moreover, numerical simulations of both linear and nonlinear systems are performed to exhibit the viability and effectiveness of the proposed methodology. PMID:24574897

  17. Glut1 deficiency (G1D): Epilepsy and metabolic dysfunction in a mouse model of the most common human phenotype

    PubMed Central

    Marin-Valencia, Isaac; Good, Levi B.; Ma, Qian; Duarte, Joao; Bottiglieri, Teodoro; Sinton, Christopher M.; Heilig, Charles W.; Pascual, Juan M.

    2012-01-01

    Brain glucose supplies most of the carbon required for acetyl-coenzyme A (acetyl-CoA) generation (an important step for myelin synthesis) and for neurotransmitter production via further metabolism of acetyl-CoA in the tricarboxylic acid (TCA) cycle. However, it is not known whether reduced brain glucose transporter type I (GLUT-1) activity, the hallmark of the GLUT-1 deficiency (G1D) syndrome, leads to acetyl-CoA, TCA or neurotransmitter depletion. This question is relevant because, in its most common form in man, G1D is associated with cerebral hypomyelination (manifested as microcephaly) and epilepsy, suggestive of acetyl-CoA depletion and neurotransmitter dysfunction, respectively. Yet, brain metabolism in G1D remains underexplored both theoretically and experimentally, partly because computational models of limited brain glucose transport are subordinate to metabolic assumptions and partly because current hemizygous G1D mouse models manifest a mild phenotype not easily amenable to investigation. In contrast, adult antisense G1D mice replicate the human phenotype of spontaneous epilepsy associated with robust thalamocortical electrical oscillations. Additionally, and in consonance with human metabolic imaging observations, thalamus and cerebral cortex display the lowest GLUT-1 expression and glucose uptake in the mutant mouse. This depletion of brain glucose is associated with diminished plasma fatty acids and elevated ketone body levels, and with decreased brain acetyl-CoA and fatty acid contents, consistent with brain ketone body consumption and with stimulation of brain beta-oxidation and/or diminished cerebral lipid synthesis. In contrast with other epilepsies, astrocyte glutamine synthetase expression, cerebral TCA cycle intermediates, amino acid and amine neurotransmitter contents are also intact in G1D. The data suggest that the TCA cycle is preserved in G1D because reduced glycolysis and acetyl-CoA formation can be balanced by enhanced ketone body

  18. Mg line formation in late-type stellar atmospheres. II. Calculations in a grid of 1D models

    NASA Astrophysics Data System (ADS)

    Osorio, Y.; Barklem, P. S.

    2016-02-01

    Context. Mg is the α element of choice for Galactic population and chemical evolution studies because it is easily detectable in all late-type stars. Such studies require precise elemental abundances, and thus departures from local thermodynamic equilibrium (LTE) need to be accounted for. Aims: Our goal is to provide reliable departure coefficients and equivalent widths in non-LTE, and for reference in LTE, for diagnostic lines of Mg studied in late-type stars. These can be used, for example, to correct LTE spectra and abundances. Methods: Using the model atom built and tested in the preceding paper in this series, we performed non-LTE radiative transfer calculations in a grid of 3945 stellar 1D atmospheric models. We used a sub-grid of 86 models to explore the propagation of errors in the recent atomic collision calculations to the radiative transfer results. Results: We obtained departure coefficients for all the levels and equivalent widths (in LTE and non-LTE) for all the radiative transitions included in the "final" model atom presented in Paper I. Here we present and describe our results and show some examples of applications of the data. The errors that result from uncertainties in the collisional data are investigated and tabulated. The results for equivalent widths and departure coefficients are made freely available. Conclusions: Giants tend to have negative abundance corrections while dwarfs have positive, though small, corrections. Error analysis results show that uncertainties related to the atomic collision data are typically on the order of 0.01 dex or less, although for few stellar models in specific lines uncertainties can be as large as 0.03 dex. As these errors are less than or on the same order as typical corrections, we expect that we can use these results to extract Mg abundances from high-quality spectra more reliably than from classical LTE analysis. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130

  19. An evaluation of 1D loss model collections for the off-design performance prediction of automotive turbocharger compressors

    NASA Astrophysics Data System (ADS)

    Harley, P.; Spence, S.; Early, J.; Filsinger, D.; Dietrich, M.

    2013-12-01

    Single-zone modelling is used to assess different collections of impeller 1D loss models. Three collections of loss models have been identified in literature, and the background to each of these collections is discussed. Each collection is evaluated using three modern automotive turbocharger style centrifugal compressors; comparisons of performance for each of the collections are made. An empirical data set taken from standard hot gas stand tests for each turbocharger is used as a baseline for comparison. Compressor range is predicted in this study; impeller diffusion ratio is shown to be a useful method of predicting compressor surge in 1D, and choke is predicted using basic compressible flow theory. The compressor designer can use this as a guide to identify the most compatible collection of losses for turbocharger compressor design applications. The analysis indicates the most appropriate collection for the design of automotive turbocharger centrifugal compressors.

  20. Improved reference models for middle atmosphere ozone

    NASA Astrophysics Data System (ADS)

    Keating, G. M.; Pitts, M. C.; Chen, C.

    This paper describes the improvements introduced into the original version of ozone reference model of Keating and Young (1985, 1987) which is to be incorporated in the next COSPAR International Reference Atmosphere (CIRA). The ozone reference model will provide information on the global ozone distribution (including the ozone vertical structure as a function of month and latitude from 25 to 90 km) combining data from five recent satellite experiments: the Nimbus 7 LIMS, Nimbus 7 SBUV, AE-2 Stratospheric Aerosol Gas Experiment (SAGE), Solar Mesosphere Explorer (SME) UV Spectrometer, and SME 1.27 Micron Airglow. The improved version of the reference model uses reprocessed AE-2 SAGE data (sunset) and extends the use of SAGE data from 1981 to the 1981-1983 time period. Comparisons are presented between the results of this ozone model and various nonsatellite measurements at different levels in the middle atmosphere.

  1. Adaptive Control with Reference Model Modification

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje

    2012-01-01

    This paper presents a modification of the conventional model reference adaptive control (MRAC) architecture in order to improve transient performance of the input and output signals of uncertain systems. A simple modification of the reference model is proposed by feeding back the tracking error signal. It is shown that the proposed approach guarantees tracking of the given reference command and the reference control signal (one that would be designed if the system were known) not only asymptotically but also in transient. Moreover, it prevents generation of high frequency oscillations, which are unavoidable in conventional MRAC systems for large adaptation rates. The provided design guideline makes it possible to track a reference commands of any magnitude from any initial position without re-tuning. The benefits of the method are demonstrated with a simulation example

  2. A 1D model for tides waves and fine sediment in short tidal basins—Application to the Wadden Sea

    NASA Astrophysics Data System (ADS)

    van Prooijen, Bram Christiaan; Wang, Zheng Bing

    2013-12-01

    In order to simulate the dynamics of fine sediments in short tidal basins, like the Wadden Sea basins, a 1D cross-sectional averaged model is constructed to simulate tidal flow, depth-limited waves, and fine sediment transport. The key for this 1D model lies in the definition of the geometry (width and depth as function of the streamwise coordinate). The geometry is computed by implementing the water level and flow data, from a 2D flow simulation, and the hypsometric curve in the continuity equation. By means of a finite volume method, the shallow-water equations and sediment transport equations are solved. The bed shear stress consists of the sum of shear stresses by waves and flow, in which the waves are computed with a depth-limited growth equation for wave height and wave frequency. A new formulation for erosion of fines from a sandy bed is proposed in the transport equation for fine sediment. It is shown by comparison with 2D simulations and field measurements that a 1D schematization gives a proper representation of the dynamics in short tidal basins.

  3. A fast hybrid (3-D/1-D) model for thermal radiative transfer in cirrus via successive orders of scattering

    NASA Astrophysics Data System (ADS)

    Fauchez, Thomas; Davis, Anthony B.; Cornet, Céline; Szczap, Fredéric; Platnick, Steven; Dubuisson, Philippe; Thieuleux, François

    2017-01-01

    We investigate the impact of cirrus cloud heterogeneity on the direct emission by cloud or surface and on the scattering by ice particles in the thermal infrared (TIR). Realistic 3-D cirri are modeled with the 3DCLOUD code, and top-of-atmosphere radiances are simulated by the 3-D Monte Carlo radiative transfer (RT) algorithm 3DMCPOL for two (8.65 μm and 12.05 μm) channels of the Imaging Infrared Radiometer on CALIPSO. At nadir, comparisons of 1-D and 3-D RT show that 3-D radiances are larger than their 1-D counterparts for direct emission but smaller for scattered radiation. For our cirrus cases, 99% of the 3-D total radiance is computed by the third scattering order, which corresponds to 90% of the total computational effort, but larger optical thicknesses need more scattering orders. To radically accelerate the 3-D RT computations (using only few percent of 3-D RT time with a Monte Carlo code), even in the presence of large optical depths, we develop a hybrid model based on exact 3-D direct emission, the first scattering order from 1-D in each homogenized column, and an empirical adjustment linearly dependent on the optical thickness to account for higher scattering orders. Good agreement is found between the hybrid model and the exact 3-D radiances for two very different cirrus models without changing the empirical parameters. We anticipate that a future deterministic implementation of the hybrid model will be fast enough to process multiangle thermal imagery in a practical tomographic reconstruction of 3-D cirrus fields.

  4. A Fast Hybrid (3-D/1-D) Model for Thermal Radiative Transfer in Cirrus via Successive Orders of Scattering

    NASA Technical Reports Server (NTRS)

    Fauchez, Thomas; Davis, Anthony B.; Cornet, Celine; Szczap, Frederic; Platnick, Steven; Dubuisson, Philippe; Thieuleux, Francois

    2017-01-01

    We investigate the impact of cirrus cloud heterogeneity on the direct emission by cloud or surface and on the scattering by ice particles in the thermal infrared (TIR). Realistic 3-D cirri are modeled with the 3DCLOUD code, and top-of-atmosphere radiances are simulated by the 3-D Monte Carlo radiative transfer (RT) algorithm 3DMCPOL for two (8.65 micrometers and 12.05 micrometers) channels of the Imaging Infrared Radiometer on CALIPSO. At nadir, comparisons of 1-D and 3-D RT show that 3-D radiances are larger than their 1-D counterparts for direct emission but smaller for scattered radiation. For our cirrus cases, 99% of the 3-D total radiance is computed by the third scattering order, which corresponds to 90% of the total computational effort, but larger optical thicknesses need more scattering orders. To radically accelerate the 3-D RT computations (using only few percent of 3-D RT time with a Monte Carlo code), even in the presence of large optical depths, we develop a hybrid model based on exact 3-D direct emission, the first scattering order from 1-D in each homogenized column, and an empirical adjustment linearly dependent on the optical thickness to account for higher scattering orders. Good agreement is found between the hybrid model and the exact 3-D radiances for two very different cirrus models without changing the empirical parameters. We anticipate that a future deterministic implementation of the hybrid model will be fast enough to process multiangle thermal imagery in a practical tomographic reconstruction of 3-D cirrus fields.

  5. 1-D and 2-D resonances in an Alpine valley identified from ambient noise measurements and 3-D modelling

    NASA Astrophysics Data System (ADS)

    Le Roux, Olivier; Cornou, Cécile; Jongmans, Denis; Schwartz, Stéphane

    2012-09-01

    H/V spectral ratios are regularly used for estimating the bedrock depth in 1-D like basins exhibiting smooth lateral variations. In the case of 2-D or 3-D pronounced geometries, observational and numerical studies have shown that H/V curves exhibit peculiar shapes and that the H/V frequency generally overestimates 1-D theoretical resonance frequency. To investigate the capabilities of the H/V method in complex structures, a detailed comparison between measured and 3-D-simulated ambient vibrations was performed in the small-size lower Romanche valley (French Alps), which shows significant variations in geometry, downstream and upstream the Séchilienne basin. Analysing the H/V curve characteristics, two different wave propagation modes were identified along the valley. Relying on previous geophysical investigation, a power-law relationship was derived between the bedrock depth and the H/V peak frequency, which was used for building a 3-D model of the valley geometry. Simulated and experimental H/V curves were found to exhibit quite similar features in terms of curve shape and peak frequency values, validating the 3-D structure. This good agreement also evidenced two different propagation modes in the valley: 2-D resonance in the Séchilienne basin and 1-D resonance in the external parts. This study underlines the interest of H/V curves for investigating complex basin structures.

  6. Predictor-Based Model Reference Adaptive Control

    NASA Technical Reports Server (NTRS)

    Lavretsky, Eugene; Gadient, Ross; Gregory, Irene M.

    2009-01-01

    This paper is devoted to robust, Predictor-based Model Reference Adaptive Control (PMRAC) design. The proposed adaptive system is compared with the now-classical Model Reference Adaptive Control (MRAC) architecture. Simulation examples are presented. Numerical evidence indicates that the proposed PMRAC tracking architecture has better than MRAC transient characteristics. In this paper, we presented a state-predictor based direct adaptive tracking design methodology for multi-input dynamical systems, with partially known dynamics. Efficiency of the design was demonstrated using short period dynamics of an aircraft. Formal proof of the reported PMRAC benefits constitute future research and will be reported elsewhere.

  7. Space-based observational constraints for 1-D fire smoke plume-rise models

    NASA Astrophysics Data System (ADS)

    Val Martin, Maria; Kahn, Ralph A.; Logan, Jennifer A.; Paugam, Ronan; Wooster, Martin; Ichoku, Charles

    2012-11-01

    We use a plume height climatology derived from space-based Multiangle Imaging Spectroradiometer (MISR) observations to evaluate the performance of a widely used plume-rise model. We initialize the model with assimilated meteorological fields from the NASA Goddard Earth Observing System and estimated fuel moisture content at the location and time of the MISR measurements. Fire properties that drive the plume-rise model are difficult to constrain, and we test the model with four estimates each of active fire area and total heat flux, obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) fire radiative power (FRP) thermal anomalies available for each MISR plume and other empirical data. We demonstrate the degree to which the fire dynamical heat flux (related to active fire area and sensible heat flux) and atmospheric stability structure influence plume rise, although entrainment and possibly other less well constrained factors are also likely to be significant. Using atmospheric stability conditions, MODIS FRP, and MISR plume heights, we find that smoke plumes reaching high altitudes are characterized by higher FRP and weaker atmospheric stability conditions than those at low altitude, which tend to remain confined below the boundary layer, consistent with earlier results. However, over the diversity of conditions studied, the model simulations generally underestimate the plume height dynamic range observed by MISR and do not reliably identify plumes injected into the free troposphere, key information needed for atmospheric models to simulate smoke dispersion. We conclude that embedding in large-scale atmospheric studies an advanced plume-rise model using currently available fire constraints remains a difficult proposition, and we propose a simplified model that crudely constrains plume injection height based on two main physical factors for which some observational constraints often exist. Field experiments aimed at directly measuring fire and smoke

  8. Storm Water Management Model Reference Manual Volume ...

    EPA Pesticide Factsheets

    SWMM is a dynamic rainfall-runoff simulation model used for single event or long-term (continuous) simulation of runoff quantity and quality from primarily urban areas. The runoff component of SWMM operates on a collection of subcatchment areas that receive precipitation and generate runoff and pollutant loads. The routing portion of SWMM transports this runoff through a system of pipes, channels, storage/treatment devices, pumps, and regulators. SWMM tracks the quantity and quality of runoff generated within each subcatchment, and the flow rate, flow depth, and quality of water in each pipe and channel during a simulation period comprised of multiple time steps. The reference manual for this edition of SWMM is comprised of three volumes. Volume I describes SWMM’s hydrologic models, Volume II its hydraulic models, and Volume III its water quality and low impact development models. Reference manual presenting underlying mathematics of the Storm Water Management Model - Volume III Water Quality Modules

  9. Bottom Roughness and Bathymetry Estimation of 1-D Shallow Water Equations Model Using Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Hooshyar, M.; Hagen, S. C.; Wang, D.

    2014-12-01

    Hydrodynamic models are widely applied to coastal areas in order to predict water levels and flood inundation and typically involve solving a form of the Shallow Water Equations (SWE). The SWE are routinely discretized by applying numerical methods, such as the finite element method. Like other numerical models, hydrodynamic models include uncertainty. Uncertainties are generated due to errors in the discrete approximation of coastal geometry, bathymetry, bottom friction and forcing functions such as tides and wind fields. Methods to counteract these uncertainties should always begin with improvements to physical characterization of: the geometric description through increased resolution, parameters that describe land cover variations in the natural and urban environment, parameters that enhance transfer of surface forcings to the water surface, open boundary forcings, and the wetting/drying brought upon by flood and ebb cycles. When the best possible physical representation is achieved, we are left with calibration and data assimilation to reduce model uncertainty. Data assimilation has been applied to coastal hydrodynamic models to better estimate system states and/or system parameters by incorporating observed data into the model. Kalman Filter is one of the most studied data assimilation methods that minimizes the mean square errors between model state estimations and the observed data in linear systems (Kalman , 1960). For nonlinear systems, as with hydrodynamic models, a variation of Kalman filter called Ensemble Kalman Filter (EnKF), is applied to update the system state according to error statistics in the context of Monte Carlo simulations (Evensen , 2003) & (Hitoshi et. al, 2014). In this research, Kalman Filter is incorporated to simultaneously estimate an influential parameter used in the shallow water equations, bottom roughness, and to adjust the physical feature of bathymetry. Starting from an initial estimate of bottom roughness and bathymetry, and

  10. Space-based Observational Constraints for 1-D Plume Rise Models

    NASA Technical Reports Server (NTRS)

    Martin, Maria Val; Kahn, Ralph A.; Logan, Jennifer A.; Paguam, Ronan; Wooster, Martin; Ichoku, Charles

    2012-01-01

    We use a space-based plume height climatology derived from observations made by the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard the NASA Terra satellite to evaluate the ability of a plume-rise model currently embedded in several atmospheric chemical transport models (CTMs) to produce accurate smoke injection heights. We initialize the plume-rise model with assimilated meteorological fields from the NASA Goddard Earth Observing System and estimated fuel moisture content at the location and time of the MISR measurements. Fire properties that drive the plume-rise model are difficult to estimate and we test the model with four estimates for active fire area and four for total heat flux, obtained using empirical data and Moderate Resolution Imaging Spectroradiometer (MODIS) re radiative power (FRP) thermal anomalies available for each MISR plume. We show that the model is not able to reproduce the plume heights observed by MISR over the range of conditions studied (maximum r2 obtained in all configurations is 0.3). The model also fails to determine which plumes are in the free troposphere (according to MISR), key information needed for atmospheric models to simulate properly smoke dispersion. We conclude that embedding a plume-rise model using currently available re constraints in large-scale atmospheric studies remains a difficult proposition. However, we demonstrate the degree to which the fire dynamical heat flux (related to active fire area and sensible heat flux), and atmospheric stability structure influence plume rise, although other factors less well constrained (e.g., entrainment) may also be significant. Using atmospheric stability conditions, MODIS FRP, and MISR plume heights, we offer some constraints on the main physical factors that drive smoke plume rise. We find that smoke plumes reaching high altitudes are characterized by higher FRP and weaker atmospheric stability conditions than those at low altitude, which tend to remain confined

  11. Impact of sea spray on upper ocean temperature during typhoon passage: simulation with a 1-D turbulent model

    NASA Astrophysics Data System (ADS)

    Zhang, Lianxin; Zhang, Xuefeng; Han, Guijun; Wu, Xinrong; Cui, Xiaojian; Shao, Caixia; Sun, Chunjian; Zhang, Xiaoshuang; Wang, Xidong; Fu, Hongli

    2015-09-01

    At the interface between the lower atmosphere and sea surface, sea spray might significantly influence air-sea heat fluxes and subsequently, modulate upper ocean temperature during a typhoon passage. The effects of sea spray were introduced into the parameterization of sea surface roughness in a 1-D turbulent model, to investigate the effects of sea spray on upper ocean temperature in the Kuroshio Extension area, for the cases of two real typhoons from 2006, Yagi and Soulik. Model output was compared with data from the Kuroshio Extension Observatory (KEO), and Reynolds and AMSRE satellite remote sensing sea surface temperatures. The results indicate drag coefficients that include the spray effect are closer to observations than those without, and that sea spray can enhance the heat fluxes (especially latent heat flux) considerably during a typhoon passage. Consequently, the model results with heat fluxes enhanced by sea spray simulate better the cooling process of the SST and upper-layer temperature profiles. Additionally, results from the simulation of the passage of typhoon Soulik (that passed KEO quickly), which included the sea spray effect, were better than for the simulated passage of typhoon Yagi (that crossed KEO slowly). These promising 1-D results could provide insight into the application of sea spray in general circulation models for typhoon studies.

  12. Radon exhalation from uranium mill tailings: experimental validation of a 1-D model.

    PubMed

    Ferry, C; Richon, P; Beneito, A; Robé, M C

    2001-01-01

    TRACI, a model based on the physical mechanisms governing the migration of radon in unsaturated soils, has been developed to evaluate the radon flux density at the surface of uranium mill tailings. To check the validity of the TRACI model and the effectiveness of cover layers, an in situ study was launched in 1997 with the French uranium mining company, COGEMA. The study consisted of continuous measurements of moisture content, suction, radon concentration at various depths inside a UMT cover, and flux density at its surface. An initial analysis has shown that radon concentration and flux density, as calculated with a steady-state diffusion model using monthly averaged moisture contents, are in good agreement with measured monthly averaged concentrations and flux densities.

  13. 2D MHD AND 1D HD MODELS OF A SOLAR FLARE—A COMPREHENSIVE COMPARISON OF THE RESULTS

    SciTech Connect

    Falewicz, R.; Rudawy, P.; Murawski, K.; Srivastava, A. K. E-mail: rudawy@astro.uni.wroc.pl E-mail: asrivastava.app@iitbhu.ac.in

    2015-11-01

    Without any doubt, solar flaring loops possess a multithread internal structure that is poorly resolved, and there are no means to observe heating episodes and thermodynamic evolution of the individual threads. These limitations cause fundamental problems in numerical modeling of flaring loops, such as selection of a structure and a number of threads, and an implementation of a proper model of the energy deposition process. A set of one-dimensional (1D) hydrodynamic and two-dimensional (2D) magnetohydrodynamic models of a flaring loop are developed to compare energy redistribution and plasma dynamics in the course of a prototypical solar flare. Basic parameters of the modeled loop are set according to the progenitor M1.8 flare recorded in AR 10126 on 2002 September 20 between 09:21 UT and 09:50 UT. The nonideal 1D models include thermal conduction and radiative losses of the optically thin plasma as energy-loss mechanisms, while the nonideal 2D models take into account viscosity and thermal conduction as energy-loss mechanisms only. The 2D models have a continuous distribution of the parameters of the plasma across the loop and are powered by varying in time and space along and across the loop heating flux. We show that such 2D models are an extreme borderline case of a multithread internal structure of the flaring loop, with a filling factor equal to 1. Nevertheless, these simple models ensure the general correctness of the obtained results and can be adopted as a correct approximation of the real flaring structures.

  14. Forward waveform modelling procedure for 1-D crustal velocity structure and its application to the southern Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kim, Seongryong; Rhie, Junkee; Kim, Geunyoung

    2011-04-01

    We propose a full-grid search procedure for broad-band waveform modelling to determine a 1-D crustal velocity model. The velocity model can be more constrained because of the use of broad-band waveforms instead of traveltimes for the crustal phases, although only a small number of event-station pairs were employed. Despite the time-consuming nature of the full-grid search method to search the whole model parameter space, the use of an empirical relationship between the P- and S-wave velocities can significantly reduce computation time. The proposed method was applied to a case in the southern Korean Peninsula. Broad-band waveforms obtained from two inland earthquakes that occurred on 2007 January 20 (Mw 4.6) and 2004 April 26 (Mw 3.6) were used to test the method. The three-layers over half-space crustal velocity model of the P- and S-wave velocities was estimated. Comparisons of waveform fitness between the final model and previously published models demonstrate advancements in the average value of waveform fitness for the inland earthquakes. In addition, 1-D velocity models were determined for three distinct tectonic regions, namely, the Gyonggi Massif, the Okcheon Belt and the Gyeongsang Basin, which are all located inside the study area. A comparison between the three models demonstrates that the crustal thickness of the southern Korean Peninsula increases from NW to SE and that the lower crustal composition of the Okcheon belt differs from that of the other tectonic regions.

  15. Development and validation of THUMS version 5 with 1D muscle models for active and passive automotive safety research.

    PubMed

    Kimpara, Hideyuki; Nakahira, Yuko; Iwamoto, Masami

    2016-08-01

    Accurately predicting the occupant kinematics is critical to better understand the injury mechanisms during an automotive crash event. The objectives of this study were to develop and validate a finite element (FE) model of the human body integrated with an active muscle model called Total HUman Model for Safety (THUMS) version 5, which has the body size of the 50th percentile American adult male (AM50). This model is characterized by being able to generate a force owing to muscle tone and to predict the occupant response during an automotive crash event. Deformable materials were assigned to all body parts of THUMS model in order to evaluate the injury probabilities. Each muscle was modeled as a Hill-type muscle model with 800 muscle-tendon compartments of 1D truss and seatbelt elements covering whole joints in the neck, thorax, lumbar region, and upper and lower extremities. THUMS was validated against 36 series of post-mortem human surrogate (PMHS) and volunteer tests on frontal, lateral, and rear impacts. The muscle architectural and kinetic properties for the hip, knee, shoulder, and elbow joints were validated in terms of the moment arms and maximum isometric joint torques over a wide range of joint angles. The muscular moment arms and maximum joint torques estimated from THUMS occupant model with 1D muscles agreed with the experimental data for a wide range of joint angles. Therefore, this model has the potential to predict the occupant kinematics and injury outcomes considering appropriate human body motions associated with various human body postures, such as sitting or standing.

  16. Strong decays of excited 1D charmed(-strange) mesons in the covariant oscillator quark model

    NASA Astrophysics Data System (ADS)

    Maeda, Tomohito; Yoshida, Kento; Yamada, Kenji; Ishida, Shin; Oda, Masuho

    2016-05-01

    Recently observed charmed mesons, D1* (2760), D3* (2760) and charmed-strange mesons, Ds1 * (2860), Ds3 * (2860), by BaBar and LHCb collaborations are considered to be plausible candidates for c q ¯ 13 DJ (q = u, d, s) states. We calculate the strong decays with one pion (kaon) emission of these states including well-established 1S and 1P charmed(-strange) mesons within the framework of the covariant oscillator quark model. The results obtained are compared with the experimental data and the typical nonrelativistic quark-model calculations. Concerning the results for 1S and 1P states, we find that, thanks to the relativistic effects of decay form factors, our model parameters take reasonable values, though our relativistic approach and the nonrelativistic quark model give similar decay widths in agreement with experiment. While the results obtained for 13 DJ=1,3 states are roughly consistent with the present data, they should be checked by the future precise measurement.

  17. Modeling structures of 1D PhC for telecommunication applications

    NASA Astrophysics Data System (ADS)

    Zawistowski, Zygmunt J.; Jaskorzyńska, BoŻena

    2016-09-01

    Effective method of modeling 1-dimensional photonic crystals structures is presented. As an illustration of the method a concept of widely tunable narrow band drop filter is described. As an active electro-optic material a liquid crystal is used. Very good parameters are obtained so the presented structure is suitable for fast packet switched wavelength division multiplexing networks (WDM).

  18. Global daily reference evapotranspiration modeling and evaluation

    USGS Publications Warehouse

    Senay, G.B.; Verdin, J.P.; Lietzow, R.; Melesse, Assefa M.

    2008-01-01

    Accurate and reliable evapotranspiration (ET) datasets are crucial in regional water and energy balance studies. Due to the complex instrumentation requirements, actual ET values are generally estimated from reference ET values by adjustment factors using coefficients for water stress and vegetation conditions, commonly referred to as crop coefficients. Until recently, the modeling of reference ET has been solely based on important weather variables collected from weather stations that are generally located in selected agro-climatic locations. Since 2001, the National Oceanic and Atmospheric Administration’s Global Data Assimilation System (GDAS) has been producing six-hourly climate parameter datasets that are used to calculate daily reference ET for the whole globe at 1-degree spatial resolution. The U.S. Geological Survey Center for Earth Resources Observation and Science has been producing daily reference ET (ETo) since 2001, and it has been used on a variety of operational hydrological models for drought and streamflow monitoring all over the world. With the increasing availability of local station-based reference ET estimates, we evaluated the GDAS-based reference ET estimates using data from the California Irrigation Management Information System (CIMIS). Daily CIMIS reference ET estimates from 85 stations were compared with GDAS-based reference ET at different spatial and temporal scales using five-year daily data from 2002 through 2006. Despite the large difference in spatial scale (point vs. ∼100 km grid cell) between the two datasets, the correlations between station-based ET and GDAS-ET were very high, exceeding 0.97 on a daily basis to more than 0.99 on time scales of more than 10 days. Both the temporal and spatial correspondences in trend/pattern and magnitudes between the two datasets were satisfactory, suggesting the reliability of using GDAS parameter-based reference ET for regional water and energy balance studies in many parts of the world

  19. Reactive Transport Modeling of Microbially-Mediated Chromate Reduction in 1-D Soil Columns

    NASA Astrophysics Data System (ADS)

    Qiu, H.; Viamajala, S.; Alam, M. M.; Peyton, B. M.; Petersen, J. N.; Yonge, D. R.

    2002-12-01

    Cr(VI) reduction tests were performed with the well known metal reducing bacterium Shewanella oneidensis MR-1 in liquid phase batch reactors and continuous flow soil columns under anaerobic conditions. In the batch tests, the cultures were grown with fumarate as the terminal electron acceptor and lactate as the electron donor in a simulated groundwater medium to determine yield coefficients and specific growth rates. The bench-scale soil column experiments were carried out with MR-1 to test the hypothesis that the kinetic parameters obtained in batch studies, combined with microbial attachment /detachment processes, will accurately predict reactive transport of Cr(VI) during bacterial Cr(VI) reduction in a soil matrix. Cr(VI)-free simulated groundwater media containing fumarate as the limiting substrate and lactate was supplied to a 2.1cm (ID) x 15 cm soil column inoculated with MR-1 for a duration of 9 residence times to allow for biomass to build-up in the column. Thereafter the column was supplied with both Cr(VI) and substrate. The concentrations of effluent substrate, biomass and Cr(VI) were monitored on a periodic basis and attached biomass in the column was measured in the termination of each column test. A reactive transport model was developed in which 6 governing equations deal with Cr(VI) bioreaction, fumarate (as electron donor) consumption, aqueous biomass growth and transport, solid biomass detachment and attachment kinetics, aqueous and solid phase enzyme reaction and transport, respectively. The model incorporating the enzyme reaction kinetics for Cr(VI) reduction, Monod kinetic expressions for substrate depletion, nonlinear attachment and detachment kinetics for aqueous and solid phase microorganism concentration, was solved by a fully implicit, finite-difference procedure using RT3D (A Modular Computer Code for Reactive Multi-species Transport in 3-Dimensional Groundwater Systems) platform in one dimension. Cr(VI)-free column data was used to

  20. Stochastic Heat Equation Limit of a (2 + 1)d Growth Model

    NASA Astrophysics Data System (ADS)

    Borodin, Alexei; Corwin, Ivan; Toninelli, Fabio Lucio

    2017-03-01

    We determine a {q to 1} limit of the two-dimensional q-Whittaker driven particle system on the torus studied previously in Corwin and Toninelli (Electron. Commun. Probab. 21(44):1-12, 2016). This has an interpretation as a (2 + 1)-dimensional stochastic interface growth model, which is believed to belong to the so-called anisotropic Kardar-Parisi-Zhang (KPZ) class. This limit falls into a general class of two-dimensional systems of driven linear SDEs which have stationary measures on gradients. Taking the number of particles to infinity we demonstrate Gaussian free field type fluctuations for the stationary measure. Considering the temporal evolution of the stationary measure, we determine that along characteristics, correlations are asymptotically given by those of the (2 + 1)-dimensional additive stochastic heat equation. This confirms (for this model) the prediction that the non-linearity for the anisotropic KPZ equation in (2 + 1)-dimension is irrelevant.

  1. A 1-D Model of the 4 Bed Molecular Sieve of the Carbon Dioxide Removal Assembly

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, Jim

    2015-01-01

    Developments to improve system efficiency and reliability for water and carbon dioxide separation systems on crewed vehicles combine sub-scale systems testing and multi-physics simulations. This paper describes the development of COMSOL simulations in support of the Life Support Systems (LSS) project within NASA's Advanced Exploration Systems (AES) program. Specifically, we model the 4 Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) operating on the International Space Station (ISS).

  2. Dynamical signature of the edge state in the 1D Aubry-André model

    NASA Astrophysics Data System (ADS)

    Shen, H. Z.; Yi, X. X.; Oh, C. H.

    2014-04-01

    Topological features have become an intensively studied subject in many fields of physics. As a witness of topological phase, the edge states are topologically protected and may be helpful in quantum information processing. In this paper, we define a measure to quantify the dynamical localization of the system and simulate the localization in the one-dimensional Aubry-André model. We find an interesting connection between the edge states and the dynamical localization of the system, this connection may be used as a signature of the edge state and topological phase.

  3. Constraining quantum critical dynamics: (2+1)D Ising model and beyond.

    PubMed

    Witczak-Krempa, William

    2015-05-01

    Quantum critical (QC) phase transitions generally lead to the absence of quasiparticles. The resulting correlated quantum fluid, when thermally excited, displays rich universal dynamics. We establish nonperturbative constraints on the linear-response dynamics of conformal QC systems at finite temperature, in spatial dimensions above 1. Specifically, we analyze the large frequency or momentum asymptotics of observables, which we use to derive powerful sum rules and inequalities. The general results are applied to the O(N) Wilson-Fisher fixed point, describing the QC Ising model when N=1. We focus on the order parameter and scalar susceptibilities, and the dynamical shear viscosity. Connections to simulations, experiments, and gauge theories are made.

  4. 1D Unsteady Flow and Sediment Transport Model for Channel Network

    NASA Astrophysics Data System (ADS)

    bai, Y.; Duan, J. G.

    2012-12-01

    This paper presents a one-dimensional unsteady flow and sediment transport model for simulating flood routing and sediment transport over mobile alluvium in channel network. The modified St. Venant equation together with the suspended sediment and bed load transport equations are solved simultaneously to obtain flow properties and sediment transport rates. The Godunov-type finite volume method is employed, and the flux terms are discretized by using the upwind and the HLLC schemes. Then, the Exner equation is used to solve for bed elevation changes. In unsteady flow, sediment transport is non-equilibrium, therefore suspended load adaptation coefficient and bed load adaptation length are used to account for the difference between equilibrium and non-equilibrium sediment transport rate. At river confluences, water surface elevations are kept the same, and the law of mass conservation is used as the internal boundary conditions. An unprecedented flood event occurred in the Santa Cruz River, Tucson, Arizona, in July 2006, is used to test the performances of the model. Simulated results of water surface elevation and bed elevation changes show good agreements with the measurements.

  5. Modeling of the Plasma Electrode Bias in the Negative Ion Sources with 1D PIC Method

    SciTech Connect

    Matsushita, D.; Kuppel, S.; Hatayama, A.; Fukano, A.; Bacal, M.

    2009-03-12

    The effect of the plasma electrode bias voltage in the negative ion sources is modeled and investigated with one-dimensional plasma simulation. A particle-in-cell (PIC) method is applied to simulate the motion of charged particles in their self-consistent electric field. In the simulation, the electron current density is fixed to produce the bias voltage. The tendency of current-voltage characteristics obtained in the simulation show agreement with the one obtained from a simple probe theory. In addition, the H{sup -} ion density peak appears at the bias voltage close to the plasma potential as observed in the experiment. The physical mechanism of this peak H{sup -} ion density is discussed.

  6. Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes

    SciTech Connect

    Montecinos, Gino I.; Müller, Lucas O.; Toro, Eleuterio F.

    2014-06-01

    The applicability of ADER finite volume methods to solve hyperbolic balance laws with stiff source terms in the context of well-balanced and non-conservative schemes is extended to solve a one-dimensional blood flow model for viscoelastic vessels, reformulated as a hyperbolic system, via a relaxation time. A criterion for selecting relaxation times is found and an empirical convergence rate assessment is carried out to support this result. The proposed methodology is validated by applying it to a network of viscoelastic vessels for which experimental and numerical results are available. The agreement between the results obtained in the present paper and those available in the literature is satisfactory. Key features of the present formulation and numerical methodologies, such as accuracy, efficiency and robustness, are fully discussed in the paper.

  7. Pool Formation in Boulder-Bed Streams: Implications From 1-D and 2-D Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Harrison, L. R.; Keller, E. A.

    2003-12-01

    In mountain rivers of Southern California, boulder-large roughness elements strongly influence flow hydraulics and pool formation and maintenance. In these systems, boulders appear to control the stream morphology by converging flow and producing deep pools during channel forming discharges. Our research goal is to develop quantitative relationships between boulder roughness elements, temporal patterns of scour and fill, and geomorphic processes that are important in producing pool habitat. The longitudinal distribution of shear stress, unit stream power and velocity were estimated along a 48 m reach on Rattlesnake Creek, using the HEC-RAS v 3.0 and River 2-D numerical models. The reach has an average slope of 0.02 and consists of a pool-riffle sequence with a large boulder constriction directly above the pool. Model runs were performed for a range of stream discharges to test if scour and fill thresholds for pool and riffle environments could be identified. Results from the HEC-RAS simulations identified that thresholds in shear stress, unit stream power and mean velocity occur above a discharge of 5.0 cms. Results from the one-dimensional analysis suggest that the reversal in competency is likely due to changes in cross-sectional width at varying flows. River 2-D predictions indicated that strong transverse velocity gradients were present through the pool at higher modeled discharges. At a flow of 0.5 cms (roughly 1/10th bankfull discharge), velocities are estimated at 0.6 m/s and 1.3 m/s for the pool and riffle, respectively. During discharges of 5.15 cms (approximate bankfull discharge), the maximum velocity in the pool center increased to nearly 3.0 m/s, while the maximum velocity over the riffle is estimated at approximately 2.5 cms. These results are consistent with those predicted by HEC-RAS, though the reversal appears to be limited to a narrow jet that occurs through the pool head and pool center. Model predictions suggest that the velocity reversal is

  8. Study on Effects of the Stochastic Delay Probability for 1d CA Model of Traffic Flow

    NASA Astrophysics Data System (ADS)

    Xue, Yu; Chen, Yan-Hong; Kong, Ling-Jiang

    Considering the effects of different factors on the stochastic delay probability, the delay probability has been classified into three cases. The first case corresponding to the brake state has a large delay probability if the anticipant velocity is larger than the gap between the successive cars. The second one corresponding to the following-the-leader rule has intermediate delay probability if the anticipant velocity is equal to the gap. Finally, the third case is the acceleration, which has minimum delay probability. The fundamental diagram obtained by numerical simulation shows the different properties compared to that by the NaSch model, in which there exist two different regions, corresponding to the coexistence state, and jamming state respectively.

  9. 1-D transient numerical model of a regenerator in a novel sub Kelvin Active Magnetic Regenerative Refrigerator

    NASA Astrophysics Data System (ADS)

    Jahromi, Amir E.; Miller, Franklin K.

    2016-03-01

    A sub Kelvin Active Magnetic Regenerative Refrigerator (AMRR) is being developed at the University of Wisconsin - Madison. This AMRR consists of two circulators, two regenerators, one superleak, one cold heat exchanger, and two warm heat exchangers. The circulators are novel non-moving part pumps that reciprocate a superfluid mixture of 4He-3He in the system. Heat from the mixture is removed within the two regenerators of this tandem system. An accurate model of the regenerators in this AMRR is necessary in order to predict the performance of these components, which in turn helps predicting the overall performance of the AMRR system. This work presents modeling methodology along with results from a 1-D transient numerical model of the regenerators of an AMRR capable of removing 2.5 mW at 850 mK at cyclic steady state.

  10. Development of a 3D to 1D Particle Transport Model to Predict Deposition in the Lungs

    NASA Astrophysics Data System (ADS)

    Oakes, Jessica M.; Grandmont, Celine; Shadden, Shawn C.; Vignon-Clementel, Irene E.

    2014-11-01

    Aerosolized particles are commonly used for therapeutic drug delivery as they can be delivered to the body systemically or be used to treat lung diseases. Recent advances in computational resources have allowed for sophisticated pulmonary simulations, however it is currently impossible to solve for airflow and particle transport for all length and time scales of the lung. Instead, multi-scale methods must be used. In our recent work, where computational methods were employed to solve for airflow and particle transport in the rat airways (Oakes et al. (2014), Annals of Biomedical Engineering 42, 899), the number of particles to exit downstream of the 3D domain was determined. In this current work, the time-dependent Lagrangian description of particles was used to numerically solve a 1D convection-diffusion model (trumpet model, Taulbee and Yu (1975), Journal of Applied Physiology, 38, 77) parameterized specifically for the lung. The expansion of the airway dimensions was determined based on data collected from our aerosol exposure experiments (Oakes et al. (2014), Journal of Applied Physiology, 116, 1561). This 3D-1D framework enables us to predict the fate of particles in the whole lung. This work was supported by the Whitaker Foundation at the IIE, a INRIA Associated Team Postdoc Grant, and a UC Presidential Fellowship.

  11. Using 1D2D Hydrodynamic Modeling to Inform Restoration Planning in the Atchafalaya River Basin, Louisiana

    NASA Astrophysics Data System (ADS)

    Hayden-Lesmeister, A.; Remo, J. W.; Piazza, B.

    2015-12-01

    The Atchafalaya River (AR) in Louisiana is the principal distributary of the Mississippi River (MR), and its basin contains the largest contiguous area of baldcypress-water tupelo swamp forests in North America. After designation of the Atchafalaya River Basin (ARB) as a federal floodway following the destructive 1927 MR flood, it was extensively modified to accommodate a substantial portion of the MR flow (~25%) to mitigate flooding in southern Louisiana. These modifications and increased flows resulted in substantial incision along large portions of the AR, altering connectivity between the river and its associated waterbodies. As a result of incision, the hydroperiod has been substantially altered, which has contributed to a decline in ecological health of the ARB's baldcypress-water tupelo forests. While it is recognized that the altered hydroperiod has negatively affected natural baldcypress regeneration, it is unclear whether proposed projects designed to enhance flow connectivity will increase long-term survival of these forests. In this study, we have constructed a 1D2D hydrodynamic model using SOBEK 2.12 to realistically model key physical parameters such as residence times, inundation extent, water-surface elevations (WSELs), and flow velocities to increase our understanding of the ARB's altered hydroperiod and the consequences for baldcypress-water tupelo forests. While the model encompasses a majority of the ARB, our modeling effort is focused on the Flat Lake Water Management Unit located in the southern portion of the ARB, where it will also be used to evaluate flow connectivity enhancement projects within the management unit. We believe our 1D2D hybrid hydraulic modeling approach will provide the flexibility and accuracy needed to guide connectivity enhancement efforts in the ARB and may provide a model framework for guiding similar efforts along other highly-altered river systems.

  12. A 1D pulse wave propagation model of the hemodynamics of calf muscle pump function

    PubMed Central

    Keijsers, J M T; Leguy, C A D; Huberts, W; Narracott, A J; Rittweger, J; van de Vosse, F N

    2015-01-01

    The calf muscle pump is a mechanism which increases venous return and thereby compensates for the fluid shift towards the lower body during standing. During a muscle contraction, the embedded deep veins collapse and venous return increases. In the subsequent relaxation phase, muscle perfusion increases due to increased perfusion pressure, as the proximal venous valves temporarily reduce the distal venous pressure (shielding). The superficial and deep veins are connected via perforators, which contain valves allowing flow in the superficial-to-deep direction. The aim of this study is to investigate and quantify the physiological mechanisms of the calf muscle pump, including the effect of venous valves, hydrostatic pressure, and the superficial venous system. Using a one-dimensional pulse wave propagation model, a muscle contraction is simulated by increasing the extravascular pressure in the deep venous segments. The hemodynamics are studied in three different configurations: a single artery–vein configuration with and without valves and a more detailed configuration including a superficial vein. Proximal venous valves increase effective venous return by 53% by preventing reflux. Furthermore, the proximal valves shielding function increases perfusion following contraction. Finally, the superficial system aids in maintaining the perfusion during the contraction phase and reduces the refilling time by 37%. © 2015 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd. PMID:25766693

  13. LETTER TO THE EDITOR: Coarsening in the 1D Ising model evolving with Swendsen - Wang dynamics: an unusual scaling

    NASA Astrophysics Data System (ADS)

    Derrida, Bernard; Hakim, Vincent

    1996-12-01

    We consider a simple model of domain growth: the zero-temperature 1D Ising model evolving according to the Swendsen - Wang dynamics. We find that in the long-time limit, the pair correlation function scales with a characteristic length increasing as the square of the average domain size. In that limit, a few large domains occupy almost all the space with many small domains between them. In contrast to the usual picture of coarsening, the average domain size here is not a characteristic length of the growth problem. Instead, one finds a power-law distribution for the sizes of large domains with a cut-off at a length which grows as the square of the average size of the domains.

  14. Assessment of phenol infiltration resilience in soil media by HYDRUS-1D transport model for a waste discharge site.

    PubMed

    Adhikari, K; Pal, S; Chakraborty, B; Mukherjee, S N; Gangopadhyay, A

    2014-10-01

    The movement of contaminants through soil imparts a variety of geo-environmental problem inclusive of lithospheric pollution. Near-surface aquifers are often vulnerable to contamination from surface source if overlying soil possesses poor resilience or contaminant attenuation capacity. The prediction of contaminant transport through soil is urged to protect groundwater from sources of pollutants. Using field simulation through column experiments and mathematical modeling like HYDRUS-1D, assessment of soil resilience and movement of contaminants through the subsurface to reach aquifers can be predicted. An outfall site of effluents of a coke oven plant comprising of alarming concentration of phenol (4-12.2 mg/L) have been considered for studying groundwater condition and quality, in situ soil characterization, and effluent characterization. Hydrogeological feature suggests the presence of near-surface aquifers at the effluent discharge site. Analysis of groundwater of nearby locality reveals the phenol concentration (0.11-0.75 mg/L) exceeded the prescribed limit of WHO specification (0.002 mg/L). The in situ soil, used in column experiment, possess higher saturated hydraulic conductivity (KS  = 5.25 × 10(-4) cm/s). The soil containing 47 % silt, 11 % clay, and 1.54% organic carbon content was found to be a poor absorber of phenol (24 mg/kg). The linear phenol adsorption isotherm model showed the best fit (R(2) = 0.977, RMSE = 1.057) to the test results. Column experiments revealed that the phenol removal percent and the length of the mass transfer zone increased with increasing bed heights. The overall phenol adsorption efficiency was found to be 42-49%. Breakthrough curves (BTCs) predicted by HYDRUS-1D model appears to be close fitting with the BTCs derived from the column experiments. The phenol BTC predicted by the HYDRUS-1D model for 1.2 m depth subsurface soil, i.e., up to the depth of groundwater in the study area, showed that the exhaustion

  15. GLOBAL REFERENCE ATMOSPHERIC MODELS FOR AEROASSIST APPLICATIONS

    NASA Technical Reports Server (NTRS)

    Duvall, Aleta; Justus, C. G.; Keller, Vernon W.

    2005-01-01

    Aeroassist is a broad category of advanced transportation technology encompassing aerocapture, aerobraking, aeroentry, precision landing, hazard detection and avoidance, and aerogravity assist. The eight destinations in the Solar System with sufficient atmosphere to enable aeroassist technology are Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Saturn's moon Titan. Engineering-level atmospheric models for five of these targets - Earth, Mars, Titan, Neptune, and Venus - have been developed at NASA's Marshall Space Flight Center. These models are useful as tools in mission planning and systems analysis studies associated with aeroassist applications. The series of models is collectively named the Global Reference Atmospheric Model or GRAM series. An important capability of all the models in the GRAM series is their ability to simulate quasi-random perturbations for Monte Carlo analysis in developing guidance, navigation and control algorithms, for aerothermal design, and for other applications sensitive to atmospheric variability. Recent example applications are discussed.

  16. Mass storage system reference model, Version 4

    NASA Technical Reports Server (NTRS)

    Coleman, Sam (Editor); Miller, Steve (Editor)

    1993-01-01

    The high-level abstractions that underlie modern storage systems are identified. The information to generate the model was collected from major practitioners who have built and operated large storage facilities, and represents a distillation of the wisdom they have acquired over the years. The model provides a common terminology and set of concepts to allow existing systems to be examined and new systems to be discussed and built. It is intended that the model and the interfaces identified from it will allow and encourage vendors to develop mutually-compatible storage components that can be combined to form integrated storage systems and services. The reference model presents an abstract view of the concepts and organization of storage systems. From this abstraction will come the identification of the interfaces and modules that will be used in IEEE storage system standards. The model is not yet suitable as a standard; it does not contain implementation decisions, such as how abstract objects should be broken up into software modules or how software modules should be mapped to hosts; it does not give policy specifications, such as when files should be migrated; does not describe how the abstract objects should be used or connected; and does not refer to specific hardware components. In particular, it does not fully specify the interfaces.

  17. A reference model for scientific information interchange

    NASA Technical Reports Server (NTRS)

    Reich, Lou; Sawyer, Don; Davis, Randy

    1993-01-01

    This paper presents an overview of an Information Interchange Reference Model (IIRM) currently being developed by individuals participating in the Consultative Committee for Space Data Systems (CCSDS) Panel 2, the Planetary Data Systems (PDS), and the Committee on Earth Observing Satellites (CEOS). This is an ongoing research activity and is not an official position by these bodies. This reference model provides a framework for describing and assessing current and proposed methodologies for information interchange within and among the space agencies. It is hoped that this model will improve interoperability between the various methodologies. As such, this model attempts to address key information interchange issues as seen by the producers and users of space-related data and to put them into a coherent framework. Information is understood as the knowledge (e.g., the scientific content) represented by data. Therefore, concern is not primarily on mechanisms for transferring data from user to user (e.g., compact disk read-only memory (CD-ROM), wide-area networks, optical tape, and so forth) but on how information is encoded as data and how the information content is maintained with minimal loss or distortion during transmittal. The model assumes open systems, which means that the protocols or methods used should be fully described and the descriptions publicly available. Ideally these protocols are promoted by recognized standards organizations using processes that permit involvement by those most likely to be affected, thereby enhancing the protocol's stability and the likelihood of wide support.

  18. Geometric and frequency EMI sounding of estuarine earthen flood defence embankments in Ireland using 1D inversion models

    NASA Astrophysics Data System (ADS)

    Viganotti, Matteo; Jackson, Ruth; Krahn, Hartmut; Dyer, Mark

    2013-05-01

    Earthen flood defence embankments are linear structures, raised above the flood plain, that are commonly used as flood defences in rural settings; these are often relatively old structures constructed using locally garnered material and of which little is known in terms of design and construction. Alarmingly, it is generally reported that a number of urban developments have expanded to previously rural areas; hence, acquiring knowledge about the flood defences protecting these areas has risen significantly in the agendas of basin and asset managers. This paper focusses, by reporting two case studies, on electromagnetic induction (EMI) methods that would efficiently complement routine visual inspections and would represent a first step to more detailed investigations. Evaluation of the results is presented by comparison with ERT profiles and intrusive investigation data. The EM data, acquired using a GEM-2 apparatus for frequency sounding and an EM-31 apparatus for geometrical sounding, has been handled using the prototype eGMS software tool, being developed by the eGMS international research consortium; the depth sounding data interpretation was assisted by 1D inversions obtained with the EM1DFM software developed by the University of British Columbia. Although both sounding methods showed some limitations, the models obtained were consistent with ERT models and the techniques were useful screening methods for the identification of areas of interest, such as material interfaces or potential seepage areas, within the embankment structure: 1D modelling improved the rapid assessment of earthen flood defence embankments in an estuarine environment; evidence that EMI sounding could play an important role as a monitoring tool or as a first step towards more detailed investigations.

  19. Determinants of modelling choices for 1-D free-surface flow and morphodynamics in hydrology and hydraulics: a review

    NASA Astrophysics Data System (ADS)

    Cheviron, Bruno; Moussa, Roger

    2016-09-01

    This review paper investigates the determinants of modelling choices, for numerous applications of 1-D free-surface flow and morphodynamic equations in hydrology and hydraulics, across multiple spatiotemporal scales. We aim to characterize each case study by its signature composed of model refinement (Navier-Stokes: NS; Reynolds-averaged Navier-Stokes: RANS; Saint-Venant: SV; or approximations to Saint-Venant: ASV), spatiotemporal scales and subscales (domain length: L from 1 cm to 1000 km; temporal scale: T from 1 s to 1 year; flow depth: H from 1 mm to 10 m; spatial step for modelling: δL; temporal step: δT), flow typology (Overland: O; High gradient: Hg; Bedforms: B; Fluvial: F), and dimensionless numbers (dimensionless time period T*, Reynolds number Re, Froude number Fr, slope S, inundation ratio Λz, Shields number θ). The determinants of modelling choices are therefore sought in the interplay between flow characteristics and cross-scale and scale-independent views. The influence of spatiotemporal scales on modelling choices is first quantified through the expected correlation between increasing scales and decreasing model refinements (though modelling objectives also show through the chosen spatial and temporal subscales). Then flow typology appears a secondary but important determinant in the choice of model refinement. This finding is confirmed by the discriminating values of several dimensionless numbers, which prove preferential associations between model refinements and flow typologies. This review is intended to help modellers in positioning their choices with respect to the most frequent practices, within a generic, normative procedure possibly enriched by the community for a larger, comprehensive and updated image of modelling strategies.

  20. 2D Axisymmetric vs 1D: A PIC/DSMC Model of Breakdown in Triggered Vacuum Spark Gaps

    NASA Astrophysics Data System (ADS)

    Moore, Stan; Moore, Chris; Boerner, Jeremiah

    2015-09-01

    Last year at GEC14, we presented results of one-dimensional PIC/DSMC simulations of breakdown in triggered vacuum spark gaps. In this talk, we extend the model to two-dimensional axisymmetric and compare the results to the previous 1D case. Specially, we vary the fraction of the cathode that emits electrons and neutrals (holding the total injection rates over the cathode surface constant) and show the effects of the higher dimensionality on the time to breakdown. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Giant Fluctuations of Local Magnetoresistance of Organic Spin Valves and the Non-Hermitian 1D Anderson Model

    NASA Astrophysics Data System (ADS)

    Roundy, R. C.; Nemirovsky, D.; Kagalovsky, V.; Raikh, M. E.

    2014-06-01

    Motivated by recent experiments, where the tunnel magnetoresitance (TMR) of a spin valve was measured locally, we theoretically study the distribution of TMR along the surface of magnetized electrodes. We show that, even in the absence of interfacial effects (like hybridization due to donor and acceptor molecules), this distribution is very broad, and the portion of area with negative TMR is appreciable even if on average the TMR is positive. The origin of the local sign reversal is quantum interference of subsequent spin-rotation amplitudes in the course of incoherent transport of carriers between the source and the drain. We find the distribution of local TMR exactly by drawing upon formal similarity between evolution of spinors in time and of the reflection coefficient along a 1D chain in the Anderson model. The results obtained are confirmed by the numerical simulations.

  2. A new time-dependent analytic model for radiation-induced photocurrent in finite 1D epitaxial diodes.

    SciTech Connect

    Verley, Jason C.; Axness, Carl L.; Hembree, Charles Edward; Keiter, Eric Richard; Kerr, Bert

    2012-04-01

    Photocurrent generated by ionizing radiation represents a threat to microelectronics in radiation environments. Circuit simulation tools such as SPICE [1] can be used to analyze these threats, and typically rely on compact models for individual electrical components such as transistors and diodes. Compact models consist of a handful of differential and/or algebraic equations, and are derived by making simplifying assumptions to any of the many semiconductor transport equations. Historically, many photocurrent compact models have suffered from accuracy issues due to the use of qualitative approximation, rather than mathematically correct solutions to the ambipolar diffusion equation. A practical consequence of this inaccuracy is that a given model calibration is trustworthy over only a narrow range of operating conditions. This report describes work to produce improved compact models for photocurrent. Specifically, an analytic model is developed for epitaxial diode structures that have a highly doped subcollector. The analytic model is compared with both numerical TCAD calculations, as well as the compact model described in reference [2]. The new analytic model compares well against TCAD over a wide range of operating conditions, and is shown to be superior to the compact model from reference [2].

  3. Understanding the colloidal dispersion stability of 1D and 2D materials: Perspectives from molecular simulations and theoretical modeling.

    PubMed

    Lin, Shangchao; Shih, Chih-Jen; Sresht, Vishnu; Govind Rajan, Ananth; Strano, Michael S; Blankschtein, Daniel

    2016-08-03

    The colloidal dispersion stability of 1D and 2D materials in the liquid phase is critical for scalable nano-manufacturing, chemical modification, composites production, and deployment as conductive inks or nanofluids. Here, we review recent computational and theoretical studies carried out by our group to model the dispersion stability of 1D and 2D materials, including single-walled carbon nanotubes, graphene, and graphene oxide in aqueous surfactant solutions or organic solvents. All-atomistic (AA) molecular dynamics (MD) simulations can probe the molecular level details of the adsorption morphology of surfactants and solvents around these materials, as well as quantify the interaction energy between the nanomaterials mediated by surfactants or solvents. Utilizing concepts from reaction kinetics and diffusion, one can directly predict the rate constants for the aggregation kinetics and dispersion life times using MD outputs. Furthermore, the use of coarse-grained (CG) MD simulations allows quantitative prediction of surfactant adsorption isotherms. Combined with the Poisson-Boltzmann equation, the Langmuir isotherm, and the DLVO theory, one can directly use CGMD outputs to: (i) predict electrostatic potentials around the nanomaterial, (ii) correlate surfactant surface coverages with surfactant concentrations in the bulk dispersion medium, and (iii) determine energy barriers against coagulation. Finally, we discuss challenges associated with studying emerging 2D materials, such as, hexagonal boron nitride (h-BN), phosphorene, and transition metal dichalcogenides (TMDCs), including molybdenum disulfide (MoS2). An outlook is provided to address these challenges with plans to develop force-field parameters for MD simulations to enable predictive modeling of emerging 2D materials in the liquid phase.

  4. The Geochemical Earth Reference Model (GERM)

    SciTech Connect

    Staudigel, H.; Albarede, F.; Shaw, H.; McDonough, B.; White, W.

    1996-12-01

    The Geochemical Earth Reference Model (GERM) initiative is a grass- roots effort with the goal of establishing a community consensus on a chemical characterization of the Earth, its major reservoirs, and the fluxes between them. Long term goal of GERM is a chemical reservoir characterization analogous to the geophysical effort of the Preliminary Reference Earth Model (PREM). Chemical fluxes between reservoirs are included into GERM to illuminate the long-term chemical evolution of the Earth and to characterize the Earth as a dynamic chemical system. In turn, these fluxes control geological processes and influence hydrosphere-atmosphere-climate dynamics. While these long-term goals are clearly the focus of GERM, the process of establishing GERM itself is just as important as its ultimate goal. The GERM initiative is developed in an open community discussion on the World Wide Web (GERM home page is at http://www-ep.es.llnl. gov/germ/germ-home.html) that is mediated by a series of editors with responsibilities for distinct reservoirs and fluxes. Beginning with the original workshop in Lyons (March 1996) GERM is continued to be developed on the Internet, punctuated by workshops and special sessions at professional meetings. It is planned to complete the first model by mid-1997, followed by a call for papers for a February 1998 GERM conference in La Jolla, California.

  5. Model reference adaptive control of robots

    NASA Technical Reports Server (NTRS)

    Steinvorth, Rodrigo

    1991-01-01

    This project presents the results of controlling two types of robots using new Command Generator Tracker (CGT) based Direct Model Reference Adaptive Control (MRAC) algorithms. Two mathematical models were used to represent a single-link, flexible joint arm and a Unimation PUMA 560 arm; and these were then controlled in simulation using different MRAC algorithms. Special attention was given to the performance of the algorithms in the presence of sudden changes in the robot load. Previously used CGT based MRAC algorithms had several problems. The original algorithm that was developed guaranteed asymptotic stability only for almost strictly positive real (ASPR) plants. This condition is very restrictive, since most systems do not satisfy this assumption. Further developments to the algorithm led to an expansion of the number of plants that could be controlled, however, a steady state error was introduced in the response. These problems led to the introduction of some modifications to the algorithms so that they would be able to control a wider class of plants and at the same time would asymptotically track the reference model. This project presents the development of two algorithms that achieve the desired results and simulates the control of the two robots mentioned before. The results of the simulations are satisfactory and show that the problems stated above have been corrected in the new algorithms. In addition, the responses obtained show that the adaptively controlled processes are resistant to sudden changes in the load.

  6. 1D Modeling of the Initial Stage of Wire Explosions and 2D Modeling of the m=0 Sausage Instability With Sheared Axial Flow

    NASA Astrophysics Data System (ADS)

    Makhin, Volodymyr; Sotnikov, Vladimir; Bauer, Bruno; Lindemuth, Irvin; Sheehey, Peter

    2001-10-01

    1D modeling of the initial state of wire explosions (“cold start” with updated SESAME tables) was examined using 1D version of the Eulerian Magnetohydrodynamic Radiative Code (MHRDR). Simulations were carried out for two regimes: with (black body radiative model) and without radiative losses. Results of the simulations revealed strong dependence of the time of explosion and expansion speed of the wire on the implemented radiative model. This shows that it is necessary to accurately include radiative losses to model “cold start” wire explosions. 2D modeling of the m=0 sausage instability with sheared axial flow. The MHRDR simulations were used to obtain the growth rate of the m=0 sausage instability in plasma column with initial Bennett equilibrium profile with and without shear flow. These growth rates appeared to be in good agreement with growth rates calculated from the linearized MHD equations.

  7. Study of the ion kinetic effects in ICF run-away burn using a quasi-1D hybrid model

    NASA Astrophysics Data System (ADS)

    Huang, C.-K.; Molvig, K.; Albright, B. J.; Dodd, E. S.; Vold, E. L.; Kagan, G.; Hoffman, N. M.

    2017-02-01

    The loss of fuel ions in the Gamow peak and other kinetic effects related to the α particles during ignition, run-away burn, and disassembly stages of an inertial confinement fusion D-T capsule are investigated with a quasi-1D hybrid volume ignition model that includes kinetic ions, fluid electrons, Planckian radiation photons, and a metallic pusher. The fuel ion loss due to the Knudsen effect at the fuel-pusher interface is accounted for by a local-loss model by Molvig et al. [Phys. Rev. Lett. 109, 095001 (2012)] with an albedo model for ions returning from the pusher wall. The tail refilling and relaxation of the fuel ion distribution are captured with a nonlinear Fokker-Planck solver. Alpha heating of the fuel ions is modeled kinetically while simple models for finite alpha range and electron heating are used. This dynamical model is benchmarked with a 3 T hydrodynamic burn model employing similar assumptions. For an energetic pusher (˜40 kJ) that compresses the fuel to an areal density of ˜1.07 g/cm 2 at ignition, the simulation shows that the Knudsen effect can substantially limit ion temperature rise in runaway burn. While the final yield decreases modestly from kinetic effects of the α particles, large reduction of the fuel reactivity during ignition and runaway burn may require a higher Knudsen loss rate compared to the rise time of the temperatures above ˜25 keV when the broad D-T Gamow peak merges into the bulk Maxwellian distribution.

  8. Biomass Scenario Model Documentation: Data and References

    SciTech Connect

    Lin, Y.; Newes, E.; Bush, B.; Peterson, S.; Stright, D.

    2013-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model that represents the entire biomass-to-biofuels supply chain, from feedstock to fuel use. The BSM is a complex model that has been used for extensive analyses; the model and its results can be better understood if input data used for initialization and calibration are well-characterized. It has been carefully validated and calibrated against the available data, with data gaps filled in using expert opinion and internally consistent assumed values. Most of the main data sources that feed into the model are recognized as baseline values by the industry. This report documents data sources and references in Version 2 of the BSM (BSM2), which only contains the ethanol pathway, although subsequent versions of the BSM contain multiple conversion pathways. The BSM2 contains over 12,000 total input values, with 506 distinct variables. Many of the variables are opportunities for the user to define scenarios, while others are simply used to initialize a stock, such as the initial number of biorefineries. However, around 35% of the distinct variables are defined by external sources, such as models or reports. The focus of this report is to provide insight into which sources are most influential in each area of the supply chain.

  9. Convecting reference frames and invariant numerical models

    NASA Astrophysics Data System (ADS)

    Bihlo, Alexander; Nave, Jean-Christophe

    2014-09-01

    In the recent paper by Bernardini et al. [1] the discrepancy in the performance of finite difference and spectral models for simulations of flows with a preferential direction of propagation was studied. In a simplified investigation carried out using the viscous Burgers equation the authors attributed the poorer numerical results of finite difference models to a violation of Galilean invariance in the discretization and propose to carry out the computations in a reference frame moving with the bulk velocity of the flow. Here we further discuss this problem and relate it to known results on invariant discretization schemes. Non-invariant and invariant finite difference discretizations of Burgers equation are proposed and compared with the discretization using the remedy proposed by Bernardini et al.

  10. A Generic 1D Forward Modeling and Inversion Algorithm for TEM Sounding with an Arbitrary Horizontal Loop

    NASA Astrophysics Data System (ADS)

    Li, Zhanhui; Huang, Qinghua; Xie, Xingbing; Tang, Xingong; Chang, Liao

    2016-08-01

    We present a generic 1D forward modeling and inversion algorithm for transient electromagnetic (TEM) data with an arbitrary horizontal transmitting loop and receivers at any depth in a layered earth. Both the Hankel and sine transforms required in the forward algorithm are calculated using the filter method. The adjoint-equation method is used to derive the formulation of data sensitivity at any depth in non-permeable media. The inversion algorithm based on this forward modeling algorithm and sensitivity formulation is developed using the Gauss-Newton iteration method combined with the Tikhonov regularization. We propose a new data-weighting method to minimize the initial model dependence that enhances the convergence stability. On a laptop with a CPU of i7-5700HQ@3.5 GHz, the inversion iteration of a 200 layered input model with a single receiver takes only 0.34 s, while it increases to only 0.53 s for the data from four receivers at a same depth. For the case of four receivers at different depths, the inversion iteration runtime increases to 1.3 s. Modeling the data with an irregular loop and an equal-area square loop indicates that the effect of the loop geometry is significant at early times and vanishes gradually along the diffusion of TEM field. For a stratified earth, inversion of data from more than one receiver is useful in noise reducing to get a more credible layered earth. However, for a resistive layer shielded below a conductive layer, increasing the number of receivers on the ground does not have significant improvement in recovering the resistive layer. Even with a down-hole TEM sounding, the shielded resistive layer cannot be recovered if all receivers are above the shielded resistive layer. However, our modeling demonstrates remarkable improvement in detecting the resistive layer with receivers in or under this layer.

  11. Satellite-derived light extinction coefficient and its impact on thermal structure simulations in a 1-D lake model

    NASA Astrophysics Data System (ADS)

    Zolfaghari, Kiana; Duguay, Claude R.; Kheyrollah Pour, Homa

    2017-01-01

    A global constant value of the extinction coefficient (Kd) is usually specified in lake models to parameterize water clarity. This study aimed to improve the performance of the 1-D freshwater lake (FLake) model using satellite-derived Kd for Lake Erie. The CoastColour algorithm was applied to MERIS satellite imagery to estimate Kd. The constant (0.2 m-1) and satellite-derived Kd values as well as radiation fluxes and meteorological station observations were then used to run FLake for a meteorological station on Lake Erie. Results improved compared to using the constant Kd value (0.2 m-1). No significant improvement was found in FLake-simulated lake surface water temperature (LSWT) when Kd variations in time were considered using a monthly average. Therefore, results suggest that a time-independent, lake-specific, and constant satellite-derived Kd value can reproduce LSWT with sufficient accuracy for the Lake Erie station. A sensitivity analysis was also performed to assess the impact of various Kd values on the simulation outputs. Results show that FLake is sensitive to variations in Kd to estimate the thermal structure of Lake Erie. Dark waters result in warmer spring and colder fall temperatures compared to clear waters. Dark waters always produce colder mean water column temperature (MWCT) and lake bottom water temperature (LBWT), shallower mixed layer depth (MLD), longer ice cover duration, and thicker ice. The sensitivity of FLake to Kd variations was more pronounced in the simulation of MWCT, LBWT, and MLD. The model was particularly sensitive to Kd values below 0.5 m-1. This is the first study to assess the value of integrating Kd from the satellite-based CoastColour algorithm into the FLake model. Satellite-derived Kd is found to be a useful input parameter for simulations with FLake and possibly other lake models, and it has potential for applicability to other lakes where Kd is not commonly measured.

  12. Interpretation of MSL REMS data using 1D coupled heat and water vapor transport model of Mars subsurface

    NASA Astrophysics Data System (ADS)

    Gloesener, Elodie; Karatekin, Özgür; Dehant, Véronique

    2016-04-01

    MSL Rover Environmental Monitoring Station (REMS) performed high-resolution measurements of temperature and relative humidity during more than one Martian year. In this work, a 1D subsurface model is used to study water vapor exchange between the atmosphere and the subsurface at Gale crater using REMS data. The thermal model used includes several layers of varying thickness with depth and properties that can be changed to correspond to those of Martian rocks at locations studied. It also includes the transport of water vapor through porous Martian regolith and the different phases considered are vapor, ice and adsorbed H2O. The total mass flux is given by the sum of diffusive and advective transport. The role of an adsorbing regolith on water transfer as well as the range of parameters with significant effect on water transport in Martian conditions are investigated. In addition, kinetics of the adsorption process is considered to examine its influence on the water vapor exchange between the subsurface and the atmosphere.

  13. Scale up tools in reactive extrusion and compounding processes. Could 1D-computer modeling be helpful?

    NASA Astrophysics Data System (ADS)

    Pradel, J.-L.; David, C.; Quinebèche, S.; Blondel, P.

    2014-05-01

    Industrial scale-up (or scale down) in Compounding and Reactive Extrusion processes is one of the most critical R&D challenges. Indeed, most of High Performances Polymers are obtained within a reactive compounding involving chemistry: free radical grafting, in situ compatibilization, rheology control... but also side reactions: oxidation, branching, chain scission... As described by basic Arrhenius and kinetics laws, the competition between all chemical reactions depends on residence time distribution and temperature. Then, to ensure the best possible scale up methodology, we need tools to match thermal history of the formulation along the screws from a lab scale twin screw extruder to an industrial one. This paper proposes a comparison between standard scale-up laws and the use of Computer modeling Software such as Ludovic® applied and compared to experimental data. Scaling data from a compounding line to another one, applying general rules (for example at constant specific mechanical energy), shows differences between experimental and computed data, and error depends on the screw speed range. For more accurate prediction, 1D-Computer Modeling could be used to optimize the process conditions to ensure the best scale-up product, especially in temperature sensitive reactive extrusion processes. When the product temperature along the screws is the key, Ludovic® software could help to compute the temperature profile along the screws and extrapolate conditions, even screw profile, on industrial extruders.

  14. Progress towards a Venus reference cloud model

    NASA Astrophysics Data System (ADS)

    Wilson, Colin; Ignatiev, Nikolay; Marcq, Emmanuel

    Venus is completely enveloped by clouds. The main cloud layers stretch from altitudes of 48 - 75 km, with additional tenuous hazes found at altitudes 30 - 100 km. Clouds play a crucial role in governing atmospheric circulation, chemistry and climate on all planets, but particularly so on Venus due to the optical thickness of the atmosphere. The European Space Agency’s Venus Express (VEx) satellite has carried out a wealth of observations of Venus clouds since its arrival at Venus in April 2006. Many VEx observations are relevant to cloud science - from imagers and spectrometers to solar, stellar and radio occultation - each covering different altitude ranges, spectral ranges and atmospheric constituents. We have formed an International Team at the International Space Science Institute to bring together scientists from each of the relevant Venus Express investigation teams as well as from previous missions, as well as those developing computational and analytical models of clouds and hazes. The aims of the project are (1) to create self-consistent reference cloud/haze models which capture not only a mean cloud structure but also its main modes of variability; and (2) to bring together modelers and observers, to reach an understanding of clouds and hazes on Venus which matches all observables and is physically consistent. Our approach is to first to assemble an averaged cloud profile for low latitudes, showing how cloud number abundances and other observables vary as a function of altitude, consistent with all available observations. In a second step, we will expand this work to produce a reference cloud profile which varies with latitude and local solar time, as well as optical thickness of the cloud. We will present our status in progressing towards this goal. We acknowledge the support of the International Space Science Institute of Berne, Switzerland, in hosting our Team’s meetings.

  15. Effect of the band structure in a rigorous two-body model with long-range interactions in 1D optical lattices

    NASA Astrophysics Data System (ADS)

    Kristensen, Tom; Simoni, Andrea; Launay, Jean-Michel

    2016-05-01

    We compute scattering and bound state properties for two ultracold molecules in a pure 1D optical lattice. We introduce reference functions with complex quasi-momentum that naturally account for the effect of excited energy bands. Our exact results for a short-range interaction are first compared with the simplest version of the standard Bose-Hubbard (BH) model. Such comparison allows us to highlight the effect of the excited bands, of the non-on-site interaction and of tunneling with distant neighbor, that are not taken into account in the BH model. The effective interaction can depend strongly on the particle quasi-momenta and can present a resonant behavior even in a deep lattice. As a second step, we study scattering of two polar particles in the optical lattice. Peculiar Wigner threshold laws stem from the interplay of the long range dipolar interaction and the presence of the energy bands. We finally assess the validity of an extended Bose-Hubbard model for dipolar gases based on our exact two-body calculations. This work was supported by the Agence Nationale de la Recherche (Contract No. ANR-12-BS04-0020-01).

  16. Limb darkening laws for two exoplanet host stars derived from 3D stellar model atmospheres. Comparison with 1D models and HST light curve observations

    NASA Astrophysics Data System (ADS)

    Hayek, W.; Sing, D.; Pont, F.; Asplund, M.

    2012-03-01

    We compare limb darkening laws derived from 3D hydrodynamical model atmospheres and 1D hydrostatic MARCS models for the host stars of two well-studied transiting exoplanet systems, the late-type dwarfs HD 209458 and HD 189733. The surface brightness distribution of the stellar disks is calculated for a wide spectral range using 3D LTE spectrum formation and opacity sampling⋆. We test our theoretical predictions using least-squares fits of model light curves to wavelength-integrated primary eclipses that were observed with the Hubble Space Telescope (HST). The limb darkening law derived from the 3D model of HD 209458 in the spectral region between 2900 Å and 5700 Å produces significantly better fits to the HST data, removing systematic residuals that were previously observed for model light curves based on 1D limb darkening predictions. This difference arises mainly from the shallower mean temperature structure of the 3D model, which is a consequence of the explicit simulation of stellar surface granulation where 1D models need to rely on simplified recipes. In the case of HD 189733, the model atmospheres produce practically equivalent limb darkening curves between 2900 Å and 5700 Å, partly due to obstruction by spectral lines, and the data are not sufficient to distinguish between the light curves. We also analyze HST observations between 5350 Å and 10 500 Å for this star; the 3D model leads to a better fit compared to 1D limb darkening predictions. The significant improvement of fit quality for the HD 209458 system demonstrates the higher degree of realism of 3D hydrodynamical models and the importance of surface granulation for the formation of the atmospheric radiation field of late-type stars. This result agrees well with recent investigations of limb darkening in the solar continuum and other observational tests of the 3D models. The case of HD 189733 is no contradiction as the model light curves are less sensitive to the temperature stratification of

  17. A 1D Model of Radial Ion Motion Interrupted by Ion–Neutral Interactions in a Cometary Coma

    NASA Astrophysics Data System (ADS)

    Vigren, E.; Eriksson, A. I.

    2017-04-01

    Because ion–neutral reaction cross sections are energy dependent, the distance from a cometary nucleus within which ions remain collisionally coupled to the neutrals is dictated not only by the comet’s activity level but also by the electromagnetic fields in the coma. Here we present a 1D model simulating the outward radial motion of water group ions with radial acceleration by an ambipolar electric field interrupted primarily by charge transfer processes with H2O. We also discuss the impact of plasma waves. For a given electric field profile, the model calculates key parameters, including the total ion density, n I , the H3O+/H2O+ number density and flux ratios, R dens and R flux, and the mean ion drift speed, < {u}I> , as a function of cometocentric distance. We focus primarily on a coma roughly resembling that of the ESA Rosetta mission target comet 67P/Churyumov–Gerasimenko near its perihelion in 2015 August. In the presence of a weak ambipolar electric field in the radial direction the model results suggest that the neutral coma is not sufficiently dense to keep the mean ion flow speed close to that of the neutrals by the spacecraft location (∼200 km from the nucleus). In addition, for electric field profiles giving n I and < {u}I> within limits constrained by measurements, the R dens values are significantly higher than values typically observed. However, when including the ion motion in large-amplitude plasma waves in the model, results more compatible with observations are obtained. We suggest that the variable and often low H3O+/H2O+ number density ratios observed may reflect nonradial ion trajectories strongly influenced by electromagnetic forces and/or plasma instabilities, with energization of the ion population by plasma waves.

  18. An extension of the Savage-Hutter gravity driven granular flow model on arbitrary topography in 1D

    NASA Astrophysics Data System (ADS)

    Fellin, Wolfgang; Ostermann, Alexander; Staggl, Gregor

    2015-04-01

    In an implementation of the Savage-Hutter model in a GIS (geographic information system, e.g. GRASS GIS) curvature terms must be accounted for. We extend the work of Bouchut et al. (2003) to include friction between flowing mass and bed, as well as the active/passive earth pressure coefficient to model the behavior of the granular flow according to the original Savage-Hutter idea. Conservation of mass and momentum in curvilinear coordinates are integrated over the flow height yielding a shallow water model. This work is part of the project avaflow: http://www.avaflow.org/ References: F. Bouchut, A. Mangeney-Castelnau, B. Perthame, J.-P. Vilotte, A new model of Saint Venant and Savage-Hutter type for gravity driven shallow water flows, C.R. Acad. Sci. Paris, série I 336 (2003), 531-536.

  19. A reduced-order model based on the coupled 1D-3D finite element simulations for an efficient analysis of hemodynamics problems

    NASA Astrophysics Data System (ADS)

    Soudah, Eduardo; Rossi, Riccardo; Idelsohn, Sergio; Oñate, Eugenio

    2014-10-01

    A reduced-order model for an efficient analysis of cardiovascular hemodynamics problems using multiscale approach is presented in this work. Starting from a patient-specific computational mesh obtained by medical imaging techniques, an analysis methodology based on a two-step automatic procedure is proposed. First a coupled 1D-3D Finite Element Simulation is performed and the results are used to adjust a reduced-order model of the 3D patient-specific area of interest. Then, this reduced-order model is coupled with the 1D model. In this way, three-dimensional effects are accounted for in the 1D model in a cost effective manner, allowing fast computation under different scenarios. The methodology proposed is validated using a patient-specific aortic coarctation model under rest and non-rest conditions.

  20. A 1D-ecosystem model for pelagic waters in the southern Baltic Sea. Numerical simulations (future decades)

    NASA Astrophysics Data System (ADS)

    Dzierzbicka-Glowacka, L.; Maciejewska, A.; Osiński, R.; Jakacki, J.; Jędrasik, J.

    2009-04-01

    This paper presents a one-dimensional Ecosystem Model. Mathematically, the pelagic variables in the model are described by a second-order partial differential equation of the diffusion type with biogeochemical sources and sinks. The temporal changes in the phytoplankton biomass are caused by primary production, respiration, mortality, grazing by zooplankton and sinking. The zooplankton biomass is affected by ingestion, excretion, respiration, fecal production, mortality, and carnivorous grazing. The changes in the pelagic detritus concentration are determined by input of: dead phytoplankton and zooplankton, natural mortality of predators, fecal pellets, and sinks: sedimentation, zooplankton grazing and decomposition. The nutrient concentration is caused by nutrient release, zooplankton excretion, predator excretion, detritus decomposition and benthic regeneration as sources and by nutrient uptake by phytoplankton as sinks. However, the benthic detritus is described by phytoplankton sedimentation, detritus sedimentation and remineralisation. The particulate organic carbon concentration is determined as the sum of phytoplankton, zooplankton and dead organic matter (detritus) concentrations. The 1D ecosystem model was used to simulate the seasonal dynamics of pelagic variables (phytoplankton, zooplankton, pelagic detritus and POC) in the southern Baltic Sea (Gdańsk Deep, Bornholm Deep and Gotland Deep). The calculations were made assuming: 1) increase in the water temperature in the upper layer - 0.008oC per year, 2) increase in the available light - 0.2% per year. Based on this trend, daily, monthly and seasonal and annual variability of phytoplankton, zooplankton, pelagic detritus and particulate organic carbon in different areas of the southern Baltic Sea (Gdańsk Deep, Borrnholm Deep and Gotland Deep) in the euphotic layer was calculated for the years: 2000, 2010, 2020, 2030, 2040 and 2050.

  1. Automatic 1D integrated geophysical modelling of lithospheric discontinuities: a case study from Carpathian-Pannonian Basin region

    NASA Astrophysics Data System (ADS)

    Grinč, Michal; Zeyen, Hermann; Bielik, Miroslav

    2014-06-01

    Using a very fast 1D method of integrated geophysical modelling, we calculated models of the Moho discontinuity and the lithosphere-asthenosphere boundary in the Carpathian-Pannonian Basin region and its surrounding tectonic units. This method is capable to constrain complicated lithospheric structures by using joint interpretation of different geophysical data sets (geoid and topography) at the same time. The Moho depth map shows significant crustal thickness variations. The thickest crust is found underneath the Carpathian arc and its immediate Foredeep. High values are found in the Eastern Carpathians and Vrancea area (44 km). The thickest crust modelled in the Southern Carpathians is 42 km. The Dinarides crust is characterized by thicknesses more than 40 km. In the East European Platform, crust has a thickness of about 34 km. In the Apuseni Mountains, the depth of the Moho is about 36 km. The Pannonian Basin and the Moesian Platform have thinner crust than the surrounding areas. Here the crustal thicknesses are less than 30 km on average. The thinnest crust can be found in the SE part of the Pannonian Basin near the contact with the Southern Carpathians where it is only 26 km. The thickest lithosphere is placed in the East European Platform, Eastern Carpathians and Southern Carpathians. The East European Platform lithosphere thickness is on average more than 120 km. A strip of thicker lithosphere follows the Eastern Carpathians and its Foredeep, where the values reach in average 160 km. A lithosphere thickness minimum can be observed at the southern border of the Southern Carpathians and in the SE part of the Pannonian Basin. Here, it is only 60 km. The extremely low values of lithospheric thickness in this area were not shown before. The Moesian Platform is characterized by an E-W trend of lithospheric thickness decrease. In the East, the thickness is about 110 km and in the west it is only 80 km. The Pannonian Basin lithospheric thickness ranges from 80 to

  2. A numerical method of reduced complexity for simulating vascular hemodynamics using coupled 0D lumped and 1D wave propagation models.

    PubMed

    Kroon, Wilco; Huberts, Wouter; Bosboom, Marielle; van de Vosse, Frans

    2012-01-01

    A computational method of reduced complexity is developed for simulating vascular hemodynamics by combination of one-dimensional (1D) wave propagation models for the blood vessels with zero-dimensional (0D) lumped models for the microcirculation. Despite the reduced dimension, current algorithms used to solve the model equations and simulate pressure and flow are rather complex, thereby limiting acceptance in the medical field. This complexity mainly arises from the methods used to combine the 1D and the 0D model equations. In this paper a numerical method is presented that no longer requires additional coupling methods and enables random combinations of 1D and 0D models using pressure as only state variable. The method is applied to a vascular tree consisting of 60 major arteries in the body and the head. Simulated results are realistic. The numerical method is stable and shows good convergence.

  3. Proposed reference models for atomic oxygen in the terrestrial atmosphere

    NASA Technical Reports Server (NTRS)

    Llewellyn, E. J.; Mcdade, I. C.; Lockerbie, M. D.

    1989-01-01

    A provisional Atomic Oxygen Reference model was derived from average monthly ozone profiles and the MSIS-86 reference model atmosphere. The concentrations are presented in tabular form for the altitude range 40 to 130 km.

  4. Development of a 1 D hydrodynamic habitat model for the Hippopotamus amphibious as basis for sustainable exploitation of hydroelectric power

    NASA Astrophysics Data System (ADS)

    Manful, D. Y.; Kaule, G.; Wieprecht, S.; Rees, J.; Hu, W.

    2009-12-01

    Hydroelectric Power (HEP) is proving to be a good alternative to carbon based energy. In the past hydropower especially large scale hydro attracted significant criticism as a result of its impact on the environment. A new breed of hydroelectric dam is in the offing. The aim is to have as little a footprint as possible on the environment in both pre and post construction phases and thus minimize impact on biodiversity whilst producing clean renewable energy. The Bui dam is 400 MW scheme currently under development on the Black Volta River in the Bui national park in Ghana. The reservoir created by the Bui barrage is expected to impact (through inundation) the habitat of two species of hippos know to exist in the park, the Hippopotamus amphibius and the Choeropsis liberiensis. Computer-based models present a unique opportunity to assess quantitatively the impact of the new reservoir on the habitat of the target species in this case the H. amphibious. Until this undertaking, there were very few studies documenting the habitat of the H. amphibious let alone model it. The work and subsequent presentation will show the development of a habitat model for the Hippopotamus amphibius. The Habitat Information retrieval Program based on Streamflow Analysis, in short HIPStrA, is a one dimensional (1D) in-stream, spatially explicit hybrid construct that combines physico-chemical evidence and expert knowledge to forecast river habitat suitability (Hs) for the Hippopotamus amphibius. The version of the model presented is specifically developed to assess the impact of a reservoir created by a hydroelectric dam on potential dwelling areas in the Bui gorge for hippos. Accordingly, this version of HIPStrA simulates a special reservoir suitability index (Rsi), a metric that captures the”hippo friendliness” of any lake or reservoir. The impact of measured and simulated flood events as well as low flows, representing extreme events is also assessed. Recommendations are made for the

  5. Episodic-like memory deficits in the APPswe/PS1dE9 mouse model of Alzheimer's disease: relationships to beta-amyloid deposition and neurotransmitter abnormalities.

    PubMed

    Savonenko, Alena; Xu, Guilian M; Melnikova, Tatiana; Morton, Johanna L; Gonzales, Victoria; Wong, Molly P F; Price, Donald L; Tang, Fai; Markowska, Alicja L; Borchelt, David R

    2005-04-01

    Transgenic mice made by crossing animals expressing mutant amyloid precursor protein (APPswe) to mutant presenilin 1 (PS1dE9) allow for incremental increases in Abeta42 production and provide a model of Alzheimer-type amyloidosis. Here, we examine cognition in 6- and 18-month old transgenic mice expressing APPswe and PS1dE9, alone and in combination. Spatial reference memory was assessed in a standard Morris Water Maze task followed by assessment of episodic-like memory in Repeated Reversal and Radial Water maze tasks. We then used factor analysis to relate changes in performance in these tasks with cholinergic markers, somatostatin levels, and amyloid burden. At 6 months of age, APPswe/PS1dE9 double-transgenic mice showed visible plaque deposition; however, all genotypes, including double-transgenic mice, were indistinguishable from nontransgenic animals in all cognitive measures. In the 18-month-old cohorts, amyloid burdens were much higher in APPswe/PS1dE9 mice with statistically significant but mild decreases in cholinergic markers (cortex and hippocampus) and somatostatin levels (cortex). APPswe/PS1dE9 mice performed all cognitive tasks less well than mice from all other genotypes. Factor and correlation analyses defined the strongest correlation as between deficits in episodic-like memory tasks and total Abeta loads in the brain. Collectively, we find that, in the APPswe/PS1dE9 mouse model, some form of Abeta associated with amyloid deposition can disrupt cognitive circuits when the cholinergic and somatostatinergic systems remain relatively intact; and that episodic-like memory seems to be more sensitive to the toxic effects of Abeta.

  6. The International Reference Ionosphere: Model Update 2016

    NASA Astrophysics Data System (ADS)

    Bilitza, Dieter; Altadill, David; Reinisch, Bodo; Galkin, Ivan; Shubin, Valentin; Truhlik, Vladimir

    2016-04-01

    The International Reference Ionosphere (IRI) is recognized as the official standard for the ionosphere (COSPAR, URSI, ISO) and is widely used for a multitude of different applications as evidenced by the many papers in science and engineering journals that acknowledge the use of IRI (e.g., about 11% of all Radio Science papers each year). One of the shortcomings of the model has been the dependence of the F2 peak height modeling on the propagation factor M(3000)F2. With the 2016 version of IRI, two new models will be introduced for hmF2 that were developed directly based on hmF2 measurements by ionosondes [Altadill et al., 2013] and by COSMIC radio occultation [Shubin, 2015], respectively. In addition IRI-2016 will include an improved representation of the ionosphere during the very low solar activities that were reached during the last solar minimum in 2008/2009. This presentation will review these and other improvements that are being implemented with the 2016 version of the IRI model. We will also discuss recent IRI workshops and their findings and results. One of the most exciting new projects is the development of the Real-Time IRI [Galkin et al., 2012]. We will discuss the current status and plans for the future. Altadill, D., S. Magdaleno, J.M. Torta, E. Blanch (2013), Global empirical models of the density peak height and of the equivalent scale height for quiet conditions, Advances in Space Research 52, 1756-1769, doi:10.1016/j.asr.2012.11.018. Galkin, I.A., B.W. Reinisch, X. Huang, and D. Bilitza (2012), Assimilation of GIRO Data into a Real-Time IRI, Radio Science, 47, RS0L07, doi:10.1029/2011RS004952. Shubin V.N. (2015), Global median model of the F2-layer peak height based on ionospheric radio-occultation and ground-based Digisonde observations, Advances in Space Research 56, 916-928, doi:10.1016/j.asr.2015.05.029.

  7. 1D-Var multilayer assimilation of X-band SAR data into a detailed snowpack model

    NASA Astrophysics Data System (ADS)

    Phan, X. V.; Ferro-Famil, L.; Gay, M.; Durand, Y.; Dumont, M.; Morin, S.; Allain, S.; D'Urso, G.; Girard, A.

    2014-10-01

    The structure and physical properties of a snowpack and their temporal evolution may be simulated using meteorological data and a snow metamorphism model. Such an approach may meet limitations related to potential divergences and accumulated errors, to a limited spatial resolution, to wind or topography-induced local modulations of the physical properties of a snow cover, etc. Exogenous data are then required in order to constrain the simulator and improve its performance over time. Synthetic-aperture radars (SARs) and, in particular, recent sensors provide reflectivity maps of snow-covered environments with high temporal and spatial resolutions. The radiometric properties of a snowpack measured at sufficiently high carrier frequencies are known to be tightly related to some of its main physical parameters, like its depth, snow grain size and density. SAR acquisitions may then be used, together with an electromagnetic backscattering model (EBM) able to simulate the reflectivity of a snowpack from a set of physical descriptors, in order to constrain a physical snowpack model. In this study, we introduce a variational data assimilation scheme coupling TerraSAR-X radiometric data into the snowpack evolution model Crocus. The physical properties of a snowpack, such as snow density and optical diameter of each layer, are simulated by Crocus, fed by the local reanalysis of meteorological data (SAFRAN) at a French Alpine location. These snowpack properties are used as inputs of an EBM based on dense media radiative transfer (DMRT) theory, which simulates the total backscattering coefficient of a dry snow medium at X and higher frequency bands. After evaluating the sensitivity of the EBM to snowpack parameters, a 1D-Var data assimilation scheme is implemented in order to minimize the discrepancies between EBM simulations and observations obtained from TerraSAR-X acquisitions by modifying the physical parameters of the Crocus-simulated snowpack. The algorithm then re

  8. Basin infilling of a schematic 1D estuary using two different approaches: an aggregate diffusive type model and a processed based model.

    NASA Astrophysics Data System (ADS)

    Laginha Silva, Patricia; Martins, Flávio A.; Boski, Tomász; Sampath, Dissanayake M. R.

    2010-05-01

    processes. In this viewpoint the system is broken down into its fundamental components and processes and the model is build up by selecting the important processes regardless of its time and space scale. This viewpoint was only possible to pursue in the recent years due to improvement in system knowledge and computer power (Paola, 2000). The primary aim of this paper is to demonstrate that it is possible to simulate the evolution of the sediment river bed, traditionally studied with synthetic models, with a process-based hydrodynamic, sediment transport and morphodynamic model, solving explicitly the mass and momentum conservation equations. With this objective, a comparison between two mathematical models for alluvial rivers is made to simulate the evolution of the sediment river bed of a conceptual 1D embayment for periods in the order of a thousand years: the traditional synthetic basin infilling aggregate diffusive type model based on the diffusion equation (Paola, 2000), used in the "synthesist" viewpoint and the process-based model MOHID (Miranda et al., 2000). The simulation of the sediment river bed evolution achieved by the process-based model MOHID is very similar to those obtained by the diffusive type model, but more complete due to the complexity of the process-based model. In the MOHID results it is possible to observe a more comprehensive and realistic results because this type of model include processes that is impossible to a synthetic model to describe. At last the combined effect of tide, sea level rise and river discharges was investigated in the process based model. These effects cannot be simulated using the diffusive type model. The results demonstrate the feasibility of using process based models to perform studies in scales of 10000 years. This is an advance relative to the use of synthetic models, enabling the use of variable forcing. REFERENCES • Briggs, L.I. and Pollack, H.N., 1967. Digital model of evaporate sedimentation. Science, 155, 453

  9. A marching in space and time (MAST) solver of the shallow water equations. Part I: The 1D model

    NASA Astrophysics Data System (ADS)

    Aricò, C.; Tucciarelli, T.

    2007-05-01

    A new approach is presented for the numerical solution of the complete 1D Saint-Venant equations. At each time step, the governing system of partial differential equations (PDEs) is split, using a fractional time step methodology, into a convective prediction system and a diffusive correction system. Convective prediction system is further split into a convective prediction and a convective correction system, according to a specified approximated potential. If a scalar exact potential of the flow field exists, correction vanishes and the solution of the convective correction system is the same solution of the prediction system. Both convective prediction and correction systems are shown to have at each x - t point a single characteristic line, and a corresponding eigenvalue equal to the local velocity. A marching in space and time (MAST) technique is used for the solution of the two systems. MAST solves a system of two ordinary differential equations (ODEs) in each computational cell, using for the time discretization a self-adjusting fraction of the original time step. The computational cells are ordered and solved according to the decreasing value of the potential in the convective prediction step and to the increasing value of the same potential in the convective correction step. The diffusive correction system is solved using an implicit scheme, that leads to the solution of a large linear system, with the same order of the cell number, but sparse, symmetric and well conditioned. The numerical model shows unconditional stability with regard of the Courant-Friedrichs-Levi (CFL) number, requires no special treatment of the source terms and a computational effort almost proportional to the cell number. Several tests have been carried out and results of the proposed scheme are in good agreement with analytical solutions, as well as with experimental data.

  10. Virtual Reference Transcript Analysis: A Few Models.

    ERIC Educational Resources Information Center

    Smyth, Joanne

    2003-01-01

    Describes the introduction of virtual, or digital, reference service at the University of New Brunswick libraries. Highlights include analyzing transcripts from LIVE (Library Information in a Virtual Environment); reference question types; ACRL (Association of College and Research Libraries) information literacy competency standards; and the Big 6…

  11. An Ideological Analysis of Digital Reference Service Models.

    ERIC Educational Resources Information Center

    Dilevko, Juris

    2001-01-01

    Looks at some of the new paradigms for reference service, in particular the ideological implications of the digital reference call-center model, demonstrates how they lead to a "deprofessionalization" of reference work, and provides examples of how extensive reading can help reference librarians provide better service and become an…

  12. Numerical modeling of humic colloid borne americium (III) migration in column experiments using the transport/speciation code K1D and the KICAM model.

    PubMed

    Schüssler, W; Artinger, R; Kim, J I; Bryan, N D; Griffin, D

    2001-02-01

    The humic colloid borne Am(III) transport was investigated in column experiments for Gorleben groundwater/sand systems. It was found that the interaction of Am with humic colloids is kinetically controlled, which strongly influences the migration behavior of Am(III). These kinetic effects have to be taken into account for transport/speciation modeling. The kinetically controlled availability model (KICAM) was developed to describe actinide sorption and transport in laboratory batch and column experiments. Application of the KICAM requires a chemical transport/speciation code, which simultaneously models both kinetically controlled processes and equilibrium reactions. Therefore, the code K1D was developed as a flexible research code that allows the inclusion of kinetic data in addition to transport features and chemical equilibrium. This paper presents the verification of K1D and its application to model column experiments investigating unimpeded humic colloid borne Am migration. Parmeters for reactive transport simulations were determined for a Gorleben groundwater system of high humic colloid concentration (GoHy 2227). A single set of parameters was used to model a series of column experiments. Model results correspond well to experimental data for the unretarded humic borne Am breakthrough.

  13. Numerical modeling of humic colloid borne Americium (III) migration in column experiments using the transport/speciation code K1D and the KICAM model

    NASA Astrophysics Data System (ADS)

    Schüßler, W.; Artinger, R.; Kim, J. I.; Bryan, N. D.; Griffin, D.

    2001-02-01

    The humic colloid borne Am(III) transport was investigated in column experiments for Gorleben groundwater/sand systems. It was found that the interaction of Am with humic colloids is kinetically controlled, which strongly influences the migration behavior of Am(III). These kinetic effects have to be taken into account for transport/speciation modeling. The kinetically controlled availability model (KICAM) was developed to describe actinide sorption and transport in laboratory batch and column experiments. Application of the KICAM requires a chemical transport/speciation code, which simultaneously models both kinetically controlled processes and equilibrium reactions. Therefore, the code K1D was developed as a flexible research code that allows the inclusion of kinetic data in addition to transport features and chemical equilibrium. This paper presents the verification of K1D and its application to model column experiments investigating unimpeded humic colloid borne Am migration. Parameters for reactive transport simulations were determined for a Gorleben groundwater system of high humic colloid concentration (GoHy 2227). A single set of parameters was used to model a series of column experiments. Model results correspond well to experimental data for the unretarded humic borne Am breakthrough.

  14. From Anti-greenhouse Effect of Solar Absorbers to Cooling Effect of Greenhouse Gases: A 1-D Radiative Convective Model Study

    NASA Astrophysics Data System (ADS)

    Shia, R.

    2012-12-01

    The haze layer in Titan's upper atmosphere absorbs 90% of the solar radiation, but is inefficient for trapping infrared radiation generated by the surface. Its existence partially compensates for the greenhouse warming and keeps the surface approximately 9°C cooler than would otherwise be expected from the greenhouse effect alone. This is the so called anti-greenhouse effect (McKay et al., 1991). This effect can be used to alleviate the warming caused by the increasing level of greenhouse gases in the Earth's atmosphere. A one-dimensional radiative convective model (Kasting et al., 2009 and references listed there) is used to investigate the anti-greenhouse effect in the Earth atmosphere. Increasing of solar absorbers, e.g. aerosols and ozone, in the stratosphere reduces the surface solar flux and cool the surface. However, the absorption of the solar flux also increases the temperature in the upper atmosphere, while reduces the temperature at the surface. Thus, the temperature profile of the atmosphere changes and the regions with positive vertical temperature gradient are expanded. According to Shia (2010) the radiative forcing of greenhouse gases is directly related to the vertical temperature gradient. Under the new temperature profile increases of greenhouse gases should have less warming effect. When the solar absorbers keep increasing, eventually most of the atmosphere has positive temperature gradient and increasing greenhouse gases would cool the surface (Shia, 2011). The doubling CO2 scenario in the Earth atmosphere is simulated for different levels of solar absorbers using the 1-D RC model. The model results show that if the solar absorber increases to a certain level that less than 50% solar flux reaching the surface, doubling CO2 cools the surface by about 2 C. This means if the snowball Earth is generated by solar absorbers in the stratosphere, increasing greenhouse gases would make it freeze even more (Shia, 2011). References: Kasting, J. et al

  15. Model-Based Least Squares Reconstruction of Coded Source Neutron Radiographs: Integrating the ORNL HFIR CG1D Source Model

    SciTech Connect

    Santos-Villalobos, Hector J; Gregor, Jens; Bingham, Philip R

    2014-01-01

    At the present, neutron sources cannot be fabricated small and powerful enough in order to achieve high resolution radiography while maintaining an adequate flux. One solution is to employ computational imaging techniques such as a Magnified Coded Source Imaging (CSI) system. A coded-mask is placed between the neutron source and the object. The system resolution is increased by reducing the size of the mask holes and the flux is increased by increasing the size of the coded-mask and/or the number of holes. One limitation of such system is that the resolution of current state-of-the-art scintillator-based detectors caps around 50um. To overcome this challenge, the coded-mask and object are magnified by making the distance from the coded-mask to the object much smaller than the distance from object to detector. In previous work, we have shown via synthetic experiments that our least squares method outperforms other methods in image quality and reconstruction precision because of the modeling of the CSI system components. However, the validation experiments were limited to simplistic neutron sources. In this work, we aim to model the flux distribution of a real neutron source and incorporate such a model in our least squares computational system. We provide a full description of the methodology used to characterize the neutron source and validate the method with synthetic experiments.

  16. A simple 1-D radiative-convective atmospheric model designed for integration into coupled models of magma ocean planets

    NASA Astrophysics Data System (ADS)

    Marcq, E.

    2012-01-01

    In order to understand the early history of telluric interiors and atmospheres during the ocean magma stage, a coupled interior-atmosphere-escape model is being developed. This paper describes the atmospheric part and its first preliminary results. A unidimensional, radiative-convective, H2O-CO2 atmosphere is modeled following a vertical T(z) profile similar to Kasting (1988) and Abe and Matsui (1988). Opacities in the thermal IR are then computed using a k-correlated code (KSPECTRUM), tabulated continuum opacities for H2O-H2O and CO2-CO2 absorption, and water or sulphuric acid clouds in the moist convective zone (whenever present). The first results show the existence of two regimes depending on the relative value of the surface temperature Ts compared to a threshold temperature Tc depending on the total gaseous inventory. For Ts < Tc, efficient blanketing results in a cool upper atmosphere, a cloud cover, and a long lifetime for the underneath magma ocean with a net thermal IR flux between 160 and 200 Wm-2. For Ts > Tc, the blanketing is not efficient enough to prevent large radiative heat loss to space through a hot, cloudless atmosphere. Our current calculations may underestimate the thermal flux in the case of hot surfaces with little gaseous content in the atmosphere.

  17. The Roles of RNA Polymerase I and III Subunits Polr1c and Polr1d in Craniofacial Development and in Zebrafish Models of Treacher Collins Syndrome

    PubMed Central

    Achilleos, Annita; Neben, Cynthia L.; Merrill, Amy E.; Trainor, Paul A.

    2016-01-01

    Ribosome biogenesis is a global process required for growth and proliferation of all cells, yet perturbation of ribosome biogenesis during human development often leads to tissue-specific defects termed ribosomopathies. Transcription of the ribosomal RNAs (rRNAs) by RNA polymerases (Pol) I and III, is considered a rate limiting step of ribosome biogenesis and mutations in the genes coding for RNA Pol I and III subunits, POLR1C and POLR1D cause Treacher Collins syndrome, a rare congenital craniofacial disorder. Our understanding of the functions of individual RNA polymerase subunits, however, remains poor. We discovered that polr1c and polr1d are dynamically expressed during zebrafish embryonic development, particularly in craniofacial tissues. Consistent with this pattern of activity, polr1c and polr1d homozygous mutant zebrafish exhibit cartilage hypoplasia and cranioskeletal anomalies characteristic of humans with Treacher Collins syndrome. Mechanistically, we discovered that polr1c and polr1d loss-of-function results in deficient ribosome biogenesis, Tp53-dependent neuroepithelial cell death and a deficiency of migrating neural crest cells, which are the primary progenitors of the craniofacial skeleton. More importantly, we show that genetic inhibition of tp53 can suppress neuroepithelial cell death and ameliorate the skeletal anomalies in polr1c and polr1d mutants, providing a potential avenue to prevent the pathogenesis of Treacher Collins syndrome. Our work therefore has uncovered tissue-specific roles for polr1c and polr1d in rRNA transcription, ribosome biogenesis, and neural crest and craniofacial development during embryogenesis. Furthermore, we have established polr1c and polr1d mutant zebrafish as models of Treacher Collins syndrome together with a unifying mechanism underlying its pathogenesis and possible prevention. PMID:27448281

  18. Mapping fractures using 1D anisotropic modelling of magnetotelluric data: a case study from the Otway Basin, Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Kirkby, A.; Heinson, G.; Holford, S.; Thiel, S.

    2015-06-01

    We present 1D anisotropic inversion of magnetotelluric (MT) data as a potential tool for mapping structural permeability in sedimentary basins. Using 1D inversions of a 171 site, broadband MT data set from the Koroit region of the Otway Basin, Victoria, Australia, we have delineated an electrically anisotropic layer at approximately 2.5 to 3.5 km depth. The anisotropy strike is consistent between stations at approximately 160° east of north. The depth of anisotropy corresponds to the top depth of the Lower Cretaceous Crayfish Group, and the anisotropy factor increases from west to east. We interpret the anisotropy as resulting from north-northwest oriented, fluid-filled fractures resulting in enhanced electrical and hydraulic conductivity. This interpretation is consistent with permeability data from well formation tests. It is also consistent with the orientation of mapped faults in the area, which are optimally oriented for reactivation in the current stress field.

  19. Sensitivity testing of a 1-D calving criterion numerical model constrained by observations of post-LIA fluctuations of Kangiata Nunaata Sermia, SW Greenland

    NASA Astrophysics Data System (ADS)

    Lea, J. M.; Mair, D.; Nick, F. M.; Rea, B. R.; Schofield, E.; Nienow, P. W.

    2012-12-01

    The ability to successfully model the behaviour of Greenlandic tidewater glaciers is pivotal for the prediction of future behaviour and potential impact on global sea level. However, to have confidence in the results of numerical models, they must be capable of replicating the full range of observed glacier behaviour (i.e. both advance and retreat) when realistic forcings are applied. Due to the paucity of observational records recording this behaviour, it is therefore necessary to verify calving models against reconstructions of glacier dynamics. The dynamics of Kangiata Nunaata Sermia (KNS) can be reconstructed with a high degree of detail using a combination of sedimentological and geomorphological evidence, photographs, historical sources and satellite imagery. Since the LIA-maximum KNS has retreated a total of 21 km with multiple phases of rapid retreat evident between topographic pinning points. A readvance attaining a position 9 km from the current terminus associated with the '1920 stade' is also identified. KNS therefore represents an ideal test location for calving models since it has both advanced and retreated over known timescales, while the scale of fluctuations implies KNS is sensitive to parameter(s) controlling terminus stability. Using the known stable positions for verification, we present the results of an array of sensitivity tests conducted on KNS using the 1-D flowband calving model of Nick et al (2009). The model is initially tuned to an historically stable position where the glacier configuration is accurately known (in this case 1985), and forced by varying surface mass balance, crevasse water depth, submarine melt rate at the calving front, in addition to the strength and pervasiveness of sikussak in the fjord. Successive series of experiments were run using each parameter to test model sensitivity to the initial conditions of each variable. Results indicate that the model is capable of stabilising at locations that are in agreement with

  20. VizieR Online Data Catalog: A grid of 1D low-mass star formation models (Vaytet+, 2017)

    NASA Astrophysics Data System (ADS)

    Vaytet, N.; Haugbolle, T.

    2016-11-01

    We ran 143 1D simulations of gravitationally collapsing Bonnor-Ebert spheres, varying the initial mass, radius and temperature of the parent cloud. The properties of the first and second Larson cores are reported. The simulation outputs for each run are provided (one separate file per snapshot), as well as the initial parameters and core properties in a summary tablec1.dat. All the data from the simulations (figures and raw data for every output) are publicly available at this address: http://starformation.hpc.ku.dk/grid-of-protostars. (2 data files).

  1. Validating a 0D predator-prey model for LH Transition with its 1D-2D supersets: effects of heating and fueling on Hysteresis and transition dynamics

    NASA Astrophysics Data System (ADS)

    Malkov, Mikhail; Diamond, Patrick; Miki, Kazuhiro

    2013-10-01

    The LH transition crucially depends on the heat and particle deposition, transport and electric field shear suppression. Despite the inhomogeneity of these phenomena, a popular 0D predator-prey model seems to capture the essential transition dynamics, including the limit cycle pre-H-mode oscillations (or I-mode). However, its predictions regarding hysteresis are inconclusive. This is understandable at least because of the known deep fuel lowering of the transition threshold. The readily available fueling devices are the edge neutral penetration and an internal deposition via the supersonic molecular beam injection (SMBI). This suggests a minimal extension of the 0D model by using bi-modal particle distributions. To formulate this extension accurately, a step-by-step comparison with a 1D treatment is required. Fortunately a suitable 1D numerical model has been recently developed specifically for the LH transition studies. In this work, we use the 1D model for the following purposes. First, we explore fueling effects as occurring both by edge neutral penetration, and internal deposition (SMBI) at a finite depth within the separatrix. Second, as the 0D model responds positively to the oscillating heating power, we include a periodic repetitive SMBI firing. Supported by the US DoE.

  2. A blood circulation model for reference man

    SciTech Connect

    Leggett, R.W.; Eckerman, K.F.; Williams, L.R.

    1996-12-31

    A dynamic blood circulation model that predicts the movement and gradual dispersion of a bolus of material in the circulation after its intravenous injection into an adult human. The main purpose of the model is improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The model partitions the blood volume into 24 separate organs or tissues, right heart chamber, left heart chamber, pulmonary circulation, arterial outflow to the aorta and large arteries, and venous return via the large veins. Model results were compared to data obtained from injection of carbon 11 labeled carbon monoxide or rubidium 86.

  3. Gender-Specific Hippocampal Dysrhythmia and Aberrant Hippocampal and Cortical Excitability in the APPswePS1dE9 Model of Alzheimer's Disease

    PubMed Central

    Papazoglou, Anna; Soos, Julien; Lundt, Andreas; Wormuth, Carola; Ginde, Varun Raj; Müller, Ralf; Henseler, Christina; Broich, Karl; Xie, Kan

    2016-01-01

    Alzheimer's disease (AD) is a multifactorial disorder leading to progressive memory loss and eventually death. In this study an APPswePS1dE9 AD mouse model has been analyzed using implantable video-EEG radiotelemetry to perform long-term EEG recordings from the primary motor cortex M1 and the hippocampal CA1 region in both genders. Besides motor activity, EEG recordings were analyzed for electroencephalographic seizure activity and frequency characteristics using a Fast Fourier Transformation (FFT) based approach. Automatic seizure detection revealed severe electroencephalographic seizure activity in both M1 and CA1 deflection in APPswePS1dE9 mice with gender-specific characteristics. Frequency analysis of both surface and deep EEG recordings elicited complex age, gender, and activity dependent alterations in the theta and gamma range. Females displayed an antithetic decrease in theta (θ) and increase in gamma (γ) power at 18-19 weeks of age whereas related changes in males occurred earlier at 14 weeks of age. In females, theta (θ) and gamma (γ) power alterations predominated in the inactive state suggesting a reduction in atropine-sensitive type II theta in APPswePS1dE9 animals. Gender-specific central dysrhythmia and network alterations in APPswePS1dE9 point to a functional role in behavioral and cognitive deficits and might serve as early biomarkers for AD in the future. PMID:27840743

  4. Modeling Cross-Situational Word-Referent Learning: Prior Questions

    ERIC Educational Resources Information Center

    Yu, Chen; Smith, Linda B.

    2012-01-01

    Both adults and young children possess powerful statistical computation capabilities--they can infer the referent of a word from highly ambiguous contexts involving many words and many referents by aggregating cross-situational statistical information across contexts. This ability has been explained by models of hypothesis testing and by models of…

  5. Turbulence Modeling in Non-Inertial Frames of Reference,

    DTIC Science & Technology

    1988-03-01

    40-R193 962 TURBULENCE MODELING IN NON-INERTIAL FRAMES OF REFERENCE 1Iii (U) INSTITUTE FOR COMPUTER APLICATIONS IN SCIENCE AND ENGINERIN C G MPEZIALE...0ICASE r TURBULENCE MODELING IN NON-INE&TIAL ~ FRANKS OF REFERENCE D1C SELECD Charles G. Spezial* APR0 81D Contract No. NASI-18107 March 1988 Vr oum

  6. Ice Concentration Retrieval in Stratiform Mixed-phase Clouds Using Cloud Radar Reflectivity Measurements and 1D Ice Growth Model Simulations

    SciTech Connect

    Zhang, Damao; Wang, Zhien; Heymsfield, Andrew J.; Fan, Jiwen; Luo, Tao

    2014-10-01

    Measurement of ice number concentration in clouds is important but still challenging. Stratiform mixed-phase clouds (SMCs) provide a simple scenario for retrieving ice number concentration from remote sensing measurements. The simple ice generation and growth pattern in SMCs offers opportunities to use cloud radar reflectivity (Ze) measurements and other cloud properties to infer ice number concentration quantitatively. To understand the strong temperature dependency of ice habit and growth rate quantitatively, we develop a 1-D ice growth model to calculate the ice diffusional growth along its falling trajectory in SMCs. The radar reflectivity and fall velocity profiles of ice crystals calculated from the 1-D ice growth model are evaluated with the Atmospheric Radiation Measurements (ARM) Climate Research Facility (ACRF) ground-based high vertical resolution radar measurements. Combining Ze measurements and 1-D ice growth model simulations, we develop a method to retrieve the ice number concentrations in SMCs at given cloud top temperature (CTT) and liquid water path (LWP). The retrieved ice concentrations in SMCs are evaluated with in situ measurements and with a three-dimensional cloud-resolving model simulation with a bin microphysical scheme. These comparisons show that the retrieved ice number concentrations are within an uncertainty of a factor of 2, statistically.

  7. NASREN: Standard reference model for telerobot control

    NASA Technical Reports Server (NTRS)

    Albus, J. S.; Lumia, R.; Mccain, H.

    1987-01-01

    A hierarchical architecture is described which supports space station telerobots in a variety of modes. The system is divided into three hierarchies: task decomposition, world model, and sensory processing. Goals at each level of the task dedomposition heirarchy are divided both spatially and temporally into simpler commands for the next lower level. This decomposition is repreated until, at the lowest level, the drive signals to the robot actuators are generated. To accomplish its goals, task decomposition modules must often use information stored it the world model. The purpose of the sensory system is to update the world model as rapidly as possible to keep the model in registration with the physical world. The architecture of the entire control system hierarch is described and how it can be applied to space telerobot applications.

  8. Near-infrared spectro-interferometry of Mira variables and comparisons to 1D dynamic model atmospheres and 3D convection simulations

    NASA Astrophysics Data System (ADS)

    Wittkowski, M.; Chiavassa, A.; Freytag, B.; Scholz, M.; Höfner, S.; Karovicova, I.; Whitelock, P. A.

    2016-03-01

    Aims: We aim at comparing spectro-interferometric observations of Mira variable asymptotic giant branch (AGB) stars with the latest 1D dynamic model atmospheres based on self-excited pulsation models (CODEX models) and with 3D dynamic model atmospheres including pulsation and convection (CO5BOLD models) to better understand the processes that extend the molecular atmosphere to radii where dust can form. Methods: We obtained a total of 20 near-infrared K-band spectro-interferometric snapshot observations of the Mira variables o Cet, R Leo, R Aqr, X Hya, W Vel, and R Cnc with a spectral resolution of about 1500. We compared observed flux and visibility spectra with predictions by CODEX 1D dynamic model atmospheres and with azimuthally averaged intensities based on CO5BOLD 3D dynamic model atmospheres. Results: Our visibility data confirm the presence of spatially extended molecular atmospheres located above the continuum radii with large-scale inhomogeneities or clumps that contribute a few percent of the total flux. The detailed structure of the inhomogeneities or clumps show a variability on time scales of 3 months and above. Both modeling attempts provided satisfactory fits to our data. In particular, they are both consistent with the observed decrease in the visibility function at molecular bands of water vapor and CO, indicating a spatially extended molecular atmosphere. Observational variability phases are mostly consistent with those of the best-fit CODEX models, except for near-maximum phases, where data are better described by near-minimum models. Rosseland angular diameters derived from the model fits are broadly consistent between those based on the 1D and the 3D models and with earlier observations. We derived fundamental parameters including absolute radii, effective temperatures, and luminosities for our sources. Conclusions: Our results provide a first observational support for theoretical results that shocks induced by convection and pulsation in the

  9. A blood circulation model for reference man

    SciTech Connect

    Leggett, R.W.; Eckerman, K.F.; Williams, L.R.

    1999-01-01

    This paper describes a dynamic blood circulation model that predicts the movement and gradual dispersal of a bolus of material in the circulation after its intravascular injection into an adult human. The main purpose of the model is to improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The total blood volume is partitioned into the blood contents of 24 separate organs or tissues, right heart chambers, left heart chambers, pulmonary circulation, arterial outflow to the systemic tissues (aorta and large arteries), and venous return from the systemic tissues (large veins). As a compromise between physical reality and computational simplicity, the circulation of blood is viewed as a system of first-order transfers between blood pools, with the delay time depending on the mean transit time across the pool. The model allows consideration of incomplete, tissue-dependent extraction of material during passage through the circulation and return of material from tissues to plasma.

  10. Dairy gas emissions model: reference manual

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Dairy Gas Emissions Model (DairyGEM) is a software tool for estimating ammonia, hydrogen sulfide, and greenhouse gas (GHG) emissions of dairy production systems as influenced by climate and farm management. A production system is defined to include emissions during the production of all feeds wh...

  11. Behavioral Reference Model for Pervasive Healthcare Systems.

    PubMed

    Tahmasbi, Arezoo; Adabi, Sahar; Rezaee, Ali

    2016-12-01

    The emergence of mobile healthcare systems is an important outcome of application of pervasive computing concepts for medical care purposes. These systems provide the facilities and infrastructure required for automatic and ubiquitous sharing of medical information. Healthcare systems have a dynamic structure and configuration, therefore having an architecture is essential for future development of these systems. The need for increased response rate, problem limited storage, accelerated processing and etc. the tendency toward creating a new generation of healthcare system architecture highlight the need for further focus on cloud-based solutions for transfer data and data processing challenges. Integrity and reliability of healthcare systems are of critical importance, as even the slightest error may put the patients' lives in danger; therefore acquiring a behavioral model for these systems and developing the tools required to model their behaviors are of significant importance. The high-level designs may contain some flaws, therefor the system must be fully examined for different scenarios and conditions. This paper presents a software architecture for development of healthcare systems based on pervasive computing concepts, and then models the behavior of described system. A set of solutions are then proposed to improve the design's qualitative characteristics including, availability, interoperability and performance.

  12. Anomalous Fourier's Law and Long Range Correlations in a 1D Non-momentum Conserving Mechanical Model

    NASA Astrophysics Data System (ADS)

    Gerschenfeld, A.; Derrida, B.; Lebowitz, J. L.

    2010-12-01

    We study by means of numerical simulations the velocity reversal model, a one-dimensional mechanical model of heat transport introduced in 1985 by Ianiro and Lebowitz. Our numerical results indicate that this model, which does not conserve momentum, exhibits nevertheless an anomalous Fourier's law similar to the ones previously observed in momentum-conserving models. This disagrees with what can be expected by solving the Boltzmann equation (BE) for this system. The pair correlation velocity field also looks very different from the correlations usually seen in diffusive systems, and shares some similarity with those of momentum-conserving heat transport models.

  13. Developing a Model To Provide Digital Reference Services.

    ERIC Educational Resources Information Center

    Stemper, James A.; Butler, John T.

    2001-01-01

    Presents an organizational model for providing digital reference services to all users who access the library remotely that was developed for distance learners at the University of Minnesota-Twin Cities library. Describes the planning and implementation process, and discusses organizational change issues and the value of digital reference services…

  14. Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements

    PubMed Central

    Alastruey, Jordi; Khir, Ashraf W.; Matthys, Koen S.; Segers, Patrick; Sherwin, Spencer J.; Verdonck, Pascal R.; Parker, Kim H.; Peiró, Joaquim

    2011-01-01

    The accuracy of the nonlinear one-dimensional (1-D) equations of pressure and flow wave propagation in Voigt-type visco-elastic arteries was tested against measurements in a well-defined experimental 1:1 replica of the 37 largest conduit arteries in the human systemic circulation. The parameters required by the numerical algorithm were directly measured in the in vitro setup and no data fitting was involved. The inclusion of wall visco-elasticity in the numerical model reduced the underdamped high-frequency oscillations obtained using a purely elastic tube law, especially in peripheral vessels, which was previously reported in this paper [Matthys et al., 2007. Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements. J. Biomech. 40, 3476–3486]. In comparison to the purely elastic model, visco-elasticity significantly reduced the average relative root-mean-square errors between numerical and experimental waveforms over the 70 locations measured in the in vitro model: from 3.0% to 2.5% (p<0.012) for pressure and from 15.7% to 10.8% (p<0.002) for the flow rate. In the frequency domain, average relative errors between numerical and experimental amplitudes from the 5th to the 20th harmonic decreased from 0.7% to 0.5% (p<0.107) for pressure and from 7.0% to 3.3% (p<10−6) for the flow rate. These results provide additional support for the use of 1-D reduced modelling to accurately simulate clinically relevant problems at a reasonable computational cost. PMID:21724188

  15. Coupling WEPP and 3ST1D models for improved prediction of flow and sediment transport at watershed scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watershed modeling is a key component of watershed management that involves the simulation of hydrological and fluvial processes for predicting flow and sediment transport within a watershed. For practical purposes, most numerical models have been developed to simulate either runoff and soil erosion...

  16. The IERS Conventions (2010): reference systems and new models

    NASA Astrophysics Data System (ADS)

    Luzum, B.; Petit, G.

    2015-03-01

    The IERS Conventions (2010) provides the international standard for models for use in the generation of celestial reference systems (CRS), terrestrial reference systems (TRS), and the Earth orientation parameters (EOPs) that relate the associated frames. Significant improvements over the previous IERS Conventions (2003) are outlined, and an overview of the latest adopted models and standards is shown. Finally, future plans for the Conventions are provided.

  17. Differences in Water Vapor Radiative Transfer among 1D Models Can Significantly Affect the Inner Edge of the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Leconte, Jérémy; Wolf, Eric T.; Goldblatt, Colin; Feldl, Nicole; Merlis, Timothy; Wang, Yuwei; Koll, Daniel D. B.; Ding, Feng; Forget, François; Abbot, Dorian S.

    2016-08-01

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4_Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μm) and in the region between 0.2 and 1.5 μm. Differences in outgoing longwave radiation increase with surface temperature and reach 10-20 W m-2 differences in shortwave reach up to 60 W m-2, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m-2 in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.

  18. Status of the solar and infrared radiation submodels in the LLNL 1-D and 2-D chemical-transport models

    SciTech Connect

    Grant, K.E.; Taylor, K.E.; Ellis, J.S.; Wuebbles, D.J.

    1987-07-01

    The authors have implemented a series of state of the art radiation transport submodels in previously developed one dimensional and two dimensional chemical transport models of the troposphere and stratosphere. These submodels provide the capability of calculating accurate solar and infrared heating rates. They are a firm basis for further radiation submodel development as well as for studying interactions between radiation and model dynamics under varying conditions of clear sky, clouds, and aerosols. 37 refs., 3 figs.

  19. Coupling 1D Navier Stokes equation with autoregulation lumped parameter networks for accurate cerebral blood flow modeling

    NASA Astrophysics Data System (ADS)

    Ryu, Jaiyoung; Hu, Xiao; Shadden, Shawn C.

    2014-11-01

    The cerebral circulation is unique in its ability to maintain blood flow to the brain under widely varying physiologic conditions. Incorporating this autoregulatory response is critical to cerebral blood flow modeling, as well as investigations into pathological conditions. We discuss a one-dimensional nonlinear model of blood flow in the cerebral arteries that includes coupling of autoregulatory lumped parameter networks. The model is tested to reproduce a common clinical test to assess autoregulatory function - the carotid artery compression test. The change in the flow velocity at the middle cerebral artery (MCA) during carotid compression and release demonstrated strong agreement with published measurements. The model is then used to investigate vasospasm of the MCA, a common clinical concern following subarachnoid hemorrhage. Vasospasm was modeled by prescribing vessel area reduction in the middle portion of the MCA. Our model showed similar increases in velocity for moderate vasospasms, however, for serious vasospasm (~ 90% area reduction), the blood flow velocity demonstrated decrease due to blood flow rerouting. This demonstrates a potentially important phenomenon, which otherwise would lead to false-negative decisions on clinical vasospasm if not properly anticipated.

  20. Using an improved 1D boundary layer model with CFD for flux prediction in gas-sparged tubular membrane ultrafiltration.

    PubMed

    Smith, R; Taha, T; Cui, Z F

    2005-01-01

    Tubular membrane ultrafiltration and microfiltration are important industrial separation and concentration processes. Process optimisation requires reduction of membrane build-up. Gas slug introduction has been shown to be a useful approach for flux enhancement. However, process quantification is required for design and optimisation. In this work we employ a non-porous wall CFD model to quantify hydrodynamics in the two-phase slug flow process. Mass transfer is subsequently quantified from wall shear stress, which was determined from the CFD. The mass transfer model is an improved one-dimensional boundary layer model, which empirically incorporates effects of wall suction and analytically includes edge effects for circular conduits. Predicted shear stress profiles are in agreement with experimental results and flux estimates prove more reliable than that from previous models. Previous models ignored suction effects and employed less rigorous fluid property inclusion, which ultimately led to under-predictive flux estimates. The presented model offers reliable process design and optimisation criteria for gas-sparged tubular membrane ultrafiltration.

  1. Guide to solar reference spectra and irradiance models

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent

    The international standard for determining solar irradiances was published by the International Standards Organization (ISO) in May 2007. The document, ISO 21348 Space Environment (natural and artificial) - Process for determining solar irradiances, describes the process for representing solar irradiances. We report on the next progression of standards work, i.e., the development of a guide that identifies solar reference spectra and irradiance models for use in engineering design or scientific research. This document will be produced as an AIAA Guideline and ISO Technical Report. It will describe the content of the reference spectra and models, uncertainties and limitations, technical basis, data bases from which the reference spectra and models are formed, publication references, and sources of computer code for reference spectra and solar irradiance models, including those which provide spectrally-resolved lines as well as solar indices and proxies and which are generally recognized in the solar sciences. The document is intended to assist aircraft and space vehicle designers and developers, heliophysicists, geophysicists, aeronomers, meteorologists, and climatologists in understanding available models, comparing sources of data, and interpreting engineering and scientific results based on different solar reference spectra and irradiance models.

  2. Measuring the Compliance of Processes with Reference Models

    NASA Astrophysics Data System (ADS)

    Gerke, Kerstin; Cardoso, Jorge; Claus, Alexander

    Reference models provide a set of generally accepted best practices to create efficient processes to be deployed inside organizations. However, a central challenge is to determine how these best practices are implemented in practice. One limitation of existing approaches for measuring compliance is the assumption that the compliance can be determined using the notion of process equivalence. Nonetheless, the use of equivalence algorithms is not adequate since two models can have different structures but one process can still be compliant with the other. This paper presents a new approach and algorithm which allow to measure the compliance of process models with reference models. We evaluate our approach by measuring the compliance of a model currently used by a German passenger airline with the IT Infrastructure Library (ITIL) reference model and by comparing our results with existing approaches.

  3. The impact of soil moisture on the spin up of 1-D Noah land surface model at a site in monsoonal region

    NASA Astrophysics Data System (ADS)

    Bhattacharya, A.; Mandal, M.

    2014-12-01

    Model spin-up is the process through which the model is adequately equilibrated to ensure balance between the mass fields and velocity fields. In this study, an offline 1-D Noah land surface model (LSM) has been used to investigate the impact of soil moisture on the model spin up at Kharagpur, India which is a site in monsoonal region. The model is integrated recursively for 3-years to assess its spin-up behavior. Several numerical experiments are performed to investigate the impact of initial soil moisture and subsequent dry or wet condition on model spin-up. These include simulations with different initial soil moisture content (observed soil moisture; dry soil; moderately wet soil; saturated soil), simulations initialized before different rain conditions (no rain; infrequent rain; continuous rain) and simulations initialized in different seasons (Winter, Spring, Summer/Pre-Monsoon, Monsoon and Autumn). It is noted that the model has significantly longer spin-up when initialized with very low initial soil moisture content than with higher soil moisture content. It is also seen that in general, simulations initialized just before a continuous rainfall event have the least spin-up time. In a region affected by the monsoon, such as Kharagpur, this observation is reinforced by the results from the simulations initialized in different seasons. It is seen that for monsoonal region, the model spin-up time is least for simulations initialized during Summer/Pre-monsoon. Model initialized during the Monsoon has a longer spin-up than that initialized in any other season. It appears that the model has shorter spin-up if it reaches the equilibrium state predominantly via drying process. It is also observed that the spin-up of offline 1-D Noah LSM may be as low as two months under quasi-equilibrium condition if the initial soil moisture content and time of start of simulations are chosen carefully.

  4. Establishing the Capability of a 1D SVAT Modelling Scheme in Predicting Key Biophysical Vegetation Characterisation Parameters

    NASA Astrophysics Data System (ADS)

    Ireland, Gareth; Petropoulos, George P.; Carlson, Toby N.; Purdy, Sarah

    2015-04-01

    Sensitivity analysis (SA) consists of an integral and important validatory check of a computer simulation model before it is used to perform any kind of analysis. In the present work, we present the results from a SA performed on the SimSphere Soil Vegetation Atmosphere Transfer (SVAT) model utilising a cutting edge and robust Global Sensitivity Analysis (GSA) approach, based on the use of the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) tool. The sensitivity of the following model outputs was evaluated: the ambient CO2 concentration and the rate of CO2 uptake by the plant, the ambient O3 concentration, the flux of O3 from the air to the plant/soil boundary, and the flux of O3 taken up by the plant alone. The most sensitive model inputs for the majority of model outputs were related to the structural properties of vegetation, namely, the Leaf Area Index, Fractional Vegetation Cover, Cuticle Resistance and Vegetation Height. External CO2 in the leaf and the O3 concentration in the air input parameters also exhibited significant influence on model outputs. This work presents a very important step towards an all-inclusive evaluation of SimSphere. Indeed, results from this study contribute decisively towards establishing its capability as a useful teaching and research tool in modelling Earth's land surface interactions. This is of considerable importance in the light of the rapidly expanding use of this model worldwide, which also includes research conducted by various Space Agencies examining its synergistic use with Earth Observation data towards the development of operational products at a global scale. This research was supported by the European Commission Marie Curie Re-Integration Grant "TRANSFORM-EO". SimSphere is currently maintained and freely distributed by the Department of Geography and Earth Sciences at Aberystwyth University (http://www.aber.ac.uk/simsphere). Keywords: CO2 flux, ambient CO2, O3 flux, SimSphere, Gaussian process emulators

  5. Exact First-Passage Exponents of 1D Domain Growth: Relation to a Reaction-Diffusion Model

    NASA Astrophysics Data System (ADS)

    Derrida, Bernard; Hakim, Vincent; Pasquier, Vincent

    1995-07-01

    In the zero temperature Glauber dynamics of the ferromagnetic Ising or q-state Potts model, the size of domains is known to grow like t1/2. Recent simulations have shown that the fraction r\\(q,t\\) of spins, which have never flipped up to time t, decays like the power law r\\(q,t\\)~t-θ\\(q\\) with a nontrivial dependence of the exponent θ\\(q\\) on q and on space dimension. By mapping the problem on an exactly soluble one-species coagulation model ( A+A-->A), we obtain the exact expression of θ\\(q\\) in dimension one.

  6. Improved Large-Scale Inundation Modelling by 1D-2D Coupling and Consideration of Hydrologic and Hydrodynamic Processes - a Case Study in the Amazon

    NASA Astrophysics Data System (ADS)

    Hoch, J. M.; Bierkens, M. F.; Van Beek, R.; Winsemius, H.; Haag, A.

    2015-12-01

    Understanding the dynamics of fluvial floods is paramount to accurate flood hazard and risk modeling. Currently, economic losses due to flooding constitute about one third of all damage resulting from natural hazards. Given future projections of climate change, the anticipated increase in the World's population and the associated implications, sound knowledge of flood hazard and related risk is crucial. Fluvial floods are cross-border phenomena that need to be addressed accordingly. Yet, only few studies model floods at the large-scale which is preferable to tiling the output of small-scale models. Most models cannot realistically model flood wave propagation due to a lack of either detailed channel and floodplain geometry or the absence of hydrologic processes. This study aims to develop a large-scale modeling tool that accounts for both hydrologic and hydrodynamic processes, to find and understand possible sources of errors and improvements and to assess how the added hydrodynamics affect flood wave propagation. Flood wave propagation is simulated by DELFT3D-FM (FM), a hydrodynamic model using a flexible mesh to schematize the study area. It is coupled to PCR-GLOBWB (PCR), a macro-scale hydrological model, that has its own simpler 1D routing scheme (DynRout) which has already been used for global inundation modeling and flood risk assessments (GLOFRIS; Winsemius et al., 2013). A number of model set-ups are compared and benchmarked for the simulation period 1986-1996: (0) PCR with DynRout; (1) using a FM 2D flexible mesh forced with PCR output and (2) as in (1) but discriminating between 1D channels and 2D floodplains, and, for comparison, (3) and (4) the same set-ups as (1) and (2) but forced with observed GRDC discharge values. Outputs are subsequently validated against observed GRDC data at Óbidos and flood extent maps from the Dartmouth Flood Observatory. The present research constitutes a first step into a globally applicable approach to fully couple

  7. Non-thermal O/1D/ produced by dissociative recombination of O2/+/ - A theoretical model and observational results. [in earth atmosphere

    NASA Technical Reports Server (NTRS)

    Schmitt, G. A.; Abreu, V. J.; Hays, P. B.

    1981-01-01

    Thermal and nonthermal O(1D) number density profiles are calculated. The two populations are assumed to be coupled by a thermalization cross-section which determines the loss and production in the nonthermal and thermal populations, respectively. The sources, sinks and transport of the two populations are used to model volume emission rate profiles at 6300 A. The 6300 A brightness measured by the Visible Airglow Experiment is then used to establish the presence of the nonthermal population and to determine the thermalization cross-section.

  8. Can a partially molten metasedimentary sequence convect? Insights from the El Oro Complex (Ecuador) and 1D thermal modelling.

    NASA Astrophysics Data System (ADS)

    Riel, Nicolas; Mercier, Jonathan

    2014-05-01

    It is now widely accepted that the formation and the evolution of high elevation plateaus such as the Tibet and the Altiplano-Puna are strongly linked to mantel magma underplating at crustal root level and partial melting of the lower crust. Understanding the rheological behavior of the deep continental crust during these episodes is therefore crucial to constrain the evolution of such plateau. In this study we present results obtained from pressure-temperature estimates and thermal modeling of gabbro underplating at crustal root level (25km) in the El Oro Metamorphic Complex (Ecuador). The aim of this study is: (1) to complete previously published P-Tmax estimates in the northern part of the migmatitic unit, close to the magmatic contact with the gabbroic unit, to obtain better constraints on the metamorphic gradient during partial melting, (2) to characterize the effects of melt extraction, latent heat capture and release and a temperature-dependent thermal diffusivity on the thermal evolution of the system using a specifically developed numerical model, and (3) in the light of the thermal modeling results, to discuss the geological processes involved during partial melting of the metasedimentary crust. Our modeling results show that the estimate metamorphic gradient cannot be reproduced when solely taking into account latent heat, melt extraction and thermal-dependent diffusivity. In the light of geological, geochemical and modeling evidence we show that the lower migmatitic unit, controlled by biotite-dehydration melting reactions was subject to convective motion that contributed to lower the metamorphic gradient and rapidly transfer heat upward. For a biotite-rich rock (~20%) containing 15-20% of melt, we estimate the maximum viscosity of the rock that allows convection at ~7.5e17 Pa.s. Our results also suggest that convection can be maintained as long as heat is provided and that temperature lies in the stability field of biotite-dehydration melting (750-900°C).

  9. Cognitive Modeling of Individual Variation in Reference Production and Comprehension

    PubMed Central

    Hendriks, Petra

    2016-01-01

    A challenge for most theoretical and computational accounts of linguistic reference is the observation that language users vary considerably in their referential choices. Part of the variation observed among and within language users and across tasks may be explained from variation in the cognitive resources available to speakers and listeners. This paper presents a computational model of reference production and comprehension developed within the cognitive architecture ACT-R. Through simulations with this ACT-R model, it is investigated how cognitive constraints interact with linguistic constraints and features of the linguistic discourse in speakers’ production and listeners’ comprehension of referring expressions in specific tasks, and how this interaction may give rise to variation in referential choice. The ACT-R model of reference explains and predicts variation among language users in their referential choices as a result of individual and task-related differences in processing speed and working memory capacity. Because of limitations in their cognitive capacities, speakers sometimes underspecify or overspecify their referring expressions, and listeners sometimes choose incorrect referents or are overly liberal in their interpretation of referring expressions. PMID:27092101

  10. Integrating models to simulate emergent behaviour: effects of organic matter on soil hydraulics in the ICZ-1D soil-vegetation model

    NASA Astrophysics Data System (ADS)

    Valstar, Johan; Rowe, Ed; Konstantina, Moirogiorgou; Giannakis, Giorgos; Nikolaidis, Nikolaos

    2014-05-01

    explore the complex interactions involved in soil development and change. We were unable to identify appropriately-detailed existing models for plant productivity and for the dynamics of soil aggregation and porosity, and so developed the PROSUM and CAST models, respectively, to simulate these subsystems. Moreover, we applied the BRNS generator to obtain a chemical equilibrium model. These were combined with HYDRUS-1D (water and solute transport), a weathering model (derived from the SAFE model) and a simple bioturbation model. The model includes several feedbacks, such as the effect of soil organic matter on water retention and hydraulic conductivity. We encountered several important challenges when building the integrated model. First, a mechanism was developed that initiates the execution of a single time step for an individual sub-model and accounts for the relevant mass transfers between sub-models. This allows for different and sometimes variable time step duration in the submodels. Secondly, we removed duplicated processes and identified and included relevant solute production terms that had been neglected. The model is being tested against datasets obtained from several Soil Critical Zone Observatories in Europe. This contribution focuses on the design strategy for the model.

  11. Solid-liquid interdiffusion (SLID) bonding in the Au-In system: experimental study and 1D modelling

    NASA Astrophysics Data System (ADS)

    Deillon, Léa; Hessler-Wyser, Aïcha; Hessler, Thierry; Rappaz, Michel

    2015-12-01

    Au-In bonds with a nominal composition of about 60 at.% In were fabricated for use in wafer-level packaging of MEMS. The microstructure of the bonds was studied by scanning electron microscopy. The bond hermeticity was then assessed using oxidation of Cu thin discs predeposited within the sealed packages. The three intermetallic compounds AuIn2, AuIn and Au7In3 were observed. Their thickness evolution during bonding and after subsequent heat treatment was successfully modelled using a finite difference model of diffusion, thermodynamic data and diffusion coefficients calibrated from isothermal diffusion couples. 17% of the packages were hermetic and, although the origin of the leaks could not be clearly identified, it appeared that hermeticity was correlated with the unevenness of the metallisation and/or wafer and the fact that the bonds shrink due to density differences as the relative fractions of the various phases gradually evolve.

  12. VizieR Online Data Catalog: Grid of 1D models for Mg line formation (Osorio+, 2016)

    NASA Astrophysics Data System (ADS)

    Osorio, Y.; Barklem, P. S.

    2015-11-01

    Table mgnlte.dat provides equivalent widths in LTE and non-LTE for 19 MgI spectral lines calculated in 3859 stellar atmospheres and using 21 Mg abundance per star. These data can be used to calculate abundance corrections in a broad variety of stellar models and Mg enhancements in a consistent way. The tables in data/* provides departure coefficients of the LEVEL in 10563 stellar atmospheres at 56 depth points in the atmosphere and using 21 Mg abundance values per star. These data can be used to calculate abundance corrections in a broad variety of stellar models and Mg enhancements in a consistent way. The format of the departure coefficients is the unit-less value of the ratio between the nlte and lte population of the level LEVEL of Mg. (3 data files).

  13. The 1D parabolic-parabolic Patlak-Keller-Segel model of chemotaxis: The particular integrable case and soliton solution

    NASA Astrophysics Data System (ADS)

    Shubina, Maria

    2016-09-01

    In this paper, we investigate the one-dimensional parabolic-parabolic Patlak-Keller-Segel model of chemotaxis. For the case when the diffusion coefficient of chemical substance is equal to two, in terms of travelling wave variables the reduced system appears integrable and allows the analytical solution. We obtain the exact soliton solutions, one of which is exactly the one-soliton solution of the Korteweg-de Vries equation.

  14. Coastal fog prediction with a coupled model (1D+3D) system using the data from a 300 m met tower as input

    NASA Astrophysics Data System (ADS)

    Kim, W.; Yum, S. S.

    2015-12-01

    Visibility degradation due to fog can be very hazardous both to ground transportation and aviation traffic. However, prediction of fog using numerical models is difficult because fog formation is usually determined by local meteorological conditions that are hard to be measured and modeled with sufficient resolution. For this reason, there have been several attempts to build a coupled system of a fine resolution 1D model and a 3D mesoscale model with a usual grid resolution. In this study we uses the coupled system of the 1D PAFOG model and the 3D WRF model to simulate fogs formed at a southern coastal region of Korea, where the National Center for Intensive Observation of Severe Weather (NCIO) is located. Unique to NCIO is that it has a 300 m meteorological tower on which some basic meteorological variables (temperature, dew point temperature and winds) are measured at eleven different altitudes. In addition comprehensive cloud physics measurements are made with various remote sensing instruments such as cloud radar, wind profiler, microwave radiometer, micro rain radar. Several fog cases are identified during 2015 and will be simulated by the coupled system. The comprehensive set of measurement data from NCIO will be utilized as input to the model system and for evaluating the results. Particularly the data for initial and boundary conditions, which are tightly connected to the coupled model predictability, are extracted from the tower measurement. Furthermore, various sensitivity experiments will be done to enhance our understanding of the coastal fog formation mechanism. Detailed results will be discussed at the conference.

  15. Evaluation of Bulk Charging in Geostationary Transfer Orbit and Earth Escape Trajectories Using the Numit 1-D Charging Model

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Coffey, Victoria N.; Parker, Linda N.; Blackwell, William C., Jr.; Jun, Insoo; Garrett, Henry B.

    2007-01-01

    The NUMIT 1-dimensional bulk charging model is used as a screening to ol for evaluating time-dependent bulk internal or deep dielectric) ch arging of dielectrics exposed to penetrating electron environments. T he code is modified to accept time dependent electron flux time serie s along satellite orbits for the electron environment inputs instead of using the static electron flux environment input originally used b y the code and widely adopted in bulk charging models. Application of the screening technique ts demonstrated for three cases of spacecraf t exposure within the Earth's radiation belts including a geostationa ry transfer orbit and an Earth-Moon transit trajectory for a range of orbit inclinations. Electric fields and charge densities are compute d for dielectric materials with varying electrical properties exposed to relativistic electron environments along the orbits. Our objectiv e is to demonstrate a preliminary application of the time-dependent e nvironments input to the NUMIT code for evaluating charging risks to exposed dielectrics used on spacecraft when exposed to the Earth's ra diation belts. The results demonstrate that the NUMIT electric field values in GTO orbits with multiple encounters with the Earth's radiat ion belts are consistent with previous studies of charging in GTO orb its and that potential threat conditions for electrostatic discharge exist on lunar transit trajectories depending on the electrical proper ties of the materials exposed to the radiation environment.

  16. Study of fog characteristics by using the 1-D COBEL model at the airport of Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Stolaki, S.; Pytharoulis, I.; Karacostas, T.

    2010-07-01

    An attempt is made to couple the one dimensional COBEL - ISBA (COuche Brouillard Eau Liquide - Interactions Soil Biosphere Atmosphere) model with the WRF (Weather Research and Forecasting) numerical weather prediction model. This accomplishment will improve the accuracy on the short-term forecasting of fog events, which is of paramount importance -mainly to the airway companies, the airports functioning and the community as well- and will provide the means for the implementation of extensive studies of fog events formed at the "Macedonia" airport of Thessaloniki. Numerical experiments have been performed to study in depth the thermodynamic structure and the microphysical characteristics of the fog event that was formed on 06/01/2010. Moreover, the meteorological conditions -under the influence of which- the fog event was formed are also investigated. Sensitivity tests with respect to the initial conditions of temperature, relative humidity and geostrophic wind speed profiles have been performed to illustrate the model’s performance. Dew deposition rates have also been examined in order to test the importance of it on controlling the fog formation. The numerical results have been compared with actual measurements and the findings have been evaluated and discussed.

  17. Transient runoff-runon model for a 1-D slope with random infiltrability: flow statistics and connectivity

    NASA Astrophysics Data System (ADS)

    Harel, Marie-Alice; Mouche, Emmanuel

    2015-04-01

    Despite the recent research focused on runoff pattern connectivity in hydrology, there is a surprising lack of theoretical knowledge regarding hillslope runoff generation and dynamics during a rainfall event. The transient problem is especially unaddressed. In this paper we propose a model based on queueing theory formalism for the infiltration-excess overland flow generation on soils with random infiltration properties. The influence of rainfall intensity and duration on runoff dynamics and connectivity is studied thanks to this model, numerical simulation and available steady-state results. We limit our study to a rainfall intensity that is a rectangular function of time. Exact solutions for the case of spatially random exponential distributions of soil infiltrability and rainfall intensity are developed. Simulations validate these analytical results and allow for the study the rising and recession limbs of the hydrograph for different rainfall characteristics. The case of a deterministic uniform rainfall rate and different infiltrability distributions is also discussed in light of runoff connectivity. We show that the connectivity framework contributes to a better understanding and prediction of runoff pattern formation and evolution with time. A fragmented overland flow is shown to have shorter charge and discharge periods after the onset and offset of rainfall compared to well connected runoff fields. These results demonstrate that the transient regime characteristics are linked with connectivity parameters, rainstorm properties and scale issues.

  18. A Reference Model for Virtual Machine Launching Overhead

    SciTech Connect

    Wu, Hao; Ren, Shangping; Garzoglio, Gabriele; Timm, Steven; Bernabeu, Gerard; Chadwick, Keith; Noh, Seo-Young

    2014-01-01

    Cloud bursting is one of the key research topics in the cloud computing communities. A well designed cloud bursting module enables private clouds to automatically launch virtual machines (VMs) to public clouds when more resources are needed. One of the main challenges in developing a cloud bursting module is to decide when and where to launch a VM so that all resources are most effectively and efficiently utilized and the system performance is optimized. However, based on system operational data obtained from FermiCloud, a private cloud developed by the Fermi National Accelerator Laboratory for scientific workflows, the VM launching overhead is not a constant. It varies with physical resource utilization, such as CPU and I/O device utilizations, at the time when a VM is launched. Hence, to make judicious decisions as to when and where a VM should be launched, a VM launching overhead reference model is needed. In this paper, we first develop a VM launching overhead reference model based on operational data we have obtained on FermiCloud. Second, we apply the developed reference model on FermiCloud and compare calculated VM launching overhead values based on the model with measured overhead values on FermiCloud. Our empirical results on FermiCloud indicate that the developed reference model is accurate. We believe, with the guidance of the developed reference model, efficient resource allocation algorithms can be developed for cloud bursting process to minimize the operational cost and resource waste.

  19. Reference aquaplanet climate in the Community Atmosphere Model, Version 5

    NASA Astrophysics Data System (ADS)

    Medeiros, Brian; Williamson, David L.; Olson, Jerry G.

    2016-03-01

    Fundamental characteristics of the aquaplanet climate simulated by the Community Atmosphere Model, Version 5.3 (CAM5.3) are presented. The assumptions and simplifications of the configuration are described. A 16 year long, perpetual equinox integration with prescribed SST using the model's standard 1° grid spacing is presented as a reference simulation. Statistical analysis is presented that shows similar aquaplanet configurations can be run for about 2 years to obtain robust climatological structures, including global and zonal means, eddy statistics, and precipitation distributions. Such a simulation can be compared to the reference simulation to discern differences in the climate, including an assessment of confidence in the differences. To aid such comparisons, the reference simulation has been made available via earthsystemgrid.org. Examples are shown comparing the reference simulation with simulations from the CAM5 series that make different microphysical assumptions and use a different dynamical core.

  20. Nodal-line pairing with 1D-3D coupled Fermi surfaces: A model motivated by Cr-based superconductors

    NASA Astrophysics Data System (ADS)

    Wachtel, Gideon; Kim, Yong Baek

    2016-09-01

    Motivated by the recent discovery of a new family of chromium-based superconductors, we consider a two-band model, where a band of electrons dispersing only in one direction interacts with a band of electrons dispersing in all three directions. Strong 2 kf density fluctuations in the one-dimensional band induces attractive interactions between the three-dimensional electrons, which, in turn, makes the system superconducting. Solving the associated Eliashberg equations, we obtain a gap function which is peaked at the "poles" of the three-dimensional Fermi sphere, and decreases towards the "equator." When strong enough local repulsion is included, the gap actually changes sign around the equator and nodal rings are formed. These nodal rings manifest themselves in several experimentally observable quantities, some of which resemble unconventional observations in the newly discovered superconductors which motivated this work.

  1. Dimuon radiation at relativistic energies available at the CERN Super Proton Synchrotron within a (3 + 1)D hydrodynamic + cascade model

    SciTech Connect

    Santini, E.; Steinheimer, J.; Bleicher, M.; Schramm, S.

    2011-07-15

    We analyze dilepton emission from hot and dense matter using a hybrid approach based on the ultrarelativistic quantum molecular dynamics (UrQMD) transport model with an intermediate hydrodynamic stage for the description of heavy-ion collisions at relativistic energies. During the hydrodynamic stage, the production of lepton pairs is described by radiation rates for a strongly interacting medium in thermal equilibrium. In the low-mass region, hadronic thermal emission is evaluated by assuming vector meson dominance including in-medium modifications of the {rho} meson spectral function through scattering from nucleons and pions in the heat bath. In the intermediate-mass region, the hadronic rate is essentially determined by multipion annihilation processes. Emission from quark-antiquark annihilation in the quark gluon plasma (QGP) is taken into account as well. When the system is sufficiently dilute, the hydrodynamic description breaks down and a transition to a final cascade stage is performed. In this stage dimuon emission is evaluated as commonly done in transport models. By focusing on the enhancement with respect to the contribution from long-lived hadron decays after freezeout observed at the SPS in the low-mass region of the dilepton spectra, the relative importance of the different thermal contributions and of the two dynamical stages is investigated. We find that three separated regions can be identified in the invariant mass spectra. Whereas the very low and the intermediate-mass regions mostly receive contribution from the thermal dilepton emission, the region around the vector meson peak is dominated by the cascade emission. Above the {rho}-peak region the spectrum is driven by QGP radiation. Analysis of the dimuon transverse mass spectra reveals that the thermal hadronic emission shows an evident mass ordering not present in the emission from the QGP. A comparison of our calculation to recent acceptance-corrected NA60 data on invariant as well as

  2. Proposed ozone reference models for the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Keating, G. M.; Young, D. F.

    Since the publication of the last COSPAR International Reference Atmosphere (CIRA 72), large amounts of ozone data acquired from satellites have become available in addition to increasing quantities of rocketsonde, balloonsonde, Dobson, M83, and Umkehr measurements. From the available archived satellite data, models are developed for the new CIRA using 5 satellite experiments (Nimbus 7 SBUV and LIMS, AEM-2 SAGE, and SME IR and UVS) of the monthly latitudinal and altitudinal variations in the ozone mixing ratio in the middle atmosphere. Standard deviations and interannual variations are also quantified. The satellite models are shown to agree well with a previous reference model based on rocket and balloon measurements.

  3. Model predictive control for tracking randomly varying references

    NASA Astrophysics Data System (ADS)

    Falugi, Paola

    2015-04-01

    This paper proposes a model predictive control scheme for tracking a-priori unknown references varying in a wide range and analyses its performance. It is usual to assume that the reference eventually converges to a constant in which case convergence to zero of the tracking error can be established. In this note we remove this simplifying assumption and characterise the set to which the tracking error converges and the associated region of convergence.

  4. Mitochondrial dynamics changes with age in an APPsw/PS1dE9 mouse model of Alzheimer’s disease

    PubMed Central

    Xu, Lin-Lin; Shen, Yang; Wang, Xiao; Wei, Li-Fei; Wang, Ping; Yang, Hui; Wang, Cun-Fu; Xie, Zhao-Hong

    2017-01-01

    Increasing research suggests that mitochondrial defects play a major role in Alzheimer’s disease (AD) pathogenesis. We aimed to better understand changes in mitochondria with the development and progression of AD. We compared APPsw/PS1dE9 transgenic mice at 3, 6, 9, and 12 months old as an animal model of AD and age-matched C57BL/6 mice as controls. The learning ability and spatial memory ability of APPsw/PS1dE9 mice showed significant differences compared with controls until 9 and 12 months. Mitochondrial morphology was altered in hippocampus tissue of APPsw/PS1dE9 mice beginning from the third month. ‘Medullary corpuscle’, which is formed by the accumulation of a large amount of degenerative and fragmented mitochondria in neuropils, may be the characteristic change observed on electron microscopy at a late stage of AD. Moreover, levels of mitochondrial fusion proteins (optic atrophy 1 and mitofusin 2) and fission proteins (dynamin-related protein 1 and fission 1) were altered in transgenic mice compared with controls with progression of AD. We found increased levels of fission and fusion proteins in APP/PS1 mice at 3 months, indicating that the presence of abnormal mitochondrial dynamics may be events in early AD progression. Changes in mitochondrial preceded the onset of memory decline as measured by the modified Morris water maze test. Abnormal mitochondrial dynamics could be a marker for early diagnosis of AD and monitoring disease progression. Further research is needed to study the signaling pathways that govern mitochondrial fission/fusion in AD. PMID:28118288

  5. A comparison of 1D analytical model and 3D finite element analysis with experiments for a rosen-type piezoelectric transformer.

    PubMed

    Boukazouha, F; Poulin-Vittrant, G; Tran-Huu-Hue, L P; Bavencoffe, M; Boubenider, F; Rguiti, M; Lethiecq, M

    2015-07-01

    This article is dedicated to the study of Piezoelectric Transformers (PTs), which offer promising solutions to the increasing need for integrated power electronics modules within autonomous systems. The advantages offered by such transformers include: immunity to electromagnetic disturbances; ease of miniaturisation for example, using conventional micro fabrication processes; and enhanced performance in terms of voltage gain and power efficiency. Central to the adequate description of such transformers is the need for complex analytical modeling tools, especially if one is attempting to include combined contributions due to (i) mechanical phenomena owing to the different propagation modes which differ at the primary and secondary sides of the PT; and (ii) electrical phenomena such as the voltage gain and power efficiency, which depend on the electrical load. The present work demonstrates an original one-dimensional (1D) analytical model, dedicated to a Rosen-type PT and simulation results are successively compared against that of a three-dimensional (3D) Finite Element Analysis (COMSOL Multiphysics software) and experimental results. The Rosen-type PT studied here is based on a single layer soft PZT (P191) with corresponding dimensions 18 mm × 3 mm × 1.5 mm, which operated at the second harmonic of 176 kHz. Detailed simulational and experimental results show that the presented 1D model predicts experimental measurements to within less than 10% error of the voltage gain at the second and third resonance frequency modes. Adjustment of the analytical model parameters is found to decrease errors relative to experimental voltage gain to within 1%, whilst a 2.5% error on the output admittance magnitude at the second resonance mode were obtained. Relying on the unique assumption of one-dimensionality, the present analytical model appears as a useful tool for Rosen-type PT design and behavior understanding.

  6. Comparison of ground-based UV irradiance measurements with satellite-derived values and 1-D- and 3-D-radiative transfer model calculations in mountainous terrain

    NASA Astrophysics Data System (ADS)

    Wagner, J. E.; Arola, A.; Blumthaler, M.; Fitzka, M.; Kift, R.; Kreuter, A.; Rieder, H. E.; Simic, S.; Webb, A.; Weihs, P.

    2009-04-01

    Since the discovery of anthropogenic ozone depletion more than 30 year ago, the scientific community has shown an increasing interest in UV-B radiation. Nowadays, ground-based high quality measurements of spectrally resolved UV-radiation are available. On the other hand, 1-D- and 3-D models have been developed, that describe the radiative transfer through the atmosphere physically very accurately. Another approach for determining the UV-irradiance at the surface of the earth is the use of satellite-based reflectance measurements as input for retrieval algorithms. At the moment, the research focuses on the impact of clouds on UV-radiation, but the impact of mountains on UV-radiation, especially in combination with high surface albedo due to snowcover, is also very strong and detailed comparisons between measurements and modelling are lacking. Therefore, three measurement campaigns had been conducted in alpine areas of Austria (Innsbruck and Hoher Sonnblick). The goal was to investigate the impact of alpine terrain in combination with snowcover on spectral UV-irradiance and actinic flux. This contribution uses the ground-based UV-irradiance measurements to evaluate three different UV-irradiance calculation methods. Results from three different calculation methods (satellite retrieval, 1-D- and 3-D radiative transfer model) for UV radiation in terms of UV-Index, erythemally weighted daily doses and spectrally resolved UV-Irradiance at 305, 310, 324 and 380nm are presented and compared with ground-based high quality measurements. The real case study is performed in very inhomogenous terrain under clear sky conditions. The values of the different methods are not only compared for the measurements sites, but additionally the impact of altitude is investigated. So far it seems, that 1-D simulations show the best agreement (±10%) with the measurements whereas the 3-D model simulations and satellite retrieved values differ much more. Satellite retrieved values

  7. Extensions to the CIRA reference models for middle atmosphere ozone

    NASA Astrophysics Data System (ADS)

    Keating, G. M.; Chen, C.

    1993-01-01

    The recent ozone reference models generated for the new COSPAR CIRA include ozone vertical structure from 25 to 90 km as a function of month and latitude based on five satellite experiments. The new model provided here extends the ozone vertical structure climatology from 20 mb (about 25 km) to 70 mb (about 18 km) based on three years of recently reprocessed AEM-2 SAGE I (sunset) data. In addition, model refinements are made at altitudes above 25 km based on the reprocessed data. Comparisons are made between the ozone reference models and nonsatellite data sets. The model extensions to lower altitudes are in excellent agreement with in situ measurements both at mid latitudes and in the tropics. Annual mean models of ozone are also provided as a function of latitude from 100 mb (about 16 km) to 0.003 mb (about 90 km).

  8. The LAPS Project : A live 1D Radiative-Convective Model to explore the possible climates of terrestrial planets and exoplanets.

    NASA Astrophysics Data System (ADS)

    Turbet, Martin; Forget, Francois; Schott, Cédric

    2016-10-01

    The LAPS (Live Atmospheres-of-Planets Simulator) is a live 1D version of the LMD Global Climate Model that provides an accelerated and interactive simulation of the climate of terrestrial planets and exoplanets.This tool was designed for students to explore the «Classical Habitable Zone», defined as the range of orbital distances within which a planet can maintain liquid water on its surface. The model faithfully reproduces both the inner edge and the outer edge limits of the Habitable Zone, and their dependencies to the type of star and the gas composition.Furthermore, it provides a "hands on" experiment by showing how the surface and atmospheric temperatures as well as the profile of water vapor evolve through time when the external forcing (insolation, star spectrum, ...) or the planet (quantity of CO2, initial amount of water reservoir, ...) is modified.The tool is available at http://laps.lmd.jussieu.fr/ .

  9. JEDI Marine and Hydrokinetic Model: User Reference Guide

    SciTech Connect

    Goldberg, M.; Previsic, M.

    2011-04-01

    The Jobs and Economic Development Impact Model (JEDI) for Marine and Hydrokinetics (MHK) is a user-friendly spreadsheet-based tool designed to demonstrate the economic impacts associated with developing and operating MHK power systems in the United States. The JEDI MHK User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the sources and parameters used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.

  10. Sharable Courseware Object Reference Model (SCORM), Version 1.0

    DTIC Science & Technology

    2000-07-01

    19 3.1 Defining a “ Learning Management System ” (LMS) ................................................ 19 3.2 Overview of SCO Reference Model...purpose of the SCORM. Subsequent sections define technical details for implementing each aspect of the model. 3.1 Defining a “ Learning Management System ” (LMS...Structure Format (CSF), Metadata Runtime Environment: Launch, API, Data Model “ Learning Management System ” LMS Figure 3.1. An LMS Note for Figure 3-1

  11. A physiologically based model for spirometric reference equations in adults.

    PubMed

    Brisman, Jonas; Kim, Jeong-Lim; Olin, Anna-Carin; Torén, Kjell; Bake, Björn

    2016-01-01

    A spirometric reference equation consists of a mathematical model with constants and coefficients optimized to fit a specific data set from healthy individuals. Commonly applied models are selected on statistical rather than physiological considerations. A predetermined model with constants and coefficients optimized to various populations would enable interpretable and interesting comparisons between populations. Lubiński and Gólczewski recently presented a piecewise linear model with constants and coefficients claimed to be physiologically interpretable (Lubiński model). Three questions were addressed: Is the Lubiński model as useful clinically as other models: multiple linear, piecewise polynomial and exponential with splines? Will reference equations based on the Lubiński model and optimized to a Swedish and to a Polish population allow for interpretable comparisons? Are three well-known reference equations clinically useful in the Swedish adult population? A recent Swedish random population sample with high-quality spirometric measurements enabled the present analyses. When optimized to fit the Swedish population sample, the Lubiński model and two other models provided accurate predictive normal values. Interesting differences were demonstrated between the Polish and Swedish populations. The proportion of subjects below lower limit normal was adequate for the piecewise polynomial equations but too low and not clinically useful for the advocated exponential equations with splines. It is concluded that the Lubiński model is clinically as useful as other models, and it adds important value and is recommended for future spirometric reference equations for adults. The advocated exponential equations with splines are not recommended for Swedish adults because of too wide normal limits.

  12. Reference aquaplanet climate in the Community Atmosphere Model, Version 5

    DOE PAGES

    Medeiros, Brian; Williamson, David L.; Olson, Jerry G.

    2016-03-18

    In this study, fundamental characteristics of the aquaplanet climate simulated by the Community Atmosphere Model, Version 5.3 (CAM5.3) are presented. The assumptions and simplifications of the configuration are described. A 16 year long, perpetual equinox integration with prescribed SST using the model’s standard 18 grid spacing is presented as a reference simulation. Statistical analysis is presented that shows similar aquaplanet configurations can be run for about 2 years to obtain robust climatological structures, including global and zonal means, eddy statistics, and precipitation distributions. Such a simulation can be compared to the reference simulation to discern differences in the climate, includingmore » an assessment of confidence in the differences. To aid such comparisons, the reference simulation has been made available via earthsystemgrid.org. Examples are shown comparing the reference simulation with simulations from the CAM5 series that make different microphysical assumptions and use a different dynamical core.« less

  13. Reference aquaplanet climate in the Community Atmosphere Model, Version 5

    SciTech Connect

    Medeiros, Brian; Williamson, David L.; Olson, Jerry G.

    2016-03-18

    In this study, fundamental characteristics of the aquaplanet climate simulated by the Community Atmosphere Model, Version 5.3 (CAM5.3) are presented. The assumptions and simplifications of the configuration are described. A 16 year long, perpetual equinox integration with prescribed SST using the model’s standard 18 grid spacing is presented as a reference simulation. Statistical analysis is presented that shows similar aquaplanet configurations can be run for about 2 years to obtain robust climatological structures, including global and zonal means, eddy statistics, and precipitation distributions. Such a simulation can be compared to the reference simulation to discern differences in the climate, including an assessment of confidence in the differences. To aid such comparisons, the reference simulation has been made available via earthsystemgrid.org. Examples are shown comparing the reference simulation with simulations from the CAM5 series that make different microphysical assumptions and use a different dynamical core.

  14. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    SciTech Connect

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  15. EMODEL_1D v. 1.0

    SciTech Connect

    Aldridge, David F.

    2016-07-06

    Program EMODEL_1D is an electromagnetic earth model construction utility designed to generate a three-dimensional (3D) uniformly-gridded representation of one-dimensional (1D) layered earth model. Each layer is characterized by the isotropic EM properties electric permittivity ?, magnetic permeability ?, and current conductivity ?. Moreover, individual layers of the model may possess a linear increase/decrease of any or all of these properties with depth.

  16. MRAC Revisited: Guaranteed Performance with Reference Model Modification

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmaje

    2010-01-01

    This paper presents modification of the conventional model reference adaptive control (MRAC) architecture in order to achieve guaranteed transient performance both in the output and input signals of an uncertain system. The proposed modification is based on the tracking error feedback to the reference model. It is shown that approach guarantees tracking of a given command and the ideal control signal (one that would be designed if the system were known) not only asymptotically but also in transient by a proper selection of the error feedback gain. The method prevents generation of high frequency oscillations that are unavoidable in conventional MRAC systems for large adaptation rates. The provided design guideline makes it possible to track a reference command of any magnitude form any initial position without re-tuning. The benefits of the method are demonstrated in simulations.

  17. Bridging the gap between global models and full fluid models: a fast 1D semi-analytical fluid model for electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Hurlbatt, A.; O'Connell, D.; Gans, T.

    2016-08-01

    Analytical and numerical models allow investigation of complicated discharge phenomena and the interplay that makes plasmas such a complex environment. Global models are quick to implement and can have almost negligible computation cost, but provide only bulk or spatially averaged values. Full fluid models take longer to develop, and can take days to solve, but provide accurate spatio-temporal profiles of the whole plasma. The work presented here details a different type of model, analytically similar to fluid models, but computationally closer to a global model, and able to give spatially resolved solutions for the challenging environment of electronegative plasmas. Included are non-isothermal electrons, gas heating, and coupled neutral dynamics. Solutions are reached in seconds to minutes, and spatial profiles are given for densities, fluxes, and temperatures. This allows the semi-analytical model to fill the gap that exists between global and full fluid models, extending the tools available to researchers. The semi-analytical model can perform broad parameter sweeps that are not practical with more computationally expensive models, as well as exposing non-trivial trends that global models cannot capture. Examples are given for a low pressure oxygen CCP. Excellent agreement is shown with a full fluid model, and comparisons are drawn with the corresponding global model.

  18. The IST-05 Reference Model in Evaluation and Design

    DTIC Science & Technology

    2004-04-01

    bits and bytes in a computer memory. To avoid the need for telepathy in manipulating and understanding the data, the IST-05 Reference Model... synthetic views from digital elevation maps and from photographic imagery, but today’s technology makes this possible. Example 2: Instructions for the arrival

  19. Fraction Multiplication and Division Models: A Practitioner Reference Paper

    ERIC Educational Resources Information Center

    Ervin, Heather K.

    2017-01-01

    It is well documented in literature that rational number is an important area of understanding in mathematics. Therefore, it follows that teachers and students need to have an understanding of rational number and related concepts such as fraction multiplication and division. This practitioner reference paper examines models that are important to…

  20. On fractional order composite model reference adaptive control

    NASA Astrophysics Data System (ADS)

    Wei, Yiheng; Sun, Zhenyuan; Hu, Yangsheng; Wang, Yong

    2016-08-01

    This paper presents a novel composite model reference adaptive control approach for a class of fractional order linear systems with unknown constant parameters. The method is extended from the model reference adaptive control. The parameter estimation error of our method depends on both the tracking error and the prediction error, whereas the existing method only depends on the tracking error, which makes our method has better transient performance in the sense of generating smooth system output. By the aid of the continuous frequency distributed model, stability of the proposed approach is established in the Lyapunov sense. Furthermore, the convergence property of the model parameters estimation is presented, on the premise that the closed-loop control system is stable. Finally, numerical simulation examples are given to demonstrate the effectiveness of the proposed schemes.

  1. Handheld camera 3D modeling system using multiple reference panels

    NASA Astrophysics Data System (ADS)

    Fujimura, Kouta; Oue, Yasuhiro; Terauchi, Tomoya; Emi, Tetsuichi

    2002-03-01

    A novel 3D modeling system in which a target object is easily captured and modeled by using a hand-held camera with several reference panels is presented in this paper. The reference panels are designed to be able to obtain the camera position and discriminate between each other. A conventional 3D modeling system using a reference panel has several restrictions regarding the target object, specifically the size and its location. Our system uses multiple reference panels, which are set around the target object to remove these restrictions. The main features of this system are as follows: 1) The whole shape and photo-realistic textures of the target object can be digitized based on several still images or a movie captured by using a hand-held camera; as well as each location of the camera that can be calculated using the reference panels. 2) Our system can be provided as a software product only. That means there are no special requirements for hardware; even the reference panels , because they can be printed from image files or software. 3) This system can be applied to digitize a larger object. In the experiments, we developed and used an interactive region selection tool to detect the silhouette on each image instead of using the chroma -keying method. We have tested our system with a toy object. The calculation time is about 10 minutes (except for the capturing the images and extracting the silhouette by using our tool) on a personal computer with a Pentium-III processor (600MHz) and 320MB memory. However, it depends on how complex the images are and how many images you use. Our future plan is to evaluate the system with various kind of objects, specifically, large ones in outdoor environments.

  2. Impacts of Leads on the Wintertime Sea-ice Environment Using 1D and 3D Models Validated with In-Situ Observations

    NASA Astrophysics Data System (ADS)

    Persson, O. P.; Solomon, A.

    2013-12-01

    Though leads only represent a small portion of the Arctic sea-ice area, their contribution to the surface turbulent energy and momentum fluxes can be significant. Numerous modeling studies presented in the literature have been conducted examining these effects. The results of such studies have indicated the importance of the environmental large-scale stability, the environmental humidity, the lead width, the ice (lead) concentration, the lead size distribution, the character of the leads (open water, refrozen), etc. Because global climate models (GCMs) show significant sensitivity to the large-scale net energy flux from the heterogeneous sea-ice surface, and because thinner ice in the projected future Arctic climate will likely result in increasing lead fractions, the appropriate GCM representation of this complex system is important. This study presents modeling results based on observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment, for which the mid-winter sea-ice was greatly heterogeneous. In mid-January, the 100x100 km region surrounding the SHEBA ice camp consisted of a lead fraction of ~16-33% as revealed by SAR data. This included primarily older refrozen lead areas that were generated at least a month earlier (~16-25% areal coverage), with a smaller fraction of newly opened leads (~4-9% areal coverage). Utilizing the sequence of SAR images, the atmospheric observations at the SHEBA site, and a 1-D snow and ice model, the spatial distribution of sea-ice thickness, snow depth, and surface temperatures within this domain were estimated over a 6-week period, revealing the significant impact of leads in all stages on GCM-scale temperatures and fluxes. This combined observational/model data series is used to evaluate a variety of one-dimensional turbulent flux aggregation techniques (e.g., mosaic) that use different assumptions. Furthermore, by using the spatial distribution of these surface characteristics, three-dimensional large eddy

  3. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

    SciTech Connect

    Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard Alan

    2014-10-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour ($/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

  4. A regularized full reference tissue model for PET neuroreceptor mapping.

    PubMed

    Mandeville, Joseph B; Sander, Christin Y M; Wey, Hsiao-Ying; Hooker, Jacob M; Hansen, Hanne D; Svarer, Claus; Knudsen, Gitte M; Rosen, Bruce R

    2016-06-27

    The full reference tissue model (FRTM) is a PET analysis framework that includes both free and specifically bound compartments within tissues, together with rate constants defining association and dissociation from the specifically bound compartment. The simplified reference tissue model (SRTM) assumes instantaneous exchange between tissue compartments, and this "1-tissue" approximation reduces the number of parameters and enables more robust mapping of non-displaceable binding potentials. Simulations based upon FRTM have shown that SRTM exhibits biases that are spatially dependent, because biases depend upon binding potentials. In this work, we describe a regularized model (rFRTM) that employs a global estimate of the dissociation rate constant from the specifically bound compartment (k4). The model provides an internal calibration for optimizing k4 through the reference-region outflow rate k2', a model parameter that should be a global constant but varies regionally in SRTM. Estimates of k4 by rFRTM are presented for four PET radioligands. We show that SRTM introduces bias in parameter estimates by assuming an infinite value for k4, and that rFRTM ameliorates bias with an appropriate choice of k4. Theoretical considerations and simulations demonstrate that rFRTM reduces bias in non-displaceable binding potentials. A two-parameter reduction of the model (rFRTM2) provides robust mapping at a voxel-wise level. With a structure similar to SRTM, the model is easily implemented and can be applied as a PET reference region analysis that reduces parameter bias without substantially altering parameter variance.

  5. [Spirographic reference values. Mathematical models and practical use (author's transl)].

    PubMed

    Drouet, D; Kauffmann, F; Brille, D; Lellouch, J

    1980-01-01

    Various models predicting VC and FEV1 from age and height have been compared by both theoretical and practical approaches on several subgroups of a working population examined in 1960 and 1972. The models in which spirographic values are proportional to the cube of the height give a significantly worse fit of the data. All the other models give similar predicted values in practical terms, but cutoff points depend on the distributions of VC and FEV1 given age and height. Results show that these distributions are closer to a normal than to a lognormal distribution. The use of reference values and classical cutoffs is then discussed. Rather than using a single cutoff point, a more quantitative way is proposed to describe the subjects' functional status, for example by situating him in the percentile of the reference population. In screening, cutoff points cannot be choosen without specifying first the decision considered and the population concerned.

  6. Tracking stochastic resonance curves using an assisted reference model

    SciTech Connect

    Calderón Ramírez, Mario; Rico Martínez, Ramiro; Parmananda, P.

    2015-06-15

    The optimal noise amplitude for Stochastic Resonance (SR) is located employing an Artificial Neural Network (ANN) reference model with a nonlinear predictive capability. A modified Kalman Filter (KF) was coupled to this reference model in order to compensate for semi-quantitative forecast errors. Three manifestations of stochastic resonance, namely, Periodic Stochastic Resonance (PSR), Aperiodic Stochastic Resonance (ASR), and finally Coherence Resonance (CR) were considered. Using noise amplitude as the control parameter, for the case of PSR and ASR, the cross-correlation curve between the sub-threshold input signal and the system response is tracked. However, using the same parameter the Normalized Variance curve is tracked for the case of CR. The goal of the present work is to track these curves and converge to their respective extremal points. The ANN reference model strategy captures and subsequently predicts the nonlinear features of the model system while the KF compensates for the perturbations inherent to the superimposed noise. This technique, implemented in the FitzHugh-Nagumo model, enabled us to track the resonance curves and eventually locate their optimal (extremal) values. This would yield the optimal value of noise for the three manifestations of the SR phenomena.

  7. Tracking stochastic resonance curves using an assisted reference model

    NASA Astrophysics Data System (ADS)

    Calderón Ramírez, Mario; Rico Martínez, Ramiro; Ramírez Álvarez, Elizeth; Parmananda, P.

    2015-06-01

    The optimal noise amplitude for Stochastic Resonance (SR) is located employing an Artificial Neural Network (ANN) reference model with a nonlinear predictive capability. A modified Kalman Filter (KF) was coupled to this reference model in order to compensate for semi-quantitative forecast errors. Three manifestations of stochastic resonance, namely, Periodic Stochastic Resonance (PSR), Aperiodic Stochastic Resonance (ASR), and finally Coherence Resonance (CR) were considered. Using noise amplitude as the control parameter, for the case of PSR and ASR, the cross-correlation curve between the sub-threshold input signal and the system response is tracked. However, using the same parameter the Normalized Variance curve is tracked for the case of CR. The goal of the present work is to track these curves and converge to their respective extremal points. The ANN reference model strategy captures and subsequently predicts the nonlinear features of the model system while the KF compensates for the perturbations inherent to the superimposed noise. This technique, implemented in the FitzHugh-Nagumo model, enabled us to track the resonance curves and eventually locate their optimal (extremal) values. This would yield the optimal value of noise for the three manifestations of the SR phenomena.

  8. Modeling Large Water Infiltration Events in Small Plots Using the 1-D Finite Water-content Method and Numerical Solutions to the Richards' Equation.

    NASA Astrophysics Data System (ADS)

    Brown, A.; Dahlke, H. E.

    2015-12-01

    The ability of soil to infiltrate large volumes of water is fundamental to managed aquifer recharge (MAR) when using infiltration basins or agricultural fields. In order to investigate the feasibility of using agricultural fields for MAR we conducted a field experiment designed to not only assess the resilience of alfalfa (Medicago sativa) to large (300 mm), short duration (1.5 hour), repeated irrigation events during the winter but also how crop resilience was influenced by soil water movement. We hypothesized that large irrigation amounts designed for groundwater recharge could cause prolonged saturated conditions in the root-zone and yield loss. Tensiometers were installed at two depths (60 and 150 cm) in a loam soil to monitor the changes in soil matric potential within and below the root-zone following irrigation events in each of five experimental plots (8 x 16 m2). To simulate the individual infiltration events we employed the HYDRUS-1D computational module (Simunek et al., 2005) and compared the finite-water content vadose zone flow method (Ogden et al. 2015) with numerical solutions to the Richards' equation. For both models we assumed a homogenous and isotropic root zone that is initially unsaturated with no water flow. Here we assess the ability of these two models to account for the control volume applied to the plots and to capture sharp changes in matric potential that were observed in the early time after an irrigation pulse. The goodness-of-fit of the models was evaluated using the root mean square error (RMSE) for observed and predicted values of cumulative infiltration over time, wetting front depth over time and water content at observation nodes. For the finite-water content method, the RMSE values and output for observation nodes were similar to that from the HYDRUS-1D solution. This indicates that the finite-water content method may be useful for predicting the fate of large volumes of water applied for MAR. Moreover, both models suggest a

  9. Direct Model Reference Adaptive Control for a Magnetic Bearing

    SciTech Connect

    Durling, Mike

    1999-11-01

    A Direct Model Reference Adaptive Controller (DMRAC) is applied to a magnetic bearing test stand. The bearing of interest is the MBC 500 Magnetic Bearing System manufactured by Magnetic Moments, LLC. The bearing model is presented in state space form and the system transfer function is measured directly using a closed-loop swept sine technique. Next, the bearing models are used to design a phase-lead controller, notch filter and then a DMRAC. The controllers are tuned in simulations and finally are implemented using a combination of MATLAB, SIMULINK and dSPACE. The results show a successful implementation of a DMRAC on the magnetic bearing hardware.

  10. Image quality assessment by preprocessing and full reference model combination

    NASA Astrophysics Data System (ADS)

    Bianco, S.; Ciocca, G.; Marini, F.; Schettini, R.

    2009-01-01

    This paper focuses on full-reference image quality assessment and presents different computational strategies aimed to improve the robustness and accuracy of some well known and widely used state of the art models, namely the Structural Similarity approach (SSIM) by Wang and Bovik and the S-CIELAB spatial-color model by Zhang and Wandell. We investigate the hypothesis that combining error images with a visual attention model could allow a better fit of the psycho-visual data of the LIVE Image Quality assessment Database Release 2. We show that the proposed quality assessment metric better correlates with the experimental data.

  11. Perinatal Choline Supplementation Reduces Amyloidosis and Increases Choline Acetyltransferase Expression in the Hippocampus of the APPswePS1dE9 Alzheimer's Disease Model Mice

    PubMed Central

    Mellott, Tiffany J.; Huleatt, Olivia M.; Shade, Bethany N.; Pender, Sarah M.; Liu, Yi B.; Slack, Barbara E.; Blusztajn, Jan K.

    2017-01-01

    Prevention of Alzheimer's disease (AD) is a major goal of biomedical sciences. In previous studies we showed that high intake of the essential nutrient, choline, during gestation prevented age-related memory decline in a rat model. In this study we investigated the effects of a similar treatment on AD-related phenotypes in a mouse model of AD. We crossed wild type (WT) female mice with hemizygous APPswe/PS1dE9 (APP.PS1) AD model male mice and maintained the pregnant and lactating dams on a control AIN76A diet containing 1.1 g/kg of choline or a choline-supplemented (5 g/kg) diet. After weaning all offspring consumed the control diet. As compared to APP.PS1 mice reared on the control diet, the hippocampus of the perinatally choline-supplemented APP.PS1 mice exhibited: 1) altered levels of amyloid precursor protein (APP) metabolites–specifically elevated amounts of β-C-terminal fragment (β-CTF) and reduced levels of solubilized amyloid Aβ40 and Aβ42 peptides; 2) reduced number and total area of amyloid plaques; 3) preserved levels of choline acetyltransferase protein (CHAT) and insulin-like growth factor II (IGF2) and 4) absence of astrogliosis. The data suggest that dietary supplementation of choline during fetal development and early postnatal life may constitute a preventive strategy for AD. PMID:28103298

  12. Recent Advances in the Modeling of the Transport of Two-Plasmon-Decay Electrons in the 1-D Hydrodynamic Code LILAC

    NASA Astrophysics Data System (ADS)

    Delettrez, J. A.; Myatt, J. F.; Yaakobi, B.

    2015-11-01

    The modeling of the fast-electron transport in the 1-D hydrodynamic code LILAC was modified because of the addition of cross-beam-energy-transfer (CBET) in implosion simulations. Using the old fast-electron with source model CBET results in a shift of the peak of the hard x-ray (HXR) production from the end of the laser pulse, as observed in experiments, to earlier in the pulse. This is caused by a drop in the laser intensity of the quarter-critical surface from CBET interaction at lower densities. Data from simulations with the laser plasma simulation environment (LPSE) code will be used to modify the source algorithm in LILAC. In addition, the transport model in LILAC has been modified to include deviations from the straight-line algorithm and non-specular reflection at the sheath to take into account the scattering from collisions and magnetic fields in the corona. Simulation results will be compared with HXR emissions from both room-temperature plastic and cryogenic target experiments. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  13. The NASA MSFC Earth Global Reference Atmospheric Model-2007 Version

    NASA Technical Reports Server (NTRS)

    Leslie, F.W.; Justus, C.G.

    2008-01-01

    Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA/Marshall Space Flight Center (MSFC) Global Reference Atmospheric Model (GRAM) was developed in response to the need for a design reference atmosphere that provides complete global geographical variability, and complete altitude coverage (surface to orbital altitudes) as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. A unique feature of GRAM is that, addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations in these atmospheric parameters (e.g. fluctuations due to turbulence and other atmospheric perturbation phenomena). A summary comparing GRAM features to characteristics and features of other reference or standard atmospheric models, can be found Guide to Reference and Standard Atmosphere Models. The original GRAM has undergone a series of improvements over the years with recent additions and changes. The software program is called Earth-GRAM2007 to distinguish it from similar programs for other bodies (e.g. Mars, Venus, Neptune, and Titan). However, in order to make this Technical Memorandum (TM) more readable, the software will be referred to simply as GRAM07 or GRAM unless additional clarity is needed. Section 1 provides an overview of the basic features of GRAM07 including the newly added features. Section 2 provides a more detailed description of GRAM07 and how the model output generated. Section 3 presents sample results. Appendices A and B describe the Global Upper Air Climatic Atlas (GUACA) data and the Global Gridded Air Statistics (GGUAS) database. Appendix C provides instructions for compiling and running GRAM07. Appendix D gives a description of the required NAMELIST format input. Appendix E gives sample output. Appendix F provides a list of available

  14. Ozone reference models for the middle atmosphere (new CIRA)

    NASA Technical Reports Server (NTRS)

    Keating, G. M.; Pitts, M. C.; Young, D. F.

    1989-01-01

    Models of ozone vertical structure were generated that were based on multiple data sets from satellites. The very good absolute accuracy of the individual data sets allowed the data to be directly combined to generate these models. The data used for generation of these models are from some of the most recent satellite measurements over the period 1978 to 1983. A discussion is provided of validation and error analyses of these data sets. Also, inconsistencies in data sets brought about by temporal variations or other factors are indicated. The models cover the pressure range from from 20 to 0.003 mb (25 to 90 km). The models for pressures less than 0.5 mb represent only the day side and are only provisional since there was limited longitudinal coverage at these levels. The models start near 25 km in accord with previous COSPAR international reference atmosphere (CIRA) models. Models are also provided of ozone mixing ratio as a function of height. The monthly standard deviation and interannual variations relative to zonal means are also provided. In addition to the models of monthly latitudinal variations in vertical structure based on satellite measurements, monthly models of total column ozone and its characteristic variability as a function of latitude based on four years of Nimbus 7 measurements, models of the relationship between vertical structure and total column ozone, and a midlatitude annual mean model are incorporated in this set of ozone reference atmospheres. Various systematic variations are discussed including the annual, semiannual, and quasibiennial oscillations, and diurnal, longitudinal, and response to solar activity variations.

  15. An original approach combining aircraft observations and 1D modelling to quantify the role of deep convection on formaldehyde in tropical UT

    NASA Astrophysics Data System (ADS)

    Borbon, A.; Ruiz, M.; Bechara, J.; Afif, C.; Huntrieser, H.; Mills, G.; Mari, C.; Reeves, C.; Schlager, H.

    2010-12-01

    Deep convection plays a key role in determining global atmospheric composition of the upper troposphere by the fast uplift of HOx radical and ozone precursors to the upper troposphere. Formaldehyde (HCHO) is one important gas precursor. It is the most abundant carbonyl compound originating from both primary processes and photooxidation of volatile organic compounds. Thus, determining its source strength to the upper troposphere is important for estimating ozone production. However processes governing its fate are multiple and complex including dynamics (entrainment and detrainment), multiphase chemistry and cloud microphysics. As a result, the flux of formaldehyde to the upper troposphere is still uncertain. The goal of this study is to examine the redistribution of formaldehyde in tropical mesoscale convective systems (MSC) and to estimate its sources and sinks during convective transport to the upper troposphere. The novelty here is to combine 1D modelling (Meso NH model) and formaldehyde aircraft observations. Observations were collected over West Africa during the monsoon period (July-August 2006) of the AMMA experiment. Four aircrafts (English BAe-146, French ATR-42 and Falcon-20 and German Falcon-20) were deployed over a large domain (long.: -8°E-5°W, lat. 4°N-20°N, alt.: 0 12 km) with formaldehyde measuring instruments on board. First, this presentation will point out the construction of a comprehensive and consistent data set of formaldehyde by ensuring data comparability thanks to aircraft intercomparison flights, multiple chemical tracer approach (CO, O3 and relative humidity) and a spatial gridding of the domain. Then formaldehyde spatial variability will be examined under background and convective conditions. Finally, the relative importance of transport (entrainment) and wet scavenging will be discussed from selected AMMA flights. For that purpose, the following equation system has been resolved [HCHO]transported to UT=[HCHO]measured - [HCHO

  16. A Reference Model for Semantic Peer-to-Peer Networks

    NASA Astrophysics Data System (ADS)

    Mawlood-Yunis, Abdul-Rahman; Weiss, Michael; Santoro, Nicola

    Today’s information systems are highly networked and need to operate in a global world. With this comes the problem of semantic heterogeneity of information representations. Semantic peer-to- peer networks have been proposed as a solution to this problem. They are based around two components: a peer-to-peer infrastructure for information exchange between information system, and the use of ontologies to define application semantics. However, progress in this area is hampered by a lack of commonality between these approaches, which makes their comparison and translation into practical implementations difficult. In this paper, we describe a reference model for semantic peer-to-peer networks in an effort to remedy this problem. The reference model will (1) enable the establishment of a common terminology for describing semantic peer-to-peer networks, and (2) pave the way for an emerging standardized API that will promote information system interoperability.

  17. Direct model reference adaptive control of robotic arms

    NASA Technical Reports Server (NTRS)

    Kaufman, Howard; Swift, David C.; Cummings, Steven T.; Shankey, Jeffrey R.

    1993-01-01

    The results of controlling A PUMA 560 Robotic Manipulator and the NASA shuttle Remote Manipulator System (RMS) using a Command Generator Tracker (CGT) based Model Reference Adaptive Controller (DMRAC) are presented. Initially, the DMRAC algorithm was run in simulation using a detailed dynamic model of the PUMA 560. The algorithm was tuned on the simulation and then used to control the manipulator using minimum jerk trajectories as the desired reference inputs. The ability to track a trajectory in the presence of load changes was also investigated in the simulation. Satisfactory performance was achieved in both simulation and on the actual robot. The obtained responses showed that the algorithm was robust in the presence of sudden load changes. Because these results indicate that the DMRAC algorithm can indeed be successfully applied to the control of robotic manipulators, additional testing was performed to validate the applicability of DMRAC to simulated dynamics of the shuttle RMS.

  18. A reference model for space data system interconnection services

    NASA Technical Reports Server (NTRS)

    Pietras, John; Theis, Gerhard

    1993-01-01

    The widespread adoption of standard packet-based data communication protocols and services for spaceflight missions provides the foundation for other standard space data handling services. These space data handling services can be defined as increasingly sophisticated processing of data or information received from lower-level services, using a layering approach made famous in the International Organization for Standardization (ISO) Open System Interconnection Reference Model (OSI-RM). The Space Data System Interconnection Reference Model (SDSI-RM) incorporates the conventions of the OSIRM to provide a framework within which a complete set of space data handling services can be defined. The use of the SDSI-RM is illustrated through its application to data handling services and protocols that have been defined by, or are under consideration by, the Consultative Committee for Space Data Systems (CCSDS).

  19. GOES-R Ground Segment Technical Reference Model

    NASA Astrophysics Data System (ADS)

    Krause, R. G.; Burnett, M.; Khanna, R.

    2012-12-01

    NOAA Geostationary Environmental Operational Satellite -R Series (GOES-R) Ground Segment Project (GSP) has developed a Technical Reference Model (TRM) to support the documentation of technologies that could form the basis for a set of requirements that could support the evolution towards a NESDIS enterprise ground system. Architecture and technologies in this TRM can be applied or extended to other ground systems for planning and development. The TRM maps GOES-R technologies to the Office of Management and Budget's (OMB) Federal Enterprise Architecture (FEA) Consolidated Reference Model (CRM) V 2.3 Technical Services Standard (TSS). The FEA TRM categories are the framework for the GOES-R TRM. This poster will present the GOES-R TRM.

  20. Middle Atmosphere Program. Handbook for MAP. Volume 31: Reference models of trace species for the COSPAR international reference atmosphere

    NASA Technical Reports Server (NTRS)

    Keating, G. M. (Editor)

    1989-01-01

    A set of preliminary reference atmosphere models of significant trace species which play important roles in controlling the chemistry, radiation budget, and circulation patterns of the atmosphere were produced. These models of trace species distributions are considered to be reference models rather than standard models; thus, it was not crucial that they be correct in an absolute sense. These reference models can serve as a means of comparison between individual observations, as a first guess in inversion algorithms, and as an approximate representation of observations for comparison to theoretical calculations.

  1. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    SciTech Connect

    Yu, Y. H.; Jenne, D. S.; Thresher, R.; Copping, A.; Geerlofs, S.; Hanna, L. A.

    2015-01-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

  2. Direct model reference adaptive control of a flexible robotic manipulator

    NASA Technical Reports Server (NTRS)

    Meldrum, D. R.

    1985-01-01

    Quick, precise control of a flexible manipulator in a space environment is essential for future Space Station repair and satellite servicing. Numerous control algorithms have proven successful in controlling rigid manipulators wih colocated sensors and actuators; however, few have been tested on a flexible manipulator with noncolocated sensors and actuators. In this thesis, a model reference adaptive control (MRAC) scheme based on command generator tracker theory is designed for a flexible manipulator. Quicker, more precise tracking results are expected over nonadaptive control laws for this MRAC approach. Equations of motion in modal coordinates are derived for a single-link, flexible manipulator with an actuator at the pinned-end and a sensor at the free end. An MRAC is designed with the objective of controlling the torquing actuator so that the tip position follows a trajectory that is prescribed by the reference model. An appealing feature of this direct MRAC law is that it allows the reference model to have fewer states than the plant itself. Direct adaptive control also adjusts the controller parameters directly with knowledge of only the plant output and input signals.

  3. Forest-atmosphere BVOC exchange in diverse and structurally complex canopies: 1-D modeling of a mid-successional forest in northern Michigan

    NASA Astrophysics Data System (ADS)

    Bryan, Alexander M.; Cheng, Susan J.; Ashworth, Kirsti; Guenther, Alex B.; Hardiman, Brady S.; Bohrer, Gil; Steiner, Allison L.

    2015-11-01

    Foliar emissions of biogenic volatile organic compounds (BVOC)-important precursors of tropospheric ozone and secondary organic aerosols-vary widely by vegetation type. Modeling studies to date typically represent the canopy as a single dominant tree type or a blend of tree types, yet many forests are diverse with trees of varying height. To assess the sensitivity of biogenic emissions to tree height variation, we compare two 1-D canopy model simulations in which BVOC emission potentials are homogeneous or heterogeneous with canopy depth. The heterogeneous canopy emulates the mid-successional forest at the University of Michigan Biological Station (UMBS). In this case, high-isoprene-emitting foliage (e.g., aspen and oak) is constrained to the upper canopy, where higher sunlight availability increases the light-dependent isoprene emission, leading to 34% more isoprene and its oxidation products as compared to the homogeneous simulation. Isoprene declines from aspen mortality are 10% larger when heterogeneity is considered. Overall, our results highlight the importance of adequately representing complexities of forest canopy structure when simulating light-dependent BVOC emissions and chemistry.

  4. Forest-atmosphere BVOC exchange in diverse and structurally complex canopies: 1-D modeling of a mid-successional forest in northern Michigan

    SciTech Connect

    Bryan, Alexander M.; Cheng, Susan J.; Ashworth, Kirsti; Guenther, Alex B.; Hardiman, Brady; Bohrer, Gil; Steiner, A. L.

    2015-11-01

    Foliar emissions of biogenic volatile organic compounds (BVOC)dimportant precursors of tropospheric ozone and secondary organic aerosolsdvary widely by vegetation type. Modeling studies to date typi-cally represent the canopy as a single dominant tree type or a blend of tree types, yet many forests are diverse with trees of varying height. To assess the sensitivity of biogenic emissions to tree height vari-ation, we compare two 1-D canopy model simulations in which BVOC emission potentials are homo-geneous or heterogeneous with canopy depth. The heterogeneous canopy emulates the mid-successional forest at the University of Michigan Biological Station (UMBS). In this case, high-isoprene-emitting fo-liage (e.g., aspen and oak) is constrained to the upper canopy, where higher sunlight availability increases the light-dependent isoprene emission, leading to 34% more isoprene and its oxidation products as compared to the homogeneous simulation. Isoprene declines from aspen mortality are 10% larger when heterogeneity is considered. Overall, our results highlight the importance of adequately representing complexities of forest canopy structure when simulating light-dependent BVOC emissions and chemistry.

  5. Turbulence modeling in non-inertial frames of reference

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.

    1988-01-01

    The effect of an arbitrary change of frame on the structure of turbulence models is examined from a fundamental theoretical standpoint. It is proven, as a rigorous consequence of the Navier-Stokes equations, that turbulence models must be form invariant under arbitrary translational accelerations of the reference frame and should only be affected by rotations through the intrinsic mean vorticity. A direct application of the invariance property along with the Taylor-Proudman Theorem, material frame-indifference in the limit of two-dimensional turbulence and Rapid Distortion Theory is shown to yield powerful constraints on the allowable form of turbulence models. Most of the commonly used turbulence models are demonstrated to be in serious violation of these constraints and consequently are inconsistent with the Navier-Stokes equations in non-inertial frames. Alternative models with improved non-inertial properties are developed and some simple applications to rotating turbulent flows are considered.

  6. Interim Reference Ozone Models for the Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Keating, G. M.; Young, D. F.

    1985-01-01

    A set of models was generated based on six satellite experiments of the monthly latitudinal variations in total column ozone and the vertical structure of ozone from 20 mb to 0.003 mb. Generally, interannual variability in monthly zonal means is only a few percent. Comparisons of measurements using various techniques to measure global ozone reveal very good agreement between the techniques. Agreement between individual satellite experiments and the reference model of monthly zonal means is generally within 10% below altitudes of 0.4 mb. This has allowed the first global model of ozone measurements to be constructed from multiple sets of satellite measurements. The ozone measurements based on the satellite data are in excellent agreement with previous midlatitude mean annual model based on rocket and balloon data. Also, models are provided of the relation between total ozone and vertical structure.

  7. Reference-based gene model prediction on DNA contigs

    SciTech Connect

    Xu, Y.; Uberbacher, E.C.

    1997-01-01

    This paper presents an algorithm for constructing multiple gene models on a set of contigs of a large genomic clone. The algorithm first uses pattern recognition-based methods to locate exons or partial exons in each contig, and then applies protein homology or EST information from the databases, as reference models, to parse the predicted exons into gene models. In the phase of gene model construction, the algorithm uses a unified framework for genes ranging from situation with homologous proteins/ESTs to no homologous protein/EST in the database. By exploiting protein homology or EST information, the algorithm is able to (1) parse exons into multiple gene models over a set of DNA contigs (possibly unoriented and unordered); (2) remove falsely predicted exons; and (3) identify and locate exons missed by the initial exon prediction.

  8. Mars Global Reference Atmospheric Model 2010 Version: Users Guide

    NASA Technical Reports Server (NTRS)

    Justh, H. L.

    2014-01-01

    This Technical Memorandum (TM) presents the Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010) and its new features. Mars-GRAM is an engineering-level atmospheric model widely used for diverse mission applications. Applications include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Additionally, this TM includes instructions on obtaining the Mars-GRAM source code and data files as well as running Mars-GRAM. It also contains sample Mars-GRAM input and output files and an example of how to incorporate Mars-GRAM as an atmospheric subroutine in a trajectory code.

  9. Model reference adaptive control with an augmented error signal

    NASA Technical Reports Server (NTRS)

    Monopoli, R. V.

    1974-01-01

    It is shown how globally stable model reference adaptive control systems may be designed when one has access to only the plant's input and output signals. Controllers for single input-single output, nonlinear, nonautonomous plants are developed based on Lyapunov's direct method and the Meyer-Kalman-Yacubovich lemma. Derivatives of the plant output are not required, but are replaced by filtered derivative signals. An augmented error signal replaces the error normally used, which is defined as the difference between the model and plant outputs. However, global stability is assured in the sense that the normally used error signal approaches zero asymptotically.

  10. Model reference adaptive control using only input and output signals

    NASA Technical Reports Server (NTRS)

    Monopoli, R. V.

    1973-01-01

    It is shown how globally stable model reference adaptive control systems may be designed using only the plant's input and output signals. Controllers for single input-single output, nonlinear, nonautonomous plants are developed based on Liapunov's direct method and the Meyer-Kalman-Yacubovich lemma. Filtered derivatives of the plant output replace pure derivatives which are normally required in these systems. An augmented error signal replaces the error previously used which is the difference between the model and plant outputs. However, global stability is assured in the sense that this difference approaches zero asymptotically.

  11. Development and Validation of the Total HUman Model for Safety (THUMS) Version 5 Containing Multiple 1D Muscles for Estimating Occupant Motions with Muscle Activation During Side Impacts.

    PubMed

    Iwamoto, Masami; Nakahira, Yuko

    2015-11-01

    Accurate prediction of occupant head kinematics is critical for better understanding of head/face injury mechanisms in side impacts, especially far-side occupants. In light of the fact that researchers have demonstrated that muscle activations, especially in neck muscles, can affect occupant head kinematics, a human body finite element (FE) model that considers muscle activation is useful for predicting occupant head kinematics in real-world automotive accidents. In this study, we developed a human body FE model called the THUMS (Total HUman Model for Safety) Version 5 that contains 262 one-dimensional (1D) Hill-type muscle models over the entire body. The THUMS was validated against 36 series of PMHS (Post Mortem Human Surrogate) and volunteer test data in this study, and 16 series of PMHS and volunteer test data on side impacts are presented. Validation results with force-time curves were also evaluated quantitatively using the CORA (CORrelation and Analysis) method. The validation results suggest that the THUMS has good biofidelity in the responses of the regional or full body for side impacts, but relatively poor biofidelity in its local level of responses such as brain displacements. Occupant kinematics predicted by the THUMS with a muscle controller using 22 PID (Proportional-Integral- Derivative) controllers were compared with those of volunteer test data on low-speed lateral impacts. The THUMS with muscle controller reproduced the head kinematics of the volunteer data more accurately than that without muscle activation, although further studies on validation of torso kinematics are needed for more accurate predictions of occupant head kinematics.

  12. Earth Global Reference Atmospheric Model 2007 (Earth-GRAM07)

    NASA Astrophysics Data System (ADS)

    Leslie, Fred

    Engineering models of the atmosphere are used extensively by the aerospace community for design issues related to vehicle ascent and descent. The Earth Global Reference Atmosphere Model version 2007 (Earth-GRAM07) is the latest in this series and includes a number of new features. Like previous versions, Earth-GRAM07 provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthlyand geographically-varying trace constituent concentrations. From 0 km to 27 km, thermodynamics and winds are based on the National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. For altitudes between 20 km and 120 km, the model uses data from the Middle Atmosphere Program (MAP). Above 120 km, Earth-GRAM07 now provides users with a choice of three thermosphere models: the Marshall Engineering Thermosphere (MET-2007) model; the Jacchia-Bowman 2006 thermosphere model (JB2006); and the Naval Research Labs Mass Spectrometer, Incoherent Scatter Radar Extended Model (NRL MSIS E-00) with the associated Harmonic Wind Model (HWM-93). In place of the GUACA and MAP datasets, Earth-GRAM07 has the option of using the new 2006 revised Range Reference Atmosphere (RRA) data, the earlier (1983) RRA data, or the user may provide their own data as an auxiliary profile. Refinements of the perturbation model are also discussed which produce wind shears more similar to those observed at the Kennedy Space Center than the previous version Earth-GRAM99. In addition, the dispersions are more normally distributed, especially at the extremes.

  13. Electron Density and Two-Channel Neutron Emission Measurements in Steady-State Spherical Inertial-Electrostatically Confined Plasmas, with Review of the 1-D Kinetic Model

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Hrbud, Ivana

    2004-01-01

    Electron density measurements have been made in steady-state plasmas in a spherical inertial electrostatic confinement (IEC) discharge using microwave interferometry. Plasma cores interior to two cathodes, having diameters of 15 and 23 cm, respectively, were probed over a transverse range of 10 cm with a spatial resolution of about 1.4 cm for buffer gas pressures from 0.2 to 6 Pa in argon and deuterium. The transverse profiles are generally flat, in some cases with eccentric symmetric minima, and give mean densities of from approx. = 0.4 to 7x 10(exp 10)/cu cm, the density generally increasing with the neutral gas pressure. Numerical solutions of the 1-D Poisson equation for EC plasmas are reviewed and energy distribution functions are identified which give flat transverse profiles. These functions are used with the plasma approximation to obtain solutions which also give densities consistent with the measurements, and a double potential well solution is obtained which has minima qualitatively similar to those observed. Explicit consideration is given to the compatibility of the solutions interior and exterior to the cathode, and to grid transparency. Deuterium fusion neutron emission rates were also measured and found to be isotropic, to within the measurement error, over two simultaneous directions. Anisotropy was observed in residual emissions during operation with non-fusing hydrogen-1. The deuterium rates are consistent with predictions from the model.

  14. A joint probability approach using a 1-D hydrodynamic model for estimating high water level frequencies in the Lower Rhine Delta

    NASA Astrophysics Data System (ADS)

    Zhong, H.; van Overloop, P.-J.; van Gelder, P. H. A. J. M.

    2013-07-01

    The Lower Rhine Delta, a transitional area between the River Rhine and Meuse and the North Sea, is at risk of flooding induced by infrequent events of a storm surge or upstream flooding, or by more infrequent events of a combination of both. A joint probability analysis of the astronomical tide, the wind induced storm surge, the Rhine flow and the Meuse flow at the boundaries is established in order to produce the joint probability distribution of potential flood events. Three individual joint probability distributions are established corresponding to three potential flooding causes: storm surges and normal Rhine discharges, normal sea levels and high Rhine discharges, and storm surges and high Rhine discharges. For each category, its corresponding joint probability distribution is applied, in order to stochastically simulate a large number of scenarios. These scenarios can be used as inputs to a deterministic 1-D hydrodynamic model in order to estimate the high water level frequency curves at the transitional locations. The results present the exceedance probability of the present design water level for the economically important cities of Rotterdam and Dordrecht. The calculated exceedance probability is evaluated and compared to the governmental norm. Moreover, the impact of climate change on the high water level frequency curves is quantified for the year 2050 in order to assist in decisions regarding the adaptation of the operational water management system and the flood defense system.

  15. Potential of high resolution satellite imagery, remote weather data and 1D hydraulic modeling to evaluate flood areas in Gonaives, Haiti

    NASA Astrophysics Data System (ADS)

    Bozza, Andrea; Durand, Arnaud; Allenbach, Bernard; Confortola, Gabriele; Bocchiola, Daniele

    2013-04-01

    We present a feasibility study to explore potential of high-resolution imagery, coupled with hydraulic flood modeling to predict flooding risks, applied to the case study of Gonaives basins (585 km²), Haiti. We propose a methodology working at different scales, providing accurate results and a faster intervention during extreme flood events. The 'Hispaniola' island, in the Caribbean tropical zone, is often affected by extreme floods events. Floods are caused by tropical springs and hurricanes, and may lead to several damages, including cholera epidemics, as recently occurred, in the wake of the earthquake upon January 12th 2010 (magnitude 7.0). Floods studies based upon hydrological and hydraulic modeling are hampered by almost complete lack of ground data. Thenceforth, and given the noticeable cost involved in the organization of field measurement campaigns, the need for exploitation of remote sensing images data. HEC-RAS 1D modeling is carried out under different scenarios of available Digital Elevation Models. The DEMs are generated using optical remote sensing satellite (WorldView-1) and SRTM, combined with information from an open source database (Open Street Map). We study two recent flood episodes, where flood maps from remote sensing were available. Flood extent and land use have been assessed by way of data from SPOT-5 satellite, after hurricane Jeanne in 2004 and hurricane Hanna in 2008. A semi-distributed, DEM based hydrological model is used to simulate flood flows during the hurricanes. Precipitation input is taken from daily rainfall data derived from TRMM satellite, plus proper downscaling. The hydraulic model is calibrated using floodplain friction as tuning parameters against the observed flooded area. We compare different scenarios of flood simulation, and the predictive power of model calibration. The method provide acceptable results in depicting flooded areas, especially considering the tremendous lack of ground data, and show the potential of

  16. PLUME-MoM 1.0: a new 1-D model of volcanic plumes based on the method of moments

    NASA Astrophysics Data System (ADS)

    de'Michieli Vitturi, M.; Neri, A.; Barsotti, S.

    2015-05-01

    In this paper a new mathematical model for volcanic plumes, named PlumeMoM, is presented. The model describes the steady-state 1-D dynamics of the plume in a 3-D coordinate system, accounting for continuous variability in particle distribution of the pyroclastic mixture ejected at the vent. Volcanic plumes are composed of pyroclastic particles of many different sizes ranging from a few microns up to several centimeters and more. Proper description of such a multiparticle nature is crucial when quantifying changes in grain-size distribution along the plume and, therefore, for better characterization of source conditions of ash dispersal models. The new model is based on the method of moments, which allows description of the pyroclastic mixture dynamics not only in the spatial domain but also in the space of properties of the continuous size-distribution of the particles. This is achieved by formulation of fundamental transport equations for the multiparticle mixture with respect to the different moments of the grain-size distribution. Different formulations, in terms of the distribution of the particle number, as well as of the mass distribution expressed in terms of the Krumbein log scale, are also derived. Comparison between the new moments-based formulation and the classical approach, based on the discretization of the mixture in N discrete phases, shows that the new model allows the same results to be obtained with a significantly lower computational cost (particularly when a large number of discrete phases is adopted). Application of the new model, coupled with uncertainty quantification and global sensitivity analyses, enables investigation of the response of four key output variables (mean and standard deviation (SD) of the grain-size distribution at the top of the plume, plume height and amount of mass lost by the plume during the ascent) to changes in the main input parameters (mean and SD) characterizing the pyroclastic mixture at the base of the plume

  17. 1D Thermal-Hydraulic-Chemical (THC) Reactive transport modeling for deep geothermal systems: A case study of Groß Schönebeck reservoir, Germany

    NASA Astrophysics Data System (ADS)

    Driba, D. L.; De Lucia, M.; Peiffer, S.

    2014-12-01

    Fluid-rock interactions in geothermal reservoirs are driven by the state of disequilibrium that persists among solid and solutes due to changing temperature and pressure. During operation of enhanced geothermal systems, injection of cooled water back into the reservoir disturbs the initial thermodynamic equilibrium between the reservoir and its geothermal fluid, which may induce modifications in permeability through changes in porosity and pore space geometry, consequently bringing about several impairments to the overall system.Modeling of fluid-rock interactions induced by injection of cold brine into Groß Schönebeck geothermal reservoir system situated in the Rotliegend sandstone at 4200m depth have been done by coupling geochemical modeling Code Phreeqc with OpenGeoSys. Through batch modeling the re-evaluation of the measured hydrochemical composition of the brine has been done using Quintessa databases, the results from the calculation indicate that a mineral phases comprising of K-feldspar, hematite, Barite, Calcite and Dolomite was found to match the hypothesis of equilibrium with the formation fluid, Reducing conditions are presumed in the model (pe = -3.5) in order to match the amount of observed dissolved Fe and thus considered as initial state for the reactive transport modeling. based on a measured composition of formation fluids and the predominant mineralogical assemblage of the host rock, a preliminary 1D Reactive transport modeling (RTM) was run with total time set to 30 years; results obtained for the initial simulation revealed that during this period, no significant change is evident for K-feldspar. Furthermore, the precipitation of calcite along the flow path in the brine results in a drop of pH from 6.2 to a value of 5.2 noticed over the simulated period. The circulation of cooled fluid in the reservoir is predicted to affect the temperature of the reservoir within the first 100 -150m from the injection well. Examination of porosity change in

  18. Discrete model reference adaptive control with an augmented error signal

    NASA Technical Reports Server (NTRS)

    Ionescu, T.; Monopoli, R.

    1975-01-01

    A method for designing discrete model reference adaptive control systems when one has access to only the plant's input and output signals is given. Controllers for single-input, single-output, nonlinear, nonautonomous plants are developed via Liapunov's second method. Anticipative values of the plant output are not required, but are replaced by signals easily obtained from a low-pass filter operating on the plant's output. The augmented error signal method is employed, ensuring finally that the normally used error signal also approaches zero asymptotically.

  19. Mooring Design for the Floating Oscillating Water Column Reference Model

    SciTech Connect

    Brefort, Dorian; Bull, Diana L.

    2014-09-01

    To reduce the price of the reference Backward Bent Duct Buoy (BBDB), a study was done analyzing the effects of reducing the mooring line length, and a new mooring design was developed. It was found that the overall length of the mooring lines could be reduced by 1290 meters, allowing a significant price reduction of the system. In this paper, we will first give a description of the model and the storm environment it will be subject to. We will then give a recommendation for the new mooring system, followed by a discussion of the severe weather simulation results, and an analysis of the conservative and aggressive aspects of the design.

  20. Local control network and internetwork ISO-OSI reference model

    SciTech Connect

    Damsker, D.

    1983-05-01

    The paper describes a new local control network architecture. The new control network is totally distributed and redundantly hardware and software structured, based on a bus configuration and on CSMA/CD media access control. The architecture of the control structure and of the data communications structure for both Local Network and Internetwork is discussed in comparison with ISO-OSI and Local Area Network IEEE Standard 802 (Draft) Reference Models. A previous paper dealt with the physical implementation of this concept. The present paper is more software structure oriented.

  1. The International Reference Ionosphere 2012 - a model of international collaboration

    NASA Astrophysics Data System (ADS)

    Bilitza, Dieter; Altadill, David; Zhang, Yongliang; Mertens, Chris; Truhlik, Vladimir; Richards, Phil; McKinnell, Lee-Anne; Reinisch, Bodo

    2014-02-01

    The International Reference Ionosphere (IRI) project was established jointly by the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) in the late sixties with the goal to develop an international standard for the specification of plasma parameters in the Earth's ionosphere. COSPAR needed such a specification for the evaluation of environmental effects on spacecraft and experiments in space, and URSI for radiowave propagation studies and applications. At the request of COSPAR and URSI, IRI was developed as a data-based model to avoid the uncertainty of theory-based models which are only as good as the evolving theoretical understanding. Being based on most of the available and reliable observations of the ionospheric plasma from the ground and from space, IRI describes monthly averages of electron density, electron temperature, ion temperature, ion composition, and several additional parameters in the altitude range from 60 km to 2000 km. A working group of about 50 international ionospheric experts is in charge of developing and improving the IRI model. Over time as new data became available and new modeling techniques emerged, steadily improved editions of the IRI model have been published. This paper gives a brief history of the IRI project and describes the latest version of the model, IRI-2012. It also briefly discusses efforts to develop a real-time IRI model. The IRI homepage is at http://IRImodel.org.

  2. Reduction of the uncertainties in the water level-discharge relation of a 1D hydraulic model in the context of operational flood forecasting

    NASA Astrophysics Data System (ADS)

    Habert, J.; Ricci, S.; Le Pape, E.; Thual, O.; Piacentini, A.; Goutal, N.; Jonville, G.; Rochoux, M.

    2016-01-01

    This paper presents a data-driven hydrodynamic simulator based on the 1-D hydraulic solver dedicated to flood forecasting with lead time of an hour up to 24 h. The goal of the study is to reduce uncertainties in the hydraulic model and thus provide more reliable simulations and forecasts in real time for operational use by the national hydrometeorological flood forecasting center in France. Previous studies have shown that sequential assimilation of water level or discharge data allows to adjust the inflows to the hydraulic network resulting in a significant improvement of the discharge while leaving the water level state imperfect. Two strategies are proposed here to improve the water level-discharge relation in the model. At first, a modeling strategy consists in improving the description of the river bed geometry using topographic and bathymetric measurements. Secondly, an inverse modeling strategy proposes to locally correct friction coefficients in the river bed and the flood plain through the assimilation of in situ water level measurements. This approach is based on an Extended Kalman filter algorithm that sequentially assimilates data to infer the upstream and lateral inflows at first and then the friction coefficients. It provides a time varying correction of the hydrological boundary conditions and hydraulic parameters. The merits of both strategies are demonstrated on the Marne catchment in France for eight validation flood events and the January 2004 flood event is used as an illustrative example throughout the paper. The Nash-Sutcliffe criterion for water level is improved from 0.135 to 0.832 for a 12-h forecast lead time with the data assimilation strategy. These developments have been implemented at the SAMA SPC (local flood forecasting service in the Haute-Marne French department) and used for operational forecast since 2013. They were shown to provide an efficient tool for evaluating flood risk and to improve the flood early warning system

  3. Proposed reference model for middle atmosphere water vapor

    NASA Astrophysics Data System (ADS)

    Chiou, E. W.; Remsberg, E. E.; Rodgers, C. D.; Munro, R.; Bevilacqua, R. M.; McCormick, M. P.; Russell, J. M.

    Several new and significant satellite data sets on middle atmosphere water vapor have been produced recently. They include data from the Stratospheric Aerosol and Gas Experiment II (SAGE II) and the Nimbus-7 Stratospheric and Mesospheric Sounder (SAMS) experiment. The SAGE II data provide an estimate of interannual variability of water vapor in the stratosphere. The SAMS data are appropriate for the upper stratosphere and lower mesosphere. We combine these two data sets with those from the Nimbus-7 Limb Infrared Monitor of the Stratosphere (LIMS) experiment to update the COSPAR interim reference model for water vapor. Water vapor profiles from the Spacelab 3 Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment, ground-based microwave, and in situ balloon and aircraft measurements have been used to check the quality of the satellite data sets. The updated reference model is given as a function of latitude and pressure altitude and now covers all four seasons. Tabulations are included for these seasonal water vapor mixing ratios (in ppmv) and their estimated errors (in percent).

  4. Alteration minerals, fluids, and gases on early Mars: Predictions from 1-D flow geochemical modeling of mineral assemblages in meteorite ALH 84001

    NASA Astrophysics Data System (ADS)

    Melwani Daswani, Mohit; Schwenzer, Susanne P.; Reed, Mark H.; Wright, Ian P.; Grady, Monica M.

    2016-11-01

    Clay minerals, although ubiquitous on the ancient terrains of Mars, have not been observed in Martian meteorite Allan Hills (ALH) 84001, which is an orthopyroxenite sample of the early Martian crust with a secondary carbonate assemblage. We used a low-temperature (20 °C) one-dimensional (1-D) transport thermochemical model to investigate the possible aqueous alteration processes that produced the carbonate assemblage of ALH 84001 while avoiding the coprecipitation of clay minerals. We found that the carbonate in ALH 84001 could have been produced in a process, whereby a low-temperature ( 20 °C) fluid, initially equilibrated with the early Martian atmosphere, moved through surficial clay mineral and silica-rich layers, percolated through the parent rock of the meteorite, and precipitated carbonates (thereby decreasing the partial pressure of CO2) as it evaporated. This finding requires that before encountering the unweathered orthopyroxenite host of ALH 84001, the fluid permeated rock that became weathered during the process. We were able to predict the composition of the clay minerals formed during weathering, which included the dioctahedral smectite nontronite, kaolinite, and chlorite, all of which have been previously detected on Mars. We also calculated host rock replacement in local equilibrium conditions by the hydrated silicate talc, which is typically considered to be a higher temperature hydrothermal phase on Earth, but may have been a common constituent in the formation of Martian soils through pervasive aqueous alteration. Finally, goethite and magnetite were also found to precipitate in the secondary alteration assemblage, the latter associated with the generation of H2. Apparently, despite the limited water-rock interaction that must have led to the formation of the carbonates 3.9 Ga ago, in the vicinity of the ALH 84001 source rocks, clay formation would have been widespread.

  5. Parameterized isoprene and monoterpene emissions from the boreal forest floor: Implementation into a 1D chemistry-transport model and investigation of the influence on atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Mogensen, Ditte; Aaltonen, Hermanni; Aalto, Juho; Bäck, Jaana; Kieloaho, Antti-Jussi; Gierens, Rosa; Smolander, Sampo; Kulmala, Markku; Boy, Michael

    2015-04-01

    Volatile organic compounds (VOCs) are emitted from the biosphere and can work as precursor gases for aerosol particles that can affect the climate (e.g. Makkonen et al., ACP, 2012). VOC emissions from needles and leaves have gained the most attention, however other parts of the ecosystem also have the ability to emit a vast amount of VOCs. This, often neglected, source can be important e.g. at periods where leaves are absent. Both sources and drivers related to forest floor emission of VOCs are currently limited. It is thought that the sources are mainly due to degradation of organic matter (Isidorov and Jdanova, Chemosphere, 2002), living roots (Asensio et al., Soil Biol. Biochem., 2008) and ground vegetation. The drivers are biotic (e.g. microbes) and abiotic (e.g. temperature and moisture). However, the relative importance of the sources and the drivers individually are currently poorly understood. Further, the relative importance of these factors is highly dependent on the tree species occupying the area of interest. The emission of isoprene and monoterpenes where measured from the boreal forest floor at the SMEAR II station in Southern Finland (Hari and Kulmala, Boreal Env. Res., 2005) during the snow-free period in 2010-2012. We used a dynamic method with 3 automated chambers analyzed by Proton Transfer Reaction - Mass Spectrometer (Aaltonen et al., Plant Soil, 2013). Using this data, we have developed empirical parameterizations for the emission of isoprene and monoterpenes from the forest floor. These parameterizations depends on abiotic factors, however, since the parameterizations are based on field measurements, biotic features are captured. Further, we have used the 1D chemistry-transport model SOSAA (Boy et al., ACP, 2011) to test the seasonal relative importance of inclusion of these parameterizations of the forest floor compared to the canopy crown emissions, on the atmospheric reactivity throughout the canopy.

  6. An Adaptive Critic Approach to Reference Model Adaptation

    NASA Technical Reports Server (NTRS)

    Krishnakumar, K.; Limes, G.; Gundy-Burlet, K.; Bryant, D.

    2003-01-01

    Neural networks have been successfully used for implementing control architectures for different applications. In this work, we examine a neural network augmented adaptive critic as a Level 2 intelligent controller for a C- 17 aircraft. This intelligent control architecture utilizes an adaptive critic to tune the parameters of a reference model, which is then used to define the angular rate command for a Level 1 intelligent controller. The present architecture is implemented on a high-fidelity non-linear model of a C-17 aircraft. The goal of this research is to improve the performance of the C-17 under degraded conditions such as control failures and battle damage. Pilot ratings using a motion based simulation facility are included in this paper. The benefits of using an adaptive critic are documented using time response comparisons for severe damage situations.

  7. Helical Floquet Channels in 1D Lattices

    NASA Astrophysics Data System (ADS)

    Budich, Jan Carl; Hu, Ying; Zoller, Peter

    2017-03-01

    We show how dispersionless channels exhibiting perfect spin-momentum locking can arise in a 1D lattice model. While such spectra are forbidden by fermion doubling in static 1D systems, here we demonstrate their appearance in the stroboscopic dynamics of a periodically driven system. Remarkably, this phenomenon does not rely on any adiabatic assumptions, in contrast to the well known Thouless pump and related models of adiabatic spin pumps. The proposed setup is shown to be experimentally feasible with state-of-the-art techniques used to control ultracold alkaline earth atoms in optical lattices.

  8. SLOWMOVE - A numerical model for the propagation of slow-moving landslides: a 1D approach and its application to the analysis of the Valoria landslide (Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Daehne, A.; van Asch, Th. W. J.; Corsini, A.; Spickerman, A.; Bégueria-Portuguès, S.

    2010-05-01

    Understanding the behavior of landslides often starts with a numerical simulation that accurately accounts for observed physical processes. This research proposes a method for the implementation of the dynamic SLOWMOVE model to a high-mobility, moderate velocity earth flow located in the northern Apennines. The Valoria landslide is 3.5 km long earth slide- earth flow that resumed activity in 2001. Landslide materials comprised of disaggregated Flysch, Marl and Claystones are mainly transported as earth slides in the upper slope, and as earth flows in the main track. Repeated acceleration events lasting several weeks occur seasonally since 2001 reactivation. During events it can reach velocities of about 10 m per hour with a cumulative displacement of hundreds of meters. Through this intermittent activity, more than ten million cubic meters have been transferred down-slope since 2001, changing significantly and several times the morphology of the slope. The SLOWMOVE model postulates that landslide materials can be represented as a homogeneous material with rheological properties and constant density. The approach is based on the Navier-Stokes equations. Under the assumptions that the inertia of the moving mass can be neglected, the behavior of the landslide depends solely on the balance between driving forces and resisting forces which contain a Coulomb-viscous component. Excess pore pressure due to undrained loading and lateral force form the main parameters that control the acceleration. The effects of lateral force and excess pore pressure allow a numerical simulation of landslide reactivation by coupling of two landslide bodies. A numerical scheme based on a finite difference solution (2D Eulerian space with Cartesian coordinates) was implemented in Microsoft Excel and used to compute propagation of the mass in 1D. The model allows coupling between mass movements having different geotechnical characteristic. In practice, it allows simulating the reactivation of

  9. Dynamics of ozone and nitrogen oxides at Summit, Greenland. II. Simulating snowpack chemistry during a spring high ozone event with a 1-D process-scale model

    NASA Astrophysics Data System (ADS)

    Murray, Keenan A.; Kramer, Louisa J.; Doskey, Paul V.; Ganzeveld, Laurens; Seok, Brian; Van Dam, Brie; Helmig, Detlev

    2015-09-01

    Observed depth profiles of nitric oxide (NO), nitrogen dioxide (NO2), and ozone (O3) in snowpack interstitial air at Summit, Greenland were best replicated by a 1-D process-scale model, which included (1) geometrical representation of snow grains as spheres, (2) aqueous-phase chemistry confined to a quasi-liquid layer (QLL) on the surface of snow grains, and (3) initialization of the species concentrations in the QLL through equilibrium partitioning with mixing ratios in snowpack interstitial air. A comprehensive suite of measurements in and above snowpack during a high O3 event facilitated analysis of the relationship between the chemistry of snowpack and the overlying atmosphere. The model successfully reproduced 2 maxima (i.e., a peak near the surface of the snowpack at solar noon and a larger peak occurring in the evening that extended down from 0.5 to 2 m) in the diurnal profile of NO2 within snowpack interstitial air. The maximum production rate of NO2 by photolysis of nitrate (NO3-) was approximately 108 molec cm-3 s-1, which explained daily observations of maxima in NO2 mixing ratios near solar noon. Mixing ratios of NO2 in snowpack interstitial air were greatest in the deepest layers of the snowpack at night and were attributed to thermal decomposition of peroxynitric acid, which produced up to 106 molec NO2 cm-3 s-1. Highest levels of NO in snowpack interstitial air were confined to upper layers of the snowpack and observed profiles were consistent with photolysis of NO2. Production of nitrogen oxides (NOx) from NO3- photolysis was estimated to be two orders of magnitude larger than NO production and supports the hypothesis that NO3- photolysis is the primary source of NOx within sunlit snowpack in the Arctic. Aqueous-phase oxidation of formic acid by O3 resulted in a maximum consumption rate of ∼106-107 molec cm-3 s-1 and was the primary removal mechanism for O3.

  10. Early alterations in energy metabolism in the hippocampus of APPswe/PS1dE9 mouse model of Alzheimer's disease.

    PubMed

    Pedrós, Ignacio; Petrov, Dmitry; Allgaier, Michael; Sureda, Francesc; Barroso, Emma; Beas-Zarate, Carlos; Auladell, Carme; Pallàs, Mercè; Vázquez-Carrera, Manuel; Casadesús, Gemma; Folch, Jaume; Camins, Antoni

    2014-09-01

    The present study had focused on the behavioral phenotype and gene expression profile of molecules related to insulin receptor signaling in the hippocampus of 3 and 6 month-old APPswe/PS1dE9 (APP/PS1) transgenic mouse model of Alzheimer's disease (AD). Elevated levels of the insoluble Aβ (1-42) were detected in the brain extracts of the transgenic animals as early as 3 months of age, prior to the Aβ plaque formation (pre-plaque stage). By the early plaque stage (6 months) both the soluble and insoluble Aβ (1-40) and Aβ (1-42) peptides were detectable. We studied the expression of genes related to memory function (Arc, Fos), insulin signaling, including insulin receptor (Insr), Irs1 and Irs2, as well as genes involved in insulin growth factor pathways, such as Igf1, Igf2, Igfr and Igfbp2. We also examined the expression and protein levels of key molecules related to energy metabolism (PGC1-α, and AMPK) and mitochondrial functionality (OXPHOS, TFAM, NRF1 and NRF2). 6 month-old APP/PS1 mice demonstrated impaired cognitive ability, were glucose intolerant and showed a significant reduction in hippocampal Insr and Irs2 transcripts. Further observations also suggest alterations in key cellular energy sensors that regulate the activities of a number of metabolic enzymes through phosphorylation, such as a decrease in the Prkaa2 mRNA levels and in the pAMPK (Thr172)/Total APMK ratio. Moreover, mRNA and protein analysis reveals a significant downregulation of genes essential for mitochondrial replication and respiratory function, including PGC-1α in hippocampal extracts of APP/PS1 mice, compared to age-matched wild-type controls at 3 and 6 months of age. Overall, the findings of this study show early alterations in genes involved in insulin and energy metabolism pathways in an APP/PS1 model of AD. These changes affect the activity of key molecules like NRF1 and PGC-1α, which are involved in mitochondrial biogenesis. Our results reinforce the hypothesis that the

  11. Reference Model 2: %22Rev 0%22 Rotor Design.

    SciTech Connect

    Barone, Matthew F.; Berg, Jonathan Charles; Griffith, Daniel

    2011-12-01

    The preliminary design for a three-bladed cross-flow rotor for a reference marine hydrokinetic turbine is presented. A rotor performance design code is described, along with modifications to the code to allow prediction of blade support strut drag as well as interference between two counter-rotating rotors. The rotor is designed to operate in a reference site corresponding to a riverine environment. Basic rotor performance and rigid-body loads calculations are performed to size the rotor elements and select the operating speed range. The preliminary design is verified with a simple finite element model that provides estimates of bending stresses during operation. A concept for joining the blades and support struts is developed and analyzed with a separate finite element analysis. Rotor mass, production costs, and annual energy capture are estimated in order to allow calculations of system cost-of-energy. Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd

  12. Testing and reference model analysis of FTTH system

    NASA Astrophysics Data System (ADS)

    Feng, Xiancheng; Cui, Wanlong; Chen, Ying

    2009-08-01

    With rapid development of Internet and broadband access network, the technologies of xDSL, FTTx+LAN , WLAN have more applications, new network service emerges in endless stream, especially the increase of network game, meeting TV, video on demand, etc. FTTH supports all present and future service with enormous bandwidth, including traditional telecommunication service, traditional data service and traditional TV service, and the future digital TV and VOD. With huge bandwidth of FTTH, it wins the final solution of broadband network, becomes the final goal of development of optical access network.. Fiber to the Home (FTTH) will be the goal of telecommunications cable broadband access. In accordance with the development trend of telecommunication services, to enhance the capacity of integrated access network, to achieve triple-play (voice, data, image), based on the existing optical Fiber to the curb (FTTC), Fiber To The Zone (FTTZ), Fiber to the Building (FTTB) user optical cable network, the optical fiber can extend to the FTTH system of end-user by using EPON technology. The article first introduced the basic components of FTTH system; and then explain the reference model and reference point for testing of the FTTH system; Finally, by testing connection diagram, the testing process, expected results, primarily analyze SNI Interface Testing, PON interface testing, Ethernet performance testing, UNI interface testing, Ethernet functional testing, PON functional testing, equipment functional testing, telephone functional testing, operational support capability testing and so on testing of FTTH system. ...

  13. Applying 1D Sediment Models to Reservoir Flushing Studies: Measuring, Monitoring, and Modeling the Spencer Dam Sediment Flush with HEC-RAS

    DTIC Science & Technology

    2016-07-01

    are considering passive management approaches like flushing and routing to manage reservoir sediment. In the last 3 years, HEC developed new analysis...Kansas River) (Gibson and Boyd 2014; Davis et al. 2014; Shelley and Gibson 2015). However, because these reservoir management strategies are still...alternative sediment management objectives, these models are uncelebrated and therefore, somewhat speculative. One of the problems with modeling

  14. Equatorial F1 characteristics and the international reference ionosphere model

    NASA Astrophysics Data System (ADS)

    Adeniyi, J. O.

    1996-07-01

    Average values of the F1 critical frequency (f0F1) and the height of the F1 ledge (hmF1) for Ibadan (Latitude 7.4°N, Longitude 3.9°E) were used for this study. Well-defined F1 characteristics are observed during winter at low solar activity. International reference ionosphere (IRI) does not predict F1 parameters during this season. Deviation of predicted F1 electron density (NF1) by the IRI model from observed values are less than 10% for all seasons of low solar activity, when IRI predicts NF1. Higher percentage deviations are observed during summers of high solar activity. IRI overestimates hmF1. Deviations from experimental values vary from 4 to 35%.

  15. Reference respiratory waveforms by minimum jerk model analysis

    SciTech Connect

    Anetai, Yusuke Sumida, Iori; Takahashi, Yutaka; Yagi, Masashi; Mizuno, Hirokazu; Ogawa, Kazuhiko; Ota, Seiichi

    2015-09-15

    Purpose: CyberKnife{sup ®} robotic surgery system has the ability to deliver radiation to a tumor subject to respiratory movements using Synchrony{sup ®} mode with less than 2 mm tracking accuracy. However, rapid and rough motion tracking causes mechanical tracking errors and puts mechanical stress on the robotic joint, leading to unexpected radiation delivery errors. During clinical treatment, patient respiratory motions are much more complicated, suggesting the need for patient-specific modeling of respiratory motion. The purpose of this study was to propose a novel method that provides a reference respiratory wave to enable smooth tracking for each patient. Methods: The minimum jerk model, which mathematically derives smoothness by means of jerk, or the third derivative of position and the derivative of acceleration with respect to time that is proportional to the time rate of force changed was introduced to model a patient-specific respiratory motion wave to provide smooth motion tracking using CyberKnife{sup ®}. To verify that patient-specific minimum jerk respiratory waves were being tracked smoothly by Synchrony{sup ®} mode, a tracking laser projection from CyberKnife{sup ®} was optically analyzed every 0.1 s using a webcam and a calibrated grid on a motion phantom whose motion was in accordance with three pattern waves (cosine, typical free-breathing, and minimum jerk theoretical wave models) for the clinically relevant superior–inferior directions from six volunteers assessed on the same node of the same isocentric plan. Results: Tracking discrepancy from the center of the grid to the beam projection was evaluated. The minimum jerk theoretical wave reduced the maximum-peak amplitude of radial tracking discrepancy compared with that of the waveforms modeled by cosine and typical free-breathing model by 22% and 35%, respectively, and provided smooth tracking for radial direction. Motion tracking constancy as indicated by radial tracking discrepancy

  16. Broadband access network reference models: a different prospective

    NASA Astrophysics Data System (ADS)

    Mostafa, Mohamed S.

    1996-11-01

    The current view of the fiber-based broadband access network is that it could basically be modeled into two target networks represented by the following architectures, the fiber to the curb, building, home (FTTC/B/H) -- also termed switched digital video (SDV) -- architecture, and the hybrid fiber coax (HFC) architecture. Both architectures support on-demand digital services. One way to distinguish between these two architectures is based on the digital modulation scheme. The SDV/FTTC architecture utilizes baseband digital modulation both in the fiber distribution and the point-to- point drop. Whereas, the HFC architecture is pass-band and utilizes digitally modulated (as well as analog modulated) subcarriers both on the fiber and the coax for distribution to customers. From a network modeling point of view, the distinction between these two architectures is fuzzy. A hybrid between the above two architectures represents other architectural advantages especially bandwidth utilization in the upstream direction. This paper describes this hybrid architecture and provides an evaluation of the different access network configuration scenarios based on an expanded version of the DAVIC reference models.

  17. Analytical model of solutions of (2+1)-D heat convection equations in a shape memory alloy device immersed in a blood vessel

    NASA Astrophysics Data System (ADS)

    Maher Abourabia, Aly; Hassan, Kawsar Mohammad; Abo-Elghar, Eman Mohammad

    2015-02-01

    We investigate a bio-system composed of a shape memory alloy (SMA) immersed and subjected to heat convection in a blood vessel, affected by heart beats that create a wave motion of long wavelength. The tackled model in (2+1)-D is based on the continuity and momentum equations for the fluid phase, besides; the state of the SMA are described via previous works in the form of statistical distributions of energy for both Martensite and Austenite phases. The solution based on the reductive perturbation technique gives a thermal diffusion-like equation as a key for expressing the temperature and velocity components of the blood. In terms of two cases concerning the difference between the wave numbers in the perpendicular directions, it is found that the system's temperature increases nonlinearly from a minimum initial temperature 293 K (20 °C) up to a maximum value about 316.68 K (43.68 °C), then tends to decrease along the blood flow (anisotropy of K and L) direction. In both cases it is observed that the SMA acquires most of this temperature raising not the blood because of its conventional biological limits (37-40 °C). The range of the heart beats wave numbers characteristic for each person plays an important role in realizing phase changes in the anisotropic case leading to the formation of the hysteresis loops Martensite-Austenite-Martensite or vice versa, according to the energy variation. The entropy generation σ is investigated for the system (Blood + SMA), it predicts that along the flow direction the system gains energy convectively up to a maximum value, then reverses his tendency to gradually loosing energy passing by the equilibrium state, then the system looses energy to the surroundings by the same amount which was gained beforehand. The loss diminishes but stops before arriving to equilibrium again. For certain differences in wave numbers the system starts to store energy again after it passes by the state of equilibrium for the second time. In the

  18. Preface: International Reference Ionosphere - Progress in Ionospheric Modelling

    NASA Technical Reports Server (NTRS)

    Bilitza Dieter; Reinisch, Bodo

    2010-01-01

    The international reference ionosphere (lRI) is the internationally recommended empirical model for the specification of ionospheric parameters supported by the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) and recognized by the International Standardization Organization (ISO). IRI is being continually improved by a team of international experts as new data become available and better models are being developed. This issue chronicles the latest phase of model updates as reported during two IRI-related meetings. The first was a special session during the Scientific Assembly of the Committee of Space Research (COSPAR) in Montreal, Canada in July 2008 and the second was an IRI Task Force Activity at the US Air Force Academy in Colorado Springs in May 2009. This work led to several improvements and additions of the model which will be included in the next version, IRI-201O. The issue is divided into three sections focusing on the improvements made in the topside ionosphere, the F-peak, and the lower ionosphere, respectively. This issue would not have been possible without the reviewing efforts of many individuals. Each paper was reviewed by two referees. We thankfully acknowledge the contribution to this issue made by the following reviewers: Jacob Adeniyi, David Altadill, Eduardo Araujo, Feza Arikan, Dieter Bilitza, Jilijana Cander, Bela Fejer, Tamara Gulyaeva, Manuel Hermindez-Pajares, Ivan Kutiev, John MacDougal, Leo McNamara, Bruno Nava, Olivier Obrou, Elijah Oyeyemi, Vadym Paznukhov, Bodo Reinisch, John Retterer, Phil Richards, Gary Sales, J.H. Sastri, Ludger Scherliess, Iwona Stanislavska, Stamir Stankov, Shin-Yi Su, Manlian Zhang, Y ongliang Zhang, and Irina Zakharenkova. We are grateful to Peggy Ann Shea for her final review and guidance as the editor-in-chief for special issues of Advances in Space Research. We thank the authors for their timely submission and their quick response to the reviewer comments and humbly

  19. The lithosphere-asthenosphere system beneath Ireland from integrated geophysical-petrological modeling - I: Observations, 1D and 2D hypothesis testing and modeling

    NASA Astrophysics Data System (ADS)

    Jones, Alan G.; Afonso, Juan Carlos; Fullea, Javier; Salajegheh, Farshad

    2014-02-01

    Modeling the continental lithosphere's physical properties, especially its depth extent, must be done within a self-consistent petrological-geophysical framework; modeling using only one or two data types may easily lead to inconsistencies and erroneous interpretations. Using the LitMod approach for hypothesis testing and first-order modeling, we show how assumptions made about crustal information and the probable compositions of the lithospheric and sub-lithospheric mantle affect particular observables, particularly especially surface topographic elevation. The critical crustal parameter is density, leading to ca. 600 m error in topography for 50 kg m- 3 imprecision. The next key parameter is crustal thickness, and uncertainties in its definition lead to around ca. 4 km uncertainty in LAB for every 1 km of variation in Moho depth. Possible errors in the other assumed crustal parameters introduce a few kilometers of uncertainty in the depth to the LAB. We use Ireland as a natural laboratory to demonstrate the approach. From first-order arguments and given reasonable assumptions, a topographic elevation in the range of 50-100 m, which is the average across Ireland, requires that the lithosphere-asthenosphere boundary (LAB) beneath most of Ireland must lie in the range 90-115 km. A somewhat shallower (to 85 km) LAB is permitted, but the crust must be thinned (< 29 km) to compensate. The observations, especially topography, are inconsistent with suggestions, based on interpretation of S-to-P receiver functions, that the LAB thins from 85 km in southern Ireland to 55 km in central northern Ireland over a distance of < 150 km. Such a thin lithosphere would result in over 1000 m of uplift, and such rapid thinning by 30 km over less than 150 km would yield significant north-south variations in topographic elevation, Bouguer anomaly, and geoid height, none of which are observed. Even juxtaposing the most extreme probable depleted composition for the lithospheric mantle

  20. GRAM 88 - 4D GLOBAL REFERENCE ATMOSPHERE MODEL-1988

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1994-01-01

    The Four-D Global Reference Atmosphere program was developed from an empirical atmospheric model which generates values for pressure, density, temperature, and winds from surface level to orbital altitudes. This program can generate altitude profiles of atmospheric parameters along any simulated trajectory through the atmosphere. The program was developed for design applications in the Space Shuttle program, such as the simulation of external tank re-entry trajectories. Other potential applications are global circulation and diffusion studies; also the generation of profiles for comparison with other atmospheric measurement techniques such as satellite measured temperature profiles and infrasonic measurement of wind profiles. GRAM-88 is the latest version of the software GRAM. The software GRAM-88 contains a number of changes that have improved the model statistics, in particular, the small scale density perturbation statistics. It also corrected a low latitude grid problem as well as the SCIDAT data base. Furthermore, GRAM-88 now uses the U.S. Standard Atmosphere 1976 as a comparison standard rather than the US62 used in other versions. The program is an amalgamation of two empirical atmospheric models for the low (25km) and the high (90km) atmosphere, with a newly developed latitude-longitude dependent model for the middle atmosphere. The Jacchia (1970) model simulates the high atmospheric region above 115km. The Jacchia program sections are in separate subroutines so that other thermosphericexospheric models could easily be adapted if required for special applications. The improved code eliminated the calculation of geostrophic winds above 125 km altitude from the model. The atmospheric region between 30km and 90km is simulated by a latitude-longitude dependent empirical model modification of the latitude dependent empirical model of Groves (1971). A fairing technique between 90km and 115km accomplished a smooth transition between the modified Groves values and

  1. MAVEN and the Mars Initial Reference Ionosphere model

    NASA Astrophysics Data System (ADS)

    Mendillo, Michael; Narvaez, Clara; Matta, Majd; Vogt, Marissa; Mahaffy, Paul; Benna, Mehdi; Jakosky, Bruce

    2015-11-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) on the Mars Atmosphere and Volatile EvolutioN (MAVEN) satellite measured the distribution of thermal ions (2-150 amu) at ionospheric heights (~130-400 km) under midday conditions during the "Deep-Dip" orbit campaign from 17 to 22 April 2015. Assuming charge neutrality, we use the sum of NGIMS ions as a proxy for electron density (Ne) and compare results with a new version of the Mars Initial Reference Ionosphere (MIRI) developed for this study. At altitudes where the transition between photochemical and dynamical processes occurs (130-200 km), the NGIMS results agree with the shape of the MIRI-predicted Ne(h) profiles, but the model predictions are a factor of 2 higher. Above 200 km, the NGIMS gradients of total ions versus height diverge even more from MIRI's Ne(h) predictions for reasons that may involve crustal-B field effects, ionopause-like boundaries, and horizontal plasma transport away from the noon sector—factors not yet included in MIRI.

  2. Reference Models for Structural Technology Assessment and Weight Estimation

    NASA Technical Reports Server (NTRS)

    Cerro, Jeff; Martinovic, Zoran; Eldred, Lloyd

    2005-01-01

    Previously the Exploration Concepts Branch of NASA Langley Research Center has developed techniques for automating the preliminary design level of launch vehicle airframe structural analysis for purposes of enhancing historical regression based mass estimating relationships. This past work was useful and greatly reduced design time, however its application area was very narrow in terms of being able to handle a large variety in structural and vehicle general arrangement alternatives. Implementation of the analysis approach presented herein also incorporates some newly developed computer programs. Loft is a program developed to create analysis meshes and simultaneously define structural element design regions. A simple component defining ASCII file is read by Loft to begin the design process. HSLoad is a Visual Basic implementation of the HyperSizer Application Programming Interface, which automates the structural element design process. Details of these two programs and their use are explained in this paper. A feature which falls naturally out of the above analysis paradigm is the concept of "reference models". The flexibility of the FEA based JAVA processing procedures and associated process control classes coupled with the general utility of Loft and HSLoad make it possible to create generic program template files for analysis of components ranging from something as simple as a stiffened flat panel, to curved panels, fuselage and cryogenic tank components, flight control surfaces, wings, through full air and space vehicle general arrangements.

  3. Utilization of Global Reference Atmosphere Model (GRAM) for shuttle entry

    NASA Technical Reports Server (NTRS)

    Joosten, Kent

    1987-01-01

    At high latitudes, dispersions in values of density for the middle atmosphere from the Global Reference Atmosphere Model (GRAM) are observed to be large, particularly in the winter. Trajectories have been run from 28.5 deg to 98 deg. The critical part of the atmosphere for reentry is 250,000 to 270,000 ft. 250,000 ft is the altitude where the shuttle trajectory levels out. For ascending passes the critical region occurs near the equator. For descending entries the critical region is in northern latitudes. The computed trajectory is input to the GRAM, which computes means and deviations of atmospheric parameters at each point along the trajectory. There is little latitude dispersion for the ascending passes; the strongest source of deviations is seasonal; however, very wide seasonal and latitudinal deviations are exhibited for the descending passes at all orbital inclinations. For shuttle operations the problem is control to maintain the correct entry corridor and avoid either aerodynamic skipping or excessive heat loads.

  4. Models of Reference Services in Australian Academic Libraries

    ERIC Educational Resources Information Center

    Burke, Liz

    2008-01-01

    This article reports on a project which was undertaken in 2006 to investigate the current modes and methods for delivering reference services in Australian academic libraries. The project included a literature review to assist in providing a definition of reference services as well as a snapshot of statistics showing staff and patron numbers from…

  5. Cooperative Reference Services Policy Manual: A Model Outline.

    ERIC Educational Resources Information Center

    RQ, 1995

    1995-01-01

    Provides a framework of topics that should be covered by a policy manual on cooperative reference services. It is organized into sections on mission statement, administration, delivery of services, and evaluation of services, and is intended for use in conjunction with existing RASD (Reference and Adult Services Division) documents. (Author)

  6. Requirements for data integration platforms in biomedical research networks: a reference model

    PubMed Central

    Knaup, Petra

    2015-01-01

    Biomedical research networks need to integrate research data among their members and with external partners. To support such data sharing activities, an adequate information technology infrastructure is necessary. To facilitate the establishment of such an infrastructure, we developed a reference model for the requirements. The reference model consists of five reference goals and 15 reference requirements. Using the Unified Modeling Language, the goals and requirements are set into relation to each other. In addition, all goals and requirements are described textually in tables. This reference model can be used by research networks as a basis for a resource efficient acquisition of their project specific requirements. Furthermore, a concrete instance of the reference model is described for a research network on liver cancer. The reference model is transferred into a requirements model of the specific network. Based on this concrete requirements model, a service-oriented information technology architecture is derived and also described in this paper. PMID:25699205

  7. Analyzing Students' Understanding of Models and Modeling Referring to the Disciplines Biology, Chemistry, and Physics

    ERIC Educational Resources Information Center

    Krell, Moritz; Reinisch, Bianca; Krüger, Dirk

    2015-01-01

    In this study, secondary school students' (N?=?617; grades 7 to 10) understanding of models and modeling was assessed using tasks which explicitly refer to the scientific disciplines of biology, chemistry, and physics and, as a control, to no scientific discipline. The students' responses are interpreted as their biology-, chemistry-, and…

  8. Influences of the Unified Service Action Model on the HL7 Reference Information Model.

    PubMed

    Russler, D C; Schadow, G; Mead, C; Snyder, T; Quade, L M; McDonald, C J

    1999-01-01

    Modeling information for the electronic medical record (EMR) builds on a century of study on information and its relationship to cost and quality improvement. An initiative to examine the focus of cost and quality improvement and its relationship to information modeling resulted in the development of the Unified Service Action Model of healthcare processes, which focuses on the action as the center of cost accounting, quality accounting and privacy management. The application of this model to the HL7 Reference Information Model produced a simplification of the HL7 model at the cost of increased reliance on vocabulary terms for actions.

  9. Air-snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS - Part 2: Mercury and its speciation

    NASA Astrophysics Data System (ADS)

    Toyota, K.; Dastoor, A. P.; Ryzhkov, A.

    2014-04-01

    Atmospheric mercury depletion events (AMDEs) refer to a recurring depletion of mercury occurring in the springtime Arctic (and Antarctic) boundary layer, in general, concurrently with ozone depletion events (ODEs). To close some of the knowledge gaps in the physical and chemical mechanisms of AMDEs and ODEs, we have developed a one-dimensional model that simulates multiphase chemistry and transport of trace constituents throughout porous snowpack and in the overlying atmospheric boundary layer (ABL). This paper constitutes Part 2 of the study, describing the mercury component of the model and its application to the simulation of AMDEs. Building on model components reported in Part 1 ("In-snow bromine activation and its impact on ozone"), we have developed a chemical mechanism for the redox reactions of mercury in the gas and aqueous phases with temperature dependent reaction rates and equilibrium constants accounted for wherever possible. Thus the model allows us to study the chemical and physical processes taking place during ODEs and AMDEs within a single framework where two-way interactions between the snowpack and the atmosphere are simulated in a detailed, process-oriented manner. Model runs are conducted for meteorological and chemical conditions that represent the springtime Arctic ABL characterized by the presence of "haze" (sulfate aerosols) and the saline snowpack on sea ice. The oxidation of gaseous elemental mercury (GEM) is initiated via reaction with Br-atom to form HgBr, followed by competitions between its thermal decomposition and further reactions to give thermally stable Hg(II) products. To shed light on uncertain kinetics and mechanisms of this multi-step oxidation process, we have tested different combinations of their rate constants based on published laboratory and quantum mechanical studies. For some combinations of the rate constants, the model simulates roughly linear relationships between the gaseous mercury and ozone concentrations as

  10. Perceptual quality estimation of H.264/AVC videos using reduced-reference and no-reference models

    NASA Astrophysics Data System (ADS)

    Shahid, Muhammad; Pandremmenou, Katerina; Kondi, Lisimachos P.; Rossholm, Andreas; Lövström, Benny

    2016-09-01

    Reduced-reference (RR) and no-reference (NR) models for video quality estimation, using features that account for the impact of coding artifacts, spatio-temporal complexity, and packet losses, are proposed. The purpose of this study is to analyze a number of potentially quality-relevant features in order to select the most suitable set of features for building the desired models. The proposed sets of features have not been used in the literature and some of the features are used for the first time in this study. The features are employed by the least absolute shrinkage and selection operator (LASSO), which selects only the most influential of them toward perceptual quality. For comparison, we apply feature selection in the complete feature sets and ridge regression on the reduced sets. The models are validated using a database of H.264/AVC encoded videos that were subjectively assessed for quality in an ITU-T compliant laboratory. We infer that just two features selected by RR LASSO and two bitstream-based features selected by NR LASSO are able to estimate perceptual quality with high accuracy, higher than that of ridge, which uses more features. The comparisons with competing works and two full-reference metrics also verify the superiority of our models.

  11. Air-snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS - Part 2: Mercury and its speciation

    NASA Astrophysics Data System (ADS)

    Toyota, K.; Dastoor, A. P.; Ryzhkov, A.

    2013-08-01

    Atmospheric mercury depletion events (AMDEs) refer to a recurring depletion of mercury in the springtime Arctic (and Antarctic) boundary layer, occurring, in general, concurrently with ozone depletion events (ODEs). To close some of the knowledge gaps in the physical and chemical mechanisms of AMDEs and ODEs, we have developed a one-dimensional model that simulates multiphase chemistry and transport of trace constituents throughout porous snowpack and in the overlying atmospheric boundary layer (ABL). Building on the model reported in a companion paper (Part 1: In-snow bromine activation and its impact on ozone), we have expanded the chemical mechanism to include the reactions of mercury in the gas- and aqueous-phases with temperature dependence of rate and equilibrium constants accounted for wherever possible. Thus the model allows us to study the chemical and physical processes taking place during ODEs and AMDEs within a single framework where two-way interactions between the snowpack and the atmosphere are simulated in a detailed, process-oriented manner. Model runs are conducted for meteorological and chemical conditions representing the springtime Arctic ABL loaded with "haze" sulfate aerosols and the underlying saline snowpack laid on sea ice. Using recent updates for the Hg + Br \\rightleftarrows HgBr reaction kinetics, we show that the rate and magnitude of photochemical loss of gaseous elemental mercury (GEM) during AMDEs exhibit a strong dependence on the choice of reaction(s) of HgBr subsequent to its formation. At 253 K, the temperature that is presumably low enough for bromine radical chemistry to cause prominent AMDEs as indicated from field observations, the parallel occurrence of AMDEs and ODEs is simulated if the reaction HgBr + BrO is assumed to produce a thermally stable intermediate, Hg(OBr)Br, at the same rate constant as the reaction HgBr + Br. On the contrary, the simulated depletion of atmospheric mercury is notably diminished by not

  12. Build up An Operational Flood Simulation from Existing 1D Channel Flow Works

    NASA Astrophysics Data System (ADS)

    Chang, Che-Hao; Hsu, Chih-Tsung; Wu, Shiang-Jen; Lien, Ho-Cheng; Shen, Jhih-Cyuan; Chung, Ming-Ko

    2016-04-01

    Several 2D flood simulations will be developed for urban area in recent years in Taiwan. Original ideas focus on the static flood maps produced by the 2D flood simulation with respect to design events, which could be useful no matter for planning or disaster awareness. However, an extra bonus is expected to see if we can reuse the 2D flood simulation framework for operational use or not. Such a project goal inspire us to setup a standard operation procedure before any progress from existing 1D channel flow works. 3 key issues are taken into account in the SOP: 1. High Resolution Terrain: A 1m resolution digital terrain model (DTM) is considered as a reference. The Channels and structures should be setup in 1D channel flow works if we can identify under such high resolution. One should examine the existing 1D channel flow works consistent with the DTM or not. 2. Meteo Stations Referenced: Real time precipitation would be send to referenced location in RR models during an operational forecast. Existing 1D channels flow works are usually specifically for design events which are not necessarily equipped with such references. 3. Time Consuming: A full scale 2D flood simulation needs a lot of computation resources. A solution should be derived within practical time limits. Under the above consideration, some impacts and procedures will be analyzed and developed to setup the SOP for further model modification.

  13. Modelling Nonlinearities and Reference Dependence in General Practitioners' Income Preferences.

    PubMed

    Holte, Jon Helgheim; Sivey, Peter; Abelsen, Birgit; Olsen, Jan Abel

    2016-08-01

    This paper tests for the existence of nonlinearity and reference dependence in income preferences for general practitioners. Confirming the theory of reference dependent utility within the context of a discrete choice experiment, we find that losses loom larger than gains in income for Norwegian general practitioners, i.e. they value losses from their current income level around three times higher than the equivalent gains. Our results are validated by comparison with equivalent contingent valuation values for marginal willingness to pay and marginal willingness to accept compensation for changes in job characteristics. Physicians' income preferences determine the effectiveness of 'pay for performance' and other incentive schemes. Our results may explain the relative ineffectiveness of financial incentive schemes that rely on increasing physicians' incomes. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models: Preprint

    SciTech Connect

    Jenne, D. S.; Yu, Y. H.; Neary, V.

    2015-04-24

    In 2010 the U.S. Department of Energy initiated the development of six marine energy converter reference models. The reference models are point designs of well-known marine energy converters. Each device was designed to operate in a specific marine resource, instead of a generic device that can be deployed at any location. This method allows each device to be used as a benchmark for future reference model to benchmark future devices. The six designs consist of three current energy converters and three wave energy converters. The reference model project has generated both technical and economic data sets that are available in the public domain. The methodology to calculate the levelized cost of energy for the reference model project and an overall comparison of the cost of energy from these six reference-model designs are presented in this paper.

  15. Analyzing Students' Understanding of Models and Modeling Referring to the Disciplines Biology, Chemistry, and Physics

    NASA Astrophysics Data System (ADS)

    Krell, Moritz; Reinisch, Bianca; Krüger, Dirk

    2015-06-01

    In this study, secondary school students' ( N = 617; grades 7 to 10) understanding of models and modeling was assessed using tasks which explicitly refer to the scientific disciplines of biology, chemistry, and physics and, as a control, to no scientific discipline. The students' responses are interpreted as their biology-, chemistry-, and physics-related or general understanding of models and modeling. A subpopulation ( N = 115; one class per grade) was subsequently asked which models they had in mind when answering the tasks referring to biology, chemistry, and physics (open-ended questions). The findings show significant differences between students' biology-, chemistry-, and physics-related understandings of models and modeling. Based on a theoretical framework, the biology-related understanding can be seen as less elaborated than the physics- and chemistry-related understandings. The students' general understanding of models and modeling is located between the biology- and the physics-related understandings. Answers to the open-ended questions indicate that students primarily think about scale and functional models in the context of biology tasks. In contrast, more abstract models (e.g., analogical models, diagrams) were mentioned in relation to chemistry and physics tasks. In sum, the findings suggest that models may be used in a rather descriptive way in biology classes but in a predictive way in chemistry and physics classes. This may explain discipline-specific understandings of models and modeling. Only small differences were found in students' understanding of models and modeling between the different grade levels 7/8 and 9/10.

  16. The effect of knockout of sulfotransferases 1a1 and 1d1 and of transgenic human sulfotransferases 1A1/1A2 on the formation of DNA adducts from furfuryl alcohol in mouse models.

    PubMed

    Sachse, Benjamin; Meinl, Walter; Glatt, Hansruedi; Monien, Bernhard H

    2014-10-01

    Furfuryl alcohol is a rodent carcinogen present in numerous foodstuffs. Sulfotransferases (SULTs) convert furfuryl alcohol into the DNA reactive and mutagenic 2-sulfoxymethylfuran. Sensitive techniques for the isotope-dilution ultra performance liquid chromatography-tandem mass spectrometry quantification of resulting DNA adducts, e.g. N (2)-((furan-2-yl)methyl)-2'-deoxyguanosine (N (2)-MF-dG), were developed. To better understand the contribution of specific SULT forms to the genotoxicity of furfuryl alcohol in vivo, we studied the tissue distribution of N (2)-MF-dG in different mouse models. Earlier mutagenicity studies with Salmonella typhimurium strains expressing different human and murine SULT forms indicated that human SULT1A1 and murine Sult1a1 and 1d1 catalyze furfuryl alcohol sulfo conjugation most effectively. Here, we used three mouse lines to study the bioactivation of furfuryl alcohol by murine SULTs, FVB/N wild-type (wt) mice and two genetically modified models lacking either murine Sult1a1 or Sult1d1. The animals received a single dose of furfuryl alcohol, and the levels of the DNA adducts were determined in liver, kidney, lung, colon and small intestine. The effect of Sult1d1 gene disruption on the genotoxicity of furfuryl alcohol was moderate and limited to kidney and small intestine. In contrast, the absence of functional Sult1a1 had a massive influence on the adduct levels, which were lowered by 33-73% in all tissues of the female Sult1a1 null mice compared with the wt animals. The detection of high N (2)-MF-dG levels in a humanized mouse line expressing hSULT1A1/1A2 instead of endogeneous Sult1a1 and Sult1d1 supports the hypothesis that furfuryl alcohol is converted to the mutagenic 2-sulfoxymethylfuran also in humans.

  17. HCCI experiments with toluene reference fuels modeled by a semidetailed chemical kinetic model

    SciTech Connect

    Andrae, J.C.G.; Brinck, T.; Kalghatgi, G.T.

    2008-12-15

    A semidetailed mechanism (137 species and 633 reactions) and new experiments in a homogeneous charge compression ignition (HCCI) engine on the autoignition of toluene reference fuels are presented. Skeletal mechanisms for isooctane and n-heptane were added to a detailed toluene submechanism. The model shows generally good agreement with ignition delay times measured in a shock tube and a rapid compression machine and is sensitive to changes in temperature, pressure, and mixture strength. The addition of reactions involving the formation and destruction of benzylperoxide radical was crucial to modeling toluene shock tube data. Laminar burning velocities for benzene and toluene were well predicted by the model after some revision of the high-temperature chemistry. Moreover, laminar burning velocities of a real gasoline at 353 and 500 K could be predicted by the model using a toluene reference fuel as a surrogate. The model also captures the experimentally observed differences in combustion phasing of toluene/n-heptane mixtures, compared to a primary reference fuel of the same research octane number, in HCCI engines as the intake pressure and temperature are changed. For high intake pressures and low intake temperatures, a sensitivity analysis at the moment of maximum heat release rate shows that the consumption of phenoxy radicals is rate-limiting when a toluene/n-heptane fuel is used, which makes this fuel more resistant to autoignition than the primary reference fuel. Typical CPU times encountered in zero-dimensional calculations were on the order of seconds and minutes in laminar flame speed calculations. Cross reactions between benzylperoxy radicals and n-heptane improved the model predictions of shock tube experiments for {phi}=1.0 and temperatures lower than 800 K for an n-heptane/toluene fuel mixture, but cross reactions had no influence on HCCI simulations. (author)

  18. A reference model for model-based design of critical infrastructure protection systems

    NASA Astrophysics Data System (ADS)

    Shin, Young Don; Park, Cheol Young; Lee, Jae-Chon

    2015-05-01

    Today's war field environment is getting versatile as the activities of unconventional wars such as terrorist attacks and cyber-attacks have noticeably increased lately. The damage caused by such unconventional wars has also turned out to be serious particularly if targets are critical infrastructures that are constructed in support of banking and finance, transportation, power, information and communication, government, and so on. The critical infrastructures are usually interconnected to each other and thus are very vulnerable to attack. As such, to ensure the security of critical infrastructures is very important and thus the concept of critical infrastructure protection (CIP) has come. The program to realize the CIP at national level becomes the form of statute in each country. On the other hand, it is also needed to protect each individual critical infrastructure. The objective of this paper is to study on an effort to do so, which can be called the CIP system (CIPS). There could be a variety of ways to design CIPS's. Instead of considering the design of each individual CIPS, a reference model-based approach is taken in this paper. The reference model represents the design of all the CIPS's that have many design elements in common. In addition, the development of the reference model is also carried out using a variety of model diagrams. The modeling language used therein is the systems modeling language (SysML), which was developed and is managed by Object Management Group (OMG) and a de facto standard. Using SysML, the structure and operational concept of the reference model are designed to fulfil the goal of CIPS's, resulting in the block definition and activity diagrams. As a case study, the operational scenario of the nuclear power plant while being attacked by terrorists is studied using the reference model. The effectiveness of the results is also analyzed using multiple analysis models. It is thus expected that the approach taken here has some merits

  19. Reference genome sequence of the model plant Setaria

    SciTech Connect

    Bennetzen, Jeffrey L; Yang, Xiaohan; Ye, Chuyu; Tuskan, Gerald A

    2012-01-01

    We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The {approx}400-Mb assembly covers {approx}80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).

  20. Reference genome sequence of the model plant Setaria

    SciTech Connect

    Bennetzen, Jeffrey L; Schmutz, Jeremy; Wang, Hao; Percifield, Ryan; Hawkins, Jennifer; Pontaroli, Ana C.; Estep, Matt; Feng, Liang; Vaughn, Justin N; Grimwood, Jane; Jenkins, Jerry; Barry, Kerrie; Lindquist, Erika; Hellsten, Uffe; Deshpande, Shweta; Wang, Xuewen; Wu, Xiaomei; Mitros, Therese; Triplett, Jimmy; Yang, Xiaohan; Ye, Chuyu; Mauro-Herrera, Margarita; Wang, Lin; Li, Pinghua; Sharma, Manoj; Sharma, Rita; Ronald, Pamela; Panaud, Olivier; Kellogg, Elizabeth A.; Brutnell, Thomas P.; Doust, Andrew N.; Tuskan, Gerald A; Rokhsar, Daniel; Devos, Katrien M

    2012-01-01

    We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ~400-Mb assembly covers ~80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).

  1. The Dairy Greenhouse Gas Emission Model: Reference Manual

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Dairy Greenhouse Gas Model (DairyGHG) is a software tool for estimating the greenhouse gas emissions and carbon footprint of dairy production systems. A relatively simple process-based model is used to predict the primary greenhouse gas emissions, which include the net emission of carbon dioxide...

  2. Command generator tracker based direct model reference adaptive control of a PUMA 560 manipulator. Thesis

    NASA Technical Reports Server (NTRS)

    Swift, David C.

    1992-01-01

    This project dealt with the application of a Direct Model Reference Adaptive Control algorithm to the control of a PUMA 560 Robotic Manipulator. This chapter will present some motivation for using Direct Model Reference Adaptive Control, followed by a brief historical review, the project goals, and a summary of the subsequent chapters.

  3. Validating a 1-D SVAT model in a range of USA and Australian ecosystems: evidence towards its use as a tool to study Earth's system interactions

    NASA Astrophysics Data System (ADS)

    Petropoulos, G. P.; North, M. R.; Ireland, G.; Srivastava, P. K.; Rendall, D. V.

    2015-03-01

    This paper describes the validation of the SimSphere SVAT model conducted at different ecosystem types in the USA and Australia. Specific focus was given to examining the models' ability in predicting Shortwave Incoming Solar Radiation (Rg), Net Radiation (Rnet), Latent Heat (LE), Sensible Heat (H), Air Temperature at 1.3 m (Tair 1.3 m) and Air Temperature at 50 m (Tair 50 m). Model predictions were compared against corresponding in situ measurements acquired for a total of 72 selected days of the year 2011 obtained from 8 sites belonging to the AmeriFlux (USA) and OzFlux (Australia) monitoring networks. Selected sites were representative of a variety of environmental, biome and climatic conditions, to allow for the inclusion of contrasting conditions in the model evaluation. The application of the model confirmed its high capability in representing the multifarious and complex interactions of the Earth system. Comparisons showed a good agreement between modelled and measured fluxes, especially for the days with smoothed daily flux trends. A good to excellent agreement between the model predictions and the in situ measurements was reported, particularly so for the LE, H, T1.3 m and T 50 m parameters (RMSD = 39.47, 55.06 W m-2, 3.23, 3.77 °C respectively). A systematic underestimation of Rg and Rnet (RMSD = 67.83, 58.69 W m-2, MBE = 67.83, 58.69 W m-2 respectively) was also found. Highest simulation accuracies were obtained for the open woodland savannah and mulga woodland sites for most of the compared parameters. Very high values of the Nash-Sutcliffe efficiency index were also reported for all parameters ranging from 0.720 to 0.998, suggesting a very good model representation of the observations. To our knowledge, this study presents the first comprehensive validation of SimSphere, particularly so in USA and Australian ecosystem types. Findings are important and timely, given the rapidly expanding use of this model worldwide both as an educational and research

  4. Space Generic Open Avionics Architecture (SGOAA) reference model technical guide

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1993-01-01

    This report presents a full description of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing architecture, and a six class model of interfaces in a hardware/software system. The purpose of the SGOAA is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of specific avionics hardware/software systems. The SGOAA defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.

  5. Solid waste projection model: Model version 1. 0 technical reference manual

    SciTech Connect

    Wilkins, M.L.; Crow, V.L.; Buska, D.E. ); Ouderkirk, S.J. )

    1990-11-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software utilized in developing Version 1.0 of the modeling unit of SWPM. This document is intended for use by experienced software engineers and supports programming, code maintenance, and model enhancement. Those interested in using SWPM should refer to the SWPM Model User's Guide. This document is available from either the PNL project manager (D. L. Stiles, 509-376-4154) or the WHC program monitor (B. C. Anderson, 509-373-2796). 8 figs.

  6. The coupling of WEPP and 3ST1D numerical models for improved estimation of runoff and sediment yield at watershed scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the major problems in watershed hydrology is to accurately simulate the transport of water and sediment from their sources to the watershed outlet. Current numerical models have been extensively used to determine upland erosion, but their application is primarily limited to the field/hillslop...

  7. Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping

    NASA Astrophysics Data System (ADS)

    Dimitriadis, Panayiotis; Tegos, Aristoteles; Oikonomou, Athanasios; Pagana, Vassiliki; Koukouvinos, Antonios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2016-03-01

    One-dimensional and quasi-two-dimensional hydraulic freeware models (HEC-RAS, LISFLOOD-FP and FLO-2d) are widely used for flood inundation mapping. These models are tested on a benchmark test with a mixed rectangular-triangular channel cross section. Using a Monte-Carlo approach, we employ extended sensitivity analysis by simultaneously varying the input discharge, longitudinal and lateral gradients and roughness coefficients, as well as the grid cell size. Based on statistical analysis of three output variables of interest, i.e. water depths at the inflow and outflow locations and total flood volume, we investigate the uncertainty enclosed in different model configurations and flow conditions, without the influence of errors and other assumptions on topography, channel geometry and boundary conditions. Moreover, we estimate the uncertainty associated to each input variable and we compare it to the overall one. The outcomes of the benchmark analysis are further highlighted by applying the three models to real-world flood propagation problems, in the context of two challenging case studies in Greece.

  8. Modeling of the D1/D2 proteins and cofactors of the photosystem II reaction center: implications for herbicide and bicarbonate binding.

    PubMed Central

    Xiong, J.; Subramaniam, S.; Govindjee

    1996-01-01

    A three-dimensional model of the photosystem II (PSII) reaction center from the cyanobacterium Synechocystis sp. PCC 6803 was generated based on homology with the anoxygenic purple bacterial photosynthetic reaction centers of Rhodobacter sphaeroides and Rhodopseudomonas viridis, for which the X-ray crystallographic structures are available. The model was constructed with an alignment of D1 and D2 sequences with the L and M subunits of the bacterial reaction center, respectively, and by using as a scaffold the structurally conserved regions (SCRs) from bacterial templates. The structurally variant regions were built using a novel sequence-specific approach of searching for the best-matched protein segments in the Protein Data Bank with the "basic local alignment search tool" (Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ, 1990, J Mol Biol 215:403-410), and imposing the matching conformational preference on the corresponding D1 and D2 regions. The structure thus obtained was refined by energy minimization. The modeled D1 and D2 proteins contain five transmembrane alpha-helices each, with cofactors (4 chlorophylls, 2 pheophytins, 2 plastoquinones, and a non-heme iron) essential for PSII primary photochemistry embedded in them. A beta-carotene, considered important for PSII photoprotection, was also included in the model. Four different possible conformations of the primary electron donor P680 chlorophylls were proposed, one based on the homology with the bacterial template and the other three on existing experimental suggestions in literature. The P680 conformation based on homology was preferred because it has the lowest energy. Redox active tyrosine residues important for P680+ reduction as well as residues important for PSII cofactor binding were analyzed. Residues involved in interprotein interactions in the model were also identified. Herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) was also modeled in the plastoquinone QB binding niche using the

  9. A Nonlinear Dynamic Inversion Predictor-Based Model Reference Adaptive Controller for a Generic Transport Model

    NASA Technical Reports Server (NTRS)

    Campbell, Stefan F.; Kaneshige, John T.

    2010-01-01

    Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).

  10. A middle atmosphere temperature reference model from satellite measurements

    NASA Astrophysics Data System (ADS)

    Barnett, J. J.; Corney, M.

    Temperature fields in the stratosphere and mesosphere have been derived from radiance measurements made by the Nimbus 5 SCR, the Nimbus 6 PMR, and the Nimbus 7 SAMS and LIMS radiometers. These instruments cover different latitude and height ranges and different times during the 1973-1983 period. The problems of combining different data sets are discussed, and examples from a proposed model atmosphere for the stratosphere and mesosphere are presented. The model is given in terms of zonal means and amplitude and phase of zonal waves 1 and 2 for temperature and geopotential height, as functions of latitude and pressure for each calendar month. Comparisons are made with the CIRA 1972 and the Koshelkov Southern Hemisphere models and with the SAMS results and in-situ rocket/radio sondes.

  11. An object oriented computer-based patient record reference model.

    PubMed Central

    Doré, L.; Lavril, M.; Jean, F. C.; Degoulet, P.

    1995-01-01

    In the context of health care information systems based on client/server architecture, we address the problem of a common Computer-based Patient Record (CPR). We define it as a collection of faithful observations about patients care, with respect to the free expression of physicians. This CPR model supports several views of the medical data, in order to provide applications with a comprehensive and standardized access to distributed patient data. Finally, we validated our CPR approach as a primary data model server for an application for hypertensive patient management. PMID:8563306

  12. A numerical method based on the Fourier-Fourier transform approach for modeling 1-D electron plasma evolution. [in earth bow shock region

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.

    1983-01-01

    A numerical method is presented for studying one-dimensional electron plasma evolution under typical interplanetary conditions. The method applies the Fourier-Fourier transform approach to a plasma model that is a generalization of the electrostatic Vlasov-Poisson system of equations. Conservation laws that are modified to include the plasma model generalization and also the boundary effects of nonperiodic solutions are given. A new conservation law for entropy in the transformed space is then introduced. These conservation laws are used to verify the numerical solutions. A discretization error analysis is presented. Two numerical instabilities and the methods used for their suppression are treated. It is shown that in interplanetary plasma conditions, the bump-on-tail instability produces significant excitation of plasma oscillations at the Bohm-Gross frequency and its second harmonic. An explanation of the second harmonic excitation is given in terms of wave-wave coupling during the growth phase of the instability.

  13. Storm Water Management Model Reference Manual Volume I, Hydrology

    EPA Science Inventory

    SWMM is a dynamic rainfall-runoff simulation model used for single event or long-term (continuous) simulation of runoff quantity and quality from primarily urban areas. The runoff component of SWMM operates on a collection of subcatchment areas that receive precipitation and gene...

  14. Effects of Spinal and Peripheral Injection of α1A or α1D Adrenoceptor Antagonists on Bladder Activity in Rat Models with or without Bladder Outlet Obstruction

    PubMed Central

    Kim, Jae Heon; Shim, Ji Sung; Kang, Seung Chul; Shim, Kang Soo; Park, Jae Young; Moon, Du Geon; Lee, Jeong Gu

    2011-01-01

    Purpose Antagonists of α1-adrenergic receptors (α1ARs) relax prostate smooth muscle and relieve voiding and storage symptoms. Recently, increased expression of α1ARs with change of its subtype expression has been proved in bladder outlet obstruction (BOO). To search for the evidence of changes in α1ARs subtype expression and activity in the peripheral and spinal routes, the effects of spinal and peripheral administration of tamsulosin (an α1A/D-selective AR), naftopidil (an α1A/D-selective AR), and doxazosin (non-selective AR) on bladder activity were investigated in a rat model with or without BOO. Methods A total of 65 female Sprague-Dawley rats were divided into the BOO surgery group (n=47) and the sham surgery group (n=18). After 6 weeks, cystometry was assessed before and after intrathecal and intra-arterial administrations of tamsulosin, naftopidil, and doxazosin. Results After intra-arterial administrations of all three drugs, bladder capacity (BC) was increased and maximal intravesical pressure (Pmax) was decreased in both BOO and the sham rat models (P<0.05). After intrathecal administration of all three drugs, BC was increased and Pmax was decreased in only the BOO group. The episodes of involuntary contraction in the BOO rat models were decreased by intra-arterial administration (P=0.031). The increase of BC after intrathercal and intra-arterial administrations of α1ARs was significantly greater in the BOO group than in the sham group (P=0.023, P=0.041). In the BOO group, the increase of BC and decrease in Pmax were greater by intra-arterial administration than by intrathecal administration (P=0.035). There were no significant differences of the degrees of changes in the cystometric parameters among the three different α1ARs. Conclusions Up-regulations of the α1ARs in BOO were observed by the greater increases of BC after α1AR antagonist administrations in the BOO group than in the sham group. However, there were no subtype differences of the

  15. Model reference adaptive control in fractional order systems using discrete-time approximation methods

    NASA Astrophysics Data System (ADS)

    Abedini, Mohammad; Nojoumian, Mohammad Ali; Salarieh, Hassan; Meghdari, Ali

    2015-08-01

    In this paper, model reference control of a fractional order system has been discussed. In order to control the fractional order plant, discrete-time approximation methods have been applied. Plant and reference model are discretized by Grünwald-Letnikov definition of the fractional order derivative using "Short Memory Principle". Unknown parameters of the fractional order system are appeared in the discrete time approximate model as combinations of parameters of the main system. The discrete time MRAC via RLS identification is modified to estimate the parameters and control the fractional order plant. Numerical results show the effectiveness of the proposed method of model reference adaptive control.

  16. A preliminary 1-D model investigation of tidal variations of temperature and chlorinity at the Grotto mound, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Xu, G.; Larson, B. I.; Bemis, K. G.; Lilley, Marvin D.

    2017-01-01

    Tidal oscillations of venting temperature and chlorinity have been observed in the long-term time series data recorded by the Benthic and Resistivity Sensors (BARS) at the Grotto mound on the Juan de Fuca Ridge. In this study, we use a one-dimensional two-layer poroelastic model to conduct a preliminary investigation of three hypothetical scenarios in which seafloor tidal loading can modulate the venting temperature and chlorinity at Grotto through the mechanisms of subsurface tidal mixing and/or subsurface tidal pumping. For the first scenario, our results demonstrate that it is unlikely for subsurface tidal mixing to cause coupled tidal oscillations in venting temperature and chlorinity of the observed amplitudes. For the second scenario, the model results suggest that it is plausible that the tidal oscillations in venting temperature and chlorinity are decoupled with the former caused by subsurface tidal pumping and the latter caused by subsurface tidal mixing, although the mixing depth is not well constrained. For the third scenario, our results suggest that it is plausible for subsurface tidal pumping to cause coupled tidal oscillations in venting temperature and chlorinity. In this case, the observed tidal phase lag between venting temperature and chlorinity is close to the poroelastic model prediction if brine storage occurs throughout the upflow zone under the premise that layers 2A and 2B have similar crustal permeabilities. However, the predicted phase lag is poorly constrained if brine storage is limited to layer 2B as would be expected when its crustal permeability is much smaller than that of layer 2A.

  17. Seasonal enhancement of submarine groundwater discharge (SGD)-derived nitrate loading into the Ria Formosa coastal lagoon assessed by 1-D modeling of benthic NO3- profiles

    NASA Astrophysics Data System (ADS)

    Ibánhez, J. Severino P.; Leote, Catarina; Rocha, Carlos

    2013-11-01

    The role of benthic sandy ecosystems in mitigating NO3- loads carried by Submarine Groundwater Discharge (SGD) to coastal marine ecosystems is uncertain. Benthic biogeochemical mediation of NO3--rich submarine groundwater discharge was studied at the seepage face of a barrier island site in the Ria Formosa coastal lagoon (Southern Portugal). Preliminary analysis of NO3- porewater distributions at the seepage face during discharge indicated that benthic biogeochemical processes could significantly affect the fluxes of groundwater-borne NO3- into the lagoon. In order to discriminate between the relative contribution of transport and reaction processes to shape and concentration range evidenced by in-situ porewater NO3- gradients, an advection-dispersion-reaction (ADR) model of NO3- diagenesis was applied to describe NO3- porewater profiles obtained in March, June, September and December 2006. Good agreement between modeled and measured profiles was obtained. Model-derived apparent benthic nitrification and NO3- reduction rates ranged from 0.01 to 5.2 mmol m-2 h-1, sufficient to explain gross observed changes in NO3- fluxes arriving at the seepage face (up to 70% within the surficial 20 cm depth layer). Results of the analysis indicated that the upper limit of the seepage face promoted mitigation of NO3- fluxes to the lagoon throughout the year. In contrast, the lower limit of the seepage area promoted net amplification of the NO3- fluxes into the lagoon in June and September. These results will help constrain further work aiming to clarify the role of permeable sediments in mitigating nitrogen loading of coastal ecosystems.

  18. Parabolic Trough Reference Plant for Cost Modeling with the Solar Advisor Model (SAM)

    SciTech Connect

    Turchi, C.

    2010-07-01

    This report describes a component-based cost model developed for parabolic trough solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), assisted by WorleyParsons Group Inc., for use with NREL's Solar Advisor Model (SAM). This report includes an overview and explanation of the model, two summary contract reports from WorleyParsons, and an Excel spreadsheet for use with SAM. The cost study uses a reference plant with a 100-MWe capacity and six hours of thermal energy storage. Wet-cooling and dry-cooling configurations are considered. The spreadsheet includes capital and operating cost by component to allow users to estimate the impact of changes in component costs.

  19. The global reference atmospheric model, mod 2 (with two scale perturbation model)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Hargraves, W. R.

    1976-01-01

    The Global Reference Atmospheric Model was improved to produce more realistic simulations of vertical profiles of atmospheric parameters. A revised two scale random perturbation model using perturbation magnitudes which are adjusted to conform to constraints imposed by the perfect gas law and the hydrostatic condition is described. The two scale perturbation model produces appropriately correlated (horizontally and vertically) small scale and large scale perturbations. These stochastically simulated perturbations are representative of the magnitudes and wavelengths of perturbations produced by tides and planetary scale waves (large scale) and turbulence and gravity waves (small scale). Other new features of the model are: (1) a second order geostrophic wind relation for use at low latitudes which does not "blow up" at low latitudes as the ordinary geostrophic relation does; and (2) revised quasi-biennial amplitudes and phases and revised stationary perturbations, based on data through 1972.

  20. The NASA/MSFC global reference atmospheric model: MOD 3 (with spherical harmonic wind model)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Fletcher, G. R.; Gramling, F. E.; Pace, W. B.

    1980-01-01

    Improvements to the global reference atmospheric model are described. The basic model includes monthly mean values of pressure, density, temperature, and geostrophic winds, as well as quasi-biennial and small and large scale random perturbations. A spherical harmonic wind model for the 25 to 90 km height range is included. Below 25 km and above 90 km, the GRAM program uses the geostrophic wind equations and pressure data to compute the mean wind. In the altitudes where the geostrophic wind relations are used, an interpolation scheme is employed for estimating winds at low latitudes where the geostrophic wind relations being to mesh down. Several sample wind profiles are given, as computed by the spherical harmonic model. User and programmer manuals are presented.

  1. Toward a mineral physics reference model for the Moon's core.

    PubMed

    Antonangeli, Daniele; Morard, Guillaume; Schmerr, Nicholas C; Komabayashi, Tetsuya; Krisch, Michael; Fiquet, Guillaume; Fei, Yingwei

    2015-03-31

    The physical properties of iron (Fe) at high pressure and high temperature are crucial for understanding the chemical composition, evolution, and dynamics of planetary interiors. Indeed, the inner structures of the telluric planets all share a similar layered nature: a central metallic core composed mostly of iron, surrounded by a silicate mantle, and a thin, chemically differentiated crust. To date, most studies of iron have focused on the hexagonal closed packed (hcp, or ε) phase, as ε-Fe is likely stable across the pressure and temperature conditions of Earth's core. However, at the more moderate pressures characteristic of the cores of smaller planetary bodies, such as the Moon, Mercury, or Mars, iron takes on a face-centered cubic (fcc, or γ) structure. Here we present compressional and shear wave sound velocity and density measurements of γ-Fe at high pressures and high temperatures, which are needed to develop accurate seismic models of planetary interiors. Our results indicate that the seismic velocities proposed for the Moon's inner core by a recent reanalysis of Apollo seismic data are well below those of γ-Fe. Our dataset thus provides strong constraints to seismic models of the lunar core and cores of small telluric planets. This allows us to propose a direct compositional and velocity model for the Moon's core.

  2. An Update to the NASA Reference Solar Sail Thrust Model

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew F.; Artusio-Glimpse, Alexandra B.

    2015-01-01

    An optical model of solar sail material originally derived at JPL in 1978 has since served as the de facto standard for NASA and other solar sail researchers. The optical model includes terms for specular and diffuse reflection, thermal emission, and non-Lambertian diffuse reflection. The standard coefficients for these terms are based on tests of 2.5 micrometer Kapton sail material coated with 100 nm of aluminum on the front side and chromium on the back side. The original derivation of these coefficients was documented in an internal JPL technical memorandum that is no longer available. Additionally more recent optical testing has taken place and different materials have been used or are under consideration by various researchers for solar sails. Here, where possible, we re-derive the optical coefficients from the 1978 model and update them to accommodate newer test results and sail material. The source of the commonly used value for the front side non-Lambertian coefficient is not clear, so we investigate that coefficient in detail. Although this research is primarily designed to support the upcoming NASA NEA Scout and Lunar Flashlight solar sail missions, the results are also of interest to the wider solar sail community.

  3. Mapping deep-sea hydrothermal deposits with an in-loop transient electromagnetic method: Insights from 1D forward and inverse modeling

    NASA Astrophysics Data System (ADS)

    Jang, Hangilro; Kim, Hee Joon

    2015-12-01

    In transient electromagnetic (TEM) measurements, secondary fields that contain information on conductive targets such as hydrothermal mineral deposits in the seafloor can be measured in the absence of strong primary fields. A TEM system using a loop source is useful to the development of compact, autonomous instruments, which are well suited to submersible-based surveys. In this paper, we investigate the possibility of applying an in-loop TEM system to the detection of marine hydrothermal deposits through a one-dimensional modeling and inversion study. We examine step-off responses for a layered model and compare the characteristics of horizontal and vertical loop systems for detecting hydrothermal deposits. The feasibility study shows that TEM responses are very sensitive to a highly conductive layer. Time-domain target responses are larger and appear earlier in horizontal magnetic fields than in vertical ones, although the vertical field has 2-3 times larger magnitude than the horizontal one. An inverse problem is formulated with the Gauss-Newton method and solved with the damped and smoothness-constrained least-squares approach. The test example for a marine hydrothermal TEM survey demonstrated that the depth extent, conductivity and thickness of the highly conductive layer are well resolved.

  4. Regional subsidence modelling in Murcia city (SE Spain) using 1-D vertical finite element analysis and 2-D interpolation of ground surface displacements

    NASA Astrophysics Data System (ADS)

    Tessitore, S.; Fernández-Merodo, J. A.; Herrera, G.; Tomás, R.; Ramondini, M.; Sanabria, M.; Duro, J.; Mulas, J.; Calcaterra, D.

    2015-11-01

    Subsidence is a hazard that may have natural or anthropogenic origin causing important economic losses. The area of Murcia city (SE Spain) has been affected by subsidence due to groundwater overexploitation since the year 1992. The main observed historical piezometric level declines occurred in the periods 1982-1984, 1992-1995 and 2004-2008 and showed a close correlation with the temporal evolution of ground displacements. Since 2008, the pressure recovery in the aquifer has led to an uplift of the ground surface that has been detected by the extensometers. In the present work an elastic hydro-mechanical finite element code has been used to compute the subsidence time series for 24 geotechnical boreholes, prescribing the measured groundwater table evolution. The achieved results have been compared with the displacements estimated through an advanced DInSAR technique and measured by the extensometers. These spatio-temporal comparisons have showed that, in spite of the limited geomechanical data available, the model has turned out to satisfactorily reproduce the subsidence phenomenon affecting Murcia City. The model will allow the prediction of future induced deformations and the consequences of any piezometric level variation in the study area.

  5. Multiscale predictions of aviation-attributable PM2.5 for U.S. airports modeled using CMAQ with plume-in-grid and an aircraft-specific 1-D emission model

    NASA Astrophysics Data System (ADS)

    Woody, M. C.; Wong, H.-W.; West, J. J.; Arunachalam, S.

    2016-12-01

    Aviation activities represent an important and unique mode of transportation, but also impact air quality. In this study, we aim to quantify the impact of aircraft on air quality, focusing on aviation-attributable PM2.5 at scales ranging from local (a few kilometers) to continental (spanning hundreds of kilometers) using the Community Multiscale Air Quality-Advanced Plume Treatment (CMAQ-APT) model. In our CMAQ-APT simulations, a plume scale treatment is applied to aircraft emissions from 99 major U.S. airports over the contiguous U.S. in January and July 2005. In addition to the plume scale treatment, we account for the formation of non-traditional secondary organic aerosols (NTSOA) from the oxidation of semivolatile and intermediate volatility organic compounds (S/IVOCs) emitted from aircraft, and utilize alternative emission estimates from the Aerosol Dynamics Simulation Code (ADSC). ADSC is a 1-D plume scale model that estimates engine specific PM and S/IVOC emissions at ambient conditions, accounting for relative humidity and temperature. We estimated monthly and contiguous U.S. average aviation-attributable PM2.5 to be 2.7 ng m-3 in January and 2.6 ng m-3 in July using CMAQ-APT with ADSC emissions. This represents an increase of 40% and 12% in January and July, respectively, over impacts using traditional modeling approaches (traditional emissions without APT). The maximum fine scale (subgrid scale) hourly impacts at a major airport were 133.6 μg m-3 in January and 165.4 μg m-3 in July, considerably higher than the maximum grid-based impacts at the airport of 4.3 μg m-3 in January and 0.5 μg m-3 in July.

  6. Quench in the 1D Bose-Hubbard model: topological defects and excitations from the Kosterlitz-Thouless phase transition dynamics.

    PubMed

    Dziarmaga, Jacek; Zurek, Wojciech H

    2014-08-05

    Kibble-Zurek mechanism (KZM) uses critical scaling to predict density of topological defects and other excitations created in second order phase transitions. We point out that simply inserting asymptotic critical exponents deduced from the immediate vicinity of the critical point to obtain predictions can lead to results that are inconsistent with a more careful KZM analysis based on causality - on the comparison of the relaxation time of the order parameter with the "time distance" from the critical point. As a result, scaling of quench-generated excitations with quench rates can exhibit behavior that is locally (i.e., in the neighborhood of any given quench rate) well approximated by the power law, but with exponents that depend on that rate, and that are quite different from the naive prediction based on the critical exponents relevant for asymptotically long quench times. Kosterlitz-Thouless scaling (that governs e.g. Mott insulator to superfluid transition in the Bose-Hubbard model in one dimension) is investigated as an example of this phenomenon.

  7. Subsurface Xenon Migration by Atmospheric Pumping Using an Implicit Non-Iterative Algorithm for a Locally 1D Dual-Porosity Model

    NASA Astrophysics Data System (ADS)

    Annewandter, R.; Kalinowksi, M. B.

    2009-04-01

    An underground nuclear explosion injects radionuclids in the surrounding host rock creating an initial radionuclid distribution. In the case of fractured permeable media, cyclical changes in atmospheric pressure can draw gaseous species upwards to the surface, establishing a ratcheting pump effect. The resulting advective transport is orders of magnitude more significant than transport by molecular diffusion. In the 1990s the US Department of Energy funded the socalled Non-Proliferation Experiment conducted by the Lawrence Livermore National Laboratory to investigate this barometric pumping effect for verifying compliance with respect to the Comprehensive Nuclear Test Ban Treaty. A chemical explosive of approximately 1 kt TNT-equivalent has been detonated in a cavity located 390 m deep in the Rainier Mesa (Nevada Test Site) in which two tracer gases were emplaced. Within this experiment SF6 was first detected in soil gas samples taken near fault zones after 50 days and 3He after 325 days. For this paper a locally one-dimensional dual-porosity model for flow along the fracture and within the permeable matrix was used after Nilson and Lie (1990). Seepage of gases and diffusion of tracers between fracture and matrix are accounted. The advective flow along the fracture and within the matrix block is based on the FRAM filtering remedy and methodology of Chapman. The resulting system of equations is solved by an implicit non-iterative algorithm. Results on time of arrival and subsurface concentration levels for the CTBT-relevant xenons will be presented.

  8. 1D-VAR Retrieval Using Superchannels

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel; Larar, Allen; Smith, William L.; Schluessel, Peter; Mango, Stephen; SaintGermain, Karen

    2008-01-01

    Since modern ultra-spectral remote sensors have thousands of channels, it is difficult to include all of them in a 1D-var retrieval system. We will describe a physical inversion algorithm, which includes all available channels for the atmospheric temperature, moisture, cloud, and surface parameter retrievals. Both the forward model and the inversion algorithm compress the channel radiances into super channels. These super channels are obtained by projecting the radiance spectra onto a set of pre-calculated eigenvectors. The forward model provides both super channel properties and jacobian in EOF space directly. For ultra-spectral sensors such as Infrared Atmospheric Sounding Interferometer (IASI) and the NPOESS Airborne Sounder Testbed Interferometer (NAST), a compression ratio of more than 80 can be achieved, leading to a significant reduction in computations involved in an inversion process. Results will be shown applying the algorithm to real IASI and NAST data.

  9. Model Calculations on One-Dimensional (1D) Poly-Decker Sandwich Compounds. A Crystal Orbital Investigation Based on the Tight-Binding Formalism

    NASA Astrophysics Data System (ADS)

    Böhm, Michael C.

    1984-03-01

    The band structures of 11 one-dimensional (ID) poly-decker sandwich compounds with dif­ferent transition metal centers M (M = Mn, Fe, Co, Ni, Cu, Zn) and a variety of fivemembered π ligands L from the cyclopentadienyl moiety (C5H5) to the pure boron ring B5H5 have been studied by means of a semiempirical crystal orbital procedure based on the INDO approxima­tion in order to allow a priori predictions on possible semiconducting or conducting low-dimen­sional materials composed by ML fragments. To determine the (numerically) different self­energy corrections (i.e. long-range and short-range "correlations") in the transition metal 3d spines and the ligand backbones approximate quasi-particle shifts have been employed for the correction of the Hartree-Fock (HF) band energies. The band structure properties (e.g., dispersion curves, density of states distributions, effective mass parameters, propagation times of charge carriers) are discussed in the light of the semiempirical tight-binding approach. It is shown that the forbidden band gaps are reduced with an increasing number of B atoms in the π ligands. The gap in the Mn(C5H5) stack amounts to 8.27 eV, while overlapping dispersion curves are predicted in the Zn(B5H5) derivative. This model polymer is the only intrinsic conductor in the series of the studied ID metallocenes; all other compounds require injected charge carriers (electrons or holes) in order to achieve partially filled bands. Injected holes in the Mn or Fe backbones lead to ID materials with conducting 3d spines; the charge transfer in this regime is best described as some type of hopping motion. The remaining poly-decker strands belong to the class of organic metals (injected carriers) with conductive pathways that are formed by diffuse ligand states leading to transfer processes that can be rationalized in terms of a band picture. The rotational profiles and the magnitudes of intracell and intercell interactions are also studied. The band

  10. Evaluation of the causes of inundation in a repeatedly flooded zone in the city of Cheongju, Korea, using a 1D/2D model.

    PubMed

    Park, In-Hyeok; Lee, Jeong-Yong; Lee, Ji-Heon; Ha, Sung-Ryong

    2014-01-01

    Currently, unprecedented levels of damage arising from major weather events have been experienced in a number of major cities worldwide. Furthermore, the frequency and the scale of these disasters appear to be increasing and this is viewed by some as tangible proof of climate change. In the urbanized areas sewer overflows and resulting inundation are attributed to the conversion of previous surfaces into impervious surfaces, resulting in increased volumes of runoff which exceed the capacity of sewer systems and in particular combined sewer systems. In this study, the characteristics of sewer overflows and inundation have been analyzed in a repeatedly flooded zone in the city of Cheongju in Korea. This included an assessment of inundation in a 50-year storm event with total rainfall of 165 mm. A detailed XP-SWMM 2D model was assembled and run to simulate the interaction of the sewage system overflows and surface inundation to determine if inundation is due to hydraulic capacity limitations in the sewers or limitations in surface inlet capacities or a combination of both. Calibration was undertaken using observation at three locations (PT #1, PT #2, PT #3) within the study area. In the case of the subsurface flow calibration, R(2) value of 0.91 and 0.78 respectively were achieved at PT #1 and PT #2. Extremely good agreement between observed and predicted surface flow depths was achieved also at PT #1 and PT #2. However, at PT #3 the predicted flow depth was 4 cm lower than the observed depth, which was attributed to the impact of buildings on the local flow distribution. Areas subject to flooding were classified as either Type A (due to insufficient hydraulic capacity of a sewer), Type B (which is an area without flooding notwithstanding insufficient hydraulic capacity of a sewer) or Type C (due to inlet limitations, i.e. there is hydraulic capacity in a sewer which is not utilized). In the total flooded zone, 24% was classified as Type A (10.2 ha) and 25% was

  11. The Reciprocal Internal/External Frame of Reference Model Using Grades and Test Scores

    ERIC Educational Resources Information Center

    Möller, Jens; Zimmermann, Friederike; Köller, Olaf

    2014-01-01

    Background: The reciprocal I/E model (RI/EM) combines the internal/external frame of reference model (I/EM) with the reciprocal effects model (REM). The RI/EM extends the I/EM longitudinally and the REM across domains. The model predicts that, within domains, mathematics and verbal achievement (VACH) and academic self-concept have positive effects…

  12. Impact of GNSS Orbit Modeling on Reference Frame Parameters

    NASA Astrophysics Data System (ADS)

    Arnold, Daniel; Meindl, Michael; Lutz, Simon; Steigenberger, Peter; Beutler, Gerhard; Dach, Rolf; Schaer, Stefan; Prange, Lars; Sosnica, Krzysztof; Jäggi, Adrian

    2015-04-01

    The Center for Orbit Determination in Europe (CODE) contributes with a re-processing solution covering the years 1994 to 2013 (IGS repro2 effort) to the next ITRF release. The measurements to the GLONASS satellites are included since January 2002 in a rigorously combined solution. Around the year 2008 the network of combined GPS/GLONASS tracking stations became truly global. Since December 2011, 24 GLONASS satellites are active in their nominal positions. Since then the re-processing series shows - as the CODE operational solution - spurious signals in geophysical parameters, in particular in the Earth Rotation Parameters (ERPs) and in the estimated geocenter coordinates. These signals grew creepingly with the increasing influence of GLONASS. The problems could be attributed to deficiencies of the Empirical CODE Orbit Model (ECOM) for the GLONASS satellites. Based on the GPS-only, GLONASS-only, and combined GPS/GLONASS observations of recent years we study the impact of different orbit parameterizations on geodynamically relevant parameters, namely on ERPs, geocenter coordinates, and station coordinates. We also asses the quality of the GNSS orbits by measuring the orbit misclosures at the day boundaries and by validating the orbits using satellite laser ranging observations. We present an updated ECOM, which substantially reduces spurious signals in the estimated parameters in 1-day and in 3-day solutions.

  13. Constraining Source Locations of Shallow Subduction Megathrust Earthquakes in 1-D and 3-D Velocity Models - A Case Study of the 2002 Mw=6.4 Osa Earthquake, Costa Rica

    NASA Astrophysics Data System (ADS)

    Grevemeyer, I.; Arroyo, I. G.

    2015-12-01

    Earthquake source locations are generally routinely constrained using a global 1-D Earth model. However, the source location might be associated with large uncertainties. This is definitively the case for earthquakes occurring at active continental margins were thin oceanic crust subducts below thick continental crust and hence large lateral changes in crustal thickness occur as a function of distance to the deep-sea trench. Here, we conducted a case study of the 2002 Mw 6.4 Osa thrust earthquake in Costa Rica that was followed by an aftershock sequence. Initial relocations indicated that the main shock occurred fairly trenchward of most large earthquakes along the Middle America Trench off central Costa Rica. The earthquake sequence occurred while a temporary network of ocean-bottom-hydrophones and land stations 80 km to the northwest were deployed. By adding readings from permanent Costa Rican stations, we obtain uncommon P wave coverage of a large subduction zone earthquake. We relocated this catalog using a nonlinear probabilistic approach using a 1-D and two 3-D P-wave velocity models. The 3-D model was either derived from 3-D tomography based on onshore stations and a priori model based on seismic refraction data. All epicentres occurred close to the trench axis, but depth estimates vary by several tens of kilometres. Based on the epicentres and constraints from seismic reflection data the main shock occurred 25 km from the trench and probably along the plate interface at 5-10 km depth. The source location that agreed best with the geology was based on the 3-D velocity model derived from a priori data. Aftershocks propagated downdip to the area of a 1999 Mw 6.9 sequence and partially overlapped it. The results indicate that underthrusting of the young and buoyant Cocos Ridge has created conditions for interpolate seismogenesis shallower and closer to the trench axis than elsewhere along the central Costa Rica margin.

  14. Citations, References and the Growth of Scientific Literature: A Model of Dynamic Interaction

    ERIC Educational Resources Information Center

    Krauze, Tadeusz K.; Hillinger, Claude

    1971-01-01

    A mathematical model is presented which explains the observed exponential growth rates of citations and references in a scientific discipline. The independent variables are the growth rate of the number of articles published and the decay rate of citation of old literature. (13 references) (Author)

  15. A Reference Model for Software and System Inspections. White Paper

    NASA Technical Reports Server (NTRS)

    He, Lulu; Shull, Forrest

    2009-01-01

    Software Quality Assurance (SQA) is an important component of the software development process. SQA processes provide assurance that the software products and processes in the project life cycle conform to their specified requirements by planning, enacting, and performing a set of activities to provide adequate confidence that quality is being built into the software. Typical techniques include: (1) Testing (2) Simulation (3) Model checking (4) Symbolic execution (5) Management reviews (6) Technical reviews (7) Inspections (8) Walk-throughs (9) Audits (10) Analysis (complexity analysis, control flow analysis, algorithmic analysis) (11) Formal method Our work over the last few years has resulted in substantial knowledge about SQA techniques, especially the areas of technical reviews and inspections. But can we apply the same QA techniques to the system development process? If yes, what kind of tailoring do we need before applying them in the system engineering context? If not, what types of QA techniques are actually used at system level? And, is there any room for improvement.) After a brief examination of the system engineering literature (especially focused on NASA and DoD guidance) we found that: (1) System and software development process interact with each other at different phases through development life cycle (2) Reviews are emphasized in both system and software development. (Figl.3). For some reviews (e.g. SRR, PDR, CDR), there are both system versions and software versions. (3) Analysis techniques are emphasized (e.g. Fault Tree Analysis, Preliminary Hazard Analysis) and some details are given about how to apply them. (4) Reviews are expected to use the outputs of the analysis techniques. In other words, these particular analyses are usually conducted in preparation for (before) reviews. The goal of our work is to explore the interaction between the Quality Assurance (QA) techniques at the system level and the software level.

  16. The cost of model reference adaptive control - Analysis, experiments, and optimization

    NASA Technical Reports Server (NTRS)

    Messer, R. S.; Haftka, R. T.; Cudney, H. H.

    1993-01-01

    In this paper the performance of Model Reference Adaptive Control (MRAC) is studied in numerical simulations and verified experimentally with the objective of understanding how differences between the plant and the reference model affect the control effort. MRAC is applied analytically and experimentally to a single degree of freedom system and analytically to a MIMO system with controlled differences between the model and the plant. It is shown that the control effort is sensitive to differences between the plant and the reference model. The effects of increased damping in the reference model are considered, and it is shown that requiring the controller to provide increased damping actually decreases the required control effort when differences between the plant and reference model exist. This result is useful because one of the first attempts to counteract the increased control effort due to differences between the plant and reference model might be to require less damping, however, this would actually increase the control effort. Optimization of weighting matrices is shown to help reduce the increase in required control effort. However, it was found that eventually the optimization resulted in a design that required an extremely high sampling rate for successful realization.

  17. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    SciTech Connect

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2014-10-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  18. The NASA Marshall Space Flight Center Earth Global Reference Atmospheric Model-2010 Version

    NASA Technical Reports Server (NTRS)

    Leslie, F. W.; Justus, C. G.

    2011-01-01

    Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA Marshall Space Flight Center Global Reference Atmospheric Model was developed in response to the need for a design reference atmosphere that provides complete global geographical variability and complete altitude coverage (surface to orbital altitudes), as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. In addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations.

  19. Command generator tracker based direct model reference adaptive tracking guidance for Mars atmospheric entry

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Peng, Yuming

    2012-01-01

    In order to accurately deliver an entry vehicle through the Martian atmosphere to the prescribed parachute deployment point, active Mars entry guidance is essential. This paper addresses the issue of Mars atmospheric entry guidance using the command generator tracker (CGT) based direct model reference adaptive control to reduce the adverse effect of the bounded uncertainties on atmospheric density and aerodynamic coefficients. Firstly, the nominal drag acceleration profile meeting a variety of constraints is planned off-line in the longitudinal plane as the reference model to track. Then, the CGT based direct model reference adaptive controller and the feed-forward compensator are designed to robustly track the aforementioned reference drag acceleration profile and to effectively reduce the downrange error. Afterwards, the heading alignment logic is adopted in the lateral plane to reduce the crossrange error. Finally, the validity of the guidance algorithm proposed in this paper is confirmed by Monte Carlo simulation analysis.

  20. Developing Sediment Transport and Dredging Prediction Model of Ohio River at Olmsted Locks and Dams Area using HEC-RAS (1D/2D)By Ganesh Raj Ghimire1 and Bruce A. Devantier 2

    NASA Astrophysics Data System (ADS)

    Ghimire, G. R.

    2015-12-01

    Sediment deposition is a serious issue in the construction and operation of large reservoir and inland navigation projects in the United States and around the world. Olmsted Locks and Dams in the Ohio River navigation system is facing similar challenges of huge sediment deposition during the ongoing in-wet construction methodology since 1993. HEC-RAS 5.0 integrated with ArcGIS, will be used to yield unsteady 2D hydrodynamic model of Ohio River at Olmsted area. Velocity, suspended sediment, bed sediment and hydrographic survey data acquired from public archives of USGS and USACE Louisville District will be input into the model. Calibration and validation of model will be performed against the measured stage, flow and velocity data. It will be subjected to completely unsteady 1D sediment transport modeling new to HEC-RAS 5.0 which incorporates sediment load and bed gradation via a DSS file, commercial dredging and BSTEM model. Sediment model will be calibrated to replicate the historical bed volume changes. Excavated cross-sections at Olmsted area will also be used to predict the sediment volume trapped inside the ditch over the period between excavations and placement of dam shells at site. Model will attempt to replicate historical dredging volume data and compare with the deposition volume from simulation model to formulate the dredging prediction model. Hence, the results of this research will generate a model that can form a basis for scheduling the dredging event prior to the placement of off-shore cast shells replacing the current as and when required approach of dredging plan. 1 Graduate Student, Department of Civil Engineering, Southern Illinois University Carbondale Carbondale, Illinois, 62901-6603 2 Professor, Department of Civil Engineering, Southern Illinois University Carbondale Carbondale, Illinois, 62901-6603

  1. Outstanding Phenotypic Differences in the Profile of Amyloid-β between Tg2576 and APPswe/PS1dE9 Transgenic Mouse Models of Alzheimer’s Disease

    PubMed Central

    Allué, José Antonio; Sarasa, Leticia; Izco, María; Pérez-Grijalba, Virginia; Fandos, Noelia; Pascual-Lucas, María; Ogueta, Samuel; Pesini, Pedro; Sarasa, Manuel

    2016-01-01

    APPswe/PS1dE9 and Tg2576 are very common transgenic mouse models of Alzheimer’s disease (AD), used in many laboratories as tools to research the mechanistic process leading to the disease. In order to augment our knowledge about the amyloid-β (Aβ) isoforms present in both transgenic mouse models, we have developed two chromatographic methods, one acidic and the other basic, for the characterization of the Aβ species produced in the brains of the two transgenic mouse models. After immunoprecipitation and micro-liquid chromatography-electrospray ionization mass spectrometry/mass spectrometry, 10 species of Aβ, surprisingly all of human origin, were detected in the brain of Tg2576 mouse, whereas 39 species, of both murine and human origin, were detected in the brain of the APP/PS1 mouse. To the best of our knowledge, this is the first study showing the identification of such a high number of Aβ species in the brain of the APP/PS1 transgenic mouse, whereas, in contrast, a much lower number of Aβ species were identified in the Tg2576 mouse. Therefore, this study brings to light a relevant phenotypic difference between these two popular mice models of AD. PMID:27258422

  2. Multiscale Simulations of Protein Landscapes: Using Coarse Grained Models as Reference Potentials to Full Explicit Models

    PubMed Central

    Messer, Benjamin M.; Roca, Maite; Chu, Zhen T.; Vicatos, Spyridon; Kilshtain, Alexandra Vardi; Warshel, Arieh

    2009-01-01

    Evaluating the free energy landscape of proteins and the corresponding functional aspects presents a major challenge for computer simulation approaches. This challenge is due to the complexity of the landscape and the enormous computer time needed for converging simulations. The use of simplified coarse grained (CG) folding models offers an effective way of sampling the landscape but such a treatment, however, may not give the correct description of the effect of the actual protein residues. A general way around this problem that has been put forward in our early work (Fan et al, Theor Chem Acc (1999) 103:77-80) uses the CG model as a reference potential for free energy calculations of different properties of the explicit model. This method is refined and extended here, focusing on improving the electrostatic treatment and on demonstrating key applications. This application includes: evaluation of changes of folding energy upon mutations, calculations of transition states binding free energies (which are crucial for rational enzyme design), evaluation of catalytic landscape and simulation of the time dependent responses to pH changes. Furthermore, the general potential of our approach in overcoming major challenges in studies of structure function correlation in proteins is discussed. PMID:20052756

  3. Model reference adaptive control of flexible robots in the presence of sudden load changes

    NASA Technical Reports Server (NTRS)

    Steinvorth, Rodrigo; Kaufman, Howard; Neat, Gregory

    1991-01-01

    Direct command generator tracker based model reference adaptive control (MRAC) algorithms are applied to the dynamics for a flexible-joint arm in the presence of sudden load changes. Because of the need to satisfy a positive real condition, such MRAC procedures are designed so that a feedforward augmented output follows the reference model output, thus, resulting in an ultimately bounded rather than zero output error. Thus, modifications are suggested and tested that: (1) incorporate feedforward into the reference model's output as well as the plant's output, and (2) incorporate a derivative term into only the process feedforward loop. The results of these simulations give a response with zero steady state model following error, and thus encourage further use of MRAC for more complex flexibile robotic systems.

  4. Identification of large-scale genomic variation in cancer genomes using in silico reference models

    PubMed Central

    Killcoyne, Sarah; del Sol, Antonio

    2016-01-01

    Identifying large-scale structural variation in cancer genomes continues to be a challenge to researchers. Current methods rely on genome alignments based on a reference that can be a poor fit to highly variant and complex tumor genomes. To address this challenge we developed a method that uses available breakpoint information to generate models of structural variations. We use these models as references to align previously unmapped and discordant reads from a genome. By using these models to align unmapped reads, we show that our method can help to identify large-scale variations that have been previously missed. PMID:26264669

  5. Panel C report: Standards needed for the use of ISO Open Systems Interconnection - basic reference model

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The use of an International Standards Organization (ISO) Open Systems Interconnection (OSI) Reference Model and its relevance to interconnecting an Applications Data Service (ADS) pilot program for data sharing is discussed. A top level mapping between the conjectured ADS requirements and identified layers within the OSI Reference Model was performed. It was concluded that the OSI model represents an orderly architecture for the ADS networking planning and that the protocols being developed by the National Bureau of Standards offer the best available implementation approach.

  6. Model reference adaptive control for linear time varying and nonlinear systems

    NASA Technical Reports Server (NTRS)

    Abida, L.; Kaufman, H.

    1982-01-01

    Model reference adaptive control is applied to linear time varying systems and to nonlinear systems amenable to virtual linearization. Asymptotic stability is guaranteed even if the perfect model following conditions do not hold, provided that some sufficient conditions are satisfied. Simulations show the scheme to be capable of effectively controlling certain nonlinear systems.

  7. Cost of Electronic Reference Resources and LCM: The Library Costing Model.

    ERIC Educational Resources Information Center

    Hayes, Robert M.

    1996-01-01

    Views assessment of "Costs of Electronic Reference Resources" both in a general descriptive framework and within the context of a specific model for costing of library operations and services called LCM, the Library Costing Model. Examples of costing data uses are provided, and categories of costs are related to types of electronic…

  8. Evolution of Reference: A New Service Model for Science and Engineering Libraries

    ERIC Educational Resources Information Center

    Bracke, Marianne Stowell; Chinnaswamy, Sainath; Kline, Elizabeth

    2008-01-01

    This article explores the different steps involved in adopting a new service model at the University of Arizona Science-Engineering Library. In a time of shrinking budgets and changing user behavior the library was forced to rethink it reference services to be cost effective and provide quality service at the same time. The new model required…

  9. Jobs and Economic Development Impact (JEDI) Model Geothermal User Reference Guide

    SciTech Connect

    Johnson, C.; Augustine, C.; Goldberg, M.

    2012-09-01

    The Geothermal Jobs and Economic Development Impact (JEDI) model, developed through the National Renewable Energy Laboratory (NREL), is an Excel-based user-friendly tools that estimates the economic impacts of constructing and operating hydrothermal and Enhanced Geothermal System (EGS) power generation projects at the local level for a range of conventional and renewable energy technologies. The JEDI Model Geothermal User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.

  10. Time domain and frequency domain design techniques for model reference adaptive control systems

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III

    1971-01-01

    Some problems associated with the design of model-reference adaptive control systems are considered and solutions to these problems are advanced. The stability of the adapted system is a primary consideration in the development of both the time-domain and the frequency-domain design techniques. Consequentially, the use of Liapunov's direct method forms an integral part of the derivation of the design procedures. The application of sensitivity coefficients to the design of model-reference adaptive control systems is considered. An application of the design techniques is also presented.

  11. A Reference Model for Distribution Grid Control in the 21st Century

    SciTech Connect

    Taft, Jeffrey D.; De Martini, Paul; Kristov, Lorenzo

    2015-07-01

    Intensive changes in the structure of the grid due to the penetration of new technologies, coupled with changing societal needs are outpacing the capabilities of traditional grid control systems. The gap is widening at an accelerating rate with the biggest impacts occurring at the distribution level due to the widespread adoption of diverse distribution-connected energy resources (DER) . This paper outlines the emerging distribution grid control environment, defines the new distribution control problem, and provides a distribution control reference model. The reference model offers a schematic representation of the problem domain to inform development of system architecture and control solutions for the high-DER electric system.

  12. Transmission Line Jobs and Economic Development Impact (JEDI) Model User Reference Guide

    SciTech Connect

    Goldberg, M.; Keyser, D.

    2013-10-01

    The Jobs and Economic Development Impact (JEDI) models, developed through the National Renewable Energy Laboratory (NREL), are freely available, user-friendly tools that estimate the potential economic impacts of constructing and operating power generation projects for a range of conventional and renewable energy technologies. The Transmission Line JEDI model can be used to field questions about the economic impacts of transmission lines in a given state, region, or local community. This Transmission Line JEDI User Reference Guide was developed to provide basic instruction on operating the model and understanding the results. This guide also provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data contained in the model.

  13. Model benchmarking and reference signals for angled-beam shear wave ultrasonic nondestructive evaluation (NDE) inspections

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Hopkins, Deborah; Datuin, Marvin; Warchol, Mark; Warchol, Lyudmila; Forsyth, David S.; Buynak, Charlie; Lindgren, Eric A.

    2017-02-01

    For model benchmark studies, the accuracy of the model is typically evaluated based on the change in response relative to a selected reference signal. The use of a side drilled hole (SDH) in a plate was investigated as a reference signal for angled beam shear wave inspection for aircraft structure inspections of fastener sites. Systematic studies were performed with varying SDH depth and size, and varying the ultrasonic probe frequency, focal depth, and probe height. Increased error was observed with the simulation of angled shear wave beams in the near-field. Even more significant, asymmetry in real probes and the inherent sensitivity of signals in the near-field to subtle test conditions were found to provide a greater challenge with achieving model agreement. To achieve quality model benchmark results for this problem, it is critical to carefully align the probe with the part geometry, to verify symmetry in probe response, and ideally avoid using reference signals from the near-field response. Suggested reference signals for angled beam shear wave inspections include using the `through hole' corner specular reflection signal and the full skip' signal off of the far wall from the side drilled hole.

  14. Antecedents of Academic Emotions: Testing the Internal/External Frame of Reference Model for Academic Enjoyment

    ERIC Educational Resources Information Center

    Goetz, Thomas; Frenzel, Anne C.; Hall, Nathan C.; Pekrun, Reinhard

    2008-01-01

    The present study focused on students' academic enjoyment as predicted by achievement in multiple academic domains. Assumptions were based on Marsh's internal/external (I/E) frame of reference model and Pekrun's control-value theory of achievement emotions, and were tested in a sample of 1380 German students from grades 5 to 10. Students' academic…

  15. Design implementation and control of MRAS error dynamics. [Model-Reference Adaptive System

    NASA Technical Reports Server (NTRS)

    Colburn, B. K.; Boland, J. S., III

    1974-01-01

    Use is made of linearized error characteristic equation for model-reference adaptive systems to determine a parameter adjustment rule for obtaining time-invariant error dynamics. Theoretical justification of error stability is given and an illustrative example included to demonstrate the utility of the proposed technique.

  16. Scaffolding Students' Development of Creative Design Skills: A Curriculum Reference Model

    ERIC Educational Resources Information Center

    Lee, Chien-Sing; Kolodner, Janet L.

    2011-01-01

    This paper provides a framework for promoting creative design capabilities in the context of achieving community goals pertaining to sustainable development among high school students. The framework can be used as a reference model to design formal or out-of-school curriculum units in any geographical region. This theme is chosen due to its…

  17. Intonation in unaccompanied singing: accuracy, drift, and a model of reference pitch memory.

    PubMed

    Mauch, Matthias; Frieler, Klaus; Dixon, Simon

    2014-07-01

    This paper presents a study on intonation and intonation drift in unaccompanied singing, and proposes a simple model of reference pitch memory that accounts for many of the effects observed. Singing experiments were conducted with 24 singers of varying ability under three conditions (Normal, Masked, Imagined). Over the duration of a recording, ∼50 s, a median absolute intonation drift of 11 cents was observed. While smaller than the median note error (19 cents), drift was significant in 22% of recordings. Drift magnitude did not correlate with other measures of singing accuracy, singing experience, or the presence of conditions tested. Furthermore, it is shown that neither a static intonation memory model nor a memoryless interval-based intonation model can account for the accuracy and drift behavior observed. The proposed causal model provides a better explanation as it treats the reference pitch as a changing latent variable.

  18. GENESIS: Generalized Model for Simulating Shoreline Change. Report 1. Technical Reference

    DTIC Science & Technology

    1989-12-01

    Analytical models of shoreline change 29. Analytical models are closed-form mathematical solutions of a simplified differential equation for shoreline change...elements (called the time step). If the grid spacing and time step are small, solutions of the governing partial differential equation ( Equation 1) can be...scheme provides an accurate solution to the partial differential equation ( Equation 1). Physical accuracy refers to the degree to which Equation 1 and

  19. A new general 1-D vadose zone flow solution method

    NASA Astrophysics Data System (ADS)

    Ogden, Fred L.; Lai, Wencong; Steinke, Robert C.; Zhu, Jianting; Talbot, Cary A.; Wilson, John L.

    2015-06-01

    We have developed an alternative to the one-dimensional partial differential equation (PDE) attributed to Richards (1931) that describes unsaturated porous media flow in homogeneous soil layers. Our solution is a set of three ordinary differential equations (ODEs) derived from unsaturated flux and mass conservation principles. We used a hodograph transformation, the Method of Lines, and a finite water-content discretization to produce ODEs that accurately simulate infiltration, falling slugs, and groundwater table dynamic effects on vadose zone fluxes. This formulation, which we refer to as "finite water-content", simulates sharp fronts and is guaranteed to conserve mass using a finite-volume solution. Our ODE solution method is explicitly integrable, does not require iterations and therefore has no convergence limits and is computationally efficient. The method accepts boundary fluxes including arbitrary precipitation, bare soil evaporation, and evapotranspiration. The method can simulate heterogeneous soils using layers. Results are presented in terms of fluxes and water content profiles. Comparing our method against analytical solutions, laboratory data, and the Hydrus-1D solver, we find that predictive performance of our finite water-content ODE method is comparable to or in some cases exceeds that of the solution of Richards' equation, with or without a shallow water table. The presented ODE method is transformative in that it offers accuracy comparable to the Richards (1931) PDE numerical solution, without the numerical complexity, in a form that is robust, continuous, and suitable for use in large watershed and land-atmosphere simulation models, including regional-scale models of coupled climate and hydrology.

  20. Petroleum Refinery Jobs and Economic Development Impact (JEDI) Model User Reference Guide

    SciTech Connect

    Goldberg, M.

    2013-12-31

    The Jobs and Economic Development Impact (JEDI) models, developed through the National Renewable Energy Laboratory (NREL), are user-friendly tools utilized to estimate the economic impacts at the local level of constructing and operating fuel and power generation projects for a range of conventional and renewable energy technologies. The JEDI Petroleum Refinery Model User Reference Guide was developed to assist users in employing and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the model estimates job creation, earning and output (total economic activity) for a given petroleum refinery. This includes the direct, indirect and induced economic impacts to the local economy associated with the refinery's construction and operation phases. Project cost and job data used in the model are derived from the most current cost estimations available. Local direct and indirect economic impacts are estimated using economic multipliers derived from IMPLAN software. By determining the regional economic impacts and job creation for a proposed refinery, the JEDI Petroleum Refinery model can be used to field questions about the added value refineries may bring to the local community.

  1. Evaluation of models proposed for the 1991 revision of the International Geomagnetic Reference Field

    USGS Publications Warehouse

    Peddie, N.W.

    1992-01-01

    The 1991 revision of the International Geomagnetic Reference Field (IGRF) comprises a definitive main-field model for 1985.0, a main-field model for 1990.0, and a forecast secular-variation model for the period 1990-1995. The five 1985.0 main-field models and five 1990.0 main-field models that were proposed have been evaluated by comparing them with one another, with magnetic observatory data, and with Project MAGNET aerial survey data. The comparisons indicate that the main-field models proposed by IZMIRAN, and the secular-variation model proposed jointly by the British Geological Survey and the US Naval Oceanographic Office, should be assigned relatively lower weight in the derivation of the new IGRF models. -Author

  2. Assessment of models proposed for the 1985 revision of the international geomagnetic reference field

    USGS Publications Warehouse

    Peddie, N.W.; Zunde, A.K.

    1987-01-01

    Geomagnetic measurements from land, marine and aerial surveys conducted in the years 1945-1964 were used to test the 14 models proposed as additions, for that period, to the series of definitive geomagnetic reference field (DGRF) models. Overall, NASA's 'SFAS' models and the BGS (British Geological Survey) models agree best with these data. Comparisons of the two proposed definitive main-field models for 1980.0, with each other and with the existing IGRF 1980 main-field model, show mostly close agreement, with the greatest absolute differences (several tens of nanotesla) occurring in the region of Antarctica. Comparison of the the three proposed forecast secular-variation models for 1985-1990 with estimates of recent rates of change at 148 magnetic observatories shows that the IZMIRAN (U.S.S.R.) and USGS models are in closest agreement with these data. ?? 1987.

  3. PC-1D installation manual and user's guide

    SciTech Connect

    Basore, P.A.

    1991-05-01

    PC-1D is a software package for personal computers that uses finite-element analysis to solve the fully-coupled two-carrier semiconductor transport equations in one dimension. This program is particularly useful for analyzing the performance of optoelectronic devices such as solar cells, but can be applied to any bipolar device whose carrier flows are primarily one-dimensional. This User's Guide provides the information necessary to install PC-1D, define a problem for solution, solve the problem, and examine the results. Example problems are presented which illustrate these steps. The physical models and numerical methods utilized are presented in detail. This document supports version 3.1 of PC-1D, which incorporates faster numerical algorithms with better convergence properties than previous versions of the program. 51 refs., 17 figs., 5 tabs.

  4. Structural dynamics model and response of the deployable reference configuration space station

    NASA Technical Reports Server (NTRS)

    Housner, J. M.

    1985-01-01

    The analytical models and results of a structural dynamics investigation of the reference initial operation and evolutionary configurations of the nine foot bay space station are presented. This investigation was carried out between April and August 1984 as part of a team effort to define a reference configuration for the first U.S. manned space station. The results presented herein serve as a guide, a point of departure and a standard for future NASA and contractor studies leading to the design of the Space Station. The reference initial operation configuration of the nine foot bay station was found to be very flexible, with its lowest mode between 0.096 and 0.138 Hertz depending on station attachments. However, for the transient load cases which were then available, internal member loads had positive margins of safety and preliminary results indicate that laboratory experiments which require quiescent conditions can be satisfied down to the order of 0.0001 g's.

  5. Heat Capacity of 1D Molecular Chains

    NASA Astrophysics Data System (ADS)

    Bagatskii, M. I.; Barabashko, M. S.; Sumarokov, V. V.; Jeżowski, A.; Stachowiak, P.

    2017-04-01

    The heat capacity of 1D chains of nitrogen and methane molecules (adsorbed in the outer grooves of bundles of closed-cap single-walled carbon nanotubes) has been studied in the temperature ranges 2-40 and 2-60 K, respectively. The temperature dependence of the heat capacity of 1D chains of nitrogen molecules below 3 K is close to a linear. It was found that the rotational heat capacity of methane molecules is a significant part of the total heat capacity of the chains throughout the whole investigated temperature range, whereas in the case of nitrogen, the librations are significant only above 15 K. The dependence of the heat capacity for methane below 10 K indicates the presence of a Schottky anomaly caused by the tunneling between the lowest energy levels of the CH4 molecule rotational spectra. Characteristic features observed in the temperature dependence of the heat capacity of 1D methane crystals are also discussed.

  6. Upstream Design and 1D-CAE

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroyuki

    Recently, engineering design environment of Japan is changing variously. Manufacturing companies are being challenged to design and bring out products that meet the diverse demands of customers and are competitive against those produced by rising countries(1). In order to keep and strengthen the competitiveness of Japanese companies, it is necessary to create new added values as well as conventional ones. It is well known that design at the early stages has a great influence on the final design solution. Therefore, design support tools for the upstream design is necessary for creating new added values. We have established a research society for 1D-CAE (1 Dimensional Computer Aided Engineering)(2), which is a general term for idea, methodology and tools applicable for the upstream design support, and discuss the concept and definition of 1D-CAE. This paper reports our discussion about 1D-CAE.

  7. Earth Global Reference Atmospheric Model 2007 (Earth-GRAM07) Applications for the NASA Constellation Program

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W.; Justus, C. G.

    2008-01-01

    Engineering models of the atmosphere are used extensively by the aerospace community for design issues related to vehicle ascent and descent. The Earth Global Reference Atmosphere Model version 2007 (Earth-GRAM07) is the latest in this series and includes a number of new features. Like previous versions, Earth-GRAM07 provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthly- and geographically-varying trace constituent concentrations. From 0 km to 27 km, thermodynamics and winds are based on the National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. For altitudes between 20 km and 120 km, the model uses data from the Middle Atmosphere Program (MAP). Above 120 km, EarthGRAM07 now provides users with a choice of three thermosphere models: the Marshall Engineering Thermosphere (MET-2007) model; the Jacchia-Bowman 2006 thermosphere model (JB2006); and the Naval Research Labs Mass Spectrometer, Incoherent Scatter Radar Extended Model (NRL MSIS E-OO) with the associated Harmonic Wind Model (HWM-93). In place of these datasets, Earth-GRAM07 has the option of using the new 2006 revised Range Reference Atmosphere (RRA) data, the earlier (1983) RRA data, or the user may also provide their own data as an auxiliary profile. Refinements of the perturbation model are also discussed which include wind shears more similar to those observed at the Kennedy Space Center than the previous version Earth-GRAM99.

  8. Application of Model Reference Adaptive Control System to Instrument Pointing System /IPS/

    NASA Technical Reports Server (NTRS)

    Waites, H. B.

    1979-01-01

    A Model Reference Adaptive Controller (MRAC) is derived for a Shuttle payload called the Instrument Pointing System (IPS). The unique features of this MRAC design are that total state feedback is not required, that the internal structure of the model is independent of the internal structure of the IPS, and that the model input is of bounded variation and not required a priori. An application of Liapunov's stability theorems is used to synthesize a control signal which assures MRAC asymptotic stability. Exponential observers are used to obtain the necessary state information to implement the control synthesis. Results are presented which show how effectively the MRAC can maneuver the IPS.

  9. CEOS WGISS Reference Model for Use of Remote Sensing Products for Disaster Management and Risk Assessment

    NASA Astrophysics Data System (ADS)

    Moe, K.; Evans, J. D.

    2011-12-01

    The Committee on Earth Observing Satellites (CEOS) Working Group on Information Systems and Services (WGISS) initiated a project to describe and document a high-level reference model for the use of satellites, sensors, models, and associated data products to support disaster response and risk assessment. The project builds on results of the Group on Earth Observations (GEO) task for the Disasters Societal Benefit Area (SBA). The GEO Global Earth Observation System of Systems (GEOSS) will provide decision makers access to disaster and risk assessment information from global data and service providers. The purpose of the reference model is to provide an enterprise perspective for managing distributed systems and services for disaster management. It is intended to provide a common vocabulary to describe the system-of-systems building blocks and how they are composed in support of disasters. In this paper we will address the motivation for the reference model, including stakeholders, scope and goals, as well as use cases for disaster management and risk assessment, and progress in describing the enterprise framework for disasters.

  10. Adaptive Performance Seeking Control Using Fuzzy Model Reference Learning Control and Positive Gradient Control

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    1997-01-01

    Performance Seeking Control attempts to find the operating condition that will generate optimal performance and control the plant at that operating condition. In this paper a nonlinear multivariable Adaptive Performance Seeking Control (APSC) methodology will be developed and it will be demonstrated on a nonlinear system. The APSC is comprised of the Positive Gradient Control (PGC) and the Fuzzy Model Reference Learning Control (FMRLC). The PGC computes the positive gradients of the desired performance function with respect to the control inputs in order to drive the plant set points to the operating point that will produce optimal performance. The PGC approach will be derived in this paper. The feedback control of the plant is performed by the FMRLC. For the FMRLC, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for the effective tuning of the FMRLC controller.

  11. Nonlinear Performance Seeking Control using Fuzzy Model Reference Learning Control and the Method of Steepest Descent

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    1997-01-01

    Performance Seeking Control (PSC) attempts to find and control the process at the operating condition that will generate maximum performance. In this paper a nonlinear multivariable PSC methodology will be developed, utilizing the Fuzzy Model Reference Learning Control (FMRLC) and the method of Steepest Descent or Gradient (SDG). This PSC control methodology employs the SDG method to find the operating condition that will generate maximum performance. This operating condition is in turn passed to the FMRLC controller as a set point for the control of the process. The conventional SDG algorithm is modified in this paper in order for convergence to occur monotonically. For the FMRLC control, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for effective tuning of the FMRLC controller.

  12. Next Generation Computer Resources: Reference Model for Project Support Environments (Version 2.0)

    DTIC Science & Technology

    1993-11-01

    Patricia Oberndorf. Members of this working group included: Carole Amos, Todd Barborek, Dennis Barney, Jerry Brookshire, Alan Brown, D. Bruce Macin- doe...David Carney, Peter Clark, Geoff Clow, Douglas Cook, Charlotte Crawford, Hugh Davis, Anthony Earl, Michael Edwards, Bob Ekman, Peter Feiler , James...Wong, and Marvin Zelkowitz The original conceptual basis of the reference model came from Peter Feiler , who also par- ticipated in the earliest stages

  13. An Optimal Control Modification to Model-Reference Adaptive Control for Fast Adaptation

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Krishnakumar, Kalmanje; Boskovic, Jovan

    2008-01-01

    This paper presents a method that can achieve fast adaptation for a class of model-reference adaptive control. It is well-known that standard model-reference adaptive control exhibits high-gain control behaviors when a large adaptive gain is used to achieve fast adaptation in order to reduce tracking error rapidly. High gain control creates high-frequency oscillations that can excite unmodeled dynamics and can lead to instability. The fast adaptation approach is based on the minimization of the squares of the tracking error, which is formulated as an optimal control problem. The necessary condition of optimality is used to derive an adaptive law using the gradient method. This adaptive law is shown to result in uniform boundedness of the tracking error by means of the Lyapunov s direct method. Furthermore, this adaptive law allows a large adaptive gain to be used without causing undesired high-gain control effects. The method is shown to be more robust than standard model-reference adaptive control. Simulations demonstrate the effectiveness of the proposed method.

  14. A Bioinformatics Reference Model: Towards a Framework for Developing and Organising Bioinformatic Resources

    NASA Astrophysics Data System (ADS)

    Hiew, Hong Liang; Bellgard, Matthew

    2007-11-01

    Life Science research faces the constant challenge of how to effectively handle an ever-growing body of bioinformatics software and online resources. The users and developers of bioinformatics resources have a diverse set of competing demands on how these resources need to be developed and organised. Unfortunately, there does not exist an adequate community-wide framework to integrate such competing demands. The problems that arise from this include unstructured standards development, the emergence of tools that do not meet specific needs of researchers, and often times a communications gap between those who use the tools and those who supply them. This paper presents an overview of the different functions and needs of bioinformatics stakeholders to determine what may be required in a community-wide framework. A Bioinformatics Reference Model is proposed as a basis for such a framework. The reference model outlines the functional relationship between research usage and technical aspects of bioinformatics resources. It separates important functions into multiple structured layers, clarifies how they relate to each other, and highlights the gaps that need to be addressed for progress towards a diverse, manageable, and sustainable body of resources. The relevance of this reference model to the bioscience research community, and its implications in progress for organising our bioinformatics resources, are discussed.

  15. Robust ℋ2/ℋ∞/reference model dynamic output-feedback control synthesis

    NASA Astrophysics Data System (ADS)

    Gonçalves, E. N.; Bachur, W. E. G.; Palhares, R. M.; Takahashi, R. H. C.

    2011-12-01

    This article presents a new strategy to design robust model matching dynamic output-feedback controllers that guarantee tracking response specifications, disturbance rejection and noise attenuation. The proposed synthesis methodology, based on a multi-objective optimisation problem, can be applied to uncertain continuous or discrete-time linear time-invariant systems with polytopic uncertainty, leading to both full-order and reduced-order robust-performance dynamic controllers. The objective functions represent the ℋ∞-norm of the difference between the closed-loop transfer function matrix, from the reference signals and the plant outputs and the reference model matrix, the ℋ∞-norm of the closed-loop transfer function matrix from the disturbances and the plant outputs and the ℋ2-norm of the closed-loop transfer function matrix from the measurement noises and the control inputs. An integral control action is also introduced in order to achieve zero steady-state error. In the case of MIMO systems, the proposed strategy can be applied to decouple the closed-loop control system choosing an appropriated reference model matrix. Two examples are presented to illustrate both SISO and MIMO systems control synthesis.

  16. Is the ISO Reference Terminology Model for Nursing Actions Enough to Describe Nursing Actions?

    PubMed

    Lee, Joo Yun; Park, Hyeoun-Ae

    2016-01-01

    The aim of this study is to test the applicability of the International Standards Organization (ISO) Reference terminology model (RTM) for nursing action to describe Detailed Clinical Models (DCMs) for nursing action. All verb and target terms were mapped to 'Action' and 'Target' category of RTM for nursing actions. Among 72 attributes qualifying the verb terms, 50 attributes were mapped to Means, Route, Timing, or Site categories of the nursing action model. Among 142 attributes qualifying the target terms, 20 attributes were mapped to Means, Timing, or Site categories of the nursing action model and 6 attributes were mapped to Degree or Judgment categories of the nursing diagnosis model. The findings suggest the need for an integrated RTM for nursing.

  17. Reasoning in Reference Games: Individual- vs. Population-Level Probabilistic Modeling

    PubMed Central

    Franke, Michael; Degen, Judith

    2016-01-01

    Recent advances in probabilistic pragmatics have achieved considerable success in modeling speakers’ and listeners’ pragmatic reasoning as probabilistic inference. However, these models are usually applied to population-level data, and so implicitly suggest a homogeneous population without individual differences. Here we investigate potential individual differences in Theory-of-Mind related depth of pragmatic reasoning in so-called reference games that require drawing ad hoc Quantity implicatures of varying complexity. We show by Bayesian model comparison that a model that assumes a heterogenous population is a better predictor of our data, especially for comprehension. We discuss the implications for the treatment of individual differences in probabilistic models of language use. PMID:27149675

  18. U.S. Department of Energy Reference Model Program RM1: Experimental Results

    SciTech Connect

    Hill, Craig; Neary, Vincent Sinclair; Gunawan, Budi; Guala, Michele; Sotiropoulos, Fotis

    2014-10-01

    The Reference Model Project (RMP), sponsored by the U.S. Department of Energy’s (DOE) Wind and Water Power Technologies Program within the Office of Energy Efficiency & Renewable Energy (EERE), aims at expediting industry growth and efficiency by providing non-proprietary Reference Models (RM) of MHK technology designs as study objects for open-source research and development (Neary et al. 2014a,b). As part of this program, MHK turbine models were tested in a large open channel facility at the University of Minnesota’s St. Anthony Falls Laboratory (UMN-SAFL). Reference Model 1 (RM2) is a 1:40 geometric scale dual-rotor axial flow horizontal axis device with counter-rotating rotors, each with a rotor diameter dT = 0.5m. Precise blade angular position and torque measurements were synchronized with three acoustic Doppler velocimeters (ADVs) aligned with each rotor and the midpoint for RM1. Flow conditions for each case were controlled such that depth, h = 1m, and volumetric flow rate, Qw = 2.425m3s-1, resulting in a hub height velocity of approximately Uhub = 1.05ms-1 and blade chord length Reynolds numbers of Rec ≈ 3.0x105. Vertical velocity profiles collected in the wake of each device from 1 to 10 rotor diameters are used to estimate the velocity recovery and turbulent characteristics in the wake, as well as the interaction of the counter-rotating rotor wakes. The development of this high resolution laboratory investigation provides a robust dataset that enables assessing turbulence performance models and their ability to accurately predict device performance metrics, including computational fluid dynamics (CFD) models that can be used to predict turbulent inflow environments, reproduce wake velocity deficit, recovery and higher order turbulent statistics, as well as device performance metrics.

  19. Development of the Japanese reference man model for age-specific phantoms.

    PubMed

    Kawamura, Hisao

    2012-03-01

    Recent interest in improving methods for calculating radiation doses to atomic bomb survivors necessitates reinforcing the data on masses of organs of the Japanese population in 1945, including those that are not calculated by DS02, as well as increasing the number of phantoms for different ages. Reference is made to published data on the masses of organs in normal Japanese subjects of 0-90 y of age with more than 5000 samples during 1970-80, as well as the weight and size of the total body. The first Japanese Reference Man model, primarily based on these data and following the ICRP Reference Man concept, is briefly explained. It provides a set of reference values for males and females of six age groups, i.e. 3 months, 1, 5, 10, 15 and 20-50 y. To consider the organ masses of the Japanese population in 1945, the data during the period 1970-80 are compared with the literature data of normal Japanese reported in 1952. Differences between the two sets of organ data in adults are discussed in relation to changes in the national status of nutrition. Additional organ masses of current interest for the Japanese population in 1945 are preliminarily considered.

  20. Proposed reference models for nitrous oxide and methane in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Taylor, F. W.; Dudhia, A.; Rodgers, C. D.

    1989-01-01

    Data from the Stratospheric and Mesospheric Sounder (SAMS) on the Nimbus 7 satellite, for the period from Jan. 1979 - Dec. 1981, are used to prepare a reference model for the long-lived trace gases, methane and nitrous oxide, in the stratosphere. The model is presented in tabular form on seventeen pressure surfaces from 20 to 0.1 mb, in 10 degree latitude bins from 50S to 70N, and for each month of the year. The means by which the data quality and interannual variability, and some of the more interesting globally and seasonally variable features of the data are discussed briefly.

  1. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock

    SciTech Connect

    Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; Yazdanian, M.; Huang, J.; Crawley, D.

    2011-02-01

    The U.S. Department of Energy (DOE) Building Technologies Program has set the aggressive goal of producing marketable net-zero energy buildings by 2025. This goal will require collaboration between the DOE laboratories and the building industry. We developed standard or reference energy models for the most common commercial buildings to serve as starting points for energy efficiency research. These models represent fairly realistic buildings and typical construction practices. Fifteen commercial building types and one multifamily residential building were determined by consensus between DOE, the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory, and represent approximately two-thirds of the commercial building stock.

  2. An image-based skeletal tissue model for the ICRP reference newborn

    NASA Astrophysics Data System (ADS)

    Pafundi, Deanna; Lee, Choonsik; Watchman, Christopher; Bourke, Vincent; Aris, John; Shagina, Natalia; Harrison, John; Fell, Tim; Bolch, Wesley

    2009-07-01

    Hybrid phantoms represent a third generation of computational models of human anatomy needed for dose assessment in both external and internal radiation exposures. Recently, we presented the first whole-body hybrid phantom of the ICRP reference newborn with a skeleton constructed from both non-uniform rational B-spline and polygon-mesh surfaces (Lee et al 2007 Phys. Med. Biol. 52 3309-33). The skeleton in that model included regions of cartilage and fibrous connective tissue, with the remainder given as a homogenous mixture of cortical and trabecular bone, active marrow and miscellaneous skeletal tissues. In the present study, we present a comprehensive skeletal tissue model of the ICRP reference newborn to permit a heterogeneous representation of the skeleton in that hybrid phantom set—both male and female—that explicitly includes a delineation of cortical bone so that marrow shielding effects are correctly modeled for low-energy photons incident upon the newborn skeleton. Data sources for the tissue model were threefold. First, skeletal site-dependent volumes of homogeneous bone were obtained from whole-cadaver CT image analyses. Second, selected newborn bone specimens were acquired at autopsy and subjected to micro-CT image analysis to derive model parameters of the marrow cavity and bone trabecular 3D microarchitecture. Third, data given in ICRP Publications 70 and 89 were selected to match reference values on total skeletal tissue mass. Active marrow distributions were found to be in reasonable agreement with those given previously by the ICRP. However, significant differences were seen in total skeletal and site-specific masses of trabecular and cortical bone between the current and ICRP newborn skeletal tissue models. The latter utilizes an age-independent ratio of 80%/20% cortical and trabecular bone for the reference newborn. In the current study, a ratio closer to 40%/60% is used based upon newborn CT and micro-CT skeletal image analyses. These

  3. Glass-based 1-D dielectric microcavities

    NASA Astrophysics Data System (ADS)

    Chiasera, Alessandro; Scotognella, Francesco; Valligatla, Sreeramulu; Varas, Stefano; Jasieniak, Jacek; Criante, Luigino; Lukowiak, Anna; Ristic, Davor; Gonçalves, Rogeria Rocha; Taccheo, Stefano; Ivanda, Mile; Righini, Giancarlo C.; Ramponi, Roberta; Martucci, Alessandro; Ferrari, Maurizio

    2016-11-01

    We have developed a reliable RF sputtering techniques allowing to fabricate glass-based one dimensional microcavities, with high quality factor. This property is strongly related to the modification of the density of states due to the confinement of the gain medium in a photonic band gap structure. In this short review we present some of the more recent results obtained by our team exploiting these 1D microcavities. In particular we present: (1) Er3+ luminescence enhancement of the 4I13/2 → 4I15/2 transition; (2) broad band filters based on disordered 1-D photonic structures; (3) threshold defect-mode lasing action in a hybrid structure.

  4. Production of Referring Expressions for an Unknown Audience: A Computational Model of Communal Common Ground

    PubMed Central

    Kutlak, Roman; van Deemter, Kees; Mellish, Chris

    2016-01-01

    This article presents a computational model of the production of referring expressions under uncertainty over the hearer's knowledge. Although situations where the hearer's knowledge is uncertain have seldom been addressed in the computational literature, they are common in ordinary communication, for example when a writer addresses an unknown audience, or when a speaker addresses a stranger. We propose a computational model composed of three complimentary heuristics based on, respectively, an estimation of the recipient's knowledge, an estimation of the extent to which a property is unexpected, and the question of what is the optimum number of properties in a given situation. The model was tested in an experiment with human readers, in which it was compared against the Incremental Algorithm and human-produced descriptions. The results suggest that the new model outperforms the Incremental Algorithm in terms of the proportion of correctly identified entities and in terms of the perceived quality of the generated descriptions. PMID:27630592

  5. Production of Referring Expressions for an Unknown Audience: A Computational Model of Communal Common Ground.

    PubMed

    Kutlak, Roman; van Deemter, Kees; Mellish, Chris

    2016-01-01

    This article presents a computational model of the production of referring expressions under uncertainty over the hearer's knowledge. Although situations where the hearer's knowledge is uncertain have seldom been addressed in the computational literature, they are common in ordinary communication, for example when a writer addresses an unknown audience, or when a speaker addresses a stranger. We propose a computational model composed of three complimentary heuristics based on, respectively, an estimation of the recipient's knowledge, an estimation of the extent to which a property is unexpected, and the question of what is the optimum number of properties in a given situation. The model was tested in an experiment with human readers, in which it was compared against the Incremental Algorithm and human-produced descriptions. The results suggest that the new model outperforms the Incremental Algorithm in terms of the proportion of correctly identified entities and in terms of the perceived quality of the generated descriptions.

  6. Graphical Technique to Support the Teaching/Learning Process of Software Process Reference Models

    NASA Astrophysics Data System (ADS)

    Espinosa-Curiel, Ismael Edrein; Rodríguez-Jacobo, Josefina; Fernández-Zepeda, José Alberto

    In this paper, we propose a set of diagrams to visualize software process reference models (PRM). The diagrams, called dimods, are the combination of some visual and process modeling techniques such as rich pictures, mind maps, IDEF and RAD diagrams. We show the use of this technique by designing a set of dimods for the Mexican Software Industry Process Model (MoProSoft). Additionally, we perform an evaluation of the usefulness of dimods. The result of the evaluation shows that dimods may be a support tool that facilitates the understanding, memorization, and learning of software PRMs in both, software development organizations and universities. The results also show that dimods may have advantages over the traditional description methods for these types of models.

  7. Centrosome Positioning in 1D Cell Migration

    NASA Astrophysics Data System (ADS)

    Adlerz, Katrina; Aranda-Espinoza, Helim

    During cell migration, the positioning of the centrosome and nucleus define a cell's polarity. For a cell migrating on a two-dimensional substrate the centrosome is positioned in front of the nucleus. Under one-dimensional confinement, however, the centrosome is positioned behind the nucleus in 60% of cells. It is known that the centrosome is positioned by CDC42 and dynein for cells moving on a 2D substrate in a wound-healing assay. It is currently unknown, however, if this is also true for cells moving under 1D confinement, where the centrosome position is often reversed. Therefore, centrosome positioning was studied in cells migrating under 1D confinement, which mimics cells migrating through 3D matrices. 3 to 5 μm fibronectin lines were stamped onto a glass substrate and cells with fluorescently labeled nuclei and centrosomes migrated on the lines. Our results show that when a cell changes directions the centrosome position is maintained. That is, when the centrosome is between the nucleus and the cell's trailing edge and the cell changes direction, the centrosome will be translocated across the nucleus to the back of the cell again. A dynein inhibitor did have an influence on centrosome positioning in 1D migration and change of directions.

  8. Vulnerability of calbindin, calretinin and parvalbumin in a transgenic/knock-in APPswe/PS1dE9 mouse model of Alzheimer disease together with disruption of hippocampal neurogenesis.

    PubMed

    Verdaguer, Ester; Brox, Susana; Petrov, Dmitry; Olloquequi, Jordi; Romero, Rafael; de Lemos, M Luisa; Camins, Antoni; Auladell, Carme

    2015-09-01

    The pathogenesis of Alzheimer disease (AD) is characterized by accumulation of β-amyloid protein in the brain (in both soluble and insoluble forms) and by the presence of intracellular neurofibrillary tangles (NFTs), leading to neurotoxicity. The exact mechanisms whereby Aβ triggers brain alterations are unclear. However, accumulating evidence suggests that a deregulation of Ca(2+) signaling may play a major role in disease progression. Calcium-buffering proteins, including calbindin-D28K (CB), calretinin (CR) and parvalbumin (PV), may offer neuroprotection by maintaining calcium homeostasis. Although marked reductions in these proteins have been observed in the brains of mice and humans with AD, their contribution to AD pathology remains unclear. The aim of the present study was to analyze distribution patterns of CB(+,) CR(+) and PV(+) interneurons in different areas of the hippocampus, a brain region that is severely affected in AD. A transgenic knock-in APPswe/PS1dE9 mouse model of familial AD was used. The data were obtained from the brains of 3- and 12-month-old animals. These ages roughly correspond to an early mature adult (prior to clinical manifestations) and a late middle-age (clinical symptoms readily detectable) phase in human AD patients. Immunostaining revealed increases in CB and PV immunoreactivity (IR) in the hippocampus of 3-month-old transgenic mice, compared to wild-type animals. Possibly, these proteins are upregulated in an attempt to control cellular homeostasis and synaptic plasticity. However, the pattern of CB-IR was reversed in 12-month-old animals, potentially indicating a loss of cellular capacity to respond to pathophysiological processes. In addition, at this age, a noticeable increase in PV-IR was observed, suggesting the presence of hippocampal network hyperactivity in older AD-like mice. Our results indicate that CaBP(+) neuronal subpopulations play a role in adult neurogenesis and in AD pathology, particularly at early disease

  9. Reference tissue modeling with parameter coupling: application to a study of SERT binding in HIV

    NASA Astrophysics Data System (ADS)

    Endres, Christopher J.; Hammoud, Dima A.; Pomper, Martin G.

    2011-04-01

    When applicable, it is generally preferred to evaluate positron emission tomography (PET) studies using a reference tissue-based approach as that avoids the need for invasive arterial blood sampling. However, most reference tissue methods have been shown to have a bias that is dependent on the level of tracer binding, and the variability of parameter estimates may be substantially affected by noise level. In a study of serotonin transporter (SERT) binding in HIV dementia, it was determined that applying parameter coupling to the simplified reference tissue model (SRTM) reduced the variability of parameter estimates and yielded the strongest between-group significant differences in SERT binding. The use of parameter coupling makes the application of SRTM more consistent with conventional blood input models and reduces the total number of fitted parameters, thus should yield more robust parameter estimates. Here, we provide a detailed evaluation of the application of parameter constraint and parameter coupling to [11C]DASB PET studies. Five quantitative methods, including three methods that constrain the reference tissue clearance (kr2) to a common value across regions were applied to the clinical and simulated data to compare measurement of the tracer binding potential (BPND). Compared with standard SRTM, either coupling of kr2 across regions or constraining kr2 to a first-pass estimate improved the sensitivity of SRTM to measuring a significant difference in BPND between patients and controls. Parameter coupling was particularly effective in reducing the variance of parameter estimates, which was less than 50% of the variance obtained with standard SRTM. A linear approach was also improved when constraining kr2 to a first-pass estimate, although the SRTM-based methods yielded stronger significant differences when applied to the clinical study. This work shows that parameter coupling reduces the variance of parameter estimates and may better discriminate between

  10. Formulation of probabilistic models of protein structure in atomic detail using the reference ratio method.

    PubMed

    Valentin, Jan B; Andreetta, Christian; Boomsma, Wouter; Bottaro, Sandro; Ferkinghoff-Borg, Jesper; Frellsen, Jes; Mardia, Kanti V; Tian, Pengfei; Hamelryck, Thomas

    2014-02-01

    We propose a method to formulate probabilistic models of protein structure in atomic detail, for a given amino acid sequence, based on Bayesian principles, while retaining a close link to physics. We start from two previously developed probabilistic models of protein structure on a local length scale, which concern the dihedral angles in main chain and side chains, respectively. Conceptually, this constitutes a probabilistic and continuous alternative to the use of discrete fragment and rotamer libraries. The local model is combined with a nonlocal model that involves a small number of energy terms according to a physical force field, and some information on the overall secondary structure content. In this initial study we focus on the formulation of the joint model and the evaluation of the use of an energy vector as a descriptor of a protein's nonlocal structure; hence, we derive the parameters of the nonlocal model from the native structure without loss of generality. The local and nonlocal models are combined using the reference ratio method, which is a well-justified probabilistic construction. For evaluation, we use the resulting joint models to predict the structure of four proteins. The results indicate that the proposed method and the probabilistic models show considerable promise for probabilistic protein structure prediction and related applications.

  11. Reparametrized E3B (Explicit Three-Body) Water Model Using the TIP4P/2005 Model as a Reference.

    PubMed

    Tainter, Craig J; Shi, Liang; Skinner, James L

    2015-05-12

    In this study, we present the third version of a water model that explicitly includes three-body interactions. The major difference between this version and the previous two is in the two-body water model we use as a reference potential; here we use the TIP4P/2005 model (previous versions used the TIP4P water model). We alter four parameters from our previous version of the model by fitting to the diffusion coefficient of the ambient liquid, the liquid and ice densities, and the melting point. We evaluate the performance of this version by calculating many other microscopic and thermodynamic static and dynamic properties as a function of temperature and near the critical point and comparing to experiment, the TIP4P/2005 model and the previous version of our three-body model.

  12. The NASA/MSFC Global Reference Atmospheric Model: 1999 Version (GRAM-99)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Johnson, D. L.

    1999-01-01

    The latest version of Global Reference Atmospheric Model (GRAM-99) is presented and discussed. GRAM-99 uses either (binary) Global Upper Air Climatic Atlas (GUACA) or (ASCII) Global Gridded Upper Air Statistics (GGUAS) CD-ROM data sets, for 0-27 km altitudes. As with earlier versions, GRAM-99 provides complete geographical and altitude coverage for each month of the year. GRAM-99 uses a specially-developed data set, based on Middle Atmosphere Program (MAP) data, for 20-120 km altitudes, and NASA's 1999 version Marshall Engineering Thermosphere (MET-99) model for heights above 90 km. Fairing techniques assure smooth transition in overlap height ranges (20-27 km and 90-120 km). GRAM-99 includes water vapor and 11 other atmospheric constituents (O3, N2O, CO, CH4, CO2, N2, O2, O, A, He and H). A variable-scale perturbation model provides both large-scale (wave) and small-scale (stochastic) deviations from mean values for thermodynamic variables and horizontal and vertical wind components. The small-scale perturbation model includes improvements in representing intermittency ("patchiness"). A major new feature is an option to substitute Range Reference Atmosphere (RRA) data for conventional GRAM climatology when a trajectory passes sufficiently near any RRA site. A complete user's guide for running the program, plus sample input and output, is provided. An example is provided for how to incorporate GRAM-99 as subroutines in other programs (e.g., trajectory codes).

  13. Reference Manual for the System Advisor Model's Wind Power Performance Model

    SciTech Connect

    Freeman, J.; Jorgenson, J.; Gilman, P.; Ferguson, T.

    2014-08-01

    This manual describes the National Renewable Energy Laboratory's System Advisor Model (SAM) wind power performance model. The model calculates the hourly electrical output of a single wind turbine or of a wind farm. The wind power performance model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs. In SAM, the performance model can be coupled to one of the financial models to calculate economic metrics for residential, commercial, or utility-scale wind projects. This manual describes the algorithms used by the wind power performance model, which is available in the SAM user interface and as part of the SAM Simulation Core (SSC) library, and is intended to supplement the user documentation that comes with the software.

  14. 1-D Numerical Analysis of ABCC Engine Performance

    NASA Technical Reports Server (NTRS)

    Holden, Richard

    1999-01-01

    ABCC engine combines air breathing and rocket engine into a single engine to increase the specific impulse over an entire flight trajectory. Except for the heat source, the basic operation of the ABCC is similar to the basic operation of the RBCC engine. The ABCC is intended to have a higher specific impulse than the RBCC for single stage Earth to orbit vehicle. Computational fluid dynamics (CFD) is a useful tool for the analysis of complex transport processes in various components in ABCC propulsion system. The objective of the present research was to develop a transient 1-D numerical model using conservation of mass, linear momentum, and energy equations that could be used to predict flow behavior throughout a generic ABCC engine following a flight path. At specific points during the development of the 1-D numerical model a myriad of tests were performed to prove the program produced consistent, realistic numbers that follow compressible flow theory for various inlet conditions.

  15. Nonreciprocity of edge modes in 1D magnonic crystal

    NASA Astrophysics Data System (ADS)

    Lisenkov, I.; Kalyabin, D.; Osokin, S.; Klos, J. W.; Krawczyk, M.; Nikitov, S.

    2015-03-01

    Spin waves propagation in 1D magnonic crystals is investigated theoretically. Mathematical model based on plane wave expansion method is applied to different types of magnonic crystals, namely bi-component magnonic crystal with symmetric/asymmetric boundaries and ferromagnetic film with periodically corrugated top surface. It is shown that edge modes in magnonic crystals may exhibit nonreciprocal behaviour at much lower frequencies than in homogeneous films.

  16. Mars Global Reference Atmospheric Model (Mars-GRAM 3.34): Programmer's Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, Bonnie F.; Johnson, Dale L.

    1996-01-01

    This is a programmer's guide for the Mars Global Reference Atmospheric Model (Mars-GRAM 3.34). Included are a brief history and review of the model since its origin in 1988 and a technical discussion of recent additions and modifications. Examples of how to run both the interactive and batch (subroutine) forms are presented. Instructions are provided on how to customize output of the model for various parameters of the Mars atmosphere. Detailed descriptions are given of the main driver programs, subroutines, and associated computational methods. Lists and descriptions include input, output, and local variables in the programs. These descriptions give a summary of program steps and 'map' of calling relationships among the subroutines. Definitions are provided for the variables passed between subroutines through common lists. Explanations are provided for all diagnostic and progress messages generated during execution of the program. A brief outline of future plans for Mars-GRAM is also presented.

  17. The development of risk assessment models for carpal tunnel syndrome: a case-referent study.

    PubMed

    You, Heecheon; Simmons, Zachary; Freivalds, Andris; Kothari, Milind; Naidu, Sanjiv; Young, Ronda

    2004-05-15

    The present study developed risk assessment models for carpal tunnel syndrome (CTS) which can provide information of the likelihood of developing CTS for an individual having certain personal characteristics and occupational risks. A case-referent study was conducted consisting of two case groups and one referent group: (1) 22 work-related CTS patients (W-CTS), (2) 25 non-work related CTS patients (NW-CTS), and (3) 50 healthy workers (HEALTHY) having had no CTS history. The classification of CTS patients into one of the case groups was determined according to the type of insurance covering their medical costs. Personal characteristics, psychosocial stresses at work, and physical work conditions were surveyed by using a questionnaire tailor-designed to CTS (reliability of each scale > or = 0.7). By contrasting the risk information of each case group to that of the referent group, three logistic regression models were developed: W-CTS/HEALTHY, NW-CTS/HEALTHY, and C-CTS/HEALTHY (C-CTS, the combined group of W-CTS and NW-CTS). ROC analysis indicated that the models have satisfactory discriminability (d' = 1.91 to 2.51) and high classification accuracy (overall accuracy = 83-89%). Both W-CTS/HEALTHY and C-CTS/HEALTHY include personal and physical factors, while NW-CTS/HEALTHY involves only personal factors. This suggests that the injury causation of NW-CTS patients should be attributable mainly to their 'high' personal susceptibility to the disorder rather than exposure to adverse work conditions, while that of W-CTS patients be attributable to improper work conditions and CTS-prone personal characteristics in combination.

  18. Can Species Distribution Models Aid Bioassessment when Reference Sites are Lacking? Tests Based on Freshwater Fishes

    NASA Astrophysics Data System (ADS)

    Labay, Ben J.; Hendrickson, Dean A.; Cohen, Adam E.; Bonner, Timothy H.; King, Ryan S.; Kleinsasser, Leroy J.; Linam, Gordon W.; Winemiller, Kirk O.

    2015-10-01

    Recent literature reviews of bioassessment methods raise questions about use of least-impacted reference sites to characterize natural conditions that no longer exist within contemporary landscapes. We explore an alternate approach for bioassessment that uses species site occupancy data from museum archives as input for species distribution models (SDMs) stacked to predict species assemblages of freshwater fishes in Texas. When data for estimating reference conditions are lacking, deviation between richness of contemporary versus modeled species assemblages could provide a means to infer relative biological integrity at appropriate spatial scales. We constructed SDMs for 100 freshwater fish species to compare predicted species assemblages to data on contemporary assemblages acquired by four independent surveys that sampled 269 sites. We then compared site-specific observed/predicted ratios of the number of species at sites to scores from a multimetric index of biotic integrity (IBI). Predicted numbers of species were moderately to strongly correlated with the numbers observed by the four surveys. We found significant, though weak, relationships between observed/predicted ratios and IBI scores. SDM-based assessments identified patterns of local assemblage change that were congruent with IBI inferences; however, modeling artifacts that likely contributed to over-prediction of species presence may restrict the stand-alone use of SDM-derived patterns for bioassessment and therefore warrant examination. Our results suggest that when extensive standardized survey data that include reference sites are lacking, as is commonly the case, SDMs derived from generally much more readily available species site occupancy data could be used to provide a complementary tool for bioassessment.

  19. Estimating stature in fossil hominids: which regression model and reference sample to use?

    PubMed

    Hens, S M; Konigsberg, L W; Jungers, W L

    2000-06-01

    coResearchers have long appreciated the significant relationship between body size and an animal's overall adaptive strategy and life history. However, much more emphasis has been placed on interpreting body size than on the actual calculation of it. One measure of size that is especially important for human evolutionary studies is stature. Despite a long history of investigation, stature estimation remains plagued by two methodological problems: (1) the choice of the statistical estimator, and (2) the choice of the reference population from which to derive the parameters. This work addresses both of these problems in estimating stature for fossil hominids, with special reference to A.L. 288-1 (Australopithecus afarensis) and WT 15000 (Homo erectus). Three reference samples of known stature with maximum humerus and femur lengths are used in this study: a large (n=2209) human sample from North America, a smaller sample of modern human pygmies (n=19) from Africa, and a sample of wild-collected African great apes (n=85). Five regression techniques are used to estimate stature in the fossil hominids using both univariate and multivariate parameters derived from the reference samples: classical calibration, inverse calibration, major axis, reduced major axis and the zero-intercept ratio model. We also explore a new diagnostic to test extrapolation and allometric differences with multivariate data, and we calculate 95% confidence intervals to examine the range of variation in estimates for A.L. 288-1, WT 15000 and the new Bouri hominid (contemporary with [corrected] Australopithecus garhi). Results frequently vary depending on whether the data are univariate or multivariate. Unique limb proportions and fragmented remains complicate the choice of estimator. We are usually left in the end with the classical calibrator as the best choice. It is the maximum likelihood estimator that performs best overall, especially in scenarios where extrapolation occurs away from the mean

  20. Fuzzy virtual reference model sensorless tracking control for linear induction motors.

    PubMed

    Hung, Cheng-Yao; Liu, Peter; Lian, Kuang-Yow

    2013-06-01

    This paper introduces a fuzzy virtual reference model (FVRM) synthesis method for linear induction motor (LIM) speed sensorless tracking control. First, we represent the LIM as a Takagi-Sugeno fuzzy model. Second, we estimate the immeasurable mover speed and secondary flux by a fuzzy observer. Third, to convert the speed tracking control into a stabilization problem, we define the internal desired states for state tracking via an FVRM. Finally, by solving a set of linear matrix inequalities (LMIs), we obtain the observer gains and the control gains where exponential convergence is guaranteed. The contributions of the approach in this paper are threefold: 1) simplified approach--speed tracking problem converted into stabilization problem; 2) omit need of actual reference model--FVRM generates internal desired states; and 3) unification of controller and observer design--control objectives are formulated into an LMI problem where powerful numerical toolboxes solve controller and observer gains. Finally, experiments are carried out to verify the theoretical results and show satisfactory performance both in transient response and robustness.

  1. Tracking of multiple targets using online learning for reference model adaptation.

    PubMed

    Pernkopf, Franz

    2008-12-01

    Recently, much work has been done in multiple object tracking on the one hand and on reference model adaptation for a single-object tracker on the other side. In this paper, we do both tracking of multiple objects (faces of people) in a meeting scenario and online learning to incrementally update the models of the tracked objects to account for appearance changes during tracking. Additionally, we automatically initialize and terminate tracking of individual objects based on low-level features, i.e., face color, face size, and object movement. Many methods unlike our approach assume that the target region has been initialized by hand in the first frame. For tracking, a particle filter is incorporated to propagate sample distributions over time. We discuss the close relationship between our implemented tracker based on particle filters and genetic algorithms. Numerous experiments on meeting data demonstrate the capabilities of our tracking approach. Additionally, we provide an empirical verification of the reference model learning during tracking of indoor and outdoor scenes which supports a more robust tracking. Therefore, we report the average of the standard deviation of the trajectories over numerous tracking runs depending on the learning rate.

  2. Performance Optimizing Multi-Objective Adaptive Control with Time-Varying Model Reference Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan

    2017-01-01

    This paper presents a new adaptive control approach that involves a performance optimization objective. The problem is cast as a multi-objective optimal control. The control synthesis involves the design of a performance optimizing controller from a subset of control inputs. The effect of the performance optimizing controller is to introduce an uncertainty into the system that can degrade tracking of the reference model. An adaptive controller from the remaining control inputs is designed to reduce the effect of the uncertainty while maintaining a notion of performance optimization in the adaptive control system.

  3. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    SciTech Connect

    Yu, Y. H.; Lawson, M.; Li, Y.; Previsic, M.; Epler, J.; Lou, J.

    2015-01-01

    The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

  4. Maysin and Its Flavonoid Derivative from Centipedegrass Attenuates Amyloid Plaques by Inducting Humoral Immune Response with Th2 Skewed Cytokine Response in the Tg (APPswe, PS1dE9) Alzheimer’s Mouse Model

    PubMed Central

    Hong, Il-Hwa; Won, Chung-Kil; Bai, Hyoung-Woo; Lee, Seung Sik; Lee, SungBeom; Chung, Byung Yeoup; Cho, Jae-Hyeon

    2017-01-01

    Alzheimer’s disease (AD) is a slow, progressive neurodegenerative disease and the most common type of dementia in the elderly. The etiology of AD and its underlying mechanism are still not clear. In a previous study, we found that an ethyl acetate extract of Centipedegrass (CG) (i.e., EA-CG) contained 4 types of Maysin derivatives, including Luteolin, Isoorientin, Rhamnosylisoorientin, and Derhamnosylmaysin, and showed protective effects against Amyloid beta (Aβ) by inhibiting oligomeric Aβ in cellular and in vitro models. Here, we examined the preventative effects of EA-CG treatment on the Aβ burden in the Tg (Mo/Hu APPswe PS1dE9) AD mouse model. We have investigated the EA-CG efficacy as novel anti-AD likely preventing amyloid plaques using immunofluorescence staining to visually analyze Aβ40/42 and fibril formation with Thioflavin-S or 6E10 which are the profile of immunoreactivity against epitope Aβ1–16 or neuritic plaque, the quantitation of humoral immune response against Aβ, and the inflammatory cytokine responses (Th1 and Th2) using ELISA and QRT-PCR. To minimize the toxicity of the extracted CG, we addressed the liver toxicity in response to the CG extract treatment in Tg mice using relevant markers, such as aspartate aminotransferase (AST)/ alanine aminotransferase (ALT) measurements in serum. The EA-CG extract significantly reduced the Aβ burden, the concentration of soluble Aβ40/42 protein, and fibril formation in the hippocampus and cortex of the Tg mice treated with EA-CG (50 mg/kg BW/day) for 6 months compared with the Tg mice treated with a normal diet. Additionally, the profile of anti-inflammatory cytokines revealed that the levels of Th2 (interleukin-4 (IL-4) and interleukin-10 (IL-10)) cytokines are more significantly increased than Th1 (interferon-γ (IFN-γ), interleukin-2(IL-2)) in the sera. These results suggest that the EA-CG fraction induces IL-4/IL-10-dependent anti-inflammatory cytokines (Th2) rather than pro

  5. Jobs and Economic Development Impact (JEDI) User Reference Guide: Fast Pyrolysis Biorefinery Model

    SciTech Connect

    Zhang, Yimin; Goldberg, Marshall

    2015-02-01

    This guide -- the JEDI Fast Pyrolysis Biorefinery Model User Reference Guide -- was developed to assist users in operating and understanding the JEDI Fast Pyrolysis Biorefinery Model. The guide provides information on the model's underlying methodology, as well as the parameters and data sources used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the JEDI Fast Pyrolysis Biorefinery Model estimates local (e.g., county- or state-level) job creation, earnings, and output from total economic activity for a given fast pyrolysis biorefinery. These estimates include the direct, indirect and induced economic impacts to the local economy associated with the construction and operation phases of biorefinery projects.Local revenue and supply chain impacts as well as induced impacts are estimated using economic multipliers derived from the IMPLAN software program. By determining the local economic impacts and job creation for a proposed biorefinery, the JEDI Fast Pyrolysis Biorefinery Model can be used to field questions about the added value biorefineries might bring to a local community.

  6. A complete reference of the analytical synchrotron external shock models of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Gao, He; Lei, Wei-Hua; Zou, Yuan-Chuan; Wu, Xue-Feng; Zhang, Bing

    2013-12-01

    Gamma-ray bursts are most luminous explosions in the universe. Their ejecta are believed to move towards Earth with a relativistic speed. The interaction between this "relativistic jet" and a circumburst medium drives a pair of (forward and reverse) shocks. The electrons accelerated in these shocks radiate synchrotron emission to power the broad-band afterglow of GRBs. The external shock theory is an elegant theory, since it invokes a limit number of model parameters, and has well predicted spectral and temporal properties. On the other hand, depending on many factors (e.g. the energy content, ambient density profile, collimation of the ejecta, forward vs. reverse shock dynamics, and synchrotron spectral regimes), there is a wide variety of the models. These models have distinct predictions on the afterglow decaying indices, the spectral indices, and the relations between them (the so-called "closure relations"), which have been widely used to interpret the rich multi-wavelength afterglow observations. This review article provides a complete reference of all the analytical synchrotron external shock afterglow models by deriving the temporal and spectral indices of all the models in all spectral regimes, including some regimes that have not been published before. The review article is designated to serve as a useful tool for afterglow observers to quickly identify relevant models to interpret their data. The limitations of the analytical models are reviewed, with a list of situations summarized when numerical treatments are needed.

  7. ISO reference terminology models for nursing: applicability for natural language processing of nursing narratives.

    PubMed

    Bakken, Suzanne; Hyun, Sookyung; Friedman, Carol; Johnson, Stephen B

    2005-08-01

    Natural language processing (NLP) systems have demonstrated utility in parsing narrative texts for purposes such as surveillance and decision support. However, there has been little work related to NLP of nursing narratives. The purpose of this study was to compare the semantic categories of a NLP system (Medical Language Extraction and Encoding [MedLEE] system) with the semantic domains, categories, and attributes of the International Standards Organization (ISO) reference terminology models for nursing diagnoses and nursing actions. All but two MedLEE diagnosis and procedure-related semantic categories mapped to ISO models. In some instances, we found exact correspondence between the semantic structures of MedLEE and the ISO models. In other situations (e.g. aspects of Site or Location), the ISO model was not as granular as MedLEE. For clinical procedure and non-invasive examination, two ISO nursing action model components (Action and Target) mapped to a single MedLEE semantic category. The ISO models are applicable to NLP of nursing narratives. However, the ISO models require additional specification of selected semantic categories for the abstract semantic domains in order to achieve the objective of using NLP to parse and encode data from nursing narratives. Our analysis also suggests areas for extension of MedLEE particularly in regard to represent nursing actions.

  8. Utilizing Mars Global Reference Atmospheric Model (Mars-GRAM 2005) to Evaluate Entry Probe Mission Sites

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, Carl G.

    2008-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering-level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. The "auxiliary profile" option is one new feature of Mars-GRAM 2005. This option uses an input file of temperature and density versus altitude to replace the mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. Any source of data or alternate model output can be used to generate an auxiliary profile. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5) model) and a global Thermal Emission Spectrometer (TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components, averaged over 5-by-5 degree latitude-longitude bins and 15 degree Ls bins, for each of three Mars years of TES nadir data. The Mars Science Laboratory (MSL) sites are used as a sample of how Mars-GRAM' could be a valuable tool for planning of future Mars entry probe missions. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate MSL landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.

  9. U.S. Department of Energy Reference Model Program RM2: Experimental Results

    SciTech Connect

    Hill, Craig; Neary, Vincent Sinclair; Gunawan, Budi; Guala, Michele; Sotiropoulos, Fotis

    2014-08-01

    The Reference Model Project (RMP), sponsored by the U.S. Department of Energy’s (DOE) Wind and Water Power Technologies Program within the Office of Energy Efficiency & Renewable Energy (EERE), aims at expediting industry growth and efficiency by providing non-proprietary Reference Models (RM) of MHK technology designs as study objects for open-source research and development (Neary et al. 2014a,b). As part of this program, MHK turbine models were tested in a large open channel facility at the University of Minnesota’s St. Anthony Falls Laboratory (UMN - SAFL) . Reference Model 2 (RM2) is a 1:15 geometric scale dual - rotor cross flow vertical axis device with counter - rotating rotors, each with a rotor diameter dT = 0.43m and rotor height, hT = 0.323 m. RM2 is a river turbine designed for a site modeled after a reach in the lower Mississippi River near Baton Rouge, Louisiana (Barone et al. 2014) . Precise blade angular position and torque measurements were synchronized with three acoustic Doppler velocimeters (ADV) aligned with each rotor and the midpoint for RM2 . Flow conditions for each case were controlled such that depth, h = 1m, and volumetric flow rate, Qw = 2. 35m3s-1 , resulting in a hub height velocity of approximately Uhub = 1. 2 ms-1 and blade chord length Reynolds numbers of Rec = 6 .1x104. Vertical velocity profiles collected in the wake of each device from 1 to 10 rotor diameters are used to estimate the velocity recovery and turbulent characteristics in the wake, as well as the interaction of the counter-rotating rotor wakes. The development of this high resolution laboratory investigation provides a robust dataset that enables assessing computational fluid dynamics (CFD) models and their ability to accurately simulate turbulent inflow environments, device performance metrics, and to reproduce wake velocity deficit, recovery and higher order

  10. Mars Global Reference Atmospheric Model 2000 Version (Mars-GRAM 2000): Users Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, B. F.

    2000-01-01

    This report presents Mars Global Reference Atmospheric Model 2000 Version (Mars-GRAM 2000) and its new features. All parameterizations for temperature, pressure, density, and winds versus height, latitude, longitude, time of day, and L(sub s) have been replaced by input data tables from NASA Ames Mars General Circulation Model (MGCM) for the surface through 80-km altitude and the University of Arizona Mars Thermospheric General Circulation Model (MTGCM) for 80 to 170 km. A modified Stewart thermospheric model is still used for higher altitudes and for dependence on solar activity. "Climate factors" to tune for agreement with GCM data are no longer needed. Adjustment of exospheric temperature is still an option. Consistent with observations from Mars Global Surveyor, a new longitude-dependent wave model is included with user input to specify waves having 1 to 3 wavelengths around the planet. A simplified perturbation model has been substituted for the earlier one. An input switch allows users to select either East or West longitude positive. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and for running the program. It also provides sample input and output and an example for incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code.

  11. MIRI: Using MAVEN Observation to Validate Approaches to a Mars Reference Ionosphere Model

    NASA Astrophysics Data System (ADS)

    Mendillo, Michael; Narvaez, Clara; Benna, Mehdi; Morgan, David D.; Nemec, Frantisek; Andersson, Laila; Vogt, Marissa; Mayyasi, Majd

    2016-07-01

    A semi-empirical model for the maximum electron density (N _{max}) of the martian ionosphere was developed at Boston University (BU) under the tentative title Mars Initial Reference Ionosphere (MIRI-Mark-1). A MIRI-Mark-2 was then created for full electron density profiles, N _{e}(h), by using profile shapes from the BU theoretical model (Matta et al., 2013) that were calibrated using N _{max} from MIRI-mark-1. The results were tested using in-situ total ion density observations made by the NGIMS instrument on the MAVEN satellite in April 2015 (Mendillo et al., 2015). The shapes of the observed and predicted profiles were similar in altitude regions dominated by photo-chemistry and vertical plasma diffusion (h < ˜170 km), but differed significantly at higher altitudes (h > ˜240 km) where horizontal transport can be important. In this paper, we compare the use of the theoretical model for topside ionospheric morphology with the purely empirical modeling approach for h > h _{max} developed by Němec et al. (2011). In addition, we use MAVEN's Langmuir Probe observations of electron density for the same April 2015 period. Our preliminary findings are that the empirical model captures the effects of both horizontal and vertical plasma dynamics upon the topside profiles, in contrast to the theoretical model that included only vertical plasma dynamics.

  12. A 1-D dusty plasma photonic crystal

    SciTech Connect

    Mitu, M. L.; Ticoş, C. M.; Toader, D.; Banu, N.; Scurtu, A.

    2013-09-21

    It is demonstrated numerically that a 1-D plasma crystal made of micron size cylindrical dust particles can, in principle, work as a photonic crystal for terahertz waves. The dust rods are parallel to each other and arranged in a linear string forming a periodic structure of dielectric-plasma regions. The dispersion equation is found by solving the waves equation with the boundary conditions at the dust-plasma interface and taking into account the dielectric permittivity of the dust material and plasma. The wavelength of the electromagnetic waves is in the range of a few hundred microns, close to the interparticle separation distance. The band gaps of the 1-D plasma crystal are numerically found for different types of dust materials, separation distances between the dust rods and rod diameters. The distance between levitated dust rods forming a string in rf plasma is shown experimentally to vary over a relatively wide range, from 650 μm to about 1350 μm, depending on the rf power fed into the discharge.

  13. 230Th-234U Model-Ages of Some Uranium Standard Reference Materials

    SciTech Connect

    Williams, R W; Gaffney, A M; Kristo, M J; Hutcheon, I D

    2009-05-28

    The 'age' of a sample of uranium is an important aspect of a nuclear forensic investigation and of the attribution of the material to its source. To the extent that the sample obeys the standard rules of radiochronometry, then the production ages of even very recent material can be determined using the {sup 230}Th-{sup 234}U chronometer. These standard rules may be summarized as (a) the daughter/parent ratio at time=zero must be known, and (b) there has been no daughter/parent fractionation since production. For most samples of uranium, the 'ages' determined using this chronometer are semantically 'model-ages' because (a) some assumption of the initial {sup 230}Th content in the sample is required and (b) closed-system behavior is assumed. The uranium standard reference materials originally prepared and distributed by the former US National Bureau of Standards and now distributed by New Brunswick Laboratory as certified reference materials (NBS SRM = NBL CRM) are good candidates for samples where both rules are met. The U isotopic standards have known purification and production dates, and closed-system behavior in the solid form (U{sub 3}O{sub 8}) may be assumed with confidence. We present here {sup 230}Th-{sup 234}U model-ages for several of these standards, determined by isotope dilution mass spectrometry using a multicollector ICP-MS, and compare these ages with their known production history.

  14. An interim reference model for the variability of the middle atmosphere water vapor distribution

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.; Russell, J. M., III; Wu, C.-Y.

    1990-01-01

    A reference model for the middle atmosphere water vapor distribution for some latitudes and seasons was developed using two data sets. One is the seven months of Nimbus LIMS data obtained during November 1978 to May 1979 over the range 64 deg S - 84 deg N latitude and from about 100-mb to 1-mb altitude, and the other is represented by water vapor profiles from 0.2 mb to 0.01 mb in the mid-mesosphere, measured on ground at several fixed mid-latitude sites in the Northern Hemisphere, using microwave-emission techniques. This model provides an interim water vapor profile for the entire vertical range of the middle atmosphere, with accuracies of better than 25 percent. The daily variability of stratospheric water vapor profiles about the monthly mean is demonstrated, and information is provided on the longitudinal variability of LIMS water vapor profiles about the daily, weekly, and monthly zonal means.

  15. An interim reference model for the variability of the middle atmosphere water vapor distribution

    NASA Astrophysics Data System (ADS)

    Remsberg, E. E.; Russell, J. M., III; Wu, C.-Y.

    A reference model for the middle atmosphere water vapor distribution for some latitudes and seasons was developed using two data sets. One is the seven months of Nimbus LIMS data obtained during November 1978 to May 1979 over the range 64 deg S - 84 deg N latitude and from about 100-mb to 1-mb altitude, and the other is represented by water vapor profiles from 0.2 mb to 0.01 mb in the mid-mesosphere, measured on ground at several fixed mid-latitude sites in the Northern Hemisphere, using microwave-emission techniques. This model provides an interim water vapor profile for the entire vertical range of the middle atmosphere, with accuracies of better than 25 percent. The daily variability of stratospheric water vapor profiles about the monthly mean is demonstrated, and information is provided on the longitudinal variability of LIMS water vapor profiles about the daily, weekly, and monthly zonal means.

  16. Solid Waste Projection Model: Database (Version 1.4). Technical reference manual

    SciTech Connect

    Blackburn, C.; Cillan, T.

    1993-09-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.4 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement. Those interested in using the SWPM database should refer to the SWPM Database User`s Guide. This document is available from the PNL Task M Project Manager (D. L. Stiles, 509-372-4358), the PNL Task L Project Manager (L. L. Armacost, 509-372-4304), the WHC Restoration Projects Section Manager (509-372-1443), or the WHC Waste Characterization Manager (509-372-1193).

  17. Order-Constrained Reference Priors with Implications for Bayesian Isotonic Regression, Analysis of Covariance and Spatial Models

    NASA Astrophysics Data System (ADS)

    Gong, Maozhen

    Selecting an appropriate prior distribution is a fundamental issue in Bayesian Statistics. In this dissertation, under the framework provided by Berger and Bernardo, I derive the reference priors for several models which include: Analysis of Variance (ANOVA)/Analysis of Covariance (ANCOVA) models with a categorical variable under common ordering constraints, the conditionally autoregressive (CAR) models and the simultaneous autoregressive (SAR) models with a spatial autoregression parameter rho considered. The performances of reference priors for ANOVA/ANCOVA models are evaluated by simulation studies with comparisons to Jeffreys' prior and Least Squares Estimation (LSE). The priors are then illustrated in a Bayesian model of the "Risk of Type 2 Diabetes in New Mexico" data, where the relationship between the type 2 diabetes risk (through Hemoglobin A1c) and different smoking levels is investigated. In both simulation studies and real data set modeling, the reference priors that incorporate internal order information show good performances and can be used as default priors. The reference priors for the CAR and SAR models are also illustrated in the "1999 SAT State Average Verbal Scores" data with a comparison to a Uniform prior distribution. Due to the complexity of the reference priors for both CAR and SAR models, only a portion (12 states in the Midwest) of the original data set is considered. The reference priors can give a different marginal posterior distribution compared to a Uniform prior, which provides an alternative for prior specifications for areal data in Spatial statistics.

  18. The Reciprocal Internal/External Frame of Reference Model: An Integration of Models of Relations between Academic Achievement and Self-Concept

    ERIC Educational Resources Information Center

    Moller, Jens; Retelsdorf, Jan; Koller, Olaf; Marsh, Herb W.

    2011-01-01

    The reciprocal internal/external frame of reference model (RI/EM) combines the internal/external frame of reference model and the reciprocal effects model. The RI/EM predicts positive effects of mathematics and verbal achievement and academic self-concepts (ASC) on subsequent mathematics and verbal achievements and ASCs within domains and negative…

  19. The Exploration of Models Regarding E-Learning Readiness: Reference Model Suggestions

    ERIC Educational Resources Information Center

    Demir, Ömer; Yurdugül, Halil

    2015-01-01

    Many studies have been conducted about readiness for e-learning, yet it is quite hard to decide which work of research from the literature to use in a specific context. Therefore, the aim of this study is to identify of which components models consist and for which stakeholders they were developed by investigating the most comprehensive and…

  20. The Internal/External Frame of Reference Model Revisited: Incorporating General Cognitive Ability and General Academic Self-Concept

    ERIC Educational Resources Information Center

    Brunner, Martin; Ludtke, Oliver; Trautwein, Ulrich

    2008-01-01

    The internal/external frame of reference model (I/E model; Marsh, 1986) is a highly influential model of self-concept formation, which predicts that domain-specific abilities have positive effects on academic self-concepts in the corresponding domain and negative effects across domains. Investigations of the I/E model do not typically incorporate…

  1. Latent class models in diagnostic studies when there is no reference standard--a systematic review.

    PubMed

    van Smeden, Maarten; Naaktgeboren, Christiana A; Reitsma, Johannes B; Moons, Karel G M; de Groot, Joris A H

    2014-02-15

    Latent class models (LCMs) combine the results of multiple diagnostic tests through a statistical model to obtain estimates of disease prevalence and diagnostic test accuracy in situations where there is no single, accurate reference standard. We performed a systematic review of the methodology and reporting of LCMs in diagnostic accuracy studies. This review shows that the use of LCMs in such studies increased sharply in the past decade, notably in the domain of infectious diseases (overall contribution: 59%). The 64 reviewed studies used a range of differently specified parametric latent variable models, applying Bayesian and frequentist methods. The critical assumption underlying the majority of LCM applications (61%) is that the test observations must be independent within 2 classes. Because violations of this assumption can lead to biased estimates of accuracy and prevalence, performing and reporting checks of whether assumptions are met is essential. Unfortunately, our review shows that 28% of the included studies failed to report any information that enables verification of model assumptions or performance. Because of the lack of information on model fit and adequate evidence "external" to the LCMs, it is often difficult for readers to judge the validity of LCM-based inferences and conclusions reached.

  2. Active and passive immunization strategies based on the SDPM1 peptide demonstrate pre-clinical efficacy in the APPswePSEN1dE9 mouse model for Alzheimer's disease.

    PubMed

    Camboni, Marybeth; Wang, Chiou-Miin; Miranda, Carlos; Yoon, Jung Hae; Xu, Rui; Zygmunt, Deborah; Kaspar, Brian K; Martin, Paul T

    2014-02-01

    Recent clinical and pre-clinical studies suggest that both active and passive immunization strategies targeting Aβ amyloid may have clinical benefit in Alzheimer's disease. Here, we demonstrate that vaccination of APPswePSEN1dE9 mice with SDPM1, an engineered non-native Aβ amyloid-specific binding peptide, lowers brain Aβ amyloid plaque burden and brain Aβ1-40 and Aβ1-42 peptide levels, improves cognitive learning and memory in Morris water maze tests and increases the expression of synaptic brain proteins. This was the case in young mice immunized prior to development of significant brain amyloid burden, and in older mice, where brain amyloid was already present. Active immunization was optimized using ALUM as an adjuvant to stimulate production of anti-SDPM1 and anti-Aβ amyloid antibodies. Intracerebral injection of P4D6, an SDPM1 peptide-mimotope antibody, also lowered brain amyloid plaque burden in APPswePSEN1dE9 mice. Additionally, P4D6 inhibited Aβ amyloid-mediated toxicity in cultured neuronal cells. The protein sequence of the variable domain within the P4D6 heavy chain was found to mimic a multimer of the SDPM1 peptide motif. These data demonstrate the efficacy of active and passive vaccine strategies to target Aβ amyloid oligomers using an engineered peptide-mimotope strategy.

  3. Crystal Structures of Mouse CD1d-IGb3 Complex And Its Cognate Valpha14 T Cell Receptor Suggest a Model for Dual Recognition of Foreign And Self Glycolipids

    SciTech Connect

    Zajonc, D.M.; Saveage, P.B.; Bendelac, A.; Wilson, I.A.; Teyton, L.

    2009-05-28

    The semi-invariant Valpha14Jalpha18 T cell receptor (TCR) is expressed by regulatory NKT cells and has the unique ability to recognize chemically diverse ligands presented by CD1d. The crystal structure of CD1d complexed to a natural, endogenous ligand, isoglobotrihexosylceramide (iGb3), illustrates the extent of this diversity when compared to the binding of potent, exogenous ligands, such as alpha-galactosylceramide (alpha-GalCer). A single mode of recognition for these two classes of ligands would then appear problematic for a single T cell receptor. However, the Valpha14 TCR adopts two different conformations in the crystal where, in one configuration, the presence of a larger cavity between the two CDR3 regions could accommodate iGb3 and, in the other, a smaller cavity fits alpha-GalCer more snugly. Alternatively, the extended iGb3 headgroup could be 'squashed' upon docking of the TCR and accommodated between the CD1 and TCR surfaces. Thus, the same TCR may adopt alternative modes of recognition for these foreign and self-ligands for NKT cell activation.

  4. An investigation on generalization ability of artificial neural networks and M5 model tree in modeling reference evapotranspiration

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Kilic, Yasin

    2016-11-01

    The generalization ability of artificial neural networks (ANNs) and M5 model tree (M5Tree) in modeling reference evapotranspiration ( ET 0 ) is investigated in this study. Daily climatic data, average temperature, solar radiation, wind speed, and relative humidity from six different stations operated by California Irrigation Management Information System (CIMIS) located in two different regions of the USA were used in the applications. King-City Oasis Rd., Arroyo Seco, and Salinas North stations are located in San Joaquin region, and San Luis Obispo, Santa Monica, and Santa Barbara stations are located in the Southern region. In the first part of the study, the ANN and M5Tree models were used for estimating ET 0 of six stations and results were compared with the empirical methods. The ANN and M5Tree models were found to be better than the empirical models. In the second part of the study, the ANN and M5Tree models obtained from one station were tested using the data from the other two stations for each region. ANN models performed better than the CIMIS Penman, Hargreaves, Ritchie, and Turc models in two stations while the M5Tree models generally showed better accuracy than the corresponding empirical models in all stations. In the third part of the study, the ANN and M5Tree models were calibrated using three stations located in San Joaquin region and tested using the data from the other three stations located in the Southern region. Four-input ANN and M5Tree models performed better than the CIMIS Penman in only one station while the two-input ANN models were found to be better than the Hargreaves, Ritchie, and Turc models in two stations.

  5. Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities

    PubMed Central

    Brudvig, Lars A.; Orrock, John L.; Damschen, Ellen I.; Collins, Cathy D.; Hahn, Philip G.; Mattingly, W. Brett; Veldman, Joseph W.; Walker, Joan L.

    2014-01-01

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils (which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility of

  6. Land-use history and contemporary management inform an ecological reference model for longleaf pine woodland understory plant communities.

    PubMed

    Brudvig, Lars A; Orrock, John L; Damschen, Ellen I; Collins, Cathy D; Hahn, Philip G; Mattingly, W Brett; Veldman, Joseph W; Walker, Joan L

    2014-01-01

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils (which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients-i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility of

  7. Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities.

    SciTech Connect

    Brudvig, Lars A.; Orrock, John L.; Damschen, Ellen I.; et al, et al

    2014-01-23

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils lol(which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together. and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility

  8. A dynamical population modeling of invasive species with reference to the crayfish Procambarus clarkii.

    PubMed

    Martelloni, Gianluca; Bagnoli, Franco; Libelli, Stefano Marsili

    2012-01-01

    In this paper we present a discrete dynamical population modeling of invasive species, with reference to the swamp crayfish Procambarus clarkii. Since this species can cause environmental damage of various kinds, it is necessary to evaluate its expected in not yet infested areas. A structured discrete model is built, taking into account all biological information we were able to find, including the environmental variability implemented by means of stochastic parameters (coefficients of fertility, death, etc.). This model is based on a structure with 7 age classes, i.e. a Leslie mathematical population modeling type and it is calibrated with laboratory data provided by the Department of Evolutionary Biology (DEB) of Florence (Italy). The model presents many interesting aspects: the population has a high initial growth, then it stabilizes similarly to the logistic growth, but then it exhibits oscillations (a kind of limit-cycle attractor in the phase plane). The sensitivity analysis shows a good resilience of the model and, for low values of reproductive female fraction, the fluctuations may eventually lead to the extinction of the species: this fact might be exploited as a controlling factor. Moreover, the probability of extinction is valuated with an inverse Gaussian that indicates a high resilience of the species, confirmed by experimental data and field observation: this species has diffused in Italy since 1989 and it has shown a natural tendency to grow. Finally, the spatial mobility is introduced in the model, simulating the movement of the crayfishes in a virtual lake of elliptical form by means of simple cinematic rules encouraging the movement towards the banks of the catchment (as it happens in reality) while a random walk is imposed when the banks are reached.

  9. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Shen, Weisen; Ritzwoller, Michael H.; Kang, Dou; Kim, YoungHee; Lin, Fan-Chi; Ning, Jieyuan; Wang, Weitao; Zheng, Yong; Zhou, Longquan

    2016-08-01

    Using data from more than 2000 seismic stations from multiple networks arrayed throughout China (CEArray, China Array, NECESS, PASSCAL, GSN) and surrounding regions (Korean Seismic Network, F-Net, KNET), we perform ambient noise Rayleigh wave tomography across the entire region and earthquake tomography across parts of South China and Northeast China. We produce isotropic Rayleigh wave group and phase speed maps with uncertainty estimates from 8 to 50 s period across the entire region of study, and extend them to 70 s period where earthquake tomography is performed. Maps of azimuthal anisotropy are estimated simultaneously to minimize anisotropic bias in the isotropic maps, but are not discussed here. The 3D model is produced using a Bayesian Monte Carlo formalism covering all of China, extending eastwards through the Korean Peninsula, into the marginal seas, to Japan. We define the final model as the mean and standard deviation of the posterior distribution at each location on a 0.5° × 0.5° grid from the surface to 150 km depth. Surface wave dispersion data do not strongly constrain internal interfaces, but shear wave speeds between the discontinuities in the crystalline crust and uppermost mantle are well determined. We design the resulting model as a reference model, which is intended to be useful to other researchers as a starting model, to predict seismic wave fields and observables and to predict other types of data (e.g. topography, gravity). The model and the data on which it is based are available for download. In addition, the model displays a great variety and considerable richness of geological and tectonic features in the crust and in the uppermost mantle deserving of further focus and continued interpretation.

  10. Development of 1D Liner Compression Code for IDL

    NASA Astrophysics Data System (ADS)

    Shimazu, Akihisa; Slough, John; Pancotti, Anthony

    2015-11-01

    A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.

  11. Rotor reference frame models of a multiloop 2-phase motor drive in brushless DC and microstepping modes

    SciTech Connect

    Chen, J.E.

    1995-12-31

    This paper describes non-linear models of a 2-phase permanent magnet synchronous motor drive in brushless DC and microstepping modes. The models account for everything from the main power bus up to and including the mechanical load and velocity feedback loop. In particular, the models include the power electronics for each phase complete with their internal feedback loops. Classical state space averaged power electronics models are transformed to the rotor reference frame along with the usual electromechanical variables. Since SPICE linearizes the rotor reference frame model about shaft velocity, instead of shaft angle, frequency domain methods apply. The frequency domain analysis detects unstable interactions between torque angle and deliberate feedback within the drives. Time domain simulations using stator reference frame models confirm the results. All models are SPICE-compatible but were developed on Cadence`s Analog Workbench.

  12. EIA model documentation: World oil refining logistics demand model,``WORLD`` reference manual. Version 1.1

    SciTech Connect

    Not Available

    1994-04-11

    This manual is intended primarily for use as a reference by analysts applying the WORLD model to regional studies. It also provides overview information on WORLD features of potential interest to managers and analysts. Broadly, the manual covers WORLD model features in progressively increasing detail. Section 2 provides an overview of the WORLD model, how it has evolved, what its design goals are, what it produces, and where it can be taken with further enhancements. Section 3 reviews model management covering data sources, managing over-optimization, calibration and seasonality, check-points for case construction and common errors. Section 4 describes in detail the WORLD system, including: data and program systems in overview; details of mainframe and PC program control and files;model generation, size management, debugging and error analysis; use with different optimizers; and reporting and results analysis. Section 5 provides a detailed description of every WORLD model data table, covering model controls, case and technology data. Section 6 goes into the details of WORLD matrix structure. It provides an overview, describes how regional definitions are controlled and defines the naming conventions for-all model rows, columns, right-hand sides, and bounds. It also includes a discussion of the formulation of product blending and specifications in WORLD. Several Appendices supplement the main sections.

  13. A stylized computational model of the head for the reference Japanese male

    SciTech Connect

    Yamauchi, M.; Ishikawa, M.; Hoshi, M.

    2005-01-01

    Computational models of human anatomy, along with Monte Carlo radiation transport simulations, have been used by Snyder et al. [MIRD Pamphlet No. 5, revised (The Society of Nuclear Medicine, New York, 1978)], Cristy and Eckerman [ORNL/TM-8381/VI, Oak Ridge National Laboratory, Oak Ridge, TN (1987)] and Zubal et al. [Med. Phys. 21, 299-302 (1994)] to estimate internal organ doses from internal and external radiation sources. These were created using physiological data from Caucasoid subjects but not from other races. There is a need for research to determine whether the obvious differences from the Caucasoid anatomy make these models unsuitable for estimating the absorbed dose in other races such as the Mongoloid. We used the cranial region of the adult Japanese male to represent the Mongoloid race. This region contains organs that are highly sensitive to radiation. The cranial region of a physical phantom produced by KYOTO KAGAKU Co., LTD. using numerical data from a Japanese Reference Man [Tanaka, Nippon Acta. Radiol. 48, 509-513 (1988)] was used to supply the data for the geometry of a stylized computational model. Our computational model was constructed with equations rather than voxel-based, in order to deal with as small a number of parameters as possible in the computer simulation experiment. The accuracy of our computational model was checked by comparing simulated experimental results obtained with MCNP4C with actual doses measured with thermoluminescence dosimeters (TLDs) inside the physical phantom from which our computational model was constructed. The TLDs, whose margin of error is less than {+-}10%, were arranged at six positions. Co-60 was used as the radiation source. The irradiated dose was 2 Gy in terms of air kerma. In the computer simulation experiments, we used our computational model and Cristy's computational model, whose component data are those of the tissue substitute materials and of the human body as published in ICRU Report 46. The

  14. Application of model reference adaptive control to solar thermal utilization systems

    SciTech Connect

    Tanaka, T. )

    1990-05-01

    A proportional plus integral plus derivative (PID) controller is used to obtain usable energy from the sun in almost all the solar systems in Japan. However, it is difficult to collect the heat continuously close to a prescribed temperature using a PID controller because the solar radiation is often interrupted by passing clouds. The authors investigated, therefore, a model reference adaptive control (MRAC) system. In order to demonstrate its effectiveness, we constructed a MRAC system and introduced it into the collector loop of a solar system. This paper gives an outline of the MRAC algorithm and describes the experimental results for the outlet fluid temperature response of the loop by the MRAC and PID. From these results, it is shown that the MRAC algorithm is suitable for controlling a system affected by irregular disturbances in the insolation.

  15. Handling Qualities of Model Reference Adaptive Controllers with Varying Complexity for Pitch-Roll Coupled Failures

    NASA Technical Reports Server (NTRS)

    Schaefer, Jacob; Hanson, Curt; Johnson, Marcus A.; Nguyen, Nhan

    2011-01-01

    Three model reference adaptive controllers (MRAC) with varying levels of complexity were evaluated on a high performance jet aircraft and compared along with a baseline nonlinear dynamic inversion controller. The handling qualities and performance of the controllers were examined during failure conditions that induce coupling between the pitch and roll axes. Results from flight tests showed with a roll to pitch input coupling failure, the handling qualities went from Level 2 with the baseline c