Science.gov

Sample records for 1-d velocity profiles

  1. Brady 1D seismic velocity model ambient noise prelim

    DOE Data Explorer

    Mellors, Robert J.

    2013-10-25

    Preliminary 1D seismic velocity model derived from ambient noise correlation. 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 km. Poorly constrained with increasing depth.

  2. Near wake velocity profiles

    SciTech Connect

    Porterio, J.L.F.; Page, R.H.; Przirembel, C.E.G.

    1984-02-01

    The development of the wake velocity profile behind a cylindrical blunt based body aligned with a subsonic uniform stream was experimentally investigated as a function of the momentum thickness of the approaching boundary layer and the transfer of mass into the recirculating region. Tests were conducted at M = 0.11 in an interference-free wind tunnel utilizing an upstream support system. Results indicate that the width of the wake increases with the thickness of the boundary layer while the velocity at the centerline decreases. Near wake mass transfer was found to alter centerline velocities while the width of the wake was not significantly altered. Wake centerline velocity development as a function of boundary layer thickness is presented for distances up to three diameters from the base.

  3. 1-D seismic velocity model and hypocenter relocation using double difference method around West Papua region

    SciTech Connect

    Sabtaji, Agung E-mail: agung.sabtaji@bmkg.go.id; Nugraha, Andri Dian

    2015-04-24

    West Papua region has fairly high of seismicity activities due to tectonic setting and many inland faults. In addition, the region has a unique and complex tectonic conditions and this situation lead to high potency of seismic hazard in the region. The precise earthquake hypocenter location is very important, which could provide high quality of earthquake parameter information and the subsurface structure in this region to the society. We conducted 1-D P-wave velocity using earthquake data catalog from BMKG for April, 2009 up to March, 2014 around West Papua region. The obtained 1-D seismic velocity then was used as input for improving hypocenter location using double-difference method. The relocated hypocenter location shows fairly clearly the pattern of intraslab earthquake beneath New Guinea Trench (NGT). The relocated hypocenters related to the inland fault are also observed more focus in location around the fault.

  4. Velocity profiles in laminar diffusion flames

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Margle, Janice M.

    1986-01-01

    Velocity profiles in vertical laminar diffusion flames were measured by using laser Doppler velocimetry (LDV). Four fuels were used: n-heptane, iso-octane, cyclohexane, and ethyl alcohol. The velocity profiles were similar for all the fuels, although there were some differences in the peak velocities. The data compared favorably with the theoretical velocity predictions. The differences could be attributed to errors in experimental positioning and in the prediction of temperature profiles. Error in the predicted temperature profiles are probably due to the difficulty in predicting the radiative heat losses from the flame.

  5. Photodetachment of O^- Yielding O(1D_2, {}^3P) Atoms, Viewed with Velocity Map Imaging

    NASA Astrophysics Data System (ADS)

    Gibson, Stephen T.; Laws, Benjamin A.; Lewis, Brenton R.; Duong, Ly

    2016-06-01

    lectron photodetachment of O^-(2P3/2,1/2) is measured using velocity-map imaging at wavelengths near 350 nm, where detachment yields both O(^1D_2) and O(^3P2,1,0) atoms, simultaneously, producing slow (˜ 0.1 eV) and fast electrons (˜ 2 eV). The photoelectron spectrum resolves the fine-structure transitions, which together with the well known atomic fine-structure splittings, and intensity ratios, provide an excellent test of the spectral quality of the velocity-map imaging technique. Although the photoelectron angular distribution for the two atomic limits have the same negative anisotropy sign, the energy dependence differs. The variation is qualitatively in accordance with R-matrix cross section calculations, that indicate a more gradual d-wave onset for the ^1D limit. However, more exact evaluation is only possible with information about the matrix element phases. Research supported by the Australian Research Council Discovery Project GrantDP160102585. physics.nist.gov/cgi-bin/ASD/energy1.pl O. Scharf and M. R. Godefried, arXiv:0808.3529v1 O. Zatsarinny and K. Bartschat, Phys. Rev. A, 73, 022714 (2006). doi:10.1103/PhysRevA.73.022714

  6. 1D profiling using highly dispersive guided waves

    SciTech Connect

    Volker, Arno; Zon, Tim van; Enthoven, Daniel; Verburg, Wesley

    2015-03-31

    Corrosion is one of the industries major issues regarding the integrity of assets. Currently inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Cost reduction while maintaining a high level of reliability and safety of installations is a major challenge. There are many situations where the actual defect location is not accessible, e.g., a pipe support or a partially buried pipe. Guided wave tomography has been developed to reconstruct the wall thickness. In case of bottom of the line corrosion, i.e., a single corrosion pit, a simpler approach may be followed. Data is collected in a pit-catch configuration at the 12 o'clock position using highly dispersive guided waves. The phase spectrum is used to invert for a wall thickness profile in the circumferential direction, assuming a Gaussian defect profile. An EMAT sensor design has been made to measure at the 12 o'clock position of a pipe. The concept is evaluated on measured data, showing good sizing capabilities on a variety simple defect profiles.

  7. 1D profiling using highly dispersive guided waves

    NASA Astrophysics Data System (ADS)

    Volker, Arno; van Zon, Tim; Enthoven, Daniel; Verburg, Wesley

    2015-03-01

    Corrosion is one of the industries major issues regarding the integrity of assets. Currently inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Cost reduction while maintaining a high level of reliability and safety of installations is a major challenge. There are many situations where the actual defect location is not accessible, e.g., a pipe support or a partially buried pipe. Guided wave tomography has been developed to reconstruct the wall thickness. In case of bottom of the line corrosion, i.e., a single corrosion pit, a simpler approach may be followed. Data is collected in a pit-catch configuration at the 12 o'clock position using highly dispersive guided waves. The phase spectrum is used to invert for a wall thickness profile in the circumferential direction, assuming a Gaussian defect profile. An EMAT sensor design has been made to measure at the 12 o'clock position of a pipe. The concept is evaluated on measured data, showing good sizing capabilities on a variety simple defect profiles.

  8. 1-D profiling using highly dispersive guided waves

    SciTech Connect

    Volker, Arno; Zon, Tim van

    2014-02-18

    Corrosion is one of the industries major issues regarding the integrity of assets. Currently, inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Cost reduction while maintaining a high level of reliability and safety of installations is a major challenge. There are many situations where the actual defect location is not accessible, e.g., a pipe support or a partially buried pipe. Guided wave tomography has been developed to reconstruct the wall thickness of steel pipes. In case of bottom of the line corrosion, i.e., a single corrosion pit, a simpler approach may be followed. Data is collected in a pitch-catch configuration at the 12 o'clock position using highly dispersive guided waves. After dispersion correction the data collapses to a short pulse, any residual dispersion indicates wall loss. The phase spectrum is used to invert for the wall thickness profile in the circumferential direction, assuming a Gaussian defect profile. The approach is evaluated on numerically simulated and on measured data. The method is intended for rapid, semi-quantitative screening of pipes.

  9. 1-D profiling using highly dispersive guided waves

    NASA Astrophysics Data System (ADS)

    Volker, Arno; van Zon, Tim

    2014-02-01

    Corrosion is one of the industries major issues regarding the integrity of assets. Currently, inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Cost reduction while maintaining a high level of reliability and safety of installations is a major challenge. There are many situations where the actual defect location is not accessible, e.g., a pipe support or a partially buried pipe. Guided wave tomography has been developed to reconstruct the wall thickness of steel pipes. In case of bottom of the line corrosion, i.e., a single corrosion pit, a simpler approach may be followed. Data is collected in a pitch-catch configuration at the 12 o'clock position using highly dispersive guided waves. After dispersion correction the data collapses to a short pulse, any residual dispersion indicates wall loss. The phase spectrum is used to invert for the wall thickness profile in the circumferential direction, assuming a Gaussian defect profile. The approach is evaluated on numerically simulated and on measured data. The method is intended for rapid, semi-quantitative screening of pipes.

  10. 1D profiling using highly dispersive guided waves

    NASA Astrophysics Data System (ADS)

    Volker, Arno; van Zon, Tim; Hsu, Mick; Boogert, Lennart

    2016-02-01

    Corrosion is one of the industries major issues regarding the integrity of assets. Currently inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Cost reduction while maintaining a high level of reliability and safety of installations is a major challenge. There are many situations where the actual defect location is not accessible, e.g., a pipe support or a partially buried pipe. In case of bottom of the line corrosion, i.e., a single corrosion pit, a simpler approach may be followed. Guided waves are propagated around the circumference of a pipe. In case of wall loss, the phase of the signal changes which is used to estimate the local wall thickness profile. A special EMAT sensor has been developed, which works in a pit-catch configuration at the 12 o'clock position using highly dispersive guided waves. In order to improve the sensitivity, an inversion in performed on multiple orders of circumferential passes. Experimental results are presented on different pipes containing artificial and real defects.

  11. On a 1D nonlocal transport equation with nonlocal velocity and subcritical or supercritical diffusion

    NASA Astrophysics Data System (ADS)

    Lazar, Omar

    2016-11-01

    We study a 1D transport equation with nonlocal velocity with subcritical or supercritical dissipation. For all data in the weighted Sobolev space Hk (wλ,κ) ∩L∞, where k = max ⁡ (0 , 3 / 2 - α) and wλ,κ is a given family of Muckenhoupt weights, we prove a global existence result in the subcritical case α ∈ (1 , 2). We also prove a local existence theorem for large data in H2 (wλ,κ) ∩L∞ in the supercritical case α ∈ (0 , 1). The proofs are based on the use of the weighted Littlewood-Paley theory, interpolation along with some new commutator estimates.

  12. Minimum 1-D P-wave velocity reference model for Northern Iran

    NASA Astrophysics Data System (ADS)

    Rezaeifar, Meysam; Diehl, Tobias; Kissling, Edi

    2016-04-01

    Uniform high-precision earthquake location is of importance in a seismically active area like northern Iran where the earthquake catalogue is a prerequisite for seismic hazard assessment and tectonic interpretation. We compile a complete and consistent local earthquake data set for the northern Iran region, using information from two independently operating seismological networks, Iran Seismological Center (IRSC) network, administered by the Geophysical Institute of Tehran University, and Iran Broadband network administered by International Institute of Engineering Earthquake and Seismology (IIEES). Special care is taken during the merging process to reduce the number of errors in the data, including station parameters, event pairing, phase identification, and to the assessment of quantitative observation uncertainties. The derived P-wave 1D-velocity model for Northern Iran may serve for consistent routine high-precision earthquake location and as initial reference model for 3D seismic tomography.

  13. Ion velocity distribution at the termination shock: 1-D PIC simulation

    SciTech Connect

    Lu Quanming; Yang Zhongwei; Lembege, Bertrand

    2012-11-20

    The Voyager 2 (V2) plasma observations of the proton temperature downstream of the quasi-perpendicular heliospheric termination shock (TS) showed that upstream thermal solar wind ions played little role in the shock dissipation mechanism and their downstream temperature is an order of magnitude smaller than predicted by MHD Rankine-Hugoniot conditions. While pickup ions (PUI) are generally expected to play an important role in energy dissipation at the shock, the details remain unclear. Here, one-dimensional (1-D) Particle-in-cell (PIC) code is used to examine kinetic properties and downstream velocity distribution functions of pickup ions (the hot supra-thermal component) and solar wind protons (SWs, the cold component) at the perpendicular heliospheric termination shock. The code treats the pickup ions self-consistently as a third component. Present results show that: (1) both of the incident SWs and PUIs can be separated into two parts: reflected (R) ions and directly transmitted (DT) ions, the energy gain of the R ions at the shock front is much larger than that of the DT ions; (2) the fraction of reflected SWs and their downstream temperature decrease with the relative percentage PUI%; (3) no matter how large the PUI% is, the downstream ion velocity distribution function always can be separated into three parts: 1. a high energy tail (i.e. the wings) dominated by the reflected PUIs, 2. a low energy core mainly contributed by the directly transmitted SWs, and 3. a middle energy part which is a complicated superposition of reflected SWs and directly transmitted PUIs. The significance of the presence of pickup ions on shock front micro-structure and nonstationarity is also discussed.

  14. Ion velocity distribution at the termination shock: 1-D PIC simulation

    NASA Astrophysics Data System (ADS)

    Lu, Quanming; Yang, Zhongwei; Lembège, Bertrand

    2012-11-01

    The Voyager 2 (V2) plasma observations of the proton temperature downstream of the quasi-perpendicular heliospheric termination shock (TS) showed that upstream thermal solar wind ions played little role in the shock dissipation mechanism and their downstream temperature is an order of magnitude smaller than predicted by MHD Rankine-Hugoniot conditions. While pickup ions (PUI) are generally expected to play an important role in energy dissipation at the shock, the details remain unclear. Here, one-dimensional (1-D) Particle-in-cell (PIC) code is used to examine kinetic properties and downstream velocity distribution functions of pickup ions (the hot supra-thermal component) and solar wind protons (SWs, the cold component) at the perpendicular heliospheric termination shock. The code treats the pickup ions self-consistently as a third component. Present results show that: (1) both of the incident SWs and PUIs can be separated into two parts: reflected (R) ions and directly transmitted (DT) ions, the energy gain of the R ions at the shock front is much larger than that of the DT ions; (2) the fraction of reflected SWs and their downstream temperature decrease with the relative percentage PUI%; (3) no matter how large the PUI% is, the downstream ion velocity distribution function always can be separated into three parts: 1. a high energy tail (i.e. the wings) dominated by the reflected PUIs, 2. a low energy core mainly contributed by the directly transmitted SWs, and 3. a middle energy part which is a complicated superposition of reflected SWs and directly transmitted PUIs. The significance of the presence of pickup ions on shock front micro-structure and nonstationarity is also discussed.

  15. Calibration of a 1D Crustal Velocity and Q Model for Ground Motion Simulations in Central and Eastern US

    NASA Astrophysics Data System (ADS)

    Graves, R. W.

    2012-12-01

    I have performed low frequency (f < 1 Hz) ground motion simulations for the 2008 Mw 5.23 Mt. Carmel, Illinois and 2011 Mw 5.74 Mineral, Virginia earthquakes to calibrate a rock-site 1D crustal velocity and Q structure model for central and eastern US (CEUS). For each earthquake, the observed ground motions were simulated at sites extending out to about 900 km from the epicenter. Sites within the Mississippi embayment are not included in the modeling. The initial 1D velocity model was developed by averaging profiles extracted from the CUS V1.3 3D velocity model (Ramirez-Guzman et al, 2012) at each of the recording sites, with the surface shear wave velocity set at 2200 m/s. The Mt. Carmel earthquake is represented as a point double couple (strike=25, dip=90, rake=-175) at a depth of 14 km and a slip-rate function having a Brune corner frequency of 0.89 Hz (Hartzell and Mendoza, 2011). The Mineral earthquake is represented as a point double couple (strike=26, dip=55, rake=108) at a depth of 6 km and a slip-rate function having a corner frequency of 0.50 Hz. Full waveform Green's functions were computed using the FK method of Zhu and Rivera (2002). The initial model does well at reproducing the median level of observed response spectral acceleration (Sa) for most sites out to 300 km at periods of 2 to 5 sec, including the observed flattening in distance attenuation between 70 and 150 km. However, this model under predicts the motions beyond about 400 km distance. Increasing Q in the mid- and lower crust from the original value of 700 to 5000 removes this under prediction of the larger distance motions. Modified Mercalli Intensity (MMI) estimates have been computed from the simulations using the ground motion-intensity conversion equations of Atkinson and Kaka (2007; AK2007) and Dangkua and Cramer (2011; DC2011-ENA) for comparison against the observed "Did You Feel It" intensity estimates. Given the bandwidth limitations of the simulations, I use the conversion

  16. An improved 1-D seismic velocity model for seismological studies in the Campania-Lucania region (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Matrullo, Emanuela; De Matteis, Raffaella; Satriano, Claudio; Amoroso, Ortensia; Zollo, Aldo

    2013-10-01

    We present a 1-D velocity model of the Earth's crust in Campania-Lucania region obtained by solving the coupled hypocentre-velocity inverse problem for 1312 local earthquakes recorded at a dense regional network. The model is constructed using the VELEST program, which calculates 1-D `minimum' velocity model from body wave traveltimes, together with station corrections, which account for deviations from the simple 1-D structure. The spatial distribution of station corrections correlates with the P-wave velocity variations of a preliminary 3-D crustal velocity model that has been obtained from the tomographic inversion of the same data set of P traveltimes. We found that station corrections reflect not only inhomogeneous near-surface structures, but also larger-scale geological features associated to the transition between carbonate platform outcrops at Southwest and Miocene sedimentary basins at Northeast. We observe a significant trade-off between epicentral locations and station corrections, related to the existence of a thick low-velocity layer to the NE. This effect is taken into account and minimized by re-computing station corrections, fixing the position of a subset of well-determined hypocentres, located in the 3-D tomographic model.

  17. Velocity-dependent quantum phase slips in 1D atomic superfluids.

    PubMed

    Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D'Errico, Chiara

    2016-01-01

    Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips.

  18. Velocity-dependent quantum phase slips in 1D atomic superfluids.

    PubMed

    Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D'Errico, Chiara

    2016-01-01

    Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips. PMID:27188334

  19. Velocity-dependent quantum phase slips in 1D atomic superfluids

    PubMed Central

    Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D’Errico, Chiara

    2016-01-01

    Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips. PMID:27188334

  20. Influence of the inlet velocity profiles on the prediction of velocity distribution inside an electrostatic precipitator

    SciTech Connect

    Haque, Shah M.E.; Deev, A.V.; Subaschandar, N.; Rasul, M.G.; Khan, M.M.K.

    2009-01-15

    The influence of the velocity profile at the inlet boundary on the simulation of air velocity distribution inside an electrostatic precipitator is presented in this study. Measurements and simulations were performed in a duct and an electrostatic precipitator (ESP). A four-hole cobra probe was used for the measurement of velocity distribution. The flow simulation was performed by using the computational fluid dynamics (CFD) code FLUENT. Numerical calculations for the air flow were carried out by solving the Reynolds-averaged Navier-Stokes equations coupled with the realizable k-{epsilon} turbulence model equations. Simulations were performed with two different velocity profiles at the inlet boundary - one with a uniform (ideal) velocity profile and the other with a non-uniform (real) velocity profile to demonstrate the effect of velocity inlet boundary condition on the flow simulation results inside an ESP. The real velocity profile was obtained from the velocity measured at different points of the inlet boundary whereas the ideal velocity profile was obtained by calculating the mean value of the measured data. Simulation with the real velocity profile at the inlet boundary was found to predict better the velocity distribution inside the ESP suggesting that an experimentally measured velocity profile could be used as velocity inlet boundary condition for an accurate numerical simulation of the ESP. (author)

  1. Forward waveform modelling procedure for 1-D crustal velocity structure and its application to the southern Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kim, Seongryong; Rhie, Junkee; Kim, Geunyoung

    2011-04-01

    We propose a full-grid search procedure for broad-band waveform modelling to determine a 1-D crustal velocity model. The velocity model can be more constrained because of the use of broad-band waveforms instead of traveltimes for the crustal phases, although only a small number of event-station pairs were employed. Despite the time-consuming nature of the full-grid search method to search the whole model parameter space, the use of an empirical relationship between the P- and S-wave velocities can significantly reduce computation time. The proposed method was applied to a case in the southern Korean Peninsula. Broad-band waveforms obtained from two inland earthquakes that occurred on 2007 January 20 (Mw 4.6) and 2004 April 26 (Mw 3.6) were used to test the method. The three-layers over half-space crustal velocity model of the P- and S-wave velocities was estimated. Comparisons of waveform fitness between the final model and previously published models demonstrate advancements in the average value of waveform fitness for the inland earthquakes. In addition, 1-D velocity models were determined for three distinct tectonic regions, namely, the Gyonggi Massif, the Okcheon Belt and the Gyeongsang Basin, which are all located inside the study area. A comparison between the three models demonstrates that the crustal thickness of the southern Korean Peninsula increases from NW to SE and that the lower crustal composition of the Okcheon belt differs from that of the other tectonic regions.

  2. Prediction of the expansion velocity of ultracold 1D quantum gases for integrable models

    NASA Astrophysics Data System (ADS)

    Mei, Zhongtao; Vidmar, Lev; Heidrich-Meisner, Fabian; Bolech, Carlos

    In the theory of Bethe-ansatz integrable quantum systems, rapidities play an important role as they are used to specify many-body states. The physical interpretation of rapidities going back to Sutherland is that they are the asymptotic momenta after letting a quantum gas expand into a larger volume rendering it dilute and noninteracting. We exploit this picture to calculate the expansion velocity of a one-dimensional Fermi-Hubbard model by using the distribution of rapidities defined by the initial state. Our results are consistent with the ones from time-dependent density-matrix renormalization. We show in addition that an approximate Bethe-ansatz solution works well also for the Bose-Hubbard model. Our results are of interests for future sudden-expansion experiments with ultracold quantum gases.

  3. Velocity profile development for a poultry facility acid scrubber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determination of the air velocity profile for 12 experimental configurations (ECs) of an acid scrubber was carried out using an equal area traverse method with a vane axial anemometer. Four velocity profile plots were created for each configuration to determine the four optimal ECs. ECs were selecte...

  4. An approach to jointly invert hypocenters and 1D velocity structure and its application to the Lushan earthquake series

    NASA Astrophysics Data System (ADS)

    Qian, Hui; Mechie, James; Li, Haibing; Xue, Guangqi; Su, Heping; Cui, Xiang

    2016-01-01

    Earthquake location is essential when defining fault systems and other geological structures. Many methods have been developed to locate hypocenters within a 1D velocity model. In this study, a new approach, named MatLoc, has been developed which can simultaneously invert for the locations and origin times of the hypocenters and the velocity structure, from the arrival times of local earthquakes. Moreover, it can invert for layer boundary depths, such as Moho depths, which can be well constrained by the Pm and Pn phases. For this purpose, the package was developed to take into account reflected phases, e.g., the Pm phase. The speed of the inversion is acceptable due to the use of optimized matrix calculations. The package has been used to re-locate the Lushan earthquake series which occurred in Sichuan, China, from April 20 to April 22, 2013. The results obtained with the package show that the Lushan earthquake series defines the dip of the Guankou fault, on which most of the series occurred, to be 39° toward the NW. Further, the surface projection of the Lushan earthquake series is consistent with the regional tectonic strike which is about N45° E.

  5. Radar Wind Profiler Radial Velocity: A Comparison with Doppler Lidar.

    NASA Astrophysics Data System (ADS)

    Cohn, Stephen A.; Goodrich, R. Kent

    2002-12-01

    The accuracy of the radial wind velocity measured with a radar wind profiler will depend on turbulent variability and instrumental noise. Radial velocity estimates of a boundary layer wind profiler are compared with those estimated by a Doppler lidar over 2.3 h. The lidar resolution volume was much narrower than the profiler volume, but the samples were well matched in range and time. The wind profiler radial velocity was computed using two common algorithms [profiler online program (POP) and National Center for Atmospheric Research improved moments algorithm (NIMA)]. The squared correlation between radial velocities measured with the two instruments was R2 = 0.99, and the standard deviation of the difference was about r = 0.20-0.23 m s1 for radial velocities of greater than 1 m s1 and r = 0.16-0.35 m s1 for radial velocities of less than 1 m s1. Small radial velocities may be treated differently in radar wind profiler processing because of ground-clutter mitigation strategies. A standard deviation of r = 0.23 m s1 implies an error in horizontal winds from turbulence and noise of less than 1 m s1 for a single cycle through the profiler beam directions and of less than 0.11-0.27 m s1 for a 30-min average measurement, depending on the beam pointing sequence. The accuracy of a wind profiler horizontal wind measurement will also depend on assumptions of spatial and temporal inhomogeneity of the atmosphere, which are not considered in this comparison. The wind profiler radial velocities from the POP and NIMA are in good agreement. However, the analysis does show the need for improvements in wind profiler processing when radial velocity is close to zero.

  6. Exponential velocity profile of granular flows down a confined heap.

    PubMed

    Martínez, E; González-Lezcano, A; Batista-Leyva, A J; Altshuler, E

    2016-06-01

    Thick granular flows are essential to many natural and industrial phenomena. Experimentally, it has been well established that the grain velocity profile is linear from the free surface to a certain depth, after which it decreases exponentially in the so-called "creep region". In this paper we obtain an exponential velocity profile based on the force balance of a grain near a wall, where the Janssen effect and the non-locality of interactions between grains are considered. When experimental parameters such as flow angles and friction coefficients are introduced in our model, it is able to reproduce experimental creep velocity profiles previously reported in the literature. PMID:27415346

  7. Altered expression profile of renal α(1D)-adrenergic receptor in diabetes and its modulation by PPAR agonists.

    PubMed

    Zhao, Xueying; Zhang, Yuanyuan; Leander, Michelle; Li, Lingyun; Wang, Guoshen; Emmett, Nerimiah

    2014-01-01

    Alpha(1D)-adrenergic receptor (α(1D)-AR) plays important roles in regulating physiological and pathological responses mediated by catecholamines, particularly in the cardiovascular and urinary systems. The present study was designed to investigate the expression profile of α(1D)-AR in the diabetic kidneys and its modulation by activation of peroxisome proliferator-activated receptors (PPARs). 12-week-old Zucker lean (ZL) and Zucker diabetic fatty (ZD) rats were treated with fenofibrate or rosiglitazone for 8-10 weeks. Gene microarray, real-time PCR, and confocal immunofluorescence microscopy were performed to assess mRNA and protein expression of α(1D)-AR in rat kidney tissue. Using microarray, we found that α(1D)-AR gene was dramatically upregulated in 22-week-old ZD rats compared to ZL controls. Quantitative PCR analysis verified a 16-fold increase in α(1D)-AR mRNA in renal cortex from ZD animals compared to normal controls. Chronic treatment with fenofibrate or rosiglitazone reduced renal cortical α(1D)-AR gene. Immunofluorescence staining confirmed that α(1D)-AR protein was induced in the glomeruli and tubules of diabetic rats. Moreover, dual immunostaining for α(1D)-AR and kidney injury molecule-1 indicated that α(1D)-AR was expressed in dedifferentiated proximal tubules of diabetic Zucker rats. Taken together, our results show that α(1D)-AR expression is upregulated in the diabetic kidneys. PPAR activation suppressed renal expression of α(1D)-AR in diabetic nephropathy.

  8. Temperature and velocity profiles in sooting free boundary layer flames

    NASA Technical Reports Server (NTRS)

    Ang, J. A.; Pagni, P. J.; Mataga, T. G.; Margle, J. M.; Lyons, V. J.

    1986-01-01

    Temperature and velocity profiles are presented for cyclohexane, n-heptane, and iso-octane free, laminar, boundary layer, sooting, diffusion flames. Temperatures are measured with 3 mil Pt/Pt-13 percent Rh thermocouples. Corrected gas temperatures are derived by performing an energy balance of convection to and radiation from the thermocouple bead incorporating the variation of air conductivity and platinum emissivity with temperature. Velocities are measured using laser doppler velocimetry techniques. Profiles are compared with previously reported analytic temperature and velocity fields. Comparison of theoretical and experimental temperature profiles suggests improvement in the analytical treatment is needed, which accounts more accurately for the local soot radiation. The velocity profiles are in good agreement, with the departure of the theory from observation partially due to the small fluctuations inherent in these free flows.

  9. Stream tube and velocity profile analysis of pulmonary arterial angiograms

    NASA Astrophysics Data System (ADS)

    Clough, Anne V.; Haworth, Steven T.; Manuel, Albert J.; Dawson, Christopher A.

    1999-05-01

    The distribution of blood transit times within the pulmonary arterial tree has important implications with regards to overall lung function. Previously, we showed that the pulmonary arterial tree imparts little dispersion to an injected bolus, so that the bolus arrives at downstream arteries with a time delay, but little increase in variance. Furthermore, the arterial time delay is nearly the same for all pathways to arteries of the same diameter, independent of their pathway length. This small amount of dispersion was observed despite the velocity profile within the arterial tree and the substantial variation in arterial pathway lengths. Thus, we have begun to ask why velocity profile effects and pathway length heterogeneity within the pulmonary arterial tree have so little influence on bolus dispersion. X-ray angiography studies were used to visualize streamtube pathways within the pulmonary arterial tree. Full bolus injections were used to visualize all flow streamlines within the tree, while 'streamtube' injections labeled only about 1% of the inlet arterial cross-section. By changing the injector position within the arterial cross-section, different streamtubes were traced and found to remain intact downstream to vessels less than 200 micrometer in diameter. Thus, it appears that lower velocity streamtubes tend to peel off from the full velocity profile at arterial bifurcations, while flow streamtubes with higher average velocity travel down the main arterial trunk. The net result is that dispersive velocity profile effects are mitigated by the interaction between the distributed velocity profile and the branching pattern of the pulmonary arterial tree.

  10. Velocity profiles inside volcanic clouds from three-dimensional scanning microwave dual-polarization Doppler radars

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario

    2016-07-01

    In this work, velocity profiles within a volcanic tephra cloud obtained by dual-polarization Doppler radar acquisitions with three-dimensional (3-D) mechanical scanning capability are analyzed. A method for segmenting the radar volumes into three velocity regimes: vertical updraft, vertical fallout, and horizontal wind advection within a volcanic tephra cloud using dual-polarization Doppler radar moments is proposed. The horizontal and vertical velocity components within the regimes are retrieved using a novel procedure that makes assumptions concerning the characteristics of the winds inside these regimes. The vertical velocities retrieved are combined with 1-D simulations to derive additional parameters including particle fallout, mass flux, and particle sizes. The explosive event occurred on 23 November 2013 at the Mount Etna volcano (Sicily, Italy), is considered a demonstrative case in which to analyze the radar Doppler signal inside the tephra column. The X-band radar (3 cm wavelength) in the Catania, Italy, airport observed the 3-D scenes of the Etna tephra cloud ~32 km from the volcano vent every 10 min. From the radar-derived vertical velocity profiles of updraft, particle fallout, and horizontal transportation, an exit velocity of 150 m/s, mass flux rate of 1.37 • 107 kg/s, particle fallout velocity of 18 m/s, and diameters of precipitating tephra particles equal to 0.8 cm are estimated on average. These numbers are shown to be consistent with theoretical 1-D simulations of plume dynamics and local reports at the ground, respectively. A thickness of 3 ± 0.36 km for the downwind ash cloud is also inferred by differentiating the radar-derived cloud top and the height of transition between the convective and buoyancy regions, the latter being inferred by the estimated vertical updraft velocity profile. The unique nature of the case study as well as the novelty of the segmentation and retrieval methods presented potentially give new insights into the

  11. Measuring discharge with ADCPs: Inferences from synthetic velocity profiles

    USGS Publications Warehouse

    Rehmann, C.R.; Mueller, D.S.; Oberg, K.A.

    2009-01-01

    Synthetic velocity profiles are used to determine guidelines for sampling discharge with acoustic Doppler current profilers (ADCPs). The analysis allows the effects of instrument characteristics, sampling parameters, and properties of the flow to be studied systematically. For mid-section measurements, the averaging time required for a single profile measurement always exceeded the 40 s usually recommended for velocity measurements, and it increased with increasing sample interval and increasing time scale of the large eddies. Similarly, simulations of transect measurements show that discharge error decreases as the number of large eddies sampled increases. The simulations allow sampling criteria that account for the physics of the flow to be developed. ?? 2009 ASCE.

  12. VPV--The velocity profile viewer user manual

    USGS Publications Warehouse

    Donovan, John M.

    2004-01-01

    The Velocity Profile Viewer (VPV) is a tool for visualizing time series of velocity profiles developed by the U.S. Geological Survey (USGS). The USGS uses VPV to preview and present measured velocity data from acoustic Doppler current profilers and simulated velocity data from three-dimensional estuarine, river, and lake hydrodynamic models. The data can be viewed as an animated three-dimensional profile or as a stack of time-series graphs that each represents a location in the water column. The graphically displayed data are shown at each time step like frames of animation. The animation can play at several different speeds or can be suspended on one frame. The viewing angle and time can be manipulated using mouse interaction. A number of options control the appearance of the profile and the graphs. VPV cannot edit or save data, but it can create a Post-Script file showing the velocity profile in three dimensions. This user manual describes how to use each of these features. VPV is available and can be downloaded for free from the World Wide Web at http://ca.water.usgs.gov/program/sfbay/vpv.

  13. Velocity profiles between two baffles in a horizontal circular tube

    NASA Astrophysics Data System (ADS)

    Chang, Tae-Hyun; Lee, Hae-Soo; Oh, Keon-Je; Doh, Doeg Hee; Lee, Chang-Hoan

    2014-12-01

    The shell and tube heat exchanger is an essential part of a power plant for recovering heat transfer between the feed water of a boiler and the wasted heat. The baffles are also an important element inside the heat exchanger. Internal materials influence the flow pattern in the bed. The influence of baffles in the velocity profiles was observed using a three-dimensional particle image velocimetry around baffles in a horizontal circular tube. The velocity of the particles was measured before the baffle and between them in the test tube. Results show that the flows near the front baffle flow were parallel to the vertical wall, and then concentrate on the upper opening of the front baffle. The flows circulate in the front and rear baffles. These flow profiles are related to the Reynolds number (Re) or the flow intensity. The velocity profiles at lower Re number showed a complicated mixing, concentrating on the lower opening of the rear baffle as front wall. Swirling flow was employed in this study, which was produced using tangential velocities at the inlet. At the entrance of the front baffle, the velocity vector profiles with swirl were much different from that without swirl. However, velocities between two baffles are not much different from those without swirl.

  14. Vertical velocity in cirrus case obtained from wind profiler

    NASA Technical Reports Server (NTRS)

    Song, Ran; Cox, Stephen K.

    1993-01-01

    Cirrus clouds play an important role in the climate and general circulation because they significantly modulate the radiation properties of the atmosphere. However understanding the processes that govern their presence is made difficult by their high altitude, variable thickness, complex microphysical structure, and relatively little knowledge of the vertical motion field. In the FIRE 2 (First International Satellite Cloud Climatology Regional Experiment) experiment, a 404 MHz wind profiler was set up to provide continuous measurements of clear air wind field at Parsons, Kansas. Simultaneously, the NOAA wind profiler network supplied a wider spacial scale observation. On 26 Nov. 1991, the most significant cirrus cloud phenomena during the experiment with a jet streak at 250 Mb occurred. Analyses of the vertical wind velocity are made by utilizing different methods based on wind profiler data, among them the direct measurements from CSU wind profiler and NOAA network wind profilers, VAD (Velocity Azimuth Display) technique and the kinematic method.

  15. Normalized velocity profiles of field-measured turbidity currents

    USGS Publications Warehouse

    Xu, Jingping

    2010-01-01

    Multiple turbidity currents were recorded in two submarine canyons with maximum speed as high as 280 cm/s. For each individual turbidity current measured at a fixed station, its depth-averaged velocity typically decreased over time while its thickness increased. Some turbidity currents gained in speed as they traveled downcanyon, suggesting a possible self-accelerating process. The measured velocity profiles, first in this high resolution, allowed normalizations with various schemes. Empirical functions, obtained from laboratory experiments whose spatial and time scales are two to three orders of magnitude smaller, were found to represent the field data fairly well. The best similarity collapse of the velocity profiles was achieved when the streamwise velocity and the elevation were normalized respectively by the depth-averaged velocity and the turbidity current thickness. This normalization scheme can be generalized to an empirical function Y = exp(–αXβ) for the jet region above the velocity maximum. Confirming theoretical arguments and laboratory results of other studies, the field turbidity currents are Froude-supercritical.

  16. Effect of velocity profile skewing on blood velocity and volume flow waveforms derived from maximum Doppler spectral velocity.

    PubMed

    Mynard, Jonathan P; Steinman, David A

    2013-05-01

    Given evidence that fully developed axisymmetric flow may be the exception rather than the rule, even in nominally straight arteries, maximum velocity (V(max)) can lie outside the Doppler sample volume (SV). The link between V(max) and derived quantities, such as volume flow (Q), may therefore be more complex than commonly thought. We performed idealized virtual Doppler ultrasound on data from image-based computational fluid dynamics (CFD) models of the normal human carotid artery and investigated how velocity profile skewing and choice of sample volume affected V(max) waveforms and derived Q variables, considering common assumptions about velocity profile shape (i.e., Poiseuille or Womersley). Severe velocity profile skewing caused substantial errors in V(max) waveforms when using a small, centered SV, although peak V(max) was reliably detected; errors with a long SV covering the vessel diameter were orientation dependent but lower overall. Cycle-averaged Q calculated from V(max) was typically within ±15%, although substantial skewing and use of a small SV caused 10%-25% underestimation. Peak Q derived from Womersley's theory was generally accurate to within ±10%. V(max) pulsatility and resistance indexes differed from Q-based values, although the Q-based resistance index could be predicted reliably. Skewing introduced significant error into V(max)-derived Q waveforms, particularly during mid-to-late systole. Our findings suggest that errors in the V(max) and Q waveforms related to velocity profile skewing and use of a small SV, or orientation-dependent errors for a long SV, could limit their use in wave analysis or for constructing characteristic or patient-specific flow boundary conditions for model studies.

  17. Noise from Supersonic Coaxial Jets. Part 2; Normal Velocity Profile

    NASA Technical Reports Server (NTRS)

    Dahl, M. D.; Morris, P. J.

    1997-01-01

    Instability waves have been established as noise generators in supersonic jets. Recent analysis of these slowly diverging jets has shown that these instability waves radiate noise to the far field when the waves have components with phase velocities that are supersonic relative to the ambient speed of sound. This instability wave noise generation model has been applied to supersonic jets with a single shear layer and is now applied to supersonic coaxial jets with two initial shear layers. In this paper the case of coaxial jets with normal velocity profiles is considered, where the inner jet stream velocity is higher than the outer jet stream velocity. To provide mean flow profiles at all axial locations, a numerical scheme is used to calculate the mean flow properties. Calculations are made for the stability characteristics in the coaxial jet shear layers and the noise radiated from the instability waves for different operating conditions with the same total thrust, mass flow and exit area as a single reference jet. The effects of changes in the velocity ratio, the density ratio and the area ratio are each considered independently.

  18. Measuring velocity and temperature profile sectional pipeline behind confuser

    NASA Astrophysics Data System (ADS)

    Siažik, Ján; Malcho, Milan; Lenhard, Richard; Novomestský, Marcel

    2016-06-01

    The article deals with the measuring of temperature and velocity profile in area behind confuser in real made scale model of bypass. For proper operation of the equipment it is necessary to know the actual flow in the pipe. Bypasses have wide application and can be also associated with devices for heat recovery, heat exchangers different designs in which may be used in certain circumstances. In the present case, the heat that would otherwise has not been used is used for heating of insulators, and heating the air in the spray-dryer. The measuring principle was verify how the above-mentioned temperature and velocity profile decomposition above confuser on real made scale model.

  19. PROFILES OF DARK MATTER VELOCITY ANISOTROPY IN SIMULATED CLUSTERS

    SciTech Connect

    Lemze, Doron; Ford, Holland; Wagner, Rick; Norman, Michael L.; Rephaeli, Yoel; Sadeh, Sharon; Barkana, Rennan; Broadhurst, Tom

    2012-06-20

    We report statistical results for dark matter (DM) velocity anisotropy, {beta}, from a sample of some 6000 cluster-size halos (at redshift zero) identified in a {Lambda}CDM hydrodynamical adaptive mesh refinement simulation performed with the ENZO code. These include profiles of {beta} in clusters with different masses, relaxation states, and at several redshifts, modeled both as spherical and triaxial DM configurations. Specifically, although we find a large scatter in the DM velocity anisotropy profiles of different halos (across elliptical shells extending to at least {approx}1.5r{sub vir}), universal patterns are found when these are averaged over halo mass, redshift, and relaxation stage. These are characterized by a very small velocity anisotropy at the halo center, increasing outward to {approx}0.27 and leveling off at {approx}0.2r{sub vir}. Indirect measurements of the DM velocity anisotropy fall on the upper end of the theoretically expected range. Though measured indirectly, the estimations are derived by using two different surrogate measurements-X-ray and galaxy dynamics. Current estimates of the DM velocity anisotropy are based on a very small cluster sample. Increasing this sample will allow theoretical predictions to be tested, including the speculation that the decay of DM particles results in a large velocity boost. We also find, in accord with previous works, that halos are triaxial and likely to be more prolate when unrelaxed, whereas relaxed halos are more likely to be oblate. Our analysis does not indicate that there is significant correlation (found in some previous studies) between the radial density slope, {gamma}, and {beta} at large radii, 0.3 r{sub vir} < r < r{sub vir}.

  20. Observations and analysis of O(1D) and NH2 line profiles for the coma of comet P/Halley

    NASA Technical Reports Server (NTRS)

    Smyth, William H.; Combi, Michael R.; Roesler, Fred L.; Scherb, Frank

    1995-01-01

    A set of high-resolution Fabry-Perot measurements of the coma of comet P/Halley was acquired in the (O I) 6300 A and NH2 6298.62 A emission lines. These high-resolution measurements provide the first optical observations capable of studying directly the photochemical kinetics and dynamic outflow of the coma. The observations were analyzed by a Monte Carlo Particle Trajectory Model. The agreement of the model and observed line profiles was excellent and verified the underlying dynamics, exothermic photodissociative chemistry, and collisional thermalization in the coma. The somewhat wider intrinsic line profile width for the O(1D) emission in 1986 January compared to 1986 May, is, for example, produced by the larger outflow speeds and gas temperatures nearer perihelion in January. The January O(1D) profile, which is wider than the January NH2 profile, is indicative of the photochemical kinetics in the dissociation of the parent molecules H2O and OH in the coma. The absolute calibration of the observations in 1986 January allowed the production rates for H2O and the NH2-parent molecules to be determined. The average daily water production rates derived from the O(1D) emission data for January 16 and 17 are presented. These very large water production rates are consistent with the extrapolated (and 7.6 day time variable) water production rates determined from the analysis of lower spectral resolution observations for O(1D) and H-alpha emissions that covered the time period up to January 13. The large production rates on January 16 and 17 establish that the maximum water production rate for comet Halley accurred pre-perihelion in January. Implications drawn from comparison with 18 cm radio emission data in January suggest that the peak water production rate was even larger. The average production rate for NH3 determined from the NH2 emission data for January 17 was (1.48 +/- 0.10) x 10(exp 28) molecules/s, yielding an NH3/H2O production rate ratio of 0.55%.

  1. General relativistic effects in galactic rotation velocity profiles

    NASA Astrophysics Data System (ADS)

    Cisneros, Sophia

    2008-10-01

    The anomalously high galactic rotation velocities deduced from spectroscopic observations have motivated the conjecture of additional Dark Matter. Here we investigate to what extent this picture may be impacted by general relativistic effects. Previous work involving General Relativity has used linearized field equations to arrive at estimates of wavelength shifts arising from spin induced curvature. We show here that, using the fully contravariant 3+1 dimensional wave equation (the D'Alembertian for a Kerr Metric), non-trivial results for observed velocities can be obtained. These velocities are much higher than those obtained from the linearized equations. The Kerr rotation curve is derived from first principles. The wavelength shifts are then weighted by an empirical factor which accounts for difference in curvature of the originating galaxy and the Milky Way. The resulting apparent radial dependence of the velocity is much flatter than obtained in the Keplerian case, which opens the possibility that, for our test galaxy(M33), we have correct estimates of (luminous) matter on the exterior edges, but have only underestimated the mass at the center. This result suggests that general relativistic effects mitigate, or may possibly even obviate the need to invoke the presence of Dark Matter in order to explain the observed apparent velocity profiles. All rotation curves presented are computed with data graciously provided by E.Corbelli and R.Walterbos for M33, taken in the wavelength band of H/alpha.

  2. Velocity Profile Normalization of Field-Measured Turbidity Currents

    NASA Astrophysics Data System (ADS)

    Xu, J.

    2009-05-01

    Multiple occurrences of turbidity currents were observed in moored-ADCP measurements in Monterey (2002/03) and Hueneme (2007/08) submarine canyons, California. These turbidity currents, almost all of which were supercritical (densimetric Froude number greater than unity), lasted for hours and obtained a maximum speed of greater than 200 cm/s. The layer-averaged velocity of the turbidity currents varied from 100+ cm/s at the onset of the turbidity currents to 20+ cm/s toward the end of the events. The thickness of the turbidity currents tended to increase from 10 to 40 m over an event. Empirical functions, obtained from laboratory experiments whose spatial and time scales are two to three orders of magnitude smaller than the field measurements [e.g. Altinakar, Graf, and Hopfinger, 1996, Flow structure in turbidity currents, Journal of Hydraulic Research, 34(5):713-718], were found to represent the field data fairly well. However, the best similarity collapse of the turbidity current velocity profiles was obtained when the streamwise velocity was normalized by the layer-averaged velocity and the elevation was normalized by the turbidity current thickness. This normalization scheme can be generalized to the same empirical function y = exp (-α xm) for the jet region above the velocity maximum.

  3. Halo velocity profiles in screened modified gravity theories

    NASA Astrophysics Data System (ADS)

    Gronke, M.; Llinares, C.; Mota, D. F.; Winther, H. A.

    2015-05-01

    Screened modified gravity predicts potentially large signatures in the peculiar velocity field that makes it an interesting probe to test gravity on cosmological scales. We investigate the signatures induced by the Symmetron and a Chameleon f(R) model in the peculiar velocity field using N-body simulations. By studying fifth force and halo velocity profiles, we identify three general categories of effects found in screened modified gravity models: a fully screened regime where we recover Λ cold dark matter to high precision, an unscreened regime where the fifth force is in full operation, and, a partially screened regime where screening occurs in the inner part of a halo, but the fifth force is active at larger radii. These three regimes can be pointed out very clearly by analysing the deviation in the maximum cluster velocity. Observationally, the partially screened regime is of particular interest since an uniform increase of the gravitational force - as present in the unscreened regime - is degenerate with the (dynamical) halo mass estimate, and, thus, hard to detect.

  4. Hα LINE PROFILE ASYMMETRIES AND THE CHROMOSPHERIC FLARE VELOCITY FIELD

    SciTech Connect

    Kuridze, D.; Mathioudakis, M.; Kennedy, M.; Keenan, F. P.; Simões, P. J. A.; Voort, L. Rouppe van der; Fletcher, L.; Carlsson, M.; Jafarzadeh, S.; Allred, J. C.; Kowalski, A. F.; Graham, D.

    2015-11-10

    The asymmetries observed in the line profiles of solar flares can provide important diagnostics of the properties and dynamics of the flaring atmosphere. In this paper the evolution of the Hα and Ca ii λ8542 lines are studied using high spatial, temporal, and spectral resolution ground-based observations of an M1.1 flare obtained with the Swedish 1 m Solar Telescope. The temporal evolution of the Hα line profiles from the flare kernel shows excess emission in the red wing (red asymmetry) before flare maximum and excess in the blue wing (blue asymmetry) after maximum. However, the Ca ii λ8542 line does not follow the same pattern, showing only a weak red asymmetry during the flare. RADYN simulations are used to synthesize spectral line profiles for the flaring atmosphere, and good agreement is found with the observations. We show that the red asymmetry observed in Hα is not necessarily associated with plasma downflows, and the blue asymmetry may not be related to plasma upflows. Indeed, we conclude that the steep velocity gradients in the flaring chromosphere modify the wavelength of the central reversal in the Hα line profile. The shift in the wavelength of maximum opacity to shorter and longer wavelengths generates the red and blue asymmetries, respectively.

  5. Velocity Profiles for Turbulent Couette-Poiseuille Flow.

    NASA Astrophysics Data System (ADS)

    Panton, Ronald

    1998-11-01

    Flow in a channel with one moving wall and an applied pressure gradient is considered. This flow is of interest because of the two different mechanisms that drive the turbulence, Poiseuille dominated flows have a maximum velocity that does not coincide with the point of zero Reynolds stress. Couette dominated flows have an inflection point with a finite Reynolds stress. In a special case the stress on one wall is zero while the flow above the wall is turbulent. At high Re the flow consists of a turbulent core bounded by two wall layers. The velocity in the wall layers is assumed to follow the usual shear driven law-of-the-wall. Correspondingly, there is a law-of-the-wall for the Reynolds stress. This law has been determined from correlating experiments and DNS results of pressure driven pipe and channel flows. The Reynolds stress in the core is found analytically and a uniformly valid composite expansion formed. Integration of the exact momentum equation yields the velocity profiles. Results are compared to experiments for a variety of flow parameters. Influences of the Reynolds number are quantified.

  6. Generation of a pseudo-2D shear-wave velocity section by inversion of a series of 1D dispersion curves

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that

  7. Spectral theory of the turbulent mean-velocity profile.

    PubMed

    Gioia, Gustavo; Guttenberg, Nicholas; Goldenfeld, Nigel; Chakraborty, Pinaki

    2010-10-29

    It has long been surmised that the mean-velocity profile (MVP) of pipe flows is closely related to the spectrum of turbulent energy. Here we perform a spectral analysis to identify the eddies that dominate the production of shear stress via momentum transfer. This analysis allows us to express the MVP as a functional of the spectrum. Each part of the MVP relates to a specific spectral range: the buffer layer to the dissipative range, the log layer to the inertial range, and the wake to the energetic range. The parameters of the spectrum set the thickness of the viscous layer, the amplitude of the buffer layer, and the amplitude of the wake.

  8. What is the velocity profile of debris flows?

    NASA Astrophysics Data System (ADS)

    Walter, Fabian; McArdell, Brian

    2015-04-01

    cross-correlation scheme after calculating the signal envelope and low pass filtering it. In this sense, we do not target individual particle impacts. Rather, we measure debris flow velocities by tracking activity bursts across sensor triplets sharing the same height. Our method is therefore ideally applied to debris flows, whose geophone records show long-term modulations of signal amplitudes. For certain debris flow records our procedure provides vertical flow velocity profiles. We compare these with independent measurements of debris flow front speeds and flow depths. Furthermore, we discuss important limitations of the shear wall set up. Specifically, the channel bed below the instruments is erodible and thus varying with time. Moreover, debris deposits near the channel wall may locally perturb the debris flow and thus divert it from the direction parallel to the channel centerline. Nevertheless, we believe that our vertical flow profile results are the first of their kind and shed light on the interior of a debris flow, which is usually shielded from direct observations.

  9. Characterization of saturated MHD instabilities through 2D electron temperature profile reconstruction from 1D ECE measurements

    NASA Astrophysics Data System (ADS)

    Sertoli, M.; Horváth, L.; Pokol, G. I.; Igochine, V.; Barrera, L.

    2013-05-01

    A new method for the reconstruction of two-dimensional (2D) electron temperature profiles in the presence of saturated magneto-hydro-dynamic (MHD) modes from the one-dimensional (1D) electron cyclotron emission (ECE) diagnostic is presented. The analysis relies on harmonic decomposition of the electron temperature oscillations through short time Fourier transforms and requires rigid poloidal mode rotation as the only assumption. The method is applicable to any magnetic perturbation as long as the poloidal and toroidal mode numbers m and n are known. Its application to the case of a (m, n) = (1, 1) internal kink mode on ASDEX Upgrade is presented and a new way to estimate the mode displacement is explained. For such modes, it is shown that the higher order harmonics usually visible in the ECE spectrogram arise also for the pure m = n = 1 mode and that they cannot be directly associated with m = n > 1 magnetic perturbations. This method opens up new possibilities for electron heat transport studies in the presence of saturated MHD modes and a way to disentangle the impurity density contributions from electron temperature effects in the analysis of the soft x-ray data.

  10. Profiles of 5-HT 1B/1D agonists in acute migraine with special reference to second generation agents.

    PubMed

    Deleu, D; Hanssens, Y

    1999-06-01

    The efficacy of 5-hydroxytryptamine 1B/1D (5-HT 1B/1D) agonists is related to their inhibitory effects on neurogenic inflammation, mediated through serotoninergic control mechanisms. Recently, a series of oral second generation 5-HT 1B/1D agonists (eletriptan, naratriptan, rizatriptan and zolmitriptan) have been developed and are reviewed in this paper. Their in vitro and in vivo pharmacological properties, clinical efficacy, drug interactions, and adverse effects are evaluated and compared to the gold standard in the treatment of acute migraine, sumatriptan. PMID:10427351

  11. Applying velocity profiling technology to flow measurement at the Orinda water treatment plant

    SciTech Connect

    Metcalf, M.A.; Kachur, S.; Lackenbauer, S.

    1998-07-01

    A new type of flow measurement technology, velocity profiling, was tested in the South Channel of the Orinda Water Treatment Plant. This new technology allowed installation in the difficult hydraulic conditions of the South Channel, without interrupting plant operation. The advanced technology of velocity profiling enables flow measurements to be obtained in sites normally unusable by more traditional methods of flow rate measurement.

  12. Use of Refraction Microtremor (ReMi) technique for the determination of 1-D shear wave velocity in a landslide area

    NASA Astrophysics Data System (ADS)

    Coccia, S.; Del Gaudio, V.; Venisti, N.; Wasowski, J.

    2009-04-01

    In the context of an ongoing study on seismic response of landslide-prone hill-slopes in Central Italy (area of Caramanico Terme), we tested the applicability of the Refraction Microtremor (ReMi) analysis technique (Louie, 2001) to obtain geometrical and physical parameters needed for numerical modelling. In particular, we used this technique to determine one-dimensional shear-wave velocity profiles (Vs) at sites located on and close to a recent landslide that mobilized 30-40 m thick Quaternary colluvium overlying Pliocene mudstones. The use of this technique in unstable slope areas presents difficulties related to rough topography and lateral lithological heterogeneities, which prevent the extension of geophone array up to the minimum lengths (100 - 200 m) commonly adopted in standard applications. Moreover, sites distant from anthropic sources of microtremors can have unfavourable noise conditions in comparison with other well established cases of application. To check the stability of the ReMi data in these operative conditions and the confidence level of the results, three ReMi campaigns were conducted at different times using different acquisition parameters (seismograph channel number, geophone frequency and spacing). We also tested simultaneous noise recording along orthogonal arrays to investigate a possible presence of directional variations of soil properties. The Rayleigh wave velocity dispersion data derived from picking carried out on p (slowness)-f (frequency) matrix showed the presence in noise recordings of different Rayleigh wave vibration modes (fundamental and first two higher modes), which prevail at different frequency intervals. This indicates that it is essential to correctly identify the different vibration modes to avoid erroneous data interpretation (e.g. fictitious identification of velocity decrease with depth). An analysis of the influence of changing environmental conditions and of different acquisition parameters was conducted through

  13. On one-dimensional velocity approximation for speed-dependent spectral line profiles

    NASA Astrophysics Data System (ADS)

    Kochanov, V. P.

    2013-05-01

    An application of one-dimensional velocity approach to calculation of speed-dependent spectral line profiles was considered. It was shown that a mean deviation of the line profile obtained within this approach from the line profile derived with integrating over three projections of an absorbing molecule's velocity does not exceed 1.1% at mass ratios of perturbing and absorbing molecules ≤9. Analytical approximate expressions for speed-dependent line profiles, including spectral line narrowing and mixing, were obtained for one- and three-dimensional velocity approaches.

  14. Measurement of sound velocity profiles in fluids for process monitoring

    NASA Astrophysics Data System (ADS)

    Wolf, M.; Kühnicke, E.; Lenz, M.; Bock, M.

    2012-12-01

    In ultrasonic measurements, the time of flight to the object interface is often the only information that is analysed. Conventionally it is only possible to determine distances or sound velocities if the other value is known. The current paper deals with a novel method to measure the sound propagation path length and the sound velocity in media with moving scattering particles simultaneously. Since the focal position also depends on sound velocity, it can be used as a second parameter. Via calibration curves it is possible to determine the focal position and sound velocity from the measured time of flight to the focus, which is correlated to the maximum of averaged echo signal amplitude. To move focal position along the acoustic axis, an annular array is used. This allows measuring sound velocity locally resolved without any previous knowledge of the acoustic media and without a reference reflector. In previous publications the functional efficiency of this method was shown for media with constant velocities. In this work the accuracy of these measurements is improved. Furthermore first measurements and simulations are introduced for non-homogeneous media. Therefore an experimental set-up was created to generate a linear temperature gradient, which also causes a gradient of sound velocity.

  15. Reconstruction of velocity profiles in axisymmetric and asymmetric flows using an electromagnetic flow meter

    NASA Astrophysics Data System (ADS)

    Kollár, László E.; Lucas, Gary P.; Meng, Yiqing

    2015-05-01

    An analytical method that was developed formerly for the reconstruction of velocity profiles in asymmetric flows is improved to be applicable for both axisymmetric and asymmetric flows. The method is implemented in Matlab, and predicts the velocity profile from measured electrical potential distributions obtained around the boundary of a multi-electrode electromagnetic flow meter (EMFM). Potential distributions are measured in uniform and non-uniform magnetic fields, and the velocity is assumed as a sum of axisymmetric and polynomial components. The procedure requires three steps. First, the discrete Fourier transform (DFT) is applied to the potential distribution obtained in a uniform magnetic field. Since the direction of polynomial components of order greater than two in the plane of the pipe cross section is not unique multiple solutions exist, therefore all possible polynomial velocity profiles are determined. Then, the DFT is applied to the potential distribution obtained in a specific non-uniform magnetic field, and used to calculate the exponent in a power-law representation of the axisymmetric component. Finally, the potential distribution in the non-uniform magnetic field is calculated for all of the possible velocity profile solutions using weight values, and the velocity profile with the calculated potential distribution which is closest to the measured one provides the optimum solution. The method is validated by reconstructing two quartic velocity profiles, one of which includes an axisymmetric component. The potential distributions are obtained from simulations using COMSOL Multiphysics where a model of the EMFM is constructed. The reconstructed velocity profiles show satisfactory agreement with the input velocity profiles. The main benefits of the method described in this paper are that it provides a velocity distribution in the circular cross section of a pipe as an analytical function of the spatial coordinates which is suitable for both

  16. On the Positive Bias of Peak Horizontal Velocity from an Idealized Doppler Profiler

    NASA Technical Reports Server (NTRS)

    Short, David A.; Merceret, Francis J.

    2004-01-01

    In the presence of 3-D turbulence, peak horizontal velocity estimates from an idealized Doppler profiler are found to be positively biased due to an incomplete specification of the vertical velocity field. The magnitude of the bias was estimated by assuming that the vertical and horizontal velocities can be separated into average and perturbation values and that the vertical and horizontal velocity perturbations are normally distributed. Under these assumptions, properties of the Type-I Extreme Value Distribution for maxima, known as the Gumbel distribution, can be used to obtain an analytical solution of the bias. The bias depends on geometric properties of the profiler configuration, the variance in the horizontal velocity, and the unresolved variance in the vertical velocity. When these variances are normalized by the average horizontal velocity, the bias can be mapped as a simple function of the normalized variances.

  17. Velocity and temperature profiles in near-critical nitrogen flowing past a horizontal flat plate

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1977-01-01

    Boundary layer velocity and temperature profiles were measured for nitrogen near its thermodynamic critical point flowing past a horizontal flat plate. The results were compared measurements made for vertically upward flow. The boundary layer temperatures ranged from below to above the thermodynamic critical temperature. For wall temperatures below the thermodynamic critical temperature there was little variation between the velocity and temperature profiles in three orientations. In all three orientations the point of crossing into the critical temperature region is marked by a significant flattening of the velocity and temperature profiles and also a decrease in heat transfer coefficient.

  18. Shear wave velocity profile estimation by integrated analysis of active and passive seismic data from small aperture arrays

    NASA Astrophysics Data System (ADS)

    Lontsi, A. M.; Ohrnberger, M.; Krüger, F.

    2016-07-01

    We present an integrated approach for deriving the 1D shear wave velocity (Vs) information at few tens to hundreds of meters down to the first strong impedance contrast in typical sedimentary environments. We use multiple small aperture seismic arrays in 1D and 2D configuration to record active and passive seismic surface wave data at two selected geotechnical sites in Germany (Horstwalde & Löbnitz). Standard methods for data processing include the Multichannel Analysis of Surface Waves (MASW) method that exploits the high frequency content in the active data and the sliding window frequency-wavenumber (f-k) as well as the spatial autocorrelation (SPAC) methods that exploit the low frequency content in passive seismic data. Applied individually, each of the passive methods might be influenced by any source directivity in the noise wavefield. The advantages of active shot data (known source location) and passive microtremor (low frequency content) recording may be combined using a correlation based approach applied to the passive data in the so called Interferometric Multichannel Analysis of Surface Waves (IMASW). In this study, we apply those methods to jointly determine and interpret the dispersion characteristics of surface waves recorded at Horstwalde and Löbnitz. The reliability of the dispersion curves is controlled by applying strict limits on the interpretable range of wavelengths in the analysis and further avoiding potentially biased phase velocity estimates from the passive f-k method by comparing to those derived from the SPatial AutoCorrelation method (SPAC). From our investigation at these two sites, the joint analysis as proposed allows mode extraction in a wide frequency range (~ 0.6-35 Hz at Horstwalde and ~ 1.5-25 Hz at Löbnitz) and consequently improves the Vs profile inversion. To obtain the shear wave velocity profiles, we make use of a global inversion approach based on the neighborhood algorithm to invert the interpreted branches of the

  19. Velocity profiles of high-excitation molecular hydrogen lines

    NASA Technical Reports Server (NTRS)

    Moorhouse, A.; Brand, P. W. J. L.; Geballe, T. R.; Burton, M. G.

    1990-01-01

    Profiles of three lines of molecular hydrogen near 2.2 microns, originating from widely spaced energy levels, have been measured at a resolution of 32 km/s at Peak 1 in the Orion molecular outflow. The three lines, 1 - 0 S(1), 2 - 1 S(1), and 3 - 2 S(3), are found to have identical profiles. This result rules out any significant contribution to the population of the higher energy levels of molecular hydrogen at Peak 1 by fluorescence, and is generally consistent with emission from multiple J-type shocks.

  20. Derivation of the anisotropy profile, constraints on the local velocity dispersion, and implications for direct detection

    SciTech Connect

    Hunter, Daniel R.

    2014-02-01

    We study the implications of a pseudo-phase-space density power-law for the anisotropy profile of a Milky Way-like dark matter halo. Requiring that the anisotropy parameter does not take non-physical values within the virial radius places a maximum value on the local radial velocity dispersion. For a plausible range of halo parameters, it is possible to take a local total velocity dispersion of up to about 300 km/s. Making this choice uniquely specifies the anisotropy and dispersion profiles. We introduce a way to model the local velocity distribution that incorporates this anisotropy and study the impact on direct detection.

  1. Turbulent boundary-layer velocity profiles on a nonadiabatic at Mach number 6.5

    NASA Technical Reports Server (NTRS)

    Keener, E. R.; Hopkins, E. J.

    1972-01-01

    Velocity profiles were obtained from pitot-pressure and total-temperature measurements within a turbulent boundary layer on a large sharp-edged flat plate. Momentum-thickness Reynolds number ranged from 2590 to 8860 and wall-to-adiabatic-wall temperature ratios ranged from 0.3 to 0.5. Measurements were made both with and without boundary layer trips. Five methods are evaluated for correlating the measured velocity profiles with the incompressible law-of-the-wall and the velocity defect law. The mixing-length generalization of Van Driest gives the best correlation.

  2. Jet Velocity Profile Effects on Spray Characteristics of Impinging Jets at High Reynolds and Weber Numbers

    NASA Astrophysics Data System (ADS)

    Rodrigues, Neil S.; Kulkarni, Varun; Sojka, Paul E.

    2014-11-01

    While like-on-like doublet impinging jet atomization has been extensively studied in the literature, there is poor agreement between experimentally observed spray characteristics and theoretical predictions (Ryan et al. 1995, Anderson et al. 2006). Recent works (Bremond and Villermaux 2006, Choo and Kang 2007) have introduced a non-uniform jet velocity profile, which lead to a deviation from the standard assumptions for the sheet velocity and the sheet thickness parameter. These works have assumed a parabolic profile to serve as another limit to the traditional uniform jet velocity profile assumption. Incorporating a non-uniform jet velocity profile results in the sheet velocity and the sheet thickness parameter depending on the sheet azimuthal angle. In this work, the 1/7th power-law turbulent velocity profile is assumed to provide a closer match to the flow behavior of jets at high Reynolds and Weber numbers, which correspond to the impact wave regime. Predictions for the maximum wavelength, sheet breakup length, ligament diameter, and drop diameter are compared with experimental observations. The results demonstrate better agreement between experimentally measured values and predictions, compared to previous models. U.S. Army Research Office under the Multi-University Research Initiative Grant Number W911NF-08-1-0171.

  3. Velocity profile characterization in sub-millimeter diameter tubes using molecular tagging velocimetry

    NASA Astrophysics Data System (ADS)

    Maynes, D.; Webb, A. R.

    Fluid flow through microtubes is of interest to many industries and there exists a need for detailed measurements of the velocity field. Velocity profile data are critical for momentum, mass, and heat transport analysis, and thus the design of devices utilizing microgeometries. This paper outlines a measurement technique that has led to time-resolved measurements of velocity profiles in microtubes (less than 1,000μm). The research program was experimental in nature and consisted of an extension of molecular tagging velocimetry to the microscale. Average velocity and rms profile data in the fully developed region, in addition to mass flow rate and pressure drop data, are presented for numerous Reynolds numbers ranging from 600 to 5,000 in a tube of diameter 705μm.

  4. Velocity, temperature, and electrical conductivity profiles in hydrogen-oxygen MHD duct flows

    NASA Technical Reports Server (NTRS)

    Greywall, M. S.; Pian, C. C. P.

    1978-01-01

    Two-dimensional duct flow computations for radial distributions of velocity, temperature, and electrical conductivity are reported. Calculations were carried out for the flow conditions representative of a hydrogen-oxygen combustion driven MHD duct. Results are presented for: profiles of developing flow in a smooth duct, and for profiles of fully developed pipe flow with a specified streamwise shear stress distribution. The predicted temperature and electrical conductivity profiles for the developing flows compare well with available experimental data.

  5. Development of ultrasonic pulse-train Doppler method for velocity profile and flowrate measurement

    NASA Astrophysics Data System (ADS)

    Wada, Sanehiro; Furuichi, Noriyuki; Shimada, Takashi

    2016-11-01

    We present a novel technique for measuring the velocity profile and flowrate in a pipe. This method, named the ultrasonic pulse-train Doppler method (UPTD), has the advantages of expanding the velocity range and setting the smaller measurement volume with low calculation and instrument costs in comparison with the conventional ultrasonic pulse Doppler method. The conventional method has limited measurement of the velocity range due to the Nyquist sampling theorem. In addition, previous reports indicate that a smaller measurement volume increases the accuracy of the measurement. In consideration of the application of the conventional method to actual flow fields, such as industrial facilities and power plants, the issues of velocity range and measurement volume are important. The UPTD algorithm, which exploits two pulses of ultrasound with a short interval and envelope detection, is proposed. Velocity profiles calculated by this algorithm were examined through simulations and excellent agreement was found in all cases. The influence of the signal-to-noise ratio (SNR) on the algorithm was also estimated. The result indicates that UPTD can measure velocity profiles with high accuracy, even under a small SNR. Experimental measurements were conducted and the results were evaluated at the national standard calibration facility of water flowrate in Japan. Every detected signal forms a set of two pulses and the enveloped line can be observed clearly. The results show that UPTD can measure the velocity profiles over the pipe diameter, even if the velocities exceed the measurable velocity range. The measured flowrates were under 0.6% and the standard deviations for all flowrate conditions were within  ±0.38%, which is the uncertainty of the flowrate measurement estimated in the previous report. In conclusion, UPTD provides superior accuracy and expansion of the velocity range.

  6. Radiation Hydrodynamics Test Problems with Linear Velocity Profiles

    SciTech Connect

    Hendon, Raymond C.; Ramsey, Scott D.

    2012-08-22

    As an extension of the works of Coggeshall and Ramsey, a class of analytic solutions to the radiation hydrodynamics equations is derived for code verification purposes. These solutions are valid under assumptions including diffusive radiation transport, a polytropic gas equation of state, constant conductivity, separable flow velocity proportional to the curvilinear radial coordinate, and divergence-free heat flux. In accordance with these assumptions, the derived solution class is mathematically invariant with respect to the presence of radiative heat conduction, and thus represents a solution to the compressible flow (Euler) equations with or without conduction terms included. With this solution class, a quantitative code verification study (using spatial convergence rates) is performed for the cell-centered, finite volume, Eulerian compressible flow code xRAGE developed at Los Alamos National Laboratory. Simulation results show near second order spatial convergence in all physical variables when using the hydrodynamics solver only, consistent with that solver's underlying order of accuracy. However, contrary to the mathematical properties of the solution class, when heat conduction algorithms are enabled the calculation does not converge to the analytic solution.

  7. The Compressible Flow Past Various Plane Profiles Near Sonic Velocity

    NASA Technical Reports Server (NTRS)

    Goethert, B.; Kawalki, K. H.

    1949-01-01

    In an earlier report UM No.1117 by Gothert,the single-source method was applied to the compressible flow around circles, ellipses, lunes, and around an elongated body of revolution at different Mach numbers and the results compared as far as possible with the calculations by Lamla ad Busemann. Essentially, it was found that with favorable source arrangement the single-source method is in good agreement with the calculations of the same degree of approximation by.Lamla and Busemann. Near sonic velocity the number of steps must be increased considerably in order to sufficiently approximate the adiabatic curve. After exceeding a certain Mach number where local supersonic fields occur already, it was no longer possible, in spite of the substantially increased number of steps, to obtain a systematic solution because the calculation diverged. This result,was interpreted to mean that above this point of divergence the symmetrical type of flow ceases to exist and changes into the unsymmetrical type characterized by compressibility shocks.

  8. Mass, velocity anisotropy, and pseudo phase-space density profiles of Abell 2142

    NASA Astrophysics Data System (ADS)

    Munari, E.; Biviano, A.; Mamon, G. A.

    2014-06-01

    Aims: We aim to compute the mass and velocity anisotropy profiles of Abell 2142 and, from there, the pseudo phase-space density profile Q(r) and the density slope - velocity anisotropy β - γ relation, and then to compare them with theoretical expectations. Methods: The mass profiles were obtained by using three techniques based on member galaxy kinematics, namely the caustic method, the method of dispersion-kurtosis, and MAMPOSSt. Through the inversion of the Jeans equation, it was possible to compute the velocity anisotropy profiles. Results: The mass profiles, as well as the virial values of mass and radius, computed with the different techniques agree with one another and with the estimates coming from X-ray and weak lensing studies. A combined mass profile is obtained by averaging the lensing, X-ray, and kinematics determinations. The cluster mass profile is well fitted by an NFW profile with c = 4.0 ± 0.5. The population of red and blue galaxies appear to have a different velocity anisotropy configuration, since red galaxies are almost isotropic, while blue galaxies are radially anisotropic, with a weak dependence on radius. The Q(r) profile for the red galaxy population agrees with the theoretical results found in cosmological simulations, suggesting that any bias, relative to the dark matter particles, in velocity dispersion of the red component is independent of radius. The β - γ relation for red galaxies matches the theoretical relation only in the inner region. The deviations might be due to the use of galaxies as tracers of the gravitational potential, unlike the non-collisional tracer used in the theoretical relation.

  9. Variation of velocity profile according to blood viscosity in a microfluidic channel

    NASA Astrophysics Data System (ADS)

    Yeom, Eunseop; Kang, Yang Jun; Lee, Sang-Joon

    2014-11-01

    The shear-thinning effect of blood flows is known to change blood viscosity. Since blood viscosity and motion of red blood cells (RBCs) are closely related, hemorheological variations have a strong influence on hemodynamic characteristics. Therefore, understanding on the relationship between the hemorheological and hemodynamic properties is importance for getting more detailed information on blood circulation in microvessels. In this study, the blood viscosity and velocity profiles in a microfluidic channel were systematically investigated. Rat blood was delivered in the microfluidic device which can measure blood viscosity by monitoring the flow-switching phenomenon. Velocity profiles of blood flows in the microchannel were measured by using a micro-particle image velocimetry (PIV) technique. Shape of velocity profiles measured at different flow rates was quantified by using a curve-fitting equation. It was observed that the shape of velocity profiles is highly correlated with blood viscosity. The study on the relation between blood viscosity and velocity profile would be helpful to understand the roles of hemorheological and hemodynamic properties in cardiovascular diseases. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (No. 2008-0061991).

  10. Evaluation of an Extended Autocorrelation Phase Estimator for Ultrasonic Velocity Profiles Using Nondestructive Testing Systems

    PubMed Central

    Ofuchi, César Yutaka; Coutinho, Fabio Rizental; Neves, Flávio; de Arruda, Lucia Valéria Ramos; Morales, Rigoberto Eleazar Melgarejo

    2016-01-01

    In this paper the extended autocorrelation velocity estimator is evaluated and compared using a nondestructive ultrasonic device. For this purpose, three velocity estimators are evaluated and compared. The autocorrelation method (ACM) is the most used and well established in current ultrasonic velocity profiler technology, however, the technique suffers with phase aliasing (also known as the Nyquist limit) at higher velocities. The cross-correlation method (CCM) is also well known and does not suffer with phase aliasing as it relies on time shift measurements between emissions. The problem of this method is the large computational burden due to several required mathematical operations. Recently, an extended autocorrelation method (EAM) which combines both ACM and CCM was developed. The technique is not well known within the fluid engineering community, but it can measure velocities beyond the Nyquist limit without the ACM phase aliasing issues and with a lower computational cost than CCM. In this work, all three velocity estimation methods are used to measure a uniform flow of the liquid inside a controlled rotating cylinder. The root-mean-square deviation variation coefficient (CVRMSD) of the velocity estimate and the reference cylinder velocity was used to evaluate the three different methods. Results show that EAM correctly measures velocities below the Nyquist limit with less than 2% CVRMSD. Velocities beyond the Nyquist limit are only measured well by EAM and CCM, with the advantage of the former of being computationally 15 times faster. Furthermore, the maximum value of measurable velocity is also investigated considering the number of times the velocity surpasses the Nyquist limit. The combination of number of pulses and number of samples, which highly affects the results, are also studied in this work. Velocities up to six times the Nyquist limit could be measurable with CCM and EAM using a set of parameters as suggested in this work. The results validate

  11. Evaluation of an Extended Autocorrelation Phase Estimator for Ultrasonic Velocity Profiles Using Nondestructive Testing Systems.

    PubMed

    Ofuchi, César Yutaka; Coutinho, Fabio Rizental; Neves, Flávio; de Arruda, Lucia Valéria Ramos; Morales, Rigoberto Eleazar Melgarejo

    2016-01-01

    In this paper the extended autocorrelation velocity estimator is evaluated and compared using a nondestructive ultrasonic device. For this purpose, three velocity estimators are evaluated and compared. The autocorrelation method (ACM) is the most used and well established in current ultrasonic velocity profiler technology, however, the technique suffers with phase aliasing (also known as the Nyquist limit) at higher velocities. The cross-correlation method (CCM) is also well known and does not suffer with phase aliasing as it relies on time shift measurements between emissions. The problem of this method is the large computational burden due to several required mathematical operations. Recently, an extended autocorrelation method (EAM) which combines both ACM and CCM was developed. The technique is not well known within the fluid engineering community, but it can measure velocities beyond the Nyquist limit without the ACM phase aliasing issues and with a lower computational cost than CCM. In this work, all three velocity estimation methods are used to measure a uniform flow of the liquid inside a controlled rotating cylinder. The root-mean-square deviation variation coefficient (CVRMSD) of the velocity estimate and the reference cylinder velocity was used to evaluate the three different methods. Results show that EAM correctly measures velocities below the Nyquist limit with less than 2% CVRMSD. Velocities beyond the Nyquist limit are only measured well by EAM and CCM, with the advantage of the former of being computationally 15 times faster. Furthermore, the maximum value of measurable velocity is also investigated considering the number of times the velocity surpasses the Nyquist limit. The combination of number of pulses and number of samples, which highly affects the results, are also studied in this work. Velocities up to six times the Nyquist limit could be measurable with CCM and EAM using a set of parameters as suggested in this work. The results validate

  12. Evaluation of an Extended Autocorrelation Phase Estimator for Ultrasonic Velocity Profiles Using Nondestructive Testing Systems.

    PubMed

    Ofuchi, César Yutaka; Coutinho, Fabio Rizental; Neves, Flávio; de Arruda, Lucia Valéria Ramos; Morales, Rigoberto Eleazar Melgarejo

    2016-08-09

    In this paper the extended autocorrelation velocity estimator is evaluated and compared using a nondestructive ultrasonic device. For this purpose, three velocity estimators are evaluated and compared. The autocorrelation method (ACM) is the most used and well established in current ultrasonic velocity profiler technology, however, the technique suffers with phase aliasing (also known as the Nyquist limit) at higher velocities. The cross-correlation method (CCM) is also well known and does not suffer with phase aliasing as it relies on time shift measurements between emissions. The problem of this method is the large computational burden due to several required mathematical operations. Recently, an extended autocorrelation method (EAM) which combines both ACM and CCM was developed. The technique is not well known within the fluid engineering community, but it can measure velocities beyond the Nyquist limit without the ACM phase aliasing issues and with a lower computational cost than CCM. In this work, all three velocity estimation methods are used to measure a uniform flow of the liquid inside a controlled rotating cylinder. The root-mean-square deviation variation coefficient (CVRMSD) of the velocity estimate and the reference cylinder velocity was used to evaluate the three different methods. Results show that EAM correctly measures velocities below the Nyquist limit with less than 2% CVRMSD. Velocities beyond the Nyquist limit are only measured well by EAM and CCM, with the advantage of the former of being computationally 15 times faster. Furthermore, the maximum value of measurable velocity is also investigated considering the number of times the velocity surpasses the Nyquist limit. The combination of number of pulses and number of samples, which highly affects the results, are also studied in this work. Velocities up to six times the Nyquist limit could be measurable with CCM and EAM using a set of parameters as suggested in this work. The results validate

  13. [Measurement of path transverse wind velocity profile using light forward scattering scintillation correlation method].

    PubMed

    Yuan, Ke-E; Lü, Wei-Yu; Zheng, Li-Nan; Hu, Shun-Xing; Huang, Jian; Cao, Kai-Fa; Xu, Zhi-Hai

    2014-07-01

    A new method for path transverse wind velocity survey was introduced by analyzing time lagged covariance function of different separation sub-apertures of Hartmann wavefront sensor. A theoretical formula was logically deduced for the light propagation path transverse wind velocity profile. According to the difference of path weighting function for different sub apertures spacing, how to select reasonable path weighting functions was analyzed. Using a Hartmann wavefront sensor, the experiment for measuring path transverse velocity profile along 1 000 m horizontal propagating path was carried out for the first time to our knowledge. The experiment results were as follows. Path transverse averaged velocity from sensor had a good consistency with transverse velocity from the wind anemometer sited near the path receiving end. As the path was divided into two sections, the path transverse velocity of the first section had also a good consistency with that of the second one. Because of different specific underlaying surface of light path, the former was greater than the later over all experiment period. The averaged values were 1.273 and 0.952 m x s(-1) respectively. The path transverse velocity of second section and path transverse averaged velocity had the same trend of decrease and increase with time. The correlation coefficients reached 0.86.

  14. Ultrasonic velocity profiling rheometry based on a widened circular Couette flow

    NASA Astrophysics Data System (ADS)

    Shiratori, Takahisa; Tasaka, Yuji; Oishi, Yoshihiko; Murai, Yuichi

    2015-08-01

    We propose a new rheometry for characterizing the rheological properties of fluids. The technique produces flow curves, which represent the relationship between the fluid shear rate and shear stress. Flow curves are obtained by measuring the circumferential velocity distribution of tested fluids in a circular Couette system, using an ultrasonic velocity profiling technique. By adopting a widened gap of concentric cylinders, a designed range of the shear rate is obtained so that velocity profile measurement along a single line directly acquires flow curves. To reduce the effect of ultrasonic noise on resultant flow curves, several fitting functions and variable transforms are examined to best approximate the velocity profile without introducing a priori rheological models. Silicone oil, polyacrylamide solution, and yogurt were used to evaluate the applicability of this technique. These substances are purposely targeted as examples of Newtonian fluids, shear thinning fluids, and opaque fluids with unknown rheological properties, respectively. We find that fourth-order Chebyshev polynomials provide the most accurate representation of flow curves in the context of model-free rheometry enabled by ultrasonic velocity profiling.

  15. Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars

    NASA Astrophysics Data System (ADS)

    Britavskiy, Nikolay; Pancino, Elena; Romano, Donatella; Tsymbal, Vadim

    2015-08-01

    We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a Least Squares Deconvolution (LSD) of the line profiles in order to analyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (± 1 km/s) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 km/s even with a low number of high-resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.

  16. Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars

    NASA Astrophysics Data System (ADS)

    Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Cacciari, C.; Clementini, C.

    2016-05-01

    We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a least squares deconvolution (LSD) of the line profiles in order to an- alyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (+- 2 kms^-1) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 kms^-1 even with a low number of high- resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.

  17. Control of exit velocity profile of an asymmetric annular diffuser using wall suction

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1973-01-01

    An asymmetric annular diffuser equipped with wall bleed (suction) capability was tested for controllability of exit velocity profile. The diffuser area ratio was 3.2, and the length to inlet height ratio was 1.6. Results show that the diffuser radial exit velocity profile could be controlled from a hub peaked to a tip peaked form by selective use of bleed on the outer wall or on both diffuser walls. Based on these results, application of the diffuser bleed technique to gas turbine combustors may be possible. Diffuser bleed could be used to tailor the airflow distribution for optimizing combustor performance at a variety of operating conditions.

  18. Imaging of non-parabolic velocity profiles in converging flow with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Proskurin, Sergey G.; Sokolova, Irena A.; Wang, Ruikang K.

    2003-09-01

    The optical coherence tomography method was explored for two-dimensional flow mapping of a highly scattering fluid in flow with complex geometry. Converging flow (capillary entry) with 4:1 constriction was used for demonstration of non-invasive and remote methods of mapping varying velocity profiles. Downstream of the geometry was scanned with ~10 × 10 × 10 µm3 spatial resolution and structural imaging of the lumen and images of one particular velocity were acquired. Stable concave, blunted and parabolic profiles are obtained at different distances of the inlet length. Application of the technique for the blood circulation is also discussed.

  19. Errors in acoustic doppler profiler velocity measurements caused by flow disturbance

    USGS Publications Warehouse

    Mueller, D.S.; Abad, J.D.; Garcia, C.M.; Gartner, J.W.; Garcia, M.H.; Oberg, K.A.

    2007-01-01

    Acoustic Doppler current profilers (ADCPs) are commonly used to measure streamflow and water velocities in rivers and streams. This paper presents laboratory, field, and numerical model evidence of errors in ADCP measurements caused by flow disturbance. A state-of-the-art three-dimensional computational fluid dynamic model is validated with and used to complement field and laboratory observations of flow disturbance and its effect on measured velocities. Results show that near the instrument, flow velocities measured by the ADCP are neither the undisturbed stream velocity nor the velocity of the flow field around the ADCP. The velocities measured by the ADCP are biased low due to the downward flow near the upstream face of the ADCP and upward recovering flow in the path of downstream transducer, which violate the flow homogeneity assumption used to transform beam velocities into Cartesian velocity components. The magnitude of the bias is dependent on the deployment configuration, the diameter of the instrument, and the approach velocity, and was observed to range from more than 25% at 5cm from the transducers to less than 1% at about 50cm from the transducers for the scenarios simulated. ?? 2007 ASCE.

  20. Ultrasonic transit-time flowmeters modelled with theoretical velocity profiles: methodology

    NASA Astrophysics Data System (ADS)

    Moore, Pamela I.; Brown, Gregor J.; Stimpson, Brian P.

    2000-12-01

    Fully developed flow is well defined for most values of Reynolds number but distorted flow is not. Velocity profile is the definition given to the distribution of velocity in the axial direction over the cross-section of the pipe. This distribution is not usually uniform and can vary dramatically depending on the properties of the fluid and the configuration of the pipe in which it flows. Ultrasonic flowmeters are affected by such distortions in the flow profile, often resulting in erroneous measurements. Transit-time ultrasonic flowmeters are widely used in industry in distorted fluid flows, therefore correction to or prediction of distorted profiles has sparked great interest in the design and application of ultrasonic flowmeters. This document describes a method for modelling and analysing the effect of theoretical asymmetric flow profiles on ultrasonic flowmeters of the transit-time type, thus allowing an understanding of installation effects.

  1. Velocity profiles, Reynolds stresses and bed roughness from an autonomous field deployed Acoustic Doppler Velocity Profiler in a mixed sediment tidal estuary

    NASA Astrophysics Data System (ADS)

    O'Boyle, Louise; Thorne, Peter; Cooke, Richard; Cohbed Team

    2014-05-01

    Estuaries are among some of the most important global landscapes in terms of population density, ecology and economy. Understanding the dynamics of these natural mixed sediment environments is of particular interest amid growing concerns over sea level rise, climate variations and estuarine response to these changes. Many predictors exist for bed form formation and sand transport in sandy coastal zones; however less work has been published on mixed sediments. This paper details a field study which forms part of the COHBED project aiming to increase understanding of bed forms in a biotic mixed sediment estuarine environment. The study was carried out in the Dee Estuary, in the eastern Irish Sea between England and Wales from the 21st May to 4th June 2013. A state of the art instrumentation frame, known as SEDbed, was deployed at three sites of differing sediment properties and biological makeup within the intertidal zone of the estuary. The SEDbed deployment consisted of a suite of optical and acoustic instrumentation, including an Acoustic Doppler Velocity Profiler (ADVP), Acoustic Doppler Velocimeter (ADV) and a three dimensional acoustic ripple profiler, 3D-ARP. Supplementary field samples and measurements were recorded alongside the frame during each deployment. This paper focuses on the use of new technological developments for the investigation of sediment dynamics. The hydrodynamics at each of the deployment sites are presented including centimetre resolution velocity profiles in the near bed region of the water column, obtained from the ADVP, which is presently the only autonomous field deployed coherent Doppler profiler . Based on these high resolution profiles variations in frictional velocity, bed shear stress and roughness length are calculated. Comparisons are made with theoretical models and with Reynolds stress values obtained from ADV data at a single point within the ADVP profile and from ADVP data itself. Predictions of bed roughness at each

  2. Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing

    SciTech Connect

    Pfister, Thorsten; Buettner, Lars; Shirai, Katsuaki; Czarske, Juergen

    2005-05-01

    Investigating shear flows is important in technical applications as well as in fundamental research. Velocity measurements with high spatial resolution are necessary. Laser Doppler anemometry allows nonintrusive precise measurements, but the spatial resolution is limited by the size of the measurement volume to {approx}50 {mu}m. A new laser Doppler profile sensor is proposed, enabling determination of the velocity profile inside the measurement volume. Two fringe systems with contrary fringe spacing gradients are generated to determine the position as well as the velocity of passing tracer particles. Physically discriminating between the two measuring channels is done by a frequency-division-multiplexing technique with acousto-optic modulators. A frequency-doubled Nd:YAG laser and a fiber-optic measuring head were employed, resulting in a portable and flexible sensor. In the center of the measurement volume of {approx}1-mm length, a spatial resolution of {approx}5 {mu}m was obtained. Spatially resolved measurements of the Blasius velocity profile are presented. Small velocities as low as 3 cm/s are measured. The sensor is applied in a wind tunnel to determine the wall shear stress of a boundary layer flow. All measurement results show good agreement with the theoretical prediction.

  3. Estimation of seabed shear-wave velocity profiles using shear-wave source data.

    PubMed

    Dong, Hefeng; Nguyen, Thanh-Duong; Duffaut, Kenneth

    2013-07-01

    This paper estimates seabed shear-wave velocity profiles and their uncertainties using interface-wave dispersion curves extracted from data generated by a shear-wave source. The shear-wave source generated a seismic signature over a frequency range between 2 and 60 Hz and was polarized in both in-line and cross-line orientations. Low-frequency Scholte- and Love-waves were recorded. Dispersion curves of the Scholte- and Love-waves for the fundamental mode and higher-order modes are extracted by three time-frequency analysis methods. Both the vertically and horizontally polarized shear-wave velocity profiles in the sediment are estimated by the Scholte- and Love-wave dispersion curves, respectively. A Bayesian approach is utilized for the inversion. Differential evolution, a global search algorithm is applied to estimate the most-probable shear-velocity models. Marginal posterior probability profiles are computed by Metropolis-Hastings sampling. The estimated vertically and horizontally polarized shear-wave velocity profiles fit well with the core and in situ measurements. PMID:23862796

  4. Velocity, temperature, and electrical conductivity profiles in hydrogen-oxygen MHD duct flows

    NASA Technical Reports Server (NTRS)

    Greywall, M. S.; Pian, C. C. P.

    1978-01-01

    This paper presents results of two-dimensional duct flow computations for radial distributions of velocity, temperature, and electrical conductivity. Calculations were carried out for the flow conditions representative of NASA Lewis hydrogen-oxygen combustion driven MHD duct. Results are presented for two sets of computations: (1) profiles of developing flow in a smooth duct, and (2) profiles of fully developed pipe flow with a specified streamwise shear stress distribution. The predicted temperature and electrical conductivity profiles for the developing flows compared well with available experimental data.

  5. Experimental investigation of an axisymmetric free jet with an initially uniform velocity profile

    NASA Technical Reports Server (NTRS)

    Labus, T. L.; Symons, E. P.

    1972-01-01

    An experimental investigation was conducted to determine the flow characteristics of a circular free helium jet having an initially uniform velocity profile. Complete velocity profiles are presented at Reynolds numbers of 1027 and 4571 at 0, 3, 6, 10, 15, and 20 nozzle diameters (where possible) from the nozzle exit. Centerline velocity decay and potential core length were obtained over a range of Reynolds numbers from 155 to 5349 at distances up to and including 25 nozzle diameters from the nozzle exit. The angles of spread associated with the diffusion of the jet downstream of the nozzle are also given. Axial jet momentum flux and entrained mass flux, at various distances downstream of the nozzle, are presented as a function of the jet Reynolds number.

  6. Micro-particle image velocimetry for velocity profile measurements of micro blood flows.

    PubMed

    Pitts, Katie L; Fenech, Marianne

    2013-04-25

    Micro-particle image velocimetry (μPIV) is used to visualize paired images of micro particles seeded in blood flows. The images are cross-correlated to give an accurate velocity profile. A protocol is presented for μPIV measurements of blood flows in microchannels. At the scale of the microcirculation, blood cannot be considered a homogeneous fluid, as it is a suspension of flexible particles suspended in plasma, a Newtonian fluid. Shear rate, maximum velocity, velocity profile shape, and flow rate can be derived from these measurements. Several key parameters such as focal depth, particle concentration, and system compliance, are presented in order to ensure accurate, useful data along with examples and representative results for various hematocrits and flow conditions.

  7. Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Park, C.B.; Hunter, J.A.; Harris, J.B.; Ivanov, J.

    2002-01-01

    Recent field tests illustrate the accuracy and consistency of calculating near-surface shear (S)-wave velocities using multichannel analysis of surface waves (MASW). S-wave velocity profiles (S-wave velocity vs. depth) derived from MASW compared favorably to direct borehole measurements at sites in Kansas, British Columbia, and Wyoming. Effects of changing the total number of recording channels, sampling interval, source offset, and receiver spacing on the inverted S-wave velocity were studied at a test site in Lawrence, Kansas. On the average, the difference between MASW calculated Vs and borehole measured Vs in eight wells along the Fraser River in Vancouver, Canada was less than 15%. One of the eight wells was a blind test well with the calculated overall difference between MASW and borehole measurements less than 9%. No systematic differences were observed in derived Vs values from any of the eight test sites. Surface wave analysis performed on surface data from Wyoming provided S-wave velocities in near-surface materials. Velocity profiles from MASW were confirmed by measurements based on suspension log analysis. ?? 2002 Elsevier Science Ltd. All rights reserved.

  8. Neural-network simulation of tonal categorization based on F0 velocity profiles

    NASA Astrophysics Data System (ADS)

    Gauthier, Bruno; Shi, Rushen; Xu, Yi; Proulx, Robert

    2005-04-01

    Perception studies have shown that by the age of six months, infants show particular response patterns to tones in their native language. The present study focuses on how infants might develop lexical tones in Man- darin. F0 is generally considered the main cue in tone perception. However, F0 patterns in connected speech display extensive contextual variability. Since speech input to infants consists mainly of multi-word utterances, tone learning must involve processes that can effectively resolve variability. In this study we explore the Target Approximation model (Xu and Wang, 2001) which characterizes surface F0 as asymptotic movements toward underlying pitch targets defined as simple linear functions. The model predicts that it is possible to infer underlying pitch targets from the manners of F0 movements. Using production data of three of the speakers from Xu (1997), we trained a self-organizing neural network with both F0 profiles and F0 velocity profiles as input. In the testing phase, velocity profiles yielded far superior categorization than F0 profiles. The results confirm that velocity profiles can effectively abstract away from surface variability and directly reflect underlying articulatory goals. The finding thus points to one way through which infants can successfully derive at phonetic categories from adult speech.

  9. Inversion of surface wave data for subsurface shear wave velocity profiles characterized by a thick buried low-velocity layer

    NASA Astrophysics Data System (ADS)

    Farrugia, Daniela; Paolucci, Enrico; D'Amico, Sebastiano; Galea, Pauline

    2016-08-01

    The islands composing the Maltese archipelago (Central Mediterranean) are characterized by a four-layer sequence of limestones and clays. A common feature found in the western half of the archipelago is Upper Coralline Limestone (UCL) plateaus and hillcaps covering a soft Blue Clay (BC) layer which can be up to 75 m thick. The BC layer introduces a velocity inversion in the stratigraphy, implying that the VS30 (traveltime average sear wave velocity (VS) in the upper 30 m) parameter is not always suitable for seismic microzonation purposes. Such a layer may produce amplification effects, however might not be included in the VS30 calculations. In this investigation, VS profiles at seven sites characterized by such a lithological sequence are obtained by a joint inversion of the single-station Horizontal-to-Vertical Spectral Ratios (H/V or HVSR) and effective dispersion curves from array measurements analysed using the Extended Spatial Auto-Correlation technique. The lithological sequence gives rise to a ubiquitous H/V peak between 1 and 2 Hz. All the effective dispersion curves obtained exhibit a `normal' dispersive trend at low frequencies, followed by an inverse dispersive trend at higher frequencies. This shape is tentatively explained in terms of the presence of higher mode Rayleigh waves, which are commonly present in such scenarios. Comparisons made with the results obtained at the only site in Malta where the BC is missing below the UCL suggest that the characteristics observed at the other seven sites are due to the presence of the soft layer. The final profiles reveal a variation in the VS of the clay layer with respect to the depth of burial and some regional variations in the UCL layer. This study presents a step towards a holistic seismic risk assessment that includes the implications on the site effects induced by the buried clay layer. Such assessments have not yet been done for Malta.

  10. Velocity profile, water-surface slope, and bed-material size for selected streams in Colorado

    USGS Publications Warehouse

    Marchand, J.P.; Jarrett, R.D.; Jones, L.L.

    1984-01-01

    Existing methods for determining the mean velocity in a vertical sampling section do not address the conditions present in high-gradient, shallow-depth streams common to mountainous regions such as Colorado. The report presents velocity-profile data that were collected for 11 streamflow-gaging stations in Colorado using both a standard Price type AA current meter and a prototype Price Model PAA current meter. Computational results are compiled that will enable mean velocities calculated from measurements by the two current meters to be compared with each other and with existing methods for determining mean velocity. Water-surface slope, bed-material size, and flow-characteristic data for the 11 sites studied also are presented. (USGS)

  11. Laser induced fluorescence measurements of axial velocity, velocity shear, and parallel ion temperature profiles during the route to plasma turbulence in a linear magnetized plasma device

    NASA Astrophysics Data System (ADS)

    Chakraborty Thakur, S.; Adriany, K.; Gosselin, J. J.; McKee, J.; Scime, E. E.; Sears, S. H.; Tynan, G. R.

    2016-11-01

    We report experimental measurements of the axial plasma flow and the parallel ion temperature in a magnetized linear plasma device. We used laser induced fluorescence to measure Doppler resolved ion velocity distribution functions in argon plasma to obtain spatially resolved axial velocities and parallel ion temperatures. We also show changes in the parallel velocity profiles during the transition from resistive drift wave dominated plasma to a state of weak turbulence driven by multiple plasma instabilities.

  12. Extracting Short Rise-Time Velocity Profiles with Digital Down-Shift Analysis of Optically Up-Converted PDV Data

    SciTech Connect

    Abel Diaz, Nathan Riley, Cenobio Gallegos, Matthew Teel, Michael Berninger, Thomas W. Tunnell

    2010-09-08

    This work describes the digital down-shift (DDS) technique, a new method of extracting short rise-time velocity profiles in the analysis of optically up-converted PDV data. The DDS technique manipulates the PDV data by subtracting a constant velocity (i.e., the DDS velocity νDDS) from the velocity profile. DDS exploits the simple fact that the optically up-converted data ride on top of a base velocity (ν0, the apparent velocity at no motion) with a rapid rise to a high velocity (νf) of a few km/s or more. Consequently, the frequency content of the signal must describe a velocity profile that increases from ν0 to ν0 + νf. The DDS technique produces velocity reversals in the processed data before shock breakout when ν0 < νDDS < ν0 + νf. The DDS analysis process strategically selects specific DDS velocities (velocity at which the user down shifts the data) that produce anomalous reversals (maxima and/or minima), which are predictable and easy to identify in the mid-range of the data. Additional analysis determines when these maxima and minima occur. By successive application of the DDS technique and iterative analysis, velocity profiles are extracted as time as a function of velocity rather than as a function of time as it would be in a conventional velocity profile. Presented results include a description of DDS, velocity profiles extracted from laser-driven shock data with rise times of 200 ps or less, and a comparison with other techniques.

  13. The anisotropy1 D604N mutation in the Arabidopsis cellulose synthase1 catalytic domain reduces cell wall crystallinity and the velocity of cellulose synthase complexes.

    PubMed

    Fujita, Miki; Himmelspach, Regina; Ward, Juliet; Whittington, Angela; Hasenbein, Nortrud; Liu, Christine; Truong, Thy T; Galway, Moira E; Mansfield, Shawn D; Hocart, Charles H; Wasteneys, Geoffrey O

    2013-05-01

    Multiple cellulose synthase (CesA) subunits assemble into plasma membrane complexes responsible for cellulose production. In the Arabidopsis (Arabidopsis thaliana) model system, we identified a novel D604N missense mutation, designated anisotropy1 (any1), in the essential primary cell wall CesA1. Most previously identified CesA1 mutants show severe constitutive or conditional phenotypes such as embryo lethality or arrest of cellulose production but any1 plants are viable and produce seeds, thus permitting the study of CesA1 function. The dwarf mutants have reduced anisotropic growth of roots, aerial organs, and trichomes. Interestingly, cellulose microfibrils were disordered only in the epidermal cells of the any1 inflorescence stem, whereas they were transverse to the growth axis in other tissues of the stem and in all elongated cell types of roots and dark-grown hypocotyls. Overall cellulose content was not altered but both cell wall crystallinity and the velocity of cellulose synthase complexes were reduced in any1. We crossed any1 with the temperature-sensitive radial swelling1-1 (rsw1-1) CesA1 mutant and observed partial complementation of the any1 phenotype in the transheterozygotes at rsw1-1's permissive temperature (21°C) and full complementation by any1 of the conditional rsw1-1 root swelling phenotype at the restrictive temperature (29°C). In rsw1-1 homozygotes at restrictive temperature, a striking dissociation of cellulose synthase complexes from the plasma membrane was accompanied by greatly diminished motility of intracellular cellulose synthase-containing compartments. Neither phenomenon was observed in the any1 rsw1-1 transheterozygotes, suggesting that the proteins encoded by the any1 allele replace those encoded by rsw1-1 at restrictive temperature. PMID:23532584

  14. Retrieval of Hydrometeor Drop Size Distributions from TRMM Field Campaign Profiler Doppler Velocity Spectra Observations

    NASA Technical Reports Server (NTRS)

    Williams, Christopher R.; Gage, Kenneth S.

    2003-01-01

    Consistent with the original proposal and work plan, this project focused on estimating the raindrop size distributions (DSDs) retrieved from vertically pointing Doppler radar profilers and analyzing the relationship of the retrieved DSDs with the dynamics of the precipitation processes. The first phase of this project focused on developing the model to retrieve the DSD from the observed Doppler velocity spectra. The second phase used this model to perform DSD retrievals from the profiler observations made during the TRMM Ground Validation Field Campaigns of TEFLUN-B, TRMM-LBA, and KWAJEX. The third phase of this project established collaborations with scientists involved with each field campaign in order to validate the profiler DSD estimates and to enable the profiler retrievals to be used in their research. Through these collaborations, the retrieved DSDs were placed into context with the dynamical processes of the observed precipitating cloud systems.

  15. Three dimensional potential and current distributions in a Hall generator with assumed velocity profiles

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.; Palmer, R. W.

    1972-01-01

    Three-dimensional potential and current distributions in a Faraday segmented MHD generator operating in the Hall mode are computed. Constant conductivity and a Hall parameter of 1.0 is assumed. The electric fields and currents are assumed to be coperiodic with the electrode structure. The flow is assumed to be fully developed and a family of power-law velocity profiles, ranging from parabolic to turbulent, is used to show the effect of the fullness of the velocity profile. Calculation of the square of the current density shows that nonequilibrium heating is not likely to occur along the boundaries. This seems to discount the idea that the generator insulating walls are regions of high conductivity and are therefore responsible for boundary-layer shorting, unless the shorting is a surface phenomenon on the insulating material.

  16. Acoustic Doppler Current Profiler Surveys of Velocity Downstream of Albeni Falls Dam

    SciTech Connect

    Perkins, William A.; Titzler, P. Scott; Richmond, Marshall C.; Serkowski, John A.; Kallio, Sara E.; Bellgraph, Brian J.

    2010-09-30

    The U.S. Army Corps of Engineers (USACE), Seattle District, is studying the potential to locate fish bypass systems at Albeni Falls Dam. The USACE requested Pacific Northwest National Laboratory (PNNL) to survey velocity magnitude and direction in the dam tailrace. The empirical data collected will be used to support future numerical modeling, physical modeling, and evaluation of fish bypass system alternatives. In May 2010, PNNL conducted velocity surveys of the Albeni Falls Dam using a boat-mounted acoustic Doppler current profiler. The surveys were conducted over three days (May 25 through 27). During the survey period, total river discharge at the dam varied between 30.2 and 31.0 kcfs. A small amount of spill discharge, 2 kcfs, was present on two days (May 26 and 27). This report presents data plots showing measured velocity direction and magnitude averaged over the entire depth and over 5-ft depth increments from 5 to 30 ft.

  17. Visualizing flow fields using acoustic Doppler current profilers and the Velocity Mapping Toolbox

    USGS Publications Warehouse

    Jackson, P. Ryan

    2013-01-01

    The purpose of this fact sheet is to provide examples of how the U.S. Geological Survey is using acoustic Doppler current profilers for much more than routine discharge measurements. These instruments are capable of mapping complex three-dimensional flow fields within rivers, lakes, and estuaries. Using the Velocity Mapping Toolbox to process the ADCP data allows detailed visualization of the data, providing valuable information for a range of studies and applications.

  18. Measurement of gas temperature and convection velocity profiles in a dc atmospheric glow discharge

    SciTech Connect

    Stepaniuk, Vadim P.; Ioppolo, Tindaro; Oetuegen, M. Volkan; Sheverev, Valery A.

    2007-12-15

    Gas temperature and convective velocity distributions are presented for an unconfined glow discharge in air at atmospheric pressure, with electric currents ranging between 30 and 92 mA. The vertically oriented discharge was formed between a pin anode (top) and an extended cathode. The temperature and velocity profiles were measured using laser-induced Rayleigh scattering and laser Doppler anemometry techniques, respectively. The temperature field exhibited a conical shape with the radius of hot temperature zone increasing toward the anode. A maximum temperature of 2470 K was observed on the discharge axis with the discharge current of 92 mA. Air velocity measurements around the discharge demonstrated that the shape and magnitude of the temperature field are strongly affected by natural convection. Estimates indicate that convective losses may account for more than 50% of the power input into the positive column of the discharge. The measured temperature fields and convective velocity profiles provide a set of data that is important for the evaluation of dc atmospheric glow discharges in various applications such as sound manipulation and acoustic noise mitigation.

  19. Measurement of the near-wall velocity profile for a nanofluid flow inside a microchannel

    NASA Astrophysics Data System (ADS)

    Kanjirakat, Anoop; Sadr, Reza

    2015-11-01

    Hydrodynamics and anomalous heat transfer enhancements have been reported in the past for colloidal suspensions of nano-sized particles dispersed in a fluid (nanofluids). However, such augmentations may manifest itself by study of fluid flow characteristics near in the wall region. Present experimental study reports near-wall velocity profile for nanofluids (silicon dioxide nanoparticles in water) measured inside a microchannel. An objective-based nano-Particle Image Velocimetry (nPIV) technique is used to measure fluid velocity within three visible depths, O(100nm), from the wall. The near-wall fluid velocity profile is estimated after implementing the required corrections for optical properties and effects caused by hindered Brownian motion, wall-particle interactions, and non-uniform exponential illumination on the measurement technique. The fluid velocities of nanofluids at each of the three visible depths are observed to be higher than that of the base fluid resulting in a higher shear rate in this region. The relative increase in shear rates for nanofluids is believed to be the result of the near-wall shear-induced particle migration along with the Brownian motion of the nanoparticles. This research is funded by NPRP grant # 08-574-2-239 from the Qatar National Research Fund (a member of Qatar Foundation).

  20. Electrical Conductivity of H2O-CO2 rich-Melt at mantle conditions: interpretation of the LAB using petrology-based 1D conductivity profiles.

    NASA Astrophysics Data System (ADS)

    Sifre, D.; Gaillard, F.; Hashim, L.; Massuyeau, M.; Gardés, E.; Hier-Majumder, S.

    2014-12-01

    Electromagnetic data images mantle regions more conductive than that of dry olivine. There is no doubt that melt is thermodynamically stable and present in the LAB, but how they can impact on mantle electrical conductivity remains debated. In addition, gravitational segregation and fast melt upwelling, being expected if melt fraction exceeds 2 vol. %, is thought to seriously restrict the role of partial melting at the level of the LAB. Petrological studies realized some 30 years ago have shown that peridotites exposed at the P-T-fO2 conditions of the LAB produced H2O and CO2 rich-melts. The segregation of such melts is not expected since they constitute only about 0.5 vol. % of the peridotite, but electrical conductivities of these melts are poorly known. Therefore, electrical conductivity experiments have been performed in piston cylinder on H2O-CO2 rich melts. Different melt compositions have been explored, from carbonated melts to basalts. The effects of chemical compositions and volatiles on these melts have been determined. The electrical conductivity measurements have shown that hydrous carbonated melts are very conductive, and the incorporation of basalt decreases the conductivity. With these new data, a semi-empirical law predicting the conductivity as a function of H2O and CO2 contents has been produced. Based on this law and the electrical conductivity of olivine, 1D conductivity profiles were constructed. With these profiles, the effect of volatiles content (partitioned between the melt and in the solids), melt fractions (mixing law and interconnection of the melt) and different temperature regimes on conductivity are discussed. These calculations are conducted on oceanic and continental settings with different ages. The electrical conductivities of the mantle is thus a powerful tool to track the fundamental process of mantle incipient melting, which is in turn narrowly associated to the cycling of H2O and CO2 in the upper mantle.

  1. Line-profile variations in radial-velocity measurements. Two alternative indicators for planetary searches

    NASA Astrophysics Data System (ADS)

    Figueira, P.; Santos, N. C.; Pepe, F.; Lovis, C.; Nardetto, N.

    2013-09-01

    Aims: We introduce two methods to identify false-positive planetary signals in the context of radial-velocity exoplanet searches. The first is the bi-Gaussian cross-correlation function fitting (and monitoring of the parameters derived from it), and the second is the measurement of asymmetry in radial-velocity spectral line information content, Vasy. We assess the usefulness of each of these methods by comparing their results with those delivered by current indicators. Methods: We make a systematic analysis of the most used common line profile diagnosis, Bisector Inverse Slope and Velocity Span, along with the two proposed ones. We evaluate all these diagnosis methods following a set of well-defined common criteria and using both simulated and real data. We apply them to simulated cross-correlation functions that are created with the program SOAP and which are affected by the presence of stellar spots. We consider different spot properties on stars with different rotation profiles and simulate observations as obtained with high-resolution spectrographs. We then apply our methodology to real cross-correlation functions, which are computed from HARPS spectra, for stars with a signal originating in activity (thus spots) and for those with a signal rooted on a planet. Results: We demonstrate that the bi-Gaussian method allows a more precise characterization of the deformation of line profiles than the standard bisector inverse slope. The calculation of the deformation indicator is simpler and its interpretation more straightforward. More importantly, its amplitude can be up to 30% larger than that of the bisector span, allowing the detection of smaller-amplitude correlations with radial-velocity variations. However, a particular parametrization of the bisector inverse slope is shown to be more efficient on high-signal-to-noise data than both the standard bisector and the bi-Gaussian. The results of the Vasy method show that this indicator is more effective than any of

  2. Force-velocity profile: imbalance determination and effect on lower limb ballistic performance.

    PubMed

    Samozino, P; Edouard, P; Sangnier, S; Brughelli, M; Gimenez, P; Morin, J-B

    2014-06-01

    This study sought to lend experimental support to the theoretical influence of force-velocity (F-v) mechanical profile on jumping performance independently from the effect of maximal power output (P max ). 48 high-level athletes (soccer players, sprinters, rugby players) performed maximal squat jumps with additional loads from 0 to 100% of body mass. During each jump, mean force, velocity and power output were obtained using a simple computation method based on flight time, and then used to determine individual linear F-v relationships and P max values. Actual and optimal F-v profiles were computed for each subject to quantify mechanical F-v imbalance. A multiple regression analysis showed, with a high-adjustment quality (r²=0.931, P<0.001, SEE=0.015 m), significant contributions of P max , F-v imbalance and lower limb extension range (h PO ) to explain interindividual differences in jumping performance (P<0.001) with positive regression coefficients for P max and h PO and a negative one for F-v imbalance. This experimentally supports that ballistic performance depends, in addition to P max , on the F-v profile of lower limbs. This adds support to the actual existence of an individual optimal F-v profile that maximizes jumping performance, a F-v imbalance being associated to a lower performance. These results have potential strong applications in the field of strength and conditioning.

  3. Velocity profiles of electric-field-induced backflows in liquid crystals confined between parallel plates

    NASA Astrophysics Data System (ADS)

    Tsuji, Tomohiro; Chono, Shigeomi; Matsumi, Takanori

    2015-02-01

    For the purpose of developing liquid crystalline microactuators, we visualize backflows induced between two parallel plates for various parameters such as the twist angle, cell gap, applied voltage, and molecular configuration mode. We use 4-cyano-4'-pentyl biphenyl, a typical low-molar-mass nematic liquid crystal. By increasing the twist angle from 0° to 180°, the velocity component parallel to the anchoring direction of the lower plate changes from an S-shaped profile to a distorted S-shaped profile before finally becoming unidirectional. In contrast, the velocity component perpendicular to the anchoring direction evolves from a flat profile at 0° into an S-shaped profile at 180°. Because both an increase in the applied voltage and a decrease in the cell gap increase the electric field intensity, the backflow becomes large. The hybrid molecular configuration mode induces a larger backflow than that for the planar aligned mode. The backflow develops in two stages: an early stage with a microsecond time scale and a later stage with a millisecond time scale. The numerical predictions are in qualitative agreement with the measurements, but not quantitative agreement because our computation ignores the plate edge effect of surface tension.

  4. The Mean-Velocity Profile of Turbulent Wall-Bounded Flows:The Debate Continues

    NASA Astrophysics Data System (ADS)

    Buschmann, M.; Gad-El-Hak, M.

    2006-11-01

    The recent debate concerning the mean-velocity profile of turbulent wall-bounded flows has ruled out neither a log nor power law behavior. Furthermore, a Reynolds number dependence of the mean-velocity profile has not been excluded either. Clearly, a more complex functional form is needed to describe the profile. The generalized log law introduced by Buschmann & Gad-el-Hak in 2002 is re-examined using more recent pipe flow data from McKeon et al. (2004). The zeroth-order solution shows good agreement with the data. However, analyzing the fractional difference of that solution reveals that a previously not considered dependence on both the Reynolds number and wall-normal coordinate still persists. Progressing to the second-order solution resolves both deficits fairly well. The generalized log law is then valid throughout the profile above y^+ 100--150, in perfect agreement with the data. The Reynolds number dependence of the two main parameters, the K'arm'an constant and the outer additive constant, are predicted up to fifth order. For moderate Reynolds numbers the parameters calculated with the zeroth-order solution are very close to the values proposed by Zanoun (2003) for channel flows. However, the K'arm'an constant shows slight Reynolds number dependence, which is in excellent agreement with a function for κ proposed by Tennekes (1968).

  5. Crustal velocities near Coalinga, California, modeled from a combined earthquake/explosion refraction profile

    USGS Publications Warehouse

    Macgregor-Scott, N.; Walter, A.

    1988-01-01

    Crustal velocity structure for the region near Coalinga, California, has been derived from both earthquake and explosion seismic phase data recorded along a NW-SE seismic-refraction profile on the western flank of the Great Valley east of the Diablo Range. Comparison of the two data sets reveals P-wave phases in common which can be correlated with changes in the velocity structure below the earthquake hypocenters. In addition, the earthquake records reveal secondary phases at station ranges of less than 20 km that could be the result of S- to P-wave conversions at velocity interfaces above the earthquake hypocenters. Two-dimensional ray-trace modeling of the P-wave travel times resulted in a P-wave velocity model for the western flank of the Great Valley comprised of: 1) a 7- to 9-km thick section of sedimentary strata with velocities similar to those found elsewhere in the Great Valley (1.6 to 5.2 km s-1); 2) a middle crust extending to about 14 km depth with velocities comparable to those reported for the Franciscan assemblage in the Diablo Range (5.6 to 5.9 km s-1); and 3) a 13- to 14-km thick lower crust with velocities similar to those reported beneath the Diablo Range and the Great Valley (6.5 to 7.30 km s-1). This lower crust may have been derived from subducted oceanic crust that was thickened by accretionary underplating or crustal shortening. -Authors

  6. Experimental Studies of Low-Pressure Turbine Flows and Flow Control. Streamwise Pressure Profiles and Velocity Profiles

    NASA Technical Reports Server (NTRS)

    Volino, Ralph

    2012-01-01

    faculties. The geometry corresponded to "Pak B" LPT airfoil. The test section simulated LPT flow in a passage. Three experimental studies were performed: (a) Boundary layer measurements for ten baseline cases under high and low freestream turbulence conditions at five Reynolds numbers of 25,000, 50,000, 100,000, 200,000, and 300,000, based on passage exit velocity and suction surface wetted length; (b) Passive flow control studies with three thicknesses of two-dimensional bars, and two heights of three-dimensional circular cylinders with different spanwise separations, at same flow conditions as the 10 baseline cases; (c) Active flow control with oscillating synthetic (zero net mass flow) vortex generator jets, for one case with low freestream turbulence and a low Reynolds number of 25,000. The Passive flow control was successful at controlling the separation problem at low Reynolds numbers, with varying degrees of success from case to case and varying levels of impact at higher Reynolds numbers. The active flow control successfully eliminated the large separation problem for the low Reynolds number case. Very detailed data was acquired using hot-wire anemometry, including single and two velocity components, integral boundary layer quantities, turbulence statistics and spectra, turbulent shear stresses and their spectra, and intermittency, documenting transition, separation and reattachment. Models were constructed to correlate the results. The report includes a summary of the work performed and reprints of the publications describing the various studies. The folders in this supplement contain processed data in ASCII format. Streamwise pressure profiles and velocity profiles are included. The velocity profiles were acquired using single sensor and cross sensor hot-wire probes which were traversed from the wall to the freestream at various streamwise locations. In some of the flow control cases (3D Trips and Jets) profiles were acquired at multiple spanwise locations.

  7. A Method for Streamlining and Assessing Sound Velocity Profiles Based on Improved D-P Algorithm

    NASA Astrophysics Data System (ADS)

    Zhao, D.; WU, Z. Y.; Zhou, J.

    2015-12-01

    A multi-beam system transmits sound waves and receives the round-trip time of their reflection or scattering, and thus it is possible to determine the depth and coordinates of the detected targets using the sound velocity profile (SVP) based on Snell's Law. The SVP is determined by a device. Because of the high sampling rate of the modern device, the operational time of ray tracing and beam footprint reduction will increase, lowering the overall efficiency. To promote the timeliness of multi-beam surveys and data processing, redundant points in the original SVP must be screened out and at the same time, errors following the streamlining of the SVP must be evaluated and controlled. We presents a new streamlining and evaluation method based on the Maximum Offset of sound Velocity (MOV) algorithm. Based on measured SVP data, this method selects sound velocity data points by calculating the maximum distance to the sound-velocity-dimension based on an improved Douglas-Peucker Algorithm to streamline the SVP (Fig. 1). To evaluate whether the streamlined SVP meets the desired accuracy requirements, this method is divided into two parts: SVP streamlining, and an accuracy analysis of the multi-beam sounding data processing using the streamlined SVP. Therefore, the method is divided into two modules: the streamlining module and the evaluation module (Fig. 2). The streamlining module is used for streamlining the SVP. Its core is the MOV algorithm.To assess the accuracy of the streamlined SVP, we uses ray tracing and the percentage error analysis method to evaluate the accuracy of the sounding data both before and after streamlining the SVP (Fig. 3). By automatically optimizing the threshold, the reduction rate of sound velocity profile data can reach over 90% and the standard deviation percentage error of sounding data can be controlled to within 0.1% (Fig. 4). The optimized sound velocity profile data improved the operational efficiency of the multi-beam survey and data post

  8. Constraining Source Locations of Shallow Subduction Megathrust Earthquakes in 1-D and 3-D Velocity Models - A Case Study of the 2002 Mw=6.4 Osa Earthquake, Costa Rica

    NASA Astrophysics Data System (ADS)

    Grevemeyer, I.; Arroyo, I. G.

    2015-12-01

    Earthquake source locations are generally routinely constrained using a global 1-D Earth model. However, the source location might be associated with large uncertainties. This is definitively the case for earthquakes occurring at active continental margins were thin oceanic crust subducts below thick continental crust and hence large lateral changes in crustal thickness occur as a function of distance to the deep-sea trench. Here, we conducted a case study of the 2002 Mw 6.4 Osa thrust earthquake in Costa Rica that was followed by an aftershock sequence. Initial relocations indicated that the main shock occurred fairly trenchward of most large earthquakes along the Middle America Trench off central Costa Rica. The earthquake sequence occurred while a temporary network of ocean-bottom-hydrophones and land stations 80 km to the northwest were deployed. By adding readings from permanent Costa Rican stations, we obtain uncommon P wave coverage of a large subduction zone earthquake. We relocated this catalog using a nonlinear probabilistic approach using a 1-D and two 3-D P-wave velocity models. The 3-D model was either derived from 3-D tomography based on onshore stations and a priori model based on seismic refraction data. All epicentres occurred close to the trench axis, but depth estimates vary by several tens of kilometres. Based on the epicentres and constraints from seismic reflection data the main shock occurred 25 km from the trench and probably along the plate interface at 5-10 km depth. The source location that agreed best with the geology was based on the 3-D velocity model derived from a priori data. Aftershocks propagated downdip to the area of a 1999 Mw 6.9 sequence and partially overlapped it. The results indicate that underthrusting of the young and buoyant Cocos Ridge has created conditions for interpolate seismogenesis shallower and closer to the trench axis than elsewhere along the central Costa Rica margin.

  9. Multiple Velocity Profile Measurements in Hypersonic Flows Using Sequentially-Imaged Fluorescence Tagging

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Ivey,Christopher b.; Goyne, Christopher P.

    2010-01-01

    Nitric-oxide planar laser-induced fluorescence (NO PLIF) was used to perform velocity measurements in hypersonic flows by generating multiple tagged lines which fluoresce as they convect downstream. For each laser pulse, a single interline, progressive scan intensified CCD (charge-coupled device) camera was used to obtain two sequential images of the NO molecules that had been tagged by the laser. The CCD configuration allowed for sub-microsecond acquisition of both images, resulting in sub-microsecond temporal resolution as well as sub-mm spatial resolution (0.5-mm horizontal, 0.7-mm vertical). Determination of axial velocity was made by application of a cross-correlation analysis of the horizontal shift of individual tagged lines. A numerical study of measured velocity error due to a uniform and linearly-varying collisional rate distribution was performed. Quantification of systematic errors, the contribution of gating/exposure duration errors, and the influence of collision rate on temporal uncertainty were made. Quantification of the spatial uncertainty depended upon the signal-to-noise ratio of the acquired profiles. This velocity measurement technique has been demonstrated for two hypersonic flow experiments: (1) a reaction control system (RCS) jet on an Orion Crew Exploration Vehicle (CEV) wind tunnel model and (2) a 10-degree half-angle wedge containing a 2-mm tall, 4-mm wide cylindrical boundary layer trip. The experiments were performed at the NASA Langley Research Center's 31-Inch Mach 10 Air Tunnel.

  10. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

    NASA Astrophysics Data System (ADS)

    Sharf, Abdusalam M.; Jawan, Hosen A.; Almabsout, Fthi A.

    2014-03-01

    In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig) and computational (employing CFD software) investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  11. Effects of inflow velocity profile on two-dimensional hemodynamic analysis by ordinary and ultrasonic-measurement-integrated simulations.

    PubMed

    Kato, Takaumi; Sone, Shusaku; Funamoto, Kenichi; Hayase, Toshiyuki; Kadowaki, Hiroko; Taniguchi, Nobuyuki

    2016-09-01

    Two-dimensional ultrasonic-measurement-integrated (2D-UMI) simulation correctly reproduces hemodynamics even with an inexact inflow velocity distribution. This study aimed to investigate which is superior, a two-dimensional ordinary (2D-O) simulation with an accurate inflow velocity distribution or a 2D-UMI simulation with an inaccurate one. 2D-O and 2D-UMI simulations were performed for blood flow in a carotid artery with four upstream velocity boundary conditions: a velocity profile with backprojected measured Doppler velocities (condition A), and velocity profiles with a measured Doppler velocity distribution, a parabolic one, and a uniform one, magnitude being obtained by inflow velocity estimation (conditions B, C, and D, respectively). The error of Doppler velocity against the measurement data was sensitive to the inflow velocity distribution in the 2D-O simulation, but not in the 2D-UMI simulation with the inflow velocity estimation. Among the results in conditions B, C, and D, the error in the worst 2D-UMI simulation with condition D was 31 % of that in the best 2D-O simulation with condition B, implying the superiority of the 2D-UMI simulation with an inaccurate inflow velocity distribution over the 2D-O simulation with an exact one. Condition A resulted in a larger error than the other conditions in both the 2D-O and 2D-UMI simulations.

  12. Velocity Profiles in Pores with Undulating Opening Diameter and Their Importance for Resistive-Pulse Experiments

    PubMed Central

    2015-01-01

    Pores with undulating opening diameters have emerged as an analytical tool enhancing the speed of resistive-pulse experiments, with a potential to simultaneously characterize size and mechanical properties of translocating objects. In this work, we present a detailed study of the characteristics of resistive-pulses of charged and uncharged polymer particles in pores with different aspect ratios and pore topography. Although no external pressure difference was applied, our experiments and modeling indicated the existence of local pressure drops, which modified axial and radial velocities of the solution. As a consequence of the complex velocity profiles, pores with undulating pore diameter and low-aspect ratio exhibited large dispersion of the translocation times. Distribution of the pulse amplitude, which is a measure of the object size, was not significantly affected by the pore topography. The importance of tuning pore geometry for the application in resistive-sensing and multipronged characterization of physical properties of translocating objects is discussed. PMID:25245282

  13. A GIS-based Computational Tool for Multidimensional Flow Velocity by Acoustic Doppler Current Profilers

    NASA Astrophysics Data System (ADS)

    Kim, D.; Winkler, M.; Muste, M.

    2015-06-01

    Acoustic Doppler Current Profilers (ADCPs) provide efficient and reliable flow measurements compared to other tools for characteristics of the riverine environments. In addition to originally targeted discharge measurements, ADCPs are increasingly utilized to assess river flow characteristics. The newly developed VMS (Velocity Mapping Software) aims at providing an efficient process for quality assurance, mapping velocity vectors for visualization and facilitating comparison with physical and numerical model results. VMS was designed to provide efficient and smooth work flows for processing groups of transects. The software allows the user to select group of files and subsequently to conduct statistical and graphical quality assurance on the files as a group or individually as appropriate. VMS also enables spatial averaging in horizontal and vertical plane for ADCP data in a single or multiple transects over the same or consecutive cross sections. The analysis results are displayed in numerical and graphical formats.

  14. Flow-driven transition and associated velocity profiles in a nematic liquid-crystal cell.

    PubMed

    Jewell, S A; Cornford, S L; Yang, F; Cann, P S; Sambles, J R

    2009-10-01

    The alignment properties and distribution of flow speed during Poiseuille flow through a microchannel of a nematic liquid crystal in a cell with homeotropic surface alignment has been measured using a combination of conoscopy, fluorescence confocal polarizing microscopy, and time-lapse imaging. Two topologically distinct director profiles, with associated fluid velocity fields, are found to exist with the preferred state dictated by the volumetric flow rate of the liquid crystal. The results show excellent agreement with model data produced using the Ericksen-Leslie nematodynamics theory. PMID:19905324

  15. Peculiarities in velocity dispersion and surface density profiles of star clusters

    NASA Astrophysics Data System (ADS)

    Küpper, Andreas H. W.; Kroupa, Pavel; Baumgardt, Holger; Heggie, Douglas C.

    2010-10-01

    Based on our recent work on tidal tails of star clusters we investigate star clusters of a few 104Msolar by means of velocity dispersion profiles and surface density profiles. We use a comprehensive set of N-body computations of star clusters on various orbits within a realistic tidal field to study the evolution of these profiles with time, and ongoing cluster dissolution. From the velocity dispersion profiles we find that the population of potential escapers, i.e. energetically unbound stars inside the Jacobi radius, dominates clusters at radii above about 50 per cent of the Jacobi radius. Beyond 70 per cent of the Jacobi radius nearly all stars are energetically unbound. The velocity dispersion therefore significantly deviates from the predictions of simple equilibrium models in this regime. We furthermore argue that for this reason this part of a cluster cannot be used to detect a dark matter halo or deviations from the Newtonian gravity. By fitting templates to about 104 computed surface density profiles we estimate the accuracy which can be achieved in reconstructing the Jacobi radius of a cluster in this way. We find that the template of King works well for extended clusters on nearly circular orbits, but shows significant flaws in the case of eccentric cluster orbits. This we fix by extending this template with three more free parameters. Our template can reconstruct the tidal radius over all fitted ranges with an accuracy of about 10 per cent, and is especially useful in the case of cluster data with a wide radial coverage and for clusters showing significant extra-tidal stellar populations. No other template that we have tried can yield comparable results over this range of cluster conditions. All templates fail to reconstruct tidal parameters of concentrated clusters, however. Moreover, we find that the bulk of a cluster adjusts to the mean tidal field which it experiences and not to the tidal field at perigalacticon as has often been assumed in other

  16. Determination of shallow shear wave velocity profiles in the Cologne, Germany area using ambient vibrations

    NASA Astrophysics Data System (ADS)

    Scherbaum, Frank; Hinzen, Klaus-G.; Ohrnberger, Matthias

    2003-03-01

    We have used both single-station and array methods to determine shallow shear velocity site profiles in the vicinity of the city of Cologne, Germany from ambient vibration records. Based on fk-analysis we assume that fundamental-mode Rayleigh waves dominate the analysed wavefield in the frequency range of 0.7-2.2 Hz. According to this view a close relation exists between H/V spectral ratios and the ellipticity of the contributing Rayleigh waves. The inversion of the shape of H/V spectral ratios then provides quantitative information concerning the local shear wave velocity structure. However, based on tests with synthetic data believed to represent a typical situation in the Lower Rhine Embayment, dispersion curves were found to provide stronger constraints on the absolute values of the velocity-depth model than the ellipticities. The shape of the ellipticities was found to be subject to a strong trade-off between the layer thickness and the average layer velocity. We have made use of this observation by combining the inversion schemes for dispersion curves and ellipticities such that the velocity-depth dependence is essentially constrained by the dispersion curves while the layer thickness is constrained by the ellipticities. In order to test this method in practice, we have used array recordings of ambient vibrations from three sites where the subsurface geology is fairly well known and geotechnical information is at least partially available. In order to keep the parameter space as simple as possible we attempted to fit only a single layer over a half-space model. However, owing to earlier studies from the region, we assume a power-law depth dependence for sediment velocities. For all three sites investigated, the inversion resulted in models for which the shear wave velocity within the sediment layer both in absolute value at the surface and in depth dependence are found to be remarkably similar to the results obtained by Budny from downhole measurements. This

  17. A dealiasing method for use with ultrasonic pulsed Doppler in measuring velocity profiles and flow rates in pipes

    NASA Astrophysics Data System (ADS)

    Murakawa, Hideki; Muramatsu, Ei; Sugimoto, Katsumi; Takenaka, Nobuyuki; Furuichi, Noriyuki

    2015-08-01

    The ultrasonic pulsed Doppler method (UDM) is a powerful tool for measuring velocity profiles in a pipe. However, the maximum detectable velocity is limited by the Nyquist sampling theorem. Furthermore, the maximum detectable velocity (also called Nyquist velocity), vmax, and the maximum measurable length are related and cannot be increased at the same time. If the velocity is greater than vmax, velocity aliasing occurs. Hence, the higher velocity that occurs with a larger pipe diameter, i.e. under higher flow rate conditions, cannot be measured with the conventional UDM. To overcome these limitations, dual-pulse repetition frequency (dual PRF) and feedback methods were employed in this study to measure velocity profiles in a pipe. The velocity distributions obtained with the feedback method were found to be more accurate than those obtained with the dual PRF method. However, misdetection of the Nyquist folding number using the feedback method was found to increase with the flow velocity. A feedback method with a moving average is proposed to improve the measurement accuracy. The method can accurately measure the velocity distributions at a velocity five times greater than the maximum velocity that can be measured with the conventional UDM. The measurement volume was found to be among the important parameters that must be considered in assessing the traceability of the reflector during the pulse emission interval. Hence, a larger measurement volume is required to measure higher velocities using the dual PRF method. Integrating velocity distributions measured using the feedback method with a moving average makes it possible to accurately determine flow rates six times greater than those that can be determined using the conventional pulsed Doppler method.

  18. Trapezoidal Wing Experimental Repeatability and Velocity Profiles in the 14- by 22-Foot Subsonic Tunnel

    NASA Technical Reports Server (NTRS)

    Hannon, Judith A.; Washburn, Anthony E.; Jenkins, Luther N.; Watson, Ralph D.

    2012-01-01

    The AIAA Applied Aerodynamics Technical Committee sponsored a High Lift Prediction Workshop held in June 2010. For this first workshop, data from the Trapezoidal Wing experiments were used for comparison to CFD. This paper presents long-term and short-term force and moment repeatability analyses for the Trapezoidal Wing model tested in the NASA Langley 14- by 22-Foot Subsonic Tunnel. This configuration was chosen for its simplified high-lift geometry, publicly available set of test data, and previous CFD experience with this configuration. The Trapezoidal Wing is a three-element semi-span swept wing attached to a body pod. These analyses focus on configuration 1 tested in 1998 (Test 478), 2002 (Test 506), and 2003 (Test 513). This paper also presents model velocity profiles obtained on the main element and on the flap during the 1998 test. These velocity profiles are primarily at an angle of attack of 28 degrees and semi-span station of 83% and show confluent boundary layers and wakes.

  19. A rare saccade velocity profile in Stiff-Person Syndrome with cerebellar degeneration.

    PubMed

    Zivotofsky, Ari Z; Siman-Tov, Tali; Gadoth, Natan; Gordon, Carlos R

    2006-06-01

    Stiff-Person Syndrome (SPS) is an immune-mediated disorder of the central nervous system characterized by muscle rigidity, episodic muscle spasms, and high titers of antibodies against glutamic acid decarboxylase (GAD). The presence of cerebellar ataxia in SPS is extremely rare, but occurs. Clinical observations of ocular motor abnormalities have been noted in a few SPS patients. The purpose of this study is to provide a detailed quantitative documentation of ocular motor abnormalities in a patient with SPS and progressive cerebellar signs. Detailed clinical assessment of a woman with SPS and precise eye movement recordings using the magnetic search coil technique was performed. In addition to other ocular motor abnormalities that included longer latencies for saccades, downbeat nystagmus, and loss of downward smooth pursuit, a rare saccade velocity profile consisting of multi-component saccades was observed. We postulate that these ocular motor findings are related to impairment of GABAergic neurotransmission because antibodies to glutamic acid decarboxylase (GAD-Abs) have been implicated in the pathogenesis of both SPS and some cases of cerebellar ataxia. In addition, this unusual saccadic velocity profile may have important implications for modeling the saccadic system and furthering a complete understanding of saccade generation. PMID:16725126

  20. Measurement of the differential cross section of the photoinitiated reactive collision of O((1)D)+D(2) using only one molecular beam: A study by three dimensional velocity mapping.

    PubMed

    Kauczok, S; Maul, C; Chichinin, A I; Gericke, K-H

    2010-06-28

    velocities. Using the benchmark system O((1)D)+D(2) with N(2)O as the precursor, we demonstrate that the technique is also applicable in a very general sense (i.e., also with a large spread in reactant velocities, products much faster than reactants) and therefore can be used also if such unfortunate conditions cannot be avoided. Since the resulting distribution of velocities in the laboratory frame is not cylindrically symmetric, three dimensional velocity mapping is the method of choice for the detection of the ionized products. For the reconstruction, the distance between the two laser beams is an important parameter. We have measured this distance using the photodissociation of HBr at 193 nm, detecting the H atoms near 243 nm. The collision energy resulting from the 193 nm photodissociation of N(2)O is 5.2+/-1.9 kcal/mol. Our results show a preference for backward scattered D atoms with the OH partner fragment in the high vibrational states (v=4-6), in accord with previously published results claiming the growing importance of a linear abstraction mechanism for collision energies higher than 2.4 kcal/mol.

  1. Measurement of the differential cross section of the photoinitiated reactive collision of O(1D)+D2 using only one molecular beam: A study by three dimensional velocity mapping

    NASA Astrophysics Data System (ADS)

    Kauczok, S.; Maul, C.; Chichinin, A. I.; Gericke, K.-H.

    2010-06-01

    velocities. Using the benchmark system O(D1)+D2 with N2O as the precursor, we demonstrate that the technique is also applicable in a very general sense (i.e., also with a large spread in reactant velocities, products much faster than reactants) and therefore can be used also if such unfortunate conditions cannot be avoided. Since the resulting distribution of velocities in the laboratory frame is not cylindrically symmetric, three dimensional velocity mapping is the method of choice for the detection of the ionized products. For the reconstruction, the distance between the two laser beams is an important parameter. We have measured this distance using the photodissociation of HBr at 193 nm, detecting the H atoms near 243 nm. The collision energy resulting from the 193 nm photodissociation of N2O is 5.2±1.9 kcal/mol. Our results show a preference for backward scattered D atoms with the OH partner fragment in the high vibrational states (v =4-6), in accord with previously published results claiming the growing importance of a linear abstraction mechanism for collision energies higher than 2.4 kcal/mol.

  2. Jet Velocity Profile of Linear Shaped Charges Based on an Arced Liner Collapse

    NASA Astrophysics Data System (ADS)

    Lim, Seokbin

    2013-10-01

    The jet formation process of linear shaped charges (LSCs) heavily depends on the liner behavior before it collapses. The linear behavior includes the physical shape/deformation, material properties, the projection velocity before impact of the liner, etc. Due to the axially propagating detonation front along the charge, the interaction between the liner and detonation products is one of the important factors that controls the jetting process. In this study, the liner deformation (or arc) caused by the rarefaction is taken into account when analytically calculating the LSC jet velocity based on Birkhoff theory. Based on the formation of an arc in the liner, an analytical calculation of the jet velocity is accomplished in the detonation front, assuming that the entire liner is projecting at the same time. The arc of the LSC liner during projection, which was determined by fitting data generated from hydrocode simulations, allows a non-steady jetting profile. The analytical model described herein is compared to hydrocode simulation results and is shown to exhibit favorable results.

  3. Buoyancy effects on the integral lengthscales and mean velocity profile in atmospheric surface layer flows

    NASA Astrophysics Data System (ADS)

    Salesky, Scott T.; Katul, Gabriel G.; Chamecki, Marcelo

    2013-10-01

    Within the diabatic atmospheric surface layer (ASL) under quasi-stationary and horizontal homogeneous conditions, the mean velocity profile deviates from its conventional logarithmic shape by a height-dependent universal stability correction function ϕm(ζ) that varies with the stability parameter ζ. The ζ parameter measures the relative importance of mechanical to buoyant production or destruction of turbulent kinetic energy (TKE) within the ASL. A link between ϕm(ζ) and the spectrum of turbulence in the ASL was recently proposed by Katul et al. ["Mean velocity profile in a sheared and thermally stratified atmospheric boundary layer," Phys. Rev. Lett. 107, 268502 (2011)]. By accounting for the stability-dependence of TKE production, Katul et al. were able to recover scalings for ϕm with the anticipated power-law exponents for free convective, slightly unstable, and stable conditions. To obtain coefficients for the ϕm(ζ) curve in good agreement with empirical formulas, they introduced a correction for the variation of the integral lengthscale of vertical velocity with ζ estimated from the Kansas experiment. In the current work, the link between the coefficients in empirical curves for ϕm(ζ) and stability-dependent properties of turbulence in the ASL, including the variation with ζ of the integral lengthscale and the anisotropy of momentum transporting eddies is investigated using data from the Advection Horizontal Array Turbulence Study. The theoretical framework presented by Katul et al. is revised to account explicitly for these effects. It is found that the coefficients in the ϕm(ζ) curve for unstable and near-neutral conditions can be explained by accounting for the stability-dependence of the integral lengthscale and anisotropy of momentum-transporting eddies; however, an explanation for the observed ϕm(ζ) curve for stable conditions remains elusive. The effect of buoyancy on the horizontal and vertical integral lengthscales is also analyzed in

  4. Comparison of index velocity measurements made with a horizontal acoustic Doppler current profiler

    USGS Publications Warehouse

    Jackson, P. Ryan; Johnson, Kevin K.; Duncker, James J.

    2012-01-01

    The State of Illinois' annual withdrawal from Lake Michigan is limited by a U.S. Supreme Court decree, and the U.S. Geological Survey (USGS) is responsible for monitoring flows in the Chicago Sanitary and Ship Canal (CSSC) near Lemont, Illinois as a part of the Lake Michigan Diversion Accounting overseen by the U.S. Army Corps of Engineers, Chicago District. Every 5 years, a technical review committee consisting of practicing engineers and academics is convened to review the U.S. Geological Survey's streamgage practices in the CSSC near Lemont, Illinois. The sixth technical review committee raised a number of questions concerning the flows and streamgage practices in the CSSC near Lemont and this report provides answers to many of those questions. In addition, it is the purpose of this report to examine the index velocity meters in use at Lemont and determine whether the acoustic velocity meter (AVM), which is now the primary index velocity meter, can be replaced by the horizontal acoustic Doppler current profiler (H-ADCP), which is currently the backup meter. Application of the AVM and H-ADCP to index velocity measurements in the CSSC near Lemont, Illinois, has produced good ratings to date. The site is well suited to index velocity measurements in spite of the large range of velocities and highly unsteady flows at the site. Flow variability arises from a range of sources: operation of the waterway through control structures, lockage-generated disturbances, commercial and recreational traffic, industrial withdrawals and discharges, natural inflows, seiches, and storm events. The influences of these factors on the index velocity measurements at Lemont is examined in detail in this report. Results of detailed data comparisons and flow analyses show that use of bank-mounted instrumentation such as the AVM and H-ADCP appears to be the best option for index velocity measurement in the CSSC near Lemont. Comparison of the rating curves for the AVM and H-ADCP demonstrates

  5. Acoustic and aerodynamic performance investigation of inverted velocity profile coannular plug nozzles. [variable cycle engines

    NASA Technical Reports Server (NTRS)

    Knott, P. R.; Blozy, J. T.; Staid, P. S.

    1981-01-01

    The results of model scale parametric static and wind tunnel aerodynamic performance tests on unsuppressed coannular plug nozzle configurations with inverted velocity profile are discussed. The nozzle configurations are high-radius-ratio coannular plug nozzles applicable to dual-stream exhaust systems typical of a variable cycle engine for Advanced Supersonic Transport application. In all, seven acoustic models and eight aerodynamic performance models were tested. The nozzle geometric variables included outer stream radius ratio, inner stream to outer stream ratio, and inner stream plug shape. When compared to a conical nozzle at the same specific thrust, the results of the static acoustic tests with the coannular nozzles showed noise reductions of up to 7 PNdB. Extensive data analysis showed that the overall acoustic results can be well correlated using the mixed stream velocity and the mixed stream density. Results also showed that suppression levels are geometry and flow regulation dependent with the outer stream radius ratio, inner stream-to-outer stream velocity ratio and inner stream velocity ratio and inner stream plug shape, as the primary suppression parameters. In addition, high-radius ratio coannular plug nozzles were found to yield shock associated noise level reductions relative to a conical nozzle. The wind tunnel aerodynamic tests showed that static and simulated flight thrust coefficient at typical takeoff conditions are quite good - up to 0.98 at static conditions and 0.974 at a takeoff Mach number of 0.36. At low inner stream flow conditions significant thrust loss was observed. Using an inner stream conical plug resulted in 1% to 2% higher performance levels than nozzle geometries using a bent inner plug.

  6. Velocity and concentration profiles of saline and turbidity currents flowing in a straight channel under quasi-uniform conditions

    NASA Astrophysics Data System (ADS)

    Stagnaro, M.; Bolla Pittaluga, M.

    2014-03-01

    We present a series of detailed experimental observations of saline and turbidity currents flowing in a straight channel. Experiments are performed by continuously feeding the channel with a dense mixture until a quasi-steady configuration is obtained. The flume, 12 m long, is characterized by a concrete fixed bed with a uniform slope of 0.005. Longitudinal velocity profiles are measured in ten cross sections, 1 m apart, employing an ultrasound Doppler velocity profiler. We also measure the density of the mixture using a rake of siphons sampling at different heights from the bottom in order to obtain the vertical density distributions in a cross section where the flow already attained a quasi-uniform configuration. We performed 27 experiments changing the flow discharge, the fractional excess density, the character of the current (saline or turbidity) and the roughness of the bed in order to observe the consequences of these variations on the vertical velocity profiles and on the overall characteristics of the flow. Dimensionless velocity profiles under quasi-uniform flow conditions were obtained by scaling longitudinal velocity with its depth averaged value and the vertical coordinate with the flow thickness. They turned out to be influenced by the Reynolds number of the flow, by the relative bed roughness, and by the presence of sediment in suspension. Unexpectedly, the densimetric Froude number of the current turned out to have no influence on the dimensionless velocity profiles.

  7. Measurement of ion velocity profiles in a magnetic reconnection layer via current sheet jogging

    NASA Astrophysics Data System (ADS)

    Stein, G.; Yoo, J.; Yamada, M.; Ji, H.; Dorfman, S.; Lawrence, E.; Myers, C.; Tharp, T.

    2011-10-01

    In many laboratory plasmas, constructing stationary Langmuir and Mach probe arrays with resolution on the order of electron skin depth is technically difficult, and can introduce significant plasma perturbations. However, complete two- dimensional profiles of plasma density, electron temperature, and ion flow are important for studying the transfer of energy from magnetic fields to particles during magnetic reconnection. Through the use of extra ``Shaping Field'' coils in the Magnetic Reconnection Experiment (MRX) at the Princeton Plasma Physics Laboratory, the inward motion of the current sheet in the reconnection layer can be accelerated, or ``jogged,'' allowing the measurement of different points across the sheet with stationary probes. By acquiring data from Langmuir probes and Mach probes at different locations in the MRX with respect to the current sheet center, profiles of electron density and temperature and a vector plot of two-dimensional ion velocity in the plane of reconnection are created. Results from probe measurements will be presented and compared to profiles generated from computer simulation.

  8. Quantification of the pulse wave velocity of the descending aorta using axial velocity profiles from phase-contrast magnetic resonance imaging.

    PubMed

    Yu, Hsi-Yu; Peng, Hsu-Hsia; Wang, Jaw-Lin; Wen, Chih-Yung; Tseng, Wen-Yih Isaac

    2006-10-01

    The pulse wave velocity (PWV) of aortic blood flow is considered a surrogate for aortic compliance. A new method using phase-contrast (PC)-MRI is presented whereby the spatial and temporal profiles of axial velocity along the descending aorta can be analyzed. Seventeen young healthy volunteers (the YH group), six older healthy volunteers (the OH group), and six patients with coronary artery disease (the CAD group) were studied. PC-MRI covering the whole descending aorta was acquired, with velocity gradients encoding the in-plane velocity. From the corrected axial flow velocity profiles, PWV was determined from the slope of an intersecting line between the presystolic and early systolic phases. Furthermore, the aortic elastic modulus (Ep) was derived from the ratio of the brachial pulse pressure to the strain of the aortic diameter. The PWV increased from YH to OH to CAD (541 +/- 94, 808 +/- 184, 1121 +/- 218 cm/s, respectively; P = 0.015 between YH and OH; P = 0.023 between OH and CAD). There was a high correlation between PWV and Ep (r = 0.861, P < 0.001). Multivariate analysis showed that age and CAD were independent risk factors for an increase in the PWV. Compared to existing methods, our method requires fewer assumptions and provides a more intuitive and objective way to estimate the PWV.

  9. Molecular dynamic simulation of Ar-Kr mixture across a rough walled nanochannel: Velocity and temperature profiles

    SciTech Connect

    Pooja, Ahluwalia, P. K.; Pathania, Y.

    2015-05-15

    This paper presents the results from a molecular dynamics simulation of mixture of argon and krypton in the Poiseuille flow across a rough walled nanochannel. The roughness effect on liquid nanoflows has recently drawn attention The computational software used for carrying out the molecular dynamics simulations is LAMMPS. The fluid flow takes place between two parallel plates and is bounded by horizontal rough walls in one direction and periodic boundary conditions are imposed in the other two directions. Each fluid atom interacts with other fluid atoms and wall atoms through Leenard-Jones (LJ) potential with a cut off distance of 5.0. To derive the flow a constant force is applied whose value is varied from 0.1 to 0.3 and velocity profiles and temperature profiles are noted for these values of forces. The velocity profile and temperature profiles are also looked at different channel widths of nanochannel and at different densities of mixture. The velocity profile and temperature profile of rough walled nanochannel are compared with that of smooth walled nanochannel and it is concluded that mean velocity increases with increase in channel width, force applied and decrease in density also with introduction of roughness in the walls of nanochannel mean velocity again increases and results also agree with the analytical solution of a Poiseuille flow.

  10. Comparison of phase velocities from array measurements of Rayleigh waves associated with microtremor and results calculated from borehole shear-wave velocity profiles

    USGS Publications Warehouse

    Liu, Hsi-Ping; Boore, David M.; Joyner, William B.; Oppenheimer, David H.; Warrick, Richard E.; Zhang, Wenbo; Hamilton, John C.; Brown, Leo T.

    2000-01-01

    Shear-wave velocities (VS) are widely used for earthquake ground-motion site characterization. VS data are now largely obtained using borehole methods. Drilling holes, however, is expensive. Nonintrusive surface methods are inexpensive for obtaining VS information, but not many comparisons with direct borehole measurements have been published. Because different assumptions are used in data interpretation of each surface method and public safety is involved in site characterization for engineering structures, it is important to validate the surface methods by additional comparisons with borehole measurements. We compare results obtained from a particular surface method (array measurement of surface waves associated with microtremor) with results obtained from borehole methods. Using a 10-element nested-triangular array of 100-m aperture, we measured surface-wave phase velocities at two California sites, Garner Valley near Hemet and Hollister Municipal Airport. The Garner Valley site is located at an ancient lake bed where water-saturated sediment overlies decomposed granite on top of granite bedrock. Our array was deployed at a location where seismic velocities had been determined to a depth of 500 m by borehole methods. At Hollister, where the near-surface sediment consists of clay, sand, and gravel, we determined phase velocities using an array located close to a 60-m deep borehole where downhole velocity logs already exist. Because we want to assess the measurements uncomplicated by uncertainties introduced by the inversion process, we compare our phase-velocity results with the borehole VS depth profile by calculating fundamental-mode Rayleigh-wave phase velocities from an earth model constructed from the borehole data. For wavelengths less than ~2 times of the array aperture at Garner Valley, phase-velocity results from array measurements agree with the calculated Rayleigh-wave velocities to better than 11%. Measurement errors become larger for wavelengths 2

  11. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine

    SciTech Connect

    Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ

    2015-09-01

    The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in such scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.

  12. Evolution of density and velocity profiles of matter in large voids

    NASA Astrophysics Data System (ADS)

    Tsizh, M.; Novosyadlyj, B.

    2016-09-01

    We analyse the evolution of cosmological perturbations which leads to the formation of large voids in the distribution of galaxies. We assume that perturbations are spherical and all components of the Universe - radiation, matter and dark energy - are continuous media with ideal fluid energy-momentum tensors, which interact only gravitationally. Equations of the evolution of perturbations in the comoving to cosmological background reference frame for every component are obtained from equations of conservation and Einstein's ones and are integrated by modified Euler method. Initial conditions are set at the early stage of evolution in the radiation-dominated epoch, when the scale of perturbation is mush larger than the particle horizon. Results show how the profiles of density and velocity of matter in spherical voids with different overdensity shells are formed.

  13. The mean velocity profile in a sheared and thermally stratified atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Katul, G. G.; Porporato, A. M.

    2011-12-01

    A universal stability correction function φ that accounts for distortions caused by thermal stratification to the logarithmic mean velocity profile (MVP) in the lower atmosphere was proposed by Monin and Obukhov in the 1950s using dimensional analysis. However, theories that predict the canonical shape of φ currently lag behind field experiments and numerical simulation. A recently proposed phenomenological theory that links the spectrum of turbulence to the MVP is expanded here by including the effects of thermal stratification on the turbulent kinetic energy dissipation rate and eddy-size anisotropy. The resulting theory explains all the canonical features of φ reported in field experiments, including the onset of power-laws and their concomitant exponents reported for mildly stable, mildly unstable, and the near-convective limit.

  14. Shear banding in a lyotropic lamellar phase. I. Time-averaged velocity profiles

    NASA Astrophysics Data System (ADS)

    Salmon, Jean-Baptiste; Manneville, Sébastien; Colin, Annie

    2003-11-01

    Using velocity profile measurements based on dynamic light scattering and coupled to structural and rheological measurements in a Couette cell, we present evidences for a shear banding scenario in the shear flow of the onion texture of a lyotropic lamellar phase. Time-averaged measurements clearly show the presence of structural shear banding in the vicinity of a shear-induced transition, associated with the nucleation and growth of a highly sheared band in the flow. Our experiments also reveal the presence of slip at the walls of the Couette cell. Using a simple mechanical approach, we demonstrate that our data confirm the classical assumption of the shear banding picture, in which the interface between bands lies at a given stress σ*. We also outline the presence of large temporal fluctuations of the flow field, which are the subject of the second part of this paper [Salmon et al., Phys. Rev. E 68, 051504 (2003)].

  15. Velocity profiles between two baffles in a shell and tube heat exchanger

    NASA Astrophysics Data System (ADS)

    Chang, Tae-Hyun; Lee, Chang-Hoan; Lee, Hae-Soo; Lee, Kwon-Soo

    2015-06-01

    Heat exchangers are extensively utilized for waste heat recovery, oil refining, chemical processing, and steam generation. In this study, velocity profiles are measured using a 3D particle image velocimetry (PIV) system betweentwo baffles in a shell and tube heat exchanger for parallel and counter flows. The PIV and computational fluid dynamics results show the occurrence of some strong vectors near the bottom. These vectors are assumed due to the clearance between the inner tubes and the front baffle. Therefore, the major parts of the vectors are moved out through the bottom opening of the rear baffle, and other vectors produce a large circle between the two baffles. Numerical simulations are conducted to investigate the effects of the baffle on the heat exchanger using the Fluent software. The k-ɛ turbulence model is employed to calculate the flows along the heat exchanger

  16. Vertical velocity variance in the mixed layer from radar wind profilers

    USGS Publications Warehouse

    Eng, K.; Coulter, R.L.; Brutsaert, W.

    2003-01-01

    Vertical velocity variance data were derived from remotely sensed mixed layer turbulence measurements at the Atmospheric Boundary Layer Experiments (ABLE) facility in Butler County, Kansas. These measurements and associated data were provided by a collection of instruments that included two 915 MHz wind profilers, two radio acoustic sounding systems, and two eddy correlation devices. The data from these devices were available through the Atmospheric Boundary Layer Experiment (ABLE) database operated by Argonne National Laboratory. A signal processing procedure outlined by Angevine et al. was adapted and further built upon to derive vertical velocity variance, w_pm???2, from 915 MHz wind profiler measurements in the mixed layer. The proposed procedure consisted of the application of a height-dependent signal-to-noise ratio (SNR) filter, removal of outliers plus and minus two standard deviations about the mean on the spectral width squared, and removal of the effects of beam broadening and vertical shearing of horizontal winds. The scatter associated with w_pm???2 was mainly affected by the choice of SNR filter cutoff values. Several different sets of cutoff values were considered, and the optimal one was selected which reduced the overall scatter on w_pm???2 and yet retained a sufficient number of data points to average. A similarity relationship of w_pm???2 versus height was established for the mixed layer on the basis of the available data. A strong link between the SNR and growth/decay phases of turbulence was identified. Thus, the mid to late afternoon hours, when strong surface heating occurred, were observed to produce the highest quality signals.

  17. Vertical velocity variance in the mixed layer from radar wind profilers.

    SciTech Connect

    Eng, K.; Coulter, R. L.; Brutsaert, W.; Environmental Research; Cornell Univ.

    2003-11-01

    Vertical velocity variance data were derived from remotely sensed mixed layer turbulence measurements at the Atmospheric Boundary Layer Experiments (ABLE) facility in Butler County, Kansas. These measurements and associated data were provided by a collection of instruments that included two 915 MHz wind profilers, two radio acoustic sounding systems, and two eddy correlation devices. The data from these devices were available through the Atmospheric Boundary Layer Experiment (ABLE) database operated by Argonne National Laboratory. A signal processing procedure outlined by Angevine et al. was adapted and further built upon to derive vertical velocity variance, {omega}'{sup 2}, from 915 MHz wind profiler measurements in the mixed layer. The proposed procedure consisted of the application of a height-dependent signal-to-noise ratio (SNR) filter, removal of outliers plus and minus two standard deviations about the mean on the spectral width squared, and removal of the effects of beam broadening and vertical shearing of horizontal winds. The scatter associated with {omega}'{sup 2} was mainly affected by the choice of SNR filter cutoff values. Several different sets of cutoff values were considered, and the optimal one was selected which reduced the overall scatter on {omega}'{sup 2} and yet retained a sufficient number of data points to average. A similarity relationship of {omega}'{sup 2} versus height was established for the mixed layer on the basis of the available data. A strong link between the SNR and growth/decay phases of turbulence was identified. Thus, the mid to late afternoon hours, when strong surface heating occurred, were observed to produce the highest quality signals.

  18. Shear-wave velocity profiling according to three alternative approaches: A comparative case study

    NASA Astrophysics Data System (ADS)

    Dal Moro, G.; Keller, L.; Al-Arifi, N. S.; Moustafa, S. S. R.

    2016-11-01

    The paper intends to compare three different methodologies which can be used to analyze surface-wave propagation, thus eventually obtaining the vertical shear-wave velocity (VS) profile. The three presented methods (currently still quite unconventional) are characterized by different field procedures and data processing. The first methodology is a sort of evolution of the classical Multi-channel Analysis of Surface Waves (MASW) here accomplished by jointly considering Rayleigh and Love waves (analyzed according to the Full Velocity Spectrum approach) and the Horizontal-to-Vertical Spectral Ratio (HVSR). The second method is based on the joint analysis of the HVSR curve together with the Rayleigh-wave dispersion determined via Miniature Array Analysis of Microtremors (MAAM), a passive methodology that relies on a small number (4 to 6) of vertical geophones deployed along a small circle (for the common near-surface application the radius usually ranges from 0.6 to 5 m). Finally, the third considered approach is based on the active data acquired by a single 3-component geophone and relies on the joint inversion of the group-velocity spectra of the radial and vertical components of the Rayleigh waves, together with the Radial-to-Vertical Spectral Ratio (RVSR). The results of the analyses performed while considering these approaches (completely different both in terms of field procedures and data analysis) appear extremely consistent thus mutually validating their performances. Pros and cons of each approach are summarized both in terms of computational aspects as well as with respect to practical considerations regarding the specific character of the pertinent field procedures.

  19. The Surface Density Profile of the Galactic Disk from the Terminal Velocity Curve

    NASA Astrophysics Data System (ADS)

    McGaugh, Stacy S.

    2016-01-01

    The mass distribution of the Galactic disk is constructed from the terminal velocity curve and the mass discrepancy-acceleration relation. Mass models numerically quantifying the detailed surface density profiles are tabulated. For R0 = 8 kpc, the models have stellar mass 5 < M* < 6 × 1010 {M}⊙ , scale length 2.0 ≤ Rd ≤ 2.9 kpc, LSR circular velocity 222 ≤ Θ0 ≤ 233 {km} {{{s}}}-1, and solar circle stellar surface density 34 ≤ Σd(R0) ≤ 61 {M}⊙ {{pc}}-2. The present interarm location of the solar neighborhood may have a somewhat lower stellar surface density than average for the solar circle. The Milky Way appears to be a normal spiral galaxy that obeys scaling relations like the Tully-Fisher relation, the size-mass relation, and the disk maximality-surface brightness relation. The stellar disk is maximal, and the spiral arms are massive. The bumps and wiggles in the terminal velocity curve correspond to known spiral features (e.g., the Centaurus arm is a ˜50% overdensity). The rotation curve switches between positive and negative over scales of hundreds of parsecs. The rms amplitude {< {| {dV}/{dR}| }2> }1/2≈ 14 {km} {{{s}}}-1 {{kpc}}-1, implying that commonly neglected terms in the Jeans equations may be nonnegligible. The spherically averaged local dark matter density is ρ0,DM ≈ 0.009 {M}⊙ {{pc}}-3 (0.34 {GeV} {{cm}}-3). Adiabatic compression of the dark matter halo may help reconcile the Milky Way with the c-V200 relation expected in ΛCDM while also helping to mitigate the too-big-to-fail problem, but it remains difficult to reconcile the inner bulge/bar-dominated region with a cuspy halo. We note that NGC 3521 is a near twin to the Milky Way, having a similar luminosity, scale length, and rotation curve.

  20. The spectral link in mean-velocity profile of turbulent plane-Couette flows

    NASA Astrophysics Data System (ADS)

    Zhang, Dongrong; Gioia, Gustavo; Chakraborty, Pinaki

    2015-03-01

    In turbulent pipe and plane-Couette flows, the mean-velocity profile (MVP) represents the distribution of local mean (i.e., time-averaged) velocity on the cross section of a flow. The spectral theory of MVP in pipe flows (Gioia et al., PRL, 2010) furnishes a long-surmised link between the MVP and turbulent energy spectrum. This missing spectral link enables new physical insights into an imperfectly understood phenomenon (the MVP) by building on the well-known structure of the energy spectrum. Here we extend this theory to plane-Couette flows. Similar to pipe flows, our analysis allows us to express the MVP as a functional of the spectrum, and to relate each feature of the MVP relates to a specific spectral range: the buffer layer to the dissipative range, the log layer to the inertial range, and the wake (or the lack thereof) to the energetic range. We contrast pipe and plane-Couette flows in light of the theory.

  1. Velocity profile of water vapor inside a cavity with two axial inlets and two outlets

    NASA Astrophysics Data System (ADS)

    Guadarrama-Cetina, José; Ruiz Chavarría, Gerardo

    2014-03-01

    To study the dynamics of Breath Figure phenomenon, a control of both the rate of flow and temperature of water vapor is required. The experimental setup widely used is a non hermetically closed chamber with cylindrical geometry and axial inlets and outlets. In this work we present measurements in a cylindrical chamber with diameter 10 cm and 1.5 cm height, keeping a constant temperature (10 °C). We are focused in the velocity field when a gradient of the temperatures is produced between the base plate and the vapor. With a flux of water vapor of 250 mil/min at room temperature (21 °C), the Reynolds number measured in one inlet is 755. Otherwise, the temperatures of water vapor varies from 21 to 40 °C. The velocity profile is obtained by hot wire anemometry. We identify the stagnations and the possibly instabilities regions for an empty plate and with a well defined shape obstacle as a fashion sample. Facultad de Ciencias, UNAM.

  2. Multiple Velocity Profile Measurements in Hypersonic Flows using Sequentially-Imaged Fluorescence Tagging

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Inmian, Jennifer A.; Jones, Stephen B.; Ivey, Christopher B.; Goyne, Christopher P.

    2010-01-01

    Nitric-oxide planar laser-induced fluorescence (NO PLIF) was used to perform velocity measurements in hypersonic flows by generating multiple tagged lines which fluoresce as they convect downstream. For each laser pulse, a single interline, progressive scan intensified CCD camera was used to obtain separate images of the initial undelayed and delayed NO molecules that had been tagged by the laser. The CCD configuration allowed for sub-microsecond acquisition of both images, resulting in sub-microsecond temporal resolution as well as sub-mm spatial resolution (0.5-mm x 0.7-mm). Determination of axial velocity was made by application of a cross-correlation analysis of the horizontal shift of individual tagged lines. Quantification of systematic errors, the contribution of gating/exposure duration errors, and influence of collision rate on fluorescence to temporal uncertainty were made. Quantification of the spatial uncertainty depended upon the analysis technique and signal-to-noise of the acquired profiles. This investigation focused on two hypersonic flow experiments: (1) a reaction control system (RCS) jet on an Orion Crew Exploration Vehicle (CEV) wind tunnel model and (2) a 10-degree half-angle wedge containing a 2-mm tall, 4-mm wide cylindrical boundary layer trip. The experiments were performed at the NASA Langley Research Center's 31-inch Mach 10 wind tunnel.

  3. Optimization of the AC-gradient method for velocity profile measurement and application to slow flow

    NASA Astrophysics Data System (ADS)

    Kartäusch, Ralf; Helluy, Xavier; Jakob, Peter Michael; Fidler, Florian

    2014-11-01

    This work presents a spectroscopic method to measure slow flow. Within a single shot the velocity distribution is acquired. This allows distinguishing rapidly between single velocities within the sampled volume with a high sensitivity. The technique is based on signal acquisition in the presence of a periodic gradient and a train of refocussing RF pulses. The theoretical model for trapezoidal bipolar pulse shaped gradients under consideration of diffusion and the outflow effect is introduced. A phase correction technique is presented that improves the spectral accuracy. Therefore, flow phantom measurements are used to validate the new sequence and the simulation based on the theoretical model. It was demonstrated that accurate parabolic flow profiles can be acquired and flow variations below 200 μm/s can be detected. Three post-processing methods that eliminate static background signal are also presented for applications in which static background signal dominates. Finally, this technique is applied to flow measurement of a small alder tree demonstrating a typical application of in vivo plant measurements.

  4. An acoustic doppler current profiler survey of flow velocities in Detroit River, a connecting channel of the Great Lakes

    USGS Publications Warehouse

    Holtschlag, David J.; Koschik, John A.

    2003-01-01

    Acoustic Doppler current profilers (ADCP) were used to survey flow velocities in Detroit River from July 8-19, 2002, as part of a study to assess the susceptibility of public water intakes to contaminants on the St. Clair-Detroit River Waterway. More than 3.5 million point velocities were measured at 130 cross sections. Cross sections were generally spaced about 1,800 ft apart along the river from the head of Detroit River at the outlet of Lake St. Clair to the mouth of Detroit River on Lake Erie. Two transects were surveyed at each cross section, one in each direction across the river. Along each transect, velocity profiles were generally obtained 0.8-2.2 ft apart. At each velocity profile, average water velocity data were obtained at 1.64 ft intervals of depth. The raw position and velocity data from the ADCP field survey were adjusted for local magnetic anomalies using global positioning system (GPS) measurements at the end points of the transects. The adjusted velocity and ancillary data can be retrieved though the internet and extracted to column-oriented data files.

  5. An acoustic doppler current profiler survey of flow velocities in St. Clair River, a connecting channel of the Great Lakes

    USGS Publications Warehouse

    Holtschlag, David J.; Koschik, John A.

    2003-01-01

    Acoustic Doppler current profilers (ADCP) were used to measure flow velocities in St. Clair River during a survey in May and June of 2002, as part of a study to assess the susceptibility of public water intakes to contaminants on the St. Clair-Detroit River Waterway. The survey provides 2.7 million point velocity measurements at 104 cross sections. Sections are spaced about 1,630 ft apart along the river from Port Huron to Algonac, Michigan, a distance of 28.6 miles. Two transects were obtained at each cross section, one in each direction across the river. Along each transect, velocity profiles were obtained 2-4 ft apart. At each velocity profile, average water velocity data were obtained at 1.64 ft intervals of depth. The raw position and velocity data from the ADCP field survey were adjusted for local magnetic anomalies using global positioning system (GPS) measurements at the end points of the transects. The adjusted velocity and ancillary data can be retrieved through the internet and extracted to column-oriented data files.

  6. Velocity and concentration profiles of saline and turbidity currents flowing in a straight channel under quasi-uniform conditions

    NASA Astrophysics Data System (ADS)

    Stagnaro, M.; Bolla Pittaluga, M.

    2013-11-01

    We present a series of detailed experimental observations of saline and turbidity currents flowing in a straight channel. Experiments are performed by continuously feeding the channel with a dense mixture until a quasi-steady configuration is obtained. The flume, 12 m long, is characterized by a concrete fixed bed with a uniform slope of 0.005. Longitudinal velocity profiles are measured in ten cross sections, one meter apart, employing an Ultrasound Doppler Velocimeter Profiler. We also measure the density of the mixture using a rake of siphons sampling at different heights from the bottom in order to obtain the vertical density distributions in a cross sections where the flow already attained a quasi-uniform configuration. We performed 27 experiments changing the flow discharge, the fractional excess density, the character of the current (saline or turbidity) and the roughness of the bed in order to observe the consequences of these variations on the vertical velocity profiles and on the overall characteristics of the flow. Dimensionless velocity profiles under quasi-uniform flow conditions were obtained by scaling longitudinal velocity with its depth averaged value and the vertical coordinate with the flow thickness. They turned out to be influenced by the Reynolds number of the flow, by the relative bed roughness, and by the presence of sediment in suspension. Unexpectedly the densimetric Froude number of the current turned out to have no influence on the dimensionless velocity profiles.

  7. Determination of Optimal Velocity Ranges Based on the Shape Profiles of Two Passive Surface Water Flux Meters

    NASA Astrophysics Data System (ADS)

    Padowski, J. C.; Klammler, H.; Jawitz, J. W.; Hatfield, K.; Annable, M.

    2004-12-01

    A method is presented for direct measurement of cumulative surface water flux (discharge) and solute flux using a Passive Surface Water Flux Meter (PSFM). Both the water velocity and the shape, or bluntness, of the device are important for determining the flow profile around a submerged body. Theoretically, the PSFM should provide the most precise cumulative flux measurements when the shape of the device is as blunt as possible without creating a separation region or a downstream wake. This study examined how the shape of the PSFM affects the accuracy of the cumulative flux data and determined the optimal velocity ranges under which each shape profile could be used. In this experiment, blunt (cylindrical) and streamlined (Joukowsky profile) shapes were tested. Both of these devices were examined under a range of velocities in a laboratory flume. Results showed that the blunt shape provided more accurate water and solute flux measurements at lower velocities, whereas the streamlined shape provided more accurate measurements at higher velocities. These findings indicate that the shape profile of the PSFM may be adjusted to provide the most accurate cumulative water and solute flux measurements when deployed in known flow regimes.

  8. Shallow shear-wave velocity profiles and site response characteristics from microtremor array measurements in Metro Manila, the Philippines

    NASA Astrophysics Data System (ADS)

    Grutas, Rhommel; Yamanaka, Hiroaki

    2012-07-01

    This paper presents the outcome of reconnaissance surveys in metropolitan Manila (Metro Manilla), the Philippines, with the aim of mapping shallow shear-wave velocity structures. Metro Manila is a seismically active and densely populated region that is in need of detailed investigation of the subsurface structures, to assess local site effects in seismic hazard estimation. We conducted microtremor array observations and used the spatial autocorrelation method to estimate the shear-wave profiles at 32 sites in major geological settings in Metro Manila. We applied a hybrid genetic simulated annealing algorithm to invert phase velocity data from the spatial autocorrelation method to generate shear-wave velocity models near the global best-fit solution. The comparison between the inferred shear-wave velocity profiles and PS logging showed good agreement in terms of the fundamental mode of Rayleigh waves and site responses. Then, we utilised the inferred shear-wave velocity profiles to compute the site amplifications with reference to the motion in engineering bedrock. Subsequently, the site amplifications have been grouped, based on NEHRP site classes. The amplification factor has also been compared with the average shear-wave velocity of the upper 30m at each site, to produce a power-law regression equation that can be used as a starting basis for further site-effects evaluation in the metropolis.

  9. Reconstruction of the wind velocity profile from the intensity fluctuations of a reflected spherical wave in the turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Marakasov, D. A.

    2009-12-01

    The problem of reconstructing the wind velocity profile from the spatiotemporal statistics of turbulent reflected optical radiation intensity fluctuations is considered in the article. Expressions for the spatiotemporal correlation function and the spectrum of weak intensity fluctuations of the wave scattered on a diffusive screen are derived. An algorithm for reconstructing the wind velocity profile from the spatiotemporal spectra of the intensity of a reflected spherical wave in the turbulent atmosphere is suggested. The results of closed numerical experiments are presented that confirm the efficiency of the suggested algorithm.

  10. Cause and solution for false upstream boat velocities measured with a StreamPro acoustic doppler current profiler

    USGS Publications Warehouse

    Mueller, David S.; Rehmel, Mike S.; Wagner, Chad R.

    2007-01-01

    In 2003, Teledyne RD Instruments introduced the StreamPro acoustic Doppler current profiler which does not include an internal compass. During stationary moving-bed tests the StreamPro often tends to swim or kite from the end of the tether (the instrument rotates then moves laterally in the direction of the rotation). Because the StreamPro does not have an internal compass, it cannot account for the rotation. This rotation and lateral movement of the StreamPro on the end of the tether generates a false upstream velocity, which cannot be easily distinguished from a moving-bed bias velocity. A field test was completed to demonstrate that this rotation and lateral movement causes a false upstream boat velocity. The vector dot product of the boat velocity and the unit vector of the depth-averaged water velocity is shown to be an effective method to account for the effect of the rotation and lateral movement.

  11. MOND implications for spectral line profiles of shell galaxies: shell formation history and mass-velocity scaling relations

    NASA Astrophysics Data System (ADS)

    Bílek, M.; Jungwiert, B.; Ebrová, I.; Bartošková, K.

    2015-03-01

    Context. Many ellipticals are surrounded by round stellar shells probably stemming from minor mergers. A new method for constraining gravitational potential in elliptical galaxies has recently been suggested. It uses the spectral line profiles of these shells to measure the circular velocity at the edge of the shell and the expansion velocity of the shell itself. MOND is an alternative to the dark matter framework aiming to solve the missing mass problem. Aims: We study how the circular and expansion velocities behave in MOND for large shells. Methods: The asymptotic behavior for infinitely large shells is derived analytically. The applicability of the asymptotic results for finitely sized shells is studied numerically on a grid of galaxies modeled with Sérsic spheres. Results: Circular velocity settles asymptotically at a value determined by the baryonic mass of the galaxy forming the baryonic Tully-Fisher relation known for disk galaxies. Shell expansion velocity also becomes asymptotically constant. The expansion velocities of large shells form a multibranched analogy to the baryonic Tully-Fisher relation, together with the galactic baryonic masses. For many - but not all - shell galaxies, the asymptotic values of these two types of velocities are reached under the effective radius. If MOND is assumed to work in ellipticals, then the shell spectra allow many details of the history to be revealed about the formation of the shell system, including its age. The results pertaining to circular velocities apply to all elliptical galaxies, not only those with shells.

  12. Non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner

    SciTech Connect

    Catapan, R.C.; Costa, M.; Oliveira, A.A.M.

    2011-01-15

    Industrial processes where the heating of large surfaces is required lead to the possibility of using large surface porous radiant burners. This causes additional temperature uniformity problems, since it is increasingly difficult to evenly distribute the reactant mixture over a large burner surface while retaining its stability and keeping low pollutant emissions. In order to allow for larger surface area burners, a non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner using a single large injection hole is proposed and analyzed for a double-layered burner operating in open and closed hot (laboratory-scale furnace, with temperature-controlled, isothermal walls) environments. In both environments, local mean temperatures within the porous medium have been measured. For lower reactant flow rate and ambient temperature the flame shape is conical and anchored at the rim of the injection hole. As the volumetric flow rate or furnace temperature is raised, the flame undergoes a transition to a plane flame stabilized near the external burner surface. However, the stability range envelope remains the same in both regimes. (author)

  13. Nonlocal stochastic mixing-length theory and the velocity profile in the turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Dekker, H.; de Leeuw, G.; Maassen van den Brink, A.

    1995-02-01

    Turbulence mixing by finite size eddies will be treated by means of a novel formulation of nonlocal K-theory, involving sample paths and a stochastic closure hypothesis, which implies a well defined recipe for the calculation of sampling and transition rates. The connection with the general theory of stochastic processes will be established. The relation with other nonlocal turbulence models (e.g. transilience and spectral diffusivity theory) is also discussed. Using an analytical sampling rate model (satisfying exchange) the theory is applied to the boundary layer (using a scaling hypothesis), which maps boundary layer turbulence mixing of scalar densities onto a nondiffusive (Kubo-Anderson or kangaroo) type stochastic process. The resulting transpport equation for longitudinal momentum P x ≡ ϱ U is solved for a unified description of both the inertial and the viscous sublayer including the crossover. With a scaling exponent ε ≈ 0.58 (while local turbulence would amount to ε → ∞) the velocity profile U+ = ƒ(y +) is found to be in excellent agreement with the experimental data. Inter alia (i) the significance of ε as a turbulence Cantor set dimension, (ii) the value of the integration constant in the logarithmic region (i.e. if y+ → ∞), (iii) linear timescaling, and (iv) finite Reynolds number effects will be investigated. The (analytical) predictions of the theory for near-wall behaviour (i.e. if y+ → 0) of fluctuating quantities also perfectly agree with recent direct numerical simulations.

  14. Kelvin Modes with Nonlinear Critical Layers on a Vortex with a Continuous Velocity Profile

    NASA Astrophysics Data System (ADS)

    Maslowe, Sherwin

    2005-11-01

    The short wave cooperative instability mechanism is of interest both scientifically and because of its pertinence to the aircraft trailing vortex problem. In the first quantitative investigation of this mechanism [Tsai & Widnall (1976)], the discontinuous Rankine vortex was employed. Recently, Sipp & Jacquin [Phys. Fluids (2003)] have shown, however, that for a continuous velocity profile the modes required for the ``Widnall instabilities'' would be damped. The damping is a consequence of viscosity being used to deal with the singular critical point that occurs in the linear, inviscid theory. An alternative approach that is, in fact, more appropriate at high Reynolds numbers is to restore nonlinear terms in a thin critical layer centered on the singular point. With such a nonlinear critical layer, we show that neutral modes exist that would be damped in the linear viscous theory. These modes are non-axisymmetric and the theory is similar mathematically to that for stratified shear flows, where it has been shown that nonlinear modes, not permitted in linear theory, can occur at Richardson numbers larger than 1/4.

  15. Azimuthal velocity profiles in Rayleigh-stable Taylor-Couette flow and implied axial angular momentum transport

    NASA Astrophysics Data System (ADS)

    Nordsiek, Freja; Huisman, Sander G.; van der Veen, Roeland C. A.; Sun, Chao; Lohse, Detlef; Lathrop, Daniel P.

    2015-07-01

    We present azimuthal velocity profiles measured in a Taylor-Couette apparatus, which has been used as a model of stellar and planetary accretion disks. The apparatus has a cylinder radius ratio of $\\eta = 0.716$, an aspect-ratio of $\\Gamma = 11.74$, and the plates closing the cylinders in the axial direction are attached to the outer cylinder. We investigate angular momentum transport and Ekman pumping in the Rayleigh-stable regime. The regime is linearly stable and is characterized by radially increasing specific angular momentum. We present several Rayleigh-stable profiles for shear Reynolds numbers $Re_S \\sim O(10^5) \\,$, both for $\\Omega_i > \\Omega_o > 0$ (quasi-Keplerian regime) and $\\Omega_o > \\Omega_i > 0$ (sub-rotating regime) where $\\Omega_{i,o}$ is the inner/outer cylinder rotation rate. None of the velocity profiles matches the non-vortical laminar Taylor-Couette profile. The deviation from that profile increased as solid-body rotation is approached at fixed $Re_S$. Flow super-rotation, an angular velocity greater than that of both cylinders, is observed in the sub-rotating regime. The velocity profiles give lower bounds for the torques required to rotate the inner cylinder that were larger than the torques for the case of laminar Taylor-Couette flow. The quasi-Keplerian profiles are composed of a well mixed inner region, having approximately constant angular momentum, connected to an outer region in solid-body rotation with the outer cylinder and attached axial boundaries. These regions suggest that the angular momentum is transported axially to the axial boundaries. Therefore, Taylor-Couette flow with closing plates attached to the outer cylinder is an imperfect model for accretion disk flows, especially with regard to their stability.

  16. Velocity profiles and plug zones in a free surface viscoplastic flow : experimental study and comparison to shallow flow models

    NASA Astrophysics Data System (ADS)

    Freydier, Perrine; Chambon, Guillaume; Naaim, Mohamed

    2016-04-01

    Rheological studies concerning natural muddy debris flows have shown that these materials can be modelled as non-Newtonian viscoplastic fluids. These complex flows are generally represented using models based on a depth-integrated approach (Shallow Water) that take into account closure terms depending on the shape of the velocity profile. But to date, there is poor knowledge about the shape of velocity profiles and the position of the interface between sheared and unsheared regions (plug) in these flows, especially in the vicinity of the front. In this research, the internal dynamics of a free-surface viscoplastic flow down an inclined channel is investigated and compared to the predictions of a Shallow Water model based on the lubrication approximation. Experiments are conducted in an inclined channel whose bottom is constituted by an upward-moving conveyor belt with controlled velocity, which allows generating and observing gravity-driven stationary surges in the laboratory frame. Carbopol microgel has been used as a homogeneous and transparent viscoplastic fluid. High-resolution measurements of velocity field is performed through optical velocimetry techniques both in the uniform zone and within the front zone where flow thickness is variable and where recirculation takes place. Specific analyses have been developed to determine the position of the plug within the surge. Flow height is accessible through image processing and ultrasonic sensors. Sufficiently far from the front, experimental results are shown to be in good agreement with theoretical predictions regarding the velocity profiles and the flow height evolution. In the vicinity of the front, however, analysis of measured velocity profiles shows an evolution of the plug different from that predicted by lubrication approximation. Accordingly, the free surface shape also deviates from the predictions of the classical Shallow Water model. These results highlight the necessity to take into account higher

  17. THE EFFECT OF THE PRE-DETONATION STELLAR INTERNAL VELOCITY PROFILE ON THE NUCLEOSYNTHETIC YIELDS IN TYPE Ia SUPERNOVA

    SciTech Connect

    Kim, Yeunjin; Jordan, G. C. IV; Graziani, Carlo; Lamb, D. Q.; Truran, J. W.; Meyer, B. S.

    2013-07-01

    A common model of the explosion mechanism of Type Ia supernovae is based on a delayed detonation of a white dwarf. A variety of models differ primarily in the method by which the deflagration leads to a detonation. A common feature of the models, however, is that all of them involve the propagation of the detonation through a white dwarf that is either expanding or contracting, where the stellar internal velocity profile depends on both time and space. In this work, we investigate the effects of the pre-detonation stellar internal velocity profile and the post-detonation velocity of expansion on the production of {alpha}-particle nuclei, including {sup 56}Ni, which are the primary nuclei produced by the detonation wave. We perform one-dimensional hydrodynamic simulations of the explosion phase of the white dwarf for center and off-center detonations with five different stellar velocity profiles at the onset of the detonation. In order to follow the complex flows and to calculate the nucleosynthetic yields, approximately 10,000 tracer particles were added to every simulation. We observe two distinct post-detonation expansion phases: rarefaction and bulk expansion. Almost all the burning to {sup 56}Ni occurs only in the rarefaction phase, and its expansion timescale is influenced by pre-existing flow structure in the star, in particular by the pre-detonation stellar velocity profile. We find that the mass fractions of the {alpha}-particle nuclei, including {sup 56}Ni, are tight functions of the empirical physical parameter {rho}{sub up}/v{sub down}, where {rho}{sub up} is the mass density immediately upstream of the detonation wave front and v{sub down} is the velocity of the flow immediately downstream of the detonation wave front. We also find that v{sub down} depends on the pre-detonation flow velocity. We conclude that the properties of the pre-existing flow, in particular the internal stellar velocity profile, influence the final isotopic composition of burned

  18. Velocity Profiles of Galaxies with Claimed Black-Holes - Part Three - Observations and Models for M87

    NASA Astrophysics Data System (ADS)

    van der Marel, R. P.

    1994-09-01

    We report on high-S/N subarcsec resolution spectra of M87, obtained with the 4.2-m William Herschel Telescope in the spectral regions around the blue G-band and the IR Ca II triplet. From the spectra we determine the line strengths, the mean and dispersion of the best-fitting Gaussian velocity profiles (i.e. the line-of-sight velocity distributions) and the Gauss-Hermite moments h_3_,...h_6_ that measure deviations from a Gaussian. We find that the main results derived from the two spectral regions agree, in contradiction to recent measurements by Jarvis & Melnick. The observed line strengths have a central minimum in both spectral regions and are consistent with the central luminosity `spike' of M87 being completely non-thermal. The coefficients h_3_,...h_6_ are close to zero at all radii. The velocity dispersion rises from ~270 km s^-1^ at ~15 arcsec to ~305 km s^-1^ at ~5 arcsec, and then to ~400 km s^-1^ at 0.5 arcsec. We model the observed velocity dispersions by solving the Jeans equation for hydrostatic equilibrium. Radial anisotropy (β ~ 0.5) is required in the outer parts to fit the observed velocity dispersion gradient. Near the centre, the data can still be fitted equally well with radially anisotropic models without a central black hole as they can be with less anisotropic models with a central black hole of mass M_BH_ <~ 5 x 10^9^ M_sun_. However, the radially anisotropic Jeans models without a central black hole need not necessarily correspond to a positive and stable distribution function. We study the central velocity profile of isotropic dynamical models with a central black hole. The wings of the velocity profile are more extended than those of a Gaussian. This is due to the stars that orbit close to the hole at high velocities. The wings contribute significantly to the normalization and the dispersion of the velocity profile. A Gaussian fit to the velocity profile is insensitive to the wings, and thus underestimates both the line strength γ and

  19. Outstanding Phenotypic Differences in the Profile of Amyloid-β between Tg2576 and APPswe/PS1dE9 Transgenic Mouse Models of Alzheimer's Disease.

    PubMed

    Allué, José Antonio; Sarasa, Leticia; Izco, María; Pérez-Grijalba, Virginia; Fandos, Noelia; Pascual-Lucas, María; Ogueta, Samuel; Pesini, Pedro; Sarasa, Manuel

    2016-05-30

    APPswe/PS1dE9 and Tg2576 are very common transgenic mouse models of Alzheimer's disease (AD), used in many laboratories as tools to research the mechanistic process leading to the disease. In order to augment our knowledge about the amyloid-β (Aβ) isoforms present in both transgenic mouse models, we have developed two chromatographic methods, one acidic and the other basic, for the characterization of the Aβ species produced in the brains of the two transgenic mouse models. After immunoprecipitation and micro-liquid chromatography-electrospray ionization mass spectrometry/mass spectrometry, 10 species of Aβ, surprisingly all of human origin, were detected in the brain of Tg2576 mouse, whereas 39 species, of both murine and human origin, were detected in the brain of the APP/PS1 mouse. To the best of our knowledge, this is the first study showing the identification of such a high number of Aβ species in the brain of the APP/PS1 transgenic mouse, whereas, in contrast, a much lower number of Aβ species were identified in the Tg2576 mouse. Therefore, this study brings to light a relevant phenotypic difference between these two popular mice models of AD. PMID:27258422

  20. Predicting the liquefaction phenomena from shear velocity profiling: Empirical approach to 6.3 Mw, May 2006 Yogyakarta earthquake

    NASA Astrophysics Data System (ADS)

    Hartantyo, Eddy; Brotopuspito, Kirbani S.; Sismanto, Waluyo

    2015-04-01

    The liquefactions phenomena have been reported after a shocking 6.5Mw earthquake hit Yogyakarta province in the morning at 27 May 2006. Several researchers have reported the damage, casualties, and soil failure due to the quake, including the mapping and analyzing the liquefaction phenomena. Most of them based on SPT test. The study try to draw the liquefaction susceptibility by means the shear velocity profiling using modified Multichannel Analysis of Surface Waves (MASW). This paper is a preliminary report by using only several measured MASW points. The study built 8-channel seismic data logger with 4.5 Hz geophones for this purpose. Several different offsets used to record the high and low frequencies of surface waves. The phase-velocity diagrams were stacked in the frequency domain rather than in time domain, for a clearer and easier dispersion curve picking. All codes are implementing in Matlab. From these procedures, shear velocity profiling was collected beneath each geophone's spread. By mapping the minimum depth of shallow water table, calculating PGA with soil classification, using empirical formula for saturated soil weight from shear velocity profile, and calculating CRR and CSR at every depth, the liquefaction characteristic can be identify in every layer. From several acquired data, a liquefiable potential at some depth below water table was obtained.

  1. Predicting the liquefaction phenomena from shear velocity profiling: Empirical approach to 6.3 Mw, May 2006 Yogyakarta earthquake

    SciTech Connect

    Hartantyo, Eddy; Brotopuspito, Kirbani S.; Sismanto; Waluyo

    2015-04-24

    The liquefactions phenomena have been reported after a shocking 6.5Mw earthquake hit Yogyakarta province in the morning at 27 May 2006. Several researchers have reported the damage, casualties, and soil failure due to the quake, including the mapping and analyzing the liquefaction phenomena. Most of them based on SPT test. The study try to draw the liquefaction susceptibility by means the shear velocity profiling using modified Multichannel Analysis of Surface Waves (MASW). This paper is a preliminary report by using only several measured MASW points. The study built 8-channel seismic data logger with 4.5 Hz geophones for this purpose. Several different offsets used to record the high and low frequencies of surface waves. The phase-velocity diagrams were stacked in the frequency domain rather than in time domain, for a clearer and easier dispersion curve picking. All codes are implementing in Matlab. From these procedures, shear velocity profiling was collected beneath each geophone’s spread. By mapping the minimum depth of shallow water table, calculating PGA with soil classification, using empirical formula for saturated soil weight from shear velocity profile, and calculating CRR and CSR at every depth, the liquefaction characteristic can be identify in every layer. From several acquired data, a liquefiable potential at some depth below water table was obtained.

  2. A robust post-processing method to determine skin friction in turbulent boundary layers from the velocity profile

    NASA Astrophysics Data System (ADS)

    Rodríguez-López, Eduardo; Bruce, Paul J. K.; Buxton, Oliver R. H.

    2015-04-01

    The present paper describes a method to extrapolate the mean wall shear stress, , and the accurate relative position of a velocity probe with respect to the wall, , from an experimentally measured mean velocity profile in a turbulent boundary layer. Validation is made between experimental and direct numerical simulation data of turbulent boundary layer flows with independent measurement of the shear stress. The set of parameters which minimize the residual error with respect to the canonical description of the boundary layer profile is taken as the solution. Several methods are compared, testing different descriptions of the canonical mean velocity profile (with and without overshoot over the logarithmic law) and different definitions of the residual function of the optimization. The von Kármán constant is used as a parameter of the fitting process in order to avoid any hypothesis regarding its value that may be affected by different initial or boundary conditions of the flow. Results show that the best method provides an accuracy of for the estimation of the friction velocity and for the position of the wall. The robustness of the method is tested including unconverged near-wall measurements, pressure gradient, and reduced number of points; the importance of the location of the first point is also tested, and it is shown that the method presents a high robustness even in highly distorted flows, keeping the aforementioned accuracies if one acquires at least one data point in . The wake component and the thickness of the boundary layer are also simultaneously extrapolated from the mean velocity profile. This results in the first study, to the knowledge of the authors, where a five-parameter fitting is carried out without any assumption on the von Kármán constant and the limits of the logarithmic layer further from its existence.

  3. Near-surface fault detection by migrating back-scattered surface waves with and without velocity profiles

    NASA Astrophysics Data System (ADS)

    Yu, Han; Huang, Yunsong; Guo, Bowen

    2016-07-01

    We demonstrate that diffraction stack migration can be used to discover the distribution of near-surface faults. The methodology is based on the assumption that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. We first isolate the back-scattered surface waves by muting or FK filtering, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. We have also proposed a natural migration method that utilizes the intrinsic traveltime property of the direct and the back-scattered waves at faults. For the synthetic data sets and the land data collected in Aqaba, where surface wave velocity has unexpected perturbations, we migrate the back-scattered surface waves with both predicted velocity profiles and natural Green's function without velocity information. Because the latter approach avoids the need for an accurate velocity model in event summation, both the prestack and stacked migration images show competitive quality. Results with both synthetic data and field records validate the feasibility of this method. We believe applying this method to global or passive seismic data can open new opportunities in unveiling tectonic features.

  4. Wind velocity profile reconstruction from intensity fluctuations of a plane wave propagating in a turbulent atmosphere.

    PubMed

    Banakh, V A; Marakasov, D A

    2007-08-01

    Reconstruction of a wind profile based on the statistics of plane-wave intensity fluctuations in a turbulent atmosphere is considered. The algorithm for wind profile retrieval from the spatiotemporal spectrum of plane-wave weak intensity fluctuations is described, and the results of end-to-end computer experiments on wind profiling based on the developed algorithm are presented. It is shown that the reconstructing algorithm allows retrieval of a wind profile from turbulent plane-wave intensity fluctuations with acceptable accuracy.

  5. A simple method of calculating power-law velocity profile exponents from experimental data. [for boundary layer shape factor

    NASA Technical Reports Server (NTRS)

    Allen, J. M.

    1974-01-01

    Analytical expressions for the effects of compressibility and heat transfer on laminar and turbulent shape factors H have been developed. Solving the turbulent equation for the power law velocity profile exponent N has resulted in a simple technique by which the N values of experimental turbulent profiles can be calculated directly from the integral parameters. Thus the data plotting, curve fitting, and slope measuring, which is the normal technique of obtaining experimental N values, is eliminated. The N values obtained by this method should be within the accuracy with which they could be measured.

  6. Remote measurement utilizing NASA's scanning laser Doppler systems. Volume 2: Laser Doppler dust devil velocity profile measurement program

    NASA Technical Reports Server (NTRS)

    Howle, R. E.; Krause, M. C.; Craven, C. E.; Gorzynski, E. J.; Edwards, B. B.

    1976-01-01

    The first detailed velocity profile data on thermally induced dust vortices are presented. These dust devils will be analyzed and studied to determine their flow fields and origin in an effort to correlate this phenomena with the generation and characteristics of tornadoes. A continuing effort to increase mankind's knowledge of vortex and other meteorological phenomena will hopefully allow the prediction of tornado occurrence, their path, and perhaps eventually even lead to some technique for their destruction.

  7. Anterior-to-posterior wave of buccal expansion in suction feeding fishes is critical for optimizing fluid flow velocity profile.

    PubMed

    Bishop, Kristin L; Wainwright, Peter C; Holzman, Roi

    2008-11-01

    In fishes that employ suction feeding, coordinating the timing of peak flow velocity with mouth opening is likely to be an important feature of prey capture success because this will allow the highest forces to be exerted on prey items when the jaws are fully extended and the flow field is at its largest. Although it has long been known that kinematics of buccal expansion in feeding fishes are characterized by an anterior-to-posterior wave of expansion, this pattern has not been incorporated in most previous computational models of suction feeding. As a consequence, these models have failed to correctly predict the timing of peak flow velocity, which according to the currently available empirical data should occur around the time of peak gape. In this study, we use a simple fluid dynamic model to demonstrate that the inclusion of an anterior-to-posterior wave of buccal expansion can correctly reproduce the empirically determined flow velocity profile, although only under very constrained conditions, whereas models that do not allow this wave of expansion inevitably predict peak velocity earlier in the strike, when the gape is less than half of its maximum. The conditions that are required to produce a realistic velocity profile are as follows: (i) a relatively long time lag between mouth opening and expansion of the more posterior parts of the mouth, (ii) a short anterior portion of the mouth relative to more posterior sections, and (iii) a pattern of movement that begins slowly and then rapidly accelerates. Greater maximum velocities were generated in simulations without the anterior-to-posterior wave of expansion, suggesting a trade-off between maximizing fluid speed and coordination of peak fluid speed with peak gape.

  8. Novel measurement of blood velocity profile using translating-stage optical method and theoretical modeling based on non-Newtonian viscosity model

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Beom; Lim, Jaeho; Hong, Hyobong; Kresh, J. Yasha; Wootton, David M.

    2015-07-01

    Detailed knowledge of the blood velocity distribution over the cross-sectional area of a microvessel is important for several reasons: (1) Information about the flow field velocity gradients can suggest an adequate description of blood flow. (2) Transport of blood components is determined by the velocity profiles and the concentration of the cells over the cross-sectional area. (3) The velocity profile is required to investigate volume flow rate as well as wall shear rate and shear stress which are important parameters in describing the interaction between blood cells and the vessel wall. The present study shows the accurate measurement of non-Newtonian blood velocity profiles at different shear rates in a microchannel using a novel translating-stage optical method. Newtonian fluid velocity profile has been well known to be a parabola, but blood is a non-Newtonian fluid which has a plug flow region at the centerline due to yield shear stress and has different viscosities depending on shear rates. The experimental results were compared at the same flow conditions with the theoretical flow equations derived from Casson non-Newtonian viscosity model in a rectangular capillary tube. And accurate wall shear rate and shear stress were estimated for different flow rates based on these velocity profiles. Also the velocity profiles were modeled and compared with parabolic profiles, concluding that the wall shear rates were at least 1.46-3.94 times higher than parabolic distribution for the same volume flow rate.

  9. Inversion of surface wave data for shear wave velocity profiles: Case studies of thick buried low-velocity layers in Malta

    NASA Astrophysics Data System (ADS)

    Farrugia, Daniela; Paolucci, Enrico; D'Amico, Sebastiano; Galea, Pauline

    2015-04-01

    The islands composing the Maltese archipelago (Central Mediterranean) are characterised by a four layer sequence of limestones and clays, with the Lower Coralline Limestone being the oldest exposed layer. The hard Globigerina Limestone (GL) overlies this layer and is found outcropping in the eastern part of Malta and western part of Gozo. The rest of the islands are characterised by Upper Coralline Limestone (UCL) plateaus and hillcaps covering a soft Blue Clay (BC) layer which can be up to 75 m thick. Thus the BC layer introduces a velocity inversion in the stratigraphy, and makes the Vs30 parameter not always suitable for seismic microzonation purposes. Such a layer may still produce amplification effects, however would not contribute to the numerical mean of Vs in the upper 30m. Moreover, buildings are being increasingly constructed on this type of geological foundation. Obtaining the shear wave (Vs) profiles of the different layers around the islands is the first step needed for a detailed study of local seismic site response. A survey of Vs in each type of lithology and around the islands has never been undertaken. Array measurements of ambient noise using vertical geophones were carried out at six sites in Malta and one in Gozo, characterised by the buried low-velocity layer. The array was set up in an L-shaped configuration and the Extended Spatial Autocorrelation (ESAC) technique was used to extract Rayleigh wave dispersion curves. The effective dispersion curve obtained at all the sites exhibited a 'normal' dispersive trend (i.e. velocity decreases with increasing frequency) at low frequencies, followed by an inverse dispersive trend at high frequencies. Such a shape can be tentatively explained in terms of the presence of higher mode Rayleigh waves, which are generally present when a stiff layer overlies a softer layer. Additionally a series of three-component ambient noise measurements were taken at each of the sites and H/V curves obtained. The

  10. Inversion of surface-wave data for subsurface shear-wave velocity profiles characterised by a thick buried low-velocity layer

    NASA Astrophysics Data System (ADS)

    Farrugia, Daniela; Paolucci, Enrico; D'Amico, Sebastiano; Galea, Pauline

    2016-05-01

    The islands composing the Maltese archipelago (Central Mediterranean) are characterised by a four-layer sequence of limestones and clays. A common feature found in the western half of the archipelago is Upper Coralline Limestone (UCL) plateaus and hillcaps covering a soft Blue Clay (BC) layer which can be up to 75 m thick. The BC layer introduces a velocity inversion in the stratigraphy, implying that the VS30 (travel-time average shear-wave velocity (VS) in the upper 30 m) parameter is not always suitable for seismic microzonation purposes. Such a layer may produce amplification effects, however might not be included in the VS30 calculations. In this investigation, VS profiles at seven sites characterised by such a lithological sequence are obtained by a joint inversion of the single-station Horizontal-to-Vertical Spectral Ratios (H/V or HVSR) and effective dispersion curves from array measurements analysed using the Extended Spatial Auto-Correlation (ESAC) technique. The lithological sequence gives rise to a ubiquitous H/V peak between 1 and 2 Hz. All the effective dispersion curves obtained exhibit a `normal' dispersive trend at low frequencies, followed by an inverse dispersive trend at higher frequencies. This shape is tentatively explained in terms of the presence of higher mode Rayleigh waves, which are commonly present in such scenarios. Comparisons made with the results obtained at the only site in Malta where the BC is missing below the UCL suggest that the characteristics observed at the other seven sites are due to the presence of the soft layer. The final profiles reveal a variation in the VS of the clay layer with respect to the depth of burial and some regional variations in the UCL layer. This study presents a step towards a holistic seismic risk assessment that includes the implications on the site effects induced by the buried clay layer. Such assessments have not yet been done for Malta.

  11. Range and velocity independent classification of humans and animals using a profiling sensor

    NASA Astrophysics Data System (ADS)

    Chari, Srikant; Smith, Forrest; Halford, Carl; Jacobs, Eddie; Brooks, Jason

    2010-04-01

    This paper presents object profile classification results using range and speed independent features from an infrared profiling sensor. The passive infrared profiling sensor was simulated using a LWIR camera. Field data collected near the US-Mexico border to yield profiles of humans and animals is reported. Range and speed independent features based on height and width of the objects were extracted from profiles. The profile features were then used to train and test three classification algorithms to classify objects as humans or animals. The performance of Naïve Bayesian (NB), K-Nearest Neighbors (K-NN), and Support Vector Machines (SVM) are compared based on their classification accuracy. Results indicate that for our data set all three algorithms achieve classification rates of over 98%. The field data is also used to validate our prior data collections from more controlled environments.

  12. Comparisons of Crosswind Velocity Profile Estimates Used in Fast-Time Wake Vortex Prediction Models

    NASA Technical Reports Server (NTRS)

    Pruis, Mathew J.; Delisi, Donald P.; Ahmad, Nashat N.

    2011-01-01

    Five methods for estimating crosswind profiles used in fast-time wake vortex prediction models are compared in this study. Previous investigations have shown that temporal and spatial variations in the crosswind vertical profile have a large impact on the transport and time evolution of the trailing vortex pair. The most important crosswind parameters are the magnitude of the crosswind and the gradient in the crosswind shear. It is known that pulsed and continuous wave lidar measurements can provide good estimates of the wind profile in the vicinity of airports. In this study comparisons are made between estimates of the crosswind profiles from a priori information on the trajectory of the vortex pair as well as crosswind profiles derived from different sensors and a regional numerical weather prediction model.

  13. Effects of radial and circumferential inlet velocity profile distortions on performance of a short-length double-annular ram induction combustor

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.; Perkins, P. J.

    1972-01-01

    Inlet air velocity profile tests were conducted on a full-scale short-length 102-centimeter-diameter annual combustor designed for advanced gas turbine engine applications. The inlet profiles studied include radial distortions that were center peaked, and tip peaked, as well as a circumferential distortion which was center peaked for one-third of the circumference and flat for the other two-thirds. An increase in combustor pressure loss was the most significant effect of the radial air velocity distortions. With the circumferential distortion, exit temperature pattern factor doubled when compared to a flat velocity profile.

  14. Comparison of P- and S-wave velocity profiles obtained from surface seismic refraction/reflection and downhole data

    USGS Publications Warehouse

    Williams, R.A.; Stephenson, W.J.; Odum, J.K.

    2003-01-01

    High-resolution seismic-reflection/refraction data were acquired on the ground surface at six locations to compare with near-surface seismic-velocity downhole measurements. Measurement sites were in Seattle, WA, the San Francisco Bay Area, CA, and the San Fernando Valley, CA. We quantitatively compared the data in terms of the average shear-wave velocity to 30-m depth (Vs30), and by the ratio of the relative site amplification produced by the velocity profiles of each data type over a specified set of quarter-wavelength frequencies. In terms of Vs30, similar values were determined from the two methods. There is <15% difference at four of the six sites. The Vs30 values at the other two sites differ by 21% and 48%. The relative site amplification factors differ generally by less than 10% for both P- and S-wave velocities. We also found that S-wave reflections and first-arrival phase delays are essential for identifying velocity inversions. The results suggest that seismic reflection/refraction data are a fast, non-invasive, and less expensive alternative to downhole data for determining Vs30. In addition, we emphasize that some P- and S-wave reflection travel times can directly indicate the frequencies of potentially damaging earthquake site resonances. A strong correlation between the simple S-wave first-arrival travel time/apparent velocity on the ground surface at 100 m offset from the seismic source and the Vs30 value for that site is an additional unique feature of the reflection/refraction data that could greatly simplify Vs30 determinations. ?? 2003 Elsevier Science B.V. All rights reserved.

  15. Phytoplankton depth profiles and their transitions near the critical sinking velocity.

    PubMed

    Kolokolnikov, Theodore; Ou, Chunhua; Yuan, Yuan

    2009-07-01

    We consider a simple phytoplankton model introduced by Shigesada and Okubo which incorporates the sinking and self-shading effect of the phytoplankton. The amount of light the phytoplankton receives is assumed to be controlled by the density of the phytoplankton population above the given depth. We show the existence of non-homogeneous solutions for any water depth and study their profiles and stability. Depending on the sinking rate of the phytoplankton, light intensity and water depth, the plankton can concentrate either near the surface, at the bottom of the water column, or both, resulting in a "double-peak" profile. As the buoyancy passes a certain critical threshold, a sudden change in the phytoplankton profile occurs. We quantify this transition using asymptotic techniques. In all cases we show that the profile is locally stable. This generalizes the results of Shigesada and Okubo where infinite depth was considered.

  16. Estimating fracture parameters from p-wave velocity profiles about a geothermal well

    SciTech Connect

    Jenkinson, J.T.; Henyey, T.L.; Sammis, C.G.; Leary, P.C.; McRaney, J.K.

    1981-12-01

    The feasibility of locating fracture zones and estimating their crack parameters was examined using an areal well shoot method centered on Utah State Geothermal Well 9-1, Beaver County, Utah. High-resolution travel time measurements were made between a borehole sensor and an array of shot stations distributed radially and azimuthally about the well. Directional velocity behavior in the vicinity of the well was investigated by comparing velocity logs derived from the travel time data. Three fracture zones were identified form the velocity data, corroborating fracture indicators seen in other geophysical logs conducted in Well 9-1. Crack densities and average crack aspect ratios for these fracture zones were estimated using a self-consistent velocity theory (O'Connell and Budiansy 1974). Probable trends of these fracture zones were established from a combination of the data from the more distant shot stations and the results of a gravity survey. The results of this study indicate that the areal well shoot is a potentially powerful tool for the reconnaisance of fracture-controlled fluid and gas reservoirs. Improvements in methodology and hardware could transform it into an operationally viable survey method.

  17. Unimpeded air velocity profiles of air-assisted five-port sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capability that relies on tree structure information to control liquid and air flow rates is the preferential design in the development of variable-rate orchard and nursery sprayers. Unimpeded air jet velocities from an air assisted, five-port sprayer in an open field were measured at four height...

  18. Displaced logarithmic profile of the velocity distribution in the boundary layer of a turbulent flow over an unbounded flat surface

    NASA Astrophysics Data System (ADS)

    Talpos, Simona; Apostol, Marian

    2015-12-01

    It is shown that the Reynolds equations for a turbulent flow over an unbounded flat surface in the presence of a constant pressure-gradient lead to a displaced logarithmic profile of the velocity distribution; the displaced logarithmic profile is obtained by assuming a constant production rate of turbulence energy. The displacement height measured on the (vertical) axis perpendicular to the surface is either positive or negative. For a positive displacement height the boundary layer exhibits an inversion, while for a negative displacement height the boundary layer is a direct one. In an inversion boundary layer the logarithmic velocity profile is disrupted into two distinct branches separated by a logarithmic singularity. The viscosity transforms this logarithmic singularity into a sharp edge, governed by a generalized Reynolds number. The associated temperature distribution is calculated, and the results are discussed in relation to meteorological boundary-layer jets and stratified layers. The effects of gravitation and atmospheric thermal or fluid-mixture concentration gradients ("external forcings") are also considered; it is shown that such circumstances may lead to various modifications of the boundary layers. A brief presentation of a similar situation is described for a circular pipe.

  19. Cylindrical Couette flow of a rarefied gas: Effect of a boundary condition on the inverted velocity profile.

    PubMed

    Kosuge, Shingo

    2015-07-01

    The cylindrical Couette flow of a rarefied gas between a rotating inner cylinder and a stationary outer cylinder is investigated under the following two kinds of kinetic boundary conditions. One is the modified Maxwell-type boundary condition proposed by Dadzie and Méolans [J. Math. Phys. 45, 1804 (2004)] and the other is the Cercignani-Lampis condition, both of which have separate accommodation coefficients associated with the molecular velocity component normal to the boundary and with the tangential component. An asymptotic analysis of the Boltzmann equation for small Knudsen numbers and a numerical analysis of the Bhatnagar-Gross-Krook model equation for a wide range of the Knudsen number are performed to clarify the effect of each accommodation coefficient as well as of the boundary condition itself on the behavior of the gas, especially on the flow-velocity profile. As a result, the velocity-slip and temperature-jump conditions corresponding to the above kinetic boundary conditions are derived, which are necessary for the fluid-dynamic description of the problem for small Knudsen numbers. The parameter range for the onset of the velocity inversion phenomenon, which is related mainly to the decrease in the tangential momentum accommodation, is also obtained. PMID:26274275

  20. The velocity and energy profiles of elite cross-country skiers executing downhill turns with different radii.

    PubMed

    Sandbakk, Oyvind; Bucher Sandbakk, Silvana; Supej, Matej; Holmberg, Hans-Christer

    2014-01-01

    This study examined the influence of turn radius on velocity and energy profiles when skidding and step turning during more and less effective downhill turns while cross-country skiing. Thirteen elite female cross-country skiers performed single turns with a 9- or 12-m radius using the skidding technique and a 12- or 15-m radius with step turning. Mechanical parameters were monitored using a real-time kinematic Global Navigation Satellite System and video analysis. Step turning was more effective during all phases of a turn, leading to higher velocities than skidding (P < .05). With both techniques, a greater radius was associated with higher velocity (P < .05), but the quality of turning, as assessed on the basis of energy characteristics, was the same. More effective skidding turns involved more pronounced deceleration early in the turn and maintenance of higher velocity thereafter, while more effective step turning involved lower energy dissipation during the latter half of the turn. In conclusion, the single-turn analysis employed here reveals differences in the various techniques chosen by elite cross-country skiers when executing downhill turns of varying radii and can be used to assess the quality of such turns.

  1. Effects of velocity profile and inclination on dual-jet-induced pressures on a flat plate in a crosswind

    NASA Technical Reports Server (NTRS)

    Jakubowski, A. L.; Schetz, J. A.; Moore, C. L.; Joag, R.

    1985-01-01

    An experimental study was conducted to determine surface pressure distributions on a flat plate with dual subsonic, circular jets exhausting from the surface into a crossflow. The jets were arranged in both side-by-side and tandem configurations and were injected at 90 deg and 60 deg angles to the plate, with jet-to-crossflow velocity ratio of 2.2 and 4. The major objective of the study was to determine the effect of a nonuniform (vs uniform) jet velocity profile, simulating the exhaust of a turbo-fan engine. Nonuniform jets with a high-velocity outer annulus and a low-velocity core induced stronger negative pressure fields than uniform jets with the same mass flow rate. However, nondimensional lift losses (lift loss/jet thrust lift) due to such nonuniform jets were lower than lift losses due to uniform jets. Changing the injection angle from 90 deg to 60 deg resulted in moderate (for tandem jets) to significant (for side-by-side jets) increases in the induced negative pressures, even though the surface area influenced by the jets tended to reduce as the angle decreased. Jets arranged in the side-by-side configuration led to significant jet-induced lift losses exceeding, in some cases, lift losses reported for single jets.

  2. Linear relation between H I circular velocity and stellar velocity dispersion in early-type galaxies, and slope of the density profiles

    NASA Astrophysics Data System (ADS)

    Serra, Paolo; Oosterloo, Tom; Cappellari, Michele; den Heijer, Milan; Józsa, Gyula I. G.

    2016-08-01

    We report a tight linear relation between the H I circular velocity measured at 6 Re and the stellar velocity dispersion measured within 1 Re for a sample of 16 early-type galaxies with stellar mass between 1010 and 1011 M⊙. The key difference from previous studies is that we only use spatially resolved vcirc(H I) measurements obtained at large radius for a sizeable sample of objects. We can therefore link a kinematical tracer of the gravitational potential in the dark-matter dominated outer regions of galaxies with one in the inner regions, where baryons control the distribution of mass. We find that vcirc(H I)= 1.33 σe with an observed scatter of just 12 per cent. This indicates a strong coupling between luminous and dark matter from the inner- to the outer regions of early-type galaxies, analogous to the situation in spirals and dwarf irregulars. The vcirc(H I)-σe relation is shallower than those based on vcirc measurements obtained from stellar kinematics and modelling at smaller radius, implying that vcirc declines with radius - as in bulge-dominated spirals. Indeed, the value of vcirc(H I) is typically 25 per cent lower than the maximum vcirc derived at ˜0.2 Re from dynamical models. Under the assumption of power-law total density profiles ρ ∝ r-γ, our data imply an average logarithmic slope <γ> = 2.18 ± 0.03 across the sample, with a scatter of 0.11 around this value. The average slope and scatter agree with recent results obtained from stellar kinematics alone for a different sample of early-type galaxies.

  3. Aerodynamic and acoustic investigation of inverted velocity profile coannular exhaust nozzle models and development of aerodynamic and acoustic prediction procedures

    NASA Technical Reports Server (NTRS)

    Larson, R. S.; Nelson, D. P.; Stevens, B. S.

    1979-01-01

    Five co-annular nozzle models, covering a systematic variation of nozzle geometry, were tested statically over a range of exhaust conditions including inverted velocity profile (IVP) (fan to primary stream velocity ratio 1) and non IVP profiles. Fan nozzle pressure ratio (FNPR) was varied from 1.3 to 4.1 at primary nozzle pressure ratios (PNPR) of 1.53 and 2.0. Fan stream temperatures of 700 K (1260 deg R) and 1089 K(1960 deg R) were tested with primary stream temperatures of 700 K (1260 deg R), 811 K (1460 deg R), and 1089 K (1960 deg R). At fan and primary stream velocities of 610 and 427 m/sec (2000 and 1400 ft/sec), respectively, increasing fan radius ratio from 0.69 to 0.83 reduced peak perceived noise level (PNL) 3 dB, and an increase in primary radius ratio from 0 to 0.81 (fan radius ratio constant at 0.83) reduced peak PNL an additional 1.0 dB. There were no noise reductions at a fan stream velocity of 853 m/sec (2800 ft/sec). Increasing fan radius ratio from 0.69 to 0.83 reduced nozzle thrust coefficient 1.2 to 1.5% at a PNPR of 1.53, and 1.7 to 2.0% at a PNPR of 2.0. The developed acoustic prediction procedure collapsed the existing data with standard deviation varying from + or - 8 dB to + or - 7 dB. The aerodynamic performance prediction procedure collapsed thrust coefficient measurements to within + or - .004 at a FNPR of 4.0 and a PNPR of 2.0.

  4. Field monitoring of sprinting power-force-velocity profile before, during and after hamstring injury: two case reports.

    PubMed

    Mendiguchia, J; Edouard, P; Samozino, P; Brughelli, M; Cross, M; Ross, A; Gill, N; Morin, J B

    2016-01-01

    Very little is currently known about the effects of acute hamstring injury on over-ground sprinting mechanics. The aim of this research was to describe changes in power-force-velocity properties of sprinting in two injury case studies related to hamstring strain management: Case 1: during a repeated sprint task (10 sprints of 40 m) when an injury occurred (5th sprint) in a professional rugby player; and Case 2: prior to (8 days) and after (33 days) an acute hamstring injury in a professional soccer player. A sports radar system was used to measure instantaneous velocity-time data, from which individual mechanical profiles were derived using a recently validated method based on a macroscopic biomechanical model. Variables of interest included: maximum theoretical velocity (V0) and horizontal force (F(H0)), slope of the force-velocity (F-v) relationship, maximal power, and split times over 5 and 20 m. For Case 1, during the injury sprint (sprint 5), there was a clear change in the F-v profile with a 14% greater value of F(H0) (7.6-8.7 N/kg) and a 6% decrease in V0 (10.1 to 9.5 m/s). For Case 2, at return to sport, the F-v profile clearly changed with a 20.5% lower value of F(H0) (8.3 vs. 6.6 N/kg) and no change in V0. The results suggest that the capability to produce horizontal force at low speed (F(H0)) (i.e. first metres of the acceleration phase) is altered both before and after return to sport from a hamstring injury in these two elite athletes with little or no change of maximal velocity capabilities (V0), as evidenced in on-field conditions. Practitioners should consider regularly monitoring horizontal force production during sprint running both from a performance and injury prevention perspective. PMID:26648237

  5. Work performed on velocity profiles in a hot jet by simplified RELIEF

    NASA Technical Reports Server (NTRS)

    Miles, Richard B.; Lempert, Walter R.

    1991-01-01

    The Raman Excitation + Laser Induced Electronic Fluorescence (RELIEF) velocity measurement method is based on vibrationally tagging oxygen molecules and observing their displacement after a short period of time. Two papers that discuss the use and implementation of the RELIEF technique are presented in this final report. Additionally, the end of the report contains a listing of the personnel involved and the reference documents used in the production of this final report.

  6. Errors in the estimation of arterial wall shear rates that result from curve fitting of velocity profiles.

    PubMed

    Lou, Z; Yang, W J; Stein, P D

    1993-01-01

    An analysis was performed to determine the error that results from the estimation of the wall shear rates based on linear and quadratic curve-fittings of the measured velocity profiles. For steady, fully developed flow in a straight vessel, the error for the linear method is linearly related to the distance between the probe and the wall, dr1, and the error for the quadratic method is zero. With pulsatile flow, especially a physiological pulsatile flow in a large artery, the thickness of the velocity boundary layer, delta is small, and the error in the estimation of wall shear based on curve fitting is much higher than that with steady flow. In addition, there is a phase lag between the actual shear rate and the measured one. In oscillatory flow, the error increases with the distance ratio dr1/delta and, for a quadratic method, also with the distance ratio dr2/dr1, where dr2 is the distance of the second probe from the wall. The quadratic method has a distinct advantage in accuracy over the linear method when dr1/delta < 1, i.e. when the first velocity point is well within the boundary layer. The use of this analysis in arterial flow involves many simplifications, including Newtonian fluid, rigid walls, and the linear summation of the harmonic components, and can provide more qualitative than quantitative guidance. PMID:8478343

  7. Near-Surface Shear Wave Velocity Versus Depth Profiles, VS30, and NEHRP Classifications for 27 Sites in Puerto Rico

    USGS Publications Warehouse

    Odum, Jack K.; Williams, Robert A.; Stephenson, William J.; Worley, David M.; von Hillebrandt-Andrade, Christa; Asencio, Eugenio; Irizarry, Harold; Cameron, Antonio

    2007-01-01

    In 2004 and 2005 the Puerto Rico Seismic Network (PRSN), Puerto Rico Strong Motion Program (PRSMP) and the Geology Department at the University of Puerto Rico-Mayaguez (UPRM) collaborated with the U.S. Geological Survey to study near-surface shear-wave (Vs) and compressional-wave (Vp) velocities in and around major urban areas of Puerto Rico. Using noninvasive seismic refraction-reflection profiling techniques, we acquired velocities at 27 locations. Surveyed sites were predominantly selected on the premise that they were generally representative of near-surface materials associated with the primary geologic units located within the urbanized areas of Puerto Rico. Geologic units surveyed included Cretaceous intrusive and volcaniclastic bedrock, Tertiary sedimentary and volcanic units, and Quaternary unconsolidated eolian, fluvial, beach, and lagoon deposits. From the data we developed Vs and Vp depth versus velocity columns, calculated average Vs to 30-m depth (VS30), and derived NEHRP (National Earthquake Hazards Reduction Program) site classifications for all sites except one where results did not reach 30-m depth. The distribution of estimated NEHRP classes is as follows: three class 'E' (VS30 below 180 m/s), nine class 'D' (VS30 between 180 and 360 m/s), ten class 'C' (VS30 between 360 and 760 m/s), and four class 'B' (VS30 greater than 760 m/s). Results are being used to calibrate site response at seismograph stations and in the development of regional and local shakemap models for Puerto Rico.

  8. Spectral line profiles of nickel and argon in supernova 1987A - Expansion velocity and electron scattering effects

    NASA Technical Reports Server (NTRS)

    Witteborn, F. C.; Bregman, J. D.; Wooden, D. H.; Pinto, P. A.; Rank, D. M.

    1989-01-01

    Spectra of SN 1987A showing the Ni II 6.634-micron and Ar II 6.983-micron fine-structure lines were obtained from the Kuiper Airborne Observatory in April 1988. The signal-to-noise ratio of 100 near the peaks and resolving power of 200 are sufficient to show the average velocity of expansion from the core of about 1400 km/s and to indicate the range of velocities. An asymmetry in the profiles of both lines and a redshift of the line centroids of about 440 km/s above the 280-km/s recessional velocity of the LMC can be explained in terms of scattering of the photons by electrons in the expanding hydrogen envelope of the supernova. A mass of 0.0030 solar masses of Ni II can be deduced from the line strength of the Ni II line and a mass of 0.0009 solar masses of Ar II from the Ar II line strength.

  9. Velocity profiles in a baffled vessel with single or double pitched-blade turbines

    SciTech Connect

    Armenante, P.M.; Chou, C.C.

    1996-01-01

    A laser-Doppler velocimetry (LDV) apparatus and a computational fluid dynamic (CFD) software package (FLUENT) were used to experimentally determine and numerically predict the velocities in a baffled vessel agitated by one or two 45{degree} pitched-blade turbines. The flow characteristics in the impeller regions were measured by LDV and used as boundary conditions in the numerical computations. Turbulence effects were simulated using either the {kappa}-{epsilon} model or algebraic stress model (ASM). The CFD predictions were compared to the LDV measurements in terms of average velocities in all three directions as well as turbulent kinetic energies. Predictions based on ASM were typically in closer agreement with the experimental data than those based on the {kappa}-{epsilon} model. Flow patterns in both configurations were dominated by the axial and tangential components. The presence of the upper impeller altered the flow considerably, producing a strong vertical recirculation pattern between the impellers and significantly reducing the circulation flow below the lower impeller.

  10. A Preliminary Evaluation of Near-Transducer Velocities Collected with Low-Blank Acoustic Doppler Current Profiler

    USGS Publications Warehouse

    Gartner, J.W.; Ganju, N.K.

    2002-01-01

    Many streams and rivers for which the US Geological Survey must provide discharge measurements are too shallow to apply existing acoustic Doppler current profiler techniques for flow measurements of satisfactory quality. Because the same transducer is used for both transmitting and receiving acoustic signals in most Doppler current profilers, some small time delay is required for acoustic "ringing" to be damped out of transducers before meaningful measurements can be made. The result of that time delay is that velocity measurements cannot be made close to the transducer thus limiting the usefulness of these instruments in shallow regions. Manufacturers and users are constantly striving for improvements to acoustic instruments which would permit useful discharge measurements in shallow rivers and streams that are still often measured with techniques and instruments more than a century old. One promising area of advance appeared to be reduction of time delay (blank) required between transmitting and receiving signals during acoustic velocity measurements. Development of a low- or zero-blank transducer by RD Instruments3 held promise that velocity measurements could be made much closer to the transducer and thus in much shallower water. Initial experience indicates that this is not the case; limitation of measurement quality appears to be related to the physical presence of the transducer itself within the flow field. The limitation may be the result of changes to water flow pattern close to the transducer rather than transducer ringing characteristics as a function of blanking distance. Results of field experiments are discussed that support this conclusion and some minimum measurement distances from transducer are suggested based on water current speed and ADCP sample modes.

  11. Temperature, velocity and species profile measurements for reburning in a pulverized, entrained flow, coal combustor

    SciTech Connect

    Tree, D.R.

    1999-03-01

    Nitrogen oxide emissions from pulverized coal combustion have been and will continue to be a regulated pollutant for electric utility boilers burning pulverized coal. Full scale combustion models can help in the design of new boilers and boiler retrofits which meet emissions standards, but these models require validation before they can be used with confidence. The objective of this work was to obtain detailed combustion measurements of pulverized coal flames which implement two NO reduction strategies, namely reburning and advanced reburning, to provide data for model validation. The data were also compared to an existing comprehensive pulverized coal combustion model with a reduced mechanism for NO reduction under reburning and advanced reburning conditions. The data were obtained in a 0.2 MW, cylindrical, down-fired, variable swirl, pulverized coal reactor. The reactor had a diameter of 0.76 m and a length of 2.4 m with access ports along the axial length. A Wyodak, sub-bituminous coal was used in all of the measurements. The burner had a centrally located primary fuel and air tube surrounded by heated and variably swirled secondary air. Species of NO, NO{sub x}, CO, CO{sub 2} and O{sub 2} were measured continuously. Aqueous sampling was used to measure HCN and NH{sub 3} at specific reactor locations. Samples were drawn from the reactor using water quenched suction probes. Velocity measurements were obtained using two component laser doppler anemometry in back-scatter mode. Temperature measurements were obtained using a shielded suction pyrometer. A series of six or more radial measurements at six or more axial locations within the reactor provided a map of species, temperature, and velocity measurements. In total, seven reactor maps were obtained. Three maps were obtained at baseline conditions of 0, 0.5 and 1.5 swirl and 10% excess air. Two maps were obtained under reburning conditions of 0.78 stoichiometric ratio and 1.5 swirl and 0.9 stoichiometric ratio and

  12. Mean-velocity profile of smooth channel flow explained by a cospectral budget model with wall-blockage

    NASA Astrophysics Data System (ADS)

    McColl, Kaighin A.; Katul, Gabriel G.; Gentine, Pierre; Entekhabi, Dara

    2016-03-01

    A series of recent studies has shown that a model of the turbulent vertical velocity variance spectrum (Fvv) combined with a simplified cospectral budget can reproduce many macroscopic flow properties of turbulent wall-bounded flows, including various features of the mean-velocity profile (MVP), i.e., the "law of the wall". While the approach reasonably models the MVP's logarithmic layer, the buffer layer displays insufficient curvature compared to measurements. The assumptions are re-examined here using a direct numerical simulation (DNS) dataset at moderate Reynolds number that includes all the requisite spectral and co-spectral information. Starting with several hypotheses for the cause of the "missing" curvature in the buffer layer, it is shown that the curvature deficit is mainly due to mismatches between (i) the modelled and DNS-observed pressure-strain terms in the cospectral budget and (ii) the DNS-observed Fvv and the idealized form used in previous models. By replacing the current parameterization for the pressure-strain term with an expansive version that directly accounts for wall-blocking effects, the modelled and DNS reported pressure-strain profiles match each other in the buffer and logarithmic layers. Forcing the new model with DNS-reported Fvv rather than the idealized form previously used reproduces the missing buffer layer curvature to high fidelity thereby confirming the "spectral link" between Fvv and the MVP across the full profile. A broad implication of this work is that much of the macroscopic properties of the flow (such as the MVP) may be derived from the energy distribution in turbulent eddies (i.e., Fvv) representing the microstate of the flow, provided the link between them accounts for wall-blocking.

  13. The expansion velocities of laser-produced plasmas determined from extreme ultraviolet spectral line profiles

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Behring, W. E.; Cohen, L.

    1977-01-01

    The expansion of laser-produced plasma is determined from the shapes of spectral lines of highly ionized iron emitted in the extreme ultraviolet. The plasmas were produced by focusing the pulse from a Nd:glass laser onto solid planar targets, and spectra were recorded with a high-resolution grazing-incidence spectrograph. From the Doppler broadening of lines of Fe XX and Fe XXI, expansion velocities of about 830 km/s were determined. The relative time-averaged ion abundances of Fe XVIII, Fe XIX, Fe XX, and Fe XXI are estimated for three different spectra. The abundances do not differ by more than a factor of 4 for any of the spectra.

  14. Measurement of velocities with an acoustic velocity meter, one side-looking and two upward-looking acoustic Doppler current profilers in the Chicago Sanitary and Ship Canal, Romeoville, Illinois

    USGS Publications Warehouse

    Oberg, Kevin A.; Duncker, James J.

    1999-01-01

    In 1998, a prototype 300 kHz, side-looking Acoustic Doppler Current Profiler (ADCP) was deployed in the Chicago Sanitary and Ship Canal (CSSC) at Romeoville, Illinois. Additionally, two upward-looking ADCP's were deployed in the same acoustic path as the side-looking ADCP and in the reach defined by the upstream and downstream acoustic velocity meter (AVM) paths. All three ADCP's were synchronized to the AVM clock at the gaging station so that data were sampled simultaneously. The three ADCP's were deployed for six weeks measuring flow velocities from 0.0 to 2.5 ft/s. Velocities measured by each ADCP were compared to AVM path velocities and to velocities measured by the other ADCP's.

  15. Training-induced changes on blood lactate profile and critical velocity in young swimmers.

    PubMed

    Toubekis, Argyris G; Tsami, Aikaterini P; Smilios, Ilias G; Douda, Helen T; Tokmakidis, Savvas P

    2011-06-01

    This study examines the efficacy of critical swimming velocity (CV) for training prescription and monitoring the changes induced on aerobic endurance after a period of increased training volume in young swimmers. An experimental group (E: n = 7; age: 13.3 ± 1.3 years), which participated in competitive training was tested at the beginning (W0), the sixth week (W6), and 14th week (W14) to compare the changes of aerobic endurance indexes (CV; lactate threshold [LT]; velocity corresponding to blood lactate concentration of 4 mmol · L: V4). A control group (C: n = 7; age: 14.1 ± 1.6 years), which refrained from competitive training, was used to observe maturation effects and was tested for CV changes between W0 and W14. The average weekly training volume was increased after the sixth week in the E group and was unchanged for the C group. The CV was not different between or within groups at W0 and W14 (p > 0.05). The LT of the E group was no different compared to V4 and CV at W0 and W6 (p > 0.05) but was higher than CV at W14 (p < 0.05). The LT increased (6.5 ± 5.3%, p < 0.05), but V4 and CV were unchanged after W6 (3.6 ± 1.9%; 2.1 ± 1.2%, p > 0.05). LT, V4, and CV were unchanged despite the increased training volume from W6 to W14 (LT: 1.2 ± 4.3%, V4: 0.8 ± 1.5%, CV: 0.3 ± 0.8%; p > 0.05). These findings suggest that CV pace may be effectively used for the improvement of aerobic endurance in young swimmers. The aerobic endurance indexes used for the assessment of swimmers' progression showed different rates of change as a response to the same training stimulus and cannot be used interchangeably for training planning.

  16. Analysis of membrane-protein complexes of the marine sulfate reducer Desulfobacula toluolica Tol2 by 1D blue native-PAGE complexome profiling and 2D blue native-/SDS-PAGE.

    PubMed

    Wöhlbrand, Lars; Ruppersberg, Hanna S; Feenders, Christoph; Blasius, Bernd; Braun, Hans-Peter; Rabus, Ralf

    2016-03-01

    Sulfate-reducing bacteria (SRB) obtain energy from cytoplasmic reduction of sulfate to sulfide involving APS-reductase (AprAB) and dissimilatory sulfite reductase (DsrAB). These enzymes are predicted to obtain electrons from membrane redox complexes, i.e. the quinone-interacting membrane-bound oxidoreductase (QmoABC) and DsrMKJOP complexes. In addition to these conserved complexes, the genomes of SRB encode a large number of other (predicted) membrane redox complexes, the function and actual formation of which is unknown. This study reports the establishment of 1D Blue Native-PAGE complexome profiling and 2D BN-/SDS-PAGE for analysis of the membrane protein complexome of the marine sulfate reducer Desulfobacula toluolica Tol2. Analysis of normalized score profiles of >800 proteins in combination with hierarchical clustering and identification of 2D BN-/SDS-PAGE separated spots demonstrated separation of membrane complexes in their native form, e.g. ATP synthase. In addition to the QmoABC and DsrMKJOP complexes, other complexes were detected that constitute the basic membrane complexome of D. toluolica Tol2, e.g. transport proteins (e.g. sodium/sulfate symporters) or redox complexes involved in Na(+) -based bioenergetics (RnfABCDEG). Notably, size estimation indicates dimer and quadruple formation of the DsrMKJOP complex in vivo. Furthermore, cluster analysis suggests interaction of this complex with a rhodanese-like protein (Tol2_C05230) possibly representing a periplasmic electron transfer partner for DsrMKJOP. PMID:26792001

  17. Synoptic Gulf Stream velocity profiles through simultaneous inversion of hydrographic and acoustic Doppler data

    NASA Technical Reports Server (NTRS)

    Joyce, T. M.; Wunsch, C.; Pierce, S. D.

    1986-01-01

    Data from a shipborne acoustic profiling device have been combined with conductivity, temperature, depth/O2 sections across the Gulf Stream to form estimates of the absolute flow fields. The procedure for the combination was a form of inverse method. The results suggest that at the time of the observations (June 1982) the net Gulf Stream transport off Hatteras was 107 + or - 11 Sv and that across a section near 72.5 W it had increased to 125 + or - 6 Sv. The transport of the deep western boundary current was 9 + or - 3 Sv. For comparison purposes an inversion was done using the hydrographic/O2 data alone as in previously published results and obtained qualitative agreement with the combined inversion. Inversion of the acoustic measurements alone, when corrected for instrument biases, leaves unacceptably large mass transport residuals in the deep water.

  18. TEMPERATURE, VELOCITY AND SPECIES PROFILE MEASUREMENTS FOR REBURNING IN A PULVERIZED, ENTRAINED FLOW, COAL COMBUSTOR

    SciTech Connect

    1998-10-01

    An experimental program has been completed to make detailed measurements of a pulverized coal flame with reburning and advanced reburning. Maps of species (CO, CO{sub 2}, O{sub 2} , NO, HCN, and NH{sub 3}), temperature and velocity have been obtained which consist of approximately 60 measurements across a cross sectional plane of the reactor. A total of six of these maps have been obtained. Three operating conditions for the baseline flame have been mapped, two operating conditions with reburning, and one operating condition of advanced reburning. In addition to the mapping data, effluent measurements of gaseous products were obtained for various operating conditions. This report focuses on the advanced reburning data. Advanced reburning was achieved in the reactor by injecting natural gas downstream of the primary combustion zone to form a reburning zone followed by a second injection of ammonia downstream of reburning to form an advanced reburning zone. Finally, downstream of the ammonia injection, air was injected to form a burnout or tertiary air zone. The amount of natural gas injected was characterized by the reburning zone stoichiometric ratio. The amount of ammonia injected was characterized by the ammonia to nitrogen stoichiometric ratio or NSR and by the amount of carrier gas used to transport and mix the ammonia. A matrix of operating conditions where injector position, reburning zone stoichiometric ratio, NSR, and carrier gas flow rate were varied and NO reduction was measured was completed in addition to a map of data at one operating condition. The data showed advanced reburning was more effective than either reburning or NH{sub 3} injection alone. At one advanced reburning condition over 95% NO reduction was obtained. Ammonia injection was most beneficial when following a reburning zone which was slightly lean, S.R. = 1.05, but was not very effective when following a slightly rich reburning zone, S.R. of 0.95. In the cases where advanced reburning

  19. Mapping refuse profile in Singapore old dumping ground through electrical resistivity, S-wave velocity and geotechnical monitoring.

    PubMed

    Yin, Ke; Tong, Huan Huan; Noh, Omar; Wang, Jing-Yuan; Giannis, Apostolos

    2015-03-01

    The purpose of this study was to track the refuse profile in Lorong Halus Dumping Ground, the largest landfill in Singapore, by electrical resistivity and surface wave velocity after 25 years of closure. Data were analyzed using an orthogonal set of plots by spreading 24 lines in two perpendicular geophone-orientation directions. Both geophysical techniques determined that refuse boundary depth was 13 ± 2 m. The refuse boundary revealed a certain degree of variance, mainly ascribed to the different principle of measurements, as well as the high heterogeneity of the subsurface. Discrepancy was higher in spots with greater heterogeneity. 3D analysis was further conducted detecting refuse pockets, leachate mounding and gas channels. Geotechnical monitoring (borehole) confirmed geophysical outcomes tracing different layers such as soil capping, decomposed refuse materials and inorganic wastes. Combining the geophysical methods with borehole monitoring, a comprehensive layout of the dumping site was presented showing the hot spots of interests. PMID:25427774

  20. Effect of Diffuser Design, Diffuser-exit Velocity Profile and Fuel Distribution on Altitude Performance of Several Afterburner Configurations

    NASA Technical Reports Server (NTRS)

    Conrad, E William; Schultz, Frederick W; Usow, Karl H

    1953-01-01

    An investigation was conducted in the NACA Lewis altitude wind tunnel to improve the altitude performance and operational characteristics of an afterburner primarily by modifying the diffuser-exit velocity profile by changes in diffuser design and by changing the fuel distribution and the flame holder. Twenty configurations, consisting of combinations of six diffuser geometries, six flame-holder types, and twelve fuel systems, were investigated. Data were obtained over a range of afterburner fuel-air ratios at diffuser-inlet total pressures from 2750 to 620 pounds per square foot. Changes in fuel distribution affected the fuel-air ratio at which peak combustion efficiency occurred as well as the efficiency level. Screeching combustion, which was most prevalent at low altitudes and medium-to-high fuel-air ratios, imposed a restriction on the operable range of a number of configurations.

  1. Studies of the acoustic transmission characteristics of coaxial nozzles with inverted velocity profiles: Comprehensive data report. [nozzle transfer functions

    NASA Technical Reports Server (NTRS)

    Dean, P. D.; Salikuddin, M.; Ahuja, K. K.; Plumblee, H. E.; Mungur, P.

    1979-01-01

    The efficiency of internal noise radiation through a coannular exhaust nozzle with an inverted velocity profile was studied. A preliminary investigation was first undertaken (1) to define the test parameters which influence the internal noise radiation; (2) to develop a test methodology which could realistically be used to examine the effects of the test parameters; and (3) to validate this methodology. The result was the choice of an acoustic impulse as the internal noise source in the jet nozzles. Noise transmission characteristics of a coannular nozzle system were then investigated. In particular, the effects of fan convergence angle, core extension length to annulus height ratio and flow Mach numbers and temperatures were studied. Relevant spectral data only is presented in the form of normalized nozzle transfer function versus nondimensional frequency.

  2. Mapping refuse profile in Singapore old dumping ground through electrical resistivity, S-wave velocity and geotechnical monitoring.

    PubMed

    Yin, Ke; Tong, Huan Huan; Noh, Omar; Wang, Jing-Yuan; Giannis, Apostolos

    2015-03-01

    The purpose of this study was to track the refuse profile in Lorong Halus Dumping Ground, the largest landfill in Singapore, by electrical resistivity and surface wave velocity after 25 years of closure. Data were analyzed using an orthogonal set of plots by spreading 24 lines in two perpendicular geophone-orientation directions. Both geophysical techniques determined that refuse boundary depth was 13 ± 2 m. The refuse boundary revealed a certain degree of variance, mainly ascribed to the different principle of measurements, as well as the high heterogeneity of the subsurface. Discrepancy was higher in spots with greater heterogeneity. 3D analysis was further conducted detecting refuse pockets, leachate mounding and gas channels. Geotechnical monitoring (borehole) confirmed geophysical outcomes tracing different layers such as soil capping, decomposed refuse materials and inorganic wastes. Combining the geophysical methods with borehole monitoring, a comprehensive layout of the dumping site was presented showing the hot spots of interests.

  3. Testing modified Newtonian dynamics through statistics of velocity dispersion profiles in the inner regions of elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Chae, Kyu-Hyun; Gong, In-Taek

    2015-08-01

    Modified Newtonian dynamics (MOND) proposed by Milgrom provides a paradigm alternative to dark matter (DM) that has been successful in fitting and predicting the rich phenomenology of rotating disc galaxies. There have also been attempts to test MOND in dispersion-supported spheroidal early-type galaxies, but it remains unclear whether MOND can fit the various empirical properties of early-type galaxies for the whole ranges of mass and radius. As a way of rigorously testing MOND in elliptical galaxies we calculate the MOND-predicted velocity dispersion profiles (VDPs) in the inner regions of ˜2000 nearly round Sloan Digital Sky Survey elliptical galaxies under a variety of assumptions on velocity dispersion (VD) anisotropy, and then compare the predicted distribution of VDP slopes with the observed distribution in 11 ATLAS3D galaxies selected with essentially the same criteria. We find that the MOND model parametrized with an interpolating function that works well for rotating galaxies can also reproduce the observed distribution of VDP slopes based only on the observed stellar mass distribution without DM or any other galaxy-to-galaxy varying factor. This is remarkable in view that Newtonian dynamics with DM requires a specific amount and/or profile of DM for each galaxy in order to reproduce the observed distribution of VDP slopes. When we analyse non-round galaxy samples using the MOND-based spherical Jeans equation, we do not find any systematic difference in the mean property of the VDP slope distribution compared with the nearly round sample. However, in line with previous studies of MOND through individual analyses of elliptical galaxies, varying MOND interpolating function or VD anisotropy can lead to systematic change in the VDP slope distribution, indicating that a statistical analysis of VDPs can be used to constrain specific MOND models with an accurate measurement of VDP slopes or a prior constraint on VD anisotropy.

  4. Assessing the force-velocity characteristics of the leg extensors in well-trained athletes: the incremental load power profile.

    PubMed

    Sheppard, Jeremy M; Cormack, Stuart; Taylor, Kristie-Lee; McGuigan, Michael R; Newton, Robert U

    2008-07-01

    The purpose of this research project was to evaluate the methodology of an iso-inertial force-velocity assessment utilizing a range of loads and a group of high-performance athletes. A total of 26 subjects (19.8 +/- 2.6 years, 196.3 +/- 9.6 cm, 88.6 +/- 8.9 kg) participated in this study. Interday reliability of various force-time measures obtained during the performance of countermovement jumps with a range of loads was examined, followed by a validity assessment of the various measures' ability to discriminate among performance levels, while the ability of the test protocol to detect training-induced changes was assessed by comparing results before and after an intensive 12-week training period. Force and velocity variables were observed to be reliable (intraclass correlation coefficient 0.74-0.99). Large effect size statistic (ES > 0.50) differences among player groups were observed for peak power (1.36-2.25), relative peak power (1.57-2.42), and peak force (0.74-0.95). Significant (p < 0.05) and large (ES > 0.50) improvements were observed in the kinetic values after the intensive training period. The results of this study indicate that the incremental load power profile is an acceptably reliable, valid, and sensitive method of assessing force and power capabilities of the leg extensors in high-performance and elite volleyball players.

  5. Protein Expression for Novel Prognostic Markers (Cyclins D1, D2, D3, B1, B2, ITGβ7, FGFR3, PAX5) Correlate With Previously Reported Gene Expression Profile Patterns in Plasma Cell Myeloma.

    PubMed

    Mansoor, Adnan; Akhter, Ariz; Pournazari, Payam; Mahe, Etienne; Shariff, Sami; Farooq, Fahad; Elyamany, Ghaleb; Shahbani-Rad, Meer-Taher; Rashid-Kolvear, Fariborz

    2015-01-01

    Among plasma cell myeloma (PCM) patients, gene expression profiling (GEP)-based molecular classification has proven to be an independent predictor of survival, after autologous stem cell transplantation. However, GEP has limited routine clinical applicability given its complex methodology, high cost, and limited availability in clinical laboratories. In this study, we have evaluated biomarkers identified from GEP discoveries, utilizing immunohistochemistry (IHC) platform in a cohort of PCM patients. IHC staining for cyclins B1, B2, D1, D2, D3, FGFR3, PAX5, and integrin β7 (ITGβ7) was performed on the bone marrow biopsies of 93 newly diagnosed PCM patients. Expression of FGFR3 was noted in 10 (11%) samples correlating completely with t(4;14)(p16;q32) results (P<0.001); however, the association between FGFR3 and cyclin D2 expression was not significant (P=0.14). ITGβ7 expression was present in 9/93 (9%) patients and all these samples also demonstrated upregulated expression of cyclin D2 (P=0.014). Expression of cyclins D1, D2, and D3 was variable in this cohort. Positive protein expression of cyclin D1 was noted in 30/93 (32%), D2 in 17/93 (18%), and D3 in 5/93 (5%) samples. Coexpression of cyclins D1 and D2 was observed in 13/93 (14%) samples, whereas 28 (30%) samples were negative for all the 3 cyclin D proteins. Cyclin B1 was not expressed in any sample, despite adequate staining in positive controls. Cyclin B2 was expressed in 33/93 (35%) and PAX5 protein was noted in 7/93 (8%) samples. In summary, we have demonstrated that mRNA-based prognostic markers can be detected by routine IHC in decalcified bone marrow samples. This approach may provide a useful tool for the wider adoption of prognostic makers for risk stratification of PCM patients. We anticipate that such an approach might allow patients with high-risk immunoprofiles to be considered for other potential novel therapeutic agents, potentially sparing some patients the toxicity of stem cell transplant.

  6. The anisotropy1 D604N Mutation in the Arabidopsis Cellulose Synthase1 Catalytic Domain Reduces Cell Wall Crystallinity and the Velocity of Cellulose Synthase Complexes1[W][OA

    PubMed Central

    Fujita, Miki; Himmelspach, Regina; Ward, Juliet; Whittington, Angela; Hasenbein, Nortrud; Liu, Christine; Truong, Thy T.; Galway, Moira E.; Mansfield, Shawn D.; Hocart, Charles H.; Wasteneys, Geoffrey O.

    2013-01-01

    Multiple cellulose synthase (CesA) subunits assemble into plasma membrane complexes responsible for cellulose production. In the Arabidopsis (Arabidopsis thaliana) model system, we identified a novel D604N missense mutation, designated anisotropy1 (any1), in the essential primary cell wall CesA1. Most previously identified CesA1 mutants show severe constitutive or conditional phenotypes such as embryo lethality or arrest of cellulose production but any1 plants are viable and produce seeds, thus permitting the study of CesA1 function. The dwarf mutants have reduced anisotropic growth of roots, aerial organs, and trichomes. Interestingly, cellulose microfibrils were disordered only in the epidermal cells of the any1 inflorescence stem, whereas they were transverse to the growth axis in other tissues of the stem and in all elongated cell types of roots and dark-grown hypocotyls. Overall cellulose content was not altered but both cell wall crystallinity and the velocity of cellulose synthase complexes were reduced in any1. We crossed any1 with the temperature-sensitive radial swelling1-1 (rsw1-1) CesA1 mutant and observed partial complementation of the any1 phenotype in the transheterozygotes at rsw1-1’s permissive temperature (21°C) and full complementation by any1 of the conditional rsw1-1 root swelling phenotype at the restrictive temperature (29°C). In rsw1-1 homozygotes at restrictive temperature, a striking dissociation of cellulose synthase complexes from the plasma membrane was accompanied by greatly diminished motility of intracellular cellulose synthase-containing compartments. Neither phenomenon was observed in the any1 rsw1-1 transheterozygotes, suggesting that the proteins encoded by the any1 allele replace those encoded by rsw1-1 at restrictive temperature. PMID:23532584

  7. 3D crustal seismic velocity model for the Gulf of Cadiz and adjacent areas (SW Iberia margin) based on seismic reflection and refraction profiles

    NASA Astrophysics Data System (ADS)

    Lozano, Lucía; Cantavella, Juan Vicente; Barco, Jaime; Carranza, Marta; Burforn, Elisa

    2016-04-01

    The Atlantic margin of the SW Iberian Peninsula and northern Morocco has been subject of study during the last 30 years. Many seismic reflection and refraction profiles have been carried out offshore, providing detailed information about the crustal structure of the main seafloor tectonic domains in the region, from the South Portuguese Zone and the Gulf of Cadiz to the Abyssal Plains and the Josephine Seamount. The interest to obtain a detailed and realistic velocity model for this area, integrating the available data from these studies, is clear, mainly to improve real-time earthquake hypocentral location and for tsunami and earthquake early warning. Since currently real-time seismic location tools allow the implementation of 3D velocity models, we aim to generate a full 3D crustal model. For this purpose we have reviewed more than 50 profiles obtained in different seismic surveys, from 1980 to 2008. Data from the most relevant and reliable 2D seismic velocity published profiles were retrieved. We first generated a Moho depth map of the studied area (latitude 32°N - 41°N and longitude 15°W - 5°W) by extracting Moho depths along each digitized profile with a 10 km spacing, and then interpolating this dataset using ordinary kriging method and generating the contour isodepth map. Then, a 3D crustal velocity model has been obtained. Selected vertical sections at different distances along each profile were considered to retrieve P-wave velocity values at each interface in order to reproduce the geometry and the velocity gradient within each layer. A double linear interpolation, both in distance and depth, with sampling rates of 10 km and 1 km respectively, was carried out to generate a (latitude, longitude, depth, velocity) matrix. This database of all the profiles was interpolated to obtain the P-wave velocity distribution map every kilometer of depth. The new 3D velocity model has been integrated in NonLinLoc location program to relocate several representative

  8. Profile Measurement of Ion Temperature and Toroidal Rotation Velocity with Charge Exchange Recombination Spectroscopy Diagnostics in the HL-2A Tokamak

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Yao, Lieming; Zhu, Jianhua; Han, Xiaoyu; Li, Wenzhu

    2012-11-01

    This paper deals with the profile measurement of impurity ion temperature and toroidal rotation velocity that can be achieved by using the charge exchange recombination spectrum (CXRS) diagnostics tool built on the HL-2A tokamak. By using CXRS, an accurate impurity ion temperature and toroidal plasma rotation velocity profile can be achieved under the condition of neutral beam injection (NBI) heating. Considering the edge effect of the line of CVI 529.06 nm (n = 8~7), which contains three lines (active exciting spectral line (ACX), passivity exciting spectral line (PCX) and electron exciting spectral line (ICE)), and using three Gaussian fitted curves, we obtain the following experimental results: the core ion temperature of HL-2A device is nearly thousands of eV, and the plasma rotation velocity reaches about 104 m · s-1. At the end of paper, some explanations are presented for the relationship between the curves and the inner physical mechanism.

  9. Comparison of azimuthal ion velocity profiles using Mach probes, time delay estimation, and laser induced fluorescence in a linear plasma device.

    PubMed

    Thakur, S Chakraborty; McCarren, D; Lee, T; Fedorczak, N; Manz, P; Scime, E E; Tynan, G R; Xu, M; Yu, J

    2012-10-01

    We compare measurements of radially sheared azimuthal plasma flow based on time delay estimation (TDE) between two spatially separated Langmuir probes, Mach probes and laser induced fluorescence (LIF). TDE measurements cannot distinguish between ion fluid velocities and phase velocities. TDE and Mach probes are perturbative, so we compare the results against LIF, a non-perturbative, spatially resolved diagnostic technique that provides direct measurements of the ion velocity distribution functions. The bulk ion flow is determined from the Doppler shift of the Argon absorption line at 668.6139 nm. We compare results from all the three diagnostics, at various magnetic fields, which acts as a control knob for development of drift wave turbulence. We find that while Mach probes and LIF give similar profiles, TDE measurements typically overestimate the velocities and are also sensitive to the drift wave modes being investigated.

  10. The velocity dispersion profile of NGC 6388 from resolved-star spectroscopy: No evidence of a central cusp and new constraints on the black hole mass

    SciTech Connect

    Lanzoni, B.; Mucciarelli, A.; Ferraro, F. R.; Miocchi, P.; Dalessandro, E.; Pallanca, C.; Massari, D.; Valenti, E.

    2013-06-01

    By combining high spatial resolution and wide-field spectroscopy performed, respectively, with SINFONI and FLAMES at the ESO/VLT we measured the radial velocities of more than 600 stars in the direction of NGC 6388, a Galactic globular cluster which is suspected to host an intermediate-mass black hole. Approximately 55% of the observed targets turned out to be cluster members. The cluster velocity dispersion has been derived from the radial velocity of individual stars: 52 measurements in the innermost 2'', and 276 stars located between 18'' and 600''. The velocity dispersion profile shows a central value of ∼13 km s{sup –1}, a flat behavior out to ∼60'' and a decreasing trend outward. The comparison with spherical and isotropic models shows that the observed density and velocity dispersion profiles are inconsistent with the presence of a central black hole more massive than ∼2000 M {sub ☉}. These findings are at odds with recent results obtained from integrated light spectra, showing a velocity dispersion profile with a steep central cusp of 23-25 km s{sup –1} at r < 2'' and suggesting the presence of a black hole with a mass of ∼1.7 × 10{sup 4} M {sub ☉}. We also found some evidence of systemic rotation with amplitude A {sub rot} ∼ 8 km s{sup –1} in the innermost 2'' (0.13 pc), decreasing to A {sub rot} = 3.2 km s{sup –1} at 18'' < r < 160''.

  11. Characterisation of the 5-HT receptor binding profile of eletriptan and kinetics of [3H]eletriptan binding at human 5-HT1B and 5-HT1D receptors.

    PubMed

    Napier, C; Stewart, M; Melrose, H; Hopkins, B; McHarg, A; Wallis, R

    1999-03-01

    The affinity of eletriptan ((R)-3-(1-methyl-2-pyrrolidinylmethyl)-5-[2-(phenylsulphonyl )ethyl]-1H-indole) for a range of 5-HT receptors was compared to values obtained for other 5-HT1B/1D receptor agonists known to be effective in the treatment of migraine. Eletriptan, like sumatriptan, zolmitriptan, naratriptan and rizatriptan had highest affinity for the human 5-HT1B, 5-HT1D and putative 5-ht1f receptor. Kinetic studies comparing the binding of [3H]eletriptan and [3H]sumatriptan to the human recombinant 5-HT1B and 5-HT1D receptors expressed in HeLa cells revealed that both radioligands bound with high specificity (>90%) and reached equilibrium within 10-15 min. However, [3H]eletriptan had over 6-fold higher affinity than [3H]sumatriptan at the 5-HT1D receptor (K(D)): 0.92 and 6.58 nM, respectively) and over 3-fold higher affinity than [3H]sumatriptan at the 5-HT1B receptor (K(D): 3.14 and 11.07 nM, respectively). Association and dissociation rates for both radioligands could only be accurately determined at the 5-HT1D receptor and then only at 4 degrees C. At this temperature, [3H]eletriptan had a significantly (P<0.05) faster association rate (K(on) 0.249 min(-1) nM(-1)) than [3H]sumatriptan (K(on) 0.024 min(-1) nM(-1)) and a significantly (P<0.05) slower off-rate (K(off) 0.027 min(-1) compared to 0.037 min(-1) for [3H]sumatriptan). These data indicate that eletriptan is a potent ligand at the human 5-HT1B, 5-HT1D, and 5-ht1f receptors and are consistent with its potent vasoconstrictor activity and use as a drug for the acute treatment of migraine headache. PMID:10193663

  12. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas

    SciTech Connect

    Hill, K W; Broennimann, Ch; Eikenberry, E F; Ince-Cushman, A; Lee, S G; Rice, J E; Scott, S

    2008-02-27

    A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of Ti and vφ on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and nuclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER.

  13. An Analytic Study on the Effect of Alginate on the Velocity Profiles of Blood in Rectangular Microchannels Using Microparticle Image Velocimetry

    PubMed Central

    Pitts, Katie L.; Fenech, Marianne

    2013-01-01

    It is desired to understand the effect of alginic acid sodium salt from brown algae (alginate) as a viscosity modifier on the behavior of blood in vitro using a micro-particle image velocimetry (µPIV) system. The effect of alginate on the shape of the velocity profile, the flow rate and the maximum velocity achieved in rectangular microchannels channels are measured. The channels were constructed of polydimethylsiloxane (PDMS), a biocompatible silicone. Porcine blood cells suspended in saline was used as the working fluid at twenty percent hematocrit (H = 20). While alginate was only found to have minimal effect on the maximum velocity and the flow rate achieved, it was found to significantly affect the shear rate at the wall by between eight to a hundred percent. PMID:24023655

  14. An analytic study on the effect of alginate on the velocity profiles of blood in rectangular microchannels using microparticle image velocimetry.

    PubMed

    Pitts, Katie L; Fenech, Marianne

    2013-01-01

    It is desired to understand the effect of alginic acid sodium salt from brown algae (alginate) as a viscosity modifier on the behavior of blood in vitro using a micro-particle image velocimetry (µPIV) system. The effect of alginate on the shape of the velocity profile, the flow rate and the maximum velocity achieved in rectangular microchannels channels are measured. The channels were constructed of polydimethylsiloxane (PDMS), a biocompatible silicone. Porcine blood cells suspended in saline was used as the working fluid at twenty percent hematocrit (H = 20). While alginate was only found to have minimal effect on the maximum velocity and the flow rate achieved, it was found to significantly affect the shear rate at the wall by between eight to a hundred percent.

  15. An analytic study on the effect of alginate on the velocity profiles of blood in rectangular microchannels using microparticle image velocimetry.

    PubMed

    Pitts, Katie L; Fenech, Marianne

    2013-01-01

    It is desired to understand the effect of alginic acid sodium salt from brown algae (alginate) as a viscosity modifier on the behavior of blood in vitro using a micro-particle image velocimetry (µPIV) system. The effect of alginate on the shape of the velocity profile, the flow rate and the maximum velocity achieved in rectangular microchannels channels are measured. The channels were constructed of polydimethylsiloxane (PDMS), a biocompatible silicone. Porcine blood cells suspended in saline was used as the working fluid at twenty percent hematocrit (H = 20). While alginate was only found to have minimal effect on the maximum velocity and the flow rate achieved, it was found to significantly affect the shear rate at the wall by between eight to a hundred percent. PMID:24023655

  16. Mathematical modeling of velocity and number density profiles of particles across the flame propagation through a micro-iron dust cloud.

    PubMed

    Bidabadi, Mehdi; Haghiri, Ali; Rahbari, Alireza

    2010-04-15

    In this study, an attempt has been made to analytically investigate the concentration and velocity profiles of particles across flame propagation through a micro-iron dust cloud. In the first step, Lagrangian particle equation of motion during upward flame propagation in a vertical duct is employed and then forces acting upon the particle, such as thermophoretic force (resulted from the temperature gradient), gravitation and buoyancy are introduced; and consequently, the velocity profile as a function of the distance from the leading edge of the combustion zone is extracted. In the resumption, a control volume above the leading edge of the combustion zone is considered and the change in the particle number density in this control volume is obtained via the balance of particle mass fluxes passing through it. This study explains that the particle concentration at the leading edge of the combustion zone is more than the particle agglomeration in a distance far from the flame front. This increase in the particle aggregation above the combustion zone has a remarkable effect on the lower flammability limits of combustible particle cloud. It is worth noticing that the velocity and particle concentration profiles show a reasonable compatibility with the experimental data.

  17. Effect of ion orbit loss on the structure in the H-mode tokamak edge pedestal profiles of rotation velocity, radial electric field, density, and temperature

    SciTech Connect

    Stacey, Weston M.

    2013-09-15

    An investigation of the effect of ion orbit loss of thermal ions and the compensating return ion current directly on the radial ion flux flowing in the plasma, and thereby indirectly on the toroidal and poloidal rotation velocity profiles, the radial electric field, density, and temperature profiles, and the interpretation of diffusive and non-diffusive transport coefficients in the plasma edge, is described. Illustrative calculations for a high-confinement H-mode DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] plasma are presented and compared with experimental results. Taking into account, ion orbit loss of thermal ions and the compensating return ion current is found to have a significant effect on the structure of the radial profiles of these quantities in the edge plasma, indicating the necessity of taking ion orbit loss effects into account in interpreting or predicting these quantities.

  18. A HIFI view on circumstellar H2O in M-type AGB stars: radiative transfer, velocity profiles, and H2O line cooling

    NASA Astrophysics Data System (ADS)

    Maercker, M.; Danilovich, T.; Olofsson, H.; De Beck, E.; Justtanont, K.; Lombaert, R.; Royer, P.

    2016-06-01

    Aims: We aim to constrain the temperature and velocity structures, and H2O abundances in the winds of a sample of M-type asymptotic giant branch (AGB) stars. We further aim to determine the effect of H2O line cooling on the energy balance in the inner circumstellar envelope. Methods: We use two radiative-transfer codes to model molecular emission lines of CO and H2O towards four M-type AGB stars. We focus on spectrally resolved observations of CO and H2O from HIFI aboard the Herschel Space Observatory. The observations are complemented by ground-based CO observations, and spectrally unresolved CO and H2O observations with PACS aboard Herschel. The observed line profiles constrain the velocity structure throughout the circumstellar envelopes (CSEs), while the CO intensities constrain the temperature structure in the CSEs. The H2O observations constrain the o-H2O and p-H2O abundances relative to H2. Finally, the radiative-transfer modelling allows to solve the energy balance in the CSE, in principle including also H2O line cooling. Results: The fits to the line profiles only set moderate constraints on the velocity profile, indicating shallower acceleration profiles in the winds of M-type AGB stars than predicted by dynamical models, while the CO observations effectively constrain the temperature structure. Including H2O line cooling in the energy balance was only possible for the low-mass-loss-rate objects in the sample, and required an ad hoc adjustment of the dust velocity profile in order to counteract extreme cooling in the inner CSE. H2O line cooling was therefore excluded from the models. The constraints set on the temperature profile by the CO lines nevertheless allowed us to derive H2O abundances. The derived H2O abundances confirm previous estimates and are consistent with chemical models. However, the uncertainties in the derived abundances are relatively large, in particular for p-H2O, and consequently the derived o/p-H2O ratios are not well constrained.

  19. An Investigation of a Mathematical Model for the Internal Velocity Profile of Conical Diffusers Applied to DAWTs.

    PubMed

    Barbosa, Disterfano L M; Vaz, Jerson R P; Figueiredo, Sávio W O; De Oliveira e Silva, Marcelo; Lins, Erb F; Mesquita, André L A

    2015-01-01

    The Diffuser Augmented Wind Turbines (DAWTs) have been widely studied, since the diffusers improve the power coefficient of the wind turbine, particularly of small systems. The diffuser is a device which has the function of causing an increase on the flow velocity through the wind rotor plane due to pressure drop downstream, therefore resulting in an increase of the rotor power coefficient. This technology aids the turbine to exceed the Betz limit, which states that the maximum kinetic energy extracted from the flow is 59.26%. Thus, the present study proposes a mathematical model describing the behavior of the internal velocity for three conical diffusers, taking into account the characteristics of flow around them. The proposed model is based on the Biot-Savart's Law, in which the vortex filament induces a velocity field at an arbitrary point on the axis of symmetry of the diffusers. The results are compared with experimental data obtained for the three diffusers, and present good agreement.

  20. PAPERS DEVOTED TO THE 250TH ANNIVERSARY OF THE MOSCOW STATE UNIVERSITY: Monte Carlo simulation of an optical coherence Doppler tomograph signal: the effect of the concentration of particles in a flow on the reconstructed velocity profile

    NASA Astrophysics Data System (ADS)

    Bykov, A. V.; Kirillin, M. Yu; Priezzhev, A. V.

    2005-02-01

    Model signals of an optical coherence Doppler tomograph (OCDT) are obtained by the Monte Carlo method from a flow of a light-scattering suspension of lipid vesicles (intralipid) at concentrations from 0.7% to 1.5% with an a priori specified parabolic velocity profile. The velocity profile parameters reconstructed from the OCDT signal and scattering orders of the photons contributing to the signal are studied as functions of the suspension concentration. It is shown that the maximum of the reconstructed velocity profile at high concentrations shifts with respect to the symmetry axis of the flow and its value decreases due to a greater contribution from multiply scattered photons.

  1. Effect of spaceflight on the maximal shortening velocity, morphology, and enzyme profile of fast- and slow-twitch skeletal muscle fibers in rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Romatowski, J. G.; De La Cruz, L.; Widrick, J. J.; Desplanches, D.

    2000-01-01

    Weightlessness has been shown to cause limb muscle wasting and a reduced peak force and power in the antigravity soleus muscle. Despite a reduced peak power, Caiozzo et al. observed an increased maximal shortening velocity in the rat soleus muscle following a 14-day space flight. The major purpose of the present investigation was to determine if weightlessness induced an elevated velocity in the antigravity slow type I fibers of the rhesus monkey (Macaca mulatta), as well as to establish a cellular mechanism for the effect. Spaceflight or models of weightlessness have been shown to increase glucose uptake, elevate muscle glycogen content, and increase fatigability of the soleus muscle. The latter appears to be in part caused by a reduced ability of the slow oxidative fibers to oxidize fats. A second goal of this study was to establish the extent to which weightlessness altered the substrate profile and glycolytic and oxidative enzyme capacity of individual slow- and fast-twitch fibers.

  2. Absolute velocity measurements in the solar transition region and corona from observations of ultraviolet emission line profiles

    NASA Astrophysics Data System (ADS)

    Hassler, Donald M.

    An experimental technique to measure absolute velocities of minor ions formed in the solar transition region and corona is presented. A sounding rocket experiment July 27, 1987 obtained high resolution extreme ultraviolet (EUV) spectra along a solar diameter with spatial resolution of 20 x 20 arcseconds. The center-to-limb behavior of four representative lines (Si II 1553, Fe II 1563, CIV 1548, Ne VIII 770) formed at different heights in the solar atmosphere is discussed. Assuming that horizontal motions cancel statistically so that the line-of-sight velocity approaches zero at the limb, we find a net radial downflow of approximately 7.5 +/- 1.0 km/s for C IV, 2.7 +/- 1.5 km/s for Fe II 1563, and upper limits of 0 +/- 1.2 km/s and 0 +/- 4 km/s for Si II and Ne VIII, respectively. The absolute wavelengths of each emission line were determined by direct comparison with wavelengths of known platinum lines generated by an inflight calibration lamp. We then test the assumption of line-of-sight velocity approaching zero at the limb by comparing our wavelengths with recently published laboratory rest wavelengths of the solar emission lines. We find agreement within the published uncertainties of the laboratory wavelengths. The result for Si II indicates that the next radial flow in the chromosphere is near zero, although small scale velocity structures may vary by as much as 4-6 km/sec. The center-to-limb behavior of Fe II 1563 suggests, contrary to previous thinking, that there might be a significant contribution of Fe II emission at higher temperatures characteristic of the lower transition region. Finally, the upper limit on the radial flow velocity for Ne VIII provides a constraint on the radial flow at coronal temperatures. Complicating the accurate measurement of Doppler velocities is the presence of small nonlinearities in the microchannel plates used in UV and EUV detectors which introduce small position offsets between the input and output of the detector. The

  3. A bayesian approach for determining velocity and uncertainty estimates from seismic cone penetrometer testing or vertical seismic profiling data

    USGS Publications Warehouse

    Pidlisecky, A.; Haines, S.S.

    2011-01-01

    Conventional processing methods for seismic cone penetrometer data present several shortcomings, most notably the absence of a robust velocity model uncertainty estimate. We propose a new seismic cone penetrometer testing (SCPT) data-processing approach that employs Bayesian methods to map measured data errors into quantitative estimates of model uncertainty. We first calculate travel-time differences for all permutations of seismic trace pairs. That is, we cross-correlate each trace at each measurement location with every trace at every other measurement location to determine travel-time differences that are not biased by the choice of any particular reference trace and to thoroughly characterize data error. We calculate a forward operator that accounts for the different ray paths for each measurement location, including refraction at layer boundaries. We then use a Bayesian inversion scheme to obtain the most likely slowness (the reciprocal of velocity) and a distribution of probable slowness values for each model layer. The result is a velocity model that is based on correct ray paths, with uncertainty bounds that are based on the data error. ?? NRC Research Press 2011.

  4. An Investigation of a Mathematical Model for the Internal Velocity Profile of Conical Diffusers Applied to DAWTs.

    PubMed

    Barbosa, Disterfano L M; Vaz, Jerson R P; Figueiredo, Sávio W O; De Oliveira e Silva, Marcelo; Lins, Erb F; Mesquita, André L A

    2015-01-01

    The Diffuser Augmented Wind Turbines (DAWTs) have been widely studied, since the diffusers improve the power coefficient of the wind turbine, particularly of small systems. The diffuser is a device which has the function of causing an increase on the flow velocity through the wind rotor plane due to pressure drop downstream, therefore resulting in an increase of the rotor power coefficient. This technology aids the turbine to exceed the Betz limit, which states that the maximum kinetic energy extracted from the flow is 59.26%. Thus, the present study proposes a mathematical model describing the behavior of the internal velocity for three conical diffusers, taking into account the characteristics of flow around them. The proposed model is based on the Biot-Savart's Law, in which the vortex filament induces a velocity field at an arbitrary point on the axis of symmetry of the diffusers. The results are compared with experimental data obtained for the three diffusers, and present good agreement. PMID:25923169

  5. Performance of an asymmetric short annular diffuser with a nondiverging inner wall using suction. [control of radial profiles of diffuser exit velocity

    NASA Technical Reports Server (NTRS)

    Juhasz, A.

    1974-01-01

    The performance of a short highly asymmetric annular diffuser equipped with wall bleed (suction) capability was evaluated at nominal inlet Mach numbers of 0.188, 0.264, and 0.324 with the inlet pressure and temperature at near ambient values. The diffuser had an area ratio of 2.75 and a length- to inlet-height ratio of 1.6. Results show that the radial profiles of diffuser exit velocity could be controlled from a severely hub peaked to a slightly tip biased form by selective use of bleed. At the same time, other performance parameters were also improved. These results indicate the possible application of the diffuser bleed technique to control flow profiles to gas turbine combustors.

  6. Development of a spatially resolving x-ray crystal spectrometer for measurement of ion-temperature (T(i)) and rotation-velocity (v) profiles in ITER.

    PubMed

    Hill, K W; Bitter, M; Delgado-Aparicio, L; Johnson, D; Feder, R; Beiersdorfer, P; Dunn, J; Morris, K; Wang, E; Reinke, M; Podpaly, Y; Rice, J E; Barnsley, R; O'Mullane, M; Lee, S G

    2010-10-01

    Imaging x-ray crystal spectrometer (XCS) arrays are being developed as a US-ITER activity for Doppler measurement of T(i) and v profiles of impurities (W, Kr, and Fe) with ∼7 cm (a/30) and 10-100 ms resolution in ITER. The imaging XCS, modeled after a prototype instrument on Alcator C-Mod, uses a spherically bent crystal and 2D x-ray detectors to achieve high spectral resolving power (E/dE>6000) horizontally and spatial imaging vertically. Two arrays will measure T(i) and both poloidal and toroidal rotation velocity profiles. The measurement of many spatial chords permits tomographic inversion for the inference of local parameters. The instrument design, predictions of performance, and results from C-Mod are presented.

  7. Outstanding Phenotypic Differences in the Profile of Amyloid-β between Tg2576 and APPswe/PS1dE9 Transgenic Mouse Models of Alzheimer’s Disease

    PubMed Central

    Allué, José Antonio; Sarasa, Leticia; Izco, María; Pérez-Grijalba, Virginia; Fandos, Noelia; Pascual-Lucas, María; Ogueta, Samuel; Pesini, Pedro; Sarasa, Manuel

    2016-01-01

    APPswe/PS1dE9 and Tg2576 are very common transgenic mouse models of Alzheimer’s disease (AD), used in many laboratories as tools to research the mechanistic process leading to the disease. In order to augment our knowledge about the amyloid-β (Aβ) isoforms present in both transgenic mouse models, we have developed two chromatographic methods, one acidic and the other basic, for the characterization of the Aβ species produced in the brains of the two transgenic mouse models. After immunoprecipitation and micro-liquid chromatography-electrospray ionization mass spectrometry/mass spectrometry, 10 species of Aβ, surprisingly all of human origin, were detected in the brain of Tg2576 mouse, whereas 39 species, of both murine and human origin, were detected in the brain of the APP/PS1 mouse. To the best of our knowledge, this is the first study showing the identification of such a high number of Aβ species in the brain of the APP/PS1 transgenic mouse, whereas, in contrast, a much lower number of Aβ species were identified in the Tg2576 mouse. Therefore, this study brings to light a relevant phenotypic difference between these two popular mice models of AD. PMID:27258422

  8. A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber

    SciTech Connect

    Lee, Andrew; Miller, David C.

    2012-01-01

    A general one-dimensional (1-D), three-region model for a bubbling fluidized-bed adsorber with internal heat exchangers has been developed. The model can predict the hydrodynamics of the bed and provides axial profiles for all temperatures, concentrations, and velocities. The model is computationally fast and flexible and allows for any system of adsorption and desorption reactions to be modeled, making the model applicable to any adsorption process. The model has been implemented in both gPROMS and Aspen Custom Modeler, and the behavior of the model has been verified.

  9. First seismic shear wave velocity profile of the lunar crust as extracted from the Apollo 17 active seismic data by wavefield gradient analysis

    NASA Astrophysics Data System (ADS)

    Sollberger, David; Schmelzbach, Cedric; Robertsson, Johan O. A.; Greenhalgh, Stewart A.; Nakamura, Yosio; Khan, Amir

    2016-04-01

    We present a new seismic velocity model of the shallow lunar crust, including, for the first time, shear wave velocity information. So far, the shear wave velocity structure of the lunar near-surface was effectively unconstrained due to the complexity of lunar seismograms. Intense scattering and low attenuation in the lunar crust lead to characteristic long-duration reverberations on the seismograms. The reverberations obscure later arriving shear waves and mode conversions, rendering them impossible to identify and analyze. Additionally, only vertical component data were recorded during the Apollo active seismic experiments, which further compromises the identification of shear waves. We applied a novel processing and analysis technique to the data of the Apollo 17 lunar seismic profiling experiment (LSPE), which involved recording seismic energy generated by several explosive packages on a small areal array of four vertical component geophones. Our approach is based on the analysis of the spatial gradients of the seismic wavefield and yields key parameters such as apparent phase velocity and rotational ground motion as a function of time (depth), which cannot be obtained through conventional seismic data analysis. These new observables significantly enhance the data for interpretation of the recorded seismic wavefield and allow, for example, for the identification of S wave arrivals based on their lower apparent phase velocities and distinct higher amount of generated rotational motion relative to compressional (P-) waves. Using our methodology, we successfully identified pure-mode and mode-converted refracted shear wave arrivals in the complex LSPE data and derived a P- and S-wave velocity model of the shallow lunar crust at the Apollo 17 landing site. The extracted elastic-parameter model supports the current understanding of the lunar near-surface structure, suggesting a thin layer of low-velocity lunar regolith overlying a heavily fractured crust of basaltic

  10. A human serotonin 1D receptor variant (5HT1D beta) encoded by an intronless gene on chromosome 6.

    PubMed Central

    Demchyshyn, L; Sunahara, R K; Miller, K; Teitler, M; Hoffman, B J; Kennedy, J L; Seeman, P; Van Tol, H H; Niznik, H B

    1992-01-01

    An intronless gene encoding a serotonin receptor (5HT1D beta) has been cloned and functionally expressed in mammalian fibroblast cultures. Based on the deduced amino acid sequence, the gene encodes a 390-amino acid protein displaying considerable homology, within putative transmembrane domains (approximately 75% identity) to the canine and human 5HT1D receptors. Membranes prepared from CHO cells stably expressing the receptor bound [3H]serotonin with high affinity (Kd 4 nM) and displayed a pharmacological profile consistent, but not identical, with that of the characterized serotonin 5HT1D receptor. Most notably, metergoline and serotonergic piperazine derivatives, as a group, display 3- to 8-fold lower affinity for the 5HT1D beta receptor than for the 5HT1D receptor, whereas both receptors display similar affinities for tryptamine derivatives, including the antimigraine drug sumatriptan. Northern blot analysis revealed an mRNA of approximately 5.5 kilobases expressed in human and monkey frontal cortex, medulla, striatum, hippocampus and amygdala but not in cerebellum, olfactory tubercle, and pituitary. The 5HT1D beta gene maps to human chromosome 6. The existence of multiple neuronal 5HT1D-like receptors may help account for some of the complexities associated with [3H]serotonin binding patterns in native membranes. Images PMID:1351684

  11. Velocity profile of thin film flows measured using a confocal microscopy particle image velocimetry system with simultaneous multi depth position

    NASA Astrophysics Data System (ADS)

    Kikuchi, K.; Mochizuki, O.

    2015-02-01

    In this paper, we report a technique for simultaneously visualizing flows near walls at nano-depth positions. To achieve such a high interval of depth gradient, we developed a tilted observation technique in a particle image velocimetry (PIV) system based on confocal microscopy. The focal plane along the bottom of the flow channel was tilted by tilting the micro-channel, enabling depth scanning in the microscopic field of view. Our system is suitable for measuring 3D two-component flow fields. The depth interval was approximately 220 nm over a depth range of 10 μm, depending on the tilt angle of the micro-channel. Applying the proposed system, we visualized the near-wall flow in a drainage film flow under laminar conditions to the depth of approximately 30 μm via vertical scanning from the bottom to the free surface. The velocity gradient was proportional to the distance from the wall, consistent with theoretical predictions. From the measured near-wall velocity gradient, we calculated the wall shear stress. The measurement accuracy was approximately 1.3 times higher in our proposed method than in the conventional confocal micro-PIV method.

  12. Calculation of area-averaged vertical profiles of the horizontal wind velocity from volume-imaging lidar data

    NASA Technical Reports Server (NTRS)

    Schols, J. L.; Eloranta, E. W.

    1992-01-01

    Area-averaged horizontal wind measurements are derived from the motion of spatial inhomogeneities in aerosol backscattering observed with a volume-imaging lidar. Spatial averaging provides high precision, reducing sample variations of wind measurements well below the level of turbulent fluctuations, even under conditions of very light mean winds and strong convection or under the difficult conditions represented by roll convection. Wind velocities are measured using the two-dimensional spatial cross correlation computed between successive horizontal plane maps of aerosol backscattering, assembled from three-dimensional lidar scans. Prior to calculation of the correlation function, three crucial steps are performed: (1) the scans are corrected for image distortion by the wind during a finite scan time; (2) a temporal high pass median filtering is applied to eliminate structures that do not move with the wind; and (3) a histogram equalization is employed to reduce biases to the brightest features.

  13. Quasi 1-D Analysis of a Circular, Compressible, Turbulent Jet Laden with Water Droplets. Appendix C

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Recent experimental studies indicate that presence of small amount of liquid droplets reduces the Overall Sound Pressure Level (OASPL) of a jet. Present study is aimed at numerically investigating the effect of liquid particles on the overall flow quantities of a heated, compressible round jet. The jet is assumed perfectly expanded. A quasi-1D model was developed for this purpose which uses area-averaged quantities that satisfy integral conservation equations. Special attention is given to represent the early development region since it is acoustically important. Approximate velocity and temperature profiles were assumed in this region to evaluate entrainment rate. Experimental correlations were used to obtain spreading rate of shear layer. The base flow thus obtained is then laden with water droplets at the exit of the nozzle. Mass, momentum and energy coupling between the two phases is represented using empirical relations. Droplet size and mass loading are varied to observe their effect on flow variables.

  14. Studies of the acoustic transmission characteristics of coaxial nozzles with inverted velocity profiles, volume 1. [jet engine noise radiation through coannular exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Dean, P. D.; Salikuddin, M.; Ahuja, K. K.; Plumblee, H. E.; Mungur, P.

    1979-01-01

    The efficiency of internal noise radiation through coannular exhaust nozzle with an inverted velocity profile was studied. A preliminary investigation was first undertaken to: (1) define the test parameters which influence the internal noise radiation; (2) develop a test methodology which could realistically be used to examine the effects of the test parameters; (3) and to validate this methodology. The result was the choice of an acoustic impulse as the internal noise source in the in the jet nozzles. Noise transmission characteristics of a nozzle system were then investigated. In particular, the effects of fan nozzle convergence angle, core extention length to annulus height ratio, and flow Mach number and temperatures were studied. The results are presented as normalized directivity plots.

  15. Effect of the initial density and angular-velocity profiles of pre-stellar cores on the properties of young stellar objects

    NASA Astrophysics Data System (ADS)

    Vorobyov, Eduard I.

    2012-03-01

    The physical properties of young stellar objects are studied as functions of the initial spatial distributions of the gas surface density Σ and angular velocity Ω in pre-stellar cores using numerical hydrodynamic simulations. Two limiting cases are considered: spatially homogeneous cores with Σ = const and Ω = const and centrally concentrated cores with radius-dependent densities Σ ∝ r -1 and Ω ∝ r -1. The degree of gravitational instability and protostellar disk fragmentation is mostly determined by the initial core mass and the ratio of the rotational to the gravitational energy, and depends only weakly on the initial spatial configuration of pre-stellar cores, except for the earliest stages of evolution, when models with spatially homogeneous cores can be more gravitationally unstable. The accretion of disk matter onto a protostar also depends weakly on the initial distributions of Σ and Ω, with matter from the collapsing core falling onto the disk at a rate that is slightly higher in models with spatially homogeneous cores. An appreciable dependence of the disk mass, disk radius, and the disk-to-protostar mass ratio on the initial density and angular velocity profiles of the parent core is found only for class 0 young objects; this relationship is not systematic in the later I and II stages of stellar evolution. The mass of the central protostar depends weakly on the initial core configuration in all three evolutionary stages.

  16. Application of acoustic-Doppler current profiler and expendable bathythermograph measurements to the study of the velocity structure and transport of the Gulf Stream

    NASA Technical Reports Server (NTRS)

    Joyce, T. M.; Dunworth, J. A.; Schubert, D. M.; Stalcup, M. C.; Barbour, R. L.

    1988-01-01

    The degree to which Acoustic-Doppler Current Profiler (ADCP) and expendable bathythermograph (XBT) data can provide quantitative measurements of the velocity structure and transport of the Gulf Stream is addressed. An algorithm is used to generate salinity from temperature and depth using an historical Temperature/Salinity relation for the NW Atlantic. Results have been simulated using CTD data and comparing real and pseudo salinity files. Errors are typically less than 2 dynamic cm for the upper 800 m out of a total signal of 80 cm (across the Gulf Stream). When combined with ADCP data for a near-surface reference velocity, transport errors in isopycnal layers are less than about 1 Sv (10 to the 6th power cu m/s), as is the difference in total transport for the upper 800 m between real and pseudo data. The method is capable of measuring the real variability of the Gulf Stream, and when combined with altimeter data, can provide estimates of the geoid slope with oceanic errors of a few parts in 10 to the 8th power over horizontal scales of 500 km.

  17. LASER APPLICATIONS IN MEDICINE: Analysis of distortions in the velocity profiles of suspension flows inside a light-scattering medium upon their reconstruction from the optical coherence Doppler tomograph signal

    NASA Astrophysics Data System (ADS)

    Bykov, A. V.; Kirillin, M. Yu; Priezzhev, A. V.

    2005-11-01

    Model signals from one and two plane flows of a particle suspension are obtained for an optical coherence Doppler tomograph (OCDT) by the Monte-Carlo method. The optical properties of particles mimic the properties of non-aggregating erythrocytes. The flows are considered in a stationary scattering medium with optical properties close to those of the skin. It is shown that, as the flow position depth increases, the flow velocity determined from the OCDT signal becomes smaller than the specified velocity and the reconstructed profile extends in the direction of the distant boundary, which is accompanied by the shift of its maximum. In the case of two flows, an increase in the velocity of the near-surface flow leads to the overestimated values of velocity of the reconstructed profile of the second flow. Numerical simulations were performed by using a multiprocessor parallel-architecture computer.

  18. Hammering Yucca Flat, Part Two: Shear-Wave Velocity

    NASA Astrophysics Data System (ADS)

    Finlay, T. S.; Abbott, R. E.; Knox, H. A.; Tang, D. G.; James, S. R.; Haney, M. M.; Hampshire, J. B., II

    2015-12-01

    In preparation for the next phase of the Source Physics Experiment (SPE), we conducted an active-source seismic survey of Yucca Flat, Nevada, on the Nevada National Security Site. Results from this survey will be used to inform the geologic models associated with the SPE project. For this study, we used a novel 13,000 kilogram weight-drop seismic source to interrogate an 18-km North-South transect of Yucca Flat. Source points were spaced every 200 meters and were recorded by 350 to 380 3-component 2-Hz geophones with variable spacings of 10, 20, and 100 meters. We utilized the Refraction-Microtremor (ReMi) technique to create multiple 1D dispersion curves, which were then inverted for shear-wave velocity profiles using the Dix inversion method (Tsai and Haney, 2015). Each of these 1D velocity models was subsequently stitched together to create a 2D profile over the survey area. The dispersion results indicate a general decrease in surface-wave phase velocity to the south. This result is supported by slower shear-wave velocity sediments and increasing basin depth towards the survey's southern extent. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Near-surface characterization of a geotechnical site in north-east Missouri using shear-wave velocity measurements

    USGS Publications Warehouse

    Ismail, A.; Anderson, N.

    2007-01-01

    Shear-wave velocity (Vs) as a function of soil stiffness is an essential parameter in geotechnical characterization of the subsurface. In this study, multichannel analysis of surface wave (MASW) and downhole methods were used to map the shear-wave velocity-structure and depth to the bed-rock surface at a 125m ?? 125m geotechnical site in Missouri. The main objective was to assess the suitability of the site for constructing a large, heavy building. The acquired multichannel surface wave data were inverted to provide 1D shear-wave velocity profile corresponding to each shot gather. These 1D velocity profiles were interpolated and contoured to generate a suite of 2D shear-wave velocity sections. Integrating the shear-wave velocity data from the MASW method with the downhole velocity data and the available borehole lithologic information enabled us to map shear-wave velocity-structure to a depth on the order of 20m. The bedrock surface, which is dissected by a significant cut-and-fill valley, was imaged. The results suggest that the study site will require special consideration prior to construction. The results also demonstrate the successful use of MASW methods, when integrated with downhole velocity measurements and borehole lithologic information, in the characterization of the near surface at the geotechnical sites. ?? 2007 European Association of Geoscientists & Engineers.

  20. Community interactive webtool to retrieve Greenland glacier data for 1-D geometry

    NASA Astrophysics Data System (ADS)

    Perrette, Mahé

    2015-04-01

    Marine-terminating, outlet glaciers are challenging to include in conventional Greenland-wide ice sheet models because of the large variation in scale between model grid size (typically 10 km) and outlet glacier width (typically 1-5km), making it a subgrid scale feature. A possible approach to tackle this problem is to use one-dimensional flowline models for the individual glaciers (e.g. Nick et al., 2013, Nature; Enderlin et al 2013a,b, The Cryosphere). Here we present a python- and javascript- based webtool to prepare data required to feed in or validate a flowline model. It is designed primarily to outline the glacier geometry and returns relevant data averaged over cross-sections. The tool currently allows to: visualize 2-D ice sheet data (zoom/pan), quickly switch between datasets (e.g. ice thickness, bedrock elevation, surface velocity) interpolated / transformed on a common grid. draw flowlines from user-input seeds on the map, calculated from a vector field of surface velocity, as an helpful guide for point 3 interactively draw glacier outline (side and middle lines) on top of the data mesh the outlined glacier domain in the horizontal plane extract relevant data into a 1-D longitudinal profile download the result as a netCDF file The project is hosted on github to encourage collaboration, under the open-source MIT Licence. The server-side is written in python (open-source) using the web-framework flask, and the client-side (javascript) makes use of the d3 library for interactive figures. For now it only works locally in a web browser (start server: "python runserver.py"). Data need to be downloaded separately from the original sources. See the README file in the project for information how to use it. Github projects: https://github.com/perrette/webglacier1d (main) https://github.com/perrette/dimarray (dependency)

  1. 3-D structure of the Rio Grande Rift from 1-D constrained joint inversion of receiver functions and surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Sosa, Anibal; Thompson, Lennox; Velasco, Aaron A.; Romero, Rodrigo; Herrmann, Robert B.

    2014-09-01

    The Southern terminus of the Rio Grande Rift region has been poorly defined in the geologic record, with few seismic studies that provide information on the deeper Rift structure. In consequence, important questions related to tectonic and lithospheric activity of the Rio Grande Rift remain unresolved. To address some of these geological questions, we collect and analyze seismic data from 147 EarthScope Transportable Array (USArray) and other seismic stations in the region, to develop a 3-D crust and upper mantle velocity model. We apply a constrained optimization approach for joint inversion of surface wave and receiver functions using seismic S wave velocities as a model parameter. In particular, we compute receiver functions stacks based on ray parameter, and invert them jointly with collected surface wave group velocity dispersion observations. The inversions estimate 1-D seismic S-wave velocity profiles to 300 km depth, which are then interpolated to a 3-D velocity model using a Bayesian kriging scheme. Our 3-D models show a thin lower velocity crust anomaly along the southeastern Rio Grande Rift, a persistent low velocity anomaly underneath the Colorado Plateau and Basin and Range province, and another one at depth beneath the Jemez lineament, and the southern RGR.

  2. Numerical simulations of heavily polluted fine-grained sediment remobilization using 1D, 1D+, and 2D channel schematization.

    PubMed

    Kaiglová, Jana; Langhammer, Jakub; Jiřinec, Petr; Janský, Bohumír; Chalupová, Dagmar

    2015-03-01

    This article used various hydrodynamic and sediment transport models to analyze the potential and the limits of different channel schematizations. The main aim was to select and evaluate the most suitable simulation method for fine-grained sediment remobilization assessment. Three types of channel schematization were selected to study the flow potential for remobilizing fine-grained sediment in artificially modified channels. Schematization with a 1D cross-sectional horizontal plan, a 1D+ approach, splitting the riverbed into different functional zones, and full 2D mesh, adopted in MIKE by the DHI modeling suite, was applied to the study. For the case study, a 55-km stretch of the Bílina River, in the Czech Republic, Central Europe, which has been heavily polluted by the chemical and coal mining industry since the mid-twentieth century, was selected. Long-term exposure to direct emissions of toxic pollutants including heavy metals and persistent organic pollutants (POPs) resulted in deposits of pollutants in fine-grained sediments in the riverbed. Simulations, based on three hydrodynamic model schematizations, proved that for events not exceeding the extent of the riverbed profile, the 1D schematization can provide comparable results to a 2D model. The 1D+ schematization can improve accuracy while keeping the benefits of high-speed simulation and low requirements of input DEM data, but the method's suitability is limited by the channel properties. PMID:25687259

  3. Upstream Design and 1D-CAE

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroyuki

    Recently, engineering design environment of Japan is changing variously. Manufacturing companies are being challenged to design and bring out products that meet the diverse demands of customers and are competitive against those produced by rising countries(1). In order to keep and strengthen the competitiveness of Japanese companies, it is necessary to create new added values as well as conventional ones. It is well known that design at the early stages has a great influence on the final design solution. Therefore, design support tools for the upstream design is necessary for creating new added values. We have established a research society for 1D-CAE (1 Dimensional Computer Aided Engineering)(2), which is a general term for idea, methodology and tools applicable for the upstream design support, and discuss the concept and definition of 1D-CAE. This paper reports our discussion about 1D-CAE.

  4. DESIGN PACKAGE 1D SYSTEM SAFETY ANALYSIS

    SciTech Connect

    L.R. Eisler

    1995-02-02

    The purpose of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) Design Package 1D, Surface Facilities, (for a list of design items included in the package 1D system safety analysis see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the Design Package 1D structures/systems/components in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component (S/S/C) design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the Design Package 1D structures/systems/components (S/S/Cs) during normal operations excluding hazards occurring during maintenance and ''off normal'' operations.

  5. Development of 1D Liner Compression Code for IDL

    NASA Astrophysics Data System (ADS)

    Shimazu, Akihisa; Slough, John; Pancotti, Anthony

    2015-11-01

    A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.

  6. Hydrokinetic canal measurements: inflow velocity, wake flow velocity, and turbulence

    DOE Data Explorer

    Gunawan, Budi

    2014-06-11

    The dataset consist of acoustic Doppler current profiler (ADCP) velocity measurements in the wake of a 3-meter diameter vertical-axis hydrokinetic turbine deployed in Roza Canal, Yakima, WA, USA. A normalized hub-centerline wake velocity profile and two cross-section velocity contours, 10 meters and 20 meters downstream of the turbine, are presented. Mean velocities and turbulence data, measured using acoustic Doppler velocimeter (ADV) at 50 meters upstream of the turbine, are also presented. Canal dimensions and hydraulic properties, and turbine-related information are also included.

  7. Centrosome Positioning in 1D Cell Migration

    NASA Astrophysics Data System (ADS)

    Adlerz, Katrina; Aranda-Espinoza, Helim

    During cell migration, the positioning of the centrosome and nucleus define a cell's polarity. For a cell migrating on a two-dimensional substrate the centrosome is positioned in front of the nucleus. Under one-dimensional confinement, however, the centrosome is positioned behind the nucleus in 60% of cells. It is known that the centrosome is positioned by CDC42 and dynein for cells moving on a 2D substrate in a wound-healing assay. It is currently unknown, however, if this is also true for cells moving under 1D confinement, where the centrosome position is often reversed. Therefore, centrosome positioning was studied in cells migrating under 1D confinement, which mimics cells migrating through 3D matrices. 3 to 5 μm fibronectin lines were stamped onto a glass substrate and cells with fluorescently labeled nuclei and centrosomes migrated on the lines. Our results show that when a cell changes directions the centrosome position is maintained. That is, when the centrosome is between the nucleus and the cell's trailing edge and the cell changes direction, the centrosome will be translocated across the nucleus to the back of the cell again. A dynein inhibitor did have an influence on centrosome positioning in 1D migration and change of directions.

  8. A crustal seismic velocity model for the UK, Ireland and surrounding seas

    USGS Publications Warehouse

    Kelly, A.; England, R.W.; Maguire, Peter K.H.

    2007-01-01

    A regional model of the 3-D variation in seismic P-wave velocity structure in the crust of NW Europe has been compiled from wide-angle reflection/refraction profiles. Along each 2-D profile a velocity-depth function has been digitised at 5 km intervals. These 1-D velocity functions were mapped into three dimensions using ordinary kriging with weights determined to minimise the difference between digitised and interpolated values. An analysis of variograms of the digitised data suggested a radial isotropic weighting scheme was most appropriate. Horizontal dimensions of the model cells are optimised at 40 ?? 40 km and the vertical dimension at 1 km. The resulting model provides a higher resolution image of the 3-D variation in seismic velocity structure of the UK, Ireland and surrounding areas than existing models. The construction of the model through kriging allows the uncertainty in the velocity structure to be assessed. This uncertainty indicates the high density of data required to confidently interpolate the crustal velocity structure, and shows that for this region the velocity is poorly constrained for large areas away from the input data. ?? 2007 The Authors Journal compilation ?? 2007 RAS.

  9. A 1-D dusty plasma photonic crystal

    SciTech Connect

    Mitu, M. L.; Ticoş, C. M.; Toader, D.; Banu, N.; Scurtu, A.

    2013-09-21

    It is demonstrated numerically that a 1-D plasma crystal made of micron size cylindrical dust particles can, in principle, work as a photonic crystal for terahertz waves. The dust rods are parallel to each other and arranged in a linear string forming a periodic structure of dielectric-plasma regions. The dispersion equation is found by solving the waves equation with the boundary conditions at the dust-plasma interface and taking into account the dielectric permittivity of the dust material and plasma. The wavelength of the electromagnetic waves is in the range of a few hundred microns, close to the interparticle separation distance. The band gaps of the 1-D plasma crystal are numerically found for different types of dust materials, separation distances between the dust rods and rod diameters. The distance between levitated dust rods forming a string in rf plasma is shown experimentally to vary over a relatively wide range, from 650 μm to about 1350 μm, depending on the rf power fed into the discharge.

  10. Non-linearity in Bayesian 1-D magnetotelluric inversion

    NASA Astrophysics Data System (ADS)

    Guo, Rongwen; Dosso, Stan E.; Liu, Jianxin; Dettmer, Jan; Tong, Xiaozhong

    2011-05-01

    This paper applies a Bayesian approach to examine non-linearity for the 1-D magnetotelluric (MT) inverse problem. In a Bayesian formulation the posterior probability density (PPD), which combines data and prior information, is interpreted in terms of parameter estimates and uncertainties, which requires optimizing and integrating the PPD. Much work on 1-D MT inversion has been based on (approximate) linearized solutions, but more recently fully non-linear (numerical) approaches have been applied. This paper directly compares results of linearized and non-linear uncertainty estimation for 1-D MT inversion; to do so, advanced methods for both approaches are applied. In the non-linear formulation used here, numerical optimization is carried out using an adaptive-hybrid algorithm. Numerical integration applies Metropolis-Hastings sampling, rotated to a principal-component parameter space for efficient sampling of correlated parameters, and employing non-unity sampling temperatures to ensure global sampling. Since appropriate model parametrizations are generally not known a priori, both under- and overparametrized approaches are considered. For underparametrization, the Bayesian information criterion is applied to determine the number of layers consistent with the resolving power of the data. For overparametrization, prior information is included which favours simple structure in a manner similar to regularized inversion. The data variance and/or trade-off parameter regulating data and prior information are treated in several ways, including applying fixed optimal estimates (an empirical Bayesian approach) or including them as hyperparameters in the sampling (hierarchical Bayesian). The latter approach has the benefit of accounting for the uncertainty in the hyperparameters in estimating model parameter uncertainties. Non-linear and linearized inversion results are compared for synthetic test cases and for the measured COPROD1 MT data by considering marginal probability

  11. Measuring Spin-Charge Separation in a 1D Fermi Gas

    NASA Astrophysics Data System (ADS)

    Fry, Jacob A.; Revelle, Melissa C.; Hulet, Randall G.

    2016-05-01

    We present progress on measurement of spin-charge separation in a two-component, strongly interacting, 1D gas of fermionic lithium. A characteristic feature of interacting 1D Fermi gases is that the velocity of a charge excitation propagates faster than a spin excitation. We create an excitation by applying a dipole force at the center of the cloud using a sheet of light. Depending on the detuning of this beam, we can either excite both spin species equally (charge excitation) or preferentially (spin excitation). Once this beam is turned off, the excitations propagate to the edges of the atomic cloud at a velocity determined by coupling strength. A magnetically tuned Feshbach resonance enables us to vary this coupling and map out the velocities of spin and charge excitations. Supported by an ARO MURI Grant, NSF, and The Welch Foundation

  12. Rapid tuning CW laser technique for measurements of gas velocity, temperature, pressure, density, and mass flux using NO

    NASA Technical Reports Server (NTRS)

    Chang, Albert Y.; Dirosa, Michael D.; Davidson, David F.; Hanson, Ronald K.

    1991-01-01

    An intracavity-doubled rapid-tuning CW ring dye laser was used to acquire fully resolved absorption profiles of NO line pairs in the A-X band at 225 nm at a rate of 4 kHz. These profiles were utilized for simultaneous measurements of flow parameters in the high-speed 1D flows generated in a shock tube. Velocity was determined from the Doppler shift, measured using a pair of profiles simultaneously acquired at different angles with respect to the flow direction. Temperature was determined from the intensity ratio of the adjacent lines. Pressure and density were found both from the collisional broadening and the fractional absorption. From this information the mass flux was determined. The results compare well to 1D shock calculations.

  13. Diagnostics from a 1-D atmospheric column

    SciTech Connect

    Flatley, J.M.; Mace, G.

    1996-04-01

    Various diagnostics were computed from an array of radiosondes during an intensive field operation arranged by the Atmospheric Radiation Measurement Program. The network data was centered around the site at Lamont, Oklahoma. The apparent heat source and apparent moisture sink were computed and compared to the kinematic vertical velocity for both real data and the mesoscale analysis and prediction system. Three different case studies of various weathe regimes were examined.

  14. 1D fast coded aperture camera.

    PubMed

    Haw, Magnus; Bellan, Paul

    2015-04-01

    A fast (100 MHz) 1D coded aperture visible light camera has been developed as a prototype for imaging plasma experiments in the EUV/X-ray bands. The system uses printed patterns on transparency sheets as the masked aperture and an 80 channel photodiode array (9 V reverse bias) as the detector. In the low signal limit, the system has demonstrated 40-fold increase in throughput and a signal-to-noise gain of ≈7 over that of a pinhole camera of equivalent parameters. In its present iteration, the camera can only image visible light; however, the only modifications needed to make the system EUV/X-ray sensitive are to acquire appropriate EUV/X-ray photodiodes and to machine a metal masked aperture. PMID:25933861

  15. 1D fast coded aperture camera.

    PubMed

    Haw, Magnus; Bellan, Paul

    2015-04-01

    A fast (100 MHz) 1D coded aperture visible light camera has been developed as a prototype for imaging plasma experiments in the EUV/X-ray bands. The system uses printed patterns on transparency sheets as the masked aperture and an 80 channel photodiode array (9 V reverse bias) as the detector. In the low signal limit, the system has demonstrated 40-fold increase in throughput and a signal-to-noise gain of ≈7 over that of a pinhole camera of equivalent parameters. In its present iteration, the camera can only image visible light; however, the only modifications needed to make the system EUV/X-ray sensitive are to acquire appropriate EUV/X-ray photodiodes and to machine a metal masked aperture.

  16. 1D-VAR Retrieval Using Superchannels

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel; Larar, Allen; Smith, William L.; Schluessel, Peter; Mango, Stephen; SaintGermain, Karen

    2008-01-01

    Since modern ultra-spectral remote sensors have thousands of channels, it is difficult to include all of them in a 1D-var retrieval system. We will describe a physical inversion algorithm, which includes all available channels for the atmospheric temperature, moisture, cloud, and surface parameter retrievals. Both the forward model and the inversion algorithm compress the channel radiances into super channels. These super channels are obtained by projecting the radiance spectra onto a set of pre-calculated eigenvectors. The forward model provides both super channel properties and jacobian in EOF space directly. For ultra-spectral sensors such as Infrared Atmospheric Sounding Interferometer (IASI) and the NPOESS Airborne Sounder Testbed Interferometer (NAST), a compression ratio of more than 80 can be achieved, leading to a significant reduction in computations involved in an inversion process. Results will be shown applying the algorithm to real IASI and NAST data.

  17. Ice Concentration Retrieval in Stratiform Mixed-phase Clouds Using Cloud Radar Reflectivity Measurements and 1D Ice Growth Model Simulations

    SciTech Connect

    Zhang, Damao; Wang, Zhien; Heymsfield, Andrew J.; Fan, Jiwen; Luo, Tao

    2014-10-01

    Measurement of ice number concentration in clouds is important but still challenging. Stratiform mixed-phase clouds (SMCs) provide a simple scenario for retrieving ice number concentration from remote sensing measurements. The simple ice generation and growth pattern in SMCs offers opportunities to use cloud radar reflectivity (Ze) measurements and other cloud properties to infer ice number concentration quantitatively. To understand the strong temperature dependency of ice habit and growth rate quantitatively, we develop a 1-D ice growth model to calculate the ice diffusional growth along its falling trajectory in SMCs. The radar reflectivity and fall velocity profiles of ice crystals calculated from the 1-D ice growth model are evaluated with the Atmospheric Radiation Measurements (ARM) Climate Research Facility (ACRF) ground-based high vertical resolution radar measurements. Combining Ze measurements and 1-D ice growth model simulations, we develop a method to retrieve the ice number concentrations in SMCs at given cloud top temperature (CTT) and liquid water path (LWP). The retrieved ice concentrations in SMCs are evaluated with in situ measurements and with a three-dimensional cloud-resolving model simulation with a bin microphysical scheme. These comparisons show that the retrieved ice number concentrations are within an uncertainty of a factor of 2, statistically.

  18. The FC-1D: The profitable alternative Flying Circus Commercial Aviation Group

    NASA Technical Reports Server (NTRS)

    Meza, Victor J.; Alvarez, Jaime; Harrington, Brook; Lujan, Michael A.; Mitlyng, David; Saroughian, Andy; Silva, Alex; Teale, Tim

    1994-01-01

    The FC-1D was designed as an advanced solution for a low cost commercial transport meeting or exceeding all of the 1993/1994 AIAA/Lockheed request for proposal requirements. The driving philosophy behind the design of the FC-1D was the reduction of airline direct operating costs. Every effort was made during the design process to have the customer in mind. The Flying Circus Commercial Aviation Group targeted reductions in drag, fuel consumption, manufacturing costs, and maintenance costs. Flying Circus emphasized cost reduction throughout the entire design program. Drag reduction was achieved by implementation of the aft nacelle wing configuration to reduce cruise drag and increase cruise speeds. To reduce induced drag, rather than increasing the wing span of the FC-1D, spiroids were included in the efficient wing design. Profile and friction drag are reduced by using riblets in place of paint around the fuselage and empennage of the FC-1D. Choosing a single aisle configuration enabled the Flying Circus to optimize the fuselage diameter. Thus, reducing fuselage drag while gaining high structural efficiency. To further reduce fuel consumption a weight reduction program was conducted through the use of composite materials. An additional quality of the FC-1D is its design for low cost manufacturing and assembly. As a result of this design attribute, the FC-1D will have fewer parts which reduces weight as well as maintenance and assembly costs. The FC-1D is affordable and effective, the apex of commercial transport design.

  19. Shear wave velocities from noise correlation at local scale

    SciTech Connect

    De Nisco, G.; Nunziata, C.; Vaccari, F.; Panza, G. F.

    2008-07-08

    Cross correlations of ambient seismic noise recordings have been studied to infer shear seismic velocities with depth. Experiments have been done in the crowded and noisy historical centre of Napoli over inter-station distances from 50 m to about 400 m, whereas active seismic spreadings are prohibitive, even for just one receiver. Group velocity dispersion curves have been extracted with FTAN method from the noise cross correlations and then the non linear inversion of them has resulted in Vs profiles with depth. The information of near by stratigraphies and the range of Vs variability for samples of Neapolitan soils and rocks confirms the validity of results obtained with our expeditious procedure. Moreover, the good comparison of noise H/V frequency of the first main peak with 1D and 2D spectral amplifications encourages to continue experiments of noise cross-correlation. If confirmed in other geological settings, the proposed approach could reveal a low cost methodology to obtain reliable and detailed Vs velocity profiles.

  20. Velocity Dispersions Across Bulge Types

    SciTech Connect

    Fabricius, Maximilian; Bender, Ralf; Hopp, Ulrich; Saglia, Roberto; Drory, Niv; Fisher, David

    2010-06-08

    We present first results from a long-slit spectroscopic survey of bulge kinematics in local spiral galaxies. Our optical spectra were obtained at the Hobby-Eberly Telescope with the LRS spectrograph and have a velocity resolution of 45 km/s (sigma*), which allows us to resolve the velocity dispersions in the bulge regions of most objects in our sample. We find that the velocity dispersion profiles in morphological classical bulge galaxies are always centrally peaked while the velocity dispersion of morphologically disk-like bulges stays relatively flat towards the center--once strongly barred galaxies are discarded.

  1. Holographic particle velocity measurement in the Fraunhofer plane.

    PubMed

    Ewan, B C

    1979-03-01

    Double exposure holograms of a moving particle field having a 1-D velocity distribution are produced. The Fraunhofer plane is observed on reconstruction, and it is shown that for a Gaussian velocity distribution, the fringes which modulate the diffraction pattern have spacings characteristic of the peak velocity. Known and measured peak velocities are compared, and the effect of the velocity distribution width on the fringe contrast is demonstrated.

  2. ON THE DOPPLER VELOCITY OF EMISSION LINE PROFILES FORMED IN THE 'CORONAL CONTRAFLOW' THAT IS THE CHROMOSPHERE-CORONA MASS CYCLE

    SciTech Connect

    McIntosh, Scott W.; Tian Hui; Sechler, Marybeth; De Pontieu, Bart

    2012-04-10

    This analysis begins to explore the complex chromosphere-corona mass cycle using a blend of imaging and spectroscopic diagnostics. Single Gaussian fits (SGFs) to hot emission line profiles (formed above 1 MK) at the base of coronal loop structures indicate material blueshifts of 5-10 km s{sup -1}, while cool emission line profiles (formed below 1 MK) yield redshifts of a similar magnitude-indicating, to zeroth order, that a temperature-dependent bifurcating flow exists on coronal structures. Image sequences of the same region reveal weakly emitting upward propagating disturbances in both hot and cool emission with apparent speeds of 50-150 km s{sup -1}. Spectroscopic observations indicate that these propagating disturbances produce a weak emission component in the blue wing at commensurate speed, but that they contribute only a few percent to the (ensemble) emission line profile in a single spatio-temporal resolution element. Subsequent analysis of imaging data shows material 'draining' slowly ({approx}10 km s{sup -1}) out of the corona, but only in the cooler passbands. We interpret the draining as the return flow of coronal material at the end of the complex chromosphere-corona mass cycle. Further, we suggest that the efficient radiative cooling of the draining material produces a significant contribution to the red wing of cool emission lines that is ultimately responsible for their systematic redshift as derived from an SGF when compared to those formed in hotter (conductively dominated) domains. The presence of counterstreaming flows complicates the line profiles, their interpretation, and asymmetry diagnoses, but allows a different physical picture of the lower corona to develop.

  3. Temperature, velocity and species profile measurements for reburning in a pulverized, entrained flow, coal combustor. Semi-annual report, October 30, 1995--April 30, 1996

    SciTech Connect

    Tree, D.R.; Eatough, C.

    1996-04-01

    Data for mean velocity and temperature have been obtained over a baseline matrix operating conditions for pulverized coal without reburning. The data show the reactor to be symmetrical about the axial centerline. Effluent NO{sub x} data have been seen to correlate with measured and modeled results of flow patterns within the reactor. At low swirl the fuel jet creates a downward flow at the centerline with some upward recirculation at the perimeter of the reactor near the walls. This recirculation pattern reverses as swirl is increased, changing the flame from a long toroidal shape to a flat annulus. The NO{sub x} data show a local minimum at a swirl number of 1.0 which may be primarily the result of the direction and magnitude of the recirculation zone. Gas species and coal char burnout data have begun but have not yet been completed. Velocity data and modeling results have been used in the process of validating the comprehensive combustion code and in designing the reburning hardware. The details concerning storing and delivering the reburning fuel (natural gas) have been completed and the fabrication of the hardware is underway.

  4. 1D-1D Coulomb drag in a 6 Million Mobility Bi-layer Heterostructure

    NASA Astrophysics Data System (ADS)

    Bilodeau, Simon; Laroche, Dominique; Xia, Jian-Sheng; Lilly, Mike; Reno, John; Pfeiffer, Loren; West, Ken; Gervais, Guillaume

    We report Coulomb drag measurements in vertically-coupled quantum wires. The wires are fabricated in GaAs/AlGaAs bilayer heterostructures grown from two different MBE chambers: one at Sandia National Laboratories (1.2M mobility), and the other at Princeton University (6M mobility). The previously observed positive and negative drag signals are seen in both types of devices, demonstrating the robustness of the result. However, attempts to determine the temperature dependence of the drag signal in the 1D regime proved challenging in the higher mobility heterostructure (Princeton), in part because of difficulties in aligning the wires within the same transverse subband configuration. Nevertheless, this work, performed at the Microkelvin laboratory of the University of Florida, is an important proof-of-concept for future investigations of the temperature dependence of the 1D-1D drag signal down to a few mK. Such an experiment could confirm the Luttinger charge density wave interlocking predicted to occur in the wires. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL8500.

  5. TCTEX1D4 Interactome in Human Testis: Unraveling the Function of Dynein Light Chain in Spermatozoa

    PubMed Central

    Freitas, Maria João; Korrodi-Gregório, Luís; Morais-Santos, Filipa; da Cruz e Silva, Edgar

    2014-01-01

    Abstract Studies were designed to identify the TCTEX1D4 interactome in human testis, with the purpose of unraveling putative protein complexes essential to male reproduction and thus novel TCTEX1D4 functions. TCTEX1D4 is a dynein light chain that belongs to the DYNT1/TCTEX1 family. In spermatozoa, it appears to be important to sperm motility, intraflagellar transport, and acrosome reaction. To contribute to the knowledge on TCTEX1D4 function in testis and spermatozoa, a yeast two-hybrid assay was performed in testis, which allowed the identification of 40 novel TCTEX1D4 interactors. Curiously, another dynein light chain, TCTEX1D2, was identified and its existence demonstrated for the first time in human spermatozoa. Immunofluorescence studies proved that TCTEX1D2 is an intra-acrosomal protein also present in the midpiece, suggesting a role in cargo movement in human spermatozoa. Further, an in silico profile of TCTEX1D4 revealed that most TCTEX1D4 interacting proteins were not previously characterized and the ones described present a very broad nature. This reinforces TCTEX1D4 as a dynein light chain that is capable of interacting with a variety of functionally different proteins. These observations collectively contribute to a deeper molecular understanding of the human spermatozoa function. PMID:24606217

  6. TCTEX1D4 interactome in human testis: unraveling the function of dynein light chain in spermatozoa.

    PubMed

    Freitas, Maria João; Korrodi-Gregório, Luís; Morais-Santos, Filipa; Cruz e Silva, Edgar da; Fardilha, Margarida

    2014-04-01

    Studies were designed to identify the TCTEX1D4 interactome in human testis, with the purpose of unraveling putative protein complexes essential to male reproduction and thus novel TCTEX1D4 functions. TCTEX1D4 is a dynein light chain that belongs to the DYNT1/TCTEX1 family. In spermatozoa, it appears to be important to sperm motility, intraflagellar transport, and acrosome reaction. To contribute to the knowledge on TCTEX1D4 function in testis and spermatozoa, a yeast two-hybrid assay was performed in testis, which allowed the identification of 40 novel TCTEX1D4 interactors. Curiously, another dynein light chain, TCTEX1D2, was identified and its existence demonstrated for the first time in human spermatozoa. Immunofluorescence studies proved that TCTEX1D2 is an intra-acrosomal protein also present in the midpiece, suggesting a role in cargo movement in human spermatozoa. Further, an in silico profile of TCTEX1D4 revealed that most TCTEX1D4 interacting proteins were not previously characterized and the ones described present a very broad nature. This reinforces TCTEX1D4 as a dynein light chain that is capable of interacting with a variety of functionally different proteins. These observations collectively contribute to a deeper molecular understanding of the human spermatozoa function.

  7. Using overlapping sonobuoy data from the Ross Sea to construct a 2D deep crustal velocity model

    NASA Astrophysics Data System (ADS)

    Selvans, M. M.; Clayton, R. W.; Stock, J. M.; Granot, R.

    2012-03-01

    Sonobuoys provide an alternative to using long streamers while conducting multi-channel seismic (MCS) studies, in order to provide deeper velocity control. We present analysis and modeling techniques for interpreting the sonobuoy data and illustrate the method with ten overlapping sonobuoys collected in the Ross Sea, offshore from Antarctica. We demonstrate the importance of using the MCS data to correct for ocean currents and changes in ship navigation, which is required before using standard methods for obtaining a 1D velocity profile from each sonobuoy. We verify our 1D velocity models using acoustic finite-difference (FD) modeling and by performing depth migration on the data, and demonstrate the usefulness of FD modeling for tying interval velocities to the shallow crust imaged using MCS data. Finally, we show how overlapping sonobuoys along an MCS line can be used to construct a 2D velocity model of the crust. The velocity model reveals a thin crust (5.5 ± 0.4 km) at the boundary between the Adare and Northern Basins, and implies that the crustal structure of the Northern Basin may be more similar to that of the oceanic crust in the Adare Basin than to the stretched continental crust further south in the Ross Sea.

  8. Control and imaging of O(1D2) precession

    NASA Astrophysics Data System (ADS)

    Wu, Shiou-Min; Radenovic, Dragana Č.; van der Zande, Wim J.; Groenenboom, Gerrit C.; Parker, David H.; Vallance, Claire; Zare, Richard N.

    2011-01-01

    Larmor precession of a quantum mechanical angular momentum vector about an applied magnetic field forms the basis for a range of magnetic resonance techniques, including nuclear magnetic resonance spectroscopy and magnetic resonance imaging. We have used a polarized laser pump-probe scheme with velocity-map imaging detection to visualize, for the first time, the precessional motion of a quantum mechanical angular momentum vector. Photodissociation of O2 at 157 nm provides a clean source of fast-moving O(1D2) atoms, with their electronic angular momentum vector strongly aligned perpendicular to the recoil direction. In the presence of an external magnetic field, the distribution of atomic angular momenta precesses about the field direction, and polarization-sensitive images of the atomic scattering distribution recorded as a function of field strength yield ‘time-lapse-photography’ style movies of the precessional motion. We present movies recorded in various experimental geometries, and discuss potential consequences and applications in atmospheric chemistry and reaction dynamics.

  9. Vlasov-Poisson in 1D: waterbags

    NASA Astrophysics Data System (ADS)

    Colombi, Stéphane; Touma, Jihad

    2014-07-01

    We revisit in one dimension the waterbag method to solve numerically Vlasov-Poisson equations. In this approach, the phase-space distribution function f (x, v) is initially sampled by an ensemble of patches, the waterbags, where f is assumed to be constant. As a consequence of Liouville theorem, it is only needed to follow the evolution of the border of these waterbags, which can be done by employing an orientated, self-adaptive polygon tracing isocontours of f. This method, which is entropy conserving in essence, is very accurate and can trace very well non-linear instabilities as illustrated by specific examples. As an application of the method, we generate an ensemble of single-waterbag simulations with decreasing thickness to perform a convergence study to the cold case. Our measurements show that the system relaxes to a steady state where the gravitational potential profile is a power law of slowly varying index β, with β close to 3/2 as found in the literature. However, detailed analysis of the properties of the gravitational potential shows that at the centre, β > 1.54. Moreover, our measurements are consistent with the value β = 8/5 = 1.6 that can be analytically derived by assuming that the average of the phase-space density per energy level obtained at crossing times is conserved during the mixing phase. These results are incompatible with the logarithmic slope of the projected density profile β - 2 ≃ -0.47 obtained recently by Schulz et al. using an N-body technique. This sheds again strong doubts on the capability of N-body techniques to converge to the correct steady state expected in the continuous limit.

  10. Dynamical Models of SAURON and CALIFA Galaxies: 1D and 2D Rotational Curves

    NASA Astrophysics Data System (ADS)

    Kalinova, Veselina; van de Ven, G.; Lyubenova, M.; Falcon-Barroso, J.; van den Bosch, R.

    2013-01-01

    The mass of a galaxy is the most important parameter to understand its structure and evolution. The total mass we can infer by constructing dynamical models that fit the motion of the stars and gas in the galaxy. The dark matter content then follows after subtracting the luminous matter inferred from colors and/or spectra. Here, we present the mass distribution of a sample of 18 late-type spiral (Sb-Sd) galaxies, using two-dimensional stellar kinematics obtained with the integral-field spectrograph SAURON. The observed second order velocity moments of these galaxies are fitted with solutions of the Axisymmetric Jeans equations and give us an accurate estimation of the mass-to-light ratio profiles and rotational curves. The rotation curves of the galaxies are obtained by the Asymmetric Drift Correction (ADC) and Multi-Gaussian Expansion (MGE) methods, corresponding to one- and two-dimensional mass distribution. Their comparison shows that the mass distribution based on the 2D stellar kinematics is much more reliable than 1D one. SAURON integral field of view looks at the inner parts of the galaxies in contrast with CALIFA survey. CALIFA survey provides PMAS/PPAK integral-field spectroscopic data of ~ 600 nearby galaxies as part of the Calar Alto Legacy Integral Field Area. We show the first CALIFA dynamical models of different morphological type of galaxies, giving the clue about the mass distribution of galaxies through the whole Hubble sequence and their evolution from the blue cloud to the red sequence.

  11. A 1D exact treatment of shock waves within spectral methods in plane geometry

    NASA Astrophysics Data System (ADS)

    Bonazzola, Silvano; Marck, Jean-Alain

    1991-12-01

    A high-accuracy numerical technique is presented which employs two moving grids, respectively before and after the shock formation, to solve 1D Euler equations that are coupled with the transport equations for the entropy and the chemical abundances in cases with and without shock formation. Chebychev polynomial series are used to expand quantities on both sides of the matching point, and Rankine-Hugoniot conditions are used to ascertain the shock velocity after shock formation. Illustrative results are presented.

  12. Laminar dispersion at high Péclet numbers in finite-length channels: Effects of the near-wall velocity profile and connection with the generalized Leveque problem

    NASA Astrophysics Data System (ADS)

    Giona, M.; Adrover, A.; Cerbelli, S.; Garofalo, F.

    2009-12-01

    This article develops the theory of laminar dispersion in finite-length channel flows at high Péclet numbers, completing the classical Taylor-Aris theory which applies for long-term, long-distance properties. It is shown, by means of scaling analysis and invariant reformulation of the moment equations, that solute dispersion in finite length channels is characterized by the occurrence of a new regime, referred to as the convection-dominated transport. In this regime, the properties of the dispersion boundary layer and the values of the scaling exponents controlling the dependence of the moment hierarchy on the Péclet number are determined by the local near-wall behavior of the axial velocity. Specifically, different scaling laws in the behavior of the moment hierarchy occur, depending whether the cross-sectional boundary is smooth or nonsmooth (e.g., presenting corner points or cusps). This phenomenon marks the difference between the dispersion boundary layer and the thermal boundary layer in the classical Leveque problem. Analytical and numerical results are presented for typical channel cross sections in the Stokes regime.

  13. Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles

    DOE PAGES

    Barron, S. C.; Knepper, R.; Walker, N.; Weihs, T. P.

    2011-01-11

    We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (~1 K/s) using differential scanning calorimetry (DSC) traces to 725ºC. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 105 K/s) inmore » high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (Tmax) are largely independent of foil chemistry at 0.6 ± 0.1 m/s and 1220 ± 50 K, respectively, and that the measured Tmax is more than 200 K lower than predicted adiabatic temperatures (Tad). The difference between Tmax and Tad is explained by the prediction that transformation to the final intermetallic phases occurs after Tmax and results in the release of 20-30 % of the total heat of reaction and a delay in rapid cooling.« less

  14. Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles

    SciTech Connect

    Barron, S. C.; Knepper, R.; Walker, N.; Weihs, T. P.

    2011-01-11

    We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (~1 K/s) using differential scanning calorimetry (DSC) traces to 725ºC. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 105 K/s) in high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (Tmax) are largely independent of foil chemistry at 0.6 ± 0.1 m/s and 1220 ± 50 K, respectively, and that the measured Tmax is more than 200 K lower than predicted adiabatic temperatures (Tad). The difference between Tmax and Tad is explained by the prediction that transformation to the final intermetallic phases occurs after Tmax and results in the release of 20-30 % of the total heat of reaction and a delay in rapid cooling.

  15. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume VI S-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (VI), all S-wave measurements are presented that were performed in Borehole C4997 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  16. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume V S-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (V), all S-wave measurements are presented that were performed in Borehole C4996 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  17. Design, Synthesis, and Functional Activity of Labeled CD1d Glycolipid Agonists

    PubMed Central

    2013-01-01

    Invariant natural killer T cells (iNKT cells) are restricted by CD1d molecules and activated upon CD1d-mediated presentation of glycolipids to T cell receptors (TCRs) located on the surface of the cell. Because the cytokine response profile is governed by the structure of the glycolipid, we sought a method for labeling various glycolipids to study their in vivo behavior. The prototypical CD1d agonist, α-galactosyl ceramide (α-GalCer) 1, instigates a powerful immune response and the generation of a wide range of cytokines when it is presented to iNKT cell TCRs by CD1d molecules. Analysis of crystal structures of the TCR−α-GalCer–CD1d ternary complex identified the α-methylene unit in the fatty acid side chain, and more specifically the pro-S hydrogen at this position, as a site for incorporating a label. We postulated that modifying the glycolipid in this way would exert a minimal impact on the TCR–glycolipid–CD1d ternary complex, allowing the labeled molecule to function as a good mimic for the CD1d agonist under investigation. To test this hypothesis, the synthesis of a biotinylated version of the CD1d agonist threitol ceramide (ThrCer) was targeted. Both diastereoisomers, epimeric at the label tethering site, were prepared, and functional experiments confirmed the importance of substituting the pro-S, and not the pro-R, hydrogen with the label for optimal activity. Significantly, functional experiments revealed that biotinylated ThrCer (S)-10 displayed behavior comparable to that of ThrCer 5 itself and also confirmed that the biotin residue is available for streptavidin and antibiotin antibody recognition. A second CD1d agonist, namely α-GalCer C20:2 4, was modified in a similar way, this time with a fluorescent label. The labeled α-GalCer C20:2 analogue (11) again displayed functional behavior comparable to that of its unlabeled substrate, supporting the notion that the α-methylene unit in the fatty acid amide chain should be a suitable site for

  18. Human serotonin 1D receptor is encoded by a subfamily of two distinct genes: 5-HT1D alpha and 5-HT1D beta.

    PubMed Central

    Weinshank, R L; Zgombick, J M; Macchi, M J; Branchek, T A; Hartig, P R

    1992-01-01

    The serotonin 1D (5-HT1D) receptor is a pharmacologically defined binding site and functional receptor site. Observed variations in the properties of 5-HT1D receptors in different tissues have led to the speculation that multiple receptor proteins with slightly different properties may exist. We report here the cloning, deduced amino acid sequences, pharmacological properties, and second-messenger coupling of a pair of human 5-HT1D receptor genes, which we have designated 5-HT1D alpha and 5-HT1D beta due to their strong similarities in sequence, pharmacological properties, and second-messenger coupling. Both genes are free of introns in their coding regions, are expressed in the human cerebral cortex, and can couple to inhibition of adenylate cyclase activity. The pharmacological binding properties of these two human receptors are very similar, and match closely the pharmacological properties of human, bovine, and guinea pig 5-HT1D sites. Both receptors exhibit high-affinity binding of sumatriptan, a new anti-migraine medication, and thus are candidates for the pharmacological site of action of this drug. Images PMID:1565658

  19. Regulation of inflorescence branch development in rice through a novel pathway involving the pentatricopeptide repeat protein sped1-D.

    PubMed

    Jiang, Guanghuai; Xiang, Yanghai; Zhao, Jiying; Yin, Dedong; Zhao, Xianfeng; Zhu, Lihuang; Zhai, Wenxue

    2014-08-01

    Panicle type has a direct bearing on rice yield. Here, we characterized a rice clustered-spikelet mutant, sped1-D, with shortened pedicels and/or secondary branches, which exhibits decreased pollen fertility. We cloned sped1-D and found that it encodes a pentatricopeptide repeat protein. We investigated the global expression profiles of wild-type, 9311, and sped1-D plants using Illumina RNA sequencing. The expression of several GID1L2 family members was downregulated in the sped1-D mutant, suggesting that the gibberellin (GA) pathway is involved in the elongation of pedicels and/or secondary branches. When we overexpressed one GID1L2, AK070299, in sped1-D plants, the panicle phenotype was restored to varying degrees. In addition, we analyzed the expression of genes that function in floral meristems and found that RFL and WOX3 were severely downregulated in sped1-D. These results suggest that sped1-D may prompt the shortening of pedicels and secondary branches by blocking the action of GID1L2, RFL, and Wox3. Moreover, overexpression of sped1-D in Arabidopsis resulted in the shortening of pedicels and clusters of siliques, which indicates that the function of sped1-D is highly conserved in monocotyledonous and dicotyledonous plants. Sequence data from this article have been deposited with the miRBase Data Libraries under accession no. MI0003201.

  20. Effects of horizontal velocity variations on ultrasonic velocity measurements in open channels

    USGS Publications Warehouse

    Swain, E.D.

    1992-01-01

    Use of an ultrasonic velocity meter to determine discharge in open channels involves measuring the velocity in a line between transducers in the stream and relating that velocity to the average velocity in the stream. The standard method of calculating average velocity in the channel assumes that the velocity profile in the channel can be represented by the one-dimensional von Karman universal velocity profile. However, the velocity profile can be described by a two-dimensional equation that accounts for the horizontal velocity variations induced by the channel sides. An equation to calculate average velocity accounts for the two-dimensional variations in velocity within a stream. The use of this new equation to calculate average velocity was compared to the standard method in theoretical trapezoidal cross sections and in the L-31N and Snapper Creek Extension Canals near Miami, Florida. These comparisons indicate that the two-dimensional variations have the most significant effect in narrow, deep channels. Also, the two-dimensional effects may be significant in some field situations and need to be considered when determining average velocity and discharge with an ultrasonic velocity meter.

  1. Velocity Fields of Axisymmetric Hydrogen-Air Counterflow Diffusion Flames from LDV, PIV, and Numerical Computation

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Wilson, Lloyd G.; Humphreys, William M., Jr.; Bartram, Scott M.; Gartrell, Luther R.; Isaac, K. M.

    1995-01-01

    Laminar fuel-air counterflow diffusion flames (CFDFs) were studied using axisymmetric convergent-nozzle and straight-tube opposed jet burners (OJBs). The subject diagnostics were used to probe a systematic set of H2/N2-air CFDFs over wide ranges of fuel input (22 to 100% Ha), and input axial strain rate (130 to 1700 Us) just upstream of the airside edge, for both plug-flow and parabolic input velocity profiles. Laser Doppler Velocimetry (LDV) was applied along the centerline of seeded air flows from a convergent nozzle OJB (7.2 mm i.d.), and Particle Imaging Velocimetry (PIV) was applied on the entire airside of both nozzle and tube OJBs (7 and 5 mm i.d.) to characterize global velocity structure. Data are compared to numerical results from a one-dimensional (1-D) CFDF code based on a stream function solution for a potential flow input boundary condition. Axial strain rate inputs at the airside edge of nozzle-OJB flows, using LDV and PIV, were consistent with 1-D impingement theory, and supported earlier diagnostic studies. The LDV results also characterized a heat-release hump. Radial strain rates in the flame substantially exceeded 1-D numerical predictions. Whereas the 1-D model closely predicted the max I min axial velocity ratio in the hot layer, it overpredicted its thickness. The results also support previously measured effects of plug-flow and parabolic input strain rates on CFDF extinction limits. Finally, the submillimeter-scale LDV and PIV diagnostics were tested under severe conditions, which reinforced their use with subcentimeter OJB tools to assess effects of aerodynamic strain, and fueVair composition, on laminar CFDF properties, including extinction.

  2. Statistical investigation and thermal properties for a 1-D impact system with dissipation

    NASA Astrophysics Data System (ADS)

    Díaz I., Gabriel; Livorati, André L. P.; Leonel, Edson D.

    2016-05-01

    The behavior of the average velocity, its deviation and average squared velocity are characterized using three techniques for a 1-D dissipative impact system. The system - a particle, or an ensemble of non-interacting particles, moving in a constant gravitation field and colliding with a varying platform - is described by a nonlinear mapping. The average squared velocity allows to describe the temperature for an ensemble of particles as a function of the parameters using: (i) straightforward numerical simulations; (ii) analytically from the dynamical equations; (iii) using the probability distribution function. Comparing analytical and numerical results for the three techniques, one can check the robustness of the developed formalism, where we are able to estimate numerical values for the statistical variables, without doing extensive numerical simulations. Also, extension to other dynamical systems is immediate, including time dependent billiards.

  3. Assessing 1D Atmospheric Solar Radiative Transfer Models: Interpretation and Handling of Unresolved Clouds.

    NASA Astrophysics Data System (ADS)

    Barker, H. W.; Stephens, G. L.; Partain, P. T.; Bergman, J. W.; Bonnel, B.; Campana, K.; Clothiaux, E. E.; Clough, S.; Cusack, S.; Delamere, J.; Edwards, J.; Evans, K. F.; Fouquart, Y.; Freidenreich, S.; Galin, V.; Hou, Y.; Kato, S.; Li, J.;  Mlawer, E.;  Morcrette, J.-J.;  O'Hirok, W.;  Räisänen, P.;  Ramaswamy, V.;  Ritter, B.;  Rozanov, E.;  Schlesinger, M.;  Shibata, K.;  Sporyshev, P.;  Sun, Z.;  Wendisch, M.;  Wood, N.;  Yang, F.

    2003-08-01

    The primary purpose of this study is to assess the performance of 1D solar radiative transfer codes that are used currently both for research and in weather and climate models. Emphasis is on interpretation and handling of unresolved clouds. Answers are sought to the following questions: (i) How well do 1D solar codes interpret and handle columns of information pertaining to partly cloudy atmospheres? (ii) Regardless of the adequacy of their assumptions about unresolved clouds, do 1D solar codes perform as intended?One clear-sky and two plane-parallel, homogeneous (PPH) overcast cloud cases serve to elucidate 1D model differences due to varying treatments of gaseous transmittances, cloud optical properties, and basic radiative transfer. The remaining four cases involve 3D distributions of cloud water and water vapor as simulated by cloud-resolving models. Results for 25 1D codes, which included two line-by-line (LBL) models (clear and overcast only) and four 3D Monte Carlo (MC) photon transport algorithms, were submitted by 22 groups. Benchmark, domain-averaged irradiance profiles were computed by the MC codes. For the clear and overcast cases, all MC estimates of top-of-atmosphere albedo, atmospheric absorptance, and surface absorptance agree with one of the LBL codes to within ±2%. Most 1D codes underestimate atmospheric absorptance by typically 15-25 W m-2 at overhead sun for the standard tropical atmosphere regardless of clouds.Depending on assumptions about unresolved clouds, the 1D codes were partitioned into four genres: (i) horizontal variability, (ii) exact overlap of PPH clouds, (iii) maximum/random overlap of PPH clouds, and (iv) random overlap of PPH clouds. A single MC code was used to establish conditional benchmarks applicable to each genre, and all MC codes were used to establish the full 3D benchmarks. There is a tendency for 1D codes to cluster near their respective conditional benchmarks, though intragenre variances typically exceed those for

  4. INFIL1D: a quasi-analytical model for simulating one-dimensional, constant flux infiltration

    SciTech Connect

    Simmons, C.S.; McKeon, T.J.

    1984-04-01

    The program INFIL1D is designed to calculate approximate wetting-front advance into an unsaturated, uniformly moist, homogeneous soil profile, under constant surface-flux conditions. The code is based on a quasi-analytical method, which utilizes an assumed invariant functional relationship between reduced (normalized) flux and water content. The code uses general hydraulic property data in tabular form to simulate constant surface-flux infiltration. 10 references, 4 figures.

  5. NMR 1D-imaging of water infiltration into mesoporous matrices.

    PubMed

    Le Feunteun, Steven; Diat, Olivier; Guillermo, Armel; Poulesquen, Arnaud; Podor, Renaud

    2011-04-01

    It is shown that coupling nuclear magnetic resonance (NMR) 1D-imaging with the measure of NMR relaxation times and self-diffusion coefficients can be a very powerful approach to investigate fluid infiltration into porous media. Such an experimental design was used to study the very slow seeping of pure water into hydrophobic materials. We consider here three model samples of nuclear waste conditioning matrices which consist in a dispersion of NaNO(3) (highly soluble) and/or BaSO(4) (poorly soluble) salt grains embedded in a bitumen matrix. Beyond studying the moisture progression according to the sample depth, we analyze the water NMR relaxation times and self-diffusion coefficients along its 1D-concentration profile to obtain spatially resolved information on the solution properties and on the porous structure at different scales. It is also shown that, when the relaxation or self-diffusion properties are multimodal, the 1D-profile of each water population is recovered. Three main levels of information were disclosed along the depth-profiles. They concern (i) the water uptake kinetics, (ii) the salinity and the molecular dynamics of the infiltrated solutions and (iii) the microstructure of the water-filled porosities: open networks coexisting with closed pores. All these findings were fully validated and enriched by NMR cryoporometry experiments and by performing environmental scanning electronic microscopy observations. Surprisingly, results clearly show that insoluble salts enhance the water progression and thereby increase the capability of the material to uptake water.

  6. The quest for TPa Hugoniot data: using the DEMG in high velocity pulsed power experiments

    SciTech Connect

    Peterson, Jeff H; Rousculp, Christopher L; Holtkamp, David B; Oro, David M; Griego, Jeffrey R; Atchison, Walter L; Reinovsky, Robert E

    2010-12-20

    ALT-3 is an experiment being designed in collaboration between Russian VNIIEF scientists and LANL that aims to conduct high velocity material experiments to measure shock velocities at pressures near 1 TPa. The DEMG (Disk Explosive Magnetic Generator) is used to drive >60MA currents to accelerate an aluminum liner to speeds in excess of 20 km/s. The 1-D model of the DEMG has been refined from a given current profile to a time-varying inductance. Various techniques are used to model the FOS (Foil Opening Switch) on the DEMG and a refined DEMG model is then used to drive a liner into various targets to determine the optimum design for the experiment and analyze the possible conditions and complications.

  7. Self-consistent one dimension in space and three dimension in velocity kinetic trajectory simulation model of magnetized plasma-wall transition

    SciTech Connect

    Chalise, Roshan Khanal, Raju

    2015-11-15

    We have developed a self-consistent 1d3v (one dimension in space and three dimension in velocity) Kinetic Trajectory Simulation (KTS) model, which can be used for modeling various situations of interest and yields results of high accuracy. Exact ion trajectories are followed, to calculate along them the ion distribution function, assuming an arbitrary injection ion distribution. The electrons, on the other hand, are assumed to have a cut-off Maxwellian velocity distribution at injection and their density distribution is obtained analytically. Starting from an initial guess, the potential profile is iterated towards the final time-independent self-consistent state. We have used it to study plasma sheath region formed in presence of an oblique magnetic field. Our results agree well with previous works from other models, and hence, we expect our 1d3v KTS model to provide a basis for the studying of all types of magnetized plasmas, yielding more accurate results.

  8. Endoplasmic Reticulum Glycoprotein Quality Control Regulates CD1d Assembly and CD1d-mediated Antigen Presentation*

    PubMed Central

    Kunte, Amit; Zhang, Wei; Paduraru, Crina; Veerapen, Natacha; Cox, Liam R.; Besra, Gurdyal S.; Cresswell, Peter

    2013-01-01

    The non-classical major histocompatibility complex (MHC) homologue CD1d presents lipid antigens to innate-like lymphocytes called natural-killer T (NKT) cells. These cells, by virtue of their broad cytokine repertoire, shape innate and adaptive immune responses. Here, we have assessed the role of endoplasmic reticulum glycoprotein quality control in CD1d assembly and function, specifically the role of a key component of the quality control machinery, the enzyme UDP glucose glycoprotein glucosyltransferase (UGT1). We observe that in UGT1-deficient cells, CD1d associates prematurely with β2-microglobulin (β2m) and is able to rapidly exit the endoplasmic reticulum. At least some of these CD1d-β2m heterodimers are shorter-lived and can be rescued by provision of a defined exogenous antigen, α-galactosylceramide. Importantly, we show that in UGT1-deficient cells the CD1d-β2m heterodimers have altered antigenicity despite the fact that their cell surface levels are unchanged. We propose that UGT1 serves as a quality control checkpoint during CD1d assembly and further suggest that UGT1-mediated quality control can shape the lipid repertoire of newly synthesized CD1d. The quality control process may play a role in ensuring stability of exported CD1d-β2m complexes, in facilitating presentation of low abundance high affinity antigens, or in preventing deleterious responses to self lipids. PMID:23615906

  9. A 1D (radial) Plasma Jet Propagation Study for the Plasma Liner Experiment (PLX)

    NASA Astrophysics Data System (ADS)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.; Welch, D. R.; Thoma, C.; Golovkin, I.; Macfarlane, J. J.; Case, A.; Messer, S. J.; Witherspoon, F. D.; Cassibry, J. T.; Awe, T. J.; Hsu, S. C.

    2011-10-01

    The Plasma Liner Experiment will explore the formation of imploding spherical ``plasma liners'' that reach peak pressures of 0.1 Mbar upon stagnation. The liners will be formed through the merging of dense, high velocity plasma jets (n ~1017 cm-3, T ~3 eV, v ~50 km/s) in a spherically convergent geometry. The focus of this 1D (radial) study is argon plasma jet evolution during propagation from the rail gun source to the jet merging radius. The study utilizes the Large Scale Plasma (LSP) PIC code with atomic physics included through the use of a non-Local Thermal Equilibrium (NLTE) Equation of State (EOS) table. We will present scenarios for expected 1D (radial) plasma jet evolution, from upon exiting the PLX rail gun to reaching the jet merging radius. The importance of radiation cooling early in the simulation is highlighted. Work supported by US DOE grant DE-FG02-05ER54835.

  10. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    SciTech Connect

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2014-10-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  11. 1-D and 2-D Probabilistic Inversions of Fault Zone Guided Waves

    NASA Astrophysics Data System (ADS)

    Gulley, A.; Eccles, J. D.; Kaipio, J. P.; Malin, P. E.

    2015-12-01

    Fault Zone Guided Waves (FZGWs) are seismic coda that are trapped by the low velocity damage zone of faults. Inversions of these phases can be carried out using their measured dispersion and a Bayesian probability approach. This method utilises a Markov chain Monte Carlo which allows uncertainties and trade-offs to be quantified. Accordingly we have developed a scheme that estimates the dispersion curve and amplitude response variability from a FZGW record. This method allows the computation of both the point estimates and the covariance of the dispersion curve. The subsequent estimation of fault zone parameters is then based on a Gaussian model for the dispersion curve. We then show that inversions using FZGW dispersion data can only resolve fault zone velocity contrast and fault zone width - it leaves densities, absolute country rock velocities and the earthquake location unresolved. We show that they do however significantly affect the estimated fault zone velocities and widths. As these parameters cannot be resolved, we allow for their effects on the estimates of fault zone width and velocity contrast by using the Bayesian approximation error method. We show that using this method reduces computational time from days to minutes and the associated loss of accuracy is insignificant compared to carrying out the inversion on all parameters. We have extended our scheme to 2-D using 1-D slices. The Bayesian approximation error methodology is further employed to provide a 'correction term' with uncertainty for the 1-D slice approximation. We investigate these features with both synthetic data and FZGW data from the Alpine Fault of New Zealand.

  12. Targeted disruption of CD1d prevents NKT cell development in pigs

    PubMed Central

    Yang, Guan; Artiaga, Bianca L.; Hackmann, Timothy J.; Samuel, Melissa S.; Walters, Eric M; Salek-Ardakani, Shahram; Driver, John P.

    2016-01-01

    Studies in mice genetically lacking natural killer T (NKT) cells show that these lymphocytes make important contributions to both innate and adaptive immune responses. However, the usefulness of murine models to study human NKT cells is limited by the many differences between mice and humans, including that their NKT cell frequencies, subsets and distribution are dissimilar. A more suitable model may be swine that share many metabolic, physiological and growth characteristics with humans and are also similar for NKT cells. Thus, we analyzed genetically modified pigs made deficient for CD1d that is required for the development of Type I invariant NKT (iNKT) cells that express a semi-invariant T cell receptor (TCR) and Type II NKT cells that use variable TCRs. Peripheral blood analyzed by flow cytometry and interferon-γ (IFNγ) enzyme-linked immuno spot (ELISPOT) assays demonstrated that CD1d-knockout pigs completely lack iNKT cells while other leukocyte populations remain intact. CD1d and NKT cells have been shown to be involved in shaping the composition of the commensal microbiota in mice. Therefore, we also compared the fecal microbiota profile between pigs expressing and lacking NKT cells. However, no differences were found between pigs lacking or expressing CD1d. Our results are the first to show that knocking-out CD1d prevents the development of iNKT cells in a non-rodent species. CD1d-deficient pigs should offer a useful model to more accurately determine the contribution of NKT cells for human immune responses. They also have potential for understanding how NKT cells impact the health of commercial swine. PMID:25930071

  13. D1/D5 dopamine receptors modulate spatial memory formation.

    PubMed

    da Silva, Weber C N; Köhler, Cristiano C; Radiske, Andressa; Cammarota, Martín

    2012-02-01

    We investigated the effect of the intra-CA1 administration of the D1/D5 receptor antagonist SCH23390 and the D1/D5 receptor agonist SKF38393 on spatial memory in the water maze. When given immediately, but not 3h after training, SCH23390 hindered long-term spatial memory formation without affecting non-spatial memory or the normal functionality of the hippocampus. On the contrary, post-training infusion of SKF38393 enhanced retention and facilitated the spontaneous recovery of the original spatial preference after reversal learning. Our findings demonstrate that hippocampal D1/D5 receptors play an essential role in spatial memory processing.

  14. 1-D Tremor Streaks: Implications for a Streak Source Model

    NASA Astrophysics Data System (ADS)

    Houston, H.; Ghosh, A.; Vidale, J. E.

    2009-12-01

    Recent observations of non-volcanic tremor in Cascadia and Japan show “streaks” of tremor moving up and down dip in a convergence-parallel direction at “driving velocities” (i.e., 30 to 120 km/hr). Streak lengths of 30 to 40 km are occasionally observed. We explore the implications of these observations for a source model and spectrum of tremor. Key elements involve the extreme geometry and slow “rupture velocity” implied by the streaks. The source spectrum of tremor and other ETS seismic radiation exhibits a spectral falloff roughly as the inverse of frequency (1/f) in contrast to that of earthquakes, which follow a spectral falloff of 1/f squared above a corner frequency. Nevertheless, several observations suggest that the deformation that generates tremor is shear slip in the plate convergence direction. A fundamental question, then, has been what slip source could produce such an observed 1/f falloff over a wide frequency range. We propose a kinematic model, consistent with the 1-D geometry of the tremor streaks, in which fault displacement and width are strongly limited and rupture growth occurs only along fault length, which is oriented in a convergence-parallel direction (up or down dip). This is a version of the well-known Haskell model in which the durations of the two boxcars are very different. A 1/f spectral falloff holds between the corner frequencies associated with the two durations. Thus, the frequency range of the observed 1/f spectral falloff of tremor provides constraints on the durations of the boxcars. Further constraints involve the maximum likely displacement in an ETS event, the rupture velocities of the streaks, and the moment release rate. The narrow streak geometry implies fairly high strain and stress drops, in contrast to the low overall stress drops inferred from tidal modulation of tremor and the low strain across the entire ETS region. The observation of tremor streaks migrating at 10's of km/hour, in conjunction with the

  15. Nonparametric 1-D temperature restoration in lossy media using Tikhonov regularization on sparse radiometry data.

    PubMed

    Jacobsen, Svein; Stauffer, Paul R

    2003-02-01

    Microwave thermometry has the potential to characterize thermal gradients in lossy materials down to a few centimeters depth. The problem of retrieving temperature profiles from sets of brightness temperatures is studied using Galerkin expansion of one-dimensional (1-D) temperature profiles combined with Tikhonov regularization and predefined boundary conditions. From a priori knowledge of the temperature field shape, smooth Chebyshev polynomials are used as basis functions in the series expansion. The proposed estimator does not require iterative calculations that are normally performed using conventional numerical methods for signal parameter estimation and is, thus, very fast. Noise effects versus bandwidth limitations (smoothness of solutions) are studied in terms of four performance indexes defined in the text. In general, statistical spread of the temperature estimator increases with increasing number of Chebyshev polynomials. Systematic deviation from true values (bias) decreases as the number of Chebyshev polynomials increases. Results show that smooth temperature profiles can be reproduced using 6-7 Chebyshev polynomials. With additional constraints such as boundary conditions and maxima localization, a three-frequency-band radiometric scan is sufficient to produce acceptable results in regions with low thermal gradients. As the spatial variability of the 1-D temperature profile increases, more radiometric bands (5-6) are required to provide nonbiased estimates.

  16. 60. BOILER CHAMBER No. 1, D LOOP STEAM GENERATOR AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. BOILER CHAMBER No. 1, D LOOP STEAM GENERATOR AND MAIN COOLANT PUMP LOOKING NORTHEAST (LOCATION OOO) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  17. Severe Hypertriglyceridemia in Glut1D on Ketogenic Diet.

    PubMed

    Klepper, Joerg; Leiendecker, Baerbel; Heussinger, Nicole; Lausch, Ekkehart; Bosch, Friedrich

    2016-04-01

    High-fat ketogenic diets are the only treatment available for Glut1 deficiency (Glut1D). Here, we describe an 8-year-old girl with classical Glut1D responsive to a 3:1 ketogenic diet and ethosuximide. After 3 years on the diet a gradual increase of blood lipids was followed by rapid, severe asymptomatic hypertriglyceridemia (1,910 mg/dL). Serum lipid apheresis was required to determine liver, renal, and pancreatic function. A combination of medium chain triglyceride-oil and a reduction of the ketogenic diet to 1:1 ratio normalized triglyceride levels within days but triggered severe myoclonic seizures requiring comedication with sultiam. Severe hypertriglyceridemia in children with Glut1D on ketogenic diets may be underdiagnosed and harmful. In contrast to congenital hypertriglyceridemias, children with Glut1D may be treated effectively by dietary adjustments alone. PMID:26902182

  18. 1D Nanostructures: Controlled Fabrication and Energy Applications

    SciTech Connect

    Hu, Michael Z.

    2013-01-01

    Jian Wei, Xuchun Song, Chunli Yang, and Michael Z. Hu, 1D Nanostructures: Controlled Fabrication and Energy Applications, Journal of Nanomaterials, published special issue (http://www.hindawi.com/journals/jnm/si/197254/) (2013).

  19. CD1d-restricted peripheral T cell lymphoma in mice and humans.

    PubMed

    Bachy, Emmanuel; Urb, Mirjam; Chandra, Shilpi; Robinot, Rémy; Bricard, Gabriel; de Bernard, Simon; Traverse-Glehen, Alexandra; Gazzo, Sophie; Blond, Olivier; Khurana, Archana; Baseggio, Lucile; Heavican, Tayla; Ffrench, Martine; Crispatzu, Giuliano; Mondière, Paul; Schrader, Alexandra; Taillardet, Morgan; Thaunat, Olivier; Martin, Nadine; Dalle, Stéphane; Le Garff-Tavernier, Magali; Salles, Gilles; Lachuer, Joel; Hermine, Olivier; Asnafi, Vahid; Roussel, Mikael; Lamy, Thierry; Herling, Marco; Iqbal, Javeed; Buffat, Laurent; Marche, Patrice N; Gaulard, Philippe; Kronenberg, Mitchell; Defrance, Thierry; Genestier, Laurent

    2016-05-01

    Peripheral T cell lymphomas (PTCLs) are a heterogeneous entity of neoplasms with poor prognosis, lack of effective therapies, and a largely unknown pathophysiology. Identifying the mechanism of lymphomagenesis and cell-of-origin from which PTCLs arise is crucial for the development of efficient treatment strategies. In addition to the well-described thymic lymphomas, we found that p53-deficient mice also developed mature PTCLs that did not originate from conventional T cells but from CD1d-restricted NKT cells. PTCLs showed phenotypic features of activated NKT cells, such as PD-1 up-regulation and loss of NK1.1 expression. Injections of heat-killed Streptococcus pneumonia, known to express glycolipid antigens activating NKT cells, increased the incidence of these PTCLs, whereas Escherichia coli injection did not. Gene expression profile analyses indicated a significant down-regulation of genes in the TCR signaling pathway in PTCL, a common feature of chronically activated T cells. Targeting TCR signaling pathway in lymphoma cells, either with cyclosporine A or anti-CD1d blocking antibody, prolonged mice survival. Importantly, we identified human CD1d-restricted lymphoma cells within Vδ1 TCR-expressing PTCL. These results define a new subtype of PTCL and pave the way for the development of blocking anti-CD1d antibody for therapeutic purposes in humans. PMID:27069116

  20. TBC1D24 genotype–phenotype correlation

    PubMed Central

    Balestrini, Simona; Milh, Mathieu; Castiglioni, Claudia; Lüthy, Kevin; Finelli, Mattea J.; Verstreken, Patrik; Cardon, Aaron; Stražišar, Barbara Gnidovec; Holder, J. Lloyd; Lesca, Gaetan; Mancardi, Maria M.; Poulat, Anne L.; Repetto, Gabriela M.; Banka, Siddharth; Bilo, Leonilda; Birkeland, Laura E.; Bosch, Friedrich; Brockmann, Knut; Cross, J. Helen; Doummar, Diane; Félix, Temis M.; Giuliano, Fabienne; Hori, Mutsuki; Hüning, Irina; Kayserili, Hulia; Kini, Usha; Lees, Melissa M.; Meenakshi, Girish; Mewasingh, Leena; Pagnamenta, Alistair T.; Peluso, Silvio; Mey, Antje; Rice, Gregory M.; Rosenfeld, Jill A.; Taylor, Jenny C.; Troester, Matthew M.; Stanley, Christine M.; Ville, Dorothee; Walkiewicz, Magdalena; Falace, Antonio; Fassio, Anna; Lemke, Johannes R.; Biskup, Saskia; Tardif, Jessica; Ajeawung, Norbert F.; Tolun, Aslihan; Corbett, Mark; Gecz, Jozef; Afawi, Zaid; Howell, Katherine B.; Oliver, Karen L.; Berkovic, Samuel F.; Scheffer, Ingrid E.; de Falco, Fabrizio A.; Oliver, Peter L.; Striano, Pasquale; Zara, Federico

    2016-01-01

    Objective: To evaluate the phenotypic spectrum associated with mutations in TBC1D24. Methods: We acquired new clinical, EEG, and neuroimaging data of 11 previously unreported and 37 published patients. TBC1D24 mutations, identified through various sequencing methods, can be found online (http://lovd.nl/TBC1D24). Results: Forty-eight patients were included (28 men, 20 women, average age 21 years) from 30 independent families. Eighteen patients (38%) had myoclonic epilepsies. The other patients carried diagnoses of focal (25%), multifocal (2%), generalized (4%), and unclassified epilepsy (6%), and early-onset epileptic encephalopathy (25%). Most patients had drug-resistant epilepsy. We detail EEG, neuroimaging, developmental, and cognitive features, treatment responsiveness, and physical examination. In silico evaluation revealed 7 different highly conserved motifs, with the most common pathogenic mutation located in the first. Neuronal outgrowth assays showed that some TBC1D24 mutations, associated with the most severe TBC1D24-associated disorders, are not necessarily the most disruptive to this gene function. Conclusions: TBC1D24-related epilepsy syndromes show marked phenotypic pleiotropy, with multisystem involvement and severity spectrum ranging from isolated deafness (not studied here), benign myoclonic epilepsy restricted to childhood with complete seizure control and normal intellect, to early-onset epileptic encephalopathy with severe developmental delay and early death. There is no distinct correlation with mutation type or location yet, but patterns are emerging. Given the phenotypic breadth observed, TBC1D24 mutation screening is indicated in a wide variety of epilepsies. A TBC1D24 consortium was formed to develop further research on this gene and its associated phenotypes. PMID:27281533

  1. Unitaxial constant velocity microactuator

    DOEpatents

    McIntyre, Timothy J.

    1994-01-01

    A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-manometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment.

  2. Unitaxial constant velocity microactuator

    DOEpatents

    McIntyre, T.J.

    1994-06-07

    A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment is disclosed. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-nanometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment. 10 figs.

  3. The generalization of upper atmospheric wind and temperature based on the Voigt line shape profile.

    PubMed

    Zhang, Chunmin; He, Jian

    2006-12-25

    The principle of probing the upper atmospheric wind field, which is the Voigt profile spectral line shape, is presented for the first time. By the Fourier Transform of Voigt profile, with the Imaging Spectroscope and the Doppler effect of electromagnetic wave, the distribution and calculation formulae of the velocity field, temperature field, and pressure field of the upper atmosphere wind field are given. The probed source is the two major aurora emission lines originated from the metastable O(1S) and O(1D) at 557.7nm and 630.0nm. From computer simulation and error analysis, the Voigt profile, which is the correlation of the Gaussian profile and Lorentzian profile, is closest to the actual airglow emission lines. PMID:19532147

  4. Long distance transport of ultracold atoms using a 1D optical lattice

    NASA Astrophysics Data System (ADS)

    Schmid, Stefan; Thalhammer, Gregor; Winkler, Klaus; Lang, Florian; Hecker Denschlag, Johannes

    2006-08-01

    We study the horizontal transport of ultracold atoms over macroscopic distances of up to 20 cm with a moving 1D optical lattice. By using an optical Bessel beam to form the optical lattice, we can achieve nearly homogeneous trapping conditions over the full transport length, which is crucial in order to hold the atoms against gravity for such a wide range. Fast transport velocities of up to 6 m s-1 (corresponding to about 1100 photon recoils) and accelerations of up to 2600 m s-2 are reached. Even at high velocities the momentum of the atoms is precisely defined with an uncertainty of less than one photon recoil. This allows for construction of an atom catapult with high kinetic energy resolution, which might have applications in novel collision experiments.

  5. Quantification of ultrasound correlation-based flow velocity mapping and edge velocity gradient measurement.

    PubMed

    Park, Dae Woo; Kruger, Grant H; Rubin, Jonathan M; Hamilton, James; Gottschalk, Paul; Dodde, Robert E; Shih, Albert J; Weitzel, William F

    2013-10-01

    This study investigated the use of ultrasound speckle decorrelation- and correlation-based lateral speckle-tracking methods for transverse and longitudinal blood velocity profile measurement, respectively. By studying the blood velocity gradient at the vessel wall, vascular wall shear stress, which is important in vascular physiology as well as the pathophysiologic mechanisms of vascular diseases, can be obtained. Decorrelation-based blood velocity profile measurement transverse to the flow direction is a novel approach, which provides advantages for vascular wall shear stress measurement over longitudinal blood velocity measurement methods. Blood flow velocity profiles are obtained from measurements of frame-to-frame decorrelation. In this research, both decorrelation and lateral speckle-tracking flow estimation methods were compared with Poiseuille theory over physiologic flows ranging from 50 to 1000 mm/s. The decorrelation flow velocity measurement method demonstrated more accurate prediction of the flow velocity gradient at the wall edge than the correlation-based lateral speckle-tracking method. The novelty of this study is that speckle decorrelation-based flow velocity measurements determine the blood velocity across a vessel. In addition, speckle decorrelation-based flow velocity measurements have higher axial spatial resolution than Doppler ultrasound measurements to enable more accurate measurement of blood velocity near a vessel wall and determine the physiologically important wall shear.

  6. Time-evolution of ion-temperature radial profiles for high performance FRC (HPF) plasma in C-2

    NASA Astrophysics Data System (ADS)

    Gupta, Deepak; Granstedt, E.; Gupta, S.; Magee, R.; Osin, D.; Tuszewski, M.; TAE Team

    2014-10-01

    Measurements of ion temperature profile and its time evolution is important for the understanding of FRC confinement and transport properties. Recently, in C-2 plasma device, FRCs with significantly improved confinement and transport properties are observed (HPF14) using higher formation DC field and Lithium wall conditioning. Time evolutions of ion-temperature profiles in these FRCs are measured using upgraded impurity ions passive Doppler spectroscopy system. Measured line integration profiles are inverted to get the local ion-temperature profiles, by taking in to consideration the local emissivity and directed ion-velocity. These profiles are measured under different C-2 operation conditions; for example, Neutral Beam power, plasma gun and magnetic field configurations. Radial profiles of ion temperature and its time evolution will be presented. Comparison of ion-temperature time-evolution with neutron measurements, deuterium-ion temperature measurements, and 1-d transport modeling will also be presented.

  7. 1D crustal structure from quality seismological data for the Cyprus subduction zone

    NASA Astrophysics Data System (ADS)

    Perk, Şükran; Deǧer, Ali; Özbakır, Karabulut, Hayrullah

    2013-04-01

    The eastern Mediterranean is a tectonically complex region, where long-term subduction and accretion processes have shaped the overall evolution. Recently, many seismic tomography studies have shown subducted slabs of the Neo-Tethyan lithosphere, continuing its subduction in the Hellenic trench, stalled in the Cyprus trench and being torn near the intersection between them. Antalya bay is a key region located on the western flank of the Cyprus Subduction Zone (CSZ), close to the junction between the Hellenic and Cyprus Arcs. Here deep earthquakes are nucleated, which otherwise cannot be seen anywhere else along the CSZ. For this reason, we focus our attention specifically to the Antalya Bay area but also the remaining parts of the CSZ. Several regional studies have been carried out to define the velocity structure beneath the region but none have been able to locate the CSZ. One of the main reasons for this was the lack of incorporation of a wide seismic network in those regional studies. We compile a large catalog of seismicity and relocate earthquakes to infer 1D local crustal structure using the clusters of seismicity. We used seismic data between 2005 - 2011 which are recorded at more than 335 seismic stations operated by several agencies and portable deployments. The data-set is composed of over 10,000 events and earthquakes can be grouped in several distinct clusters. We defined five of these clusters, where the total number of events is more than 4500, among which we selected over 2000 events with the highest data quality. 1-D local P-wave velocity models are developed using this high quality data-set and the earthquakes are relocated using the local velocity models. The compiled and reanalyzed data will contribute to perform local earthquake tomography. Moreover, obtained local velocity models represent a fundamental step towards an improved seismic tomography studies in a very crucial region in the eastern Mediterranean.

  8. Group and phase velocities from deterministic and ambient sources measured during the AlpArray-EASI experiment

    NASA Astrophysics Data System (ADS)

    Kolínský, Petr; Zigone, Dimitri; Fuchs, Florian; Bianchi, Irene; Qorbani, Ehsan; Apoloner, Maria-Theresia; Bokelmann, Götz; AlpArray-EASI Working Group

    2016-04-01

    The Eastern Alpine Seismic Investigation (EASI) was a complementary experiment to the AlpArray project. EASI was composed of 55 broadband seismic stations deployed in a winding swath of 540 km length along longitude 13.350 E from the Czech-German border to the Adriatic Sea. Average north-south inter-station distance was 10 km, the distance of each station to either side of the central line was 6 km. Such a dense linear network allows for surface wave dispersion measurements by both deterministic and ambient noise sources along the same paths. During the experiment (July 2014 - August 2015), three earthquakes ML = 2.6, 2.9 and 4.2 occurred in Austria and Northern Italy only several kilometers off the swath. We measure Rayleigh and Love wave group velocities between the source and a single station for the recorded earthquakes, as well as phase velocities between selected pairs of stations using the standard two-station method. We also calculate cross-correlations of ambient noise between selected pairs of stations and we determine the corresponding group velocity dispersion curves. We propose a comparison of phase velocities between two stations measured from earthquakes with group velocities obtained from cross-correlations for the same station pairs. We also compare group velocities measured at single station using earthquakes, which occurred along the swath, with group velocities measured from cross-correlations. That way we analyze velocities of both deterministic and ambient noise reconstructed surface waves propagating along the same path. We invert the resulting dispersion curves for 1D shear wave velocity profiles with depth and we compile a quasi-2D velocity model along the EASI swath.

  9. Numerical Modeling of Imploding Plasma liners Using the 1D Radiation-Hydrodynamics Code HELIOS

    NASA Astrophysics Data System (ADS)

    Davis, J. S.; Hanna, D. S.; Awe, T. J.; Hsu, S. C.; Stanic, M.; Cassibry, J. T.; Macfarlane, J. J.

    2010-11-01

    The Plasma Liner Experiment (PLX) is attempting to form imploding plasma liners to reach 0.1 Mbar upon stagnation, via 30--60 spherically convergent plasma jets. PLX is partly motivated by the desire to develop a standoff driver for magneto-inertial fusion. The liner density, atomic makeup, and implosion velocity will help determine the maximum pressure that can be achieved. This work focuses on exploring the effects of atomic physics and radiation on the 1D liner implosion and stagnation dynamics. For this reason, we are using Prism Computational Science's 1D Lagrangian rad-hydro code HELIOS, which has both equation of state (EOS) table-lookup and detailed configuration accounting (DCA) atomic physics modeling. By comparing a series of PLX-relevant cases proceeding from ideal gas, to EOS tables, to DCA treatments, we aim to identify how and when atomic physics effects are important for determining the peak achievable stagnation pressures. In addition, we present verification test results as well as brief comparisons to results obtained with RAVEN (1D radiation-MHD) and SPHC (smoothed particle hydrodynamics).

  10. Measuring the Speed of Sound in a 1D Fermi Gas

    NASA Astrophysics Data System (ADS)

    Fry, Jacob; Revelle, Melissa; Hulet, Randall

    2016-05-01

    We report measurements of the speed of sound in a two-spin component, 1D gas of fermionic lithium. The 1D system is an array of one-dimensional tubes created by a 2D optical lattice. By increasing the lattice depth, the tunneling between tubes is sufficiently small to make each an independent 1D system. To measure the speed of sound, we create a density notch at the center of the atom cloud using a sheet of light tuned far from resonance. The dipole force felt by both spin states will be equivalent, so this notch can be thought of as a charge excitation. Once this beam is turned off, the notch propagates to the edge of the atomic cloud with a velocity that depends on the strength of interatomic interactions. We control interactions using a magnetically tuned Feshbach resonance, allowing us to measure the speed of sound over a wide range of interaction. This method may be used to extract the Luttinger parameter vs. interaction strength. Supported by an ARO MURI Grant, NSF, and The Welch Foundation.

  11. Experimental use of TRMM precipitation radar observations in 1D+4D-Var assimilation

    NASA Astrophysics Data System (ADS)

    Benedetti, Angela; Lopez, Philippe; Bauer, Peter; Moreau, Emmanuel

    2005-07-01

    This paper presents a new application of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) observations for indirect assimilation into the European Centre for Medium-Range Weather Forecasts (ECMWF) model. The PR reflectivities are first processed using a one-dimensional variational (1D-Var) method to adjust model temperature and specific humidity. The retrieved Total Column Water Vapour (TCWV) is then assimilated into the operational four-dimensional variational (4D-Var) system. The applicability of the 1D+4D-Var approach to the radar observations is discussed in detail.Several case studies were run to assess the feasibility and the effectiveness of assimilating PR reflectivities with a 1D-Var approach. Results show good behaviour of the 1D-Var system in terms of convergence and stability. Its performance in terms of retrieved TCWV is comparable to that of other 1D-Vars which make use of TRMM Microwave Imager (TMI) observations. When the 1D-Var TCWV pseudo-observations are input into the 4D-Var system, a positive impact is shown in the analysis and the subsequent forecasts, both on moisture-related fields and also on winds and surface pressure. The quality of the forecast is verified using track observations for the tropical cyclones. The track forecasts from the experiments which include 1D-Var TCWV are generally closer to the observed track than a control run. Despite their much smaller spatial coverage than TMI observations, it is found that the PR data have a comparable impact, provided the satellite samples a meaningful portion of the storm, possibly its centre. This is possibly due to the fact that TCWV increments from PR and from TMI brightness temperature have similar magnitudes.These results show that active sensor data can provide indirect yet useful information on the moisture field and that this information can effectively be assimilated to improve the analysis and the forecast of tropical disturbances. Although this is a sub

  12. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures

    NASA Astrophysics Data System (ADS)

    Pang, Xinchang; He, Yanjie; Jung, Jaehan; Lin, Zhiqun

    2016-09-01

    The ability to synthesize a diverse spectrum of one-dimensional (1D) nanocrystals presents an enticing prospect for exploring nanoscale size- and shape-dependent properties. Here we report a general strategy to craft a variety of plain nanorods, core-shell nanorods, and nanotubes with precisely controlled dimensions and compositions by capitalizing on functional bottlebrush-like block copolymers with well-defined structures and narrow molecular weight distributions as nanoreactors. These cylindrical unimolecular nanoreactors enable a high degree of control over the size, shape, architecture, surface chemistry, and properties of 1D nanocrystals. We demonstrate the synthesis of metallic, ferroelectric, upconversion, semiconducting, and thermoelectric 1D nanocrystals, among others, as well as combinations thereof.

  13. The GIRAFFE Archive: 1D and 3D Spectra

    NASA Astrophysics Data System (ADS)

    Royer, F.; Jégouzo, I.; Tajahmady, F.; Normand, J.; Chilingarian, I.

    2013-10-01

    The GIRAFFE Archive (http://giraffe-archive.obspm.fr) contains the reduced spectra observed with the intermediate and high resolution multi-fiber spectrograph installed at VLT/UT2 (ESO). In its multi-object configuration and the different integral field unit configurations, GIRAFFE produces 1D spectra and 3D spectra. We present here the status of the archive and the different functionalities to select and download both 1D and 3D data products, as well as the present content. The two collections are available in the VO: the 1D spectra (summed in the case of integral field observations) and the 3D field observations. These latter products can be explored using the VO Paris Euro3D Client (http://voplus.obspm.fr/ chil/Euro3D).

  14. PC-1D installation manual and user's guide

    SciTech Connect

    Basore, P.A.

    1991-05-01

    PC-1D is a software package for personal computers that uses finite-element analysis to solve the fully-coupled two-carrier semiconductor transport equations in one dimension. This program is particularly useful for analyzing the performance of optoelectronic devices such as solar cells, but can be applied to any bipolar device whose carrier flows are primarily one-dimensional. This User's Guide provides the information necessary to install PC-1D, define a problem for solution, solve the problem, and examine the results. Example problems are presented which illustrate these steps. The physical models and numerical methods utilized are presented in detail. This document supports version 3.1 of PC-1D, which incorporates faster numerical algorithms with better convergence properties than previous versions of the program. 51 refs., 17 figs., 5 tabs.

  15. Pitch-based pattern splitting for 1D layout

    NASA Astrophysics Data System (ADS)

    Nakayama, Ryo; Ishii, Hiroyuki; Mikami, Koji; Tsujita, Koichiro; Yaegashi, Hidetami; Oyama, Kenichi; Smayling, Michael C.; Axelrad, Valery

    2015-07-01

    The pattern splitting algorithm for 1D Gridded-Design-Rules layout (1D layout) for sub-10 nm node logic devices is shown. It is performed with integer linear programming (ILP) based on the conflict graph created from a grid map for each designated pitch. The relation between the number of times for patterning and the minimum pitch is shown systematically with a sample pattern of contact layer for each node. From the result, the number of times for patterning for 1D layout is fewer than that for conventional 2D layout. Moreover, an experimental result including SMO and total integrated process with hole repair technique is presented with the sample pattern of contact layer whose pattern density is relatively high among critical layers (fin, gate, local interconnect, contact, and metal).

  16. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures.

    PubMed

    Pang, Xinchang; He, Yanjie; Jung, Jaehan; Lin, Zhiqun

    2016-09-16

    The ability to synthesize a diverse spectrum of one-dimensional (1D) nanocrystals presents an enticing prospect for exploring nanoscale size- and shape-dependent properties. Here we report a general strategy to craft a variety of plain nanorods, core-shell nanorods, and nanotubes with precisely controlled dimensions and compositions by capitalizing on functional bottlebrush-like block copolymers with well-defined structures and narrow molecular weight distributions as nanoreactors. These cylindrical unimolecular nanoreactors enable a high degree of control over the size, shape, architecture, surface chemistry, and properties of 1D nanocrystals. We demonstrate the synthesis of metallic, ferroelectric, upconversion, semiconducting, and thermoelectric 1D nanocrystals, among others, as well as combinations thereof. PMID:27634531

  17. Flexible Photodetectors Based on 1D Inorganic Nanostructures

    PubMed Central

    Lou, Zheng

    2015-01-01

    Flexible photodetectors with excellent flexibility, high mechanical stability and good detectivity, have attracted great research interest in recent years. 1D inorganic nanostructures provide a number of opportunities and capabilities for use in flexible photodetectors as they have unique geometry, good transparency, outstanding mechanical flexibility, and excellent electronic/optoelectronic properties. This article offers a comprehensive review of several types of flexible photodetectors based on 1D nanostructures from the past ten years, including flexible ultraviolet, visible, and infrared photodetectors. High‐performance organic‐inorganic hybrid photodetectors, as well as devices with 1D nanowire (NW) arrays, are also reviewed. Finally, new concepts of flexible photodetectors including piezophototronic, stretchable and self‐powered photodetectors are examined to showcase the future research in this exciting field. PMID:27774404

  18. Universal low-energy physics in 1D strongly repulsive multi-component Fermi gases

    NASA Astrophysics Data System (ADS)

    Jiang, Yuzhu; He, Peng; Guan, Xi-Wen

    2016-04-01

    It has been shown (Yang and You 2011 Chin. Phys. Lett. 28 020503) that at zero temperature the ground state of the one-dimensional (1D) w-component Fermi gas coincides with that of the spinless Bose gas in the limit ω \\to ∞ . This behavior was experimentally evidenced through quasi-1D tightly trapping ultracold 173Yb atoms in a recent paper (Pagano et al 2014 Nat. Phys. 10 198). However, understanding of low-temperature behavior of Fermi gases with a repulsive interaction requires spin-charge separated conformal field theories of an effective Tomonaga-Luttinger liquid and an antiferromagnetic SU(w) Heisenberg spin chain. Here we analytically derive universal thermodynamics of 1D strongly repulsive fermionic gases with SU(w) symmetry via the Yang-Yang thermodynamic Bethe ansatz method. The analytical free energy and magnetic properties of the systems at low temperature in a weak magnetic field are obtained through the Wiener-Hopf method. In particular, the free energy essentially manifests the spin-charge separated conformal field theories for high-symmetry systems with arbitrary repulsive interaction strength. We also find that the sound velocity of the Fermi gases in the large w limit coincides with that for the spinless Bose gas, whereas the spin velocity vanishes quickly as w becomes large. This indicates strong suppression of the Fermi exclusion statistics by the commutativity feature among the w-component fermions with different spin states in the Tomonaga-Luttinger liquid phase. Moreover, the equations of state and critical behavior of physical quantities at finite temperature are analytically derived in terms of the polylogarithm functions in the quantum critical region.

  19. GIS-BASED 1-D DIFFUSIVE WAVE OVERLAND FLOW MODEL

    SciTech Connect

    KALYANAPU, ALFRED; MCPHERSON, TIMOTHY N.; BURIAN, STEVEN J.

    2007-01-17

    This paper presents a GIS-based 1-d distributed overland flow model and summarizes an application to simulate a flood event. The model estimates infiltration using the Green-Ampt approach and routes excess rainfall using the 1-d diffusive wave approximation. The model was designed to use readily available topographic, soils, and land use/land cover data and rainfall predictions from a meteorological model. An assessment of model performance was performed for a small catchment and a large watershed, both in urban environments. Simulated runoff hydrographs were compared to observations for a selected set of validation events. Results confirmed the model provides reasonable predictions in a short period of time.

  20. Observation of Dynamical Fermionization in 1D Bose Gases

    NASA Astrophysics Data System (ADS)

    Malvania, Neel; Xia, Lin; Xu, Wei; Wilson, Joshua M.; Zundel, Laura A.; Rigol, Marcos; Weiss, David S.

    2016-05-01

    The momentum distribution of a harmonically trapped 1D Bose gases in the Tonks-Girardeau limit is expected to undergo dynamical fermionization. That is, after the harmonic trap is suddenly turned off, the momentum distribution steadily transforms into that of an ideal Fermi gas in the same initial trap. We measure 1D momentum distributions at variable times after such a quench, and observe the predicted dynamical fermionization. In addition to working in the strong coupling limit, we also perform the experiment with intermediate coupling, where theoretical calculations are more challenging.

  1. 2D ESR image reconstruction from 1D projections using the modulated field gradient method

    NASA Astrophysics Data System (ADS)

    Páli, T.; Sass, L.; Horvat, L. I.; Ebert, B.

    A method for the reconstruction of 2D ESR images from 1 D projections which is based on the modulated field gradient method has been explored. The 2D distribution of spin-labeled stearic acid in oriented and unoriented dimyristoyl phosphatidylcholine multilayers on a flat quartz support was determined. Such samples are potentially useful for the determination of lipid lateral diffusion in oriented multilayers by monitoring the spreading of a sharp concentration profile in one or two dimensions. The limitations of the method are discussed and the improvements which are needed for dynamic measurements are outlined.

  2. ESTIMATION OF S-WAVE VELOCITY STRUCTURE OF FUKUI PLAIN BASED ON MICROTREMOR ARRAY OBSERVATION

    NASA Astrophysics Data System (ADS)

    Kojima, Keisuke; Moto, Koudai

    The precise evaluations of Quaternary structure of the region are indispensable in order to accurately predict the seismic damage. However, deep borehole, PS-logging and elastic wave exploration have been executed only on limited points around the Fukui Plain. The problem analyzed in this study is statistical estimation of the 3D S-wave velocity structure down to the Tertiary bedrock of the Fukui Plain based on the data from 75 microtremor array observation sites. The Rayleigh wave phase velocities at each array site were calculated by the spatial autocorrelation method. The phase velocities at each site were inverted to a 1D S-wave profile using a genetic inversion. The 3-components single-site microtremor observations were carried out to compensate the array observations. The 3D S-wave velocity structure around the Fukui plain have been interpolated by using Kriging and Co-Kriging techniques. In the Co-Kriging procedure, the correlations between the estimated depths of Quaternary and the observed predominant periods of the sites were taken into account. The validity of the estimated structure from the microtremor observation was confirmed by comparing with the density structure and with the existing PS-logging data.

  3. Non-cooperative Brownian donkeys: A solvable 1D model

    NASA Astrophysics Data System (ADS)

    Jiménez de Cisneros, B.; Reimann, P.; Parrondo, J. M. R.

    2003-12-01

    A paradigmatic 1D model for Brownian motion in a spatially symmetric, periodic system is tackled analytically. Upon application of an external static force F the system's response is an average current which is positive for F < 0 and negative for F > 0 (absolute negative mobility). Under suitable conditions, the system approaches 100% efficiency when working against the external force F.

  4. 1D design style implications for mask making and CEBL

    NASA Astrophysics Data System (ADS)

    Smayling, Michael C.

    2013-09-01

    At advanced nodes, CMOS logic is being designed in a highly regular design style because of the resolution limitations of optical lithography equipment. Logic and memory layouts using 1D Gridded Design Rules (GDR) have been demonstrated to nodes beyond 12nm.[1-4] Smaller nodes will require the same regular layout style but with multiple patterning for critical layers. One of the significant advantages of 1D GDR is the ease of splitting layouts into lines and cuts. A lines and cuts approach has been used to achieve good pattern fidelity and process margin to below 12nm.[4] Line scaling with excellent line-edge roughness (LER) has been demonstrated with self-aligned spacer processing.[5] This change in design style has important implications for mask making: • The complexity of the masks will be greatly reduced from what would be required for 2D designs with very complex OPC or inverse lithography corrections. • The number of masks will initially increase, as for conventional multiple patterning. But in the case of 1D design, there are future options for mask count reduction. • The line masks will remain simple, with little or no OPC, at pitches (1x) above 80nm. This provides an excellent opportunity for continual improvement of line CD and LER. The line pattern will be processed through a self-aligned pitch division sequence to divide pitch by 2 or by 4. • The cut masks can be done with "simple OPC" as demonstrated to beyond 12nm.[6] Multiple simple cut masks may be required at advanced nodes. "Coloring" has been demonstrated to below 12nm for two colors and to 8nm for three colors. • Cut/hole masks will eventually be replaced by e-beam direct write using complementary e-beam lithography (CEBL).[7-11] This transition is gated by the availability of multiple column e-beam systems with throughput adequate for high- volume manufacturing. A brief description of 1D and 2D design styles will be presented, followed by examples of 1D layouts. Mask complexity for 1

  5. Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling

    NASA Astrophysics Data System (ADS)

    Godolt, M.; Grenfell, J. L.; Kitzmann, D.; Kunze, M.; Langematz, U.; Patzer, A. B. C.; Rauer, H.; Stracke, B.

    2016-07-01

    Context. The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. The applicability of one-dimensional (1D) climate models for the estimation of the HZ boundaries has been questioned by recent three-dimensional (3D) climate studies. While 3D studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for extrasolar planets. Aims: We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like extrasolar planets by comparing our 1D model results to those of 3D climate studies in the literature. We vary the two important planetary properties, surface albedo and relative humidity, in the 1D model. These depend on climate feedbacks that are not treated self-consistently in most 1D models. Methods: We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. We compared the results to those of 3D model calculations available in the literature and investigated to what extent the 1D model can approximate the surface temperatures calculated by the 3D models. Results: The 1D parameter study results in a large range of climates possible for an Earth-sized planet with an Earth-like atmosphere and water reservoir at a certain stellar insolation. At some stellar insolations the full spectrum of climate states could be realized, i.e., uninhabitable conditions due to surface temperatures that are too high or too low as well as habitable surface conditions, depending only on the relative humidity and surface albedo assumed. When

  6. Dynamics of the reactions of O(1D) with HCl, DCl, and Cl2

    NASA Astrophysics Data System (ADS)

    Matsumi, Yutaka; Tonokura, Kenichi; Kawasaki, Masahiro; Tsuji, Kazuhide; Obi, Kinichi

    1993-05-01

    The reactions O(1D)+HCl→OH+Cl (1a) and OCl+H (1b), O(1D)+DCl→OD+Cl (2a) and OCl+D (2b), and O(1D)+Cl2→OCl+Cl (3) are studied at an average collision energy of 7.6, 7.7, and 8.8 kcal/mol for (1), (2), and (3), respectively. H, D, and Cl atoms are detected by the resonance-enhanced multiphoton ionization technique. The average kinetic energies released to the products are estimated from Doppler profile measurements of the product atoms. The relative yields [OCl+H]/[OH+Cl] and [OCl+D]/[OD+Cl] are directly measured, and a strong isotope effect (H/D) on the relative yields is found. The fine-structure branding ratios [Cl(2P1/2]/[Cl(2P3/2)] of the reaction products are also measured. The results suggest that nonadiabatic couplings take place at the exit channels of the reactions (1a) and (2a), while the reaction (3) is totally adiabatic.

  7. Nonlinear Landau damping and formation of Bernstein-Greene-Kruskal structures for plasmas with q-nonextensive velocity distributions

    SciTech Connect

    Raghunathan, M.; Ganesh, R.

    2013-03-15

    In the past, long-time evolution of an initial perturbation in collisionless Maxwellian plasma (q = 1) has been simulated numerically. The controversy over the nonlinear fate of such electrostatic perturbations was resolved by Manfredi [Phys. Rev. Lett. 79, 2815-2818 (1997)] using long-time simulations up to t=1600{omega}{sub p}{sup -1}. The oscillations were found to continue indefinitely leading to Bernstein-Greene-Kruskal (BGK)-like phase-space vortices (from here on referred as 'BGK structures'). Using a newly developed, high resolution 1D Vlasov-Poisson solver based on piecewise-parabolic method (PPM) advection scheme, we investigate the nonlinear Landau damping in 1D plasma described by toy q-distributions for long times, up to t=3000{omega}{sub p}{sup -1}. We show that BGK structures are found only for a certain range of q-values around q = 1. Beyond this window, for the generic parameters, no BGK structures were observed. We observe that for values of q<1 where velocity distributions have long tails, strong Landau damping inhibits the formation of BGK structures. On the other hand, for q>1 where distribution has a sharp fall in velocity, the formation of BGK structures is rendered difficult due to high wave number damping imposed by the steep velocity profile, which had not been previously reported. Wherever relevant, we compare our results with past work.

  8. Localized self-heating in large arrays of 1D nanostructures

    NASA Astrophysics Data System (ADS)

    Monereo, O.; Illera, S.; Varea, A.; Schmidt, M.; Sauerwald, T.; Schütze, A.; Cirera, A.; Prades, J. D.

    2016-02-01

    One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal efficiency was attributed to the small dimensions of the objects). Infrared thermography and Raman spectroscopy were used to map the temperature profiles of films based on random arrangements of carbon nanofibers during self-heating. Both the techniques demonstrate consistently that heating concentrates in small regions, the here-called ``hot-spots''. On correlating dynamic temperature mapping with electrical measurements, we also observed that these minute hot-spots rule the resistance values observed macroscopically. A physical model of a random network of 1D resistors helped us to explain this observation. The model shows that, for a given random arrangement of 1D nanowires, current spreading through the network ends up defining a set of spots that dominate both the electrical resistance and power dissipation. Such highly localized heating explains the high power savings observed in larger nanostructured systems. This understanding opens a path to design highly efficient self-heating systems, based on random or pseudo-random distributions of 1D nanostructures.One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal

  9. Development of the mean velocity distribution in rectangular jets

    NASA Technical Reports Server (NTRS)

    Morrison, G. L.; Swan, D. H.; Deotte, R. E., Jr.

    1992-01-01

    The mean flowfield of 1 x 2 and 1 x 4 aspect ratio rectangular jets has been measured using a laser Doppler anemometer system. The development of the downstream velocity distribution is analyzed with respect to centerline velocity decay, shear layer growth, axis switching, and velocity profile development. Comparisons are made with axisymmetric, planar, and other rectangular jets.

  10. Constraints on Shear Velocity in the Cratonic Upper Mantle From Rayleigh Wave Phase Velocity

    NASA Astrophysics Data System (ADS)

    Hirsch, A. C.; Dalton, C. A.

    2014-12-01

    In recent years, the prevailing notion of Precambrian continental lithosphere as a thick boundary layer (200-300 km), defined by a depleted composition and a steady-state conductively cooled temperature structure, has been challenged by several lines of seismological evidence. One, profiles of shear velocity with depth beneath cratons exhibit lower wave speed at shallow depths and higher wave speed at greater depths than can be explained by temperature alone. These profiles are also characterized by positive or flat velocity gradients with depth and anomalously high attenuation in the uppermost mantle, both of which are difficult to reconcile with the low temperatures and large thermal gradient expected with a thermal boundary layer. Two, body-wave receiver-function studies have detected a mid-lithospheric discontinuity that requires a large and abrupt velocity decrease with depth in cratonic regions that cannot be achieved by thermal gradients alone. Here, we used forward-modeling to identify the suite of shear-velocity profiles that are consistent with phase-velocity observations made for Rayleigh waves that primarily traversed cratons in North America, South America, Africa, and Australia. We considered two approaches; with the first, depth profiles of shear velocity were predicted from thermal models of the cratonic upper mantle that correspond to a range of assumed values of mantle potential temperature, surface heat flow, and radiogenic heat production in the crust and upper mantle. With the second approach, depth profiles of shear velocity were randomly generated. In both cases, Rayleigh wave phase velocity was calculated from the Earth models and compared to the observed values. We show that it is very difficult to match the observations with an Earth model containing a low-velocity zone in the upper mantle; instead, the best-fit models contain a flat or positive velocity gradient with depth. We explore the implications of this result for the thermal and

  11. 1-D Numerical Analysis of ABCC Engine Performance

    NASA Technical Reports Server (NTRS)

    Holden, Richard

    1999-01-01

    ABCC engine combines air breathing and rocket engine into a single engine to increase the specific impulse over an entire flight trajectory. Except for the heat source, the basic operation of the ABCC is similar to the basic operation of the RBCC engine. The ABCC is intended to have a higher specific impulse than the RBCC for single stage Earth to orbit vehicle. Computational fluid dynamics (CFD) is a useful tool for the analysis of complex transport processes in various components in ABCC propulsion system. The objective of the present research was to develop a transient 1-D numerical model using conservation of mass, linear momentum, and energy equations that could be used to predict flow behavior throughout a generic ABCC engine following a flight path. At specific points during the development of the 1-D numerical model a myriad of tests were performed to prove the program produced consistent, realistic numbers that follow compressible flow theory for various inlet conditions.

  12. Phase diagram of a bulk 1d lattice Coulomb gas

    NASA Astrophysics Data System (ADS)

    Démery, V.; Monsarrat, R.; Dean, D. S.; Podgornik, R.

    2016-01-01

    The exact solution, via transfer matrix, of the simple one-dimensional lattice Coulomb gas (1d LCG) model can reproduce peculiar features of ionic liquid capacitors, such as overscreening, layering, and camel- and bell-shaped capacitance curves. Using the same transfer matrix method, we now compute the bulk properties of the 1d LCG in the constant voltage ensemble. We unveil a phase diagram with rich structure exhibiting low-density disordered and high-density ordered phases, separated by a first-order phase transition at low temperature; the solid state at full packing can be ordered or not, depending on the temperature. This phase diagram, which is strikingly similar to its three-dimensional counterpart, also sheds light on the behaviour of the confined system.

  13. 1D Josephson quantum interference grids: diffraction patterns and dynamics

    NASA Astrophysics Data System (ADS)

    Lucci, M.; Badoni, D.; Corato, V.; Merlo, V.; Ottaviani, I.; Salina, G.; Cirillo, M.; Ustinov, A. V.; Winkler, D.

    2016-02-01

    We investigate the magnetic response of transmission lines with embedded Josephson junctions and thus generating a 1D underdamped array. The measured multi-junction interference patterns are compared with the theoretical predictions for Josephson supercurrent modulations when an external magnetic field couples both to the inter-junction loops and to the junctions themselves. The results provide a striking example of the analogy between Josephson phase modulation and 1D optical diffraction grid. The Fiske resonances in the current-voltage characteristics with voltage spacing {Φ0}≤ft(\\frac{{\\bar{c}}}{2L}\\right) , where L is the total physical length of the array, {Φ0} the magnetic flux quantum and \\bar{c} the speed of light in the transmission line, demonstrate that the discrete line supports stable dynamic patterns generated by the ac Josephson effect interacting with the cavity modes of the line.

  14. Morphodynamics and sediment tracers in 1-D (MAST-1D): 1-D sediment transport that includes exchange with an off-channel sediment reservoir

    NASA Astrophysics Data System (ADS)

    Lauer, J. Wesley; Viparelli, Enrica; Piégay, Hervé

    2016-07-01

    Bed material transported in geomorphically active gravel bed rivers often has a local source at nearby eroding banks and ends up sequestered in bars not far downstream. However, most 1-D numerical models for gravel transport assume that gravel originates from and deposits on the channel bed. In this paper, we present a 1-D framework for simulating morphodynamic evolution of bed elevation and size distribution in a gravel-bed river that actively exchanges sediment with its floodplain, which is represented as an off-channel sediment reservoir. The model is based on the idea that sediment enters the channel at eroding banks whose elevation depends on total floodplain sediment storage and on the average elevation of the floodplain relative to the channel bed. Lateral erosion of these banks occurs at a specified rate that can represent either net channel migration or channel widening. Transfer of material out of the channel depends on a typical bar thickness and a specified lateral exchange rate due either to net channel migration or narrowing. The model is implemented using an object oriented framework that allows users to explore relationships between bank supply, bed structure, and lateral change rates. It is applied to a ∼50-km reach of the Ain River, France, that experienced significant reduction in sediment supply due to dam construction during the 20th century. Results are strongly sensitive to lateral exchange rates, showing that in this reach, the supply of sand and gravel at eroding banks and the sequestration of gravel in point bars can have strong influence on overall reach-scale sediment budgets.

  15. A FAP46 mutant provides new insights into the function and assembly of the C1d complex of the ciliary central apparatus.

    PubMed

    Brown, Jason M; Dipetrillo, Christen G; Smith, Elizabeth F; Witman, George B

    2012-08-15

    Virtually all motile eukaryotic cilia and flagella have a '9+2' axoneme in which nine doublet microtubules surround two singlet microtubules. Associated with the central pair of microtubules are protein complexes that form at least seven biochemically and structurally distinct central pair projections. Analysis of mutants lacking specific projections has indicated that each may play a unique role in the control of flagellar motility. One of these is the C1d projection previously shown to contain the proteins FAP54, FAP46, FAP74 and FAP221/Pcdp1, which exhibits Ca(2+)-sensitive calmodulin binding. Here we report the isolation and characterization of a Chlamydomonas reinhardtii null mutant for FAP46. This mutant, fap46-1, lacks the C1d projection and has impaired motility, confirming the importance of this projection for normal flagellar movement. Those cells that are motile have severe defects in phototaxis and the photoshock response, underscoring a role for the C1d projection in Ca(2+)-mediated flagellar behavior. The data also reveal for the first time that the C1d projection is involved in the control of interdoublet sliding velocity. Our studies further identify a novel C1d subunit that we term C1d-87, give new insight into relationships between the C1d subunits, and provide evidence for multiple sites of calmodulin interaction within the C1d projection. These results represent significant advances in our understanding of an important but little studied axonemal structure. PMID:22573824

  16. Enhancing Solar Cell Efficiencies through 1-D Nanostructures

    PubMed Central

    2009-01-01

    The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D) nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.

  17. Constructing 3D interaction maps from 1D epigenomes

    PubMed Central

    Zhu, Yun; Chen, Zhao; Zhang, Kai; Wang, Mengchi; Medovoy, David; Whitaker, John W.; Ding, Bo; Li, Nan; Zheng, Lina; Wang, Wei

    2016-01-01

    The human genome is tightly packaged into chromatin whose functional output depends on both one-dimensional (1D) local chromatin states and three-dimensional (3D) genome organization. Currently, chromatin modifications and 3D genome organization are measured by distinct assays. An emerging question is whether it is possible to deduce 3D interactions by integrative analysis of 1D epigenomic data and associate 3D contacts to functionality of the interacting loci. Here we present EpiTensor, an algorithm to identify 3D spatial associations within topologically associating domains (TADs) from 1D maps of histone modifications, chromatin accessibility and RNA-seq. We demonstrate that active promoter–promoter, promoter–enhancer and enhancer–enhancer associations identified by EpiTensor are highly concordant with those detected by Hi-C, ChIA-PET and eQTL analyses at 200 bp resolution. Moreover, EpiTensor has identified a set of interaction hotspots, characterized by higher chromatin and transcriptional activity as well as enriched TF and ncRNA binding across diverse cell types, which may be critical for stabilizing the local 3D interactions. PMID:26960733

  18. Constructing 3D interaction maps from 1D epigenomes.

    PubMed

    Zhu, Yun; Chen, Zhao; Zhang, Kai; Wang, Mengchi; Medovoy, David; Whitaker, John W; Ding, Bo; Li, Nan; Zheng, Lina; Wang, Wei

    2016-01-01

    The human genome is tightly packaged into chromatin whose functional output depends on both one-dimensional (1D) local chromatin states and three-dimensional (3D) genome organization. Currently, chromatin modifications and 3D genome organization are measured by distinct assays. An emerging question is whether it is possible to deduce 3D interactions by integrative analysis of 1D epigenomic data and associate 3D contacts to functionality of the interacting loci. Here we present EpiTensor, an algorithm to identify 3D spatial associations within topologically associating domains (TADs) from 1D maps of histone modifications, chromatin accessibility and RNA-seq. We demonstrate that active promoter-promoter, promoter-enhancer and enhancer-enhancer associations identified by EpiTensor are highly concordant with those detected by Hi-C, ChIA-PET and eQTL analyses at 200 bp resolution. Moreover, EpiTensor has identified a set of interaction hotspots, characterized by higher chromatin and transcriptional activity as well as enriched TF and ncRNA binding across diverse cell types, which may be critical for stabilizing the local 3D interactions. PMID:26960733

  19. Molecular characterization of zebrafish Oatp1d1 (Slco1d1), a novel organic anion-transporting polypeptide.

    PubMed

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2013-11-22

    The organic anion-transporting polypeptide (OATP/Oatp) superfamily includes a group of polyspecific transporters that mediate transport of large amphipathic, mostly anionic molecules across cell membranes of eukaryotes. OATPs/Oatps are involved in the disposition and elimination of numerous physiological and foreign compounds. However, in non-mammalian species, the functional properties of Oatps remain unknown. We aimed to elucidate the role of Oatp1d1 in zebrafish to gain insights into the functional and structural evolution of the OATP1/Oatp1 superfamily. We show that diversification of the OATP1/Oatp1 family occurs after the emergence of jawed fish and that the OATP1A/Oatp1a and OATP1B/Oatp1b subfamilies appeared at the root of tetrapods. The Oatp1d subfamily emerged in teleosts and is absent in tetrapods. The zebrafish Oatp1d1 is similar to mammalian OATP1A/Oatp1a and OATP1B/Oatp1b members, with the main physiological role in transport and balance of steroid hormones. Oatp1d1 activity is dependent upon pH gradient, which could indicate bicarbonate exchange as a mode of transport. Our analysis of evolutionary conservation and structural properties revealed that (i) His-79 in intracellular loop 3 is conserved within OATP1/Oatp1 family and is crucial for the transport activity; (ii) N-glycosylation impacts membrane targeting and is conserved within the OATP1/Oatp1 family with Asn-122, Asn-133, Asn-499, and Asn-512 residues involved; (iii) the evolutionarily conserved cholesterol recognition interaction amino acid consensus motif is important for membrane localization; and (iv) Oatp1d1 is present in dimeric and possibly oligomeric form in the cell membrane. In conclusion, we describe the first detailed characterization of a new Oatp transporter in zebrafish, offering important insights into the functional evolution of the OATP1/Oatp1 family and the physiological role of Oatp1d1.

  20. Adiabat Shaping of ICF Capsules Using Ramped Pressure Profiles

    NASA Astrophysics Data System (ADS)

    Anderson, K.; Betti, R.; Collins, T. J. B.; Marinak, M. M.; Haan, S. W.

    2002-11-01

    Target design of direct-drive ICF capsules has historically involved a compromise between high 1-D (clean) yield and capsule stability. Low-adiabat fuel is desirable to achieve high compression and, hence, high yield. A higher adiabat at the ablation front reduces the growth rate of the Raleigh--Taylor instability due to higher ablation velocity. An optimal target design will take advantage of both by shaping the adiabat of the capsule to allow for high adiabat in the material that is to be ablated and low adiabat in the remaining fuel. We present here a method of adiabat shaping using a low-intensity prepulse followed by laser shutoff before beginning the main drive pulse. This creates a decaying shock with a ramped pressure profile behind it. Since the prepulse is low intensity, the adiabat is not strongly affected by the prepulse. The main shock is then launched up this ramped pressure profile to set the adiabat. Because the main shock sees an increasing pressure profile, the effective strength of the shock decreases as it propagates through the shell, thus creating a smooth adiabat profile from high outer-shell adiabat to low inner-shell adiabat. Results of simulations using 1-D LILAC and 2-D DRACO (LLE), as well as 1-D and 2-D HYDRA (LLNL), are presented. This work was supported by the U.S. DOE Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460 and by the University of California LLNL under contract No. W-7405-Eng-48.

  1. Survey of Multi-Material Closure Models in 1D Lagrangian Hydrodynamics

    SciTech Connect

    Maeng, Jungyeoul Brad; Hyde, David Andrew Bulloch

    2015-07-28

    Accurately treating the coupled sub-cell thermodynamics of computational cells containing multiple materials is an inevitable problem in hydrodynamics simulations, whether due to initial configurations or evolutions of the materials and computational mesh. When solving the hydrodynamics equations within a multi-material cell, we make the assumption of a single velocity field for the entire computational domain, which necessitates the addition of a closure model to attempt to resolve the behavior of the multi-material cells’ constituents. In conjunction with a 1D Lagrangian hydrodynamics code, we present a variety of both the popular as well as more recently proposed multi-material closure models and survey their performances across a spectrum of examples. We consider standard verification tests as well as practical examples using combinations of fluid, solid, and composite constituents within multi-material mixtures. Our survey provides insights into the advantages and disadvantages of various multi-material closure models in different problem configurations.

  2. Experimental investigations of heat transport dynamics in a 1D porous medium column

    NASA Astrophysics Data System (ADS)

    Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicoletta M.

    2016-04-01

    A laboratory physical model has been set up to analyse the forced convective flow and the related heat transport dynamics through a 1d porous medium column. In particular, the experiments regard the observation of thermal breakthrough curves obtained through a continuous flow injection in correspondence of eight thermocouple positioned uniformly along a thermally isolated column of porous medium. The experiment has been conducted for different flow rates in order to investigate the critical issues regarding heat transport phenomena such as the influence of non-linear flow regime, the relationship between the thermal dispersion with the flow velocity and the validity of the local thermal equilibrium assumption between the fluid and solid phase. The results emphasize the magnitude of the errors of the commonly used assumptions in the numerical modelling of heat transport.

  3. Ultralow-velocity zone geometries resolved by multidimensional waveform modelling

    NASA Astrophysics Data System (ADS)

    Vanacore, E. A.; Rost, S.; Thorne, M. S.

    2016-07-01

    Ultralow-velocity zones (ULVZs) are thin patches of material with strongly reduced seismic wave speeds situated on top of the core-mantle boundary (CMB). A common phase used to detect ULVZs is SPdKS (SKPdS), an SKS wave with a short diffracted P leg along the CMB. Most previous efforts have examined ULVZ properties using 1-D waveform modelling approaches. We present waveform modelling results using the 2.5-D finite-difference algorithm PSVaxi allowing us better insight into ULVZ structure and location. We characterize ULVZ waveforms based on ULVZ elastic properties, shape and position along the SPdKS ray path. In particular, we vary the ULVZ location (e.g. source or receiver side), ULVZ topographical profiles (e.g. boxcar, trapezoidal or Gaussian) and ULVZ lateral scale along great circle path (2.5°, 5°, 10°). We observe several waveform effects absent in 1-D ULVZ models and show evidence for waveform effects allowing the differentiation between source and receiver side ULVZs. Early inception of the SPdKS/SKPdS phase is difficult to detect for receiver-side ULVZs with maximum shifts in SKPdS initiation of ˜3° in epicentral distance, whereas source-side ULVZs produce maximum shifts of SPdKS initiation of ˜5°, allowing clear separation of source- versus receiver-side structure. We present a case study using data from up to 300 broad-band stations in Turkey recorded between 2005 and 2010. We observe a previously undetected ULVZ in the southern Atlantic Ocean region centred near 45°S, 12.5°W, with a lateral scale of ˜3°, VP reduction of 10 per cent, VS reduction of 30 per cent and density increase of 10 per cent relative to PREM.

  4. Extended-Range Ultrarefractive 1D Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    A proposal has been made to exploit the special wavelength-dispersive characteristics of devices of the type described in One-Dimensional Photonic Crystal Superprisms (NPO-30232) NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 10a. A photonic crystal is an optical component that has a periodic structure comprising two dielectric materials with high dielectric contrast (e.g., a semiconductor and air), with geometrical feature sizes comparable to or smaller than light wavelengths of interest. Experimental superprisms have been realized as photonic crystals having three-dimensional (3D) structures comprising regions of amorphous Si alternating with regions of SiO2, fabricated in a complex process that included sputtering. A photonic crystal of the type to be exploited according to the present proposal is said to be one-dimensional (1D) because its contrasting dielectric materials would be stacked in parallel planar layers; in other words, there would be spatial periodicity in one dimension only. The processes of designing and fabricating 1D photonic crystal superprisms would be simpler and, hence, would cost less than do those for 3D photonic crystal superprisms. As in 3D structures, 1D photonic crystals may be used in applications such as wavelength-division multiplexing. In the extended-range configuration, it is also suitable for spectrometry applications. As an engineered structure or artificially engineered material, a photonic crystal can exhibit optical properties not commonly found in natural substances. Prior research had revealed several classes of photonic crystal structures for which the propagation of electromagnetic radiation is forbidden in certain frequency ranges, denoted photonic bandgaps. It had also been found that in narrow frequency bands just outside the photonic bandgaps, the angular wavelength dispersion of electromagnetic waves propagating in photonic crystal superprisms is much stronger than is the angular wavelength dispersion obtained

  5. Viscous behavior in a quasi-1D fractal cluster glass.

    PubMed

    Etzkorn, S J; Hibbs, Wendy; Miller, Joel S; Epstein, A J

    2002-11-11

    The spin glass transition of a quasi-1D organic-based magnet ([MnTPP][TCNE]) is explored using both ac and dc measurements. A scaling analysis of the ac susceptibility shows a spin glass transition near 4 K, with a viscous decay of the thermoremanent magnetization recorded above 4 K. We propose an extension to a fractal cluster model of spin glasses that determines the dimension of the spin clusters (D) ranging from approximately 0.8 to over 1.5 as the glass transition is approached. Long-range dipolar interactions are suggested as the origin of this low value for the apparent lower critical dimension.

  6. Practical variational tomography for critical 1D systems

    NASA Astrophysics Data System (ADS)

    Lee, Jong Yeon; Landon-Cardinal, Olivier

    2015-03-01

    We further investigate a recently introduced efficient quantum state reconstruction procedure targeted to states well-approximated by the multi-scale entanglement renormalization ansatz (MERA). First, we introduce an improved optimization scheme that can be easily generalized for MERA states with larger bond dimension. Second, we provide a detailed analysis of the error propagation and quantify how it affects the distance between the experimental state and the reconstructed state. Third, we explain how to bound this distance using local data, providing an efficient scalable certification method. Fourth, we examine the performance of MERA tomography on the ground states of several 1D critical models.

  7. Structural stability of a 1D compressible viscoelastic fluid model

    NASA Astrophysics Data System (ADS)

    Huo, Xiaokai; Yong, Wen-An

    2016-07-01

    This paper is concerned with a compressible viscoelastic fluid model proposed by Öttinger. Although the model has a convex entropy, the Hessian matrix of the entropy does not symmetrize the system of first-order partial differential equations due to the non-conservative terms in the constitutive equation. We show that the corresponding 1D model is symmetrizable hyperbolic and dissipative and satisfies the Kawashima condition. Based on these, we prove the global existence of smooth solutions near equilibrium and justify the compatibility of the model with the Navier-Stokes equations.

  8. Nonlocal Order Parameters for the 1D Hubbard Model

    NASA Astrophysics Data System (ADS)

    Montorsi, Arianna; Roncaglia, Marco

    2012-12-01

    We characterize the Mott-insulator and Luther-Emery phases of the 1D Hubbard model through correlators that measure the parity of spin and charge strings along the chain. These nonlocal quantities order in the corresponding gapped phases and vanish at the critical point Uc=0, thus configuring as hidden order parameters. The Mott insulator consists of bound doublon-holon pairs, which in the Luther-Emery phase turn into electron pairs with opposite spins, both unbinding at Uc. The behavior of the parity correlators is captured by an effective free spinless fermion model.

  9. Deconvolution/identification techniques for 1-D transient signals

    SciTech Connect

    Goodman, D.M.

    1990-10-01

    This paper discusses a variety of nonparametric deconvolution and identification techniques that we have developed for application to 1-D transient signal problems. These methods are time-domain techniques that use direct methods for matrix inversion. Therefore, they are not appropriate for large data'' problems. These techniques involve various regularization methods and permit the use of certain kinds of a priori information in estimating the unknown. These techniques have been implemented in a package using standard FORTRAN that should make the package readily transportable to most computers. This paper is also meant to be an instruction manual for the package. 25 refs., 17 figs., 1 tab.

  10. Coherent thermal conductance of 1-D photonic crystals

    NASA Astrophysics Data System (ADS)

    Tschikin, Maria; Ben-Abdallah, Philippe; Biehs, Svend-Age

    2012-10-01

    We present an exact calculation of coherent thermal conductance in 1-D multilayer photonic crystals using the S-matrix method. In particular, we study the thermal conductance in a bilayer structure of Si/vacuum or Al2O3/vacuum slabs by means of the exact radiative heat flux expression. Based on the results obtained for the Al2O3/vacuum structure we show by comparison with previous works that the material losses and (localized) surface modes supported by the inner layers play a fundamental role and cannot be omitted in the definition of thermal conductance. Our results could have significant implications in the conception of efficient thermal barriers.

  11. Drift-wave transport in the velocity shear layer

    NASA Astrophysics Data System (ADS)

    Rosalem, K. C.; Roberto, M.; Caldas, I. L.

    2016-07-01

    Particle drift driven by electrostatic wave fluctuations is numerically computed to describe the transport in a gradient velocity layer at the tokamak plasma edge. We consider an equilibrium plasma in large aspect ratio approximation with E × B flow and specified toroidal plasma velocity, electric field, and magnetic field profiles. A symplectic map, previously derived for infinite coherent time modes, is used to describe the transport dependence on the electric, magnetic, and plasma velocity shears. We also show that resonant perturbations and their correspondent islands in the Poincaré maps are much affected by the toroidal velocity profiles. Moreover, shearless transport barriers, identified by extremum values of the perturbed rotation number profiles of the invariant curves, allow chaotic trajectories trapped into the plasma. We investigate the influence of the toroidal plasma velocity profile on these shearless transport barriers.

  12. Crossed molecular beams study of O({sup 1}D) reactions with H{sub 2} molecules

    SciTech Connect

    Miau, T.T.

    1995-05-01

    Reaction dynamics of O({sup 1}D) atoms with H{sub 2} molecules was reinvestigated using the crossed molecular beams technique with pulsed beams. The O({sup 1}D) beam was generated by photodissociating O{sub 3} molecules at 248 nm. Time-of-flight spectra and the laboratory angular distribution of the OH products were measured. The derived OH product center-of-mass flux-velocity contour diagram shows more backward scattered intensity with respect to the O({sup 1}D) beam. In contrast to previous studies which show that the insertion mechanism is the dominant process, our results indicate that the contribution from the collinear approach of the O({sup 1}D) atom to the H{sub 2} molecule on the first excited state potential energy surface is significant and the energy barrier for the collinear approach is therefore minimal. Despite the increased time resolution in this experiment, no vibrational structure in the OH product time-of-flight spectra was resolved. This is in agreement with LIF studies, which have shown that the rotational distributions of the OH products in all vibrational states are broad and highly inverted.

  13. A simple quasi-1D model of Fibonacci anyons

    NASA Astrophysics Data System (ADS)

    Aasen, David; Mong, Roger; Clarke, David; Alicea, Jason; Fendley, Paul

    2015-03-01

    There exists various ways of understanding the topological properties of Ising anyons--from simple free-fermion toy models to formal topological quantum field theory. For other types of anyons simple toy models rarely exist; their properties have to be obtained using formal self-consistency relations. We explore a family of gapped 1D local bosonic models that in a certain limit become trivial to solve and provide an intuitive picture for Fibonacci anyons. One can interpret this model as a quasi-1D wire that forms the building block of a 2D topological phase with Fibonacci anyons. With this interpretation all topological properties of the Fibonacci anyons become manifest including ground state degeneracy and braid relations. We conjecture that the structure of the model is protected by an emergent symmetry analogous to fermion parity. 1) NSF Grant DMR-1341822 2) Institute for Quantum Information and Matter, an NSF physics frontier center with support from the Moore Foundation. 3) NSERC-PGSD.

  14. A 1D analysis of two high order MOC methods

    SciTech Connect

    Everson, M. S.; Forget, B.

    2012-07-01

    The work presented here provides two different methods for evaluating angular fluxes along long characteristics. One is based off a projection of the 1D transport equation onto a complete set of Legendre polynomials, while the other uses the 1D integral transport equation to evaluate the angular flux values at specific points along each track passing through a cell. The Moment Long Characteristic (M-LC) method is shown to provide 2(P+1) spatial convergence and significant gains in accuracy with the addition of only a few spatial degrees of freedom. The M-LC method, though, is shown to be ill-conditioned at very high order and for optically thin geometries. The Point Long Characteristic (P-LC) method, while less accurate, significantly improves stability to problems with optically thin cells. The P-LC method is also more flexible, allowing for extra angular flux evaluations along a given track to give a more accurate representation of the shape along each track. This is at the expense of increasing the degrees of freedom of the system, though, and requires an increase in memory storage. This work concludes that both may be used simultaneously within the same geometry to provide the best mix of accuracy and stability possible. (authors)

  15. Engineered atom-light interactions in 1D photonic crystals

    NASA Astrophysics Data System (ADS)

    Martin, Michael J.; Hung, Chen-Lung; Yu, Su-Peng; Goban, Akihisa; Muniz, Juan A.; Hood, Jonathan D.; Norte, Richard; McClung, Andrew C.; Meenehan, Sean M.; Cohen, Justin D.; Lee, Jae Hoon; Peng, Lucas; Painter, Oskar; Kimble, H. Jeff

    2014-05-01

    Nano- and microscale optical systems offer efficient and scalable quantum interfaces through enhanced atom-field coupling in both resonators and continuous waveguides. Beyond these conventional topologies, new opportunities emerge from the integration of ultracold atomic systems with nanoscale photonic crystals. One-dimensional photonic crystal waveguides can be engineered for both stable trapping configurations and strong atom-photon interactions, enabling novel cavity QED and quantum many-body systems, as well as distributed quantum networks. We present the experimental realization of such a nanophotonic quantum interface based on a nanoscale photonic crystal waveguide, demonstrating a fractional waveguide coupling of Γ1 D /Γ' of 0 . 32 +/- 0 . 08 , where Γ1 D (Γ') is the atomic emission rate into the guided (all other) mode(s). We also discuss progress towards intra-waveguide trapping of ultracold Cs. This work was supported by the IQIM, an NSF Physics Frontiers Center with support from the Moore Foundation, the DARPA ORCHID program, the AFOSR QuMPASS MURI, the DoD NSSEFF program, NSF, and the Kavli Nanoscience Institute (KNI) at Caltech.

  16. Angular velocity discrimination

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.

    1990-01-01

    Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.

  17. Fiber Optic Velocity Interferometry

    SciTech Connect

    Neyer, Barry T.

    1988-04-01

    This paper explores the use of a new velocity measurement technique that has several advantages over existing techniques. It uses an optical fiber to carry coherent light to and from a moving target. A Fabry-Perot interferometer, formed by a gradient index lens and the moving target, produces fringes with a frequency proportional to the target velocity. This technique can measure velocities up to 10 km/s, is accurate, portable, and completely noninvasive.

  18. Computational Study and Analysis of Structural Imperfections in 1D and 2D Photonic Crystals

    SciTech Connect

    Maskaly, Karlene Rosera

    2005-06-01

    Dielectric reflectors that are periodic in one or two dimensions, also known as 1D and 2D photonic crystals, have been widely studied for many potential applications due to the presence of wavelength-tunable photonic bandgaps. However, the unique optical behavior of photonic crystals is based on theoretical models of perfect analogues. Little is known about the practical effects of dielectric imperfections on their technologically useful optical properties. In order to address this issue, a finite-difference time-domain (FDTD) code is employed to study the effect of three specific dielectric imperfections in 1D and 2D photonic crystals. The first imperfection investigated is dielectric interfacial roughness in quarter-wave tuned 1D photonic crystals at normal incidence. This study reveals that the reflectivity of some roughened photonic crystal configurations can change up to 50% at the center of the bandgap for RMS roughness values around 20% of the characteristic periodicity of the crystal. However, this reflectivity change can be mitigated by increasing the index contrast and/or the number of bilayers in the crystal. In order to explain these results, the homogenization approximation, which is usually applied to single rough surfaces, is applied to the quarter-wave stacks. The results of the homogenization approximation match the FDTD results extremely well, suggesting that the main role of the roughness features is to grade the refractive index profile of the interfaces in the photonic crystal rather than diffusely scatter the incoming light. This result also implies that the amount of incoherent reflection from the roughened quarterwave stacks is extremely small. This is confirmed through direct extraction of the amount of incoherent power from the FDTD calculations. Further FDTD studies are done on the entire normal incidence bandgap of roughened 1D photonic crystals. These results reveal a narrowing and red-shifting of the normal incidence bandgap with

  19. Combination of lentivirus-mediated silencing of PPM1D and temozolomide chemotherapy eradicates malignant glioma through cell apoptosis and cell cycle arrest

    PubMed Central

    Wang, Peng; Ye, Jing-An; Hou, Chong-Xian; Zhou, Dong; Zhan, Sheng-Quan

    2016-01-01

    Temozolomide (TMZ) is approved for use as first-line treatment for glioblastoma multiforme (GBM). However, GBM shows chemoresistance shortly after the initiation of treatment. In order to detect whether silencing of human protein phosphatase 1D magnesium dependent (PPM1D) gene could increase the effects of TMZ in glioma cells, glioma cells U87-MG were infected with lentiviral shRNA vector targeting PPM1D silencing. After PPM1D silencing was established, cells were treated with TMZ. The multiple functions of human glioma cells after PPM1D silencing and TMZ chemotherapy were detected by flow cytometry and MTT assay. Significantly differentially expressed genes were distinguished by microarray-based gene expression profiling and analyzed by gene pathway enrichment analysis and ontology assessment. Western blotting was used to establish the protein expression of the core genes. PPM1D gene silencing improves TMZ induced cell proliferation and induces cell apoptosis and cell cycle arrest. When PPM1D gene silencing combined with TMZ was performed in glioma cells, 367 genes were upregulated and 444 genes were downregulated compared with negative control. The most significant differential expression pathway was pathway in cancer and IGFR1R, PIK3R1, MAPK8 and EP300 are core genes in the network. Western blotting showed that MAPK8 and PIK3R1 protein expression levels were upregulated and RB1 protein expression was decreased. It was consistent with that detected in gene expression profiling. In conclusion, PPM1D gene silencing combined with TMZ eradicates glioma cells through cell apoptosis and cell cycle arrest. PIK3R1/AKT pathway plays a role in the multiple functions of glioma cells after PPM1D silencing and TMZ chemotherapy. PMID:27633132

  20. NOKIN1D: one-dimensional neutron kinetics based on a nodal collocation method

    NASA Astrophysics Data System (ADS)

    Verdú, G.; Ginestar, D.; Miró, R.; Jambrina, A.; Barrachina, T.; Soler, Amparo; Concejal, Alberto

    2014-06-01

    The TRAC-BF1 one-dimensional kinetic model is a formulation of the neutron diffusion equation in the two energy groups' approximation, based on the analytical nodal method (ANM). The advantage compared with a zero-dimensional kinetic model is that the axial power profile may vary with time due to thermal-hydraulic parameter changes and/or actions of the control systems but at has the disadvantages that in unusual situations it fails to converge. The nodal collocation method developed for the neutron diffusion equation and applied to the kinetics resolution of TRAC-BF1 thermal-hydraulics, is an adaptation of the traditional collocation methods for the discretization of partial differential equations, based on the development of the solution as a linear combination of analytical functions. It has chosen to use a nodal collocation method based on a development of Legendre polynomials of neutron fluxes in each cell. The qualification is carried out by the analysis of the turbine trip transient from the NEA benchmark in Peach Bottom NPP using both the original 1D kinetics implemented in TRAC-BF1 and the 1D nodal collocation method.

  1. Fep1d: a script for the analysis of reaction coordinates.

    PubMed

    Banushkina, Polina V; Krivov, Sergei V

    2015-05-01

    The dynamics of complex systems with many degrees of freedom can be analyzed by projecting it onto one or few coordinates (collective variables). The dynamics is often described then as diffusion on a free energy landscape associated with the coordinates. Fep1d is a script for the analysis of such one-dimensional coordinates. The script allows one to construct conventional and cut-based free energy profiles, to assess the optimality of a reaction coordinate, to inspect whether the dynamics projected on the coordinate is diffusive, to transform (rescale) the reaction coordinate to more convenient ones, and to compute such quantities as the mean first passage time, the transition path times, the coordinate dependent diffusion coefficient, and so forth. Here, we describe the implemented functionality together with the underlying theoretical framework.

  2. Quantum Nucleation of Phase Slips in 1-d Superfluids

    NASA Astrophysics Data System (ADS)

    Arovas, Daniel

    1998-03-01

    The rate for quantum nucleation of phase slips past an impurity in a one-dimensional superfluid is computed. Real time evolution of the nonlinear Schrödinger equation shows that there is a critical velocity vc below which solutions are time-independent [1,2]; this is the regime of quantum phase slip nucleation. We start with the Gross-Pitaevskii model in the presence of an impurity potential, and derive the Euclidean action for a space-time vortex-antivortex pair, which describes a phase slip event. The action is computed as a function of the superfluid velocity v and the impurity potential width and depth.l [1] V. Hakim, Phys. Rev. E 55, 2835 (1997).l [1] J. A. Freire, D. P. Arovas, and H. Levine, Phys. Rev. Lett (in press, 1997).l

  3. PROM4: 1D isothermal and isobaric modeler for solar prominences

    NASA Astrophysics Data System (ADS)

    Gouttebroze, P.; Labrosse, N.

    2013-06-01

    PROM4 computes simple models of solar prominences which consist of plane-parallel slabs standing vertically above the solar surface. Each model is defined by 5 parameters: temperature, density, geometrical thickness, microturbulent velocity and height above the solar surface. PROM4 solves the equations of radiative transfer, statistical equilibrium, ionization and pressure equilibria, and computes electron and hydrogen level populations and hydrogen line profiles. Written in Fortran 90 and with two versions available (one with text in English, one with text in French), the code needs 64-bit arithmetic for real numbers.

  4. Velocity distributions in a hydrocyclone separator

    NASA Astrophysics Data System (ADS)

    Fisher, M. J.; Flack, R. D.

    The internal three-dimensional flow field in a hydrocyclone was studied using laser velocimetry. Seven axial planes were investigated for three different inlet flow rates and three independent and different rejects rates. Results at each measurement plane showed that the measured tangential velocity profile behaves like a forced vortex at the region near the air core, and like a free vortex in the outer portion of the flow. The peak nondimensional tangential velocity decreases as the distance from the inlet region increases, however, the peak dimensional tangential velocity increases as the distance from the inlet region increases. The nondimensional peak tangential velocities are approximately equal for all of the flow rates. The magnitude of the tangential velocity increased in the inner forced vortex region as the rejects rate was increased. Backflows exist in the axial velocity profile near the inlet region, but these reversed flows disappear in the exit region. The dimensional vorticity is proportional to inlet flow rate and decreases with increasing rejects flow rates.

  5. Axion string dynamics I: 2+1D

    NASA Astrophysics Data System (ADS)

    Fleury, Leesa M.; Moore, Guy D.

    2016-05-01

    If the axion exists and if the initial axion field value is uncorrelated at causally disconnected points, then it should be possible to predict the efficiency of cosmological axion production, relating the axionic dark matter density to the axion mass. The main obstacle to making this prediction is correctly treating the axion string cores. We develop a new algorithm for treating the axionic string cores correctly in 2+1 dimensions. When the axionic string cores are given their full physical string tension, axion production is about twice as efficient as in previous simulations. We argue that the string network in 2+1 dimensions should behave very differently than in 3+1 dimensions, so this result cannot be simply carried over to the physical case. We outline how to extend our method to 3+1D axion string dynamics.

  6. 1D-transport properties of single superconducting lead nanowires

    NASA Astrophysics Data System (ADS)

    Michotte, S.; Mátéfi-Tempfli, S.; Piraux, L.

    2003-09-01

    We report on the transport properties of single superconducting lead nanowires grown by an electrodeposition technique, embedded in a nanoporous track-etched polymer membrane. The nanowires are granular, have uniform diameter of ∼40 nm and a very large aspect ratio (∼500). The diameter of the nanowire is small enough to ensure a 1D superconducting regime in a wide temperature range below Tc. The non-zero resistance in the superconducting state and its variation caused by fluctuations of the superconducting order parameter were measured versus temperature, magnetic field, and applied DC current (or voltage). The current induced breakdowns in the V- I characteristics may be explained by the formation of phase slip centers. Moreover, DC voltage driven measurements reveal the existence of a new S-shape behavior near the formation of these phase slip centers.

  7. Microlens Masses from 1-D Parallaxes and Heliocentric Proper Motions

    NASA Astrophysics Data System (ADS)

    Gould, Andrew

    2014-12-01

    One-dimensional (1-D) microlens parallaxes can be combined with heliocentric lens-source relative proper motion measurements to derive the lens mass and distance, as suggested by Ghosh et al. (2004). Here I present the first mathematical anlysis of this procedure, which I show can be represented as a quadratic equation. Hence, it is formally subject to a two-fold degeneracy. I show that this degeneracy can be broken in many cases using the relatively crude 2-D parallax information that is often available for microlensing events. I also develop an explicit formula for the region of parameter space where it is more difficult to break this degeneracy. Although no mass/distance measurements have yet been made using this technique, it is likely to become quite common over the next decade.

  8. Quadratic Finite Element Method for 1D Deterministic Transport

    SciTech Connect

    Tolar, Jr., D R; Ferguson, J M

    2004-01-06

    In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ({und r}) and angular ({und {Omega}}) dependences on the angular flux {psi}{und r},{und {Omega}}are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of {psi}{und r},{und {Omega}}. Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable ({mu}) in developing the one-dimensional (1D) spherical geometry S{sub N} equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S{sub N} algorithms.

  9. Effective theory of black holes in the 1/D expansion

    NASA Astrophysics Data System (ADS)

    Emparan, Roberto; Shiromizu, Tetsuya; Suzuki, Ryotaku; Tanabe, Kentaro; Tanaka, Takahiro

    2015-06-01

    The gravitational field of a black hole is strongly localized near its horizon when the number of dimensions D is very large. In this limit, we can effectively replace the black hole with a surface in a background geometry (e.g. Minkowski or Anti-deSitter space). The Einstein equations determine the effective equations that this `black hole surface' (or membrane) must satisfy. We obtain them up to next-to-leading order in 1/ D for static black holes of the Einstein-(A)dS theory. To leading order, and also to next order in Minkowski backgrounds, the equations of the effective theory are the same as soap-film equations, possibly up to a redshift factor. In particular, the Schwarzschild black hole is recovered as a spherical soap bubble. Less trivially, we find solutions for `black droplets', i.e. black holes localized at the boundary of AdS, and for non-uniform black strings.

  10. Connected components of irreducible maps and 1D quantum phases

    NASA Astrophysics Data System (ADS)

    Szehr, Oleg; Wolf, Michael M.

    2016-08-01

    We investigate elementary topological properties of sets of completely positive (CP) maps that arise in quantum Perron-Frobenius theory. We prove that the set of primitive CP maps of fixed Kraus rank is path-connected and we provide a complete classification of the connected components of irreducible CP maps at given Kraus rank and fixed peripheral spectrum in terms of a multiplicity index. These findings are then applied to analyse 1D quantum phases by studying equivalence classes of translational invariant matrix product states that correspond to the connected components of the respective CP maps. Our results extend the previously obtained picture in that they do not require blocking of physical sites, they lead to analytic paths, and they allow us to decompose into ergodic components and to study the breaking of translational symmetry.

  11. Glycolipid antigen processing for presentation by CD1d molecules.

    PubMed

    Prigozy, T I; Naidenko, O; Qasba, P; Elewaut, D; Brossay, L; Khurana, A; Natori, T; Koezuka, Y; Kulkarni, A; Kronenberg, M

    2001-01-26

    The requirement for processing glycolipid antigens in T cell recognition was examined with mouse CD1d-mediated responses to glycosphingolipids (GSLs). Although some disaccharide GSL antigens can be recognized without processing, the responses to three other antigens, including the disaccharide GSL Gal(alpha1-->2)GalCer (Gal, galactose; GalCer, galactosylceramide), required removal of the terminal sugars to permit interaction with the T cell receptor. A lysosomal enzyme, alpha-galactosidase A, was responsible for the processing of Gal(alpha1-->2)GalCer to generate the antigenic monosaccharide epitope. These data demonstrate a carbohydrate antigen processing system analogous to that used for peptides and an ability of T cells to recognize processed fragments of complex glycolipids.

  12. Mountain wave drag for wind profiles with shear and curvature

    NASA Astrophysics Data System (ADS)

    Teixeira, M.

    2003-04-01

    Gravity wave drag produced by stratified flow over orography is one of the physical processes that must be parameterized in large-scale atmospheric models. While in recent studies attention has been given to the way in which the reaction force of the orography on the atmosphere is distributed in height (because this is what has a direct impact on the atmospheric circulation), it is also important to know the total surface drag, and how it depends on the characteristics of the incoming atmospheric flow, because this gives the total momentum flux that is available to be deposited at critical levels. Most available formulae for the surface drag, including those that are used in operational weather forecast models, ignore the effects of wind variation with height, but the few studies that address this problem have shown that these effects are significant and therefore deserve detailed investigation. In this study, a simple analytical model is developed to calculate the surface gravity wave drag exerted by a stratified flow on a bell-shaped mountain, when the wind varies with height in a complicated way. The model is linear with respect to the orography slope, as is required for the equations of motion to be solvable analytically, but is weakly nonlinear with respect to the incoming wind velocity, (U(z),V(z)), which is assumed to vary slowly with height. The solutions to the equations of motion are expanded as power series of a small parameter ɛ, inversely proportional to the square root of the Richardson number of the flow, Ri. By retaining terms in the solutions up to second order, it is found that the drag generally depends on the curvature of the wind profile, as well as on the shear. In the hydrostatic case, for a wind profile where the x velocity component varies linearly with height while the y velocity component is constant, the drag is given by D_x=D0x (1-(3/32) Ri-1), D_y=D0y (1-(1/32) Ri-1) (where (D0y,D0y) is the corresponding drag for a constant-velocity

  13. Lithospheric Shear Velocity and Discontinuity Structure of Hudson Bay from S-to-P Receiver Functions and Jointly Inverted P-to-S Receiver Functions and Rayleigh Wave Phase Velocities.

    NASA Astrophysics Data System (ADS)

    Porritt, R. W.; Miller, M. S.; Darbyshire, F. A.

    2014-12-01

    Hudson Bay overlies some of the thickest Precambrian lithosphere on Earth, whose internal structures contain important clues to the earliest workings of plate formation. The Hudson Bay Lithospheric Experiment (HuBLE) has thus far constrained its seismic wavespeed, anisotropy, and discontinuity structures. However, previous work has either focused on a single imaging method or briefly compared two independent methods. In this study, we combine surface wave dispersion curves with P to S receiver functions (PRF) to jointly invert for 1D shear velocity, and also compute independent S to P receiver functions (SRF) using teleseismic earthquakes recorded at 36 broadband seismic stations from the HuBLE experiment and 9 additional regional stations. High shear velocities are observed to depths of 200-300 km in the region, indicating a thick depleted lithospheric keel, with maximum thickness in the center of Hudson Bay. The 1D shear velocity profiles typically exhibit a low-velocity zone in the lower crust, consistent with the hypothesis of post-orogenic or syn-orogenic lower crustal flow or the tectonic burial of metasediments. Observations of a flat Moho in the Rae domain of northwestern Hudson Bay are consistent with an Archean-aged crust, which has remained unaltered since formation. Structures observed within the mantle lithosphere in the depth-stacked S to P receiver functions appear to dip from the Hearne domain towards the Rae domain, suggestive of lithospheric formation through plate tectonic processes. This implies that plate tectonic processes were in action during the Archean when these provinces formed.

  14. Acoustic Doppler Current Profiler Measurements in the Tailrace at John Day Dam

    SciTech Connect

    Cook, Chris B.; Dibrani, Berhon; Serkowski, John A.; Richmond, Marshall C.; Titzler, P. Scott; Dennis, Gary W.

    2006-01-30

    measuring 1D water velocity magnitudes has been previously demonstrated by the authors, the feasibility of resolving 3D water velocity vectors given the heterogeneity of the flow field was unknown before this study’s data were collected. Both the 1D and 3D data were collected by deploying three ADCPs on dual-axis rotators directly above the draft tube exit of Turbine Unit 16. These instruments collected 1D data during both the mobile reconnaissance campaign and a later one-week period with zero spillway discharge. During the zero spillway discharge period, Turbine Unit 16 was operated over a range of discharges. Approximately 12 hours of 1D velocity data were collected at low (12 kcfs), middle (16.2 kcfs), and high (19.2 kcfs) turbine discharges. The 1D dataset indicates large differences in flow patterns and RMS velocity fluctuations among the various discharge levels. Results from this project show that it is technically feasible to measure 3D water velocities directly downstream of an operating turbine unit using a narrow beam swath (i.e., 6-degree) ADCP. Data products from these 3D velocity data include a measurement of the draft tube barrel flow distribution (a.k.a., the flow split), directional changes and the general decay of velocity as flow exits the draft tube and enters the tailrace, and a relative measure of the homogeneity of the flow field.

  15. Stepwise shockwave velocity determinator

    NASA Technical Reports Server (NTRS)

    Roth, Timothy E.; Beeson, Harold

    1992-01-01

    To provide an uncomplicated and inexpensive method for measuring the far-field velocity of a surface shockwave produced by an explosion, a stepwise shockwave velocity determinator (SSVD) was developed. The velocity determinator is constructed of readily available materials and works on the principle of breaking discrete sensors composed of aluminum foil contacts. The discrete sensors have an average breaking threshold of approximately 7 kPa. An incremental output step of 250 mV is created with each foil contact breakage and is logged by analog-to-digital instrumentation. Velocity data obtained from the SSVD is within approximately 11 percent of the calculated surface shockwave velocity of a muzzle blast from a 30.06 rifle.

  16. Validation of 1-D transport and sawtooth models for ITER

    SciTech Connect

    Connor, J.W.; Turner, M.F.; Attenberger, S.E.; Houlberg, W.A.

    1996-12-31

    In this paper the authors describe progress on validating a number of local transport models by comparing their predictions with relevant experimental data from a range of tokamaks in the ITER profile database. This database, the testing procedure and results are discussed. In addition a model for sawtooth oscillations is used to investigate their effect in an ITER plasma with alpha-particles.

  17. Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle

    PubMed Central

    Cartee, Gregory D.

    2014-01-01

    This review focuses on two paralogue Rab GTPase activating proteins known as TBC1D1 Tre-2/BUB2/cdc 1 domain family (TBC1D) 1 and TBC1D4 (also called Akt Substrate of 160 kDa, AS160) and their roles in controlling skeletal muscle glucose transport in response to the independent and combined effects of insulin and exercise. Convincing evidence implicates Akt2-dependent TBC1D4 phosphorylation on T642 as a key part of the mechanism for insulin-stimulated glucose uptake by skeletal muscle. TBC1D1 phosphorylation on several insulin-responsive sites (including T596, a site corresponding to T642 in TBC1D4) does not appear to be essential for in vivo insulin-stimulated glucose uptake by skeletal muscle. In vivo exercise or ex vivo contraction of muscle result in greater TBC1D1 phosphorylation on S237 that is likely to be secondary to increased AMP-activated protein kinase activity and potentially important for contraction-stimulated glucose uptake. Several studies that evaluated both normal and insulin-resistant skeletal muscle stimulated with a physiological insulin concentration after a single exercise session found that greater post-exercise insulin-stimulated glucose uptake was accompanied by greater TBC1D4 phosphorylation on several sites. In contrast, enhanced post-exercise insulin sensitivity was not accompanied by greater insulin-stimulated TBC1D1 phosphorylation. The mechanism for greater TBC1D4 phosphorylation in insulin-stimulated muscles after acute exercise is uncertain, and a causal link between enhanced TBC1D4 phosphorylation and increased post-exercise insulin sensitivity has yet to be established. In summary, TBC1D1 and TBC1D4 have important, but distinct roles in regulating muscle glucose transport in response to insulin and exercise. PMID:25280670

  18. S-wave velocity structure of the North China from inversion of Rayleigh wave phase velocity

    NASA Astrophysics Data System (ADS)

    Chen, Hao-peng; Zhu, Liang-bao; Wang, Qing-dong; Zhang, Pan; Yang, Ying-hang

    2014-07-01

    We constructed the S-wave velocity structure of the crust and uppermost mantle (10-100 km) beneath the North China based on the teleseismic data recorded by 187 portable broadband stations deployed in this region. The traditional two-step inversion scheme was adopted. Firstly, we measured the interstation fundamental Rayleigh wave phase velocity of 10-60 s and imaged the phase velocity distributions using the Tarantola inversion method. Secondly, we inverted the 1-D S-wave velocity structure with a grid spacing of 0.25° × 0.25° and constructed the 3-D S-wave velocity structure of the North China. The 3-D S-wave velocity model provides valuable information about the destruction mechanism and geodynamics of the North China Craton (NCC). The S-wave velocity structures in the northwestern and southwestern sides of the North-South Gravity Lineament (NSGL) are obviously different. The southeastern side is high velocity (high-V) while the northeastern side is low velocity (low-V) at the depth of 60-80 km. The upwelling asthenosphere above the stagnated Pacific plate may cause the destruction of the Eastern Block and form the NSGL. A prominent low-V anomaly exists around Datong from 50 to 100 km, which may due to the upwelling asthenosphere originating from the mantle transition zone beneath the Western Block. The upwelling asthenosphere beneath the Datong may also contribute to the destruction of the Eastern Block. The Zhangjiakou-Penglai fault zone (ZPFZ) may cut through the lithosphere and act as a channel of the upwelling asthenosphere. A noticeable low-V zone also exists in the lower crust and upper mantle lid (30-50 km) beneath the Beijing-Tianjin-Tangshan (BTT) region, which may be caused by the upwelling asthenosphere through the ZPFZ.

  19. SCEC CVM-Toolkit (CVM-T) -- High Performance Meshing Tools for SCEC Community Velocity Models

    NASA Astrophysics Data System (ADS)

    Small, P.; Maechling, P. J.; Ely, G. P.; Olsen, K. B.; Withers, K.; Graves, R. W.; Jordan, T. H.; Plesch, A.; Shaw, J. H.

    2010-12-01

    The SCEC Community Velocity Model Toolkit (CVM-T) enables earthquake modelers to quickly build, visualize, and validate large-scale 3D velocity meshes using SCEC CVM-H or CVM-4. CVM-T is comprised of three main components: (1) a current SCEC community velocity model for Southern California, (2) tools for extracting meshes from this model and visualizing them, and (3) an automated test framework for evaluating new releases of CVMs using SCEC’s AWP-ODC forward wave propagation software and one, or more, ground motion goodness of fit (GoF) algorithms. CVM-T is designed to help SCEC modelers build large-scale velocity meshes by extracting material properties from the most current version of Community Velocity Model H (CVM-H) and to provide a consistent interface as new CVM-H versions are developed. The CVM-T software provides a highly-scalable interface to CVM-H 6.2 (and later) voxets. Along with an improved interface to CVM-H material properties, the CVM-T software adds a geotechnical layer (GTL) to CVM-H 6.2+ based on Ely’s Vs30-derived GTL. The initial release of CVM-T also extends the coverage region for CVM-H 6.2 with a Hadley-Kanamori 1D background. Smoothing is performed within the transition boundary between the core model and the 1D background. The user interface now includes a C API that allows applications to query the model either by elevation or depth. The Extraction and Visualization Tools (EVT) include a parallelized 3D mesh generator which can quickly generate meshes (consisting of Vp, Vs, and density) from either CVM-H or CVM-4 with over 100 billion points. Python plotting scripts can be employed to plot horizontal or profile slices from existing meshes or directly from either CVM. The Automated Test Framework (ATF) is a system for quantitatively evaluating new versions of CVM-H and ensuring that the model improves against prior versions. The ATF employs the CruiseControl build and test framework to run an AWP-ODC simulation for the 2008 Chino

  20. 1-D and 2-D modeling of U-Ti alloy response in impact experiments

    NASA Astrophysics Data System (ADS)

    Hermann, B.; Favorsky, V.; Landau, A.; Shvarts, D.; Zaretsky, E. B.

    2003-09-01

    Dynamie response of a U-0.75wt%Ti alloy bas been studied in planar (disk-on-disk), reverse (disk-on-rod) and symmetric (rod-on-rod) ballistic impact experiments performed with a 25 mm light-gas gun. The impact velocities ranged between 100 and 500 m/see and the samples were softly recovered for further examination, revealing different degrees of spall fracture (planar impact) and of adiabatic shear bands (ballistic experiments). The back (planar experiments) and the lateral (ballistic experiments) surface velocities were continuously monitored by VISAR. The velocity profiles and the damage maps were simulated using a 2-D AUTODYN^TM Lagrangian finite differences code. Simulations of the planar experiments were performed with special attention to the compressive path of the loading cycle in order to calibrate a modified Steinberg-Cochran-Guinan (SCG) constitutive model. The Bauschinger effect and a single-parameter spall model were added to describe the unloading and tensile paths. The calibrated SCG model was then employed to simulate the ballistic experiments. An erosion AUTODYN built-in subroutine with a threshold value of plastic strain was chosen to describe the failure in the ballistic impact experiments. The results of the suggested experimental-numerical technique can be taken into account in estimating the different contributions to the shock-induced plastic deformation and failure.

  1. Shear Velocity Structure Beneath the Las Vegas Valley, Nevada From Regional and Teleseismic Events

    NASA Astrophysics Data System (ADS)

    McEwan, D. J.; Snelson, C. M.; Tkalcic, H.; Rodgers, A.

    2004-12-01

    The Las Vegas Valley (LVV), Nevada is located in the central Basin and Range province of western North America. The Valley sits atop a broad sedimentary basin and is susceptible to large earthquakes generated by local and regional faults. During ground motion events, the Las Vegas basin has been found to amplify seismic energy. In addition, the crustal and upper mantle structure of the Valley is poorly understood. Therefore, surface wave data have been used to create shear velocity profiles of the crust and upper mantle beneath LVV using regional and teleseismic events. This project is part of a larger collaborative study, which is characterizing the Las Vegas basin for test site readiness and seismic hazards. Although the frequency of large events is small, the risk associated with such an event is very high for the Valley. As a result, the Las Vegas Valley Broadband array (LVVBB) was deployed in late September 2002 by Lawrence Livermore National Laboratory and the University of Nevada Las Vegas. It consists of a mixture of twelve three-component broadband and short period seismometers deployed in a saw-tooth geometry oriented northeast-southwest across the northeastern and central LVV, above the area estimated to be the deepest portion of the basin. Data examined as part of this study include both regional and global earthquake events recorded within a five-month period on seven of the twelve stations. All seven broadband stations used a three-component Guralp CMG40T sensor with a 40 samples/second sampling rate. Group velocity dispersion curves from Rayleigh waves and Love waves were determined using a multiple filter technique. Rayleigh wave group velocities range from 2.7 to 3.5 km/s for periods from 10 to 30s. Love wave group velocities range from 3.1 to 4.0 km/s for periods from 10 to 100s. In addition, Rg and Lg were examined from local events. 1-D shear velocity profiles of the crust and upper mantle have been produced through inversion along regional

  2. 1D X-ray Beam Compressing Monochromators

    SciTech Connect

    Korytar, D.; Dobrocka, E.; Konopka, P.; Zaprazny, Z.; Ferrari, C.; Mikulik, P.; Vagovic, P.; Ac, V.; Erko, A.; Abrosimov, N.

    2010-04-06

    A total beam compression of 5 and 10 corresponding to the asymmetry angles of 9 deg. and 12 deg. is achieved with V-5 and V-10 monochromators, respectively, in standard single crystal pure germanium (220) X-ray beam compressing (V-shaped) monochromators for CuKalpha{sub 1} radiation. A higher 1D compression of X-ray beam is possible using larger angles of asymmetry, however it is achieved at the expense of the total intensity, which is decreased due to the refraction effect. To increase the monochromator intensity, several ways are considered both theoretically and experimentally. Linearly graded germanium rich Ge{sub x}Si{sub (1-x)} single crystal was used to prepare a V-21 single crystal monochromator with 15 deg. asymmetry angles (compression factor of 21). Its temperature gradient version is discussed for CuKalpha{sub 1} radiation. X-ray diffraction measurements on the graded GeSi monochromator showed more than 3-times higher intensity at the output compared with that of a pure Ge monochromator.

  3. 1-D Numerical Analysis of RBCC Engine Performance

    NASA Technical Reports Server (NTRS)

    Han, Samuel S.

    1998-01-01

    An RBCC engine combines air breathing and rocket engines into a single engine to increase the specific impulse over an entire flight trajectory. Considerable research pertaining to RBCC propulsion was performed during the 1960's and these engines were revisited recently as a candidate propulsion system for either a single-stage-to-orbit (SSTO) or two-stage-to-orbit (TSTO) launch vehicle. There are a variety of RBCC configurations that had been evaluated and new designs are currently under development. However, the basic configuration of all RBCC systems is built around the ejector scramjet engine originally developed for the hypersonic airplane. In this configuration, a rocket engine plays as an ejector in the air-augmented initial acceleration mode, as a fuel injector in scramjet mode and the rocket in all rocket mode for orbital insertion. Computational fluid dynamics (CFD) is a useful tool for the analysis of complex transport processes in various components in RBCC propulsion systems. The objective of the present research was to develop a transient 1-D numerical model that could be used to predict flow behavior throughout a generic RBCC engine following a flight path.

  4. Dynamic decoupling in the presence of 1D random walk

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Arnab; Chakraborty, Ipsita; Bhattacharyya, Rangeet

    2016-05-01

    In the recent past, many dynamic decoupling sequences have been proposed for the suppression of decoherence of spins connected to thermal baths of various natures. Dynamic decoupling schemes for suppressing decoherence due to Gaussian diffusion have also been developed. In this work, we study the relative performances of dynamic decoupling schemes in the presence of a non-stationary Gaussian noise such as a 1D random walk. Frequency domain analysis is not suitable to determine the performances of various dynamic decoupling schemes in suppressing decoherence due to such a process. Thus, in this work, we follow a time domain calculation to arrive at the following conclusions: in the presence of such a noise, we show that (i) the traditional Carr–Purcell–Meiboom–Gill (CPMG) sequence outperforms Uhrig’s dynamic decoupling scheme, (ii) CPMG remains the optimal sequence for suppression of decoherence due to random walk in the presence of an external field gradient. Later, the theoretical predictions are experimentally verified by using nuclear magnetic resonance spectroscopy on spin 1/2 particles diffusing in a liquid medium.

  5. Optical bullets in (2+1)D photonic structures and their interaction with localized defects

    NASA Astrophysics Data System (ADS)

    Dohnal, Tomas

    2005-11-01

    This dissertation studies light propagation in Kerr-nonlinear two dimensional waveguides with a Bragg resonant, periodic structure in the propagation direction. The model describing evolution of the electric field envelopes is the system of 2D Nonlinear Coupled Mode Equations (2D CME). The periodic structure induces a range of frequencies (frequency gap) in which linear waves do not propagate. It is shown that, similarly to the ID case of a fiber grating, the 2D nonlinear system supports localized solitary wave solutions, referred to as 2D gap solitons, which have frequencies inside the linear gap and can travel at, any speed smaller than or equal to the speed of light in the corresponding homogeneous medium. Such solutions are constructed numerically via Newton's iteration. Convergence is obtained only near the upper edge of the gap. Gap solitons with a nonzero velocity are constructed by numerically following a bifurcation curve parameterized by the velocity v. It is shown that gap solitons are saddle points of the corresponding Hamiltonian functional and that no (constrained) local minima of the Hamiltonian exist. The linear stability problem is formulated and reasons for the failure of the standard Hamiltonian PDE approach for determining linear stability are discussed. In the second part of the dissertation interaction of 2D gap solitons with localized defects is studied and trapping of slow enough 2D gap solitons is demonstrated. This study builds on [JOSA B 19, 1635 (2002)], where such trapping of 1D gap solitons is considered. Analogously to this 1D problem trapping in the 2D model is explained as a resonant energy transfer into one or more defect modes existent for the particular defect. For special localized defects exact linear modes are found explicitly via the separation of variables. Numerical computation of linear defect modes is used for more general defects. Corresponding nonlinear modes are then constructed via Newton's iteration by following a

  6. Velocity of Sound

    ERIC Educational Resources Information Center

    Gillespie, A.

    1975-01-01

    Describes a method for the determination of the velocity of sound using a dual oscilloscope on which is displayed the sinusoidal input into a loudspeaker and the signal picked up by a microphone. (GS)

  7. High Velocity Gas Gun

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A video tape related to orbital debris research is presented. The video tape covers the process of loading a High Velocity Gas Gun and firing it into a mounted metal plate. The process is then repeated in slow motion.

  8. Velocity distribution measurements in a fishway like open channel by Laser Doppler Anemometry (LDA)

    NASA Astrophysics Data System (ADS)

    Sayeed-Bin-Asad, S. M.; Lundström, T. S.; Andersson, A. G.; Hellström, J. G. I.

    2016-03-01

    Experiments in an open channel flume with placing a vertical half cylinder barrier have been performed in order to investigate how the upstream velocity profiles are affected by a barrier. An experimental technique using Laser Doppler Velocimetry (LDV) was adopted to measure these velocity distributions in the channel for four different discharge rates. Velocity profiles were measured very close to wall and at 25, 50 and 100 mm upstream of the cylinder wall. For comparing these profiles with well-known logarithmic velocity profiles, velocity profiles were also measured in smooth open channel flow for all same four discharge rates. The results indicate that regaining the logarithmic velocity profiles upstream of the half cylindrical barrier occurs at 100 mm upstream of the cylinder wall.

  9. Absolute rate constant determinations for the deactivation of O/1D/ by time resolved decay of O/1D/ yields O/3P/ emission

    NASA Technical Reports Server (NTRS)

    Davidson, J. A.; Sadowski, C. M.; Schiff, H. I.; Howard, C. J.; Schmeltekopf, A. L.; Jennings, D. A.; Streit, G. E.

    1976-01-01

    Absolute rate constants for the deactivation of O(1D) atoms by some atmospheric gases have been determined by observing the time-resolved emission of O(1D) at 630 nm. O(1D) atoms were produced by the dissociation of ozone via repetitive laser pulses at 266 nm. Absolute rate constants for the relaxation of O(1D) at 298 K are reported for N2, O2, CO2, O3, H2, D2, CH4, HCl, NH3, H2O, N2O, and Ne. The results obtained are compared with previous relative and absolute measurements reported in the literature.

  10. Lévy walks with velocity fluctuations.

    PubMed

    Denisov, S; Zaburdaev, V; Hänggi, P

    2012-03-01

    The standard Lévy walk is performed by a particle that moves ballistically between randomly occurring collisions when the intercollision time is a random variable governed by a power-law distribution. During instantaneous collision events, the particle randomly changes the direction of motion but maintains the same constant speed. We generalize the standard model to incorporate velocity fluctuations into the process. Two types of models are considered, namely (i) with a walker changing the direction and absolute value of its velocity during collisions only, and (ii) with a walker whose velocity continuously fluctuates. We present a full analytic evaluation of both models and emphasize the importance of initial conditions. We show that, in the limit of weak velocity fluctuations, the integral diffusion characteristics and the bulk of diffusion profiles are identical to those for the standard Lévy walk. However, the type of underlying velocity fluctuations can be identified by looking at the ballistic regions of the diffusion profiles. Our analytical results are corroborated by numerical simulations. PMID:22587079

  11. MARVELS 1D Pipeline Development, Optimization, and Performance

    NASA Astrophysics Data System (ADS)

    Thomas, Neil; Ge, Jian; Grieves, Nolan; Li, Rui; Sithajan, Sirinrat

    2016-04-01

    We describe the processing pipeline of one-dimensional spectra from the SDSS III Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). This medium-resolution interferometric spectroscopic survey observed over 3300 stars over the course of four years with the primary goal of detecting and characterizing giant planets (>0.5 M Jup) from within a large, homogeneous sample of FGK stars. The successful extraction of radial velocities (RVs) from MARVELS is complicated by several instrument effects. The wide field nature of this multi-object spectrograph provides spectra that are initially distorted and require conditioning of the raw images for precise RV extraction. Also, the simultaneous observation of sixty stars per exposure leads to several effects not typically seen in a single-object instrument. For instance, fiber illumination changes over time can easily create the dominant source of RV measurement error when these changes are different for the stellar and calibration optical paths. We present a method for statistically quantifying these instrument effects to combat the difficulty of giant planet detection due to systematic RV errors. We also present an overview of the performance of the entire survey as it stands for the SDSS III DR 12 as well as key results from the very latest improvements. This includes a novel technique, called lucky RV, by which stable regions of spectra can be statistically determined and emphasized during RV extraction, leading to a large reduction of the long-term RV offsets in the MARVELS data. These improved RV data are to be released via NASA Exoplanet Archive in the fall of 2015.

  12. A 3-D velocity model for earthquake location from combined geological and geophysical data: a case study from the TABOO near fault observatory (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Latorre, Diana; Lupattelli, Andrea; Mirabella, Francesco; Trippetta, Fabio; Valoroso, Luisa; Lomax, Anthony; Di Stefano, Raffaele; Collettini, Cristiano; Chiaraluce, Lauro

    2014-05-01

    model, we located a selected dataset of the 2010-2013 TABOO catalogue, which is composed of about 30,000 micro-earthquakes (see Valoroso et al., same session). Earthquake location was performed by applying the global-search earthquake location method NonLinLoc, which is able to manage strong velocity contrasts as that observed in the study area. The model volume is 65km x 55km x 20km and is parameterized by constant velocity, cubic cells of side 100 m. For comparison, we applied the same inversion code by using the best 1D model of the area obtained with earthquake data. The results show a significant quality improvement with the 3D model both in terms of location parameters and correlation between seismicity distribution and known geological structures.

  13. Evaluation of the entropy consistent euler flux on 1D and 2D test problems

    NASA Astrophysics Data System (ADS)

    Roslan, Nur Khairunnisa Hanisah; Ismail, Farzad

    2012-06-01

    Perhaps most CFD simulations may yield good predictions of pressure and velocity when compared to experimental data. Unfortunately, these results will most likely not adhere to the second law of thermodynamics hence comprising the authenticity of predicted data. Currently, the test of a good CFD code is to check how much entropy is generated in a smooth flow and hope that the numerical entropy produced is of the correct sign when a shock is encountered. Herein, a shock capturing code written in C++ based on a recent entropy consistent Euler flux is developed to simulate 1D and 2D flows. Unlike other finite volume schemes in commercial CFD code, this entropy consistent flux (EC) function precisely satisfies the discrete second law of thermodynamics. This EC flux has an entropy-conserved part, preserving entropy for smooth flows and a numerical diffusion part that will accurately produce the proper amount of entropy, consistent with the second law. Several numerical simulations of the entropy consistent flux have been tested on two dimensional test cases. The first case is a Mach 3 flow over a forward facing step. The second case is a flow over a NACA 0012 airfoil while the third case is a hypersonic flow passing over a 2D cylinder. Local flow quantities such as velocity and pressure are analyzed and then compared with mainly the Roe flux. The results herein show that the EC flux does not capture the unphysical rarefaction shock unlike the Roe-flux and does not easily succumb to the carbuncle phenomenon. In addition, the EC flux maintains good performance in cases where the Roe flux is known to be superior.

  14. Sensitivity to Auditory Velocity Contrast.

    PubMed

    Locke, Shannon M; Leung, Johahn; Carlile, Simon

    2016-06-13

    A natural auditory scene often contains sound moving at varying velocities. Using a velocity contrast paradigm, we compared sensitivity to velocity changes between continuous and discontinuous trajectories. Subjects compared the velocities of two stimulus intervals that moved along a single trajectory, with and without a 1 second inter stimulus interval (ISI). We found thresholds were threefold larger for velocity increases in the instantaneous velocity change condition, as compared to instantaneous velocity decreases or thresholds for the delayed velocity transition condition. This result cannot be explained by the current static "snapshot" model of auditory motion perception and suggest a continuous process where the percept of velocity is influenced by previous history of stimulation.

  15. Evidence against dopamine D1/D2 receptor heteromers

    PubMed Central

    Frederick, Aliya L.; Yano, Hideaki; Trifilieff, Pierre; Vishwasrao, Harshad D.; Biezonski, Dominik; Mészáros, József; Sibley, David R.; Kellendonk, Christoph; Sonntag, Kai C.; Graham, Devon L.; Colbran, Roger J.; Stanwood, Gregg D.; Javitch, Jonathan A.

    2014-01-01

    Hetero-oligomers of G-protein-coupled receptors have become the subject of intense investigation because their purported potential to manifest signaling and pharmacological properties that differ from the component receptors makes them highly attractive for the development of more selective pharmacological treatments. In particular, dopamine D1 and D2 receptors have been proposed to form hetero-oligomers that couple to Gαq proteins, and SKF83959 has been proposed to act as a biased agonist that selectively engages these receptor complexes to activate Gαq and thus phospholipase C. D1/D2 heteromers have been proposed as relevant to the pathophysiology and treatment of depression and schizophrenia. We used in vitro bioluminescence resonance energy transfer (BRET), ex vivo analyses of receptor localization and proximity in brain slices, and behavioral assays in mice to characterize signaling from these putative dimers/oligomers. We were unable to detect Gαq or Gα11 protein coupling to homomers or heteromers of D1 or D2 receptors using a variety of biosensors. SKF83959-induced locomotor and grooming behaviors were eliminated in D1 receptor knockout mice, verifying a key role for D1-like receptor activation. In contrast, SKF83959-induced motor responses were intact in D2 receptor and Gαq knockout mice, as well as in knock-in mice expressing a mutant Ala286-CaMKIIα, that cannot autophosphorylate to become active. Moreover, we found that in the shell of the nucleus accumbens, even in neurons in which D1 and D2 receptor promoters are both active, the receptor proteins are segregated and do not form complexes. These data are not compatible with SKF83959 signaling through Gαq or through a D1–D2 heteromer and challenge the existence of such a signaling complex in the adult animals that we used for our studies. PMID:25560761

  16. Dynamical functions of a 1D correlated quantum liquid

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Bozi, D.; Penc, K.

    2008-10-01

    The dynamical correlation functions in one-dimensional electronic systems show power-law behaviour at low energies and momenta close to integer multiples of the charge and spin Fermi momenta. These systems are usually referred to as Tomonaga-Luttinger liquids. However, near well defined lines of the (k,ω) plane the power-law behaviour extends beyond the low-energy cases mentioned above, and also appears at higher energies, leading to singular features in the photoemission spectra and other dynamical correlation functions. The general spectral-function expressions derived in this paper were used in recent theoretical studies of the finite-energy singular features in photoemission of the organic compound tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) metallic phase. They are based on a so-called pseudofermion dynamical theory (PDT), which allows us to systematically enumerate and describe the excitations in the Hubbard model starting from the Bethe ansatz, as well as to calculate the charge and spin object phase shifts appearing as exponents of the power laws. In particular, we concentrate on the spin-density m\\rightarrow 0 limit and on effects in the vicinity of the singular border lines, as well as close to half filling. Our studies take into account spectral contributions from types of microscopic processes that do not occur for finite values of the spin density. In addition, the specific processes involved in the spectral features of TTF-TCNQ are studied. Our results are useful for the further understanding of the unusual spectral properties observed in low-dimensional organic metals and also provide expressions for the one- and two-atom spectral functions of a correlated quantum system of ultracold fermionic atoms in a 1D optical lattice with on-site two-atom repulsion.

  17. Synthesis, characterization, and physical properties of 1D nanostructures

    NASA Astrophysics Data System (ADS)

    Marley, Peter Mchael

    The roster of materials exhibiting metal---insulator transitions with sharply discontinuous switching of electrical conductivity close to room temperature remains rather sparse despite the fundamental interest in the electronic instabilities manifested in such materials and the plethora of potential technological applications, ranging from frequency-agile metamaterials to electrochromic coatings and Mott field-effect transistors. Vanadium oxide bronzes with the general formula MxV2O 5, provide a wealth of compositions and frameworks where strong electron correlation can be systematically (albeit thus far only empirically) tuned. Charge fluctuations along the quasi-1D frameworks of MxV 2O5 bronzes have evinced much recent interest owing to the manifestation of colossal metal---insulator transitions and superconductivity. We start with a general review on the phase transitions, both electronic and structural, of vanadium oxide bronzes in Chapter 1. In Chapter 2, we demonstrate an unprecedented reversible transformation between double-layered (delta) and tunnel (beta) quasi-1D geometries for nanowires of a divalent vanadium bronze CaxV2O5 (x ˜0.23) upon annealing-induced dehydration and hydrothermally-induced hydration. Such a facile hydration/dehydration-induced interconversion between two prominent quasi-1D structures (accompanied by a change in charge ordering motifs) has not been observed in the bulk and is posited to result from the ease of propagation of crystallographic slip processes across the confined nanowire widths for the delta→beta conversion and the facile diffusion of water molecules within the tunnel geometries for the beta→delta reversion. We demonstrate in Chapter 3 unprecedented pronounced metal-insulator transitions induced by application of a voltage for nanowires of a vanadium oxide bronze with intercalated divalent cations, beta-PbxV 2O5 (x ˜0.33). The induction of the phase transition through application of an electric field at room

  18. Synthesis, characterization, and physical properties of 1D nanostructures

    NASA Astrophysics Data System (ADS)

    Marley, Peter Mchael

    The roster of materials exhibiting metal---insulator transitions with sharply discontinuous switching of electrical conductivity close to room temperature remains rather sparse despite the fundamental interest in the electronic instabilities manifested in such materials and the plethora of potential technological applications, ranging from frequency-agile metamaterials to electrochromic coatings and Mott field-effect transistors. Vanadium oxide bronzes with the general formula MxV2O 5, provide a wealth of compositions and frameworks where strong electron correlation can be systematically (albeit thus far only empirically) tuned. Charge fluctuations along the quasi-1D frameworks of MxV 2O5 bronzes have evinced much recent interest owing to the manifestation of colossal metal---insulator transitions and superconductivity. We start with a general review on the phase transitions, both electronic and structural, of vanadium oxide bronzes in Chapter 1. In Chapter 2, we demonstrate an unprecedented reversible transformation between double-layered (delta) and tunnel (beta) quasi-1D geometries for nanowires of a divalent vanadium bronze CaxV2O5 (x ˜0.23) upon annealing-induced dehydration and hydrothermally-induced hydration. Such a facile hydration/dehydration-induced interconversion between two prominent quasi-1D structures (accompanied by a change in charge ordering motifs) has not been observed in the bulk and is posited to result from the ease of propagation of crystallographic slip processes across the confined nanowire widths for the delta→beta conversion and the facile diffusion of water molecules within the tunnel geometries for the beta→delta reversion. We demonstrate in Chapter 3 unprecedented pronounced metal-insulator transitions induced by application of a voltage for nanowires of a vanadium oxide bronze with intercalated divalent cations, beta-PbxV 2O5 (x ˜0.33). The induction of the phase transition through application of an electric field at room

  19. SCCRO3 (DCUN1D3) Antagonizes the Neddylation and Oncogenic Activity of SCCRO (DCUN1D1)*

    PubMed Central

    Huang, Guochang; Stock, Cameron; Bommeljé, Claire C.; Weeda, Víola B.; Shah, Kushyup; Bains, Sarina; Buss, Elizabeth; Shaha, Manish; Rechler, Willi; Ramanathan, Suresh Y.; Singh, Bhuvanesh

    2014-01-01

    The activity of cullin-RING type ubiquitination E3 ligases is regulated by neddylation, a process analogous to ubiquitination that culminates in covalent attachment of the ubiquitin-like protein Nedd8 to cullins. As a component of the E3 for neddylation, SCCRO/DCUN1D1 plays a key regulatory role in neddylation and, consequently, cullin-RING ligase activity. The essential contribution of SCCRO to neddylation is to promote nuclear translocation of the cullin-ROC1 complex. The presence of a myristoyl sequence in SCCRO3, one of four SCCRO paralogues present in humans that localizes to the membrane, raises questions about its function in neddylation. We found that although SCCRO3 binds to CAND1, cullins, and ROC1, it does not efficiently bind to Ubc12, promote cullin neddylation, or conform to the reaction processivity paradigms, suggesting that SCCRO3 does not have E3 activity. Expression of SCCRO3 inhibits SCCRO-promoted neddylation by sequestering cullins to the membrane, thereby blocking its nuclear translocation. Moreover, SCCRO3 inhibits SCCRO transforming activity. The inhibitory effects of SCCRO3 on SCCRO-promoted neddylation and transformation require both an intact myristoyl sequence and PONY domain, confirming that membrane localization and binding to cullins are required for in vivo functions. Taken together, our findings suggest that SCCRO3 functions as a tumor suppressor by antagonizing the neddylation activity of SCCRO. PMID:25349211

  20. High Resolution Velocity Structure in Eastern Turkey

    SciTech Connect

    Pasyanos, M; Gok, R; Zor, E; Walter, W

    2004-09-03

    We investigate the crustal and upper mantle structure of eastern Turkey where the Anatolian, Arabian and Eurasian Plates meet and form a complex tectonic structure. The Bitlis suture is a continental collision zone between the Anatolian plateau and the Arabian plate. Broadband data available through the Eastern Turkey Seismic Experiment (ETSE) provided a unique opportunity for studying the high resolution velocity structure. Zor et al. found an average 46 km thick crust in Anatolian plateau using six-layered grid search inversion of the ETSE receiver functions. Receiver functions are sensitive to the velocity contrast of interfaces and the relative travel time of converted and reverberated waves between those interfaces. The interpretation of receiver function alone with many-layered parameterization may result in an apparent depth-velocity tradeoff. In order to improve previous velocity model, we employed the joint inversion method with many layered parameterization of Julia et al. (2000) to the ETSE receiver functions. In this technique, the receiver function and surface-wave observations are combined into a single algebraic equation and each data set is weighted by an estimate of the uncertainty in the observations. We consider azimuthal changes of receiver functions and have stacked them into different groups. We calculated the receiver functions using iterative time-domain deconvolution technique and surface wave group velocity dispersion curves between 10-100 sec. We are making surface wave dispersion measurements at the ETSE stations and have incorporated them into a regional group velocity model. Preliminary results indicate a strong trend in the long period group velocity in the northeast. This indicates slow upper mantle velocities in the region consistent with Pn, Sn and receiver function results. We started with both the 1-D model that is obtained with the 12 tones dam explosion shot data recorded by ETSE network and the existing receiver function

  1. Dynamics of the gas-liquid interfacial reaction of O(1D) with a liquid hydrocarbon.

    PubMed

    Waring, Carla; King, Kerry L; Costen, Matthew L; McKendrick, Kenneth G

    2011-06-30

    The dynamics of the gas-liquid interfacial reaction of the first electronically excited state of the oxygen atom, O((1)D), with the surface of a liquid hydrocarbon, squalane (C(30)H(62); 2,6,10,15,19,23-hexamethyltetracosane) has been studied experimentally. Translationally hot O((1)D) atoms were generated by 193 nm photolysis of a low pressure (nominally 1 mTorr) of N(2)O a short distance (mean = 6 mm) above a continually refreshed liquid squalane surface. Nascent OH (X(2)Π, v' = 0) reaction products were detected by laser-induced fluorescence (LIF) on the OH A(2)Σ(+)-X(2)Π (1,0) band at the same distance above the surface. The speed distribution of the recoiling OH was characterized by measuring the appearance profiles as a function of photolysis-probe delay for selected rotational levels, N'. The rotational (and, partially, fine-structure) state distributions were also measured by recording LIF excitation spectra at selected photolysis-probe delays. The OH v' = 0 rotational distribution is bimodal and can be empirically decomposed into near thermal (~300 K) and much hotter (~6000 K) Boltzmann-temperature components. There is a strong positive correlation between rotational excitation and translation energy. However, the colder rotational component still represents a significant fraction (~30%) of the fastest products, which have substantially superthermal speeds. We estimate an approximate upper limit of 3% for the quantum yield of OH per O((1)D) atom that collides with the surface. By comparison with established mechanisms for the corresponding reactions in the gas phase, we conclude that the rotationally and translationally hot products are formed via a nonstatistical insertion mechanism. The rotationally cold but translationally hot component is most likely produced by direct abstraction. Secondary collisions at the liquid surface of products of either of the previous two mechanisms are most likely responsible for the rotationally and translationally cold

  2. Higher-order local and non-local correlations for 1D strongly interacting Bose gas

    NASA Astrophysics Data System (ADS)

    Nandani, EJKP; Römer, Rudolf A.; Tan, Shina; Guan, Xi-Wen

    2016-05-01

    The correlation function is an important quantity in the physics of ultracold quantum gases because it provides information about the quantum many-body wave function beyond the simple density profile. In this paper we first study the M-body local correlation functions, g M , of the one-dimensional (1D) strongly repulsive Bose gas within the Lieb-Liniger model using the analytical method proposed by Gangardt and Shlyapnikov (2003 Phys. Rev. Lett. 90 010401; 2003 New J. Phys. 5 79). In the strong repulsion regime the 1D Bose gas at low temperatures is equivalent to a gas of ideal particles obeying the non-mutual generalized exclusion statistics with a statistical parameter α =1-2/γ , i.e. the quasimomenta of N strongly interacting bosons map to the momenta of N free fermions via {k}i≈ α {k}iF with i=1,\\ldots ,N. Here γ is the dimensionless interaction strength within the Lieb-Liniger model. We rigorously prove that such a statistical parameter α solely determines the sub-leading order contribution to the M-body local correlation function of the gas at strong but finite interaction strengths. We explicitly calculate the correlation functions g M in terms of γ and α at zero, low, and intermediate temperatures. For M = 2 and 3 our results reproduce the known expressions for g 2 and g 3 with sub-leading terms (see for instance (Vadim et al 2006 Phys. Rev. A 73 051604(R); Kormos et al 2009 Phys. Rev. Lett. 103 210404; Wang et al 2013 Phys. Rev. A 87 043634). We also express the leading order of the short distance non-local correlation functions < {{{\\Psi }}}\\dagger ({x}1)\\cdots {{{\\Psi }}}\\dagger ({x}M){{\\Psi }}({y}M)\\cdots {{\\Psi }}({y}1)> of the strongly repulsive Bose gas in terms of the wave function of M bosons at zero collision energy and zero total momentum. Here {{\\Psi }}(x) is the boson annihilation operator. These general formulas of the higher-order local and non-local correlation functions of the 1D Bose gas provide new insights into the

  3. Velocity operator approach to quantum fluid dynamics in a three-dimensional neutron-proton system

    NASA Astrophysics Data System (ADS)

    Nishiyama, Seiya; da Providência, João

    2016-07-01

    In the preceeding paper, introducing isospin-dependent density operators and defining exact momenta (collective variables), we could get an exact canonically momenta approach to a one-dimensional (1D) neutron-proton (NP) system. In this paper, we attempt at a velocity operator approach to a 3D NP system. Following Sunakawa, after introducing momentum density operators, we define velocity operators, denoting classical fluid velocities. We derive a collective Hamiltonian in terms of the collective variables.

  4. Velocities in Solar Pores

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, K. S.; Keil, S. L.; Smaldone, L. A.

    1996-05-01

    We investigate the three dimensional structure of solar pores and their surroundings using high spatial and spectral resolution data. We present evidence that surface velocities decrease around pores with a corresponding increase in the line-of-sight (LOS) velocities. LOS velocities in pores increase with the strength of the magnetic field. Surface velocities show convergence toward a weak downflow which appear to trace boundaries resembling meso-granular and super granular flows. The observed magnetic fields in the pores appear near these boundaries. We analyze the vertical velocity structure in pores and show that they generally have downflows decreasing exponentially with height, with a scale height of about 90 km. Evidence is also presented for the expanding nature of flux tubes. Finally we describe a phenomenological model for pores. This work was supported by AFOSR Task 2311G3. LAS was partially supported by the Progetto Nazionale Astrofisica e Fisica Cosmica of MURST and Scambi Internazionali of the Universita degli Studi di Napoli Frederico II. National Solar Observatory, NOAO, is operated for the National Science Foundation by AURA, Inc.

  5. Transdimensional Love-wave tomography of the British Isles and shear-velocity structure of the East Irish Sea Basin from ambient-noise interferometry

    NASA Astrophysics Data System (ADS)

    Galetti, Erica; Curtis, Andrew; Baptie, Brian; Jenkins, David; Nicolson, Heather

    2016-08-01

    one-dimensional shear velocity profiles. By merging all 1D profiles, we created a fully three-dimensional model of the crust beneath the East Irish Sea. The depth to basement in this model compares well with that averaged from seismic reflection profiles. This result is the first 3-dimensional model in the UK with fully quantified uncertainties: it shows basin depths and basement structures, and their concomitant uncertainties.

  6. Propagation of excitation in long 1D chains: Transition from regular quantum dynamics to stochastic dynamics

    SciTech Connect

    Benderskii, V. A.; Kats, E. I.

    2013-01-15

    The quantum dynamics problem for a 1D chain consisting of 2N + 1 sites (N Much-Greater-Than 1) with the interaction of nearest neighbors and an impurity site at the middle differing in energy and in coupling constant from the sites of the remaining chain is solved analytically. The initial excitation of the impurity is accompanied by the propagation of excitation over the chain sites and with the emergence of Loschmidt echo (partial restoration of the impurity site population) in the recurrence cycles with a period proportional to N. The echo consists of the main (most intense) component modulated by damped oscillations. The intensity of oscillations increases with increasing cycle number and matrix element C of the interaction of the impurity site n = 0 with sites n = {+-}1 (0 < C {<=} 1; for the remaining neighboring sites, the matrix element is equal to unity). Mixing of the components of echo from neighboring cycles induces a transition from the regular to stochastic evolution. In the regular evolution region, the wave packet propagates over the chain at a nearly constant group velocity, embracing a number of sites varying periodically with time. In the stochastic regime, the excitation is distributed over a number of sites close to 2N, with the populations varying irregularly with time. The model explains qualitatively the experimental data on ballistic propagation of the vibrational energy in linear chains of CH{sub 2} fragments and predicts the possibility of a nondissipative energy transfer between reaction centers associated with such chains.

  7. Seismicity and Improved Velocity Structure in Kuwait

    SciTech Connect

    Gok, R M; Rodgers, A J; Al-Enezi, A

    2006-01-26

    The Kuwait National Seismic Network (KNSN) began operation in 1997 and consists of nine three-component stations (eight short-period and one broadband) and is operated by the Kuwait Institute for Scientific Research. Although the region is largely believed to be aseismic, considerable local seismicity is recorded by KNSN. Seismic events in Kuwait are clustered in two main groups, one in the south and another in the north. The KNSN station distribution is able to capture the southern cluster within the footprint of the network but the northern cluster is poorly covered. Events tend to occur at depths ranging from the free surface to about 20 km. Events in the northern cluster tend to be deeper than those in south, however this might be an artifact of the station coverage. We analyzed KNSN recordings of nearly 200 local events to improve understanding of seismic events and crustal structure in Kuwait, performing several analyses with increasing complexity. First, we obtained an optimized one-dimensional (1D) velocity model for the entire region using the reported KNSN arrival times and routine locations. The resulting model is consistent with a recently obtained model from the joint inversion of receiver functions and surface wave group velocities. Crustal structure is capped by the thick ({approx} 7 km) sedimentary rocks of the Arabian Platform underlain by normal velocities for stable continental crust. Our new model has a crustal thickness of 44 km, constrained by an independent study of receiver functions and surface wave group velocities by Pasyanos et al (2006). Locations and depths of events after relocation with the new model are broadly consistent with those reported by KISR, although a few events move more than a few kilometers. We then used a double-difference tomography technique (tomoDD) to jointly locate the events and estimate three-dimensional (3D) velocity structure. TomoDD is based on hypoDD relocation algorithm and it makes use of both absolute and

  8. Systematic comparison of initial velocities for neutron stars in different models

    NASA Astrophysics Data System (ADS)

    Taani, Ali

    2016-07-01

    I have studied the initial velocity (Maxwellian and exponential distributions) and the scale height of isolated old (aged ≥ 109 yr) neutron stars (NSs) at different Galactocentric distances R in three population models. The smooth time-independent 3-D axisymmetric gravitational potentials (Miyamoto-Nagai and Paczyński models) were also used. The correlation between these quantities significantly affects the shapes of the profiles and distributions of the simulated sample, because the differences in the initial kick can arise from differences in the formation and evolution of NSs with other physical parameters. The scale height of the density distribution increases systematically with R. I have also shown that the distribution of old NSs in these population models agrees with the observed structure of the Galaxy in terms of initial velocities (1-D and 3-D), as well as the scale height distributions. These distributions tend to have an asymptotic behavior at the point R = 2.75 kpc. This means that the quality of the models can be described in terms of a mean of the fitted Gaussian, and this could also give an overall perspective of the phase space properties of nearby old NSs on a given gravitational potential.

  9. 1-D Radiative-Convective Model for Terrestrial Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Leung, Cecilia W. S.; Robinson, Tyler D.

    2016-10-01

    We present a one dimensional radiative-convective model to study the thermal structure of terrestrial exoplanetary atmospheres. The radiative transfer and equilibrium chemistry in our model is based on similar methodologies in models used for studying Extrasolar Giant Planets (Fortney et al. 2005b.) We validated our model in the optically thin and thick limits, and compared our pressure-temperature profiles against the analytical solutions of Robinson & Catling (2012). For extrasolar terrestrial planets with pure hydrogen atmospheres, we evaluated the effects of H2-H2 collision induced absorption and identified the purely roto-translational band in our modeled spectra. We also examined how enhanced atmospheric metallicities affect the temperature structure, chemistry, and spectra of terrestrial exoplanets. For a terrestrial extrasolar planet whose atmospheric compostion is 100 times solar orbiting a sun-like star at 2 AU, our model resulted in a reducing atmosphere with H2O, CH4, and NH3 as the dominant greenhouse gases.

  10. Quantitative velocity modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hodges, James N.; McCall, Benjamin J.

    2016-05-01

    Velocity Modulation Spectroscopy (VMS) is arguably the most important development in the 20th century for spectroscopic study of molecular ions. For decades, interpretation of VMS lineshapes has presented challenges due to the intrinsic covariance of fit parameters including velocity modulation amplitude, linewidth, and intensity. This limitation has stifled the growth of this technique into the quantitative realm. In this work, we show that subtle changes in the lineshape can be used to help address this complexity. This allows for determination of the linewidth, intensity relative to other transitions, velocity modulation amplitude, and electric field strength in the positive column of a glow discharge. Additionally, we explain the large homogeneous component of the linewidth that has been previously described. Using this component, the ion mobility can be determined.

  11. Human CD1d knock-in mouse model demonstrates potent antitumor potential of human CD1d-restricted invariant natural killer T cells

    PubMed Central

    Wen, Xiangshu; Rao, Ping; Carreño, Leandro J.; Kim, Seil; Lawrenczyk, Agnieszka; Porcelli, Steven A.; Cresswell, Peter; Yuan, Weiming

    2013-01-01

    Despite a high degree of conservation, subtle but important differences exist between the CD1d antigen presentation pathways of humans and mice. These differences may account for the minimal success of natural killer T (NKT) cell-based antitumor therapies in human clinical trials, which contrast strongly with the powerful antitumor effects in conventional mouse models. To develop an accurate model for in vivo human CD1d (hCD1d) antigen presentation, we have generated a hCD1d knock-in (hCD1d-KI) mouse. In these mice, hCD1d is expressed in a native tissue distribution pattern and supports NKT cell development. Reduced numbers of invariant NKT (iNKT) cells were observed, but at an abundance comparable to that in most normal humans. These iNKT cells predominantly expressed mouse Vβ8, the homolog of human Vβ11, and phenotypically resembled human iNKT cells in their reduced expression of CD4. Importantly, iNKT cells in hCD1d knock-in mice exert a potent antitumor function in a melanoma challenge model. Our results show that replacement of mCD1d by hCD1d can select a population of functional iNKT cells closely resembling human iNKT cells. These hCD1d knock-in mice will allow more accurate in vivo modeling of human iNKT cell responses and will facilitate the preclinical assessment of iNKT cell-targeted antitumor therapies. PMID:23382238

  12. A 1D model of the arterial circulation in mice.

    PubMed

    Aslanidou, Lydia; Trachet, Bram; Reymond, Philippe; Fraga-Silva, Rodrigo A; Segers, Patrick; Stergiopulos, Nikolaos

    2016-01-01

    At a time of growing concern over the ethics of animal experimentation, mouse models are still an indispensable source of insight into the cardiovascular system and its most frequent pathologies. Nevertheless, reference data on the murine cardiovascular anatomy and physiology are lacking. In this work, we developed and validated an in silico, one dimensional model of the murine systemic arterial tree consisting of 85 arterial segments. Detailed aortic dimensions were obtained in vivo from contrast-enhanced micro-computed tomography in 3 male, C57BL/6J anesthetized mice and 3 male ApoE(-/-) mice, all 12-weeks old. Physiological input data were gathered from a wide range of literature data. The integrated form of the Navier-Stokes equations was solved numerically to yield pressures and flows throughout the arterial network. The resulting model predictions have been validated against invasive pressure waveforms and non-invasive velocity and diameter waveforms that were measured in vivo on an independent set of 47 mice. In conclusion, we present a validated one-dimensional model of the anesthetized murine cardiovascular system that can serve as a versatile tool in the field of preclinical cardiovascular research.

  13. Cirrus Crystal Terminal Velocities.

    NASA Astrophysics Data System (ADS)

    Heymsfield, Andrew J.; Iaquinta, Jean

    2000-04-01

    Cirrus crystal terminal velocities are of primary importance in determining the rate of transport of condensate from upper- to middle-tropospheric levels and profoundly influence the earth's radiation balance through their effect on the rate of buildup or decay of cirrus clouds. In this study, laboratory and field-based cirrus crystal drag coefficient data, as well as analytical descriptions of cirrus crystal shapes, are used to derive more physically based expressions for the velocities of cirrus crystals than have been available in the past.Polycrystals-often bullet rosettes-are shown to be the dominant crystal types in synoptically generated cirrus, with columns present in varying but relatively large percentages, depending on the cloud. The two critical parameters needed to calculate terminal velocity are the drag coefficient and the ratio of mass to cross-sectional area normal to their fall direction. Using measurements and calculations, it is shown that drag coefficients from theory and laboratory studies are applicable to crystals of the types found in cirrus. The ratio of the mass to area, which is shown to be relatively independent of the number of bullets in the rosette, is derived from an analytic model that represents bullet rosettes containing one to eight bullets in 19 primary geometric configurations. The ratio is also derived for columns. Using this information, a general set of equations is developed to calculate the terminal velocities and masses in terms of the aspect ratio (width divided by length), ice density, and rosette maximum dimension. Simple expressions for terminal velocity and mass as a function of bullet rosette maximum dimension are developed by incorporating new information on bullet aspect ratios.The general terminal velocity and mass relations are then applied to a case from the First International Satellite Cloud Climatology Project (ISCCP) Research Experiment (FIRE) 2, when size spectra from a balloon-borne ice crystal

  14. Advanced PDV velocity extraction

    NASA Astrophysics Data System (ADS)

    Dolan, Daniel; Ao, Tommy; Furnish, Michael

    2015-06-01

    While PDV has become a standard diagnostic, reliable velocity extraction remains challenging. Measurements with multiple real/apparent velocities are intrinsically difficult to analyze, and overlapping frequency components invalidate standard extraction methods. This presentation describes an advanced analysis technique where overlapping frequency components are resolved in the complex Fourier spectrum. Practical matters--multiple region of interest selection, component intersection, and shock transitions--will also be discussed. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85.

  15. Velocity pump reaction turbine

    DOEpatents

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  16. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  17. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  18. MSE velocity survey

    NASA Astrophysics Data System (ADS)

    Schimd, C.; Courtois, H.; Koda, J.

    2015-12-01

    A huge velocity survey based on the Maunakea Spectroscopic Explorer facility (MSE) is proposed, aiming at investigating the structure and dynamics of the cosmic web over 3π steradians up to ˜1 Gpc and at unprecedented spatial resolution, its relationship with the galaxy formation process, and the bias between galaxies and dark matter during the last three billions years. The cross-correlation of velocity and density fields will further allow the probe any deviation from General Relativity by measuring the the linear-growth rate of cosmic structures at precision competitive with high-redshift spectroscopic redshift surveys.

  19. RX GEMINORUM: PHOTOMETRIC SOLUTIONS, (NEARLY UNIFORM) GAINER ROTATION, DONOR RADIAL VELOCITY SOLUTION, NON-LTE ACCRETION DISK MODELS OF Hα EMISSION PROFILES, AND SECULAR LIGHT CURVE CHANGES IN THE 20TH CENTURY

    SciTech Connect

    Olson, Edward C.; Etzel, Paul B. E-mail: pbetzel@mail.sdsu.edu

    2015-04-15

    We obtained full-orbit Iybvu intermediate-band photometry and CCD spectroscopy of the long-period Algol eclipsing binary RX Geminorum. Photometric solutions using the Wilson–Devinney code give a gainer rotation (hotter, mass-accreting component) about 15 times the synchronous rate. We describe a simple technique to detect departures from uniform rotation of the hotter component. These binaries radiate double-peaked Hα emission from a low-mass accretion disk around the gainer. We used an approximate non-LTE disk code to predict models in fair agreement with observations, except in the far wings of the emission profile, where the star–inner disk boundary layer emits extra radiation. Variations in Hα emission derive from modulations in the transfer rate. A study of times of minima during the 20th century suggests that a perturbing third body is present near RX Gem.

  20. Proteasome-mediated degradation antagonizes critical levels of the apoptosis-inducing C1D protein

    PubMed Central

    Rothbarth, Karsten; Stammer, Hermann; Werner, Dieter

    2002-01-01

    The C1D gene is expressed in a broad spectrum of mammalian cells and tissues but its product induces apoptotic cell death when exceeding a critical level. Critical levels are achieved in a fraction of cells by transient transfection with EGFP-tagged C1D expression constructs. However, transfected cells expressing sub-critical levels of C1D(EGFP) escape apoptotic cell death by activation of a proteasome-mediated rescue mechanism. Inhibition of the proteasome-dependent degradation of the C1D(EGFP) protein results in a parallel increase of the intracellular C1D level and in the fraction of apoptotic cells. PMID:12379155

  1. Critical velocity for superfluid flow across the BEC-BCS crossover.

    PubMed

    Miller, D E; Chin, J K; Stan, C A; Liu, Y; Setiawan, W; Sanner, C; Ketterle, W

    2007-08-17

    Critical velocities have been observed in an ultracold superfluid Fermi gas throughout the BEC-BCS crossover. A pronounced peak of the critical velocity at unitarity demonstrates that superfluidity is most robust for resonant atomic interactions. Critical velocities were determined from the abrupt onset of dissipation when the velocity of a moving one-dimensional optical lattice was varied. The dependence of the critical velocity on lattice depth and on the inhomogeneous density profile was studied.

  2. Enhanced reduction of velocity data obtained during CETA flight experiment

    NASA Technical Reports Server (NTRS)

    Finley, Tom D.; Wong, Douglas T.; Tripp, John S.

    1993-01-01

    A newly developed technique for enhanced data reduction provides an improved procedure that allows least squares minimization to become possible between data sets with an unequal number of data points. This technique was applied in the Crew and Equipment Translation Aid (CETA) experiment on the STS-37 Shuttle flight in April 1991 to obtain the velocity profile from the acceleration data. The new technique uses a least-squares method to estimate the initial conditions and calibration constants. These initial conditions are estimated by least-squares fitting the displacements indicated by the Hall-effect sensor data to the corresponding displacements obtained from integrating the acceleration data. The velocity and displacement profiles can then be recalculated from the corresponding acceleration data using the estimated parameters. This technique, which enables instantaneous velocities to be obtained from the test data instead of only average velocities at varying discrete times, offers more detailed velocity information, particularly during periods of large acceleration or deceleration.

  3. Grid Cell Responses in 1D Environments Assessed as Slices through a 2D Lattice.

    PubMed

    Yoon, KiJung; Lewallen, Sam; Kinkhabwala, Amina A; Tank, David W; Fiete, Ila R

    2016-03-01

    Grid cells, defined by their striking periodic spatial responses in open 2D arenas, appear to respond differently on 1D tracks: the multiple response fields are not periodically arranged, peak amplitudes vary across fields, and the mean spacing between fields is larger than in 2D environments. We ask whether such 1D responses are consistent with the system's 2D dynamics. Combining analytical and numerical methods, we show that the 1D responses of grid cells with stable 1D fields are consistent with a linear slice through a 2D triangular lattice. Further, the 1D responses of comodular cells are well described by parallel slices, and the offsets in the starting points of the 1D slices can predict the measured 2D relative spatial phase between the cells. From these results, we conclude that the 2D dynamics of these cells is preserved in 1D, suggesting a common computation during both types of navigation behavior. PMID:26898777

  4. Comparison between a 1D and a 2D numerical model of an active magnetic regenerative refrigerator

    NASA Astrophysics Data System (ADS)

    Petersen, Thomas Frank; Engelbrecht, Kurt; Bahl, Christian R. H.; Elmegaard, Brian; Pryds, Nini; Smith, Anders

    2008-05-01

    The active magnetic regenerator (AMR) refrigeration system represents an environmentally attractive alternative to vapour-compression refrigeration. This paper compares the results of two numerical AMR models: (1) a 1D finite difference model and (2) a 2D finite element model. Both models simulate a reciprocating AMR and can determine the cyclical steady-state temperature profile of the system as well as performance parameters such as the refrigeration capacity, the work input and the coefficient of performance (COP). The models are used to analyse an AMR with a regenerator made of flat parallel plates of gadolinium operating in the presence of a 1 T magnetic field. The results are used to discuss under which circumstances a 1D model is insufficient and a 2D model is necessary. The results indicate that when the temperature gradients in the AMR perpendicular to the flow are small a 1D model obtains accurate results of overall results such as the refrigeration capacity but that a 2D model is required for a detailed analysis of the phenomena occurring inside the AMR.

  5. Modeling Terminal Velocity

    ERIC Educational Resources Information Center

    Brand, Neal; Quintanilla, John A.

    2013-01-01

    Using a simultaneously falling softball as a stopwatch, the terminal velocity of a whiffle ball can be obtained to surprisingly high accuracy with only common household equipment. This classroom activity engages students in an apparently daunting task that nevertheless is tractable, using a simple model and mathematical techniques at their…

  6. Velocity logging and seismic velocity of rocks in the Rainier Mesa area, Nevada Test Site, Nevada

    SciTech Connect

    Carroll, R.D.; Magner, J.E.

    1988-01-01

    Velocity data obtained in 38 vertical drill holes in the Rainier and Aqueduct Mesa area were evaluated. Twenty-three geophone surveys and 20 acoustic logs were used to define the in-situ velocity of rocks in the region. The vertical velocity profile can be subdivided into the caprock; the unsaturated zone, the base of which is approximately defined by the top of pervasive zeolitization; the saturated zone of zeolitized rocks; and the pre-Tertiary clastic and carbonate rocks. Comparisons of geophone and acoustic log surveys indicate considerable positive drift (higher acoustic log velocity) in several holes, and none of the postulated causes (dispersion, geologic structure, data error, invasion) can be isolated.

  7. Magnetic resonance imaging the velocity vector components of fluid flow.

    PubMed

    Feinberg, D A; Crooks, L E; Sheldon, P; Hoenninger, J; Watts, J; Arakawa, M

    1985-12-01

    Encoding the precession phase angle of proton nuclei for Fourier analysis has produced accurate measurement of fluid velocity vector components by MRI. A pair of identical gradient pulses separated in time by exactly 1/2 TE, are used to linearly encode the phase of flow velocity vector components without changing the phase of stationary nuclei. Two-dimensional Fourier transformation of signals gave velocity density images of laminar flow in angled tubes which were in agreement with the laws of vector addition. These velocity profile images provide a quantitative method for the investigation of fluid dynamics and hemodynamics. PMID:3880097

  8. CN jet velocity in Comet P/Halley

    NASA Technical Reports Server (NTRS)

    Klavetter, James J.; A'Hearn, Michael F.

    1992-01-01

    The projected expansion velocity of Comet Halley's coma is presently determined in CN jet images that were processed with a radial profile subtraction technique. It is established that the flow is approximately radial, and that the velocity can also be determined by measuring specific radial features in jets. The largest projected velocity is 1.7 +/- 0.3 km/sec, at 50,000 km from the nucleus. This is the largest expansion velocity found for this region of the Comet Halley coma. Comparisons are made with other observations and theoretical models.

  9. A Modification to the Calibration of MDI Velocities

    NASA Astrophysics Data System (ADS)

    Evans, S.; Ulrich, R. K.; Scherrer, P. H.; Bush, R. I.; Tarbell, T. D.

    The ability of the Michelson Doppler Imager instrument used by the Solar Oscillations Investigation (Scherrer, et al, 1995) to produce velocity measurements is affected by center-to-limb effects on the Ni 6768 AA line profile. These effects are removed by special calibration observations known as detunes. Part of the detune procedure involves the modelling of center-to-limb line profile changes by fitting a Gaussian to the line profile and varying both the model profile's depth and FWHM as a function of center-to-limb angle. However, the functions used for modelling both line depth and FWHM differ from those derived from data from both the Mt. Wilson 150' Tower and the Fourier Transform Spectrometer at Kitt Peak. This variation can produce velocity errors of ~100 m/s. By modifying the line depth and FWHM functions to conform to those derived from the data, an improved velocity calibration can be achieved.

  10. Shear Wave Velocity Structure of Southern African Crust: Evidence for Compositional Heterogeneity within Archaean and Proterozoic Terrains

    SciTech Connect

    Kgaswane, E M; Nyblade, A A; Julia, J; Dirks, P H H M; Durrheim, R J; Pasyanos, M E

    2008-11-11

    Crustal structure in southern Africa has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities for 89 broadband seismic stations spanning much of the Precambrian shield of southern Africa. 1-D shear wave velocity profiles obtained from the inversion yield Moho depths that are similar to those reported in previous studies and show considerable variability in the shear wave velocity structure of the lower part of the crust between some terrains. For many of the Archaean and Proterozoic terrains in the shield, S velocities reach 4.0 km/s or higher over a substantial part of the lower crust. However, for most of the Kimberley terrain and adjacent parts of the Kheis Province and Witwatersrand terrain, as well as for the western part of the Tokwe terrain, mean shear wave velocities of {le} 3.9 km/s characterize the lower part of the crust along with slightly ({approx}5 km) thinner crust. These findings indicate that the lower crust across much of the shield has a predominantly mafic composition, except for the southwest portion of the Kaapvaal Craton and western portion of the Zimbabwe Craton, where the lower crust is intermediate-to-felsic in composition. The parts of the Kaapvaal Craton underlain by intermediate-to-felsic lower crust coincide with regions where Ventersdorp rocks have been preserved, and thus we suggest that the intermediate-to-felsic composition of the lower crust and the shallower Moho may have resulted from crustal melting during the Ventersdorp tectonomagmatic event at c. 2.7 Ga and concomitant crustal thinning caused by rifting.

  11. Complete velocity distribution in river cross-sections measured by acoustic instruments

    USGS Publications Warehouse

    Cheng, R.T.; Gartner, J.W.

    2003-01-01

    To fully understand the hydraulic properties of natural rivers, velocity distribution in the river cross-section should be studied in detail. The measurement task is not straightforward because there is not an instrument that can measure the velocity distribution covering the entire cross-section. Particularly, the velocities in regions near the free surface and in the bottom boundary layer are difficult to measure, and yet the velocity properties in these regions play the most significant role in characterizing the hydraulic properties. To further characterize river hydraulics, two acoustic instruments, namely, an acoustic Doppler current profiler (ADCP), and a "BoogieDopp" (BD) were used on fixed platforms to measure the detailed velocity profiles across the river. Typically, 20 to 25 stations were used to represent a river cross-section. At each station, water velocity profiles were measured independently and/or concurrently by an ADCP and a BD. The measured velocity properties were compared and used in computation of river discharge. In a tow-tank evaluation of a BD, it has been confirmed that BD is capable of measuring water velocity at about 11 cm below the free-surface. Therefore, the surface velocity distribution across the river was extracted from the BD velocity measurements and used to compute the river discharge. These detailed velocity profiles and the composite velocity distribution were used to assess the validity of the classic theories of velocity distributions, conventional river discharge measurement methods, and for estimates of channel bottom roughness.

  12. Simulating photospheric Doppler velocity fields

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1988-01-01

    A method is described for constructing artificial data that realistically simulate photospheric velocity fields. The velocity fields include rotation, differential rotation, meridional circulation, giant cell convection, supergranulation, convective limb shift, p-mode oscillations, and observer motion. Data constructed by this method can be used for testing algorithms designed to extract and analyze these velocity fields in real Doppler velocity data.

  13. Self similar growth of a 1D granular fan under laminar flow near threshold

    NASA Astrophysics Data System (ADS)

    Guerit, Laure; Métivier, François; Devauchelle, Olivier; Lajeunesse, Eric; Barrier, Laurie

    2014-05-01

    Alluvial fans are major sedimentary bodies that make the transition between the reliefs and the sedimentary basins. They are found at the outlet of some drainages catchments, where rivers are free to diverge and avulse, and to depose part of their sedimentary load. Understanding their dynamics of formation and evolution is a great problem of sediment transport. Rivers and fan profiles are usually described as diffusive systems but this is only true if the shear stress exerted on the bed is high compared to the critical shear stress. This might be the case for sand bed rivers, but not for gravel bed rivers, for which it is known that the shear stress is only slightly higher than the critical one. This is why we need to develop a new model to describe the evolution of alluvial fans built by gravel bed rivers. To do this analytically, we work in 1D, with a laminar flow and one grain-size in order to be able to describe both the fluid and the sediment transport. In addition, the conditions of the experiments insured that the boundary shear stress is near the critical value for motion inception of the granular material. Using Taylor expansion, we show that for asymptotically long times, the fan growth is self-similar and can be decomposed into a triangular ``threshold" shape plus a small quadratic deviation. We performed experiments with glass beads and glycerol to test and successfully validate this theory.

  14. Standard deviations of composition measurements in atom probe analyses. Part I conventional 1D atom probe.

    PubMed

    Danoix, F; Grancher, G; Bostel, A; Blavette, D

    2007-09-01

    Atom probe is a very powerful instrument to measure concentrations on a sub nanometric scale [M.K. Miller, G.D.W. Smith, Atom Probe Microanalysis, Principles and Applications to Materials Problems, Materials Research Society, Pittsburgh, 1989]. Atom probe is therefore a unique tool to study and characterise finely decomposed metallic materials. Composition profiles or 3D mapping can be realised by gathering elemental composition measurements. As the detector efficiency is generally not equal to 1, the measured compositions are only estimates of actual values. The variance of the estimates depends on which information is to be estimated. It can be calculated when the detection process is known. These two papers are devoted to give complete analytical derivation and expressions of the variance on composition measurements in several situations encountered when using atom probe. In the first paper, we will concentrate on the analytical derivation of the variance when estimation of compositions obtained from a conventional one dimension (1D) atom probe is considered. In particular, the existing expressions, and the basic hypotheses on which they rely, will be reconsidered, and complete analytical demonstrations established. In the second companion paper, the case of 3D atom probe will be treated, highlighting how the knowledge of the 3D position of detected ions modifies the analytical derivation of the variance of local composition data.

  15. HYBRID COSMOLOGICAL SIMULATIONS WITH STREAM VELOCITIES

    SciTech Connect

    Richardson, Mark L. A.; Scannapieco, Evan; Thacker, Robert J.

    2013-07-10

    In the early universe, substantial relative ''stream'' velocities between the gas and dark matter arise due to radiation pressure and persist after recombination. To assess the impact of these velocities on high-redshift structure formation, we carry out a suite of high-resolution adaptive mesh refinement (AMR) cosmological simulations, which use smoothed particle hydrodynamic data sets as initial conditions, converted using a new tool developed for this work. These simulations resolve structures with masses as small as a few 100 M{sub Sun }, and we focus on the 10{sup 6} M{sub Sun} ''mini-halos'' in which the first stars formed. At z Almost-Equal-To 17, the presence of stream velocities has only a minor effect on the number density of halos below 10{sup 6} M{sub Sun }, but it greatly suppresses gas accretion onto all halos and the dark matter structures around them. Stream velocities lead to significantly lower halo gas fractions, especially for Almost-Equal-To 10{sup 5} M{sub Sun} objects, an effect that is likely to depend on the orientation of a halo's accretion lanes. This reduction in gas density leads to colder, more compact radial profiles, and it substantially delays the redshift of collapse of the largest halos, leading to delayed star formation and possibly delayed reionization. These many differences suggest that future simulations of early cosmological structure formation should include stream velocities to properly predict gas evolution, star formation, and the epoch of reionization.

  16. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume III P-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    In this volume (III), all P-wave measurements are presented that were performed in Borehole C4997 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 390 to 1220 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 40 ft (later relocated to 27.5 ft due to visibility in borehole after rain) in Borehole C4997, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4997, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  17. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume I P-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-07-06

    In this volume (I), all P-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 370 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4993, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  18. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume II P-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-07-06

    In this volume (II), all P-wave measurements are presented that were performed in Borehole C4996 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 360 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1180 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4996, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4996, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  19. Evolution of planetesimal velocities

    NASA Technical Reports Server (NTRS)

    Stewart, Glen R.; Wetherill, George W.

    1987-01-01

    A self-consistent set of equations for the velocity evolution of a general planetesimal population is presented. The equations are given in a form convenient for calculations of the early stages of planetary accumulation when it is necessary to model the planetesimal swarm by methods of gas dynamics, rather than follow the orbital evolution of individual bodies. Steady state velocities of a simple planetesimal population consisting of two different sizes of bodies are calculated. Dynamical friction is found to be an important mechanism for transferring kinetic energy from the larger planetesimals to the smaller ones. When the small planetesimals are relatively abundant, gas drag and inelastic collisions among the smaller bodies are of comparable importance for dissipating energy from the population.

  20. Evolution of planetesimal velocities

    NASA Astrophysics Data System (ADS)

    Stewart, G. R.; Wetherill, G. W.

    1988-06-01

    A self-consistent set of equations for the velocity evolution of a general planetesimal population is presented. Dynamical friction is found to be an important mechanism for transferring kinetic energy from the larger planetesimals to the smaller ones, providing an energy source for the small planetesimals that is comparable to that provided by the viscous stirring process. When small planetesimals are relatively abundant, gas drag and inelastic collisions among the smaller bodies are of comparable importance for dissipating energy from the population.

  1. Derivation of vertical air velocity from conventional Radiosonde ascents

    NASA Astrophysics Data System (ADS)

    Manguttathil Gopalakrishnan, Manoj; Mohanakumar, Kesavapillai; Samson, Titu; Kottayil, Ajil; Varadarajan, Rakesh; Rebello, Rejoy

    2016-07-01

    In this work, we devise a method to estimate air vertical velocity from ascending radiosondes similar to that described in published results, but with certain differences in deriving the balloon parameters and the drag coefficient, while not considering explicitly the heat exchange between the balloon and the environment. We basically decompose the observed balloon ascent rate into vertical velocity in still air due to buoyancy force and that due to vertical air motion. The first part is computed from basic hydrodynamical principles and the vertical velocity is derived as the difference between observed ascent rate and the estimated still air vertical velocity. The derived values agree reasonably well (r=0.66) with vertical velocities observed with a collocated wind profiler radar, and the sources of uncertainties are discussed. Since vertical velocity is a difficult quantity to measure directly without expensive methods, derivation of the same from the conventional radiosonde ascents could be of great importance to the meteorological communities.

  2. Implications of high-velocity interstellar H I absorption features

    NASA Technical Reports Server (NTRS)

    Cowie, L.; York, D. G.; Laurent, C.; Vidal-Madjar, A.

    1979-01-01

    Contributions to the interstellar H I column density at high velocities from immediate postshock gas and from the cooling gas behind a shock are compared. The detection of high-velocity H I in L-epsilon and L-delta for Iota Ori is reported and interpreted as cooling gas behind a shock of 100 km/s velocity. The immediate postshock gas should be observable for shock velocities greater than 200 km/s and permits direct determination of the velocities of adiabatic shocks in the interstellar medium. It is pointed out that interstellar L-alpha and L-beta lines may not have purely Lorentzian profiles if high-velocity H I is a widespread phenomenon.

  3. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume IV S-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    In this volume (IV), all S-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. S-wave measurements were performed over the depth range of 370 to 1300 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Shear (S) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition, a second average shear wave record was recorded by reversing the polarity of the motion of the T-Rex base plate. In this sense, all the signals recorded in the field were averaged signals. In all cases, the base plate was moving perpendicular to a radial line between the base plate and the borehole which is in and out of the plane of the figure shown in Figure 1.1. The definition of “in-line”, “cross-line”, “forward”, and “reversed” directions in items 2 and 3 of Section 2 was based on the moving direction of the base plate. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas (UT) was embedded near the borehole at about 1.5 ft below the ground surface. The Redpath geophone and the UT geophone were properly aligned so that one of the horizontal components in each geophone was aligned with the direction of horizontal shaking of the T-Rex base plate. This volume is organized into 12 sections as follows. Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vs Profile at Borehole C4993

  4. Expression of CD1d protein in human testis showing normal and abnormal spermatogenesis.

    PubMed

    Adly, Mohamed A; Abdelwahed Hussein, Mahmoud-Rezk

    2011-05-01

    CD1d is a member of CD1 family of transmembrane glycoproteins, which represent antigen-presenting molecules. Immunofluorescent staining methods were utilized to examine expression pattern of CD1d in human testicular specimens. In testis showing normal spermatogenesis, a strong CD1d cytoplasmic expression was seen the Sertoli cells, spermatogonia, and Leydig cells. A moderate expression was observed in the spermatocytes. In testes showing maturation arrest, CD1d expression was strong in the Sertoli cells and weak in spermatogonia and spermatocytes compared to testis with normal spermatogenesis. In Sertoli cell only syndrome, CD1d expression was strong in the Sertoli and Leydig cells. This preliminary study displayed testicular infertility-related changes in CD1d expression. The ultrastructural changes associated with with normal and abnormal spermatogenesis are open for further investigations.

  5. A new instrumentation for particle velocity and velocity related measurements under water

    NASA Astrophysics Data System (ADS)

    Zhu, Weijia

    This dissertation investigates the capability of a new instrument for small particle velocity measurement and velocity related signal analysis in an underwater environment. This research started from the laser beam quality test, which was performed in air. It was conducted mainly by means of an optical fiber sensor combined with a computer controlled stepping motor as well as two other methods, edge detection and needle-tip scattering. The stepping motor offers a constant velocity to the fiber sensor, so that the beam separation can be accurately measured by using the constant velocity value and the transit time determined by the cross correlation function of two digital signals. Meanwhile, information of the beam intensity profile, the parallelism of the two beams and the in-air beam widths can also be obtained in the test. By using the calibrated beam separation of the ribbon pair in the beam quality test, particle velocity measurements are carried out based on the relation between velocity, displacement and time in a 500-liter open water tank. The time delay for a particle crossing over the two ribbons in sequence is obtained by computing the cross correlation of the two signals. In fact, the time delay is actually a statistical mean value of many particles that cross over the ribbons in a short time. So is the measured velocity. The third part of this research is the practical study on pulse shape analysis based on the data sets of the velocity measurement. Several computer programs are developed to explore the pulse height distribution in a data set, to study the pulse degeneration, the relationship between the pulse width and the velocity, and the in-water beam width information. Some important reference materials are displayed in the appendices such as the fundamentals of the cross correlation and auto correlation, three main MATLAB programs developed for this research, the theoretical analysis of particle diffraction.

  6. Examination of 1D Solar Cell Model Limitations Using 3D SPICE Modeling: Preprint

    SciTech Connect

    McMahon, W. E.; Olson, J. M.; Geisz, J. F.; Friedman, D. J.

    2012-06-01

    To examine the limitations of one-dimensional (1D) solar cell modeling, 3D SPICE-based modeling is used to examine in detail the validity of the 1D assumptions as a function of sheet resistance for a model cell. The internal voltages and current densities produced by this modeling give additional insight into the differences between the 1D and 3D models.

  7. 1D numerical model of muddy subaqueous and subaerial debris flows

    USGS Publications Warehouse

    Imran, J.; Parker, G.; Locat, J.; Lee, H.

    2001-01-01

    A 1D numerical model of the downslope flow and deposition of muddy subaerial and subaqueous debris flows is presented. The model incorporates the Herschel-Bulkley and bilinear rheologies of viscoplastic fluid. The more familiar Bingham model is integrated into the Herschel-Bulkley rheological model. The conservation equations of mass and momentum of single-phase laminar debris flow are layer-integrated using the slender flow approximation. They are then expressed in a Lagrangian framework and solved numerically using an explicit finite difference scheme. Starting from a given initial shape, a debris flow is allowed to collapse and propagate over a specified topography. Comparison between the model predictions and laboratory experiments shows reasonable agreement. The model is used to study the effect of the ambient fluid density, initial shape of the failed mass, and rheological model on the simulated propagation of the front and runout characteristics of muddy debris flows. It is found that initial failure shape influence the front velocity but has little bearing on the final deposit shape. In the Bingham model, the excess of shear stress above the yield strength is proportional to the strain rate to the first power. This exponent is free to vary in the Herschel-Bulkley model. When it is set at a value lower than unity, the resulting final deposits are thicker and shorter than in the case of the Bingham rheology. The final deposit resulting from the bilinear model is longer and thinner than that from the Bingham model due to the fact that the debris flow is allowed to act as a Newtonian fluid at low shear rate in the bilinear model.

  8. Comparison of 1D and 2D modelling with soil erosion model SMODERP

    NASA Astrophysics Data System (ADS)

    Kavka, Petr; Weyskrabova, Lenka; Zajicek, Jan

    2013-04-01

    The contribution presents a comparison of a runoff simulated by profile method (1D) and spatially distributed method (2D). Simulation model SMODERP is used for calculation and prediction of soil erosion and surface runoff from agricultural land. SMODERP is physically based model that includes the processes of infiltration (Phillips equation), surface runoff (kinematic wave based equation), surface retention, surface roughness and vegetation impact on runoff. 1D model was developed in past, new 2D model was developed in last two years. The model is being developed at the Department of Irrigation, Drainage and Landscape Engineering, Civil Engineering Faculty, CTU in Prague. 2D model was developed as a tool for widespread GIS software ArcGIS. The physical relations were implemented through Python script. This script uses ArcGIS system tools for raster and vectors treatment of the inputs. Flow direction is calculated by Steepest Descent algorithm in the preliminary version of 2D model. More advanced multiple flow algorithm is planned in the next version. Spatially distributed models enable to estimate not only surface runoff but also flow in the rills. Surface runoff is described in the model by kinematic wave equation. Equation uses Manning roughness coefficient for surface runoff. Parameters for five different soil textures were calibrated on the set of forty measurements performed on the laboratory rainfall simulator. For modelling of the rills a specific sub model was created. This sub model uses Manning formula for flow estimation. Numerical stability of the model is solved by Courant criterion. Spatial scale is fixed. Time step is dynamically changed depending on how flow is generated and developed. SMODERP is meant to be used not only for the research purposes, but mainly for the engineering practice. We also present how the input data can be obtained based on available resources (soil maps and data, land use, terrain models, field research, etc.) and how can

  9. Density - Velocity Relationships in Explosive Volcanic Plumes

    NASA Astrophysics Data System (ADS)

    Fisher, M. A.; Kobs-Nawotniak, S. E.

    2015-12-01

    Positively buoyant volcanic plumes rise until the bulk density of the plume is equal to the density of the ambient atmosphere. As ambient air mixes with the plume, it lowers the plume bulk density; thus, the plume is diluted enough to reach neutral density in a naturally stratified atmospheric environment. We produced scaled plumes in analogue laboratory experiments by injecting a saline solution with a tracer dye into distilled water, using a high-pressure injection system. We recorded each eruption with a CASIO HD digital camera and used ImageJ's FeatureJ Edge toolbox to identify individual eddies. We used an optical flow software based off the ImageJ toolbox FlowJ to determine the velocities along the edge of each eddy. Eddy densities were calculated by mapping the dye concentration to the RGB digital color value. We overlaid the eddy velocities over the densities in order to track the behavioral relationship between the two variables with regard to plume motion. As an eddy's bulk density decreases, the vertical velocity decreases; this is a result of decreased mass, and therefore momentum, in the eddy. Furthermore as the density rate of change increases, the eddy deceleration increases. Eddies are most dense at their top and least dense at their bottom. The less dense sections of the eddies have lower vertical velocities than the sections of the eddies with the higher densities, relating to the expanding radial size of an eddy as it rises and the preferential ingestion of ambient air at the base of eddies. Thus the mixing rate in volcanic plumes fluctuates not only as a function of height as described by the classic 1D entrainment hypothesis, but also as a function of position in an eddy itself.

  10. Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide.

    PubMed

    Tong, Liping; Qi, Wei; Wang, Mengfan; Huang, Renliang; Su, Rongxin; He, Zhimin

    2016-07-01

    It is broadly observed that graphene oxide (GO) films appear transparent with a thickness of about several nanometers, whereas they appear dark brown or almost black with thickness of more than 1 μm. The basic color mechanism of GO film on a sub-micrometer scale, however, is not well understood. This study reports on GO pseudo-1D photonic crystals (p1D-PhCs) exhibiting tunable structural colors in the visible wavelength range owing to its 1D Bragg nanostructures. Striking structural colors of GO p1D-PhCs could be tuned by simply changing either the volume or concentration of the aqueous GO dispersion during vacuum filtration. Moreover, the quantitative relationship between thickness and reflection wavelength of GO p1D-PhCs has been revealed, thereby providing a theoretical basis to rationally design structural colors of GO p1D-PhCs. The spectral response of GO p1D-PhCs to humidity is also obtained clearly showing the wavelength shift of GO p1D-PhCs at differently relative humidity values and thus encouraging the integration of structural color printing and the humidity-responsive property of GO p1D-PhCs to develop a visible and fast-responsive anti-counterfeiting label. The results pave the way for a variety of potential applications of GO in optics, structural color printing, sensing, and anti-counterfeiting.

  11. Exercise increases TBC1D1 phosphorylation in human skeletal muscle

    PubMed Central

    Jessen, Niels; An, Ding; Lihn, Aina S.; Nygren, Jonas; Hirshman, Michael F.; Thorell, Anders

    2011-01-01

    Exercise and weight loss are cornerstones in the treatment and prevention of type 2 diabetes, and both interventions function to increase insulin sensitivity and glucose uptake into skeletal muscle. Studies in rodents demonstrate that the underlying mechanism for glucose uptake in muscle involves site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 (TBC1D4) and TBC1D1. Multiple kinases, including Akt and AMPK, phosphorylate TBC1D1 and AS160 on distinct residues, regulating their activity and allowing for GLUT4 translocation. In contrast to extensive rodent-based studies, the regulation of AS160 and TBC1D1 in human skeletal muscle is not well understood. In this study, we determined the effects of dietary intervention and a single bout of exercise on TBC1D1 and AS160 site-specific phosphorylation in human skeletal muscle. Ten obese (BMI 33.4 ± 2.4, M-value 4.3 ± 0.5) subjects were studied at baseline and after a 2-wk dietary intervention. Muscle biopsies were obtained from the subjects in the resting (basal) state and immediately following a 30-min exercise bout (70% V̇o2 max). Muscle lysates were analyzed for AMPK activity and Akt phosphorylation and for TBC1D1 and AS160 phosphorylation on known or putative AMPK and Akt sites as follows: AS160 Ser711 (AMPK), TBC1D1 Ser231 (AMPK), TBC1D1 Ser660 (AMPK), TBC1D1 Ser700 (AMPK), and TBC1D1 Thr590 (Akt). The diet intervention that consisted of a major shift in the macronutrient composition resulted in a 4.2 ± 0.4 kg weight loss (P < 0.001) and a significant increase in insulin sensitivity (M value 5.6 ± 0.6), but surprisingly, there was no effect on expression or phosphorylation of any of the muscle-signaling proteins. Exercise increased muscle AMPKα2 activity but did not increase Akt phosphorylation. Exercise increased phosphorylation on AS160 Ser711, TBC1D1 Ser231, and TBC1D1 Ser660 but had no effect on TBC1D1 Ser700. Exercise did not increase TBC1D1 Thr590 phosphorylation or TBC1D1/AS160 PAS

  12. Force on a slow moving impurity due to thermal and quantum fluctuations in a 1D Bose-Einstein condensate

    SciTech Connect

    Roberts, David; Sykes, Andrew

    2009-01-01

    We study the drag force acting on an impurity moving through a 1D Bose-Einstein condensate in the presence of both quantum and thermal fluctuations. We are able to find exact analytical solutions of the partial differential equations to the level of the Bogoliubov approximation. At zero temperature, we find a nonzero force is exerted on the impurity at subcritical velocities, due to the scattering of quantum fluctuations. We make the following explicit assumptions: far from the impurity the system is in a quantum state given by that of a zero (or finite) temperature Bose-Einstein condensate, and the scattering process generates only causally related reflection/transmission. The results raise unanswered questions in the quantum dynamics associated with the formation of persistent currents.

  13. Reducing Uncertainties in the Velocities Determined by Inversion of Phase Velocity Dispersion Curves by Using Synthetic Seismograms

    NASA Astrophysics Data System (ADS)

    Hosseini, M.; Pezeshk, S.; Pujol, J. M.

    2012-12-01

    The use of Rayleigh waves phase velocity dispersion curves for the determination of shallow shear-wave velocity profiles is widespread in the context of geotechnical, earthquake engineering, and seismic hazard applications because it is a low-cost technique. A significant problem with this technique, however, is its intrinsic non-uniqueness, and although this problem is widely recognized, there have not been systematic efforts to develop approaches to reduce the pervasive uncertainty that affects the velocity profiles determined by the inversion. To minimize the lack of uniqueness different methodologies can be combined together. Genetic algorithms (GA) can be used to maximize the probability of finding the global optimum. Furthermore, considering higher modes of propagation will help reducing the non-uniqueness problem. Here, we present one approach based on the use of synthetic seismograms, which has been tested successfully with synthetic data designed to resemble actual data. For example, two completely different velocity models produce essentially the same dispersion curves for the fundamental mode and the first three higher modes, which mean that there is no objective way to discriminate between the two models. On the other hand, the corresponding synthetic traces have significant differences, which allow choosing the appropriate velocity model. The goal of this study is to apply the synthetic seismogram technique to data collected with method of multi-channel analysis of surface waves (MASW). We use simulated tests to assess the usefulness and the limitations of this technique. We use a target velocity profile with an assumed water level for calculation of synthetic experimental dispersion curve, which is used in the inversion process. The inversion process results in several different inverted velocity profiles with theoretical dispersion curves similar to the target dispersion curve. Applying the synthetic seismogram technique, it is possible to robustly

  14. CD1d(hi)CD5+ B cells expanded by GM-CSF in vivo suppress experimental autoimmune myasthenia gravis.

    PubMed

    Sheng, Jian Rong; Quan, Songhua; Soliven, Betty

    2014-09-15

    IL-10-competent subset within CD1d(hi)CD5(+) B cells, also known as B10 cells, has been shown to regulate autoimmune diseases. Whether B10 cells can prevent or suppress the development of experimental autoimmune myasthenia gravis (EAMG) has not been studied. In this study, we investigated whether low-dose GM-CSF, which suppresses EAMG, can expand B10 cells in vivo, and whether adoptive transfer of CD1d(hi)CD5(+) B cells would prevent or suppress EAMG. We found that treatment of EAMG mice with low-dose GM-CSF increased the proportion of CD1d(hi)CD5(+) B cells and B10 cells. In vitro coculture studies revealed that CD1d(hi)CD5(+) B cells altered T cell cytokine profile but did not directly inhibit T cell proliferation. In contrast, CD1d(hi)CD5(+) B cells inhibited B cell proliferation and its autoantibody production in an IL-10-dependent manner. Adoptive transfer of CD1d(hi)CD5(+) B cells to mice could prevent disease, as well as suppress EAMG after disease onset. This was associated with downregulation of mature dendritic cell markers and expansion of regulatory T cells resulting in the suppression of acetylcholine receptor-specific T cell and B cell responses. Thus, our data have provided significant insight into the mechanisms underlying the tolerogenic effects of B10 cells in EAMG. These observations suggest that in vivo or in vitro expansion of CD1d(hi)CD5(+) B cells or B10 cells may represent an effective strategy in the treatment of human myasthenia gravis.

  15. Acoustic velocity meter systems

    USGS Publications Warehouse

    Laenen, Antonius

    1985-01-01

    Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.

  16. Dark Matter Velocity Spectroscopy.

    PubMed

    Speckhard, Eric G; Ng, Kenny C Y; Beacom, John F; Laha, Ranjan

    2016-01-22

    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications. PMID:26849582

  17. Dark Matter Velocity Spectroscopy.

    PubMed

    Speckhard, Eric G; Ng, Kenny C Y; Beacom, John F; Laha, Ranjan

    2016-01-22

    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  18. Halo velocity bias

    NASA Astrophysics Data System (ADS)

    Biagetti, Matteo; Desjacques, Vincent; Kehagias, Alex; Riotto, Antonio

    2014-11-01

    It has been recently shown that any halo velocity bias present in the initial conditions does not decay to unity, in agreement with predictions from peak theory. However, this is at odds with the standard formalism based on the coupled-fluids approximation for the coevolution of dark matter and halos. Starting from conservation laws in phase space, we discuss why the fluid momentum conservation equation for the biased tracers needs to be modified in accordance with the change advocated in Baldauf et al. Our findings indicate that a correct description of the halo properties should properly take into account peak constraints when starting from the Vlasov-Boltzmann equation.

  19. High velocity acoustics

    NASA Astrophysics Data System (ADS)

    Legendre, R.

    1992-09-01

    Different types of aerodynamically generated noise of practical interest are examined using a novel, physically based, approach. A simple source model for turbulence noise is proposed. The prediction for turbulent mixing layer noise, produced by this model based on a simple monopole-type source mechanism, is that the radiated sound power varies as the eighth power of the relative velocity. The model is too simple to allow calculations to be carried further to the extent of determining the radiated sound power level, so that an empirical factor must still be considered, as in the case of Lighthill's formula.

  20. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model.

    PubMed

    Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G

    2015-01-01

    CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical.

  1. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model

    PubMed Central

    Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G

    2015-01-01

    CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical. PMID:25751125

  2. Electronic-to-vibrational energy transfer efficiency in the O/1 D/-N2 and O/1 D/-CO systems

    NASA Technical Reports Server (NTRS)

    Slanger, T. G.; Black, G.

    1974-01-01

    With the aid of a molecular resonance fluorescence technique, which utilizes optical pumping from the v = 1 level of the ground state of CO by A 1 Pi-X 1 Sigma radiation, a study is made of the efficiency of E-V transfer from O(1 D) to CO. O(1 D) is generated at a known rate by O2 photodissociation at 1470 A in an intermittent mode, and the small modulation of the fluorescent signal associated with CO (v = 1) above the normal thermal background is interpreted in terms of E-V transfer efficiency. The CO (v = 1) lifetime in this system is determined mainly by resonance trapping of the IR fundamental band, and is found to be up to ten times longer than the natural radiative lifetime. For CO, (40 plus or minus 8)% of the O(1 D) energy is converted into vibrational energy. By observing the effect of N2 on the CO (v = 1) fluorescent intensity and lifetime, it is possible to obtain the E-V transfer efficiency for the system O(1 D)-N2 relative to that for O(1 D)-CO. The results indicate that the efficiency for N2 is (83 plus or minus 10)% of that for CO.

  3. Mapping of the serotonin 5-HT{sub 1D{alpha}} autoreceptor gene (HTR1D) on chromosome 1 using a silent polymorphism in the coding region

    SciTech Connect

    Ozaki, N.; Lappalainen, J.; Linnoila, M.

    1995-04-24

    Serotonin (5-HT){sub ID} receptors are 5-HT release-regulating autoreceptors in the human brain. Abnormalities in brain 5-HT function have been hypothesized in the pathophysiology of various psychiatric disorders, including obsessive-compulsive disorder, autism, mood disorders, eating disorders, impulsive violent behavior, and alcoholism. Thus, mutations occurring in 5-HT autoreceptors may cause or increase the vulnerability to any of these conditions. 5-HT{sub 1D{alpha}} and 5-HT{sub 1D{Beta}} subtypes have been previously localized to chromosomes 1p36.3-p34.3 and 6q13, respectively, using rodent-human hybrids and in situ localization. In this communication, we report the detection of a 5-HT{sub 1D{alpha}} receptor gene polymorphism by single strand conformation polymorphism (SSCP) analysis of the coding sequence. The polymorphism was used for fine scale linkage mapping of 5-HT{sub 1D{alpha}} on chromosome 1. This polymorphism should also be useful for linkage studies in populations and in families. Our analysis also demonstrates that functionally significant coding sequence variants of the 5-HT{sub 1D{alpha}} are probably not abundant either among alcoholics or in the general population. 14 refs., 1 fig., 1 tab.

  4. Lithology and shear-wave velocity in Memphis, Tennessee

    USGS Publications Warehouse

    Gomberg, J.; Waldron, B.; Schweig, E.; Hwang, H.; Webbers, A.; Van Arsdale, R.; Tucker, K.; Williams, R.; Street, R.; Mayne, P.; Stephenson, W.; Odum, J.; Cramer, C.; Updike, R.; Hutson, S.; Bradley, M.

    2003-01-01

    We have derived a new three-dimensional model of the lithologic structure beneath the city of Memphis, Tennessee, and examined its correlation with measured shear-wave velocity profiles. The correlation is sufficiently high that the better-constrained lithologic model may be used as a proxy for shear-wave velocities, which are required to calculate site-amplification for new seismic hazard maps for Memphis. The lithologic model and its uncertainties are derived from over 1200 newly compiled well and boring logs, some sampling to 500 m depth, and a moving-least-squares algorithm. Seventy-six new shear-wave velocity profiles have been measured and used for this study, most sampling to 30 m depth or less. All log and velocity observations are publicly available via new web sites.

  5. Upper-crustal velocity structure along 150 km of the Mendeleev Ridge from tomographic inversion of long-offset refraction data collected during HLY0602

    NASA Astrophysics Data System (ADS)

    Vermeesch, P. M.; van Avendonk, H. J.; Lawver, L. A.

    2007-12-01

    In the summer of 2006 we acquired a unique seismic refraction data set on the Chukchi Borderlands and Mendeleev Ridge utilizing USCGC Healy and two helicopters. The array on the Mendeleev Ridge consisted of 14 instrument sites with 12 km spacing between instruments. On every site we deployed a Sea-Ice Seismometer (S- IS) especially designed for this experiment in the ice-covered part of the Arctic Ocean. Each S-IS contained a vertical component geophone that was buried in the ice and a hydrophone that was hanging from the ice edge in the water. From the 14 instrument sites, 10 contained useful data with refracted crustal arrivals up to offsets of 40 km. Because of extensive drifting of the receivers (40 km in 5 days and containing numerous loops), and because of the irregular geometry of airgun shots due to the problems of sailing through ice-covered seas, a 3D ray-shooting code was developed to calculate ray paths within a 3D velocity model that extends along 150 km in the X- direction and along 35 km in the Y-direction. Using the velocity model proposed by Lebedeva-Ivanova et al. (2006) we observe that the maximum depth of our calculated ray paths is 11 km below sealevel. Using all the available data, the Root Mean Square (RMS) difference between observed and calculated travel-times is of the order of 500 ms. Initially a simple 1D travel-time inversion was developed to constrain the velocity structure of the basement underneath a layer of water (3D) and a layer of sediment (1D). This inversion was carried out on 2 pairs of receivers: one pair in the NNE and one more towards the SSW part of the line. Inversion of S-IS 45N-42 (NNE) results in a model with a velocity of 5.5 km s-1 at the top of the basement, slowly increasing to a velocity of 5.7 km s-1 at 3 km below the top of the basement (RMS = 117 ms). Inversion of S-IS 49-45S (SSW) results in a model with a velocity of 4.8 km s-1 at the top of the basement, increasing to a velocity of 5.9 km s-1 at 3 km below

  6. Neodymium 1D systems: targeting new sources for field-induced slow magnetization relaxation.

    PubMed

    Jassal, Amanpreet Kaur; Aliaga-Alcalde, Núria; Corbella, Montserrat; Aravena, Daniel; Ruiz, Eliseo; Hundal, Geeta

    2015-09-28

    Two non-isostructural homometallic 1D neodymium species displaying field-induced slow magnetization relaxations are presented together with theoretical studies. It is established that both systems are better described as organized 1D single molecule magnets (SMMs). Studies show great potential of Nd(III) ions to provide homometallic chains with slow magnetic relaxation.

  7. S-wave velocity structure in the SE Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Cai, Yan; Wu, Jianping; Wang, Weilai; Fang, Lihua; Fan, Liping

    2016-06-01

    We use observations recorded by 23 permanent and 99 temporary stations in the SE Tibetan plateau to obtain the S-wave velocity structure along two profiles by applying joint inversion with receiver functions and surface waves. The two profiles cross West Yunnan block (WYB), the Central Yunnan sub-block (CYB), South China block (SCB), and Nanpanjiang basin (NPB). The profile at ~25°N shows that the Moho interface in the CYB is deeper than those in the WYB and the NPB, and the topography and Moho depth have clear correspondence. Beneath the Xiaojiang fault zone (XJF), there exists a crustal low-velocity zone (LVZ), crossing the XJF and expanding eastward into the SCB. The NPB is shown to be of relatively high velocity. We speculate that the eastward extrusion of the Tibetan plateau may pass through the XJF and affect its eastern region, and is resisted by the rigid NPB, which has high velocity. This may be the main cause of the crustal thickening and uplift of the topography. In the Tengchong volcanic area, the crust is shown to have alternate high- and low-velocity layers, and the upper mantle is shown to be of low velocity. We consider that the magma which exists in the crust is from the upper mantle and that the complex crustal velocity structure is related to magmatic differentiation. Between the Tengchong volcanic area and the XJF, the crustal velocity is relatively high. Combining these observations with other geophysical evidence, it is indicated that rock strength is high and deformation is weak in this area, which is why the level of seismicity is quite low. The profile at ~23°N shows that the variation of the Moho depth is small from the eastern rigid block to the western active block with a wide range of LVZs. We consider that deformation to the south of the SE Tibetan Plateau is weak.

  8. Effects of velocity averaging on the shapes of absorption lines

    NASA Technical Reports Server (NTRS)

    Pickett, H. M.

    1980-01-01

    The velocity averaging of collision cross sections produces non-Lorentz line shapes, even at densities where Doppler broadening is not apparent. The magnitude of the effects will be described using a model in which the collision broadening depends on a simple velocity power law. The effect of the modified profile on experimental measures of linewidth, shift and amplitude will be examined and an improved approximate line shape will be derived.

  9. Characterization of the fraction components using 1D TOCSY and 1D ROESY experiments. Four new spirostane saponins from Agave brittoniana Trel. spp. Brachypus.

    PubMed

    Macías, Francisco A; Guerra, José O; Simonet, Ana M; Nogueiras, Clara M

    2007-07-01

    A careful NMR analysis, especially 1D TOCSY and 1D ROESY, of two refined saponin fractions allowed us to determine the structures of four new saponins from a polar extract of the Agave brittoniana Trel. spp. Brachypus leaves. A full assignment of the 1H and 13C spectral data for these new saponins, agabrittonosides A-D (1-4), and one previously known saponin, karatavioside A (5) is reported. Their structures were established using a combination of 1D and 2D (1H, 1H-COSY, TOCSY, ROESY, g-HSQC, g-HMBC and g-HSQC-TOCSY) NMR techniques and ESI-MS. Moreover, the work represents a new approach to structural elucidation of saponins in refined fractions by NMR investigations.

  10. Decays B(s)→a1(b1)D(s), a1(b1)D(s)* in the perturbative QCD approach

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Qing

    2013-04-01

    Within the framework of the perturbative QCD approach, we study the branching ratios of the two-body charmed decays B(s)→a1(b1)D(s), a1(b1)D(s)*, which, including Cabibbo-Kobayashi-Maskawa, allowed and suppressed decays. Our calculations are consistent with the currently available data and the experimental upper limits. Certainly, many of these predicted channels have not been measured by experiments and can be confronted with the future experimental data. We also discuss the polarization factions of the decays B(s)→a1(b1)D(s)*, some of which are sensitive to the distinct Gegenbauer moments of the wave functions and the decay constants of mesons a1 and b1.

  11. The velocity distribution of cometary hydrogen - Evidence for high velocities?

    NASA Technical Reports Server (NTRS)

    Brown, Michael E.; Spinrad, Hyron

    1993-01-01

    The Hamilton Echelle spectrograph on the 3-m Shane telescope at Lick Observatory was used to obtain high-velocity and spatial resolution 2D spectra of H-alpha 6563-A emission in Comets Austin and Levy. The presence of the components expected from water dissociation and collisional thermalization in the inner coma is confirmed by the hydrogen velocity distribution. In Comet Austin, the potential high-velocity hydrogen includes velocities of up to about 40 km/s and is spatially symmetric with respect to the nucleus. In Comet Levy, the high-velocity hydrogen reaches velocities of up to 50 km/s and is situated exclusively on the sunward side of the nucleus. The two distinct signatures of high-velocity hydrogen imply two distinct sources.

  12. Heat capacity and sound velocities of low dimensional Fermi gases

    NASA Astrophysics Data System (ADS)

    Salas, P.; Solis, M. A.

    2014-03-01

    We report the heat capacity ratio and sound velocities for an interactionless Fermi gas immersed in periodic structures such as penetrable multilayers or multitubes created by one (planes) or two perpendicular (tubes) external Dirac comb potentials. The isobaric specific heat of the fermion gas presents the dimensional crossover previously observed in the isochoric specific heat - from 3D to 2D or to 1D -. The quotient between the two quantities has a prominent bump related to the confinement, and as the temperature increases, it goes towards the monoatomic classical gas value 5/3. We present the isothermal and the adiabatic sound velocities of the fermion gas which show anomalous behavior at temperatures below TF due to the dimensionality of the system, while at higher temperatures again we recover the behavior of a classical Fermi gas. Furthermore, as the temperature goes to zero the sound velocity has a finite value, as expected.

  13. Gaussian-profile beams

    SciTech Connect

    Lee, E.P.

    1982-11-03

    The growth rate of the hose instability is derived for a beam with Gaussian radial profile, using the spread mass model of phase mix damping. It is found that the maximum growth rate of a convecting wave packet is 49% larger than that derived for a beam with the Bennett profile, and the inverse group velocity (dz/d tau) is also increased by about this amount. A general discussion of spread mass models is presented along with an explanation of the regurgitation phenomena seen in their numerical treatment.

  14. TBC1D1 reduces palmitate oxidation by inhibiting β-HAD activity in skeletal muscle.

    PubMed

    Maher, A C; McFarlan, J; Lally, J; Snook, L A; Bonen, A

    2014-11-01

    In skeletal muscle the Rab-GTPase-activating protein TBC1D1 has been implicated in the regulation of fatty acid oxidation by an unknown mechanism. We determined whether TBC1D1 altered fatty acid utilization via changes in protein-mediated fatty acid transport and/or selected enzymes regulating mitochondrial fatty acid oxidation. We also determined the effects of TBC1D1 on glucose transport and oxidation. Electrotransfection of mouse soleus muscles with TBC1D1 cDNA increased TBC1D1 protein after 2 wk (P<0.05), without altering its paralog AS160. TBC1D1 overexpression decreased basal palmitate oxidation (-22%) while blunting 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)-stimulated palmitate oxidation (-18%). There was a tendency to increase fatty acid esterification (+10 nmol·g(-1)·60 min(-1), P=0.07), which reflected the reduction in fatty acid oxidation (-12 nmol·g(-1)·60 min(-1)). Concomitantly, basal (+21%) and AICAR-stimulated glucose oxidation (+8%) were increased in TBC1D1-transfected muscles relative to their respective controls (P<0.05), independent of changes in GLUT4 and glucose transport. The reductions in TBC1D1-mediated fatty acid oxidation could not be attributed to changes in the transporter FAT/CD36, muscle mitochondrial content, CPT1 expression or the expression and phosphorylation of AS160, acetyl-CoA carboxylase, or AMPK. However, TBC1D1 overexpression reduced β-HAD enzyme activity (-18%, P<0.05). In conclusion, TBC1D1-mediated reduction of muscle fatty acid oxidation appears to occur via inhibition of β-HAD activity.

  15. Measurements of velocity and discharge, Grand Canyon, Arizona, May 1994

    USGS Publications Warehouse

    Oberg, Kevin A.; Fisk, Gregory G.; ,

    1995-01-01

    The U.S. Geological Survey (USGS) evaluated the feasibility of utilizing an acoustic Doppler current profiler (ADCP) to collect velocity and discharge data in the Colorado River in Grand Canyon, Arizona, in May 1994. An ADCP is an instrument that can be used to measure water velocity and discharge from a moving boat. Measurements of velocity and discharge were made with an ADCP at 54 cross sections along the Colorado River between the Little Colorado River and Diamond Creek. Concurrent measurements of discharge with an ADCP and a Price-AA current meter were made at three U.S. Geological Survey streamflow-gaging stations: Colorado River above the Little Colorado River near Desert View, Colorado River near Grand Canyon, and Colorado River above Diamond Creek near Peach Springs. Discharges measured with an ADCP were within 3 percent of the rated discharge at each streamflow-gaging station. Discharges measured with the ADCP were within 4 percent of discharges measured with a Price-AA meter, except at the Colorado River above Diamond Creek. Vertical velocity profiles were measured with the ADCP from a stationary position at four cross sections along the Colorado River. Graphs of selected vertical velocity profiles collected in a cross section near National Canyon show considerable temporal variation among profile.

  16. Model calculations of O2(1D) production in microcathode sustained discharges in argon/oxygen mixtures

    NASA Astrophysics Data System (ADS)

    Munoz-Serrano, E.; Hagelaar, G.; Boeuf, J. P.; Pitchford, L. C.

    2006-10-01

    It is now well established that non-thermal, high-pressure plasmas can be initiated and sustained between a microhollow cathode discharge (MHCD) acting as a plasma cathode and a third electrode placed some distance away. To investigate the properties of the plasma created in such a microcathode sustaind (MCS) discharge configuration, we have developed a 2D quasi-neutral model of a radially expanding ``positive-column'' in which the current crossing the exit plane of the MHCD is input as a boundary condition. We are particularly interested in determining operating conditions leading to high yields of singlet delta (metastable) oxygen molecules O2(1D), and thus the model includes a kinetic scheme to describe the plasma chemistry in pure O2 and in Ar/O2 mixtures. For 10% O2 in a 50 torr Ar/O2 mixture, a discharge current of 1 mA, a 200 micron MHCD hole diameter and 0.6 cm gap spacing, we find that the reduced electric field, E/N, on-axis at the mid-plane is about 15 Td. The calculated O2(1D) yield on-axis near the exit of the MHCD is 10%. For higher O2 partial pressures, quenching of O2(1D) in 3-body collisions with O2 and O atoms leads to a decrease in the predicted yield, but the optimum pressure depends on the assumed values for the 3-body quenching rates. Details of the model and results of species density profiles for a range of conditions will be presented.

  17. Concentration and Velocity Gradients in Fluidized Beds

    NASA Technical Reports Server (NTRS)

    McClymer, James P.

    2003-01-01

    In this work we focus on the height dependence of particle concentration, average velocity components, fluctuations in these velocities and, with the flow turned off, the sedimentation velocity. The latter quantities are measured using Particle Imaging Velocimetry (PIV). The PIV technique uses a 1-megapixel camera to capture two time-displaced images of particles in the bed. The depth of field of the imaging system is approximately 0.5 cm. The camera images a region with characteristic length of 2.6 cm for the small particles and 4.7 cm. for the large particles. The local direction of particle flow is determined by calculating the correlation function for sub-regions of 32 x 32 pixels. The velocity vector map is created from this correlation function using the time between images (we use 15 to 30 ms). The software is sensitive variations of 1/64th of a pixel. We produce velocity maps at various heights, each consisting of 3844 velocities. We break this map into three vertical zones for increased height information. The concentration profile is measured using an expanded (1 cm diameter) linearly polarized HeNe Laser incident on the fluidized bed. A COHU camera (gamma=1, AGC off) with a lens and a polarizer images the transmitted linearly polarized light to minimize the effects of multiply scattered light. The intensity profile (640 X 480 pixels) is well described by a Gaussian fit and the height of the Gaussian is used to characterize the concentration. This value is compared to the heights found for known concentrations. The sedimentation velocity is estimated using by imaging a region near the bottom of the bed and using PIV to measure the velocity as a function of time. With a nearly uniform concentration profile, the time can be converted to height information. The stable fluidized beds are made from large pseudo-monodisperse particles (silica spheres with radii (250-300) microns and (425-500) microns) dispersed in a glycerin/water mix. The Peclet number is

  18. Representation of turbulent shear stress by a product of mean velocity differences

    NASA Technical Reports Server (NTRS)

    Braun, W. H.

    1977-01-01

    A quadratic form in the mean velocity for the turbulent shear stress is presented. It is expressed as the product of two velocity differences whose roots are the maximum velocity in the flow and a cutoff velocity below which the turbulent shear stress vanishes. Application to pipe and channel flows yields the centerline velocity as a function of pressure gradient, as well as the velocity profile. The flat plate, boundary-layer problem is solved by a system of integral equations to obtain friction coefficient, displacement thickness, and momentum-loss thickness. Comparisons are made with experiment.

  19. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    SciTech Connect

    Newsom, R. K.; Sivaraman, C.; Shippert, T. R.; Riihimaki, L. D.

    2015-07-01

    Accurate height-resolved measurements of higher-order statistical moments of vertical velocity fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosis from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.

  20. Determination of Bedrock Variations and S-wave Velocity Structure in the NW part of Turkey for Earthquake Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Ozel, A. O.; Arslan, M. S.; Aksahin, B. B.; Genc, T.; Isseven, T.; Tuncer, M. K.

    2015-12-01

    Tekirdag region (NW Turkey) is quite close to the North Anatolian Fault which is capable of producing a large earthquake. Therefore, earthquake hazard mitigation studies are important for the urban areas close to the major faults. From this point of view, integration of different geophysical methods has important role for the study of seismic hazard problems including seismotectonic zoning. On the other hand, geological mapping and determining the subsurface structure, which is a key to assist management of new developed areas, conversion of current urban areas or assessment of urban geological hazards can be performed by integrated geophysical methods. This study has been performed in the frame of a national project, which is a complimentary project of the cooperative project between Turkey and Japan (JICA&JST), named as "Earthquake and Tsunami Disaster Mitigation in the Marmara Region and Disaster Education". With this principal aim, this study is focused on Tekirdag and its surrounding region (NW of Turkey) where some uncertainties in subsurface knowledge (maps of bedrock depth, thickness of quaternary sediments, basin geometry and seismic velocity structure,) need to be resolved. Several geophysical methods (microgravity, magnetic and single station and array microtremor measurements) are applied and the results are evaluated to characterize lithological changes in the region. Array microtremor measurements with several radiuses are taken in 30 locations and 1D-velocity structures of S-waves are determined by the inversion of phase velocities of surface waves, and the results of 1D structures are verified by theoretical Rayleigh wave modelling. Following the array measurements, single-station microtremor measurements are implemented at 75 locations to determine the predominant frequency distribution. The predominant frequencies in the region range from 0.5 Hz to 8 Hz in study area. On the other hand, microgravity and magnetic measurements are performed on

  1. Sound velocity estimation: A system theoretic approach

    SciTech Connect

    Candy, J.V.; Sullivan, E.J.

    1993-07-30

    A system-theoretic approach is proposed to investigate the feasibility of reconstructing a sound velocity profile (SVP) from acoustical hydrophone measurements. This problem is based on a state-space representation of the normal-mode propagation model. It is shown that this representation can be utilized to investigate the so-called observability of the SVP from noisy measurement data. A model-based processor is developed to extract this information and it is shown that even in cases where limited SVP information is available, the SVP can be estimated using this approach.

  2. Copernicus observations of Iota Herculis velocity variations

    NASA Technical Reports Server (NTRS)

    Rogerson, J. B., Jr.

    1984-01-01

    Observations of Iota Her at 109.61-109.67 nm obtained with the U1 channel of the Copernicus spectrophotometer at resolution 5 pm during 3.6 days in May, 1979, are reported. Radial-velocity variations are detected and analyzed as the sum of two sinusoids with frequencies 0.660 and 0.618 cycles/day and amplitudes 9.18 and 8.11 km/s, respectively. Weak evidence supporting the 13.9-h periodicity seen in line-profile variations by Smith (1978) is found.

  3. Wind profiler signal detection improvements

    NASA Technical Reports Server (NTRS)

    Hart, G. F.; Divis, Dale H.

    1992-01-01

    Research is described on potential improvements to the software used with the NASA 49.25 MHz wind profiler located at Kennedy Space Center. In particular, the analysis and results are provided of a study to (1) identify preferred mathematical techniques for the detection of atmospheric signals that provide wind velocities which are obscured by natural and man-made sources, and (2) to analyze one or more preferred techniques to demonstrate proof of the capability to improve the detection of wind velocities.

  4. Investigation of structural heterogeneity at the SPE site using combined P–wave travel times and Rg phase velocities

    DOE PAGES

    Rowe, Charlotte A.; Patton, Howard J.

    2015-10-01

    Here, we present analyses of the 2D seismic structure beneath Source Physics Experiments (SPE) geophone lines that extended radially at 100 m spacing from 100 to 2000 m from the source borehole. With seismic sources at only one end of the geophone lines, standard refraction profiling methods cannot resolve seismic velocity structures unambiguously. In previous work, we demonstrated overall agreement between body-wave refraction modeling and Rg dispersion curves for the least complex of the five lines. A more detailed inspection supports a 2D reinterpretation of the structure. We obtained Rg phase velocity measurements in both the time and frequency domains,more » then used iterative adjustment of the initial 1D body-wave model to predict Rg dispersion curves to fit the observed values. Our method applied to the most topographically severe of the geophone lines is supplemented with a 2D ray-tracing approach, whose application to P-wave arrivals supports the Rg analysis. In addition, midline sources will allow us to refine our characterization in future work.« less

  5. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells

    PubMed Central

    Fischer, Karsten; Scotet, Emmanuel; Niemeyer, Marcus; Koebernick, Heidrun; Zerrahn, Jens; Maillet, Sophie; Hurwitz, Robert; Kursar, Mischo; Bonneville, Marc; Kaufmann, Stefan H. E.; Schaible, Ulrich E.

    2004-01-01

    A group of T cells recognizes glycolipids presented by molecules of the CD1 family. The CD1d-restricted natural killer T cells (NKT cells) are primarily considered to be self-reactive. By employing CD1d-binding and T cell assays, the following structural parameters for presentation by CD1d were defined for a number of mycobacterial and mammalian lipids: two acyl chains facilitated binding, and a polar head group was essential for T cell recognition. Of the mycobacterial lipids tested, only a phosphatidylinositol mannoside (PIM) fulfilled the requirements for CD1d binding and NKT cell stimulation. This PIM activated human and murine NKT cells via CD1d, thereby triggering antigen-specific IFN-γ production and cell-mediated cytotoxicity, and PIM-loaded CD1d tetramers identified a subpopulation of murine and human NKT cells. This phospholipid, therefore, represents a mycobacterial antigen recognized by T cells in the context of CD1d. PMID:15243159

  6. Structure and Catalytic Mechanism of Human Steroid 5-Reductase (AKR1D1)

    SciTech Connect

    Costanzo, L.; Drury, J; Christianson, D; Penning, T

    2009-01-01

    Human steroid 5{beta}-reductase (aldo-keto reductase (AKR) 1D1) catalyzes reduction of {Delta}{sup 4}-ene double bonds in steroid hormones and bile acid precursors. We have reported the structures of an AKR1D1-NADP{sup +} binary complex, and AKR1D1-NADP{sup +}-cortisone, AKR1D1-NADP{sup +}-progesterone and AKR1D1-NADP{sup +}-testosterone ternary complexes at high resolutions. Recently, structures of AKR1D1-NADP{sup +}-5{beta}-dihydroprogesterone complexes showed that the product is bound unproductively. Two quite different mechanisms of steroid double bond reduction have since been proposed. However, site-directed mutagenesis supports only one mechanism. In this mechanism, the 4-pro-R hydride is transferred from the re-face of the nicotinamide ring to C5 of the steroid substrate. E120, a unique substitution in the AKR catalytic tetrad, permits a deeper penetration of the steroid substrate into the active site to promote optimal reactant positioning. It participates with Y58 to create a 'superacidic' oxyanion hole for polarization of the C3 ketone. A role for K87 in the proton relay proposed using the AKR1D1-NADP{sup +}-5{beta}-dihydroprogesterone structure is not supported.

  7. TBC1D14 regulates autophagy via the TRAPP complex and ATG9 traffic.

    PubMed

    Lamb, Christopher A; Nühlen, Stefanie; Judith, Delphine; Frith, David; Snijders, Ambrosius P; Behrends, Christian; Tooze, Sharon A

    2016-02-01

    Macroautophagy requires membrane trafficking and remodelling to form the autophagosome and deliver its contents to lysosomes for degradation. We have previously identified the TBC domain-containing protein, TBC1D14, as a negative regulator of autophagy that controls delivery of membranes from RAB11-positive recycling endosomes to forming autophagosomes. In this study, we identify the TRAPP complex, a multi-subunit tethering complex and GEF for RAB1, as an interactor of TBC1D14. TBC1D14 binds to the TRAPP complex via an N-terminal 103 amino acid region, and overexpression of this region inhibits both autophagy and secretory traffic. TRAPPC8, the mammalian orthologue of a yeast autophagy-specific TRAPP subunit, forms part of a mammalian TRAPPIII-like complex and both this complex and TBC1D14 are needed for RAB1 activation. TRAPPC8 modulates autophagy and secretory trafficking and is required for TBC1D14 to bind TRAPPIII. Importantly, TBC1D14 and TRAPPIII regulate ATG9 trafficking independently of ULK1. We propose a model whereby TBC1D14 and TRAPPIII regulate a constitutive trafficking step from peripheral recycling endosomes to the early Golgi, maintaining the cycling pool of ATG9 required for initiation of autophagy. PMID:26711178

  8. Role and regulation of CD1d in normal and pathological B cells

    PubMed Central

    Chaudhry, Mohammed S.; Karadimitris, Anastasios

    2015-01-01

    CD1d is a non-polymorphic, MHC class I-like molecule, which presents phosphoand glycosphingo-lipid antigens to a subset of CD1d-restricted T cells called invariant NKT (iNKT) cells. This CD1d-iNKT cell axis regulates nearly all aspects of both the innate and adaptive immune response. Expression of CD1d on B cells is suggestive of the ability of these cells to present antigen to and form cognate interactions with iNKT cells. Herein we summarise key evidence regarding the role and regulation of CD1d in normal B cells and in humoral immunity. We then extend the discussion to B cell disorders, with emphasis on autoimmune disease, viral infection and neoplastic transformation of B lineage cells, where CD1d expression can be altered as a mechanism of immune evasion, and can have both diagnostic and prognostic importance. Finally we highlight current and future therapeutic strategies that aim to target the CD1d-iNKT axis in B cells. PMID:25381357

  9. Calreticulin Controls the Rate of Assembly of CD1d Molecules in the Endoplasmic Reticulum*

    PubMed Central

    Zhu, Yajuan; Zhang, Wei; Veerapen, Natacha; Besra, Gurdyal; Cresswell, Peter

    2010-01-01

    CD1d is an MHC class I-like molecule comprised of a transmembrane glycoprotein (heavy chain) associated with β2-microglobulin (β2m) that presents lipid antigens to NKT cells. Initial folding of the heavy chain involves its glycan-dependent association with calreticulin (CRT), calnexin (CNX), and the thiol oxidoreductase ERp57, and is followed by assembly with β2m to form the heterodimer. Here we show that in CRT-deficient cells CD1d heavy chains convert to β2m-associated dimers at an accelerated rate, indicating faster folding of the heavy chain, while the rate of intracellular transport after assembly is unaffected. Unlike the situation with MHC class I molecules, antigen presentation by CD1d is not impaired in the absence of CRT. Instead, there are elevated levels of stable and functional CD1d on the surface of CRT-deficient cells. Association of the heavy chains with the ER chaperones Grp94 and Bip is observed in the absence of CRT, and these may replace CRT in mediating CD1d folding and assembly. ER retention of free CD1d heavy chains is impaired in CRT-deficient cells, allowing their escape and subsequent expression on the plasma membrane. However, these free heavy chains are rapidly internalized and degraded in lysosomes, indicating that β2m association is required for the exceptional resistance of CD1d to lysosomal degradation that is normally observed. PMID:20861015

  10. Transition from 1D to 2D Laser-Induced Ultrasonic Wave Propagation in an Extended Plate

    NASA Astrophysics Data System (ADS)

    Laloš, Jernej; Požar, Tomaž; Možina, Janez

    2016-05-01

    Optodynamic interaction between a laser pulse and the surface of an opaque, solid elastic object produces transient waves that propagate and reverberate within the object. They can be, in general, categorized into three distinctive types which are all formed through different mechanisms: ablation-induced waves, light-pressure-induced waves, and thermoelastic waves. In this paper, out-of-plane displacements of such waves are simulated at the epicentral position on the opposite side of an extended plane-parallel elastic plate. Wave propagation is mathematically described by Green's transfer functions convolved with suitable time profiles of the incoming laser pulses. The simulated size of the circularly symmetric laser-illuminated area on the plate surface is varied to show the limit-to-limit transition of the displacement waveforms: from a 2D point source to an infinite 1D source.

  11. Suppression of jet noise peak by velocity profile reshaping

    NASA Astrophysics Data System (ADS)

    Fujii, S.; Nishiwaki, H.; Takeda, K.

    1981-07-01

    Proposed here is an efficient noise-abating system having the potential for application to a broad spectrum of turbofan engines. An exhaust system with the core nozzle reshaped into an elliptic exit section from the conventional circular nozzle is recommended. The comparison of the scale-model tests revealed that a 5 dB decrease in peak noise levels was realized with a slight increase of the sound pressure at large emission angles. A laser Doppler velocimeter was used to quantify the high-temperature flow turbulence. With the elliptic core nozzle, the jet flow was more diffused axially and spread radially along the major axis. The noise reduction was attributed to the enhancement of the sound refraction and to the lower sound generation, due to the turbulence suppression as well as the lowered mean density gradients at the noise source.

  12. On the current drive capability of low dimensional semiconductors: 1D versus 2D

    DOE PAGES

    Zhu, Y.; Appenzeller, J.

    2015-10-29

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Lastly, our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  13. TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport.

    PubMed

    Schmidts, Miriam; Hou, Yuqing; Cortés, Claudio R; Mans, Dorus A; Huber, Celine; Boldt, Karsten; Patel, Mitali; van Reeuwijk, Jeroen; Plaza, Jean-Marc; van Beersum, Sylvia E C; Yap, Zhi Min; Letteboer, Stef J F; Taylor, S Paige; Herridge, Warren; Johnson, Colin A; Scambler, Peter J; Ueffing, Marius; Kayserili, Hulya; Krakow, Deborah; King, Stephen M; Beales, Philip L; Al-Gazali, Lihadh; Wicking, Carol; Cormier-Daire, Valerie; Roepman, Ronald; Mitchison, Hannah M; Witman, George B

    2015-01-01

    The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions. PMID:26044572

  14. TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport

    PubMed Central

    Schmidts, Miriam; Hou, Yuqing; Cortés, Claudio R.; Mans, Dorus A.; Huber, Celine; Boldt, Karsten; Patel, Mitali; van Reeuwijk, Jeroen; Plaza, Jean-Marc; van Beersum, Sylvia E. C.; Yap, Zhi Min; Letteboer, Stef J. F.; Taylor, S. Paige; Herridge, Warren; Johnson, Colin A.; Scambler, Peter J.; Ueffing, Marius; Kayserili, Hulya; Krakow, Deborah; King, Stephen M.; Beales, Philip L.; Al-Gazali, Lihadh; Wicking, Carol; Cormier-Daire, Valerie; Roepman, Ronald; Mitchison, Hannah M.; Witman, George B.; Al-Turki, Saeed; Anderson, Carl; Anney, Richard; Antony, Dinu; Asimit, Jennifer; Ayub, Mohammad; Barrett, Jeff; Barroso, Inês; Bentham, Jamie; Bhattacharya, Shoumo; Blackwood, Douglas; Bobrow, Martin; Bochukova, Elena; Bolton, Patrick; Boustred, Chris; Breen, Gerome; Brion, Marie-Jo; Brown, Andrew; Calissano, Mattia; Carss, Keren; Chatterjee, Krishna; Chen, Lu; Cirak, Sebhattin; Clapham, Peter; Clement, Gail; Coates, Guy; Collier, David; Cosgrove, Catherine; Cox, Tony; Craddock, Nick; Crooks, Lucy; Curran, Sarah; Daly, Allan; Danecek, Petr; Smith, George Davey; Day-Williams, Aaron; Day, Ian; Durbin, Richard; Edkins, Sarah; Ellis, Peter; Evans, David; Farooqi, I. Sadaf; Fatemifar, Ghazaleh; Fitzpatrick, David; Flicek, Paul; Floyd, Jamie; Foley, A. Reghan; Franklin, Chris; Futema, Marta; Gallagher, Louise; Gaunt, Tom; Geschwind, Daniel; Greenwood, Celia; Grozeva, Detelina; Guo, Xiaosen; Gurling, Hugh; Hart, Deborah; Hendricks, Audrey; Holmans, Peter; Huang, Jie; Humphries, Steve E.; Hurles, Matt; Hysi, Pirro; Jackson, David; Jamshidi, Yalda; Jewell, David; Chris, Joyce; Kaye, Jane; Keane, Thomas; Kemp, John; Kennedy, Karen; Kent, Alastair; Kolb-Kokocinski, Anja; Lachance, Genevieve; Langford, Cordelia; Lee, Irene; Li, Rui; Li, Yingrui; Ryan, Liu; Lönnqvist, Jouko; Lopes, Margarida; MacArthur, Daniel G.; Massimo, Mangino; Marchini, Jonathan; Maslen, John; McCarthy, Shane; McGuffin, Peter; McIntosh, Andrew; McKechanie, Andrew; McQuillin, Andrew; Memari, Yasin; Metrustry, Sarah; Min, Josine; Moayyeri, Alireza; Morris, James; Muddyman, Dawn; Muntoni, Francesco; Northstone, Kate; O'Donovan, Michael; O'Rahilly, Stephen; Onoufriadis, Alexandros; Oualkacha, Karim; Owen, Michael; Palotie, Aarno; Panoutsopoulou, Kalliope; Parker, Victoria; Parr, Jeremy; Paternoster, Lavinia; Paunio, Tiina; Payne, Felicity; Perry, John; Pietilainen, Olli; Plagnol, Vincent; Quail, Michael A.; Quaye, Lydia; Raymond, Lucy; Rehnström, Karola; Brent Richards, J.; Ring, Sue; Ritchie, Graham R S; Savage, David B.; Schoenmakers, Nadia; Semple, Robert K.; Serra, Eva; Shihab, Hashem; Shin, So-Youn; Skuse, David; Small, Kerrin; Smee, Carol; Soler, Artigas María; Soranzo, Nicole; Southam, Lorraine; Spector, Tim; St Pourcain, Beate; St. Clair, David; Stalker, Jim; Surdulescu, Gabriela; Suvisaari, Jaana; Tachmazidou, Ioanna; Tian, Jing; Timpson, Nic; Tobin, Martin; Valdes, Ana; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Wain, Louise; Walter, Klaudia; Wang, Jun; Ward, Kirsten; Wheeler, Ellie; Whittall, Ros; Williams, Hywel; Williamson, Kathy; Wilson, Scott G.; Wong, Kim; Whyte, Tamieka; ChangJiang, Xu; Zeggini, Eleftheria; Zhang, Feng; Zheng, Hou-Feng

    2015-01-01

    The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions. PMID:26044572

  15. Comet Halley O(1D) and H2O production rates

    NASA Technical Reports Server (NTRS)

    Magee-Sauer, K.; Scherb, F.; Roesler, F. L.; Harlander, J.

    1990-01-01

    Ground-based dual-etalon Fabry-Perot spectrometer observations have been made of Comet Halley's forbidden O I 6300 A emission. The 0.2 A resolution of the spectral scans was sufficient to resolve the O I forbidden line emissions from both nearby cometary NH2 and telluric emissions. On the basis of these measurements, the production rate Q of O(1D) was determined; it is then found, by taking into account the photodissociation of H2O and OH as sources of O(1D), that the ratio of H2O/O(1D) production rates is of the order of 6.

  16. On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D.

    PubMed

    Zhu, Y; Appenzeller, J

    2015-12-01

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  17. Effects of spoilers and gear on B-747 wake vortex velocities

    NASA Technical Reports Server (NTRS)

    Luebs, A. B.; Bradfute, J. G.; Ciffone, D. L.

    1976-01-01

    Vortex velocities were measured in the wakes of four configurations of a 0.61-m span model of a B-747 aircraft. The wakes were generated by towing the model underwater in a ship model basin. Tangential and axial velocity profiles were obtained with a scanning laser velocimeter as the wakes aged to 35 span lengths behind the model. A 45 deg deflection of two outboard flight spoilers with the model in the landing configuration resulted in a 36 percent reduction in wake maximum tangential velocity, altered velocity profiles, and erratic vortex trajectories. Deployment of the landing gear with the inboard flaps in the landing position and outboard flaps retracted had little effect on the flap vortices to 35 spans, but caused the wing tip vortices to have: (1) more diffuse velocity profiles; (2) a 27 percent reduction in maximum tangential velocity; and (3) a more rapid merger with the flap vortices.

  18. Particle Velocity Measuring System

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor)

    1998-01-01

    Method and apparatus are provided for determining the velocity of individual food particles within a liquid/solid food mixture that is cooked by an aseptic cooking method whereby the food mixture is heated as it flows through a flowline. At least one upstream and at least one downstream microwave transducer are provided to determine the minimum possible travel time of the fastest food particle through the flowline. In one embodiment, the upstream detector is not required. In another embodiment, a plurality of small dipole antenna markers are secured to a plurality of food particles to provide a plurality of signals as the markers pass the upstream and downstream transducers. The dipole antenna markers may also include a non-linear element to reradiate a harmonic frequency of a transmitter frequency. Upstream and downstream transducers include dipole antennas that are matched to the impedance of the food slurry and a signal transmission cable by various impedance matching means including unbalanced feed to the antennas.

  19. Velocity dependant splash behaviour

    NASA Astrophysics Data System (ADS)

    Hamlett, C. A. E.; Shirtcliffe, N. J.; McHale, G.; Ahn, S.; Doerr, S. H.; Bryant, R.; Newton, M. I.

    2012-04-01

    Extreme soil water repellency can occur in nature via condensation of volatile organic compounds released during wildfires and can lead to increased erosion rate. Such extreme water repellent soil can be classified as superhydrophobic and shares similar chemical and topographical features to specifically designed superhydrophobic surfaces. Previous studies using high speed videography to investigate single droplet impact behaviour on artificial superhydrophobic have revealed three distinct modes of splash behaviour (rebound, pinned and fragmentation) which are dependent on the impact velocity of the droplet. In our studies, using high-speed videography, we show that such splash behaviour can be replicated on fixed 'model' water repellent soils (hydrophobic glass beads/particles). We show that the type of splash behaviour is dependent on both the size and chemical nature of the fixed particles. The particle shape also influences the splash behaviour as shown by drop impact experiments on fixed sand samples. We have also studied soil samples, as collected from the field, which shows that the type of droplet splash behaviour can lead to enhanced soil particle transport.

  20. Viscous shear heating instabilities in a 1-D viscoelastic shear zone

    NASA Astrophysics Data System (ADS)

    Homburg, J. M.; Coon, E. T.; Spiegelman, M.; Kelemen, P. B.; Hirth, G.

    2010-12-01

    Viscous shear instabilities may provide a possible mechanism for some intermediate depth earthquakes where high confining pressure makes it difficult to achieve frictional failure. While many studies have explored the feedback between temperature-dependent strain rate and strain-rate dependent shear heating (e.g. Braeck and Podladchikov, 2007), most have used thermal anomalies to initiate a shear instability or have imposed a low viscosity region in their model domain (John et al., 2009). By contrast, Kelemen and Hirth (2