Science.gov

Sample records for 1-d upconversion submicrocrystals

  1. One-pot hydrothermal synthesis of lanthanide ions doped one-dimensional upconversion submicrocrystals and their potential application in vivo CT imaging

    NASA Astrophysics Data System (ADS)

    Gao, Guo; Zhang, Chunlei; Zhou, Zhijun; Zhang, Xin; Ma, Jiebing; Li, Chao; Jin, Weilin; Cui, Daxiang

    2012-12-01

    Multi-functional rare-earth Yb3+ and Ln3+ (Ln = Er, Tm and Ho) ions doped one-dimensional (1-D) upconversion submicrocrystals (NaYF4 and NaGdF4) possessing upconversion luminescence, biocompatibility and magnetic properties have been synthesized by a one-pot hydrothermal method. Rare-earth Yb3+ and Ln3+ ions doped NaYF4 microrods (~1 μm in diameter, 3-5 μm in length) exhibit porous properties, and the average pore sizes are ~28.2 nm. They show paramagnetism in the magnetic range of -60 to -2 kOe and 2 to 60 kOe at 300 K, and exhibit near superparamagnetic behaviour at the magnetic range of -2 to 2 kOe. Saturation magnetization was ~12.1 emu g-1 at 2 K. The Yb3+ and Ln3+ ions doped NaGdF4 submicrocrystals (~100 nm in diameter, 200-300 nm in length) show paramagnetism at 300 K, and exhibit superparamagnetic behaviour with a saturation magnetization of 129.2 emu g-1 at 2 K. The magnetic properties of Yb3+ and Ln3+ ions doped 1-D upconversion submicrocrystals indicate they can be used for drug targeting under a magnetic field. Their unique upconversion emission (green for Yb3+/Er3+ and blue for Yb3+/Tm3+) under 980 nm laser excitation indicate that they could be used for specific luminescent immunolabeling and imaging. MTT assays reveal that 1-D upconversion submicrocrystals have satisfactory bio-affinity, where the viability keeps in good state even at a concentration of 500 μg mL-1, which is much higher than the concentration usually used in cell labelling. Luminescent microscopy images show that the morphologies of the cytoskeleton and cell nucleus are well maintained after incubating different concentrations of 1-D upconversion submicrocrystals. After injecting upconversion submicrocrystals into the mice (tumor sites or back normal tissue), a clearly distinguished CT signal was observed, indicating the synthesized 1-D submicrocrystals are effective for CT imaging in vivo.Multi-functional rare-earth Yb3+ and Ln3+ (Ln = Er, Tm and Ho) ions doped one-dimensional (1

  2. Controlled synthesis, formation mechanism and upconversion luminescence of NaYF{sub 4}: Yb, Er nano-/submicrocrystals via ionothermal approach

    SciTech Connect

    Liu Jia; Liu Xiaomin; Kong Xiangui; Zhan, Hong

    2012-06-15

    In order to deepen the fundamental understanding of IL-mediated synthesis of nano-/submicrostructure, hydrophilic ILs ([Emim][BF{sub 4}], [Bmim][BF{sub 4}] and [Omim][BF{sub 4}]), which act as solvents, templates, as well as fluorine source, have been employed to synthesize rare earth doped NaYF{sub 4} upconversion nano-/submicrocrystals (UC-NMCs). The imidazolium cations provide the capping reagent to prevent the nucleation centers from aggregation and growing, while the tetrafluoroborate anions introduce a new fluorine source according to partial hydrolysis. It is demonstrated that the properties of IL, such as viscosity, polarity, solvency and interfacial tension, extremely affect the dissolution, diffusion and nucleation process of lanthanide ions in IL. Morphology and size of the final products can thus be tailored by synthetical parameters, like imidazolium cations, cosolvents, Ln{sup 3+} and fluoride concentrations, as well as ionothermal time. Based on the experimental results, the possible mechanism of the nucleation and growth of UC-NMCs in IL is discussed. - Graphical abstract: The upconversion nano-/submicrocrystals with diverse morphologies and sizes have been synthesized through ionothermal approach. The possible mechanism is concluded, which strengthens the fundamental understanding of IL-mediated synthesis of nano-/submicrostructure. Highlights: Black-Right-Pointing-Pointer The upconversion nano-/submicrocrystals were synthesized through ionothermal approach. Black-Right-Pointing-Pointer The as-prepared products exhibited diverse morphologies and sizes. Black-Right-Pointing-Pointer The possible mechanism of the nucleation and growth process in ILs is concluded.

  3. Comprehensive analysis of photonic effects on up-conversion of β-NaYF4:Er3+ nanoparticles in an organic-inorganic hybrid 1D photonic crystal

    NASA Astrophysics Data System (ADS)

    Hofmann, C. L. M.; Fischer, S.; Reitz, C.; Richards, B. S.; Goldschmidt, J. C.

    2016-04-01

    Upconversion (UC) presents a possibility to exploit sub-bandgap photons for current generation in solar cells by creating one high-energy photon out of at least two lower-energy photons. Photonic structures can enhance UC by two effects: a locally increased irradiance and a modified local density of photon states (LDOS). Bragg stacks are promising photonic structures for this application, because they are straightforward to optimize and overall absorption can be increased by adding more layers. In this work, we present a comprehensive simulation-based analysis of the photonic effects of a Bragg stack on UC luminescence. The investigated organic-inorganic hybrid Bragg stack consists of alternating layers of Poly(methylmethacrylate) (PMMA), containing purpose-built β-NaYF4:25% Er3+ core-shell nanoparticles and titanium dioxide (TiO2). From optical characterization of single thin layers, input parameters for simulations of the photonic effects are generated. The local irradiance enhancement and modulated LDOS are first simulated separately. Subsequently they are coupled in a rate equation model of the upconversion dynamics. Using the integrated model, UC luminescence is maximized by adapting the Bragg stack design. For a Bragg stack of only 5 bilayers, UC luminescence is enhanced by a factor of 3.8 at an incident irradiance of 2000 W/m2. Our results identify the Bragg stack as promising for enhancing UC, especially in the low-irradiance regime, relevant for the application in photovoltaics. Therefore, we experimentally realized optimized Bragg stack designs. The PMMA layers, containing UC nanoparticles, are produced via spin-coating from a toluene based solution. The TiO2 layers are produced by atomic layer deposition from molecular precursors. The reflectance measurements show that the realized Bragg stacks are in good agreement with predictions from simulation.

  4. Blue upconversion thulium laser

    NASA Astrophysics Data System (ADS)

    Nguyen, Dinh C.; Faulkner, George E.; Weber, Michael E.; Dulick, Michael

    1990-04-01

    We report a blue emission upconversion solid-state laser based on Tm3+:YLF. Under double resonance excitation at 780.8 nm (near-ir) and 648.8 nm (red), the Tm3+ ion is sequentially excited from the 3H6 ground state to the 1D2 excited state through the 3H4 intermediate level. The laser output at 450 and 453 nm corresponds to the 1D2 -> 3F4 transitions of Tm3+ ions in YLF.

  5. Different dynamics of ultraviolet upconversion in Tm3+:ZBLAN glass under blue laser excitation

    NASA Astrophysics Data System (ADS)

    Yang, Haigui; Gao, Jinsong

    2013-10-01

    Ultraviolet upconversion luminescence around 292 nm, 350 nm and 363 nm in Tm3+:ZBLAN glass was observed clearly by pulsed excitation at 464 nm. Upconversion dynamics was discussed in detail by an analysis of the measured intensity dependence, decay curves and excitation spectra of upconversion luminescence, from which it was clarified that upconversion luminescence around 292 nm and 350 nm from 1I6 level was attributed to excited state absorption, while that around 363 nm from 1D2 level was attributed to energy transfer process.

  6. Upconversion in solar cells

    PubMed Central

    2013-01-01

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Modification of the spectrum requires down- and/or upconversion or downshifting of the spectrum, meaning that the energy of photons is modified to either lower (down) or higher (up) energy. Nanostructures such as quantum dots, luminescent dye molecules, and lanthanide-doped glasses are capable of absorbing photons at a certain wavelength and emitting photons at a different (shorter or longer) wavelength. We will discuss upconversion by lanthanide compounds in various host materials and will further demonstrate upconversion to work for thin-film silicon solar cells. PMID:23413889

  7. Infrared upconversion for astronomical applications.

    PubMed

    Abbas, M M; Kostiuk, T; Ogilvie, K W

    1976-04-01

    The performance of an upconversion system is examined for observation of astronomical sources in the low to middle ir spectral range. Theoretical values for the performance parmeters of an upconversion system for astronomical observations are evaluated in terms of the conversion efficiencies, spectral resolution, field of view minimum detectable source brightness, and source flux. Experimental results of blackbody measurements and molecular absorption spectrum measurements using a lithium niobate upconverter with an argon-ion laser as the pump are presented. Estimates are given of the expected optimum sensitivity of an upconversion device that may be built with presently available components.

  8. Monolithic blue upconversion fiber laser

    NASA Astrophysics Data System (ADS)

    Gaebler, Volker; Eichler, Hans J.

    2002-06-01

    We report a monolithic low threshold 482nm Tm:ZBLAN upconversion fiber laser. The laser cavity consists of a directly coated single-mode fluoride fiber. The vapor deposit coatings significantly reduce the coupling losses and are suitable to be pumped by laser diodes. The laser operation and threshold characteristics have been investigated. The output stability and beam quality was tested.

  9. Photon upconversion with directed emission

    NASA Astrophysics Data System (ADS)

    Börjesson, K.; Rudquist, P.; Gray, V.; Moth-Poulsen, K.

    2016-08-01

    Photon upconversion has the potential to increase the efficiency of single bandgap solar cells beyond the Shockley Queisser limit. Efficient light management is an important point in this context. Here we demonstrate that the direction of upconverted emission can be controlled in a reversible way, by embedding anthracene derivatives together with palladium porphyrin in a liquid crystalline matrix. The system is employed in a triplet-triplet annihilation photon upconversion scheme demonstrating controlled switching of directional anti Stokes emission. Using this approach an emission ratio of 0.37 between the axial and longitudinal emission directions and a directivity of 1.52 is achieved, reasonably close to the theoretical maximal value of 2 obtained from a perfectly oriented sample. The system can be switched for multiple cycles without any visible degradation and the speed of switching is only limited by the intrinsic rate of alignment of the liquid crystalline matrix.

  10. Photon upconversion with directed emission

    PubMed Central

    Börjesson, K.; Rudquist, P.; Gray, V.; Moth-Poulsen, K.

    2016-01-01

    Photon upconversion has the potential to increase the efficiency of single bandgap solar cells beyond the Shockley Queisser limit. Efficient light management is an important point in this context. Here we demonstrate that the direction of upconverted emission can be controlled in a reversible way, by embedding anthracene derivatives together with palladium porphyrin in a liquid crystalline matrix. The system is employed in a triplet-triplet annihilation photon upconversion scheme demonstrating controlled switching of directional anti Stokes emission. Using this approach an emission ratio of 0.37 between the axial and longitudinal emission directions and a directivity of 1.52 is achieved, reasonably close to the theoretical maximal value of 2 obtained from a perfectly oriented sample. The system can be switched for multiple cycles without any visible degradation and the speed of switching is only limited by the intrinsic rate of alignment of the liquid crystalline matrix. PMID:27573539

  11. Infrared Signal Detection by Upconversion Technique

    NASA Technical Reports Server (NTRS)

    Wong, Teh-Hwa; Yu, Jirong; Bai, Yingxin; Johnson, William E.

    2014-01-01

    We demonstrated up-conversion assisted detection of a 2.05-micron signal by using a bulk periodically poled Lithium niobate crystal. The 94% intrinsic up-conversion efficiency and 22.58% overall detection efficiency at pW level of 2.05-micron was achieved.

  12. Optical transmission and up-conversion OF QAM and QPSK modulated microwave subcarriers

    NASA Astrophysics Data System (ADS)

    Le Guennec, Y.; Cabon, Beatrice; Maury, Ghislaine

    2004-09-01

    An unbalanced Mach Zehnder interferometer (UMZ) is used here for up-conversion of a microwave subcarrier, with IQ modulation at 30 and 200 Msymb/s. Both QPSK and QAM-16 are investigated, and a low BER of 10-9 is demonstrated after detection of the up-converted microwave subcarrier for an optical power of -1dBm delivered by a directly modulated laser diode.

  13. Gold nanorod plasmonic upconversion microlaser.

    PubMed

    Shi, Ce; Soltani, Soheil; Armani, Andrea M

    2013-01-01

    Plasmonic-photonic interactions have stimulated significant interdisciplinary interest, leading to rapid innovations in solar design and biosensors. However, the development of an optically pumped plasmonic laser has failed to keep pace due to the difficulty of integrating a plasmonic gain material with a suitable pump source. In the present work, we develop a method for coating high quality factor toroidal optical cavities with gold nanorods, forming a photonic-plasmonic laser. By leveraging the two-photon upconversion capability of the nanorods, lasing at 581 nm with a 20 μW threshold is demonstrated.

  14. Blue-green upconversion laser

    SciTech Connect

    Nguyen, Dinh C.; Faulkner, George E.

    1990-01-01

    A blue-green laser (450-550 nm) uses a host crystal doped with Tm.sup.3+. The Tm.sup.+ is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP.

  15. Blue-green upconversion laser

    DOEpatents

    Nguyen, D.C.; Faulkner, G.E.

    1990-08-14

    A blue-green laser (450--550 nm) uses a host crystal doped with Tm[sup 3+]. The Tm[sup 3+] is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP. 3 figs.

  16. Controlling upconversion nanocrystals for emerging applications

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Shi, Bingyang; Jin, Dayong; Liu, Xiaogang

    2015-11-01

    Lanthanide-doped upconversion nanocrystals enable anti-Stokes emission with pump intensities several orders of magnitude lower than required by conventional nonlinear optical techniques. Their exceptional properties, namely large anti-Stokes shifts, sharp emission spectra and long excited-state lifetimes, have led to a diversity of applications. Here, we review upconversion nanocrystals from the perspective of fundamental concepts and examine the technical challenges in relation to emission colour tuning and luminescence enhancement. In particular, we highlight the advances in functionalization strategies that enable the broad utility of upconversion nanocrystals for multimodal imaging, cancer therapy, volumetric displays and photonics.

  17. Controlling upconversion nanocrystals for emerging applications.

    PubMed

    Zhou, Bo; Shi, Bingyang; Jin, Dayong; Liu, Xiaogang

    2015-11-01

    Lanthanide-doped upconversion nanocrystals enable anti-Stokes emission with pump intensities several orders of magnitude lower than required by conventional nonlinear optical techniques. Their exceptional properties, namely large anti-Stokes shifts, sharp emission spectra and long excited-state lifetimes, have led to a diversity of applications. Here, we review upconversion nanocrystals from the perspective of fundamental concepts and examine the technical challenges in relation to emission colour tuning and luminescence enhancement. In particular, we highlight the advances in functionalization strategies that enable the broad utility of upconversion nanocrystals for multimodal imaging, cancer therapy, volumetric displays and photonics.

  18. White up-conversion luminescence of NaYF4:Yb3+,Pr3+,Er3+

    NASA Astrophysics Data System (ADS)

    Hölsä, Jorma; Laamanen, Taneli; Laihinen, Tero; Lastusaari, Mika; Pihlgren, Laura; Rodrigues, Lucas C. V.

    2014-08-01

    Photon up-conversion which yields higher energy emission by stacking lower energy photons is possible only with specific rare earth ions. Despite this, it has several potential applications. NaYF4 with Yb3+,Er3+ co-doping has been recognized as one of the most feasible materials for efficient up-conversion luminescence. In this work, the up-conversion luminescence of the Pr3+-Er3+ combination was studied using sensitization by Yb3+. Emission was observed in the visible including blue, green, yellow, orange and red. These are due to the 3P0,1 → 3H4-6,3F2-4 and 1D2 → 3H4 (Pr3+) as well as 2H11/2,4S3/2,4F9/2 → 4I15/2 (Er3+) transitions. Concentration quenching of the Pr3+ luminescence was observed already with 1 mol-% due to many cross-relaxation processes. With naked eye, the up-conversion luminescence was seen as white light. The CIE chromaticity coordinates are close to those of the standard illuminant F4 which represents warm white.

  19. Sensitive Infrared Signal Detection by Upconversion Technique

    NASA Technical Reports Server (NTRS)

    Wong, Teh-Hwa; Yu, Jirong; Bai, Yingxin; Johnson, William; Chen, Songsheng; Petros, Mulugeta; Singh, Upendra N.

    2014-01-01

    We demonstrated upconversion assisted detection of a 2.05-micron signal by sum frequency generation to generate a 700-nm light using a bulk periodically poled lithium niobate crystal. The achieved 94% intrinsic upconversion efficiency and 22.58% overall detection efficiency at a pW level of 2.05 micron pave the path to detect extremely weak infrared (IR) signals for remote sensing applications.

  20. Quantum frequency up-conversion of continuous variable entangled states

    NASA Astrophysics Data System (ADS)

    Liu, Wenyuan; Wang, Ning; Li, Zongyang; Li, Yongmin

    2015-12-01

    We demonstrate experimentally quantum frequency up-conversion of a continuous variable entangled optical field via sum-frequency-generation process. The two-color entangled state initially entangled at 806 and 1518 nm with an amplitude quadrature difference squeezing of 3.2 dB and phase quadrature sum squeezing of 3.1 dB is converted to a new entangled state at 530 and 1518 nm with the amplitude quadrature difference squeezing of 1.7 dB and phase quadrature sum squeezing of 1.8 dB. Our implementation enables the observation of entanglement between two light fields spanning approximately 1.5 octaves in optical frequency. The presented scheme is robust to the excess amplitude and phase noises of the pump field, making it a practical building block for quantum information processing and communication networks.

  1. LOW POWER UPCONVERSION FOR SOLAR FUELS PHOTOCHEMISTRY

    SciTech Connect

    Castellano, Felix N.

    2013-08-05

    Earth abundant copper(I) diimine complexes represent a renewable and economically feasible alternative to commonly used heavy metal containing chromophores. In the metal-to-ligand charge transfer (MLCT) excited state, copper(I) diimine complexes typically undergo a significant structural rearrangement, leading to molecules with large Stokes shifts and very short excited state lifetimes, thereby limiting their usefulness as sensitizers in bimolecular electron and triplet energy transfer reactions. Strategically placed bulky substituents on the coordinating phenanthroline ligands have proven useful in restricting the transiently produced excited state Jahn-Teller distortion, leading to longer-lived excited states. By combining bulky sec-butyl groups in the 2- and 9- positions with methyl groups in the 3-,4-, 7-, and 8- positions, a remarkably long-lived (2.8 μs in DCM) copper(I) bis-phenanthroline complex, [Cu(dsbtmp)2]+, has been synthesized and characterized. Unlike other copper(I) diimine complexes, [Cu(dsbtmp)2]+ also retains a μs lifetime in coordinating solvents such as acetonitrile and water as a result of the cooperative sterics inherent in the molecular design. Preliminary results on the use of this complex in hydrogen-forming homogeneous photocatalysis is presented. Photon upconversion based on sensitized triplet-triplet annihilation (TTA) represents a photochemical means to generate high-energy photons (or high-energy chemical products) from low-energy excitation, having potential applications in solar energy conversion and solar fuels producing devices. For the first time, synthetically facile and earth abundant Cu(I) MLCT sensitizers have been successfully incorporated into two distinct photochemical upconversion schemes, affording both red-to-green and orange-to-blue wavelength conversions. Preliminary results on aqueous-based photochemical upconversion as well as intramolecular Sn(IV) porphyrins containing axially coordinated aromatic hydrocarbon

  2. Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles.

    PubMed

    Rieffel, James; Chen, Feng; Kim, Jeesu; Chen, Guanying; Shao, Wei; Shao, Shuai; Chitgupi, Upendra; Hernandez, Reinier; Graves, Stephen A; Nickles, Robert J; Prasad, Paras N; Kim, Chulhong; Cai, Weibo; Lovell, Jonathan F

    2015-03-11

    Hexamodal imaging using simple nanoparticles is demonstrated. Porphyrin-phospholipids are used to coat upconversion nanoparticles in order to generate a new biocompatible material. The nanoparticles are characterized in vitro and in vivo for imaging via fluorescence, upconversion, positron emission tomography, computed tomography, Cerenkov luminescence, and photoacoustic tomography.

  3. Photon Upconversion Through Tb(3+) -Mediated Interfacial Energy Transfer.

    PubMed

    Zhou, Bo; Yang, Weifeng; Han, Sanyang; Sun, Qiang; Liu, Xiaogang

    2015-10-28

    A strategy of interfacial energy transfer upconversion is demonstrated through the use of a terbium (Tb(3+) ) dopant as energy donor or energy migrator in core-shell-structured nanocrystals. This mechanistic investigation presents a new pathway for photon upconversion, and, more importantly, contributes to the better control of energy transfer at the nanometer length scale.

  4. Upconversion Nanomaterials: Synthesis, Mechanism, and Applications in Sensing

    PubMed Central

    Chen, Jiao; Zhao, Julia Xiaojun

    2012-01-01

    Upconversion is an optical process that involves the conversion of lower-energy photons into higher-energy photons. It has been extensively studied since mid-1960s and widely applied in optical devices. Over the past decade, high-quality rare earth-doped upconversion nanoparticles have been successfully synthesized with the rapid development of nanotechnology and are becoming more prominent in biological sciences. The synthesis methods are usually phase-based processes, such as thermal decomposition, hydrothermal reaction, and ionic liquids-based synthesis. The main difference between upconversion nanoparticles and other nanomaterials is that they can emit visible light under near infrared irradiation. The near infrared irradiation leads to low autofluorescence, less scattering and absorption, and deep penetration in biological samples. In this review, the synthesis of upconversion nanoparticles and the mechanisms of upconversion process will be discussed, followed by their applications in different areas, especially in the biological field for biosensing. PMID:22736958

  5. Upconversion nanomaterials: synthesis, mechanism, and applications in sensing.

    PubMed

    Chen, Jiao; Zhao, Julia Xiaojun

    2012-01-01

    Upconversion is an optical process that involves the conversion of lower-energy photons into higher-energy photons. It has been extensively studied since mid-1960s and widely applied in optical devices. Over the past decade, high-quality rare earth-doped upconversion nanoparticles have been successfully synthesized with the rapid development of nanotechnology and are becoming more prominent in biological sciences. The synthesis methods are usually phase-based processes, such as thermal decomposition, hydrothermal reaction, and ionic liquids-based synthesis. The main difference between upconversion nanoparticles and other nanomaterials is that they can emit visible light under near infrared irradiation. The near infrared irradiation leads to low autofluorescence, less scattering and absorption, and deep penetration in biological samples. In this review, the synthesis of upconversion nanoparticles and the mechanisms of upconversion process will be discussed, followed by their applications in different areas, especially in the biological field for biosensing.

  6. Non-collinear upconversion of infrared light.

    PubMed

    Pedersen, Christian; Hu, Qi; Høgstedt, Lasse; Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin

    2014-11-17

    Two dimensional mid-infrared upconversion imaging provides unique spectral and spatial information showing good potential for mid-infrared spectroscopy and hyperspectral imaging. However, to extract spectral or spatial information from the upconverted images an elaborate model is needed, which includes non-collinear interaction. We derive here a general theory providing the far field of the upconverted light when two arbitrary fields interact inside a nonlinear crystal. Theoretical predictions are experimentally verified for incoherent radiation and subsequently applied to previously published data with good agreement.

  7. Hybrid upconversion nanomaterials for optogenetic neuronal control

    NASA Astrophysics Data System (ADS)

    Shah, Shreyas; Liu, Jing-Jing; Pasquale, Nicholas; Lai, Jinping; McGowan, Heather; Pang, Zhiping P.; Lee, Ki-Bum

    2015-10-01

    Nanotechnology-based approaches offer the chemical control required to develop precision tools suitable for applications in neuroscience. We report a novel approach employing hybrid upconversion nanomaterials, combined with the photoresponsive ion channel channelrhodopsin-2 (ChR2), to achieve near-infrared light (NIR)-mediated optogenetic control of neuronal activity. Current optogenetic methodologies rely on using visible light (e.g. 470 nm blue light), which tends to exhibit high scattering and low tissue penetration, to activate ChR2. In contrast, our approach enables the use of 980 nm NIR light, which addresses the short-comings of visible light as an excitation source. This was facilitated by embedding upconversion nanomaterials, which can convert NIR light to blue luminescence, into polymeric scaffolds. These hybrid nanomaterial scaffolds allowed for NIR-mediated neuronal stimulation, with comparable efficiency as that of 470 nm blue light. Our platform was optimized for NIR-mediated optogenetic control by balancing multiple physicochemical properties of the nanomaterial (e.g. size, morphology, structure, emission spectra, concentration), thus providing an early demonstration of rationally-designing nanomaterial-based strategies for advanced neural applications.Nanotechnology-based approaches offer the chemical control required to develop precision tools suitable for applications in neuroscience. We report a novel approach employing hybrid upconversion nanomaterials, combined with the photoresponsive ion channel channelrhodopsin-2 (ChR2), to achieve near-infrared light (NIR)-mediated optogenetic control of neuronal activity. Current optogenetic methodologies rely on using visible light (e.g. 470 nm blue light), which tends to exhibit high scattering and low tissue penetration, to activate ChR2. In contrast, our approach enables the use of 980 nm NIR light, which addresses the short-comings of visible light as an excitation source. This was facilitated by

  8. Solar upconversion with plasmonic hot carriers

    NASA Astrophysics Data System (ADS)

    Dionne, Jennifer A.

    Upconversion of sub-bandgap photons is a promising approach to exceed the Shockley-Queisser limit in solar technologies. Placed behind a solar cell, upconverting materials convert lower-energy photons transmitted through the cell to higher-energy above-bandgap photons that can then be absorbed by the cell and contribute to photocurrent. Because the upconverter is electrically isolated from the active cell, it need not be current-matched to the cell, nor will it add mid-gap recombination pathways. Calculations have indicated that single-junction cell efficiencies can exceed 44% upon addition of an upconverter - a significant improvement over the maximum cell efficiency of 30% without an upconverter. However, due to the low quantum efficiencies and narrow absorption bandwidths of existing upconverters, such significant cell improvements have yet to be observed experimentally. In this presentation, we will describe an entirely new solar upconverting scheme based on hot-carrier injection from a plasmonic absorber to an adjacent semiconductor. The plasmonic system both induces upconversion based on injection of hot-electrons and hot-holes and also enhances light-matter interactions. Low-energy photons incident on a plasmonic particle generate hot electrons and hot holes, which are injected into a semiconducting quantum well and subsequently radiatively recombine. Importantly, the bandgap of the quantum well can be higher than the energy of the incident photon, enabling emission of a higher-energy photon than that absorbed. First, we present analytic calculations showing that efficiencies as high as 25% are possible, significantly higher than existing solid-state upconverters, which are only 2-5% efficient. We also describe how further improvements in the efficiency are possible by employing materials and geometries that allow for more efficient carrier injection. Then, we describe experiments on InGaN/GaN quantum wells decorated with Au disks. On their own, the In

  9. Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties

    NASA Astrophysics Data System (ADS)

    Nadort, Annemarie; Zhao, Jiangbo; Goldys, Ewa M.

    2016-07-01

    Upconversion photoluminescence is a nonlinear effect where multiple lower energy excitation photons produce higher energy emission photons. This fundamentally interesting process has many applications in biomedical imaging, light source and display technology, and solar energy harvesting. In this review we discuss the underlying physical principles and their modelling using rate equations. We discuss how the understanding of photophysical processes enabled a strategic influence over the optical properties of upconversion especially in rationally designed materials. We subsequently present an overview of recent experimental strategies to control and optimize the optical properties of upconversion nanoparticles, focussing on their emission spectral properties and brightness.

  10. Real-time 3D ultrasound fetal image enhancment techniques using motion-compensated frame rate up-conversion

    NASA Astrophysics Data System (ADS)

    Lee, Gun-Ill; Park, Rae-Hong; Song, Young-Seuk; Kim, Cheol-An; Hwang, Jae-Sub

    2003-05-01

    In this paper, we present a motion compensated frame rate up-conversion method for real-time three-dimensional (3-D) ultrasound fetal image enhancement. The conventional mechanical scan method with one-dimensional (1-D) array converters used for 3-D volume data acquisition has a slow frame rate of multi-planar images. This drawback is not an issue for stationary objects, however in ultrasound images showing a fetus of more than about 25 weeks, we perceive abrupt changes due to fast motions. To compensate for this defect, we propose the frame rate up-conversion method by which new interpolated frames are inserted between two input frames, giving smooth renditions to human eyes. More natural motions can be obtained by frame rate up-conversion. In the proposed algorithm, we employ forward motion estimation (ME), in which motion vectors (MVs) ar estimated using a block matching algorithm (BMA). To smooth MVs over neighboring blocks, vector median filtering is performed. Using these smoothed MVs, interpolated frames are reconstructed by motion compensation (MC). The undesirable blocking artifacts due to blockwise processing are reduced by block boundary filtering using a Gaussian low pass filter (LPF). The proposed method can be used in computer aided diagnosis (CAD), where more natural 3-D ultrasound images are displayed in real-time. Simulation results with several real test sequences show the effectiveness of the proposed algorithm.

  11. Upconversion Nanoparticles for Bioimaging and Regenerative Medicine

    PubMed Central

    González-Béjar, María; Francés-Soriano, Laura; Pérez-Prieto, Julia

    2016-01-01

    Nanomaterials are proving useful for regenerative medicine in combination with stem cell therapy. Nanoparticles (NPs) can be administrated and targeted to desired tissues or organs and subsequently be used in non-invasive real-time visualization and tracking of cells by means of different imaging techniques, can act as therapeutic agent nanocarriers, and can also serve as scaffolds to guide the growth of new tissue. NPs can be of different chemical nature, such as gold, iron oxide, cadmium selenide, and carbon, and have the potential to be used in regenerative medicine. However, there are still many issues to be solved, such as toxicity, stability, and resident time. Upconversion NPs have relevant properties such as (i) low toxicity, (ii) capability to absorb light in an optical region where absorption in tissues is minimal and penetration is optimal (note they can also be designed to emit in the near-infrared region), and (iii) they can be used in multiplexing and multimodal imaging. An overview on the potentiality of upconversion materials in regenerative medicine is given. PMID:27379231

  12. Energy transfer upconversion in ? and ? doped ? crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Jouart, Jean-Pierre; Mary, Gérard

    1998-01-01

    A comparative spectroscopic study for 0953-8984/10/2/027/img10 and 0953-8984/10/2/027/img11 doped 0953-8984/10/2/027/img12 crystals has been realised at liquid nitrogen temperature. The 0953-8984/10/2/027/img10 single-doped sample shows principally blue emission corresponding to the 0953-8984/10/2/027/img14 transition, whereas the 0953-8984/10/2/027/img11 codoped sample gives rise to a very efficient green emission which is ascribed to the 0953-8984/10/2/027/img16 transition. The total integrated upconversion emission intensity (including blue and green emissions) for the codoped crystal is three times more intense than that of the 0953-8984/10/2/027/img10 doped one, while the ratio for green emission rises to 27. The green emission in the codoped sample results mainly from the 0953-8984/10/2/027/img18 mixed centre, whereas the blue emission is essentially due to the 0953-8984/10/2/027/img19 pair. Two energy transfer upconversion mechanisms have been proposed and are discussed in the paper.

  13. High efficiency upconversion nanophosphors for high-contrast bioimaging.

    PubMed

    Alkahtani, Masfer H; Alghannam, Fahad S; Sanchez, Carlos; Gomes, Carmen L; Liang, Hong; Hemmer, Philip R

    2016-12-02

    Upconversion nanoparticles (UCNPs) are of interest because they allow suppression of tissue autofluorescence and are therefore visible deep inside biological tissue. Compared to upconversion dyes, UCNPs have a lower pump intensity threshold, better photostability, and less toxicity. Recently, YVO4: Er(+3), Yb(+3) nanoparticles were shown to exhibit strong up-conversion luminescence with a relatively low 10 kW cm(-2) excitation intensity even in water, which makes them excellent bio-imaging candidates. Herein, we investigate their use as internal probes in insects by injecting YVO4 : Er(+3), Yb(+3) nanoparticles into fire ants as a biological model, and obtain 2D optical images with 980 nm illumination. High-contrast images with high signal-to-noise ratio are observed by detecting the up-conversion fluorescence as the excitation laser is scanned.

  14. High efficiency upconversion nanophosphors for high-contrast bioimaging

    NASA Astrophysics Data System (ADS)

    Alkahtani, Masfer H.; Alghannam, Fahad S.; Sanchez, Carlos; Gomes, Carmen L.; Liang, Hong; Hemmer, Philip R.

    2016-12-01

    Upconversion nanoparticles (UCNPs) are of interest because they allow suppression of tissue autofluorescence and are therefore visible deep inside biological tissue. Compared to upconversion dyes, UCNPs have a lower pump intensity threshold, better photostability, and less toxicity. Recently, YVO4: Er+3, Yb+3 nanoparticles were shown to exhibit strong up-conversion luminescence with a relatively low 10 kW cm-2 excitation intensity even in water, which makes them excellent bio-imaging candidates. Herein, we investigate their use as internal probes in insects by injecting YVO4 : Er+3, Yb+3 nanoparticles into fire ants as a biological model, and obtain 2D optical images with 980 nm illumination. High-contrast images with high signal-to-noise ratio are observed by detecting the up-conversion fluorescence as the excitation laser is scanned.

  15. Photon Upconversion at Crystalline Organic-Organic Heterojunctions.

    PubMed

    Oldenburg, Michael; Turshatov, Andrey; Busko, Dmitry; Wollgarten, Stephanie; Adams, Michael; Baroni, Nicolò; Welle, Alexander; Redel, Engelbert; Wöll, Christof; Richards, Bryce S; Howard, Ian A

    2016-10-01

    Triplet transfer across a surface-anchored metal-organic-framework heterojunction is demonstrated by the observation of triplet-triplet annihilation photon -upconversion in a sensitizer-emitter heterostructure. Upconversion thresholds under 1 mW cm(-2) are achieved. In the broader context, the double-electron-exchange mechanism of triplet transfer indicates that the heterojunction quality is sufficient for electrons to move between layers in this solution-processed crystalline heterostructure.

  16. Upconversion: road to El Dorado of the fluorescence world.

    PubMed

    Ong, Li Ching; Gnanasammandhan, Muthu Kumara; Nagarajan, Sounderya; Zhang, Yong

    2010-01-01

    Upconversion nanoparticles (UCNs), in the recent times have attracted attention due to their unique properties, which makes them ideal fluorophores for use in biological applications. There have been various reports on their use for targeted cell imaging, drug and gene delivery and also for diffuse optical tomography. Here we give a brief introduction on what are UCNs and the mechanism of upconversion, followed by a discussion on the biological applications of UCNs and further on what the future holds for UCNs.

  17. Ultrafast Fluorescence Spectroscopy via Upconversion: Applications to Biophysics

    PubMed Central

    Xu, Jianhua; Knutson, Jay R.

    2012-01-01

    This chapter reviews basic concepts of nonlinear fluorescence upconversion, a technique whose temporal resolution is essentially limited only by the pulse width of the ultrafast laser. Design aspects for upconversion spectrophotofluorometers are discussed, and a recently developed system is described. We discuss applications in biophysics, particularly the measurement of time-resolved fluorescence spectra of proteins (with subpicosecond time resolution). Application of this technique to biophysical problems such as dynamics of tryptophan, peptides, proteins, and nucleic acids is reviewed. PMID:19152860

  18. An Nd3+-sensitized upconversion nanophosphor modified with a cyanine dye for the ratiometric upconversion luminescence bioimaging of hypochlorite

    NASA Astrophysics Data System (ADS)

    Zou, Xianmei; Liu, Yi; Zhu, Xingjun; Chen, Min; Yao, Liming; Feng, Wei; Li, Fuyou

    2015-02-01

    Excessive or misplaced production of ClO- in living systems is usually associated with many human diseases. Therefore, it is of great importance to develop an effective and sensitive method to detect ClO- in living systems. Herein, we designed an 808 nm excited upconversion luminescence nanosystem, composed of the Nd3+-sensitized core-shell upconversion nanophosphor NaYF4:30%Yb,1%Nd,0.5%Er@NaYF4:20%Nd, which serves as an energy donor, and the ClO--responsive cyanine dye hCy3, which acts as an energy acceptor, for ratiometric upconversion luminescence (UCL) monitoring of ClO-. The detection limit of ClO- for this nanoprobe in aqueous solution is 27 ppb and the nanoprobe was successfully used to detect the ClO- in the living cells by ratiometric upconversion luminescence. Importantly, the nanoprobe realized the detection of ClO- in a mouse model of arthritis, which produced an excess of ROS, under 808 nm irradiation in vivo. The excitation laser efficiently reduced the heating effect, compared to the commonly used 980 nm laser for upconversion systems.Excessive or misplaced production of ClO- in living systems is usually associated with many human diseases. Therefore, it is of great importance to develop an effective and sensitive method to detect ClO- in living systems. Herein, we designed an 808 nm excited upconversion luminescence nanosystem, composed of the Nd3+-sensitized core-shell upconversion nanophosphor NaYF4:30%Yb,1%Nd,0.5%Er@NaYF4:20%Nd, which serves as an energy donor, and the ClO--responsive cyanine dye hCy3, which acts as an energy acceptor, for ratiometric upconversion luminescence (UCL) monitoring of ClO-. The detection limit of ClO- for this nanoprobe in aqueous solution is 27 ppb and the nanoprobe was successfully used to detect the ClO- in the living cells by ratiometric upconversion luminescence. Importantly, the nanoprobe realized the detection of ClO- in a mouse model of arthritis, which produced an excess of ROS, under 808 nm irradiation in

  19. Upconversion luminescence and mechanisms of Tm(3+)/Yb(3+)-codoped oxyhalide tellurite glasses.

    PubMed

    Xu, Shiqing; Fang, Dawei; Zhang, Zaixuan; Jiang, Zhonghong

    2005-11-01

    To obtain efficient blue upconversion laser glasses, upconversion luminescence and mechanisms of Tm(3+)/Yb(3+)-codoped oxyhalide tellurite glasses were investigated under 980 nm excitation. The results showed that upconversion blue and red emission intensities of Tm(3+) first increase, reach its maximum at Tm(2)O(3)%=0.1 mol %, and then decrease with increasing Tm(2)O(3) content. The effect of Tm(2)O(3) content on upconversion intensity is discussed, and possible effect mechanisms are evaluated. The investigated results were conducing to increase upconversion luminescence efficiency of Tm(3+).

  20. Photon upconversion for thin film solar cells

    NASA Astrophysics Data System (ADS)

    de Wild, J.

    2012-09-01

    In this research one of the many possible methods to increase the efficiency of solar cells is described. The method investigated is based on adapting the solar light in such a way that the solar cell can convert more light into electricity. The part of the solar spectrum that is adapted is the part that cannot be absorbed by the solar cells, because the photon energy is too low. This conversion of light is done by so called upconversion, which means that lower energy photons are converted into higher energy photons that can be absorbed by the solar cell. The upconverters used in this thesis are those based on lanthanide ions doped in crystalline hosts. Lanthanide ions have very specific absorption and emission lines, which means that by choosing an appropriate ion one can convert any arbitrary wavelength. One of the most important aspects when one wants to apply upconverters onto solar cells is the light intensity necessary for efficient conversion. Because the upconversion process requires two photons to make a new, higher energy photon, the conversion process is non-linearly dependent on the light intensity. This is the main limitation for practical applications. Therefore, next to applying upconverters onto solar cells also more fundamental questions are addressed in this thesis, for instance, the question what determines efficient conversion. At first the upconverter materials in different hosts are characterized and investigated. The host material influences non-radiative decays, the absorption strength, the lifetime and the energy transfer rate between the lanthanide ions. By investigating two upconverter hosts with small differences (α and β-NaYF4 doped with Er3+ and Yb3+), we have tried to investigate the origin of the difference in upconversion efficiency. For this, emission and absorption spectra are measured under the same conditions and concentrations of the lanthanide ions. Also the absorption strength on the upconverter efficiency is investigated

  1. Experimental demonstration of photon upconversion via cooperative energy pooling.

    PubMed

    Weingarten, Daniel H; LaCount, Michael D; van de Lagemaat, Jao; Rumbles, Garry; Lusk, Mark T; Shaheen, Sean E

    2017-03-15

    Photon upconversion is a fundamental interaction of light and matter that has applications in fields ranging from bioimaging to microfabrication. However, all photon upconversion methods demonstrated thus far involve challenging aspects, including requirements of high excitation intensities, degradation in ambient air, requirements of exotic materials or phases, or involvement of inherent energy loss processes. Here we experimentally demonstrate a mechanism of photon upconversion in a thin film, binary mixture of organic chromophores that provides a pathway to overcoming the aforementioned disadvantages. This singlet-based process, called Cooperative Energy Pooling (CEP), utilizes a sensitizer-acceptor design in which multiple photoexcited sensitizers resonantly and simultaneously transfer their energies to a higher-energy state on a single acceptor. Data from this proof-of-concept implementation is fit by a proposed model of the CEP process. Design guidelines are presented to facilitate further research and development of more optimized CEP systems.

  2. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials.

    PubMed

    Shang, Yunfei; Hao, Shuwei; Yang, Chunhui; Chen, Guanying

    2015-10-27

    Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous), gallium arsenide (GaAs) solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed.

  3. Low Power Upconversion Mixer for Medical Remote Sensing

    PubMed Central

    Lioe, De Xing; Shafie, Suhaidi; Tan, Gim Heng

    2014-01-01

    This work presents the design of a low power upconversion mixer adapted in medical remote sensing such as wireless endoscopy application. The proposed upconversion mixer operates in ISM band of 433 MHz. With the carrier power of −5 dBm, the proposed mixer has an output inferred 1 dB compression point of −0.5 dBm with a corresponding output third-order intercept point (OIP3) of 7.1 dBm. The design of the upconversion mixer is realized on CMOS 0.13 μm platform, with a current consumption of 594 μA at supply voltage headroom of 1.2 V. PMID:25133266

  4. Experimental demonstration of photon upconversion via cooperative energy pooling

    NASA Astrophysics Data System (ADS)

    Weingarten, Daniel H.; Lacount, Michael D.; van de Lagemaat, Jao; Rumbles, Garry; Lusk, Mark T.; Shaheen, Sean E.

    2017-03-01

    Photon upconversion is a fundamental interaction of light and matter that has applications in fields ranging from bioimaging to microfabrication. However, all photon upconversion methods demonstrated thus far involve challenging aspects, including requirements of high excitation intensities, degradation in ambient air, requirements of exotic materials or phases, or involvement of inherent energy loss processes. Here we experimentally demonstrate a mechanism of photon upconversion in a thin film, binary mixture of organic chromophores that provides a pathway to overcoming the aforementioned disadvantages. This singlet-based process, called Cooperative Energy Pooling (CEP), utilizes a sensitizer-acceptor design in which multiple photoexcited sensitizers resonantly and simultaneously transfer their energies to a higher-energy state on a single acceptor. Data from this proof-of-concept implementation is fit by a proposed model of the CEP process. Design guidelines are presented to facilitate further research and development of more optimized CEP systems.

  5. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials

    PubMed Central

    Shang, Yunfei; Hao, Shuwei; Yang, Chunhui; Chen, Guanying

    2015-01-01

    Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous), gallium arsenide (GaAs) solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed. PMID:28347095

  6. Energy upconversion in holmium doped lead-germano-tellurite glass

    SciTech Connect

    Kamma, Indumathi; Reddy, B. Rami

    2010-06-15

    Holmium doped lead-germano-tellurite glass was prepared by the melt quenching technique. The Judd-Ofelt intensity parameters were estimated as {Omega}{sub 2}=7.6x10{sup -20}, {Omega}{sub 4}=12.9x10{sup -20}, and {Omega}{sub 6}=2.5x10{sup -20} cm{sup 2}. Radiative transition probabilities and lifetimes were also determined for some of the levels. Room temperature upconversion emissions have been observed from Ho{sup 3+} at 497 nm under 532 nm laser excitation, and at 557 and 668 nm under 762 nm laser excitation. The upconversion emission mechanisms were found to be due to a step wise excitation process. Upconversion emission intensity enhanced in a heat treated glass.

  7. Femtosecond broadband fluorescence upconversion spectroscopy: Improved setup and photometric correction

    SciTech Connect

    Zhang, X.-X.; Wuerth, C.; Resch-Genger, U.; Zhao, L.; Ernsting, N. P.; Sajadi, M.

    2011-06-15

    A setup for fluorescence upconversion spectroscopy (FLUPS) is described which has 80 fs temporal response (fwhm) for emission in the spectral range 425-750 nm. Broadband phase matching is achieved with tilted gate pulses at 1340 nm. Background from harmonics of the gate pulse is removed and sensitivity increased compared to previous designs. Photometric calibration of the upconversion process is performed with a set of fluorescent dyes. For Coumarin 153 in methanol the peak position, bandwidth, and asymmetry depending on delay time are reported.

  8. Resonance Energy Transfer in Upconversion Nanoplatforms for Selective Biodetection.

    PubMed

    Su, Qianqian; Feng, Wei; Yang, Dongpeng; Li, Fuyou

    2017-01-17

    Resonance energy transfer (RET) describes the process that energy is transferred from an excited donor to an acceptor molecule, leading to a reduction in the fluorescence emission intensity of the donor and an increase in that of the acceptor. By this technique, measurements with the good sensitivity can be made about distance within 1 to 10 nm under physiological conditions. For this reason, the RET technique has been widely used in polymer science, biochemistry, and structural biology. Recently, a number of RET systems incorporated with nanoparticles, such as quantum dots, gold nanoparticles, and upconversion nanoparticles, have been developed. These nanocrystals retain their optical superiority and can act as either a donor or a quencher, thereby enhancing the performance of RET systems and providing more opportunities in excitation wavelength selection. Notably, lanthanide-doped upconversion nanophosphors (UCNPs) have attracted considerable attention due to their inherent advantages of large anti-Stoke shifts, long luminescence lifetimes, and absence of autofluorescence under low energy near-infrared (NIR) light excitation. These nanoparticles are promising for the biodetection of various types of analytes. Undoubtedly, the developments of those applications usually rely on resonance energy transfer, which could be regarded as a flexible technology to mediate energy transfer from upconversion phosphor to acceptor for the design of luminescent functional nanoplatforms. Currently, researchers have developed many RET-based upconversion nanosystems (RET-UCNP) that respond to specific changes in the biological environments. Specifically, small organic molecules, biological molecules, metal-organic complexes, or inorganic nanoparticles were carefully selected and bound to the surface of upconversion nanoparticles for the preparation of RET-UCNP nanosystems. Benefiting from the advantage and versatility offered by this technology, the research of RET

  9. Direct observation of up-conversion via femtosecond photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Liu, Yuzhu; Knopp, Gregor; Gerber, Thomas

    2015-10-01

    Ultrafast relaxation dynamics in 2-methylfuran has been investigated by time-resolved photoelectron imaging. An "up" internal conversion from a low-lying state into a higher-lying one has been observed experimentally. Temporal photoelectron kinetic-energy distributions and angular distributions of the photoelectrons are analyzed. In the up-conversion process, the vibrational energy in the initial state is converted to the electronic energy of the final state during the energy transfer. And the time scale for the up-conversion process is estimated by the observed onset delay for the corresponding photoelectron bands.

  10. Transition Metal-Involved Photon Upconversion.

    PubMed

    Ye, Shi; Song, En-Hai; Zhang, Qin-Yuan

    2016-12-01

    Upconversion (UC) luminescence of lanthanide ions (Ln(3+)) has been extensively investigated for several decades and is a constant research hotspot owing to its fundamental significance and widespread applications. In contrast to the multiple and fixed UC emissions of Ln(3+), transition metal (TM) ions, e.g., Mn(2+), usually possess a single broadband emission due to its 3d(5) electronic configuration. Wavelength-tuneable single UC emission can be achieved in some TM ion-activated systems ascribed to the susceptibility of d electrons to the chemical environment, which is appealing in molecular sensing and lighting. Moreover, the UC emissions of Ln(3+) can be modulated by TM ions (specifically d-block element ions with unfilled d orbitals), which benefits from the specific metastable energy levels of Ln(3+) owing to the well-shielded 4f electrons and tuneable energy levels of the TM ions. The electric versatility of d(0) ion-containing hosts (d(0) normally viewed as charged anion groups, such as MoO6(6-) and TiO4(4-)) may also have a strong influence on the electric dipole transition of Ln(3+), resulting in multifunctional properties of modulated UC emission and electrical behaviour, such as ferroelectricity and oxide-ion conductivity. This review focuses on recent advances in the room temperature (RT) UC of TM ions, the UC of Ln(3+) tuned by TM or d(0) ions, and the UC of d(0) ion-centred groups, as well as their potential applications in bioimaging, solar cells and multifunctional devices.

  11. Transition Metal‐Involved Photon Upconversion

    PubMed Central

    Song, En‐Hai

    2016-01-01

    Upconversion (UC) luminescence of lanthanide ions (Ln3+) has been extensively investigated for several decades and is a constant research hotspot owing to its fundamental significance and widespread applications. In contrast to the multiple and fixed UC emissions of Ln3+, transition metal (TM) ions, e.g., Mn2+, usually possess a single broadband emission due to its 3d 5 electronic configuration. Wavelength‐tuneable single UC emission can be achieved in some TM ion‐activated systems ascribed to the susceptibility of d electrons to the chemical environment, which is appealing in molecular sensing and lighting. Moreover, the UC emissions of Ln3+ can be modulated by TM ions (specifically d‐block element ions with unfilled d orbitals), which benefits from the specific metastable energy levels of Ln3+ owing to the well‐shielded 4f electrons and tuneable energy levels of the TM ions. The electric versatility of d 0 ion‐containing hosts (d 0 normally viewed as charged anion groups, such as MoO6 6‐ and TiO4 4‐) may also have a strong influence on the electric dipole transition of Ln3+, resulting in multifunctional properties of modulated UC emission and electrical behaviour, such as ferroelectricity and oxide‐ion conductivity. This review focuses on recent advances in the room temperature (RT) UC of TM ions, the UC of Ln3+ tuned by TM or d 0 ions, and the UC of d 0 ion‐centred groups, as well as their potential applications in bioimaging, solar cells and multifunctional devices. PMID:27981015

  12. Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding.

    PubMed

    Zhang, Fan; Shi, Qihui; Zhang, Yichi; Shi, Yifeng; Ding, Kunlun; Zhao, Dongyuan; Stucky, Galen D

    2011-09-01

    Fluoride rare-earth-doped upconversion microbarcodes have been successfully developed for multiplexed signaling and nucleic-acid encoding. This kind of novel barcode material can be used for rapid and sensitive analysis of nucleic acids and antigens, which would have many potential applications in clinical, food, and environment detection.

  13. Two-step photon up-conversion solar cells.

    PubMed

    Asahi, Shigeo; Teranishi, Haruyuki; Kusaki, Kazuki; Kaizu, Toshiyuki; Kita, Takashi

    2017-04-06

    Reducing the transmission loss for below-gap photons is a straightforward way to break the limit of the energy-conversion efficiency of solar cells (SCs). The up-conversion of below-gap photons is very promising for generating additional photocurrent. Here we propose a two-step photon up-conversion SC with a hetero-interface comprising different bandgaps of Al0.3Ga0.7As and GaAs. The below-gap photons for Al0.3Ga0.7As excite GaAs and generate electrons at the hetero-interface. The accumulated electrons at the hetero-interface are pumped upwards into the Al0.3Ga0.7As barrier by below-gap photons for GaAs. Efficient two-step photon up-conversion is achieved by introducing InAs quantum dots at the hetero-interface. We observe not only a dramatic increase in the additional photocurrent, which exceeds the reported values by approximately two orders of magnitude, but also an increase in the photovoltage. These results suggest that the two-step photon up-conversion SC has a high potential for implementation in the next-generation high-efficiency SCs.

  14. Near diffraction limited mid-IR spectromicroscopy using frequency upconversion

    NASA Astrophysics Data System (ADS)

    Sanders, Nicolai; Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2014-02-01

    Mid-infrared microscopy and spectroscopy is interesting due to its medical, biological and chemical applications. Spectromicroscopy can be used for histopathology, sample analysis and diagnosis. The ability to do spectromicroscopy in the 2.5 to 4.5 μm wavelength range where many organic molecules have their fundamental vibrations, with the addition of sufficient spectroscopic resolution to resolve these bands, can e.g. potentially allow for diagnostics without the need for staining of the sample. On a longer timeframe, mid-IR spectromicroscopy has the potential for in-vivo diagnostics, combining morphological and spectral imaging. Recent developments in nonlinear frequency upconversion, have demonstrated the potential to perform both imaging and spectroscopy in the mid-IR range at unparalleled low levels of illumination, the low upconversion detector noise being orders of magnitude below competing technologies. With these applications in mind, we have incorporated microscopy optics into an image upconversion system, achieving near diffraction limited spatial resolution in the 3 μm range. Spectroscopic information is further acquired by appropriate control of the phase match condition of the upconversion process. Multispectral images for a region of interest can be obtained by XY-scanning this region of interest within the field of view of the mid-IR upconversion system. Thus, the whole region of interest can be imaged with all available converter wavelengths, and the spectral representation becomes equal for all points in the image. In addition, the range of converted/imaged wavelengths can be tuned continuously by changing the temperature of the crystal, or discretely by using a different poling channel in the PPLN crystal.

  15. EMODEL_1D v. 1.0

    SciTech Connect

    Aldridge, David F.

    2016-07-06

    Program EMODEL_1D is an electromagnetic earth model construction utility designed to generate a three-dimensional (3D) uniformly-gridded representation of one-dimensional (1D) layered earth model. Each layer is characterized by the isotropic EM properties electric permittivity ?, magnetic permeability ?, and current conductivity ?. Moreover, individual layers of the model may possess a linear increase/decrease of any or all of these properties with depth.

  16. Blue Upconversion Luminescence in Tm3+/Yb3+ Codoped CaWO4 Polycrystals

    NASA Astrophysics Data System (ADS)

    Xu, Yan-Ling; Wang, Yun-Long; Shi, Lian-Sheng; Tan, Xiang

    2013-08-01

    We investigate the upconversion emission of CaWO4:Tm3+/Yb3+ polycrystals prepared by the high-temperature solid-state method. The crystal structure of the polycrystals is characterized by means of x-ray diffraction. Under the excitation of a 980 nm continuous wave diode laser, the samples show intense blue upconversion emissions centered at 473 nm, corresponding to the 1G4→3H6 transition of Tm3+. The dependence of the upconversion emission intensity on the pump power of a laser diode is measured, and the results indicate that the two-photon and three-photon processes contribute simultaneously to the blue upconversion emissions. The possible multi-photon upconversion process and upconversion mechanisms are discussed.

  17. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors.

    PubMed

    Liu, Guokui

    2015-03-21

    Photon upconversion in rare earth activated phosphors involves multiple mechanisms of electronic transitions. Stepwise optical excitation, energy transfer, and various nonlinear and collective light-matter interaction processes act together to convert low-energy photons into short-wavelength light emission. Upconversion luminescence from nanomaterials exhibits additional size and surface dependencies. A fundamental understanding of the overall performance of an upconversion system requires basic theories on the spectroscopic properties of solids containing rare earth ions. This review article surveys the recent progress in the theoretical interpretations of the spectroscopic characteristics and luminescence dynamics of photon upconversion in rare earth activated phosphors. The primary aspects of upconversion processes, including energy level splitting, transition probability, line broadening, non-radiative relaxation and energy transfer, are covered with an emphasis on interpreting experimental observations. Theoretical models and methods for analyzing nano-phenomena in upconversion are introduced with detailed discussions on recently reported experimental results.

  18. Observation of bistable upconversion emission in Tm,Yb codoped yttria nanocrystal

    NASA Astrophysics Data System (ADS)

    Li, L.; Li, H.; Zhang, X. L.; Peng, Y. F.; Nie, M.; Jiang, B.; Zhang, X. W.; Li, R. M.

    2010-11-01

    Nonlinear upconversion emission properties in Tm and Yb codoped yttria nanocrystal have been studied under 973 nm laser excitation. Intrinsic bistability and hysteresis have been observed for the bright blue upconversion luminescence of Tm3+ ions at room temperature. The mechanism of the Tm3+ bistable emission is mainly related to laser-induced local thermal effects which cause the enhancement of sequential multi-photon energy transfer upconversion of Yb3+-Tm3+ pairs.

  19. Heat Capacity of 1D Molecular Chains

    NASA Astrophysics Data System (ADS)

    Bagatskii, M. I.; Barabashko, M. S.; Sumarokov, V. V.; Jeżowski, A.; Stachowiak, P.

    2017-04-01

    The heat capacity of 1D chains of nitrogen and methane molecules (adsorbed in the outer grooves of bundles of closed-cap single-walled carbon nanotubes) has been studied in the temperature ranges 2-40 and 2-60 K, respectively. The temperature dependence of the heat capacity of 1D chains of nitrogen molecules below 3 K is close to a linear. It was found that the rotational heat capacity of methane molecules is a significant part of the total heat capacity of the chains throughout the whole investigated temperature range, whereas in the case of nitrogen, the librations are significant only above 15 K. The dependence of the heat capacity for methane below 10 K indicates the presence of a Schottky anomaly caused by the tunneling between the lowest energy levels of the CH4 molecule rotational spectra. Characteristic features observed in the temperature dependence of the heat capacity of 1D methane crystals are also discussed.

  20. Upstream Design and 1D-CAE

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroyuki

    Recently, engineering design environment of Japan is changing variously. Manufacturing companies are being challenged to design and bring out products that meet the diverse demands of customers and are competitive against those produced by rising countries(1). In order to keep and strengthen the competitiveness of Japanese companies, it is necessary to create new added values as well as conventional ones. It is well known that design at the early stages has a great influence on the final design solution. Therefore, design support tools for the upstream design is necessary for creating new added values. We have established a research society for 1D-CAE (1 Dimensional Computer Aided Engineering)(2), which is a general term for idea, methodology and tools applicable for the upstream design support, and discuss the concept and definition of 1D-CAE. This paper reports our discussion about 1D-CAE.

  1. Polarization insensitive all-optical up-conversion for ROF systems based on parallel pump FWM in a SOA.

    PubMed

    Lu, Jia; Dong, Ze; Cao, Zizheng; Chen, Lin; Wen, Shuangchun; Yu, Jianguo

    2009-04-27

    We have proposed and experimentally investigated polarization insensitive all-optical up-conversion for ROF system based on FWM in a semiconductor optical amplifier (SOA). The parallel pump is generated based on odd-order optical sidebands and carrier suppression using an external intensity modulator and a cascaded optical filter. Therefore, the two pumps are always parallel and phase locked, which makes system polarization insensitive. After FWM in a SOA and optical filtering, similar to single sideband (SSB) 40 GHz optical millimeter-wave is generated only using 10 GHz RF as local oscillator (LO). The receiver sensitivity at a BER of 10(-9) for the up-converted signals is -28.4 dBm. The power penalty for the up-converted downstream signals is smaller than 1 dBm after 20 km SSMF-28 transmission.

  2. Helical Floquet Channels in 1D Lattices

    NASA Astrophysics Data System (ADS)

    Budich, Jan Carl; Hu, Ying; Zoller, Peter

    2017-03-01

    We show how dispersionless channels exhibiting perfect spin-momentum locking can arise in a 1D lattice model. While such spectra are forbidden by fermion doubling in static 1D systems, here we demonstrate their appearance in the stroboscopic dynamics of a periodically driven system. Remarkably, this phenomenon does not rely on any adiabatic assumptions, in contrast to the well known Thouless pump and related models of adiabatic spin pumps. The proposed setup is shown to be experimentally feasible with state-of-the-art techniques used to control ultracold alkaline earth atoms in optical lattices.

  3. Oxyfluoroborate host glass for upconversion application: phonon energy calculation

    NASA Astrophysics Data System (ADS)

    Abdel-Baki, Manal; El-Diasty, Fouad

    2016-04-01

    Reducing the glass phonon energy is an essential procedure to achieve high efficient radiative upconversion process. The degree of covalence of chemical bonds is responsible for the high oscillator strength of intracenter transitions in rare-earth ions. So, conversion covalent to ionic glass character is proposed as a structure-sensitive criterion that controls the phonon energy of the glasses. A series of oxyfluoro aluminum-borate host glasses used for upconversion application is prepared by the conventional melt-quenching technique. Through lithium oxide substitution by lithium fluoride, the ionic-covalent property of Li+ ion successes to regulate the band gap energies of the studied glasses. Furthermore, a new method to determine the glass phonon energy is offered.

  4. Functionalized Upconversion Nanoparticles: Versatile Nanoplatforms for Translational Research

    PubMed Central

    Chen, Feng; Bu, Wenbo; Cai, Weibo; Shi, Jianlin

    2013-01-01

    The design, application, and translation of targeted multimodality molecular imaging probes based on nanotechnology has attracted increasing attentions during the last decade and will continue to play vital roles in cancer diagnosis and personalized medicine. With the growing awareness of drawbacks of traditional organic dyes and quantum dots, biocompatible lanthanide ion doped upconversion nanoparticles have emerged as promising candidates for clinically translatable imaging probes, owing to their unique features that are suitable for future targeted multimodal imaging in living subjects. In this review, we summarized the recent advances in the field of functionalized upconversion nanoparticles (f-UCNP) for biological imaging and therapy in vivo, and discussed the future research directions, obstacles ahead, and the potential use of f-UCNP in translational research. PMID:24206131

  5. Photon upconversion sensitized by a Ru(II)-pyrenyl chromophore

    PubMed Central

    Deng, Fan; Lazorski, Megan S.; Castellano, Felix N.

    2015-01-01

    The near-visible-to-blue singlet fluorescence of anthracene sensitized by a ruthenium chromophore with a long-lived triplet-excited state, [Ru(5-pyrenyl-1,10-phenanthroline)3](PF6)2, in acetonitrile was investigated. Low intensity non-coherent green light was used to selectively excite the sensitizer in the presence of micromolar concentrations of anthracene generating anti-Stokes, singlet fluorescence in the latter, even with incident power densities below 500 μW cm−2. The resultant data are consistent with photon upconversion proceeding from sensitized triplet–triplet annihilation (TTA) of the anthracene acceptor molecules, confirmed through transient absorption spectroscopy as well as static and dynamic photoluminescence experiments. Additionally, quadratic-to-linear incident power regimes for the upconversion process were identified for this composition under monochromatic 488 nm excitation, consistent with a sensitized TTA mechanism ultimately producing the anti-Stokes emission characteristic of anthracene singlet fluorescence. PMID:25987571

  6. Upconversion imaging using an all-fiber supercontinuum source.

    PubMed

    Huot, Laurent; Moselund, Peter Morten; Tidemand-Lichtenberg, Peter; Leick, Lasse; Pedersen, Christian

    2016-06-01

    In this Letter, the first demonstration, to the best of our knowledge, of pulsed upconversion imaging using supercontinuum light is presented. A mid-infrared (IR) imaging system was built by combining a mid-IR supercontinuum source emitting between 1.8 and 2.6 μm with upconversion detection. The infrared signal is used to probe a sample and mixed with a synchronized 1550 nm laser pulse inside a lithium niobate (LiNbO3) crystal. The signal is thus upconverted to the 860-970 nm range and acquired on a standard silicon CCD array at a rate of 22 frames per second. In our implementation, spatial features in the sample plane as small as 55 μm could be resolved.

  7. Sodium yttrium fluoride based upconversion nano phosphors for biosensing

    NASA Astrophysics Data System (ADS)

    Parameswaran Nampi, Padmaja; Varma, Harikrishna; Biju, P. R.; Kakkar, Tarun; Jose, Gin; Saha, Sikha; Millner, Paul

    2015-06-01

    In the present study, NaYF4-Yb3+/Er3+ having the composition NaYF4-18%Yb3+/2%Er3+ and NaYF4-20%Yb3+/2%Er3+ with and without the addition of PVP (polyvinyl pyrolidone) have been synthesised by a solution method using NaF, yttrium nitrate, ytterbium nitrate and erbium nitrate as precursors. Upconversion spectra of prepared nanomaterial under 980 nm laser excitation have been studied. The variation in upconversion spectra with new born calf serum and myoglobin has been studied. Myoglobin (Mb) may be helpful when used in conjunction with other cardiac markers for rapid determination of acute myocardial ischemia, especially in patients with a typical chest pain or nonspecific ECG changes. The variation of UC fluorescence with addition of Mb indicates the suitability of using NaYF4 based UC nanoparticles in cardiac marker detection. The detailed study is currently under progress.

  8. Excitonic luminescence upconversion in a two-dimensional semiconductor

    DOE PAGES

    Jones, Aaron M.; Yu, Hongyi; Schaibley, John R.; ...

    2015-12-21

    Photon upconversion is an elementary light-matter interaction process in which an absorbed photon is re-emitted at higher frequency after extracting energy from the medium. Furthermore, this phenomenon lies at the heart of optical refrigeration in solids(1), where upconversion relies on anti-Stokes processes enabled either by rare-earth impurities(2) or exciton-phonon coupling(3). We demonstrate a luminescence upconversion process from a negatively charged exciton to a neutral exciton resonance in monolayer WSe2, producing spontaneous anti-Stokes emission with an energy gain of 30 meV. Polarization-resolved measurements find this process to be valley selective, unique to monolayer semiconductors(4). Since the charged exciton binding energy(5) closelymore » matches the 31 meV A(1)' optical phonon(6-9), we ascribe the spontaneous excitonic anti-Stokes to doubly resonant Raman scattering, where the incident and outgoing photons are in resonance with the charged and neutral excitons, respectively. Additionally, we resolve a charged exciton doublet with a 7 meV splitting, probably induced by exchange interactions, and show that anti-Stokes scattering is efficient only when exciting the doublet peak resonant with the phonon, further confirming the excitonic doubly resonant picture.« less

  9. Excitonic luminescence upconversion in a two-dimensional semiconductor

    SciTech Connect

    Jones, Aaron M.; Yu, Hongyi; Schaibley, John R.; Yan, Jiaqiang; Mandrus, David G.; Taniguchi, Takashi; Watanabe, Kenji; Dery, Hanan; Yao, Wang; Xu, Xiaodong

    2015-12-21

    Photon upconversion is an elementary light-matter interaction process in which an absorbed photon is re-emitted at higher frequency after extracting energy from the medium. Furthermore, this phenomenon lies at the heart of optical refrigeration in solids(1), where upconversion relies on anti-Stokes processes enabled either by rare-earth impurities(2) or exciton-phonon coupling(3). We demonstrate a luminescence upconversion process from a negatively charged exciton to a neutral exciton resonance in monolayer WSe2, producing spontaneous anti-Stokes emission with an energy gain of 30 meV. Polarization-resolved measurements find this process to be valley selective, unique to monolayer semiconductors(4). Since the charged exciton binding energy(5) closely matches the 31 meV A(1)' optical phonon(6-9), we ascribe the spontaneous excitonic anti-Stokes to doubly resonant Raman scattering, where the incident and outgoing photons are in resonance with the charged and neutral excitons, respectively. Additionally, we resolve a charged exciton doublet with a 7 meV splitting, probably induced by exchange interactions, and show that anti-Stokes scattering is efficient only when exciting the doublet peak resonant with the phonon, further confirming the excitonic doubly resonant picture.

  10. Upconversion imaging using short-wave infrared picosecond pulses.

    PubMed

    Mathez, Morgan; Rodrigo, Peter John; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2017-02-01

    To the best of our knowledge, we present the first demonstration of short-wavelength infrared image upconversion that employs intense picosecond signal and pump beams. We use a fiber laser that emits a signal beam at 1877 nm and a pump beam at 1550 nm-both with a pulse width of 1 ps and a pulse repetition rate of 21.7 MHz. Due to synchronization of high peak-power pulses, efficient upconversion is achieved in a single-pass setup that employs a bulk lithium niobate crystal. Optimizing the temporal overlap of the pulses for high upconversion efficiency enables us to exploit a relatively large pump beam diameter to upconvert a wider range of signal spatial frequencies in the crystal. The 1877 nm signal is converted into 849 nm-enabling an image to be acquired by a silicon CCD camera. The measured size of the smallest resolvable element of this imaging system is consistent with the value predicted by an improved model that considers the combined image blurring effect due to finite pump beam size, thick nonlinear crystal, and polychromatic infrared illumination.

  11. Upconversion processes in Yb-sensitized Tm:ZBLAN

    SciTech Connect

    Carrig, T.J.; Cockroft, N.J.

    1996-10-01

    A spectroscopic study of 22 rare-earth-ion doped ZBLAN (fluorozirconate) glass was done to study feasibility of sensitizing Tm:ZBLAN with Yb to facilitate development of an efficient, conveniently pumped blue upconversion fiber laser. it was found that, under single-color pumping, 480 nm emission from Tm{sup 3+} was strongest when Yb,Tm:ZBLAN is excited at 975 nm; the strongest blue blue emission was obtained from a glass sample with 2.0 wt% Yb + 0.3 wt% Tm. Also, for weak 975 nm pump intensities, strength of blue upconversion emission can be greatly enhanced by simultaneously pumping at 785 nm. This increased upconversion efficiency is due to reduced number of energy transfer steps needed to populate the Tm{sup 3+} {sup 1}G{sub 4} energy level. Measurements of fluorescence lifetimes vs dopant concentration were also made for Yb{sup 3+}, Tm{sup 3+}, and Pr{sup 3+} transitions in ZBLAN in order to better characterize concentration quenching effects. Energy transfer between Tm{sup 3+} and Pr{sup 3+} in ZBLAN is also described.

  12. Calibration of a 1D/1D urban flood model using 1D/2D model results in the absence of field data.

    PubMed

    Leandro, J; Djordjević, S; Chen, A S; Savić, D A; Stanić, M

    2011-01-01

    Recently increased flood events have been prompting researchers to improve existing coupled flood-models such as one-dimensional (1D)/1D and 1D/two-dimensional (2D) models. While 1D/1D models simulate sewer and surface networks using a one-dimensional approach, 1D/2D models represent the surface network by a two-dimensional surface grid. However their application raises two issues to urban flood modellers: (1) stormwater systems planning/emergency or risk analysis demands for fast models, and the 1D/2D computational time is prohibitive, (2) and the recognized lack of field data (e.g. Hunter et al. (2008)) causes difficulties for the calibration/validation of 1D/1D models. In this paper we propose to overcome these issues by calibrating a 1D/1D model with the results of a 1D/2D model. The flood-inundation results show that: (1) 1D/2D results can be used to calibrate faster 1D/1D models, (2) the 1D/1D model is able to map the 1D/2D flood maximum extent well, and the flooding limits satisfactorily in each time-step, (3) the 1D/1D model major differences are the instantaneous flow propagation and overestimation of the flood-depths within surface-ponds, (4) the agreement in the volume surcharged by both models is a necessary condition for the 1D surface-network validation and (5) the agreement of the manholes discharge shapes measures the fitness of the calibrated 1D surface-network.

  13. Photodegradation and photocuring in the operation of a blue upconversion fiber laser

    SciTech Connect

    Qin Guanshi; Huang Shenghong; Feng Yan; Shirakawa, A.; Musha, M.; Ueda, Ken-ichi

    2005-06-15

    Photodegradation and photocuring effects were investigated in the operation of a Tm{sup 3+}-doped blue upconversion fiber laser. Our experimental results indicate that a competition between photodegradation and photocuring greatly affects the maximum output power of a blue upconversion fiber laser.

  14. Laser diode pumped 106 mW blue upconversion fiber laser

    NASA Astrophysics Data System (ADS)

    Sanders, S.; Waarts, R. G.; Mehuys, D. G.; Welch, D. F.

    1995-09-01

    A laser diode pumped Tm3+-doped ZBLAN fiber upconversion laser is demonstrated with blue output power levels up to 106 mW. Differential optical-to-optical conversion efficiencies up to 30% are measured with respect to pump power coupled into the upconversion fiber. A single spatial mode blue output beam is demonstrated, with an M2 value of 1.4.

  15. Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis.

    PubMed

    Yang, Weifeng; Li, Xiyan; Chi, Dongzhi; Zhang, Hongjie; Liu, Xiaogang

    2014-12-05

    Photovoltaics and photocatalysis are two significant applications of clean and sustainable solar energy, albeit constrained by their inability to harvest the infrared spectrum of solar radiation. Lanthanide-doped materials are particularly promising in this regard, with tunable absorption in the infrared region and the ability to convert the long-wavelength excitation into shorter-wavelength light output through an upconversion process. In this review, we highlight the emerging applications of lanthanide-doped upconversion materials in the areas of photovoltaics and photocatalysis. We attempt to elucidate the fundamental physical principles that govern the energy conversion by the upconversion materials. In addition, we intend to draw attention to recent technologies in upconversion nanomaterials integrated with photovoltaic and photocatalytic devices. This review also provides a useful guide to materials synthesis and optoelectronic device fabrication based on lanthanide-doped upconversion materials.

  16. Glass-based 1-D dielectric microcavities

    NASA Astrophysics Data System (ADS)

    Chiasera, Alessandro; Scotognella, Francesco; Valligatla, Sreeramulu; Varas, Stefano; Jasieniak, Jacek; Criante, Luigino; Lukowiak, Anna; Ristic, Davor; Gonçalves, Rogeria Rocha; Taccheo, Stefano; Ivanda, Mile; Righini, Giancarlo C.; Ramponi, Roberta; Martucci, Alessandro; Ferrari, Maurizio

    2016-11-01

    We have developed a reliable RF sputtering techniques allowing to fabricate glass-based one dimensional microcavities, with high quality factor. This property is strongly related to the modification of the density of states due to the confinement of the gain medium in a photonic band gap structure. In this short review we present some of the more recent results obtained by our team exploiting these 1D microcavities. In particular we present: (1) Er3+ luminescence enhancement of the 4I13/2 → 4I15/2 transition; (2) broad band filters based on disordered 1-D photonic structures; (3) threshold defect-mode lasing action in a hybrid structure.

  17. Centrosome Positioning in 1D Cell Migration

    NASA Astrophysics Data System (ADS)

    Adlerz, Katrina; Aranda-Espinoza, Helim

    During cell migration, the positioning of the centrosome and nucleus define a cell's polarity. For a cell migrating on a two-dimensional substrate the centrosome is positioned in front of the nucleus. Under one-dimensional confinement, however, the centrosome is positioned behind the nucleus in 60% of cells. It is known that the centrosome is positioned by CDC42 and dynein for cells moving on a 2D substrate in a wound-healing assay. It is currently unknown, however, if this is also true for cells moving under 1D confinement, where the centrosome position is often reversed. Therefore, centrosome positioning was studied in cells migrating under 1D confinement, which mimics cells migrating through 3D matrices. 3 to 5 μm fibronectin lines were stamped onto a glass substrate and cells with fluorescently labeled nuclei and centrosomes migrated on the lines. Our results show that when a cell changes directions the centrosome position is maintained. That is, when the centrosome is between the nucleus and the cell's trailing edge and the cell changes direction, the centrosome will be translocated across the nucleus to the back of the cell again. A dynein inhibitor did have an influence on centrosome positioning in 1D migration and change of directions.

  18. Upconversion Nanoparticles for Security Printing and CdSe QDs for Drug Delivery Applications

    NASA Astrophysics Data System (ADS)

    Baride, Aravind

    Upconversion is an anti-Stokes luminescence process, in which NIR excitation results in visible emission. Lanthanide ions, such as Yb3+ , Er3+ and Tm3+ ions, doped in beta-NaYF 4 crystals exhibit upconversion. Doped NaYF4 nanocrystals retain the bulk-like upconversion property in colloidal dispersions. The doping composition influences both the spectral output and efficiency of the upconversion emission. Red, green and blue primary color upconversion ink formulations were prepared using upconversion nanoparticles. We optimized the Er/Tm doping composition to produce spectrally pure red emitting nanoparticles. RGB upconversion inks were printed on various substrates and chromaticity of the printed features was investigated. Upconversion inks printed on substrates are not visible to the naked eye under ambient conditions, but the printed features appear upon 980 nm excitation. The upconversion inks, because of covertness, have numerous security printing and anti-counterfeiting applications. Colors produced by combinations of primary colors involving blue are excitation power density dependent. We evaluated the relation between the print density, excitation power density and chromaticity of the prints. In addition to NIR-to-visible inks, we also developed NIR-to-NIR inks for security printing systems. Spectrally pure NIR-to-NIR (980nm-to-800nm) emission was achieved by optimization of Yb/Tm doping composition. We demonstrated excitation and capture of NIR-to-NIR images from upconversion prints coated with NIR transparent materials. The upconversion inks described so far were prepared in non-polar ink bases. We also prepared upconversion inks in polar solvent bases. As synthesized nanoparticles are capped with oleic acid ligands. Polar solvent dispersibility of the nanoparticles was achieved by post-synthetic ligand exchange techniques. Polar-solvent-based upconversion inks were printed with a piezo inkjet and a thermal inkjet printer. In a second project, we

  19. A 1-D dusty plasma photonic crystal

    SciTech Connect

    Mitu, M. L.; Ticoş, C. M.; Toader, D.; Banu, N.; Scurtu, A.

    2013-09-21

    It is demonstrated numerically that a 1-D plasma crystal made of micron size cylindrical dust particles can, in principle, work as a photonic crystal for terahertz waves. The dust rods are parallel to each other and arranged in a linear string forming a periodic structure of dielectric-plasma regions. The dispersion equation is found by solving the waves equation with the boundary conditions at the dust-plasma interface and taking into account the dielectric permittivity of the dust material and plasma. The wavelength of the electromagnetic waves is in the range of a few hundred microns, close to the interparticle separation distance. The band gaps of the 1-D plasma crystal are numerically found for different types of dust materials, separation distances between the dust rods and rod diameters. The distance between levitated dust rods forming a string in rf plasma is shown experimentally to vary over a relatively wide range, from 650 μm to about 1350 μm, depending on the rf power fed into the discharge.

  20. Current Advances in Lanthanide‐Doped Upconversion Nanostructures for Detection and Bioapplication

    PubMed Central

    Chen, Cailing

    2016-01-01

    Along with the development of science and technology, lanthanide‐doped upconversion nanostructures as a new type of materials have taken their place in the field of nanomaterials. Upconversion luminescence is a nonlinear optical phenomenon, which absorbs two or more photons and emits one photon. Compared with traditional luminescence materials, upconversion nanostructures have many advantages, such as weak background interference, long lifetime, low excitation energy, and strong tissue penetration. These interesting nanostructures can be applied in anticounterfeit, solar cell, detection, bioimaging, therapy, and so on. This review is focused on the current advances in lanthanide‐doped upconversion nanostructures, covering not only basic luminescence mechanism, synthesis, and modification methods but also the design and fabrication of upconversion nanostructures, like core–shell nanoparticles or nanocomposites. At last, this review emphasizes the application of upconversion nanostructure in detection and bioimaging and therapy. Learning more about the advances of upconversion nanostructures can help us better exploit their excellent performance and use them in practice. PMID:27840794

  1. Study of upconversion in PCFs with high erbium concentration

    NASA Astrophysics Data System (ADS)

    Berdejo, Víctor; Vallés, Juan A.; Rebolledo, Miguel Á.; Diez, Antonio; Martin, Juan C.; Sanchez-Martin, José A.; Álvarez, José M.; Andrés, Miguel V.

    2011-09-01

    We report on a comparison of characterization techniques for high concentration erbium-doped photonic crystal fibres (PCFs). A highly erbium-doped-silica PCF was fabricated and an amplifier based on the PCF was built. Then, measurements on the amplifier output optical powers were carried out. To model the amplifier, three different formalisms were assumed for the Er3+-ion upconversion mechanism and the numerical results were fitted to the experimental ones. The sets of best-fit parameters are compared and the use of these techniques for active PCF characterisation is discussed.

  2. Z-scan Measurement of Upconversion in Er:YAG

    DTIC Science & Technology

    2010-12-01

    of each manifold, e.g.   22414313212121 NCWNWNWNNfNfh I td Nd upae    . (1) Here, N1 (N2) is the population of the 4I15/2 (4I13/2...manifold, I is the laser intensity,  is the absolute cross section, fa ( fe ) is the probability that an ion in the 4I15/2 (4I13/2) manifold is in a...sublevel that can absorb (emit) a laser photon, Wij is the relaxation rate from level i to level j, and Cup is the upconversion coefficient. Also

  3. Temperature Dependence of Triplet–Triplet Annihilation Upconversion in Phospholipid Membranes

    PubMed Central

    2017-01-01

    Understanding the temperature dependency of triplet–triplet annihilation upconversion (TTA-UC) is important for optimizing biological applications of upconversion. Here the temperature dependency of red-to-blue TTA-UC is reported in a variety of neutral PEGylated phospholipid liposomes. In these systems a delicate balance between lateral diffusion rate of the dyes, annihilator aggregation, and sensitizer self-quenching leads to a volcano plot, with the maximum upconversion intensity occurring near the main order–disorder transition temperature of the lipid membrane. PMID:28059523

  4. Optical transitions and frequency upconversion emission of Er 3+ions in novel lead-bismuthate glass

    NASA Astrophysics Data System (ADS)

    Sun, Hongtao; Dai, Shixun; Zhang, Debao; Xu, Shiqing; Zhang, Junjie; Hu, Lili; Jiang, Zhonghong

    2004-12-01

    Er 3+-doped strontiam lead bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt analysis was performed on the absorption spectrum and the transition probabilities, excited state lifetimes, and the fluorescence branching ratios were calculated and discussed. Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H→4I, 4S→4I, and 4F→4I, respectively, were observed. The upconversion mechanisms are discussed based on the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions.

  5. Infrared upconversion for astronomical applications. [laser applications to astronomical spectroscopy of infrared spectra

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kostiuk, T.; Ogilvie, K. W.

    1975-01-01

    The performance of an upconversion system is examined for observation of astronomical sources in the low to middle infrared spectral range. Theoretical values for the performance parameters of an upconversion system for astronomical observations are evaluated in view of the conversion efficiencies, spectral resolution, field of view, minimum detectable source brightness and source flux. Experimental results of blackbody measurements and molecular absorption spectrum measurements using a lithium niobate upconverter with an argon-ion laser as the pump are presented. Estimates of the expected optimum sensitivity of an upconversion device which may be built with the presently available components are given.

  6. Upconversion luminescence in BaMoO4:Pr3+ phosphor for display devices

    NASA Astrophysics Data System (ADS)

    Soni, Abhishek Kumar; Rai, Vineet Kumar

    2015-08-01

    The frequency upconversion is an important nonlinear optical property by which near infrared light is converted into the visible light. The BaMoO4:Pr3+ powder phosphor has been synthesized by solid state reaction method. The upconversion emission bands are recorded under the excitation of 808 nm diode laser. The phase formation of the prepared phosphor has been identified by powder X-ray diffraction (XRD) technique. The upconversion emission mechanism and colour coordinate have been explained by using energy level and CIE (International Commission on Illumination) chromaticity diagram study, respectively.

  7. 1D-VAR Retrieval Using Superchannels

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel; Larar, Allen; Smith, William L.; Schluessel, Peter; Mango, Stephen; SaintGermain, Karen

    2008-01-01

    Since modern ultra-spectral remote sensors have thousands of channels, it is difficult to include all of them in a 1D-var retrieval system. We will describe a physical inversion algorithm, which includes all available channels for the atmospheric temperature, moisture, cloud, and surface parameter retrievals. Both the forward model and the inversion algorithm compress the channel radiances into super channels. These super channels are obtained by projecting the radiance spectra onto a set of pre-calculated eigenvectors. The forward model provides both super channel properties and jacobian in EOF space directly. For ultra-spectral sensors such as Infrared Atmospheric Sounding Interferometer (IASI) and the NPOESS Airborne Sounder Testbed Interferometer (NAST), a compression ratio of more than 80 can be achieved, leading to a significant reduction in computations involved in an inversion process. Results will be shown applying the algorithm to real IASI and NAST data.

  8. Solar-Pumping Upconversion of Interfacial Coordination Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ishii, Ayumi; Hasegawa, Miki

    2017-01-01

    An interfacial coordination nanoparticle successfully exhibited an upconversion blue emission excited by very low-power light irradiation, such as sunlight. The interfacial complex was composed of Yb ions and indigo dye, which formed a nano-ordered thin shell layer on a Tm2O3 nanoparticle. At the surface of the Tm2O3 particle, the indigo dye can be excited by non-laser excitation at 640 nm, following the intramolecular energy transfer from the indigo dye to the Yb ions. Additionally, the excitation energy of the Yb ion was upconverted to the blue emission of the Tm ion at 475 nm. This upconversion blue emission was achieved by excitation with a CW Xe lamp at an excitation power of 0.14 mW/cm2, which is significantly lower than the solar irradiation power of 1.4 mW/cm2 at 640 ± 5 nm.

  9. Solar-Pumping Upconversion of Interfacial Coordination Nanoparticles

    PubMed Central

    Ishii, Ayumi; Hasegawa, Miki

    2017-01-01

    An interfacial coordination nanoparticle successfully exhibited an upconversion blue emission excited by very low-power light irradiation, such as sunlight. The interfacial complex was composed of Yb ions and indigo dye, which formed a nano-ordered thin shell layer on a Tm2O3 nanoparticle. At the surface of the Tm2O3 particle, the indigo dye can be excited by non-laser excitation at 640 nm, following the intramolecular energy transfer from the indigo dye to the Yb ions. Additionally, the excitation energy of the Yb ion was upconverted to the blue emission of the Tm ion at 475 nm. This upconversion blue emission was achieved by excitation with a CW Xe lamp at an excitation power of 0.14 mW/cm2, which is significantly lower than the solar irradiation power of 1.4 mW/cm2 at 640 ± 5 nm. PMID:28134295

  10. Photon correlation in single-photon frequency upconversion.

    PubMed

    Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping

    2012-01-30

    We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.

  11. A double responsive smart upconversion fluorescence sensing material for glycoprotein.

    PubMed

    Guo, Ting; Deng, Qiliang; Fang, Guozhen; Yun, Yaguang; Hu, Yongjin; Wang, Shuo

    2016-11-15

    A novel strategy was developed to prepare double responsive smart upconversion fluorescence material for highly specific enrichment and sensing of glycoprotein. The novel double responsive smart sensing material was synthesized by choosing Horse radish peroxidase (HRP) as modal protein, the grapheme oxide (GO) as support material, upconversion nanoparticles (UCNPs) as fluorescence signal reporter, N-isopropyl acrylamide (NIPAAM) and 4-vinylphenylboronic acid (VPBA) as functional monomers. The structure and component of smart sensing material was investigated by transmission electron microscopy (TEM), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared (FTIR), respectively. These results illustrated the smart sensing material was prepared successfully. The recognition characterizations of smart sensing material were evaluated, and results showed that the fluorescence intensity of smart sensing material was reduced gradually, as the concentration of protein increased, and the smart sensing material showed selective recognition for HRP among other proteins. Furthermore, the recognition ability of the smart sensing material for glycoprotein was regulated by controlling the pH value and temperature. Therefore, this strategy opens up new way to construct smart material for detection of glycoprotein.

  12. Frequency Up-Conversion Photon-Type Terahertz Imager

    NASA Astrophysics Data System (ADS)

    Fu, Z. L.; Gu, L. L.; Guo, X. G.; Tan, Z. Y.; Wan, W. J.; Zhou, T.; Shao, D. X.; Zhang, R.; Cao, J. C.

    2016-05-01

    Terahertz imaging has many important potential applications. Due to the failure of Si readout integrated circuits (ROICs) and the thermal mismatch between the photo-detector arrays and the ROICs at temperatures below 40 K, there are big technical challenges to construct terahertz photo-type focal plane arrays. In this work, we report pixel-less photo-type terahertz imagers based on the frequency up-conversion technique. The devices are composed of terahertz quantum-well photo-detectors (QWPs) and near-infrared (NIR) light emitting diodes (LEDs) which are grown in sequence on the same substrates using molecular beam epitaxy. In such an integrated QWP-LED device, photocurrent in the QWP drives the LED to emit NIR light. By optimizing the structural parameters of the QWP-LED, the QWP part and the LED part both work well. The maximum values of the internal and external energy up-conversion efficiencies are around 20% and 0.5%. A laser spot of a homemade terahertz quantum cascade laser is imaged by the QWP-LED together with a commercial Si camera. The pixel-less imaging results show that the image blurring induced by the transverse spreading of photocurrent is negligible. The demonstrated pixel-less imaging opens a new way to realize high performance terahertz imaging devices.

  13. Frequency Up-Conversion Photon-Type Terahertz Imager

    PubMed Central

    Fu, Z. L.; Gu, L. L.; Guo, X. G.; Tan, Z. Y.; Wan, W. J.; Zhou, T.; Shao, D. X.; Zhang, R.; Cao, J. C.

    2016-01-01

    Terahertz imaging has many important potential applications. Due to the failure of Si readout integrated circuits (ROICs) and the thermal mismatch between the photo-detector arrays and the ROICs at temperatures below 40 K, there are big technical challenges to construct terahertz photo-type focal plane arrays. In this work, we report pixel-less photo-type terahertz imagers based on the frequency up-conversion technique. The devices are composed of terahertz quantum-well photo-detectors (QWPs) and near-infrared (NIR) light emitting diodes (LEDs) which are grown in sequence on the same substrates using molecular beam epitaxy. In such an integrated QWP-LED device, photocurrent in the QWP drives the LED to emit NIR light. By optimizing the structural parameters of the QWP-LED, the QWP part and the LED part both work well. The maximum values of the internal and external energy up-conversion efficiencies are around 20% and 0.5%. A laser spot of a homemade terahertz quantum cascade laser is imaged by the QWP-LED together with a commercial Si camera. The pixel-less imaging results show that the image blurring induced by the transverse spreading of photocurrent is negligible. The demonstrated pixel-less imaging opens a new way to realize high performance terahertz imaging devices. PMID:27147281

  14. 75 FR 27411 - Airworthiness Directives; Turbomeca Arriel 1B, 1D, 1D1, and 1S1 Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... (that incorporate Turbomeca Modification (mod) TU 148), Arriel 1D, 1D1, and 1S1 turboshaft engines that do not incorporate mod TU 347. That AD also requires initial and repetitive replacements of 2nd stage... incorporate mod TU 148), 1D, 1D1, and 1S1 turboshaft engines that do not incorporate mod TU 347. We...

  15. Gold and Hairpin DNA Functionalization of Upconversion Nanocrystals for Imaging and In Vivo Drug Delivery.

    PubMed

    Han, Sanyang; Samanta, Animesh; Xie, Xiaoji; Huang, Ling; Peng, Juanjuan; Park, Sung Jin; Teh, Daniel Boon Loong; Choi, Yongdoo; Chang, Young-Tae; All, Angelo Homayoun; Yang, Yanmei; Xing, Bengang; Liu, Xiaogang

    2017-03-10

    Although multifunctional upconversion imaging probes have recently attracted considerable interest in biomedical research, there are currently few methods for stabilizing these luminescent nanoprobes with oligonucleotides in biological systems. Herein, a method to robustly disperse upconversion nanoprobes in physiological buffers based on rational design and synthesis of nanoconjugates comprising hairpin-DNA-modified gold nanoparticles is presented. This approach imparts the upconversion nanoprobes with excellent biocompatibility and circumvents the problem of particle agglomeration. By combining single-band anti-Stokes near-infrared emission and the photothermal effect mediated by the coupling of gold to upconversion nanoparticles, a simple, versatile nanoparticulate system for simultaneous deep-tissue imaging and drug molecule release in vivo is demonstrated.

  16. Synthesis and characterization of visible-to-UVC upconversion antimicrobial ceramics.

    PubMed

    Cates, Stephanie L; Cates, Ezra L; Cho, Min; Kim, Jae-Hong

    2014-02-18

    The objective of this study was to develop visible-to-ultraviolet C (UVC) upconversion ceramic materials, which inactivate surface-borne microbes through frequency amplification of ambient visible light. Ceramics were formed by high-temperature sintering of compacted yttrium silicate powders doped with Pr(3+) and Li(+). In comparison to previously reported upconversion surface coatings, the ceramics were significantly more durable and had greater upconversion efficiency under both laser and low-power visible light excitation. The antimicrobial activity of the surfaces under diffuse fluorescent light was assessed by measuring the inactivation of Bacillus subtilis spores, the rate of which was nearly 4 times higher for ceramic materials compared to the previously reported films. Enhanced UVC emissions were attributed to increased material thickness as well as increased crystallite size in the ceramics. These results represent significant advancement of upconversion surfaces for sustainable, light-activated disinfection applications.

  17. Recent emergence of photon upconversion based on triplet energy migration in molecular assemblies.

    PubMed

    Yanai, Nobuhiro; Kimizuka, Nobuo

    2016-04-07

    An emerging field of triplet energy migration-based photon upconversion (TEM-UC) is reviewed. Highly efficient photon upconversion has been realized in a wide range of chromophore assemblies, such as non-solvent liquids, ionic liquids, amorphous solids, gels, supramolecular assemblies, molecular crystals, and metal-organic frameworks (MOFs). The control over their assembly structures allows for unexpected air-stability and maximum upconversion quantum yield at weak solar irradiance that has never been achieved by the conventional molecular diffusion-based mechanism. The introduction of the "self-assembly" concept offers a new perspective in photon upconversion research and triplet exciton science, which show promise for numerous applications ranging from solar energy conversion to chemical biology.

  18. Recent Progress in 808 nm Excited Upconversion Nanomaterials as Multifunctional Nanoprobes for Visualized Theranostics in Cancers.

    PubMed

    Zeng, Leyong; Wu, Di; Tian, Ying; Pan, Yuanwei; Wu, Aiguo; Zhang, Jinchao; Lu, Guangming

    2017-03-20

    Near-infrared (NIR) light responsive nanomaterials have attracted considerable attention due to their location in the biological window. Especially, lanthanide-doped nanomaterials exhibit unique upconversion luminescence (UCL) properties with low background interference and long luminescence lifetime, which makes them promising in imaging diagnosis of cancers. Compared with traditional upconversion nanomaterials excited by 980 nm laser, 808 nm excitation can overcome the disadvantages of high heating effect and weak penetration depth induced by excitation source. Therefore, developing 808 nm excited upconversion nanoprobes will be important for the in vivo bio-imaging and visualized theranostics of tumors in deep-tissue. In the review paper, we systematically summarized the synthesis strategy and luminescence modulation of Nd3+-sensitized upconversion nanomaterials under 808 nm excitation, discussed the influence of excitation source on heating effect and penetration depth, and particularly focused on their applications in UCL imaging, multi-modal imaging and imaging-guided therapy of cancers.

  19. Intense upconversion fluorescence in Tm 3+/Yb3+ codoped alumina lead borate glasses

    NASA Astrophysics Data System (ADS)

    Krishna Murthy Goud, K.; Shekhar Reddy, M. Chandra; Appa Rao, B.

    2016-09-01

    The Tm3+/Yb3+ codoped alumina lead borate glasses were prepared by the conventional melt quenching technique. Optical absorption and FTIR spectra were recorded. The upconversion fluorescence spectra exhibited weak blue (480 nm) and intense red (660 nm) emissions due to 1G4 → 3H6 and 1G4 → 3H4 transitions, respectively. The results concluded that both emissions are due to three photon absorption process. It has been observed that in the upconversion efficiency increases with the increase in the concentration of Yb3+ ions. The strong red upconversion fluorescence indicate that Tm3+/Yb3+ codoped alumina lead borate glasses can be used as potential host material for upconversion lasers.

  20. Blue and white upconversion emissions of rare-earth ions-doped oxyfluoride phosphors

    NASA Astrophysics Data System (ADS)

    Pang, Tao; Cao, Wanghe; Xing, Mingming; Feng, Wei; Xu, Shujing

    2010-05-01

    A blue emitting upconversion phosphor based on Yb 3+ and Tm 3+ codoped oxyfluoride is reported. Under the excitation of a single 980 nm diode laser with the power density of 5.56 W/cm 2, the upconversion luminescence brightness can reaches to 13053 mcd/m 2, which is much stronger than that of commercial Y 2O 2S:Yb, Tm phosphors (8194 mcd/m 2). The research of upconversion mechanism indicates that cooperating sensitization dominates the emissions at 479 and 645 nm, while the emission at 454 nm results from the combination of cooperating sensitization and phonon-assisted energy transfer from Yb 3+ to Tm 3+. Also, bright upconversion white light is obtained by tri-doping of Er 3+, Tm 3+ and Yb 3+. Because the blue (main emission at 479 nm), green and red emissions are two-photon process, the white light is not sensitive to the pumping power.

  1. Up-conversion and Photoluminescence in Er3+ Single Crystal MgAl-spinel

    NASA Astrophysics Data System (ADS)

    Mironova-Ulmane, N.; Sarakovskis, A.; Skvortsova, V.

    Traditional and up-conversion luminescence of MgAl2O4 single crystal doped with erbium ions obtained by the Verneuil method has been investigated. The time resolved spectral measurements of the green and red up-conversion luminescence bands show that a build-up part is present in the up-conversion luminescence kinetics. This means that energy transfer process is involved in the creation of the luminescence. Considering rather small concentration of Er3+ in the material (0.12 mass %), the expected up-conversion mechanism should be excited state absorption since the average distance between erbium ions is high. The above-mentioned considerations suggest that clustering of the activator ions is present in the material, which is supported by SEM analysis.

  2. Internal upconversion and doubling of an optical parametric oscillator to extend the tuning range.

    NASA Technical Reports Server (NTRS)

    Campillo, A. J.

    1972-01-01

    Efficient extension of the tuning range of a 1.09-1.95-micron parametric oscillator to 0.435-0.975 microns by upconversion and doubling internally to the oscillator cavity is reported. Unlike previously studied external mixing, internal upconversion and doubling yielded uniform powers of 30 and 60 kW, respectively, over the entire extended tuning range with an unfocused 2-mm ruby laser pump beam of 750 kW.-

  3. Very low threshold green lasing in microspheres by up-conversion of IR photons

    NASA Astrophysics Data System (ADS)

    von Klitzing, W.; Jahier, E.; Long, R.; Lissillour, F.; Lefèvre-Seguin, V.; Hare, J.; Raimond, J.-M.; Haroche, S.

    2000-04-01

    A green up-conversion laser is demonstrated in a 120 µm diameter microsphere of Er 3+-doped ZBLAN at room temperature. Lasing occurs around 540 nm with a 801 nm diode laser pump. The lasing threshold of only 30 µW of absorbed power is over two orders of magnitude lower than the lowest previously observed in IR-visible up-conversion lasing (Funk D S et al 1997 Electron. Lett. 33 1958-60).

  4. 1D-1D Coulomb drag in a 6 Million Mobility Bi-layer Heterostructure

    NASA Astrophysics Data System (ADS)

    Bilodeau, Simon; Laroche, Dominique; Xia, Jian-Sheng; Lilly, Mike; Reno, John; Pfeiffer, Loren; West, Ken; Gervais, Guillaume

    We report Coulomb drag measurements in vertically-coupled quantum wires. The wires are fabricated in GaAs/AlGaAs bilayer heterostructures grown from two different MBE chambers: one at Sandia National Laboratories (1.2M mobility), and the other at Princeton University (6M mobility). The previously observed positive and negative drag signals are seen in both types of devices, demonstrating the robustness of the result. However, attempts to determine the temperature dependence of the drag signal in the 1D regime proved challenging in the higher mobility heterostructure (Princeton), in part because of difficulties in aligning the wires within the same transverse subband configuration. Nevertheless, this work, performed at the Microkelvin laboratory of the University of Florida, is an important proof-of-concept for future investigations of the temperature dependence of the 1D-1D drag signal down to a few mK. Such an experiment could confirm the Luttinger charge density wave interlocking predicted to occur in the wires. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL8500.

  5. Quantum frequency up-conversion of continuous variable entangled states

    SciTech Connect

    Liu, Wenyuan; Wang, Ning; Li, Zongyang; Li, Yongmin

    2015-12-07

    We demonstrate experimentally quantum frequency up-conversion of a continuous variable entangled optical field via sum-frequency-generation process. The two-color entangled state initially entangled at 806 and 1518 nm with an amplitude quadrature difference squeezing of 3.2 dB and phase quadrature sum squeezing of 3.1 dB is converted to a new entangled state at 530 and 1518 nm with the amplitude quadrature difference squeezing of 1.7 dB and phase quadrature sum squeezing of 1.8 dB. Our implementation enables the observation of entanglement between two light fields spanning approximately 1.5 octaves in optical frequency. The presented scheme is robust to the excess amplitude and phase noises of the pump field, making it a practical building block for quantum information processing and communication networks.

  6. Dispersing upconversion nanocrystals in a single silicon microtube

    PubMed Central

    Li, Hanyang; Wang, Yan; Li, Hui; Zhang, Yundong; Yang, Jun

    2016-01-01

    Nanocrystals of Ln3+ (Ln = Yb, Tm and Ho) doped β-NaLuF4 with average diameter about 200 nm are dispersed in silica-based microtube (MT) by a simple flame heating method. The fabricated microtube has a diameter range from 2 μm to 30 μm and lengths up to hundreds microns. The fluorescence of upconversion nanocrystals (UCNCs) can propagate along a single MT and couple into another MT through evanescent field. The guiding performance of the single UCNCs doped MT is measured to prove that it can be used as an active waveguide. Moreover, optical temperature sensing based on the single UCNCs-MT is also demonstrated, and the sensitivity of UCNCs-MT is significantly enough for thermometry applications in the range of 298–383 K. PMID:27779210

  7. Upconversion Nanoparticles: Synthesis, Surface Modification, and Biological Applications

    PubMed Central

    Wang, Meng; Abbineni, Gopal; Clevenger, April; Mao, Chuanbin; Xu, Shukun

    2011-01-01

    New generation fluorophores, also termed upconversion nanoparticles (UCNPs), have the ability to convert near infrared radiations with lower energy into visible radiations with higher energy via a non-linear optical process. Recently, these UCNPs have evolved as alternative fluorescent labels to traditional fluorophores, showing great potential for imaging and biodetection assays in both in vitro and in vivo applications. UCNPs exhibit unique luminescent properties, including high penetration depth into tissues, low background signals, large Stokes shifts, sharp emission bands, and high resistance to photo-bleaching, making UCNPs an attractive alternative source for overcoming current limitations in traditional fluorescent probes. In this review, we discuss the recent progress in the synthesis and surface modification of rare earth doped UCNPs with a specific focus on their biological applications. PMID:21419877

  8. 3D Rare earth porous coordination frameworks with formamide generated in situ syntheses: Crystal structure and down- and up-conversion luminescence

    SciTech Connect

    Ma, Xue; Tian, Jing; Yang, Hong-Y.; Zhao, Kai; Li, Xia

    2013-05-01

    The reaction of RE(NO)₃·6H₂O and formamide yielded the coordination polymers, [RE(HCOO)₄]⁻[NH₂CHNH₂]⁺ (RE=Y 1, Eu 2, Gd 3, Tb 4, Dy 5, Er 6, and Yb 7). They possess 3D porous frameworks with the 1D rhombic channels occupied by [NH₂CHNH₂]⁺ cations. Complexes 2 and 4 display the characteristic down-conversion emissions corresponding to ⁵D₀→⁷FJ (J=1–4) transitions of Eu(III) ion and ⁵D₄→⁷FJ (J=6–3) transitions of Tb(III) ion, respectively. Longer lifetime values of 2.128±0.002 ms (⁵D₀) for 2 and 2.132±0.002 ms (⁵D₄) for 4 have been observed. The up-conversion spectra of the Y:Yb,Er and Gd:Yb,Er codoped complexes exhibit three emission bands around 410 (⁴H9/2→⁴I15/2, blue), 518–570 (⁴S3/2, ²H11/2→⁴I15/2, green), and 655 nm (⁴F9/2→⁴I15/2, red). - Graphical Abstract: The complexes [RE(HCOO)₄]⁻[NH₂CHNH₂]⁺ possess 3D porous frameworks. Eu(III) and Tb(III) complexes show characteristic emission of Ln(III) ions. The up-conversion emission of the Y:Yb,Er and Gd:Yb,Er codoped complexes was observed. Highlights: •The reaction of RE(NO)₃·6H₂O and formamide produced complexes [RE(HCOO)₄]⁻[NH₂CHNH₂]⁺. • The complexes possess 3D frameworks with the 1D channels occupied by [NH₂CHNH₂]+ cations. • Eu(III)/Tb(III) complexes display the characteristic down-conversion emission of Ln(III) ions. • The Y:Yb,Er and Gd:Yb,Er doped complexes exhibit the up-conversion emission.

  9. Facile Co-Assembly of a Dipeptide-Based Organogel toward Efficient Triplet-Triplet Annihilation Photonic Upconversion.

    PubMed

    Liu, Xingcen; Fei, Jinbo; Zhu, Pengli; Li, Junbai

    2016-10-06

    By one-step molecular co-assembly, a diphenylalanine-based photonic upconversion organogel was constructed within 20 seconds. Impressively, such an assembled system exhibits green-to-blue triplet-triplet annihilation upconversion with a relative quantum yield of 12 % even under ambient conditions.

  10. Experimental demonstration of plasmon enhanced energy transfer rate in NaYF4:Yb3+,Er3+ upconversion nanoparticles

    PubMed Central

    Lu, Dawei; Mao, Chenchen; Cho, Suehyun K.; Ahn, Sungmo; Park, Wounjhang

    2016-01-01

    Energy transfer upconversion (ETU) is known to be the most efficient frequency upconversion mechanism. Surface plasmon can further enhance the upconversion process, opening doors to many applications. However, ETU is a complex process involving competing transitions between multiple energy levels and it has been difficult to precisely determine the enhancement mechanisms. In this paper, we report a systematic study on the dynamics of the ETU process in NaYF4:Yb3+,Er3+ nanoparticles deposited on plasmonic nanograting structure. From the transient near-infrared photoluminescence under various excitation power densities, we observed faster energy transfer rates under stronger excitation conditions until it reached saturation where the highest internal upconversion efficiency was achieved. The experimental data were analyzed using the complete set of rate equations. The internal upconversion efficiency was found to be 56% and 36%, respectively, with and without the plasmonic nanograting. We also analyzed the transient green emission and found that it is determined by the infrared transition rate. To our knowledge, this is the first report of experimentally measured internal upconversion efficiency in plasmon enhanced upconversion material. Our work decouples the internal upconversion efficiency from the overall upconverted luminescence efficiency, allowing more targeted engineering for efficiency improvement. PMID:26739230

  11. A bis-cyclometalated iridium complex as a benchmark sensitizer for efficient visible-to-UV photon upconversion.

    PubMed

    Duan, Pengfei; Yanai, Nobuhiro; Kimizuka, Nobuo

    2014-11-07

    To resolve the biggest problem in visible-to-UV photon upconversion based on sensitized triplet-triplet annihilation-the quenching of upconverted fluorescence by sensitizers-we discovered a superior sensitizer with less UV absorption intensity that enables highly efficient, low-power (0.78 mW cm(-2)) visible-to-UV upconversion.

  12. Experimental demonstration of plasmon enhanced energy transfer rate in NaYF4:Yb3+,Er3+ upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Lu, Dawei; Mao, Chenchen; Cho, Suehyun K.; Ahn, Sungmo; Park, Wounjhang

    2016-01-01

    Energy transfer upconversion (ETU) is known to be the most efficient frequency upconversion mechanism. Surface plasmon can further enhance the upconversion process, opening doors to many applications. However, ETU is a complex process involving competing transitions between multiple energy levels and it has been difficult to precisely determine the enhancement mechanisms. In this paper, we report a systematic study on the dynamics of the ETU process in NaYF4:Yb3+,Er3+ nanoparticles deposited on plasmonic nanograting structure. From the transient near-infrared photoluminescence under various excitation power densities, we observed faster energy transfer rates under stronger excitation conditions until it reached saturation where the highest internal upconversion efficiency was achieved. The experimental data were analyzed using the complete set of rate equations. The internal upconversion efficiency was found to be 56% and 36%, respectively, with and without the plasmonic nanograting. We also analyzed the transient green emission and found that it is determined by the infrared transition rate. To our knowledge, this is the first report of experimentally measured internal upconversion efficiency in plasmon enhanced upconversion material. Our work decouples the internal upconversion efficiency from the overall upconverted luminescence efficiency, allowing more targeted engineering for efficiency improvement.

  13. Er{sup 3+}/Yb{sup 3+}co-doped bismuth molybdate nanosheets upconversion photocatalyst with enhanced photocatalytic activity

    SciTech Connect

    Adhikari, Rajesh; Gyawali, Gobinda; Cho, Sung Hun; Narro-García, R.; Sekino, Tohru; Lee, Soo Wohn

    2014-01-15

    In this paper, we report the microwave hydrothermal synthesis of Er{sup 3+}/Yb{sup 3+} co-doped Bi{sub 2}MoO{sub 6} upconversion photocatalyst. Crystal structure, morphology, elemental composition, optical properties and BET surface area were analyzed in detail. Infrared to visible upconversion luminescence at 532 nm and 546 nm of the co-doped samples was investigated under excitation at 980 nm. The results revealed that the co-doping of Er{sup 3+}/Yb{sup 3+} into Bi{sub 2}MoO{sub 6} exhibited enhanced photocatalytic activity for the decomposition of rhodamine B under simulated solar light irradiation. Enhanced photocatalytic activity can be attributed to the energy transfer between Er{sup 3+}/Yb{sup 3+} and Bi{sub 2}MoO{sub 6} via infrared to visible upconversion from Er{sup 3+}/Yb{sup 3+} ion and higher surface area of the Bi{sub 2}MoO{sub 6} nanosheets. Therefore, this synthetic approach may exhibit a better alternative to fabricate upconversion photocatalyst for integral solar light absorption. - Graphical abstract: Schematic illustration of the upconversion photocatalysis. Display Omitted - Highlights: • Er{sup 3+}/Yb{sup 3+} co-doped Bi{sub 2}MoO{sub 6} upconversion photocatalyst is successfully synthesized. • We obtained the nanosheets having high surface area. • Upconversion of IR to visible light was confirmed. • Upconversion phenomena can be utilized for effective photocatalysis.

  14. Laser polarization and phase control of up-conversion fluorescence in rare-earth ions

    PubMed Central

    Yao, Yunhua; Zhang, Shian; Zhang, Hui; Ding, Jingxin; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong

    2014-01-01

    We theoretically and experimentally demonstrate the up-conversion fluorescence control via resonance-mediated two-photon absorption in rare-earth ions by varying both the laser polarization and phase. We show that both the laser polarization and phase can control the up-conversion fluorescence, and the up-conversion fluorescence intensity is decreased when the laser polarization changes from linear through elliptical to circular. We also show that the laser polarization will affect the control efficiency of the up-conversion fluorescence by varying the laser phase, and the circular polarization will reduce the control efficiency. Furthermore, we suggest that the control efficiency by varying the laser polarization and the effect of the laser polarization on the control efficiency by varying the laser phase can be artificially manipulated by controlling the laser spectral bandwidth. This optical control method opens a new opportunity to control the up-conversion fluorescence of rare-earth ions, which may have significant impact on the related applications of rare-earth ions. PMID:25465401

  15. Enhancement of the up-conversion luminescence from NaYF4:Yb3+,Tb3+

    NASA Astrophysics Data System (ADS)

    Hölsä, Jorma; Laihinen, Tero; Laamanen, Taneli; Lastusaari, Mika; Pihlgren, Laura; Rodrigues, Lucas C. V.; Soukka, Tero

    2014-04-01

    The synthesis conditions of the Yb3+ and Tb3+ co-doped NaYF4 were optimized by reducing the number of washings to include only ethanol. The avoidance of the loss of amorphous NaF prior to post-annealing of the as-prepared materials resulted in the enhancement of the otherwise rather weak up-conversion from Tb3+ by 1-2 orders of magnitude. At the same time, the temperature of formation of the hexagonal NaRF4 phase with high up-conversion could be lowered by 100 °C down to 350 °C. This improvement in up-conversion was concluded to result from the better stoichiometry of the material without washing with water. The deficit of Na+ would result in the excess of fluoride which, although not as fatal to the luminescence as the fluoride vacancies, has serious implications to the up-conversion intensity. A further enhancement in the up-conversion luminescence was observed to be due to the Er3+ ion impurity frequently associated with high-concentration Yb3+ materials. The mechanism involving the unintentional Er3+ sensitizer and the resonance energy transfer in the Yb3+-Er3+-Tb3+ co-doped NaYF4 were discussed based on the energy level schemes of the Yb3+, Er3+, and Tb3+ ions in NaYF4.

  16. Photon energy upconversion through thermal radiation with the power efficiency reaching 16%.

    PubMed

    Wang, Junxin; Ming, Tian; Jin, Zhao; Wang, Jianfang; Sun, Ling-Dong; Yan, Chun-Hua

    2014-11-28

    The efficiency of many solar energy conversion technologies is limited by their poor response to low-energy solar photons. One way for overcoming this limitation is to develop materials and methods that can efficiently convert low-energy photons into high-energy ones. Here we show that thermal radiation is an attractive route for photon energy upconversion, with efficiencies higher than those of state-of-the-art energy transfer upconversion under continuous wave laser excitation. A maximal power upconversion efficiency of 16% is achieved on Yb(3+)-doped ZrO2. By examining various oxide samples doped with lanthanide or transition metal ions, we draw guidelines that materials with high melting points, low thermal conductivities and strong absorption to infrared light deliver high upconversion efficiencies. The feasibility of our upconversion approach is further demonstrated under concentrated sunlight excitation and continuous wave 976-nm laser excitation, where the upconverted white light is absorbed by Si solar cells to generate electricity and drive optical and electrical devices.

  17. Two-photon upconversion affected by intermolecule correlations near metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Osaka, Yoshiki; Yokoshi, Nobuhiko; Ishihara, Hajime

    2016-04-01

    We investigate an efficient two-photon upconversion process in more than one molecule coupled to an optical antenna. In the previous paper [Y. Osaka et al., Phys. Rev. Lett. 112, 133601 (2014), 10.1103/PhysRevLett.112.133601], we considered the two-photon upconversion process in a single molecule within one-dimensional input-output theory and revealed that controlling the antenna-molecule coupling enables the efficient upconversion with radiative loss in the antenna suppressed. In this paper, aiming to propose a way to enhance the total probability of antenna-photon scattering, we extend the model to the case of multiple molecules. In general, the presence of more than one molecule decreases the upconversion probability because they equally share the energy of the two photons. However, it is shown that we can overcome the difficulty by controlling the intermolecule coupling. Our result implies that, without increasing the incident photon number (light power), we can enlarge the net probability of the two-photon upconversion.

  18. Upconversion photon quantification of holmium and erbium ions in waveguide-adaptive germanate glasses

    NASA Astrophysics Data System (ADS)

    Zhu, C. L.; Pun, E. Y. B.; Wang, Z. Q.; Lin, H.

    2017-02-01

    Visible upconversion photons have been quantified precisely in Ho3+/Yb3+ and Er3+/Yb3+ doped waveguide-adaptive aluminum germanate (NMAG) glasses, and effective red and green upconversion emissions generated from Ho3+ and Er3+ were illustrated in contrast. The emission photon numbers are identified as a positive correlation with the laser power densities, and stronger dominance of red emission in the Ho3+/Yb3+ doped NMAG glasses and more effectiveness of photon generation in Er3+/Yb3+ doped case were proved. When the power density is 1227 W/cm2, the absolute quantum yields for red and green (660 and 548 nm) upconversion fluorescences are derived to be 2.41 × 10-5 and 0.17 × 10-5 in Ho3+/Yb3+ doped NMAG glasses, and the ones (665 and 548 nm) in Er3+/Yb3+ doped NMAG glasses are 4.26 × 10-5 and 1.44 × 10-5. The macroscopic quantization of red and green upconversion emissions in Ho3+/Yb3+ and Er3+/Yb3+ doped waveguide-adaptive NMAG glasses provides the original referenced data for developing upconversion waveguide-typed irradiation light sources.

  19. Upconversion color tunability and white light generation in Tm 3+/Ho 3+/Yb 3+ doped aluminum germanate glasses

    NASA Astrophysics Data System (ADS)

    Gong, Hua; Yang, Dianlai; Zhao, Xin; Yun Bun Pun, Edwin; Lin, Hai

    2010-02-01

    Tm 3+/Ho 3+/Yb 3+ triply doped aluminum germanate glasses exhibiting multicolor upconversion fluorescences have been fabricated and characterized. Efficient three-photon blue upconversion emission of Tm 3+ and two-photon green and red upconversion fluorescences of Ho 3+ have been observed. The strong red emission of Ho 3+, which is more than eight times higher than that of the green emission, is desirable in achieving high color rendering index. By varying the excitation power of the 974 nm wavelength laser diode, a series of white fluorescences with a large range of correlated color temperature ( CCT) was obtained, and the fluorescence colors can be tuned from yellowish white to warm white, pure white, cool white, and bluish white with different CCT. The upconversion color tunability via pump power adjustment will promote the development of three-dimensional solid-state displays and upconversion illumination devices.

  20. Polarization-dependent extraordinary optical transmission from upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Peng Hui; Salcedo, Walter J.; Pichaandi, Jothirmayanantham; van Veggel, Frank C. J. M.; Brolo, Alexandre G.

    2015-10-01

    Enhanced upconversion (UC) emission was experimentally demonstrated using gold double antenna nanoparticles coupled to nanoslits in gold films. The transmitted red emission from UC ytterbium and erbium co-doped sodium yttrium fluoride (NaYF4:Yb3+/Er3+) nanoparticles (UC NPs) at ~665 nm (excited with a 980 nm diode laser) was enhanced relative to the green emission at ~550 nm. The relatively enhanced UC NP emission could be tuned by the different polarization-dependent extraordinary optical transmission modes coupled to the gold nanostructures. Finite-difference time-domain calculations suggest that the preferential enhanced UC emission is related to a combination of different surface plasmon mode excitation coupling to cavity Fabry-Perot interactions. A maximum UC enhancement of 6-fold was measured for nanoslit arrays in the absence of the double antennas. In the presence of the double nanoantennas inside the nanoslits, the UC enhancement was between 2- and 4-fold, depending on the experimental conditions.Enhanced upconversion (UC) emission was experimentally demonstrated using gold double antenna nanoparticles coupled to nanoslits in gold films. The transmitted red emission from UC ytterbium and erbium co-doped sodium yttrium fluoride (NaYF4:Yb3+/Er3+) nanoparticles (UC NPs) at ~665 nm (excited with a 980 nm diode laser) was enhanced relative to the green emission at ~550 nm. The relatively enhanced UC NP emission could be tuned by the different polarization-dependent extraordinary optical transmission modes coupled to the gold nanostructures. Finite-difference time-domain calculations suggest that the preferential enhanced UC emission is related to a combination of different surface plasmon mode excitation coupling to cavity Fabry-Perot interactions. A maximum UC enhancement of 6-fold was measured for nanoslit arrays in the absence of the double antennas. In the presence of the double nanoantennas inside the nanoslits, the UC enhancement was between 2- and 4-fold

  1. Shape, size, and phase-controlled rare-Earth fluoride nanocrystals with optical up-conversion properties.

    PubMed

    Zhang, Fan; Li, Jing; Shan, Jiong; Xu, Lei; Zhao, Dongyuan

    2009-10-19

    High-quality rare-earth fluorides, alpha-NaMF(4) (M=Dy, Ho, Er, Tm, Y, Yb, and Lu) nanocrystals and beta-NaMF(4) (M=Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y, Yb, and Lu) nanoarrays, have been synthesized by using oleic acid as a stabilizing agent through a facile hydrothermal method at 130-230 degrees C. The phase, shape, and size of the products are varied by careful control of synthetic conditions, including hydrothermal temperature and time, and the amounts of reactants and solvents. Tuning the hydrothermal temperature, time, and the amount of NaOH can cause the transformation from the cubic alpha-NaMF(4) to hexagonal phase beta-NaMF(4). Upon adjustment of the amount of NaOH, NaF, M(3+), and ethanol, the morphologies for the beta-NaMF(4) nanoarrays can range from tube, rod, wire, and zigzagged rod, to flower-patterned disk. Simultaneously, the size of the rare-earth fluoride crystals is variable from 5 nm to several micrometers. A combination of "diffusion-controlled growth" and the "organic-inorganic interface effect" is proposed to understand the formation of the nanocrystals. An ideal "1D growth" of rare-earth fluorides is preferred at high temperatures and high ethanol contents, from which the tube- and rodlike nanoarrays with high aspect ratio are obtained. In contrast, the disklike beta-NaMF(4) nanoarrays with low aspect ratios are produced by decreasing the ethanol content or prolonging the reaction time, an effect probably caused by "1D/2D ripening". Multicolor up-conversion fluorescence is also successfully realized in the Yb(3+)/Er(3+) (green, red) and Yb(3+)/Tm(3+) (blue) co-doped alpha-NaYF(4) nanocrystals and beta-NaYF(4) nanoarrays by excitation in the NIR region (980 nm).

  2. Triplet-triplet annihilation photon-upconversion: towards solar energy applications.

    PubMed

    Gray, Victor; Dzebo, Damir; Abrahamsson, Maria; Albinsson, Bo; Moth-Poulsen, Kasper

    2014-06-14

    Solar power production and solar energy storage are important research areas for development of technologies that can facilitate a transition to a future society independent of fossil fuel based energy sources. Devices for direct conversion of solar photons suffer from poor efficiencies due to spectrum losses, which are caused by energy mismatch between the optical absorption of the devices and the broadband irradiation provided by the sun. In this context, photon-upconversion technologies are becoming increasingly interesting since they might offer an efficient way of converting low energy solar energy photons into higher energy photons, ideal for solar power production and solar energy storage. This perspective discusses recent progress in triplet-triplet annihilation (TTA) photon-upconversion systems and devices for solar energy applications. Furthermore, challenges with evaluation of the efficiency of TTA-photon-upconversion systems are discussed and a general approach for evaluation and comparison of existing systems is suggested.

  3. Realizing up-conversion fluorescence tuning in lanthanide-doped nanocrystals by femtosecond pulse shaping method

    PubMed Central

    Zhang, Shian; Yao, Yunhua; Shuwu, Xu; Liu, Pei; Ding, Jingxin; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong

    2015-01-01

    The ability to tune color output of nanomaterials is very important for their applications in laser, optoelectronic device, color display and multiplexed biolabeling. Here we first propose a femtosecond pulse shaping technique to realize the up-conversion fluorescence tuning in lanthanide-doped nanocrystals dispersed in the glass. The multiple subpulse formation by a square phase modulation can create different excitation pathways for various up-conversion fluorescence generations. By properly controlling these excitation pathways, the multicolor up-conversion fluorescence can be finely tuned. This color tuning by the femtosecond pulse shaping technique is realized in single material by single-color laser field, which is highly desirable for further applications of the lanthanide-doped nanocrystals. This femtosecond pulse shaping technique opens an opportunity to tune the color output in the lanthanide-doped nanocrystals, which may bring a new revolution in the control of luminescence properties of nanomaterials. PMID:26290391

  4. Solid state photon upconversion utilizing thermally activated delayed fluorescence molecules as triplet sensitizer

    SciTech Connect

    Wu, Tony C.; Congreve, Daniel N.; Baldo, Marc A.

    2015-07-20

    The ability to upconvert light is useful for a range of applications, from biological imaging to solar cells. But modern technologies have struggled to upconvert incoherent incident light at low intensities. Here, we report solid state photon upconversion employing triplet-triplet exciton annihilation in an organic semiconductor, sensitized by a thermally activated-delayed fluorescence (TADF) dye. Compared to conventional phosphorescent sensitizers, the TADF dye maximizes the wavelength shift in upconversion due to its small singlet-triplet splitting. The efficiency of energy transfer from the TADF dye is 9.1%, and the conversion yield of sensitizer exciton pairs to singlet excitons in the annihilator is 1.1%. Our results demonstrate upconversion in solid state geometries and with non-heavy metal-based sensitizer materials.

  5. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers

    NASA Astrophysics Data System (ADS)

    Zhou, Lei; Wang, Rui; Yao, Chi; Li, Xiaomin; Wang, Chengli; Zhang, Xiaoyan; Xu, Congjian; Zeng, Aijun; Zhao, Dongyuan; Zhang, Fan

    2015-04-01

    The identification of potential diagnostic markers and target molecules among the plethora of tumour oncoproteins for cancer diagnosis requires facile technology that is capable of quantitatively analysing multiple biomarkers in tumour cells and tissues. Diagnostic and prognostic classifications of human tumours are currently based on the western blotting and single-colour immunohistochemical methods that are not suitable for multiplexed detection. Herein, we report a general and novel method to prepare single-band upconversion nanoparticles with different colours. The expression levels of three biomarkers in breast cancer cells were determined using single-band upconversion nanoparticles, western blotting and immunohistochemical technologies with excellent correlation. Significantly, the application of antibody-conjugated single-band upconversion nanoparticle molecular profiling technology can achieve the multiplexed simultaneous in situ biodetection of biomarkers in breast cancer cells and tissue specimens and produce more accurate results for the simultaneous quantification of proteins present at low levels compared with classical immunohistochemical technology.

  6. Phase closure retrieval in an infrared-to-visible upconversion interferometer for high resolution astronomical imaging.

    PubMed

    Ceus, Damien; Tonello, Alessandro; Grossard, Ludovic; Delage, Laurent; Reynaud, François; Herrmann, Harald; Sohler, Wolfgang

    2011-04-25

    This paper demonstrates the use of a nonlinear upconversion process to observe an infrared source through a telescope array detecting the interferometric signal in the visible domain. We experimentally demonstrate the possibility to retrieve information on the phase of the object spectrum of an infrared source by using a three-arm upconversion interferometer. We focus our study on the acquisition of phase information of the complex visibility by means of the phase closure technique. In our experimental demonstration, a laboratory binary star with an adjustable photometric ratio is used as a test source. A real time comparison between a standard three-arm interferometer and our new concept using upconversion by sum-frequency generation demonstrates the preservation of phase information which is essential for image reconstruction.

  7. Video rate passive millimeter-wave imager utilizing optical upconversion with improved size, weight, and power

    NASA Astrophysics Data System (ADS)

    Martin, Richard D.; Shi, Shouyuan; Zhang, Yifei; Wright, Andrew; Yao, Peng; Shreve, Kevin P.; Schuetz, Christopher A.; Dillon, Thomas E.; Mackrides, Daniel G.; Harrity, Charles E.; Prather, Dennis W.

    2015-05-01

    In this presentation we will discuss the performance and limitations of our 220 channel video rate passive millimeter wave imaging system based on a distributed aperture with optical upconversion architecture. We will cover our efforts to reduce the cost, size, weight, and power (CSWaP) requirements of our next generation imager. To this end, we have developed custom integrated circuit silicon-germanium (SiGe) low noise amplifiers that have been designed to efficiently couple with our high performance lithium niobate upconversion modules. We have also developed millimeter wave packaging and components in multilayer liquid crystal polymer (LCP) substrates which greatly improve the manufacturability of the upconversion modules. These structures include antennas, substrate integrated waveguides, filters, and substrates for InP and SiGe mmW amplifiers.

  8. Fluorescence upconversion properties of a class of improved pyridinium dyes induced by two-photon absorption

    NASA Astrophysics Data System (ADS)

    Xu, Guibao; Hu, Dawei; Zhao, Xian; Shao, Zongshu; Liu, Huijun; Tian, Yupeng

    2007-06-01

    We report the fluorescence upconversion properties of a class of improved pyridinium toluene- p-sulfonates having donor- π-acceptor (D- π-A) structure under two-photon excitation at 1064 nm. The experimental results show that both the two-photon excited (TPE) fluorescence lifetime and the two-photon pumped (TPP) energy upconversion efficiency were increased with the enhancement of electron-donating capability of the donor in the molecule. It is also indicated that an overlong alkyl group tends to result in a weakened molecular conjugation, leading to a decreased two-photon absorption (TPA) cross section. By choosing the donor, we can obtain a longest fluorescence lifetime of 837 ps, a highest energy upconversion efficiency of ˜6.1%, and a maximum TPA cross-section of 8.74×10 -48 cm 4 s/photon in these dyes.

  9. Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals

    PubMed Central

    Wang, Ya-Lan; Mohammadi Estakhri, Nasim; Johnson, Amber; Li, Hai-Yang; Xu, Li-Xiang; Zhang, Zhenyu; Alù, Andrea; Wang, Qu-Quan; Shih, Chih-Kang (Ken)

    2015-01-01

    By using silver nanoplatelets with a widely tunable localized surface plasmon resonance (LSPR), and their corresponding local field enhancement, here we show large manipulation of plasmonic enhanced upconversion in NaYF4:Yb3+/Er3+ nanocrystals at the single particle level. In particular, we show that when the plasmonic resonance of silver nanolplatelets is tuned to 656 nm, matching the emission wavelength, an upconversion enhancement factor ~5 is obtained. However, when the plasmonic resonance is tuned to 980 nm, matching the nanocrystal absorption wavelength, we achieve an enhancement factor of ~22 folds. The precise geometric arrangement between fluorescent nanoparticles and silver nanoplatelets allows us to make, for the first time, a comparative analysis between experimental results and numerical simulations, yielding a quantitative agreement at the single particle level. Such a comparison lays the foundations for a rational design of hybrid metal-fluorescent nanocrystals to harness the upconversion enhancement for biosensing and light harvesting applications. PMID:25976870

  10. Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers

    PubMed Central

    Xu, Sai; Dong, Biao; Zhou, Donglei; Yin, Ze; Cui, Shaobo; Xu, Wen; Chen, Baojiu; Song, Hongwei

    2016-01-01

    A paper-based upconversion fluorescence resonance energy transfer assay device is proposed for sensitive detection of CEA. The device is fabricated on a normal filter paper with simple nano-printing method. Upconversion nanoparticles tagged with specific antibodies are printed to the test zones on the test paper, followed by the introduction of assay antigen. Upconversion fluorescence measurements are directly conducted on the test zones after the antigen-to-antibody reactions. Furthermore, a multi-channel test paper for simultaneous detection of multiple cancer biomarkers was established by the same method and obtained positive results. The device showed high anti-interfere, stability, reproducible and low detection limit (0.89 ng/mL), moreover it is very easy to fabricate and operate, which is a promising prospect for a clinical point-of-care test. PMID:27001460

  11. Infrared to visible upconversion fluorescence in Yb,Tm:YAG single crystal

    NASA Astrophysics Data System (ADS)

    Xu, Wenwei; Xu, Xiaodong; Wu, Feng; Zhao, Guangjun; Zhao, Zhiwei; Zhou, Guoqing; Xu, Jun

    2007-04-01

    Absorption spectrum from 400 to 2000 nm and upconversion fluorescence spectra under 940 nm pumping of YAG single crystal codoped with 5 at.% Yb3+ and 4 at.% Tm3+ were studied at room temperature. The blue upconversion emission centered at 483 nm corresponds to the transition 1G4 → 3H6, the emission band around 646 nm corresponds to the transition 1G4 → 3F4 of Tm3+. Energy transfer from Yb3+ to Tm3+ is mainly nonradiative and the transfer efficiency was experimentally assessed. The line strengths, transition probabilities and radiative lifetimes of 1G4 level were calculated by using Judd-Ofelt theory. Gain coefficient calculated from spectra shows that the upconversion corresponding with transitions 1G4 → 3H6 in YAG doped with Yb3+ and Tm3+ is potentially useful for blue light output.

  12. Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy

    NASA Astrophysics Data System (ADS)

    Cheng, Liang; Wang, Chao; Liu, Zhuang

    2012-12-01

    Upconversion nanoparticles (UCNPs), particularly lanthanide-doped nanocrystals, which emit high energy photons under excitation by the near-infrared (NIR) light, have found potential applications in many different fields, including biomedicine. Compared with traditional down-conversion fluorescence imaging, the NIR light excited upconversion luminescence (UCL) imaging relying on UCNPs exhibits improved tissue penetration depth, higher photochemical stability, and is free of auto-fluorescence background, which promises biomedical imaging with high sensitivity. On the other hand, the unique upconversion process of UCNPs may be utilized to activate photosensitive therapeutic agents for applications in cancer treatment. Moreover, the integration of UCNPs with other functional nanostructures could result in the obtained nanocomposites having highly enriched functionalities, useful in imaging-guided cancer therapies. This review article will focus on the biomedical imaging and cancer therapy applications of UCNPs and their nanocomposites, and discuss recent advances and future prospects in this emerging field.

  13. Enhanced 2D-image upconversion using solid-state lasers.

    PubMed

    Pedersen, Christian; Karamehmedović, Emir; Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter

    2009-11-09

    Based on enhanced upconversion, we demonstrate a highly efficient method for converting a full image from one part of the electromagnetic spectrum into a new desired wavelength region. By illuminating a metal transmission mask with a 765 nm Gaussian beam to create an image and subsequently focusing the image inside a nonlinear PPKTP crystal located in the high intra-cavity field of a 1342 nm solid-state Nd:YVO(4) laser, an upconverted image at 488 nm is generated. We have experimentally achieved an upconversion efficiency of 40% under CW conditions. The proposed technique can be further adapted for high efficiency mid-infrared image upconversion where direct and fast detection is difficult or impossible to perform with existing detector technologies.

  14. The influence of energy migration on luminescence kinetics parameters in upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Alyatkin, Sergey; Asharchuk, Ilya; Khaydukov, Kirill; Nechaev, Andrey; Lebedev, Oleg; Vainer, Yuri; Semchishen, Vladimir; Khaydukov, Evgeny

    2017-01-01

    The mechanism of upconversion at the nanoscale is still under discussion. In this paper, we report on the experimental results of anti-Stokes luminescence kinetics in the upconversion nanoparticles of β-NaYF4: 20%Yb3+; 0.6%Tm3+. The parameters of the luminescence kinetics were found to be unambiguously dependent on the number of excitation quanta n, which are necessary for certain transitions between the energy states of thulium ions. The observed correlation has been explained by means of the long-lasting energy migration between the ytterbium ions. The spread in time between the luminescent maxima of the corresponding thulium transitions not only shows the nonlinear character of upconversion, but also reveals the time scale of energy migration as well. From these, we derive that the conventional Förster formalism applied to the estimation of energy transfer efficiency in UCNP-fluorophore pairs can provide misleading results.

  15. Upconversion luminescence and blackbody radiation in tetragonal YSZ co-doped with Tm3+ and Yb3+

    NASA Astrophysics Data System (ADS)

    Soares, M. R. N.; Ferro, M.; Costa, F. M.; Monteiro, T.

    2015-11-01

    Lanthanide doped inorganic nanoparticles with upconversion luminescence are of utmost importance for biomedical applications, solid state lighting and photovoltaics. In this work we studied the downshifted luminescence, upconversion luminescence (UCL) and blackbody radiation of tetragonal yttrium stabilized zirconia co-doped with Tm3+ and Yb3+ single crystals and nanoparticles produced by laser floating zone and laser ablation in liquids, respectively. The photoluminescence (PL) and PL excitation (PLE) were investigated at room temperature (RT). PL spectra exhibit the characteristic lines in UV, blue/green, red and NIR regions of the Tm3+ (4f12) under resonant excitation into the high energy 2S+1LJ multiplets. Under NIR excitation (980 nm), the samples placed in air display an intense NIR at ~800 nm due to the 1G4 --> 3H5/3H4 --> 3H6 transitions. Additionally, red, blue/green and ultraviolet UCL is observed arising from higher excited 1G4 and 1D2 multiplets. The power excitation dependence of the UCL intensity indicated that 2-3 low energy absorbed photons are involved in the UCL for low power levels, while for high powers, the identified saturation is dependent on the material size with a enhanced effect on the NPs. The temperature dependence of the UCL was investigated for single crystals and targets used in the ablation. An overall increase of the integrated intensity was found to occur between 12 K and the RT. The thermally activated process is described by activation energies of 10 meV and 30 meV for single crystals and targets, respectively. For the NPs, the UCL was found to be strongly sensitive to pressure conditions. Under vacuum conditions, instead of the narrow lines of the Tm3+, a wide blackbody radiation was detected, responsible for the change in the emission colour from blue to orange. This phenomenon is totally reversible when the NPs are placed at ambient pressure. The UCL/blackbody radiation in the nanosized material exhibits non-contact pressure

  16. Upconversion luminescence and blackbody radiation in tetragonal YSZ co-doped with Tm(3+) and Yb(3+).

    PubMed

    Soares, M R N; Ferro, M; Costa, F M; Monteiro, T

    2015-12-21

    Lanthanide doped inorganic nanoparticles with upconversion luminescence are of utmost importance for biomedical applications, solid state lighting and photovoltaics. In this work we studied the downshifted luminescence, upconversion luminescence (UCL) and blackbody radiation of tetragonal yttrium stabilized zirconia co-doped with Tm(3+) and Yb(3+) single crystals and nanoparticles produced by laser floating zone and laser ablation in liquids, respectively. The photoluminescence (PL) and PL excitation (PLE) were investigated at room temperature (RT). PL spectra exhibit the characteristic lines in UV, blue/green, red and NIR regions of the Tm(3+) (4f(12)) under resonant excitation into the high energy (2S+1)LJ multiplets. Under NIR excitation (980 nm), the samples placed in air display an intense NIR at ∼800 nm due to the (1)G4→(3)H5/(3)H4→(3)H6 transitions. Additionally, red, blue/green and ultraviolet UCL is observed arising from higher excited (1)G4 and (1)D2 multiplets. The power excitation dependence of the UCL intensity indicated that 2-3 low energy absorbed photons are involved in the UCL for low power levels, while for high powers, the identified saturation is dependent on the material size with a enhanced effect on the NPs. The temperature dependence of the UCL was investigated for single crystals and targets used in the ablation. An overall increase of the integrated intensity was found to occur between 12 K and the RT. The thermally activated process is described by activation energies of 10 meV and 30 meV for single crystals and targets, respectively. For the NPs, the UCL was found to be strongly sensitive to pressure conditions. Under vacuum conditions, instead of the narrow lines of the Tm(3+), a wide blackbody radiation was detected, responsible for the change in the emission colour from blue to orange. This phenomenon is totally reversible when the NPs are placed at ambient pressure. The UCL/blackbody radiation in the nanosized material exhibits

  17. Plasmon enhanced upconversion for applications in solar energy harvesting (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Park, Wounjhang

    2016-09-01

    Rare-earth activated upconversion material is receiving renewed attention for their potential applications in bioimaging and solar energy conversion. Plasmon resonance can enhance the upconversion efficiency but the enhancement mechanism remained unclear due to the inherent complexity of upconversion process. In this study, we synthesized NaYF4:Yb3+,Er3+ upconversion nanoparticles (UCNPs) and modified the surface with an amphiphilic polymer, (poly(maleic anhydride-alt-octadecene) (PMAO), which makes UCNPs water-soluble and negatively charged. This in turn enables electrostatic self-assembly of UCNPs. We fabricated silver nanograting using laser-interference lithography and deposited 3 monolayers of UNCPs by polyelectrolyte-mediated layer-by-layer self-assembly process. It is noted that all the fabrication processes are scalable. We then conducted a comprehensive photoluminescence (PL) and transient PL spectroscopy. We observed up to 39x enhancement in PL intensity. A combination of numerical simulations, rate equation analysis and transient PL spectroscopy revealed that the total enhancement is made of 3.1x absorption enhancement and 2.7x energy transfer rate enhancement. The absorption enhancement makes the most contribution because the upconverted PL intensity varies quadratically with the absorption. This study represents the first experimental observation of plasmon enhanced energy transfer rate in UCNPs. It contributes to the long debate on the plasmon enhancement of Förster energy transfer process. Finally, we developed a new numerical modeling tool that can faithfully simulate the highly non-uniform light absorption and carrier generation in the plasmon enhanced photovoltaic devices. We used the tool to precisely predict the performance of photovoltaic devices incorporating plasmon enhanced upconversion and offer guidelines for upconversion photovoltaic devices.

  18. Nonlinear spectral and lifetime management in upconversion nanoparticles by controlling energy distribution

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Deng, Renren; Xie, Xiaoji; Huang, Ling; Liu, Xiaogang

    2016-03-01

    Optical tuning of lanthanide-doped upconversion nanoparticles has attracted considerable attention over the past decade because this development allows the advance of new frontiers in energy conversion, materials science, and biological imaging. Here we present a rational approach to manipulating the spectral profile and lifetime of lanthanide emission in upconversion nanoparticles by tailoring their nonlinear optical properties. We demonstrate that the incorporation of energy distributors, such as surface defects or an extra amount of dopants, into a rare-earth-based host lattice alters the decay behavior of excited sensitizers, thus markedly improving the emitters' sensitivity to excitation power. This work provides insight into mechanistic understanding of upconversion phenomena in nanoparticles and also enables exciting new opportunities of using these nanomaterials for photonic applications.Optical tuning of lanthanide-doped upconversion nanoparticles has attracted considerable attention over the past decade because this development allows the advance of new frontiers in energy conversion, materials science, and biological imaging. Here we present a rational approach to manipulating the spectral profile and lifetime of lanthanide emission in upconversion nanoparticles by tailoring their nonlinear optical properties. We demonstrate that the incorporation of energy distributors, such as surface defects or an extra amount of dopants, into a rare-earth-based host lattice alters the decay behavior of excited sensitizers, thus markedly improving the emitters' sensitivity to excitation power. This work provides insight into mechanistic understanding of upconversion phenomena in nanoparticles and also enables exciting new opportunities of using these nanomaterials for photonic applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00812g

  19. Non-collinear upconversion of incoherent light: designing infrared spectrometers and imaging systems

    NASA Astrophysics Data System (ADS)

    Dam, Jeppe Seidelin; Hu, Qi; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2014-02-01

    Upconversion of incoherent mid-infrared radiation to near visible wavelengths, offers very attractive sensitivity compared to conventional means of infrared detection. Incoherent light, focused into a nonlinear crystal, results in noncollinear phase matching of a narrow range of wavelengths for each angle of propagation. Non-collinear phase matching has been an area of limited attention for many years due to inherent incompatibility with tightly focused laser beams typically used for most second order processes in order to achieve acceptable conversion efficiency. The development of periodically poled crystals have allowed for non-critical collinear phase matching of most wavelengths, virtually eliminating the need for non-collinear phase matching. When considering upconversion of thermal light, spectral radiance is limited due to the finite temperature of the Planck radiation source. It is, however, straightforward to increase the incoherent power by increasing the receiving aperture of the upconversion unit i.e. the diameter of the upconversion laser beam. Hence, the optimal conversion efficiency for incoherent light is not achieved by tightly focused beams. In this paper we show that filling the nonlinear crystal with as large a pump beam as possible yields the best conversion as this allows for upconversion of large angles of incoming incoherent light. We present results of non-collinear mixing and how it affects spectral and spatial resolution in the image and compare against experiments. We finally discuss how it can be used to design and predict system performance and how incoherent upconversion can be used for mid-IR spectroscopy and imaging.

  20. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics.

    PubMed

    Wang, Chao; Cheng, Liang; Liu, Zhuang

    2013-01-01

    Photodynamic therapy (PDT) is a non-invasive treatment modality for a variety of diseases including cancer. PDT based on upconversion nanoparticles (UCNPs) has received much attention in recent years. Under near-infrared (NIR) light excitation, UCNPs are able to emit high-energy visible light, which can activate surrounding photosensitizer (PS) molecules to produce singlet oxygen and kill cancer cells. Owing to the high tissue penetration ability of NIR light, NIR-excited UCNPs can be used to activate PS molecules in much deeper tissues compared to traditional PDT induced by visible or ultraviolet (UV) light. In addition to the application of UCNPs as an energy donor in PDT, via similar mechanisms, they could also be used for the NIR light-triggered drug release or activation of 'caged' imaging or therapeutic molecules. In this review, we will summarize the latest progresses regarding the applications of UCNPs for photodynamic therapy, NIR triggered drug and gene delivery, as well as several other UCNP-based cancer therapeutic approaches. The future prospects and challenges in this emerging field will be also discussed.

  1. Sensing Using Rare-Earth-Doped Upconversion Nanoparticles

    PubMed Central

    Hao, Shuwei; Chen, Guanying; Yang, Chunhui

    2013-01-01

    Optical sensing plays an important role in theranostics due to its capability to detect hint biochemical entities or molecular targets as well as to precisely monitor specific fundamental psychological processes. Rare-earth (RE) doped upconversion nanoparticles (UCNPs) are promising for these endeavors due to their unique frequency converting capability; they emit efficient and sharp visible or ultraviolet (UV) luminescence via use of ladder-like energy levels of RE ions when excited at near infrared (NIR) light that are silent to tissues. These features allow not only a high penetration depth in biological tissues but also a high detection sensitivity. Indeed, the energy transfer between UCNPs and biomolecular or chemical indicators provide opportunities for high-sensitive bio- and chemical-sensing. A temperature-sensitive change of the intensity ratio between two close UC bands promises them for use in temperature mapping of a single living cell. In this work, we review recent investigations on using UCNPs for the detection of biomolecules (avidin, ATP, etc.), ions (cyanide, mecury, etc.), small gas molecules (oxygen, carbon dioxide, ammonia, etc.), as well as for in vitro temperature sensing. We also briefly summarize chemical methods in synthesizing UCNPs of high efficiency that are important for the detection limit. PMID:23650480

  2. Stable Upconversion Nanohybrid Particles for Specific Prostate Cancer Cell Immunodetection

    PubMed Central

    Shi, Yu; Shi, Bingyang; Dass, Arun V. Everest; Lu, Yiqing; Sayyadi, Nima; Kautto, Liisa; Willows, Robert D.; Chung, Roger; Piper, James; Nevalainen, Helena; Walsh, Bradley; Jin, Dayong; Packer, Nicolle H.

    2016-01-01

    Prostate cancer is one of the male killing diseases and early detection of prostate cancer is the key for better treatment and lower cost. However, the number of prostate cancer cells is low at the early stage, so it is very challenging to detect. In this study, we successfully designed and developed upconversion immune-nanohybrids (UINBs) with sustainable stability in a physiological environment, stable optical properties and highly specific targeting capability for early-stage prostate cancer cell detection. The developed UINBs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and luminescence spectroscopy. The targeting function of the biotinylated antibody nanohybrids were confirmed by immunofluorescence assay and western blot analysis. The UINB system is able to specifically detect prostate cancer cells with stable and background-free luminescent signals for highly sensitive prostate cancer cell detection. This work demonstrates a versatile strategy to develop UCNPs based sustainably stable UINBs for sensitive diseased cell detection. PMID:27874051

  3. Upconversion Nanoparticles for Photodynamic Therapy and Other Cancer Therapeutics

    PubMed Central

    Wang, Chao; Cheng, Liang; Liu, Zhuang

    2013-01-01

    Photodynamic therapy (PDT) is a non-invasive treatment modality for a variety of diseases including cancer. PDT based on upconversion nanoparticles (UCNPs) has received much attention in recent years. Under near-infrared (NIR) light excitation, UCNPs are able to emit high-energy visible light, which can activate surrounding photosensitizer (PS) molecules to produce singlet oxygen and kill cancer cells. Owing to the high tissue penetration ability of NIR light, NIR-excited UCNPs can be used to activate PS molecules in much deeper tissues compared to traditional PDT induced by visible or ultraviolet (UV) light. In addition to the application of UCNPs as an energy donor in PDT, via similar mechanisms, they could also be used for the NIR light-triggered drug release or activation of 'caged' imaging or therapeutic molecules. In this review, we will summarize the latest progresses regarding the applications of UCNPs for photodynamic therapy, NIR triggered drug and gene delivery, as well as several other UCNP-based cancer therapeutic approaches. The future prospects and challenges in this emerging field will be also discussed. PMID:23650479

  4. Core-shell upconversion nanoparticle - semiconductor heterostructures for photodynamic therapy.

    PubMed

    Dou, Qing Qing; Rengaramchandran, Adith; Selvan, Subramanian Tamil; Paulmurugan, Ramasamy; Zhang, Yong

    2015-02-05

    Core-shell nanoparticles (CSNPs) with diverse chemical compositions have been attracting greater attention in recent years. However, it has been a challenge to develop CSNPs with different crystal structures due to the lattice mismatch of the nanocrystals. Here we report a rational design of core-shell heterostructure consisting of NaYF4:Yb,Tm upconversion nanoparticle (UCN) as the core and ZnO semiconductor as the shell for potential application in photodynamic therapy (PDT). The core-shell architecture (confirmed by TEM and STEM) enables for improving the loading efficiency of photosensitizer (ZnO) as the semiconductor is directly coated on the UCN core. Importantly, UCN acts as a transducer to sensitize ZnO and trigger the generation of cytotoxic reactive oxygen species (ROS) to induce cancer cell death. We also present a firefly luciferase (FLuc) reporter gene based molecular biosensor (ARE-FLuc) to measure the antioxidant signaling response activated in cells during the release of ROS in response to the exposure of CSNPs under 980 nm NIR light. The breast cancer cells (MDA-MB-231 and 4T1) exposed to CSNPs showed significant release of ROS as measured by aminophenyl fluorescein (APF) and ARE-FLuc luciferase assays, and ~45% cancer cell death as measured by MTT assay, when illuminated with 980 nm NIR light.

  5. Near-infrared (NIR) up-conversion optogenetics

    NASA Astrophysics Data System (ADS)

    Hososhima, Shoko; Yuasa, Hideya; Ishizuka, Toru; Hoque, Mohammad Razuanul; Yamashita, Takayuki; Yamanaka, Akihiro; Sugano, Eriko; Tomita, Hiroshi; Yawo, Hiromu

    2015-11-01

    Non-invasive remote control technologies designed to manipulate neural functions have been long-awaited for the comprehensive and quantitative understanding of neuronal network in the brain as well as for the therapy of neurological disorders. Recently, it has become possible for the neuronal activity to be optically manipulated using biological photo-reactive molecules such as channelrhodopsin (ChR)-2. However, ChR2 and its relatives are mostly reactive to visible light, which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light (650-1450 nm) penetrates deep into the tissues because biological systems are almost transparent to light within this so-called ‘imaging window’. Here we used lanthanide nanoparticles (LNPs), composed of rare-earth elements, as luminous bodies to activate ChRs since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Here, we created a new type of optogenetic system which consists of the donor LNPs and the acceptor ChRs. The NIR laser irradiation emitted visible light from LNPs, then induced the photo-reactive responses in the near-by cells that expressed ChRs. However, there remains room for large improvements in the energy efficiency of the LNP-ChR system.

  6. Photon upconversion in homogeneous fluorescence-based bioanalytical assays.

    PubMed

    Soukka, Tero; Rantanen, Terhi; Kuningas, Katri

    2008-01-01

    Upconverting phosphors (UCPs) are very attractive reporters for fluorescence resonance energy transfer (FRET)-based bioanalytical assays. The large anti-Stokes shift and capability to convert near-infrared to visible light via sequential absorption of multiple photons enable complete elimination of autofluorescence, which commonly impairs the performance of fluorescence-based assays. UCPs are ideal donors for FRET, because their very narrow-banded emission allows measurement of the sensitized acceptor emission, in principle, without any crosstalk from the donor emission at a wavelength just tens of nanometers from the emission peak of the donor. In addition, acceptor dyes emitting at visible wavelengths are essentially not excited by near-infrared, which further emphasizes the unique potential of upconversion FRET (UC-FRET). These characteristics result in favorable assay performance using detection instrumentation based on epifluorometer configuration and laser diode excitation. Although UC-FRET is a recently emerged technology, it has already been applied in both immunoassays and nucleic acid hybridization assays. The technology is also compatible with optically difficult biological samples, such as whole blood. Significant advances in assay performance are expected using upconverting lanthanide-doped nanocrystals, which are currently under extensive research. UC-FRET, similarly to other fluorescence techniques based on resonance energy transfer, is strongly distance dependent and may have limited applicability, for example in sandwich-type assays for large biomolecules, such as viruses. In this article, we summarize the essentials of UC-FRET, describe its current applications, and outline the expectations for its future potential.

  7. Background free imaging of upconversion nanoparticle distribution in human skin

    NASA Astrophysics Data System (ADS)

    Song, Zhen; Anissimov, Yuri G.; Zhao, Jiangbo; Nechaev, Andrei V.; Nadort, Annemarie; Jin, Dayong; Prow, Tarl W.; Roberts, Michael S.; Zvyagin, Andrei V.

    2013-06-01

    Widespread applications of nanotechnology materials have raised safety concerns due to their possible penetration through skin and concomitant uptake in the organism. This calls for systematic study of nanoparticle transport kinetics in skin, where high-resolution optical imaging approaches are often preferred. We report on application of emerging luminescence nanomaterial, called upconversion nanoparticles (UCNPs), to optical imaging in skin that results in complete suppression of background due to the excitation light back-scattering and biological tissue autofluorescence. Freshly excised intact and microneedle-treated human skin samples were topically coated with oil formulation of UCNPs and optically imaged. In the first case, 8- and 32-nm UCNPs stayed at the topmost layer of the intact skin, stratum corneum. In the second case, 8-nm nanoparticles were found localized at indentations made by the microneedle spreading in dermis very slowly (estimated diffusion coefficient, Dnp=3-7×10-12 cm2.s-1). The maximum possible UCNP-imaging contrast was attained by suppressing the background level to that of the electronic noise, which was estimated to be superior in comparison with the existing optical labels.

  8. Upconversion fluorescent strip sensor for rapid determination of Vibrio anguillarum

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Wu, Yuanyuan; Zhu, Yihua; Yang, Xiaoling; Jiang, Xin; Xiao, Jingfan; Zhang, Yuanxing; Li, Chunzhong

    2014-03-01

    Here, we report a simple and ultrasensitive upconversion fluorescent strip sensor based on NaYF4:Yb,Er nanoparticles (NPs) and the lateral flow immunochromatographic assay (LFIA). Carboxyl-modified β-NaYF4:Yb,Er NPs were successfully synthesized by a facile one-pot solvothermal approach, upon further coupling with monoclonal antibody, the resultant UCNPs-antibody conjugates probes were used in LFIA and served as signal vehicles for the fluorescent reporters. V. anguillarum was used as a model analyte to demonstrate the use of this strip sensor. The limit of the detection for the fluorescent strip was determined as 102 CFU mL-1, which is 100 times lower than those displayed by enzyme-linked immunosorbent assays, while the time needed for the detection was only 15 min. Furthermore, no cross-reaction with other eight pathogens was found, indicating the good specificity of the strip. This developed LFIA would offer the potential as a useful tool for the quantification of pathogens analysis in the future.

  9. Homogeneous assay for whole blood folate using photon upconversion.

    PubMed

    Arppe, Riikka; Mattsson, Leena; Korpi, Krista; Blom, Sami; Wang, Qi; Riuttamäki, Terhi; Soukka, Tero

    2015-02-03

    Red blood cell folate is measured for folate deficiency diagnosis, because it reflects the long-term folate level in tissues, whereas serum folate only represents the dietary intake. Direct homogeneous assay from whole blood would be ideal but conventional fluorescence techniques in blood suffer from high background and strong absorption of light at ultraviolet and visible wavelengths. In this study, a new photon upconversion-based homogeneous assay for whole blood folate is introduced based on resonance energy transfer from upconverting nanophosphor donor coated with folate binding protein to a near-infrared fluorescent acceptor dye conjugated to folate analogue. The sensitized acceptor emission is measured at 740 nm upon 980 nm excitation. Thus, optically transparent wavelengths are utilized for both donor excitation and sensitized acceptor emission to minimize the sample absorption, and anti-Stokes detection completely eliminates the Stokes-shifted autofluorescence. The IC50 value of the assay was 6.0 nM and the limit of detection (LOD) was 1 nM. The measurable concentration range was 2 orders of magnitude between 1.0-100 nM, corresponding to 40-4000 nM folate in the whole blood sample. Recoveries of added folic acid were 112%-114%. A good correlation was found when compared to a competitive heterogeneous assay based on the DELFIA-technology. The introduced assay provides a simple and fast method for whole blood folate measurement.

  10. Near-infrared (NIR) up-conversion optogenetics

    PubMed Central

    Hososhima, Shoko; Yuasa, Hideya; Ishizuka, Toru; Hoque, Mohammad Razuanul; Yamashita, Takayuki; Yamanaka, Akihiro; Sugano, Eriko; Tomita, Hiroshi; Yawo, Hiromu

    2015-01-01

    Non-invasive remote control technologies designed to manipulate neural functions have been long-awaited for the comprehensive and quantitative understanding of neuronal network in the brain as well as for the therapy of neurological disorders. Recently, it has become possible for the neuronal activity to be optically manipulated using biological photo-reactive molecules such as channelrhodopsin (ChR)-2. However, ChR2 and its relatives are mostly reactive to visible light, which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light (650–1450 nm) penetrates deep into the tissues because biological systems are almost transparent to light within this so-called ‘imaging window’. Here we used lanthanide nanoparticles (LNPs), composed of rare-earth elements, as luminous bodies to activate ChRs since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Here, we created a new type of optogenetic system which consists of the donor LNPs and the acceptor ChRs. The NIR laser irradiation emitted visible light from LNPs, then induced the photo-reactive responses in the near-by cells that expressed ChRs. However, there remains room for large improvements in the energy efficiency of the LNP-ChR system. PMID:26552717

  11. Riboflavin photoactivation by upconversion nanoparticles for cancer treatment

    NASA Astrophysics Data System (ADS)

    Khaydukov, E. V.; Mironova, K. E.; Semchishen, V. A.; Generalova, A. N.; Nechaev, A. V.; Khochenkov, D. A.; Stepanova, E. V.; Lebedev, O. I.; Zvyagin, A. V.; Deyev, S. M.; Panchenko, V. Ya.

    2016-10-01

    Riboflavin (Rf) is a vitamin and endogenous photosensitizer capable to generate reactive oxygen species (ROS) under UV-blue irradiation and kill cancer cells, which are characterized by the enhanced uptake of Rf. We confirmed its phototoxicity on human breast adenocarcinoma cells SK-BR-3 preincubated with 30-μM Rf and irradiated with ultraviolet light, and proved that such Rf concentrations (60 μM) are attainable in vivo in tumour site by systemic intravascular injection. In order to extend the Rf photosensitization depth in cancer tissue to 6 mm in depth, we purpose-designed core/shell upconversion nanoparticles (UCNPs, NaYF4:Yb3+:Tm3+/NaYF4) capable to convert 2% of the deeply-penetrating excitation at 975 nm to ultraviolet-blue power. This power was expended to photosensitise Rf and kill SK-BR-3 cells preincubated with UCNPs and Rf, where the UCNP-Rf energy transfer was photon-mediated with ~14% Förster process contribution. SK-BR-3 xenograft regression in mice was observed for 50 days, following the Rf-UCNPs peritumoural injection and near-infrared light photodynamic treatment of the lesions.

  12. Riboflavin photoactivation by upconversion nanoparticles for cancer treatment

    PubMed Central

    Khaydukov, E. V.; Mironova, K. E.; Semchishen, V. A.; Generalova, A. N.; Nechaev, A. V.; Khochenkov, D. A.; Stepanova, E. V.; Lebedev, O. I.; Zvyagin, A. V.; Deyev, S. M.; Panchenko, V. Ya.

    2016-01-01

    Riboflavin (Rf) is a vitamin and endogenous photosensitizer capable to generate reactive oxygen species (ROS) under UV-blue irradiation and kill cancer cells, which are characterized by the enhanced uptake of Rf. We confirmed its phototoxicity on human breast adenocarcinoma cells SK-BR-3 preincubated with 30-μM Rf and irradiated with ultraviolet light, and proved that such Rf concentrations (60 μM) are attainable in vivo in tumour site by systemic intravascular injection. In order to extend the Rf photosensitization depth in cancer tissue to 6 mm in depth, we purpose-designed core/shell upconversion nanoparticles (UCNPs, NaYF4:Yb3+:Tm3+/NaYF4) capable to convert 2% of the deeply-penetrating excitation at 975 nm to ultraviolet-blue power. This power was expended to photosensitise Rf and kill SK-BR-3 cells preincubated with UCNPs and Rf, where the UCNP-Rf energy transfer was photon-mediated with ~14% Förster process contribution. SK-BR-3 xenograft regression in mice was observed for 50 days, following the Rf-UCNPs peritumoural injection and near-infrared light photodynamic treatment of the lesions. PMID:27731350

  13. Core - shell upconversion nanoparticle - semiconductor heterostructures for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Dou, Qing Qing; Rengaramchandran, Adith; Selvan, Subramanian Tamil; Paulmurugan, Ramasamy; Zhang, Yong

    2015-02-01

    Core-shell nanoparticles (CSNPs) with diverse chemical compositions have been attracting greater attention in recent years. However, it has been a challenge to develop CSNPs with different crystal structures due to the lattice mismatch of the nanocrystals. Here we report a rational design of core-shell heterostructure consisting of NaYF4:Yb,Tm upconversion nanoparticle (UCN) as the core and ZnO semiconductor as the shell for potential application in photodynamic therapy (PDT). The core-shell architecture (confirmed by TEM and STEM) enables for improving the loading efficiency of photosensitizer (ZnO) as the semiconductor is directly coated on the UCN core. Importantly, UCN acts as a transducer to sensitize ZnO and trigger the generation of cytotoxic reactive oxygen species (ROS) to induce cancer cell death. We also present a firefly luciferase (FLuc) reporter gene based molecular biosensor (ARE-FLuc) to measure the antioxidant signaling response activated in cells during the release of ROS in response to the exposure of CSNPs under 980 nm NIR light. The breast cancer cells (MDA-MB-231 and 4T1) exposed to CSNPs showed significant release of ROS as measured by aminophenyl fluorescein (APF) and ARE-FLuc luciferase assays, and ~45% cancer cell death as measured by MTT assay, when illuminated with 980 nm NIR light.

  14. Quantitative Imaging of Single Upconversion Nanoparticles in Biological Tissue

    PubMed Central

    Nadort, Annemarie; Sreenivasan, Varun K. A.; Song, Zhen; Grebenik, Ekaterina A.; Nechaev, Andrei V.; Semchishen, Vladimir A.; Panchenko, Vladislav Y.; Zvyagin, Andrei V.

    2013-01-01

    The unique luminescent properties of new-generation synthetic nanomaterials, upconversion nanoparticles (UCNPs), enabled high-contrast optical biomedical imaging by suppressing the crowded background of biological tissue autofluorescence and evading high tissue absorption. This raised high expectations on the UCNP utilities for intracellular and deep tissue imaging, such as whole animal imaging. At the same time, the critical nonlinear dependence of the UCNP luminescence on the excitation intensity results in dramatic signal reduction at (∼1 cm) depth in biological tissue. Here, we report on the experimental and theoretical investigation of this trade-off aiming at the identification of optimal application niches of UCNPs e.g. biological liquids and subsurface tissue layers. As an example of such applications, we report on single UCNP imaging through a layer of hemolyzed blood. To extend this result towards in vivo applications, we quantified the optical properties of single UCNPs and theoretically analyzed the prospects of single-particle detectability in live scattering and absorbing bio-tissue using a human skin model. The model predicts that a single 70-nm UCNP would be detectable at skin depths up to 400 µm, unlike a hardly detectable single fluorescent (fluorescein) dye molecule. UCNP-assisted imaging in the ballistic regime thus allows for excellent applications niches, where high sensitivity is the key requirement. PMID:23691012

  15. Photodegradation of near-infrared-pumped Tm(3+)-doped ZBLAN fiber upconversion lasers.

    PubMed

    Booth, I J; Archambault, J L; Ventrudo, B F

    1996-03-01

    Photodegradation has been observed in Tm(3+)-doped ZBLAN fiber lasers pumped with laser diodes at 1135 nm. After upconversion lasing at 482 nm, the fiber develops color centers that absorb strongly at wavelengths below ~650 nm, affecting further upconversion lasing. The rate of damage formation is strongly dependent on the pump power level and on the thulium concentration. The color centers are bleached by intense blue light but recover with thermal excitation and can be removed by thermal annealing at temperature near 100 degrees C.

  16. Photodegradation of near-infrared-pumped Tm{sup 3+}-doped ZBLAN fiber upconversion lasers

    SciTech Connect

    Booth, I.J.; Archambault, J.; Ventrudo, B.F.

    1996-03-01

    Photodegradation has been observed in Tm{sup 3+}-doped ZBLAN fiber lasers pumped with laser diodes at 1135 nm. After upconversion lasing at 482 nm, the fiber develops color centers that absorb strongly at wavelengths below {approximately}650 nm, affecting further upconversion lasing. The rate of damage formation is strongly dependent on the pump power level and on the thulium concentration. The color centers are bleached by intense blue light but recover with thermal excitation and can be removed by thermal annealing at temperature near 100{degree}C. {copyright} {ital 1996 Optical Society of America.}

  17. Power scaling of Tm3+ doped ZBLAN blue upconversion fiber lasers: modeling and experiments

    NASA Astrophysics Data System (ADS)

    Qin, G.; Huang, S.; Feng, Y.; Shirakawa, A.; Musha, M.; Ueda, K.-I.

    2006-01-01

    Power scaling of Tm3+ doped ZBLAN blue upconversion fiber lasers was investigated by a simple model. Based on our experimental results on blue fiber lasers, we discuss the effects of photodegradation and photocuring, fiber length, the reflectivity of the coupler mirror and fiber core diameter on further enhancement of blue fiber laser, respectively. The optimal parameters (including fiber length, fiber core diameter and the reflectivity of the coupler mirror) for the operation of high power (>1 W) blue fiber laser were presented through simple numerical simulations, which are valuable for the future design of high power blue upconversion fiber laser.

  18. Photodegradation of near-infrared-pumped Tm3+-doped ZBLAN fiber upconversion lasers

    NASA Astrophysics Data System (ADS)

    Booth, Ian J.; Archambault, Jean-Luc; Ventrudo, Brian F.

    1996-03-01

    Photodegradation has been observed in Tm3+ -doped ZBLAN fiber lasers pumped with laser diodes at 1135 nm. After upconversion lasing at 482 nm, the fiber develops color centers that absorb strongly at wavelengths below \\similar 650 nm, affecting further upconversion lasing. The rate of damage formation is strongly dependent on the pump power level and on the thulium concentration. The color centers are bleached by intense blue light but recover with thermal excitation and can be removed by thermal annealing at temperature near 100 degrees C .

  19. Upconversion-based receivers for quantum hacking-resistant quantum key distribution

    NASA Astrophysics Data System (ADS)

    Jain, Nitin; Kanter, Gregory S.

    2016-07-01

    We propose a novel upconversion (sum frequency generation)-based quantum-optical system design that can be employed as a receiver (Bob) in practical quantum key distribution systems. The pump governing the upconversion process is produced and utilized inside the physical receiver, making its access or control unrealistic for an external adversary (Eve). This pump facilitates several properties which permit Bob to define and control the modes that can participate in the quantum measurement. Furthermore, by manipulating and monitoring the characteristics of the pump pulses, Bob can detect a wide range of quantum hacking attacks launched by Eve.

  20. Brady 1D seismic velocity model ambient noise prelim

    SciTech Connect

    Mellors, Robert J.

    2013-10-25

    Preliminary 1D seismic velocity model derived from ambient noise correlation. 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 km. Poorly constrained with increasing depth.

  1. Upconversion microparticles as time-resolved luminescent probes for multiphoton microscopy: desired signal extraction from the streaking effect

    NASA Astrophysics Data System (ADS)

    Pominova, Daria V.; Ryabova, Anastasia V.; Grachev, Pavel V.; Romanishkin, Igor D.; Kuznetsov, Sergei V.; Rozhnova, Julia A.; Yasyrkina, Daria S.; Fedorov, Pavel P.; Loschenov, Victor B.

    2016-09-01

    The great interest in upconversion nanoparticles exists due to their high efficiency under multiphoton excitation. However, when these particles are used in scanning microscopy, the upconversion luminescence causes a streaking effect due to the long lifetime. This article describes a method of upconversion microparticle luminescence lifetime determination with help of modified Lucy-Richardson deconvolution of laser scanning microscope (LSM) image obtained under near-IR excitation using nondescanned detectors. Determination of the upconversion luminescence intensity and the decay time of separate microparticles was done by intensity profile along the image fast scan axis approximation. We studied upconversion submicroparticles based on fluoride hosts doped with Yb3+-Er3+ and Yb3+-Tm3+ rare earth ion pairs, and the characteristic decay times were 0.1 to 1.5 ms. We also compared the results of LSM measurements with the photon counting method results; the spread of values was about 13% and was associated with the approximation error. Data obtained from live cells showed the possibility of distinguishing the position of upconversion submicroparticles inside and outside the cells by the difference of their lifetime. The proposed technique allows using the upconversion microparticles without shells as probes for the presence of OH- ions and CO2 molecules.

  2. Size/morphology induced tunable luminescence in upconversion crystals: ultra-strong single-band emission and underlying mechanisms

    NASA Astrophysics Data System (ADS)

    Wang, Zhaofeng; Zeng, Songshan; Yu, Jingfang; Ji, Xiaoming; Zeng, Huidan; Xin, Shuangyu; Wang, Yuhua; Sun, Luyi

    2015-05-01

    In this work, we present a two-step method to controllably synthesize novel and highly efficient upconversion materials, Lu5O4F7:Er3+,Yb3+ nano/micro-crystals, and investigate their size/morphology induced tunable upconversion properties. In addition to the common phenomenon aroused by a surface quenching effect, direct experimental evidence for the regulation of phonon modes is obtained in nanoparticles. The findings in this work advance the existing mechanisms for the general explanation of size/morphology induced upconversion features. Because of the adjustment of phonon energy and density as well as the surface quenching effect, the biocompatible Lu5O4F7:Er3+,Yb3+ nanoparticles exhibit an ultra-strong single-band red upconversion, rendering them promising for biomedical applications.In this work, we present a two-step method to controllably synthesize novel and highly efficient upconversion materials, Lu5O4F7:Er3+,Yb3+ nano/micro-crystals, and investigate their size/morphology induced tunable upconversion properties. In addition to the common phenomenon aroused by a surface quenching effect, direct experimental evidence for the regulation of phonon modes is obtained in nanoparticles. The findings in this work advance the existing mechanisms for the general explanation of size/morphology induced upconversion features. Because of the adjustment of phonon energy and density as well as the surface quenching effect, the biocompatible Lu5O4F7:Er3+,Yb3+ nanoparticles exhibit an ultra-strong single-band red upconversion, rendering them promising for biomedical applications. Electronic supplementary information (ESI) available: Crystal structure analysis, UV-Vis absorption spectra, SEM micrographs, surface micro-structure investigation, biocompatibility of Lu5O4F7: Er3+, Yb3+, as well as morphology and upconversion properties of the control sample NaYF4: Er3+, Yb3+. See DOI: 10.1039/c5nr01008j

  3. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    SciTech Connect

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2014-10-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  4. UPCONVERSION LUMINESCENCE ENHANCEMENT OF NaYF4:Yb3+, Er3+ NANOPARTICLES ON INVERSE OPAL SURFACE

    NASA Astrophysics Data System (ADS)

    Liao, Jiayan; Yang, Zhengwen; Wu, Hangjun; Lai, Shenfeng; Qiu, Jianbei; Song, Zhiguo; Yang, Yong; Zhou, Dacheng; Yin, Zhaoyi

    2014-01-01

    LaPO4 inverse opal photonic crystals with different photonic band gaps were fabricated by template-assisted method. The Yb3+/Er3+ co-doped NaYF4 nanoparticles were deposited on the surfaces of the inverse opals, and their up-conversion emission properties were investigated. The upconversion emissions of Yb3+/Er3+ co-doped NaYF4 nanoparticles on the inverse opal surfaces have been enhanced when the upconversion emission bands of the nanoparticles are in the range of photonic band gaps of the inverse opals, which is attributed to an efficient and selective reflection of photonic band gaps.

  5. Upconversion luminescence in BaMoO{sub 4}:Pr{sup 3+} phosphor for display devices

    SciTech Connect

    Soni, Abhishek Kumar; Rai, Vineet Kumar

    2015-08-28

    The frequency upconversion is an important nonlinear optical property by which near infrared light is converted into the visible light. The BaMoO{sub 4}:Pr{sup 3+} powder phosphor has been synthesized by solid state reaction method. The upconversion emission bands are recorded under the excitation of 808 nm diode laser. The phase formation of the prepared phosphor has been identified by powder X-ray diffraction (XRD) technique. The upconversion emission mechanism and colour coordinate have been explained by using energy level and CIE (International Commission on Illumination) chromaticity diagram study, respectively.

  6. D1/D5 dopamine receptors modulate spatial memory formation.

    PubMed

    da Silva, Weber C N; Köhler, Cristiano C; Radiske, Andressa; Cammarota, Martín

    2012-02-01

    We investigated the effect of the intra-CA1 administration of the D1/D5 receptor antagonist SCH23390 and the D1/D5 receptor agonist SKF38393 on spatial memory in the water maze. When given immediately, but not 3h after training, SCH23390 hindered long-term spatial memory formation without affecting non-spatial memory or the normal functionality of the hippocampus. On the contrary, post-training infusion of SKF38393 enhanced retention and facilitated the spontaneous recovery of the original spatial preference after reversal learning. Our findings demonstrate that hippocampal D1/D5 receptors play an essential role in spatial memory processing.

  7. Near-infrared (NIR) optogenetics using up-conversion system

    NASA Astrophysics Data System (ADS)

    Hososhima, Shoko; Yuasa, Hideya; Ishizuka, Toru; Yawo, Hiromu

    2015-03-01

    Non-invasive remote control technologies designed to manipulate neural functions for a comprehensive and quantitative understanding of the neuronal network in the brain as well as for the therapy of neurological disorders have long been awaited. Recently, it has become possible to optically manipulate the neuronal activity using biological photo-reactive molecules such as channelrhodopsin-2 (ChR2). However, ChR2 and its relatives are mostly reactive to visible light which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light penetrates deep into the tissues because biological systems are almost transparent to light within this so-called `imaging window'. Here we used lanthanide nanoparticles (LNPs), which are composed of rare-earth elements, as luminous bodies to activate channelrhodopsins (ChRs) since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Neuron-glioma-hybrid ND-7/23 cells were cultured with LNP(NaYF4:Sc/Yb/Er) particles (peak emission, 543 nm) and transfected to express C1V1 (peak absorbance, 539 nm), a chimera of ChR1 and VChR1. The photocurrents were generated in response to NIR laser light (976 nm) to a level comparable to that evoked by a filtered Hg lamp (530-550 nm). NIR light pulses also evoked action potentials in the cultured neurons that expressed C1V1. It is suggested that the green luminescent light emitted from LNPs effectively activated C1V1 to generate the photocurrent. With the optimization of LNPs, acceptor photo-reactive biomolecules and optics, this system could be applied to non-invasively actuate neurons deep in the brain.

  8. Strain-sensitive upconversion for imaging biological forces (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lay, Alice; Wisser, Michael; Lin, Yu; Narayan, Tarun; Krieg, Michael; Atre, Ashwin; Goodman, Miriam; Dionne, Jennifer A.

    2016-09-01

    Nearly all diseases can be traced back to abnormal mechanotransduction, but few sensors can reliably measure biologically-relevant forces in vivo. Here, we investigate sub-25nm lanthanide-doped upconverting nanoparticles as novel optical force probes, which provide several biocompatible features: sharp emission peaks with near infrared illumination, a high signal-to-noise ratio, and photostability. To increase force sensitivity, we include d-metal doping in the nanoparticles; the d-metal siphons energy from the lanthanide ions with an efficiency that varies with pressure. We synthesize cubic-phase NaYF4: Er3+,Yb3+ nanoparticles doped with 0-5% Mn2+ and compress them in a hydrostatic environment using a diamond anvil cell. When illuminated at 980nm, the nanoparticles show sharp emission peaks centered at wavelengths of 522nm, 545nm, and 660nm. In 20nN increments, up to 700nN, the ratio of the red-to-green peaks in 0% Mn-doped nanoparticles increases by nearly 30%, resulting in a perceived color change from orange to red. In contrast, the 1% Mn-doped samples exhibit little color change but a large 40% decrease in upconversion intensity. In both cases, the red-to-green ratio varies linearly with strain and the optical properties are recoverable upon release. We further use atomic force microscopy to characterize optical responses at lower, pico-Newton to nano-Newton forces. To demonstrate in vivo imaging capabilities, we incubate C. elegans with nanoparticles dispersed in buffer solution (5mg/mL concentration) and image forces involved in digestion using confocal microscopy. Our nanoparticles provide a platform for the first, non-genetically-encoded in vivo force sensors, and we describe routes to increase their sensitivity to the single-pN range.

  9. The role of Nb in intensity increase of Er ion upconversion luminescence in zirconia

    SciTech Connect

    Smits, K. Sarakovskis, A.; Grigorjeva, L.; Millers, D.; Grabis, J.

    2014-06-07

    It is found that Nb co-doping increases the luminescence and upconversion luminescence intensity in rare earth doped zirconia. Er and Yb-doped nanocrystalline samples with or without Nb co-doping were prepared by sol-gel method and thermally annealed to check for the impact of phase transition on luminescence properties. Phase composition and grain sizes were examined by X-ray diffraction; the morphology was checked by scanning- and high-resolution transmission electron microscopes. Both steady-state and time-resolved luminescence were studied. Comparison of samples with different oxygen vacancy concentrations and different Nb concentrations confirmed the known assumption that oxygen vacancies are the main agents for tetragonal or cubic phase stabilization. The oxygen vacancies quench the upconversion luminescence; however, they also prevent agglomeration of rare-earth ions and/or displacement of rare-earth ions to grain surfaces. It is found that co-doping with Nb ions significantly (>20 times) increases upconversion luminescence intensity. Hence, ZrO{sub 2}:Er:Yb:Nb nanocrystals may show promise for upconversion applications.

  10. Mesoporous silica encapsulating upconversion luminescence rare-earth fluoride nanorods for secondary excitation.

    PubMed

    Yang, Jianping; Deng, Yonghui; Wu, Qingling; Zhou, Jing; Bao, Haifeng; Li, Qiang; Zhang, Fan; Li, Fuyou; Tu, Bo; Zhao, Dongyuan

    2010-06-01

    Mesoporous silica encapsulating upconversion luminescence NaYF(4) nanorods with uniform core-shell structures have been successfully synthesized by the surfactant-assistant sol-gel process. The thickness of ordered mesoporous silica shells can be adjusted from 50 to 95 nm by varying the amount of hydrolyzed silicate oligomer precursors from tetraethyl orthosilicate (TEOS), which further influences the BET surface area, pore volume, and the luminescence intensity. After coated with mesoporous silica shells, the hydrophobic nanorods is rendered to hydropholic simultaneously. The obtained beta-NaYF(4)@SiO(2)@mSiO(2) core-shell nanorods possess high surface area (71.2-196 m(2) g(-1)), pore volume (0.07-0.17 cm(3) g(-1)), uniform pore size distribution (2.3 nm), and accessible channels. Furthermore, the uniform core-shell nanorods show strong upconversion luminescence property similar to the hexagonal upconversion cores. The open mesopores can not only provide convenient transmission channels but also offer the huge location for accommodation of large molecules, such as fluorescent dyes and quantum dots. The secondary-excitation fluorescence of Rhodamine B is generated from the upconversion rare-earth fluoride nanorods cores to the fluorescent dyes loaded in the mesoporous silica shells.

  11. All-or-none switching of photon upconversion in self-assembled organogel systems.

    PubMed

    Duan, Pengfei; Asthana, Deepak; Nakashima, Takuya; Kawai, Tsuyoshi; Yanai, Nobuhiro; Kimizuka, Nobuo

    2017-02-22

    Aggregation-induced photon upconversion (iPUC) based on a triplet-triplet annihilation (TTA) process is successfully developed via controlled self-assembly of donor-acceptor pairs in organogel nanoassemblies. Although segregation of donor from acceptor assemblies has been an outstanding problem in TTA-based UC and iPUC, we resolved this issue by modifying both the triplet donor and aggregation induced emission (AIE)-type acceptor with glutamate-based self-assembling moieties. These donors and acceptors co-assemble to form organogels without segregation. Interestingly, these donor-acceptor binary gels show upconversion at room temperature but the upconversion phenomena were lost upon dissolution of the gels on heating. The observed changes in TTA-UC emission were thermally reversible, reflecting the controlled assembly/disassembly of the binary molecular systems. The observed on/off ratio of UC emission was much higher than that of the aggregation-induced fluorescence of the acceptor, which highlights the important role of iPUC, i.e., multi-exciton TTA for photoluminescence switching. This work bridges iPUC and supramolecular chemistry and provides a new strategy for designing stimuli-responsive upconversion systems.

  12. Broadband up-conversion at subsolar irradiance: triplet-triplet annihilation boosted by fluorescent semiconductor nanocrystals.

    PubMed

    Monguzzi, A; Braga, D; Gandini, M; Holmberg, V C; Kim, D K; Sahu, A; Norris, D J; Meinardi, F

    2014-11-12

    Conventional solar cells exhibit limited efficiencies in part due to their inability to absorb the entire solar spectrum. Sub-band-gap photons are typically lost but could be captured if a material that performs up-conversion, which shifts photon energies higher, is coupled to the device. Recently, molecular chromophores that undergo triplet-triplet annihilation (TTA) have shown promise for efficient up-conversion at low irradiance, suitable for some types of solar cells. However, the molecular systems that have shown the highest up-conversion efficiency to date are ill suited to broadband light harvesting, reducing their applicability. Here we overcome this limitation by combining an organic TTA system with highly fluorescent CdSe semiconductor nanocrystals. Because of their broadband absorption and spectrally narrow, size-tunable fluorescence, the nanocrystals absorb the radiation lost by the TTA chromophores, returning this energy to the up-converter. The resulting nanocrystal-boosted system shows a doubled light-harvesting ability, which allows a green-to-blue conversion efficiency of ∼12.5% under 0.5 suns of incoherent excitation. This record efficiency at subsolar irradiance demonstrates that boosting the TTA by light-emitting nanocrystals can potentially provide a general route for up-conversion for different photovoltaic and photocatalytic applications.

  13. An estimate of spherical impactor energy transfer for mechanical frequency up-conversion energy harvester

    NASA Astrophysics Data System (ADS)

    Corr, L. R.; Ma, D. T.

    2016-08-01

    Vibration energy harvesters, which use the impact mechanical frequency up-conversion technique, utilize an impactor, which gains kinetic energy from low frequency ambient environmental vibrations, to excite high frequency systems that efficiently convert mechanical energy to electrical energy. To take full advantage of the impact mechanical frequency up-conversion technique, it is prudent to understand the energy transfer from the low frequency excitations, to the impactor, and finally to the high frequency systems. In this work, the energy transfer from a spherical impactor to a multi degree of freedom spring / mass system, due to Hertzian impact, is investigated to gain insight on how best to design impact mechanical frequency up-conversion energy harvesters. Through this academic work, it is shown that the properties of the contact (or impact) area, i.e., radius of curvature and material properties, only play a minor role in energy transfer and that the equivalent mass of the target system (i.e., the spring / mass system) dictates the total amount of energy transferred during the impact. The novel approach of utilizing the well-known Hertzian impact methodology to gain an understanding of impact mechanical frequency up-conversion energy harvesters has made it clear that the impactor and the high frequency energy generating systems must be designed together as one system to ensure maximum energy transfer, leading to efficient ambient vibration energy harvesters.

  14. Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium

    SciTech Connect

    Page, R.H.; Schaffers, K.I.; Waide, P.A.; Tassano, J.B.; Payne, S.A.; Kruplce, W.F.; Bischel, W.K.

    1997-07-26

    We discuss the upconversion luminescence efficiencies of phosphors that generate red, green, and blue light. The phosphors studied are single crystals and powders co-doped with Er{sup 3+} and Yb{sup 3+}, and with Tm{sup 3+} and Yb{sup 3+}. The Yb ions are pumped near 980 nm; transfers of two or three quanta to the co-doped rare earth ion generate visible luminescence. The main contribution embodied in this work is the quantitative measurement of this upconversion efficiency, based on the use of a calibrated integrating sphere, determination of the fraction of pump light absorbed, and careful control of the pump laser beam profile. The green phosphors are the most efficient, yielding efficiency values as high as 4 %, with the red and blue materials giving 1 - 2 %. Saturation was observed in all cases, suggesting that populations of upconversion steps of the ions are maximized at higher power. Quasi-CW modeling of the intensity- dependent upconversion efficiency was attempted; input data included level lifetimes, transition cross sections, and cross-relaxation rate coefficients. The saturation of the Yb,Er:fluoride media is explained as the pumping of Er{sup 3+} ions into a bottleneck (long-lived state)- the {sup 4}I{sub 13/2} metastable level, making them unavailable for further excitation transfer. 32 refs., 5 figs., 3 tabs.

  15. Highly Enhanced Cooperative Upconversion Luminescence through Energy Transfer Optimization and Quenching Protection.

    PubMed

    Xue, Meng; Zhu, Xingjun; Qiu, Xiaochen; Gu, Yuyang; Feng, Wei; Li, Fuyou

    2016-07-20

    Upconversion luminescence nanomaterials have shown great potential in biological and physical applications because of their unique properties. However, limited research exists on the cooperative sensitization upconversion emission in Tb(3+) ions over Er(3+) ions and Tm(3+) ions because of its low efficiency. Herein, by optimizing the doping ratio of sensitizer and activator to maximize the utilization of the photon energy and introducing the CaF2 inert shell to shield sensitizer from quenchers, we synthesize ultrasmall NaYbF4:Tb@CaF2 nanoparticles with a significant enhancement (690-fold) in cooperative sensitization upconversion emission intensity, compared with the parent NaYbF4:Tb. The lifetime of Tb(3+) emission in NaYbF4:Tb@CaF2 nanoparticles is prolonged extensively to ∼3.5 ms. Furthermore, NaYbF4:Tb@CaF2 was applied in in vitro and in vivo bioimaging. The presented luminescence enhancement strategy provides cooperative sensitization upconversion with new opportunities for bioapplication.

  16. Photochemical Upconversion: A Physical or Inorganic Chemistry Experiment for Undergraduates Using a Conventional Fluorimeter

    ERIC Educational Resources Information Center

    Wilke, Bryn M.; Castellano, Felix N.

    2013-01-01

    Photochemical upconversion is a regenerative process that transforms lower-energy photons into higher-energy light through two sequential bimolecular reactions, triplet sensitization of an appropriate acceptor followed by singlet fluorescence producing triplet-triplet annihilation derived from two energized acceptors. This laboratory directly…

  17. Simultaneous excitation and emission enhancements in upconversion luminescence using plasmonic double-resonant gold nanorods

    PubMed Central

    Liu, Xin; Yuan Lei, Dang

    2015-01-01

    The geometry and dimension of a gold nanorod (GNR) are optimally designed to enhance the fluorescence intensity of a lanthanide-doped upconversion nanocrystal placed in close proximity to the GNR. A systematic study of the electromagnetic interaction between the upconversion emitter of three energy levels and the GNR shows that the enhancement effect arising from localized electric field-induced absorption can be balanced by the negative effect of electronic transition from an intermediate state to the ground state of the emitter. The dependence of fluorescence enhancement on the emitter-GNR separation is investigated, and the results demonstrate a maximum enhancement factor of 120 folds and 160 folds at emission wavelengths 650 and 540 nm, respectively. This is achieved at the emitter-GNR separation ranging from 5 to 15 nm, depending on the initial quantum efficiency of the emitter. The modified upconversion luminescence behavior by adjusting the aspect ratio of the GNR and the relative position of the emitter indicates the dominate role of excitation process in the total fluorescence enhancement. These findings are of great importance for rationally designing composite nanostructures of metal nanoparticles and upconversion nanocrystals with maximized plasmonic enhancement for bioimaging and sensing applications. PMID:26468686

  18. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals.

    PubMed

    Chatterjee, Dev K; Rufaihah, Abdul J; Zhang, Yong

    2008-03-01

    Upconversion fluorescence imaging technique with excitation in the near-infrared (NIR) region has been used for imaging of biological cells and tissues. This has several advantages, including absence of photo-damage to living organisms, very low auto-fluorescence, high detection sensitivity, and high light penetration depth in biological tissues. In this report we demonstrate the use of a new upconversion fluorophore, lanthanide doped nanocrystals, for imaging of cells and some deep tissues in animal. Polyethyleneimine (PEI) coated NaYF(4):Yb,Er nanoparticles were synthesized, which produce very strong upconversion fluorescence when excited at 980 nm by a NIR laser. The nanoparticles were shown to be stable in physiologic buffered saline (PBS), non-toxic to bone marrow stem cells, and resistant to photo-bleaching. The nanoparticles delivered into some cell lines or injected intradermally and intramuscularly into some tissues either near the body surface or deep in the body of rats showed visible fluorescence, when exposed to a 980 nm NIR laser. To the best of our knowledge, this represents the first demonstration of use of upconversion fluorophores for cellular and tissue imaging.

  19. Rare-earth doped colour tuneable up-conversion ZBLAN phosphor for enhancing photocatalysis

    NASA Astrophysics Data System (ADS)

    Méndez-Ramos, J.; Acosta-Mora, P.; Ruiz-Morales, J. C.; Sierra, M.; Redondas, A.; Ruggiero, E.; Salassa, L.; Borges, M. E.; Esparza, P.

    2015-03-01

    Rare-earth doped ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fluoride glasses have been successfully synthesized showing outstanding UV-VIS up-conversion luminescence of Er3+ and Tm3+, sensitized by Yb3+ ions, under near-infrared excitation at 980 nm. The ratio between blue, green and red up-conversion emission bands can be adjusted by varying the pump power density of the incident infrared radiation, resulting in a controlled tuneability of the overall emitting colour from greenish to yellowish. Additionally, the observed high energy UV intense up-conversion emissions are suitable to enhance photocatalytic activity of main water-splitting semiconductor electrodes (such as TiO2) used in sustainable production of hydrogen. Photocatalysis and photolysis degradation of methylene blue in water under sun-like irradiation using benchmark photocatalyst (TiO2 Degussa P25) have been boosted by 20% and by a factor of 2.5 respectively, due to the enhancement of UV radiation that reaches the TiO2 particles by the addition of ZBLAN powder into a slurry-type photo-reactor. Hence, up-conversion ZBLAN phosphors contribute to demonstrate the possibility of transforming the incoming infrared radiation into the UV region needed to bridge the gap of photocatalytic semiconductors.

  20. Severe Hypertriglyceridemia in Glut1D on Ketogenic Diet.

    PubMed

    Klepper, Joerg; Leiendecker, Baerbel; Heussinger, Nicole; Lausch, Ekkehart; Bosch, Friedrich

    2016-04-01

    High-fat ketogenic diets are the only treatment available for Glut1 deficiency (Glut1D). Here, we describe an 8-year-old girl with classical Glut1D responsive to a 3:1 ketogenic diet and ethosuximide. After 3 years on the diet a gradual increase of blood lipids was followed by rapid, severe asymptomatic hypertriglyceridemia (1,910 mg/dL). Serum lipid apheresis was required to determine liver, renal, and pancreatic function. A combination of medium chain triglyceride-oil and a reduction of the ketogenic diet to 1:1 ratio normalized triglyceride levels within days but triggered severe myoclonic seizures requiring comedication with sultiam. Severe hypertriglyceridemia in children with Glut1D on ketogenic diets may be underdiagnosed and harmful. In contrast to congenital hypertriglyceridemias, children with Glut1D may be treated effectively by dietary adjustments alone.

  1. TBC1D24 genotype–phenotype correlation

    PubMed Central

    Balestrini, Simona; Milh, Mathieu; Castiglioni, Claudia; Lüthy, Kevin; Finelli, Mattea J.; Verstreken, Patrik; Cardon, Aaron; Stražišar, Barbara Gnidovec; Holder, J. Lloyd; Lesca, Gaetan; Mancardi, Maria M.; Poulat, Anne L.; Repetto, Gabriela M.; Banka, Siddharth; Bilo, Leonilda; Birkeland, Laura E.; Bosch, Friedrich; Brockmann, Knut; Cross, J. Helen; Doummar, Diane; Félix, Temis M.; Giuliano, Fabienne; Hori, Mutsuki; Hüning, Irina; Kayserili, Hulia; Kini, Usha; Lees, Melissa M.; Meenakshi, Girish; Mewasingh, Leena; Pagnamenta, Alistair T.; Peluso, Silvio; Mey, Antje; Rice, Gregory M.; Rosenfeld, Jill A.; Taylor, Jenny C.; Troester, Matthew M.; Stanley, Christine M.; Ville, Dorothee; Walkiewicz, Magdalena; Falace, Antonio; Fassio, Anna; Lemke, Johannes R.; Biskup, Saskia; Tardif, Jessica; Ajeawung, Norbert F.; Tolun, Aslihan; Corbett, Mark; Gecz, Jozef; Afawi, Zaid; Howell, Katherine B.; Oliver, Karen L.; Berkovic, Samuel F.; Scheffer, Ingrid E.; de Falco, Fabrizio A.; Oliver, Peter L.; Striano, Pasquale; Zara, Federico

    2016-01-01

    Objective: To evaluate the phenotypic spectrum associated with mutations in TBC1D24. Methods: We acquired new clinical, EEG, and neuroimaging data of 11 previously unreported and 37 published patients. TBC1D24 mutations, identified through various sequencing methods, can be found online (http://lovd.nl/TBC1D24). Results: Forty-eight patients were included (28 men, 20 women, average age 21 years) from 30 independent families. Eighteen patients (38%) had myoclonic epilepsies. The other patients carried diagnoses of focal (25%), multifocal (2%), generalized (4%), and unclassified epilepsy (6%), and early-onset epileptic encephalopathy (25%). Most patients had drug-resistant epilepsy. We detail EEG, neuroimaging, developmental, and cognitive features, treatment responsiveness, and physical examination. In silico evaluation revealed 7 different highly conserved motifs, with the most common pathogenic mutation located in the first. Neuronal outgrowth assays showed that some TBC1D24 mutations, associated with the most severe TBC1D24-associated disorders, are not necessarily the most disruptive to this gene function. Conclusions: TBC1D24-related epilepsy syndromes show marked phenotypic pleiotropy, with multisystem involvement and severity spectrum ranging from isolated deafness (not studied here), benign myoclonic epilepsy restricted to childhood with complete seizure control and normal intellect, to early-onset epileptic encephalopathy with severe developmental delay and early death. There is no distinct correlation with mutation type or location yet, but patterns are emerging. Given the phenotypic breadth observed, TBC1D24 mutation screening is indicated in a wide variety of epilepsies. A TBC1D24 consortium was formed to develop further research on this gene and its associated phenotypes. PMID:27281533

  2. Sub-10 nm Sr2LuF7:Yb/Er@Sr2GdF7@SrF2 Up-Conversion Nanocrystals for Up-Conversion Luminescence-Magnetic Resonance-Computed Tomography Trimodal Bioimaging.

    PubMed

    Chen, Cailing; Liu, Jianhua; Chen, Ying; Li, Chunguang; Liu, Xiaomin; Huang, He; Liang, Chen; Lou, Yue; Shi, Zhan; Feng, Shouhua

    2017-02-22

    Herein, sub-10 nm core-shell nanocrystals (NCs), which select Sr2LuF7:Yb/Er as core, Sr2GdF7 as middle shell, and SrF2 as an outermost shell, were synthesized by a seed-mediated growth process. The NCs possess good crystallinity, morphology, and up-conversion luminescent properties. After modification by polyethylenimine branched (PEI), in vitro cell up-conversion imaging with low autofluorescence was realized. Due to the presence of Gd(3+) ions, in vivo magnetic resonance (MR) imaging was also achieved with these designed NCs. More significantly, these special core-shell NCs exhibited high contrast in in vivo X-ray computed tomography (CT) imaging because of their good X-ray absorption ability. These results indicate that the core-shell up-conversion NCs can serve as promising contrast agents for up-conversion luminescence-MR-CT trimodal bioimaging.

  3. Broadband near-infrared to visible upconversion in quantum dot-quantum well heterostructures (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Teitelboim, Ayelet; Oron, Dan

    2016-09-01

    Upconversion (UC) is a nonlinear process in which two, or more, long wavelength photons are converted to a shorter wavelength photon. This process is based on sequential absorption of two or more photons, involving metastable, long lived intermediate energy states, thus is not restricted to upconversion of coherent laser radiation as a non-coherent process. Hence, requirements for UC processes are long lived excited states, a ladder like arrangement of energy levels and a mechanism inhibiting cooling of the hot charge carrier. UC holds great promise for bioimaging, enabling spatially resolved imaging in a scattering specimen and for photovoltaic devices as a mean to surpass the Shockley-Queisser efficiency limit. Here, we present a novel luminescence upconversion nano-system based on colloidal semiconductor double quantum dots, consisting of a NIR-emitting component and a visible emitting component separated by a tunneling barrier in a spherical onion-like geometry. These dual near-infrared and visible emitting core/shell/shell PbSe/CdSe/CdS nanocrystals are shown to upconvert a broad range of NIR wavelengths to visible emission at room temperature, covering a spectral range where there are practically no alternative upconversion systems. The synthesis is a three-step process, which enables versatility and tunability of both the visible emission color and the NIR absorption edge. Using this method one can achieve a range of desired upconverted emission peak positions with a suitable NIR band gap. The physical mechanism for upconversion in this structure, as well as possible extensions and improvements will be discussed. 1 (1) Teitelboim, A.; Oron, D. ACS Nano 2015, acsnano.5b05329.

  4. Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications

    SciTech Connect

    Wu, Xiang; Zhang, Yuanwei; Takle, Kendra; Bilsel, Osman; Li, Zhanjun; Lee, Hyungseok; Zhang, Zijiao; Li, Dongsheng; Fan, Wei; Duan, Chunying; Chan, Emory M.; Lois, Carlos; Xiang, Yang; Han, Gang

    2016-01-26

    Near Infrared (NIR) dye-sensitized upconversion nanoparticles (UCNPs) have recently been proposed in order to broaden the absorption range and to boost upconversion efficiency. However, implementing this strategy has been limited only to bare core UCNP structures that are faintly luminescent. Herein, we report on an approach to achieve significantly enhanced upconversion luminescence in dye-sensitized core-active shell UCNPs with a broadened absorption range via the doping of ytterbium ions in the UCNP shell in order to bridge the energy transfer from the dye to the UCNP core. As a result, we have been able to synergize the two most practical upconversion booster effectors (dye-sensitizing and core/shell enhancement). The absolute quantum yield of our dye-sensitized core/active shell UCNPs at 800 nm was determined to be ~6% at 2 W/cm2, about 33 times larger than the highest value reported to date for existing 800 nm excitable UCNPs. Moreover, for the first time, by using dye-sensitized core/active shell UCNP embedded poly(methyl methacrylate) polymer implantable systems, we successfully shifted the optogenetic neuron excitation window to a wavelength that is compatible with deep tissue penetrable near the infrared wavelength at 800 nm. Finally, amphiphilic triblock copolymer, Pluronic F127 coatings permit the transfer of hydrophobic UCNPs into water, resulting in water-soluble nanoparticles with well-preserved optical property in aqueous solution. We believe that this research offers a new solution to enhance upconversion efficiency for photonic and biophotonic purposes and opens up new opportunities to use UCNPs as a NIR relay for optogenetic applications.

  5. Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization

    NASA Astrophysics Data System (ADS)

    Pominova, D. V.; Ryabova, A. V.; Linkov, K. G.; Romanishkin, I. D.; Kuznetsov, S. V.; Rozhnova, J. A.; Konov, V. I.; Loschenov, V. B.

    2016-08-01

    Emission spectral properties and quantum efficiency of upconversion particles NaYF4, SrF2, LaF3, BaF2 i CaF2, doped with rare earth ions pair Yb3+-Er3+ were studied using continuous wave (CW) and pulsed periodic excitation modes in the near infrared (NIR) spectral range. Analysis of the obtained results showed that the intensity ratio of upconversion luminescence in green and red spectral ranges depends on excitation pulse duration. Thus, by changing the pulse duration the spectral properties of upconversion luminescence can be controlled. Crystals with higher phonon energy are more sensitive to the change of pumping mode. Interpretation of results was performed on the rate equation model basis. Using numerical methods for all energy levels involved in the upconversion process the population and depopulation dynamics were obtained with respect to the duration of the excitation pulses. It was shown that about 30 ms was required for the complete population of 4F9/2 state, from which the luminescence in the red spectral range occurs. When the pulse duration was less than 30 ms, the 4F9/2 population did not reach a steady state and the intensity of the luminescence in the red part of the spectrum was reduced. The theoretical dependence of the upconversion luminescence intensity in the green and red ranges of the excitation pulse duration for NaYF4:Yb0.2-Er0.02 composition was obtained and demonstrates good agreement with the experimental results.

  6. Magnetic tuning of upconversion luminescence in Au/NaGdF4:Yb(3+)/Er(3+) nanocomposite.

    PubMed

    Dai, Gangtao; Zhong, Zhiqiang; Wu, Xiaofeng; Zhan, Shiping; Hu, Shigang; Hu, Pan; Hu, Junshan; Wu, Shaobing; Han, Junbo; Liu, Yunxin

    2017-04-18

    Lanthanide-doped upconversion nanoparticles (UCNPs) NaGdF4:Yb(3+)/Er(3+) have received increasing attention due to their unique optical-magnetic bifunctional properties. Here, we show that the luminescent intensity from NaGdF4:Yb(3+)/Er(3+) nanoparticles decreases monotonously with increasing the applied magnetic field from 0 to 37.1 T, while plasmon-enhanced upconversion luminescence in Au/NaGdF4:Yb(3+)/Er(3+) nanocomposite is independent of a magnetic field lower than 6 T. The surface plasmon resonances could compensate for the energetic mismatching between the excitation light and the energy-level gaps induced by magnetic field and enhance the radiative efficiency, which is the main factor for achieving this stable upconversion emission in this nanocomposite under a magnetic field not higher than 6 T. These findings provide a novel route for exploring the magnetic control of upconversion luminescence in lanthanide-doped bifunctional nanoparticles.

  7. Magnetic tuning of upconversion luminescence in Au/NaGdF4:Yb3+/Er3+ nanocomposite

    NASA Astrophysics Data System (ADS)

    Dai, Gangtao; Zhong, Zhiqiang; Wu, Xiaofeng; Zhan, Shiping; Hu, Shigang; Hu, Pan; Hu, Junshan; Wu, Shaobing; Han, Junbo; Liu, Yunxin

    2017-04-01

    Lanthanide-doped upconversion nanoparticles (UCNPs) NaGdF4:Yb3+/Er3+ have received increasing attention due to their unique optical-magnetic bifunctional properties. Here, we show that the luminescent intensity from NaGdF4:Yb3+/Er3+ nanoparticles decreases monotonously with increasing the applied magnetic field from 0 to 37.1 T, while plasmon-enhanced upconversion luminescence in Au/NaGdF4:Yb3+/Er3+ nanocomposite is independent of a magnetic field lower than 6 T. The surface plasmon resonances could compensate for the energetic mismatching between the excitation light and the energy-level gaps induced by magnetic field and enhance the radiative efficiency, which is the main factor for achieving this stable upconversion emission in this nanocomposite under a magnetic field not higher than 6 T. These findings provide a novel route for exploring the magnetic control of upconversion luminescence in lanthanide-doped bifunctional nanoparticles.

  8. High-efficiency simultaneous three-photon absorption upconversion luminescence of a terbium-doped germanate glass

    NASA Astrophysics Data System (ADS)

    Zhang, Liaolin; Yang, Runlan; Zou, Hui; Shen, Xiao; Zheng, Jiajin; Wei, Wei

    2016-12-01

    In this paper, high-efficiency green upconversion luminescence from a terbium (Tb3+)-doped germanate glass is reported. The upconversion luminescence involved a simultaneous three-photon absorption process. Compared with an emission spectrum excited at 377 nm, the upconversion luminescence bands of Tb3+ pumped by an fs laser showed a slight red-shift. This was ascribed to the redistribution of glass composition when the glass sample was exposed to the high-intensity laser, which results in the aggregation of Tb3+ around the laser-exposed focal region, which in turn results in the slight red-shift of luminescence. The upconversion luminescence intensities at 540, 590, and 620 nm strongly depended on the polarization angle of the femtosecond laser, which was ascribed to the different transmittances of a half-wavelength plate at different polarization angles, which results in the regularity change in fs laser power.

  9. Optical parameters and upconversion fluorescence in Tm3+/Yb3+-doped alkali-barium-bismuth-tellurite glasses.

    PubMed

    Lin, Hai; Liu, Ke; Lin, Lin; Hou, Yanyan; Yang, Dianlai; Ma, Tiecheng; Pun, Edwin Yun Bun; An, Qingda; Yu, Jiayou; Tanabe, Setsuhisa

    2006-11-01

    Tm(3+)/Yb(3+)-doped alkali-barium-bismuth-tellurite (LKBBT) glasses have been fabricated and characterized. Density, refractive index, optical absorption, absorption and emission cross-sections of Yb(3+), Judd-Ofelt parameters and spontaneous transition probabilities of Tm(3+) have been measured and calculated, respectively. Intense blue three-photon upconversion fluorescence and near-infrared two-photon upconversion fluorescence were investigated under the excitation of a 980 nm diode laser at room temperature. Wide infrared transmission window, high refractive index and strong blue three-photon upconversion emission of Tm(3+) indicate that Tm(3+)/Yb(3+) co-doped LKBBT glasses are promising upconversion optical and laser materials.

  10. Rab28 is a TBC1D1/TBC1D4 substrate involved in GLUT4 trafficking.

    PubMed

    Zhou, Zhou; Menzel, Franziska; Benninghoff, Tim; Chadt, Alexandra; Du, Chen; Holman, Geoffrey D; Al-Hasani, Hadi

    2017-01-01

    The Rab-GTPase-activating proteins (GAPs) TBC1D1 and TBC1D4 play important roles in the insulin-stimulated translocation of the glucose transporter GLUT4 from intracellular vesicles to the plasma membrane in muscle cells and adipocytes. We identified Rab28 as a substrate for the GAP domains of both TBC1D1 and TBC1D4 in vitro. Rab28 is expressed in adipose cells and skeletal muscle, and its GTP-binding state is acutely regulated by insulin. We found that in intact isolated mouse skeletal muscle, siRNA-mediated knockdown of Rab28 decreases basal glucose uptake. Conversely, in primary rat adipose cells, overexpression of Rab28-Q72L, a constitutively active mutant, increases basal cell surface levels of an epitope-tagged HA-GLUT4. Our results indicate that Rab28 is a novel GTPase involved in the intracellular retention of GLUT4 in insulin target cells.

  11. Experimental demonstration of hot carrier upconversion using Au, Ag, and GaN/InGaN quantum wells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Naik, Gururaj V.; Welch, Alex J.; Dionne, Jennifer A.

    2016-09-01

    Plasmon resonances in metallic nanoparticles result in enhanced light absorption and hot carrier generation. Although hot carriers are short-lived, their energy can be extracted in optical form resulting in photon upconversion. Two low energy photons absorbed by a plasmonic nanostructure, create a hot electron and a hot hole. These hot carriers get injected into an adjacent semiconductor quantum well where they radiatively recombine to emit a higher energy photon resulting in photon upconversion. This process involves injection of an electron and a hole across the same interface making it charge neutral. The upconversion emission has a linear dependence on the incident light intensity, making it promising for applications requiring low power operation. Theoretical studies show that a silver/semiconductor system can have an ideal efficiency of 25%. Our experimental demonstration of this new scheme utilizes GaN/InGaN quantum wells decorated with both silver and gold. The use of two metals reduces band-bending in the semiconductor. Illuminating the sample with light spanning wavelengths of 500-540 nm produces upconversion photoluminescence centered at 435 nm. Control samples including undecorated quantum wells and metal nanostructures on a glass substrate do not show any upconversion ruling out possibilities of upconversion in individual materials. Further, the linear dependence of the upconverted light intensity with incident intensity rules out any non-linear or Auger mediated mechanisms. We will describe how this hot carrier upconversion process promises to be broadband, tunable, and more efficient than existing solid-state upconversion schemes, and discuss potential applications in solar energy, security, and photodetection applications.

  12. Blue and green up-conversion in ZBLAN Tm3+,Yb3+-codoped glasses pumped with LD 970-nm laser

    NASA Astrophysics Data System (ADS)

    Cao, Wanghe; Kan, Shidong; Zang, Chuanyi

    1998-08-01

    The quality of synthesized ZBLAN:Tm3+,Yb3+ glasses is analyzed and an efficient up-concentration in the blue and green light of Tm3+ containing different concentration ratio of Tm3+:Yb3+ demonstrated under LD 970 nm pumping. The up-conversion process of Tm3+ in ZBLAN:Tm3+,Yb3+ glasses are presented. The up-conversion in green can be limited restrained by the concentration of Yb3+.

  13. Efficient Tailoring of Upconversion Selectivity by Engineering Local Structure of Lanthanides in Na(x)REF(3+x) Nanocrystals.

    PubMed

    Dong, Hao; Sun, Ling-Dong; Wang, Ye-Fu; Ke, Jun; Si, Rui; Xiao, Jia-Wen; Lyu, Guang-Ming; Shi, Shuo; Yan, Chun-Hua

    2015-05-27

    Efficient tailoring of upconversion emissions in lanthanide-doped nanocrystals is of great significance for extended optical applications. Here, we present a facile and highly effective method to tailor the upconversion selectivity by engineering the local structure of lanthanides in Na(x)REF(3+x) nanocrystals. The local structure engineering was achieved through precisely tuning the composition of nanocrystals, with different [Na]/[RE] ([F]/[RE]) ratio. It was found that the lattice parameter as well as the coordination number and local symmetry of lanthanides changed with the composition. A significant difference in the red to green emission ratio, which varied from 1.9 to 71 and 1.6 to 116, was observed for Na(x)YF(3+x):Yb,Er and Na(x)GdF(3+x):Yb,Er nanocrystals, respectively. Moreover, the local structure-dependent upconversion selectivity has been verified for Na(x)YF(3+x):Yb,Tm nanocrystals. In addition, the local structure induced upconversion emission from Er(3+) enhanced 9 times, and the CaF2 shell grown epitaxially over the nanocrystals further promoted the red emission by 450 times, which makes it superior as biomarkers for in vivo bioimaging. These exciting findings in the local structure-dependent upconversion selectivity not only offer a general approach to tailoring lanthanide related upconversion emissions but also benefit multicolor displays and imaging.

  14. Upconversion luminescence of lanthanide-doped mixed CaMoO4-CaWO4 micro-/nano-materials.

    PubMed

    Liu, Jing; Kaczmarek, Anna M; Billet, Jonas; Van Driessche, Isabel; Van Deun, Rik

    2016-08-14

    Uniform mixed CaMoO4-CaWO4 micro-/nano-materials have been successfully synthesised by a facile hydrothermal method. The morphology of these upconversion materials could be changed to different shapes and the size could also be decreased from the micro- to nano-scale by varying the type of surfactant used. It was observed that before heat treatment, the materials show relatively weak green light emission under excitation at 975 nm, whereas after heat treatment, the intensity of the upconversion luminescence increases dramatically while the intensity of the red component decreases relatively. By adjusting the molybdate/tungstate ratio, it was found that the samples with a higher molybdate content have stronger luminescence properties. XRD measurements have been done to investigate the structure of the mixed CaMoO4-CaWO4 upconversion materials. The effect of heat treatment at different temperatures on the emission spectra and XRD patterns has also been studied. TG-DTA was used to further confirm the most suitable temperature for heat treatment. The luminescence lifetimes and CIE coordinates for these samples were also determined. Additionally it was found that Gd(3+) co-doping could further increase the upconversion luminescence from these mixed CaMoO4-CaWO4 materials. Finally, monitoring the upconversion luminescence intensity as a function of laser pump power confirmed the upconversion process to be a two-photon absorption mechanism.

  15. Polar discontinuities and 1D interfaces in monolayered materials

    NASA Astrophysics Data System (ADS)

    Martinez-Gordillo, Rafael; Pruneda, Miguel

    2015-12-01

    Interfaces are the birthplace of a multitude of fascinating discoveries in fundamental science, and have enabled modern electronic devices, from transistors, to lasers, capacitors or solar cells. These interfaces between bulk materials are always bi-dimensional (2D) 'surfaces'. However the advent of graphene and other 2D crystals opened up a world of possibilities, as in this case the interfaces become one-dimensional (1D) lines. Although the properties of 1D nanoribbons have been extensively discussed in the last few years, 1D interfaces within infinite 2D systems had remained mostly unexplored until very recently. These include grain boundaries in polycrystalline samples, or interfaces in hybrid 2D sheets composed by segregated domains of different materials (as for example graphene/BN hybrids, or chemically different transition metal dichalcogenides). As for their 2D counterparts, some of these 1D interfaces exhibit polar characteristics, and can give rise to fascinating new physical properties. Here, recent experimental discoveries and theoretical predictions on the polar discontinuities that arise at these 1D interfaces will be reviewed, and the perspectives of this new research topic, discussed.

  16. Ion-sensing properties of 1D vanadium pentoxide nanostructures

    PubMed Central

    2012-01-01

    The application of one-dimensional (1D) V2O5·nH2O nanostructures as pH sensing material was evaluated. 1D V2O5·nH2O nanostructures were obtained by a hydrothermal method with systematic control of morphology forming different nanostructures: nanoribbons, nanowires and nanorods. Deposited onto Au-covered substrates, 1D V2O5·nH2O nanostructures were employed as gate material in pH sensors based on separative extended gate FET as an alternative to provide FET isolation from the chemical environment. 1D V2O5·nH2O nanostructures showed pH sensitivity around the expected theoretical value. Due to high pH sensing properties, flexibility and low cost, further applications of 1D V2O5·nH2O nanostructures comprise enzyme FET-based biosensors using immobilized enzymes. PMID:22709724

  17. Pitch-based pattern splitting for 1D layout

    NASA Astrophysics Data System (ADS)

    Nakayama, Ryo; Ishii, Hiroyuki; Mikami, Koji; Tsujita, Koichiro; Yaegashi, Hidetami; Oyama, Kenichi; Smayling, Michael C.; Axelrad, Valery

    2015-07-01

    The pattern splitting algorithm for 1D Gridded-Design-Rules layout (1D layout) for sub-10 nm node logic devices is shown. It is performed with integer linear programming (ILP) based on the conflict graph created from a grid map for each designated pitch. The relation between the number of times for patterning and the minimum pitch is shown systematically with a sample pattern of contact layer for each node. From the result, the number of times for patterning for 1D layout is fewer than that for conventional 2D layout. Moreover, an experimental result including SMO and total integrated process with hole repair technique is presented with the sample pattern of contact layer whose pattern density is relatively high among critical layers (fin, gate, local interconnect, contact, and metal).

  18. Flexible Photodetectors Based on 1D Inorganic Nanostructures

    PubMed Central

    Lou, Zheng

    2015-01-01

    Flexible photodetectors with excellent flexibility, high mechanical stability and good detectivity, have attracted great research interest in recent years. 1D inorganic nanostructures provide a number of opportunities and capabilities for use in flexible photodetectors as they have unique geometry, good transparency, outstanding mechanical flexibility, and excellent electronic/optoelectronic properties. This article offers a comprehensive review of several types of flexible photodetectors based on 1D nanostructures from the past ten years, including flexible ultraviolet, visible, and infrared photodetectors. High‐performance organic‐inorganic hybrid photodetectors, as well as devices with 1D nanowire (NW) arrays, are also reviewed. Finally, new concepts of flexible photodetectors including piezophototronic, stretchable and self‐powered photodetectors are examined to showcase the future research in this exciting field. PMID:27774404

  19. PC-1D installation manual and user's guide

    SciTech Connect

    Basore, P.A.

    1991-05-01

    PC-1D is a software package for personal computers that uses finite-element analysis to solve the fully-coupled two-carrier semiconductor transport equations in one dimension. This program is particularly useful for analyzing the performance of optoelectronic devices such as solar cells, but can be applied to any bipolar device whose carrier flows are primarily one-dimensional. This User's Guide provides the information necessary to install PC-1D, define a problem for solution, solve the problem, and examine the results. Example problems are presented which illustrate these steps. The physical models and numerical methods utilized are presented in detail. This document supports version 3.1 of PC-1D, which incorporates faster numerical algorithms with better convergence properties than previous versions of the program. 51 refs., 17 figs., 5 tabs.

  20. A high performance fluorescence switching system triggered electrochemically by Prussian blue with upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhai, Yiwen; Zhang, Hui; Zhang, Lingling; Dong, Shaojun

    2016-05-01

    A high performance fluorescence switching system triggered electrochemically by Prussian blue with upconversion nanoparticles was proposed. We synthesized a kind of hexagonal monodisperse β-NaYF4:Yb3+,Er3+,Tm3+ upconversion nanoparticle and manipulated the intensity ratio of red emission (at 653 nm) and green emission at (523 and 541 nm) around 2 : 1, in order to match well with the absorption spectrum of Prussian blue. Based on the efficient fluorescence resonance energy transfer and inner-filter effect of the as-synthesized upconversion nanoparticles and Prussian blue, the present fluorescence switching system shows obvious behavior with high fluorescence contrast and good stability. To further extend the application of this system in analysis, sulfite, a kind of important anion in environmental and physiological systems, which could also reduce Prussian blue to Prussian white nanoparticles leading to a decrease of the absorption spectrum, was chosen as the target. And we were able to determine the concentration of sulfite in aqueous solution with a low detection limit and a broad linear relationship.A high performance fluorescence switching system triggered electrochemically by Prussian blue with upconversion nanoparticles was proposed. We synthesized a kind of hexagonal monodisperse β-NaYF4:Yb3+,Er3+,Tm3+ upconversion nanoparticle and manipulated the intensity ratio of red emission (at 653 nm) and green emission at (523 and 541 nm) around 2 : 1, in order to match well with the absorption spectrum of Prussian blue. Based on the efficient fluorescence resonance energy transfer and inner-filter effect of the as-synthesized upconversion nanoparticles and Prussian blue, the present fluorescence switching system shows obvious behavior with high fluorescence contrast and good stability. To further extend the application of this system in analysis, sulfite, a kind of important anion in environmental and physiological systems, which could also reduce Prussian blue to

  1. GIS-BASED 1-D DIFFUSIVE WAVE OVERLAND FLOW MODEL

    SciTech Connect

    KALYANAPU, ALFRED; MCPHERSON, TIMOTHY N.; BURIAN, STEVEN J.

    2007-01-17

    This paper presents a GIS-based 1-d distributed overland flow model and summarizes an application to simulate a flood event. The model estimates infiltration using the Green-Ampt approach and routes excess rainfall using the 1-d diffusive wave approximation. The model was designed to use readily available topographic, soils, and land use/land cover data and rainfall predictions from a meteorological model. An assessment of model performance was performed for a small catchment and a large watershed, both in urban environments. Simulated runoff hydrographs were compared to observations for a selected set of validation events. Results confirmed the model provides reasonable predictions in a short period of time.

  2. Non-cooperative Brownian donkeys: A solvable 1D model

    NASA Astrophysics Data System (ADS)

    Jiménez de Cisneros, B.; Reimann, P.; Parrondo, J. M. R.

    2003-12-01

    A paradigmatic 1D model for Brownian motion in a spatially symmetric, periodic system is tackled analytically. Upon application of an external static force F the system's response is an average current which is positive for F < 0 and negative for F > 0 (absolute negative mobility). Under suitable conditions, the system approaches 100% efficiency when working against the external force F.

  3. Study of upconversion in highly Er-doped photonic crystal fibers through laser-transient dynamics

    NASA Astrophysics Data System (ADS)

    Martín, J. C.; Vallés, J. A.; Berdejo, V.; Rebolledo, M. A.; Díez, A.; Sánchez-Martín, J. A.; Andrés, M. V.

    2014-10-01

    The dynamic response after pump switch-on of a 980 nm pumped-ring laser based on an active photonic crystal fiber with an Er3+ ion concentration of ≈1020 ions cm-3 was registered. Then a numerical fitting procedure of a theoretical model was followed to the experimental values of the relaxation oscillation parameters as a function of the input pump power. Non-radiative energy-transfer mechanisms’ coefficients: homogeneous upconversion coefficient (Cup) and critical radii for upconversion (Ru) and migration (Rm) were determined. The calculated best-fit coefficients (Cup = 1.3  ×  10-24 m3 s-1, Ru = 9  ×  10-10 m, Rm = 13  ×  10-10 m) were compared to those obtained with other steady-state and dynamic characterization techniques.

  4. Upconversion emission properties of CeO2: Tm3+, Yb3+ inverse opal photonic crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Wu, Hangjun; Yang, Zhengwen; Liao, Jiayan; Lai, Shenfeng; Qiu, Jianbei; Song, Zhiguo

    2014-10-01

    The ordered and disordered templates were assembled by vertical deposition of polystyrene microspheres. The CeO2: Tm3+, Yb3+ precursor solution was used to infiltrate into the voids of the ordered and disordered templates, respectively. Then the ordered and disordered templates were calcined at 950°C in an air furnace, and the CeO2: Tm3+, Yb3+ inverse opals were obtained. The upconversion emissions from CeO2: Tm3+, Yb3+ inverse opals were suppressed due to the photon trapping caused by Bragg reflection of lattice planes when the upconversion emission band was in the range of the photonic band gaps in the inverse opals.

  5. Enhanced upconversion luminescence of NaYF4:Yb, Er microprisms via La3+ doping

    NASA Astrophysics Data System (ADS)

    Fu, Junxiang; Zhang, Xiaozeng; Chao, Zhicong; Li, Zibo; Liao, Jinsheng; Hou, Dejian; Wen, Herui; Lu, Xiaoneng; Xie, Xinrong

    2017-02-01

    A series of β-NaYF4: Yb, Er micro-prisms codoped with La3+(0-30 at%) were synthesized via hydrothermal process. Upon 980 nm excitation at room temperature, 20 mol% La3+ codoped sample shows a maximum upconversion emission intensity. Excitation power density dependencies of UC luminescence and the decay curves were investigated. The UCPL decay is evidently monoexponential for all samples and La3+ doping did not significantly change the decay time. In this particular case, we found the napierian logarithm of the UC emission intensity (lnI) had a good linear relationship with the cell lattice parameters. This correlation may be helpful for design and fabrication of high performance upconversion materials.

  6. Silane modified upconversion nanoparticles with multifunctions: imaging, therapy and hypoxia detection

    NASA Astrophysics Data System (ADS)

    Xu, Shihan; Zhang, Xinran; Xu, Hongwei; Dong, Biao; Qu, Xuesong; Chen, Boting; Zhang, Shuang; Zhang, Tianxiang; Cheng, Yu; Xu, Sai; Song, Hongwei

    2016-02-01

    Herein, we report a facile route to synthesize silane coated upconversion nanoparticles (UCNPs@silane) with an ultrathin layer (the thickness: 1–2 nm), which not only provides good biocompatibility, but also affords hydrophobic interspace to load organic molecules to realize multifunctions. Besides the function of upconversion imaging of UCNPs, cancer therapy and oxygen level detection can also be realized by the addition of chemotherapy drug, PTX, and oxygen sensitive molecules, Platinum (II) octaethylporphine (PtOEP). In bio-experiments, besides the MTT assays, therapy efficacy of UCNPs@PTX@silane can also be detected with the confocal laser scanning microscopy (CLSM) by staining methods. UCNPs@PtOEP@silane can afford minimally invasive analysis of dissolved oxygen and then respond sensitively to the variance of intracellular oxygen concentration affected by therapeutic UCNPs@PTX@silane.

  7. Silane modified upconversion nanoparticles with multifunctions: imaging, therapy and hypoxia detection

    PubMed Central

    Xu, Shihan; Zhang, Xinran; Xu, Hongwei; Dong, Biao; Qu, Xuesong; Chen, Boting; Zhang, Shuang; Zhang, Tianxiang; Cheng, Yu; Xu, Sai; Song, Hongwei

    2016-01-01

    Herein, we report a facile route to synthesize silane coated upconversion nanoparticles (UCNPs@silane) with an ultrathin layer (the thickness: 1–2 nm), which not only provides good biocompatibility, but also affords hydrophobic interspace to load organic molecules to realize multifunctions. Besides the function of upconversion imaging of UCNPs, cancer therapy and oxygen level detection can also be realized by the addition of chemotherapy drug, PTX, and oxygen sensitive molecules, Platinum (II) octaethylporphine (PtOEP). In bio-experiments, besides the MTT assays, therapy efficacy of UCNPs@PTX@silane can also be detected with the confocal laser scanning microscopy (CLSM) by staining methods. UCNPs@PtOEP@silane can afford minimally invasive analysis of dissolved oxygen and then respond sensitively to the variance of intracellular oxygen concentration affected by therapeutic UCNPs@PTX@silane. PMID:26924009

  8. Ultrafast mid-infrared spectroscopy by chirped pulse upconversion in 1800-1000cm(-1) region.

    PubMed

    Zhu, Jingyi; Mathes, Tilo; Stahl, Andreas D; Kennis, John T M; Groot, Marie Louise

    2012-05-07

    Broadband femtosecond mid-infrared pulses can be converted into the visible spectral region by chirped pulse upconversion. We report here the upconversion of pump probe transient signals in the frequency region below 1800cm(-1), using the nonlinear optical crystal AgGaGeS4, realizing an important expansion of the application range of this method. Experiments were demonstrated with a slab of GaAs, in which the upconverted signals cover a window of 120cm(-1), with 1.5cm(-1) resolution. In experiments on the BLUF photoreceptor Slr1694, signals below 1 milliOD were well resolved after baseline correction. Possibilities for further optimization of the method are discussed. We conclude that this method is an attractive alternative for the traditional MCT arrays used in most mid-infrared pump probe experiments.

  9. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals.

    PubMed

    Sun, Qi-C; Mundoor, Haridas; Ribot, Josep C; Singh, Vivek; Smalyukh, Ivan I; Nagpal, Prashant

    2014-01-08

    Upconversion of infrared radiation into visible light has been investigated for applications in photovoltaics and biological imaging. However, low conversion efficiency due to small absorption cross-section for infrared light (Yb(3+)), and slow rate of energy transfer (to Er(3+) states) has prevented application of upconversion photoluminescence (UPL) for diffuse sunlight or imaging tissue samples. Here, we utilize resonant surface plasmon polaritons (SPP) waves to enhance UPL in doped-lanthanide nanocrystals. Our analysis indicates that SPP waves not only enhance the electromagnetic field, and hence weak Purcell effect, but also increase the rate of resonant energy transfer from Yb(3+) to Er(3+) ions by 6 fold. While we do observe strong metal mediated quenching (14-fold) of green fluorescence on flat metal surfaces, the nanostructured metal is resonant in the infrared and hence enhances the nanocrystal UPL. This strong Coulombic effect on energy transfer can have important implications for other fluorescent and excitonic systems too.

  10. Polyaniline-coated upconversion nanoparticles with upconverting luminescent and photothermal conversion properties for photothermal cancer therapy

    PubMed Central

    Xing, Yadong; Li, Luoyuan; Ai, Xicheng; Fu, Limin

    2016-01-01

    In this study, we developed a nanosystem based on upconversion nanoparticles (UCNPs) coated with a layer of polyaniline nanoparticles (PANPs). The UCNP induces upconversion luminescence for imaging and photothermal conversion properties are due to PANPs. In vitro experiments showed that the UCNPs-PANPs were nontoxic to cells even at a high concentration (800 µg mL−1). Blood analysis and histological experiments demonstrated that the UCNPs-PANPs exhibited no apparent toxicity in mice in vivo. Besides their efficacy in photothermal cancer cell ablation, the UCNP-PANP nanosystem was found to achieve an effective in vivo tumor ablation effect after irradiation using an 808 nm laser. These results demonstrate the potential of the hybrid nanocomposites for use in imaging-guided photothermal therapy. PMID:27621625

  11. Recent advances in lanthanide-doped upconversion nanomaterials: synthesis, nanostructures and surface modification.

    PubMed

    Qiu, Peiyu; Zhou, Na; Chen, Hengyu; Zhang, Chunlei; Gao, Guo; Cui, Daxiang

    2013-12-07

    Owing to their unique photo-physical properties, rare-earth ions-doped upconversion nanoparticles (UCNPs) have attracted extensive attention in recent years. UCNPs have many special merits, such as a long luminescence lifetime, narrow emission band widths, high quantum yields and low toxicity, which allows their potential applications in bio-medical field, biological luminescent labels and drug delivery carriers. Compared with traditional fluorescence labels exited by UV (ultraviolet), such as organic dyes and quantum dots, UCNPs can transfer near-infrared (NIR) light into visible light, which is commonly called upconversion luminescence (UCL). This paper reviews the recent advances of several typical synthesis methods of UCNPs in detail as well as the fabrication and optimization of the particle morphology, and the latest advances of UCNPs for multimode imaging, surface passivation and functionalization are also described.

  12. Polyaniline-coated upconversion nanoparticles with upconverting luminescent and photothermal conversion properties for photothermal cancer therapy.

    PubMed

    Xing, Yadong; Li, Luoyuan; Ai, Xicheng; Fu, Limin

    In this study, we developed a nanosystem based on upconversion nanoparticles (UCNPs) coated with a layer of polyaniline nanoparticles (PANPs). The UCNP induces upconversion luminescence for imaging and photothermal conversion properties are due to PANPs. In vitro experiments showed that the UCNPs-PANPs were nontoxic to cells even at a high concentration (800 µg mL(-1)). Blood analysis and histological experiments demonstrated that the UCNPs-PANPs exhibited no apparent toxicity in mice in vivo. Besides their efficacy in photothermal cancer cell ablation, the UCNP-PANP nanosystem was found to achieve an effective in vivo tumor ablation effect after irradiation using an 808 nm laser. These results demonstrate the potential of the hybrid nanocomposites for use in imaging-guided photothermal therapy.

  13. Simultaneous quasi-one-dimensional propagation and tuning of upconversion luminescence through waveguide effect

    PubMed Central

    Gao, Dangli; Tian, Dongping; Zhang, Xiangyu; Gao, Wei

    2016-01-01

    Luminescence-based waveguide is widely investigated as a promising alternative to conquer the difficulties of efficiently coupling light into a waveguide. But applications have been still limited due to employing blue or ultraviolet light as excitation source with the lower penetration depth leading to a weak guided light. Here, we show a quasi-one-dimensional propagation of luminescence and then resulting in a strong luminescence output from the top end of a single NaYF4:Yb3+/Er3+ microtube under near infrared light excitation. The mechanism of upconversion propagation, based on the optical waveguide effect accompanied with energy migration, is proposed. The efficiency of luminescence output is highly dependent on the concentration of dopant ions, excitation power, morphology, and crystallinity of tube as an indirect evidence of the existence of the optical actived waveguide effect. These findings provide the possibility for the construction of upconversion fiber laser. PMID:26926491

  14. Brillouin optical time-domain reflectometry using up-conversion single-photon detector

    NASA Astrophysics Data System (ADS)

    Xia, Haiyun; Shangguan, Mingjia; Shentu, Guoliang; Wang, Chong; Qiu, Jiawei; Zheng, Mingyang; Xie, Xiuping; Dou, Xiankang; Zhang, Qiang; Pan, Jian-Wei

    2016-12-01

    A direct-detection Brillouin optical time-domain reflectometry (BOTDR) using an up-conversion photon-counting detector and an all-fiber structure Fabry-Perot scanning interferometer is demonstrated with shot-noise limited performance. Taking advantage of ultra-low noise equivalent power of the up-conversion photon-counting detector and high spectral resolution of the interferometer, the Brillouin spectra along a polarization maintaining fiber (PMF) are analyzed in the optical frequency domain directly. In contrast with heterodyne BOTDR, photon-counting BOTDR has better EM compatibility and faster speed in data processing. In experiments, using peak input power of 20 dBm, temperature profile along a 9 km PMF is retrieved according to the Brillouin shifts, with spatial/temporal resolution of 2 m/15 s. The precision is 0.7 °C at the leading end and 1.2 °C at the trailing end.

  15. Multifunctional Nd3+-sensitized upconversion nanomaterials for synchronous tumor diagnosis and treatment

    NASA Astrophysics Data System (ADS)

    Chen, Yinyin; Liu, Bei; Deng, Xiaoran; Huang, Shanshan; Hou, Zhiyao; Li, Chunxia; Lin, Jun

    2015-04-01

    Core-shell structured Nd3+-sensitized NaYF4:Yb/Nd/Er@NaYF4:Nd@mSiO2 nanoparticles (NPs) were designed and synthesized. The NaYF4:Yb/Nd/Er@NaYF4:Nd core imparts the nanomaterials with luminescence properties for upconversion optical imaging under 808 nm laser irradiation, whereas the mesoporous SiO2 shell allows the nanomaterials to be loaded with anticancer drug doxorubicin (DOX). In vivo toxicity assessment has confirmed that the NPs have low systematic toxicity in healthy mice. In vivo antitumor activity shows that the nanocomposites exhibit greater antitumor efficacy than pure DOX. As a result, the composite nanomaterials can serve as nanotheranostic materials for synchronous upconversion luminescence imaging under 808 nm laser irradiation, and as anticancer drug delivery vehicles, so as to integrate the diagnosis and treatment of cancers in vivo.

  16. Tip enhancement of upconversion photoluminescence from rare earth ion doped nanocrystals.

    PubMed

    Mauser, Nina; Piatkowski, Dawid; Mancabelli, Tobia; Nyk, Marcin; Mackowski, Sebastian; Hartschuh, Achim

    2015-04-28

    We present tip-enhanced upconversion photoluminescence (PL) images of Er(3+)- and Yb(3+)-doped NaYF4 nanocrystals on glass substrates with subdiffraction spatial resolution. Tip-sample distance dependent measurements clearly demonstrate the near-field origin of the image contrast. Time-resolved PL measurements show that the tip increases the spontaneous emission rate of the two emission channels of Er(3+) in the visible region. Very efficient enhancement of upconversion PL is discussed in the context of the two-photon nature of the excitation process and homoenergy transfer between the ions within the nanocrystals. Comparison between different nanocrystals and tips shows a strong influence of the tip shape on the image contrast that becomes particularly relevant for the larger dimensions of the investigated nanocrystals.

  17. Upconversion energy transfer in Yb3+/Tm3+ doped tellurite glass

    NASA Astrophysics Data System (ADS)

    Żmojda, J.; Dorosz, D.; Kochanowicz, M.; Dorosz, J.

    2011-06-01

    The paper presents energy transfer in tellurite glass from the system TeO2 - GeO2 - PbO - PbF2- BaO - Nb2O5 - LaF3 doped with Yb3+/Tm3+ ions. Under the excitation of 976 nm laser a strong blue emission (477 nm) corresponding to the transition 1G4 --> 3H6 in thulium ions was observed. Analysing the influence of the content of Tm3+ ions on the level of luminescence obtained by the mechanism of upconversion it was established that the most effective energy transfer between Yb 3+--> Tm3+ ions took place in the matrix doped in the following proportion: 1 Yb3+:0.1 Tm3+ (%mol). Based on the non-resonant process of energy transfer between Yb3+ and Tm3+ ions the mechanism of upconversion was discussed.

  18. Optical parameters and upconversion fluorescence in Tm3+/Yb3+ codoped tellurite glass

    NASA Astrophysics Data System (ADS)

    Huang, Q. J.; Wang, Q. P.; Chang, J.; Zhang, X. Y.; Liu, Z. J.; Yu, G. Y.

    2010-04-01

    Tm3+/Yb3+ codoped tellurite glass has been prepared. Density, refractive index, optical absorption, Judd-Ofelt parameters and spontaneous transition probabilities of Tm3+ have been measured and calculated, respectively. Intense blue three-photon upconversion fluorescence and S-band (1470 nm) fluorescence were investigated under the excitation of a 980 nm diode laser at room temperature. Judd-Ofelt parameters, strong blue three-photon upcoversion emission of Tm3+ in glass indicate that Tm3+/Yb3+ codoped tellurite glass is a promising blue color upconversion optical and laser material. In addition, experiment results showed the 980 nm laser was more efficient than 808 nm laser when pumping Tm3+/Yb3+ codoped tellurite glass, Tm3+/Yb3+ codoped tellurite glass also could be a promising material for S-band amplification.

  19. Observation of upconversion fluorescence and stimulated emission based on three-photon absorption

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Lin, S.; Xu, L.; Yang, F.; Yang, Y.; Pan, L.; Sun, C.; Li, Y.; Sun, G.; Jiang, Z.

    2005-06-01

    The observations of three-photon-induced frequency-upconversion fluorescence and the highly directional stimulated visible emission in two dyes, 4-[p-(dicyanoethylamino) styryl]-N-methylpyridinium iodide (abbreviated as CEASP) and the complex of CEASP and Ce(NO3) (abbreviated as CEASP-Ce), are reported. The photographs of the forward amplified spontaneous emissions spots, pumped by an optical parametric oscillator idler with a pulse width of 8 ns and a wavelength of 1.3 μ m, are shown. The upconversion fluorescence produced both in dimethyl formamide solution and 2-hydroxyethyl methacrylate (HEMA) polymer spans from green to red, with a cubic dependence on the pump light intensity. The experimental results imply that the existence of the lanthanide ion Ce3 + sensitizes the nonlinear absorption and emission.

  20. Up-conversion detectors at 1550 nm for quantum communication: review and recent advances

    NASA Astrophysics Data System (ADS)

    Tournier, M.; Alibart, O.; Doutre, F.; Tascu, S.; de Micheli, M. P.; Ostrowsky, D. B.; Thyagarajan, K.; Tanzilli, S.

    Up-conversion, or hybrid, detectors have been investigated in quantum communication experiments to replace Indium-Gallium-Arsenide avalanche photodiodes (InGaAs-APD) for the detection of infrared and telecom single photons. Those detectors are based on the supposedly noise-free process of frequency up-conversion, also called sum-frequency generation (SFG), using a second order (χ^2) non-linear crystal. Powered by an intense pump laser, this process permits transposing with a certain probability the single photons at telecom wavelengths to the visible range where silicon APDs (Si-APD) operate with a much better performance than InGaAs detectors. To date, the literature reports up-conversion detectors having efficiency and noise figures comparable to that of the best commercially available IngaAs-APDs. However, in all of these previous realizations, a pump-induced noise is always observed which was initially expected to be as low as the dark count level of the Si-APDs. Although this additional noise represents a problem for the detection, up-conversion detectors have advantageously replaced InGaAs-APDs in various long-distance quantum cryptography schemes since they offer a continuous regime operation mode instead of a gated mode necessary for InGaAs-APDs, and the possibility of much higher counting rates. Despite attempted explanations, no detailed nor conclusive study of this noise has been reported. The aim of this paper is to offer a definitive explanation for this noise. We first give a review of the state of the art by describing already demonstrated up-conversion detectors. We discuss these realizations especially regarding the choices made for the material, in bulk or guided configurations, the single photon wavelengths, and the pump scheme. Then we describe an original device made of waveguides integrated on periodically poled lithium niobate (PPLN)or on single-domain lithium niobate aimed at investigating the origin of the additional pump-induced noise

  1. Enhanced up-conversion of entangled photons and quantum interference under a localized field in nanostructures.

    PubMed

    Osaka, Yoshiki; Yokoshi, Nobuhiko; Nakatani, Masatoshi; Ishihara, Hajime

    2014-04-04

    We theoretically investigate the up-conversion process of two entangled photons on a molecule, which is coupled by a cavity or nanoscale metallic structure. Within one-dimensional input-output theory, the propagators of the photons are derived analytically and the up-conversion probability is calculated numerically. It is shown that the coupling with the nanostructure clearly enhances the process. We also find that the enhancement becomes further pronounced for some balanced system parameters, such as the quantum correlation between photons, radiation decay, and coupling between the nanostructure and molecule. The nonmonotonic dependencies are reasonably explained in view of quantum interference between the coupled modes of the whole system. This result indicates that controlling quantum interference and correlation is crucial for few-photon nonlinearity, and provides a new guidance to wide variety of fields, e.g., quantum electronics and photochemistry.

  2. Ecophotonics: assessment of temperature gradient in aquatic organisms using up-conversion luminescent particles

    NASA Astrophysics Data System (ADS)

    Volkova, E. K.; Yanina, I. Yu; Popov, A. P.; Bykov, A. V.; Gurkov, A. N.; Borvinskaya, E. V.; Timofeyev, M. A.; Meglinski, I. V.

    2017-02-01

    In the frameworks of developing ecophotonics, we consider the possibility of applying luminescence spectroscopy for monitoring conditions of aquatic organisms, aimed at the study and prognosis of the effect of human activity and climate changes on the environment. The method of luminescence spectroscopy in combination with anti-Stokes luminophores (up-conversion particles) used as optical sensors is used for the noninvasive assessment of the temperature gradient in the internal tissues of aquatic organisms. It is shown that the temperature dependence of the intensity ratio observed in the maxima of the luminescence spectrum bands of the particles Y2O3 : Yb, Er, administered in a biological object, is linear. This fact offers a possibility of using the up-conversion particles for assessing the metabolic activity of different tissues, including those in the framework of ecological monitoring.

  3. Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly

    PubMed Central

    Ye, Xingchen; Collins, Joshua E.; Kang, Yijin; Chen, Jun; Chen, Daniel T. N.; Yodh, Arjun G.; Murray, Christopher B.

    2010-01-01

    We report a one-pot chemical approach for the synthesis of highly monodisperse colloidal nanophosphors displaying bright upconversion luminescence under 980 nm excitation. This general method optimizes the synthesis with initial heating rates up to 100 °C/minute generating a rich family of nanoscale building blocks with distinct morphologies (spheres, rods, hexagonal prisms, and plates) and upconversion emission tunable through the choice of rare earth dopants. Furthermore, we employ an interfacial assembly strategy to organize these nanocrystals (NCs) into superlattices over multiple length scales facilitating the NC characterization and enabling systematic studies of shape-directed assembly. The global and local ordering of these superstructures is programmed by the precise engineering of individual NC’s size and shape. This dramatically improved nanophosphor synthesis together with insights from shape-directed assembly will advance the investigation of an array of emerging biological and energy-related nanophosphor applications. PMID:21148771

  4. Upconversion nanoparticles as a contrast agent for photoacoustic imaging in live mice.

    PubMed

    Maji, Swarup Kumar; Sreejith, Sivaramapanicker; Joseph, James; Lin, Manjing; He, Tingchao; Tong, Yan; Sun, Handong; Yu, Sidney Wing-Kwong; Zhao, Yanli

    2014-08-27

    An inclusion complex of NaYF4 :Yb(3+) ,Er(3+) upconversion nanoparticles with α-cyclodextrin in aqueous conditions exhibits luminescence quenching when excited at 980 nm. This non-radiative relaxation leads to an unprecedented photoacoustic signal enhancement. In vivo localization of α-cyclodextrin-covered NaYF4 :Yb(3+) ,Er(3+) is demonstrated using photoacoustic tomography in live mice, showing its high capability for photoacoustic imaging.

  5. A core-multiple shell nanostructure enabling concurrent upconversion and quantum cutting for photon management.

    PubMed

    Shao, Wei; Chen, Guanying; Ohulchanskyy, Tymish Y; Yang, Chunhui; Ågren, Hans; Prasad, Paras N

    2017-02-02

    Photon management enables the manipulation of the number of input photons by conversion of two or more light quanta into one (upconversion) or vice versa (quantum cutting). Simultaneous realization of both these processes in a single unit provides unique opportunities of efficient utilization of photons throughout a broad spectral range. Yet, concurrent realization of these two parallel optical processes in one single unit remains elusive, limiting its impact on many existing or possible future applications such as for panchromatic photovoltaics. Here, we describe an epitaxial active core/inert shell/active shell/inert shell fluoride nanostructure to implement upconversion and quantum cutting within spatially confined and isolated rare-earth-doped active domains. The core area transforms infrared photons through trivalent erbium (Er(3+)) ions into three- and two-photon upconverted visible and near infrared luminescence, while the second shell domain splits an excitation photon into two near infrared photons through cooperative quantum cutting from one trivalent terbium ion (Tb(3+)) to two trivalent ytterbium ions (Yb(3+)). The inert layer in between the active domains is able to effectively suppress the destructive interference between upconversion and quantum cutting, while the outermost inert shell is able to eliminate surface-related quenching. This design enables the colloidal core/multishell nanoparticles to have an upconversion quantum yield of ∼1.6%, and to have a luminescence yield of the quantum cutting process as high as ∼130%. This work constitutes a solid step for flexible photon management in a single nanostructure, and has an implication for photonic applications beyond photovoltaics.

  6. Ultraviolet upconversion luminescence of Gd{sup 3+} and Eu{sup 3+} in nano-structured glass ceramics

    SciTech Connect

    Lin, Hang; Chen, Daqin; Yu, Yunlong; Yang, Anping; Zhang, Rui; Wang, Yuansheng

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Ultraviolet upconversion emissions of Eu{sup 3+} and Gd{sup 3+} are rarely studied. Black-Right-Pointing-Pointer Nanostructured glass ceramic is developed as a host for ultraviolet upconversion. Black-Right-Pointing-Pointer Ultraviolet upconversion signal are found greatly enhanced after crystallization. Black-Right-Pointing-Pointer It is promising for fabricating novel ultraviolet upconversion lasers. -- Abstract: Ultraviolet multiphoton upconversion emissions of Eu{sup 3+} ({sup 5}H{sub 3-7}, {sup 5}G{sub 2-6}, {sup 5}L{sub 6} {yields} {sup 7}F{sub 0}) and Gd{sup 3+} ({sup 6}I{sub J}, {sup 6}P{sub J} {yields} {sup 8}S{sub 7/2}) are studied in the Eu{sup 3+} (or Gd{sup 3+}) doped SiO{sub 2}-Al{sub 2}O{sub 3}-NaF-YF{sub 3} precursor glasses and glass ceramics containing {beta}-YF{sub 3} nanocrystals, under continuous-wavelength 976 nm laser pumping. It is experimentally demonstrated that energy transfer from Yb{sup 3+} to Tm{sup 3+}, then further to Eu{sup 3+} or Gd{sup 3+} is responsible for the upconversion process. Compared to those in the precursor glasses, the upconversion emission intensities in the glass ceramics are greatly enhanced, owing to the participation of rare earth ions into the low-phonon-energy environment of {beta}-YF{sub 3} nanocrystals. Hopefully, the studied glass ceramics may find potential applications in the field of ultraviolet solid-state lasers.

  7. Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection.

    PubMed

    Jin, Birui; Wang, Shurui; Lin, Min; Jin, Ying; Zhang, Shujing; Cui, Xingye; Gong, Yan; Li, Ang; Xu, Feng; Lu, Tian Jian

    2017-04-15

    Pathogenic bacteria cause serious harm to human health, which calls for the development of advanced detection methods. Herein, we developed a novel detection platform based on fluorescence resonance energy transfer (FRET) for rapid, ultrasensitive and specific bacteria detection, where gold nanoparticles (AuNPs, acceptor) were conjugated with aptamers while upconversion nanoparticles (UCNPs, donor) were functionalized with corresponding complementary DNA (cDNA). The spectral overlap between UCNPs fluorescence emission and AuNPs absorption enables the occurrence of FRET when hybridizing the targeted aptamer and cDNA, causing upconversion fluorescence quenching. In the presence of target bacteria, the aptamers preferentially bind to bacteria forming a three-dimensional structure and thereby dissociate UCNPs-cDNA from AuNPs-aptamers, resulting in the recovery of upconversion fluorescence. Using the UCNPs based FRET aptasensor, we successfully detected Escherichia coli ATCC 8739 (as a model analyte) with a detection range of 5-10(6)cfu/mL and detection limit of 3cfu/mL. The aptasensor was further used to detect E. coli in real food and water samples (e.g., tap/pond water, milk) within 20min. The novel UCNPs based FRET aptasensor could be used to detect a broad range of targets from whole cells to metal ions by using different aptamer sequences, holding great potential in environmental monitoring, medical diagnostics and food safety analysis.

  8. Simultaneous MMW generation and up-conversion for WDM-ROF systems based on FP laser

    NASA Astrophysics Data System (ADS)

    Zhang, Chan; Ning, TiGang; Li, Jing; Li, Chao; He, Xueqing; Pei, Li

    2016-10-01

    A new wavelength division multiplexing radio-over-fiber (WDM-ROF) scheme based on Fabry-Perot (FP) laser is proposed and demonstrated for simultaneous millimeter-wave (MMW) generation and up-conversion. The tunable optical comb generated by FP laser is served as a cost-effective WDM optical source in central station (CS) and it makes all-optical up-conversion process for all channels simple compared with using a DFB array. All modes from the FP laser are modulated simultaneously by a LiNbO3 Mach-Zehnder modulator (LN-MZM) then. We have systematically compared the performances of MMW generation and up-conversion using LN-MZM based on different modulation schemes. A reflective semiconductor optical amplifiers (RSOA) is used both for the downstream modulation of each channel and for the reduction of mode partition noise (MPN) induced from FP laser. In the scheme, the multiple optical carrier suppression (OCS) modulation shows the highest receiver sensitivity and smallest power penalty over long-distance delivery. In the numerical simulation, 7 WDM channels each carrying 2.5 Gb/s baseband signal have been up-converted to 60 GHz simultaneously with good performance over 25 km single mode fiber (SMF) transmission.

  9. Particle-size Dependent Förster Resonance Energy Transfer from Upconversion Nanoparticles to Organic Dyes.

    PubMed

    Muhr, Verena; Würth, Christian; Kraft, Marco; Buchner, Markus; Resch-Genger, Ute; Baeumner, Antje J; Hirsch, Thomas

    2017-03-22

    Upconversion nanoparticles (UCNPs) are attractive candidates for energy transfer-based analytical applications. In contrast to classical donor-acceptor pairs, these particles contain many emitting lanthanide ions together with numerous acceptor dye molecules at different distances to each other, strongly depending on the particle diameter. UCNPs with precisely controlled sizes between 10 and 43 nm were prepared and functionalized with rose bengal and sulforhodamine B by a ligand exchange procedure. Time-resolved studies of the upconversion luminescence of the UCNP donor revealed a considerable shortening of the donor lifetime as a clear hint for Förster resonance energy transfer (FRET). FRET was most pronounced for 21 nm-sized UCNPs, yielding a FRET efficiency of 60%. At larger surface-to-volume ratios the FRET efficiency decreased by an increasing competition of non-radiative surface deactivation. Such dye-UCNP architectures can also provide an elegant way to shift the UCNP emission color, since the fluorescence intensity of the organic dyes excited by FRET was comparable to that of the upconversion emission of smaller particles.

  10. Improving triplet-triplet-annihilation based upconversion systems by tuning their topological structure

    SciTech Connect

    Zimmermann, Jochen Wellens, Thomas; Buchleitner, Andreas; Mulet, Roberto; Scholes, Gregory D.

    2014-11-14

    Materials capable to perform upconversion of light transform the photon spectrum and can be used to increase the efficiency of solar cells by upconverting sub-bandgap photons, increasing the density of photons able to generate an electron-hole pair in the cell. Incoherent solar radiation suffices to activate upconverters based on sensitized triplet-triplet annihilation, which makes them particularly suited for this task. This process requires two molecular species, sensitizers absorbing low energy photons, and emitters generating higher frequency photons. Successful implementations exist in solutions and solids. However, solid upconverters exhibit lower efficiency than those in solution, which poses a serious problem for real applications. In the present work, we suggest a new strategy to increase the efficiency of sensitized upconverters that exploits the solid nature of the material. We show that an upconversion model system with molecules distributed as clusters outperforms a system with a random distribution of molecules, as used in current upconverters. Our simulations reveal a high potential for improvement of upconverter systems by exploring different structural configurations of the molecules. The implementation of advanced structures can push the performance of solid upconverters further towards the theoretical limit and a step closer to technological application of low power upconversion.

  11. The Intersection of CMOS Microsystems and Upconversion Nanoparticles for Luminescence Bioimaging and Bioassays

    PubMed Central

    Wei, Liping.; Doughan, Samer.; Han, Yi.; DaCosta, Matthew V.; Krull, Ulrich J.; Ho, Derek.

    2014-01-01

    Organic fluorophores and quantum dots are ubiquitous as contrast agents for bio-imaging and as labels in bioassays to enable the detection of biological targets and processes. Upconversion nanoparticles (UCNPs) offer a different set of opportunities as labels in bioassays and for bioimaging. UCNPs are excited at near-infrared (NIR) wavelengths where biological molecules are optically transparent, and their luminesce in the visible and ultraviolet (UV) wavelength range is suitable for detection using complementary metal-oxide-semiconductor (CMOS) technology. These nanoparticles provide multiple sharp emission bands, long lifetimes, tunable emission, high photostability, and low cytotoxicity, which render them particularly useful for bio-imaging applications and multiplexed bioassays. This paper surveys several key concepts surrounding upconversion nanoparticles and the systems that detect and process the corresponding luminescence signals. The principle of photon upconversion, tuning of emission wavelengths, UCNP bioassays, and UCNP time-resolved techniques are described. Electronic readout systems for signal detection and processing suitable for UCNP luminescence using CMOS technology are discussed. This includes recent progress in miniaturized detectors, integrated spectral sensing, and high-precision time-domain circuits. Emphasis is placed on the physical attributes of UCNPs that map strongly to the technical features that CMOS devices excel in delivering, exploring the interoperability between the two technologies. PMID:25211198

  12. Fabrication of fluorescent composite hydrogel using in situ synthesis of upconversion nanoparticles.

    PubMed

    Dong, Yuqing; Lin, Min; Jin, Guorui; Il Park, Yong; Qiu, Mushu; Zhao, Ying; Yang, Hui; Li, Ang; Jian Lu, Tian

    2017-04-28

    Fluorescent composite hydrogels have found widespread applications, especially in spatial and temporal monitoring of in vivo hydrogel behaviors via the emitting optical signal. However, most existing fluorescent composite hydrogels suffer from limited capability of deep tissue imaging and complicated fabrication routes. We herein report a facile method for fabricating fluorescent composite hydrogels based on the in situ synthesis of NaYF4:Yb, Er upconversion nanoparticles (UCNPs). This approach employs polyacrylamide (PAAm) hydrogels as a template, where the interconnected pores within the hydrogel act as nanoreactors to confine the growth of nanocrystals. We then obtained a fluorescent composite hydrogel exhibiting upconversion fluorescence and enhanced mechanical properties. The fluorescence spectra show that the fluorescence intensity decreases with decreasing size of the UCNPs. We investigated the relationship between the optical properties of the fluorescent composite hydrogel and the incorporated UCNPs based on the morphology, size, and distribution of the UCNPs by using scanning electron microscopy and transmission electron microscopy. In addition, we demonstrated the applicability of the synthesized hydrogel for deep tissue imaging through an in vitro tissue penetration experiment. Compressive and dynamic rheological testing reveal enhanced mechanical properties with increasing UCNP concentration. The fabricated upconversion fluorescent composite hydrogel may pave the way for monitoring the in vivo behavior of biomimetic materials via deep tissue imaging.

  13. White light upconversion emissions in Er3+/Tm3+/Yb3+ tridoped oxyfluoride glass

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoping; Xu, Wei; Zhu, Shuang; Song, Qiutong; Wu, Xijun; Liu, Hailong

    2015-10-01

    Rare earth ions doped glasses producing visible upconversion emissions are of great interest due to their potential applications in the photonics filed. In fact, practical application of upconversion emissions has been used to obtain color image displays and white light sources. However, there are few reports on the thermal effect on tuning the emission color of the RE doped materials. In this work, the Er3+/Tm3+/Yb3+ tridoped oxyfluoride glasses were prepared through high temperature solid-state method. Under a 980 nm diode laser excitation, the upconversion emissions from the samples were studied. At room-temperature, bright white luminescence, whose CIE chromaticity coordinate was about (0.28, 0.31), can be obtained when the excitation power was 120 mW. The emission color was changed by varying the intensity ratios between RGB bands, which are strongly dependent on the rare earth ions concentration. The temperature dependent color emissions were also investigated. As temperature increased, the intensities for the emission bands presented different decay rates, finally resulting in the changing of the CIE coordinate. When the temperature was 573 K, white light with color coordinate of (0.31, 0.33) was achieved, which matches well with the white reference (0.33, 0.33). The color tunability, high quality of white light and intense emission intensity make the transparent oxyfluoride glasses excellent candidates for applications in solid-state lighting.

  14. Visible upconversion in Er3+/Yb3+ co-doped LaAlO3 phosphors

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Rai, V. K.; Singh, N.; Pathak, M. S.; Rathaiah, M.; Venkatramu, V.; Patel, Rahul V.; Singh, Pramod K.; Dhoble, S. J.

    2017-01-01

    The Er3+ doped and Er3+/Yb3+ co-doped LaAlO3 phosphors have been synthesized by the combustion method and characterized their structural, morphological, elemental, vibrational and optical properties. The optical absorption and upconversion properties of the synthesized phosphors have been studied. Upon co-doping Yb3+ ions into Er3+:LaAlO3, the blue, green and red upconversion emissions of Er3+ ions have been enhanced about 20, 54 and 22 times, under 978 nm laser excitation. The observed upconversion emissions could be due to excited state absorption in Er3+:LaAlO3, whereas energy transfer is dominant mechanism in Er3+/Yb3+:LaAlO3 phosphors. The tuning in the color emitted from the synthesized phosphors towards the green region has been found due to incorporation of the Yb3+ ions. With increase in the pump power, the color emitted from the co-doped phosphor is not tuned significantly, showing its applicability in making the green display devices.

  15. Multicolor upconversion emissions in Tm 3+/Er3+ codoped tellurite photonic microwire between silica fiber tapers.

    PubMed

    Chen, Nan-Kuang; Kuan, Pei-Wen; Zhang, Junjie; Zhang, Liyan; Hu, Lili; Lin, Chinlon; Tong, Limin

    2010-12-06

    We report multicolor upconversion emissions including the blue-violet, green, and red lights in a Tm 3+/Er3+codoped tellurite glass photonic microwire between two silica fiber tapers. A silica fiber is tapered until its evanescent field is exposed and then angled-cleaved at the tapered center to divide the tapered fibers into two parts. A tellurite glass is melted by a gas flame to cluster into a sphere at the tip of one tapered fiber. The other angled-cleaved tapered fiber is blended into the melted tellurite glass. When the tellurite glass is melted, the two silica fiber tapers are simultaneously moving outwards to draw the tellurite glass into a microwire in between. The advantage of angled-cleaving on fiber tapers is to avoid cavity resonances in high index photonic microwire. Thus, the broadband white light can be transmitted between silica fibers and a special optical property like high intensity upconversion emission can be achieved. A cw 1064 nm Nd:YAG laser light is launched into the Tm 3+/Er3+ codoped tellurite microwire through a silica fiber taper to generate the multicolor upconversion emissions, including the blue-violet, green, and red lights, simultaneously.

  16. Up-conversion processes in Yb-sensitized Tm:ZBLAN

    NASA Astrophysics Data System (ADS)

    Carrig, Timothy J.; Cockroft, Nigel J.

    1996-11-01

    A systematic spectroscopic study of 22 rate-earth-ion doped ZBLAN glass samples was conducted to investigate the feasibility of sensitizing Tm:ZBLAN with Yb to facilitate the development of an efficient and conveniently pumped blue upconversion fiber laser. It was determined that, under conditions of single-color pumping, 480 nm emission from Tm3+ is strongest when Yb, Tm:ZBLAN is excited at a wavelength of approximately 975 nm. In this case, the strongest blue emission was obtained from a ZBLAN glass sample with a nominal dopant concentration of approximately 2.0 wt percent Yb + 0.3 wt percent Tm. Additionally, it was demonstrated that for weak 975 nm pump intensities, the strength of the blue upconversion emission can be greatly enhanced by simultaneously pumping at approximately 785 nm. This increase in upconversion efficiency is due to a reduction in the number of energy transfer steps needed to populate the Tm3+ 1G4 energy level. Measurements of fluorescence lifetimes as a function of dopant concentration wee also made for Yb3+, and Pr3+ transitions in ZBLAN in order to better characterize concentration quenching effects. Energy transfer between Tm3+ and Pr3+ in ZBLAN is also described.

  17. Monitoring Delamination of Thermal Barrier Coatings by Near-Infrared and Upconversion Luminescence Imaging

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Martin, R. E.; Singh, Jogender; Wolfe, Doug E.

    2008-01-01

    Previous work has demonstrated that TBC delamination can be monitored by incorporating a thin luminescent sublayer that produces greatly increased luminescence intensity from delaminated regions of the TBC. Initial efforts utilized visible-wavelength luminescence from either europium or erbium doped sublayers. This approach exhibited good sensitivity to delamination of electron-beam physical-vapor-deposited (EB-PVD) TBCs, but limited sensitivity to delamination of the more highly scattering plasma-sprayed TBCs due to stronger optical scattering and to interference by luminescence from rare-earth impurities. These difficulties have now been overcome by new strategies employing near-infrared (NIR) and upconversion luminescence imaging. NIR luminescence at 1550 nm was produced in an erbium plus ytterbium co-doped yttria-stabilized zirconia (YSZ) luminescent sublayer using 980-nm excitation. Compared to visible-wavelength luminescence, these NIR emission and excitation wavelengths are much more weakly scattered by the TBC and therefore show much improved depth-probing capabilities. In addition, two-photon upconversion luminescence excitation at 980 nm wavelength produces luminescence emission at 562 nm with near-zero fluorescence background and exceptional contrast for delamination indication. The ability to detect TBC delamination produced by Rockwell indentation and by furnace cycling is demonstrated for both EB-PVD and plasma-sprayed TBCs. The relative strengths of the NIR and upconversion luminescence methods for monitoring TBC delamination are discussed.

  18. Plasmonic Excitations of 1D Metal-Dielectric Interfaces in 2D Systems: 1D Surface Plasmon Polaritons

    NASA Astrophysics Data System (ADS)

    Mason, Daniel R.; Menabde, Sergey G.; Yu, Sunkyu; Park, Namkyoo

    2014-04-01

    Surface plasmon-polariton (SPP) excitations of metal-dielectric interfaces are a fundamental light-matter interaction which has attracted interest as a route to spatial confinement of light far beyond that offered by conventional dielectric optical devices. Conventionally, SPPs have been studied in noble-metal structures, where the SPPs are intrinsically bound to a 2D metal-dielectric interface. Meanwhile, recent advances in the growth of hybrid 2D crystals, which comprise laterally connected domains of distinct atomically thin materials, provide the first realistic platform on which a 2D metal-dielectric system with a truly 1D metal-dielectric interface can be achieved. Here we show for the first time that 1D metal-dielectric interfaces support a fundamental 1D plasmonic mode (1DSPP) which exhibits cutoff behavior that provides dramatically improved light confinement in 2D systems. The 1DSPP constitutes a new basic category of plasmon as the missing 1D member of the plasmon family: 3D bulk plasmon, 2DSPP, 1DSPP, and 0D localized SP.

  19. Properties of a new, efficient, blue-emitting material for applications in upconversion displays: Yb, Tm:KY3F10.

    PubMed

    Rapaport, Alexandra; Milliez, Janet; SzipOcs, Ferenc; Bass, Michael; Cassanho, Arlete; Jenssen, Hans

    2004-12-10

    The properties of Yb, Tm:KY3F1o, a cubic fluoride crystal, are described that make it attractive as the blue emitter in two-dimensional photonic displays. Its peak excitation wavelength for blue upconversion emission is 974.7 nm, where efficient diode laser pump sources are available. The maximum upconversion efficiency measured thus far is 4.4%.

  20. Morphodynamics and sediment tracers in 1-D (MAST-1D): 1-D sediment transport that includes exchange with an off-channel sediment reservoir

    NASA Astrophysics Data System (ADS)

    Lauer, J. Wesley; Viparelli, Enrica; Piégay, Hervé

    2016-07-01

    Bed material transported in geomorphically active gravel bed rivers often has a local source at nearby eroding banks and ends up sequestered in bars not far downstream. However, most 1-D numerical models for gravel transport assume that gravel originates from and deposits on the channel bed. In this paper, we present a 1-D framework for simulating morphodynamic evolution of bed elevation and size distribution in a gravel-bed river that actively exchanges sediment with its floodplain, which is represented as an off-channel sediment reservoir. The model is based on the idea that sediment enters the channel at eroding banks whose elevation depends on total floodplain sediment storage and on the average elevation of the floodplain relative to the channel bed. Lateral erosion of these banks occurs at a specified rate that can represent either net channel migration or channel widening. Transfer of material out of the channel depends on a typical bar thickness and a specified lateral exchange rate due either to net channel migration or narrowing. The model is implemented using an object oriented framework that allows users to explore relationships between bank supply, bed structure, and lateral change rates. It is applied to a ∼50-km reach of the Ain River, France, that experienced significant reduction in sediment supply due to dam construction during the 20th century. Results are strongly sensitive to lateral exchange rates, showing that in this reach, the supply of sand and gravel at eroding banks and the sequestration of gravel in point bars can have strong influence on overall reach-scale sediment budgets.

  1. 1D Josephson quantum interference grids: diffraction patterns and dynamics

    NASA Astrophysics Data System (ADS)

    Lucci, M.; Badoni, D.; Corato, V.; Merlo, V.; Ottaviani, I.; Salina, G.; Cirillo, M.; Ustinov, A. V.; Winkler, D.

    2016-02-01

    We investigate the magnetic response of transmission lines with embedded Josephson junctions and thus generating a 1D underdamped array. The measured multi-junction interference patterns are compared with the theoretical predictions for Josephson supercurrent modulations when an external magnetic field couples both to the inter-junction loops and to the junctions themselves. The results provide a striking example of the analogy between Josephson phase modulation and 1D optical diffraction grid. The Fiske resonances in the current-voltage characteristics with voltage spacing {Φ0}≤ft(\\frac{{\\bar{c}}}{2L}\\right) , where L is the total physical length of the array, {Φ0} the magnetic flux quantum and \\bar{c} the speed of light in the transmission line, demonstrate that the discrete line supports stable dynamic patterns generated by the ac Josephson effect interacting with the cavity modes of the line.

  2. 1-D Numerical Analysis of ABCC Engine Performance

    NASA Technical Reports Server (NTRS)

    Holden, Richard

    1999-01-01

    ABCC engine combines air breathing and rocket engine into a single engine to increase the specific impulse over an entire flight trajectory. Except for the heat source, the basic operation of the ABCC is similar to the basic operation of the RBCC engine. The ABCC is intended to have a higher specific impulse than the RBCC for single stage Earth to orbit vehicle. Computational fluid dynamics (CFD) is a useful tool for the analysis of complex transport processes in various components in ABCC propulsion system. The objective of the present research was to develop a transient 1-D numerical model using conservation of mass, linear momentum, and energy equations that could be used to predict flow behavior throughout a generic ABCC engine following a flight path. At specific points during the development of the 1-D numerical model a myriad of tests were performed to prove the program produced consistent, realistic numbers that follow compressible flow theory for various inlet conditions.

  3. Ultrahigh-Q nanocavity with 1D photonic gap.

    PubMed

    Notomi, M; Kuramochi, E; Taniyama, H

    2008-07-21

    Recently, various wavelength-sized cavities with theoretical Q values of approximately 10(8) have been reported, however, they all employ 2D or 3D photonic band gaps to realize strong light confinement. Here we numerically demonstrate that ultrahigh-Q (2.0x10(8)) and wavelength-sized (V(eff) approximately 1.4(lambda/n)3) cavities can be achieved by employing only 1D periodicity.

  4. Nonreciprocity of edge modes in 1D magnonic crystal

    NASA Astrophysics Data System (ADS)

    Lisenkov, I.; Kalyabin, D.; Osokin, S.; Klos, J. W.; Krawczyk, M.; Nikitov, S.

    2015-03-01

    Spin waves propagation in 1D magnonic crystals is investigated theoretically. Mathematical model based on plane wave expansion method is applied to different types of magnonic crystals, namely bi-component magnonic crystal with symmetric/asymmetric boundaries and ferromagnetic film with periodically corrugated top surface. It is shown that edge modes in magnonic crystals may exhibit nonreciprocal behaviour at much lower frequencies than in homogeneous films.

  5. Dual modal in vivo imaging using upconversion luminescence and enhanced computed tomography properties

    NASA Astrophysics Data System (ADS)

    Zhang, Guo; Liu, Yanlan; Yuan, Qinghai; Zong, Chenghua; Liu, Jianhua; Lu, Lehui

    2011-10-01

    In vivo upconversion luminescence (UCL) imaging, exhibiting favorable characteristics such as high photostability, no blinking, sharp emission lines, and long lifetimes, is recognized as the excellent and significant photoluminescence imaging for the future. To develop the imaging system with high visual sensitivity and tissue penetration, the functional molecules with X-ray computed tomography (CT) contrast were grafted onto upconversion nanoparticles to obtain β-NaYF4:18% Yb3+,2%Er3+@SiO2-I/PEG (UCNPs@SiO2-I/PEG) nanoprobes. These nanoprobes are water-soluble, have low cytotoxicity, and possess excellent UCL and remarkable CT contrast. Of particular note is that, besides the element iodine, rare earth elements (Y, Yb, and Er) present in the nanoprobes also show CT contrast. Moreover, no background autofluorescence signal is found in in vivo UCL images. We believe that these nanoprobes with dual modal in vivo imaging of UCL and CT can serve as a promising platform for clinical diagnosis or biomedical studies.In vivo upconversion luminescence (UCL) imaging, exhibiting favorable characteristics such as high photostability, no blinking, sharp emission lines, and long lifetimes, is recognized as the excellent and significant photoluminescence imaging for the future. To develop the imaging system with high visual sensitivity and tissue penetration, the functional molecules with X-ray computed tomography (CT) contrast were grafted onto upconversion nanoparticles to obtain β-NaYF4:18% Yb3+,2%Er3+@SiO2-I/PEG (UCNPs@SiO2-I/PEG) nanoprobes. These nanoprobes are water-soluble, have low cytotoxicity, and possess excellent UCL and remarkable CT contrast. Of particular note is that, besides the element iodine, rare earth elements (Y, Yb, and Er) present in the nanoprobes also show CT contrast. Moreover, no background autofluorescence signal is found in in vivo UCL images. We believe that these nanoprobes with dual modal in vivo imaging of UCL and CT can serve as a promising

  6. Multispectral upconversion luminescence intensity ratios for ascertaining the tissue imaging depth

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Wang, Yu; Kong, Xianggui; Liu, Xiaomin; Zhang, Youlin; Tu, Langping; Ding, Yadan; Aalders, Maurice C. G.; Buma, Wybren Jan; Zhang, Hong

    2014-07-01

    Upconversion nanoparticles (UCNPs) have in recent years emerged as excellent contrast agents for in vivo luminescence imaging of deep tissues. But information abstracted from these images is in most cases restricted to 2-dimensions, without the depth information. In this work, a simple method has been developed to accurately ascertain the tissue imaging depth based on the relative luminescence intensity ratio of multispectral NaYF4:Yb3+,Er3+ UCNPs. A theoretical mode was set up, where the parameters in the quantitative relation between the relative intensities of the upconversion luminescence spectra and the depth of the UCNPs were determined using tissue mimicking liquid phantoms. The 540 nm and 650 nm luminescence intensity ratios (G/R ratio) of NaYF4:Yb3+,Er3+ UCNPs were monitored following excitation path (Ex mode) and emission path (Em mode) schemes, respectively. The model was validated by embedding NaYF4:Yb3+,Er3+ UCNPs in layered pork muscles, which demonstrated a very high accuracy of measurement in the thickness up to centimeter. This approach shall promote significantly the power of nanotechnology in medical optical imaging by expanding the imaging information from 2-dimensional to real 3-dimensional.Upconversion nanoparticles (UCNPs) have in recent years emerged as excellent contrast agents for in vivo luminescence imaging of deep tissues. But information abstracted from these images is in most cases restricted to 2-dimensions, without the depth information. In this work, a simple method has been developed to accurately ascertain the tissue imaging depth based on the relative luminescence intensity ratio of multispectral NaYF4:Yb3+,Er3+ UCNPs. A theoretical mode was set up, where the parameters in the quantitative relation between the relative intensities of the upconversion luminescence spectra and the depth of the UCNPs were determined using tissue mimicking liquid phantoms. The 540 nm and 650 nm luminescence intensity ratios (G/R ratio) of NaYF4:Yb3

  7. The stability of 1-D soliton in transverse direction

    NASA Astrophysics Data System (ADS)

    Verma, Deepa; Bera, Ratan Kumar; Das, Amita; Kaw, Predhiman

    2016-12-01

    The complete characterization of the exact 1-D solitary wave solutions (both stationary and propagating) for light plasma coupled system have been studied extensively in the parameter space of light frequency and the group speed [Poornakala et al., Phys. Plasmas 9(5), 1820 (2002)]. It has been shown in 1-D that solutions with single light wave peak and paired structures are stable and hence long lived. However, solutions having multiple peaks of light wave are unstable due to Raman scattering instability [Saxena et al., Phys. Plasmas 14, 072307 (2007)]. Here, we have shown with the help of 2-D fluid simulation that single peak and paired solutions too get destabilized by the transverse filamentation instability. The numerical growth rates obtained from simulations is seen to compare well with the analytical values. It is also shown that multiple peaks solitons first undergo the regular 1-D forward Raman scattering instability. Subsequently, they undergo a distinct second phase of destabilization through transverse filamentation instability. This is evident from the structure as well as the plot of the perturbed energy which shows a second phase of growth after saturating initially. The growth rate of the filamentation instability being comparatively slower than the forward Raman instability this phase comes quite late and is clearly distinguishable.

  8. Examining Prebiotic Chemistry Using O(^1D) Insertion Reactions

    NASA Astrophysics Data System (ADS)

    Hays, Brian M.; Laas, Jacob C.; Weaver, Susanna L. Widicus

    2013-06-01

    Aminomethanol, methanediol, and methoxymethanol are all prebiotic molecules expected to form via photo-driven grain surface chemistry in the interstellar medium (ISM). These molecules are expected to be precursors for larger, biologically-relevant molecules in the ISM such as sugars and amino acids. These three molecules have not yet been detected in the ISM because of the lack of available rotational spectra. A high resolution (sub)millimeter spectrometer coupled to a molecular source is being used to study these molecules using O(^1D) insertion reactions. The O(^1D) chemistry is initiated using an excimer laser, and the products of the insertion reactions are adiabatically cooled using a supersonic expansion. Experimental parameters are being optimized by examination of methanol formed from O(^1D) insertion into methane. Theoretical studies of the structure and reaction energies for aminomethanol, methanediol, and methoxymethanol have been conducted to guide the laboratory studies once the methanol experiment has been optimized. The results of the calculations and initial experimental results will be presented.

  9. Development of 1D Liner Compression Code for IDL

    NASA Astrophysics Data System (ADS)

    Shimazu, Akihisa; Slough, John; Pancotti, Anthony

    2015-11-01

    A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.

  10. Enhancing Solar Cell Efficiencies through 1-D Nanostructures

    PubMed Central

    2009-01-01

    The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D) nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.

  11. Dopant distribution in a Tm(3+)-Yb(3+) codoped silica based glass ceramic: an infrared-laser induced upconversion study.

    PubMed

    Lahoz, F; Martin, I R; Mendez-Ramos, J; Nunez, P

    2004-04-01

    The optically active dopant distribution in a Tm(3+)-Yb(3+) doped silica based glass ceramic sample has been investigated. A systematic analysis of the upconversion fluorescence of the Tm(3+)-Yb(3+) codoped glass and glass ceramic has been performed at room temperature. Tm(3+) and Yb(3+) single doped glass and glass ceramics have also been included in the study. Upon infrared excitation at 790 nm into the (3)H(4) level of the Tm(3+) ions a blue upconversion emission is observed, which is drastically increased in the Yb(3+) codoped samples. A rate equation model confirmed the energy transfer upconversion mechanism. Based on these results, the temporal dynamic curves of the levels involved in the upconversion process, (3)H(4), (2)F(5/2), and (1)G(4) were interpreted in the glass ceramic samples. The contribution of the optically active Tm(3+) and Yb(3+) ions in the crystalline and in the vitreous phase of the glass ceramic was distinguished and the ratio of Tm(3+) ions in the crystalline phase could be quantified for the 1 mol % Tm(3+)-2.5 mol % Yb(3+) glass ceramic. A surprising result was obtained for that concentration: the main contribution to the upconversion emission of the glass ceramic is due to Tm(3+)-Yb(3+) ions in the vitreous phase.

  12. Multicolor tunability and upconversion enhancement of fluoride nanoparticles by oxygen dopant

    NASA Astrophysics Data System (ADS)

    Niu, Wenbin; Wu, Suli; Zhang, Shufen; Su, Liap Tat; Tok, Alfred Iing Yoong

    2013-08-01

    The ability to manipulate the upconversion luminescence of lanthanide-ion doped fluoride upconversion nanoparticles (UCNPs) is particularly important and highly desired due to their wide applications in color displays, multiplexing bioassays and multicolor imaging. Here, we developed a strategy for simultaneously tuning color output and enhancing upconversion emission of Yb/Er doped fluoride UCNPs, based on adjusting the oxygen doping level. The synthesis of multicolored multifunctional NaGdF4:Yb,Er UCNPs was used as the model host system to demonstrate this protocol. Ammonium nitrate (NH4NO3) was used as the oxygen source and added into the reaction system at the beginning stage of nucleation and growth process of fluoride UCNPs, which facilitates the formation of enough oxygen atoms and the diffusion of these into the fluoride host matrix. The results revealed that multicolour output and upconversion enhancement mainly resulted from the variation of phonon energy and crystal field symmetry of the host lattice, respectively. This strategy can be further expanded to other fluoride host matrices. As an example of an application, multicolored UCNPs were used as a color converter in light emitting diodes, which can effectively convert near-infrared light into visible light. It is expected that these multicolored UCNPs will be promising for applications in multiplexing biodetection, bioimaging (optical and magnetic resonance imaging) and other optical technologies, and the present method for the control of O2- doping may also be used in other functional nanomaterials.The ability to manipulate the upconversion luminescence of lanthanide-ion doped fluoride upconversion nanoparticles (UCNPs) is particularly important and highly desired due to their wide applications in color displays, multiplexing bioassays and multicolor imaging. Here, we developed a strategy for simultaneously tuning color output and enhancing upconversion emission of Yb/Er doped fluoride UCNPs, based

  13. Upconversion nanophosphors Naluf₄:Yb,Tm for lymphatic imaging in vivo by real-time upconversion luminescence imaging under ambient light and high-resolution X-ray CT.

    PubMed

    Sun, Yun; Peng, Juanjuan; Feng, Wei; Li, Fuyou

    2013-01-01

    Lanthanide upconversion nanophosphor (UCNP) has attracted increasing attention for potential applications in bioimaging due to its excellence in deep and high contrast imaging. To date, most upconversion imaging applications were demonstrated in dark surroundings without ambient light for higher signal-to-noise ratio, which hindered the application of optical imaging guided surgery. Herein, the new established NaLuF₄-based UCNP (NaLuF₄:Yb,Tm, ~17 nm) with bright upconversion emission around 800 nm as imaging signal was used to realize imaging under ambient light to provide more convenient for clinician. Moreover, due to the existance of heavy element lutetium (Lu) in the host lattice, the NaLuF₄:Yb,Tm nanoparticles can also be used as an X-ray CT imaging agent to enhance the imaging depth and in vivo imaging resolution.

  14. Upconversion nanoprobes for efficiently in vitro imaging reactive oxygen species and in vivo diagnosing rheumatoid arthritis.

    PubMed

    Chen, Zhaowei; Liu, Zhen; Li, Zhenhua; Ju, Enguo; Gao, Nan; Zhou, Li; Ren, Jinsong; Qu, Xiaogang

    2015-01-01

    Over-generation of reactive oxygen species (ROS) is closely associated with the biological processes of rheumatoid arthritis (RA). Thus, efficient monitoring ROS in inflammatory joints would be essential for better understanding the pathogenesis and optimizing therapeutic interventions. Herein, we designed a ratiometric nanoprobe utilizing upconversion nanoparticles (UCNPs) conjugated with chromophore labeled hyaluronic acid (HA) for high sensitively sensing ROS in the aqueous solution, bioimaging ROS in inflammatory mimic cells and diagnosing RA in vivo. In this approach, the conjugation of HA conferred UCNPs not only water solubility but also biocompatibility and ROS recognizing properties. Particularly, the HA backbone cleavage and detachment of chromophore labeled HA fragments from UCNPs induced by ROS inhibited the luminescent energy transfer (LRET) and allowed rational metric upconversion luminescence (UCL) emission as the detection signal. Importantly, the upconversion nanoprobe showed high effectiveness for early assessing the treatment response of arthritic animals to an antiarthritic drug-methotrexate (MTX).

  15. Upconversion in Er3+-doped Bi2O3-Li2O-BaO-PbO tertiary glass.

    PubMed

    Tripathi, Garima; Rai, Vineet Kumar; Rai, D K; Rai, S B

    2007-04-01

    Radiative properties of Er3+-doped tertiary bismuth glass has been analyzed by the Judd-Ofelt theory. NIR to visible upconversion in the Er3+-doped glass has been reported. The mechanism for the upconversion is explained on the basis of quadratic dependence on excitation power and on the energy-matching scheme. Energy transfer is noted as the dominant process including the long-lived 4I11/2 level as the intermediate state for the green and red upconversion emissions. The effect of temperature on the fluorescence intensity of the two bands due to 2H11/2-->4I15/2 and 4S3/2-->4I15/2 transitions as well as on the transitions due to Stark components of the 4S3/2 level have been monitored and it is concluded that their intensity ratio may serve as better temperature sensing device.

  16. Real-time dispersion analyzer of femtosecond laser pulses with use of a spectrally and temporally resolved upconversion technique

    NASA Astrophysics Data System (ADS)

    Rhee, June-Koo; Sosnowski, Thomas S.; Tien, An-Chun; Norris, Theodore B.

    1996-08-01

    We demonstrate a real-time femtosecond-laser-pulse analyzer by using a spectrally and temporally resolved upconversion technique (STRUT) for characterization of the phase and the intensity. The STRUT provides simple but reliable analysis of femtosecond pulses by employing a narrow-bandpass dielectric filter in one arm of a conventional single-shot upconversion autocorrelator and analyzing the spatiotemporal upconversion signal with a monochromator. The resulting spatiotemporal and spatiospectral image presents clear and complete information about femtosecond pulses produced by either oscillators or amplifiers. Characterization of 2-nJ, 60-fs Ti:sapphire oscillator pulses is achieved with 0.5 s data acquisition time and 0.2-s computational time.

  17. Blue upconversion luminescence in 12 CaO·7 Al 2O 3:Tm 3 + /Yb 3 + polycrystals

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Liu, Liang; Sun, Jinchao; Qian, Yannan; Zhang, Yushen; Xu, Yanling

    2012-03-01

    The effect of Yb 3 + concentration on the fluorescence of 12 CaO·7 Al 2O 3:Tm 3 + /Yb 3 + polycrystals is investigated. Under the excitation of 980 nm laser, the strong blue (477 nm) emission band is observed and attributed to 1G 4 → 3H 6 of Tm 3 + . The ratio of blue to red emission increases with the increasing of Yb 3 + and remains constant at 10 mol% Yb 3 + . The pump dependence and upconversion mechanisms show that the two-photon cooperative upconversion process is responsible for the enhancement of the blue upconversion emission. The Commission Internationale de l'eclairage chromaticity coordinates (x, y) illustrate that the 12 CaO·7 Al 2O 3:1 mol% Tm 3 + /10 mol% Yb 3 + can emit high-purity blue light.

  18. Optical temperature sensor through infrared excited blue upconversion emission in Tm3 +/Yb3 + codoped Y2O3

    NASA Astrophysics Data System (ADS)

    Li, Dongyu; Wang, Yuxiao; Zhang, Xueru; Yang, Kun; Liu, Lu; Song, Yinglin

    2012-04-01

    An analysis of the intense blue upconversion emission at 476 and 488 nm in Tm3 +/Yb3 + codoped Y2O3 under excitation power density of 86.7 W/cm2 available from a diode laser emitting at 976 nm, has been undertaken. Fluorescence intensity ratio (FIR) variation of temperature-sensitive blue upconversion emission at 476 and 488 nm in this material was recorded in the temperature range from 303 to 753 K. The maximum sensitivity derived from the FIR technique of the blue upconversion emission is approximately 0.0035 K- 1. The results imply that Tm3 +/Yb3 + codoped Y2O3 is a potential candidate for the optical temperature sensor.

  19. Extended-Range Ultrarefractive 1D Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    A proposal has been made to exploit the special wavelength-dispersive characteristics of devices of the type described in One-Dimensional Photonic Crystal Superprisms (NPO-30232) NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 10a. A photonic crystal is an optical component that has a periodic structure comprising two dielectric materials with high dielectric contrast (e.g., a semiconductor and air), with geometrical feature sizes comparable to or smaller than light wavelengths of interest. Experimental superprisms have been realized as photonic crystals having three-dimensional (3D) structures comprising regions of amorphous Si alternating with regions of SiO2, fabricated in a complex process that included sputtering. A photonic crystal of the type to be exploited according to the present proposal is said to be one-dimensional (1D) because its contrasting dielectric materials would be stacked in parallel planar layers; in other words, there would be spatial periodicity in one dimension only. The processes of designing and fabricating 1D photonic crystal superprisms would be simpler and, hence, would cost less than do those for 3D photonic crystal superprisms. As in 3D structures, 1D photonic crystals may be used in applications such as wavelength-division multiplexing. In the extended-range configuration, it is also suitable for spectrometry applications. As an engineered structure or artificially engineered material, a photonic crystal can exhibit optical properties not commonly found in natural substances. Prior research had revealed several classes of photonic crystal structures for which the propagation of electromagnetic radiation is forbidden in certain frequency ranges, denoted photonic bandgaps. It had also been found that in narrow frequency bands just outside the photonic bandgaps, the angular wavelength dispersion of electromagnetic waves propagating in photonic crystal superprisms is much stronger than is the angular wavelength dispersion obtained

  20. ESO science data product standard for 1D spectral products

    NASA Astrophysics Data System (ADS)

    Micol, Alberto; Arnaboldi, Magda; Delmotte, Nausicaa A. R.; Mascetti, Laura; Retzlaff, Joerg

    2016-07-01

    The ESO Phase 3 process allows the upload, validation, storage, and publication of reduced data through the ESO Science Archive Facility. Since its introduction, 2 million data products have been archived and published; 80% of them are one-dimensional extracted and calibrated spectra. Central to Phase3 is the ESO science data product standard that defines metadata and data format of any product. This contribution describes the ESO data standard for 1d-spectra, its adoption by the reduction pipelines of selected instrument modes for in-house generation of reduced spectra, the enhanced archive legacy value. Archive usage statistics are provided.

  1. Deconvolution/identification techniques for 1-D transient signals

    SciTech Connect

    Goodman, D.M.

    1990-10-01

    This paper discusses a variety of nonparametric deconvolution and identification techniques that we have developed for application to 1-D transient signal problems. These methods are time-domain techniques that use direct methods for matrix inversion. Therefore, they are not appropriate for large data'' problems. These techniques involve various regularization methods and permit the use of certain kinds of a priori information in estimating the unknown. These techniques have been implemented in a package using standard FORTRAN that should make the package readily transportable to most computers. This paper is also meant to be an instruction manual for the package. 25 refs., 17 figs., 1 tab.

  2. Breakdown of 1D water wires inside charged carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pant, Shashank

    2016-11-01

    Using molecular dynamics approach we investigated the structure and dynamics of water confined inside pristine and charged 6,6 carbon nanotubes (CNTs). This study reports the breakdown of 1D water wires and the emergence of triangular faced water on incorporating charges in 6,6 CNTs. Incorporation of charges results in high potential barriers to flipping of water molecules due to the formation of large number of hydrogen bonds. The PMF analyses show the presence of ∼2 kcal/mol barrier for the movement of water inside pristine CNT and almost negligible barrier in charged CNTs.

  3. Spatial coherence of polaritons in a 1D channel

    SciTech Connect

    Savenko, I. G.; Iorsh, I. V.; Kaliteevski, M. A.; Shelykh, I. A.

    2013-01-15

    We analyze time evolution of spatial coherence of a polariton ensemble in a quantum wire (1D channel) under constant uniform resonant pumping. Using the theoretical approach based on the Lindblad equation for a one-particle density matrix, which takes into account the polariton-phonon and excitonexciton interactions, we study the behavior of the first-order coherence function g{sup 1} for various pump intensities and temperatures in the range of 1-20 K. Bistability and hysteresis in the dependence of the first-order coherence function on the pump intensity is demonstrated.

  4. Nonlocal order parameters for the 1D Hubbard model.

    PubMed

    Montorsi, Arianna; Roncaglia, Marco

    2012-12-07

    We characterize the Mott-insulator and Luther-Emery phases of the 1D Hubbard model through correlators that measure the parity of spin and charge strings along the chain. These nonlocal quantities order in the corresponding gapped phases and vanish at the critical point U(c)=0, thus configuring as hidden order parameters. The Mott insulator consists of bound doublon-holon pairs, which in the Luther-Emery phase turn into electron pairs with opposite spins, both unbinding at U(c). The behavior of the parity correlators is captured by an effective free spinless fermion model.

  5. Nonlocal Order Parameters for the 1D Hubbard Model

    NASA Astrophysics Data System (ADS)

    Montorsi, Arianna; Roncaglia, Marco

    2012-12-01

    We characterize the Mott-insulator and Luther-Emery phases of the 1D Hubbard model through correlators that measure the parity of spin and charge strings along the chain. These nonlocal quantities order in the corresponding gapped phases and vanish at the critical point Uc=0, thus configuring as hidden order parameters. The Mott insulator consists of bound doublon-holon pairs, which in the Luther-Emery phase turn into electron pairs with opposite spins, both unbinding at Uc. The behavior of the parity correlators is captured by an effective free spinless fermion model.

  6. Nanofluidic sustainable energy conversion using a 1D nanofluidic network.

    PubMed

    Kim, Sang Hui; Kwak, Seungmin; Han, Sung Il; Chun, Dong Won; Lee, Kyu Hyoung; Kim, Jinseok; Lee, Jeong Hoon

    2014-05-01

    We propose a 1-dimensional (1D) nanofluidic energy conversion device by implementing a surface-patterned Nafion membrane for the direct energy conversion of the pressure to electrical power. By implementing a -200-nm-thick nano-bridge with a 5-nm pore size between two microfluidic channels, we acquired an effective streaming potential of 307 mV and output power of 94 pW with 0.1 mM KCI under pressure difference of 45 MPa. The experimental results show both the effects of applied pressure differences and buffer concentrations on the effective streaming potential, and are consistent with the analytical prediction.

  7. 1-D blood flow modelling in a running human body.

    PubMed

    Szabó, Viktor; Halász, Gábor

    2017-04-10

    In this paper an attempt was made to simulate blood flow in a mobile human arterial network, specifically, in a running human subject. In order to simulate the effect of motion, a previously published immobile 1-D model was modified by including an inertial force term into the momentum equation. To calculate inertial force, gait analysis was performed at different levels of speed. Our results show that motion has a significant effect on the amplitudes of the blood pressure and flow rate but the average values are not effected significantly.

  8. Increasing Er{sup 3+} Up-Conversion Intensities By Co-Doping Telluride Glasses With Yb{sup 3+}

    SciTech Connect

    Jakutis, J.; Wetter, N. U.

    2008-04-15

    This work presents an analysis of Erbium visible up-conversions in TeO{sub 2}-GeO{sub 2}-PbO glasses codoped with Yb{sup 3+}. These glasses have low phonon energy ({approx}700 cm{sup -}), high refractive index ({approx}2), large transmission window (350 nm-6500 nm) and can be easily fibered. As a result we observe an increase of the green and red up-conversion intensities when the concentration of Yb{sup 3+} increases.

  9. Upconversion emission from amorphous Y 2O 3:Tm 3+, Yb 3+ prepared by nanosecond pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Zheng, C. B.; Xia, Y. Q.; Qin, F.; Yu, Y.; Miao, J. P.; Zhang, Z. G.; Cao, W. W.

    2011-06-01

    Y 2O 3:Tm 3+, Yb 3+ was prepared by nanosecond pulsed laser irradiation. The X-ray diffraction pattern shows that the material produced by laser irradiation is amorphous, which presents strong blue upconversion emission under the excitation of 976 nm diode laser. The relative intensity of the blue emission to the infrared one is linearly dependent on the pump power and is an order of magnitude higher than that of the bulk material. The analyses of rate equations and the time-resolved spectroscopic results indicate that the enhancement of the blue upconversion is attributed to the longer lifetime of the levels of the Tm 3+ and Yb 3+ ions.

  10. Blood flow quantification using 1D CFD parameter identification

    NASA Astrophysics Data System (ADS)

    Brosig, Richard; Kowarschik, Markus; Maday, Peter; Katouzian, Amin; Demirci, Stefanie; Navab, Nassir

    2014-03-01

    Patient-specific measurements of cerebral blood flow provide valuable diagnostic information concerning cerebrovascular diseases rather than visually driven qualitative evaluation. In this paper, we present a quantitative method to estimate blood flow parameters with high temporal resolution from digital subtraction angiography (DSA) image sequences. Using a 3D DSA dataset and a 2D+t DSA sequence, the proposed algorithm employs a 1D Computational Fluid Dynamics (CFD) model for estimation of time-dependent flow values along a cerebral vessel, combined with an additional Advection Diffusion Equation (ADE) for contrast agent propagation. The CFD system, followed by the ADE, is solved with a finite volume approximation, which ensures the conservation of mass. Instead of defining a new imaging protocol to obtain relevant data, our cost function optimizes the bolus arrival time (BAT) of the contrast agent in 2D+t DSA sequences. The visual determination of BAT is common clinical practice and can be easily derived from and be compared to values, generated by a 1D-CFD simulation. Using this strategy, we ensure that our proposed method fits best to clinical practice and does not require any changes to the medical work flow. Synthetic experiments show that the recovered flow estimates match the ground truth values with less than 12% error in the mean flow rates.

  11. Tunability and Sensing Properties of Plasmonic/1D Photonic Crystal

    NASA Astrophysics Data System (ADS)

    Shaban, Mohamed; Ahmed, Ashour M.; Abdel-Rahman, Ehab; Hamdy, Hany

    2017-02-01

    Gold/one-dimensional photonic crystal (Au/1D-PC) is fabricated and applied for sensitive sensing of glucose and different chemical molecules of various refractive indices. The Au layer thickness is optimized to produce surface plasmon resonance (SPR) at the right edge of the photonic band gap (PBG). As the Au deposition time increased to 60 sec, the PBG width is increased from 46 to 86 nm in correlation with the behavior of the SPR. The selectivity of the optimized Au/1D-PC sensor is tested upon the increase of the environmental refractive index of the detected molecules. The resonance wavelength and the PBG edges increased linearly and the transmitted intensity increased nonlinearly as the environment refractive index increased. The SPR splits to two modes during the detection of chloroform molecules based on the localized capacitive coupling of Au particles. Also, this structure shows high sensitivity at different glucose concentrations. The PBG and SPR are shifted to longer wavelengths, and PBG width is decreased linearly with a rate of 16.04 Å/(μg/mm3) as the glucose concentration increased. The proposed structure merits; operation at room temperature, compact size, and easy fabrication; suggest that the proposed structure can be efficiently used for the biomedical and chemical application.

  12. Tunability and Sensing Properties of Plasmonic/1D Photonic Crystal

    PubMed Central

    Shaban, Mohamed; Ahmed, Ashour M.; Abdel-Rahman, Ehab; Hamdy, Hany

    2017-01-01

    Gold/one-dimensional photonic crystal (Au/1D-PC) is fabricated and applied for sensitive sensing of glucose and different chemical molecules of various refractive indices. The Au layer thickness is optimized to produce surface plasmon resonance (SPR) at the right edge of the photonic band gap (PBG). As the Au deposition time increased to 60 sec, the PBG width is increased from 46 to 86 nm in correlation with the behavior of the SPR. The selectivity of the optimized Au/1D-PC sensor is tested upon the increase of the environmental refractive index of the detected molecules. The resonance wavelength and the PBG edges increased linearly and the transmitted intensity increased nonlinearly as the environment refractive index increased. The SPR splits to two modes during the detection of chloroform molecules based on the localized capacitive coupling of Au particles. Also, this structure shows high sensitivity at different glucose concentrations. The PBG and SPR are shifted to longer wavelengths, and PBG width is decreased linearly with a rate of 16.04 Å/(μg/mm3) as the glucose concentration increased. The proposed structure merits; operation at room temperature, compact size, and easy fabrication; suggest that the proposed structure can be efficiently used for the biomedical and chemical application. PMID:28176799

  13. Engineered atom-light interactions in 1D photonic crystals

    NASA Astrophysics Data System (ADS)

    Martin, Michael J.; Hung, Chen-Lung; Yu, Su-Peng; Goban, Akihisa; Muniz, Juan A.; Hood, Jonathan D.; Norte, Richard; McClung, Andrew C.; Meenehan, Sean M.; Cohen, Justin D.; Lee, Jae Hoon; Peng, Lucas; Painter, Oskar; Kimble, H. Jeff

    2014-05-01

    Nano- and microscale optical systems offer efficient and scalable quantum interfaces through enhanced atom-field coupling in both resonators and continuous waveguides. Beyond these conventional topologies, new opportunities emerge from the integration of ultracold atomic systems with nanoscale photonic crystals. One-dimensional photonic crystal waveguides can be engineered for both stable trapping configurations and strong atom-photon interactions, enabling novel cavity QED and quantum many-body systems, as well as distributed quantum networks. We present the experimental realization of such a nanophotonic quantum interface based on a nanoscale photonic crystal waveguide, demonstrating a fractional waveguide coupling of Γ1 D /Γ' of 0 . 32 +/- 0 . 08 , where Γ1 D (Γ') is the atomic emission rate into the guided (all other) mode(s). We also discuss progress towards intra-waveguide trapping of ultracold Cs. This work was supported by the IQIM, an NSF Physics Frontiers Center with support from the Moore Foundation, the DARPA ORCHID program, the AFOSR QuMPASS MURI, the DoD NSSEFF program, NSF, and the Kavli Nanoscience Institute (KNI) at Caltech.

  14. Constitutive modeling and control of 1D smart composite structures

    NASA Astrophysics Data System (ADS)

    Briggs, Jonathan P.; Ostrowski, James P.; Ponte-Castaneda, Pedro

    1998-07-01

    Homogenization techniques for determining effective properties of composite materials may provide advantages for control of stiffness and strain in systems using hysteretic smart actuators embedded in a soft matrix. In this paper, a homogenized model of a 1D composite structure comprised of shape memory alloys and a rubber-like matrix is presented. With proportional and proportional/integral feedback, using current as the input state and global strain as an error state, implementation scenarios include the use of tractions on the boundaries and a nonlinear constitutive law for the matrix. The result is a simple model which captures the nonlinear behavior of the smart composite material system and is amenable to experiments with various control paradigms. The success of this approach in the context of the 1D model suggests that the homogenization method may prove useful in investigating control of more general smart structures. Applications of such materials could include active rehabilitation aids, e.g. wrist braces, as well as swimming/undulating robots, or adaptive molds for manufacturing processes.

  15. Tunability and Sensing Properties of Plasmonic/1D Photonic Crystal.

    PubMed

    Shaban, Mohamed; Ahmed, Ashour M; Abdel-Rahman, Ehab; Hamdy, Hany

    2017-02-08

    Gold/one-dimensional photonic crystal (Au/1D-PC) is fabricated and applied for sensitive sensing of glucose and different chemical molecules of various refractive indices. The Au layer thickness is optimized to produce surface plasmon resonance (SPR) at the right edge of the photonic band gap (PBG). As the Au deposition time increased to 60 sec, the PBG width is increased from 46 to 86 nm in correlation with the behavior of the SPR. The selectivity of the optimized Au/1D-PC sensor is tested upon the increase of the environmental refractive index of the detected molecules. The resonance wavelength and the PBG edges increased linearly and the transmitted intensity increased nonlinearly as the environment refractive index increased. The SPR splits to two modes during the detection of chloroform molecules based on the localized capacitive coupling of Au particles. Also, this structure shows high sensitivity at different glucose concentrations. The PBG and SPR are shifted to longer wavelengths, and PBG width is decreased linearly with a rate of 16.04 Å/(μg/mm(3)) as the glucose concentration increased. The proposed structure merits; operation at room temperature, compact size, and easy fabrication; suggest that the proposed structure can be efficiently used for the biomedical and chemical application.

  16. Photon upconversion sensitized nanoprobes for sensing and imaging of pH

    NASA Astrophysics Data System (ADS)

    Arppe, Riikka; Näreoja, Tuomas; Nylund, Sami; Mattsson, Leena; Koho, Sami; Rosenholm, Jessica M.; Soukka, Tero; Schäferling, Michael

    2014-05-01

    Acidic pH inside cells indicates cellular dysfunctions such as cancer. Therefore, the development of optical pH sensors for measuring and imaging intracellular pH is a demanding challenge. The available pH-sensitive probes are vulnerable to e.g. photobleaching or autofluorescence background in biological materials. Our approach circumvents these problems due to near infrared excitation and upconversion photoluminescence. We introduce a nanosensor based on upconversion resonance energy transfer (UC-RET) between an upconverting nanoparticle (UCNP) and a fluorogenic pH-dependent dye pHrodo™ Red that was covalently bound to the aminosilane surface of the nanoparticles. The sensitized fluorescence of the pHrodo™ Red dye increases strongly with decreasing pH. By referencing the pH-dependent emission of pHrodo™ Red with the pH-insensitive upconversion photoluminescence of the UCNP, we developed a pH-sensor which exhibits a dynamic range from pH 7.2 to 2.5. The applicability of the introduced pH nanosensor for pH imaging was demonstrated by imaging the two emission wavelengths of the nanoprobe in living HeLa cells with a confocal fluorescence microscope upon 980 nm excitation. This demonstrates that the presented pH-nanoprobe can be used as an intracellular pH-sensor due to the unique features of UCNPs: excitation with deeply penetrating near-infrared light, high photostability, lack of autofluorescence and biocompatibility due to an aminosilane coating.Acidic pH inside cells indicates cellular dysfunctions such as cancer. Therefore, the development of optical pH sensors for measuring and imaging intracellular pH is a demanding challenge. The available pH-sensitive probes are vulnerable to e.g. photobleaching or autofluorescence background in biological materials. Our approach circumvents these problems due to near infrared excitation and upconversion photoluminescence. We introduce a nanosensor based on upconversion resonance energy transfer (UC-RET) between an

  17. Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes

    NASA Astrophysics Data System (ADS)

    Liu, Chunyan; Qi, Yifei; Qiao, Ruirui; Hou, Yi; Chan, Kaying; Li, Ziqian; Huang, Jiayi; Jing, Lihong; Du, Jun; Gao, Mingyuan

    2016-06-01

    Early detection and diagnosis of cancers is extremely beneficial for improving the survival rate of cancer patients and molecular imaging techniques are believed to be relevant for offering clinical solutions. Towards early cancer detection, we developed a primary animal colorectal cancer model and constructed a tumor-specific imaging probe by using biocompatible NaGdF4:Yb,Er@NaGdF4 upconversion luminescent NPs for establishing a sensitive early tumor imaging method. The primary animal tumor model, which can better mimic the human colorectal cancer, was built upon continual administration of 1,2-dimethylhydrazine in Kunming mice and the tumor development was carefully monitored through histopathological and immunohistochemical analyses to reveal the pathophysiological processes and molecular features of the cancer microenvironment. The upconversion imaging probe was constructed through covalent coupling of PEGylated core-shell NPs with folic acid whose receptor is highly expressed in the primary tumors. Upon 980 nm laser excitation, the primary colorectal tumors in the complex abdominal environment were sensitively imaged owing to the ultralow background of the upconversion luminescence and the high tumor-targeting specificity of the nanoprobe. We believe that the current studies provide a highly effective and potential approach for early colorectal cancer diagnosis and tumor surgical navigation.Early detection and diagnosis of cancers is extremely beneficial for improving the survival rate of cancer patients and molecular imaging techniques are believed to be relevant for offering clinical solutions. Towards early cancer detection, we developed a primary animal colorectal cancer model and constructed a tumor-specific imaging probe by using biocompatible NaGdF4:Yb,Er@NaGdF4 upconversion luminescent NPs for establishing a sensitive early tumor imaging method. The primary animal tumor model, which can better mimic the human colorectal cancer, was built upon continual

  18. Optical upconversion techniques for high-sensitivity millimetre-wave detection

    NASA Astrophysics Data System (ADS)

    Schuetz, Christopher A.; Prather, Dennis W.

    2004-12-01

    Millimeter-wave radiation has the unique ability to penetrate atmospheric obscurations such as smoke, fog, and light rain while maintaining the capability for high-resolution imaging. However, suitable technologies for creating high-sensitivity, large pixel-count detectors are a limiting factor in the implementation of such systems. To this end, we present a technique for detecting millimeter-wave radiation based on optical upconversion that promises both high sensitivity and scalability to large pixel arrays. High-speed optical modulation is used to transfer millimeter-wave radiation onto the sidebands of a near-infrared optical carrier frequency. Optical filtering techniques are subsequently used to suppress light at the carrier frequency. The resultant signal is passed to a low-frequency photodetector, which converts the remaining sideband energy to a photocurrent proportional to the incident millimeter wave energy at the modulator input. Utilizing the low noise powers of such photodetectors, high sensitivities may be obtained even accounting for the relatively high signal losses associated with optical upconversion. Since optical upconversion inherently preserves both phase and amplitude information and fiber optics may readily be used for low-loss routing of the modulated signal, such an approach offers promise for high-resolution synthetic aperture imaging. Alternatively, since each of the required components may be fabricated in III-V materials using planar semiconductor processing techniques, integration of multi-pixel arrays is feasible. Herein, we present experimental results obtained using a baseline detector assembled from commercially available fiber-optic components as well as efforts to integrate the desired functionality into a single GaAs substrate. An initial noise equivalent power (NEP) of the proposed detector has been demonstrated at sub-nanowatt levels, with improvements to sub-picowatt NEP's anticipated as the setup is optimized.

  19. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy

    NASA Astrophysics Data System (ADS)

    Liu, Yujia; Lu, Yiqing; Yang, Xusan; Zheng, Xianlin; Wen, Shihui; Wang, Fan; Vidal, Xavier; Zhao, Jiangbo; Liu, Deming; Zhou, Zhiguang; Ma, Chenshuo; Zhou, Jiajia; Piper, James A.; Xi, Peng; Jin, Dayong

    2017-02-01

    Lanthanide-doped glasses and crystals are attractive for laser applications because the metastable energy levels of the trivalent lanthanide ions facilitate the establishment of population inversion and amplified stimulated emission at relatively low pump power. At the nanometre scale, lanthanide-doped upconversion nanoparticles (UCNPs) can now be made with precisely controlled phase, dimension and doping level. When excited in the near-infrared, these UCNPs emit stable, bright visible luminescence at a variety of selectable wavelengths, with single-nanoparticle sensitivity, which makes them suitable for advanced luminescence microscopy applications. Here we show that UCNPs doped with high concentrations of thulium ions (Tm3+), excited at a wavelength of 980 nanometres, can readily establish a population inversion on their intermediate metastable 3H4 level: the reduced inter-emitter distance at high Tm3+ doping concentration leads to intense cross-relaxation, inducing a photon-avalanche-like effect that rapidly populates the metastable 3H4 level, resulting in population inversion relative to the 3H6 ground level within a single nanoparticle. As a result, illumination by a laser at 808 nanometres, matching the upconversion band of the 3H4 → 3H6 transition, can trigger amplified stimulated emission to discharge the 3H4 intermediate level, so that the upconversion pathway to generate blue luminescence can be optically inhibited. We harness these properties to realize low-power super-resolution stimulated emission depletion (STED) microscopy and achieve nanometre-scale optical resolution (nanoscopy), imaging single UCNPs; the resolution is 28 nanometres, that is, 1/36th of the wavelength. These engineered nanocrystals offer saturation intensity two orders of magnitude lower than those of fluorescent probes currently employed in stimulated emission depletion microscopy, suggesting a new way of alleviating the square-root law that typically limits the

  20. Investigation of upconversion and near infrared emission properties in CeO₂: Er³⁺, Yb³⁺ inverse opals.

    PubMed

    Wu, Hangjun; Yang, Zhengwen; Liao, Jiayan; Lai, Shenfeng; Qiu, Jianbei; Song, Zhiguo; Yang, Yong; Zhou, Dacheng; Yin, Zhaoyi

    2013-09-23

    The upconversion emission of rare earth ions can be modified in photonic crystals, however, the influence of upconversion emission modification of rare earths on near infrared emission has not been investigated yet in the photonic crystals. In the paper, CeO₂: Er³⁺, Yb³⁺ inverse opals with the photonic band gaps at 545, 680 and 450 nm were prepared by polystyrene colloidal crystal templates. The upconversion and the near infrared emission properties of Er³⁺ ions were systematically investigated in the CeO₂: Er³⁺, Yb³⁺ inverse opals. Comparing with the reference sample, significant suppression of both the green and red upconversion luminescence of Er³⁺ ions were observed in the inverse opals. It is interesting that the infrared emission located at 1,560 nm was enhanced due to inhibition of upconversion emission in the inverse opals. Additionally, mechanism of upconversion emission of the inverse opal was discussed. The photon avalanche upconversion process is observed.

  1. Spectral evidence for multi-pathway contribution to the upconversion pathway in NaYF4:Yb(3+),Er(3+) phosphors.

    PubMed

    Cho, Youngho; Song, Si Won; Lim, Soo Yeong; Kim, Jae Hun; Park, Chan Ryang; Kim, Hyung Min

    2017-03-08

    Although upconversion phosphors have been widely used in nanomedicine, laser engineering, bioimaging, and solar cell technology, the upconversion luminescence mechanism of the phosphors has been fiercely debated. A comprehensive understanding of upconversion photophysics has been significantly impeded because the number of photons incorporated in the process in different competitive pathways could not be resolved. Few convincing results to estimate the contribution of each of the two-, three-, and four-photon channels of near-infrared (NIR) energy have been reported in yielding upconverted visible luminescence. In this study, we present the energy upconversion process occurring in NaYF4:Yb(3+),Er(3+) phosphors as a function of excitation frequency and power density. We investigated the upconversion mechanism of lanthanide phosphors by comparing UV/VIS one-photon excitation spectra and NIR multi-photon spectra. A detailed analysis of minor transitions in one-photon spectra and luminescence decay enables us to assign electronic origins of individual bands in multi-photon upconversion luminescence and provides characteristic transitions representing the corresponding upconversion channel. Furthermore, we estimated the quantitative contribution of multiple channels with respect to irradiation power and excitation energy.

  2. Study on up-conversion emissions of Yb 3+/Tm 3+ co-doped GdF 3 and NaGdF 4

    NASA Astrophysics Data System (ADS)

    Cao, Chunyan; Qin, Weiping; Zhang, Jisen

    2010-02-01

    The Yb 3+/Tm 3+ co-doped GdF 3 and NaGdF 4 samples were synthesized through a combination method of a co-precipitation and an argon atmosphere annealing procedures. X-ray diffraction analysis indicated that the Yb 3+/Tm 3+ co-doped GdF 3 sample crystallized well and was orthorhombic phase, and the Yb 3+/Tm 3+ co-doped NaGdF 4 sample was hexagonal phase. With a 980-nm semiconductor continuous wave laser diode as the excitation source, the up-conversion emission spectra of the two samples in the wavelength range of 240-510 nm were recorded. In the up-conversion emissions of the samples, Yb 3+ transferred energies to Tm 3+ resulting in their ultraviolet, violet, and blue up-conversion emissions. And, Tm 3+ simultaneously transferred energies to Gd 3+, which finally resulted in ultraviolet up-conversion emissions of Gd 3+. The study on the excitation power dependence of up-conversion fluorescence intensity indicated that there were multi-photon (three-, four-, five-, and six-) processes in the up-conversion emissions of the samples. And the up-conversion emissions of Gd 3+ and Tm 3+ in the Yb 3+/Tm 3+ co-doped GdF 3 and NaGdF 4 samples were compared studied, too.

  3. Up-conversion equivalent circuit to boost current in Si cells

    NASA Astrophysics Data System (ADS)

    Conibeer, Gavin; Shrestha, Santosh; Chan, Kai Yuen; Huang, Shujuan; Puthen-Veettil, Binesh

    2016-09-01

    Up-conversion for Si solar cells using Er phosphors has the twin problems of a very high concentration requirement and the very narrow bandwidth for absorption. An alternative is to use the equivalent circuit of an up-converter, two below bnadgap solar cells connected in series to pump an above band gap LED, as suggested by Trupke SOLMAT 2005, but not yet attempted experimentally. Results on the current enhancement in such devices are shown for absorption of below Si band gap light in long wavelength cells to pump a InGaAs LED so as to sensitise a Si solar cell.

  4. UVC upconversion material under sunlight excitation: LiYF(4): Pr(3+).

    PubMed

    Wu, Jianhong; Zheng, Haolin; Liu, Xinghua; Han, Boning; Wei, Jun; Yang, Yanmin

    2016-02-15

    UVC upconversion emission is observed in a LiYF4:Pr3+ microcrystal under sunlight excitation. The dependence of UVC UC emission intensity on the excitation density of a 488 nm laser and sunlight is investigated. The obtained data indicates that two-photon processes play an important role in UVC UC emission. The UVC UC mechanisms of Pr3+ under the excitation of a laser and sunlight are presented and discussed. The UVC emission under sunlight excitation has broad prospects for application.

  5. Up-conversion in YLF:Yb3+,Tm3+ laser crystals

    NASA Astrophysics Data System (ADS)

    Tkachuk, Alexandra M.; Razumova, Irene K.; Joubert, Maria-France; Moncorge, Richard

    1998-12-01

    We have studied the Yb3+ (reversible reaction) Tm3+ nonradiative energy transfer processes responsible for population of the 1G4 thulium level under Yb3+ or Tm3+ selective laser excitation of YLF:Tm3+,Yb3+ crystal. The microparameters and the rates of the energy transfer via cross-relaxation schemes are determined. It is concluded that the process of populating the 1G4 thulium level is greatly affected by up-conversion processes not only from the 3H4 but also from the 3F4 level, proceeding within the static decay model.

  6. Thiazole derivative-modified upconversion nanoparticles for Hg2+ detection in living cells

    NASA Astrophysics Data System (ADS)

    Gu, Bin; Zhou, Yi; Zhang, Xiao; Liu, Xiaowang; Zhang, Yuhai; Marks, Robert; Zhang, Hua; Liu, Xiaogang; Zhang, Qichun

    2015-12-01

    Mercury ion (Hg2+) is an extremely toxic ion, which will accumulate in human bodies and cause severe nervous system damage. Therefore, the sensitive and efficient monitoring of Hg2+ in human bodies is of great importance. Upconversion nanoparticle (UCNPs) based nano probes exhibit no autofluorescence, deep penetration depth and chemical stability in biological samples, as well as a large anti-stokes shift. In this study, we have developed thiazole-derivative-functionalized UCNPs, and employed an upconversion emission intensity ratio of 540 nm to 803 nm (I540/I803) as a ratiometric signal to detect Hg2+ in living cells showing excellent photo stability and high selectivity. Our nano probe was characterized using transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD). The low cytotoxicity of our probe was confirmed by an MTT assay and the UCL test in HeLa cells was carried out by confocal microscopy. Our results demonstrated that organic-dye-functionalized UCNPs should be a good strategy for detecting toxic metal ions when studying cellular biosystems.Mercury ion (Hg2+) is an extremely toxic ion, which will accumulate in human bodies and cause severe nervous system damage. Therefore, the sensitive and efficient monitoring of Hg2+ in human bodies is of great importance. Upconversion nanoparticle (UCNPs) based nano probes exhibit no autofluorescence, deep penetration depth and chemical stability in biological samples, as well as a large anti-stokes shift. In this study, we have developed thiazole-derivative-functionalized UCNPs, and employed an upconversion emission intensity ratio of 540 nm to 803 nm (I540/I803) as a ratiometric signal to detect Hg2+ in living cells showing excellent photo stability and high selectivity. Our nano probe was characterized using transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD). The low cytotoxicity of our probe was confirmed by an MTT assay and the UCL test in HeLa cells was carried out by

  7. Sensitivity of laser-induced upconversion fluorescence dynamics to exciting wavelength in Er3+-doped YAG

    NASA Astrophysics Data System (ADS)

    Du, S.; Jiang, L.; Zhang, W.; Gong, W.; Fu, Z.; Dai, Z.

    2011-06-01

    A novel sensitivity of laser-induced upconversion (UC) fluorescence dynamics to the exciting wavelength in Er3+:YAG crystal has been observed. The sensitivities to exciting wavelength variations are only 0.02 and 0.06 nm for 2 G 9/2 and 2 P 3/2 UC luminescence, respectively. The observation of this sensitivity reveals that when a certain level is populated by more than one UC mechanisms, a precise determination of suitable exciting wavelength is crucial because the competition between different UC mechanisms has a sensitive variation with exciting wavelength in near-resonant range.

  8. Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging

    DOE PAGES

    Wu, Xiang; Lee, Hyungseok; Bilsel, Osman; ...

    2015-01-01

    One of the key roadblocks in UCNP development is its extremely limited choices of excitation wavelengths. We report a generic design to program UCNPs to possess highly tunable dye characteristic excitation bands. Using such distinctive properties, we were able to develop a new excitation wavelength selective security imaging. Finally, this work unleashed the greater freedom of the excitation wavelengths of the upconversion nanoparticles and we believe it is a game-changer in the field and this method will enable numerous applications that are currently limited by existing UCNPs.

  9. Generation of coherent waves by frequency up-conversion and down-conversion of incoherent light

    SciTech Connect

    Piskarskas, A.; Pyragaite, V.; Stabinis, A.

    2010-11-15

    It is revealed that the generation of a coherent wave by frequency conversion of incoherent waves is a characteristic feature of three-wave interaction in a nonlinear medium when angular dispersion of input waves is properly chosen. In this case the combining action of the pairs of spectral components of incoherent waves may result in the cumulative driving of a single plane monochromatic wave in up-conversion and down-conversion processes. As a fundamental result we point out an enhancement of the spectral radiance of the generated wave in comparison with incoherent waves.

  10. Modeling of Tm-doped ZBLAN blue upconversion fiber lasers operating at 455 nm

    NASA Astrophysics Data System (ADS)

    Brunet, Francois; Laperle, Pierre; Vallee, Real; LaRochelle, Sophie; Pujol, Lionel

    1999-12-01

    We present a model for 455-nm thulium-doped fluorozirconate fiber lasers co-pumped at 645 nm and 1064 nm. Twelve radiative transitions are accounted for in our model, along with cross- relaxation and cooperative upconversion processes. Blue laser output power is computed using a rate equation analysis. Relevant spectroscopic data used in our model are given, including cross-section measurements that we have performed. The results of our simulation show a good agreement with previously published experimental data. The importance of cross-relaxation processes is discussed. The dependence of output laser power on fiber length, output mirror reflectivity, and pump powers is also addressed.

  11. Effect of A-site cations on the broadband-sensitive upconversion of AZrO3:Er3+,Ni2+ (A = Ca, Sr, Ba) phosphors

    NASA Astrophysics Data System (ADS)

    Luitel, Hom Nath; Mizuno, Shintaro; Tani, Toshihiko; Takeda, Yasuhiko

    2017-02-01

    We investigated broadband-sensitive upconversion processes in a series of AZrO3 type perovskites codoped with Ni2+ and Er3+, especially giving focus on the effect of the A-site host cations viz. Ca, Sr, Ba. Absorption and Stokes emission of the Ni2+ changed remarkably according to the A-site cations making difference in the Ni2+ to Er3+ energy transfer efficiency. The energy transfer extent from the Ni2+ sensitizers to the Er3+ emitters and the back transfer from the Er3+ to the Ni2+ were studied to clarify the guide for efficient broadband-sensitive upconversion. The Ni2+ to Er3+ energy transfer efficiency and hence the Er3+ upconversion emission intensity was dependent on the extent of overlap between the Er3+ absorption and the Ni2+ emission bands. Larger the overlap, faster was the energy transfer from the Ni2+ to the Er3+, leading to more intense Er3+ upconversion emission. However, back energy transfer from the Er3+ to the Ni2+ due to significant overlap of the Er3+ emission band with the Ni2+ absorption band reduced the upconversion emission intensity. Another important factor is the upconversion efficiency of the Er3+ emitters themselves after the energy transfer from the Ni2+ sensitizers, which was significantly improved when the symmetry around the Er3+ was lowered. As a result of these combined effects, the CaZrO3 host exhibited the most intense Ni2+-sensitized upconversion emission compared to the Sr and Ba analogues. Thus, for the efficient broadband-sensitive upconversion to be realized, a low symmetry host to manifest efficient upconversion of the Er3+ emitters and controlled Ni2+ absorption and emission bands to suppress the back energy transfer while maintaining efficient energy transfer in the forward direction are essential.

  12. Axion string dynamics I: 2+1D

    NASA Astrophysics Data System (ADS)

    Fleury, Leesa M.; Moore, Guy D.

    2016-05-01

    If the axion exists and if the initial axion field value is uncorrelated at causally disconnected points, then it should be possible to predict the efficiency of cosmological axion production, relating the axionic dark matter density to the axion mass. The main obstacle to making this prediction is correctly treating the axion string cores. We develop a new algorithm for treating the axionic string cores correctly in 2+1 dimensions. When the axionic string cores are given their full physical string tension, axion production is about twice as efficient as in previous simulations. We argue that the string network in 2+1 dimensions should behave very differently than in 3+1 dimensions, so this result cannot be simply carried over to the physical case. We outline how to extend our method to 3+1D axion string dynamics.

  13. 1-D ELECTRO-OPTIC BEAM STEERING DEVICE.

    PubMed

    Wang, Wei-Chih; Tsui, Chi Leung

    2011-06-05

    In this paper, we present the design and fabrication of a 1D beam steering device based on planar electro-optic thermal-plastic prisms and a collimator lens array. With the elimination of moving parts, the proposed device is able to overcome the mechanical limitations of present scanning devices, such as fatigue and low operating frequency, while maintaining a small system footprint (~0.5mm×0.5mm). From experimental data, our prototype device is able to achieve a maximum deflection angle of 5.6° for a single stage prism design and 29.2° for a cascaded three prisms stage design. The lens array shows a 4µm collimated beam diameter.

  14. Combinatorial approach to exactly solve the 1D Ising model

    NASA Astrophysics Data System (ADS)

    Seth, Swarnadeep

    2017-01-01

    The Ising model is a well known statistical model which can be solved exactly by various methods. The most familiar one is the transfer matrix method. Sometimes it can be difficult to approach the open boundary case rather than periodic boundary ones in higher dimensions. But physically it is more intuitive to study the open boundary case, as it gives a closer view of the real system. We have introduced a new method called the pairing method to determine the exact partition function for the simplest case, a 1D Ising lattice. This method simplifies the problem's complexities and reduces it to a pure combinatorial problem. The study also reveals that it is possible to apply this pairing method in the case of a 2D square lattice. The obtained results agree perfectly with the values in the literature and this new approach provides an algorithmic insight to deal with such problems.

  15. Statistical analysis of 1D HRR target features

    NASA Astrophysics Data System (ADS)

    Gross, David C.; Schmitz, James L.; Williams, Robert L.

    2000-08-01

    Automatic target recognition (ATR) and feature-aided tracking (FAT) algorithms that use one-dimensional (1-D) high range resolution (HRR) profiles require unique or distinguishable target features. This paper explores the use of statistical measures to quantify the separability and stability of ground target features found in HRR profiles. Measures of stability, such as the mean and variance, can be used to determine the stability of a target feature as a function of the target aspect and elevation angle. Statistical measures of feature predictability and separability, such as the Fisher and Bhattacharyya measures, demonstrate the capability to adequately predict the desired target feature over a specified aspect angular region. These statistical measures for separability and stability are explained in detail and their usefulness is demonstrated with measured HRR data.

  16. Axion string dynamics I: 2+1D

    SciTech Connect

    Fleury, Leesa M.; Moore, Guy D.

    2016-05-03

    If the axion exists and if the initial axion field value is uncorrelated at causally disconnected points, then it should be possible to predict the efficiency of cosmological axion production, relating the axionic dark matter density to the axion mass. The main obstacle to making this prediction is correctly treating the axion string cores. We develop a new algorithm for treating the axionic string cores correctly in 2+1 dimensions. When the axionic string cores are given their full physical string tension, axion production is about twice as efficient as in previous simulations. We argue that the string network in 2+1 dimensions should behave very differently than in 3+1 dimensions, so this result cannot be simply carried over to the physical case. We outline how to extend our method to 3+1D axion string dynamics.

  17. Effective theory of black holes in the 1/D expansion

    NASA Astrophysics Data System (ADS)

    Emparan, Roberto; Shiromizu, Tetsuya; Suzuki, Ryotaku; Tanabe, Kentaro; Tanaka, Takahiro

    2015-06-01

    The gravitational field of a black hole is strongly localized near its horizon when the number of dimensions D is very large. In this limit, we can effectively replace the black hole with a surface in a background geometry (e.g. Minkowski or Anti-deSitter space). The Einstein equations determine the effective equations that this `black hole surface' (or membrane) must satisfy. We obtain them up to next-to-leading order in 1/ D for static black holes of the Einstein-(A)dS theory. To leading order, and also to next order in Minkowski backgrounds, the equations of the effective theory are the same as soap-film equations, possibly up to a redshift factor. In particular, the Schwarzschild black hole is recovered as a spherical soap bubble. Less trivially, we find solutions for `black droplets', i.e. black holes localized at the boundary of AdS, and for non-uniform black strings.

  18. Uniform Propagation of Chaos for Kac's 1D Particle System

    NASA Astrophysics Data System (ADS)

    Cortez, Roberto

    2016-12-01

    In this paper we study Kac's 1D particle system, consisting of the velocities of N particles colliding at constant rate and randomly exchanging energies. We prove uniform (in time) propagation of chaos in Wasserstein distance with explicit polynomial rates in N, for both the squared (i.e., the energy) and non-squared particle system. These rates are of order N^{-1/3} (almost, in the non-squared case), assuming that the initial distribution of the limit nonlinear equation has finite moments of sufficiently high order (4+ɛ is enough when using the 2-Wasserstein distance). The proof relies on a convenient parametrization of the collision recently introduced by Hauray, as well as on a coupling technique developed by Cortez and Fontbona.

  19. 1-D ELECTRO-OPTIC BEAM STEERING DEVICE

    PubMed Central

    Wang, Wei-Chih; Tsui, Chi Leung

    2011-01-01

    In this paper, we present the design and fabrication of a 1D beam steering device based on planar electro-optic thermal-plastic prisms and a collimator lens array. With the elimination of moving parts, the proposed device is able to overcome the mechanical limitations of present scanning devices, such as fatigue and low operating frequency, while maintaining a small system footprint (~0.5mm×0.5mm). From experimental data, our prototype device is able to achieve a maximum deflection angle of 5.6° for a single stage prism design and 29.2° for a cascaded three prisms stage design. The lens array shows a 4µm collimated beam diameter. PMID:22199458

  20. Lanczos diagonalizations of the 1-D Peierls-Hubbard model

    SciTech Connect

    Loh, E.Y.; Campbell, D.K.; Gammel, J.T.

    1989-01-01

    In studies of interacting electrons in reduced dimensions'' one is trapped between the Scylla of exponential growth of the number of states in any exact many-body basis and the Charybdis of the failure of mean-field theories to capture adequately the effects of interactions. In the present article we focus on one technique -- the Lanczos method -- which, at least in the case of the 1-D Peierls-Hubbard model, appears to allow us to sail the narrow channel between these two hazards. In contrast to Quantum Monte Carlo methods, which circumvent the exponential growth of states by statistical techniques and importance sampling, the Lanczos approach attacks this problem head-on by diagonalizing the full Hamiltonian. Given the restrictions of present computers, this approach is thus limited to studying finite clusters of roughly 12--14 sites. Fortunately, in one dimension, such clusters are usually sufficient for extracting many of the properties of the infinite system provided that one makes full use of the ability to vary the boundary conditions. In this article we shall apply the Lanczos methodology and novel phase randomization'' techniques to study the 1-D Peierls-Hubbard model, with particular emphasis on the optical absorption properties, including the spectrum of absorptions as a function of photon energy. Despite the discreteness of the eigenstates in our finite clusters, we are able to obtain optical spectra that, in cases where independent tests can be made, agree well with the known exact results for the infinite system. Thus we feel that this combination of techniques represents an important and viable means of studying many interesting novel materials involving strongly correlated electrons. 26 refs., 6 figs.

  1. Evaluating 1d Seismic Models of the Lunar Interior

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Thorne, M. S.; Weber, R. C.; Schmerr, N. C.

    2012-12-01

    A four station seismic network was established on the Moon from 1969 to 1977 as part of the Apollo Lunar Surface Experiment Package (ALSEP). A total of nine 1D seismic velocity models were generated using a variety of different techniques. In spite of the fact that these models were generated from the same data set, significant differences exist between them. We evaluate these models by comparing predicted travel-times to published catalogs of lunar events. We generate synthetic waveform predictions for 1D lunar models using a modified version of the Green's Function of the Earth by Minor Integration (GEMINI) technique. Our results demonstrate that the mean square errors between predicted and measured P-wave travel times are smaller than those for S-wave travel times in all cases. Moreover, models fit travel times for artificial and meteoroid impacts better than for shallow and deep moonquakes. Overall, models presented by Nakamura [Nakamura, 1983] and Garcia et al. [Garcia et al., 2011] predicted the observed travel times better than all other models and were comparable in their explanation of travel-times. Nevertheless, significant waveform differences exist between these models. In particular, the seismic velocity structure of the lunar crust and regolith strongly affect the waveform characteristics predicted by these models. Further complexity is added by possible mantle discontinuity structure that exists in a subset of these models. We show synthetic waveform predictions for these models demonstrating the role that crustal structure has in generating long duration seismic coda inherent in the lunar waveforms.

  2. Enhanced ultraviolet upconversion luminescence of Tm and Yb codoped ZrF4-BaF2-LaF3-AlF3-NaF glass.

    PubMed

    He, Chunfeng; Zhao, Dan; Qin, Guanshi; Zheng, Kezhi; Qin, Weiping

    2011-11-01

    Ultraviolet (UV) upconversion (UC) luminescence properties of Tm3+ ions sensitized by Yb3+ ions in ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) glass were studied in detail. Under the excitation from a 980 nm continuous wave (CW) diode laser, red, blue, and even UV emissions were observed in the fluorozirconate glass. Several fluorescence bands appeared in the UC emission spectrum from 292.8 nm to 805.8 nm. The UC emission peaks at 291 nm, 347 nm, 363 nm, 454 nm, 475 nm, 647 nm, 687 nm, and 804 nm correspond to the transitions of 1I6 --> 3H6, 1I6 --> 3F4, 1D2 --> 3H6, 1D2 --> 3F4, 1G4 --> 3H6, 1G4 --> 3F4, 3F3 --> 3H6, and 3H4 --> 3H6, respectively. Experimental results of intensity dependence of the up-converted fluorescence on the pump power indicate a five-photon excitation scheme of 1I6 energy level.

  3. A new blue, green and red upconversion emission nanophosphor: BaZrO3:Er,Yb.

    PubMed

    Diaz-Torres, L A; Salas, P; Perez-Huerta, J S; Angeles-Chavez, C; De la Rosa, E

    2008-12-01

    Strong Blue, green, and red upconversion emission of Er3+ in nanocrystalline BaZrO3:(Yb3+Er3+) is observed. Powder samples were obtained by a facile hydrothermal process at 100 degrees C. The as synthesized nanocrystallites preserve a stable cubic perovskite phase under subsequent annealing treatment up to 1000 degrees C. No other phase or segregation of other compounds was detected. Crystallites sizes were around 115 nm and well faceted. Under IR excitation in the range between 900 and 1050 nm the Er3+ blue emission was almost not present in single Er3+ doped BaZrO3, whereas it became easily observable when Yb3+ was added as codopant. Besides, both green and red upconversion emission or upconverted signal of Er3+ are enhanced by around three orders of magnitude in comparison with the single Er3+ doped BaZrO3. The strong blue emission presents dependence on both excitation power and excitation wavelength. This is the first time that upconversion emission is observed in BaZrO3. A possible mechanism for the upconversion process that leads to the observed blue, green and red emissions under NIR excitation is suggested based on the experimental results.

  4. DNA-functionalized upconversion nanoparticles as biosensors for rapid, sensitive, and selective detection of Hg(2+) in complex matrices.

    PubMed

    Huang, Li-Jiao; Yu, Ru-Qin; Chu, Xia

    2015-08-07

    We have developed a facile one-step approach to make hydrophilic and DNA-functionalizable upconversion nanoparticles (UCNPs), which are used to act as a biosensor for determining Hg(2+) in complex matrices. The proposed approach is simple and exhibits low background interference, high sensitivity and rapid response.

  5. Violet and blue upconversion luminescence in Tm3+/Yb3+ codoped Y2O3 transparent ceramic

    NASA Astrophysics Data System (ADS)

    Hou, Xiaorui; Zhou, Shengming; Lin, Hui; Teng, Hao; Li, Yukun; Li, Wenjie; Jia, Tingting

    2010-04-01

    Tm3+/Yb3+ codoped Y2O3 transparent ceramics were fabricated and characterized from the point of upconversion luminescence. All the samples exhibited high transparency not only in near-infrared band but also in visible region. Under 980 nm excitation, the ceramics gave upconversion luminescence with very intense blue (485 nm) and considerably intense violet (360 nm) emissions. It was worthy to point out that the upconversion luminescence contained six emission bands, which dispersed in the region from 294 to 809 nm. The strongest blue emission (485 nm) was obtained with (Tm0.002Yb0.03Y0.958Zr0.01)2O3 ceramic (Yb/Tm=15). The mechanism of all upconversion emission bands were investigated in detail. The absorption, emission, and gain cross-section of blue emission (485 nm) were calculated, which indicated that Tm3+/Yb3+ codoped Y2O3 transparent ceramic has tremendous potential in short wavelength laser.

  6. Bright white upconversion luminescence in Ho3+/Yb3+/Tm3+ triple doped CaWO4 polycrystals

    NASA Astrophysics Data System (ADS)

    Xu, Yanling; Wang, Yunlong; Shi, Liansheng; Xing, Lili; Tan, Xiang

    2013-12-01

    Ho3+/Yb3+/Tm3+ triple doped CaWO4 polycrystals are synthesized by a sample high temperature solid state method. The crystal structure of the polycrystals is characterized by means of X-ray diffraction.Under single-wavelength diode laser excitation of 980 nm, the bright white light consists of the blue, green, and red upconversion radiations which correspond to the transitions 1G4→3H6 of Tm3+ ions, 5S2/5F4→5I8 and 5F5→5I8 of Ho3+ ions, respectively. The pump power plays an important role in the blue upconversion emission intensity, and it helps to the adjustment of the white upconversion emission chrominance. The calculated color coordinates display that white light can be achieved by adjusting pump powers. The CIE coordinate close to (0.33, 0.33) is potentially suitable for the widely realistic application in the field of displays, lasers, and lighting technology. The possible upconversion mechanisms are investigated and discussed.

  7. Ultrasensitive polarized up-conversion of Tm(3+)-Yb3+ doped β-NaYF4 single nanorod.

    PubMed

    Zhou, Jiajia; Chen, Gengxu; Wu, E; Bi, Gang; Wu, Botao; Teng, Yu; Zhou, Shifeng; Qiu, Jianrong

    2013-05-08

    Up-conversion luminescence in rare earth ions (REs) doped nanoparticles has attracted considerable research attention for the promising applications in solid-state lasers, three-dimensional displays, solar cells, biological imaging, and so forth. However, there have been no reports on REs doped nanoparticles to investigate their polarized energy transfer up-conversion, especially for single particle. Herein, the polarized energy transfer up-conversion from REs doped fluoride nanorods is demonstrated in a single particle spectroscopy mode for the first time. Unique luminescent phenomena, for example, sharp energy level split and singlet-to-triplet transitions at room temperature, multiple discrete luminescence intensity periodic variation with polarization direction, are observed upon excitation with 980 nm linearly polarized laser. Furthermore, nanorods with the controllable aspect ratio and symmetry are fabricated for analysis of the mechanism of polarization anisotropy. The comparative experiments suggest that intraions transition properties and crystal local symmetry dominate the polarization anisotropy, which is also confirmed by density functional theory calculations. Taking advantage of the REs based up-conversion, potential application in polarized microscopic multi-information transportation is suggested for the polarization anisotropy from REs doped fluoride single nanorod or nanorod array.

  8. Energy transfer rates and population inversion investigation of 1G4 and 1D2 excited states of Tm3+ in Yb:Tm:Nd:KY3F10 crystals

    NASA Astrophysics Data System (ADS)

    Marconi da Silva, Horácio; Linhares, M. D.; Henriques Librantz, André Philipe; Gomes, Laércio; Coronato Courrol, Lilia; Baldochi, Sonia Lícia; Ranieri, Izilda Marcia

    2011-04-01

    In this work we present the spectroscopic properties of KY3F10 (KY3F) single crystals activated with thulium and co-doped with ytterbium and neodymium ions. The most important processes that lead to the thulium up-conversion emissions in the blue and ultraviolet regions were identified. A time-resolved luminescence spectroscopy technique was employed to measure the luminescence decays and to determine the most important mechanisms involved in the up-conversion process that populates 1G4 and 1D2 (Tm3+) excited states. Analysis of the energy-transfer processes dynamics using selective pulsed-laser excitations in Yb:Tm:Nd, Tm:Nd, and Tm:Yb KY3F crystals show that the energy transfer from Nd3+ to Yb3+ ions is the mechanism responsible for the enhancement of the blue up-conversion efficiency in the Yb:Tm:Nd:KY3F when compared with the Yb:Tm system. A study of the energy transfer processes in Yb:Tm:Nd:KY3F crystal showed that the 1G4 excited level is mainly populated by a sequence of two nonradiative energy transfers that starts well after the Nd3+ and Tm3+ excitation at 797 nm according to: Nd3+ (4F3/2) → Yb3+ (2F7/2) followed by Yb3+ (2F5/2) → Tm (3H4) → Tm3+ (1G4). Results of numerical simulation of the rate equations system showed that a population inversion for 483.1 nm laser emission line is attained for a pumping rate threshold of 98 s-1, which is equivalent to an intensity of 3.3 KW cm-2 for a continuous laser pumping at 797 nm for Yb(30 mol%):Tm(0.5 mol%):Nd(1 mol%):KY3F. Nevertheless, best Yb3+ concentration for the laser emission near 483.1 nm was estimated to be within 40 and 50 mol%. On the other hand, a population inversion was not observed for the case of 960 nm (Yb3+) pumping.

  9. [Crystal structure and upconversion emission of Yb3+/Er(3+) -co-doped NaYF4 nanocrystals].

    PubMed

    Yao, Li-Li; Luo, Li; Dong, Guo-Shuai; Wang, Yin-Hai

    2013-11-01

    Yb3+/EP(3+) -co-doped cubic NaYF4 and Yb3+/Er3+/Gd(3+) -tri-doped hexagonal NaYF4 nanocrystals were synthesized by a modified coprecipitation method with ethylenediamine tetraacetic acid (EDTA) as chelating agent. The samples' morphology, crystal phase and upconversion emission were measured with transmission electron microscope (TEM), X-ray diffraction patterns (XRD) and upconversion luminescence spectrum. TEM and XRD results showed that the phase transition from cubic to hexagonal was promoted through Gd3+ doping. It has been reported that the upconversion efficiency of hexagonal NaYF4 is higher than that of cubic NaYF4, however, the effect of crystal phase on upconversion luminescence has not been well understood. This work focuses analysis of measurement results to compare the effect of, crystal phase on the crystal field energy splitting and upconversion emission intensity as well as emission color, and a mechanism of luminescence enhancement and color tunability are revealed. Strong visible upconversion luminescence can be seen clearly by the naked eyes in both cubic phase and hexagonal phase samples upon excitation by a 980 nm laser diode with power of 10 mW, consisting of green emissions centered at around 525/550 nm originating from the transitions of 2H11/2/4 S3/2 --> 4 I15/2 and red emission at about 657 nm from 4F9/2 to 4 I15/2 of Er3+ ions respectively. In comparison to cubic sample, the hexagonal phase sample presented much stronger and sharper upconversion luminescence, whose emission efficiency was enhanced 10 times with an additional transition of 2 H9/2 --> 4I13/2 at 557 nm, furthermore, the intensity ratio of red to green emission increased from 2 :1 to 3 : 1. Doping NaYF4 nanocrystals with Gd3+ ions induced the hexagonal-to-cubic phase transition and thus decreased the crystal symmetry, consequently increased absorption cross-section and 4f-4f transition probabilities by relaxing forbidden selection rules, resulting in stronger emission. In the

  10. Enabling valley selective exciton scattering in monolayer WSe2 through upconversion.

    PubMed

    Manca, M; Glazov, M M; Robert, C; Cadiz, F; Taniguchi, T; Watanabe, K; Courtade, E; Amand, T; Renucci, P; Marie, X; Wang, G; Urbaszek, B

    2017-04-03

    Excitons, Coulomb bound electron-hole pairs, are composite bosons and their interactions in traditional semiconductors lead to condensation and light amplification. The much stronger Coulomb interaction in transition metal dichalcogenides such as WSe2 monolayers combined with the presence of the valley degree of freedom is expected to provide new opportunities for controlling excitonic effects. But so far the bosonic character of exciton scattering processes remains largely unexplored in these two-dimensional materials. Here we show that scattering between B-excitons and A-excitons preferably happens within the same valley in momentum space. This leads to power dependent, negative polarization of the hot B-exciton emission. We use a selective upconversion technique for efficient generation of B-excitons in the presence of resonantly excited A-excitons at lower energy; we also observe the excited A-excitons state 2s. Detuning of the continuous wave, low-power laser excitation outside the A-exciton resonance (with a full width at half maximum of 4 meV) results in vanishing upconversion signal.

  11. Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications.

    PubMed

    Lin, Min; Zhao, Ying; Wang, ShuQi; Liu, Ming; Duan, ZhenFeng; Chen, YongMei; Li, Fei; Xu, Feng; Lu, TianJian

    2012-01-01

    Lanthanide (Ln)-doped upconversion nanoparticles (UCNPs) with appropriate surface modification can be used for a wide range of biomedical applications such as bio-detection, cancer therapy, bio-labeling, fluorescence imaging, magnetic resonance imaging and drug delivery. The upconversion phenomenon exhibited by Ln-doped UCNPs renders them tremendous advantages in biological applications over other types of fluorescent materials (e.g., organic dyes, fluorescent proteins, gold nanoparticles, quantum dots, and luminescent transition metal complexes) for: (i) enhanced tissue penetration depths achieved by near-infrared (NIR) excitation; (ii) improved stability against photobleaching, photoblinking and photochemical degradation; (iii) non-photodamaging to DNA/RNA due to lower excitation light energy; (iv) lower cytotoxicity; and (v) higher detection sensitivity. Ln-doped UCNPs are therefore attracting increasing attentions in recent years. In this review, we present recent advances in the synthesis of Ln-doped UCNPs and their surface modification, as well as their emerging applications in biomedicine. The future prospects of Ln-doped UCNPs for biomedical applications are also discussed.

  12. Monodisperse Dual-Functional Upconversion Nanoparticles Enabled Near-Infrared Organolead Halide Perovskite Solar Cells.

    PubMed

    He, Ming; Pang, Xinchang; Liu, Xueqin; Jiang, Beibei; He, Yanjie; Snaith, Henry; Lin, Zhiqun

    2016-03-18

    Extending the spectral absorption of organolead halide perovskite solar cells from visible into near-infrared (NIR) range renders the minimization of non-absorption loss of solar photons with improved energy alignment. Herein, we report on, for the first time, a viable strategy of capitalizing on judiciously synthesized monodisperse NaYF4 :Yb/Er upconversion nanoparticles (UCNPs) as the mesoporous electrode for CH3 NH3 PbI3 perovskite solar cells and more importantly confer perovskite solar cells to be operative under NIR light. Uniform NaYF4 :Yb/Er UCNPs are first crafted by employing rationally designed double hydrophilic star-like poly(acrylic acid)-block-poly(ethylene oxide) (PAA-b-PEO) diblock copolymer as nanoreactor, imparting the solubility of UCNPs and the tunability of film porosity during the manufacturing process. The subsequent incorporation of NaYF4 :Yb/Er UCNPs as the mesoporous electrode led to a high efficiency of 17.8 %, which was further increased to 18.1 % upon NIR irradiation. The in situ integration of upconversion materials as functional components of perovskite solar cells offers the expanded flexibility for engineering the device architecture and broadening the solar spectral use.

  13. Cascade-Avalanche Up-Conversion in Tm3+:YLF Crystals

    NASA Astrophysics Data System (ADS)

    Perlin, E. Yu.; Tkachuk, A. M.; Joubert, M.-F.; Moncorge, R.

    2001-05-01

    New efficient mechanisms of long-wavelength excitation of short-wavelength luminescence in a system of rare-earth impurity ions are proposed. The model studied involves a multilevel system of electronic states of a rare-earth ion interacting with the long-wavelength emission that is in resonance with one or several transitions between the excited levels. The concentration of impurity ions is assumed to be sufficiently high, so that the interionic cross-relaxation and the up-conversion play a significant role. Moreover, the model includes processes similar to photon avalanche, in which the photoinduced excitation of a single ion is converted into lower-level excitations of several ions, each of them reentering the process after photon absorption. Numerical solutions of the system of balance equations for a multilevel system are obtained with calculated and semiempirical parameters of self-quenching and up-conversion. It is shown that, in a system of Tm3+ impurity ions, short-wavelength luminescence at λ≥0.29 μm can be efficiently excited by radiation at λ≅1.11 or 0.649 μm with a moderate intensity.

  14. Highly Emissive Dye-Sensitized Upconversion Nanostructure for Dual-Photosensitizer Photodynamic Therapy and Bioimaging.

    PubMed

    Xu, Jiating; Yang, Piaoping; Sun, MIngdi; Bi, Huiting; Liu, Bin; Yang, Dan; Gai, Shili; He, Fei; Lin, Jun

    2017-03-20

    Rare-earth-based upconversion nanotechnology has recently shown great promise for photodynamic therapy (PDT). However, the NIR-induced PDT is greatly restricted by the overheating issues on normal bodies and low yields of reactive oxygen species (ROS, 1O2). Here, IR-808 sensitized upconversion nanoparticles (NaGdF4:Yb,Er@NaGdF4:Nd,Yb) were combined with mesoporous silica, which has Ce6 (red-light-excited photosensitizer) and MC540 (green-light-excited photosensitizer) loaded inside through covalent bond and electrostatic interaction, respectively. When irradiated by tissue-penetrable 808 nm light, the IR-808 greatly absorb 808 nm photons and then emit a broadband peak which overlaps perfectly with the absorption of Nd3+ and Yb3+. Thereafter the Nd3+/Yb3+ incorporated shell synergistically capture the emitted NIR photons to illuminate NaGdF4:Yb,Er zone then radiate ultra-bright green and red emissions. The visible emissions simultaneously activate the dual-photosensitizer to produce large amount of ROS, and importantly, low heating effects. The in vitro and in vivo experiments indicate that the dual-photosensitizer nanostructure has tri-modal (UCL/CT/MRI) imaging functions and high anticancer effectiveness, suggesting its potential clinical application as an imaging-guided PDT technique.

  15. Quantifying Aflatoxin B1 in peanut oil using fabricating fluorescence probes based on upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Sun, Cuicui; Li, Huanhuan; Koidis, Anastasios; Chen, Quansheng

    2016-08-01

    Rare earth doped upconversion nanoparticles convert near-infrared excitation light into visible emission light. Compared to organic fluorophores and semiconducting nanoparticles, upconversion nanoparticles (UCNPs) offer high photochemical stability, sharp emission bandwidths, and large anti-Stokes shifts. Along with the significant light penetration depth and the absence of autofluorescence in biological samples under infrared excitation, these UCNPs have attracted more and more attention on toxin detection and biological labelling. Herein, the fluorescence probe based on UCNPs was developed for quantifying Aflatoxin B1 (AFB1) in peanut oil. Based on a specific immunity format, the detection limit for AFB1 under optimal conditions was obtained as low as 0.2 ng·ml- 1, and in the effective detection range 0.2 to 100 ng·ml- 1, good relationship between fluorescence intensity and AFB1 concentration was achieved under the linear ratios up to 0.90. Moreover, to check the feasibility of these probes on AFB1 measurements in peanut oil, recovery tests have been carried out. A good accuracy rating (93.8%) was obtained in this study. Results showed that the nanoparticles can be successfully applied for sensing AFB1 in peanut oil.

  16. Effective near-infrared photodynamic therapy assisted by upconversion nanoparticles conjugated with photosensitizers

    PubMed Central

    Dou, Qing Qing; Teng, Choon Peng; Ye, Enyi; Loh, Xian Jun

    2015-01-01

    A drug model photosensitizer–conjugated upconversion nanoparticles nanocomplex was explored for application in near-infrared photodynamic therapy. As near-infrared penetrates deeper into the tissue, the model is useful for the application of photodynamic therapy in deeper tissue. The nanocomplex that was synthesized had low polydispersity, and the upconversion nanoparticle was covalently conjugated with the photosensitizer. The robust bond could prevent the undesired premature release of photosensitizer and also enhance the singlet-oxygen generation. Singlet-oxygen generation rate from this nanocomplex was evaluated in solution. The photodynamic therapy effect was assessed with MCF-7 cells in two different methods, 3-(4,5-dimethylth-iazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and live/dead assay. The assay results showed that promising efficacy (>90%) can be achieved with a low concentration (50 μg mL−1) of this nanocomplex and mild dosage (7 mW cm−2) of near-infrared laser treatment. PMID:25609954

  17. An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer.

    PubMed

    Li, Hui; Sun, De-en; Liu, Yajie; Liu, Zhihong

    2014-05-15

    We developed an ultrasensitive fluorescence resonance energy transfer (FRET) aptasensor for kanamycin detection, using upconversion nanoparticles (UCNPs) as the energy donor and graphene as the energy acceptor. Oleic acid modified upconversion nanoparticles were synthesized through a hydrothermal process followed by a ligand exchange with hexanedioic acid. The kanamycin aptamer (5'-NH2-AGATGGGGGTTGAGGCTAAGCCGA-3') was tagged to UCNPs through an EDC-NHS protocol. The π-π stacking interaction between the aptamer and graphene brought UCNPs and graphene in close proximity and hence initiated the FRET process resulting in quenching of UCNPs fluorescence. The addition of kanamycin to the UCNPs-aptamer-graphene complex caused the fluorescence recovery because of the blocking of the energy transfer, which was induced by the conformation change of aptamer into a hairpin structure. A linear calibration was obtained between the fluorescence intensity and the logarithm of kanamycin concentration in the range from 0.01 nM to 3 nM in aqueous buffer solution, with a detection limit of 9 pM. The aptasensor was also applicable in diluted human serum sample with a linear range from 0.03 nM to 3 nM and a detection limit of 18 pM. The aptasensor showed good specificity towards kanamycin without being disturbed by other antibiotics. The ultrahigh sensitivity and pronounced robustness in complicated sample matrix suggested promising prospect of the aptasensor in practical applications.

  18. Applications of optical upconversion to sparse aperture millimeter-wave imaging

    NASA Astrophysics Data System (ADS)

    Schuetz, C. A.; Mirotznik, M. S.; Shi, S.; Schneider, G. J.; Murakowski, J.; Prather, D. W.

    2005-11-01

    Passive millimeter-wave imagers have shown significant potential for use in applications that require penetration through atmospheric obscurations such a fog and smoke. However, the large apertures required to achieve sufficient diffraction-limited resolution in such systems often prohibit their use for many applications. One possible technique to circumvent this limitation is to use sparse-aperture imaging techniques. To date, such systems have not been realized because they require a high number of phase-sensitive, low-noise detectors spread over a large physical area. Collection and correlation processing of the data from this large array of sensors has not been practical using available technologies. Herein, we present the potential of optical upconversion detectors for sparse aperture imaging. The optical signals generated in such detectors preserve the phase information of the detected signal up until photodetection and may be easily routed to a central processor using low-loss optical fiber. Potential architectures for sparse aperture imagers using optical upconversion are discussed and compared to more traditional down-converted approaches. In addition, experimental results demonstrating the viability of such imagers are presented.

  19. Dualistic temperature sensing in Er3 +/Yb3 + doped CaMoO4 upconversion phosphor

    NASA Astrophysics Data System (ADS)

    Sinha, Shriya; Mahata, Manoj Kumar; Kumar, Kaushal; Tiwari, S. P.; Rai, V. K.

    2017-02-01

    Temperature sensing performance of Er3 +/Yb3 + doped CaMoO4 phosphor prepared via polyol method is reported herein. The X-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscopy are done to confirm the phase, structure and purity of the synthesized phosphor. The infrared to green upconversion emission is investigated using 980 nm diode laser excitation along with its dependence on input pump power and external temperature. The temperature dependent fluorescence intensity ratio of two upconversion emission bands assigned to 2H11/2 → 4I15/2 (530 nm) and 4S3/2 → 4I15/2 (552 nm) transitions has shown two distinct slopes in the studied temperature range - 300 to 760 K and therefore, dual nature of temperature sensitivity is observed in this phosphor. This phenomenon in rare earth doped materials is either scarcely reported or overlooked. The material has shown higher sensitivity in the high temperature region (535 K < T < 760 K) with a maximum of 7.21 × 10- 3 K- 1 at 535 K. The results indicate potential of CaMoO4: Er3 +/Yb3 + phosphor in high temperature thermometry.

  20. Photoemission of Energetic Hot Electrons Produced via Up-Conversion in Doped Quantum Dots.

    PubMed

    Dong, Yitong; Parobek, David; Rossi, Daniel; Son, Dong Hee

    2016-11-09

    The benefits of the hot electrons from semiconductor nanostructures in photocatalysis or photovoltaics result from their higher energy compared to that of the band-edge electrons facilitating the electron-transfer process. The production of high-energy hot electrons usually requires short-wavelength UV or intense multiphoton visible excitation. Here, we show that highly energetic hot electrons capable of above-threshold ionization are produced via exciton-to-hot-carrier up-conversion in Mn-doped quantum dots under weak band gap excitation (∼10 W/cm(2)) achievable with the concentrated solar radiation. The energy of hot electrons is as high as ∼0.4 eV above the vacuum level, much greater than those observed in other semiconductor or plasmonic metal nanostructures, which are capable of performing energetically and kinetically more-challenging electron transfer. Furthermore, the prospect of generating solvated electron is unique for the energetic hot electrons from up-conversion, which can open a new door for long-range electron transfer beyond short-range interfacial electron transfer.

  1. Upconversion emission study of Er3+ doped CaMoO4 phosphor

    NASA Astrophysics Data System (ADS)

    Sinha, Shriya; Mahata, Manoj Kumar; Rai, V. K.; Kumar, Kaushal

    2016-05-01

    The infrared to visible upconversion emission in Er3+ doped CaMoO4 phosphor has been investigated upon 980 nm diode laser excitation. The X-ray dffraction analysis reveals well crystalline nature and tetragonal phase structure of the prepared phosphor annealed at 800 °C. The Er3+ doped CaMoO4 phosphor has shown intense green upconversion emission upon 980 nm didode laser excitation. The green emission bands at 530 nm and 552 nm corresponds to the 2H11/2→4I15/2 and 4S3/2→4I15/2 electronic transitions, respectively of Er3+ ion. The very weak red emission band around 656 nm is assigned to the 4F9/2→4I15/2 transition of Er3+ ion. The CIE color coordinate exhibits the emission color in intense green region, indicating the use of present phosphor in display device applications.

  2. Two-photon up-conversion affected by inter-molecule correlations near metallic nanostructure

    NASA Astrophysics Data System (ADS)

    Osaka, Yoshiki; Yokoshi, Nobuhiko; Ishihara, Hajime

    Optical antennas, which consist of metallic nanostructures, concentrate free-propagating light into localized surface plasmons (LSP). Such a localized field enables effective interactions between light and molecules nearby the metal surfaces. However, as the light intensity decreases to single-photon level, large dissipation in the metals always inhibits the effective photon-molecule interaction via LSP. We have theoretically elucidated that controlling quantum interference in an antenna-molecule coupled system strongly suppresses the photon-dissipations, and leads to efficient two-photon processes in the molecule. However, it is difficult to prepare only one molecule nearby the metal. Therefore, as a beachhead into a multi-molecule system, we will consider the case that two photons couple with two molecules under one LSP. In rapid intuition, the appearance of the second molecule seemingly damages the up-conversion process. In the presentation, we reveal that controlling the inter-molecule interaction could resolve the difficulty, and lead to the efficient up-conversion through the quantum interference among three-bodies, i.e., LSP and two molecules. Supported by a Grant-in-Aid for JSPS Fellows No. 13J09308.

  3. Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection.

    PubMed

    Zheng, Wei; Huang, Ping; Tu, Datao; Ma, En; Zhu, Haomiao; Chen, Xueyuan

    2015-03-21

    Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted considerable interest due to their superior physicochemical features, such as large anti-Stokes shifts, low autofluorescence background, low toxicity and high penetration depth, which make them extremely suitable for use as alternatives to conventional downshifting luminescence bioprobes like organic dyes and quantum dots for various biological applications. A fundamental understanding of the photophysics of lanthanide-doped UCNPs is of vital importance for discovering novel optical properties and exploring their new applications. In this review, we focus on the most recent advances in the development of lanthanide-doped UCNPs as potential luminescent nano-bioprobes by means of our customized lanthanide photophysics measurement platforms specially designed for upconversion luminescence, which covers from their fundamental photophysics to bioapplications, including electronic structures (energy levels and local site symmetry of emitters), excited-state dynamics, optical property designing, and their promising applications for in vitro biodetection of tumor markers. Some future prospects and efforts towards this rapidly growing field are also envisioned.

  4. Rare Earth Ion-Doped Upconversion Nanocrystals: Synthesis and Surface Modification

    PubMed Central

    Chang, Hongjin; Xie, Juan; Zhao, Baozhou; Liu, Botong; Xu, Shuilin; Ren, Na; Xie, Xiaoji; Huang, Ling; Huang, Wei

    2014-01-01

    The unique luminescent properties exhibited by rare earth ion-doped upconversion nanocrystals (UCNPs), such as long lifetime, narrow emission line, high color purity, and high resistance to photobleaching, have made them widely used in many areas, including but not limited to high-resolution displays, new-generation information technology, optical communication, bioimaging, and therapy. However, the inherent upconversion luminescent properties of UCNPs are influenced by various parameters, including the size, shape, crystal structure, and chemical composition of the UCNPs, and even the chosen synthesis process and the surfactant molecules used. This review will provide a complete summary on the synthesis methods and the surface modification strategies of UCNPs reported so far. Firstly, we summarize the synthesis methodologies developed in the past decades, such as thermal decomposition, thermal coprecipitation, hydro/solvothermal, sol-gel, combustion, and microwave synthesis. In the second part, five main streams of surface modification strategies for converting hydrophobic UCNPs into hydrophilic ones are elaborated. Finally, we consider the likely directions of the future development and challenges of the synthesis and surface modification, such as the large-scale production and actual applications, stability, and so on, of the UCNPs. PMID:28346995

  5. Upconversion properties of Er3+-doped oxyfluoride glass-ceramics containing SrF2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Kesavulu, C. R.; Kiran Kumar, K.; Jayasankar, C. K.

    2014-03-01

    Er3+-doped oxyfluoride glass and glass-ceramics containing SrF2 nanocrystals have been prepared and investigated their spectroscopic and luminescence properties. The formation of SrF2 nanocrystals in glass-ceramics were confirmed by Xray diffraction (XRD) and transmission electron microscopy (TEM). Judd-Ofelt parameters have been evaluated from absorption spectra of the Er3+-doped glass, which in turn used to predict radiative properties for the fluorescent levels of Er3+ ions. The intensities of both Stokes and upconversion (anti-Stokes) emissions significantly increase with increase of the size of the fluoride crystals in the glass matrix. The mechanism of green and red upconversion emissions have been ascribed to two photon processes. The lifetime of the 4S3/2 level of the Er3+ ions in glass-ceramics is found to be slightly higher than that of the counter glass, which may be due to the incorporation of Er3+ ions into the low phonon sites of SrF2 nanocrystals.

  6. Quantifying Aflatoxin B1 in peanut oil using fabricating fluorescence probes based on upconversion nanoparticles.

    PubMed

    Sun, Cuicui; Li, Huanhuan; Koidis, Anastasios; Chen, Quansheng

    2016-08-05

    Rare earth doped upconversion nanoparticles convert near-infrared excitation light into visible emission light. Compared to organic fluorophores and semiconducting nanoparticles, upconversion nanoparticles (UCNPs) offer high photochemical stability, sharp emission bandwidths, and large anti-Stokes shifts. Along with the significant light penetration depth and the absence of autofluorescence in biological samples under infrared excitation, these UCNPs have attracted more and more attention on toxin detection and biological labelling. Herein, the fluorescence probe based on UCNPs was developed for quantifying Aflatoxin B1 (AFB1) in peanut oil. Based on a specific immunity format, the detection limit for AFB1 under optimal conditions was obtained as low as 0.2ng·ml(-1), and in the effective detection range 0.2 to 100ng·ml(-1), good relationship between fluorescence intensity and AFB1 concentration was achieved under the linear ratios up to 0.90. Moreover, to check the feasibility of these probes on AFB1 measurements in peanut oil, recovery tests have been carried out. A good accuracy rating (93.8%) was obtained in this study. Results showed that the nanoparticles can be successfully applied for sensing AFB1 in peanut oil.

  7. Excitation power dependent population pathways and absolute quantum yields of upconversion nanoparticles in different solvents.

    PubMed

    Würth, C; Kaiser, M; Wilhelm, S; Grauel, B; Hirsch, T; Resch-Genger, U

    2017-03-23

    The rational design of brighter upconversion nanoparticles (UCNPs) requires a better understanding of the radiationless deactivation pathways in these materials. Here, we demonstrate the potential of excitation power density (P)-dependent studies of upconversion (UC) luminescence intensities, slope factors, and absolute quantum yields (ΦUC) of popular β-NaYF4:20% Yb(3+),2% Er(3+) UCNPs of different surface chemistries in organic solvents, D2O, and water as a tool to gain deeper insight into the UC mechanism including population and deactivation pathways particularly of the red emission. Our measurements, covering a P regime of three orders of magnitude, reveal a strong difference of the P-dependence of the ratio of the green and red luminescence bands (Ig/r) in water and organic solvents and P-dependent population pathways of the different emissive energy levels of Er(3+). In summary, we provide experimental evidence for three photon processes in UCNPs, particularly for the red emission. Moreover, we demonstrate changes in the excited population dynamics via bi- and triphotonic processes dependent on the environment, surface chemistry, and P, and validate our findings theoretically.

  8. Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer.

    PubMed

    Xia, Haiyun; Shangguan, Mingjia; Wang, Chong; Shentu, Guoliang; Qiu, Jiawei; Zhang, Qiang; Dou, Xiankang; Pan, Jianwei

    2016-11-15

    For the first time, to the best of our knowledge, a compact, eye-safe, and versatile direct detection Doppler lidar is developed using an upconversion single-photon detection method at 1.5 μm. An all-fiber and polarization maintaining architecture is realized to guarantee the high optical coupling efficiency and the robust stability. Using integrated-optic components, the conservation of etendue of the optical receiver is achieved by manufacturing a fiber-coupled periodically poled lithium niobate waveguide and an all-fiber Fabry-Perot interferometer (FPI). The double-edge technique is implemented by using a convert single-channel FPI and a single upconversion detector, incorporating a time-division multiplexing method. The backscatter photons at 1548.1 nm are converted into 863 nm via mixing with a pump laser at 1950 nm. The relative error of the system is less than 0.1% over nine weeks. In experiments, atmospheric wind and visibility over 48 h are detected in the boundary layer. The lidar shows good agreement with the ultrasonic wind sensor, with a standard deviation of 1.04 m/s in speed and 12.3° in direction.

  9. Efficient cascade quasi-synchronous parametric generation with up-conversion

    SciTech Connect

    Petnikova, V M; Shuvalov, Vladimir V

    2010-06-23

    We report efficient cascade up-conversion generation due to two simultaneous quasi-synchronous processes of parametric decay {omega}{sub 3{yields}{omega}1}+ {omega}{sub 2} of pump quanta at the frequency {omega}{sub 3} and up-conversion of one of the generated waves {omega}{sub 1}+{omega}{sub 3{yields}{omega}4}>{omega}{sub 3} at the frequency {omega}{sub 1} in a medium with a quadratic nonlinearity. It is found that the necessary condition for this generation is the requirement |{gamma}{sub 1}|{sup 2}>({omega}{sub 2}/{omega}{sub 1})|{gamma}{sub 1}|{sup 2}, where {gamma}{sub 1,2} are the averaged constants of the nonlinear coupling for the processes {omega}{sub 1}+{omega}{sub 2,3{yields}{omega}3,4}, respectively. If this requirement is fulfilled, the plane monochromatic pump wave is completely depleted, while the limiting (the noise seed intensity is I{sub 10,20{yields}}0 at the input) efficiency of the energy conversion into radiation at the frequency {omega}{sub 4} is independent of I{sub 10,20} and determined only by the relations between |{gamma}{sub 1,2}|{sup 2} and the frequencies of the interacting waves. (nonlinear optical phenomena)

  10. Dynamic decoupling in the presence of 1D random walk

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Arnab; Chakraborty, Ipsita; Bhattacharyya, Rangeet

    2016-05-01

    In the recent past, many dynamic decoupling sequences have been proposed for the suppression of decoherence of spins connected to thermal baths of various natures. Dynamic decoupling schemes for suppressing decoherence due to Gaussian diffusion have also been developed. In this work, we study the relative performances of dynamic decoupling schemes in the presence of a non-stationary Gaussian noise such as a 1D random walk. Frequency domain analysis is not suitable to determine the performances of various dynamic decoupling schemes in suppressing decoherence due to such a process. Thus, in this work, we follow a time domain calculation to arrive at the following conclusions: in the presence of such a noise, we show that (i) the traditional Carr-Purcell-Meiboom-Gill (CPMG) sequence outperforms Uhrig’s dynamic decoupling scheme, (ii) CPMG remains the optimal sequence for suppression of decoherence due to random walk in the presence of an external field gradient. Later, the theoretical predictions are experimentally verified by using nuclear magnetic resonance spectroscopy on spin 1/2 particles diffusing in a liquid medium.

  11. 1-D Modeling of Massive Particle Injection (MPI) in Tokamaks

    NASA Astrophysics Data System (ADS)

    Wu, W.; Parks, P. B.; Izzo, V. A.

    2008-11-01

    A 1-D Fast Current Quench (FCQ) model is developed to study current evolution and runaway electron suppression under massive density increase. The model consists of coupled toroidal electric field and energy equations, and it is solved numerically for DIII-D and ITER operating conditions. Simulation results suggest that fast shutdown by D2 liquid jet/pellet injection is in principle achievable for the desired plasma cooling time (˜15 ms for DIII-D and ˜50 ms for ITER) under ˜150x or higher densification. The current density and pressure profile are practically unaltered during the initial phase of jet propagation when dilution cooling dominates. With subsequent radiation cooling, the densified discharge enters the strongly collisional regime where Pfirsch-Schluter thermal diffusion can inhibit current contraction on the magnetic axis. Often the 1/1 kink instability, addressed by Kadomtsev's magnetic reconnection model, can be prevented. Our results are compared with NIMROD simulations in which the plasma is suddenly densified by ˜100x and experiences instantaneous dilution cooling, allowing for use of actual (lower) Lundquist numbers.

  12. Energy eigenfunctions of the 1D Gross-Pitaevskii equation

    NASA Astrophysics Data System (ADS)

    Marojević, Želimir; Göklü, Ertan; Lämmerzahl, Claus

    2013-08-01

    We developed a new and powerful algorithm by which numerical solutions for excited states in a gravito-optical surface trap have been obtained. They represent solutions in the regime of strong nonlinearities of the Gross-Pitaevskii equation. In this context we also briefly review several approaches which allow, in principle, for calculating excited state solutions. It turns out that without modifications these are not applicable to strongly nonlinear Gross-Pitaevskii equations. The importance of studying excited states of Bose-Einstein condensates is also underlined by a recent experiment of Bücker et al. in which vibrational state inversion of a Bose-Einstein condensate has been achieved by transferring the entire population of the condensate to the first excited state. Here we focus on demonstrating the applicability of our algorithm for three different potentials by means of numerical results for the energy eigenstates and eigenvalues of the 1D Gross-Pitaevskii-equation. We compare the numerically found solutions and find out that they completely agree with the case of known analytical solutions.

  13. 1-D Numerical Analysis of RBCC Engine Performance

    NASA Technical Reports Server (NTRS)

    Han, Samuel S.

    1998-01-01

    An RBCC engine combines air breathing and rocket engines into a single engine to increase the specific impulse over an entire flight trajectory. Considerable research pertaining to RBCC propulsion was performed during the 1960's and these engines were revisited recently as a candidate propulsion system for either a single-stage-to-orbit (SSTO) or two-stage-to-orbit (TSTO) launch vehicle. There are a variety of RBCC configurations that had been evaluated and new designs are currently under development. However, the basic configuration of all RBCC systems is built around the ejector scramjet engine originally developed for the hypersonic airplane. In this configuration, a rocket engine plays as an ejector in the air-augmented initial acceleration mode, as a fuel injector in scramjet mode and the rocket in all rocket mode for orbital insertion. Computational fluid dynamics (CFD) is a useful tool for the analysis of complex transport processes in various components in RBCC propulsion systems. The objective of the present research was to develop a transient 1-D numerical model that could be used to predict flow behavior throughout a generic RBCC engine following a flight path.

  14. Control and imaging of O(1D2) precession.

    PubMed

    Wu, Shiou-Min; Radenovic, Dragana Č; van der Zande, Wim J; Groenenboom, Gerrit C; Parker, David H; Vallance, Claire; Zare, Richard N

    2011-01-01

    Larmor precession of a quantum mechanical angular momentum vector about an applied magnetic field forms the basis for a range of magnetic resonance techniques, including nuclear magnetic resonance spectroscopy and magnetic resonance imaging. We have used a polarized laser pump-probe scheme with velocity-map imaging detection to visualize, for the first time, the precessional motion of a quantum mechanical angular momentum vector. Photodissociation of O(2) at 157 nm provides a clean source of fast-moving O((1)D(2)) atoms, with their electronic angular momentum vector strongly aligned perpendicular to the recoil direction. In the presence of an external magnetic field, the distribution of atomic angular momenta precesses about the field direction, and polarization-sensitive images of the atomic scattering distribution recorded as a function of field strength yield 'time-lapse-photography' style movies of the precessional motion. We present movies recorded in various experimental geometries, and discuss potential consequences and applications in atmospheric chemistry and reaction dynamics.

  15. Cavitation Influence in 1D Part-load Vortex Models

    NASA Astrophysics Data System (ADS)

    Dörfler, P. K.

    2016-11-01

    Residual swirl in the draft tube of Francis turbines may cause annoying low- frequency pulsation of pressure and power output, in particular during part-load operation. A 1D analytical model for these dynamic phenomena would enable simulation by some conventional method for computing hydraulic transients. The proper structure of such a model has implications for the prediction of prototype behaviour based on laboratory tests. The source of excitation as well as the dynamic transmission behaviour of the draft tube flow may both be described either by lumped or distributed parameters. The distributed version contains more information and, due to limited possibilities of identification, some data must be estimated. The distributed cavitation compliance is an example for this dilemma. In recent publications, the customary assumption of a constant wave speed has produced dubious results. The paper presents a more realistic model for distributed compressibility. The measured influence of the Thoma number is applied with the local cavitation factor. This concept is less sensitive to modelling errors and explains both the Thoma and Froude number influence. The possible effect of the normally unknown non-condensable gas content in the vortex cavity is shortly commented. Its measurement in future tests is recommended. It is also recommended to check the available analytical vortex models for possible dispersion effects.

  16. Single-layer MoS2 nanosheet grafted upconversion nanoparticles for near-infrared fluorescence imaging-guided deep tissue cancer phototherapy

    NASA Astrophysics Data System (ADS)

    Han, Jianyu; Xia, Hongping; Wu, Yafeng; Kong, Shik Nie; Deivasigamani, Amudha; Xu, Rong; Hui, Kam M.; Kang, Yuejun

    2016-04-01

    A multifunctional nanostructure is prepared by covalently grafting upconversion nanoparticles (UCNPs) with chitosan functionalized MoS2 (MoS2-CS) and folic acid (FA) and then loading phthalocyanine (ZnPc) on the surface of MoS2, which integrates photodynamic therapy (PDT) with photothermal therapy (PTT) and upconversion luminescence imaging into one system for enhanced antitumor efficiency.A multifunctional nanostructure is prepared by covalently grafting upconversion nanoparticles (UCNPs) with chitosan functionalized MoS2 (MoS2-CS) and folic acid (FA) and then loading phthalocyanine (ZnPc) on the surface of MoS2, which integrates photodynamic therapy (PDT) with photothermal therapy (PTT) and upconversion luminescence imaging into one system for enhanced antitumor efficiency. Electronic supplementary information (ESI) available: Experimental details and figures. See DOI: 10.1039/c6nr00150e

  17. Enhancement of near-infrared to near-infrared upconversion emission in the CeO₂: Er³⁺, Tm³⁺, Yb³⁺ inverse opals.

    PubMed

    Wu, Hangjun; Yang, Zhengwen; Liao, Jiayan; Lai, Shenfeng; Qiu, Jianbei; Song, Zhiguo; Yang, Yong; Zhou, Dacheng

    2014-02-15

    In this Letter, CeO₂: Er³⁺, Tm³⁺, Yb³⁺ inverse opal with near-infrared to near-infrared upconversion emission was prepared by polystyrene colloidal crystal templates, and the influence of photonic bandgap on the upconversion emission was investigated. Comparing with the reference sample, suppression of the blue or red upconversion luminescence was observed in the inverse opals. It is interesting that the near-infrared upconversion emission located at about 803 nm was enhanced due to the inhibition of visible upconversion emission in the inverse opals. Additionally, the variety of upconversion emission mechanisms was observed and discussed in the CeO₂: Er³⁺, Tm³⁺, Yb³⁺ inverse opals.

  18. Spatio-temporal stability of 1D Kerr cavity solitons

    NASA Astrophysics Data System (ADS)

    Gelens, L.; Parra-Rivas, P.; Leo, F.; Gomila, D.; Matias, Manuel A.; Coen, S.

    2014-05-01

    The Lugiato-Lefever equation (LLE) has been extensively studied since its derivation in 1987, when this meanfield model was introduced to describe nonlinear optical cavities. The LLE was originally derived to describe a ring cavity or a Fabry-Perot resonator with a transverse spatial extension and partially filled with a nonlinear medium but it has also been shown to be applicable to other types of cavities, such as fiber resonators and microresonators. Depending on the parameters used, the LLE can present a monostable or bistable input-output response curve. A large number of theoretical studies have been done in the monostable regime, but the bistable regime has remained widely unexplored. One of the reasons for this was that previous experimental setups were not able to works in such regimes of the parameter space. Nowadays the possibility of reaching such parameter regimes experimentally has renewed the interest in the LLE. In this contribution, we present an in-depth theoretical study of the different dynamical regimes that can appear in parameter space, focusing on the dynamics of localized solutions, also known as cavity solitons (CSs). We show that time-periodic oscillations of a 1D CS appear naturally in a broad region of parameter space. More than this oscillatory regime, which has been recently demonstrated experimentally,1 we theoretically report on several kinds of chaotic dynamics. We show that the existence of CSs and their dynamics is related with the spatial dynamics of the system and with the presence of a codimension-2 point known as a Fold-Hopf bifurcation point. These dynamical regimes can become accessible by using devices such as microresonators, for instance widely used for creating optical frequency combs.

  19. Nonlinear electrical conductivity in a 1D granular medium

    NASA Astrophysics Data System (ADS)

    Falcon, E.; Castaing, B.; Creyssels, M.

    2004-04-01

    We report on observations of the electrical transport within a chain of metallic beads (slightly oxidized) under an applied stress. A transition from an insulating to a conductive state is observed as the applied current is increased. The voltage-current ( U- I) characteristics are nonlinear and hysteretic, and saturate to a low voltage per contact (0.4 V). Our 1D experiment allows us to understand phenomena (such as the “Branly effect”) related to this conduction transition by focusing on the nature of the contacts instead of the structure of the granular network. We show that this transition comes from an electro-thermal coupling in the vicinity of the microcontacts between each bead - the current flowing through these contact points generates their local heating which leads to an increase of their contact areas, and thus enhances their conduction. This current-induced temperature rise (up to 1050 ^{circ}C) results in the microsoldering of the contact points (even for voltages as low as 0.4 V). Based on this self-regulated temperature mechanism, an analytical expression for the nonlinear U- I back trajectory is derived, and is found to be in very good agreement with the experiments. In addition, we can determine the microcontact temperature with no adjustable parameters. Finally, the stress dependence of the resistance is found to be strongly non-hertzian due to the presence of the surface films. This dependence cannot be usually distinguished from the one due to the disorder of the granular contact network in 2D or 3D experiments.

  20. Restrained dark U (1 )d at low energies

    NASA Astrophysics Data System (ADS)

    Correia, Fagner C.; Fajfer, Svjetlana

    2016-12-01

    We investigate a spontaneously broken U (1 )d gauge symmetry with a muon-specific dark Higgs. Our first goal is to verify how the presence of a new dark Higgs, ϕ , and a dark gauge boson, V , can simultaneously face the anomalies from the muon magnetic moment and the proton charge radius. Second, by assuming that V must decay to an electron-positron pair, we explore the corresponding parameter space determined with the low-energy constraints coming from K →μ X , electron (g -2 )e, K →μ νμe+e-, K →μ νμμ+μ-, and τ →ντμ νμe+e-. We focus on the scenario where the V mass is below ˜2 mμ and the ϕ mass runs from few MeV to 250 MeV, with V -photon mixing of the order ˜O (10-3). Among weak process at low energies, we check the influence of the new light vector on kaon decays as well as on the scattering e+e-→μ+μ-e+e- and discuss the impact of the dark Higgs on e+e-→μ+μ-μ+μ-. Finally, we consider contributions of the V -photon mixing in the decays π0→γ e+e-, η →γ e+e-, ρ →π e+e-, K*→K e+e-, and ϕ (1020 )→η e+e-.

  1. A new general 1-D vadose zone flow solution method

    NASA Astrophysics Data System (ADS)

    Ogden, Fred L.; Lai, Wencong; Steinke, Robert C.; Zhu, Jianting; Talbot, Cary A.; Wilson, John L.

    2015-06-01

    We have developed an alternative to the one-dimensional partial differential equation (PDE) attributed to Richards (1931) that describes unsaturated porous media flow in homogeneous soil layers. Our solution is a set of three ordinary differential equations (ODEs) derived from unsaturated flux and mass conservation principles. We used a hodograph transformation, the Method of Lines, and a finite water-content discretization to produce ODEs that accurately simulate infiltration, falling slugs, and groundwater table dynamic effects on vadose zone fluxes. This formulation, which we refer to as "finite water-content", simulates sharp fronts and is guaranteed to conserve mass using a finite-volume solution. Our ODE solution method is explicitly integrable, does not require iterations and therefore has no convergence limits and is computationally efficient. The method accepts boundary fluxes including arbitrary precipitation, bare soil evaporation, and evapotranspiration. The method can simulate heterogeneous soils using layers. Results are presented in terms of fluxes and water content profiles. Comparing our method against analytical solutions, laboratory data, and the Hydrus-1D solver, we find that predictive performance of our finite water-content ODE method is comparable to or in some cases exceeds that of the solution of Richards' equation, with or without a shallow water table. The presented ODE method is transformative in that it offers accuracy comparable to the Richards (1931) PDE numerical solution, without the numerical complexity, in a form that is robust, continuous, and suitable for use in large watershed and land-atmosphere simulation models, including regional-scale models of coupled climate and hydrology.

  2. Modeling shear band interaction in 1D torsion

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda; Hanina, Erez

    2017-01-01

    When two shear bands are being formed at close distance from each other they interact, and further development of one of them may be quenched down. As a result there should be a minimum distance between shear bands. In the literature there are at least three analytical models for this minimum distance. Predictions of these models do not generally agree with each other and with test results. Recently we developed a 1D numerical scheme to predict the formation of shear bands in a torsion test of a thin walled pipe. We validated our code by reproducing results of the pioneering experiments of Marchand and Duffy, and then used it to investigate the mechanics of shear localization and shear band formation. We describe our shear band code in a separate publication, and here we use it only as a tool to investigate the interaction between two neighboring shear bands during the process of their formation. We trigger the formation of shear bands by specifying two perturbations of the initial strength. We vary the perturbations in terms of their amplitude and/or their width. Usually, the stronger perturbation triggers a faster developing shear band, which then prevails and quenches the development of the other shear band. We change the distance between the two shear bands and find, that up to a certain distance one of the shear bands becomes fully developed, and the other stays only partially developed. Beyond this distance the two shear bands are both fully developed. Finally, we check the influence of certain material and loading parameters on the interaction between the two shear bands, and compare the results to predictions of the analytical models from the literature.

  3. SCCRO3 (DCUN1D3) Antagonizes the Neddylation and Oncogenic Activity of SCCRO (DCUN1D1)*

    PubMed Central

    Huang, Guochang; Stock, Cameron; Bommeljé, Claire C.; Weeda, Víola B.; Shah, Kushyup; Bains, Sarina; Buss, Elizabeth; Shaha, Manish; Rechler, Willi; Ramanathan, Suresh Y.; Singh, Bhuvanesh

    2014-01-01

    The activity of cullin-RING type ubiquitination E3 ligases is regulated by neddylation, a process analogous to ubiquitination that culminates in covalent attachment of the ubiquitin-like protein Nedd8 to cullins. As a component of the E3 for neddylation, SCCRO/DCUN1D1 plays a key regulatory role in neddylation and, consequently, cullin-RING ligase activity. The essential contribution of SCCRO to neddylation is to promote nuclear translocation of the cullin-ROC1 complex. The presence of a myristoyl sequence in SCCRO3, one of four SCCRO paralogues present in humans that localizes to the membrane, raises questions about its function in neddylation. We found that although SCCRO3 binds to CAND1, cullins, and ROC1, it does not efficiently bind to Ubc12, promote cullin neddylation, or conform to the reaction processivity paradigms, suggesting that SCCRO3 does not have E3 activity. Expression of SCCRO3 inhibits SCCRO-promoted neddylation by sequestering cullins to the membrane, thereby blocking its nuclear translocation. Moreover, SCCRO3 inhibits SCCRO transforming activity. The inhibitory effects of SCCRO3 on SCCRO-promoted neddylation and transformation require both an intact myristoyl sequence and PONY domain, confirming that membrane localization and binding to cullins are required for in vivo functions. Taken together, our findings suggest that SCCRO3 functions as a tumor suppressor by antagonizing the neddylation activity of SCCRO. PMID:25349211

  4. Resolution-optimized NMR measurement of (1)D(CH), (1)D(CC) and (2)D(CH) residual dipolar couplings in nucleic acid bases.

    PubMed

    Boisbouvier, Jérôme; Bryce, David L; O'neil-Cabello, Erin; Nikonowicz, Edward P; Bax, Ad

    2004-11-01

    New methods are described for accurate measurement of multiple residual dipolar couplings in nucleic acid bases. The methods use TROSY-type pulse sequences for optimizing resolution and sensitivity, and rely on the E.COSY principle to measure the relatively small two-bond (2)D(CH) couplings at high precision. Measurements are demonstrated for a 24-nt stem-loop RNA sequence, uniformly enriched in (13)C, and aligned in Pf1. The recently described pseudo-3D method is used to provide homonuclear (1)H-(1)H decoupling, which minimizes cross-correlation effects and optimizes resolution. Up to seven (1)H-(13)C and (13)C-(13)C couplings are measured for pyrimidines (U and C), including (1)D(C5H5), (1)D(C6H6), (2)D(C5H6), (2)D(C6H5), (1)D(C5C4), (1)D(C5C6), and (2)D(C4H5). For adenine, four base couplings ((1)D(C2H2), (1)D(C8H8), (1)D(C4C5), and (1)D(C5C6)) are readily measured whereas for guanine only three couplings are accessible at high relative accuracy ((1)D(C8H8), (1)D(C4C5), and (1)D(C5C6)). Only three dipolar couplings are linearly independent in planar structures such as nucleic acid bases, permitting cross validation of the data and evaluation of their accuracies. For the vast majority of dipolar couplings, the error is found to be less than +/-3% of their possible range, indicating that the measurement accuracy is not limiting when using these couplings as restraints in structure calculations. Reported isotropic values of the one- and two-bond J couplings cluster very tightly for each type of nucleotide.

  5. Wide-bandgap nonlinear crystal LiGaS2 for femtosecond mid-infrared spectroscopy with chirped-pulse upconversion.

    PubMed

    Nakamura, Ryosuke; Inagaki, Yoshizumi; Hata, Hidefumi; Hamada, Norio; Umemura, Nobuhiro; Kamimura, Tomosumi

    2016-11-20

    Femtosecond time-resolved mid-infrared (MIR) spectroscopy based on chirped-pulse upconversion is a promising method for observing molecular vibrational dynamics. A quantitative study on nonlinear media for upconversion is still essential for wide applications, particularly at the frequencies below 2000  cm-1. We evaluate wide-bandgap nonlinear crystals of Li-containing ternary chalcogenides based on their performance as the upconversion medium for femtosecond MIR spectroscopy. The upconversion efficiency is measured as a function of the MIR pulse frequency and the chirped pulse energy. LiGaS2 is found to be an efficient crystal for the upconversion of MIR pulses in a wide frequency range of 1100-2700  cm-1, especially below 2000  cm-1. By using LiGaS2 as an efficient upconversion crystal, we develop a MIR pump-probe spectroscopy system with a spectral resolution of 2.5  cm-1, a time resolution of 0.2 ps, and a probe window of 120  cm-1. Vibrational relaxation dynamics of CO stretching modes of Mn2(CO)10 in cyclohexane and bovine serum albumin in D2O are demonstrated with a high signal-to-noise ratio.

  6. A facile synthesis approach and impact of shell formation on morphological structure and luminescent properties of aqueous dispersible NaGdF4:Yb/Er upconversion nanorods

    NASA Astrophysics Data System (ADS)

    Ansari, Anees A.; Yadav, Ranvijay; Rai, S. B.

    2016-12-01

    A general facile synthesis approach was used for fabrication of highly emissive aqueous dispersible hexagonal phase upconversion luminescent NaGdF4:Yb/Er nanorods (core NRs) through metal complex decomposition process. An inert NaGdF4 and porous silica layers were grafted surrounding the surface of each and every NRs to enhance their luminescence efficiency and colloidal dispersibility in aqueous environment. Optical properties in terms of band gap energy of core, core/shell, and silica-coated core/shell/SiO2 nanorods were observed to investigate the influence of surface coating, which was gradually decreased after surface coating because of increase crystalline size after growth of inert and silica shells. The inert shell formation before silica surface grafting, upconversion luminescence intensity was greatly improved by about 20 times, owing to the effective surface passivation of the seed core and, therefore, protection of Er3+ ion in the core from the nonradiative decay caused by surface defects. Moreover, after silica coating, core/shell nanorods shows strong upconversion luminescence property similar to the hexagonal upconversion core NRs. It is expected that these NaGdF4:Yb/Er@NaGdF4@SiO2 (core/shell/SiO2) NRs including highly upconversion emissive and aqueous dispersible properties make them an ideal materials for various photonic-based potential applications such as in upconversion luminescent bioimaging, magnetic resonance imaging, and photodynamic therapy.

  7. Engineering 1D Quantum Stripes from Superlattices of 2D Layered Materials.

    PubMed

    Gruenewald, John H; Kim, Jungho; Kim, Heung Sik; Johnson, Jared M; Hwang, Jinwoo; Souri, Maryam; Terzic, Jasminka; Chang, Seo Hyoung; Said, Ayman; Brill, Joseph W; Cao, Gang; Kee, Hae-Young; Seo, Sung S Ambrose

    2017-01-01

    Dimensional tunability from two dimensions to one dimension is demonstrated for the first time using an artificial superlattice method in synthesizing 1D stripes from 2D layered materials. The 1D confinement of layered Sr2 IrO4 induces distinct 1D quantum-confined electronic states, as observed from optical spectroscopy and resonant inelastic X-ray scattering. This 1D superlattice approach is generalizable to a wide range of layered materials.

  8. Core-shell hybrid upconversion nanoparticles carrying stable nitroxide radicals as potential multifunctional nanoprobes for upconversion luminescence and magnetic resonance dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Chen, Chuan; Kang, Ning; Xu, Ting; Wang, Dong; Ren, Lei; Guo, Xiangqun

    2015-03-01

    Nitroxide radicals, such as 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and its derivatives, have recently been used as contrast agents for magnetic resonance imaging (MRI) and electron paramagnetic resonance imaging (EPRI). However, their rapid one-electron bioreduction to diamagnetic N-hydroxy species when administered intravenously has limited their use in in vivo applications. In this article, a new approach of silica coating for carrying stable radicals was proposed. A 4-carboxyl-TEMPO nitroxide radical was covalently linked with 3-aminopropyl-trimethoxysilane to produce a silanizing TEMPO radical. Utilizing a facile reaction based on the copolymerization of silanizing TEMPO radicals with tetraethyl orthosilicate in reverse microemulsion, a TEMPO radicals doped SiO2 nanostructure was synthesized and coated on the surface of NaYF4:Yb,Er/NaYF4 upconversion nanoparticles (UCNPs) to generate a novel multifunctional nanoprobe, PEGylated UCNP@TEMPO@SiO2 for upconversion luminescence (UCL) and magnetic resonance dual-modality imaging. The electron spin resonance (ESR) signals generated by the TEMPO@SiO2 show an enhanced reduction resistance property for a period of time of up to 1 h, even in the presence of 5 mM ascorbic acid. The longitudinal relaxivity of PEGylated UCNPs@TEMPO@SiO2 nanocomposites is about 10 times stronger than that for free TEMPO radicals. The core-shell NaYF4:Yb,Er/NaYF4 UCNPs synthesized by this modified user-friendly one-pot solvothermal strategy show a significant enhancement of UCL emission of up to 60 times more than the core NaYF4:Yb,Er. Furthermore, the PEGylated UCNP@TEMPO@SiO2 nanocomposites were further used as multifunctional nanoprobes to explore their performance in the UCL imaging of living cells and T1-weighted MRI in vitro and in vivo.Nitroxide radicals, such as 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and its derivatives, have recently been used as contrast agents for magnetic resonance imaging (MRI) and electron

  9. Preliminary abatement device evaluation: 1D-2D KGM cyclone design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclones are predominately used in controlling cotton gin particulate matter (PM) emissions. The most commonly used cyclone designs are the 2D-2D and 1D-3D; however other designs such as the 1D-2D KGM have or are currently being used. A 1D-2D cyclone has a barrel length equal to the barrel diamete...

  10. Large Area Synthesis of 1D-MoSe2 Using Molecular Beam Epitaxy.

    PubMed

    Poh, Sock Mui; Tan, Sherman J R; Zhao, Xiaoxu; Chen, Zhongxin; Abdelwahab, Ibrahim; Fu, Deyi; Xu, Hai; Bao, Yang; Zhou, Wu; Loh, Kian Ping

    2017-01-23

    Large area synthesis of 1D-MoSe2 nanoribbons on both insulating and conducting substrates via molecular beam epitaxy is presented. Dimensional controlled growth of 2D, 1D-MoSe2 , and 1D-2D-MoSe2 hybrid heterostructure is achieved by tuning the growth temperature or Mo:Se precursor ratio.

  11. PPM1D exerts its oncogenic properties in human pancreatic cancer through multiple mechanisms.

    PubMed

    Wu, Bo; Guo, Bo-Min; Kang, Jie; Deng, Xian-Zhao; Fan, You-Ben; Zhang, Xiao-Ping; Ai, Kai-Xing

    2016-03-01

    Protein phosphatase, Mg(2+)/Mn(2+) dependent, 1D (PPM1D) is emerging as an oncogene by virtue of its negative control on several tumor suppressor pathways. However, the clinical significance of PPM1D in pancreatic cancer (PC) has not been defined. In this study, we determined PPM1D expression in human PC tissues and cell lines and their irrespective noncancerous controls. We subsequently investigated the functional role of PPM1D in the migration, invasion, and apoptosis of MIA PaCa-2 and PANC-1 PC cells in vitro and explored the signaling pathways involved. Furthermore, we examined the role of PPM1D in PC tumorigenesis in vivo. Our results showed that PPM1D is overexpressed in human PC tissues and cell lines and significantly correlated with tumor growth and metastasis. PPM1D promotes PC cell migration and invasion via potentiation of the Wnt/β-catenin pathway through downregulation of apoptosis-stimulating of p53 protein 2 (ASPP2). In contrast to PPM1D, our results showed that ASPP2 is downregulated in PC tissues. Additionally, PPM1D suppresses PC cell apoptosis via inhibition of the p38 MAPK/p53 pathway through both dephosphorylation of p38 MAPK and downregulation of ASPP2. Furthermore, PPM1D promotes PC tumor growth in vivo. Our results demonstrated that PPM1D is an oncogene in PC.

  12. A cobalt oxyhydroxide-modified upconversion nanosystem for sensitive fluorescence sensing of ascorbic acid in human plasma

    NASA Astrophysics Data System (ADS)

    Cen, Yao; Tang, Jun; Kong, Xiang-Juan; Wu, Shuang; Yuan, Jing; Yu, Ru-Qin; Chu, Xia

    2015-08-01

    Ascorbic acid (AA), a potent antioxidant readily scavenging reactive species, is a crucial micronutrient involved in many biochemical processes. Here, we have developed a cobalt oxyhydroxide (CoOOH)-modified upconversion nanosystem for fluorescence sensing of AA activity in human plasma. The nanosystem consists of upconversion nanoparticles (UCNPs) NaYF4:30% Yb,0.5% Tm@NaYF4, which serve as energy donors, and CoOOH nanoflakes formed on the surface of UCNPs, which act as efficient energy acceptors. The fluorescence resonance energy transfer (FRET) process from the UCNPs to the absorbance of the CoOOH nanoflakes occurs in the nanosystem. The AA-mediated specific redox reaction reduces CoOOH into Co2+, leading to the inhibition of FRET, and resulting in the recovery of upconversion emission spectra. On the basis of these features, the nanosystem can be used for sensing AA activity with sensitivity and selectivity. Moreover, due to the minimizing background interference provided by UCNPs, the nanosystem has been applied to monitoring AA levels in human plasma sample with satisfactory results. The proposed approach may potentially provide an analytical platform for research and clinical diagnosis of AA related diseases.Ascorbic acid (AA), a potent antioxidant readily scavenging reactive species, is a crucial micronutrient involved in many biochemical processes. Here, we have developed a cobalt oxyhydroxide (CoOOH)-modified upconversion nanosystem for fluorescence sensing of AA activity in human plasma. The nanosystem consists of upconversion nanoparticles (UCNPs) NaYF4:30% Yb,0.5% Tm@NaYF4, which serve as energy donors, and CoOOH nanoflakes formed on the surface of UCNPs, which act as efficient energy acceptors. The fluorescence resonance energy transfer (FRET) process from the UCNPs to the absorbance of the CoOOH nanoflakes occurs in the nanosystem. The AA-mediated specific redox reaction reduces CoOOH into Co2+, leading to the inhibition of FRET, and resulting in the

  13. Recent Advance of Biological Molecular Imaging Based on Lanthanide-Doped Upconversion-Luminescent Nanomaterials

    PubMed Central

    Min, Yuanzeng; Li, Jinming; Liu, Fang; Padmanabhan, Parasuraman; Yeow, Edwin K. L.; Xing, Bengang

    2014-01-01

    Lanthanide-doped upconversion-luminescent nanoparticles (UCNPs), which can be excited by near-infrared (NIR) laser irradiation to emit multiplex light, have been proven to be very useful for in vitro and in vivo molecular imaging studies. In comparison with the conventionally used down-conversion fluorescence imaging strategies, the NIR light excited luminescence of UCNPs displays high photostability, low cytotoxicity, little background auto-fluorescence, which allows for deep tissue penetration, making them attractive as contrast agents for biomedical imaging applications. In this review, we will mainly focus on the latest development of a new type of lanthanide-doped UCNP material and its main applications for in vitro and in vivo molecular imaging and we will also discuss the challenges and future perspectives.

  14. PHOTONIC CRYSTAL SURFACE ENHANCED UPCONVERSION EMISSION OF YF3:Yb3+, Er3+ NANOPARTICLES

    NASA Astrophysics Data System (ADS)

    Shao, Bo; Yang, Zhengwen; Li, Jun; Liao, Jiayan; Lai, Shenfeng; Qiu, Jianbei; Song, Zhiguo; Yang, Yong; Zhou, Dacheng

    2015-11-01

    The opal photonic crystals made of polystyrene microspheres with 155, 230, 270 or 410 nm in diameter were used to enhance upconversion (UC) emission of YF3:Yb3+, Er3+ nanoparticles, respectively. The red or green UC emission of YF3:Yb3+, Er3+ nanoparticles can be selectively enhanced when the red or green UC emission wavelength overlapped with the photonic bandgaps of opals, which is attributed to Bragg reflection of photonic bandgap. In addition, when the 980 nm excitation light wavelength was in the region of the photonic bandgap, red and green UC emissions of YF3:Yb3+, Er3+ nanoparticles were enhanced due to the enhancement of excitation field.

  15. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature.

    PubMed

    Zhu, Xingjun; Feng, Wei; Chang, Jian; Tan, Yan-Wen; Li, Jiachang; Chen, Min; Sun, Yun; Li, Fuyou

    2016-02-04

    Photothermal therapy (PTT) at present, following the temperature definition for conventional thermal therapy, usually keeps the temperature of lesions at 42-45 °C or even higher. Such high temperature kills cancer cells but also increases the damage of normal tissues near lesions through heat conduction and thus brings about more side effects and inhibits therapeutic accuracy. Here we use temperature-feedback upconversion nanoparticle combined with photothermal material for real-time monitoring of microscopic temperature in PTT. We observe that microscopic temperature of photothermal material upon illumination is high enough to kill cancer cells when the temperature of lesions is still low enough to prevent damage to normal tissue. On the basis of the above phenomenon, we further realize high spatial resolution photothermal ablation of labelled tumour with minimal damage to normal tissues in vivo. Our work points to a method for investigating photothermal properties at nanoscale, and for the development of new generation of PTT strategy.

  16. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature

    NASA Astrophysics Data System (ADS)

    Zhu, Xingjun; Feng, Wei; Chang, Jian; Tan, Yan-Wen; Li, Jiachang; Chen, Min; Sun, Yun; Li, Fuyou

    2016-02-01

    Photothermal therapy (PTT) at present, following the temperature definition for conventional thermal therapy, usually keeps the temperature of lesions at 42-45 °C or even higher. Such high temperature kills cancer cells but also increases the damage of normal tissues near lesions through heat conduction and thus brings about more side effects and inhibits therapeutic accuracy. Here we use temperature-feedback upconversion nanoparticle combined with photothermal material for real-time monitoring of microscopic temperature in PTT. We observe that microscopic temperature of photothermal material upon illumination is high enough to kill cancer cells when the temperature of lesions is still low enough to prevent damage to normal tissue. On the basis of the above phenomenon, we further realize high spatial resolution photothermal ablation of labelled tumour with minimal damage to normal tissues in vivo. Our work points to a method for investigating photothermal properties at nanoscale, and for the development of new generation of PTT strategy.

  17. Hybrid lanthanide nanoparticles with paramagnetic shell coated on upconversion fluorescent nanocrystals.

    PubMed

    Li, Zhengquan; Zhang, Yong; Shuter, Borys; Muhammad Idris, Niagara

    2009-10-20

    Nanoparticles comprising of fluorescent probes and MRI contrast agents are highly desirable for biomedical applications due to their ability to be detected at different modes, optically and magnetically. However, most fluorescent probes in such nanoparticles synthesized so far are down-conversion phosphors such as organic dyes and quantum dots, which are known to display many intrinsic limitations. Here, we report a core-shell hybrid lanthanide nanoparticle consisting of an upconverting lanthanide nanocrystal core and a paramagnetic lanthanide complex shell. These nanoparticles are uniform in size, stable in water, and show both high MR relaxivities and upconversion fluorescence, which may have the potential to serve as a versatile imaging tool for smart detection or diagnosis in future biomedical engineering.

  18. Iron and Copper Chalcogenides: Photovoltaic Absorber Candidates and YZrF7: A New Upconversion Host

    NASA Astrophysics Data System (ADS)

    Jieratum, Vorranutch

    The materials Fe2(Si,Ge)(S,Se)4, Cu 3PS4-xSex (0 ≤ x ≤ 4), and Cu3P xAs1-xS4 (0 ≤ x ≤ 1) have been synthesized and studied as new earth-abundant absorbers for single and multijunction photovoltaic cells as well as solar fuel generation. The synthesis, single-crystal growth, and optical and electrical properties of these materials are described and discussed in Chapter 2, 3, and 4. Inspired by the photovoltaic absorber Cu 2ZnSnS4, the new compound CuZnPS4 has been discovered; its structure and properties are discussed in Chapter 5, including a comparative analysis to Cu3PS4. The compound YZrF7 (Chapter 6) has been synthesized and evaluated for the first time as a new optical host for green up-conversion.

  19. Fluorescence Behaviour and Singlet Oxygen Production of Aluminium Phthalocyanine in the Presence of Upconversion Nanoparticles.

    PubMed

    Watkins, Zane; Taylor, Jessica; D'Souza, Sarah; Britton, Jonathan; Nyokong, Tebello

    2015-09-01

    NaYF4:Yb/Er/Gd upconversion nanoparticles (UCNP) were synthesised and the photoemission stabilised by embedding them in electrospun fibers. The photophysical behaviour of chloro aluminium tetrasulfo phthalocyanine (ClAlTSPc) was studied in the presence of UCNPs when the two are mixed in solution. The fluorescence quantum yield value of ClAlTSPc decreased in the presence of UCNPs due to the heavy atom effect of UCNPs. This effect also resulted in increase in triplet quantum yields for ClAlTSPc in the presence of UCNPs. The fluorescence lifetimes for UCNPs were shortened at 658 nm in the presence of ClAlTSPc when the former was embedded in fiber and suspended in a dimethyl sulfoxide solution of the latter. A clear singlet oxygen generation by ClAlTSPc though Förster resonance energy transfer was demonstrated using a singlet oxygen quencher, 1,3-diphenylisobenzofuran.

  20. Photon upconversion and photocurrent generation via self-assembly at organic-inorganic interfaces.

    PubMed

    Hill, Sean P; Banerjee, Tanmay; Dilbeck, Tristan; Hanson, Kenneth

    2015-11-19

    Molecular photon upconversion via triplet-triplet annihilation (TTA-UC), combining two or more low energy photons to generate a higher energy excited state, is an intriguing strategy to surpass the maximum efficiency for a single junction solar cell (<34%). Here, we introduce self-assembled bilayers on metal oxide surfaces as a strategy to facilitate TTA-UC emission and demonstrate direct charge separation of the upconverted state. A 3-fold enhancement in transient photocurrent is achieved at light intensities as low as two equivalent suns. This strategy is simple, modular and offers unprecedented geometric and spatial control of the donor-acceptor interactions at an interface. These results are a key stepping stone toward the realization of an efficient TTA-UC solar cell that can circumvent the Shockley-Queisser limit.

  1. NIR to VUV: Seven-Photon Upconversion Emissions from Gd(3+) Ions in Fluoride Nanocrystals.

    PubMed

    Zheng, Kezhi; Qin, Weiping; Cao, Chunyan; Zhao, Dan; Wang, Lili

    2015-02-05

    Here we show that a near-infrared (NIR) diode laser is capable of generating vacuum ultraviolet (VUV) emissions in fluoride nanocrystals through photon upconversion (UC) processes. By using Yb(3+) and Tm(3+) as sensitizers, we successfully obtained the VUV photons with the energy exceeding 6 eV in YF3: Yb, Tm, and Gd nanocrystals. The seven photon UC fluorescence from the (6)GJ → (8)S7/2 transitions of Gd(3+) ions and the possible VUV UC mechanism were reported along with the calculation of the branching ratio under different pumping power excitation. Practically, it offers a promising solution for VUV light generation without cryogens and expensive instrumentations. Fundamentally, the extremely high-order UC processes will intrigue great interest in exploring unusual high-energy radiative transitions in rare earth ions.

  2. Three-dimensional micro-printing of temperature sensors based on up-conversion luminescence

    NASA Astrophysics Data System (ADS)

    Wickberg, Andreas; Mueller, Jonathan B.; Mange, Yatin J.; Fischer, Joachim; Nann, Thomas; Wegener, Martin

    2015-03-01

    The pronounced temperature dependence of up-conversion luminescence from nanoparticles doped with rare-earth elements enables local temperature measurements. By mixing these nanoparticles into a commercially available photoresist containing the low-fluorescence photo-initiator Irgacure 369, and by using three-dimensional direct laser writing, we show that micrometer sized local temperature sensors can be positioned lithographically as desired. Positioning is possible in pre-structured environments, e.g., within buried microfluidic channels or on optical or electronic chips. We use the latter as an example and demonstrate the measurement for both free space and waveguide-coupled excitation and detection. For the free space setting, we achieve a temperature standard deviation of 0.5 K at a time resolution of 1 s.

  3. Precise Photodynamic Therapy of Cancer via Subcellular Dynamic Tracing of Dual-loaded Upconversion Nanophotosensitizers

    PubMed Central

    Chang, Yulei; Li, Xiaodan; Zhang, Li; Xia, Lu; Liu, Xiaomin; Li, Cuixia; Zhang, Youlin; Tu, Langping; Xue, Bin; Zhao, Huiying; Zhang, Hong; Kong, Xianggui

    2017-01-01

    Recent advances in upconversion nanophotosensitizers (UCNPs-PS) excited by near-infrared (NIR) light have led to substantial progress in improving photodynamic therapy (PDT) of cancer. For a successful PDT, subcellular organelles are promising therapeutic targets for reaching a satisfactory efficacy. It is of vital importance for these nanophotosensitizers to reach specifically the organelles and to perform PDT with precise time control. To do so, we have in this work traced the dynamic subcellular distribution, especially in organelles such as lysosomes and mitochondria, of the poly(allylamine)-modified and dual-loaded nanophotosensitizers. The apoptosis of the cancer cells induced by PDT with the dependence of the distribution status of the nanophotosensitizers in organelles was obtained, which has provided an in-depth picture of intracellular trafficking of organelle-targeted nanophotosensitizers. Our results shall facilitate the improvement of nanotechnology assisted photodynamic therapy of cancers. PMID:28361967

  4. Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides.

    PubMed

    Long, Qian; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2015-06-15

    This paper reports a novel nanosensor for organophosphorus pesticides based on the fluorescence resonance energy transfer (FRET) between NaYF4:Yb,Er upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs). The detection mechanism is based on the facts that AuNPs quench the fluorescence of UCNPs and organophosphorus pesticides (OPs) inhibit the activity of acetylcholinesterase (AChE) which catalyzes the hydrolysis of acetylthiocholine (ATC) into thiocholine. Under the optimized conditions, the logarithm of the pesticides concentration was proportional to the inhibition efficiency. The detection limits of parathion-methyl, monocrotophos and dimethoate reached 0.67, 23, and 67 ng/L, respectively. Meanwhile, the biosensor shows good sensitivity, stability, and could be successfully applied to detection of OPs in real food samples, suggesting the biosensor has potentially extensive application clinic diagnoses assays.

  5. Ultraviolet and white photon avalanche upconversion in Ho{sup 3+}-doped nanophase glass ceramics

    SciTech Connect

    Lahoz, F.; Martin, I.R.; Calvilla-Quintero, J.M.

    2005-01-31

    Ho{sup 3+}-doped fluoride nanophase glass ceramics have been synthesized from silica-based oxyfluoride glass. An intense white emission light is observed by the naked eye under near infrared excitation at 750 nm. This visible upconversion is due to three strong emission bands in the primary color components, red, green, and blue. Besides, ultraviolet signals are also recorded upon the same excitation wavelength. The excitation mechanism of both the ultraviolet and the visible emissions is a photon avalanche process with a relatively low pump power threshold at about 20 mW. The total upconverted emission intensity has been estimated to increase by about a factor of 20 in the glass ceramic compared to the precursor glass, in which an avalanche type mechanism is not generated.

  6. Geometry modulated upconversion photoluminescence of individual NaYF4: Yb3+, Er3+ microcrystals

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Wang, Jiao; Mei, Yongfeng

    2017-02-01

    Upconversion (UC) photoluminescence (PL) properties of individual β-NaYF4: Yb3+, Er3+ microcrystals are investigated on their crystal orientation and size by a confocal micro-photoluminescence (μ-PL) system. The UC PL intensities including red and green bands of individual microcrystals change nearly lineally with their diameter but in different slopes. The ratio of integrated PL intensities between red and green bands (R/G) of individual microcrystals can be modulated by the crystal geometry, which is attributed to the optical propagation path and optical loss coefficient α. PL emission mapping along the crystal surface reveals a typical characteristic of optical waveguide in our UC microcrystals. Importantly, the variation of anisotropy in (100) and (001) crystal plane influences the UC PL spectra in the single microcrystals. Our finding could help the basic understanding of UC luminescence in micro/nanocrystals and hint their optimized fabrication for enhanced light emission.

  7. Three-dimensional micro-printing of temperature sensors based on up-conversion luminescence

    SciTech Connect

    Wickberg, Andreas; Mueller, Jonathan B.; Mange, Yatin J.; Nann, Thomas; Fischer, Joachim; Wegener, Martin

    2015-03-30

    The pronounced temperature dependence of up-conversion luminescence from nanoparticles doped with rare-earth elements enables local temperature measurements. By mixing these nanoparticles into a commercially available photoresist containing the low-fluorescence photo-initiator Irgacure 369, and by using three-dimensional direct laser writing, we show that micrometer sized local temperature sensors can be positioned lithographically as desired. Positioning is possible in pre-structured environments, e.g., within buried microfluidic channels or on optical or electronic chips. We use the latter as an example and demonstrate the measurement for both free space and waveguide-coupled excitation and detection. For the free space setting, we achieve a temperature standard deviation of 0.5 K at a time resolution of 1 s.

  8. Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser.

    PubMed

    Chan, Sze-Chun; Hwang, Sheng-Kwang; Liu, Jia-Ming

    2006-08-01

    A radio-over-fiber system uses light to carry a microwave subcarrier on optical fibers. The microwave is usually frequency modulated for wireless broadcasting. A conventional optical communication system usually operates at the baseband with amplitude modulation. The interface of the two systems thus needs an upconversion from the baseband to the microwave band with AM-to-FM transformation. An all-optical solution employing an optically injected semiconductor laser is investigated. The laser is operated in a dynamic state, where its intensity oscillates at a microwave frequency that varies with the injection strength. When the injection carries AM data, the microwave is frequency modulated accordingly. We demonstrate optical conversion from an OC-12 622-Mbps AM baseband signal to the corresponding FM microwave signal. The microwave is centered at 15.90 GHz. A bit-error rate of less than 10(-9) is measured.

  9. Depth-Resolved Multispectral Sub-Surface Imaging Using Multifunctional Upconversion Phosphors with Paramagnetic Properties

    PubMed Central

    Ovanesyan, Zaven; Mimun, L. Christopher; Kumar, Gangadharan Ajith; Yust, Brian G.; Dannangoda, Chamath; Martirosyan, Karen S.; Sardar, Dhiraj K.

    2015-01-01

    Molecular imaging is very promising technique used for surgical guidance, which requires advancements related to properties of imaging agents and subsequent data retrieval methods from measured multispectral images. In this article, an upconversion material is introduced for subsurface near-infrared imaging and for the depth recovery of the material embedded below the biological tissue. The results confirm significant correlation between the analytical depth estimate of the material under the tissue and the measured ratio of emitted light from the material at two different wavelengths. Experiments with biological tissue samples demonstrate depth resolved imaging using the rare earth doped multifunctional phosphors. In vitro tests reveal no significant toxicity, whereas the magnetic measurements of the phosphors show that the particles are suitable as magnetic resonance imaging agents. The confocal imaging of fibroblast cells with these phosphors reveals their potential for in vivo imaging. The depth-resolved imaging technique with such phosphors has broad implications for real-time intraoperative surgical guidance. PMID:26322519

  10. Multiphoton upconversion emission switching in Tm,Yb co-doped nanocrystalline yttria

    NASA Astrophysics Data System (ADS)

    Li, L.; Dong, G. Z.; Zhang, X. L.; Nie, M.; Cui, J. H.; Zhang, X. W.; Li, R. M.

    2010-10-01

    Multiphoton upconversion luminescence (UL) properties from the Yb3+-sensitized Tm3+ ions in nanocrystalline yttria host were studied experimentally under 973 nm laser excitation. Bright pure blue luminescence in the visible spectral region was performed even at low pump excitation level. An interesting chromatic switching behavior was observed for the near-infrared and blue spectral bands at room temperature, showing a pump intensity-controlled emission wavelength switcher. The chromatic switching is intrinsically associated with the competition of two-photon UL and three-photon UL processes. Moreover, the wavelength switching of Stark emission of Tm3+ 1G4 state took place as the pump intensity rises enough. This phenomenon is attributed to pump induced photothermal effect changing the distribution of Stark level populations in Tm3+ 1G4 energy state.

  11. Blue Up-Conversion Fibre Laser Pumped by a 1120-nm Raman Fibre Laser

    NASA Astrophysics Data System (ADS)

    Qin, Guan-Shi; Huang, Sheng-Hong; Feng, Yan; Shirakawa, A.; Musha, M.; Ueda, Ken-ichi

    2005-05-01

    A Tm3+-doped ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fibre up-conversion laser pumped by a 1120-nm Raman fibre laser is demonstrated with blue output power levels up to 116 mW. For the output mirror with 80% reflectivity, the slope efficiency is about 15%, the optical-to-optical conversion efficiency is 11%, and the maximum un-saturated output power is 116 mW. For 60% reflectivity, the slope efficiency is about 18% and the optical-to-optical conversion efficiency is 12%, whilst the maximum saturated output power is about 80 mW due to the existence of photo-degradation effect in Tm3+ doped ZBLAN glass fibre.

  12. One-step solvothermal synthesis of targetable optomagnetic upconversion nanoparticles for in vivo bimodal imaging.

    PubMed

    Wang, Xu; Chen, Jia-Tong; Zhu, Haomiao; Chen, Xueyuan; Yan, Xiu-Ping

    2013-11-05

    Bionanoparticles and nanostructures with high biocompatibility and stability, low toxicity, diversification of imaging modality, and specificity of targeting to desired organs or cells are of great interest in nanobiology and medicine. However, integrating all of these desired features into a single bionanoparticle, which can be applied to biomedical applications and eventually in clinical prediagnosis and therapy, is still a challenge. We herein report a facile one-step solvothermal approach to fabricate targetable and biocompatible β-NaYF4:Yb,Gd,Tm upconversion nanoparticles (UCNPs) with bimodal-signals (near-infrared (NIR) fluorescence and magnetic resonance (MR) signals) using hyaluronic acid (HA) as a multifunctional molecule. The prepared UCNPs with low toxicity are successfully applied for in vitro and in vivo targeted tumor imaging. The developed biomimetic surface modification approach for the synthesis of biomolecule-guided multifunctional UCNPs holds great potential applications in medical diagnostics and therapy.

  13. Upconversion against direct emission in Er3+-Tm3+-codoped tellurite-glass containing gold nanoparticles

    NASA Astrophysics Data System (ADS)

    G. Rivera, V. A.; Silva, O. B.; El-Amraoui, M.; Ledemi, Y.; Messaddeq, Y.; Marega, E.

    2015-03-01

    Gold nanoparticle embedded in Er3+-Tm3+-codoped tellurite-glass are able produce two effects on the emission properties these glasses: (i) quenching on direct-emission under excitation by a 405 nm laser diode, or (ii) enhancement on upconversion-emission under excitation by a 976 nm laser diode in these glasses. Both effects were investigated from the luminescence decay dynamics of ions. The localized surface plasmon resonance band of gold nanoparticles at around 580 nm resulted in the quenching/enhancement of Er3+-Tm3+ emission for the Er3+:(4S3/2→4I15/2) transition. These hybrid materials can be utilized for various photonic applications, e.g. infrared to visible light converters or emitting green light.

  14. In vivo 808 nm image-guided photodynamic therapy based on an upconversion theranostic nanoplatform

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomin; Que, Ivo; Kong, Xianggui; Zhang, Youlin; Tu, Langping; Chang, Yulei; Wang, Tong Tong; Chan, Alan; Löwik, Clemens W. G. M.; Zhang, Hong

    2015-09-01

    A new strategy for efficient in vivo image-guided photodynamic therapy (PDT) has been demonstrated utilizing a ligand-exchange constructed upconversion-C60 nanophotosensitizer. This theranostic platform is superior to the currently reported nanophotosensitizers in (i) directly bonding photosensitizer C60 to the surface of upconversion nanoparticles (UCNPs) by a smart ligand-exchange strategy, which greatly shortened the energy transfer distance and enhanced the 1O2 production, resulting in the improvement of the therapeutic effect; (ii) realizing in vivo NIR 808 nm image-guided PDT with both excitation (980 nm) and emission (808 nm) light falling in the biological window of tissues, which minimized auto-fluorescence, reduced light scatting and improved the imaging contrast and depth, and thus guaranteed noninvasive diagnostic accuracy. In vivo and ex vivo tests demonstrated its favorable bio-distribution, tumor-selectivity and high therapeutic efficacy. Owing to the effective ligand exchange strategy and the excellent intrinsic photophysical properties of C60, 1O2 production yield was improved, suggesting that a low 980 nm irradiation dosage (351 J cm-2) and a short treatment time (15 min) were sufficient to perform NIR (980 nm) to NIR (808 nm) image-guided PDT. Our work enriches the understanding of UCNP-based PDT nanophotosensitizers and highlights their potential use in future NIR image-guided noninvasive deep cancer therapy.A new strategy for efficient in vivo image-guided photodynamic therapy (PDT) has been demonstrated utilizing a ligand-exchange constructed upconversion-C60 nanophotosensitizer. This theranostic platform is superior to the currently reported nanophotosensitizers in (i) directly bonding photosensitizer C60 to the surface of upconversion nanoparticles (UCNPs) by a smart ligand-exchange strategy, which greatly shortened the energy transfer distance and enhanced the 1O2 production, resulting in the improvement of the therapeutic effect; (ii

  15. Efficient near-infrared up-conversion photoluminescence in carbon nanotubes

    PubMed Central

    Akizuki, Naoto; Aota, Shun; Mouri, Shinichiro; Matsuda, Kazunari; Miyauchi, Yuhei

    2015-01-01

    Photoluminescence phenomena normally obey Stokes' law of luminescence according to which the emitted photon energy is typically lower than its excitation counterparts. Here we show that carbon nanotubes break this rule under one-photon excitation conditions. We found that the carbon nanotubes exhibit efficient near-infrared photoluminescence upon photoexcitation even at an energy lying >100–200 meV below that of the emission at room temperature. This apparently anomalous phenomenon is attributed to efficient one-phonon-assisted up-conversion processes resulting from unique excited-state dynamics emerging in an individual carbon nanotube with accidentally or intentionally embedded localized states. These findings may open new doors for energy harvesting, optoelectronics and deep-tissue photoluminescence imaging in the near-infrared optical range. PMID:26568250

  16. Passive millimeter wave imaging using a distributed aperture and optical upconversion

    NASA Astrophysics Data System (ADS)

    Dillon, Thomas E.; Schuetz, Christopher A.; Martin, Richard D.; Shi, Shouyuan; Mackrides, Daniel G.; Prather, Dennis W.

    2010-10-01

    We report on our initial results of passive, real-time imaging in the Q-band using a distributed aperture and optical upconversion. The basis of operation is collection of incident mmW radiation by the distributed aperture, as embodied by an array of horn antennas, which is then amplified and upconverted to optical frequencies using commercially available electro-optic modulators. The non-linear mixing of the modulators creates sidebands containing the mmW signal with both amplitude and phase preserved. These signals are relaunched in the optical domain with a homothetic mapping of the antenna array. The optical carrier is stripped via dielectric stack filters and imagery is synthesized from the sidebands using the Fourier transform properties of a simple lens. This imagery is collected using a standard nearinfrared camera with post-processing to enhance the signal of interest and reduce noise. Details of operation and presentation of sample imagery is presented herein.

  17. Architecture, development and implementation of a SWIR to visible integrated up-conversion imaging device

    NASA Astrophysics Data System (ADS)

    Sarusi, Gabby; Templeman, Tzvi; Hechster, Elad; Nissim, Nimrod; Vitenberg, Vladimir; Maman, Nitzan; Tal, Amir; Solodar, Assi; Makov, Guy; Abdulhalim, Ibrahim; Visoly-Fisher, Iris; Golan, Yuval

    2016-04-01

    A new concept of short wavelength infrared (SWIR) to visible upconversion integrated imaging device is proposed, modeled and some initial measured results are presented. The device is a hybrid inorganic-organic device that comprises six nano-metric scale sub-layers grown on n-type GaAs substrates. The first layer is a ~300nm thick PbSe nano-columnar absorber layer grown in (111) orientation to the substrate plan (100), with a diameter of 8- 10nm and therefore exhibit quantum confinement effects parallel to the substrate and bulk properties perpendicular to it. The advantage of this structure is the high oscillator strength and hence absorption to incoming SWIR photons while maintaining the high bulk mobility of photo-excited charges along the columns. The top of the PbSe absorber layer is coated with 20nm thick metal layer that serves as a dual sided mirror, as well as a potentially surface plasmon enhanced absorption in the PbSe nano-columns layer. The photo-excited charges (holes and electrons in opposite directions) are drifted under an external applied field to the OLED section (that is composed of a hole transport layer, an emission layer and an electron transport layer) where they recombine with injected electron from the transparent cathode and emit visible light through this cathode. Due to the high absorption and enhanced transport properties this architecture has the potential of high quantum efficiency, low cost and easy implementation in any optical system. As a bench-mark, alternative concept where InGaAs/InP heterojunction couple to liquid crystal optical spatial light modulator (OSLM) structure was built that shows a full upconversion to visible of 1550nm laser light.

  18. An instrument to measure mechanical up-conversion phenomena in metals in the elastic regime.

    PubMed

    Vajente, G; Quintero, E A; Ni, X; Arai, K; Gustafson, E K; Robertson, N A; Sanchez, E J; Greer, J R; Adhikari, R X

    2016-06-01

    Crystalline materials, such as metals, are known to exhibit deviation from a simple linear relation between strain and stress when the latter exceeds the yield stress. In addition, it has been shown that metals respond to varying external stress in a discontinuous way in this regime, exhibiting discrete releases of energy. This crackling noise has been extensively studied both experimentally and theoretically when the metals are operating in the plastic regime. In our study, we focus on the behavior of metals in the elastic regime, where the stresses are well below the yield stress. We describe an instrument that aims to characterize non-linear mechanical noise in metals when stressed in the elastic regime. In macroscopic systems, this phenomenon is expected to manifest as a non-stationary noise modulated by external disturbances applied to the material, a form of mechanical up-conversion of noise. The main motivation for this work is for the case of maraging steel components (cantilevers and wires) in the suspension systems of terrestrial gravitational wave detectors. Such instruments are planned to reach very ambitious displacement sensitivities, and therefore mechanical noise in the cantilevers could prove to be a limiting factor for the detectors' final sensitivities, mainly due to non-linear up-conversion of low frequency residual seismic motion to the frequencies of interest for the gravitational wave observations. We describe here the experimental setup, with a target sensitivity of 10(-15) m/Hz in the frequency range of 10-1000 Hz, a simple phenomenological model of the non-linear mechanical noise, and the analysis method that is inspired by this model.

  19. An instrument to measure mechanical up-conversion phenomena in metals in the elastic regime

    NASA Astrophysics Data System (ADS)

    Vajente, G.; Quintero, E. A.; Ni, X.; Arai, K.; Gustafson, E. K.; Robertson, N. A.; Sanchez, E. J.; Greer, J. R.; Adhikari, R. X.

    2016-06-01

    Crystalline materials, such as metals, are known to exhibit deviation from a simple linear relation between strain and stress when the latter exceeds the yield stress. In addition, it has been shown that metals respond to varying external stress in a discontinuous way in this regime, exhibiting discrete releases of energy. This crackling noise has been extensively studied both experimentally and theoretically when the metals are operating in the plastic regime. In our study, we focus on the behavior of metals in the elastic regime, where the stresses are well below the yield stress. We describe an instrument that aims to characterize non-linear mechanical noise in metals when stressed in the elastic regime. In macroscopic systems, this phenomenon is expected to manifest as a non-stationary noise modulated by external disturbances applied to the material, a form of mechanical up-conversion of noise. The main motivation for this work is for the case of maraging steel components (cantilevers and wires) in the suspension systems of terrestrial gravitational wave detectors. Such instruments are planned to reach very ambitious displacement sensitivities, and therefore mechanical noise in the cantilevers could prove to be a limiting factor for the detectors' final sensitivities, mainly due to non-linear up-conversion of low frequency residual seismic motion to the frequencies of interest for the gravitational wave observations. We describe here the experimental setup, with a target sensitivity of 10-15 m/ √{ Hz } in the frequency range of 10-1000 Hz, a simple phenomenological model of the non-linear mechanical noise, and the analysis method that is inspired by this model.

  20. Accurate Quantitative Sensing of Intracellular pH based on Self-ratiometric Upconversion Luminescent Nanoprobe

    NASA Astrophysics Data System (ADS)

    Li, Cuixia; Zuo, Jing; Zhang, Li; Chang, Yulei; Zhang, Youlin; Tu, Langping; Liu, Xiaomin; Xue, Bin; Li, Qiqing; Zhao, Huiying; Zhang, Hong; Kong, Xianggui

    2016-12-01

    Accurate quantitation of intracellular pH (pHi) is of great importance in revealing the cellular activities and early warning of diseases. A series of fluorescence-based nano-bioprobes composed of different nanoparticles or/and dye pairs have already been developed for pHi sensing. Till now, biological auto-fluorescence background upon UV-Vis excitation and severe photo-bleaching of dyes are the two main factors impeding the accurate quantitative detection of pHi. Herein, we have developed a self-ratiometric luminescence nanoprobe based on förster resonant energy transfer (FRET) for probing pHi, in which pH-sensitive fluorescein isothiocyanate (FITC) and upconversion nanoparticles (UCNPs) were served as energy acceptor and donor, respectively. Under 980 nm excitation, upconversion emission bands at 475 nm and 645 nm of NaYF4:Yb3+, Tm3+ UCNPs were used as pHi response and self-ratiometric reference signal, respectively. This direct quantitative sensing approach has circumvented the traditional software-based subsequent processing of images which may lead to relatively large uncertainty of the results. Due to efficient FRET and fluorescence background free, a highly-sensitive and accurate sensing has been achieved, featured by 3.56 per unit change in pHi value 3.0–7.0 with deviation less than 0.43. This approach shall facilitate the researches in pHi related areas and development of the intracellular drug delivery systems.

  1. Flexible transparent displays based on core/shell upconversion nanophosphor-incorporated polymer waveguides.

    PubMed

    Park, Bong Je; Hong, A-Ra; Park, Suntak; Kyung, Ki-Uk; Lee, Kwangyeol; Seong Jang, Ho

    2017-04-03

    Core/shell (C/S)-structured upconversion nanophosphor (UCNP)-incorporated polymer waveguide-based flexible transparent displays are demonstrated. Bright green- and blue-emitting Li(Gd,Y)F4:Yb,Er and Li(Gd,Y)F4:Yb,Tm UCNPs are synthesized via solution chemical route. Their upconversion luminescence (UCL) intensities are enhanced by the formation of C/S structure with LiYF4 shell. The Li(Gd,Y)F4:Yb,Er/LiYF4 and Li(Gd,Y)F4:Yb,Tm/LiYF4 C/S UCNPs exhibit 3.3 and 2.0 times higher UCL intensities than core counterparts, respectively. In addition, NaGdF4:Yb,Tm/NaGdF4:Eu C/S UCNPs are synthesized and they show red emission via energy transfer and migration of Yb(3+) → Tm(3+) → Gd(3+) → Eu(3+). The C/S UCNPs are incorporated into bisphenol A ethoxylate diacrylate which is used as a core material of polymer waveguides. The fabricated stripe-type polymer waveguides are highly flexible and transparent (transmittance > 90% in spectral range of 443-900 nm). The polymer waveguides exhibit bright blue, green, and red luminescence, depending on the incorporated UCNPs into the polymer core, under coupling with a near infrared (NIR) laser. Moreover, patterned polymer waveguide-based display devices are fabricated by reactive ion etching process and they realize bright blue-, green-, and red-colored characters under coupling with an NIR laser.

  2. Accurate Quantitative Sensing of Intracellular pH based on Self-ratiometric Upconversion Luminescent Nanoprobe

    PubMed Central

    Li, Cuixia; Zuo, Jing; Zhang, Li; Chang, Yulei; Zhang, Youlin; Tu, Langping; Liu, Xiaomin; Xue, Bin; Li, Qiqing; Zhao, Huiying; Zhang, Hong; Kong, Xianggui

    2016-01-01

    Accurate quantitation of intracellular pH (pHi) is of great importance in revealing the cellular activities and early warning of diseases. A series of fluorescence-based nano-bioprobes composed of different nanoparticles or/and dye pairs have already been developed for pHi sensing. Till now, biological auto-fluorescence background upon UV-Vis excitation and severe photo-bleaching of dyes are the two main factors impeding the accurate quantitative detection of pHi. Herein, we have developed a self-ratiometric luminescence nanoprobe based on förster resonant energy transfer (FRET) for probing pHi, in which pH-sensitive fluorescein isothiocyanate (FITC) and upconversion nanoparticles (UCNPs) were served as energy acceptor and donor, respectively. Under 980 nm excitation, upconversion emission bands at 475 nm and 645 nm of NaYF4:Yb3+, Tm3+ UCNPs were used as pHi response and self-ratiometric reference signal, respectively. This direct quantitative sensing approach has circumvented the traditional software-based subsequent processing of images which may lead to relatively large uncertainty of the results. Due to efficient FRET and fluorescence background free, a highly-sensitive and accurate sensing has been achieved, featured by 3.56 per unit change in pHi value 3.0–7.0 with deviation less than 0.43. This approach shall facilitate the researches in pHi related areas and development of the intracellular drug delivery systems. PMID:27934889

  3. High-efficiency infrared-to-visible upconversion of Er3 + in BaCl2

    NASA Astrophysics Data System (ADS)

    Wang, Yuhu; Ohwaki, Junichi

    1993-07-01

    Highly efficient infrared-to-visible upconversion has been observed in Er3+-doped BaCl2 phosphors. The composition optimized for maximum green emission was around 25ErCl3 (mol %), which contains 5-15 mol % more active Er3+ ions than those in the conventional Er3+-doped fluoride phosphors. Pumped by a 0.8 μm laser diode with a power density of ˜3 W/cm2, chloride (25ErCl3-75BaCl2) shows a very bright green emission with the intensity being two orders of magnitude larger than that of the commercially available IR sensor card on which an optimized fluoride phosphor Y0.8Er0.2F3 is pasted. A 0.97 μm laser diode excitation on the chloride yielded blue (0.49 μm), green (0.55 μm), and red (0.66 μm) fluorescences, visually exhibited as a bright greenish-white emission. The visible fluorescence excited by 0.8, 0.97, or 1.5 μm laser diodes shows quadratic or cubic dependencies on the excitation power over the entire power range for the chlorides but lower dependences for the fluoride. The differences in the upconversion characteristics between the chlorides and fluoride are discussed in terms of the rate equations and attributed principally to the different Er3+...Er3+ interionic energy transfer probability and the different multiphonon decay rate from the excited states of Er3+ in these matrices.

  4. Flexible transparent displays based on core/shell upconversion nanophosphor-incorporated polymer waveguides

    PubMed Central

    Park, Bong Je; Hong, A-Ra; Park, Suntak; Kyung, Ki-Uk; Lee, Kwangyeol; Seong Jang, Ho

    2017-01-01

    Core/shell (C/S)-structured upconversion nanophosphor (UCNP)-incorporated polymer waveguide-based flexible transparent displays are demonstrated. Bright green- and blue-emitting Li(Gd,Y)F4:Yb,Er and Li(Gd,Y)F4:Yb,Tm UCNPs are synthesized via solution chemical route. Their upconversion luminescence (UCL) intensities are enhanced by the formation of C/S structure with LiYF4 shell. The Li(Gd,Y)F4:Yb,Er/LiYF4 and Li(Gd,Y)F4:Yb,Tm/LiYF4 C/S UCNPs exhibit 3.3 and 2.0 times higher UCL intensities than core counterparts, respectively. In addition, NaGdF4:Yb,Tm/NaGdF4:Eu C/S UCNPs are synthesized and they show red emission via energy transfer and migration of Yb3+ → Tm3+ → Gd3+ → Eu3+. The C/S UCNPs are incorporated into bisphenol A ethoxylate diacrylate which is used as a core material of polymer waveguides. The fabricated stripe-type polymer waveguides are highly flexible and transparent (transmittance > 90% in spectral range of 443–900 nm). The polymer waveguides exhibit bright blue, green, and red luminescence, depending on the incorporated UCNPs into the polymer core, under coupling with a near infrared (NIR) laser. Moreover, patterned polymer waveguide-based display devices are fabricated by reactive ion etching process and they realize bright blue-, green-, and red-colored characters under coupling with an NIR laser. PMID:28368021

  5. Near-infrared photocatalysts of BiVO4/CaF2:Er3+, Tm3+, Yb3+ with enhanced upconversion properties

    NASA Astrophysics Data System (ADS)

    Huang, Shouqiang; Zhu, Nanwen; Lou, Ziyang; Gu, Lin; Miao, Chen; Yuan, Haiping; Shan, Aidang

    2014-01-01

    Upconversion photocatalysts have the potential to absorb the near-infrared (NIR) light in solar energy and improve the photocatalytic performance. A hierarchical upconversion photocatalyst of BiVO4 (BVO)/CaF2:Er3+, Tm3+, Yb3+ (CF) combined with the narrow-band semiconductor of BVO and the luminescence agent of CF to enhance upconversion properties was synthesized via the hydrothermal method. The CF particles were deposited homogeneously on the surface of the BVO/CF composite with regular dendritic structure, which led to efficient upconversion emissions. The upconversion emission intensity of the BVO/CF composite was 8 times higher than that of pure CF, through tailoring the crystal symmetry of lanthanide ions by Bi3+ ions. The upconverted ultraviolet (361 and 379 nm), violet (408 nm), and blue (485 nm) light was able to excite BVO for photocatalysis in BVO/CF under NIR irradiation, which improved the degradation rate of methyl orange (MO).Upconversion photocatalysts have the potential to absorb the near-infrared (NIR) light in solar energy and improve the photocatalytic performance. A hierarchical upconversion photocatalyst of BiVO4 (BVO)/CaF2:Er3+, Tm3+, Yb3+ (CF) combined with the narrow-band semiconductor of BVO and the luminescence agent of CF to enhance upconversion properties was synthesized via the hydrothermal method. The CF particles were deposited homogeneously on the surface of the BVO/CF composite with regular dendritic structure, which led to efficient upconversion emissions. The upconversion emission intensity of the BVO/CF composite was 8 times higher than that of pure CF, through tailoring the crystal symmetry of lanthanide ions by Bi3+ ions. The upconverted ultraviolet (361 and 379 nm), violet (408 nm), and blue (485 nm) light was able to excite BVO for photocatalysis in BVO/CF under NIR irradiation, which improved the degradation rate of methyl orange (MO). Electronic supplementary information (ESI) available: Additional tables and figures. See

  6. Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals.

    PubMed

    Yin, Anxiang; Zhang, Yawen; Sun, Lingdong; Yan, Chunhua

    2010-06-01

    Monodisperse beta-NaYF4:Yb,Tm nanocrystals with controlled size (25-150 nm), shape (sphere, hexagonal prism, and hexagonal plate), and composition (Yb: 20-40%, Tm: 0.2-5%) were synthesized from the thermolysis of metal trifluoroacetates in hot surfactant solutions. The upconversion (UC) of near-infrared light (980 nm) to ultra-violet (360 nm), blue (450 and 475 nm), red (650 and 695 nm) and infrared (800 nm) light in the beta-NaYF4:Yb,Tm nanocrystals has been studied by UC spectroscopy. Both the total intensity of UC emissions and the relative intensities of emissions at different wavelengths have shown a strong dependence on different particle sizes and different Tm3+ and Yb3+ concentrations. As a result, different overall output colors of UC emissions can be achieved by altering sizes and Yb3+/Tm3+ doping concentrations of the beta-NaYF4:Yb,Tm nanocrystals. The intensity-power curves of a series of samples have proved that emissions at 360 and 450 nm can be ascribed to four-photon process (1D2 to 3H6 and 1D2 to 3H4, respectively), while emissions at 475 and 650 nm are three-photon processes (1G4 to 3H6 and 1G4 to 3H4, respectively) and emissions at 695 and 800 nm are two-photon ones (3F2 to 3H6 and 3F4 to 3H6, respectively). A UC saturation effect would occur under a certain excitation intensity of the 980 nm CW diode laser for the as-obtained beta-NaYF4:Yb,Tm nanocrystals, leading to the decrease of the slopes of the I-P curves. The results of our study also revealed that the successive transfer model instead of the cooperative sensitization model can be applied to explain the UC behaviors of the beta-NaYF4:Yb,Tm nanocrystals. Further, an unexpected stronger emissions of four-photon process at 360 and 450 nm for approximately 50 nm beta-NaYF4:Yb,Tm nanocrystals than those for the bigger (approximately 150 nm) nanocrystals was observed and explained in terms of the effects of crystallite size, surface-to-volume ratio and homogeneity of the doping cations.

  7. The alpha(1D)-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction.

    PubMed

    Tanoue, Akito; Nasa, Yoshihisa; Koshimizu, Takaaki; Shinoura, Hitomi; Oshikawa, Sayuri; Kawai, Takayuki; Sunada, Sachie; Takeo, Satoshi; Tsujimoto, Gozoh

    2002-03-01

    To investigate the physiological role of the alpha(1D)-adrenergic receptor (alpha(1D)-AR) subtype, we created mice lacking the alpha(1D)-AR (alpha(1D)(-/-)) by gene targeting and characterized their cardiovascular function. In alpha(1D)-/- mice, the RT-PCR did not detect any transcript of the alpha(1D)-AR in any tissue examined, and there was no apparent upregulation of other alpha(1)-AR subtypes. Radioligand binding studies showed that alpha(1)-AR binding capacity in the aorta was lost, while that in the heart was unaltered in alpha(1D)-/- mice. Non-anesthetized alpha(1D)-/- mice maintained significantly lower basal systolic and mean arterial blood pressure conditions, relative to wild-type mice, and they showed no significant change in heart rate or in cardiac function, as assessed by echocardiogram. Besides hypotension, the pressor responses to phenylephrine and norepinephrine were decreased by 30-40% in alpha(1D)-/- mice. Furthermore, the contractile response of the aorta and the pressor response of isolated perfused mesenteric arterial beds to alpha(1)-AR stimulation were markedly reduced in alpha(1D)-/- mice. We conclude that the alpha(1D)-AR participates directly in sympathetic regulation of systemic blood pressure by vasoconstriction.

  8. Analysis of the rotational structure in the high-resolution infrared spectra of trans-hexatriene-1,1-d2 and -cis-1-d1

    NASA Astrophysics Data System (ADS)

    Craig, Norman C.; Fuson, Hannah A.; Tian, Hengfeng; Blake, Thomas A.

    2012-09-01

    Mixtures of trans-hexatriene-1,1-d2, -cis-1-d1, and -trans-1-d1 have been synthesized. Anharmonic frequencies and harmonic intensities were predicted with the B3LYP/cc-pVTZ model for the out-of-plane (a″) modes of the three isotopologues. Assignments are proposed for most of the a″ vibrational modes above 500 cm-1. Ground state (GS) rotational constants have been determined for the 1,1-d2 and cis-1-d1 species from the analysis of rotational structure of C-type bands in the high-resolution (0.0015 cm-1) infrared spectra in a mixture of the three isotopologues. The GS constants for the 1,1-d2 species are A0 = 0.8018850(6), B0 = 0.0418540(6), and C0 = 0.0397997(4) cm-1. The GS constants for the cis-1-d1 species are A0 = 0.809388(1), B0 = 0.043532(2), and C0 = 0.041320(1) cm-1. Small inertial defects confirm planarity for both species. These ground state rotational constants are intended for use in determining a semiexperimental equilibrium structure and evaluating the influence of chain length on π-electron delocalization in polyenes.

  9. MOLTEN SALT SYNTHESIS OF YF3:Yb3+/Ln3+(Ln = Er3+, Tm3+) MICROSHEETS WITH MULTICOLOR UPCONVERSION LUMINESCENCE

    NASA Astrophysics Data System (ADS)

    Ding, Mingye; Lu, Chunhua; Cao, Linhai; Ni, Yaru; Xu, Zhongzi

    2013-09-01

    In this paper, highly crystalline YF3:Yb3+/Ln3+(Ln = Er3+, Tm3+) microsheets were successfully synthesized by a surfactant-free molten salt method for the first time. The results indicated that the as-obtained samples belonged to orthorhombic system and exhibited microsheets morphology with side lengths of 30 to 80 μm and wall thickness from 1 to 1.5 μm. By changing the dopant's species (Ln3+), multicolor (yellow and blue) upconversion emission can be observed in YF3:Yb3+/Ln3+ microsheets under 980 nm laser diode (LD) excitation. The upconversion mechanisms in co-doping YF3 samples were analyzed in detail based on the emission spectra. Importantly, this approach not only proposes a new alternative in synthesizing such materials, but also opens the possibility to meet the increasing commercial demand.

  10. Spectroscopy and visible frequency upconversion in Er3+-Yb3+: TeO2-ZnO glass.

    PubMed

    Mohanty, Deepak Kumar; Rai, Vineet Kumar

    2014-01-01

    The UV-Vis-NIR absorption studies of the Er(3+)/Er(3+)-Yb(3+) doped/codoped TeO2-ZnO (TZO) glasses fabricated by the melting and quenching method has been performed. The spectroscopic radiative parameters viz. radiative transition probabilities, branching ratios and lifetimes have been determined from the absorption spectrum by using Judd-Ofelt theory. The near infrared (NIR) to visible frequency upconversion (UC) have been monitored by using an excitation of 976 nm wavelength radiation from a CW diode laser. The effect of codoping with Yb(3+) ions on the intensity of the UC emission bands from the Er(3+) ions throughout visible region has been studied. The mechanism responsible for the observed upconversion emissions in the prepared samples have been explained on the basis of excited state absorption and efficient energy transfer processes.

  11. Spectroscopy and visible frequency upconversion in Er3+-Yb3+: TeO2-ZnO glass

    NASA Astrophysics Data System (ADS)

    Mohanty, Deepak Kumar; Rai, Vineet Kumar

    2014-03-01

    The UV-Vis-NIR absorption studies of the Er3+/Er3+-Yb3+ doped/codoped TeO2-ZnO (TZO) glasses fabricated by the melting and quenching method has been performed. The spectroscopic radiative parameters viz. radiative transition probabilities, branching ratios and lifetimes have been determined from the absorption spectrum by using Judd-Ofelt theory. The near infrared (NIR) to visible frequency upconversion (UC) have been monitored by using an excitation of 976 nm wavelength radiation from a CW diode laser. The effect of codoping with Yb3+ ions on the intensity of the UC emission bands from the Er3+ ions throughout visible region has been studied. The mechanism responsible for the observed upconversion emissions in the prepared samples have been explained on the basis of excited state absorption and efficient energy transfer processes.

  12. Application of upconversion luminescent-magnetic microbeads with weak background noise and facile separation in ochratoxin A detection

    NASA Astrophysics Data System (ADS)

    Liao, Zhenyu; Zhang, Ying; Su, Lin; Chang, Jin; Wang, Hanjie

    2017-02-01

    Ochratoxin A (OTA), the most harmful and abundant ochratoxin, is chemically stable and commonly existed in foodstuffs. In this work, upconversion luminescent-magnetic microbeads (UCLMMs) -based cytometric bead array for OTA detection with a less reagent consumption and high sensitivity has been established and optimized. In UCLMMs, upconversion nanocrystals (UCNs) for optical code present a weak background noise and no spectral cross talk between the encoding signals and target labels under two excitation conditions to improve detection sensitivity. While the superparamagnetic Fe3O4 nanoparticles (Fe3O4 NPs) aim for rapid analysis. The results show that the developed method has a sensitivity of 9.553 ppt below HPLC with a 50-μL sample and can be completed in <2 h with good accuracy and high reproducibility. Therefore, different colors of UCLMMs will become a promising assay platform for multiple mycotoxins after further improvement.

  13. Multicolor frequency upconversion luminescence in europium/terbium co-doped ytterbium-sensitized fluorogermanate glass excited at 980 nm

    NASA Astrophysics Data System (ADS)

    Silva, James R.; Gouveia-Neto, Artur S.; Bueno, Luciano A.

    2014-02-01

    Glass 80GeO3:10PbF2:10CdF2 triply-doped with europium, terbium, and ytterbium phosphors were synthesized and the energy upconversion luminescence emission properties investigated as a function of NIR excitation power, rare-earth ions content combination, and glass phosphor composition. Multicolor visible luminescence with main emissions peaked around 490, 545, 590, 610, 650, and 700 nm was observed when samples were excited by a diode laser at 980 nm. The up-conversion excitation mechanism for both Eu3+, and Tb3+ excited-states emitting levels was achieved via phononassisted cooperative energy-transfer from pairs of excited Yb3+ ions. White-light emission with CIE-1931 coordinates in the region of low color correlated temperature was obtained for appropriate combination of rare-earth ions content.

  14. Reduced erbium-doped ceria nanoparticles: one nano-host applicable for simultaneous optical down- and up-conversions.

    PubMed

    Shehata, Nader; Meehan, Kathleen; Hassounah, Ibrahim; Hudait, Mantu; Jain, Nikhil; Clavel, Michael; Elhelw, Sarah; Madi, Nabil

    2014-01-01

    This paper introduces a new synthesis procedure to form erbium-doped ceria nanoparticles (EDC NPs) that can act as an optical medium for both up-conversion and down-conversion in the same time. This synthesis process results qualitatively in a high concentration of Ce(3+) ions required to obtain high fluorescence efficiency in the down-conversion process. Simultaneously, the synthesized nanoparticles contain the molecular energy levels of erbium that are required for up-conversion. Therefore, the synthesized EDC NPs can emit visible light when excited with either UV or IR photons. This opens new opportunities for applications where emission of light via both up- and down-conversions from a single nanomaterial is desired such as solar cells and bio-imaging.

  15. Novel rare earth ions-doped oxyfluoride nano-composite with efficient upconversion white-light emission

    NASA Astrophysics Data System (ADS)

    Chen, Daqin; Wang, Yuansheng; Yu, Yunlong; Huang, Ping; Weng, Fangyi

    2008-10-01

    Transparent SiO 2-Al 2O 3-NaF-YF 3 bulk nano-composites triply doped with Ho 3+, Tm 3+ and Yb 3+ were fabricated by melt-quenching and subsequent heating. X-ray diffraction and transmission electron microscopy measurements demonstrated the homogeneous precipitation of the β-YF 3 crystals with mean size of 20 nm among the glass matrix, and rare earth ions were found to partition into these nano-crystals. Under single 976 nm laser excitation, intense red, green and blue upconversion emissions were simultaneously observed owing to the successive energy transfer from Yb 3+ to Ho 3+ or Tm 3+. Various colors of luminescence, including bright perfect white light, can be easily tuned by adjusting the concentrations of the rare earth ions in the material. The overall energy efficiency of the white-light upconversion was estimated to be about 0.2%.

  16. Targeted labeling of an early-stage tumor spheroid in a chorioallantoic membrane model with upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Holz, Jasmin A.; Ding, Yadan; Liu, Xiaomin; Zhang, Youlin; Tu, Langping; Kong, Xianggui; Priem, Bram; Nadort, Annemarie; Lambrechts, Saskia A. G.; Aalders, Maurice C. G.; Buma, Wybren Jan; Liu, Yichun; Zhang, Hong

    2015-01-01

    In vivo detection of cancer at an early-stage, i.e. smaller than 2 mm, is a challenge in biomedicine. In this work target labeling of an early-stage tumor spheroid (~500 μm) is realized for the first time in a chick embryo chorioallantoic membrane (CAM) model with monoclonal antibody functionalized upconversion nanoparticles (UCNPs-mAb).In vivo detection of cancer at an early-stage, i.e. smaller than 2 mm, is a challenge in biomedicine. In this work target labeling of an early-stage tumor spheroid (~500 μm) is realized for the first time in a chick embryo chorioallantoic membrane (CAM) model with monoclonal antibody functionalized upconversion nanoparticles (UCNPs-mAb). Electronic supplementary information (ESI) available: Details of experimental procedures for the sample preparation and characterization, Chick CAM model, 3-D multicellular tumor spheroids, UCNPs circulating in CAM. See DOI: 10.1039/c4nr05638h

  17. Impact of high ytterbium(III) concentration in the shell on upconversion luminescence of core-shell nanocrystals.

    PubMed

    Lei, Lei; Chen, Daqin; Zhu, Wenjuan; Xu, Ju; Wang, Yuansheng

    2014-10-01

    After coating 20 Yb/2 Er:NaGdF4 core nanocrystals with a NaYbF4 shell, upconversion emission of the rare earth ions weakens. So far, the exact reason for this phenomenon is still unclear due to lack of the direct evidence. In this report, a core@shell@shell sandwich-like structure is designed and fabricated to investigate this phenomenon. We find that high Yb(3+) concentration in the shell has mainly two adverse impacts: it promotes not only the deleterious back energy transfer from Er(3+) in the core to Yb(3+) in the shell but also the energy transfer from Yb(3+) in the core to Yb(3+) in the shell. To obtain nanocrystals with high upconversion efficency, appropriate Yb(3+) concentration should be introduced into the shell or the transition layer.

  18. Er, Yb doped yttrium based nanosized phosphors: particle size, "host lattice" and doping ion concentration effects on upconversion efficiency.

    PubMed

    Pires, Ana Maria; Heer, Stephan; Güdel, Hans Ulrich; Serra, Osvaldo Antonio

    2006-05-01

    The upconverter phosphors studied herein have different percentages of Er3+ and Yb3+ as doping ions in different Y3+ matrixes (Y2O3, Y2O2S), and were prepared from different precursors (polymeric resin, oxalate, basic carbonate) and method (combustion). Upconversion emission spectra were recorded at 298 K for all the doped samples in the visible region, for efficiency and Green/Red emission relative intensity comparisons. Therefore, an investigation of the influence of the doping ion concentration, particle size and host lattice on the upconversion process is provided in view of the UPT (Upconverting phosphor technology application). On the basis of the results, it was possible to evaluate the best combination for a specific assay, considering whether it is advantageous to have the greatest contribution from the green or red emissions, or from both in comparable intensities.

  19. Nile Red Derivative-Modified Nanostructure for Upconversion Luminescence Sensing and Intracellular Detection of Fe(3+) and MR Imaging.

    PubMed

    Wei, Ruoyan; Wei, Zuwu; Sun, Lining; Zhang, Jin Z; Liu, Jinliang; Ge, Xiaoqian; Shi, Liyi

    2016-01-13

    Iron ion (Fe(3+)) which is the physiologically most abundant and versatile transition metal in biological systems, has been closely related to many certain cancers, metabolism, and dysfunction of organs, such as the liver, heart, and pancreas. In this Research Article, a novel Nile red derivative (NRD) fluorescent probe was synthesized and, in conjunction with polymer-modified core-shell upconversion nanoparticles (UCNPs), demonstrated in the detection of Fe(3+) ion with high sensitivity and selectivity. The core-shell UCNPs were surface modified using a synthesized PEGylated amphiphilic polymer (C18PMH-mPEG), and the resulting mPEG modified core-shell UCNPs (mPEG-UCNPs) show good water solubility. The overall Fe(3+)-responsive upconversion luminescence nanostructure was fabricated by linking the NRD to the mPEG-UCNPs, denoted as mPEG-UCNPs-NRD. In the nanostructure, the core-shell UCNPs, NaYF4:Yb,Er,Tm@NaGdF4, serve as the energy donor while the Fe(3+)-responsive NRD as the energy acceptor, which leads to efficient luminescence resonance energy transfer (LRET). The mPEG-UCNPs-NRD nanostructure shows high selectivity and sensitivity for detecting Fe(3+) in water. In addition, benefited from the good biocompatibility, the nanostructure was successfully applied for detecting Fe(3+) in living cells based on upconversion luminescence (UCL) from the UCNPs. Furthermore, the doped Gd(3+) ion in the UCNPs endows the mPEG-UCNPs-NRD nanostructure with effective T1 signal enhancement, making it a potential magnetic resonance imaging (MRI) contrast agent. This work demonstrates a simple yet powerful strategy to combine metal ion sensing with multimodal bioimaging based on upconversion luminescence for biomedical applications.

  20. Integrated four-channel all-fiber up-conversion single-photon-detector with adjustable efficiency and dark count

    NASA Astrophysics Data System (ADS)

    Zheng, Ming-Yang; Shentu, Guo-Liang; Ma, Fei; Zhou, Fei; Zhang, Hai-Ting; Dai, Yun-Qi; Xie, Xiuping; Zhang, Qiang; Pan, Jian-Wei

    2016-09-01

    Up-conversion single photon detector (UCSPD) has been widely used in many research fields including quantum key distribution, lidar, optical time domain reflectrometry, and deep space communication. For the first time in laboratory, we have developed an integrated four-channel all-fiber UCSPD which can work in both free-running and gate modes. This compact module can satisfy different experimental demands with adjustable detection efficiency and dark count. We have characterized the key parameters of the UCSPD system.

  1. Spectroscopic characterization and upconversion processes under ~1.5 μm pumping in Er doped Yttria ceramics

    NASA Astrophysics Data System (ADS)

    Brown, Ei E.; Hommerich, Uwe; Bluiett, Althea; Kucera, Courtney; Ballato, John; Trivedi, Sudhir

    2013-03-01

    We report on the spectroscopic characteristics and upconversion emission in Er3+ doped Yttria (Y2O3) transparent ceramics prepared by a modified two-step sintering method. The near-infrared (1.5 μm) emission properties were evaluated as a function of Er3+ concentration. Judd-Ofelt intensity parameters, radiative rates, branching ratios, and emission lifetimes were calculated and compared with results reported for Er3+ doped Y2O3 single crystal and nanocrystals. Following pumping at 1.532 μm, weak blue (~0.41 μm, 2H9/2-->4I15/2), strong green (~0.56 μm, 2H11/2, 4S3/2-->4I15/2) and red (~0.67 μm, 4F9/2-->4I15/2) emission bands were observed as well as weak near-infrared emissions at 0.8 μm (4I9/2-->4I15/2) and 0.85 μm (4S3/2-->4I13/2) at room temperature. The upconversion emission properties under ~1.5 μm pumping were further investigated through pump power dependence and decay time studies. Sequential two-photon absorption leads to the 4I9/2 upconversion emission while energy transfer upconversion is responsible for the emission from the higher excited states 2H9/2, 2H11/2, 4S3/2, and 4F9/2. The enhanced red emission with increasing Er3+ concentration most likely occurred via the cross-relaxation process between (4F7/2 --> 4F9/2) and (4I11/2 --> 4F9/2) transitions, which increased the population of the 4F9/2 level.

  2. Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties.

    PubMed

    Zhang, Fan; Che, Renchao; Li, Xiaomin; Yao, Chi; Yang, Jianping; Shen, Dengke; Hu, Pan; Li, Wei; Zhao, Dongyuan

    2012-06-13

    Lanthanide-doped upconversion nanoparticles have shown considerable promise in solid-state lasers, three-dimensional flat-panel displays, and solar cells and especially biological labeling and imaging. It has been demonstrated extensively that the epitaxial coating of upconversion (UC) core crystals with a lattice-matched shell can passivate the core and enhance the overall upconversion emission intensity of the materials. However, there are few papers that report a precise link between the shell thickness of core/shell nanoparticles and their optical properties. This is mainly because rare earth fluoride upconversion core/shell structures have only been inferred from indirect measurements to date. Herein, a reproducible method to grow a hexagonal NaGdF(4) shell on NaYF(4):Yb,Er nanocrystals with monolayer control thickness is demonstrated for the first time. On the basis of the cryo-transmission electron microscopy, rigorous electron energy loss spectroscopy, and high-angle annular dark-field investigations on the core/shell structure under a low operation temperature (96 K), direct imaging the NaYF(4):Yb,Er@NaGdF(4) nanocrystal core/shell structure at the subnanometer level was realized for the first time. Furthermore, a strong linear link between the NaGdF(4) shell thickness and the optical response of the hexagonal NaYF(4):Yb,Er@NaGdF(4) core/shell nanocrystals has been established. During the epitaxial growth of the NaGdF(4) shell layer by layer, surface defects of the nanocrystals can be gradually passivated by the homogeneous shell deposition process, which results in the obvious enhancement in overall UC emission intensity and lifetime and is more resistant to quenching by water molecules.

  3. Preparation and up-conversion luminescence properties of LaOBr:Yb3+/Er3+ nanofibers via electrospinning.

    PubMed

    Ma, Wenwen; Yu, Wensheng; Dong, Xiangting; Wang, Jinxian; Liu, Guixia

    2014-11-01

    LaOBr:Yb(3+)/Er(3+) nanofibers were synthesized for the first time by calcinating electrospun PVP/[La(NO3)3 + Er(NO3)3 + Yb(NO3)3 + NH4 Br] composites. The morphology and properties of the final products were investigated in detail using scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), X-ray diffractometry (XRD) and fluorescence spectroscopy. The results indicate that LaOBr:Yb(3+)/Er(3+) nanofibers are tetragonal in structure with a space group of P4/nmm. The diameter of LaOBr:Yb(3+)/Er(3+) nanofibers is ~ 147 nm. Under the excitation of a 980-nm diode laser, LaOBr:Yb(3+)/Er(3+) nanofibers emit strong green and red up-conversion emission centering at 519, 541 and 667 nm, ascribed to the (2)H11/2, (4)S3/2 → (4) I(15/2) and (4)F9/2 → (4)I(15/2) energy-level transitions of Er(3+) ions, respectively. The up-conversion luminescent mechanism of LaOBr:Yb(3+)/Er(3+) nanofibers is advanced. Moreover, near-infrared emission of LaOBr:Yb(3+)/Er(3+) nanofibers is obtained under the excitation of a 532-nm laser. The formation mechanism of LaOBr:Yb(3+)/Er(3+) nanofibers is proposed. LaOBr:Yb(3+)/Er(3+) nanofibers could be important up-conversion luminescent materials.

  4. Magneto-Photoluminescence Based on Two-Photon Excitation in Lanthanide-Doped Up-Conversion Crystal Particles.

    PubMed

    Xu, Hengxing; Qin, Wei; Li, Mingxing; Wu, Ting; Hu, Bin

    2017-02-20

    Experimental studies on magneto-photoluminescence based on two-photon excitation in up-conversion Y2 O2 S:Er, Yb crystal particles are reported. It is found that the up-conversion photoluminescence generated by two-photon excitation exhibits magnetic field effects at room temperature, leading to a two-photon excitation-induced magneto-photoluminescence, when the two-photon excitation exceeds the critical intensity. By considering the spin selection rule in electronic transitions, it is proposed that spin-antiparallel and spin-parallel transition dipoles with spin mixing are accountable for the observed magneto-photoluminescence. Specifically, the two-photon excitation generates spin-antiparallel electric dipoles between (4) S3/2 -(4) I15/2 in Er(3+) ions. The antiparallel spins are conserved by exchange interaction within dipoles. When the photoexcitation exceeds the critical intensity, the Coulomb screening can decrease the exchange interaction. Consequently, the spin-orbital coupling can partially convert the antiparallel dipoles into parallel dipoles, generating a spin mixing. Eventually, the populations between antiparallel and parallel dipoles reach an equilibrium established by the competition between exchange interaction and spin-orbital coupling. Applying a magnetic field can break the equilibrium by disturbing spin mixing through introducing spin precessions, changing the spin populations on antiparallel and parallel dipoles and leading to the magneto-photoluminescence. Therefore, spin-dependent transition dipoles present a convenient mechanism to realize magneto-photoluminescence in multiphoton up-conversion crystal particles.

  5. Synergistic plasmonic and photonic crystal light-trapping: architectures for optical up-conversion in thin-film solar cells.

    PubMed

    Le, Khai Q; John, Sajeev

    2014-01-13

    We demonstrate, numerically, that with a 60 nanometer layer of optical up-conversion material, embedded with plasmonic core-shell nano-rings and placed below a sub-micron silicon conical-pore photonic crystal it is possible to absorb sunlight well above the Lambertian limit in the 300-1100 nm range. With as little as 500 nm, equivalent bulk thickness of silicon, the maximum achievable photo-current density (MAPD) is about 36 mA/cm2, using above-bandgap sunlight. This MAPD increases to about 38 mA/cm2 for one micron of silicon. Our architecture also provides solar intensity enhancement by a factor of at least 1400 at the sub-bandgap wavelength of 1500 nm, due to plasmonic and photonic crystal resonances, enabling a further boost of photo-current density from up-conversion of sub-bandgap sunlight. With an external solar concentrator, providing 100 suns, light intensities sufficient for significant nonlinear up-conversion can be realized. Two-photon absorption of sub-bandgap sunlight is further enhanced by the large electromagnetic density of states in the photonic crystal at the re-emission wavelength near 750 nm. It is suggested that this synergy of plasmonic and photonic crystal resonances can lead to unprecedented power conversion efficiency in ultra-thin-film silicon solar cells.

  6. Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting.

    PubMed

    You, Minli; Lin, Min; Wang, Shurui; Wang, Xuemin; Zhang, Ge; Hong, Yuan; Dong, Yuqing; Jin, Guorui; Xu, Feng

    2016-05-21

    Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a smart phone recognition based upconversion fluorescent three-dimensional (3D) quick response (QR) code for tracking and anti-counterfeiting of drugs. We firstly formulated three colored inks incorporating upconversion nanoparticles with RGB (i.e., red, green and blue) emission colors. Using a modified inkjet printer, we printed a series of colors by precisely regulating the overlap of these three inks. Meanwhile, we developed a multilayer printing and splitting technology, which significantly increases the information storage capacity per unit area. As an example, we directly printed the upconversion fluorescent 3D QR code on the surface of drug capsules. The 3D QR code consisted of three different color layers with each layer encoded by information of different aspects of the drug. A smart phone APP was designed to decode the multicolor 3D QR code, providing the authenticity and related information of drugs. The developed technology possesses merits in terms of low cost, ease of operation, high throughput and high information capacity, thus holds great potential for drug anti-counterfeiting.

  7. Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons

    NASA Astrophysics Data System (ADS)

    Boriskina, Svetlana V.; Chen, Gang

    2014-03-01

    Maximum efficiency of ideal single-junction photovoltaic (PV) cells is limited to 33% (for 1 sun illumination) by intrinsic losses such as band edge thermalization, radiative recombination, and inability to absorb below-bandgap photons. This intrinsic thermodynamic limit, named after Shockley and Queisser (S-Q), can be exceeded by utilizing low-energy photons either via their electronic up-conversion or via the thermophotovoltaic (TPV) conversion process. However, electronic up-conversion systems have extremely low efficiencies, and practical temperature considerations limit the operation of TPV converters to the narrow-gap PV cells. Here we develop a conceptual design of a hybrid TPV platform, which exploits thermal up-conversion of low-energy photons and is compatible with conventional silicon PV cells by using spectral and directional selectivity of the up-converter. The hybrid platform offers sunlight-to-electricity conversion efficiency exceeding that imposed by the S-Q limit on the corresponding PV cells across a broad range of bandgap energies, under low optical concentration (1-300 suns), operating temperatures in the range 900-1700 K, and in simple flat panel designs. We demonstrate maximum conversion efficiency of 73% under illumination by non-concentrated sunlight. A detailed analysis of non-ideal hybrid platforms that allows for up to 15% of absorption/re-emission losses yields limiting efficiency value of 45% for Si PV cells.

  8. Synthesis of Multicolor Core/Shell NaLuF₄:Yb(3+)/Ln(3+)@CaF₂ Upconversion Nanocrystals.

    PubMed

    Li, Hui; Hao, Shuwei; Yang, Chunhui; Chen, Guanying

    2017-02-07

    The ability to synthesize high-quality hierarchical core/shell nanocrystals from an efficient host lattice is important to realize efficacious photon upconversion for applications ranging from bioimaging to solar cells. Here, we describe a strategy to fabricate multicolor core @ shell α-NaLuF₄:Yb(3+)/Ln(3+)@CaF₂ (Ln = Er, Ho, Tm) upconversion nanocrystals (UCNCs) based on the newly established host lattice of sodium lutetium fluoride (NaLuF₄). We exploited the liquid-solid-solution method to synthesize the NaLuF₄ core of pure cubic phase and the thermal decomposition approach to expitaxially grow the calcium fluoride (CaF₂) shell onto the core UCNCs, yielding cubic core/shell nanocrystals with a size of 15.6 ± 1.2 nm (the core ~9 ± 0.9 nm, the shell ~3.3 ± 0.3 nm). We showed that those core/shell UCNCs could emit activator-defined multicolor emissions up to about 772 times more efficient than the core nanocrystals due to effective suppression of surface-related quenching effects. Our results provide a new paradigm on heterogeneous core/shell structure for enhanced multicolor upconversion photoluminescence from colloidal nanocrystals.

  9. Triplet-triplet annihilation upconversion followed by FRET for the red light activation of a photodissociative ruthenium complex in liposomes.

    PubMed

    Askes, Sven H C; Kloz, Miroslav; Bruylants, Gilles; Kennis, John T M; Bonnet, Sylvestre

    2015-11-07

    Upconversion is a promising way to trigger high-energy photochemistry with low-energy photons. However, combining upconversion schemes with non-radiative energy transfer is challenging because bringing several photochemically active components in close proximity results in complex multi-component systems where quenching processes may deactivate the whole assembly. In this work, PEGylated liposomes were prepared that contained three photoactive components: a porphyrin dye absorbing red light, a perylene moiety emitting in the blue, and a light-activatable ruthenium prodrug sensitive to blue light. Time-dependent spectroscopic studies demonstrate that singlet perylene excited states are non-radiatively transferred to the nearby ruthenium complex by Förster resonance energy transfer (FRET). Under red-light irradiation of the three-component membranes, triplet-triplet annihilation upconversion (TTA-UC) occurs followed by FRET, which results in a more efficient activation of the ruthenium prodrug compared to a physical mixture of two-component upconverting liposomes and liposomes containing only the ruthenium complex. This work represents a rare example where TTA-UC and Förster resonance energy transfer are combined to achieve prodrug activation in the phototherapeutic window.

  10. Novel rare earth ions-doped oxyfluoride nano-composite with efficient upconversion white-light emission

    SciTech Connect

    Chen Daqin; Wang Yuansheng Yu Yunlong; Huang Ping; Weng Fangyi

    2008-10-15

    Transparent SiO{sub 2}-Al{sub 2}O{sub 3}-NaF-YF{sub 3} bulk nano-composites triply doped with Ho{sup 3+}, Tm{sup 3+} and Yb{sup 3+} were fabricated by melt-quenching and subsequent heating. X-ray diffraction and transmission electron microscopy measurements demonstrated the homogeneous precipitation of the {beta}-YF{sub 3} crystals with mean size of 20 nm among the glass matrix, and rare earth ions were found to partition into these nano-crystals. Under single 976 nm laser excitation, intense red, green and blue upconversion emissions were simultaneously observed owing to the successive energy transfer from Yb{sup 3+} to Ho{sup 3+} or Tm{sup 3+}. Various colors of luminescence, including bright perfect white light, can be easily tuned by adjusting the concentrations of the rare earth ions in the material. The overall energy efficiency of the white-light upconversion was estimated to be about 0.2%. - Graphical abstract: Under single 976 nm laser excitation, intense red, green and blue upconversion emissions were simultaneously observed owing to the successive energy transfer from Yb{sup 3+} to Ho{sup 3+} or Tm{sup 3+}. Various colors of luminescence, including bright perfect white light with CIE-X=0.351 and CIE-Y=0.306, can be easily tuned by adjusting the concentrations of the rare earth ions in the transparent oxyfluoride glass ceramics.

  11. White light upconversion emission in Yb3+/ Er3+/ Tm3+ codoped oxy-fluoride lithium tungsten tellurite glass ceramics

    NASA Astrophysics Data System (ADS)

    Ansari, Ghizal F.; Mahajan, S. K.

    2012-02-01

    The bright white upconversion emission ( tri-colour UC) is generated in Er/Tm/Yb tri -doped oxy-fluoride lithium tungsten tellurite (TWLOF)glass ceramics containing crystalline phase LiYbF4 under the excitation of 980nm laser diode. The most appropriate combination of rare-earth ions (2mol% YbF3 1mol% ErF3 and 1mol%TmF3 )of glass ceramic sample has been determined to tune the primary colour (RGB and generate white light emission. By varying the pump power, intense and weak blue (487nm, 437nm), green (525nm and 545nm) and red (662nm) emission are simultaneously observed at room temperature. The dependence of upconversion emission intensity suggest that a theephoton process is responsible for the blue emission of Tm3+ ions and red emission due to both Tm3+ and Er3+ ions , while green emission originated from two photon processes in Er3+ ions. Also tri colour upconvesion and energy transfer in this glass ceramics sample were studied under 808nm laser diode excitation. The Upconversion mechanisms and Tm3+ ions plays role of both emitter and activator (transfer energy to Er) were discussed.

  12. NIR to blue light upconversion in Tm3+/Yb3+ codoped BaTiO3 tellurite glass

    NASA Astrophysics Data System (ADS)

    Kumari, Astha; Rai, Vineet Kumar

    2015-05-01

    Upconversion is an interesting optical property, generally shown by rare-earth doped materials. This unusual optical behavior shown by these rare-earths doped materials are due to their peculiar atomic configuration and electronic transitions. Here, the Tm3+-Yb3+ codoped BaTiO3 glass with TeO2 as former has been prepared by conventional melt and quench technique and the upconversion property has been investigated with the help of near infrared (NIR) to Visible UC study. The generation of the visible UC bands around ˜ 476 nm, ˜ 653 nm, ˜ 702 nm and one NIR UC band at ˜795 nm are assigned due to the 1G4→ 3H6, 1G4→ 3F4, 3F2→ 3H6 and 3H4→ 3H6 transitions respectively. The generations of these upconversion bands have been discussed in detail with the help of energy level diagram. The colour coordinates corresponding to the prepared material have been shown with the help of CIE chromaticity diagram. These glasses can be very appropriately used in the fabrication of solid state laser and as NIR to blue light upconverter.

  13. Investigation on upconversion luminescence properties of Gd2O3: Ho3+/Yb3+/Tm3+ nanotubes

    NASA Astrophysics Data System (ADS)

    Ye, Fei; Fang, Yu; Liu, Xiao-bo; Xu, Fang; Song, Ying-lin

    2013-09-01

    Lanthanide doped oxides nano materials have novel optical, physical and structural properties. Cubic Ho3+-Yb3+-Tm3+ co-doped Gd2O3 nanotubes are synthetize by a simple wet-chemical route at low temperature and ambient pressure followed by subsequent annealing heat treatment in muffle furnace. Nanotubes are formed by adjusting the pH value of reacting solution. The introduction of Yb3+ leads to strong visible upconversion luminescence and change the intensity ratio of the green, blue and red luminescence. In trichromatic laser display, research of how to enhance blue light is in the bottleneck period. In the experiment, the blue emission has been successfully improved. In certain doping ratio, distinct enhancement of blue emission and obvious degradation of green light have been observed, which is discussed in detail. X-Ray powder diffraction (XRD), scanning electron microscope (SEM) and upconversion (UC) emission spectra are used to characterize the sample. Strong and adjusted upconversion luminescence determine that the nano material is a potential candidate for applications of biological probe, color displays, lighting and photonics.

  14. Bright white upconversion luminescence from Er 3+-Tm 3+-Yb 3+ doped CaSnO 3 powders

    NASA Astrophysics Data System (ADS)

    Pang, X. L.; Jia, C. H.; Li, G. Q.; Zhang, W. F.

    2011-11-01

    Bright white upconversion luminescence from Er 3+-Tm 3+-Yb 3+ doped CaSnO 3 powders is obtained under the diode laser excitation of 980 nm. It is composed of three primary colors of red, green and blue emissions, which originate from the transitions of 4F 9/2 → 4I 15/2, ( 2H 11/2, 4S 3/2) → 4I 15/2 of Er 3+ ions and 1G 4 → 3H 6 of Tm 3+ ions, respectively. The efficient upconversion emission is attributed to the energy transfer between Yb 3+ and Er 3+ or Tm 3+ions. Moreover, it is observed that Tm 3+ acts as the quenching center for the green upconversion luminescence from Er 3+ ions, and the sensitizer for the red and blue luminescence when the Tm 3+ doping content is less than 0.3 mol%. This is interpreted in terms of the efficient energy transfer between Tm 3+ and Er 3+ ions. The calculated color coordinates fall within the white region in the standard 1931 CIE chromaticity diagram, indicating the potential applications of Er 3+-Tm 3+-Yb 3+ doped CaSnO 3 in the field of displaying and lasers, etc.

  15. Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers

    NASA Astrophysics Data System (ADS)

    Kik, P. G.; Polman, A.

    2003-05-01

    Erbium doped Al2O3 waveguide amplifiers were fabricated using two different doping methods, namely Er ion implantation into sputter deposited Al2O3, and co-sputtering from an Er2O3/Al2O3 target. Although the Er concentration in both materials is almost identical (0.28 and 0.31 at. %), the amplifiers show a completely different behavior. Upon pumping with 1.48 μm, the co-sputtered waveguide shows a strong green luminescence from the 4S3/2 level, indicating efficient cooperative upconversion in this material. This is confirmed by pump power dependent measurements of the optical transmission at 1.53 μm and the spontaneous emission at 1.53 and 0.98 μm. All measurements can be accurately modeled using a set of rate equations that include first order and second order cooperative upconversion. The first order cooperative upconversion coefficient C24 is found to be 3.5×10-16 cm3 s-1 in the co-sputtered material, two orders of magnitude higher than the value obtained in Er implanted Al2O3 of 4.1×10-18 cm3 s-1. It is concluded that the co-sputtering process results in a strongly inhomogeneous atomic scale spatial distribution of the Er ions. As a result, the co-sputtered waveguides do not show optical gain, while the implanted waveguides do.

  16. Uniform NaYF{sub 4}:Yb, Tm hexagonal submicroplates: Controlled synthesis and enhanced UV and blue upconversion luminescence

    SciTech Connect

    Huang, Wenjuan; Ding, Mingye; Huang, Hengming; Jiang, Chenfei; Song, Yan; Ni, Yaru; Lu, Chunhua; Xu, Zhongzi

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► β-NaYF{sub 4} phosphors as an excellent upconversion materials. ► Oleic acid can promote the transformation of α → β phase NaYF{sub 4}. ► The shape and size of β-NaYF{sub 4} submicroplate can be tuned by reactant concentration. ► Enhanced UV and blue peaks can be obtained by varying Yb{sup 3+} and Tm{sup 3+} concentration. -- Abstract: We reported the preparation of cubic (α-) and hexagonal (β-) NaYF{sub 4} particles in high boiling organic solvents 1-octadecene (ODE) and oleic acid (OA), through a thermal decomposition synthesis route. The as-prepared products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), photoluminescence (PL) spectra. By tuning the OA/ODE volume ratio and reactant concentration, we could manipulate the morphology, size, and crystal structure of the products. Highly uniform β-NaYF{sub 4} submicroplates were obtained from α-NaYF{sub 4} nanoparticles by increasing the OA/ODE volume ratio, while the phase kept unchanged with the increasing of reactant concentration. Upconversion emissions from UV to NIR emissions were observed in β-NaYF{sub 4} hexagonal submicroplates under 980 nm laser diode excitation. In addition, the enhanced UV and blue upconversion emissions were obtained by varying Tm{sup 3+} and Yb{sup 3+} ion concentration.

  17. Stem-Cell-Membrane Camouflaging on Near-Infrared Photoactivated Upconversion Nanoarchitectures for in Vivo Remote-Controlled Photodynamic Therapy.

    PubMed

    Gao, Changyong; Lin, Zhihua; Wu, Zhiguang; Lin, Xiankun; He, Qiang

    2016-12-21

    The upconversion nanoparticle (UCNP)-based photodynamic therapy (PDT) agents are promising for deep-tissue cancer treatment because they may overcome current limitations due to the shallow penetration depth of visible light. However, limited blood circulation time and poor tumor-targeting capability challenge the therapeutic efficacy of UCNP-based PDT in vivo. Here, we demonstrate intravenous injectable stem-cell-membrane-camouflaged upconversion nanoarchitectures as a biomimetic tumor PDT platform. The biomimetic PDT system is constructed by fusing mesoporous-silica-encapsulated β-NaYF4:Yb(3+),Er(3+) UCNPs with stem-cell membranes. Translocation of the stem-cell membranes to the UCNPs led to the translation of multiple membrane components, bringing the membranes' long circulation and tumor-targeting capability to the resulting platform. Multiphotosensitizers were encapsulated and simultaneously activated by a 980 nm single laser because of the multicolor emission capability of the UCNP cores. In vitro and in vivo experiments demonstrate that this novel platform inherits the tumor-targeting properties of stem cells and exhibits remarkable accumulation at the tumor site. In vivo tumor PDT results show higher tumor inhibition efficacy by tail intravenous administration of this new photosensitizer-loaded system. This stem-cell-membrane-camouflaged upconversion nanoarchitecture provides artificial UCNPs with natural cell membranes and holds considerable promise for deep-tissue PDT cancer treatment by systemic administration.

  18. XPB Induces C1D Expression to Counteract UV-Induced Apoptosis

    PubMed Central

    Li, Guang; Liu, Juhong; Abu-Asab, Mones; Masabumi, Shibuya; Maru, Yoshiro

    2010-01-01

    Although C1D has been shown to be involved in DNA double-strand breaks repair, how C1D expression was induced and the mechanism(s) by which C1D facilitates DNA repair in mammalian cells remain poorly understood. We and others have previously shown that expression of XPB protein efficiently compensated the UV-irradiation sensitive phenotype of 27-1 cells which lacks functional XPB. To further explore XPB-regulated genes that could be involved in UV-induced DNA repair, Differential Display analysis of mRNA level from CHO-9, 27-1 and 27-1 complemented with wild-type XPB were performed and C1D gene was identified as one of the major genes whose expression was significantly up-regulated by restoring XPB function. We found that XPB is essential to induce C1D transcription after UV-irradiation. The increase of C1D expression effectively compensates the UV-induced proteolysis of C1D and thus maintains cellular C1D level to cope with DNA damage inflicted by UV-irradiation. We further showed that although insufficient to rescue 27-1 cells from UV-induced apoptosis by itself, C1D facilitates XPB DNA repair through direct interaction with XPB. Our findings provided direct evidence that C1D is associated with DNA repair complex and may promote repair of UV-induced DNA damage. PMID:20530579

  19. Upconversion Spectrophotofluorometry

    PubMed Central

    Biesso, Arianna; Xu, Jianhua; Knutson, Jay R.

    2014-01-01

    As the other chapters attest, sensitivity of fluorescent molecules to their local environment has created powerful tools in the study of molecular biology, particularly in the study of protein, DNA, and lipid dynamics. Surprisingly, even events faster than the nanosecond lifetimes of fluorophores are important in protein function, and in particular, events lasting just a few ps reflect on water motion and the coupled dynamics of proteins. These ultrafast phenomena can best be studied by using the same laser that excites fluorescence to also “strobe” the emission, providing sub-picosecond time slices of the action. We explain the strobing “upconversion” technique and some limits on its execution. PMID:24108631

  20. Understanding the infrared to visible upconversion luminescence properties of Er{sup 3+}/Yb{sup 3+} co-doped BaMoO{sub 4} nanocrystals

    SciTech Connect

    Adhikari, Rajesh; Choi, Jinhyuk; Narro-García, R.; De la Rosa, E.; Sekino, Tohru; Lee, Soo Wohn

    2014-08-15

    In this paper we report the infrared to visible upconversion luminescence properties of Er{sup 3+}/Yb{sup 3+} co-doped BaMoO{sub 4} nanocrystals synthesized via microwave assisted sol–gel processing route. Structural, morphological and upconversion luminescence properties were investigated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), UV–vis diffuse reflectance spectroscopy (UV–vis DRS) and Upconversion Photoluminescence spectra analysis. Results revealed that the oval shaped BaMoO{sub 4} nanocrystals ranging in size from 40 to 60 nm having tetragonal scheelite crystal structure were obtained by sol–gel route. The infrared to visible upconversion luminescence has been investigated in Er{sup 3+}/Yb{sup 3+} co-doped in BaMoO{sub 4}with different Yb{sup 3+} concentrations. Intense green upconversion emissions around 528, 550 nm, and red emission at 657 nm corresponding to the {sup 2}H{sub 11/2}, {sup 4}S{sub 3/2}, and {sup 4}F{sub 9/2} transitions, respectively to the {sup 4}I{sub 15/2} ground state were observed when excited by CW laser radiation at 980 nm. The green emissions were greatly enhanced after the addition of sensitizer (Yb{sup 3+} ions). The effect of Yb{sup 3+} on the upconversion luminescence intensity was analyzed and explained in terms of the energy transfer process based. The reported work establishes the understanding of molybdates as an alternative host material for upconversion luminescence. - Graphical abstract: Infrared to visible upconversion luminescence of Er{sup 3+}/Yb{sup 3+} co-doped BaMoO{sub 4} nanocrystals. - Highlights: • Nanocrystals were synthesized by microwave assisted sol–gel processing route. • Strong green emissions were observed in Er{sup 3+}/Yb{sup 3+} co-doped BaMoO{sub 4} nanocrystals. • Provides an insight on Upconversion luminescence properties of oxides host materials.

  1. Tandem repeats modify the structure of the canine CD1D gene.

    PubMed

    Looringh van Beeck, F A; Leegwater, P A J; Herrmann, T; Broere, F; Rutten, V P M G; Willemse, T; Van Rhijn, I

    2013-06-01

    Among the CD1 proteins that present lipid antigens to T cells, CD1d is the only one that stimulates a population of T cells with an invariant T-cell receptor known as NKT cells. Sequencing of a 722 nucleotide gap in the dog (Canis lupus familiaris) genome revealed that the canine CD1D gene lacks a sequence homologous to exon 2 of human CD1D, coding for the start codon and signal peptide. Also, the canine CD1D gene contains three different short tandem repeats that disrupt the expected gene structure. Because canine CD1D cDNA lacks sequences homologous to human exon 2 and 3, the functionality of canine CD1d protein may be affected, and this could have consequences for the development and activation of canine NKT cells.

  2. Folic acid-functionalized up-conversion nanoparticles: toxicity studies in vivo and in vitro and targeted imaging applications

    NASA Astrophysics Data System (ADS)

    Sun, Lining; Wei, Zuwu; Chen, Haige; Liu, Jinliang; Guo, Jianjian; Cao, Ming; Wen, Tieqiao; Shi, Liyi

    2014-07-01

    Folate receptors (FRs) are overexpressed on a variety of human cancer cells and tissues, including cancers of the breast, ovaries, endometrium, and brain. This over-expression of FRs can be used to target folate-linked imaging specifically to FR-expressing tumors. Fluorescence is emerging as a powerful new modality for molecular imaging in both the diagnosis and treatment of disease. Combining innovative molecular biology and chemistry, we prepared three kinds of folate-targeted up-conversion nanoparticles as imaging agents (UCNC-FA: UCNC-Er-FA, UCNC-Tm-FA, and UCNC-Er,Tm-FA). In vivo and in vitro toxicity studies showed that these nanoparticles have both good biocompatibility and low toxicity. Moreover, the up-conversion luminescence imaging indicated that they have good targeting to HeLa cells and can therefore serve as potential fluorescent contrast agents.Folate receptors (FRs) are overexpressed on a variety of human cancer cells and tissues, including cancers of the breast, ovaries, endometrium, and brain. This over-expression of FRs can be used to target folate-linked imaging specifically to FR-expressing tumors. Fluorescence is emerging as a powerful new modality for molecular imaging in both the diagnosis and treatment of disease. Combining innovative molecular biology and chemistry, we prepared three kinds of folate-targeted up-conversion nanoparticles as imaging agents (UCNC-FA: UCNC-Er-FA, UCNC-Tm-FA, and UCNC-Er,Tm-FA). In vivo and in vitro toxicity studies showed that these nanoparticles have both good biocompatibility and low toxicity. Moreover, the up-conversion luminescence imaging indicated that they have good targeting to HeLa cells and can therefore serve as potential fluorescent contrast agents. Electronic supplementary information (ESI) available: Up-conversion luminescence spectra of UCNC-Er and UCNC-Er-FA, UCNC-Tm and UCNC-Tm-FA. Confocal luminescence imaging data collected as a series along the Z optical axis. See DOI: 10.1039/c4nr02312a

  3. Controlled growth, intense upconversion emissions and concentration induced luminescence switching of bifunctional Tm(3+) doped hexagonal NaYb0.55Gd0.45F4 nanorods.

    PubMed

    Qu, Xilong; Li, Yongchang; Yu, Suixi; Yang, Liwen

    2013-11-01

    Bifunctional hexagonal Tm(3+) doped NaYb0.55Gd0.45F4 nanorods with tunable size are prepared via in situ cation-exchange reaction using hydrothermal method. The measured field dependence of magnetization of the NaYb0.55Gd0.45F4 nanorods shows typical paramagnetic characteristics that can be ascribed to the non-interacting localized nature of the magnetic moment of rare-earth ions. When excited by a 980nm laser, these nanorods exhibit intense multi-color up-conversion (UC) emissions in infrared, red, blue and especially ultraviolet. In addition, luminescent switching between different UC emission wavelengths of 480nm and 450nm is observed by adjusting Tm(3+) doping concentration. Based on power-dependent spectral analyses, it is found that with the increase of Tm(3+) doping concentration, due to the suppressed saturation effect, the dominative UC process redistribute the populations at (1)G4 and (1)D2(Tm(3+)) states of Tm(3+) ion resulting in the above luminescent switching. Our results indicate that bifunctional hexagonal NaYb1-xGdxF4 nanocrystals have potential applications in miniaturized solid-state light sources, optical processing sensors and fluorescent biolabels.

  4. Controlled growth, intense upconversion emissions and concentration induced luminescence switching of bifunctional Tm3+ doped hexagonal NaYb0.55Gd0.45F4 nanorods

    NASA Astrophysics Data System (ADS)

    Qu, Xilong; Li, Yongchang; Yu, Suixi; Yang, Liwen

    2013-11-01

    Bifunctional hexagonal Tm3+ doped NaYb0.55Gd0.45F4 nanorods with tunable size are prepared via in situ cation-exchange reaction using hydrothermal method. The measured field dependence of magnetization of the NaYb0.55Gd0.45F4 nanorods shows typical paramagnetic characteristics that can be ascribed to the non-interacting localized nature of the magnetic moment of rare-earth ions. When excited by a 980 nm laser, these nanorods exhibit intense multi-color up-conversion (UC) emissions in infrared, red, blue and especially ultraviolet. In addition, luminescent switching between different UC emission wavelengths of 480 nm and 450 nm is observed by adjusting Tm3+ doping concentration. Based on power-dependent spectral analyses, it is found that with the increase of Tm3+ doping concentration, due to the suppressed saturation effect, the dominative UC process redistribute the populations at 1G4 and 1D2(Tm3+) states of Tm3+ ion resulting in the above luminescent switching. Our results indicate that bifunctional hexagonal NaYb1-xGdxF4 nanocrystals have potential applications in miniaturized solid-state light sources, optical processing sensors and fluorescent biolabels.

  5. The characteristic saturation phenomenon of upconversion luminescence in holmium ytterbium-co-doped oxyfluoride glass Ho(0.1)Yb(5):FOG

    NASA Astrophysics Data System (ADS)

    Chen, Xiaobo; Song, Zengfu; Sawanobori, Naruhito; Ohtsuka, Masaaki; Li, Xiaowen; Wang, Yafei; Xu, Xiaoling; He, Chenjuan; Ma, Hui; Chen, Ying; Zhu, Jianyang

    2008-11-01

    The upconversion luminescence of holmium Ho 3+ ion sensitized by ytterbium Yb 3+ ion in Ho 3+Yb 3+-co-doped oxyfluoride glass Ho(0.1)Yb(5):FOG is investigated in this paper. A plenty of upconversion luminescence lines are measured out. The upconversion mechanism of Ho(0.1)Yb(5):FOG, when excited by 960 nm laser, is the energy transfer from Yb 3+ to Ho 3+ ion. A very weak 795.5 nm common photoemission fluorescence is detected, which is recognized as the 5I 4→ 5I 8 fluorescence transition based on careful measurement, calculation and analysis. And moreover, a novel characteristic upconversion luminescence saturation phenomenon is found. It is that the log F-log P curve of upconversion fluorescence vs. pumping laser power is a straight line, and meanwhile the slopes of these double-logarithmic F- P plots are smaller than normal multi-photon relation clearly. When pumping laser spot is increased, the slopes of these double logarithmic F- P plots could be enhanced noticeably from small value to near the normal multi-photon relation value. The mechanism of this characteristic saturation phenomenon is the energy expansion resulted from energy resonant migration among Yb 3+ ions.

  6. Abnormal size-dependent upconversion emissions and multi-color tuning in Er3+-doped CaF2-YbF3 disordered solid-solution nanocrystals.

    PubMed

    Chen, Daqin; Lei, Lei; Xu, Ju; Yang, Anping; Wang, Yuansheng

    2013-03-01

    A series of Er(3+)-doped (1 - x)CaF(2)-xYbF(3) (0 ≤ x ≤ 0.6) disordered solid-solution nanocrystals with various mean sizes were successfully prepared by a facile solvothermal route. Interestingly, abnormal size-dependent upconversion emissions were demonstrated in these nanocrystals for the first time. With increasing grain size, an obvious enhancement of red to green emission ratio was observed in the Er(3+) (2 mol%): 0.4CaF(2)-0.6YbF(3) nanocrystals, which is the opposite of the routine size-dependent upconversion emission behavior reported previously. Taking Eu(3+) ions as a structural probe, we investigated the influence of a disordered solid-solution structure on Ln(3+) luminescence, and proposed that Ln(3+) clusters formed in the host should play a key role to induce this unusual size-dependent upconversion emission phenomenon. As a consequence, multi-colors such as green, yellow, and red upconversion emissions can be easily realized by appropriately modifying the Yb(3+) content in the Er(3+)-doped (1 - x)CaF(2)-xYbF(3) nanocrystals. The reported results will deepen the understanding of size effects on the lanthanide upconversion in nanocrystals.

  7. Examination of 1D Solar Cell Model Limitations Using 3D SPICE Modeling: Preprint

    SciTech Connect

    McMahon, W. E.; Olson, J. M.; Geisz, J. F.; Friedman, D. J.

    2012-06-01

    To examine the limitations of one-dimensional (1D) solar cell modeling, 3D SPICE-based modeling is used to examine in detail the validity of the 1D assumptions as a function of sheet resistance for a model cell. The internal voltages and current densities produced by this modeling give additional insight into the differences between the 1D and 3D models.

  8. Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4 : Yb,Tm nanocrystals

    NASA Astrophysics Data System (ADS)

    Yin, Anxiang; Zhang, Yawen; Sun, Lingdong; Yan, Chunhua

    2010-06-01

    Monodisperse β-NaYF4 : Yb,Tm nanocrystals with controlled size (25-150 nm), shape (sphere, hexagonal prism, and hexagonal plate), and composition (Yb: 20-40%, Tm: 0.2-5%) were synthesized from the thermolysis of metal trifluoroacetates in hot surfactant solutions. The upconversion (UC) of near-infrared light (980 nm) to ultra-violet (360 nm), blue (450 and 475 nm), red (650 and 695 nm) and infrared (800 nm) light in the β-NaYF4 : Yb,Tm nanocrystals has been studied by UC spectroscopy. Both the total intensity of UC emissions and the relative intensities of emissions at different wavelengths have shown a strong dependence on different particle sizes and different Tm3+ and Yb3+ concentrations. As a result, different overall output colors of UC emissions can be achieved by altering sizes and Yb3+/Tm3+ doping concentrations of the β-NaYF4 : Yb,Tm nanocrystals. The intensity-power curves of a series of samples have proved that emissions at 360 and 450 nm can be ascribed to four-photon process (1D2 to 3H6 and 1D2 to 3H4, respectively), while emissions at 475 and 650 nm are three-photon processes (1G4 to 3H6 and 1G4 to 3H4, respectively) and emissions at 695 and 800 nm are two-photon ones (3F2 to 3H6 and 3F4 to 3H6, respectively). A UC saturation effect would occur under a certain excitation intensity of the 980 nm CW diode laser for the as-obtained β-NaYF4 : Yb,Tm nanocrystals, leading to the decrease of the slopes of the I-P curves. The results of our study also revealed that the successive transfer model instead of the cooperative sensitization model can be applied to explain the UC behaviors of the β-NaYF4 : Yb,Tm nanocrystals. Further, an unexpected stronger emissions of four-photon process at 360 and 450 nm for ~50 nm β-NaYF4 : Yb,Tm nanocrystals than those for the bigger (~150 nm) nanocrystals was observed and explained in terms of the effects of crystallite size, surface-to-volume ratio and homogeneity of the doping cations.Monodisperse β-NaYF4 : Yb

  9. Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide.

    PubMed

    Tong, Liping; Qi, Wei; Wang, Mengfan; Huang, Renliang; Su, Rongxin; He, Zhimin

    2016-07-01

    It is broadly observed that graphene oxide (GO) films appear transparent with a thickness of about several nanometers, whereas they appear dark brown or almost black with thickness of more than 1 μm. The basic color mechanism of GO film on a sub-micrometer scale, however, is not well understood. This study reports on GO pseudo-1D photonic crystals (p1D-PhCs) exhibiting tunable structural colors in the visible wavelength range owing to its 1D Bragg nanostructures. Striking structural colors of GO p1D-PhCs could be tuned by simply changing either the volume or concentration of the aqueous GO dispersion during vacuum filtration. Moreover, the quantitative relationship between thickness and reflection wavelength of GO p1D-PhCs has been revealed, thereby providing a theoretical basis to rationally design structural colors of GO p1D-PhCs. The spectral response of GO p1D-PhCs to humidity is also obtained clearly showing the wavelength shift of GO p1D-PhCs at differently relative humidity values and thus encouraging the integration of structural color printing and the humidity-responsive property of GO p1D-PhCs to develop a visible and fast-responsive anti-counterfeiting label. The results pave the way for a variety of potential applications of GO in optics, structural color printing, sensing, and anti-counterfeiting.

  10. Electrostatic MEMS vibration energy harvester for HVAC applications with impact-based frequency up-conversion

    NASA Astrophysics Data System (ADS)

    Oxaal, J.; Hella, M.; Borca-Tasciuc, D.-A.

    2016-12-01

    This paper reports on electrostatic MEMS vibration energy harvesters with gap-closing interdigitated electrodes, designed for and tested on HVAC air ducts. The harvesters were fabricated on SOI wafers with 200 µm device layer using a custom microfabrication process. Designs with aspects ratio (electrodes’ gap versus depth) of 10 and 20 were implemented, while the overall footprint was approximately 1 cm  ×  1 cm in both cases. In order to enhance the power output, a dual-level physical stopper system was designed to control the minimum gap between the electrodes, which is a key parameter in the conversion process. The dual-level stopper utilizes cantilever beams to absorb a portion of the impact energy as the electrodes approach the impact point, and a film of parylene with nanometer thickness deposited on the electrode sidewalls. The parylene layer defines the absolute minimum gap and provides electrical insulation. The fabricated devices were first tested on a vibration shaker to characterize the resonant behavior. Devices with aspect ratio 10 were found to exhibit frequency up-conversion, which enhances the amount of converted power. Devices with both aspect ratios were found to exhibits spring hardening due to impact with the stoppers and spring softening behavior at increasing voltage bias. The highest power measured on shaker table for sinusoidal vibrations was 3.13 µW (includes enhancement due to frequency up-conversion driven by impact) for aspect ratio 10, and 0.166 µW for aspect ratio 20. The corresponding dimensional figure-of-merit, defined as the power output normalized to vibration acceleration and frequency, squared voltage and device mass, was in the range of 10 · 10-8 m V-2 for both devices, about an order of magnitude higher than state-of-the-art. Testing was carried out on HVAC air duct vibrating with an RMS acceleration of 155 mg RMS, a primary frequency of 60 Hz and a PSD of 7.15 · 10-2 g2 Hz-1. The peak power measured was

  11. Novel fluorite structured superparamagnetic RbGdF₄ nanocrystals as versatile upconversion host.

    PubMed

    Ahmad, Shahzad; Nagarajan, Rajamani; Raj, Packiya; Prakash, G Vijaya

    2014-10-06

    Fluorite structured nanocrystals of RbGdF4 in cubic symmetry have successfully been synthesized by employing a simple, one-step, and template-free wet chemical method at room temperature. Considering the structural model of cubic KLaF4 in the Fm̅3m space group, the observed powder X-ray diffraction (PXRD) pattern was fitted by the Le Bail procedure with the cubic lattice constant of a = 5.8244 (1) Å. Both high-resolution transmission electron microscopic (HR-TEM) and dynamic light scattering (DLS) measurements revealed the monodispersity of the nanocrystals with their size in the range of 2-18 nm. Upon excitation at 980 nm, Yb(3+), (Er(3+)/Ho(3+)/Tm(3+)) codoped RbGdF4 nanocrystals showed multicolor upconversion including red, yellow, blue, and the combination of basic color (near-white) emissions. Also, near-white upconversion emission from Yb(3+), Ho(3+), Tm(3+) triply doped cubic RbGdF4 nanocrystals was observed at varying laser power densities. RbGdF4 nanocrystals exhibited superparamagnetic behavior with a molar magnetic susceptibility of 2.61 × 10(-2) emu·Oe(-1)·mol(-1) at room temperature, while at low temperature (5 K) a saturation magnetization value of 90.41 emu·g(-1) at an applied field of at 10 kOe was observed. Non-interaction of the localized magnetic moment of Gd(3+) ions in the host matrix has been reasoned out for the observed superparamagnetic behavior. From the Langevin fit of the magnetic data, the average particle diameter obtained was approximately 2.2 nm, matching well with the values from other measurements. RbGdF4 nanocrystals exhibited a large ionic longitudinal relaxivity (r1 = 2.30 s(-1)·mM(-1)), suggesting their potential applicability as a promising agent for T1 contrast magnetic resonance imaging (MRI) in addition to the applications arising from the coupling of optical and magnetic functions such as multiplexing biodetection, bioimaging (optical and MRI), and other optical technologies.

  12. Therapeutic implications of CD1d expression and tumor-infiltrating macrophages in pediatric medulloblastomas.

    PubMed

    Teo, Wan-Yee; Elghetany, M Tarek; Shen, Jianhe; Man, Tsz-Kwong; Li, Xiaonan; Chintagumpala, Murali; Su, Jack Meng Fen; Dauser, Robert; Whitehead, William; Adesina, Adekunle M; Lau, Ching C

    2014-11-01

    Immunobiology of medulloblastoma (MB), the most common malignant brain tumor in children, is poorly understood. Although tumor cells in some MBs were recently shown to express CD1d and be susceptible to Vα24-invariant natural killer T (NKT)-cell cytotoxicity, the clinical relevance of CD1d expression in MB patients remains unknown. We investigated the expression of CD1d in pediatric MBs and correlated with molecular and clinical characteristics. Specifically, we explored if NKT cell therapy can be targeted at a subset of pediatric MBs with poorer prognosis. Particularly, infantile MBs have a worse outcome because radiotherapy is delayed to avoid neurocognitive sequelae. Immunohistochemistry for CD1d was performed on a screening set of 38 primary pediatric MBs. Gene expression of the membrane form of M2 macrophage marker, CD163, was studied in an expanded cohort of 60 tumors. Outcome data was collected prospectively. Thirteen of 38 MBs (34.2 %) expressed CD1d on immunohistochemistry. CD1d was expressed mainly on MB tumor cells, and on some tumor-associated macrophages. Majority (18/22, 82 %) of non sonic-hedgehog/Wingless-activated MBs (group 3 and 4) were CD1d-negative (p = 0.05). A subset of infantile MBs (4/9, 44.4 %) expressed CD1d. Macrophages infiltrating MB expressed CD163 apart from CD1d. Molecular subtypes demonstrated statistical differences in CD163 expression, SHH-tumors were the most enriched (p = 0.006). Molecular and clinical subtypes of pediatric MB exhibit distinct differences in CD1d expression, which have important therapeutic implications. High CD1d expression in infantile MBs offers potential new immunotherapeutic treatment with NKT cell therapy in infants, where treatment is suboptimal due delayed radiotherapy.

  13. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model

    PubMed Central

    Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G

    2015-01-01

    CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical. PMID:25751125

  14. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model.

    PubMed

    Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G

    2015-01-01

    CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical.

  15. Analysis of Rotational Structure in the High-Resolution Infrared Spectra of the TRANS-HEXATRIENE-1,1-D2 and -CIS-1-D1 Species

    NASA Astrophysics Data System (ADS)

    Craig, Norman C.; Fuson, Hannah A.; Tian, Hengfeng; Blake, Thomas A.

    2011-06-01

    Hexatriene-1,1-D2 with some admixture of the cis-1-D1 and trans-1-D1 species was synthesized by reaction of 2,4-pentadienal and (methyl-D3)-triphenylphosphonium iodide (Wittig reagent). The trans isomer was isolated by preparative gas chromatography, and the high-resolution (0.0015 Cm-1) infrared spectrum was recorded on a Bruker IFS 125HR instrument. The rotational structure in two C-type bands for the 1,1-D2 species was analyzed. For this species the bands at 902.043 and 721.864 Cm-1 yielded composite ground state rotational constants of A0 = 0.801882(1), B0 = 0.041850(2), and C0 = 0.039804(1) Cm-1. For the cis-1-D1 species the C-type band at 803.018 Cm-1 gave A0 = 0.809384(2), B0 = 0.043530(3), and C0 = 0.041321(2) Cm-1. By iodine-catalyzed isomerization, we have obtained some of the much less favored cis isomer and hope to obtain microwave spectra for its three deuterium-substituted species. The rotational constants reported here contribute to data needed for determining a semi-experimental structure for trans-hexatriene, which should show that the structural consequences of pi-electron delocalization increase with the chain length of polyenes.

  16. Mapping of the serotonin 5-HT{sub 1D{alpha}} autoreceptor gene (HTR1D) on chromosome 1 using a silent polymorphism in the coding region

    SciTech Connect

    Ozaki, N.; Lappalainen, J.; Linnoila, M.

    1995-04-24

    Serotonin (5-HT){sub ID} receptors are 5-HT release-regulating autoreceptors in the human brain. Abnormalities in brain 5-HT function have been hypothesized in the pathophysiology of various psychiatric disorders, including obsessive-compulsive disorder, autism, mood disorders, eating disorders, impulsive violent behavior, and alcoholism. Thus, mutations occurring in 5-HT autoreceptors may cause or increase the vulnerability to any of these conditions. 5-HT{sub 1D{alpha}} and 5-HT{sub 1D{Beta}} subtypes have been previously localized to chromosomes 1p36.3-p34.3 and 6q13, respectively, using rodent-human hybrids and in situ localization. In this communication, we report the detection of a 5-HT{sub 1D{alpha}} receptor gene polymorphism by single strand conformation polymorphism (SSCP) analysis of the coding sequence. The polymorphism was used for fine scale linkage mapping of 5-HT{sub 1D{alpha}} on chromosome 1. This polymorphism should also be useful for linkage studies in populations and in families. Our analysis also demonstrates that functionally significant coding sequence variants of the 5-HT{sub 1D{alpha}} are probably not abundant either among alcoholics or in the general population. 14 refs., 1 fig., 1 tab.

  17. Electronic-to-vibrational energy transfer efficiency in the O/1 D/-N2 and O/1 D/-CO systems

    NASA Technical Reports Server (NTRS)

    Slanger, T. G.; Black, G.

    1974-01-01

    With the aid of a molecular resonance fluorescence technique, which utilizes optical pumping from the v = 1 level of the ground state of CO by A 1 Pi-X 1 Sigma radiation, a study is made of the efficiency of E-V transfer from O(1 D) to CO. O(1 D) is generated at a known rate by O2 photodissociation at 1470 A in an intermittent mode, and the small modulation of the fluorescent signal associated with CO (v = 1) above the normal thermal background is interpreted in terms of E-V transfer efficiency. The CO (v = 1) lifetime in this system is determined mainly by resonance trapping of the IR fundamental band, and is found to be up to ten times longer than the natural radiative lifetime. For CO, (40 plus or minus 8)% of the O(1 D) energy is converted into vibrational energy. By observing the effect of N2 on the CO (v = 1) fluorescent intensity and lifetime, it is possible to obtain the E-V transfer efficiency for the system O(1 D)-N2 relative to that for O(1 D)-CO. The results indicate that the efficiency for N2 is (83 plus or minus 10)% of that for CO.

  18. An optical sensing composite for cysteine detection using up-conversion nanoparticles and a rhodamine-derived chemosensor: Construction, characterization, photophysical feature and sensing performance

    NASA Astrophysics Data System (ADS)

    Kai, Song; Cheng-Wen, Lu; Yi-Nan, Ding; Tian, Luan; Guang-Ye, Wang; Jing-Mei, Lu; Li-Quan, Guo

    2016-02-01

    In this paper, we reported an optical sensing composite for cysteine detection. A chemosensor derived from rhodamine 6G was synthesized and characterized. To minimize its photobleaching, up-conversion nanocrystals β-NaYF4:Yb3 +/Er3 + were prepared and modified with α-cyclodextrin, serving as excitation host. Under 980 nm laser excitation, emission of these up-conversion nanocrystals overlapped well with the absorption of our chemosensor. Energy transfer between them was analyzed and confirmed by emission decay analysis. Job's analysis suggested that the complexation equilibrium between our chemosensor and cysteine was a simple one with binding stoichiometry of 1:1. A sensing system was constructed with up-conversion nanocrystals (modified with α-cyclodextrin) and this chemosensor. Emission "turn-on" effect was observed only for cysteine but immune to other competing amino acids and thiols, showing a good selectivity.

  19. Infrared-to-Ultraviolet upconversion luminescence of La 0.95Yb 0.49Tm 0.01F 3 nanostructures

    NASA Astrophysics Data System (ADS)

    De, Gejihu; Qin, Weiping; Wang, Weihua; Gui, Bao

    2009-07-01

    In this work, we used the hydrothermal method to synthesize Yb 3+ and Tm 3+ doped LaF 3 nanostructures, which is an ultraviolet upconversion luminescent material. Two distinct shapes such as nanosheets, nanoparticles and bulk samples formed in the products by adjusting the concentrations of the surfactant of the reaction solution. Powder X-ray diffraction analysis showed that the products were pure hexagonal phase, while electron microscopy measurements confirm the formation of different morphologies. These nanostructures exhibit strong ultraviolet upconversion luminescence under the excitation of a 978-nm diode laser. In Yb 3+ and Tm 3+ codoped LaF 3 materials, the relative intensity of ultraviolet and blue upconversion emissions became stronger as the size and morphology of sample changed from bulk to sheets.

  20. ATOMIC AND MOLECULAR PHYSICS: Infrared-to-visible and infrared-to-violet upconversion fluorescence of rare earth doped LaF3 nanocrystals

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Qin Wei-, Ping; Di, Wei-Hua; Zhang Ji-, Sen; Cao, Chun-Yan

    2008-09-01

    This paper reports that hexagonal-phase LaF3:Yb0.203+, Er0.023+ and LaF3:Yb0.203+, Tm0.023+ nanocrystals (NCs) were synthesized via a hydrothermal method. The transmission electron microscopy, selected area electron diffraction, powder x-ray diffraction, and thermogravimetric analysis are used to characterize the NCs. Under 980 nm excitation, the Yb3+/Er3+ and Yb3+/Tm3+ codoped NCs colloidal solutions present bright green and blue upconversion fluorescence, respectively. These NCs show efficient infrared-to-violet and infrared-to-visible upconversion. The upconversion fluorescence mechanisms of La F3:Yb0.023+ Er0.023+ and LaF3:Yb0.023+, Tm0.023+ NCs are investigated with a 980-nm diode laser as excitation source.

  1. Enhanced upconversion emission in crystallization-controllable glass-ceramic fiber containing Yb3+-Er3+ codoped CaF2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Peng, Wencai; Fang, Zaijin; Ma, Zhijun; Qiu, Jianrong

    2016-10-01

    Functional nanocrystal-containing materials have been a hot topic in recent years. However, few researches have focused on functional nanocrystals contained in optical glass fibers. In this research, transparent CaF2 glass-ceramic was prepared by a melt-quenching method. Greatly enhanced upconversion luminescence was observed after heat treatment. By applying a novel method called melt-in-tube, precursor fiber free of crystals was fabricated at the drawing temperature where the clad was softened while the core was melted. Glass-ceramic fiber with fiber core containing Yb3+-Er3+ codoped CaF2 nanocrystals was obtained after heat treatment at a relatively low temperature. Electron probe micro-analyzer measurement shows no obvious element diffusion between the core and clad. Greatly enhanced upconversion emission was detected in the glass-ceramic fiber excited by a 980 nm laser, suggesting the developed glass-ceramic fiber is a promising material for upconversion laser.

  2. Enhanced upconversion emission in crystallization-controllable glass-ceramic fiber containing Yb(3+)-Er(3+) codoped CaF2 nanocrystals.

    PubMed

    Peng, Wencai; Fang, Zaijin; Ma, Zhijun; Qiu, Jianrong

    2016-10-07

    Functional nanocrystal-containing materials have been a hot topic in recent years. However, few researches have focused on functional nanocrystals contained in optical glass fibers. In this research, transparent CaF2 glass-ceramic was prepared by a melt-quenching method. Greatly enhanced upconversion luminescence was observed after heat treatment. By applying a novel method called melt-in-tube, precursor fiber free of crystals was fabricated at the drawing temperature where the clad was softened while the core was melted. Glass-ceramic fiber with fiber core containing Yb(3+)-Er(3+) codoped CaF2 nanocrystals was obtained after heat treatment at a relatively low temperature. Electron probe micro-analyzer measurement shows no obvious element diffusion between the core and clad. Greatly enhanced upconversion emission was detected in the glass-ceramic fiber excited by a 980 nm laser, suggesting the developed glass-ceramic fiber is a promising material for upconversion laser.

  3. X(3872) as a {sup 1}D{sub 2} charmonium state

    SciTech Connect

    Kalashnikova, Yu. S.; Nefediev, A. V.

    2010-11-01

    The {sup 1}D{sub 2} charmonium assignment for the X(3872) meson is considered, as prompted by a recent result from the BABAR Collaboration, favoring 2{sup -+} quantum numbers for X. It is shown that established properties of X(3872) are in a drastic conflict with the {sup 1}D{sub 2} cc assignment.

  4. A rational route to SCM materials based on a 1-D cobalt selenocyanato coordination polymer.

    PubMed

    Boeckmann, Jan; Näther, Christian

    2011-07-07

    Thermal annealing of a discrete complex with terminal SeCN anions and monodentate coligands enforces the formation of a 1D cobalt selenocyanato coordination polymer that shows slow relaxation of the magnetization. Therefore, this approach offers a rational route to 1D materials that might show single chain magnetic behaviour.

  5. Enhancement of red upconversion emission of cubic phase NaLuF{sub 4}: Yb{sup 3+}/Ho{sup 3+}/Ce{sup 3+} nanocrystals

    SciTech Connect

    Gao, Wei Dong, Jun Liu, Jihong; Yan, Xuewen

    2016-08-15

    Highlights: • The upconversion emission of Ho{sup 3+} ions was tuned from green to red. • The upconversion mechanism of Ho{sup 3+} ions was discussed based on emission spectrum. • The conversion efficiency between Ho{sup 3+} and Ce{sup 3+} were studied and calculated. - Abstract: The red upconversion emission of lanthanide-doped fluoride nanocrystals have great potential applications in color display and anticounterfeiting applications, especially for biological imaging and biomedical. In this work, a significant enhancement of red upconversion emission of Ho{sup 3+} ions was successfully obtained in the cubic phase NaLuF{sub 4} nanocrystals through codoping Ce{sup 3+} ions under NIR 980 nm excitation. The ratio of red-to-green emission of Ho{sup 3+} ions was enhanced about 10-fold, which is due to two efficient cross relaxation processes derived from Ho{sup 3+} and Ce{sup 3+} ions promoted the red emission and quenched the green emission. The upconversion emission and luminescent colors of NaLuF{sub 4}: Yb{sup 3+}/Ho{sup 3+} nanocrystals were carefully investigated by a confocal microscopy setup. The possible upconversion emission mechanism and conversion efficiency of cross relaxation between Ho{sup 3+} and Ce{sup 3+} ions were discussed in detail. The current study suggests that strong red emission of NaLuF{sub 4}: Yb{sup 3+}/Ho{sup 3+}/Ce{sup 3+} nanomaterials can be used for color display and anticounterfeiting techniques.

  6. Luminescence energy transfer detection of PSA in red region based on Mn2+-enhanced NaYF4:Yb, Er upconversion nanorods.

    PubMed

    Zhang, Jianguo; Wang, Shaozhen; Gao, Ni; Feng, Dexiang; Wang, Lun; Chen, Hongqi

    2015-10-15

    A new turn-on luminescence energy transfer (LET) system has been designed for the detection of prostate specific antigen (PSA, a cancer marker) that utilizes Mn(2+)-enhanced long wavelength luminescence NaYF4:Yb, Er upconversion nanorods as the donor and gold nanorods as the acceptor. The Mn(2+)-doped NaYF4:Yb,Er upconversion luminescence nanorods with an emission peak located in the red region were synthesized. The presence of Mn(2+) markedly increased the luminescence intensity over that of the NaYF4:Yb, Er upconversion nanomaterials (excited by a 980 nm continuous wavelength laser). The surfaces of Mn(2+)-doped NaYF4:Yb, Er upconversion nanorods were modified with poly(acrylic acid). Antibodies against prostate specific antigen were bound to the surface of the carboxyl-functionalized upconversion nanorods, which acted as the energy donor in this LET system. Gold nanorods with an absorption band at ~666 nm were synthesized by the seed growth method, acted as the energy acceptor. The emission band of the upconversion nanorods overlapped well with the absorption band of the gold nanorods. The luminescence was quenched because of the electrostatic interactions that shortened the distance between the donor (negatively charged) and the accepter (positively charged).When the PSA antigen was added into the system, the energy acceptor and the energy donors were separated because the binding affinity between PSA and anti-PSA was greater than the electrostatic interactions, and thereby the luminescence was recovered. The linear range of detecting PSA was from 0.1172 to 18.75 ng/mL (R=0.995), with a limit of detection for PSA as low as 0.1129 ng/mL. The method was successfully applied to the sensing of PSA in human serum samples.

  7. Influence of surface coating on structural, morphological and optical properties of upconversion-luminescent LaF3:Yb/Er nanoparticles

    NASA Astrophysics Data System (ADS)

    Ansari, Anees A.; Yadav, Ranvijay; Rai, S. B.

    2016-07-01

    LaF3:Yb/Er (core), LaF3:Yb/Er@LaF3 (core/shell) and LaF3:Yb/Er@LaF3@SiO2 (core/shell/SiO2) nanoparticles were synthesized using citric-acid-based complexation process. X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray analysis, optical absorption, band-gap energy ( E g), Fourier transform infrared and upconversion emission spectroscopy were employed to investigate the structural, morphological and optical properties of the synthesized core and core/shell/SiO2 nanoparticles. These core/shell/SiO2 nanoparticles can be well dispersed in aqueous solvents to form clear colloidal solution. The optical band-gap energy was decreased after shell formation due to increase in the crystalline size. The growth of an inactive and porous silica layers simultaneously on the surface of luminescent core-nanoparticles resulting an increase in average crystalline size of the nanoparticles. As-prepared inert shell-coated core/shell nanoparticles show intensive upconversion-luminescence as compared to the seed-core and silica-surface-modified core/shell/SiO2 nanoparticles because luminescent ions (Yb3+ and Er3+) ions located at the particle surface were protected from the non-radiative decay arising from surface dangling bonds and capping agent. However, our study revealed that there was only a slight reduction in upconversion efficiency for the silica-modified core/shell nanoparticles, indicating that upconversion properties of the upconversion nanoparticles are largely preserved in the core/shell/SiO2 nanoparticles. Absorption and upconversion-luminescence properties were examined for future application in the development of optical devices as well as optical bioprobes.

  8. The organic anion transport polypeptide 1d1 (Oatp1d1) mediates hepatocellular uptake of phalloidin and microcystin into skate liver

    SciTech Connect

    Meier-Abt, F.; Hammann-Haenni, A.; Stieger, B.; Ballatori, N.; Boyer, J.L. . E-mail: james.boyer@yale.edu

    2007-02-01

    Organic anion transporting polypeptides (rodent Oatp; human OATP) mediate cellular uptake of numerous organic compounds including xenobiotic toxins into mammalian hepatocytes. In the little skate Leucoraja erinacea a liver-specific Oatp (Oatp1d1, also called sOatp) has been identified and suggested to represent an evolutionarily ancient precursor of the mammalian liver OATP1B1 (human), Oatp1b2 (rat), and OATP1B3 (human). The present study tested whether Oatp1d1 shares functional transport activity of the xenobiotic oligopeptide toxins phalloidin and microcystin with the mammalian liver Oatps/OATPs. The phalloidin analogue [{sup 3}H]-demethylphalloin was taken up into skate hepatocytes with high affinity (Km {approx} 0.4 {mu}M), and uptake could be inhibited by phalloidin and a variety of typical Oatp/OATP substrates such as bromosulfophthalein, bile salts, estrone-3-sulfate, cyclosporine A and high concentrations of microcystin-LR (Ki {approx} 150 {mu}M). When expressed in Xenopus laevis oocytes Oatp1d1 increased uptake of demethylphalloin (Km {approx} 2.2 {mu}M) and microcystin-LR (Km {approx} 27 {mu}M) 2- to 3-fold over water-injected oocytes, whereas the alternative skate liver organic anion transporter, the dimeric Ost{alpha}/{beta}, exhibited no phalloidin and only minor microcystin-LR transport. Also, the closest mammalian Oatp1d1 orthologue, the human brain and testis OATP1C1, did not show any phalloidin transport activity. These results demonstrate that the evolutionarily ancient Oatp1d1 is able to mediate uptake of cyclic oligopeptide toxins into skate liver. The findings support the notion that Oatp1d1 is a precursor of the liver-specific mammalian Oatps/OATPs and that its transport properties are closely associated with certain forms of toxic liver injury such as for example protein phosphatase inhibition by the water-borne toxin microcystin.

  9. Non-thermal distribution of O(1D) atoms in the night-time thermosphere

    NASA Technical Reports Server (NTRS)

    Yee, Jeng-Hwa

    1988-01-01

    The 6300 A O(1D-3P) emission has been used for many years to remotely monitor the thermospheric temperature from the Doppler width of its line profile. The O(1D) atoms in the nighttime thermosphere are initially produced by the dissociative recombination of O2(+) ions with kinetic energy much greater than the thermal energy of the ambient neutrals. The validity of the technique to monitor neutral ambient temperature by measuring O(1D) 6300 A emission depends on the degree of thermalization of the O(1D) atoms. The object of this study is to calculate the velocity distribution of the O(1D) atoms and to examine the effect of nonthermal distribution on the nighttime thermospheric neutral temperature determined.

  10. Upconversion effective enhancement by producing various coordination surroundings of rare-Earth ions.

    PubMed

    Huang, Qingming; Yu, Han; Ma, En; Zhang, Xinqi; Cao, Wenbing; Yang, Chengang; Yu, Jianchang

    2015-03-16

    In this manuscript, we present a simple route to enhance upconversion (UC) emission by producing two different coordination sites of trivalent cations in a matrix material and adjusting crystal field asymmetry by Hf(4+) co-doping. A cubic phase, Y3.2Al0.32Yb0.4Er0.08F12, with these structural characteristics was synthesized successfully by introducing a small ion (Al(3+)) into YF3. X-ray diffraction (XRD), nuclear magnetic resonance (NMR), transmission electron microscopy (TEM), X-ray spectroscopy (XPS), and fluorescence spectrophotometry (FS) were employed for its crystalline structure and luminescent property analysis. As a result, the coordination environments of the rare-earth ions were varied more obviously than a hexagonal NaYF4 matrix with the same Hf(4+) co-doping concentration, with vertical comparison, UC luminescent intensities of cubic Y3.2Al0.32Yb0.4Er0.08F12 were largely enhanced (∼32-80 times greater than that of different band emissions), while the maximum enhancement of hexagonal NaYF4 was by a factor of ∼12. According to our experimental results, the mechanism has been demonstrated involving the crystalline structure, crystal field asymmetry, luminescence lifetime, hypersensitive transition, and so on. The study may be helpful for the design and fabrication of high-performance UC materials.

  11. Upconversion fluorescent nanoparticles as a potential tool for in-depth imaging

    NASA Astrophysics Data System (ADS)

    Nagarajan, Sounderya; Zhang, Yong

    2011-09-01

    Upconversion nanoparticles (UCNs) are nanoparticles that are excited in the near infrared (NIR) region with emission in the visible or NIR regions. This makes these particles attractive for use in biological imaging as the NIR light can penetrate the tissue better with minimal absorption/scattering. This paper discusses the study of the depth to which cells can be imaged using these nanoparticles. UCNs with NaYF4 nanocrystals doped with Yb3 + , Er3 + (visible emission)/Yb3 + , Tm3 + (NIR emission) were synthesized and modified with silica enabling their dispersion in water and conjugation of biomolecules to their surface. The size of the sample was characterized using transmission electron microscopy and the fluorescence measured using a fluorescence spectrometer at an excitation of 980 nm. Tissue phantoms were prepared by reported methods to mimic skin/muscle tissue and it was observed that the cells could be imaged up to a depth of 3 mm using the NIR emitting UCNs. Further, the depth of detection was evaluated for UCNs targeted to gap junctions formed between cardiac cells.

  12. Strong visible cooperative up-conversion emission in ZrO2:Yb3+ nanocrystals.

    PubMed

    De la Rosa, E; Salas, P; Díaz-Torres, L A; Martínez, A; Angeles, C

    2005-09-01

    Blue, green, and red emission was observed under infrared excitation in ZrO2:Yb3+ nanocrystals prepared by the sol-gel process. The structural characterization was performed by using XRD and HRTEM, suggesting that the crystalline phase of the nanoparticles is controlled by the active ion concentration being mainly tetragonal for 2 mol% of dopant and mainly monoclinic for 0.5 mol%. The blue emission was explained in terms of the cooperative deexcitation of an Yb-Yb pair, while the green and red bands were associated with the up-conversion of traces of Er ion. The number of photons involved in the luminescence process is analyzed in order to confirm that cooperative emission is produced by the interaction of an Yb pair and that the green and red emission are the results of energy transfer between Yb-Er ions. The high efficiency of all bands is explained in terms of the high surface area of the nanoparticles.

  13. Effective cancer targeting and imaging using macrophage membrane-camouflaged upconversion nanoparticles.

    PubMed

    Rao, Lang; He, Zhaobo; Meng, Qian-Fang; Zhou, Ziyao; Bu, Lin-Lin; Guo, Shi-Shang; Liu, Wei; Zhao, Xing-Zhong

    2017-02-01

    Upconversion nanoparticles (UCNPs), with fascinating optical and chemical features, are a promising new generation of fluorescent probes. Although UCNPs have been widely used in diagnosis and therapy, there is an unmet need for a simple and effective surface engineering method that can produce cancer-targeting UCNPs. Here, we show that by coating particles with macrophage membranes, it becomes possible to utilize the adhesion between macrophages and cancer cells for effective cancer targeting. Natural macrophage membranes along with their associated membrane proteins were reconstructed into vesicles and then coated onto synthetic UCNPs. The resulting macrophage membrane-camouflaged particles (MM-UCNPs) exhibited effective cancer targeting capability inherited from the source cells and were further used for enhanced in vivo cancer imaging. Finally, the blood biochemistry, hematology testing and histology analysis results suggested a good in vivo biocompatibility of MM-UCNPs. The combination of synthetic nanoparticles with biomimetic cell membranes embodies a novel design strategy toward developing biocompatible nanoprobes for potential clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 521-530, 2017.

  14. An Anion-Induced Hydrothermal Oriented-Explosive Strategy for the Synthesis of Porous Upconversion Nanocrystals

    PubMed Central

    Qiu, Peiyu; Sun, Rongjin; Gao, Guo; Zhang, Chunlei; Chen, Bin; Yan, Naishun; Yin, Ting; Liu, Yanlei; Zhang, Jingjing; Yang, Yao; Cui, Daxiang

    2015-01-01

    Rare-earth (RE)-doped upconversion nanocrystals (UCNCs) are deemed as the promising candidates of luminescent nanoprobe for biological imaging and labeling. A number of methods have been used for the fabrication of UCNCs, but their assembly into porous architectures with desired size, shape and crystallographic phase remains a long-term challenging task. Here we report a facile, anion-induced hydrothermal oriented-explosive method to simultaneously control size, shape and phase of porous UCNCs. Our results confirmed the anion-induced hydrothermal oriented-explosion porous structure, size and phase transition for the cubic/hexagonal phase of NaLuF4 and NaGdF4 nanocrystals with various sizes and shapes. This general method is very important not only for successfully preparing lanthanide doped porous UCNCs, but also for clarifying the formation process of porous UCNCs in the hydrothermal system. The synthesized UCNCs were used for in vitro and in vivo CT imaging, and could be acted as the potential CT contrast agents. PMID:25767613

  15. Optical frequency upconversion technique for transmission of wireless MIMO-type signals over optical fiber.

    PubMed

    Shaddad, R Q; Mohammad, A B; Al-Gailani, S A; Al-Hetar, A M

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.

  16. Lanthanide-Doped Upconversion Nanoparticles: Emerging Intelligent Light-Activated Drug Delivery Systems.

    PubMed

    Bagheri, Ali; Arandiyan, Hamidreza; Boyer, Cyrille; Lim, May

    2016-07-01

    The development of drug delivery systems (DDSs) using near infrared (NIR) light and upconversion nanoparticles (UCNPs) has generated intensive interest over the past five years. These NIR-initiated DDSs not only offer a high degree of spatial and temporal determination of therapeutic release but also provide precise control over the released dosage. Furthermore, these nanoplatforms confer several advantages over conventional light-based DDSs-NIR offers better tissue penetration depth and a reduced risk of cellular photo-damage caused by exposure to light at high-energy wavelengths (e.g., ultraviolet light, <400 nm). The development of DDSs that can be activated by low intensity NIR illumination is highly desirable to avoid exposing living tissues to excessive heat that can limit the in vivo application of these DDSs. This encompasses research in three directions: (i) enhancing the quantum yield of the UCNPs; (ii) incorporation of photo-responsive materials with red-shifted absorptions into the UCNPs; and (iii) tuning the UCNPs excitation wavelength. This review focuses on recent advances in the development of NIR-initiated DDS, with emphasis on the use of photo-responsive compounds and polymeric materials conjugated onto UCNPs. The challenges that limit UCNPs clinical applications, alongside with the aforementioned techniques that have emerged to overcome these limitations, are highlighted.

  17. Controllable self-assembly of NaREF4 upconversion nanoparticles and their distinctive fluorescence properties

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxia; Ni, Yaru; Zhu, Cheng; Fang, Liang; Kou, Jiahui; Lu, Chunhua; Xu, Zhongzi

    2016-07-01

    The paper presents the growth of hexagonal NaYF4:Yb3+, Tm3+ nanocrystals with tunable sizes induced by different contents of doped Yb3+ ions (10%-99.5%) using the thermal decomposition method. These nanoparticles, which have different sizes, are then self-assembled at the interface of cyclohexane and ethylene and transferred onto a normal glass slide. It is found that the size of nanoparticles directs their self-assembly. Due to the appropriate size of 40.5 nm, 15% Yb3+ ions doped nanoparticles are able to be self-assembled into an ordered inorganic monolayer membrane with a large area of about 10 × 10 μm2. More importantly, the obvious short-wave (300-500 nm) fluorescence improvement of the ordered 2D self-assembly structure is observed to be relative to disordered nanoparticles, which is because intrinsic absorption and scattering of upconversion nanoparticles leads to the self-loss of fluorescence, especially the short-wave fluorescence inside the disordered structure, and the relative emission of short-wave fluorescence is reduced. The construction of a 2D self-assembly structure can effectively avoid this and improve the radiated short-wave fluorescence, especially UV photons, and is able to direct the design of new types of solid-state optical materials in many fields.

  18. Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry

    NASA Astrophysics Data System (ADS)

    Brites, Carlos D. S.; Xie, Xiaoji; Debasu, Mengistie L.; Qin, Xian; Chen, Runfeng; Huang, Wei; Rocha, João; Liu, Xiaogang; Carlos, Luís D.

    2016-10-01

    Brownian motion is one of the most fascinating phenomena in nature. Its conceptual implications have a profound impact in almost every field of science and even economics, from dissipative processes in thermodynamic systems, gene therapy in biomedical research, artificial motors and galaxy formation to the behaviour of stock prices. However, despite extensive experimental investigations, the basic microscopic knowledge of prototypical systems such as colloidal particles in a fluid is still far from being complete. This is particularly the case for the measurement of the particles' instantaneous velocities, elusive due to the rapid random movements on extremely short timescales. Here, we report the measurement of the instantaneous ballistic velocity of Brownian nanocrystals suspended in both aqueous and organic solvents. To achieve this, we develop a technique based on upconversion nanothermometry. We find that the population of excited electronic states in NaYF4:Yb/Er nanocrystals at thermal equilibrium can be used for temperature mapping of the nanofluid with great thermal sensitivity (1.15% K-1 at 296 K) and a high spatial resolution (<1 μm). A distinct correlation between the heat flux in the nanofluid and the temporal evolution of Er3+ emission allows us to measure the instantaneous velocity of nanocrystals with different sizes and shapes.

  19. Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy.

    PubMed

    Qian, Hai Sheng; Guo, Hui Chen; Ho, Paul Chi-Lui; Mahendran, Ratha; Zhang, Yong

    2009-10-01

    Near-infrared (NIR)-to-visible up-conversion fluorescent nanoparticles have potential to be used for photodynamic therapy (PDT) in deep tissue because NIR light can penetrate thick tissue due to weak absorption in the optical window. Here a uniform layer of mesoporous silica is coated onto NaYF(4) up-converting nanocrystals, with a large surface area of approximately 770 m(2) g(-1) and an average pore size of 2 nm. A photosensitizer, zinc phthalocyanine, is incorporated into the mesoporous silica. Upon excitation by a NIR laser, the nanocrystals convert NIR light to visible light, which further activates the photosensitizer to release reactive singlet oxygen to kill cancer cells. The photosensitizer encapsulated in mesoporous silica is protected from degradation in the harsh biological environment. It is demonstrated that the photosensitizers loaded into the porous silica shell of the nanoparticles are not released out of the silica while they continuously produce singlet oxygen upon excitation by a NIR laser. The nanoparticles are reusable as the photosensitizers encapsulated in the silica are removed by soaking in ethanol.

  20. Highly Efficient Photon Upconversion in Self-Assembled Light-Harvesting Molecular Systems

    PubMed Central

    Ogawa, Taku; Yanai, Nobuhiro; Monguzzi, Angelo; Kimizuka, Nobuo

    2015-01-01

    To meet the world’s demands on the development of sunlight-powered renewable energy production, triplet–triplet annihilation-based photon upconversion (TTA–UC) has raised great expectations. However, an ideal highly efficient, low-power, and in-air TTA–UC has not been achieved. Here, we report a novel self-assembly approach to achieve this, which enabled highly efficient TTA–UC even in the presence of oxygen. A newly developed lipophilic 9,10-diphenylanthracene-based emitter molecule functionalized with multiple hydrogen-bonding moieties spontaneously coassembled with a triplet sensitizer in organic media, showing efficient triplet sensitization and subsequent triplet energy migration among the preorganized chromophores. This supramolecular light-harvesting system shows a high UC quantum yield of 30% optimized at low excitation power in deaerated conditions. Significantly, the UC emission largely remains even in an air-saturated solution, and this approach is facilely applicable to organogel and solid-film systems. PMID:26057321

  1. Seed mediated one-pot growth of versatile heterogeneous upconversion nanocrystals for multimodal bioimaging

    NASA Astrophysics Data System (ADS)

    Wen, Shihui; Li, Du; Liu, Deming; Xu, Xiaoxue; Du, Yi; Mitchell, David R. G.; Shi, Bingyang; Shi, Xiangyang; Jin, Dayong

    2016-12-01

    The rapid development of a variety of molecular contrast agents makes the multimodality bioimaging highly attractive towards higher resolution, more sensitive, informative diagnosis. The key lies in the development of facile material synthesis that allows the integration of multiple contrast agents, ideally in a way that each of the components should be logically assembled to maximize their performances. Here, we report the one-pot programmable growth of multifunctional heterogeneous nanocrystal with tunable size, shape, composition, and properties. We demonstrated a facile one-pot hot-injection method to enable the highly selectively controlled growth of different sodium lanthanide fluoride nanomaterials in either longitudinal or transversal directions with atomic scale precision. This technique allows the upconversion luminescence signal, MRI signal and x-ray signal logically integrated and optimized within one single versatile nanoplatform for multimode bioimaging. These findings suggest that the facile strategy developed here have the promising to get the desired heterogeneous nanocrystals as an all-in-one contrast agent for integrated and self-correlative multimodal bioimaging.

  2. Increasing electrical conductivity of upconversion materials by in situ binding with graphene

    NASA Astrophysics Data System (ADS)

    Wu, Suli; Sun, Xiaoqian; Zhu, Jiacheng; Chang, Jie; Zhang, Shufen

    2016-08-01

    Upconversion nanoparticles (UCNPs) hold promise as near-infrared light converters to enhance the efficiency of solar cells. However, the prevalent use of UCNPs in solar cells is restricted by their poor electrical conductivity and low emission efficiency. Here reduced graphene oxide (rGO)-NaYF4:Yb3+/Er3+ composites are proposed to achieve good electrical conductivity due to the high charge carrier mobility of rGO. Composites of rGO and UCNPs combined by a chemical bond are in situ synthesized by the hydrothermal method, followed by a reduction process. The contact of UCNPs with rGO is proved by SEM, and the binding between the rGO-UCNP composites is confirmed by Fourier transform infrared spectroscopy. The composites are doped into the photoanode of a solar cell. As anticipated, electrochemical impedance spectroscopy confirms the good electrical conductivity of the in situ synthesized rGO-UCNPs. Furthermore, the use of rGO-UCNPs in solar cells enables an enhancement in short-circuit current density and overall efficiency by about 10%. These findings reveal that the combination of UCNPs with rGO opens up new opportunities of extending the use of UCNPs in the area of solar energy harvesting.

  3. Upconversion fluorescence metal-organic frameworks thermo-sensitive imprinted polymer for enrichment and sensing protein.

    PubMed

    Guo, Ting; Deng, Qiliang; Fang, Guozhen; Gu, Dahai; Yang, Yukun; Wang, Shuo

    2016-05-15

    A novel fluorescence material with thermo-sensitive for the enrichment and sensing of protein was successfully prepared by combining molecular imprinting technology with upconversion nanoparticles (UCNPs) and metal-organic frameworks (MOFs). Herein, the UCNPs acted as signal reporter for composite materials because of its excellent fluorescence property and chemical stability. MOFs were introduced to molecularly imprinted polymer (MIP) due to its high specific surface area which increases the rate of mass transfer relative to that of traditional bulk MIP. The thermo-sensitive imprinted material which allows for swelling and shrinking with response to temperature changes was prepared by choosing Bovine hemoglobin (BHB) as the template, N-isopropyl acrylamide (NIPAAM) as the temperature-sensitive functional monomer and N,N-methylenebisacrylamide (MBA) as the cross-linker. The recognition characterizations of imprinted material-coated UCNPs/MOFs (UCNPs/MOFs/MIP) were evaluated, and the results showed that the fluorescence intensity of UCNPs/MOFs/MIP reduced gradually with the increase of BHB concentration. The fluorescence material was response to the temperature. The adsorption capacity was as much as 167.6 mg/g at 28°C and 101.2mg/g at 44°C, which was higher than that of traditional MIP. Therefore, this new fluorescence material for enrichment and sensing protein is very promising for future applications.

  4. Optimizing the Activation of Chlorin e6 Utilizing Upconversion Energy Transfer

    NASA Astrophysics Data System (ADS)

    Avalos, Julio C.; Pedraza, Francisco J.; Sardar, Dhiraj K.

    2015-03-01

    Current cancer therapy techniques, such as chemotherapy and radiation therapy, possess several drawbacks including lack of selectivity resulting in harmful side effects. Photodynamic therapy (PDT) is one of the fastest emerging techniques due to its many advantages, including the use of nonionizing radiation, targeted delivery, and controlled doses. In PDT, photosensitizers (PSs) are activated inside targeted cells to produce irreversible damage inducing cell death. Since most PSs operate in the visible range, it is difficult to activate them due to the high attenuation of soft tissue. Upconverting nanoparticles (UCNP) are able to absorb in the NIR region, where light is less attenuated, and emit in the visible range, resulting in deeper tissue penetration. UCNPs are able to assist with the activation of the PS by energy transfer when the PS is conjugated onto the UCNP. Chlorin e6 (Ce6) is a commonly used PSs due to its ability to release reactive oxygen species (ROS), which is one of the main processes utilized in PDT. The UCNP studied contain a combination of rare earth doped ions including Erbium, Thulium, and Holmium precisely doped into the host nanocrystal to improve upconversion emission and energy transfer. The work presented will focus on exploring the factors that affect the activation of Ce6. The results will include the enhancement of Ce6 activation and ROS release when conjugated onto a rare earth-doped UCNP. This research was funded by NSF-PREM Grant No. DMR -0934218 and RISE Grant No. GM 060655.

  5. Highly Efficient Photon Upconversion in Self-Assembled Light-Harvesting Molecular Systems

    NASA Astrophysics Data System (ADS)

    Ogawa, Taku; Yanai, Nobuhiro; Monguzzi, Angelo; Kimizuka, Nobuo

    2015-06-01

    To meet the world’s demands on the development of sunlight-powered renewable energy production, triplet-triplet annihilation-based photon upconversion (TTA-UC) has raised great expectations. However, an ideal highly efficient, low-power, and in-air TTA-UC has not been achieved. Here, we report a novel self-assembly approach to achieve this, which enabled highly efficient TTA-UC even in the presence of oxygen. A newly developed lipophilic 9,10-diphenylanthracene-based emitter molecule functionalized with multiple hydrogen-bonding moieties spontaneously coassembled with a triplet sensitizer in organic media, showing efficient triplet sensitization and subsequent triplet energy migration among the preorganized chromophores. This supramolecular light-harvesting system shows a high UC quantum yield of 30% optimized at low excitation power in deaerated conditions. Significantly, the UC emission largely remains even in an air-saturated solution, and this approach is facilely applicable to organogel and solid-film systems.

  6. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature

    PubMed Central

    Zhu, Xingjun; Feng, Wei; Chang, Jian; Tan, Yan-Wen; Li, Jiachang; Chen, Min; Sun, Yun; Li, Fuyou

    2016-01-01

    Photothermal therapy (PTT) at present, following the temperature definition for conventional thermal therapy, usually keeps the temperature of lesions at 42–45 °C or even higher. Such high temperature kills cancer cells but also increases the damage of normal tissues near lesions through heat conduction and thus brings about more side effects and inhibits therapeutic accuracy. Here we use temperature-feedback upconversion nanoparticle combined with photothermal material for real-time monitoring of microscopic temperature in PTT. We observe that microscopic temperature of photothermal material upon illumination is high enough to kill cancer cells when the temperature of lesions is still low enough to prevent damage to normal tissue. On the basis of the above phenomenon, we further realize high spatial resolution photothermal ablation of labelled tumour with minimal damage to normal tissues in vivo. Our work points to a method for investigating photothermal properties at nanoscale, and for the development of new generation of PTT strategy. PMID:26842674

  7. Core – shell upconversion nanoparticle – semiconductor heterostructures for photodynamic therapy

    PubMed Central

    Dou, Qing Qing; Rengaramchandran, Adith; Selvan, Subramanian Tamil; Paulmurugan, Ramasamy; Zhang, Yong

    2015-01-01

    Core-shell nanoparticles (CSNPs) with diverse chemical compositions have been attracting greater attention in recent years. However, it has been a challenge to develop CSNPs with different crystal structures due to the lattice mismatch of the nanocrystals. Here we report a rational design of core-shell heterostructure consisting of NaYF4:Yb,Tm upconversion nanoparticle (UCN) as the core and ZnO semiconductor as the shell for potential application in photodynamic therapy (PDT). The core-shell architecture (confirmed by TEM and STEM) enables for improving the loading efficiency of photosensitizer (ZnO) as the semiconductor is directly coated on the UCN core. Importantly, UCN acts as a transducer to sensitize ZnO and trigger the generation of cytotoxic reactive oxygen species (ROS) to induce cancer cell death. We also present a firefly luciferase (FLuc) reporter gene based molecular biosensor (ARE-FLuc) to measure the antioxidant signaling response activated in cells during the release of ROS in response to the exposure of CSNPs under 980 nm NIR light. The breast cancer cells (MDA-MB-231 and 4T1) exposed to CSNPs showed significant release of ROS as measured by aminophenyl fluorescein (APF) and ARE-FLuc luciferase assays, and ~45% cancer cell death as measured by MTT assay, when illuminated with 980 nm NIR light. PMID:25652742

  8. Near infrared circularly polarized light triggered enantioselective photo-polymerization using upconversion nanophosphors.

    PubMed

    Yang, Guang; Zhu, Liangfu; Hu, Jingang; Xia, Hongyan; Qiu, Dong; Zhang, Qijin; Zhang, Douguo; Zou, Gang

    2017-04-12

    Circularly polarized light (CPL), is considered to be a true chiral entity and has been suggested as an explanation for the introduction of initial chiral biases into key biomolecular building blocks. CPL used in recently asymmetric photochemical reactions are mainly in UV and visible region, while natural CPL observed in star-forming regions of the Orion constellation are in the infrared (IR) band. Whether CPL in the IR or near IR (NIR) region could be utilized to trigger asymmetric photochemical reactions remains a question to be answered. Herein, we demonstrated that the enantioselective photo-polymerization could be realized for the first time using 980 nm CPL as the only chiral source. By incorporation with the NaYF4 nanophosphors as the antenna species, the enantioselective photo-polymerization of achiral benzaldehyde-substitute diacetylene (BSDA) monomer can be realized based on upconversion mechanism upon exposure to 980 nm CPL. The screw direction of helical PDA chains can be totally controlled by the handedness of incident 980 nm CPL.

  9. Upconversion Nanoparticle-Based Förster Resonance Energy Transfer for Detecting DNA Methylation

    PubMed Central

    Kim, Seockjune; Hwang, Sang-Hyun; Im, Su-Gyeong; Lee, Min-Ki; Lee, Chang-Hun; Son, Sang Jun; Oh, Heung-Bum

    2016-01-01

    Aberrant methylation of a crucial CpG island is the main mechanism for the inactivation of CDKN2A in the early stages of carcinogenesis. Therefore, the detection of DNA methylation with high sensitivity and specificity is important, and various detection methods have been developed. Recently, upconversion nanoparticles (UCNPs) have been found to display a high signal-to-noise ratio and no photobleaching, making them useful for diagnostic applications. In this pilot study, we applied UCNPs to the detection of CDKN2A methylation and evaluated the feasibility of this system for use in molecular diagnostics. DNA PCR was performed using biotinylated primers, and the PCR amplicon was then intercalated with SYTOX Orange dye, followed by incubation with streptavidin-conjugated UCNPs. Fluorescence detection of the Förster resonance energy transfer (FRET) of the UCNPs (MS-UC-FRET) was then performed, and the results were compared to those from real-time PCR (RQ-PCR) and pyrosequencing. Detection by MS-UC-FRET was more sensitive than that by either RQ-PCR or pyrosequencing. Our results confirmed the success of our MS-UC-FRET system for detecting DNA methylation and demonstrated the potential application of this system in molecular diagnostics. PMID:27517925

  10. Upconversion luminescence, ferroelectrics and piezoelectrics of Er Doped SrBi4Ti4O15

    NASA Astrophysics Data System (ADS)

    Peng, Dengfeng; Zou, Hua; Xu, Chaonan; Wang, Xusheng; Yao, Xi; Lin, Jian; Sun, Tiantuo

    2012-12-01

    Er3+ doped SrBi4Ti4O15 (SBT) bismuth layered-structure ferroelectric ceramics were synthesized by the traditional solid-state method, and their upconversion photoluminescent (UC) properties were investigated as a function of Er3+ concentration and incident pump power. Green (555 nm) and red (670 nm) emission bands were obtained under 980 nm excitation at room temperature, which corresponded to the radiative transitions from 4S3/2, and 4F9/2 to 4I15/2, respectively. The emission color of the samples could be changed with moderating the doping concentrations. The dependence of UC intensity on pumping power indicated a two-photon emission process. Studies on dielectric properties indicated that the introduction of Er increased the ferroelectric-paraelectric phase transition temperature (Tc) of SBT, thus making this ceramic suitable for piezoelectric sensor applications at higher temperatures. Piezoelectric measurement showed that the doped SBT had a relative higher piezoelectric constant d33 compared with the non-doped ceramics. The thermal annealing behaviors of the doped sample revealed a stable piezoelectric property. The doped SBT showed bright UC emission while simultaneously having increased Tc and d33. As a multifunctional material, Er doped SBT ferroelectric oxide showed great potential in application of sensor, future optical-electro integration and coupling devices.

  11. Lanthanide‐Doped Upconversion Nanoparticles: Emerging Intelligent Light‐Activated Drug Delivery Systems

    PubMed Central

    Bagheri, Ali; Arandiyan, Hamidreza

    2016-01-01

    The development of drug delivery systems (DDSs) using near infrared (NIR) light and upconversion nanoparticles (UCNPs) has generated intensive interest over the past five years. These NIR‐initiated DDSs not only offer a high degree of spatial and temporal determination of therapeutic release but also provide precise control over the released dosage. Furthermore, these nanoplatforms confer several advantages over conventional light‐based DDSs—NIR offers better tissue penetration depth and a reduced risk of cellular photo‐damage caused by exposure to light at high‐energy wavelengths (e.g., ultraviolet light, <400 nm). The development of DDSs that can be activated by low intensity NIR illumination is highly desirable to avoid exposing living tissues to excessive heat that can limit the in vivo application of these DDSs. This encompasses research in three directions: (i) enhancing the quantum yield of the UCNPs; (ii) incorporation of photo‐responsive materials with red‐shifted absorptions into the UCNPs; and (iii) tuning the UCNPs excitation wavelength. This review focuses on recent advances in the development of NIR‐initiated DDS, with emphasis on the use of photo‐responsive compounds and polymeric materials conjugated onto UCNPs. The challenges that limit UCNPs clinical applications, alongside with the aforementioned techniques that have emerged to overcome these limitations, are highlighted. PMID:27818904

  12. Photon Upconversion and Molecular Solar Energy Storage by Maximizing the Potential of Molecular Self-Assembly.

    PubMed

    Kimizuka, Nobuo; Yanai, Nobuhiro; Morikawa, Masa-Aki

    2016-11-29

    The self-assembly of functional molecules into ordered molecular assemblies and the fulfillment of potentials unique to their nanotomesoscopic structures have been one of the central challenges in chemistry. This Feature Article provides an overview of recent progress in the field of molecular self-assembly with the focus on the triplet-triplet annihilation-based photon upconversion (TTA-UC) and supramolecular storage of photon energy. On the basis of the integration of molecular self-assembly and photon energy harvesting, triplet energy migration-based TTA-UC has been achieved in varied molecular systems. Interestingly, some molecular self-assemblies dispersed in solution or organogels revealed oxygen barrier properties, which allowed TTA-UC even under aerated conditions. The elements of molecular self-assembly were also introduced to the field of molecular solar thermal fuel, where reversible photoliquefaction of ionic crystals to ionic liquids was found to double the molecular storage capacity with the simultaneous pursuit of switching ionic conductivity. A future prospect in terms of innovating molecular self-assembly toward molecular systems chemistry is also discussed.

  13. Near-infrared-emitting colloidal Ag2S quantum dots exhibiting upconversion luminescence

    NASA Astrophysics Data System (ADS)

    Zhang, Yanyan; Jiang, Danyu; Yang, Wei; Wang, Dandan; Zheng, Huiping; Du, Yuansheng; Li, Xi; Li, Qiang

    2017-02-01

    Ag2S quantum dots (QDs) coated with thioglycolic acid (Ag2S QDs-TGA) have been synthesized in an organic solvent via a stepwise addition of reagents. When excited by a 980 nm laser, the near-infrared-emitting colloidal Ag2S QDs-TGA exhibit upconversion luminescence (UCL). The observed photoluminescence (PL) was attributed to the presence of ligand-modified Ag2S on the QD surfaces. Hence, upon dilution of the solution, the PL intensity initially increased before subsequently decreasing, accompanied by a blue shift in the PL spectra. The PL phenomena can be attributed to the increase in the amount of ligand-modified Ag2S on the QD surfaces upon dilution, which in turn affected the fluorescence resonance energy transfer (FRET) and re-emission of the surface energy level. The relations between the emission intensity of Ag2S QDs-TGA and the excitation power are investigated, and the results confirm that the UCL in Ag2S QDs-TGA can be ascribed to a two-photon-assisted absorption process via a real energy state.

  14. Blue upconversion emission from Tm3+ sensitized by Nd3+ in aluminum oxide crystalline ceramic powders

    NASA Astrophysics Data System (ADS)

    Rakov, N.; Gómez, L. A.; Rátiva, D. J.; Maciel, G. S.

    2009-02-01

    Upconversion (UC) emission in thulium (Tm3+) and neodymium (Nd3+) co-doped aluminum oxide ceramic powders prepared by combustion synthesis was investigated at room temperature using a continuous wave laser operating at 800 nm. Our sample containing Tm3+ (1 wt.%) did not show any UC emission but our sample co-doped with Tm3+ and Nd3+ in 1:2 wt.% proportion presented blue (˜480 nm) UC intensity more than one order of magnitude larger than our sample co-doped with Tm3+ and Nd3+ in 1:1 wt.% proportion. X-ray diffraction data showed the presence of α-Al2O3 and REAlO3 (RE=Tm or Nd) crystalline phases in co-doped powders, while the singly doped powder has only α-Al2O3 phase. Our results show that the UC emission efficiency of Tm3+ and the host crystalline structure can be tailored by manipulating the Nd3+ doping concentration.

  15. Intense upconversion luminescence and origin study in Tm3+/Yb3+ codoped calcium scandate

    NASA Astrophysics Data System (ADS)

    Li, Jing; Zhang, Jiahua; Hao, Zhendong; Zhang, Xia; Zhao, Jihong; Luo, Yongshi

    2012-09-01

    Doping concentration optimized CaSc2O4:0.004Tm3+/0.1Yb3+ shows stronger upconversion luminescence (UCL) than doping concentration also optimized typical oxide upconverting phosphor Y2O3:0.004Tm3+/0.1Yb3+ upon 980 nm laser diode pump. The two-step up converted 3H4 → 3H6 near infrared emission peaked around 800 nm and the three-step up converted 1G4 → 3H6 blue emission around 480 nm of Tm3+ is enhanced by a factor of 3.5 and 2.2, respectively. On analyzing the 2F5/2 → 2F7/2 emission intensities and decay curves of Yb3+ in the two hosts, we reveal that Yb3+ in CaSc2O4 exhibits both a larger absorption cross section at 980 nm and Yb3+ → Tm3+ first step energy transfer coefficient (9.29 × 10-17 cm3 s-1) than that (2.87 × 10-17 cm3 s-1) in Y2O3, indicating that CaSc2O4 is an excellent host for achieving very intense UCL in Tm3+/Yb3+ codoped oxide upconverting materials.

  16. Intense red upconversion emission of Yb/Tm/Ho triply-doped tellurite glasses.

    PubMed

    Zhan, Huan; Zhou, Zhiguang; He, Jianli; Lin, Aoxiang

    2012-05-20

    By conventional melting and quenching methods, 3Yb2O3-0.2Tm2O3-xHo2O3 (wt%, x=0.2~1.2) was doped into an easily fiberized tellurite glass with composition of 78TeO2-10ZnO-12Na2O (mol%) to form YTH-TZN78 glasses. Under 976 nm excitation, the direct sensitizing effect of Yb ions (Yb→Ho) and indirect sensitizing and self-depopulating effects of Tm ions (Yb→Tm→Ho) were found to present intense red upconversion emission at 657 nm (Red, Ho:5F5→5I8) and were responsible for the absence of the usually observed 484 nm emission (Blue, Tm:1G4→3H36). Regardless of the dopant concentration of Ho ions, the intensity of the red emission at 657 nm (Red, Ho:5F5→5I8) is about three times stronger than that of the green one at 543 nm (Green, Ho:5S2→5I8). For this certain red emission at 657 nm, 0.4 wt% Ho2O3-doped YTH-TZN78 glass was found to present the highest emission intensity and is therefore determined as a promising active tellurite glass for red fiber laser development.

  17. Lanthanide doped Bi2O3 upconversion luminescence nanospheres for temperature sensing and optical imaging.

    PubMed

    Lei, Pengpeng; Liu, Xiuling; Dong, Lile; Wang, Zhuo; Song, Shuyan; Xu, Xia; Su, Yue; Feng, Jing; Zhang, Hongjie

    2016-02-14

    Water-soluble lanthanide (Ln(3+)) doped Bi2O3 nanospheres have been successfully prepared through a solid-state-chemistry thermal decomposition process. The nanospheres exhibit intense upconversion luminescence (UCL) by doping the Ln(3+) (Ln = Yb, Er/Ho/Tm) ions into the Bi2O3 host matrix under 980 nm excitation. The ratio of red/green emission of Bi2O3:Yb(3+)/Er(3+) nanospheres exhibits a significant change as the calcination temperature increases and the value could reach 105.6. Moreover, the UCL of Bi2O3:Yb(3+)/Tm(3+) nanospheres are temperature-sensitive, where the intensity ratios of 799 and 808 nm emissions increase monotonously with temperature. The MTT assay reveals that Bi2O3:Yb(3+)/Tm(3+) nanospheres exhibit good biocompatibility by grafting citric acid molecules on the surface. The application possibility of Bi2O3:Yb(3+)/Tm(3+) nanospheres as bioprobes for optical imaging in vivo is also confirmed by the high-contrast photoluminescence images between the background and the UCL imaging area.

  18. Realization of a video-rate distributed aperture millimeter-wave imaging system using optical upconversion

    NASA Astrophysics Data System (ADS)

    Schuetz, Christopher; Martin, Richard; Dillon, Thomas; Yao, Peng; Mackrides, Daniel; Harrity, Charles; Zablocki, Alicia; Shreve, Kevin; Bonnett, James; Curt, Petersen; Prather, Dennis

    2013-05-01

    Passive imaging using millimeter waves (mmWs) has many advantages and applications in the defense and security markets. All terrestrial bodies emit mmW radiation and these wavelengths are able to penetrate smoke, fog/clouds/marine layers, and even clothing. One primary obstacle to imaging in this spectrum is that longer wavelengths require larger apertures to achieve the resolutions desired for many applications. Accordingly, lens-based focal plane systems and scanning systems tend to require large aperture optics, which increase the achievable size and weight of such systems to beyond what can be supported by many applications. To overcome this limitation, a distributed aperture detection scheme is used in which the effective aperture size can be increased without the associated volumetric increase in imager size. This distributed aperture system is realized through conversion of the received mmW energy into sidebands on an optical carrier. This conversion serves, in essence, to scale the mmW sparse aperture array signals onto a complementary optical array. The side bands are subsequently stripped from the optical carrier and recombined to provide a real time snapshot of the mmW signal. Using this technique, we have constructed a real-time, video-rate imager operating at 75 GHz. A distributed aperture consisting of 220 upconversion channels is used to realize 2.5k pixels with passive sensitivity. Details of the construction and operation of this imager as well as field testing results will be presented herein.

  19. All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer.

    PubMed

    Shangguan, Mingjia; Xia, Haiyun; Wang, Chong; Qiu, Jiawei; Shentu, Guoliang; Zhang, Qiang; Dou, Xiankang; Pan, Jian-Wei

    2016-08-22

    An all-fiber, micro-pulse and eye-safe high spectral resolution wind lidar (HSRWL) at 1.5 μm is proposed and demonstrated by using a pair of upconversion single-photon detectors and a fiber Fabry-Perot scanning interferometer (FFP-SI). In order to improve the optical detection efficiency, both the transmission spectrum and the reflection spectrum of the FFP-SI are used for spectral analyses of the aerosol backscatter and the reference laser pulse. Taking advantages of high signal-to-noise ratio of the detectors and high spectral resolution of the FFP-SI, the center frequencies and the bandwidths of spectra of the aerosol backscatter are obtained simultaneously. Continuous LOS wind observations are carried out on two days at Hefei (31.843 °N, 117.265 °E), China. The horizontal detection range of 4 km is realized with temporal resolution of 1 minute. The spatial resolution is switched from 30 m to 60 m at distance of 1.8 km. In a comparison experiment, LOS wind measurements from the HSRWL show good agreement with the results from an ultrasonic wind sensor (Vaisala windcap WMT52). An empirical method is adopted to evaluate the precision of the measurements. The standard deviation of the wind speed is 0.76 m/s at 1.8 km. The standard deviation of bandwidth variation is 2.07 MHz at 1.8 km.

  20. Systematic assessment of blood circulation time of functionalized upconversion nanoparticles in the chick embryo

    NASA Astrophysics Data System (ADS)

    Nadort, Annemarie; Liang, Liuen; Grebenik, Ekaterina; Guller, Anna; Lu, Yiqing; Qian, Yi; Goldys, Ewa; Zvyagin, Andrei

    2015-12-01

    Nanoparticle-based delivery of drugs and contrast agents holds great promise in cancer research, because of the increased delivery efficiency compared to `free' drugs and dyes. A versatile platform to investigate nanotechnology is the chick embryo chorioallantoic membrane tumour model, due to its availability (easy, cheap) and accessibility (interventions, imaging). In our group, we developed this model using several tumour cell lines (e.g. breast cancer, colon cancer). In addition, we have synthesized in-house silica coated photoluminescent upconversion nanoparticles with several functional groups (COOH, NH2, PEG). In this work we will present the systematic assessment of their in vivo blood circulation times. To this end, we injected chick embryos grown ex ovo with the functionalized UCNPs and obtained a small amount of blood at several time points after injection to create blood smears The UCNP signal from the blood smears was quantified using a modified inverted microscope imaging set-up. The results of this systematic study are valuable to optimize biochemistry protocols and guide nanomedicine advancement in the versatile chick embryo tumour model.

  1. Fabricating upconversion fluorescent nanoparticles modified substrate for dynamical control of cancer cells and pathogenic bacteria.

    PubMed

    Li, Huanhuan; Chen, Quansheng; Zhao, Jiewen; Urmila, Khulal

    2016-09-07

    Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted widespread interests in the field of biomedicine because of their unique upconverting capability by converting near infrared (NIR) excitation to visible or ultraviolet (UV) emission. Here, we developed a novel UCNP-based substrate for dynamic capture and release of cancer cells and pathogenic bacteria under NIR-control. The UCNPs harvest NIR light and convert it to ultraviolet light, which subsequently result in the cleavage of photoresponsive linker (PR linker) from the substrate, and on demand allows the release of a captured cell. The results show that after seeding cells for 5 h, the cells were efficiently captured on the surface of the substrate and ˜89.4% of the originally captured S. aureus was released from the surface after exposure to 2 W/cm(2) NIR light for 30 min, and ˜92.1% of HepG2 cells. These findings provide a unique platform for exploring an entirely new application field for this promising luminescent nanomaterial.

  2. High-Contrast Visualization of Upconversion Luminescence in Mice Using Time-Gating Approach.

    PubMed

    Zheng, Xianlin; Zhu, Xingjun; Lu, Yiqing; Zhao, Jiangbo; Feng, Wei; Jia, Guohua; Wang, Fan; Li, Fuyou; Jin, Dayong

    2016-04-05

    Optical imaging through the near-infrared (NIR) window provides deep penetration of light up to several centimeters into biological tissues. Capable of emitting 800 nm luminescence under 980 nm illumination, the recently developed upconversion nanoparticles (UCNPs) suggest a promising optical contrast agent for in vivo bioimaging. However, presently they require high-power lasers to excite when applied to small animals, leading to significant scattering background that limits the detection sensitivity as well as a detrimental thermal effect. In this work, we show that the time-gating approach implementing pulsed illumination from a NIR diode laser and time-delayed imaging synchronized via an optical chopper offers detection sensitivity more than 1 order of magnitude higher than the conventional approach using optical band-pass filters (S/N, 47321/6353 vs 5339/58), when imaging UCNPs injected into Kunming mice. The pulsed laser illumination (70 μs ON in 200 μs period) also reduces the overall thermal accumulation to 35% of that under the continuous-wave mode. Technical details are given on setting up the time-gating unit comprising an optical chopper, a pinhole, and a microscopy eyepiece. Being generally compatible with any camera, this provides a convenient and low cost solution to NIR animal imaging using UCNPs as well as other luminescent probes.

  3. Optical Frequency Upconversion Technique for Transmission of Wireless MIMO-Type Signals over Optical Fiber

    PubMed Central

    Shaddad, R. Q.; Mohammad, A. B.; Al-Gailani, S. A.; Al-Hetar, A. M.

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength. PMID:24772009

  4. Energy transfer and upconversion of Sm3+ ions in YAlO3

    NASA Astrophysics Data System (ADS)

    Malinowski, M.; Kaczkan, M.; Turczyński, S.

    2017-01-01

    Sm3+ doped YAlO3 (YAP) single crystals were prepared by the micro-pulling down method. Emission spectra as well as luminescence decay curves for these crystals were recorded at temperatures ranging from 10 K to 300 K. Based on the low temperature spectra the energies of the Stark levels for several multiplets were determined. The fluorescence decay curves have been measured as a function of concentration and temperature and are found to exhibit single exponential nature at lowest concentration of 0.1 at.% but are strongly non-exponential at concentrations above 1 at.%. This concentration quenching of the Sm3+ ion emission was ascribed to resonant cross-relaxation. The non-exponential decay rates were successfully fitted to Inokuti-Hirayama model for s = 6 indicating that the nature of the energy transfer process among the Sm3+ ions is of electric dipole-dipole type. Cross-relaxation rates were experimentally determined as a function of activator concentration and used to evaluate and to model the decays. The critical distances and energy transfer microparameter for the transfer processes were given. After pulsed 925-975 nm infra-red excitation upconverted yellow-orange emission has been generated at room temperature in Sm3+:YAP crystals. Dynamics of the involved excited states have been analyzed and the responsible upconversion mechanism was proposed to be energy transfer.

  5. Lanthanide doped ultrafine hybrid nanostructures: multicolour luminescence, upconversion based energy transfer and luminescent solar collector applications.

    PubMed

    Singh, Priyam; Shahi, Praveen Kumar; Singh, Sunil Kumar; Singh, Akhilesh Kumar; Singh, Manish Kumar; Prakash, Rajiv; Rai, Shyam Bahadur

    2017-01-05

    We herein demonstrate novel inorganic-organic hybrid nanoparticles (HNPs) composed of inorganic NPs, NaY0.78Er0.02Yb0.2F4, and an organic β-diketonate complex, Eu(TTA)3Phen, for energy harvesting applications. Both the systems maintain their core integrity and remain entangled through weak interacting forces. HNPs incorporate the characteristic optical behaviour of both the systems i.e. they give an intense red emission under UV excitation, due to Eu(3+) in organic complexes, and efficient green upconversion emission of Er(3+) in inorganic NPs for NIR (980 nm) excitation. However, (i) an energy transfer from Er(3+) (inorganic NPs) to Eu(3+) (organic complex) under NIR excitation, and (ii) an increase in the decay time of (5)D0 → (7)F2 transition of Eu(3+) for HNPs as compared to the Eu(TTA)3Phen complex, under different excitation wavelengths, are added optical characteristics which point to an important role of the interface between both the systems. Herein, the ultra-small size (6-9 nm) and spherical shape of the inorganic NPs offer a large surface area, which improves the weak interaction force between both the systems. Furthermore, the HNPs dispersed in the PMMA polymer have been successfully utilized for luminescent solar collector (LSC) applications.

  6. Tctex1d2 Is a Negative Regulator of GLUT4 Translocation and Glucose Uptake.

    PubMed

    Shimoda, Yoko; Okada, Shuichi; Yamada, Eijiro; Pessin, Jeffrey E; Yamada, Masanobu

    2015-10-01

    Tctex1d2 (Tctex1 domain containing 2) is an open reading frame that encodes for a functionally unknown protein that contains a Tctex1 domain found in dynein light chain family members. Examination of gene expression during adipogenesis demonstrated a marked increase in Tctex1d2 protein expression that was essentially undetectable in preadipocytes and markedly induced during 3T3-L1 adipocyte differentiation. Tctex1d2 overexpression significantly inhibited insulin-stimulated glucose transporter 4 (GLUT4) translocation and 2-deoxyglucose uptake. In contrast, Tctex1d2 knockdown significantly increased insulin-stimulated GLUT4 translocation and 2-deoxyglucose uptake. However, acute insulin stimulation (up to 30 min) in 3T3-L1 adipocytes with overexpression or knockdown of Tctex1d2 had no effect on Akt phosphorylation, a critical signal transduction target required for GLUT4 translocation. Although overexpression of Tctex1d2 had no significant effect on GLUT4 internalization, Tctex1d2 was found to associate with syntaxin 4 in an insulin-dependent manner and inhibit Doc2b binding to syntaxin 4. In addition, glucose-dependent insulinotropic polypeptide rescued the Tctex1d2 inhibition of insulin-stimulated GLUT4 translocation by suppressing the Tctex1d2-syntaxin 4 interaction and increasing Doc2b-Synatxin4 interactions. Taking these results together, we hypothesized that Tctex1d2 is a novel syntaxin 4 binding protein that functions as a negative regulator of GLUT4 plasma membrane translocation through inhibition of the Doc2b-syntaxin 4 interaction.

  7. Strong upconversion from Er{sub 3}Al{sub 5}O{sub 12} ceramic powders prepared by low temperature direct combustion synthesis

    SciTech Connect

    Maciel, Glauco S.; Rakov, Nikifor; Fokine, Michael; Carvalho, Isabel C. S.; Pinheiro, Carlos B.

    2006-08-21

    Crystalline ceramic powders of Er{sub 3}Al{sub 5}O{sub 12} were obtained by low temperature direct combustion synthesis. Irradiating the sample with a low-power continuous-wave infrared (1.48 {mu}m) diode laser led to ultraviolet, violet, blue, green, and red (380, 410, 456, 495, 525, 550, and 660 nm) emissions. The strong upconversion luminescence appeared to the eyes as an intense green color. The presence of efficient four- and three-photon frequency upconversion processes makes this material an excellent candidate for use in photonic devices based on upconverter phosphors.

  8. Up-conversion luminescence in Er{sup 3+}/Yb{sup 3+}-codoped PbTiO{sub 3} perovskite obtained via Pechini method

    SciTech Connect

    Lemos, F.C.D.; Melo, D.M.A.; Silva, J.E.C. da . E-mail: jecs@uft.edu.br

    2005-01-04

    Efficient infrared-to-visible conversion by Er{sup 3+}/Yb{sup 3+}-codoped PbTiO{sub 3} perovskite will be reported. The process is observed under 980 nm laser diode (GAs:Si) excitation and results in the generation of green ({approx}555 nm) and red ({approx}655 nm) emission. The main mechanism that allows for up-conversion is attributed the energy transfer among Yb and Er ions in excited states. The power up-conversion efficiency for red emission is predominant in this material. The results illustrate the large potential of this new class of material for photonic applications involving optoelectronics devices.

  9. Color-tunable up-conversion emission in Y2O3:Yb3+, Er3+ nanoparticles prepared by polymer complex solution method

    NASA Astrophysics Data System (ADS)

    Lojpur, Vesna M.; Ahrenkiel, Phillip S.; Dramićanin, Miroslav D.

    2013-03-01

    Powders of Y2O3 co-doped with Yb3+ and Er3+ composed of well-crystallized nanoparticles (30 to 50 nm in diameter) with no adsorbed ligand species on their surface are prepared by polymer complex solution method. These powders exhibit up-conversion emission upon 978-nm excitation with a color that can be tuned from green to red by changing the Yb3+/Er3+ concentration ratio. The mechanism underlying up-conversion color changes is presented along with material structural and optical properties.

  10. Space-bandwidth product enhancement of a monostatic, multiaperture infrared image upconversion ladar receiver incorporating periodically poled LiNbO3

    NASA Astrophysics Data System (ADS)

    Brewer, Christopher D.; Duncan, Bradley D.; Maciejewski, Phillip S.; Kirkpatrick, Sean M.; Watson, Edward A.

    2002-04-01

    We investigate the space-bandwidth product of a ladar system incorporating an upconversion receiver. After illuminating a target with an eye-safe beam, we direct the return into a piece of periodically poled LiNbO3 where it is upconverted into the visible spectrum and detected with a CCD camera. The theoretical and experimental transfer functions are then found. We show that the angular acceptance of the upconversion process severely limits the receiver field of regard for macroscopic coupling optics. This limitation is overcome with a pair of microlens arrays, and a 43% increase in the system's measured space-bandwidth product is demonstrated.

  11. Efficient holmium-doped fluoride fiber laser emitting 2.1 µm and blue upconversion fluorescence upon excitation at 2 µm.

    PubMed

    Guhur, A; Jackson, S D

    2010-09-13

    We demonstrate a highly efficient and high power Ho(3+)-doped fluoride glass fiber laser that is resonantly pumped with a Tm(3+)-doped silicate glass fiber laser operating at 2.051 µm. The laser operates at 2080 nm and generated 6.66 W at a slope efficiency of 72%. We observe strong visible upconversion fluorescence centered at a variety of wavelengths including 491 nm which results from three sequential energy transfer upconversion processes; the fluorescence to pump energy ratio for this emission is one the largest reported to date.

  12. Color-tunable up-conversion emission in Y2O3:Yb3+, Er3+ nanoparticles prepared by polymer complex solution method

    PubMed Central

    2013-01-01

    Abstract Powders of Y2O3 co-doped with Yb3+ and Er3+ composed of well-crystallized nanoparticles (30 to 50 nm in diameter) with no adsorbed ligand species on their surface are prepared by polymer complex solution method. These powders exhibit up-conversion emission upon 978-nm excitation with a color that can be tuned from green to red by changing the Yb3+/Er3+ concentration ratio. The mechanism underlying up-conversion color changes is presented along with material structural and optical properties. PACS 42.70.-a, 78.55.Hx, 78.60.-b PMID:23522083

  13. Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting

    NASA Astrophysics Data System (ADS)

    You, Minli; Lin, Min; Wang, Shurui; Wang, Xuemin; Zhang, Ge; Hong, Yuan; Dong, Yuqing; Jin, Guorui; Xu, Feng

    2016-05-01

    Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a smart phone recognition based upconversion fluorescent three-dimensional (3D) quick response (QR) code for tracking and anti-counterfeiting of drugs. We firstly formulated three colored inks incorporating upconversion nanoparticles with RGB (i.e., red, green and blue) emission colors. Using a modified inkjet printer, we printed a series of colors by precisely regulating the overlap of these three inks. Meanwhile, we developed a multilayer printing and splitting technology, which significantly increases the information storage capacity per unit area. As an example, we directly printed the upconversion fluorescent 3D QR code on the surface of drug capsules. The 3D QR code consisted of three different color layers with each layer encoded by information of different aspects of the drug. A smart phone APP was designed to decode the multicolor 3D QR code, providing the authenticity and related information of drugs. The developed technology possesses merits in terms of low cost, ease of operation, high throughput and high information capacity, thus holds great potential for drug anti-counterfeiting.Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a

  14. Upconversion luminescence nanosensor for TNT selective and label-free quantification in the mixture of nitroaromatic explosives.

    PubMed

    Ma, Yingxin; Wang, Leyu

    2014-03-01

    This paper reports a rapid, sensitive, and selective nanosensor for the detection of 2,4,6-trinitrotoluene (TNT) in the mixture aqueous solution of nitroaromatics independent of immunoassay or molecularly imprinted technology and complicated instruments. Despite many strategies including immunoassay and molecularly imprinted technologies been successfully developed for the detection of TNT, it is not easy to differentiate TNT from 2,4,6-trinitrophenol (TNP) due to their very similar chemical structures and properties. In this work, the amine functionalized NaYF4:Yb(3+)/Er(3+) upconversion luminescence nanoparticles (UCNPs) whose excitation (980 nm) and emission (543 nm) wavelength were far from the absorbance bands of other usual interference nitroaromatics including 2,4-dinitrotoluene (DNT), nitrobenzene (NB), and especially TNP, were utilized as the luminescent nanosensors for TNT luminescence detection. To make these UCNPs highly water stable and render the charge transfer from UCNPs to TNT easier, amino groups were introduced onto the surface of the UCNPs by coating a polymer layer of ethylene glycol dimethacrylate (EGDMA) hybridized with 3-aminopropyltriethoxysilane (APTS). After binding with TNT through amino groups on the UCNPs, the naked eye visible green upconversion luminescence of the UCNPs was dramatically quenched and thus a sensitive UC luminescence nanosensor was developed for TNT detection. However, other nitroaromatics including TNP, DNT, and NB have no influence on the green UC luminescence and thus no influence on the TNT detection. The luminescence intensity is negatively proportional to the concentration of TNT in the range of 0.01-9.0 µg/mL with the 3σ limit of detection (LOD) of 9.7 ng/mL. The present studies provide a novel and facile strategy to fabricate the upconversion luminescence sensors with highly selective recognition ability in aqueous media and are desirable for label free analysis of TNT in mixed solution independent of

  15. Oligonucleotide Sensor Based on Selective Capture of Upconversion Nanoparticles Triggered by Target-Induced DNA Interstrand Ligand Reaction.

    PubMed

    Mendez-Gonzalez, Diego; Laurenti, Marco; Latorre, Alfonso; Somoza, Alvaro; Vazquez, Ana; Negredo, Ana Isabel; López-Cabarcos, Enrique; Calderón, Oscar G; Melle, Sonia; Rubio-Retama, Jorge

    2017-04-12

    We present a sensor that exploits the phenomenon of upconversion luminescence to detect the presence of specific sequences of small oligonucleotides such as miRNAs among others. The sensor is based on NaYF4:Yb,Er@SiO2 nanoparticles functionalized with ssDNA that contain azide groups on the 3' ends. In the presence of a target sequence, interstrand ligation is possible via the click-reaction between one azide of the upconversion probe and a DBCO-ssDNA-biotin probe present in the solution. As a result of this specific and selective process, biotin is covalently attached to the surface of the upconversion nanoparticles. The presence of biotin on the surface of the nanoparticles allows their selective capture on a streptavidin-coated support, giving a luminescent signal proportional to the amount of target strands present in the test samples. With the aim of studying the analytical properties of the sensor, total RNA samples were extracted from healthy mosquitoes and were spiked-in with a specific target sequence at different concentrations. The result of these experiments revealed that the sensor was able to detect 10(-17) moles per well (100 fM) of the target sequence in mixtures containing 100 ng of total RNA per well. A similar limit of detection was found for spiked human serum samples, demonstrating the suitability of the sensor for detecting specific sequences of small oligonucleotides under real conditions. In contrast, in the presence of noncomplementary sequences or sequences having mismatches, the luminescent signal was negligible or conspicuously reduced.

  16. Facile synthesis of 5 nm NaYF₄:Yb/Er nanoparticles for targeted upconversion imaging of cancer cells.

    PubMed

    Hu, Yueli; Wu, Boyue; Jin, Qing; Wang, Xueyuan; Li, Yan; Sun, Yuxiu; Huo, Jianzhong; Zhao, Xiaojun

    2016-05-15

    5nm intense green emission NaYF4:Yb/Er upconversion nanoparticles (UCNPs) with pure β phase was synthesized with a simple "green" strategy for the first time. Traditional organic solvothermal method is often applied to prepare the high-quality and uniform UCNPs, but the preparation of lanthanide-oleate complexes is laborious as heating and multistep post-treatment for purification are often required. The water-alcohols solvothermal method is environmentally friendly, but the fabricated UCNPs have big size, poor biocompatibility and high cytotoxicity, which limited their application for cell imaging. Herein, NaYF4:Yb/Er UCNPs were prepared with rare-earth nitrates RE(NO3)3 (RE=Y0.80 Yb0.18 Er0.02) as precursors and diethylene glycol (DEG)/ethylene glycol (EG)/water as the solvent. A facile green solvothermal method with the temperature being controlled at 300°C was developed. The as-prepared NaYF4:Yb/Er UCNPs were characterized and were found to have enhanced UC emission and controllable particle size. The as-prepared UCNPs were further functionalized via folic acid coating for the targeted imaging and improved bio- compatibility. It was made the UCNPs potential for upconversion bioimaging of living cells by the strong upconversion luminescence, the excellent biocompatibility, and the super-small size. The good colloidal stability and low cell cytotoxicity of the as-prepared UCNPs and the developed synthesis protocol might advance both the fields of UCNPs and biomolecule-based nanotechnology for future studies.

  17. Up-conversion luminescence of the NaYF4:Yb3+,Er3+ nanomaterials prepared with the solvothermal synthesis

    NASA Astrophysics Data System (ADS)

    Palo, Emilia; Pihlgren, Laura; Tuomisto, Minnea; Laihinen, Tero; Hyppänen, Iko; Kankare, Jouko; Lastusaari, Mika; Soukka, Tero; Swart, Hendrik C.; Hölsä, Jorma

    2016-09-01

    Up-converting NaYF4:Yb3+,Er3+ (xYb: 0.20, xEr: 0.02) nanomaterials were prepared with a microwave assisted solvothermal synthesis to study how the synthesis parameters affect the structure and up-conversion luminescence of the materials and thus their usability as labels in biomedical applications. The purity of the materials was studied with Fourier transform infra-red (FT-IR) spectroscopy and the particle size and morphology with transmission electron microscopy (TEM). The crystal structure was characterized with X-ray powder diffraction (XPD) and the crystallite sizes were calculated with the Scherrer formula. Up-conversion luminescence and luminescence decays were studied with near infra-red (NIR) laser excitation at 970 nm. The presence of the oleic acid was observed in the FT-IR spectra. The TEM images showed small quasi-spherical nanoparticles as well as long nanorods. The XPD measurements revealed that both cubic and hexagonal forms of NaYF4 were present in the materials. The crystallite sizes ranged from ca. 20 to over 150 nm for the cubic and hexagonal phases, respectively. The characteristic up-conversion luminescence of Er3+ in red (640-685 nm; 4F9/2 → 4I15/2) and green (515-560 nm; 2H11/2, 4S3/2 → 4I15/2 transitions) wavelengths was observed. The most intense luminescence and the longest luminescence emission lifetime were obtained with the material annealed for 12 h at 177 °C with 1.8 MPa pressure due to the predominance of the well-crystallized hexagonal form of NaRF4 (R: Y, Yb, Er).

  18. The FC-1D: The profitable alternative Flying Circus Commercial Aviation Group

    NASA Technical Reports Server (NTRS)

    Meza, Victor J.; Alvarez, Jaime; Harrington, Brook; Lujan, Michael A.; Mitlyng, David; Saroughian, Andy; Silva, Alex; Teale, Tim

    1994-01-01

    The FC-1D was designed as an advanced solution for a low cost commercial transport meeting or exceeding all of the 1993/1994 AIAA/Lockheed request for proposal requirements. The driving philosophy behind the design of the FC-1D was the reduction of airline direct operating costs. Every effort was made during the design process to have the customer in mind. The Flying Circus Commercial Aviation Group targeted reductions in drag, fuel consumption, manufacturing costs, and maintenance costs. Flying Circus emphasized cost reduction throughout the entire design program. Drag reduction was achieved by implementation of the aft nacelle wing configuration to reduce cruise drag and increase cruise speeds. To reduce induced drag, rather than increasing the wing span of the FC-1D, spiroids were included in the efficient wing design. Profile and friction drag are reduced by using riblets in place of paint around the fuselage and empennage of the FC-1D. Choosing a single aisle configuration enabled the Flying Circus to optimize the fuselage diameter. Thus, reducing fuselage drag while gaining high structural efficiency. To further reduce fuel consumption a weight reduction program was conducted through the use of composite materials. An additional quality of the FC-1D is its design for low cost manufacturing and assembly. As a result of this design attribute, the FC-1D will have fewer parts which reduces weight as well as maintenance and assembly costs. The FC-1D is affordable and effective, the apex of commercial transport design.

  19. Structure and Catalytic Mechanism of Human Steroid 5-Reductase (AKR1D1)

    SciTech Connect

    Costanzo, L.; Drury, J; Christianson, D; Penning, T

    2009-01-01

    Human steroid 5{beta}-reductase (aldo-keto reductase (AKR) 1D1) catalyzes reduction of {Delta}{sup 4}-ene double bonds in steroid hormones and bile acid precursors. We have reported the structures of an AKR1D1-NADP{sup +} binary complex, and AKR1D1-NADP{sup +}-cortisone, AKR1D1-NADP{sup +}-progesterone and AKR1D1-NADP{sup +}-testosterone ternary complexes at high resolutions. Recently, structures of AKR1D1-NADP{sup +}-5{beta}-dihydroprogesterone complexes showed that the product is bound unproductively. Two quite different mechanisms of steroid double bond reduction have since been proposed. However, site-directed mutagenesis supports only one mechanism. In this mechanism, the 4-pro-R hydride is transferred from the re-face of the nicotinamide ring to C5 of the steroid substrate. E120, a unique substitution in the AKR catalytic tetrad, permits a deeper penetration of the steroid substrate into the active site to promote optimal reactant positioning. It participates with Y58 to create a 'superacidic' oxyanion hole for polarization of the C3 ketone. A role for K87 in the proton relay proposed using the AKR1D1-NADP{sup +}-5{beta}-dihydroprogesterone structure is not supported.

  20. Analysis of inner filter effect on the up-conversion spectra of erbium doped yttrium oxide close-packed powders

    NASA Astrophysics Data System (ADS)

    Rakov, Nikifor; Maciel, Glauco S.

    2012-11-01

    We observed that the up-conversion (UC) emission profiles of erbium (Er3+) doped yttrium oxide (Y2O3) close-packed powders prepared by combustion synthesis are different when the luminescence reflected from the sample is compared to the luminescence transmitted through the sample (thickness: ˜0.1 mm). The effect was identified as a combination of scattering and an inner filter effect (IFE). The IFE reduces the transmitted UC luminescence bandwidths up to 50%. The IFE was suppressed by the inclusion of free-standing undoped Y2O3 particles.