Science.gov

Sample records for 1-gwh diurnal load-leveling

  1. Wire rope superconducting cable for diurnal load leveling SMES

    SciTech Connect

    Costello, G.A.

    1980-01-01

    The design of a wire rope cable for a superconducting magnetic energy storage (SMES) unit is discussed. The superconducting wires in the rope permit the passage of large currents in the relatively small conductors of the windings and hence cause large electromagnetic forces to act on the rope. The diameter of the rope, from a strength point of view, can be considerably reduced by supporting the rope at various points along its length.

  2. Diurnal Cycle Computations

    SciTech Connect

    Covey, Curt; Doutriaux, Charles

    2016-12-01

    Directory /export_backup/covey1/CMIP5/Precipitation/DiurnalCycle/GridpointTimeseries/CMCCBCM_etal/ on crunchy.llnl.gov contains Python / UV-CDAT scripts compositeDiurnalStatistics.py and fourierDiurB nalAllGrid.py. compositeDiurnalStatistics.py reads high-time-frequency climate data from one or more years and computes 24 hour composite-mean and composite-standard-deviation cycles for one requested month.

  3. Hydride generation from the Exide load-leveling cells

    NASA Astrophysics Data System (ADS)

    Marr, J. J.; Smaga, J. A.

    1987-05-01

    Stibine and arsine evolution from lead-acid cells in a 36-kWh Exide load-leveling module was measured as this module approached 1900 cycles of operation. A gas-collection apparatus enabled us to determine the maximum and average rates for evolution of both toxic hydrides. Hydride generation began once the cell voltage exceeded 2.4 V. The maximum rate for arsine occurred just above 2.5 V and consistently preceded the peak rate for stibine for each sampled cell. The average rates of hydride generation were found to be 175 g/min for stibine and 12.6 g/min for arsine. The former rate proved to be the critical value in determining safe ventilation requirements for cell off-gases. The minimum airflow requirement was calculated to be 340 L/min per cell. Projections for a hypothetical 1-MWh Exide battery without an abatement system indicated that the normal ventilation capacity in the Battery Energy Storage Test facility provides nearly five times the airflow needed for safe hydride removal.

  4. A high rate clarifier for load levelling in sewerage systems.

    PubMed

    Jago, R A; Davey, A; Li, H

    2003-01-01

    The combining of chemically assisted clarification with a proprietary physical separation technology has led to a high rate process for clarifying flocculated sewage and other waste streams. This hybrid physico-chemical system, known as the CDS Fine Solids Separation (FSS) System, was developed over a two year period within a sewage treatment plant environment. This paper summarises the results of a recent field trial of the system with a Victorian water authority which experiences heavy loading of sewers in a coastal town during holiday periods. The trial sought to evaluate the FSS as a tool for smoothing the load on the 11 km long sewer to the sewage treatment plant (STP). The FSS system could possibly enable the costly augmentation of the sewer to be deferred, particularly as the capacity of the existing sewer pipe is satisfactory for most of the year. Water quality parameters were determined for a range of flowrates and operational conditions over a two month period. Large reductions were achieved in TSS, TP, FC, turbidity and BOD5, with only minimal reductions in NH3 and TON. These results showed that the FSS could meet the authority's objectives for load levelling and would provide a 20-25% increase in effective sewer capacity. The data are also discussed in terms of possible use of the effluent from the FSS for water reuse applications.

  5. Thermal load leveling during silicon crystal growth from a melt using anisotropic materials

    DOEpatents

    Carlson, Frederick M.; Helenbrook, Brian T.

    2016-10-11

    An apparatus for growing a silicon crystal substrate comprising a heat source, an anisotropic thermal load leveling component, a crucible, and a cold plate component is disclosed. The anisotropic thermal load leveling component possesses a high thermal conductivity and may be positioned atop the heat source to be operative to even-out temperature and heat flux variations emanating from the heat source. The crucible may be operative to contain molten silicon in which the top surface of the molten silicon may be defined as a growth interface. The crucible may be substantially surrounded by the anisotropic thermal load leveling component. The cold plate component may be positioned above the crucible to be operative with the anisotropic thermal load leveling component and heat source to maintain a uniform heat flux at the growth surface of the molten silicon.

  6. Diurnal polar motion

    NASA Technical Reports Server (NTRS)

    Mcclure, P.

    1973-01-01

    An analytical theory is developed to describe diurnal polar motion in the earth which arises as a forced response due to lunisolar torques and tidal deformation. Doodson's expansion of the tide generating potential is used to represent the lunisolar torques. Both the magnitudes and the rates of change of perturbations in the earth's inertia tensor are included in the dynamical equations for the polar motion so as to account for rotational and tidal deformation. It is found that in a deformable earth with Love's number k = 0.29, the angular momentum vector departs by as much as 20 cm from the rotation axis rather than remaining within 1 or 2 cm as it would in a rigid earth. This 20 cm separation is significant in the interpretation of submeter polar motion observations because it necessitates an additional coordinate transformation in order to remove what would otherwise be a 20 cm error source in the conversion between inertial and terrestrial reference systems.

  7. The tropical cyclone diurnal cycle

    NASA Astrophysics Data System (ADS)

    Dunion, Jason P.

    The research presented in this thesis explores a phenomenon referred to as the tropical cyclone (TC) diurnal cycle (TCDC) and presents satellite, numerical modeling, and observational perspectives pertaining to how it can be monitored, its evolution in time and space, its relevance to TC structure and intensity, and how it manifests in numerical simulations of TCs. Infrared satellite imagery was developed and used to investigate diurnal oscillations in TCs and finds a diurnal pulsing pattern that occurs with notable regularity through a relatively deep layer from the inner core to the surrounding environment. A combination of satellite, numerical model simulations, and aircraft observations found diurnal signals in operationally analyzed radii of 50 kt winds in TCs and in satellite intensity estimates from the Advanced Dvorak Technique and spawned the development of a 24-hr conceptual clock that approximates the temporal and spatial evolution of the TCDC each day. TC diurnal pulses are revealed to significantly impact the thermodynamics and winds in the TC environment and appear as narrow, convectively active rings of high radar reflectivity in NOAA aircraft radar data and are hundreds of kilometers in length. Enhanced nighttime radiational cooling that is particularly favored in the TC outflow layer acts to pre-condition the TC environment in a way that favors triggering of the TCDC and TC diurnal pulses, while in the daytime, the stabilizing effects of shortwave warming begins to suppress TCDC processes in the storm, leading to the culmination of the TCDC each day. Schematics are presented that summarize many of the main findings in this work, including descriptions of the basic state of the TC environment as the TCDC evolves during its early and later stages each day and a TCDC-centric daytime evolution of a TC diurnal pulse, associated squall lines and gust fronts, and radial and vertical winds in the lower and upper levels of the storm. The TCDC represents a

  8. Knowledge-based load leveling and task allocation in human-machine systems

    NASA Technical Reports Server (NTRS)

    Chignell, M. H.; Hancock, P. A.

    1986-01-01

    Conventional human-machine systems use task allocation policies which are based on the premise of a flexible human operator. This individual is most often required to compensate for and augment the capabilities of the machine. The development of artificial intelligence and improved technologies have allowed for a wider range of task allocation strategies. In response to these issues a Knowledge Based Adaptive Mechanism (KBAM) is proposed for assigning tasks to human and machine in real time, using a load leveling policy. This mechanism employs an online workload assessment and compensation system which is responsive to variations in load through an intelligent interface. This interface consists of a loading strategy reasoner which has access to information about the current status of the human-machine system as well as a database of admissible human/machine loading strategies. Difficulties standing in the way of successful implementation of the load leveling strategy are examined.

  9. Creep behavior of sweetgum OSB: Effect of load level and relative humidity

    Treesearch

    J.H. Pu; R.C. Tang; Chung-Yun Hse

    1994-01-01

    flexural creep behavior of laboratory-fabricated sweetgum oriented strandboard (0SB), under constant (65% and 95%) and cyclic (65% ↔ 95% at a 96-hr. frequency) relative humidity (RH) conditions at 75°F(23.9°C) is presented. Two levels (4.5% and 6.5%) of resin content (RC) of phenol-formaldehyde were used in fabricating the test panels. Two load levels (20%...

  10. Creep behavior of sweetgum OSB: effect of load level and relative humidity

    Treesearch

    J.H. Pu; R.C. Tang; Chung-Yun Hse

    1994-01-01

    Flexural creep behavior of laboratory-fabricated sweetgum oriented strandboard (OSB). under constnat (65% and 95%) and cyclic (65% 95% at a 96-hr. frequency) relative humidity (RH) conditions at 75 F (23.9 C) is presented. Two levels (4.5% and 6.5%) of resin content (RC) of phenol-formaldehyde were used in fabricating the test panels. Two load levels (20% and...

  11. Large lead/acid batteries for frequency regulation, load levelling and solar power applications

    NASA Astrophysics Data System (ADS)

    Wagner, R.

    Lead/acid batteries are suitable for a multitude of utility applications. This paper presents some examples where large lead/acid batteries have been used for frequency regulation, load levelling and solar power applications. The operational experiences are given together with a discussion about the design and technical specialities of these batteries. In 1986, a 17 MW/14 MWh battery was installed at BEWAG in Berlin which, at that time, was the largest lead/acid battery in the world. Designed to strengthen Berlin's 'island' system, it was used since the beginning of 1987 for frequency regulation and spinning reserve. In December 1993, when Berlin was connected to the electricity grid, frequency regulation was no longer required but the battery was still used for spinning reserve. For many years, the industrial battery plant of Hagen in Soest has used a large lead/acid battery for load levelling. The experience gained during more than ten years shows that load levelling and peak shaving can be a marked benefit for customers and utilities with regard to reducing their peak demand. In the summer of 1992, a 216 V and 2200 Ah lead/acid battery with positive tubular plates and gelled electrolyte was installed at a solar power plant in Flanitzhutte, a small village in the south of Germany which is not connected to the electricity grid. A report is given of the first years of use and includes a discussion about the best charge strategy for such gel batteries when used for solar power applications.

  12. Diurnal patterns of blowing sand

    USDA-ARS?s Scientific Manuscript database

    The diurnal pattern of blowing sand results from a complex process that involves the interaction between the sun, wind, and earth. During the day, solar heating produces thermal instability, which enhances the convective mixing of high momentum winds from the upper levels of the atmosphere to the s...

  13. Hydrogen generation and utility load leveling system and the method therefor

    SciTech Connect

    Parker, R.Z.; Hanrahan, R.J.; Gupta, A.K.

    1993-06-15

    A continuous method of providing load leveling and hydrogen and oxygen production from one system is described comprising the steps of: electrolyzing concentrated hydrohalic acid into hydrogen, halogen and dilute hydrohalic acid; photochemically and thermally reacting water with said halogen to produce hydrogen halide and oxygen; separating said oxygen from said hydrogen halide; and producing concentrated hydrohalic acids by solvating said hydrogen halide with dilute hydrohalic acid, wherein said system utilizes a cell having a charging current density and a discharging current density. A method of producing molecular hydrogen and halogens from hydrohalic acid in solution with transition metal halide complexes is described comprising: using photolytic energy to excite a transition metal halide complex in solution with a hydrohalic acid, causing a metal ion-ligand to be photochemically reduced to a lower oxidation state, and halide ions to be oxidized to molecular halogen; continuously removing said molecular halogen from the presence of the photolytic reaction; and using electrical energy to electrolyze said photochemically reduced, transition metal halide complexes in solution with said hydrohalic acid, causing said metal ion-ligand to be electrolytically oxidized to a higher oxidation state of that species, and hydrogen ions to be reduced to molecular hydrogen. A continuous load leveling and hydrogen and oxygen production system is described for accomplishing the above.

  14. Diurnally-Varying Lunar Hydration

    NASA Astrophysics Data System (ADS)

    Hendrix, A. R.; Hurley, D.; Retherford, K. D.; Mandt, K.; Greathouse, T. K.; Farrell, W. M.; Vilas, F.

    2016-12-01

    Dayside, non-polar lunar hydration signatures have been observed by a handful of instruments and present insights into the lunar water cycle. In this study, we utilize the unique measurements from the current Lunar Reconnaissance Orbiter (LRO) mission to study the phenomenon of diurnally-varying dayside lunar hydration. The Lyman Alpha Mapping Project (LAMP) onboard LRO senses a strong far-ultraviolet water absorption edge indicating hydration in small abundances in the permanently shadowed regions as well as on the lunar dayside. We report on diurnal variability in hydration in different terrain types. We investigate the importance of different sources of hydration, including solar wind bombardment and meteoroid bombardment, by observing trends during magnetotail and meteor stream crossings.

  15. Diurnal variations in myocardial metabolism.

    PubMed

    Bray, Molly S; Young, Martin E

    2008-07-15

    The heart is challenged by a plethora of extracellular stimuli over the course of a normal day, each of which distinctly influences myocardial contractile function. It is therefore not surprising that myocardial metabolism also oscillates in a time-of-day dependent manner. What is becoming increasingly apparent is that the heart exhibits diurnal variations in its intrinsic properties, including responsiveness to extracellular stimuli. This article summarizes our current knowledge regarding the mechanism(s) mediating diurnal variations in myocardial metabolism. Particular attention is focused towards the intramyocardial circadian clock, a cell autonomous molecular mechanism that appears to regulate myocardial metabolism both directly (e.g. triglyceride and glycogen metabolism) and indirectly (through modulation of the responsiveness of the myocardium to workload, insulin, and fatty acids). In doing so, the circadian clock within the cardiomyocyte allows the heart to anticipate environmental stimuli (such as changes in workload, feeding status) prior to their onset. This synchronization between the myocardium and its environment is enhanced by regular feeding schedules. Conversely, loss of synchronization may occur through disruption of the circadian clock and/or diurnal variations in neurohumoral factors (as observed during diabetes mellitus). Here, we discuss the possibility that loss of synchronization between the heart and its environment predisposes the heart to metabolic maladaptation and subsequent myocardial contractile dysfunction.

  16. Diurnal variation of mesospheric ozone

    NASA Astrophysics Data System (ADS)

    Vaughan, G.

    1982-03-01

    Four Petrel rockets were flown from South Uist on October 2, 1979, to investigate the ozone concentration variation predicted by photochemical models between day and night in the mesosphere by means of interference filters that defined an approximately 10 nm bandwidth. The first two rockets contained photometers with wavebands centered at 265 and 290 nm, while the last two employed a single waveband at 265 nm. Results show significant diurnal variation above 54 km, which exceeds a factor of 2 above 65 km and reaches a factor of 10 between night and sunrise at 90 km.

  17. Diurnal Ensemble Surface Meteorology Statistics

    EPA Pesticide Factsheets

    Excel file containing diurnal ensemble statistics of 2-m temperature, 2-m mixing ratio and 10-m wind speed. This Excel file contains figures for Figure 2 in the paper and worksheets containing all statistics for the 14 members of the ensemble and a base simulation.This dataset is associated with the following publication:Gilliam , R., C. Hogrefe , J. Godowitch, S. Napelenok , R. Mathur , and S.T. Rao. Impact of inherent meteorology uncertainty on air quality model predictions. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. American Geophysical Union, Washington, DC, USA, 120(23): 12,259–12,280, (2015).

  18. Association of Parasite Load Levels in Amniotic Fluid With Clinical Outcome in Congenital Toxoplasmosis.

    PubMed

    Yamamoto, Lidia; Targa, Lília S; Sumita, Laura M; Shimokawa, Paulo T; Rodrigues, Jonatas C; Kanunfre, Kelly A; Okay, Thelma S

    2017-08-01

    To correlate neonatal and infant clinical outcome with parasite load in amniotic fluid (AF). We conducted a retrospective cohort study of 122 children whose mothers had toxoplasmosis during pregnancy. The children were monitored from birth to 12 months old. Stored AF samples were obtained at maternal diagnosis and tested by quantitative polymerase chain reaction. Gestational age at maternal infection, quantitative polymerase chain reaction results, neonatal anti-Toxoplasma gondii immunoglobulin (Ig) M, and clinical outcome at 12 months were correlated. Maternal infection occurred in 18 of 122 (14.7%) and 104 of 122 (85.2%) women in the first and second trimesters, respectively. At birth, IgM was present in 107 of 122 (87.7%) neonates and 36 (29.5%) were symptomatic. Of these, half occurred in the first and the other half in the second trimester and 6 of 36 had severe infections (16.7% of symptomatic, 4.9% of total), all infected in the first trimester. Parasite load levels were highly variable (median 35 parasites/mL, range 2-30,473). Logistic regression correlated symptomatic infection with gestational age (odds ratio [OR] 0.47, CI 0.31-0.73) and parasite load (OR 2.04, CI 1.23-3.37), but not with positive IgM (OR 6.81, CI 0.86-53.9). Negative correlations were found between gestational age and parasite load (rs -0.780, CI -0.843 to -0.696), gestational age and symptoms (rs -0.664, CI -0.755 to -0.547), but not gestational age and IgM (rs -0.136, CI -0.311 to 0.048). Parasite load levels distributed by percentile showed that all symptomatic patients appeared from the 75th percentile and all severe infections from the 95th percentile. Load rankings showed doubled the OR for each 20 parasite/mL increment. Parasite load was associated with symptomatic infections (area under the curve 0.959, CI 0.908-0.987) as well as gestational age (area under the curve 0.918, CI 0.855-0.960) and both parameters combined (area under the curve 0.969, CI 0.920-0.992). Parasite load in

  19. Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 1 Final Report

    SciTech Connect

    Eidler, Phillip

    1999-07-01

    The Zinc/Bromine Load-Leveling Battery Development contract (No. 40-8965) was partitioned at the outset into two phases of equal length. Phase 1 started in September 1990 and continued through December 1991. In Phase 1, zinc/bromine battery technology was to be advanced to the point that it would be clear that the technology was viable and would be an appropriate choice for electric utilities wishing to establish stationary energy-storage facilities. Criteria were established that addressed most of the concerns that had been observed in the previous development efforts. The performances of 8-cell and 100-cell laboratory batteries demonstrated that the criteria were met or exceeded. In Phase 2, 100-kWh batteries will be built and demonstrated, and a conceptual design for a load-leveling plant will be presented. At the same time, work will continue to identify improved assembly techniques and operating conditions. This report details the results of the efforts carried out in Phase 1. The highlights are: (1) Four 1-kWh stacks achieved over 100 cycles, One l-kWh stack achieved over 200 cycles, One 1-kWh stack achieved over 300 cycles; (2) Less than 10% degradation in performance occurred in the four stacks that achieved over 100 cycles; (3) The battery used for the zinc loading investigation exhibited virtually no loss in performance for loadings up to 130 mAh/cm{sup 2}; (4) Charge-current densities of 50 ma/cm{sup 2} have been achieved in minicells; (5) Fourteen consecutive no-strip cycles have been conducted on the stack with 300+ cycles; (6) A mass and energy balance spreadsheet that describes battery operation was completed; (7) Materials research has continued to provide improvements in the electrode, activation layer, and separator; and (8) A battery made of two 50-cell stacks (15 kWh) was produced and delivered to Sandia National Laboratories (SNL) for testing. The most critical development was the ability to assemble a battery stack that remained leak free. The

  20. Upper Limb Muscle and Brain Activity in Light Assembly Task on Different Load Levels

    NASA Astrophysics Data System (ADS)

    Zadry, Hilma Raimona; Dawal, Siti Zawiah Md.; Taha, Zahari

    2010-10-01

    A study was conducted to investigate the effect of load on upper limb muscles and brain activities in light assembly task. The task was conducted at two levels of load (Low and high). Surface electromyography (EMG) was used to measure upper limb muscle activities of twenty subjects. Electroencephalography (EEG) was simultaneously recorded with EMG to record brain activities from Fz, Pz, O1 and O2 channels. The EMG Mean Power Frequency (MPF) of the right brachioradialis and the left upper trapezius activities were higher on the high-load task compared to low-load task. The EMG MPF values also decrease as time increases, that reflects muscle fatigue. Mean power of the EEG alpha bands for the Fz-Pz channels were found to be higher on the high-load task compared to low-load task, while for the O1-O2 channels, they were higher on the low-load task than on the high-load task. These results indicated that the load levels effect the upper limb muscle and brain activities. The high-load task will increase muscle activities on the right brachioradialis and the left upper tapezius muscles, and will increase the awareness and motivation of the subjects. Whilst the low-load task can generate drowsiness earlier. It signified that the longer the time and the more heavy of the task, the subjects will be more fatigue physically and mentally.

  1. HIV viral load levels and CD4+ cell counts of youth in 14 cities.

    PubMed

    Ellen, Jonathan M; Kapogiannis, Bill; Fortenberry, J Dennis; Xu, Jiahong; Willard, Nancy; Duval, Anna; Pace, Jill; Loeb, Jackie; Monte, Dina; Bethel, James

    2014-05-15

    To describe the HIV viral load and CD4 cell counts of youth (12-24 years) in 14 cities from March 2010 through November 2011. Baseline HIV viral load and CD4 cell count data were electronically abstracted in a central location and in an anonymous manner through a random computer-generated coding system without any ability to link codes to individual cases. Among 1409 HIV reported cases, 852 participants had data on both viral load and CD4 cell counts. Of these youth, 34% had CD4 cell counts of 350 or less, 27% had cell counts from 351 to 500, and 39% had CD4 cell counts greater than 500. Youth whose transmission risk was male-to-male sexual contact had higher viral loads compared with youth whose transmission risk was perinatal or heterosexual contact. Greater than 30% of those who reported male-to-male sexual contact had viral loads greater than 50 000 copies, whereas less than 20% of heterosexual contact youth had viral loads greater than 50 000 copies. There were no differences noted in viral load by type of testing site. Most HIV-infected youth have CD4 cell counts and viral load levels associated with high rates of sexual transmission. Untreated, these youth may directly contribute to high rates of ongoing transmission. It is essential that any public health test and treat strategy place a strong emphasis on youth, particularly young MSM.

  2. A system-level mathematical model for evaluation of power train performance of load-leveled electric-vehicles

    NASA Technical Reports Server (NTRS)

    Purohit, G. P.; Leising, C. J.

    1984-01-01

    The power train performance of load leveled electric vehicles can be compared with that of nonload leveled systems by use of a simple mathematical model. This method of measurement involves a number of parameters including the degree of load leveling and regeneration, the flywheel mechanical to electrical energy fraction, and efficiencies of the motor, generator, flywheel, and transmission. Basic efficiency terms are defined and representative comparisons of a variety of systems are presented. Results of the study indicate that mechanical transfer of energy into and out of the flywheel is more advantageous than electrical transfer. An optimum degree of load leveling may be achieved in terms of the driving cycle, battery characteristics, mode of mechanization, and the efficiency of the components. For state of the art mechanically coupled flyheel systems, load leveling losses can be held to a reasonable 10%; electrically coupled systems can have losses that are up to six times larger. Propulsion system efficiencies for mechanically coupled flywheel systems are predicted to be approximately the 60% achieved on conventional nonload leveled systems.

  3. Conceptual designs for utility load-leveling battery with Li/FeS cells

    SciTech Connect

    Zivi, S. M.; Kacinskas, H.; Pollack, I.; Chilenskas, A. A.; Grieve, W.; McFarland, B. L.; Sudar, S.

    1980-07-01

    In 1978, a conceptual design of a 100 MW-h load-leveling battery system having Li alloy/FeS cells was developed as a result of a joint effort between ANL and Rockwell International. In this conceptual design, the submodule, which was the basic replaceable unit for the system, had a capacity of 240 kW-h and consisted of ninety-six 2.5 kW-h cells. However, a study by Rockwell indicated that the cost for battery hardware, $60 to 80/kW-h (cells and converters not included), was too high. Most of this cost was contributed by the submodule structure and the charge equalization scheme, which was the same as that developed for electric-vehicle batteries. In 1979, subsequent efforts were concentrated on lowering these hardware costs and resulted in the development of three modified designs, which are presented in this report. The first, developed at ANL, consisted of a 30 kW-h cell/submodule and the electric-vehicle equalization scheme. The hardware cost for this modified design was quite low, about $25/kW-h; however, this design was eventually rejected owing to the apparent impracticality of such a large cell. The two other modified designs had more conservative cell designs. One of them, developed at ANL, consisted of a 120 kW-h submodule consisting of one hundred 1.2 kW-h cells; the other, developed at Rockwell, consisted of a 1020 kW-h submodule consisting of four hundred and eight 2.5 kW-h cells. For both of these designs, an alternative method of equalization, in which fixed resistance shunts are used on each cell, was proposed; this equalization method adds little equipment cost to the system and only sacrifices about 4% of the coulombic and energy efficiencies. The cost of battery hardware for these two designs was estimated to be acceptable, about $22 to 60/kW-h. Some questions remain on the assumed capabilities of the cells and the feasibility of the battery hardware.

  4. Diurnal and semi-diurnal temperature variability of the middle atmosphere, as observed by ISAMS

    NASA Astrophysics Data System (ADS)

    Dudhia, A.; Smith, S. E.; Wood, A. R.; Taylor, F. W.

    1993-06-01

    Some preliminary results are presented showing that the ISAMS instrument on board the UARS satellite has detected sun-synchronous variations in atmospheric temperature between 15-80 km altitude. These are interpreted as the westward-migrating diurnal and semi-diurnal tides. Zonal mean maps of the amplitudes of these components are shown, determined from 40 days' observations during the northern hemisphere winter of 1991/92. The results show maximum amplitudes ˜5 K, with the diurnal tide strongest over the equator while the semi-diurnal tide is strongest at mid-latitudes. Comparisons are made with previous observations from the LIMS instrument and the lidar at Biscarrosse, France. While the ISAMS and LIMS results are consistent, several significant differences from the lidar results are noted. The conclusion is that information on the global diurnal and semi-diurnal temperature tides in the middle atmosphere may be obtained from a relatively simple treatment of ISAMS data.

  5. Diurnal variations of vegetation canopy structure

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Kirchner, J. A.

    1983-01-01

    The significance and magnitude of diurnal variations of vegetation canopy structure are reviewed. Diurnal leaf inclination-azimuth angle distributions of a soybean and cotton canopy were documented using a simple measurement technique. The precision of the measurements was on the order of + or -5 deg for the inclination and + or -14 deg for the azimuth. The experimental results and a review of the literature showed that this distribution can vary significantly on a diurnal basis due to vegetation type, heliotropic leaf movement, environmental conditions, and vegetation stress. The study also showed that it is erroneous to treat two separate distributions of azimuth and inclination angles rather than one three-dimensional distribution of leaf orientation. The latter distribution needs to be routinely collected in studies which document variations of diurnal spectral reflectance with changes in solar zenith angle.

  6. Diurnal modulation of visual motion prediction.

    PubMed

    Takao, Motoharu; Miyajima, Hiroaki; Shinagawa, Takanori

    2015-01-01

    Predicting the future position of moving objects is an essential cognitive function used for many daily activities, such as driving, walking and reaching. The experiments described in this paper show a marked diurnal modulation of motion prediction in inflating image perception. This motion prediction was shown to be more accurate in the afternoon than in the morning. In contrast, such modulation could not be found in deflating image perception. Such diurnal fluctuations may be mediated by circadian properties of retinal cone photoreceptors.

  7. Diurnal Cycle of Convection during Dynamo

    NASA Astrophysics Data System (ADS)

    Ciesielski, P. E.; Johnson, R. H.

    2014-12-01

    During the special observing period (SOP) of the DYNAMO/CINDY/AMIE field campaign, conducted over the Indian Ocean from October to November 2011, two sounding networks, one north and one south of the equator, took 4-8 soundings/day. This dataset with 3-hr time resolution offers a unique opportunity to investigate the diurnal cycle of Intertropical Convergence Zone (ITCZ) convection which was present within the southern sounding array (SSA) for extended periods during the SOP. For example, during the first half of October 2011 when the ITCZ was located between 3°S and 8°S, TRMM 3B42 3-h rainfall averaged over the SSA exhibited a prominent diurnal cycle with a late night/early morning maximum and an early evening minimum. The rainfall diurnal range during this period over the SSA was 4.8 mm which was ~50% of the daily mean (10.1 mm). Mean rainfall over the northern sounding array was much lighter (0.9 mm) during this period with a diurnal cycle nearly out of phase with that over the SSA. Using primarily sounding and satellite data, we will explore the characteristics of this diurnally varying convection and what, if any, influence it may have had on the Madden-Julian Oscillation (MJO) signal.

  8. Engine control strategy for a series hybrid electric vehicle incorporating load-leveling and computer controlled energy management

    SciTech Connect

    Hochgraf, C.G.; Ryan, M.J.; Wiegman, H.L.

    1996-09-01

    This paper identifies important engine, alternator and battery characteristics needed for determining an appropriate engine control strategy for a series hybrid electric vehicle. Examination of these characteristics indicates that a load-leveling strategy applied to the small engine will provide better fuel economy than a power-tracking scheme. An automatic energy management strategy is devised whereby a computer controller determines the engine-alternator turn-on and turn-off conditions and controls the engine-alternator autonomously. Battery state of charge is determined from battery voltage and current measurements. Experimental results of the system`s performance in a test vehicle during city driving are presented.

  9. Diurnal Variations in Maximal Oxygen Uptake.

    ERIC Educational Resources Information Center

    McClellan, Powell D.

    A study attempted to determine if diurnal (daily cyclical) variations were present during maximal exercise. The subjects' (30 female undergraduate physical education majors) oxygen consumption and heart rates were monitored while they walked on a treadmill on which the grade was raised every minute. Each subject was tested for maximal oxygen…

  10. Diurnally Entrained Anticipatory Behavior in Archaea

    PubMed Central

    Whitehead, Kenia; Pan, Min; Masumura, Ken-ichi; Bonneau, Richard; Baliga, Nitin S.

    2009-01-01

    By sensing changes in one or few environmental factors biological systems can anticipate future changes in multiple factors over a wide range of time scales (daily to seasonal). This anticipatory behavior is important to the fitness of diverse species, and in context of the diurnal cycle it is overall typical of eukaryotes and some photoautotrophic bacteria but is yet to be observed in archaea. Here, we report the first observation of light-dark (LD)-entrained diurnal oscillatory transcription in up to 12% of all genes of a halophilic archaeon Halobacterium salinarum NRC-1. Significantly, the diurnally entrained transcription was observed under constant darkness after removal of the LD stimulus (free-running rhythms). The memory of diurnal entrainment was also associated with the synchronization of oxic and anoxic physiologies to the LD cycle. Our results suggest that under nutrient limited conditions halophilic archaea take advantage of the causal influence of sunlight (via temperature) on O2 diffusivity in a closed hypersaline environment to streamline their physiology and operate oxically during nighttime and anoxically during daytime. PMID:19424498

  11. Short-term bulk energy storage system scheduling for load leveling in unit commitment: modeling, optimization, and sensitivity analysis

    PubMed Central

    Hemmati, Reza; Saboori, Hedayat

    2016-01-01

    Energy storage systems (ESSs) have experienced a very rapid growth in recent years and are expected to be a promising tool in order to improving power system reliability and being economically efficient. The ESSs possess many potential benefits in various areas in the electric power systems. One of the main benefits of an ESS, especially a bulk unit, relies on smoothing the load pattern by decreasing on-peak and increasing off-peak loads, known as load leveling. These devices require new methods and tools in order to model and optimize their effects in the power system studies. In this respect, this paper will model bulk ESSs based on the several technical characteristics, introduce the proposed model in the thermal unit commitment (UC) problem, and analyze it with respect to the various sensitive parameters. The technical limitations of the thermal units and transmission network constraints are also considered in the model. The proposed model is a Mixed Integer Linear Programming (MILP) which can be easily solved by strong commercial solvers (for instance CPLEX) and it is appropriate to be used in the practical large scale networks. The results of implementing the proposed model on a test system reveal that proper load leveling through optimum storage scheduling leads to considerable operation cost reduction with respect to the storage system characteristics. PMID:27222741

  12. Short-term bulk energy storage system scheduling for load leveling in unit commitment: modeling, optimization, and sensitivity analysis.

    PubMed

    Hemmati, Reza; Saboori, Hedayat

    2016-05-01

    Energy storage systems (ESSs) have experienced a very rapid growth in recent years and are expected to be a promising tool in order to improving power system reliability and being economically efficient. The ESSs possess many potential benefits in various areas in the electric power systems. One of the main benefits of an ESS, especially a bulk unit, relies on smoothing the load pattern by decreasing on-peak and increasing off-peak loads, known as load leveling. These devices require new methods and tools in order to model and optimize their effects in the power system studies. In this respect, this paper will model bulk ESSs based on the several technical characteristics, introduce the proposed model in the thermal unit commitment (UC) problem, and analyze it with respect to the various sensitive parameters. The technical limitations of the thermal units and transmission network constraints are also considered in the model. The proposed model is a Mixed Integer Linear Programming (MILP) which can be easily solved by strong commercial solvers (for instance CPLEX) and it is appropriate to be used in the practical large scale networks. The results of implementing the proposed model on a test system reveal that proper load leveling through optimum storage scheduling leads to considerable operation cost reduction with respect to the storage system characteristics.

  13. Climate Implications of the Moist-convective Diurnal Cycle

    NASA Astrophysics Data System (ADS)

    Ruppert, James

    2016-04-01

    This idealized modeling study is provoked by recent observations from the tropical Indian Ocean (the DYNAMO field campaign), which demonstrate the high degree to which column humidity is modulated by the diurnal cycle of clouds. Under suppressed large-scale conditions, shallow convection prevails, and the diurnal cycles of shortwave radiative heating and sea surface temperature (SST) are at their strongest. In turn, the diurnal cycle of clouds is prominent, which is manifest in daytime cloud deepening and tropospheric moistening in response to boundary layer warming (bearing resemblance to the diurnal cycle over land). An idealized modeling study is performed to 1) assess the driving processes in the diurnal cycle (i.e., SST vs. radiative forcing) and 2) assess whether or not this diurnal cycle rectifies onto longer timescales. A cloud-resolving model framework is employed with the CM1 model (Bryan and Fritsch 2002), wherein a diurnal cycle of SST is prescribed, fully-interactive radiation varies diurnally, and the weak temperature gradient (WTG) approximation is invoked to simulate the feedbacks between the moist convection and large-scale circulation. The results suggest that the diurnal cycle is highly nonlinear, in that the diurnal fluctuation of clouds strongly rectifies onto longer timescales. The diurnal cycle must therefore be regarded as a "forcing mechanism" to the climate system. The vitality and quality of the moist-convective diurnal cycle in climate models may in turn be important to the accuracy of their simulations.

  14. Reference design of 100 MW-h lithium/iron sulfide battery system for utility load leveling

    SciTech Connect

    Zivi, S.M.; Kacinskas, H.; Pollack, I.; Chilenskas, A.A.; Barney, D.L.; Grieve, W.; McFarland, B.L.; Sudar, S.; Goldstein, E.; Adler, E.

    1980-03-01

    The first year in a two-year cooperative effort between Argonne National Laboratory and Rockwell International to develop a conceptual design of a lithium alloy/iron sulfide battery for utility load leveling is presented. A conceptual design was developed for a 100 MW-h battery system based upon a parallel-series arrangement of 2.5 kW-h capacity cells. The sales price of such a battery system was estimated to be very high, $80.25/kW-h, exclusive of the cost of the individual cells, the dc-to-ac converters, site preparation, or land acquisition costs. Consequently, the second year's efforts were directed towards developing modified designs with significantly lower potential costs.

  15. Observations of the diurnal tide from space

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.; Wu, D. L.; Burrage, M. D.; Gell, D. A.; Grassl, H. J.; Lieberman, R. S.; Marshall, A. R.; Morton, Y. T.; Ortland, D. A.; Skinner, W. R.

    1994-01-01

    This study presents a climatology of mesospheric and lower-thermospheric diurnal tidal winds obtained with the High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS). The observations reveal that although tidal structures are present at all times, like the prevailing zonal winds, they exhibit significant semiannual as well as other shorter-term variations in amplitude. Results are presented for a period extending over more than one year from November 1991 to July 1993. The 1,1 diurnal tidal amplitude of the meridional component, characterized by the value at an altitude of 90 km and a latitude of 22 deg, ranges from a minimum at solstice of less than 20 m per sec to an equinox maximum of over 70 m per sec. The vertical wavelength and phase of the tide show only slight variations throughout the year, with a suggestion of semiannual variations in both.

  16. Observations of the diurnal tide from space

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.; Wu, D. L.; Burrage, M. D.; Gell, D. A.; Grassl, H. J.; Lieberman, R. S.; Marshall, A. R.; Morton, Y. T.; Ortland, D. A.; Skinner, W. R.

    1994-01-01

    This study presents a climatology of mesospheric and lower-thermospheric diurnal tidal winds obtained with the High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS). The observations reveal that although tidal structures are present at all times, like the prevailing zonal winds, they exhibit significant semiannual as well as other shorter-term variations in amplitude. Results are presented for a period extending over more than one year from November 1991 to July 1993. The 1,1 diurnal tidal amplitude of the meridional component, characterized by the value at an altitude of 90 km and a latitude of 22 deg, ranges from a minimum at solstice of less than 20 m per sec to an equinox maximum of over 70 m per sec. The vertical wavelength and phase of the tide show only slight variations throughout the year, with a suggestion of semiannual variations in both.

  17. Diurnal variation in martian dust devil activity

    NASA Astrophysics Data System (ADS)

    Chapman, R. M.; Lewis, S. R.; Balme, M.; Steele, L. J.

    2017-08-01

    We show that the dust devil parameterisation in use in most Mars Global Circulation Models (MGCMs) results in an unexpectedly high level of dust devil activity during morning hours. Prior expectations of the diurnal variation of Martian dust devils are based mainly upon the observed behaviour of terrestrial dust devils: i.e. that the majority occur during the afternoon. We instead find that large areas of the Martian surface experience dust devil activity during the morning in our MGCM, and that many locations experience a peak in dust devil activity before mid-sol. We find that the diurnal variation in dust devil activity is governed by near-surface wind speeds. Within the range of daylight hours, higher wind speeds tend to produce higher levels of dust devil activity, rather than the activity simply being governed by the availability of heat at the planet's surface, which peaks in early afternoon. Evidence for whether the phenomenon we observe is real or an artefact of the parameterisation is inconclusive. We compare our results with surface-based observations of Martian dust devil timings and obtain a good match with the majority of surveys. We do not find a good match with orbital observations, which identify a diurnal distribution more closely matching that of terrestrial dust devils, but orbital observations have limited temporal coverage, biased towards the early afternoon. We propose that the generally accepted description of dust devil behaviour on Mars is incomplete, and that theories of dust devil formation may need to be modified specifically for the Martian environment. Further surveys of dust devil observations are required to support any such modifications. These surveys should include both surface and orbital observations, and the range of observations must encompass the full diurnal period and consider the wider meteorological context surrounding the observations.

  18. Diurnal Ocean Surface Layer Model Validation

    DTIC Science & Technology

    1990-05-01

    measurements. matchups betiween day, night MCSST measurements Earlier efforts b. Cornillon and Stramma (1985) and and DOSI . model output but is...experienced diurnal warming in excess the contoured charts; interpolating coarse DOSL values of I ’C up to 30 percent of the time. DOSI . charts were to NICSST...real time, the project data (I km) from either Wallops Island, VA, or the relied on the DOSI . model to indicate which regions NORDA tracking antenna

  19. Diurnal ocean surface layer model validation

    NASA Technical Reports Server (NTRS)

    Hawkins, Jeffrey D.; May, Douglas A.; Abell, Fred, Jr.

    1990-01-01

    The diurnal ocean surface layer (DOSL) model at the Fleet Numerical Oceanography Center forecasts the 24-hour change in a global sea surface temperatures (SST). Validating the DOSL model is a difficult task due to the huge areas involved and the lack of in situ measurements. Therefore, this report details the use of satellite infrared multichannel SST imagery to provide day and night SSTs that can be directly compared to DOSL products. This water-vapor-corrected imagery has the advantages of high thermal sensitivity (0.12 C), large synoptic coverage (nearly 3000 km across), and high spatial resolution that enables diurnal heating events to be readily located and mapped. Several case studies in the subtropical North Atlantic readily show that DOSL results during extreme heating periods agree very well with satellite-imagery-derived values in terms of the pattern of diurnal warming. The low wind and cloud-free conditions necessary for these events to occur lend themselves well to observation via infrared imagery. Thus, the normally cloud-limited aspects of satellite imagery do not come into play for these particular environmental conditions. The fact that the DOSL model does well in extreme events is beneficial from the standpoint that these cases can be associated with the destruction of the surface acoustic duct. This so-called afternoon effect happens as the afternoon warming of the mixed layer disrupts the sound channel and the propagation of acoustic energy.

  20. Diurnal Variations of Clouds in Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Wu, Qiaoyan; Ruan, Zhenxin

    2016-04-01

    Using 14 years (2000-2013) of pixel-resolution infrared (IR) brightness temperature data and best track data, this study estimates the diurnal variations of convective systems in tropical cyclones (TCs) in the western North Pacific. The very cold cloud cover (IR brightness temperatures < 208 K) of TCs reaches a maximum areal extent in the early morning (0000-0300 LST) and then decreases after the sunrise. The decrease of very cold cloud cover is followed by an increase of cloud cover between 208 K and 240 K with a maximum areal extent in the afternoon (1500-1800 LST). TC IR cloud top temperatures < 240 K have minimum values in the morning (0300-0600 LST) , while TC IR cloud top temperatures > 240 K have mean minimum values in the afternoon (1500-1800 LST). The out-of-phase relation between different cloud conditions with IR cloud top temperatures < 240 K and IR cloud top temperatures > 240 K lead to radius-averaged IR temperature show two minima within a day. Different diurnal evolution under different cloud conditions suggests that TC convective systems are better described in terms of both areal extent and cloud-top temperature. The maximum cloud cover with IR cloud top temperatures colder than 208 K in the morning and the maximum cloud cover with IR cloud top temperatures between 208 K and 240 K in the afternoon suggest that two different mechanisms might be involved with the diurnal variations of these two types of TC cloud conditions.

  1. Upscaling diurnal cycles of carbon fluxes

    NASA Astrophysics Data System (ADS)

    Bodesheim, Paul; Jung, Martin; Mahecha, Miguel; Reichstein, Markus

    2017-04-01

    Carbon fluxes like Gross Primary Production (GPP) and Net Ecosystem Exchange (NEE) are important variables for studying interactions between the atmosphere and the biosphere in different ecosystems. They are typically derived from measurements at Eddy covariance towers and the FLUXNET global network consists of hundreds of such sites. In order to diagnose global GPP and NEE patterns from FLUXNET, upscaling approaches have been used in the past to extrapolate the site measurements to continental and global scale. However, respective products have a daily or monthly temporal resolution and do not allow for analyzing patterns related to diurnal variations of GPP and NEE. To raise these upscaling approaches to the next level, we present our first results on upscaling diurnal cycles of GPP and NEE with half-hourly resolution. We use random forest regression models to estimate the relationship between predictor variables and fluxes based on more than four million half-hourly observations from FLUXNET sites. We have developed and tested two approaches that overcome the mismatch in the temporal resolution between predictor variables at daily resolution and fluxes at half-hourly resolution. Based on thorough leave-one-site-out cross-validation we show that the approach works very well. Finally, we used the trained models for computing global products of half-hourly GPP and NEE that cover the years 2001 to 2014 and present global patterns of diurnal carbon flux variations derived from the upscaling approach.

  2. Radiobrightness of diurnally heated, freezing soil

    NASA Technical Reports Server (NTRS)

    England, Anthony W.

    1990-01-01

    Freezing and thawing soils exhibit unique radiometric characteristics. To examine these characteristics, diurnal insolation is modeled as one-dimensional heating of a moist soil half-space during a typical fall at a northern Great Plains site. The one-dimensional heat flow equation is nonlinear because both the enthalpy (the change in internal energy with temperature at constant pressure) and the thermal conductivity of freezing soils are nonlinear functions of temperature. The problem is particularly difficult because phase boundaries propagate in time, and because soils, particularly clay-rich soils, freeze over a range of temperatures rather than at 0 C. Diurnal radiobrightness curves at 10.7, 18.0, and 37.0-GHz were computed for each month. The 37.0-GHz radiobrightness best tracks soil surface temperature; the 10.7-37.0-GHz spectral gradient of thawed soils is strongly positive; the spectral gradient of frozen soils is slightly negative; and the midnight-to-noon spectral gradient is shifted by approximately +0.1 K/GHz by diurnal changes in the surface temperature and the thermal gradient. These observations support the use of the scanning multichannel microwave radiometer 37.0-GHz radiobrightness and its 10.7-37.0-GHz spectral gradient as discriminants in a frozen soil classifier for high-latitude prairie.

  3. Diurnal and Semidiurnal Variations in Earth Rotation

    NASA Astrophysics Data System (ADS)

    Weijing, Q.; Xu, X.; Dong, D.; Zhou, Y.

    2016-12-01

    In recent decades, earth orientation has been monitored with increasing accuracy by advanced space-geodetic techniques, including Satellite Laser ranging (SLR), Very Long Baseline Interferometry (VLBI) and the Global Positioning System (GPS). We are able to obtain the Earth Rotation Parameters (ERP, polar motion and rotation rate changes) by even 1 to 2 hours observation data, form which obvious diurnal and semidiurnal signals can be detected, and compare them with the predicted results by the ocean model. Both the amplitude and phase are in good agreement in the main diurnal and semidiurnal wave frequency, especially for the UT1 with Consistency of 90% , and 60% for polar motion, there are 30% motivating factor of the diurnal and semidiurnal polar motion have not been identified. This work add the motivating term libration to the empirical tidal models, which can reduce the difference between the high frequency earth rotation model and observations. Then the numerical simulated ocean tidal model is obtained with the newest ERP datas from GPS, and the Scaled Sensitivity Matrix (SSM) approach is used to separate the sidebands in major ocean tides.

  4. Diurnal Variations in Human Pulmonary Function

    PubMed Central

    Medarov, Boris I.; Pavlov, Valentin A.; Rossoff, Leonard

    2008-01-01

    Pulmonary function has circadian modulations. Variations in human pulmonary function during the daytime hours (diurnal variations) remain to be well characterized. Discerning these variations will contribute to better understanding the relationship between biorhythms and lung physiology and to improving clinical management of pulmonary diseases. The aim of this study was to determine the magnitude of pulmonary function variability during the usual daytime hours in a population of patients referred for pulmonary function testing. Diurnal fluctuations of human pulmonary function were examined by studying retrospectively a study population of 4,756 individuals with performed pulmonary function tests. We found the lowest and highest spirometric values in the 12:00–12:59 pm and 3:00–4:59 pm time intervals respectively. The difference in the forced expiratory volume in 1 second (FEV1) between the noon (12:00–12:59 pm) and afternoon (4:00–4:59 pm) intervals was 17.6% (P<0.01). Furthermore, the highest values of diffusing capacity of the lung for carbon monoxide [DLCO] and alveolar volume [Va] were identified in the 8:00–8:59 am time interval. These findings, identifying a model of diurnal variations of pulmonary function in individuals referred for pulmonary function testing, are of interest for better understanding lung physiology and human circadian rhythms and may have clinical value in managing lung disorders. PMID:19079662

  5. Space-Time Characteristics of Rainfall Diurnal Variations

    NASA Technical Reports Server (NTRS)

    Yang, Song; Kummerow, Chris; Olson, Bill; Smith, Eric A.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The space-time features of rainfall diurnal variation of precipitation are systematically investigated by using the Tropical Rainfall Measuring Mission (TRMM) precipitation products retrieved from TRMM microwave imager (TMI), precipitation radar (PR) and TMI/PR combined algorithms. Results demonstrate that diurnal variability of precipitation is obvious over tropical regions. The dominant feature of rainfall diurnal cycle over, ocean is that there is consistent rainfall peak in early morning, while there is a consistent rainfall peak in mid-late afternoon over land. The seasonal variation on intensity of rainfall diurnal cycle is clearly evidenced. Horizontal distributions of rainfall diurnal variations indicate that there is a clearly early-morning peak with a secondary peak in the middle-late afternoon in ocean rainfall at latitudes dominated by large-scale convergence and deep convection. There is also an analogous early-morning peak in land rainfall along with a stronger afternoon peak forced by surface heating. Amplitude analysis shows that the patterns and its evolution of rainfall diurnal cycle are very close to rainfall distribution pattern and its evolution. These results indicate that rainfall diurnal variations are strongly associated with large-scale convective systems and climate weather systems. Phase studies clearly present the regional and seasonal features of rainfall diurnal activities. Further studies on convective and stratiform rainfall show different characteristics of diurnal cycles. Their spatial and temporal variations of convective and stratiform rainfall indicate that mechanisms for rainfall diurnal variations vary with time and space.

  6. Process modeling of ICU patient flow: effect of daily load leveling of elective surgeries on ICU diversion.

    PubMed

    Kolker, Alexander

    2009-02-01

    Despite the considerable number of publications on ICU patient flow and analysis of its variability, a basic and practically important question remained unanswered: what maximum number of elective surgeries per day should be scheduled (along with the competing demand from emergency surgeries) in order to reduce diversion in an ICU with fixed bed capacity to an acceptable low level, or prevent it at all? The goal of this work was to develop a methodology to answer this question. An ICU patient flow simulation model was developed to establish a quantitative link between the daily load leveling of elective surgeries (elective schedule smoothing) and ICU diversion. It was demonstrated that by scheduling not more than four elective surgeries per day ICU diversion due to 'no ICU beds' would be practically eliminated. However this would require bumping 'extra' daily surgeries to the block time day of another week which could be up to 2 months apart. Because not all patients could wait that long for their elective surgery, another more practical scenario was tested that would also result in a very low ICU diversion: bumping 'extra' daily elective surgeries within less than 2 weeks apart, scheduling not more than five elective surgeries per day, and strict adherence to the ICU admission/ discharge criteria.

  7. Plateau effects on diurnal circulation patterns

    SciTech Connect

    Reiter, E.R.; Tang, M.

    1984-04-01

    The diurnal variation of 850 mb heights, the detailed distribution of which could be assessed by the inclusion of surface data, and of resultant winds over, and in the vicinity of, the Great Basin reveals clearly a plateau-wind circulation during summer. This circulation reverses between day and night and appears to include the low-level jet stream over Texas and Oklahoma, as well as the time of occurrence of thunderstorms. This plateau circulation system interacts with local mountain-valley breeze systems. The thickness of the daytime inflow and nighttime outflow layer over the plateau is approximately 2 km. 19 references, 11 figures, 1 table.

  8. Diurnal Curve of the Ocular Perfusion Pressure

    PubMed Central

    Moreira, TCA; Bezerra, BSP; Vianello, MP; Corradi, J; Dorairaj, SK; Prata, TS

    2016-01-01

    ABSTRACT Purpose: To describe the diurnal variation of the ocular perfusion pressure (OPP) in normal, suspects and glaucoma patients. Materials and methods: Seventy-nine subjects were enrolled in a prospective study. The diurnal curve of intraocular pressure (IOP) was performed and blood pressure measurements were obtained. Each participant was grouped into one of the following based upon the clinical evaluation of the optic disk, IOP and standard achromatic perimetry (SAP): 18 eyes were classified as normal (normal SAP, normal optic disk evaluation and IOP < 21 mm Hg in two different measurements), 30 eyes as glaucoma suspect (GS) (normal SAP and mean deviation (MD), C/D ration > 0.5 or asymmetry > 0.2 and/or ocular hypertension), 31 eyes as early glaucoma (MD < -6 dB, glaucomatous optic neuropathy and SAP and MDs on SAP. Standard achromatic perimetry was performed with the Octopus 3.1.1 Dynamic 24-2 program. Intraocular pressure and blood pressure measurements were taken at 6 am, 9 am, 12, 3 and 6 pm. The patients stayed in the seated position for 5 minutes prior to blood pressure measurements. Results: The mean IOP values in all groups did not follow any regular pattern. The peak IOP was found to be greater in suspect [18.70 ± 3.31 (mm Hg ± SD)] and glaucoma (18.77 ± 4.30 mm Hg) patients as compared to normal subjects (16.11 ± 2.27 mm Hg). In studying the diurnal variation of the OPP, we found lower values at 3 pm in normals (34.21 ± 2.07 mm Hg), at 9 am in suspects (54.35 ± 3.32 mm Hg) and at 12 pm in glaucoma patients (34.84 ± 1.44 mm Hg). Conclusion: Each group has a specific OPP variation during the day with the most homogeneous group being the suspect one. It is important to keep studying the IOP and OPP variation for increased comprehension of the pathophysiology of glaucomatous optic neuropathy. How to cite this article: Kanadani FN, Moreira TCA, Bezerra BSP, Vianello MP, Corradi J, Dorairaj SK, Prata TS. Diurnal Curve of the Ocular Perfusion

  9. Diurnal measurements with prototype CMOS Omega receivers

    NASA Technical Reports Server (NTRS)

    Burhans, R. W.

    1976-01-01

    Diurnal signals from eight omega channels have been monitored at 10.2 KHz for selected station pairs. All eight Omega stations have been received at least 50 percent of the time over a 24 hour period during the month of October 1976. The data presented confirm the expected performance of the CMOS omega sensor processor in being able to digsignals out of a noisy environment. Of particular interest are possibilities for use of antipodal reception phenomena and a need for some ways of correcting for multi-modal propagation effects.

  10. In situ observations of diurnal warming at the ocean surface

    NASA Astrophysics Data System (ADS)

    Gentemann, C. L.; Minnett, P. J.

    2007-05-01

    Observations of diurnal temperature variability at the ocean surface have been primarily available only from satellite SST retrievals themselves. Since most satellite observations revisit the same location only infrequently, determining how the ocean surface diurnal heating responds to variability in forcing (mainly insolation and wind speed) has been primarily addressed through theoretical modeling or extrapolation of results from in situ (buoy) observations measured 0.5 m to 1.5 m below the skin layer. Diurnal heating in the skin layer may be quite different than heating at 0.5 m as this layer responds very rapidly to changes in heat and momentum. The Explorer of the Seas, a cruise ship, makes weekly cruises on two alternating tracks through the Caribbean Sea. Measurements from the Marine Atmospheric Emitted Radiance Interferometer (M-AERI) carried on the Explorer of the Seas provide one of the few skin SST data sets, along with ancillary measurements necessary for diurnal investigations. Initial analyses show that the surface signature of diurnal warming in the skin layer is chiefly controlled by the wind speed. The daily peak in diurnal warming is directly related to the minimum wind speed during the day, causing the time of the peak to shift depending on when the minimum winds occur. Fluctuations in wind speed can result in multiple peaks in diurnal heating during a single afternoon. Wind speed is negatively lag-correlated with diurnal warming while insolation is positively lag-correlated. The maximum lag-correlation of wind speed (insolation) with diurnal warming is at a time lag of 30 (50) minutes. Several models of diurnal variability exist. A comparison of several models with each other reveals considerable differences in estimates of diurnal warming. Further validation of the models using M-AERI observed diurnal warming again reveals considerable differences in estimates of warming related to model forcing parameterizations.

  11. On the diurnal variation of noctilucent clouds

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Thomas, Gary E.; Toon, Owen B.

    1989-01-01

    The relationship between nuctilucent clouds (NLC), which are observed from the ground usually within 2 or 3 hrs of local midnight, and the polar mesospheric clouds (PMC), which are observed by satellites in full daylight, as well as the reason for the differences in their optical properties and their observed heights are investigated. Based on a suggestion that these differences can be attributed to a diurnal variation in the properties of a single type of cloud, two published models of the diurnal and semidiurnal variations of temperature, vertical wind speed, and eddy diffusion coefficient at high latitude to simulate the evolution of ice clouds over a 24-hr period. The results show that the minimum in temperature at about 2000 hours LT causes a sharp maximum in scattered brightness to occur about 1 hour before local midnight, with up to a factor of 7 variation in cloud brightness between noon and midnight. It is noted, however, that considerable uncertainties exist in these tidal models.

  12. Diurnal variations in optical depth at Mars

    NASA Technical Reports Server (NTRS)

    Colburn, D. S.; Pollack, J. B.; Haberle, R. M.

    1989-01-01

    Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Otpical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combinig these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday.

  13. Modulation Cycles of GCR Diurnal Anisotropy Variation

    NASA Astrophysics Data System (ADS)

    Yi, Y.; Oh, S. Y.

    The diurnal variations of GCR intensity observed by the ground NM stations represent the anisotropic GCR flow at 1 AU. It is generally believed that the variation of the local time of the GCR maximum intensity (phase) has 22-year period of two sunspot cycles. However, there even exists doubt on such anisotropy variation cycle. Those different interpretations come from the lack of enough data since determining the cycle of variation in precision requires data archived over long time of at least two cycles. In order to determine the cycle of GCR anisotropy variation, we carried out the statistical study on the diurnal variation of phase. We examined the 52 years data of Huancayo (Haleakala), 38-year data from Rome, 42-year data from Oulu NM stations. We used new method in determining the yearly mean phase. We applied the F-test to determine the statistically meaningful period of anisotropy phase variation. We found that the coupling coefficients indicating the differences in phase between the NM stations are not constant but dependent on the solar cycle. The phase variation has two components of 22-year and 11-year cycles. The NM station in the high latitude (low cut-off rigidity) shows mainly the 22-year cycle in phase controlled by the diffusion effect with the solar polar magnetic field reversal. However, the lower the latitude of NM station is, the higher contribution from 11-year cycle associated with the solar sunspot cycle. This additional phase variation might be regulated by the drift effect.

  14. Diurnal tides in the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Kowalik, Z.; Proshutinsky, A. Y.

    1993-01-01

    A 2D numerical model with a space grid of about 14 km is applied to calculate diurnal tidal constituents K(1) and O(1) in the Arctic Ocean. Calculated corange and cotidal charts show that along the continental slope, local regions of increased sea level amplitude, highly variable phase and enhanced currents occur. It is shown that in these local regions, shelf waves (topographic waves) of tidal origin are generated. In the Arctic Ocean and Northern Atlantic Ocean more than 30 regions of enhanced currents are identified. To prove the near-resonant interaction of the diurnal tides with the local bottom topography, the natural periods of oscillations for all regions have been calculated. The flux of energy averaged over the tidal period depicts the gyres of semitrapped energy, suggesting that the shelf waves are partially trapped over the irregularities of the bottom topography. It is shown that the occurrence of near-resonance phenomenon changes the energy flow in the tidal waves. First, the flux of energy from the astronomical sources is amplified in the shelf wave regions, and afterwards the tidal energy is strongly dissipated in the same regions.

  15. How snowpack heterogeneity affects diurnal streamflow timing

    USGS Publications Warehouse

    Lundquist, J.D.; Dettinger, M.D.

    2005-01-01

    Diurnal cycles of streamflow in snow-fed rivers can be used to infer the average time a water parcel spends in transit from the top of the snowpack to a stream gauge in the river channel. This travel time, which is measured as the difference between the hour of peak snowmelt in the afternoon and the hour of maximum discharge each day, ranges from a few hours to almost a full day later. Travel times increase with longer percolation times through deeper snowpacks, and prior studies of small basins have related the timing of a stream's diurnal peak to the amount of snow stored in a basin. However, in many larger basins the time of peak flow is nearly constant during the first half of the melt season, with little or no variation between years. This apparent self-organization at larger scales can be reproduced by employing heterogeneous observations of snow depths and melt rates in a model that couples porous medium flow through an evolving snowpack with free surface flow in a channel. Copyright 2005 by the American Geophysical Union.

  16. Diurnal variations in optical depth at Mars

    NASA Technical Reports Server (NTRS)

    Colburn, D. S.; Pollack, J. B.; Haberle, R. M.

    1989-01-01

    Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Otpical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combinig these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday.

  17. On the diurnal variation of noctilucent clouds

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Thomas, Gary E.; Toon, Owen B.

    1989-01-01

    The relationship between nuctilucent clouds (NLC), which are observed from the ground usually within 2 or 3 hrs of local midnight, and the polar mesospheric clouds (PMC), which are observed by satellites in full daylight, as well as the reason for the differences in their optical properties and their observed heights are investigated. Based on a suggestion that these differences can be attributed to a diurnal variation in the properties of a single type of cloud, two published models of the diurnal and semidiurnal variations of temperature, vertical wind speed, and eddy diffusion coefficient at high latitude to simulate the evolution of ice clouds over a 24-hr period. The results show that the minimum in temperature at about 2000 hours LT causes a sharp maximum in scattered brightness to occur about 1 hour before local midnight, with up to a factor of 7 variation in cloud brightness between noon and midnight. It is noted, however, that considerable uncertainties exist in these tidal models.

  18. Diurnal Variation of Martian Dust Opacity

    NASA Astrophysics Data System (ADS)

    Martin, T. Z.; Tamppari, L. K.

    2005-08-01

    Recent MER Spirit rover observations of dust devils crossing the plains of Gusev crater demonstrate the similarity of that Martian desert to terrestrial sites. Near-surface thermal contrast builds during the day and promotes growth of dust- raising vortices. Evidence for corresponding transient thermal behavior has been shown in MER MiniTES profiles. How prevalent is such dust activity? Is the raised dust sufficient to modify the column dust opacity? The answers have implications for mission operations as well as for atmospheric science. We have expanded the scope of diurnal dust monitoring by going back to Viking Orbiter IR Thermal Mapper data, for which highly elliptical orbits gave good diurnal coverage (Martin, T., Icarus 45, p. 427, 1981). We examine the Spirit site and equatorial regions of similar surface character. Dust opacity is inferred from IRTM data by comparing brightness temperature within the 6-8 um range (T7), as continuum, with that in the 8-10 um band (T9), where silicate dust absorption and emission is stronger. During the daytime, when the surface is warmer than overlying dust, the spectral contrast in these two bands allows computation of opacity if a thermal profile is assumed. This research was funded by the JPL Research and Technology development program and carried out by the Jet Propulsion Laboratory, California Institute of Technology.

  19. Diurnal variations in optical depth at Mars

    NASA Astrophysics Data System (ADS)

    Colburn, D. S.; Pollack, J. B.; Haberle, R. M.

    1989-05-01

    Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Otpical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combinig these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday.

  20. Diurnal timescale feedbacks in the tropical cumulus regime

    NASA Astrophysics Data System (ADS)

    Ruppert, James H.

    2016-09-01

    Although the importance of the diurnal cycle in modulating clouds and precipitation has long been recognized, its impact on the climate system at longer timescales has remained elusive. Mounting evidence indicates that the diurnal cycle may substantially affect leading climate modes through nonlinear rectification. In this study, an idealized cloud-resolving model experiment is executed to isolate a diurnal timescale feedback in the shallow cumulus regime over the tropical warm pool. This feedback is isolated by modifying the period of the diurnal cycle (or removing it), which proportionally scales (or removes) the diurnal thermodynamic forcing that clouds respond to. This diurnal forcing is identified as covarying cycles of static stability and humidity in the lower troposphere, wherein the most unstable conditions coincide with greatest humidity each afternoon. This diurnal forcing yields deeper clouds and greater daily-mean cumulus heating than would otherwise occur, in turn reducing large-scale subsidence from day to day according to the "weak temperature gradient" approximation. This diurnal forcing therefore manifests as a timescale feedback by accelerating the onset of deep convection. The longwave cloud-radiation effect is found to amplify this timescale feedback, since the resulting invigoration of clouds (increased upper-cloud radiative cooling, with suppressed cooling below) scales with cloud depth (i.e., optical thickness), and hence with the magnitude of diurnal forcing. These findings highlight the pressing need to remedy longstanding problems related to the diurnal cycle in many climate models. Given the evident sensitivity of climate variability to diurnal processes, doing so may yield advances in climate prediction at longer timescales.

  1. Children's Diurnal Cortisol Activity during the First Year of School

    ERIC Educational Resources Information Center

    Yang, Pei-Jung; Lamb, Michael E.; Kappler, Gregor; Ahnert, Lieselotte

    2017-01-01

    The present study examined 4- to 5-year-old British children's diurnal cortisol activity during their first year of school. The children's cortisol was measured before enrollment (baseline), upon enrollment, and both 3 and 6 months after enrollment. On each day, cortisol was sampled four times, providing information about the diurnal amount of…

  2. Diurnal variations from muon data at Takeyama underground station

    NASA Technical Reports Server (NTRS)

    Takahashi, K.; Imai, K.; Imai, T.; Kudo, S.; Wada, M.

    1985-01-01

    An underground station, Takeyama, is introduced, and some results of the solar diurnal and semi-diurnal variations for the period between 1967 and 1984 are presented. There are clear tendencies of double and single solar cycle variations in the daily variations which are in good accord with those detected by other underground and neutron monitor observations.

  3. Diurnal cortisol rhythm as a predictor of lung cancer survival.

    PubMed

    Sephton, Sandra E; Lush, Elizabeth; Dedert, Eric A; Floyd, Andrea R; Rebholz, Whitney N; Dhabhar, Firdaus S; Spiegel, David; Salmon, Paul

    2013-03-01

    Poorly coordinated diurnal cortisol and circadian rest-activity rhythms predict earlier mortality in metastatic breast and colorectal cancer, respectively. We examined the prognostic value of the diurnal cortisol rhythm in lung cancer. Lung cancer patients (n=62, 34 female) were within 5 years of diagnosis and had primarily non small-cell lung cancer, with disease stage ranging from early to advanced. Saliva collected over two days allowed calculation of the diurnal cortisol slope and the cortisol awakening response (CAR). Lymphocyte numbers and subsets were measured by flow cytometry. Survival data were obtained for 57 patients. Cox Proportional Hazards analyses were used to test the prognostic value of the diurnal cortisol rhythm on survival calculated both from study entry and from initial diagnosis. The diurnal cortisol slope predicted subsequent survival over three years. Early mortality occurred among patients with higher slopes, or relatively "flat" rhythms indicating lack of normal diurnal variation (Cox Proportional Hazards p=.009). Cortisol slope also predicted survival time from initial diagnosis (p=.012). Flattened profiles were linked with male gender (t=2.04, df=59, p=.046) and low total and cytotoxic T cell lymphocyte counts (r=-.39 and -.30, p=.004 and .035, respectively). After adjustment for possible confounding factors, diurnal slope remained a significant, independent predictor of survival. Flattening of the diurnal cortisol rhythm predicts early lung cancer death. Data contribute to growing evidence that circadian disruption accelerates tumor progression. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Children's Diurnal Cortisol Activity during the First Year of School

    ERIC Educational Resources Information Center

    Yang, Pei-Jung; Lamb, Michael E.; Kappler, Gregor; Ahnert, Lieselotte

    2017-01-01

    The present study examined 4- to 5-year-old British children's diurnal cortisol activity during their first year of school. The children's cortisol was measured before enrollment (baseline), upon enrollment, and both 3 and 6 months after enrollment. On each day, cortisol was sampled four times, providing information about the diurnal amount of…

  5. Multitemporal diurnal AVIRIS images of a forested ecosystem

    NASA Technical Reports Server (NTRS)

    Ustin, Susan L.; Smith, Milton O.; Adams, John B.

    1992-01-01

    Both physiological and ecosystem structural information may be derived from diurnal images. Structural information may be inferred from changes in canopy shadows between images and from changes in spectral composition due to changes in proportions of subpixel mixing resulting from the differences in sun/view angles. Physiological processes having diurnal scales also may be measurable if a stable basis for spectral comparison can be established. Six diurnal images of an area east of Mt. Shasta, CA were acquired on 22 Sep. 1989. This unique diurnal data set provided an opportunity to test the consistency of endmember fractions and residuals. It was expected that shade endmember abundances would show the greatest change as lighting geometry changed and less change in the normalized fractional proportion of other endmembers. Diurnal changes in spectral features related to physiological characteristics may be identifiable as changes in wavelength specific residuals.

  6. Everyday Discrimination and Diurnal Cortisol during Adolescence

    PubMed Central

    Huynh, Virginia W.; Guan, Shu-Sha Angie; Almeida, David M.; McCreath, Heather; Fuligni, Andrew J.

    2016-01-01

    Purpose To examine the associations of the frequency and type of everyday discrimination with diurnal cortisol and whether those associations depend upon adolescents’ ethnicity and gender. Methods Adolescents (N=292, Mage=16. 39 years, SD=.74; 58% female) reported the frequency of perceived everyday discrimination and whether they attributed that discrimination to race, gender, age, or height and weight. Five saliva samples were collected per day across 3 days and assayed for cortisol. Results Higher frequency of everyday discrimination was associated with greater total daily cortisol output (area under the curve; AUC), lower wake and bedtime levels of cortisol, and less of a decline in cortisol across the day. These associations generally did not depend upon ethnicity or gender and attributions for the discrimination were not as consequential as the actual frequency of any type of unfair treatment. Conclusion Everyday discrimination, regardless of its type, may contribute to heightened HPA activity among adolescents of different ethnic backgrounds and genders. PMID:26853614

  7. Diurnal hypercapnia in patients with neuromuscular disease.

    PubMed

    Panitch, Howard B

    2010-03-01

    Subjects with progressive neuromuscular diseases undergo a typical sequence of respiratory compromise, leading from normal unassisted gas exchange to nocturnal hypoventilation with normal daytime gas exchange, and eventually to respiratory failure requiring continuous ventilatory support. Several different abnormalities in respiratory pump function have been described to explain the development of respiratory failure in subjects with neuromuscular weakness. Early in the progression of respiratory failure, the use of nocturnal assisted ventilation can reverse both night- and day-time hypercapnia. Eventually, however, diurnal hypercapnia will persist despite correction of nocturnal hypoventilation. The likely beneficial effects of mechanical ventilatory support include resting fatigue-prone respiratory muscles and resetting of the central chemoreceptors to PaCO(2). Recent experience shows that select patients who require daytime ventilation can be supported with non-invasive ventilation continuously to correct gas exchange abnormalities while avoiding detrimental aspects of tracheostomy placement. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Diurnal Emotional States Impact the Sleep Course

    PubMed Central

    Delannoy, Julien; Mandai, Osamu; Honoré, Jacques; Kobayashi, Toshinori; Sequeira, Henrique

    2015-01-01

    Background Diurnal emotional experiences seem to affect several characteristics of sleep architecture. However, this influence remains unclear, especially for positive emotions. In addition, electrodermal activity (EDA), a sympathetic robust indicator of emotional arousal, differs depending on the sleep stage. The present research has a double aim: to identify the specific effects of pre-sleep emotional states on the architecture of the subsequent sleep period; to relate such states to the sympathetic activation during the same sleep period. Methods Twelve healthy volunteers (20.1 ± 1.0 yo.) participated in the experiment and each one slept 9 nights at the laboratory, divided into 3 sessions, one per week. Each session was organized over three nights. A reference night, allowing baseline pre-sleep and sleep recordings, preceded an experimental night before which participants watched a negative, neutral, or positive movie. The third and last night was devoted to analyzing the potential recovery or persistence of emotional effects induced before the experimental night. Standard polysomnography and EDA were recorded during all the nights. Results Firstly, we found that experimental pre-sleep emotional induction increased the Rapid Eye Movement (REM) sleep rate following both negative and positive movies. While this increase was spread over the whole night for positive induction, it was limited to the second half of the sleep period for negative induction. Secondly, the valence of the pre-sleep movie also impacted the sympathetic activation during Non-REM stage 3 sleep, which increased after negative induction and decreased after positive induction. Conclusion Pre-sleep controlled emotional states impacted the subsequent REM sleep rate and modulated the sympathetic activity during the sleep period. The outcomes of this study offer interesting perspectives related to the effect of diurnal emotional influences on sleep regulation and open new avenues for potential

  9. Mesosphere Dynamics with Gravity Wave Forcing. 1; Diurnal and Semi-Diurnal Tides

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We present results from a nonlinear, 3D, time dependent numerical spectral model (NSM), which extends from the ground up into the thermosphere and incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Our focal point is the mesosphere that is dominated by wave interactions. We discuss diurnal and semi-diurnal tides ill the present paper (Part 1) and planetary waves in the companion paper (Part 2). To provide an understanding of the seasonal variations of tides, in particular with regard to gravity wave processes, numerical experiments are performed that lead to the following conclusions: 1. The large semiannual variations in tile diurnal tide (DT), with peak amplitudes observed around equinox, are produced primarily by GW interactions that involve, in part, planetary waves. 2. The DT, like planetary waves, tends to be amplified by GW momentum deposition, which reduces also the vertical wavelength. 3.Variations in eddy viscosity associated with GW interactions tend to peak in late spring and early fall and call also influence the DT. 4. The semidiurnal semidiurnal tide (SDT), and its phase in particular, is strongly influenced by the mean zonal circulation. 5. The SDT, individually, is amplified by GW's. But the DT filters out GW's such that the wave interaction effectively reduces the amplitude of the SDT, effectively producing a strong nonlinear interaction between the DT and SDT. 6.) Planetary waves generated internally by baroclinic instability and GW interaction produce large amplitude modulations of the DT and SDT.

  10. Evaluating the diurnal cycle in cloud top temperature from SEVIRI

    NASA Astrophysics Data System (ADS)

    Taylor, Sarah; Stier, Philip; White, Bethan; Finkensieper, Stephan; Stengel, Martin

    2017-06-01

    The variability of convective cloud spans a wide range of temporal and spatial scales and is of fundamental importance for global weather and climate systems. Datasets from geostationary satellite instruments such as the Spinning Enhanced Visible and Infrared Imager (SEVIRI) provide high-time-resolution observations across a large area. In this study we use data from SEVIRI to quantify the diurnal cycle of cloud top temperature within the instrument's field of view and discuss these results in relation to retrieval biases. We evaluate SEVIRI cloud top temperatures from the new CLAAS-2 (CLoud property dAtAset using SEVIRI, Edition 2) dataset against Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Results show a mean bias of +0.44 K with a standard deviation of 11.7 K, which is in agreement with previous validation studies. Analysis of the spatio-temporal distribution of these errors shows that absolute retrieval biases vary from less than 5 K over the southeast Atlantic Ocean up to 30 K over central Africa at night. Night- and daytime retrieval biases can also differ by up to 30 K in some areas, potentially contributing to biases in the estimated amplitude of the diurnal cycle. This illustrates the importance of considering spatial and diurnal variations in retrieval errors when using the CLAAS-2 dataset. Keeping these biases in mind, we quantify the seasonal, diurnal, and spatial variation of cloud top temperature across SEVIRI's field of view using the CLAAS-2 dataset. By comparing the mean diurnal cycle of cloud top temperature with the retrieval bias, we find that diurnal variations in the retrieval bias can be small but are often of the same order of magnitude as the amplitude of the observed diurnal cycle, indicating that in some regions the diurnal cycle apparent in the observations may be significantly impacted by diurnal variability in the accuracy of the retrieval. We show that the CLAAS-2 dataset can measure the diurnal cycle of cloud tops

  11. Characterisation and quantification of regional diurnal SST cycles from SEVIRI

    NASA Astrophysics Data System (ADS)

    Karagali, I.; Høyer, J. L.

    2014-04-01

    Hourly SST fields from the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) offer a unique opportunity for the characterisation and quantification of the diurnal cycle of SST in the Atlantic Ocean, the Mediterranean Sea and the Northern European Shelf seas. Six years of SST fields from the SEVIRI dataset are validated against the polar orbiting Advanced Along Track Scanning Radiometer (AATSR) archive to identify biases in the SEVIRI data. Identification of the diurnal signal requires a night-time SST field representative of foundation temperatures, i.e. well-mixed conditions and free of any diurnal signal. Such fields are generated from the SEVIRI archive and are validated against pre-dawn SEVIRI SSTs and night-time SSTs from drifting buoys. The overall SEVIRI-AATSR bias is -0.07 K, and the standard deviation is 0.51 K, based on more than 53 × 106 match-ups. The different methodologies tested for the foundation temperature fields reveal variability introduced by averaging night-time SSTs over many days compared to single-day, pre-dawn values. Diurnal warming is most pronounced in the Mediterranean and Baltic Seas while smallest diurnal signals are found in the Tropics. Longer diurnal warming duration is identified in the high latitudes compared to the Tropics. The mean diurnal signal of monthly mean SST can be up to 0.5° in specific regions.

  12. The Diurnal Cycle of Precipitation in Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Bowman, K. P.; Fowler, M. D.

    2015-12-01

    Position and intensity data from the International Best Track Archive for Climate Stewardship (IBTrACS) are combined with global, gridded precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) for the period 1998 to 2013 to study diurnal variability of precipitation in tropical cyclones. The comprehensive global coverage and large sample size afforded by the two data sets allow robust statistical analysis of storm-averaged diurnal variations and permit stratification of the data in various ways. There is a clearly detectable diurnal variation of precipitation in tropical cyclones with peak rainfall occurring near 0600 local time. For storms of all intensities the amplitude of the diurnal harmonic, which dominates the diurnal cycle, is approximately 7% of the mean rain rate. This corresponds to a peak-to-peak variation of about 15% over the course of the day. The diurnal cycle is similar in all ocean basins. There is evidence that the amplitude of the diurnal cycle increases with increasing storm intensity, but the results are not statistically significant. The results have implications for hurricane forecasting and for our understanding of the processes that regulate oceanic convection.

  13. Heterogeneity in diurnal variation of tropospheric convection over Indian region

    NASA Astrophysics Data System (ADS)

    Muhammed, Muhsin; Sunilkumar, S. V.

    2016-07-01

    The tropical Tropopause and the features of the Tropical Tropopause Layer (TTL) are governed by troposheric convection from below and radiative heating from above (stratosphere). The brightness temperature in the thermal infrared channel (IRBT) is used as a proxy for identifying tropospheric convection and deep convective clouds. IRBT from Very High Resolution Radiometer (VHRR) onboard KALPANA-1 during different seasons of 2008 to 2014 is being used to examine the heterogeneity of tropospheric convection. Over Indian peninsula, 36 regions have been identified with a spatial resolution of ±0.7° (81 pixels) with equal distance in both longitude and latitude. During monsoon season, a clear diurnal variation in convection is noticed over land when compared with over ocean. Over inland regions, the occurrence of deeper convection occurs during evening and early morning with different diurnal patterns. This can be due to the inhomogeneity of the terrain. It can be noted that the diurnal convection pattern over Arabian Sea is different than Bay of Bengal diurnal convection pattern. Regions near to the western-ghat do not show a clear diurnal variation and shows high occurrence of midlevel clouds (IRBT<265K). During winter (DJF), the occurrence of IRBT below 280K is very less at any time of the day over both land and ocean, which indicates the occurrence of deeper convection is rare. Hence, during winter, the diurnal variations of convection over both land and ocean has insignificant diurnal pattern.

  14. Diurnal variation of the potassium layer in the upper atmosphere

    PubMed Central

    Feng, W.; Höffner, J.; Marsh, D. R.; Chipperfield, M. P.; Dawkins, E. C. M.; Viehl, T. P.

    2015-01-01

    Abstract Measurements of the diurnal cycle of potassium (K) atoms between 80 and 110 km have been made during October (for the years 2004–2011) using a Doppler lidar at Kühlungsborn, Germany (54.1°N, 11.7°E). A pronounced diurnal variation is observed in the K number density, which is explored by using a detailed description of the neutral and ionized chemistry of K in a three‐dimensional chemistry climate model. The model captures both the amplitude and phase of the diurnal and semidiurnal variability of the layer, although the peak diurnal amplitude around 90 km is overestimated. The model shows that the total potassium density (≈ K + K+ + KHCO3) exhibits little diurnal variation at each altitude, and the diurnal variations are largely driven by photochemical conversion between these reservoir species. In contrast, tidally driven vertical transport has a small effect at this midlatitude location, and diurnal fluctuations in temperature are of little significance because they are small and the chemistry of K is relatively temperature independent. PMID:27478284

  15. Diurnal curves of tropospheric ozone in the western United States

    SciTech Connect

    Boehm, M.; McCune, B.; Vandetta, T.

    1991-01-01

    Diurnal curves of tropospheric ozone are characterized for the areas near coniferous forests in the western U.S. A given day of hourly data can be placed into one of 17 classes of diurnal curves simply by knowing the 24-h mean and coefficient of variation or range, or more precisely, by applying equations derived from the authors discriminant analysis. The variation among curves is shown to be related to theory of ozone formation, scavenging, and transport. Season, latitude, and position relative to source areas affect the form of the diurnal curve.

  16. Nonlinear interaction between the diurnal and semidiurnal tides: Terdiurnal and diurnal secondary waves

    NASA Technical Reports Server (NTRS)

    Teitelbaum, H.; Vial, F.; Manson, A. H.; Giraldez, R.; Masseboeuf, M.

    1989-01-01

    Many years of measurements obtained using French meteor radars at Garchy (latitude 47 N) and Montpazier (latitude 44 N) are used to show the existence of an 8 hour oscillation. Some examples of the structure of this wave are displayed and compared with measurements performed at Saskatoon (latitude 52 N) and Budrio (latitude 45 N). This wave can be interpreted as the solar driven terdiurnal tide, or as the result of the nonlinear interaction between the diurnal and semidiurnal tides. Both hypotheses are tested with numerical models. Incidentally, the possible existence of a 24 hour wave resulting from this interaction is also studied.

  17. Diurnal blood pressure variation and related behavioral factors.

    PubMed

    Kawano, Yuhei

    2011-03-01

    Blood pressure (BP) varies according to many internal and external factors, and behavioral factors have an important role in diurnal BP variation. BP rises sharply on waking in the morning and falls during sleep at night, although it varies throughout the day and night. These changes in BP are closely related to mental and physical activities, and the sympathetic nervous system mainly contributes to the diurnal variation in BP. Other behavioral factors, such as food consumption and obesity, dietary intake of sodium, drinking and smoking habits, consumption of coffee and tea, and bathing, also affect the diurnal variation in BP. Alterations in diurnal BP variation due to behavioral factors are frequently seen in patients with hypertension and can be classified as morning hypertension, daytime hypertension and nighttime hypertension. Appropriate lifestyle modifications may normalize or improve both the level and rhythm of BP in these patients.

  18. Biophysical information in asymmetric and symmetric diurnal bidirectional canopy reflectance

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern C.; Caldwell, William F.; Pettigrew, Rita E.; Ustin, Susan L.; Martens, Scott N.; Rousseau, Robert A.; Berger, Kevin M.; Ganapol, B. D.; Kasischke, Eric S.; Clark, Jenny A.

    1991-01-01

    The authors present a theory for partitioning the information content in diurnal bidirectional reflectance measurements in order to detect differences potentially related to biophysical variables. The theory, which divides the canopy reflectance into asymmetric and symmetric functions of solar azimuth angle, attributes asymmetric variation to diurnal changes in the canopy biphysical properties. The symmetric function is attributed to the effects of sunlight interacting with a hypothetical average canopy which would display the average diurnal properties of the actual canopy. The authors analyzed radiometer data collected diurnally in the Thematic Mapper wavelength bands from two walnut canopies that received differing irrigation treatments. The reflectance of the canopies varied with sun and view angles and across seven bands in the visible, near-infrared, and middle infrared wavelength regions. Although one of the canopies was permanently water stressed and the other was stressed in mid-afternoon each day, no water stress signature was unambiguously evident in the reflectance data.

  19. Biophysical information in asymmetric and symmetric diurnal bidirectional canopy reflectance

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern C.; Caldwell, William F.; Pettigrew, Rita E.; Ustin, Susan L.; Martens, Scott N.; Rousseau, Robert A.; Berger, Kevin M.; Ganapol, B. D.; Kasischke, Eric S.; Clark, Jenny A.

    1991-01-01

    The authors present a theory for partitioning the information content in diurnal bidirectional reflectance measurements in order to detect differences potentially related to biophysical variables. The theory, which divides the canopy reflectance into asymmetric and symmetric functions of solar azimuth angle, attributes asymmetric variation to diurnal changes in the canopy biphysical properties. The symmetric function is attributed to the effects of sunlight interacting with a hypothetical average canopy which would display the average diurnal properties of the actual canopy. The authors analyzed radiometer data collected diurnally in the Thematic Mapper wavelength bands from two walnut canopies that received differing irrigation treatments. The reflectance of the canopies varied with sun and view angles and across seven bands in the visible, near-infrared, and middle infrared wavelength regions. Although one of the canopies was permanently water stressed and the other was stressed in mid-afternoon each day, no water stress signature was unambiguously evident in the reflectance data.

  20. The burden of diurnal and nocturnal gastroesophageal reflux disease symptoms.

    PubMed

    Wagner, Jan-Samuel; DiBonaventura, Marco DaCosta; Balu, Sanjeev; Buchner, Deborah

    2011-12-01

    To quantify the relationship between the timing of gastroesophageal reflux disease (GERD) symptoms and the burden of illness. Data from the 2010 National Health and Wellness Survey were used. Regression analyses compared non-GERD controls with GERD patients with diurnal symptoms, nocturnal symptoms, and both diurnal and nocturnal symptoms, controlling for potential confounders. Outcome measures included the Work Productivity and Activity Impairment and Short Form-12 questionnaires and reported healthcare resource use. All GERD groups demonstrated a substantial burden of illness compared with controls, estimated at US$1435 in direct costs and US$3143 in lost productivity. Experiencing GERD both day and night was associated with higher costs and lower quality of life than experiencing diurnal-only or nocturnal-only symptoms. Experiencing GERD symptoms both day and night is associated with higher costs than experiencing diurnal or nocturnal symptoms alone.

  1. Characterisation and quantification of regional diurnal SST cycles from SEVIRI

    NASA Astrophysics Data System (ADS)

    Karagali, I.; Høyer, J. L.

    2014-09-01

    Hourly SST (sea surface temperature) fields from the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) offer a unique opportunity for the characterisation and quantification of the diurnal cycle of SST in the Atlantic Ocean, the Mediterranean Sea and the northern European shelf seas. Six years of SST fields from SEVIRI are validated against the Advanced Along-Track Scanning Radiometer (AATSR) Reprocessed for Climate (ARC) data set. The overall SEVIRI-AATSR bias is -0.07 K, and the standard deviation is 0.51 K, based on more than 53 × 106 match-ups. Identification of the diurnal signal requires an SST foundation temperature field representative of well-mixed conditions which typically occur at night-time or under moderate and strong winds. Such fields are generated from the SEVIRI archive and are validated against pre-dawn SEVIRI SSTs and night-time SSTs from drifting buoys. The different methodologies tested for the foundation temperature fields reveal variability introduced by averaging night-time SSTs over many days compared to single-day, pre-dawn values. Diurnal warming is most pronounced in the Mediterranean and Baltic seas while weaker diurnal signals are found in the tropics. Longer diurnal warming duration is identified in the high latitudes compared to the tropics. The maximum monthly mean diurnal signal can be up to 0.5 K in specific regions.

  2. Diurnal Variation of Precipitation During MC3E Campaign

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Wu, Di; Matsui, Toshi; Peters-Lidard, Christa; Hou, Arthur; Rienecker, Michele

    2012-01-01

    The diurnal variation of precipitation processes in the United States (US) is well recognized but incompletely understood (Cabone et al. 2002). The diurnal cycle of precipitation has been studied using surface rainfall data, radar reflectivity data, and satellite-derived cloudiness and precipitation (Wallace 1975; Dai et al. 1999; Carbone et al. 2002; Carbone and Tuttle, 2008; Parker and Ahijevych, 2007; Matsui et al. 2010 and others). These observations indicate that the summer-time precipitation most of the North America and typically feature late-afternoon precipitation maxima. These diurnal variation of precipitation can also be generally categorized into three different types: 1) afternoon rainfall maxima due to mesoscale and local circulations over the south and east of the Mississippi and Ohio valleys, 2) nocturnal rainfall maxima from eastward-propagating mesoscale convective systems (MCSs) over the Lee side of Rocky Mountain regions and 3) afternoon rainfall maxima in the Appalachian Mountains, and then propagate eastward toward the coast. The main objective of this paper is to use a regional cloud-scale model with very high-resolution (i.e., WRF) to examine the WRF ability to simulate diurnal variation of precipitation. Specifically, the study will (1) identify the physical processes responsible to diurnal variation of precipitation, (2) examine the sensitivity of resolution (2, 6, 18, and 30 km) to model simulated diurnal variation of precipitation and (3) identify the relationships between microphysics and cumulus parameterization schemes.

  3. Simulating diurnal variations over the southeastern United States

    NASA Astrophysics Data System (ADS)

    Selman, Christopher; Misra, Vasubandhu

    2015-01-01

    diurnal variations from a high-resolution regional climate model (Regional Spectral Model; RSM) are analyzed from six independent decade long integrations using lateral boundary forcing data from the National Centers for Environmental Prediction Reanalysis 2 (NCEPR2), European Center for Medium-Range Weather Forecasts 40-year Reanalysis and the Twentieth Century Reanalysis (20CR). With each of these lateral boundary forcing data, the RSM is integrated separately using two convection schemes: Relaxed Arakawa-Schubert and Kain-Fritsch. The results show that RSM integrations forced with 20CR have the least fidelity in depicting the seasonal cycle and diurnal variability of precipitation and surface temperature over the Southeastern United States. The remaining four model simulations show comparable skill. The differences in the diurnal amplitude of rainfall during the summer months of the 20CR forced integration from the corresponding NCEPR2 forced integration, for example, is found to be largely from the transient component of the moisture flux convergence. The root mean square error (RMSE) of the seasonal cycle of precipitation and surface temperature of the other four simulations (not forced by 20CR) were comparable to each other and highest in the summer months. But the RMSE of the diurnal amplitude of precipitation and the timing of its diurnal zenith were largest during winter months and least during summer and fall months in the four model simulations (not forced by 20CR). The diurnal amplitude of surface temperature in comparison showed far less fidelity in all models. The phase of the diurnal maximum of surface temperature however showed significantly better validation with corresponding observations in all of the six model simulations.

  4. Antarctic Analog for Diurnal Tidal Motions along Fractures on Enceladus

    NASA Astrophysics Data System (ADS)

    Hurford, T.; Brunt, K. M.; Rhoden, A.

    2013-12-01

    Recent CASSINI VIMS observations have revealed a diurnal variation in the brightness of plume observations from Enceladus. The plume brightness varies by a factor of four as Enceladus orbits Saturn. The plume brightens dramatically as Enceladus approaches its orbital apocenter, and is dimmer near pericenter. The brightness is linked to the amount of material being erupted from the Tiger Stripe fractures in Enceladus' south polar region. The observation of variations in plume brightness (or eruptive output) supports a theoretical model of diurnal tidal stress controlling the location and timing of eruptions from these fractures. Diurnal tidal stress will cyclically place these fractures under tension and compression, which may cause the Tiger Stripes to open and close daily. If conduits to subsurface volatile reservoirs were established while fractures are in tension, the tidally-controlled fault motion would dictate the eruptive output. . This tidal stress model predicts that the Tiger Stripes would experience more tensile stresses near apocenter, thus facilitating more eruptive activity at that time. Tidal stress calculations are based on the tidal flexing expected to occur on Enceladus; surface deformation in response to tidal stresses can only be inferred. The predicted fault motions are small and are not currently observable. However, an Earth analog from the Ross Ice Shelf, Antarctica, may provide insight for the process of induced diurnal tidal motions. Rifts on Antarctic ice shelves are tensile fractures in the floating ice shelf. While the rifts on the Ross Ice Shelf exhibit secular dilation, which causes them to widen with time, data of their motion also show a distinctly diurnal signal. The Ross Ice Shelf experiences tidal forces from both the Moon and Sun, and these forces induce small tidal motions on rifts in the ice shelf. GPS data show small, diurnal tidal motions that dilate and constrict the rift daily. From this analog we conclude that the diurnal

  5. Diurnal cycle influences peripheral and brain iron levels in mice.

    PubMed

    Unger, Erica L; Earley, Christopher J; Beard, John L

    2009-01-01

    Iron movement between organ pools involves a dynamic equilibrium of iron efflux and uptake, and homeostatic mechanisms are likely involved in providing iron to cells and organs when required. Daily iron levels in the plasma pool fluctuate with the diurnal cycle, but clear explanations regarding the objectives and regulation of the flux are lacking. The association between diurnal cycle and iron flux is relevant in the disease of restless legs syndrome (RLS), where individuals display diurnal deficits in motor control, have impaired brain iron metabolism, and perhaps altered iron uptake from the plasma pool. The goal of the present study was to examine diurnal variations in peripheral and regional brain iron to evaluate iron flux between organs in iron-sufficient and iron-deficient mice. In mice fed control diet, liver iron was elevated 30-40%, and plasma iron was reduced 20-30% in the active dark period compared with the inactive light phase. Dietary iron deficiency eliminated this variation in liver iron in male and female mice and in plasma iron in male mice. Reductions in ventral midbrain and nucleus accumbens iron and ferritin were apparent in iron-deficient mice during both diurnal phases, but only during the light phase was an approximately 25% reduction in whole brain iron observed, suggesting different brain iron requirements between phases. These data demonstrate that iron flux between organs is sensitive to diurnal regulatory biology. Importantly, variations in brain iron may have temporal implications regarding neural functioning and may contribute to the diurnal cycle-dependent symptoms of RLS.

  6. On the cumulus diurnal cycle over the tropical warm pool

    NASA Astrophysics Data System (ADS)

    Ruppert, James H.; Johnson, Richard H.

    2016-06-01

    An idealized cloud-resolving model experiment is executed to study the prominent cumulus diurnal cycle in suppressed regimes over the tropical warm pool. These regimes are characterized by daytime cumulus invigoration and cloud-layer moistening connected with enhanced diurnal cycles in shortwave radiative heating (SW) and sea surface temperature (SST). The relative roles of diurnally varying SW and SST in this cumulus diurnal cycle are assessed, wherein radiation is modeled and SST is prescribed. Large-scale subsidence is parameterized using the spectral weak temperature gradient (WTG) scheme, such that large-scale vertical motion (wwtg), and hence subsidence drying, is modulated by diurnal changes in diabatic heating. A control simulation exhibits daytime cumulus invigoration that closely matches observations, including midday cloud-layer moistening. This cumulus invigoration is composed of two distinct modes: (1) a midday nonprecipitating ("forced") mode of predominately shallow clouds, driven by the peak in SST and surface fluxes as the mixed layer deepens and dries; and (2) a precipitating late-afternoon ("active") mode characterized by deeper clouds in connection with a more moist cloud layer. This cloud-layer moistening is driven by the daytime relaxation of wwtg subsidence, which is prompted by the midday peak in SW. The transition from the surface flux-driven forced mode to the active precipitating mode is accompanied by a transition from relatively small-scale boundary layer circulation cells to larger cells that are highly modulated by cold pools, consistent with observations. When the diurnal cycle is removed, clouds are persistently shallower with virtually no rainfall, emphasizing the inherent nonlinearity of the cumulus diurnal cycle.

  7. Annual Climatology of the Diurnal Cycle on the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Betts, Alan; Tawfik, Ahmed

    2016-01-01

    We show the annual climatology of the diurnal cycle, stratified by opaque cloud, using the full hourly resolution of the Canadian Prairie data. The opaque cloud field itself has distinct cold and warm season diurnal climatologies; with a near-sunrise peak of cloud in the cold season and an early afternoon peak in the warm season. There are two primary climate states on the Canadian Prairies, separated by the freezing point of water, because a reflective surface snow cover acts as a climate switch. Both cold and warm season climatologies can be seen in the transition months of November, March and April with a large difference in mean temperature. In the cold season with snow, the diurnal ranges of temperature and relative humidity increase quasi-linearly with decreasing cloud, and increase from December to March with increased solar forcing. The warm season months, April to September, show a homogeneous coupling to the cloud cover, and a diurnal cycle of temperature and humidity that depends only on net longwave. Our improved representation of the diurnal cycle shows that the warm season coupling between diurnal temperature range and net longwave is weakly quadratic through the origin, rather than the linear coupling shown in earlier papers. We calculate the conceptually important 24-h imbalances of temperature and relative humidity (and other thermodynamic variables) as a function of opaque cloud cover. In the warm season under nearly clear skies, there is a warming of +2oC and a drying of -6% over the 24-h cycle, which is about 12% of their diurnal ranges. We summarize results on conserved variable diagrams and explore the impact of surface windspeed on the diurnal cycle in the cold and warm seasons. In all months, the fall in minimum temperature is reduced with increasing windspeed, which reduces the diurnal temperature range. In July and August, there is an increase of afternoon maximum temperature and humidity at low windspeeds, and a corresponding rise in

  8. Specific Diurnal EMG Activity Pattern Observed in Occlusal Collapse Patients: Relationship between Diurnal Bruxism and Tooth Loss Progression

    PubMed Central

    Kawakami, Shigehisa; Kumazaki, Yohei; Manda, Yosuke; Oki, Kazuhiro; Minagi, Shogo

    2014-01-01

    Aim The role of parafunctional masticatory muscle activity in tooth loss has not been fully clarified. This study aimed to reveal the characteristic activity of masseter muscles in bite collapse patients while awake and asleep. Materials and Methods Six progressive bite collapse patients (PBC group), six age- and gender-matched control subjects (MC group), and six young control subjects (YC group) were enrolled. Electromyograms (EMG) of the masseter muscles were continuously recorded with an ambulatory EMG recorder while patients were awake and asleep. Diurnal and nocturnal parafunctional EMG activity was classified as phasic, tonic, or mixed using an EMG threshold of 20% maximal voluntary clenching. Results Highly extended diurnal phasic activity was observed only in the PBC group. The three groups had significantly different mean diurnal phasic episodes per hour, with 13.29±7.18 per hour in the PBC group, 0.95±0.97 per hour in the MC group, and 0.87±0.98 per hour in the YC group (p<0.01). ROC curve analysis suggested that the number of diurnal phasic episodes might be used to predict bite collapsing tooth loss. Conclusion Extensive bite loss might be related to diurnal masticatory muscle parafunction but not to parafunction during sleep. Clinical Relevance: Scientific rationale for study Although mandibular parafunction has been implicated in stomatognathic system breakdown, a causal relationship has not been established because scientific modalities to evaluate parafunctional activity have been lacking. Principal findings This study used a newly developed EMG recording system that evaluates masseter muscle activity throughout the day. Our results challenge the stereotypical idea of nocturnal bruxism as a strong destructive force. We found that diurnal phasic masticatory muscle activity was most characteristic in patients with progressive bite collapse. Practical implications The incidence of diurnal phasic contractions could be used for the prognostic

  9. Diurnal cortisol after early institutional care-Age matters.

    PubMed

    Flannery, Jessica E; Gabard-Durnam, Laurel J; Shapiro, Mor; Goff, Bonnie; Caldera, Christina; Louie, Jennifer; Gee, Dylan G; Telzer, Eva H; Humphreys, Kathryn L; Lumian, Daniel S; Tottenham, Nim

    2017-06-01

    Several studies have shown that young children who have experienced early caregiving adversity (e.g. previously institutionalization (PI)) exhibit flattened diurnal cortisol slopes; however, less is known about how these patterns might differ between children and adolescents, since the transition between childhood and adolescence is a time of purported plasticity in the hypothalamic-pituitary-adrenal (HPA) axis. PI youth experience a massive improvement in caregiving environment once adopted into families; therefore we anticipated that a developmental increase in HPA axis plasticity during adolescence might additionally allow for an enhanced enrichment effect by the adoptive family. In a cross-sectional sample of 197 youths (PI and Comparison; 4-15 years old) we observed age-related group differences in diurnal slope. First replicating previous findings, PI children exhibited flattened diurnal slope. This group difference, however, was not observed in adolescents. Moderation analyses showed that pubertal development, increased time with family, and early adoption contributed to the steeper diurnal cortisol slope in PI adolescents. These findings add support to existing theories positing that the transition between middle childhood and adolescence may mark an additional sensitive period for diurnal cortisol patterning, allowing PI youth to benefit from the enriched environment provided by adoptive parents during this period of development. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Patterns of Diurnal Marine Stratocumulus Cloud Fraction Variability

    SciTech Connect

    Burleyson, Casey D.; Yuter, S. E.

    2015-04-01

    The spatial patterns of subtropical marine stratocumulus cloud fraction variability on diurnal time scales are examined using high temporal resolution cloud masks based on 30-min 4 km x 4 km geosynchronous IR data for the period 2003-2010. This data set permits comparison of low cloud fraction variability characteristics among the three marine stratocumulus regions in the southeast Pacific, southeast Atlantic and northeast Pacific. In all three regions, the largest diurnal cycles and earliest time of cloud break up occur on the edges of the cloud field where cloud fractions are in general lower. During the peak season of cloudiness in the southeast Pacific and southeast Atlantic the amplitude of the diurnal cycle on the edges of the cloud deck was greater than 40%, more than double the value found in the center of each cloud deck. The rate at which the cloud breaks up during the day is closely tied to starting cloud fraction at dawn and the shortwave radiative flux. The maximum rate of cloud breakup occurs near 1200 LT. Cloud fraction begins to increase at 1600 LT (before the sun sets) and reaches its maximum value just before dawn. The diurnal cycle characteristics of the southeast Pacific and southeast Atlantic marine stratocumulus cloud decks are more similar to each other than to those in the northeast Pacific. The northeast Pacific cloud deck has weaker diurnal variation, slower rates of cloud breakup during the day for a given cloud fraction at dawn, and higher probabilities for cloud break up overnight.

  11. Progress in Research on Diurnal and Semidiurnal Earth Rotation Change

    NASA Astrophysics Data System (ADS)

    Xu, X.; Dong, D.; Zhou, Y.

    2014-12-01

    We mainly focus on the progress of research on high frequency changes in the earth rotation. Firstly, we review the development course and main motivating factors of the diurnal and semidiurnal earth rotation change. In recent decades, earth orientation has been monitored with increasing accuracy by advanced space-geodetic techniques, including lunar and satellite laser ranging, very long baseline interferometry and the global positioning system. We are able to obtain the Earth Rotation Parameters (ERP, polar motion and rotation rate changes) by even 1 to 2 hours observation data, form which obvious diurnal and semidiurnal signals can be detected, and compare them with the predicted results by the ocean model. Both the amplitude and phase are in good agreement in the main diurnal and semidiurnal wave frequency, especially for the UT1, whose compliance is 90%, and 60% for polar motion, there are 30% motivating factor of the diurnal and semidiurnal polar motion have not been identified. Then we comprehensively review the different types of global ocean tidal correction models since the last eighties century, as well as the application research on diurnal and semidiurnal polar motion and UT1, the current ocean tidal correction models have 10% to 20% uncertainty, and need for further refinement.

  12. Progress in Research on Diurnal and Semidiurnal Earth Rotation Change

    NASA Astrophysics Data System (ADS)

    Xu, Xueqing

    2015-08-01

    We mainly focus on the progress of research on high frequency changes in the earth rotation. Firstly, we review the development course and main motivating factors of the diurnal and semidiurnal earth rotation change. In recent decades, earth orientation has been monitored with increasing accuracy by advanced space-geodetic techniques, including lunar and satellite laser ranging, very long baseline interferometry and the global positioning system. We are able to obtain the Earth Rotation Parameters (ERP, polar motion and rotation rate changes) by even 1 to 2 hours observation data, form which obvious diurnal and semidiurnal signals can be detected, and compare them with the predicted results by the ocean model. Both the amplitude and phase are in good agreement in the main diurnal and semidiurnal wave frequency, especially for the UT1, whose compliance is 90%, and 60% for polar motion, there are 30% motivating factor of the diurnal and semidiurnal polar motion have not been identified. Then we comprehensively review the different types of global ocean tidal correction models since the last eighties century, as well as the application research on diurnal and semidiurnal polar motion and UT1, the current ocean tidal correction models have 10% to 20% uncertainty, and need for further refinement.

  13. Does the Neuroprotective Role of Anandamide Display Diurnal Variations?

    PubMed Central

    Martinez-Vargas, Marina; Morales-Gomez, Julio; Gonzalez-Rivera, Ruben; Hernandez-Enriquez, Carla; Perez-Arredondo, Adan; Estrada-Rojo, Francisco; Navarro, Luz

    2013-01-01

    The endocannabinoid system is a component of the neuroprotective mechanisms that an organism displays after traumatic brain injury (TBI). A diurnal variation in several components of this system has been reported. This variation may influence the recovery and survival rate after TBI. We have previously reported that the recovery and survival rate of rats is higher if TBI occurs at 1:00 than at 13:00. This could be explained by a diurnal variation of the endocannabinoid system. Here, we describe the effects of anandamide administration in rats prior to the induction of TBI at two different times of the day: 1:00 and 13:00. We found that anandamide reduced the neurological damage at both times. Nevertheless, its effects on bleeding, survival, food intake, and body weight were dependent on the time of TBI. In addition, we analyzed the diurnal variation of the expression of the cannabinoid receptors CB1R and CB2R in the cerebral cortex of both control rats and rats subjected to TBI. We found that CB1R protein was expressed more during the day, whereas its mRNA level was higher during the night. We did not find a diurnal variation for the CB2R. In addition, we also found that TBI increased CB1R and CB2R in the contralateral hemisphere and disrupted the CB1R diurnal cycle. PMID:24287910

  14. Diurnal variation of outgoing longwave radiation in the tropics

    NASA Technical Reports Server (NTRS)

    Hartmann, D. L.; Recker, E. E.

    1986-01-01

    The diurnal harmonic in longwave emission in the tropical belt (30 deg N-30 deg S) is estimated from nine years of NOAA polar-orbiting satellite data. The results are compared successfully with Nimbus-7 ERB scanner data and with GOES-West geosynchronous satellite data. An interesting and consistent diurnal variation in longwave emission is found over the regions of intense oceanic convection, such as the ITCZ and SPCZ regions, with a peak-to-peak variation of 6-8 W/sq m and a maximum in the morning (0600-1200 LST). Histogram analysis indicates that this variation is associated with a diurnal variation in convective cloud (about 400 mb). Over regions of very intense convection, a diurnal variation of very high clouds (above 100 mb), which is out of phase with the variations at lower levels in the atmosphere, reduces the magnitude of the diurnal harmonic in longwave emission. It is interesting that histograms based on data averaged over 8-km and 250-km boxes give the same qualitative information about cloud and emission variability.

  15. Effects of stressor controllability on diurnal physiological rhythms.

    PubMed

    Thompson, Robert S; Christianson, John P; Maslanik, Thomas M; Maier, Steve F; Greenwood, Benjamin N; Fleshner, Monika

    2013-03-15

    Disruptions in circadian and diurnal rhythms are associated with stress-related psychiatric disorders and stressor exposure can disrupt these rhythms. The controllability of the stressor can modulate various behavioral and neurochemical responses to stress. Uncontrollable, but not controllable, stress produces behaviors in rats that resemble symptoms of anxiety and depression. Whether acute stress-induced disruptions in physiological rhythms are sensitive to controllability of the stressor, however, remains unknown. To examine the role of controllability in diurnal rhythm disruption, adult male Sprague-Dawley rats were implanted with Data Sciences International (DSI) biotelemetry devices. Real-time measurements were obtained before, during and after exposure to a controllable or yoked uncontrollable stressor. Controllable and uncontrollable stress equally disrupted diurnal rhythms of locomotor activity and body temperature but not heart rate. The diurnal heart rate the day following stressor exposure was flattened to a greater extent and was significantly higher in rats with control over stress suggesting a relationship between stressor controllability and the heart rate response. Our results are consistent with the conclusion that acute stress-induced disruptions in diurnal physiological rhythms likely contribute little to the behavioral and affective consequences of stress that are sensitive to stressor controllability.

  16. Impact of resolving the diurnal cycle in an ocean-atmosphere GCM. Part 2: A diurnally coupled CGCM

    NASA Astrophysics Data System (ADS)

    Bernie, D. J.; Guilyardi, E.; Madec, G.; Slingo, J. M.; Woolnough, S. J.; Cole, J.

    2008-12-01

    Coupled ocean atmosphere general circulation models (GCM) are typically coupled once every 24 h, excluding the diurnal cycle from the upper ocean. Previous studies attempting to examine the role of the diurnal cycle of the upper ocean and particularly of diurnal SST variability have used models unable to resolve the processes of interest. In part 1 of this study a high vertical resolution ocean GCM configuration with modified physics was developed that could resolve the diurnal cycle in the upper ocean. In this study it is coupled every 3 h to atmospheric GCM to examine the sensitivity of the mean climate simulation and aspects of its variability to the inclusion of diurnal ocean-atmosphere coupling. The inclusion of the diurnal cycle leads to a tropics wide increase in mean sea surface temperature (SST), with the strongest signal being across the equatorial Pacific where the warming increases from 0.2°C in the central and western Pacific to over 0.3°C in the eastern equatorial Pacific. Much of this warming is shown to be a direct consequence of the rectification of daily mean SST by the diurnal variability of SST. The warming of the equatorial Pacific leads to a redistribution of precipitation from the Inter tropical convergence zone (ITCZ) toward the equator. In the western Pacific there is an increase in precipitation between Papa new guinea and 170°E of up to 1.2 mm/day, improving the simulation compared to climatology. Pacific sub tropical cells are increased in strength by about 10%, in line with results of part 1 of this study, due to the modification of the exchange of momentum between the equatorially divergent Ekman currents and the geostropic convergence at depth, effectively increasing the dynamical response of the tropical Pacific to zonal wind stresses. During the spring relaxation of the Pacific trade winds, a large diurnal cycle of SST increases the seasonal warming of the equatorial Pacific. When the trade winds then re-intensify, the increase

  17. Intimate partner violence and diurnal cortisol patterns in couples

    PubMed Central

    Kim, Hyoun K.; Tiberio, Stacey S.; Capaldi, Deborah M.; Shortt, Joann Wu; Squires, Erica C.; Snodgrass, J. Josh

    2014-01-01

    Summary This study examined whether physical intimate partner violence (IPV) victimization was associated with diurnal patterns of salivary cortisol in a community sample of 122 couples in their 30s from predominantly lower socioeconomic status backgrounds. Findings indicate that women with higher levels of victimization exhibited flatter patterns of diurnal cortisol characterized by both higher midday levels and more attenuated decreases in cortisol levels across the day, compared to women with lower levels of victimization. However, men's victimization was not associated with their diurnal cortisol levels. This study advances our understanding of the association between physical IPV victimization and dysregulated hypothalamic-pituitary-adrenal (HPA) axis functioning in women, which is likely to have further implications for their subsequent mental and physical health. PMID:25286224

  18. Some diurnal properties of clouds over the Martian volcanoes

    NASA Astrophysics Data System (ADS)

    Hunt, G. E.; Pickersgill, A. O.; James, P. B.; Johnson, G.

    1980-07-01

    The diurnal properties of cloud systems over Martian volcanoes observed by the Viking Orbiter spacecraft are discussed. Photographic sequences of diurnal cloud development are presented for clouds in the vicinity of Elysium Mons and Ascraeus Mons, and the rapid growth of cloudiness starting at 11.23 LT is noted. The low-lying fogs and convective afternoon clouds observed are characterized as water ice clouds, while the cirrus-type clouds may be composed of CO2. The diurnal development of the clouds is then explained in terms of local atmospheric stability and circulation as influenced by surface topography and thermal properties. Consideration is also given to possible reasons for the pronounced seasonal variations in cloudiness.

  19. Main diurnal cycle pattern of rainfall in East Java

    NASA Astrophysics Data System (ADS)

    Rais, Achmad Fahruddin; Yunita, Rezky

    2017-08-01

    The diurnal cycle pattern of rainfall was indicated as an intense feature in East Java. The research of diurnal cycle generally was only based on satellite estimation which had limitations in accuracy and temporal resolution. The hourly rainfall data of Climate Prediction Center Morphing Technique (CMORPH) and gauge were blended using the best correction method between transformation distribution (DT) and quantile mapping (QM) to increase the accuracy. We used spatiotemporal composite to analyse the concentration patterns of maximum rainfall and principal component analysis (PCA) to identify the spatial and temporal dominant patterns of diurnal rainfall. QM was corrected CMORPH data since it was best method. The eastern region of East Java had a rainfall peak at 14 local time (LT) and the western region had a rainfall peak at 16 LT.

  20. Epigenetic mechanisms in diurnal cycles of metabolism and neurodevelopment

    PubMed Central

    Powell, Weston T.; LaSalle, Janine M.

    2015-01-01

    The circadian cycle is a genetically encoded clock that drives cellular rhythms of transcription, translation and metabolism. The circadian clock interacts with the diurnal environment that also drives transcription and metabolism during light/dark, sleep/wake, hot/cold and feast/fast daily and seasonal cycles. Epigenetic regulation provides a mechanism for cells to integrate genetic programs with environmental signals in order produce an adaptive and consistent output. Recent studies have revealed that DNA methylation is one epigenetic mechanism that entrains the circadian clock to a diurnal environment. We also review recent circadian findings in the epigenetic neurodevelopmental disorders Prader–Willi, Angelman and Rett syndromes and hypothesize a link between optimal brain development and intact synchrony between circadian and diurnal rhythms. PMID:26105183

  1. Diurnal variation of overdense meteor echo duration and ozone

    NASA Technical Reports Server (NTRS)

    Simek, Milos

    1992-01-01

    The diurnal variation of the median duration of overdense sporadic radar meteor echoes is examined. The meteors recorded in August, December, and January by the Ondrejov meteor radar during the period 1958-1990 were used for the analysis. A maximum median echo duration 1-3 hours after the time of local sunrise in the meteor region confirms the already known sunrise effect. Minimum echo duration occurring at the time of sunset seems to be the most important point of diurnal variation of the echo duration, when ozone is no longer dissociated by solar UV radiation. The effect of diurnal changes of the echo duration should be considered when the mass distribution of meteor showers is analyzed.

  2. Diurnal oscillation of CSF Aβ and other AD biomarkers.

    PubMed

    Lucey, Brendan P; Fagan, Anne M; Holtzman, David M; Morris, John C; Bateman, Randall J

    2017-05-08

    To assess stages of Alzheimer's disease (AD) pathogenesis and the efficacy of drugs during clinical trials, there has been immense interest in the field to establish baseline cerebrospinal fluid (CSF) concentrations for potential AD biomarkers such as amyloid-β (Aβ) and tau. Significant within-person variations in CSF Aβ concentrations over time found that this variation followed the sleep-wake cycle. A recent paper in Molecular Neurodegeneration reported the absence of diurnal variations in multiple classical and candidate AD biomarkers, such as soluble APP, Aβ, tau, p-tau, YKL-40, VILIP-1, or apolipoprotein E. This commentary addresses these apparently discordant results regarding the diurnal variability of APP and Aβ compared with the literature. Despite our concerns, we appreciate the authors' interest in this important topic and contribution to improve our knowledge about the factors influencing Aβ diurnal variation.

  3. Diurnal variations in water vapor over Central and South America

    NASA Astrophysics Data System (ADS)

    Meza, Amalia; Mendoza, Luciano; Bianchi, Clara

    2016-07-01

    Diurnal variations in atmospheric integrated water vapor (IWV) are studied employing IWV estimates, with a 30 minutes sampling rate, derived from Global Navigation Satellite Systems (GNSS) observations during the period 2007-2013. The analysis was performed in 73 GNSS tracking sites (GPS + GLONASS) which have more than 5 years of data. The selected area involves different climate types, from polar to tropical, with different diurnal variations of the integrated total humidity content. There are many processes that could induce diurnal variations in atmospheric water vapor (Dai et al, 1999 a,b), the most relevant causes are: surface evapotranspiration, atmospheric large-scale vertical motion, atmospheric low-level moisture convergence and precipitation and vertical mixing (which affects the vertical distribution of water vapor but does not affect the IWV). The numerical tools, Singular Value Decomposition and classical Multidimensional Scaling methods, are used to study these variations, considering the measurements made at each stations, as sample in the analysis. The aim of this investigation is to identify the IWV variability with respect to the local time associated to the different climate regions. In order to improve our analysis, all available weather information, such as radiosondes measurements (which are few), measurements of pressure and temperature and Numerical Weather Models reanalysis data, are used. Reference: Dai, A., K. E. Trenberth, and T. R. Karl, 1999 a: Effects of clouds, soil moisture, precipitation and water vapor on diurnal temperature range. J. Climate, 12, 2451-2473. Dai, A., F. Giorgi, and K. E. Trenberth, 1999 b: Observed and model simulated precipitation diurnal cycle over the contiguous United States.J. Geophys. Res., 104, 6377-6402. KEYWORDS: water vapor, diurnal cycle, GNSS

  4. Comparative Analysis of Vertebrate Diurnal/Circadian Transcriptomes

    PubMed Central

    Boyle, Greg; Richter, Kerstin; Priest, Henry D.; Traver, David; Mockler, Todd C.; Chang, Jeffrey T.; Kay, Steve A.

    2017-01-01

    From photosynthetic bacteria to mammals, the circadian clock evolved to track diurnal rhythms and enable organisms to anticipate daily recurring changes such as temperature and light. It orchestrates a broad spectrum of physiology such as the sleep/wake and eating/fasting cycles. While we have made tremendous advances in our understanding of the molecular details of the circadian clock mechanism and how it is synchronized with the environment, we still have rudimentary knowledge regarding its connection to help regulate diurnal physiology. One potential reason is the sheer size of the output network. Diurnal/circadian transcriptomic studies are reporting that around 10% of the expressed genome is rhythmically controlled. Zebrafish is an important model system for the study of the core circadian mechanism in vertebrate. As Zebrafish share more than 70% of its genes with human, it could also be an additional model in addition to rodent for exploring the diurnal/circadian output with potential for translational relevance. Here we performed comparative diurnal/circadian transcriptome analysis with established mouse liver and other tissue datasets. First, by combining liver tissue sampling in a 48h time series, transcription profiling using oligonucleotide arrays and bioinformatics analysis, we profiled rhythmic transcripts and identified 2609 rhythmic genes. The comparative analysis revealed interesting features of the output network regarding number of rhythmic genes, proportion of tissue specific genes and the extent of transcription factor family expression. Undoubtedly, the Zebrafish model system will help identify new vertebrate outputs and their regulators and provides leads for further characterization of the diurnal cis-regulatory network. PMID:28076377

  5. Nonmigrating diurnal tides in the equatorial middle atmosphere

    SciTech Connect

    Lieberman, R.S.

    1992-01-01

    Data from the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) are used to analyze the diurnal tides in the middle atmosphere. A novel aspect of this study is the emphasis on the relative importance of the nonmigrating components. These modes display a high degree of temporal variability during the LIMS observing period, and contribute substantially to the diurnal signal in wind and temperature. Their observed vertical phase variations are variable; however there is evidence for upward energy propagation. It has long been hypothesized that nonmigrating tides are driven by the diurnally-varying zonally asymmetric tropospheric heating constituents. This premise is examined by employing a linear tidal model to simulate the response of the atmosphere to realistic tidal drives. These quantities are calculated from the NCAR Community Climate Model. The large-scale CCM2 diurnal surface pressure, OLR and hydrology are well simulated under July and January conditions. The CCM2 diurnal fields of short-wave radiative, convective and diffusive PBL heating are used as input to a linear tidal model with Newtonian cooling. This model successfully reproduces many observed features of the migrating and nonmigrating diurnal surface pressure tides at low latitudes. In the middle atmosphere, tropospheric solar heating is the dominant source of the migrating tide. The zonal means and eastward migrating wavenumber one components are also associated with radiative heating. The eastward migrating wavenumber three pattern is strongly linked to the dry and moist convective heating as well. The observed eastward migrating tides are harder to simulate, due in part to the failure of the linear model to incorporate the dissipative effects to which they are prone.

  6. Diurnal changes in ocean color in coastal waters

    NASA Astrophysics Data System (ADS)

    Arnone, Robert; Vandermeulen, Ryan; Ladner, Sherwin; Ondrusek, Michael; Kovach, Charles; Yang, Haoping; Salisbury, Joseph

    2016-05-01

    Coastal processes can change on hourly time scales in response to tides, winds and biological activity, which can influence the color of surface waters. These temporal and spatial ocean color changes require satellite validation for applications using bio-optical products to delineate diurnal processes. The diurnal color change and capability for satellite ocean color response were determined with in situ and satellite observations. Hourly variations in satellite ocean color are dependent on several properties which include: a) sensor characterization b) advection of water masses and c) diurnal response of biological and optical water properties. The in situ diurnal changes in ocean color in a dynamic turbid coastal region in the northern Gulf of Mexico were characterized using above water spectral radiometry from an AErosol RObotic NETwork (AERONET -WavCIS CSI-06) site that provides up to 8-10 observations per day (in 15-30 minute increments). These in situ diurnal changes were used to validate and quantify natural bio-optical fluctuations in satellite ocean color measurements. Satellite capability to detect changes in ocean color was characterized by using overlapping afternoon orbits of the VIIRS-NPP ocean color sensor within 100 minutes. Results show the capability of multiple satellite observations to monitor hourly color changes in dynamic coastal regions that are impacted by tides, re-suspension, and river plume dispersion. Hourly changes in satellite ocean color were validated with in situ observation on multiple occurrences during different times of the afternoon. Also, the spatial variability of VIIRS diurnal changes shows the occurrence and displacement of phytoplankton blooms and decay during the afternoon period. Results suggest that determining the temporal and spatial changes in a color / phytoplankton bloom from the morning to afternoon time period will require additional satellite coverage periods in the coastal zone.

  7. Numerical Experiments of the Diurnal Cycle of Axisymmetric Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Navarro, E. L.; Hakim, G. J.

    2015-12-01

    Recent observational and modeling studies have shown that the diurnal cycle of radiation may be fundamentally linked to structural changes in the lifetime of a tropical cyclone. While these studies suggest that an underlying mechanism within the storm may exist, the dynamics for this response are still largely unexplained. Previous modeling studies were limited due to model configuration (e.g., initial and boundary conditions) as well as to radiative parameterization schemes. In this presentation, two new investigations are discussed to reexamine the role of the daily cycle of radiation on axisymmetric hurricane structure. In the first study, a tropical cyclone lasting 324 days is generated in Cloud Model 1 (CM1, see Bryan and Rotunno 2009) to quantify a tropical cyclone diurnal signal. A coherent response is observed in the temperature, wind, and cloud ice fields that accounts for up to a third of the overall variance. Composite analysis of each hour of the day shows a diurnal cycle in the storm intensity that, relative to the mean, intensifies in the early hours of the morning and is consistent with observational studies. Examination of the radial and vertical wind suggests two distinct circulations forced by the diurnal cycle: (1) a radiatively-driven circulation in the outflow layer due to absorption of solar radiation, and (2) a convectively-driven circulation within the storm due to latent heating. These responses are coupled and are periodic with respect to the diurnal cycle. In the second study, following the method of Pendergrass and Willoughby (2009) and Willoughby (2009), hypothesis tests using various prescribed, periodic heating distributions are performed to examine the dynamical response of the storm to radiation. Results reveal significant changes to the secondary-circulation structure of the storm, as well as to the intensification of the primary vortex. Sensitivity to the chosen heating distribution as well as to the initial vortex are discussed

  8. The Search for a Diurnal Effect in Lunar Hydrogen Abundance

    NASA Astrophysics Data System (ADS)

    Teodoro, L. A.; Lawrence, D. J.; Elphic, R. C.; Eke, V. R.; Feldman, W. C.; Maurice, S.

    2014-12-01

    Mapping the abundance of hydrogen-bearing materials has led to significant advances in our understanding of the sequestration of volatiles at the poles of the Moon. Neutron spectroscopy, and especially mapping of epithermal neutron fluxes, has been central to this endeavor (e.g., Feldman et al., Science, 1998). In this talk we present a study of the diurnal variation of the Lunar Prospector neutron spectrometer (LPNS) measurements to search for the possible low-latitude mobility of water molecules. This study is prompted by reports of local-time-varying concentrations of H2O/OH, based on near-infrared spectral reflectance data (e.g., Sunshine et al., Science, 2009), as well as reports of a diurnal hydrogen signature in the Lunar Exploration Neutron Detector epithermal neutron fluxes (eg., Livengood et al., ESF, 2014). While the spectral reflectance signatures could be due to small amounts of surficial water or hydroxyl molecules within the instrument view, the neutron result implies the diurnal mobility of volumetrically significant amounts of water and/or hydroxyl. Such an extraordinary finding, if confirmed, could have significant ramifications for our understanding of the H2O/OH distribution and mobility at the lunar surface. In this talk, we will show that Lunar Prospector epithermal neutron data exhibit diurnal variations of the same magnitude (1-2% of the average lunar epithermal neutron flux) as those reported by Livengood et al., 2014, but the LPNS variations do not follow the same diurnal trend. Instead, the LPNS variations are systemically anti-correlated with instrument temperature, and are related to very small changes in instrument gain. These findings suggest that, rather than reflecting diurnal changes in hydrogen, the temporal fluctuations in the count rates are due to small residual systematic effects in the data reduction.

  9. Trial of Oral Metoclopramide on Diurnal Bruxism of Brain Injury

    PubMed Central

    Yi, Ho Sung; Seo, Mi Ri

    2013-01-01

    Bruxism is a diurnal or nocturnal parafunctional activity that includes tooth clenching, bracing, gnashing, and grinding. The dopaminergic system seems to be the key pathophysiology of bruxism and diminution of dopaminergic transmission at the prefrontal cortex seems to induce it. We report two patients with diurnal bruxism in whom a bilateral frontal lobe injury resulted from hemorrhagic stroke or traumatic brain injury. These patients' bruxism was refractory to bromocriptine but responded to low-dose metoclopramide therapy. We propose that administering low doses of metoclopramide is possibly a sound method for treating bruxism in a brain injury patient with frontal lobe hypoperfusion on positron emission tomography imaging. PMID:24466522

  10. Diurnality, nocturnality, and the evolution of primate visual systems.

    PubMed

    Ankel-Simons, F; Rasmussen, D T

    2008-01-01

    Much of the recent research on the evolution of primate visual systems has assumed that a minimum number of shifts have occurred in circadian activity patterns over the course of primate evolution. The evolutionary origins of key higher taxonomic groups have been interpreted by some researchers as a consequence of a rare shift from nocturnality to diurnality (e.g., Anthropoidea) or from diurnality to nocturnality (e.g., Tarsiidae). Interpreting the evolution of primate visual systems with an ecological approach without parsimony constraints suggests that the evolutionary transitions in activity pattern are more common than what would be allowed by parsimony models, and that such transitions are probably less important in the origin of higher level taxa. The analysis of 17 communities of primates distributed widely around the world and through geological time shows that primate communities consistently contain both nocturnal and diurnal forms, regardless of the taxonomic sources of the communities. This suggests that primates in a community will adapt their circadian pattern to fill empty diurnal or nocturnal niches. Several evolutionary transitions from one pattern to the other within narrow taxonomic groups are solidly documented, and these cases probably represent a small fraction of such transitions throughout the Cenozoic. One or more switches have been documented among platyrrhine monkeys, Malagasy prosimians, Eocene omomyids, Eocene adapoids, and early African anthropoids, with inconclusive but suggestive data within tarsiids. The interpretation of living and extinct primates as fitting into one of two diarhythmic categories is itself problematic, because many extant primates show significant behavioral activity both nocturnally and diurnally. Parsimony models routinely interpret ancestral primates to have been nocturnal, but analyses of morphological and genetic data indicate that they may have been diurnal, or that early primate radiations were likely to

  11. Direct evidence of transport processes in the thermospheric diurnal tide

    NASA Technical Reports Server (NTRS)

    Hedin, A. E.; Spencer, N. W.; Mayr, H. G.; Harris, I.; Porter, H. S.

    1978-01-01

    Measurements of neutral composition and temperature obtained between December 6, 1975, and September 17, 1976, with instruments aboard the near-equatorial AE-E satellite are analyzed to determine the diurnal variations at altitudes from 145 to 295 km. The general trends, including the shift in oxygen phase from afternoon at high altitudes to morning at low altitudes, are reproduced by circulation theories. The oxygen and helium variations show small departures from diffusive equilibrium below 200 km that are consistent with wind-induced diffusion and provide the first direct evidence of transport processes in the diurnal tide of the thermosphere.

  12. Diurnal regulation of plastid genes in Populus deltoides.

    PubMed

    Reddy, M S; Naithani, S; Tuli, R; Sane, P V

    2000-12-01

    Light regulates leaf and chloroplast development, together with overall chloroplast gene expression at various levels. Plants respond to diurnal and seasonal changes in light by changing expression of photosynthesis genes and metabolism. In Populus deltoides, a deciduous tree species, leaf development begins in the month of March and leaf maturation is attained by summer, which is subsequently followed by autumnal senescence and fall. In the present study, diurnal changes in the steady state transcript levels of plastid genes were examined in the fully developed leaves during summer season. Our results show that steady state level of the psaA/B, psbA, psbEFLJ and petA transcripts showed differential accumulation during diurnal cycle in summer. However, there was no significant change in the pigment composition during the day/night cycle. Our studies suggest that the diurnal regulation of steady state mRNA accumulation may play a crucial role during daily adjustments in plants life with rapidly changing light irradiance and temperature.

  13. Diurnal water relations of walnut trees - Implications for remote sensing

    NASA Technical Reports Server (NTRS)

    Weber, James A.; Ustin, Susan L.

    1991-01-01

    Leaflet water content (WC), relative water content (RWC), and water potential, Phi(lf) were measured as indicators of diurnal change in tree water status in an experimental walnut orchard receiving two irrigation treatments: 100 and 33 percent of potential evapotranspiration (PET). Diurnal change was greatest in Phi(lf) throughout the experimental period, with minima occurring each day in early to mid-afternoon and maxima between midnight and sunrise. Leaflet WC and RWC were lower in the afternoon than at night, but had greater variability so that the diurnal pattern was not as clear. Comparison between the pattern of Phi(lf) and dielectric constants (DCs) measured from probes inserted 2 cm into a tree hole showed that both declined nearly in parallel in the morning. Phi(lf) recovered more rapidly than DC in the afternoon. This temporal discrepancy could be caused by cavitation of xylem elements in the vicinity of the DC probe. Microwave backscatter for L- and X-bands also measured diurnal variation that had local minima in the afternoon, but the pattern among wavelength and polarization signatures was complex.

  14. Diurnal Variation in the Basal Emission Rate of Isoprene

    Treesearch

    Jennifer Funk; Clive G. Jones; Christine J. Baker; Heather M. Fuller; Christian P. Giardina; Manuel T. Lerdua

    2003-01-01

    Isoprene is emitted from numerous plant species and profoundly influences tropospheric chemistry. Due to the short lifetime of isoprene in the atmosphere, developing an understanding of emission patterns at small time scales is essential for modeling regional atmospheric chemistry processes. Previous studies suggest that diurnal fluctuations in isoprene emission may be...

  15. Diurnal variation of galactic cosmic ray intensity on quiet days

    NASA Technical Reports Server (NTRS)

    Kumar, S.; Datt, S. C.

    1985-01-01

    A detailed study of the diurnal variation on long term basis was performed on geomagnetically quiet days using the experimental data of the cosmic ray intensity from the worldwide neutron monitoring stations. During the period when the polarity of the solar magnetic field in the Northern Hemisphere of the sun is negative the phase and amplitude of the diurnal anisotropy on quiet days was observed to remain almost constant. When the polarity of solar magnetic field in the Northern Hemisphere changes from negative to positive, a shift in the phase of the diurnal anisotropy on quiet days towards earlier hours is observed and the shift is found to be maximum during minimum solar activity periods 1953-54 and 1975-76. When the polarity of solar magnetic field changes from positive to negative in the Northern Hemisphere of the Sun the phase of the diurnal anisotropy on quiet days recovers to its usual direction of corotational anisotropy and is observed to remain almost constant till the polarity of the solar magnetic field does not change.

  16. Diurnal Patterns of Blowing Dust on the Llano Estacado

    USDA-ARS?s Scientific Manuscript database

    Using a Tapered Element Oscillating Microbalance (TEOM), hourly dust data was collected in Lubbock, Texas, from January 1, 2003, to January 1, 2008. Diurnal patterns of dust concentration were computed by averaging hourly values associated with a given “time of day” for all days within the 5-yr sa...

  17. Diurnal water relations of walnut trees - Implications for remote sensing

    NASA Technical Reports Server (NTRS)

    Weber, James A.; Ustin, Susan L.

    1991-01-01

    Leaflet water content (WC), relative water content (RWC), and water potential, Phi(lf) were measured as indicators of diurnal change in tree water status in an experimental walnut orchard receiving two irrigation treatments: 100 and 33 percent of potential evapotranspiration (PET). Diurnal change was greatest in Phi(lf) throughout the experimental period, with minima occurring each day in early to mid-afternoon and maxima between midnight and sunrise. Leaflet WC and RWC were lower in the afternoon than at night, but had greater variability so that the diurnal pattern was not as clear. Comparison between the pattern of Phi(lf) and dielectric constants (DCs) measured from probes inserted 2 cm into a tree hole showed that both declined nearly in parallel in the morning. Phi(lf) recovered more rapidly than DC in the afternoon. This temporal discrepancy could be caused by cavitation of xylem elements in the vicinity of the DC probe. Microwave backscatter for L- and X-bands also measured diurnal variation that had local minima in the afternoon, but the pattern among wavelength and polarization signatures was complex.

  18. Successful Use of the Nocturnal Urine Alarm for Diurnal Enuresis.

    ERIC Educational Resources Information Center

    Friman, Patrick C.; Vollmer, Dennis

    1995-01-01

    A urine alarm, typically used to treat nocturnal enuresis, was effectively used to treat diurnal enuresis in a 15-year-old female with depression, attention deficit hyperactivity disorder, and conduct disorder. The study indicated that the alarm eliminated wetting in both treatment phases and that continence was maintained at three-month and…

  19. Diurnal Variability and Kelvin Wave Propagation Through Maritime Continent

    NASA Astrophysics Data System (ADS)

    Flatau, M. K.; Baranowski, D. B.; Flatau, P. J.; Matthews, A. J.

    2014-12-01

    The 10 year series of the equatorial Kelvin waves obtained from the analysis of TRMM precipitation were examined to evaluate the impact of the diurnal variability of convection on the wave propagation through Maritime Continent. The convection in the Kelvin waves appears to be strongly phase locked in the area of the Maritime continent with the pronounced afternoon maximum. The diurnal phase locking is also evident as Kelvin waves propagate trough the Indian Ocean basin, suggesting that at least some Kelvin waves in this area are forced by the diurnally varying heat source related either to the convection over the land such as Eastern Africa or Madagascar, or over ocean areas with the high SST variability. We examine the hypothesis that the "matching" of the convective phase of the waves with the afternoon maximum of convection over Sumatra influences the wave strength after it crosses the Maritime Continent and can contribute to MJO propagation. The observational results based on observed Kelvin waves are supported by the results of the shallow water model of the interaction of the dry Kelvin wave with the diurnally oscillating heat source.

  20. Factors affecting diurnal stem contraction in young Douglas-fir

    Treesearch

    Warren D. Devine; Constance Harrington

    2011-01-01

    Diurnal fluctuation in a tree's stem diameter is a function of daily growth and of the tree's water balance, as water is temporarily stored in the relatively elastic outer cambial and phloem tissues. On a very productive site in southwestern Washington, U.S.A we used recording dendrometers to monitor stem diameter fluctuations of Douglas-fir at plantation...

  1. Diurnal variations in water vapor over Central and South America

    NASA Astrophysics Data System (ADS)

    Meza, Amalia; Mendoza, Luciano; Clara, Bianchi

    2017-04-01

    Diurnal variations in atmospheric integrated water vapor (IWV) are studied employing IWV estimates, with a 30 minutes sampling rate, derived from Global Navigation Satellite Systems (GNSS) observations during the period 2007-2013. The analysis was performed in 70 GNSS tracking sites (GPS + GLONASS) belonging to Central and South America, which have more than 5 years of data. The selected area involves different climate types, from polar to tropical, and diverse relieves, therefore the patterns of IWV diurnal variations are very different for each station. There are many processes that could induce diurnal variations in atmospheric water vapor (Dai et al, 1999 a,b), the most relevant causes are: surface evapotranspiration, atmospheric large-scale vertical motion, atmospheric low-level moisture convergence and precipitation and vertical mixing (which affects the vertical distribution of water vapor but does not affect the IWV). Firstly, our work study the main characteristics of the IWV diurnal cycle (and for surface temperature, T) obtained for all stations together, using Principal Component Analysis (PCA). First and second PCA modes highlight the global main behaviors of IWV variability for all stations. The first mode on IWV represent the 70% of the variability and could be related to the surface evapotranspiration, while the second mode (27 % of the variability) is practically in counter phase to T variability (its first mode represent the 97% of the variability), therefore this mode could be related to breeze regime. Then, every station is separately analyzed and seasonal and local variations (relative to the relives) are detected, these results spotlight, among other characteristics, the sea and mountain breeze regime. This presentation shows the first analysis of IWV diurnal cycle performed over Central and South America and another original characteristic is PCA technique employed to infer the results. Reference: Dai, A., K. E. Trenberth, and T. R. Karl

  2. Diurnal variation of tropospheric relative humidity in tropical regions

    NASA Astrophysics Data System (ADS)

    Moradi, Isaac; Arkin, Philip; Ferraro, Ralph; Eriksson, Patrick; Fetzer, Eric

    2016-06-01

    Despite the importance of water vapor especially in the tropical region, the diurnal variations of water vapor have not been completely investigated in the past due to the lack of adequate observations. Measurements from Sondeur Atmosphérique du Profil d'Humidité Intertropicale par Radiométrie (SAPHIR) onboard the low inclination Megha-Tropiques satellite with frequent daily revisits provide a valuable dataset for investigating the diurnal and spatial variation of tropospheric relative humidity in the tropical region. In this study, we first transformed SAPHIR observations into layer-averaged relative humidity, then partitioned the data based on local observation time into 24 bins with a grid resolution of one degree. Afterwards, we fitted Fourier series to the binned data. Finally, the mean, amplitude, and diurnal peak time of relative humidity in tropical regions were calculated for each grid point using either the measurements or Fourier series. The results were separately investigated for different SAPHIR channels as well as for relative humidity with respect to both liquid and ice phases. The results showed that the wet and dry regions are, respectively, associated with convective and subsidence regions which is consistent with the previous studies. The mean tropospheric humidity values reported in this study are generally 10 to 15 % higher than those reported using infrared observations which is because of strict cloud screening for infrared measurements. The results showed a large inhomogeneity in diurnal variation of tropospheric relative humidity in tropical region. The diurnal amplitude was larger over land than over ocean and the oceanic amplitude was larger over convective regions than over subsidence regions. The results showed that the diurnal amplitude is less than 10 % in middle and upper troposphere, but it is up to 30 % in lower troposphere over land. Although the peak of RH generally occurs over night or in early morning, there are several

  3. Low cost electronic ultracapacitor interface technique to provide load leveling of a battery for pulsed load or motor traction drive applications

    DOEpatents

    King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson

    1998-01-01

    A battery load leveling arrangement for an electrically powered system in which battery loading is subject to intermittent high current loading utilizes a passive energy storage device and a diode connected in series with the storage device to conduct current from the storage device to the load when current demand forces a drop in battery voltage. A current limiting circuit is connected in parallel with the diode for recharging the passive energy storage device. The current limiting circuit functions to limit the average magnitude of recharge current supplied to the storage device. Various forms of current limiting circuits are disclosed, including a PTC resistor coupled in parallel with a fixed resistor. The current limit circuit may also include an SCR for switching regenerative braking current to the device when the system is connected to power an electric motor.

  4. Work stress models and diurnal cortisol variations: The SALVEO study.

    PubMed

    Marchand, Alain; Juster, Robert-Paul; Durand, Pierre; Lupien, Sonia J

    2016-04-01

    The objective of this study was to assess components, subscales, and interactions proposed by the popular Job Demand-Control (JDC), Job Demand-Control-Support (JDCS), and Effort-Reward Imbalance (ERI) work stress models in relation to diurnal variation of the stress hormone cortisol. Participants included 401 day-shift workers employed from a random sampling of 34 Canadian workplaces. Questionnaires included the Job Content Questionnaire to measure psychological demands, decision latitude, and social support as well as the Effort-Reward Imbalance Questionnaire to measure effort, reward, and overcommitment. Salivary cortisol was collected on 2 working days at awaking, +30 min after awaking, 1400h, 1600h, and bedtime. Multilevel regressions with 3 levels (time of day, workers, workplaces) were performed. Results revealed that JDC, JDCS and ERI interactions were not statistically associated with variations in diurnal cortisol concentrations. By contrast when assessing specific work stress subscales, increased psychological demands were linked to decreased bedtime cortisol, increased job recognition was linked to increased cortisol +30 min after waking and at bedtime, and finally increased overcommitment was linked to increased awakening cortisol and decreased cortisol at 1400h, 1600h, and bedtime. Sex moderation effects principally among men were additionally detected for psychological demands, total social support, and supervisor support. Our findings suggest that components and subsubscales of these popular work stress models rather than theorized interactions are more meaningful in explaining diurnal cortisol variations. In particular, psychological demands, job recognition, overcommitment, and to a lesser extent social support at work are the most significant predictors of diurnal cortisol variation in this large sample of Canadian workers. Importantly, the overall effect sizes of these subscales that explained diurnal cortisol concentrations were weak.

  5. Interannual and Intraseasonal Variability of the Diurnal Tide

    NASA Astrophysics Data System (ADS)

    Riggin, D. M.; Ortland, D. A.; Lieberman, R. S.; Oberheide, J.; Murayama, Y.; Hocking, W. K.; Vincent, R. A.; Reid, I. M.; Kumar, G. K.; Batista, P. P.; Clemesha, B. R.

    2013-12-01

    Temporal variations in the amplitude of the diurnal tide (DT) have been observed by radars with a seasonal dependence that is typically semiannual in the tropics. During some years the wind variation departs from the normal seasonal behavior with anomalously large amplitudes compared to most other years. This anomaly often takes the form of a greatly enhanced boreal spring equinoctal maximum. The boreal spring of 2008 is a example of this behavior. Diurnal amplitudes in the meridional winds are shown in the figure below for the first 6 months of 2008. Note that the diurnal tide undergoes a sharp increase in amplitude up to 80 ms-1 during this event. The characteristics of this event are diagnosed in a variety of global data sets. These include our own physics-based assimilation of SABER temperatures, and gridded analyses from the national weather services (NCAR/NCEP and ECMWF). Tidal amplitude variations are sometimes attributed to nonlinear interaction. However, this type of interaction would be expected to produce non-migrating tides, e.g., westward-2 or standing. SABER data show that the amplitude anomaly is mainly in the migrating DT. The global data sets allow us to explore properties of the anomaly, such as its origin, evolution in time, and associated momentum flux. In addition to this case study, we also investigate the general characteristics of DT interannual variability during the years of the SABER mission (2002-present). Diurnal tide momentum deposition plays a significant role in controlling the zonal mean wind in the mesosphere, We demonstrate its importance in driving the mesospheric semiannual oscillation (MSAO). Diurnal tide wind amplitudes in the meridional component observed at two radar sites, Rarotonga, Cook Islands (22.1°S, 159.8°W), and at Guanacaste, Costa Rica (10.3°N, 85.6°W).

  6. Diurnal cycle of convection during the CAIPEEX 2011 experiment

    NASA Astrophysics Data System (ADS)

    Resmi, EA; Malap, Neelam; Kulkarni, Gayatri; Murugavel, P.; Nair, Sathy; Burger, Roelof; Prabha, Thara V.

    2016-10-01

    The diurnal cycle of convective storm events is investigated in the study with the help of C-band radar reflectivity data during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX 2011) in combination with other ground-based observations. A threshold reflectivity of 25 dBZ is used to identify the initiation of storms. Observations from collocated sensors such as a microwave radiometer profiler, water vapor measurement from eddy covariance system, and wind lidar measurements are used to investigate the characteristic features and diurnal cycle of convectively initiated storms from 21st September to 5th November 2011. The maximum reflectivity follows a normal distribution with a mean value of 40 dBZ. The cloud depth over the domain varied between 5 and 15 km corresponding to a range of reflectivity of 30-50 dBZ values. In the diurnal cycle, double maximum in the precipitation flux is noted—one during the afternoon hours associated with the diurnal heating and the other in the nocturnal periods. The nocturnal precipitation maximum is attributed to initiation of several single-cell storms (of congestus type) with a duration that is larger than the storms initiated during the daytime. The convective available potential energy (CAPE) showed a diurnal variation and was directly linked with the surface level water vapor content. The high CAPE favored single storms with a reflectivity >40 dBZ and higher echo top heights. In the evening or late night hours, a nocturnal low-level jet present over the location together with the reduced stability above the cloud base favored enhancement of low-level moisture, CAPE, and further initiation of new convection. The study illustrated how collocated observations could be used to study storm initiation and associated thermodynamic features.

  7. Diurnality of soil nitrous oxide (N2O) emissions

    NASA Astrophysics Data System (ADS)

    Gelfand, I.; Moyer, R.; Poe, A.; Pan, D.; Abraha, M.; Chen, J.; Zondlo, M. A.; Robertson, P.

    2015-12-01

    Soil emissions of nitrous oxide (N2O) are important contributors to the greenhouse gas balance of the atmosphere. Agricultural soils contribute ~65% of anthropogenic N2O emissions. Understanding temporal and spatial variability of N2O emissions from agricultural soils is vital for closure of the global N2O budget and the development of mitigation opportunities. Recent studies have observed higher N2O fluxes during the day and lower at night. Understanding the mechanisms of such diurnality may have important consequences for our understanding of the N cycle. We tested the hypothesis that diurnal cycles are driven by root carbon exudes that stimulate denitrification and therefore N2O production. Alternatively, we considered that the cycle could result from higher afternoon temperatures that accelerate soil microbial activity. We removed all plants from a corn field plot and left another plot untouched. We measured soil N2O emissions in each plot using a standard static chamber technique throughout the corn growing season. And also compared static chamber results to ecosystem level N2O emissions as measured by eddy covariance tower equipped with an open-path N2O sensor. We also measured soil and air temperatures and soil water and inorganic N contents. Soil N2O emissions followed soil inorganic N concentrations and in control plot chambers ranged from 10 μg N m-2 hr-1 before fertilization to 13×103 after fertilization. We found strong diurnal cycles measured by both techniques with emissions low during night and morning hours and high during the afternoon. Corn removal had no effect on diurnality, but had a strong effect on the magnitude of soil N2O emissions. Soil temperature exhibited a weak correlation with soil N2O emissions and could not explain diurnal patterns. Further studies are underway to explore additional mechanisms that might contribute to this potentially important phenomena.

  8. Observations of SST diurnal variability in the South China Sea

    NASA Astrophysics Data System (ADS)

    Tu, Qianguang; Pan, Delu; Hao, Zengzhou; Chen, Jianyu

    2015-10-01

    In this study, a 3-hourly time resolution gap free sea surface temperature (SST) analysis is generated to resolve the diurnal cycle in the South China Sea (SCS, 0°-25°N, 100°-125°E).It takes advantage of hourly geostationary satellite MTSAT observations and combines three infrared and two microwave polar satellite observations at different local times. First, all the data are classified into eight SST datasets at 3 hour intervals and then remapped to 0.05°resolution grids. A series of critical quality control is done to remove the outliers.Then bias adjustment is applied to the polar satellite observations with reference to the MTSAT data. Finally, the six satellites SST data are blended by using the optimal interpolated algorithm. The 3-hourly blended SST is compared against buoy measurements. It shows a good agreement that the biases do not exceed 0.2 °C and root mean square errors range from 0.5 to 0.65 °C. A typical diurnal cycle similar to sine wave is observed. The minimum SST occurs at around 0600h and warming peak occurring between 1300h and 1500h local solar time and then decrease in the late afternoon, tapering off at night on March 13, 2008 for example. The frequency of diurnal warming events derived from four years of the blended SST provides solid statistics to investigate the seasonal and spatial distributions of the diurnal warming in the SCS. The sea surface diurnal warming tends to appear more easily in spring, especially in the coastal regions than other seasons and the central regions.

  9. DIURNAL CYCLE OF PRECIPITABLE WATER VAPOR OVER SPAIN

    SciTech Connect

    Ortiz de Galisteo, J. P.; Cachorro, V. E.; Toledano, C.; Torres, B.; Laulainen, Nels S.; Bennouna, Yasmine; de Frutos, A. M.

    2011-05-20

    Despite the importance of the diurnal cycle of precipitable water vapor (PWV), its knowledge is very limited due to the lack of data with sufficient temporal resolution. Currently, from GPS receivers, PWV can be obtained with high temporal resolution in all weather conditions for all hours of the day. In this study we have calculated the diurnal cycle of PWV for ten GPS stations over Spain. The minimum value is reached approximately at the same time at all the stations, ~0400-0500 UTC, whereas the maximum is reached in the second half of the day, but with a larger dispersion of its occurrence between stations. The amplitude of the cycle ranges between 0.72 mm and 1.78 mm. The highest values are recorded at the stations on the Mediterranean coast, with a doubling of the values of the stations on the Atlantic coast or inland. The amplitude of the PWV cycle, relative to the annual mean value, ranges between 8.8 % on the Mediterranean coast and 3.6 % on the Atlantic coast. Two distinctly different seasonal diurnal cycles have been identified, one in winter and other in summer, with spring and autumn being only transition states. The winter cycle is quite similar at all locations, whereas in summer, local effects are felt strongly, making the diurnal cycle quite different between stations. The amplitude of the summer cycle is 1.69 mm, it is almost double the winter one (0.93 mm). Analogous to the annual cycles, the seasonal cycles of the different stations are more similar during the night and early morning hours than during the afternoon. The observed features of the PWV diurnal cycle are explained in a qualitative way on the basis of the air temperature, the transport of moisture by local winds, and the turbulent vertical mixing.

  10. Differences in ocular parameters between diurnal and nocturnal raptors.

    PubMed

    Beckwith-Cohen, Billie; Horowitz, Igal; Bdolah-Abram, Tali; Lublin, Avishai; Ofri, Ron

    2015-01-01

    To establish and compare normal ocular parameters between and within diurnal and nocturnal raptor groups. Eighty-eight ophthalmically normal raptors of six nocturnal and 11 diurnal species were studied. Tear production was measured using Schirmer tear test (STT) and phenol red thread test (PRTT), and applanation tonometry was conducted. Ultrasonographic measurements of axial length (AL), mediolateral axis (ML), vitreous body (VB), and pecten length (PL) were recorded, and conjunctival cultures were obtained. A weak correlation (R = 0.312, P = 0.006) was found between PRTT and STT. Tear production was significantly lower in nocturnal species (P < 0.001), but no difference was observed in intraocular pressure (IOP). VB and PL were significantly longer in diurnals (P < 0.001 and P = 0.021, respectively), and no significant difference was observed in AL and ML. When comparing results within these groups, there was a significant difference between most species for all parameters except IOP. Fifty-one percent of the examined raptors were positive for mycology or bacteriology, either on culture or PCR. The most common infectious agent isolated was Staphylococcus spp. Phenol red thread test and STT are both valid methods to measure tear production; however, a separate baseline must be determined for each species using these methods, as the results of one method cannot be extrapolated to the other. Due to significant differences observed within diurnal and nocturnal species, it appears that a more intricate division should be used when comparing these parameters for raptors, and the classification of diurnal or nocturnal holds little significance in the baseline of these data. © 2013 American College of Veterinary Ophthalmologists.

  11. 40 CFR 1060.105 - What diurnal requirements apply for equipment?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipment? (a) Fuel tanks must meet diurnal emission requirements as follows: (1) Marine SI fuel tanks... diurnal emissions specified in this section. (2) Large SI fuel tanks must meet the requirements related to... emission standards. (4) Small SI fuel tanks are not subject to diurnal emission standards, except as...

  12. Aging diurnal rhythms and chronic stress: Distinct alteration of diurnal rhythmicity of salivary alpha-amylase and cortisol.

    PubMed

    Strahler, Jana; Berndt, Christiane; Kirschbaum, Clemens; Rohleder, Nicolas

    2010-05-01

    The present study assessed diurnal profiles of salivary alpha-amylase (sAA), proposed as a marker of autonomic activity, and salivary cortisol in competitive ballroom dancers as well as age- and sex-matched controls to investigate age-related changes of basal activity and potential chronic psychosocial stress-related alterations. According to the Allostatic Load (AL) hypothesis of a cumulative wear and tear of the body we expected to see physiological accumulation of the effects of stress and age especially pronounced in older dancers. Dancers and controls collected five saliva samples throughout the day. Daily overall output of sAA was elevated in older adults while there was no effect of age on mean cortisol levels. Alterations of diurnal rhythms were only seen in younger male dancers showing a flattened diurnal profile of sAA and younger dancers and female older dancers showing a blunted diurnal rhythmicity of cortisol. Furthermore, we found a negative correlation between summary indices of basal sAA and the amount of physical activity. In conclusion, higher overall output of sAA in older adults is in line with the phenomenon of a sympathetic "drive" with increasing age. Furthermore, a lower output of sAA in people who are more physical active is in line with the hypothesis of an exercise-induced decrease of sympathetic activity. Overall, our study does not support the AL hypothesis, but rather highlights the importance of regular physical activity and social environment in promoting health.

  13. Seasonal variation of the diurnal cycles of earth's radiation budget determined from ERBE

    NASA Technical Reports Server (NTRS)

    Harrison, E. F.; Minnis, P.; Barkstrom, B. R.; Wielicki, B. A.; Gibson, G. G.; Denn, F. M.; Young, D. F.

    1990-01-01

    ERBE scanner data from the Earth Radiation Budget Satellite and NOAA-9 satellites obtained from February 1985 through January 1986 are used to investigate the diurnal cycles of both LW radiation and albedo for each month of the year. Seasonal variations of the diurnal cycles are examined for the deserts, vegetated land, and oceans over the globe. Comparisons are made between clear-sky and total-scene conditions. ERBE satellite data showed that many areas of the earth exhibit significant diurnal variations in both LW flux and albedo. The LW diurnal range was found to be greatest for deserts and smallest for oceans, whereas the albedo diurnal amplitude factor is a maximum over the tropical oceans and a minimum over land. Cloud cover and seasonal variations have a major effect on the diurnal cycles. Generally, maximum diurnal ranges were found in the summer hemisphere and minimum values in the winter hemisphere.

  14. Seasonal variation of the diurnal cycles of earth's radiation budget determined from ERBE

    NASA Technical Reports Server (NTRS)

    Harrison, E. F.; Minnis, P.; Barkstrom, B. R.; Wielicki, B. A.; Gibson, G. G.; Denn, F. M.; Young, D. F.

    1990-01-01

    ERBE scanner data from the Earth Radiation Budget Satellite and NOAA-9 satellites obtained from February 1985 through January 1986 are used to investigate the diurnal cycles of both LW radiation and albedo for each month of the year. Seasonal variations of the diurnal cycles are examined for the deserts, vegetated land, and oceans over the globe. Comparisons are made between clear-sky and total-scene conditions. ERBE satellite data showed that many areas of the earth exhibit significant diurnal variations in both LW flux and albedo. The LW diurnal range was found to be greatest for deserts and smallest for oceans, whereas the albedo diurnal amplitude factor is a maximum over the tropical oceans and a minimum over land. Cloud cover and seasonal variations have a major effect on the diurnal cycles. Generally, maximum diurnal ranges were found in the summer hemisphere and minimum values in the winter hemisphere.

  15. Diurnal variation of atomic nitrogen. [in upper atmosphere

    NASA Technical Reports Server (NTRS)

    Mauersberger, K.; Engebretson, M. J.; Kayser, D. C.; Potter, W. E.

    1976-01-01

    When the perigee of the Atmospheric Explorer C satellite reached the northern latitudes (68 deg) by mid-April 1974, descending and ascending portions of the orbits stretched symmetrically across the Northern Hemisphere. Corresponding local solar times at altitudes above 400 km were 1700 hours and 0200 hours, respectively, thus providing the opportunity to study the diurnal variation of the neutral constituents. Atomic nitrogen densities, measured with the open-source neutral mass spectrometer, show a pronounced diurnal variation. At 400 km, the density ratios derived from measurements of the descending and ascending portions are 5.2 for N, 4.9 for N2, and 2.0 for O. Absolute densities of atomic nitrogen agree within a factor of 2 or 3 with densities derived from neutral-ion reactions. Measurements taken close to the geomagnetic pole show a decrease in atomic nitrogen densities when an increase in molecular nitrogen is observed.

  16. The diurnal tick-tockery of platelet biology.

    PubMed

    Hartley, Paul S

    2012-01-01

    Circadian (∼24 hours) clocks are ubiquitous in nature and are important regulators of behaviour, physiology and metabolism. Circadian clocks can synchronise biological processes with environmental cycles, buffer biological systems to maintain homeostasis and partition mutually antagonistic processes to different temporal spaces within the daily cycle. Clocks act cell-autonomously (intrinsically) and systemically (extrinsically) to coordinate whole organism biology and there is epidemiological evidence indicating that chronic disruption of behavioural rhythms increases the risk of developing cancer and cardiovascular disease. Although the genetic mechanism of the mammalian clock has been largely deciphered, the physiological relevance of clocks often remains elusive. Findings from humans and animal models suggest that the circadian clock and diurnal rhythms have an important role in megakaryopoiesis and the risk of a cardiovascular event. This short review will introduce the mammalian circadian clock and discuss how circadian clocks and diurnal rhythms influence platelet production and function.

  17. Impact of diurnal variability on UARS synoptic products

    NASA Astrophysics Data System (ADS)

    Sassi, Fabrizio; Salby, Murry

    1998-12-01

    We examine the impact of diurnal variability on the synoptic behavior of ozone observed by the Upper Atmosphere Research Satellite (UARS). Synoptic products generated via Kalman filtering are compared against those recovered via Fast Fourier Synoptic Mapping (FFSM). In FFSM products, tracer anomalies defining distinct air masses that originate from different latitudes are approximately conserved. In Kalman products, the same anomalies and the accompanying air masses are diluted with their surroundings. The origin of these differences is traced to the different space-time spectrum inherent to the two synoptic products. In the spectrum of Kalman products, high zonal wavenumbers are exaggerated at low frequency relative to their counterparts in FFSM. This pathological behavior appears to result through aliasing from diurnal variability that is undersampled in the UARS observations. We discuss the relevance of these findings to subsequent analyses and to estimating momentum sources in the middle atmosphere.

  18. De-noising Diurnal Variation Data in Geomagnetic Field Modelling

    NASA Astrophysics Data System (ADS)

    Onovughe, E.

    2017-01-01

    Ground based geomagnetic observatory series have been used to investigate and describe the residuals between a continuous geomagnetic field model and observed diurnal variation for noise-removal of signal due to external field of magnetospheric ring current sources. In all the observatories studied, the residuals in the X-direction consistently show the noisiest signal. Results show that the residuals in the X-direction correlates closely with the RC-index, suggesting an origin from unmodelled external field variation. Notable cross-correlation is also seen between the residuals and the RC-index at zero-lag. Removal/reduction of this unmodelled signal enhances resolution of fine-scale detail in diurnal variation studies.

  19. Do diurnal aerosol changes affect daily average radiative forcing?

    NASA Astrophysics Data System (ADS)

    Kassianov, Evgueni; Barnard, James; Pekour, Mikhail; Berg, Larry K.; Michalsky, Joseph; Lantz, Kathy; Hodges, Gary

    2013-06-01

    diurnal variability of aerosol has been observed frequently for many urban/industrial regions. How this variability may alter the direct aerosol radiative forcing (DARF), however, is largely unknown. To quantify changes in the time-averaged DARF, we perform an assessment of 29 days of high temporal resolution ground-based data collected during the Two-Column Aerosol Project on Cape Cod, which is downwind of metropolitan areas. We demonstrate that strong diurnal changes of aerosol loading (about 20% on average) have a negligible impact on the 24-h average DARF when daily averaged optical properties are used to find this quantity. However, when there is a sparse temporal sampling of aerosol properties, which may preclude the calculation of daily averaged optical properties, large errors (up to 100%) in the computed DARF may occur. We describe a simple way of reducing these errors, which suggests the minimal temporal sampling needed to accurately find the forcing.

  20. Do Diurnal Aerosol Changes Affect Daily Average Radiative Forcing?

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

    2013-06-17

    Strong diurnal variability of aerosol has been observed frequently for many urban/industrial regions. How this variability may alter the direct aerosol radiative forcing (DARF), however, is largely unknown. To quantify changes in the time-averaged DARF, we perform an assessment of 29 days of high temporal resolution ground-based data collected during the Two-Column Aerosol Project (TCAP) on Cape Cod, which is downwind of metropolitan areas. We demonstrate that strong diurnal changes of aerosol loading (about 20% on average) have a negligible impact on the 24-h average DARF, when daily averaged optical properties are used to find this quantity. However, when there is a sparse temporal sampling of aerosol properties, which may preclude the calculation of daily averaged optical properties, large errors (up to 100%) in the computed DARF may occur. We describe a simple way of reducing these errors, which suggests the minimal temporal sampling needed to accurately find the forcing.

  1. Combined Effects of Diurnal and Nonsynchronous Surface Stresses on Europa

    NASA Technical Reports Server (NTRS)

    Stempel, M. M.; Pappalardo, R. T.; Wahr, J.; Barr, A. C.

    2004-01-01

    To date, modeling of the surface stresses on Europa has considered tidal, nonsynchronous, and polar wander sources of stress. The results of such models can be used to match lineament orientations with candidate stress patterns. We present a rigorous surface stress model for Europa that will facilitate comparison of principal stresses to lineament orientation, and which will be available in the public domain. Nonsynchronous rotation and diurnal motion contribute to a stress pattern that deforms the surface of Europa. Over the 85-hour orbital period, the diurnal stress pattern acts on the surface, with a maximum magnitude of approximately 0.1 MPa. The nonsynchronous stress pattern sweeps over the surface due to differential rotation of the icy shell relative to the tidally locked interior of the moon. Nonsynchronous stress builds cumulatively with approximately 0.1 MPa per degree of shell rotation.

  2. Combined Effects of Diurnal and Nonsynchronous Surface Stresses on Europa

    NASA Technical Reports Server (NTRS)

    Stempel, M. M.; Pappalardo, R. T.; Wahr, J.; Barr, A. C.

    2004-01-01

    To date, modeling of the surface stresses on Europa has considered tidal, nonsynchronous, and polar wander sources of stress. The results of such models can be used to match lineament orientations with candidate stress patterns. We present a rigorous surface stress model for Europa that will facilitate comparison of principal stresses to lineament orientation, and which will be available in the public domain. Nonsynchronous rotation and diurnal motion contribute to a stress pattern that deforms the surface of Europa. Over the 85-hour orbital period, the diurnal stress pattern acts on the surface, with a maximum magnitude of approximately 0.1 MPa. The nonsynchronous stress pattern sweeps over the surface due to differential rotation of the icy shell relative to the tidally locked interior of the moon. Nonsynchronous stress builds cumulatively with approximately 0.1 MPa per degree of shell rotation.

  3. Sampling of the Diurnal Cycle of Precipitation using TRMM

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Bell, Thomas L.; Xu, Li-Ming; Starr, David OC. (Technical Monitor)

    2001-01-01

    We examine the temporal sampling of tropical regions using observations from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR). We conclude that PR estimates at any one hour, even using three years of data, are inadequate to describe the diurnal cycle of precipitation over regions smaller than 12 degrees, due to high spatial variability in sampling. We show that the optimum period of accumulation is four hours. Diurnal signatures display half as much sampling error when averaged over four hours of local time. A similar pattern of sampling variability is found in the TMI data, despite the TMI's wider swath and increased sampling. These results are verified using an orbital model. The sensitivity of the sampling to satellite altitude is presented, as well as sampling patterns at the new TRMM altitude of 402.5 km.

  4. Validation of Predicted Diurnal and Semi-diurnal Tidal Variations in Polar Motion with GPS-based Observations

    NASA Astrophysics Data System (ADS)

    Desai, Shailen; Sibois, Aurore

    2016-04-01

    In this paper we reconcile predicted diurnal and semi-diurnal tidal variations in polar motion using observations from the Global Positioning System (GPS) space geodetic technique. We demonstrate closure at the level of less than 4 microarcseconds of the budget between our adopted models for predicted polar motion tidal variations and our GPS-based observations. Our GPS-based observations are composed of a 10-year continuous time series of polar motion estimates with 15-minute temporal resolution. Our adopted models account for the contribution from the relative angular momentum of the ocean tides and so-called libration. We compute predicted ocean tide contributions using a modern hydrodynamic model of tide heights and currents that assimilates satellite altimetry data. We use the model for libration effects provided by the current IERS conventions, as taken from Mathews and Bretagnon [2003]. We also show that the currently recommended models from the International Earth Rotation Service (IERS) conventions do not close the budget with respect to our GPS-based observations. In particular, residual diurnal and semidiurnal tidal variations in polar motion are observed when using the current IERS conventions for ocean tide effects and libration. We infer that the root source for these residual tidal variations is errors in the 20-year old model for ocean tide effects from the IERS conventions, and that predicted ocean tide effects from a modern model mitigates these errors. The noise floor of our high-rate GPS-based times series of polar motion is less than 4 microarcseconds in the diurnal and semidiurnal tidal frequency bands, and is well below the level of the predicted effects of both the ocean tide and libration effects. Diurnal and semidiurnal tidal variations in polar motion are predominantly caused by the ocean tides, which have amplitudes of a few hundred microarcseconds. Libration, namely the effect of external luni-solar torques acting on the triaxial Earth

  5. Seasonal and diurnal variability of Mars water-ice clouds

    NASA Technical Reports Server (NTRS)

    Christensen, Philip R.; Zurek, Richard W.; Jaramillo, L. L.

    1988-01-01

    The diurnal and seasonal behavior of cloud opacity and frequency of occurrence was studied using an atlas of cloud occurrences compiled from the Viking IRTM (Infrared Thermal Mapper) data set. It was found that in some areas the behavior of water appeared to repeat in the zonal mean. However, this interpretation is complicated by both poor coverage and the variability of dust and clouds. As a result, the extent and nature of interannual variability remains unclear.

  6. Reproducibility of diurnal variation in sub-maximal swimming.

    PubMed

    Martin, L; Thompson, K

    2000-08-01

    Swimming training is characterised by the use of early morning and evening training sessions. The purpose of the present study was to investigate if the physiological and kinematic responses to swimming a typical training set are affected by time of day. Seven male collegiate swimmers (age 22 +/- 4 years; height 1.8 +/- 0.1 m; mass 82.1 +/- 4.1 kg) completed a standardised 600 m warm up followed by a 10 x 100 m sub-maximal freestyle set twice a day (06:30-08:00 h and 16:30-20:00 h) on three separate days. Swimming speed was controlled precisely throughout (limits of agreement multiplied/divided 1.00) using a new pacing device (Aquapacer, Challenge and Response, Inverurie, Scotland). Oral temperature (To), heart rate (HR), minute ventilation (VE), oxygen uptake (VO2), carbon dioxide expired (VCO2), respiratory exchange ratio (RER), capillary blood lactate (Bla), and glucose (BGL) were measured at rest and post exercise. Stroke rate (SR) and HR were measured during the first nine 100 m repetitions while rate of perceived exertion (RPE) was measured immediately after each 100 m. Significant diurnal variation was found at rest in To, HR, and VO2 on all three days and for VE and VCO2 on two of the days (P<0.05). During the training set no diurnal variation was evident in HR and SR responses or repetition times although RPE values were higher in morning trials compared to evening trials on two of the three days (P < 0.05). Post-exercise significant diurnal variation was found for To and blood glucose for two of the three days (P < 0.05). Therefore, although diurnal variation is evident at rest, there is no subsequent effect on physiological and kinematic responses during a sub-maximal training set following a standardised warm-up.

  7. Imitating Broadband Diurnal Light Variations Using Solid State Light Sources

    NASA Astrophysics Data System (ADS)

    Ferguson, Ian; Melton, Andrew; Li, Nola; Nicol, David; Park, Eun Hyun; Tosini, Gianluca

    Many studies have documented the success of light therapy in treating disorders of the human internal clock (circadian rhythm). Recent biological research has shown the importance of developing light sources that are tunable in the blue region of the spectrum for treatment to be safe and effective. A novel tunable broadband solid-state light source is presented here that mimics the diurnal variation in sunlight by modulating the intensity of blue light emission.

  8. Warm-up affects diurnal variation in power output.

    PubMed

    Taylor, K; Cronin, J B; Gill, N; Chapman, D W; Sheppard, J M

    2011-03-01

    The purpose of this study was to examine whether time of day variations in power output can be accounted for by the diurnal fluctuations existent in body temperature. 8 recreationally trained males (29.8±5.2 yrs; 178.3±5.2 cm; 80.3±6.5 kg) were assessed on 4 occasions following a: (a) control warm-up at 8.00 am; (b) control warm-up at 4.00 pm; (c) extended warm-up at 8.00 am; and, (d) extended warm-up at 4.00 pm. The control warm-up consisted of dynamic exercises and practice jumps. The extended warm-up incorporated a 20 min general warm-up on a stationary bike prior to completion of the control warm-up, resulting in a whole body temperature increase of 0.3±0.2°C. Kinetic and kinematic variables were measured using a linear optical encoder attached to a barbell during 6 loaded counter-movement jumps. Results were 2-6% higher in the afternoon control condition than morning control condition. No substantial performance differences were observed between the extended morning condition and afternoon control condition where body temperatures were similar. Results indicate that diurnal variation in whole body temperature may explain diurnal performance differences in explosive power output and associated variables. It is suggested that warm-up protocols designed to increase body temperature are beneficial in reducing diurnal differences in jump performance.

  9. Preschoolers' everyday conflict at home and diurnal cortisol patterns.

    PubMed

    Slatcher, Richard B; Robles, Theodore F

    2012-11-01

    Early life family conflict is associated with physical health problems later in life, but little is known about the biological pathways through which conflict at home exerts it deleterious effects on health. The goal of this study was to investigate the associations between naturalistically assessed conflict in everyday family environments and diurnal cortisol in preschool-aged children. Forty-four children aged 3-5 from two-parent families provided six saliva samples per day over 2 days from a Saturday morning through Sunday night. For a full day on either Saturday or Sunday, children wore a child version of the Electronically Activated Recorder, a digital voice recorder that records ambient sounds while participants go about their daily lives. Parents provided reports of child externalizing behaviors as well as daily reports of child conflicts. Diurnal salivary cortisol over the two weekend days of the study. Greater Electronically Activated Recorder-assessed child conflict at home was associated with children having lower cortisol at wakeup (p < .009) and flatter diurnal cortisol slopes (p < .007). These associations remained significant even after controlling for parent reports of child externalizing behaviors, parent reports of daily child conflicts, and child age and sex. These findings indicate that taking into consideration everyday conflicts at home may be key to our understanding of stress-health links in young children.

  10. Novel opsin gene variation in large-bodied, diurnal lemurs.

    PubMed

    Jacobs, Rachel L; MacFie, Tammie S; Spriggs, Amanda N; Baden, Andrea L; Morelli, Toni Lyn; Irwin, Mitchell T; Lawler, Richard R; Pastorini, Jennifer; Mayor, Mireya; Lei, Runhua; Culligan, Ryan; Hawkins, Melissa T R; Kappeler, Peter M; Wright, Patricia C; Louis, Edward E; Mundy, Nicholas I; Bradley, Brenda J

    2017-03-01

    Some primate populations include both trichromatic and dichromatic (red-green colour blind) individuals due to allelic variation at the X-linked opsin locus. This polymorphic trichromacy is well described in day-active New World monkeys. Less is known about colour vision in Malagasy lemurs, but, unlike New World monkeys, only some day-active lemurs are polymorphic, while others are dichromatic. The evolutionary pressures underlying these differences in lemurs are unknown, but aspects of species ecology, including variation in activity pattern, are hypothesized to play a role. Limited data on X-linked opsin variation in lemurs make such hypotheses difficult to evaluate. We provide the first detailed examination of X-linked opsin variation across a lemur clade (Indriidae). We sequenced the X-linked opsin in the most strictly diurnal and largest extant lemur, Indri indri, and nine species of smaller, generally diurnal indriids (Propithecus). Although nocturnal Avahi (sister taxon to Propithecus) lacks a polymorphism, at least eight species of diurnal indriids have two or more X-linked opsin alleles. Four rainforest-living taxa-I. indri and the three largest Propithecus species-have alleles not previously documented in lemurs. Moreover, we identified at least three opsin alleles in Indri with peak spectral sensitivities similar to some New World monkeys. © 2017 The Author(s).

  11. Visualizing Diurnal Population Change in Urban Areas for Emergency Management

    SciTech Connect

    Kobayashi, Tetsuo; Medina, Richard M; Cova, Thomas

    2011-01-01

    There is an increasing need for a quick, simple method to represent diurnal population change in metropolitan areas for effective emergency management and risk analysis. Many geographic studies rely on decennial U.S. Census data that assume that urban populations are static in space and time. This has obvious limitations in the context of dynamic geographic problems. The U.S. Department of Transportation publishes population data at the transportation analysis zone level in fifteen-minute increments. This level of spatial and temporal detail allows for improved dynamic population modeling. This article presents a methodology for visualizing and analyzing diurnal population change for metropolitan areas based on this readily available data. Areal interpolation within a geographic information system is used to create twenty-four (one per hour) population surfaces for the larger metropolitan area of Salt Lake County, Utah. The resulting surfaces represent diurnal population change for an average workday and are easily combined to produce an animation that illustrates population dynamics throughout the day. A case study of using the method to visualize population distributions in an emergency management context is provided using two scenarios: a chemical release and a dirty bomb in Salt Lake County. This methodology can be used to address a wide variety of problems in emergency management.

  12. Visualizing diurnal population change in urban areas for emergency management.

    PubMed

    Kobayashi, Tetsuo; Medina, Richard M; Cova, Thomas J

    2011-01-01

    There is an increasing need for a quick, simple method to represent diurnal population change in metropolitan areas for effective emergency management and risk analysis. Many geographic studies rely on decennial U.S. Census data that assume that urban populations are static in space and time. This has obvious limitations in the context of dynamic geographic problems. The U.S. Department of Transportation publishes population data at the transportation analysis zone level in fifteen-minute increments. This level of spatial and temporal detail allows for improved dynamic population modeling. This article presents a methodology for visualizing and analyzing diurnal population change for metropolitan areas based on this readily available data. Areal interpolation within a geographic information system is used to create twenty-four (one per hour) population surfaces for the larger metropolitan area of Salt Lake County, Utah. The resulting surfaces represent diurnal population change for an average workday and are easily combined to produce an animation that illustrates population dynamics throughout the day. A case study of using the method to visualize population distributions in an emergency management context is provided using two scenarios: a chemical release and a dirty bomb in Salt Lake County. This methodology can be used to address a wide variety of problems in emergency management.

  13. Electrostimulation Training Effects on diurnal Fluctuations of Neuromuscular Performance.

    PubMed

    Gueldich, H; Zarrouk, N; Chtourou, H; Zghal, F; Sahli, S; Rebai, H

    2017-01-01

    This study examined the effects of electrostimulation (ES) strength training at the same time-of-day on the diurnal fluctuations of maximal voluntary isometric contractions (MVIC) and surface electromyography (EMG). 20 male performed 3 MVICs of knee extension coupled with surface EMG before and after 5 weeks of 3 ES training sessions per week. Each ES training session consisted in 45 isometric contractions. The participants were randomly assigned to either a morning (MTG, 07:00-08:00 h) or an evening (ETG, 17:00-18:00 h) training group. Both groups performed the evaluation tests at 07:00 and 17:00 h. Before ES training, MVIC was significantly higher in the evening compared to the morning for all groups, but there was no significant difference between groups for all EMG parameters. After the ES training, the diurnal variations in MVIC were blunted in the MTG and persisted in the ETG. Significant time-of-day effect was noticed for all EMG parameters but there was no group effect. The elimination of the diurnal fluctuations of MVIC and the appearance of EMG variations by training in the morning hours suggest that neural adaptations are the main source of temporal specificity of neuromuscular performance after ES strength training.

  14. Diurnal Warming Observations with ASIP in the subtropical Northern Atlantic

    NASA Astrophysics Data System (ADS)

    ten Doeschate, Anneke; Ward, Brian; Sutherland, Graig; Font, Jordi; Reverdin, Gilles

    2015-04-01

    Quantification of air-sea exchange fluxes of energy, moisture, momentum and gases require in situ-measurements of the near-surface layer of the ocean. In the framework of the Salinity Processes in the Upper Ocean Regional Study (SPURS) project, we participated in two cruises to the North Atlantic Salinity Maximum (NASM) region. Observations in the upper ocean are obtained with the Air Sea Interaction Profiler (ASIP), which is an upwardly-rising microstructure instrument designed to study processes in the mixing layer of the ocean. ASIP operates autonomously for up to two days, obtaining undisturbed profiles within the water column from depth to the immediate surface. During the SPURS experiment, ASIP was deployed on several occasions, resulting in a total of over 1000 profiles of the ocean surface boundary layer. ASIP is equipped with microstructure sensors for temperature (FP07), conductivity (SBE07), shear, accurate C-T sensors, a PAR and an oxygen sensor. The high resolution temperature profiles obtained, combined with information on local meteorological variables, allow for an accurate study of the temporal and vertical variability of diurnal warming of the upper ocean boundary layer. Characteristics of the measured diurnal warming at the ocean surface and at specific depth levels are compared to physics-based models of near-surface warming. Mixing rates in the upper ocean are determined from the turbulent dissipation rate, calculated from profiles of the turbulent shear. This information is used to quantify variability between the modeled and observed diurnal warming signal.

  15. Cold and hunger induce diurnality in a nocturnal mammal.

    PubMed

    van der Vinne, Vincent; Riede, Sjaak J; Gorter, Jenke A; Eijer, Willem G; Sellix, Michael T; Menaker, Michael; Daan, Serge; Pilorz, Violetta; Hut, Roelof A

    2014-10-21

    The mammalian circadian system synchronizes daily timing of activity and rest with the environmental light-dark cycle. Although the underlying molecular oscillatory mechanism is well studied, factors that influence phenotypic plasticity in daily activity patterns (temporal niche switching, chronotype) are presently unknown. Molecular evidence suggests that metabolism may influence the circadian molecular clock, but evidence at the level of the organism is lacking. Here we show that a metabolic challenge by cold and hunger induces diurnality in otherwise nocturnal mice. Lowering ambient temperature changes the phase of circadian light-dark entrainment in mice by increasing daytime and decreasing nighttime activity. This effect is further enhanced by simulated food shortage, which identifies metabolic balance as the underlying common factor influencing circadian organization. Clock gene expression analysis shows that the underlying neuronal mechanism is downstream from or parallel to the main circadian pacemaker (the hypothalamic suprachiasmatic nucleus) and that the behavioral phenotype is accompanied by phase adjustment of peripheral tissues. These findings indicate that nocturnal mammals can display considerable plasticity in circadian organization and may adopt a diurnal phenotype when energetically challenged. Our previously defined circadian thermoenergetics hypothesis proposes that such circadian plasticity, which naturally occurs in nocturnal mammals, reflects adaptive maintenance of energy balance. Quantification of energy expenditure shows that diurnality under natural conditions reduces thermoregulatory costs in small burrowing mammals like mice. Metabolic feedback on circadian organization thus provides functional benefits by reducing energy expenditure. Our findings may help to clarify relationships between sleep-wake patterns and metabolic phenotypes in humans.

  16. Social isolation and diurnal cortisol patterns in an ageing cohort☆

    PubMed Central

    Stafford, Mai; Gardner, Mike; Kumari, Meena; Kuh, Diana; Ben-Shlomo, Yoav

    2013-01-01

    Summary Background Social isolation may operate as a psychosocial stressor which disrupts functioning of the hypothalamic–pituitary–adrenocortical axis. Methods Using data from the MRC National Survey of Health and Development, we tested whether living alone, not being married and social network size were associated with diurnal cortisol patterns at 60–64 years. We hypothesised that recent onset compared with long-term isolation would be more strongly associated with cortisol awakening response, cortisol decline over the day and evening cortisol. Models were adjusted for sex, smoking, body mass index, alcohol intake, psychological distress and financial difficulties. Results Those widowed within the last three years had a 36% (95%CI 6%, 73%) higher night time cortisol than those who were currently married. Those newly living alone also had a higher night time cortisol and flatter diurnal slope than those living with others. Conclusion Independently of multiple behavioural and psychosocial correlates, recent onset of social isolation is related to diurnal cortisol patterns that increase the risk of morbidity and mortality. PMID:23920224

  17. Prenatal exposure to diurnal temperature variation and early childhood pneumonia.

    PubMed

    Zeng, Ji; Lu, Chan; Deng, Qihong

    2017-04-01

    Childhood pneumonia is one of the leading single causes of mortality and morbidity in children worldwide, but its etiology still remains unclear. We investigate the association between childhood pneumonia and exposure to diurnal temperature variation (DTV) in different timing windows. We conducted a prospective cohort study of 2,598 children aged 3-6 years in Changsha, China. The lifetime prevalence of pneumonia was assessed by a questionnaire administered by the parents. Individual exposure to DTV during both prenatal and postnatal periods was estimated. Logic regression models was used to examine the association between childhood pneumonia and DTV exposure in terms of odds ratios (OR) and 95% confidence interval (CI). Lifetime prevalence of childhood pneumonia in preschool children in Changsha was high up to 38.6%. We found that childhood pneumonia was significantly associated with prenatal DTV exposure, with adjusted OR (95%CI) =1.19 (1.02-1.38), particularly during the second trimester. However, childhood pneumonia not associated with postnatal DTV exposure. Sensitivity analysis indicated that boys are more susceptible to the pneumonia risk of diurnal temperature variation than girls. We further observed that the prevalence of childhood pneumonia was decreased in recent years as DTV shrinked. Early childhood pneumonia was associated with prenatal exposure to the diurnal temperature variation (DTV) during pregnancy, particularly in the second trimester, which suggests fetal origin of childhood pneumonia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Diurnal Cycles in Water Quality Across the Periodic Table

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.

    2013-12-01

    Diurnal cycles in water quality can provide important clues to the processes that regulate aquatic chemistry, but they often are masked by longer-term, larger-amplitude variability, making their detection and quantification difficult. Here I outline several methods that can detect diurnal cycles even when they are massively obscured by statistically ill-behaved noise. I demonstrate these methods using high-frequency water quality data from the Plylimon catchment in mid-Wales (Neal et al., 2013; Kirchner and Neal, 2013). Several aspects combine to make the Plynlimon data set unique worldwide. Collected at 7-hour intervals, the Plynlimon data set is much more densely sampled than typical long-term weekly or monthly water quality data. This 7-hour sampling was also continued for two years, much longer than typical intensive sampling campaigns, and the resulting time series encompass a wide range of climatic and hydrological conditions. Furthermore, each sample was analyzed for a wide range of solutes with diverse sources in the natural environment. However, the 7-hour sampling frequency is both coarse and irregular in comparison to diurnal cycles, making their detection and quantification difficult. Nonetheless, the methods outlined here enable detection of statistically significant diurnal cycles in over 30 solutes at Plynlimon, including alkali metals (Li, Na, K, Rb, and Cs), alkaline earths (Be, Mg, Ca, Sr, and Ba), transition metals (Al, Ti, Mn, Fe, Co, Ni, Zn, Mo, Cd, and Pb), nonmetals (B, NO3, Si, As, and Se), lanthanides and actinides (La, Ce, Pr, and U), as well as total dissolved nitrogen (TDN), dissolved organic carbon (DOC), Gran alkalinity, pH, and electrical conductivity. These solutes span every row of the periodic table, and more than six orders of magnitude in concentration. Many of these diurnal cycles are subtle, representing only a few percent, at most, of the total variance in the concentration time series. Nonetheless they are diagnostically

  19. Diurnal Reflectance Changes in Vegetation Observed with AVIRIS

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Ambrosia, V. G.; Ustin, S. L.

    1998-01-01

    Among the most important short-term dynamic biological processes are diurnal changes in canopy water relations. Plant regulation of water transport through stomatal openings affects other gaseous transport processes, often dramatically decreasing photosynthetic fixation of carbon dioxide during periods of water stress. Water stress reduces stomatal conductance of water vapor through the leaf surface and alters the diurnal timing of stomatal opening. Under non-water stressed conditions, stomates typically open soon after dawn and transpire water vapor throughout the daylight period. During stress periods, stomates may close for part of the day, generally near mid-day. Under prolonged stress conditions, stomatal closure shifts to earlier times during the day; stomates may close by mid-morning and remain closed until the following morning - or remain closed entirely. Under these conditions the relationship between canopy greenness (e.g., measured with a vegetation index or by spectral mixture analysis) and photosynthetic fixation of carbon is lost and the remotely sensed vegetation metric is a poor predictor of gas exchange. Prediction of stomatal regulation and exchange of water and trace gases is critical for ecosystem and climate models to correctly estimate budgets of these gases and understand or predict other processes like gross and net ecosystem primary production. Plant gas exchange has been extensively studied by physiologists at the leaf and whole plant level and by biometeorologists at somewhat larger scales. While these energy driven processes follow a predictable if somewhat asymmetric diurnal cycle dependent on soil water availability and the constraints imposed by the solar energy budget, they are nonetheless difficult to measure at the tree and stand levels using conventional methods. Ecologists have long been interested in the potential of remote sensing for monitoring physiological changes using multi-temporal images. Much of this research has

  20. Tropical Cyclone Diurnal Cycle as Observed by TRMM

    NASA Technical Reports Server (NTRS)

    Leppert, Kenneth D., II; Cecil, D. J.

    2015-01-01

    Using infrared satellite data, previous work has shown a consistent diurnal cycle in the pattern of cold cloud tops around mature tropical cyclones. In particular, an increase in the coverage by cold cloud tops often occurs in the inner core of the storm around the time of sunset and subsequently propagates outward to several hundred kilometers over the course of the following day. This consistent cycle may have important implications for structure and intensity changes of tropical cyclones and the forecasting of such changes. Because infrared satellite measurements are primarily sensitive to cloud top, the goal of this study is to use passive and active microwave measurements from the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR), respectively, to examine and better understand the tropical cyclone diurnal cycle throughout a larger depth of the storm's clouds. The National Hurricane Center's best track dataset was used to extract all PR and TMI pixels within 1000 km of each tropical cyclone that occurred in the Atlantic basin between 1998-2011. Then the data was composited according to radius (100-km bins from 0-1000 km) and local standard time (LST; 3-hr bins). Specifically, PR composites involved finding the percentage of pixels with reflectivity greater than or equal to 20 dBZ at various heights (i.e., 2-14 km in increments of 2 km) as a function of radius and time. The 37- and 85- GHz TMI channels are especially sensitive to scattering by precipitation-sized ice in the mid to upper portions of clouds. Hence, the percentage of 37- and 85-GHz polarization corrected temperatures less than various thresholds were calculated using data from all storms as a function of radius and time. For 37 GHz, thresholds of 260 K, 265 K, 270 K, and 275 K were used, and for 85 GHz, thresholds of 200-270 K in increments of 10 K were utilized. Note that convection forced by the interactions of a tropical cyclone with land (e.g., due

  1. Diurnal Reflectance Changes in Vegetation Observed with AVIRIS

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Ambrosia, V. G.; Ustin, S. L.

    1998-01-01

    Among the most important short-term dynamic biological processes are diurnal changes in canopy water relations. Plant regulation of water transport through stomatal openings affects other gaseous transport processes, often dramatically decreasing photosynthetic fixation of carbon dioxide during periods of water stress. Water stress reduces stomatal conductance of water vapor through the leaf surface and alters the diurnal timing of stomatal opening. Under non-water stressed conditions, stomates typically open soon after dawn and transpire water vapor throughout the daylight period. During stress periods, stomates may close for part of the day, generally near mid-day. Under prolonged stress conditions, stomatal closure shifts to earlier times during the day; stomates may close by mid-morning and remain closed until the following morning - or remain closed entirely. Under these conditions the relationship between canopy greenness (e.g., measured with a vegetation index or by spectral mixture analysis) and photosynthetic fixation of carbon is lost and the remotely sensed vegetation metric is a poor predictor of gas exchange. Prediction of stomatal regulation and exchange of water and trace gases is critical for ecosystem and climate models to correctly estimate budgets of these gases and understand or predict other processes like gross and net ecosystem primary production. Plant gas exchange has been extensively studied by physiologists at the leaf and whole plant level and by biometeorologists at somewhat larger scales. While these energy driven processes follow a predictable if somewhat asymmetric diurnal cycle dependent on soil water availability and the constraints imposed by the solar energy budget, they are nonetheless difficult to measure at the tree and stand levels using conventional methods. Ecologists have long been interested in the potential of remote sensing for monitoring physiological changes using multi-temporal images. Much of this research has

  2. Future changes in propagating and non-propagating diurnal rainfall over East Asia

    NASA Astrophysics Data System (ADS)

    Huang, Wan-Ru; Wang, S.-Y. Simon

    2016-09-01

    The characteristics of diurnal rainfall in the East Asian continent consist of a propagating regime over the Yangtze River and a non-propagating regime in southeast China. Simulations of these two diurnal rainfall regimes by 18 CMIP5 models were evaluated from the historical experiment of 1981-2005. The evaluation led to the identification of one model, the CMCC-CM that replicated the key characteristics of diurnal rainfall regimes including the propagation of moisture convergence. Using the CMCC-CM to assess the future (2076-2100) change of diurnal evolution and propagation projected by the RCP4.5 experiment, it was found that propagating diurnal rainfall will enhance and expand southward into the non-propagating regime in southeast China. This change in diurnal rainfall is attributed to the intensification of diurnal land-sea thermal contrast over eastern China and the southward shift of the upper-level jet stream over 20°-30°N. Similar projected changes in diurnal rainfall and associated large-scale dynamical mechanisms were also depicted by four other models (GFDL-ESM2G, GFDL-ESM2M, MRI-CGCM3, and MRI-ESM1) showing a higher skill in representing the diurnal rainfall regimes over East Asia. If such model projection holds true, southeast China will experience an increase in the eastward propagating diurnal rainfall, which could further impact Taiwan.

  3. Future changes in propagating and non-propagating diurnal rainfall over East Asia

    NASA Astrophysics Data System (ADS)

    Huang, Wan-Ru; Wang, S.-Y. Simon

    2017-07-01

    The characteristics of diurnal rainfall in the East Asian continent consist of a propagating regime over the Yangtze River and a non-propagating regime in southeast China. Simulations of these two diurnal rainfall regimes by 18 CMIP5 models were evaluated from the historical experiment of 1981-2005. The evaluation led to the identification of one model, the CMCC-CM that replicated the key characteristics of diurnal rainfall regimes including the propagation of moisture convergence. Using the CMCC-CM to assess the future (2076-2100) change of diurnal evolution and propagation projected by the RCP4.5 experiment, it was found that propagating diurnal rainfall will enhance and expand southward into the non-propagating regime in southeast China. This change in diurnal rainfall is attributed to the intensification of diurnal land-sea thermal contrast over eastern China and the southward shift of the upper-level jet stream over 20°-30°N. Similar projected changes in diurnal rainfall and associated large-scale dynamical mechanisms were also depicted by four other models (GFDL-ESM2G, GFDL-ESM2M, MRI-CGCM3, and MRI-ESM1) showing a higher skill in representing the diurnal rainfall regimes over East Asia. If such model projection holds true, southeast China will experience an increase in the eastward propagating diurnal rainfall, which could further impact Taiwan.

  4. Diurnal cycles in water quality across the periodic table

    NASA Astrophysics Data System (ADS)

    Kirchner, James

    2014-05-01

    Diurnal cycles in water quality can provide important clues to the processes that regulate aquatic chemistry, but they often are masked by longer-term, larger-amplitude variability, making their detection and quantification difficult. Here I outline methods that can detect diurnal cycles even when they are massively obscured by statistically ill-behaved noise. I demonstrate these methods using high-frequency water quality data from the Plylimon catchment in mid-Wales (Neal et al., 2013; Kirchner and Neal, 2013). Several aspects combine to make the Plynlimon data set unique worldwide. Collected at 7-hour intervals, the Plynlimon data set is much more densely sampled than typical long-term weekly or monthly water quality data. This 7-hour sampling was also continued for two years, much longer than typical intensive sampling campaigns, and the resulting time series encompass a wide range of climatic and hydrological conditions. Furthermore, each sample was analyzed for a wide range of solutes with diverse sources in the natural environment. However, the 7-hour sampling frequency is both coarse and irregular in comparison to diurnal cycles, making their detection and quantification difficult. Nonetheless, the methods outlined here enable detection of statistically significant diurnal cycles in over 30 solutes at Plynlimon, including alkali metals (Li, Na, K, Rb, and Cs), alkaline earths (Be, Mg, Ca, Sr, and Ba), transition metals (Al, Ti, Mn, Fe, Co, Ni, Zn, Mo, Cd, and Pb), nonmetals (B, NO3, Si, As, and Se), lanthanides and actinides (La, Ce, Pr, and U), as well as total dissolved nitrogen (TDN), dissolved organic carbon (DOC), Gran alkalinity, pH, and electrical conductivity. These solutes span every row of the periodic table, and more than six orders of magnitude in concentration. Many of these diurnal cycles are subtle, representing only a few percent, at most, of the total variance in the concentration time series. Nonetheless they are diagnostically useful

  5. Validation of the diurnal cycles in atmospheric reanalyses over Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Tastula, Esa-Matti; Vihma, Timo; Andreas, Edgar L.; Galperin, Boris

    2013-05-01

    diurnal cycles of near-surface meteorological parameters over Antarctic sea ice in six widely used atmospheric reanalyses are validated against observations from Ice Station Weddell. The station drifted from February through May 1992 and provided the most extensive set of meteorological observations ever collected in the Antarctic sea ice zone. For the radiative and turbulent surface fluxes, both the amplitude and shape of the diurnal cycles vary considerably among different reanalyses. Near-surface temperature, specific humidity, and wind speed in the reanalyses all feature small diurnal ranges, which, in most cases, fall within the uncertainties of the observed cycle. A skill score approach revealed the superiority of the ERA-Interim reanalysis in reproducing the observed diurnal cycles. An explanation for the shortcomings in the reanalyses is their failure to capture the diurnal cycle in cloud cover fraction, which leads to errors in other quantities as well. Apart from the diurnal cycles, NCEP-CFSR gave the best error statistics.

  6. A statistical model of diurnal variation in human growth hormone

    NASA Technical Reports Server (NTRS)

    Klerman, Elizabeth B.; Adler, Gail K.; Jin, Moonsoo; Maliszewski, Anne M.; Brown, Emery N.

    2003-01-01

    The diurnal pattern of growth hormone (GH) serum levels depends on the frequency and amplitude of GH secretory events, the kinetics of GH infusion into and clearance from the circulation, and the feedback of GH on its secretion. We present a two-dimensional linear differential equation model based on these physiological principles to describe GH diurnal patterns. The model characterizes the onset times of the secretory events, the secretory event amplitudes, as well as the infusion, clearance, and feedback half-lives of GH. We illustrate the model by using maximum likelihood methods to fit it to GH measurements collected in 12 normal, healthy women during 8 h of scheduled sleep and a 16-h circadian constant-routine protocol. We assess the importance of the model components by using parameter standard error estimates and Akaike's Information Criterion. During sleep, both the median infusion and clearance half-life estimates were 13.8 min, and the median number of secretory events was 2. During the constant routine, the median infusion half-life estimate was 12.6 min, the median clearance half-life estimate was 11.7 min, and the median number of secretory events was 5. The infusion and clearance half-life estimates and the number of secretory events are consistent with current published reports. Our model gave an excellent fit to each GH data series. Our analysis paradigm suggests an approach to decomposing GH diurnal patterns that can be used to characterize the physiological properties of this hormone under normal and pathological conditions.

  7. Diurnal Patterns and Correlates of Older Adults' Sedentary Behavior.

    PubMed

    Van Cauwenberg, Jelle; Van Holle, Veerle; De Bourdeaudhuij, Ilse; Owen, Neville; Deforche, Benedicte

    2015-01-01

    Insights into the diurnal patterns of sedentary behavior and the identification of subgroups that are at increased risk for engaging in high levels of sedentary behavior are needed to inform potential interventions for reducing older adults' sedentary time. Therefore, we examined the diurnal patterns and sociodemographic correlates of older adults' sedentary behavior(s). Stratified cluster sampling was used to recruit 508 non-institutionalized Belgian older adults (≥ 65 years). Morning, afternoon, evening and total sedentary time was assessed objectively using accelerometers. Specific sedentary behaviors, total sitting time and sociodemographic attributes were assessed using an interviewer-administered questionnaire. Participants self-reported a median of 475 (Q1-Q3 = 383-599) minutes/day of total sitting time and they accumulated a mean of 580 ± 98 minutes/day of accelerometer-derived sedentary time. Sedentary time was lowest during the morning and highest during the evening. Older participants were as sedentary as younger participants during the evening, but they were more sedentary during daytime. Compared to married participants, widowers were more sedentary during daytime. Younger participants (< 75 years), men and the higher educated were more likely to engage in (high levels of) sitting while driving a car and using the computer. Those with tertiary education viewed 29% and 22% minutes/day less television compared to those with primary or secondary education, respectively. Older participants accumulated 35 sedentary minutes/day more than did younger participants and men accumulated 32 sedentary minutes/day more than did women. These findings highlight diurnal variations and potential opportunities to tailor approaches to reducing sedentary time for subgroups of the older adult population.

  8. Diurnal triglyceridemia in relation to alcohol intake in men.

    PubMed

    Torres do Rego, Ana; Klop, Boudewijn; Birnie, Erwin; Elte, Jan Willem F; Ramos, Victoria Cachofeiro; Walther, Luis A Alvarez-Sala; Cabezas, Manuel Castro

    2013-12-16

    Fasting and postprandial triglyceride concentrations largely depend on dietary and lifestyle factors. Alcohol intake is associated with triglycerides, but the effect of alcohol on diurnal triglyceridemia in a free living situation is unknown. During three days, 139 men (range: 18-80 years) measured their own capillary triglyceride (cTG) concentrations daily on six fixed time-points before and after meals, and the total daily alcohol intake was recorded. The impact of daily alcohol intake (none; low, <10 g/day; moderate, 10-30 g/day; high, >30 g/day) on diurnal triglyceridemia was analyzed by the incremental area under the cTG curve (∆cTG-AUC) reflecting the mean of the six different time-points. Fasting cTG were similar between the alcohol groups, but a trend of increased cTG was observed in men with moderate and high alcohol intake after dinner and at bedtime (p for trend <0.001) which persisted after adjustment for age, smoking and body mass index. The ∆cTG-AUC was significantly lower in males with low alcohol intake (3.0 ± 1.9 mmol·h/L) (n = 27) compared to males with no (7.0 ± 1.8 mmol·h/L) (n = 34), moderate (6.5 ± 1.8 mmol·h/L) (n = 54) or high alcohol intake (7.2 ± 2.2 mmol·h/L) (n = 24), when adjusted for age, smoking and body mass index (adjusted p value < 0.05). In males, low alcohol intake was associated with decreased diurnal triglyceridemia, whereas moderate and high alcohol intake was associated with increased triglycerides after dinner and at bed time.

  9. Temperature cycles trigger nocturnalism in the diurnal homeotherm Octodon degus.

    PubMed

    Vivanco, Pablo; Rol, Maria Angeles; Madrid, Juan Antonio

    2010-05-01

    Body temperature regulation within a physiological range is a critical factor for guaranteeing the survival of living organisms. The avoidance of high ambient temperatures is a behavioral mechanism used by homeothermic animals living in extreme environmental conditions. As the circadian system is involved in these thermoregulatory responses, precise phase shifts and even complete temporal niche inversion have been reported. Octodon degus, a mainly diurnal rodent from Chile, has the ability to switch its phase preference for locomotor activity to coincide with the availability of a running wheel. The aims of this work are twofold: to determine whether ambient temperature cycles, with high values during the day and low values at night (HLT(a)), can induce nocturnal chronotypes in degus previously characterized as diurnal; and to learn whether HLT(a) cycles are able to act as a zeitgeber in this dual-phase species. To this end, degus were subjected to 24 h HLT(a) cycles under both 12:12 LD and DD conditions. Two experimental groups were used, one with previous wheel running experience and another naïve group, to study the influence of the thermal cycles and previous wheel running experience on the degus' dual-phasing behavior. Temperature cycles (31.3 +/- 1.5 degrees C during the day and 24.2 +/- 1.6 degrees C at night) induced a 100% nocturnalism in previously diurnal individuals. Indeed, both entrainment with nocturnal phase angle to LD and nocturnal rhythmicity induced by masking were observed. Moreover, HLT(a) cycles acted by masking, confining wheel-running activity to the cooler phase under DD conditions, with the naïve group being more sensitive than the experienced one.

  10. A statistical model of diurnal variation in human growth hormone

    NASA Technical Reports Server (NTRS)

    Klerman, Elizabeth B.; Adler, Gail K.; Jin, Moonsoo; Maliszewski, Anne M.; Brown, Emery N.

    2003-01-01

    The diurnal pattern of growth hormone (GH) serum levels depends on the frequency and amplitude of GH secretory events, the kinetics of GH infusion into and clearance from the circulation, and the feedback of GH on its secretion. We present a two-dimensional linear differential equation model based on these physiological principles to describe GH diurnal patterns. The model characterizes the onset times of the secretory events, the secretory event amplitudes, as well as the infusion, clearance, and feedback half-lives of GH. We illustrate the model by using maximum likelihood methods to fit it to GH measurements collected in 12 normal, healthy women during 8 h of scheduled sleep and a 16-h circadian constant-routine protocol. We assess the importance of the model components by using parameter standard error estimates and Akaike's Information Criterion. During sleep, both the median infusion and clearance half-life estimates were 13.8 min, and the median number of secretory events was 2. During the constant routine, the median infusion half-life estimate was 12.6 min, the median clearance half-life estimate was 11.7 min, and the median number of secretory events was 5. The infusion and clearance half-life estimates and the number of secretory events are consistent with current published reports. Our model gave an excellent fit to each GH data series. Our analysis paradigm suggests an approach to decomposing GH diurnal patterns that can be used to characterize the physiological properties of this hormone under normal and pathological conditions.

  11. Diurnal rhythm of melatonin binding in the rat suprachiasmatic nucleus

    SciTech Connect

    Laitinen, J.T.; Castren, E.; Vakkuri, O.; Saavedra, J.M.

    1989-03-01

    We used quantitative in vitro autoradiography to localize and characterize 2-/sup 125/I-melatonin binding sites in the rat suprachiasmatic nuclei in relation to pineal melatonin production. In a light:dark cycle of 12:12 h, binding density exhibited significant diurnal variation with a peak at the dark-light transition and a trough 12 hours later. Saturation studies suggested that the decreased binding at light-dark transition might be due to a shift of the putative melatonin receptor to a low affinity state.

  12. Link between diurnal stem radius changes and tree water relations.

    PubMed

    Zweifel, R; Item, H; Häsler, R

    2001-08-01

    Internal water reserves are depleted and replenished daily, not only in succulent plants, but also in trees. The significance of these changes in tissue water storage for tree water relations was investigated by monitoring diurnal fluctuations in stem radius. In 6-year-old potted Norway spruce (Picea abies (L.) Karst.) trees, whole-tree transpiration rate (T), sap flow at the stem base and fluctuations in stem radius were measured at 10-min intervals over eight successive weeks. The dynamics of diurnal water storage in relation to the daily course of water movement was simulated and the contribution of stored water to T quantified. The finding that, in P. abies, the course of bark water content is linearly coupled to stem radius fluctuations provided the basis for linking stem radius changes to a functional flow and storage model for tree water relations. This model, which consists of physical functions only and is driven by a single input variable (T), accurately simulates the diurnal course of changes in stem radius and water storage of the tree crown and stem. It was concluded that fluctuations were mainly determined by the course of transpiration. The availability of soil water and the degree to which storage tissues were saturated were also factors affecting the diurnal course of stem radius changes. Internally stored water contributed to daily transpiration even in well-watered trees, indicating that stored water plays an important role not only during periods of drought, but whenever water transport occurs within the tree. Needle and bark water reserves were most heavily depleted during transpiration. Together they supplied approximately 10% of daily T on sunny days, and up to 65% on cloudy days. On a daily basis, the crown (mainly needles) contributed approximately eight times more water to T than the stem (mainly bark). The depletion of the two storage pools and the water movements observed in the trees always occurred in the same sequence. In the morning

  13. Estimation of soil moisture from diurnal surface temperature observations

    NASA Technical Reports Server (NTRS)

    Vandegriend, A. A.; Camillo, P. J.

    1986-01-01

    A coupled heat and moisture balance model was used to determine the thermal inertia of a grass covered top soil under different meteorological conditions. Relations between thermal inertia and soil moisture were established using the De Vries models for thermal conductivity and heat capacity to relate soil moisture and thermal inertia as a function of soil type. A sensitivity study of the surface roughness length and thermal inertia on diurnal surface temperature shows the necessity of focusing on the night time surface temperature rather than on the day time surface temperature, in order to estimate the soil moisture content of the top soil.

  14. Estimation of soil moisture from diurnal surface temperature observations

    NASA Technical Reports Server (NTRS)

    Vandegriend, A. A.; Camillo, P. J.

    1986-01-01

    A coupled heat and moisture balance model was used to determine the thermal inertia of a grass covered top soil under different meteorological conditions. Relations between thermal inertia and soil moisture were established using the De Vries models for thermal conductivity and heat capacity to relate soil moisture and thermal inertia as a function of soil type. A sensitivity study of the surface roughness length and thermal inertia on diurnal surface temperature shows the necessity of focusing on the night time surface temperature rather than on the day time surface temperature, in order to estimate the soil moisture content of the top soil.

  15. DIURNAL CHANGES IN THE ACIDITY OF BRYOPHYLLUM CALYCINUM.

    PubMed

    Gustafson, F G

    1925-07-20

    1. It has been shown that there is a diurnal change in the H ion concentration in Bryophyllum calycinum corresponding approximately to the total acidity changes. The H ion concentration increases at night and decreases during the day. 2. Light is the main factor in causing the decrease in acidity, though it also occurs in the dark. but much more slowly. 3. External oxygen tension does not seem to influence the acidity of the plant, nor does it influence the decomposition of the extracted juice.

  16. DIURNAL CHANGES IN THE ACIDITY OF BRYOPHYLLUM CALYCINUM

    PubMed Central

    Gustafson, Felix G.

    1925-01-01

    1. It has been shown that there is a diurnal change in the H ion concentration in Bryophyllum calycinum corresponding approximately to the total acidity changes. The H ion concentration increases at night and decreases during the day. 2. Light is the main factor in causing the decrease in acidity, though it also occurs in the dark. but much more slowly. 3. External oxygen tension does not seem to influence the acidity of the plant, nor does it influence the decomposition of the extracted juice. PMID:19872175

  17. Analysis of Diurnal, Planetary and Mean Wind Activity using TIMED, MF and Meteor Radar Winds

    NASA Technical Reports Server (NTRS)

    Lieberman, Ruth S.; Riggin, Dennis R.

    2003-01-01

    The goals of this research are: 1) To validate TIMED Doppler Interferometer (TIDI) winds using ground-based MF and meteor winds; and 2) To examine short-term (i. e., day-to-day and week-to-week) variability of the diurnal tide. This objective was to have originally been met using comparisons of short-term diurnal tidal determinations from ground-based (GB) winds with planetary-scale diurnal nonmigrating tidal definitions from TIDI winds.

  18. Studies on air-borne fungi at Qena. II. Diurnal fluctuations.

    PubMed

    Abdel-Fattah, H M; Moubasher, A H; Swelim, M A

    1981-01-01

    The air-borne fungi displayed diurnal periodicities. The total count of fungi exhibited double-peaked pattern, one at 6 a.m. and the other at 18 p.m. (the higher). Aspergillus diurnal activities were almost parallel to those of total fungi. Cladosporium showed on main peak at 18 p.m. Penicillium and Alternaria displayed some pattern of diurnal activity and their maxima were observed.

  19. Diurnal variability of the planetary albedo - An appraisal with satellite measurements and general circulation models

    NASA Technical Reports Server (NTRS)

    Potter, G. L.; Cess, R. D.; Minnis, P.; Harrison, E. F.; Ramanathan, V.

    1988-01-01

    An atmospheric radiation model is used here to illustrate several features associated with modeling the diurnal cycle of the planetary albedo. It is found that even for clear regions there appear to be deficiencies in our knowledge of how to model this quantity. The diurnal amplitude factor, defined as the ratio of the diurnally averaged planetary albedo to that at noon, between two GCMs and measurements made from a geostationary satellite. While reasonable consistency is found, the comparisons underscore difficulties associated with converting local-time albedo measurements, as made from sun-synchronous satellites, to diurnally averaged albedos.

  20. Mars Science Laboratory diurnal moisture observations and column simulations

    NASA Astrophysics Data System (ADS)

    Savijärvi, H. I.; Harri, A.-M.; Kemppinen, O.

    2015-05-01

    Hourly observations of air temperature and relative humidity at 1.6 m height from the surface (T 1.6 m, RH 1.6 m) measured by the Mars Science Laboratory (MSL) Rover Environmental Monitoring Station relative humidity (REMS-H) device are shown for MSL solar days 15-17 and 80-82, augmented with column model simulations. The diurnal range of T 1.6 m was 197-268 K in the first period, RH 1.6 m being small (<1%) in daytime but increasing to 45-49% by sunrise. During the warmer second period the T 1.6 m range was 201-275 K with RH 1.6 m only up to 16% in the morning. The modeled temperatures were quite close to those observed when the local albedo was set to 0.15 and thermal inertia to 300 tiu. The modeled RH 1.6 m was close to that observed when the well-mixed boundary layer values (0-4 km) of the mass mixing ratio q were 28-30 ppmm (suggesting a precipitable water content (PWC) of ~5.5 µm) during the first period and 12 ppmm (PWC of ~2 µm) during the second period. The REMS-H observations indicate systematic diurnal variation in the near-surface mixing ratio.

  1. Modeling multi-frequency diurnal backscatter from a walnut orchard

    NASA Technical Reports Server (NTRS)

    Mcdonald, Kyle C.; Dobson, Myron C.; Ulaby, Fawwaz T.

    1991-01-01

    The Michigan Microwave Canopy Scattering Model (MIMICS) is used to model scatterometer data that were obtained during the August 1987 EOS (Earth Observing System) synergism study. During this experiment, truck-based scatterometers were used to measure radar backscatter from a walnut orchard in Fresno County, California. Multipolarized L- and X-band data were recorded for orchard plots for which dielectric and evapotranspiration characteristics were monitored. MIMICS is used to model a multiangle data set in which a single orchard plot was observed at varying impedance angles and a series of diurnal measurements in which backscatter from this same plot was measured continuously over several 24-h periods. MIMICS accounts for variations in canopy backscatter driven by changes in canopy state that occur diurnally as well as on longer time scales. L-band backscatter is dependent not only on properties of the vegetation but also on properties of the underlying soil surface. The behavior of the X-band backscatter is dominated by properties of the tree crowns.

  2. Diurnal fluctuation of time perception under 30-h sustained wakefulness.

    PubMed

    Kuriyama, Kenichi; Uchiyama, Makoto; Suzuki, Hiroyuki; Tagaya, Hirokuni; Ozaki, Akiko; Aritake, Sayaka; Shibui, Kayo; Xin, Tan; Lan, Li; Kamei, Yuichi; Takahashi, Kiyohisa

    2005-10-01

    Previous studies have reported that time perception in humans fluctuates over a 24-h period. Behavioral changes seem to affect human time perception, so that the fluctuation in human time perception may be the result of such changes due to self-determined activities. Recently, we carried out a study in which a healthy human cohort was asked to perform simultaneously loaded cognitive tasks under controlled conditions, and found that time perception decreased linearly from morning to evening. In addition, the variations in time perception were not a consequence of behavioral changes. It remains to be elucidated whether diurnal variations in time perception are a consequence of circadian rhythm or of some homeostatic changes that are attributable to accumulated wake time. The effects of circadian rhythm on time perception were investigated in eight healthy young male volunteers by conducting 10-s time production tasks under 30-h constant-routine conditions. Core body temperature and serum melatonin and cortisol levels were measured during the course of the study. Produced time exhibited a diurnal variation and was strongly correlated with circadian variations in core body temperature and serum melatonin levels. These results suggest that human short-term time perception is under the influence of the circadian pacemaker.

  3. Diurnal fluctuations in subjective sleep time in humans.

    PubMed

    Aritake-Okada, Sayaka; Higuchi, Shigekazu; Suzuki, Hiroyuki; Kuriyama, Kenichi; Enomoto, Minori; Soshi, Takahiro; Kitamura, Shingo; Watanabe, Makiko; Hida, Akiko; Matsuura, Masato; Uchiyama, Makoto; Mishima, Kazuo

    2010-11-01

    Humans have the ability to estimate the passage of time in the absence of external time cues. In this study, we subjected 22 healthy males (aged 21.8±1.9 years) to a 40-min nap trial followed by 80min of wakefulness repeated over 28h, and investigated the relationship between various sleep parameters and the discrepancy (ΔST) of time estimation ability (TEA) during sleep, defined by the difference between actual sleep time (ST) and subjective sleep time (sub-ST) in each nap interval. Both ST and sub-ST were significant diurnal fluctuations with the peak in the early morning (9h after dim-light melatonin onset time, 2h after nadir time of core body temperature rhythm), and subjective sleep duration was estimated to be longer than actual times in all nap intervals (sub-ST>ST). There were significant diurnal fluctuations in discrepancy (sub-ST-ST) of TEA during sleep, and the degree of discrepancy correlated positively with increase in the amount of REM sleep and decrease in the amount of slow-wave sleep. These findings suggest that human TEA operates at a certain level of discrepancy during sleep, and that this discrepancy might be related to the biological clock and its associated sleep architecture.

  4. Modeling multi-frequency diurnal backscatter from a walnut orchard

    NASA Technical Reports Server (NTRS)

    Mcdonald, Kyle C.; Dobson, Myron C.; Ulaby, Fawwaz T.

    1991-01-01

    The Michigan Microwave Canopy Scattering Model (MIMICS) is used to model scatterometer data that were obtained during the August 1987 EOS (Earth Observing System) synergism study. During this experiment, truck-based scatterometers were used to measure radar backscatter from a walnut orchard in Fresno County, California. Multipolarized L- and X-band data were recorded for orchard plots for which dielectric and evapotranspiration characteristics were monitored. MIMICS is used to model a multiangle data set in which a single orchard plot was observed at varying impedance angles and a series of diurnal measurements in which backscatter from this same plot was measured continuously over several 24-h periods. MIMICS accounts for variations in canopy backscatter driven by changes in canopy state that occur diurnally as well as on longer time scales. L-band backscatter is dependent not only on properties of the vegetation but also on properties of the underlying soil surface. The behavior of the X-band backscatter is dominated by properties of the tree crowns.

  5. A stochastic differential equation model of diurnal cortisol patterns

    NASA Technical Reports Server (NTRS)

    Brown, E. N.; Meehan, P. M.; Dempster, A. P.

    2001-01-01

    Circadian modulation of episodic bursts is recognized as the normal physiological pattern of diurnal variation in plasma cortisol levels. The primary physiological factors underlying these diurnal patterns are the ultradian timing of secretory events, circadian modulation of the amplitude of secretory events, infusion of the hormone from the adrenal gland into the plasma, and clearance of the hormone from the plasma by the liver. Each measured plasma cortisol level has an error arising from the cortisol immunoassay. We demonstrate that all of these three physiological principles can be succinctly summarized in a single stochastic differential equation plus measurement error model and show that physiologically consistent ranges of the model parameters can be determined from published reports. We summarize the model parameters in terms of the multivariate Gaussian probability density and establish the plausibility of the model with a series of simulation studies. Our framework makes possible a sensitivity analysis in which all model parameters are allowed to vary simultaneously. The model offers an approach for simultaneously representing cortisol's ultradian, circadian, and kinetic properties. Our modeling paradigm provides a framework for simulation studies and data analysis that should be readily adaptable to the analysis of other endocrine hormone systems.

  6. Asymmetry in the Diurnal Variation of Surface Albedo

    NASA Technical Reports Server (NTRS)

    Mayor, S.; Smith, W. L., Jr.; Nguyen, L.; Alberta, T. A.; Minnis, P.; Whitlock, C. H.; Schuster, G. L.

    1996-01-01

    Remote sensing of surface properties and estimation of clear-sky and surface albedo generally assumes that the albedo depends only on the solar zenith angle. The effects of dew, frost, and precipitation as well as evaporation and wind can lead to some systematic diurnal variability resulting in an asymmetric diurnal cycle of albedo. This paper examines the symmetry of both surface-observed albedos and top-of-the-atmosphere (TOA) albedos derived from satellite data. Broadband and visible surface albedos were measured at the Department of Energy Atmospheric Radiation Measurement (ARM) Program Southern Great Plains Central Facility, at some fields near the ARM site, and over a coniferous forest in eastern Virginia. Surface and wind conditions are available for most cases. GOES-8 satellite radiance data are converted to broadband albedo using bidirectional reflectance functions and an empirical narrowband-to-broadband relationship. The initial results indicate that surface moisture has a significant effect and can change the albedo in the afternoon by 20% relative to its morning counterpart. Such effects may need to be incorporated in mesoscale and even large-scale models of atmospheric processes.

  7. Extensive Regulation of Diurnal Transcription and Metabolism by Glucocorticoids

    PubMed Central

    Schink, Andrea; Gobet, Cédric; Keime, Céline; Poschet, Gernot; Jost, Bernard; Dickmeis, Thomas

    2016-01-01

    Altered daily patterns of hormone action are suspected to contribute to metabolic disease. It is poorly understood how the adrenal glucocorticoid hormones contribute to the coordination of daily global patterns of transcription and metabolism. Here, we examined diurnal metabolite and transcriptome patterns in a zebrafish glucocorticoid deficiency model by RNA-Seq, NMR spectroscopy and liquid chromatography-based methods. We observed dysregulation of metabolic pathways including glutaminolysis, the citrate and urea cycles and glyoxylate detoxification. Constant, non-rhythmic glucocorticoid treatment rescued many of these changes, with some notable exceptions among the amino acid related pathways. Surprisingly, the non-rhythmic glucocorticoid treatment rescued almost half of the entire dysregulated diurnal transcriptome patterns. A combination of E-box and glucocorticoid response elements is enriched in the rescued genes. This simple enhancer element combination is sufficient to drive rhythmic circadian reporter gene expression under non-rhythmic glucocorticoid exposure, revealing a permissive function for the hormones in glucocorticoid-dependent circadian transcription. Our work highlights metabolic pathways potentially contributing to morbidity in patients with glucocorticoid deficiency, even under glucocorticoid replacement therapy. Moreover, we provide mechanistic insight into the interaction between the circadian clock and glucocorticoids in the transcriptional regulation of metabolism. PMID:27941970

  8. Perceived Partner Responsiveness Predicts Diurnal Cortisol Profiles 10 Years Later

    PubMed Central

    Slatcher, Richard B.; Selcuk, Emre; Ong, Anthony D.

    2015-01-01

    Several decades of research have demonstrated that marital relationships have a powerful influence on physical health. However, surprisingly little is known about how marriage affects health—both in terms of psychological processes and biological ones. We investigated the associations between perceived partner responsiveness—the extent to which people feel understood, cared for and appreciated by their romantic partner—and diurnal cortisol over a 10-year period in a large sample of married and cohabitating couples in the U.S. Partner responsiveness predicted higher wakeup cortisol values and steeper (“healthier”) cortisol slopes at the 10-year follow-up, and these associations remained strong after controlling for demographic factors, depressive symptoms, agreeableness, and other positive and negative relationship factors. Further, declines in negative affect over the 10-year period mediated the prospective association between responsiveness and cortisol slope. These findings suggest that diurnal cortisol may be a key biological pathway through which social relationships impact long-term health. PMID:26015413

  9. Diurnal variations in optical depth at Mars: Observations and interpretations

    NASA Technical Reports Server (NTRS)

    Colburn, D. S.; Pollack, J. B.; Haberle, R. M.

    1988-01-01

    Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Optical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combining these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday.

  10. Diurnal temperature asymmetries and fog at Churchill, Manitoba

    NASA Astrophysics Data System (ADS)

    Gough, William A.; He, Dianze

    2015-07-01

    A variety of methods are available to calculate daily mean temperature. We explore how the difference between two commonly used methods provides insight into the local climate of Churchill, Manitoba. In particular, we found that these differences related closely to seasonal fog. A strong statistically significant correlation was found between the fog frequency (hours per day) and the diurnal temperature asymmetries of the surface temperature using the difference between the min/max and 24-h methods of daily temperature calculation. The relationship was particularly strong for winter, spring and summer. Autumn appears to experience the joint effect of fog formation and the radiative effect of snow cover. The results of this study suggests that subtle variations of diurnality of temperature, as measured in the difference of the two mean temperature methods of calculation, may be used as a proxy for fog detection in the Hudson Bay region. These results also provide a cautionary note for the spatial analysis of mean temperatures using data derived from the two different methods particularly in areas that are fog prone.

  11. Modulation Cycles of Galactic Cosmic Ray Diurnal Anisotropy Variation

    NASA Astrophysics Data System (ADS)

    Oh, S. Y.; Yi, Y.; Bieber, J. W.

    2010-03-01

    The diurnal variation of the galactic cosmic ray (GCR) count rates measured by a ground-based neutron monitor (NM) station represents an anisotropic flow of GCR at 1 AU. The variation of the local time of GCR maximum intensity (we call the phase) is thought in general to have a period of two sunspot cycles (22 years). However, other interpretations are also possible. In order to determine the cyclic behavior of GCR anisotropic variation more precisely, we have carried out a statistical study on the diurnal variation of the phase. We examined 54-year data of Huancayo (Haleakala), 40-year data from Rome, and 43-year data from Oulu NM stations using the ‘pile-up’ method and the F-test. We found that the phase variation has two components: of 22-year and 11-year cycles. All NM stations show mainly the 22-year phase variation controlled by the drift effect due to solar polar magnetic field reversal, regardless of their latitudinal location (cut-off rigidity). However, the lower the NM station latitude is (the higher the cut-off rigidity is), the higher is the contribution from the 11-year phase variation controlled by the diffusion effect due to the change in strength of the interplanetary magnetic fields associated with the sunspot cycle.

  12. The diurnal and semidiurnal oscillations in meteor winds over Atlanta

    NASA Astrophysics Data System (ADS)

    Ahmed, M. I.; Roper, R. G.

    The wind data collected over Atlanta during the period August 1974-February 1978 using the Georgia Tech Radio Meteor Wind Facility, is analyzed to yield an average picture of the seasonal behavior of its diurnal tides. Both the zonal and meridional components are studied. The vertical structures of these oscillations over Atlanta are compared with similar studies over Garchy, Urbana and Adelaide. For the semidiurnal tide: the vertical structure during winter appears to have a strong latitude dependence, with vertical wavelength increasing with decreasing latitude; in spring, the (2, 4) and (2, 6) modes appear to dominate at all stations; in summer, the behavior is the same at all four locations, characterized by the apparent domination of the (2,2) mode; in autumn, both the Garchy and Atlanta results indicate the presence of a (2,2) mode, while the (2,4) mode appears to dominate over Urbana. The behavior of the diurnal tide is less well defined: during winter, as latitude decreases from Garchy to Atlanta, evanescent and higher order propagating modes seem to dominate; both spring and summer are characterized by a gradual decrease in observed vertical wavelengths as latitude decreases; in northern hemisphere autumn, the fundamental (1, 1) mode appears to dominate, but at Adelaide in southern hemisphere autumn, predominatly evanescent modes are observed.

  13. Deep learning over diurnal and other environmental effects

    NASA Astrophysics Data System (ADS)

    Rosario, Dalton; Rauss, Patrick

    2017-05-01

    We study the transfer learning behavior of a Hybrid Deep Network (HDN) applied to a challenging longwave infrared hyperspectral dataset, consisting of radiance from several manmade and natural materials within a fixed site located 500 m from an observation tower, over multiple full diurnal cycles and different atmospheric conditions. The HDN architecture adopted in this study stakes a number of Restricted Boltzmann Machines to form a deep belief network for generative pre-training, or initialization of weight parameters, and then combines with a discriminative learning procedure that fine-tune all of the weights jointly to improve the network's performance. After fine-tuning, a network with three hidden layers forms a very good generative model of the joint distribution of spectral data and their labels, despite of significant data variability observed between and within classes due to environmental and temperature variation, occurring within full diurnal cycles. We argue, however, that more question are raised than answers are provided regarding the generalization capacity of these deep nets through experiments aimed for investigating their training and transfer learning behavior in the longwave infrared region of the electromagnetic spectrum.

  14. Seasonal and diurnal calling patterns of Ross and leopards

    NASA Astrophysics Data System (ADS)

    Rogers, Tracey L.; Rowney, Gayle A.; Ciaglia, Michaela B.; Cato, Douglas H.

    2005-09-01

    The temporal calling patterns of two Antarctic pack ice seals, the leopard and Ross seal, were examined. This included seasonal onset and decline of calling (coinciding with their breeding season) as well as diurnal changes. Understanding of calling behavior has important implications for acoustic surveying, since this allows the number of calls to be related to an index of the number of animals present and to estimate abundance. The monthly changes in diurnal calling and haul-out patterns (measured via satellite telemetry) were compared. Underwater acoustic recordings were made between 14 October 2003 and 10 January 2004 off Mawson, Eastern Antarctica (660 44.243S and 690 48.748E). Recordings were made using an Acoustics Recording Package (ARP by Dr. John Hildebrand, Scripps Institute of Oceanography, La Jolla, CA) which is designed to sit on the seafloor and passively record acoustic signals. The package was deployed at a depth of 1320.7 m. The sampling rate was 500 Hz and the effective bandwidth from 10 to 250 Hz, covering the bandwidth of only the low-frequency calls of the Ross and leopard seal.

  15. Diurnal Oscillations of Soybean Circadian Clock and Drought Responsive Genes

    PubMed Central

    Marcolino-Gomes, Juliana; Rodrigues, Fabiana Aparecida; Fuganti-Pagliarini, Renata; Bendix, Claire; Nakayama, Thiago Jonas; Celaya, Brandon; Molinari, Hugo Bruno Correa; de Oliveira, Maria Cristina Neves; Harmon, Frank G.; Nepomuceno, Alexandre

    2014-01-01

    Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i) drought stress affects gene expression of circadian clock components and (ii) several stress responsive genes display diurnal oscillation in soybeans. PMID:24475115

  16. A stochastic differential equation model of diurnal cortisol patterns

    NASA Technical Reports Server (NTRS)

    Brown, E. N.; Meehan, P. M.; Dempster, A. P.

    2001-01-01

    Circadian modulation of episodic bursts is recognized as the normal physiological pattern of diurnal variation in plasma cortisol levels. The primary physiological factors underlying these diurnal patterns are the ultradian timing of secretory events, circadian modulation of the amplitude of secretory events, infusion of the hormone from the adrenal gland into the plasma, and clearance of the hormone from the plasma by the liver. Each measured plasma cortisol level has an error arising from the cortisol immunoassay. We demonstrate that all of these three physiological principles can be succinctly summarized in a single stochastic differential equation plus measurement error model and show that physiologically consistent ranges of the model parameters can be determined from published reports. We summarize the model parameters in terms of the multivariate Gaussian probability density and establish the plausibility of the model with a series of simulation studies. Our framework makes possible a sensitivity analysis in which all model parameters are allowed to vary simultaneously. The model offers an approach for simultaneously representing cortisol's ultradian, circadian, and kinetic properties. Our modeling paradigm provides a framework for simulation studies and data analysis that should be readily adaptable to the analysis of other endocrine hormone systems.

  17. Termite mounds harness diurnal temperature oscillations for ventilation.

    PubMed

    King, Hunter; Ocko, Samuel; Mahadevan, L

    2015-09-15

    Many species of millimetric fungus-harvesting termites collectively build uninhabited, massive mound structures enclosing a network of broad tunnels that protrude from the ground meters above their subterranean nests. It is widely accepted that the purpose of these mounds is to give the colony a controlled microclimate in which to raise fungus and brood by managing heat, humidity, and respiratory gas exchange. Although different hypotheses such as steady and fluctuating external wind and internal metabolic heating have been proposed for ventilating the mound, the absence of direct in situ measurement of internal air flows has precluded a definitive mechanism for this critical physiological function. By measuring diurnal variations in flow through the surface conduits of the mounds of the species Odontotermes obesus, we show that a simple combination of geometry, heterogeneous thermal mass, and porosity allows the mounds to use diurnal ambient temperature oscillations for ventilation. In particular, the thin outer flutelike conduits heat up rapidly during the day relative to the deeper chimneys, pushing air up the flutes and down the chimney in a closed convection cell, with the converse situation at night. These cyclic flows in the mound flush out CO2 from the nest and ventilate the colony, in an unusual example of deriving useful work from thermal oscillations.

  18. Role of Carbohydrates in Diurnal Chilling Sensitivity of Tomato Seedlings

    PubMed Central

    King, Ann I.; Joyce, Daryl C.; Reid, Michael S.

    1988-01-01

    Tomato seedlings (Lycopersicon esculentum Mill.) chilled starting at different times during the light/dark cycle were most chilling-sensitive at the end of the dark period (AI King, MS Reid, BD Patterson 1982 Plant Physiol 70: 211-214). Low-temperature tolerance was regained with as little as 10 minutes of light exposure. Low light intensities were less effective than high light intensities in reducing sensitivity, and the length of exposure to light directly influenced sensitivity. Seedlings kept at low night temperatures prior to chilling were also less injured following chilling. Light also restored chilling tolerance to seedlings whose roots were removed. Supplying cut shoots with sucrose, glucose, or fructose reduced chilling sensitivity and largely eliminated the diurnal difference in sensitivity. Endogenous carbohydrate content was correlated with changes in chilling sensitivity; starch and sugar content fell markedly during the dark period. Increased concentrations of sugars were detected 15 minutes after the start of the light period. This evidence all suggests that changes in chilling sensitivity over the diurnal period are regulated by the light cycle. It also suggests that increased sensitivity at the end of the dark period could be due to carbohydrate depletion, and that chilling tolerance following light exposure is likely due to carbohydrate accumulation or closely related events. PMID:16665984

  19. Seasonal and diurnal characteristics of atmospheric carbonyls in Nanning, China

    NASA Astrophysics Data System (ADS)

    Guo, Songjun; Chen, Mei; Tan, Jihua

    2016-03-01

    For the first time, atmospheric carbonyls were measured to identify seasonal and diurnal variations in Nanning from October 2011 to July 2012. Formaldehyde (6.79 ± 3.39 μg/m3), acetaldehyde (15.81 ± 10.48 μg/m3) and acetone (5.43 ± 6.91 μg/m3) were the three most abundant carbonyls, accounting for ~ 85% of the total carbonyls. The average total concentrations of carbonyls and three abundant carbonyls showed significant high levels in summer compared to those in winter. Diurnal variations suggested that photochemical conditions, combustion of charcoal and straw, and solvent usage are important for the distributions of atmospheric carbonyls. The highest average C1/C2 ratio was observed in summer (0.75) compared to those (0.31-0.70) in other seasons, implying the positive effect of photochemical activities on raising C1/C2 ratio, and the significant low C2/C3 ratio (12.01-18.23) in winter and autumn than those (95.83-24.49) in both spring and summer suggested the important anthropogenic emissions such as charcoal and biomass combustion. O3 formation potentials in summer and spring were significantly higher by ~ 2 times than those in autumn and winter. Formaldehyde and acetaldehyde are the top two carbonyls which contribute 82-97% to total O3 formation potentials.

  20. The Effect of Diurnal Variations on Ionospheric Radio Occultations

    NASA Astrophysics Data System (ADS)

    Yelle, Roger V.; Koskinen, Tommi; Withers, Paul; Schinder, Paul J.; Moses, Julianne I.; Mueller-Wodarg, Ingo

    2016-10-01

    Radio occultations are a powerful technique for the study of atmospheres and ionospheres by planetary spacecraft. For missions to the outer solar system, the occultations always probe the terminator region of the planet. The analysis of radio occultations typically assumes symmetry along the ray path in the horizontal direction about the tangent point. While this is an excellent assumption for the neutral atmosphere where the scale length of horizontal gradients is large, it is suspect for the ionosphere where electron densities decrease rapidly from day to night. Diurnal variations in peak electron density are often several orders of magnitude and may occur over a region of a few degrees. We investigate the consequences of diurnal variations on ionospheric occultations with a ray tracing calculation for the angular deflection and frequency residual of the radio wave. The calculations are based on photochemical/diffusion models for the ionospheres of Saturn and Titan. Differences from analysis based on the assumption of horizontal symmetry are most pronounced in the bottom side ionosphere where chemical time constants are short.

  1. Termite mounds harness diurnal temperature oscillations for ventilation

    PubMed Central

    King, Hunter; Ocko, Samuel; Mahadevan, L.

    2015-01-01

    Many species of millimetric fungus-harvesting termites collectively build uninhabited, massive mound structures enclosing a network of broad tunnels that protrude from the ground meters above their subterranean nests. It is widely accepted that the purpose of these mounds is to give the colony a controlled microclimate in which to raise fungus and brood by managing heat, humidity, and respiratory gas exchange. Although different hypotheses such as steady and fluctuating external wind and internal metabolic heating have been proposed for ventilating the mound, the absence of direct in situ measurement of internal air flows has precluded a definitive mechanism for this critical physiological function. By measuring diurnal variations in flow through the surface conduits of the mounds of the species Odontotermes obesus, we show that a simple combination of geometry, heterogeneous thermal mass, and porosity allows the mounds to use diurnal ambient temperature oscillations for ventilation. In particular, the thin outer flutelike conduits heat up rapidly during the day relative to the deeper chimneys, pushing air up the flutes and down the chimney in a closed convection cell, with the converse situation at night. These cyclic flows in the mound flush out CO2 from the nest and ventilate the colony, in an unusual example of deriving useful work from thermal oscillations. PMID:26316023

  2. Listening to music affects diurnal variation in muscle power output.

    PubMed

    Chtourou, H; Chaouachi, A; Hammouda, O; Chamari, K; Souissi, N

    2012-01-01

    The purpose of this investigation was to assess the effects of listening to music while warming-up on the diurnal variations of power output during the Wingate test. 12 physical education students underwent four Wingate tests at 07:00 and 17:00 h, after 10 min of warm-up with and without listening to music. The warm-up consisted of 10 min of pedalling at a constant pace of 60 rpm against a light load of 1 kg. During the Wingate test, peak and mean power were measured. The main finding was that peak and mean power improved from morning to afternoon after no music warm-up (p<0.001 and p<0.01, respectively). These diurnal variations disappeared for mean power and persisted with an attenuated morning-evening difference (p<0.05) for peak power after music warm-up. Moreover, peak and mean power were significantly higher after music than no music warm-up during the two times of testing. Thus, as it is a legal method and an additional aid, music should be used during warm-up before performing activities requiring powerful lower limbs' muscles contractions, especially in the morning competitive events.

  3. Diurnal variations in optical depth at Mars: Observations and interpretations

    NASA Astrophysics Data System (ADS)

    Colburn, D. S.; Pollack, J. B.; Haberle, R. M.

    1988-05-01

    Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Optical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combining these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday.

  4. Extensive Regulation of Diurnal Transcription and Metabolism by Glucocorticoids.

    PubMed

    Weger, Benjamin D; Weger, Meltem; Görling, Benjamin; Schink, Andrea; Gobet, Cédric; Keime, Céline; Poschet, Gernot; Jost, Bernard; Krone, Nils; Hell, Rüdiger; Gachon, Frédéric; Luy, Burkhard; Dickmeis, Thomas

    2016-12-01

    Altered daily patterns of hormone action are suspected to contribute to metabolic disease. It is poorly understood how the adrenal glucocorticoid hormones contribute to the coordination of daily global patterns of transcription and metabolism. Here, we examined diurnal metabolite and transcriptome patterns in a zebrafish glucocorticoid deficiency model by RNA-Seq, NMR spectroscopy and liquid chromatography-based methods. We observed dysregulation of metabolic pathways including glutaminolysis, the citrate and urea cycles and glyoxylate detoxification. Constant, non-rhythmic glucocorticoid treatment rescued many of these changes, with some notable exceptions among the amino acid related pathways. Surprisingly, the non-rhythmic glucocorticoid treatment rescued almost half of the entire dysregulated diurnal transcriptome patterns. A combination of E-box and glucocorticoid response elements is enriched in the rescued genes. This simple enhancer element combination is sufficient to drive rhythmic circadian reporter gene expression under non-rhythmic glucocorticoid exposure, revealing a permissive function for the hormones in glucocorticoid-dependent circadian transcription. Our work highlights metabolic pathways potentially contributing to morbidity in patients with glucocorticoid deficiency, even under glucocorticoid replacement therapy. Moreover, we provide mechanistic insight into the interaction between the circadian clock and glucocorticoids in the transcriptional regulation of metabolism.

  5. Diurnal oscillations of soybean circadian clock and drought responsive genes.

    PubMed

    Marcolino-Gomes, Juliana; Rodrigues, Fabiana Aparecida; Fuganti-Pagliarini, Renata; Bendix, Claire; Nakayama, Thiago Jonas; Celaya, Brandon; Molinari, Hugo Bruno Correa; de Oliveira, Maria Cristina Neves; Harmon, Frank G; Nepomuceno, Alexandre

    2014-01-01

    Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i) drought stress affects gene expression of circadian clock components and (ii) several stress responsive genes display diurnal oscillation in soybeans.

  6. Short communication: Diurnal feeding pattern of lactating dairy cows.

    PubMed

    DeVries, T J; von Keyserlingk, M A G; Beauchemin, K A

    2003-12-01

    The objectives of this research were to: 1) describe the diurnal variation in feed alley attendance patterns of lactating dairy cows, 2) describe the sources of variation in these patterns, and 3) determine the effects of altering the feed push-up schedule on these patterns. An electronic monitoring system was used to record individual cow presence (6-s resolution) at the feed alley for 24 cows housed in a free-stall barn. Cows were subjected to 2 feeding schedules: 1) baseline schedule, where cows were fed at 0600 and 1515 h and feed was pushed closer to the cows at 1100 and 2130 h; and 2) experimental schedule, where 2 additional feed push-ups at 0030 and 0330 h were added to the baseline schedule. With the data collected from the monitoring system, description of the feed alley attendance patterns on a per minute basis of the group of cows was undertaken. Feed alley attendance was consistently higher during the day and early evening compared with the late night and early morning hours. The greatest percentage of cows attending the feed alley was seen after the delivery of fresh feed and the return from milking. The addition of extra feed push-ups in the early morning hours did little to increase feeding activity. It can be concluded that milking and delivery of fresh feed had a much greater affect on the diurnal pattern of feed alley attendance than did the feed push-ups.

  7. Deep greedy learning under thermal variability in full diurnal cycles

    NASA Astrophysics Data System (ADS)

    Rauss, Patrick; Rosario, Dalton

    2017-08-01

    We study the generalization and scalability behavior of a deep belief network (DBN) applied to a challenging long-wave infrared hyperspectral dataset, consisting of radiance from several manmade and natural materials within a fixed site located 500 m from an observation tower. The collections cover multiple full diurnal cycles and include different atmospheric conditions. Using complementary priors, a DBN uses a greedy algorithm that can learn deep, directed belief networks one layer at a time and has two layers form to provide undirected associative memory. The greedy algorithm initializes a slower learning procedure, which fine-tunes the weights, using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a very good generative model of the joint distribution of spectral data and their labels, despite significant data variability between and within classes due to environmental and temperature variation occurring within and between full diurnal cycles. We argue, however, that more questions than answers are raised regarding the generalization capacity of these deep nets through experiments aimed at investigating their training and augmented learning behavior.

  8. Cumulus moistening, the diurnal cycle, and large-scale tropical dynamics

    NASA Astrophysics Data System (ADS)

    Ruppert, James H., Jr.

    Observations and modeling techniques are employed to diagnose the importance of the diurnal cycle in large-scale tropical climate. In the first part of the study, soundings, radar, and surface flux measurements collected in the Indian Ocean DYNAMO experiment (Dynamics of the Madden--Julian Oscillation, or MJO) are employed to study MJO convective onset. According to these observations, MJO onset takes place as follows: moistening of the low--midtroposphere is accomplished by cumuliform clouds that deepen as the drying by large-scale subsidence and horizontal advection simultaneously wane. This relaxing of subsidence is tied to decreasing column radiative cooling, which links back to the evolving cloud population. A new finding from these observations is the high degree to which the diurnal cycle linked to air-sea and radiative fluxes invigorates clouds and drives column moistening each day. This diurnally modulated cloud field exhibits pronounced mesoscale organization in the form of open cells and horizontal convective rolls. Based on these findings, it is hypothesized that the diurnal cycle and mesoscale cloud organization represent two manners in which local convective processes promote more vigorous day-to-day tropospheric moistening than would otherwise occur. A suite of model tests are carried out in the second part of the study to 1) test the hypothesis that the diurnal cycle drives moistening on longer timescales, and 2) better understand the relative roles of diurnally varying sea surface temperature (SST) and direct atmospheric radiative heating in the diurnal cycle of convection. Moist convection is explicitly represented in the model, the diurnal cycle of SST is prescribed, and cloud-interactive radiation is simulated with a diurnal cycle in shortwave heating. The large-scale dynamics are parameterized using the spectral weak temperature gradient (WTG) technique recently introduced by Herman and Raymond. In this scheme, external (i.e., large

  9. A combined GPS/GLONASS global solution for the determination of diurnal and semi-diurnal Earth rotation variations

    NASA Astrophysics Data System (ADS)

    Englich, S.; Weber, R.; Schuh, H.

    2009-04-01

    Due to the global distribution of the IGS stations and the availability of continuous tracking data, GNSS observation data is very well suited for the investigation of high-frequency variations of the Earth rotation parameters (ERP). The majority of obtainable observations stems from the GPS system, but the number of stations equipped with combined GPS/GLONASS receivers is steadily increasing. One drawback in GPS only studies is that the orbital period of the GPS satellites is in a deep 2:1 resonance with Earth rotation. Consequently orbital errors which propagate to the ERP estimation limit the accurate determination of ERP variations in this frequency band (K1, K2). The purpose of this study is to make use of the rising availability of globally distributed GLONASS data for investigating the benefits of a combined GPS/GLONASS approach for the examination of diurnal and semi-diurnal Earth rotation variations. The observation data of 2008 from more than 120 IGS sites, of which around one third track GPS as well as GLONASS satellites, was chosen for analysis. We compared coordinate repeatabilities, ERP, and subsequently derived tidal variations calculated from a GPS stand-alone and a combined GPS/GLONASS solution.

  10. Estimation of diurnal shortwave dust aerosol radiative forcing during PRIDE

    NASA Astrophysics Data System (ADS)

    Christopher, Sundar A.; Wang, Jun; Ji, Qiang; Tsay, Si-Chee

    2003-10-01

    Using measured and derived aerosol properties from the Puerto Rico Dust Experiment (PRIDE), a four-stream broadband radiative transfer model is used to calculate the downward shortwave irradiance (DSWI) at the surface and the shortwave irradiance at the top of atmosphere (TOA). The results of the calculated DSWI are compared against pyranometer measurements from the Surface Measurements For Atmospheric Radiative Transfer (SMART) instrument suite at Roosevelt Road (18.20°N, 65.60°W). Using aerosol optical thickness retrievals from half-hourly geostationary satellite data (GOES 8 imager), the diurnal short wave aerosol forcing (SWARF) of dust aerosols both at the surface and TOA are calculated for the entire study area (14°N ˜ 26°N, 61°W ˜ 73°W). For selected days, the Clouds and the Earth Radiant Energy System (CERES) TOA shortwave irradiance values from Terra are compared with radiative transfer calculations. [2003] show that the satellite derived aerosol optical thickness is in excellent agreement with Aerosol Robotic Network (AERONET) values. Results of this study show that the calculated direct, diffuse and total DSWI are in excellent agreement with the corresponding SMART values with biases of 1.8%, -3.3% and 0.5% respectively, indicating that dust aerosols are well characterized in the radiative transfer model. This is well within the measured uncertainties (1.3%) and the model uncertainties (5%). The monthly mean value and standard deviation of aerosol optical thickness at 670 nm (AOT670) during PRIDE are 0.26 ± 0.13, and the corresponding monthly mean daytime SWARF values are -12.34 ± 9.62 W m-2 at TOA and -18.13 ± 15.81 W m-2 at the surface, respectively. Our results also show that if diurnal changes in aerosol optical thickness are not considered, it leads to uncertainties in SWARF of 4 W m-2 at the surface and 2 W m-2 at the TOA. The CERES TOA short wave irradiance underestimates calculated values by about 10 W m-2 mainly due problems in

  11. Annual and diurnal african biomass burning temporal dynamics

    NASA Astrophysics Data System (ADS)

    Roberts, G.; Wooster, M. J.; Lagoudakis, E.

    2009-05-01

    Africa is the single largest continental source of biomass burning emissions. Here we conduct the first analysis of one full year of geostationary active fire detections and fire radiative power data recorded over Africa at 15-min temporal interval and a 3 km sub-satellite spatial resolution by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) imaging radiometer onboard the Meteosat-8 satellite. We use these data to provide new insights into the rates and totals of open biomass burning over Africa, particularly into the extremely strong seasonal and diurnal cycles that exist across the continent. We estimate peak daily biomass combustion totals to be 9 and 6 million tonnes of fuel per day in the northern and southern hemispheres respectively, and total fuel consumption between February 2004 and January 2005 is estimated to be at least 855 million tonnes. Analysis is carried out with regard to fire pixel temporal persistence, and we note that the majority of African fires are detected only once in consecutive 15 min imaging slots. An investigation of the variability of the diurnal fire cycle is carried out with respect to 20 different land cover types, and whilst differences are noted between land covers, the fire diurnal cycle characteristics for most land cover type are very similar in both African hemispheres. We compare the Fire Radiative Power (FRP) derived biomass combustion estimates to burned-areas, both at the scale of individual fires and over the entire continent at a 1-degree scale. Fuel consumption estimates are found to be less than 2 kg/m2 for all land cover types noted to be subject to significant fire activity, and for savanna grasslands where literature values are commonly reported the FRP-derived median fuel consumption estimate of 300 g/m2 is well within commonly quoted values. Meteosat-derived FRP data of the type presented here is now available freely to interested users continuously and in near real-time for Africa, Europe and parts

  12. Seasonal and spatial patterns in diurnal cycles in streamflow in the western United States

    USGS Publications Warehouse

    Lundquist, J.D.; Cayan, D.R.

    2002-01-01

    The diurnal cycle in streamflow constitutes a significant part of the variability in many rivers in the western United States and can be used to understand some of the dominant processes affecting the water balance of a given river basin. Rivers in which water is added diurnally, as in snowmelt, and rivers in which water is removed diurnally, as in evapotranspiration and infiltration, exhibit substantial differences in the timing, relative magnitude, and shape of their diurnal flow variations. Snowmelt-dominated rivers achieve their highest sustained flow and largest diurnal fluctuations during the spring melt season. These fluctuations are characterized by sharp rises and gradual declines in discharge each day. In large snowmelt-dominated basins, at the end of the melt season, the hour of maximum discharge shifts to later in the day as the snow line retreats to higher elevations. Many evapotranspiration/infiltration-dominated rivers in the western states achieve their highest sustained flows during the winter rainy season but exhibit their strongest diurnal cycles during summer months, when discharge is low, and the diurnal fluctuations compose a large percentage of the total flow. In contrast to snowmelt-dominated rivers, the maximum discharge in evapotranspiration/infiltration-dominated rivers occurs consistently in the morning throughout the summer. In these rivers, diurnal changes are characterized by a gradual rise and sharp decline each day.

  13. The influence of diurnal temperature variation on degree-day accumulation and insect life history.

    PubMed

    Chen, Shi; Fleischer, Shelby J; Saunders, Michael C; Thomas, Matthew B

    2015-01-01

    Ectotherms, such as insects, experience non-constant temperatures in nature. Daily mean temperatures can be derived from the daily maximum and minimum temperatures. However, the converse is not true and environments with the same mean temperature can exhibit very different diurnal temperate ranges. Here we apply a degree-day model for development of the grape berry moth (Paralobesia viteana, a significant vineyard pest in the northeastern USA) to investigate how different diurnal temperature range conditions can influence degree-day accumulation and, hence, insect life history. We first consider changes in diurnal temperature range independent of changes in mean temperatures. We then investigate grape berry moth life history under potential climate change conditions, increasing mean temperature via variable patterns of change to diurnal temperature range. We predict that diurnal temperature range change can substantially alter insect life history. Altering diurnal temperature range independent of the mean temperature can affect development rate and voltinism, with the magnitude of the effects dependent on whether changes occur to the daily minimum temperature (Tmin), daily maximum temperature (Tmax), or both. Allowing for an increase in mean temperature produces more marked effects on life history but, again, the patterns and magnitude depend on the nature of the change to diurnal temperature range together with the starting conditions in the local environment. The study highlights the importance of characterizing the influence of diurnal temperature range in addition to mean temperature alone.

  14. 40 CFR 1060.525 - How do I test fuel systems for diurnal emissions?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... measure diurnal emissions: (1) Diurnal measurements are based on a representative temperature cycle. For marine fuel tanks, the temperature cycle specifies fuel temperatures rather than ambient temperatures. The applicable temperature cycle is indicated in the following table: Table 1 to §...

  15. 40 CFR 1060.525 - How do I test fuel systems for diurnal emissions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... measure diurnal emissions: (1) Diurnal measurements are based on a representative temperature cycle. For marine fuel tanks, the temperature cycle specifies fuel temperatures rather than ambient temperatures. The applicable temperature cycle is indicated in the following table: Table 1 to §...

  16. The Influence of Diurnal Temperature Variation on Degree-Day Accumulation and Insect Life History

    PubMed Central

    Chen, Shi; Fleischer, Shelby J.; Saunders, Michael C.; Thomas, Matthew B.

    2015-01-01

    Ectotherms, such as insects, experience non-constant temperatures in nature. Daily mean temperatures can be derived from the daily maximum and minimum temperatures. However, the converse is not true and environments with the same mean temperature can exhibit very different diurnal temperate ranges. Here we apply a degree-day model for development of the grape berry moth (Paralobesia viteana, a significant vineyard pest in the northeastern USA) to investigate how different diurnal temperature range conditions can influence degree-day accumulation and, hence, insect life history. We first consider changes in diurnal temperature range independent of changes in mean temperatures. We then investigate grape berry moth life history under potential climate change conditions, increasing mean temperature via variable patterns of change to diurnal temperature range. We predict that diurnal temperature range change can substantially alter insect life history. Altering diurnal temperature range independent of the mean temperature can affect development rate and voltinism, with the magnitude of the effects dependent on whether changes occur to the daily minimum temperature (Tmin), daily maximum temperature (Tmax), or both. Allowing for an increase in mean temperature produces more marked effects on life history but, again, the patterns and magnitude depend on the nature of the change to diurnal temperature range together with the starting conditions in the local environment. The study highlights the importance of characterizing the influence of diurnal temperature range in addition to mean temperature alone. PMID:25790195

  17. Diurnal centroid of ecosystem energy and carbon fluxes at FLUXNET sites

    Treesearch

    Kell B. Wilson; Dennis Baldocchi; Eva Falge; Marc Aubinet; Paul Berbigier; Christian Bernhofer; Han Dolman; Chris Field; Allen Goldstein; Andre Granier; Dave Hollinger; Gabriel Katul; B.E. Law; Tilden Meyers; John Moncrieff; Russ Monson; John Tenhunen; Riccardo Valentini; Shashi Verma; Steve. Wofsy

    2003-01-01

    Data from a network of eddy covariance stations in Europe and North America (FLUXNET) were analyzed to examine the diurnal patterns of surface energy and carbon fluxes during the summer period across a range of ecosystems and climates. Diurnal trends were quantified by assessing the time of day surface fluxes and meteorological variable reached peak values, using the...

  18. Nonmigrating diurnal tide long term variability observed by the TIMED Doppler Interferometer (TIDI)

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Killeen, T. L.; Solomon, S. C.; Ortland, D. A.; Skinner, W. R.; Niciejewski, R. J.

    2007-12-01

    We will examine the temporal variations of nonmigrating diurnal tide in the mesosphere and lower thermosphere using the TIMED Doppler interferometer neutral wind data. The stratosphere QBO is the major source for the interannual variability of migrating tide in the mesosphere and lower thermosphere. There are reports of the possible QBO related the nonmigrating diurnal tide interannual variabilities. Buy examine the tidal variations using spectral analysis method, we plan to examine long term variations in the nonmigrating diurnal tides beyond these related to the QBO. The TIDI data will allow us to examine the diurnal tide variation at different latitudes and altitudes. We will also examine changes in the mean zonal winds in search of possible connection between mean zonal wind and nonmigrating diurnal tides.

  19. Providing Diurnal Sky Cover Data at ARM Sites

    SciTech Connect

    Klebe, Dimitri I.

    2015-03-06

    The Solmirus Corporation was awarded two-year funding to perform a comprehensive data analysis of observations made during Solmirus’ 2009 field campaign (conducted from May 21 to July 27, 2009 at the ARM SGP site) using their All Sky Infrared Visible Analyzer (ASIVA) instrument. The objective was to develop a suite of cloud property data products for the ASIVA instrument that could be implemented in real time and tailored for cloud modelers. This final report describes Solmirus’ research and findings enabled by this grant. The primary objective of this award was to develop a diurnal sky cover (SC) data product utilizing the ASIVA’s infrared (IR) radiometrically-calibrated data and is described in detail. Other data products discussed in this report include the sky cover derived from ASIVA’s visible channel and precipitable water vapor, cloud temperature (both brightness and color), and cloud height inferred from ASIVA’s IR channels.

  20. Reducing severe diurnal bruxism in two profoundly retarded females.

    PubMed Central

    Blount, R L; Drabman, R S; Wilson, N; Stewart, D

    1982-01-01

    Several diurnal audible teeth grinding (bruxism) was found to affect 21.5% of a profoundly retarded population. However, no previous research has treated bruxism in retarded individuals. In the current study a multiple baseline across subjects design was used to assess the effectiveness of contingent "icing," brief contingent tactile applications of ice, as a treatment for bruxism. Three 15-minute treatment periods and two 5-minute generalization periods were conducted 5 days per week. One resident displayed a 95% reduction in the percentage of intervals during which bruxism occurred during treatment periods and a 67% reduction during generalization periods. The other resident displayed a 94% reduction in the percentage of intervals during which bruxism occurred during treatment periods and a 53% reduction during generalization periods. PMID:6891381

  1. Measurement of stratospheric HOCl - Concentration profiles, including diurnal variation

    NASA Technical Reports Server (NTRS)

    Chance, K. V.; Johnson, D. G.; Traub, W. A.

    1989-01-01

    Determinations have been made of concentration profiles of HOCl in the earth's stratosphere, including the diurnal variation. Measurements of the rotational Q2 branch at 99.5/cm and of five RR(J3) transitions between 143 and 159/cm were made using far-infrared thermal emission spectroscopy. The spectra were obtained during a balloon flight of the FIRS 2 far-infrared Fourier-transform spectrometer and telescope from Palestine, Texas on May 12-13, 1988. From these measurements, altitude profiles of HOCl from 23 to 42 km are obtained. Daytime and nighttime average profiles of HOCl, as well as measurements on a 30-min time scale through the sunset transition at a single (35 km) altitude are presented. The measured profiles are lower than the current predictions from several modeling groups by a factor of approximately 0.6.

  2. Melatonin in Epilepsy: A New Mathematical Model of Diurnal Secretion

    PubMed Central

    Kijonka, Marek; Pęcka, Marcin; Sokół, Maria

    2016-01-01

    Purpose. The main objective of the study was to create a mathematical model that describes the melatonin circadian secretion and, then the functionality of the model was tested by a comparison of the melatonin secretions in children with and without epilepsy. Material and Methods. The patients were divided into the epilepsy group (EG, n = 52) and the comparison group (CG, n = 30). The melatonin level was assessed by a radioimmunoassay method. The diurnal melatonin secretion was described using a nonlinear least squares method. Spearman's rank correlation coefficient was chosen to estimate the dependence of the acquired data. The model reproduces blood concentration profiles and its parameters were statistically analyzed using the Mann-Whitney-Wilcoxon test and logistic regression. Results. The correlation analysis performed for the EG and CG groups showed moderate correlations between age and the melatonin secretion model parameters. Patients with epilepsy are characterized by an increased phase shift of melatonin release. PMID:27478439

  3. Diurnal Differences in OLR Climatologies and Anomaly Time Series

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena; Loeb, Norm

    2015-01-01

    AIRS (Atmospheric Infrared Sounder) Version-6 OLR (Outgoing Long-Wave Radiation) matches CERES (Clouds and the Earth's Radiant Energy System) Edition-2.8 OLR very closely on a 1x1 latitude x longitude scale, both with regard to absolute values, and also with regard to anomalies of OLR. There is a bias of 3.5 watts per meter squared, which is nearly constant both in time and space. Contiguous areas contain large positive or negative OLR difference between AIRS and CERES are where the day-night difference of OLR is large. For AIRS, the larger the diurnal cycle, the more likely that sampling twice a day is inadequate. Lower values of OLRclr (Clear Sky OLR) and LWCRF (Longwave Cloud Radiative Forcing) in AIRS compared to CERES is at least in part a result of AIRS sampling over cold and cloudy cases.

  4. Physical models for the normal YORP and diurnal Yarkovsky effects

    NASA Astrophysics Data System (ADS)

    Golubov, O.; Kravets, Y.; Krugly, Yu. N.; Scheeres, D. J.

    2016-06-01

    We propose an analytic model for the normal Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) and diurnal Yarkovsky effects experienced by a convex asteroid. Both the YORP torque and the Yarkovsky force are expressed as integrals of a universal function over the surface of an asteroid. Although in general this function can only be calculated numerically from the solution of the heat conductivity equation, approximate solutions can be obtained in quadratures for important limiting cases. We consider three such simplified models: Rubincam's approximation (zero heat conductivity), low thermal inertia limit (including the next order correction and thus valid for small heat conductivity), and high thermal inertia limit (valid for large heat conductivity). All three simplified models are compared with the exact solution.

  5. Presumed Symbolic Use of Diurnal Raptors by Neanderthals

    PubMed Central

    Morin, Eugène; Laroulandie, Véronique

    2012-01-01

    In Africa and western Eurasia, occurrences of burials and utilized ocher fragments during the late Middle and early Late Pleistocene are often considered evidence for the emergence of symbolically-mediated behavior. Perhaps less controversial for the study of human cognitive evolution are finds of marine shell beads and complex designs on organic and mineral artifacts in early modern human (EMH) assemblages conservatively dated to ≈100–60 kilo-years (ka) ago. Here we show that, in France, Neanderthals used skeletal parts of large diurnal raptors presumably for symbolic purposes at Combe-Grenal in a layer dated to marine isotope stage (MIS) 5b (≈90 ka) and at Les Fieux in stratigraphic units dated to the early/middle phase of MIS 3 (60–40 ka). The presence of similar objects in other Middle Paleolithic contexts in France and Italy suggest that raptors were used as means of symbolic expression by Neanderthals in these regions. PMID:22403717

  6. Diurnal variation of wind-chill at Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Balafoutis, Ch. J.

    1989-12-01

    The diurnal variations of wind-chill at Thessaloniki, Greece, are considered using hourly data from January 1960 to December 1977. This is the first attempt in Greece to describe bioclimatic conditions using wind-chill data. The hourly values of wind-chill were calculated by Siple-Passel's formula which still appears to be most widely used. The values of wind-chill are discussed in terms of Terjung's scale. Thessaloniki does not experience “frost-bite” conditions during the coldest months but does experience “warm” conditions during the summer period. A comparison of hourly and daily mean values show that the means do not indicate the real range of wind-chill during the day.

  7. LES modeling of a diurnal cycle driven by WRF

    NASA Astrophysics Data System (ADS)

    Rizza, U.; Anabor, V.; Degrazia, G. A.; Miglietta, M. M.

    2010-09-01

    This study investigates LES in meteorological applications that involve realistic background atmospheric environment. This is accomplished by coupling the mesoscale meteorological model WRF with the LES code by Sullivan et al (1994). In this context, the diurnally varying atmospheric boundary layer is simulated using the above mentioned LES code. Initial data of wind, temperature, humidity, TKE vertical profiles and the surface forcing (heat/humidity fluxes) are taken from a WRF simulation in two different sites in flat regions. The geostrophic forcing is computed at given isobaric levels by calculating the horizontal gradients of the geopotential height in 9 squared grid points along the WRF grid. In particular in this work the various ways the geostrophic forcing can be calculated will be explored and results compared with those obtained with the LES code.

  8. Diurnal oscillation of SBE expression in sorghum endosperm

    SciTech Connect

    Sun, Chuanxin; Mutisya, J.; Rosenquist, S.; Baguma, Y.; Jansson, C.

    2009-01-15

    Spatial and temporal expression patterns of the sorghum SBEI, SBEIIA and SBEIIB genes, encoding, respectively, starch branching enzyme (SBE) I, IIA and IIB, in the developing endosperm of sorghum (Sorghum bicolor) were studied. Full-length genomic and cDNA clones for sorghum was cloned and the SBEIIA cDNA was used together with gene-specific probes for sorghum SBEIIB and SBEI. In contrast to sorghum SBEIIB, which was expressed primarily in endosperm and embryo, SBEIIA was expressed also in vegetative tissues. All three genes shared a similar temporal expression profile during endosperm development, with a maximum activity at 15-24 days after pollination. This is different from barley and maize where SBEI gene activity showed a significantly later onset compared to that of SBEIIA and SBEIIB. Expression of the three SBE genes in the sorghum endosperm exhibited a diurnal rhythm during a 24-h cycle.

  9. Presumed symbolic use of diurnal raptors by Neanderthals.

    PubMed

    Morin, Eugène; Laroulandie, Véronique

    2012-01-01

    In Africa and western Eurasia, occurrences of burials and utilized ocher fragments during the late Middle and early Late Pleistocene are often considered evidence for the emergence of symbolically-mediated behavior. Perhaps less controversial for the study of human cognitive evolution are finds of marine shell beads and complex designs on organic and mineral artifacts in early modern human (EMH) assemblages conservatively dated to ≈ 100-60 kilo-years (ka) ago. Here we show that, in France, Neanderthals used skeletal parts of large diurnal raptors presumably for symbolic purposes at Combe-Grenal in a layer dated to marine isotope stage (MIS) 5b (≈ 90 ka) and at Les Fieux in stratigraphic units dated to the early/middle phase of MIS 3 (60-40 ka). The presence of similar objects in other Middle Paleolithic contexts in France and Italy suggest that raptors were used as means of symbolic expression by Neanderthals in these regions.

  10. Diurnal emissivity dynamics in bare versus biocrusted sand dunes

    NASA Astrophysics Data System (ADS)

    Rozenstein, O.

    2015-12-01

    Land surface emissivity (LSE) in the thermal infrared depends mainly on the ground cover and on changes in soil moisture. The LSE is a critical variable that affects the prediction accuracy of geophysical models requiring land surface temperature as an input, highlighting the need for an accurate derivation of LSE. The primary aim of this study was to test the hypothesis that diurnal changes in emissivity, as detected from space, are larger for areas mostly covered by biocrusts (composed mainly of cyanobacteria) than for bare sand areas. The LSE dynamics were monitored from geostationary orbit by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) over a sand dune field in a coastal desert region extending across both sides of the Israel-Egypt political borderline. Different land-use practices by the two countries have resulted in exposed, active sand dunes on the Egyptian side (Sinai), and dunes stabilized by biocrusts on the Israeli side (Negev). Since biocrusts adsorb more moisture from the atmosphere than bare sand does, and LSE is affected by the soil moisture, diurnal fluctuations in LSE were larger for the crusted dunes in the 8.7 μm channel. This phenomenon is attributed to water vapor adsorption by the sand / biocrust particles. The results indicate that LSE is sensitive to minor changes in soil water content caused by water vapor adsorption and can, therefore, serve as a tool for quantifying this effect, which has a large spatial impact. As biocrusts cover vast regions in deserts worldwide, this discovery has repercussions for LSE estimations in deserts around the globe, and these LSE variations can potentially have considerable effects on geophysical models from local to regional scales.

  11. Diurnal variations of Titan's surface temperatures from Cassini - CIRS observations

    NASA Astrophysics Data System (ADS)

    Cottini, Valeria; Nixon, C. A.; Jennings, D. E.; Anderson, C. M.; Samuelson, R. E.; Irwin, P. G. J.; Flasar, F. M.

    2010-04-01

    The Cassini Composite Infrared Spectrometer (CIRS) observations of Saturn's largest moon, Titan, are providing us with the ability to detect the surface temperature of the planet by studying its outgoing radiance through a spectral window in the thermal infrared at 19 micron (530 cm-1) characterized by low opacity. Since the first acquisitions of CIRS Titan data the instrument has gathered a large amount of spectra covering a wide range of latitudes, longitudes and local times. We retrieve the surface temperature and the atmospheric temperature profile by modeling proper zonally averaged spectra of nadir observations with radiative transfer computations. Our forward model uses the correlated-k approximation for spectral opacity to calculate the emitted radiance, including contributions from collision induced pairs of CH4, N2 and H2, haze, and gaseous emission lines (Irwin et al. 2008). The retrieval method uses a non-linear least-squares optimal estimation technique to iteratively adjust the model parameters to achieve a spectral fit (Rodgers 2000). We show an accurate selection of the wide amount of data available in terms of footprint diameter on the planet and observational conditions, together with the retrieved results. Our results represent formal retrievals of surface brightness temperatures from the Cassini CIRS dataset using a full radiative transfer treatment, and we compare to the earlier findings of Jennings et al. (2009). The application of our methodology over wide areas has increased the planet coverage and accuracy of our knowledge of Titan's surface brightness temperature. In particular we had the chance to look for diurnal variations in surface temperature around the equator: a trend with slowly increasing temperature toward the late afternoon reveals that diurnal temperature changes are present on Titan surface.

  12. Deep sequencing the circadian and diurnal transcriptome of Drosophila brain

    PubMed Central

    Hughes, Michael E.; Grant, Gregory R.; Paquin, Christina; Qian, Jack; Nitabach, Michael N.

    2012-01-01

    Eukaryotic circadian clocks include transcriptional/translational feedback loops that drive 24-h rhythms of transcription. These transcriptional rhythms underlie oscillations of protein abundance, thereby mediating circadian rhythms of behavior, physiology, and metabolism. Numerous studies over the last decade have used microarrays to profile circadian transcriptional rhythms in various organisms and tissues. Here we use RNA sequencing (RNA-seq) to profile the circadian transcriptome of Drosophila melanogaster brain from wild-type and period-null clock-defective animals. We identify several hundred transcripts whose abundance oscillates with 24-h periods in either constant darkness or 12 h light/dark diurnal cycles, including several noncoding RNAs (ncRNAs) that were not identified in previous microarray studies. Of particular interest are U snoRNA host genes (Uhgs), a family of diurnal cycling noncoding RNAs that encode the precursors of more than 50 box-C/D small nucleolar RNAs, key regulators of ribosomal biogenesis. Transcriptional profiling at the level of individual exons reveals alternative splice isoforms for many genes whose relative abundances are regulated by either period or circadian time, although the effect of circadian time is muted in comparison to that of period. Interestingly, period loss of function significantly alters the frequency of RNA editing at several editing sites, suggesting an unexpected link between a key circadian gene and RNA editing. We also identify tens of thousands of novel splicing events beyond those previously annotated by the modENCODE Consortium, including several that affect key circadian genes. These studies demonstrate extensive circadian control of ncRNA expression, reveal the extent of clock control of alternative splicing and RNA editing, and provide a novel, genome-wide map of splicing in Drosophila brain. PMID:22472103

  13. Diurnal emissivity dynamics in bare versus biocrusted sand dunes.

    PubMed

    Rozenstein, Offer; Agam, Nurit; Serio, Carmine; Masiello, Guido; Venafra, Sara; Achal, Stephen; Puckrin, Eldon; Karnieli, Arnon

    2015-02-15

    Land surface emissivity (LSE) in the thermal infrared depends mainly on the ground cover and on changes in soil moisture. The LSE is a critical variable that affects the prediction accuracy of geophysical models requiring land surface temperature as an input, highlighting the need for an accurate derivation of LSE. The primary aim of this study was to test the hypothesis that diurnal changes in emissivity, as detected from space, are larger for areas mostly covered by biocrusts (composed mainly of cyanobacteria) than for bare sand areas. The LSE dynamics were monitored from geostationary orbit by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) over a sand dune field in a coastal desert region extending across both sides of the Israel-Egypt political borderline. Different land-use practices by the two countries have resulted in exposed, active sand dunes on the Egyptian side (Sinai), and dunes stabilized by biocrusts on the Israeli side (Negev). Since biocrusts adsorb more moisture from the atmosphere than bare sand does, and LSE is affected by the soil moisture, diurnal fluctuations in LSE were larger for the crusted dunes in the 8.7 μm channel. This phenomenon is attributed to water vapor adsorption by the sand/biocrust particles. The results indicate that LSE is sensitive to minor changes in soil water content caused by water vapor adsorption and can, therefore, serve as a tool for quantifying this effect, which has a large spatial impact. As biocrusts cover vast regions in deserts worldwide, this discovery has repercussions for LSE estimations in deserts around the globe, and these LSE variations can potentially have considerable effects on geophysical models from local to regional scales.

  14. Diurnal precipitation and high cloud frequency variability over the Gulf Stream and over the Kuroshio

    NASA Astrophysics Data System (ADS)

    Minobe, Shoshiro; Takebayashi, Shogo

    2015-04-01

    Recent studies show mid-latitude western boundary currents (WBCs) substantially influence the atmosphere aloft, and an important feature is enhanced rain band over the WBCs in climatological mean field. However, how such long-term, climate phenomena are related to shorter, weather timescale phenomena are generally remained to be explored. In this paper, diurnal precipitation and cloud variations are investigated global mid-latitude oceans with emphasis on air-sea interactions over WBCs using satellite-derived precipitation and outgoing longwave radiation (OLR) datasets. Strong 24-h period components of precipitations are found over the Gulf Stream in summer and over the Kuroshio in the East China Sea in early summer (Baiu-Meiyu season), respectively. Similar diurnal precipitations are not observed in WBCs in the Southern Hemisphere year around. The diurnal precipitation cycles over the Gulf Stream and the Kuroshio exhibit peak phases in the early to late morning for the Gulf Stream and late morning to early afternoon for the Kuroshio, with southeastward phase propagations. High cloud frequency derived from OLR data exhibit consistent diurnal cycles. A substantial difference of diurnal cycles between the Gulf Stream and the Kuroshio regions are associated with the large-scale Baiu-Meiyu rain and cloud bands for the latter region. Diurnal precipitation and high cloud variability is found in the vicinity of the Kuroshio itself, embedded in the Baiu-Meiyu rain and cloud bands distributing in a wider area without a strong diurnal component. The spatial and seasonal distributions of the diurnal variability over these WBCs strongly suggests that the diurnal precipitation and cloud cycles are essential aspects of deep heating mode of atmospheric response recently reported for these WBCs. These results indicate that these WBCs in the Northern Hemisphere play an important role in modulating short-term precipitation variations, and on the other hand diurnal variability can be

  15. Impact of diurnal forcing on intraseasonal sea surface temperature oscillations in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Thushara, V.; Vinayachandran, P. N.

    2014-12-01

    The diurnal cycle is an important mode of sea surface temperature (SST) variability in tropical oceans, influencing air-sea interaction and climate variability. Upper ocean mixing mechanisms are significant at diurnal time scales controlling the intraseasonal variability (ISV) of SST. Sensitivity experiments using an Ocean General Circulation Model (OGCM) for the summer monsoon of the year 2007 show that incorporation of diurnal cycle in the model atmospheric forcings improves the SST simulation at both intraseasonal and shorter time scales in the Bay of Bengal (BoB). The increase in SST-ISV amplitudes with diurnal forcing is ˜0.05°C in the southern bay while it is ˜0.02°C in the northern bay. Increased intraseasonal warming with diurnal forcing results from the increase in mixed layer heat gain from insolation, due to shoaling of the daytime mixed layer. Amplified intraseasonal cooling is dominantly controlled by the strengthening of subsurface processes owing to the nocturnal deepening of mixed layer. In the southern bay, intraseasonal variability is mainly determined by the diurnal cycle in insolation, while in the northern bay, diurnal cycle in insolation and winds have comparable contributions. Temperature inversions (TI) develop in the northern bay in the absence of diurnal variability in wind stress. In the northern bay, SST-ISV amplification is not as large as that in the southern bay due to the weaker diurnal variability of mixed layer depth (MLD) limited by salinity stratification. Diurnal variability of model MLD is not sufficient to create large modifications in mixed layer heat budget and SST-ISV in the northern bay.

  16. Diurnal variation of oxygen and carbonate system parameters in Tampa Bay and Florida Bay

    USGS Publications Warehouse

    Yates, K.K.; Dufore, C.; Smiley, N.; Jackson, C.; Halley, R.B.

    2007-01-01

    Oxygen and carbonate system parameters were measured, in situ, over diurnal cycles in Tampa Bay and Florida Bay, Florida. All system parameters showed distinct diurnal trends in Tampa Bay with an average range of diurnal variation of 39.1 μmol kg− 1 for total alkalinity, 165.1 μmol kg− 1 for total CO2, 0.22 for pH, 0.093 mmol L− 1 for dissolved oxygen, and 218.1 μatm for pCO2. Average range of diurnal variation for system parameters in Tampa Bay was 73% to 93% of the seasonal range of variability for dissolved oxygen and pH. All system parameters measured in Florida Bay showed distinct variation over diurnal time-scales. However, clear diurnal trends were less evident. The average range of diurnal variability in Florida Bay was 62.8 μmol kg− 1 for total alkalinity, 130.4 μmol kg− 1 for total CO2, 0.13 for pH, 0.053 mmol L− 1 for dissolved oxygen, and 139.8 μatm for pCO2. The average range of diurnal variation was 14% to 102% of the seasonal ranges for these parameters. Diurnal variability in system parameters was most influenced by primary productivity and respiration of benthic communities in Tampa Bay, and by precipitation and dissolution of calcium carbonate in Florida Bay. Our data indicate that use of seasonal data sets without careful consideration of diurnal variability may impart significant error in calculations of annual carbon and oxygen budgets. These observations reinforce the need for higher temporal resolution measurements of oxygen and carbon system parameters in coastal ecosystems.

  17. Observations and modeling of coastal internal waves driven by a diurnal sea breeze

    NASA Astrophysics Data System (ADS)

    Lerczak, J. A.; Hendershott, M. C.; Winant, C. D.

    2001-09-01

    During the Internal Waves on the Continental Margin (IWAVES) field experiments of 1996 and 1997 off of Mission Beach, California (32.75°N), we observed energetic, diurnal-band motions across the entire study site in water depths ranging from 15 to 500 m and spanning a cross-shore distance of 15 km. The spectral peak of the currents was at the diurnal frequency (σDi = 1 cpd) and was sufficiently well resolved to be clearly separated from the slightly higher local inertial frequency (ƒ = 1.08 cpd). These motions were surface enhanced and clockwise circularly polarized and had an upward phase propagation speed of ˜68 m d-1, suggesting that the motions were driven predominantly by the diurnal sea breeze. However, the downward energy (upward phase) propagation seems irreconcilable with the subinertial diurnal period, and moreover, the intermittent diurnal current events were not obviously associated with diurnal sea breeze events. We rationalize these features using a flat-bottomed linear modal sum internal wave model that includes advection and refraction due to subtidal alongshore flow, V(x, t). Fluctuations in V at the observing site can change the "effective" local Coriolis parameter ƒ + Vx by as much as 50%, thus making the diurnal motions at different times effectively either subinertial or superinertial. The model is integrated numerically for 200 days at a latitude of 32.75°N under different wind and subtidal flow conditions: purely diurnal winds and no V, purely diurnal winds and a time-independent V, narrow-band diurnal winds and no V, and narrow-band diurnal winds and subtidal, time-dependent V. Model diurnal currents forced by narrow-band diurnal winds and subtidal V show complex offshore structure with realistic intermittency and spectral broadening. This study suggests that continental margins in the vicinity of the 30° latitude (where σDi = ƒ) are regions that could potentially produce energetic, sea breeze-driven baroclinic motions and that

  18. Inferring land surface parameters from the diurnal variability of microwave and infrared temperatures

    NASA Astrophysics Data System (ADS)

    Norouzi, Hamidreza; Temimi, Marouane; AghaKouchak, Amir; Azarderakhsh, Marzieh; Khanbilvardi, Reza; Shields, Gerarda; Tesfagiorgis, Kibrewossen

    This study investigates the properties of the diurnal cycle of microwave brightness temperatures (TB), namely the phase and the amplitude, and their variability in time and space over the globe to infer information on key land surface parameters like changes in soil texture spatial distribution, soil moisture conditions, and vegetation density. The phase corresponds to the lag between Land Surface Temperature (LST) and TB diurnal cycles. The amplitude is determined as the difference between the maximum and the minimum of TB diurnal cycle. The diurnal cycle of TB was constructed using observations from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and the Special Sensor Microwave/Imager (SSM/I). The latter offer a series of sensors, namely, F13, F14, and F15 that were used in this study for a higher temporal coverage and more accurate diurnal cycle determination. LST estimates, which are available every 3 h from the International Satellite Cloud Climatology Project (ISCCP) database were used to build the LST diurnal cycle. ISCCP LST data is an infrared-based temperature with almost no penetration and is the representative of top skin temperature. The analyses of the diurnal cycles showed that the diurnal amplitude of TB decreases as the vegetation density increases, especially in the case of low frequencies which penetrate deeper into the canopy which makes them more sensitive to changes in vegetation density. The interannual variations of TB diurnal amplitudes were also in agreement with the seasonality of the vegetation cover. Over desert and rain forest regions where surface conditions do not vary significantly throughout the year, the changes in diurnal amplitudes were the lowest. A relationship between phase and amplitude values was established. It was found that the amplitude of TB diurnal cycle decreases when the phase lag increases. The spatial distribution of the determined diurnal properties, namely, phase and amplitude of TB

  19. A survey of the cosmic ray diurnal variation during 1973-1979. I - Persistence of solar diurnal variation. II - Application of diffusion-convection model to diurnal anisotropy data

    NASA Technical Reports Server (NTRS)

    Riker, J. F.; Ahluwalia, H. S.

    1987-01-01

    An analysis of data obtained with the vertical underground muon telescope at Embudo, NM shows that the solar diurnal variation in cosmic ray intensity is a persistent phenomenon over the 1973-1979 period. Assuming that the daily fluctuations in the amplitude and phase of the diurnal variation are random perturbations about the mean vector, the relative magnitude of the random component is determined. In the second part, the Diffusion-Convection model of cosmic ray transport is applied to high rigidity particles detected at the earth in order to deduce the behavior of the heliospheric transport parameters between 1973 and 1979. It is suggested that the diurnal variation observed at Embudo during 1979 may require a contribution from the charged particle drifts.

  20. A survey of the cosmic ray diurnal variation during 1973-1979. I - Persistence of solar diurnal variation. II - Application of diffusion-convection model to diurnal anisotropy data

    NASA Technical Reports Server (NTRS)

    Riker, J. F.; Ahluwalia, H. S.

    1987-01-01

    An analysis of data obtained with the vertical underground muon telescope at Embudo, NM shows that the solar diurnal variation in cosmic ray intensity is a persistent phenomenon over the 1973-1979 period. Assuming that the daily fluctuations in the amplitude and phase of the diurnal variation are random perturbations about the mean vector, the relative magnitude of the random component is determined. In the second part, the Diffusion-Convection model of cosmic ray transport is applied to high rigidity particles detected at the earth in order to deduce the behavior of the heliospheric transport parameters between 1973 and 1979. It is suggested that the diurnal variation observed at Embudo during 1979 may require a contribution from the charged particle drifts.

  1. Evidence for a GPR18 Role in Diurnal Regulation of Intraocular Pressure

    PubMed Central

    Miller, Sally; Leishman, Emma; Oehler, Olivia; Daily, Laura; Murataeva, Natalia; Wager-Miller, Jim; Bradshaw, Heather; Straiker, Alex

    2016-01-01

    Purpose The diurnal cycling of intraocular pressure (IOP) was first described in humans more than a century ago. This cycling is preserved in other species. The physiologic underpinning of this diurnal variation in IOP remains a mystery, even though elevated pressure is indicated in most forms of glaucoma, a common cause of blindness. Once identified, the system that underlies diurnal variation would represent a natural target for therapeutic intervention. Methods Using normotensive mice, we measured the regulation of ocular lipid species by the enzymes fatty acid amide hydrolase (FAAH) and N-arachidonoyl phosphatidylethanolamine phospholipase (NAPE-PLD), mRNA expression of these enzymes, and their functional role in diurnal regulation of IOP. Results We now report that NAPE-PLD and FAAH mice do not exhibit a diurnal cycling of IOP. These enzymes produce and break down acylethanolamines, including the endogenous cannabinoid anandamide. The diurnal lipid profile in mice shows that levels of most N-acyl ethanolamines and, intriguingly, N-arachidonoyl glycine (NAGly), decline at night: NAGly is a metabolite of arachidonoyl ethanolamine and a potent agonist at GPR18 that lowers intraocular pressure. The GPR18 blocker O1918 raises IOP during the day when pressure is low, but not at night. Quantitative PCR analysis shows that FAAH mRNA levels rise with pressure, suggesting that FAAH mediates the changes in pressure. Conclusions Our results support FAAH-dependent NAGly action at GPR18 as the physiologic basis of the diurnal variation of intraocular pressure in mice. PMID:27893106

  2. Work, Stress, and Diurnal Bruxism: A Pilot Study among Information Technology Professionals in Bangalore City, India

    PubMed Central

    Rao, S. K.; Bhat, M.; David, J.

    2011-01-01

    The study assessed the prevalence of diurnal bruxism among information technology (IT) professionals and explored plausible predictors associated with the parafunctional habit. A cross-sectional study was designed and IT professionals were invited to participate. The inclusion criteria composed of participants in service for at least one year, having natural dentition, no history of cervical or facial injury and not undergoing orthodontic therapy. The participants (N = 147) were interviewed by a trained interviewer to record information. A pre-tested questionnaire that included questions related to work, stress symptoms and diurnal bruxism was completed by each participant. The prevalence of self-reported diurnal bruxism was 59%. Bivariate analyses revealed that work (P < 0.05) and work experience (P < 0.05) were significantly associated with self-reported diurnal bruxism. In the binary logistic regression analysis stress (Odds Ratio [OR]  = 5.9, 95% Confidence Interval [CI] 2.6–13.3) was identified to be a strong predictor of diurnal bruxism. Professionals with 11 or more years of experience were less likely to report diurnal bruxism (OR = 0.04, 95% CI 0.00–0.43) than those with 1 to 5 years of work experience. The study revealed that stress and less work experience were associated with diurnal bruxism among IT professionals in Bangalore city. PMID:22190934

  3. Multiscale Interactions over the Maritime Continent: Feedbacks between Atmospheric Convectively Coupled Kelvin Waves and Diurnal Cycle

    NASA Astrophysics Data System (ADS)

    Baranowski, D.

    2015-12-01

    Interactions between atmospheric convectively coupled Kelvin waves (CCKW), initiated over the Indian Ocean, and the diurnally varying convection over the Maritime Continent are primary interest of this presentation. Mutliscale interactions between local and propagating convection lead to substantial enhancement of the local diurnal cycle over that region. CCKW activity strongly modulates magnitude of the diurnal cycle of precipitation over the Maritime Continent, but not its temporal evolution, which maintains characteristics of a diurnal cycle. The impact is such that precipitation is highly increased during convective part of the CCKW and little suppressed during its non-convective part. Timing of the increase in diurnal cycle magnitude strongly depends on the time of the day of the CCKW approach to the Maritime Continent. It is shown that precipitation anomaly associated with CCKW is phase locked with local diurnal cycle of precipitation over the Maritime Continent and that has implications for CCKW ability to propagate across that region. The composite daily-zonal evolution of the precipitation anomaly associated with CCKW is such that it is "in-phase" with local diurnal cycle over Sumatra, Borneo and surrounding seas. This presentation is based on analysis of TRMM precipitation data and newly developed CCKW trajectories database.

  4. Sensitivity of Amazonian TOA flux diurnal cycle composite monthly variability to choice of reanalysis

    NASA Astrophysics Data System (ADS)

    Dodson, J. Brant; Taylor, Patrick C.

    2016-05-01

    Amazonian deep convection experiences a strong diurnal cycle driven by the cycle in surface sensible heat flux, which contributes to a significant diurnal cycle in the top of the atmosphere (TOA) radiative flux. Even when accounting for seasonal variability, the TOA flux diurnal cycle varies significantly on the monthly timescale. Previous work shows evidence supporting a connection between variability in the convective and radiative cycles, likely modulated by variability in monthly atmospheric state (e.g., convective instability). The hypothesized relationships are further investigated with regression analysis of the radiative diurnal cycle and atmospheric state using additional meteorological variables representing convective instability and upper tropospheric humidity. The results are recalculated with three different reanalyses to test the reliability of the results. The radiative diurnal cycle sensitivity to upper tropospheric humidity is about equal in magnitude to that of convective instability. In addition, the results are recalculated with the data subdivided into the wet and dry seasons. Overall, clear-sky radiative effects have a dominant role in radiative diurnal cycle variability during the dry season. Because of this, even in a convectively active region, the clear-sky radiative effects must be accounted for in order to fully explain the monthly variability in diurnal cycle. Finally, while there is general agreement between the different reanalysis-based results when examining the full data time domain (without regard to time of year), there are significant disagreements when the data are divided into wet and dry seasons. The questionable reliability of reanalysis data is a major limitation.

  5. Sensitivity of Amazonian TOA flux diurnal cycle composite monthly variability to choice of reanalysis.

    PubMed

    Dodson, J Brant; Taylor, Patrick C

    2016-05-16

    Amazonian deep convection experiences a strong diurnal cycle driven by the cycle in surface sensible heat flux, which contributes to a significant diurnal cycle in the top of the atmosphere (TOA) radiative flux. Even when accounting for seasonal variability, the TOA flux diurnal cycle varies significantly on the monthly timescale. Previous work shows evidence supporting a connection between variability in the convective and radiative cycles, likely modulated by variability in monthly atmospheric state (e.g., convective instability). The hypothesized relationships are further investigated with regression analysis of the radiative diurnal cycle and atmospheric state using additional meteorological variables representing convective instability and upper tropospheric humidity. The results are recalculated with three different reanalyses to test the reliability of the results. The radiative diurnal cycle sensitivity to upper tropospheric humidity is about equal in magnitude to that of convective instability. In addition, the results are recalculated with the data subdivided into the wet and dry seasons. Overall, clear-sky radiative effects have a dominant role in radiative diurnal cycle variability during the dry season. Because of this, even in a convectively active region, the clear-sky radiative effects must be accounted for in order to fully explain the monthly variability in diurnal cycle. Finally, while there is general agreement between the different reanalysis-based results when examining the full data time domain (without regard to time of year), there are significant disagreements when the data are divided into wet and dry seasons. The questionable reliability of reanalysis data is a major limitation.

  6. Work, Stress, and Diurnal Bruxism: A Pilot Study among Information Technology Professionals in Bangalore City, India.

    PubMed

    Rao, S K; Bhat, M; David, J

    2011-01-01

    The study assessed the prevalence of diurnal bruxism among information technology (IT) professionals and explored plausible predictors associated with the parafunctional habit. A cross-sectional study was designed and IT professionals were invited to participate. The inclusion criteria composed of participants in service for at least one year, having natural dentition, no history of cervical or facial injury and not undergoing orthodontic therapy. The participants (N = 147) were interviewed by a trained interviewer to record information. A pre-tested questionnaire that included questions related to work, stress symptoms and diurnal bruxism was completed by each participant. The prevalence of self-reported diurnal bruxism was 59%. Bivariate analyses revealed that work (P < 0.05) and work experience (P < 0.05) were significantly associated with self-reported diurnal bruxism. In the binary logistic regression analysis stress (Odds Ratio [OR]  = 5.9, 95% Confidence Interval [CI] 2.6-13.3) was identified to be a strong predictor of diurnal bruxism. Professionals with 11 or more years of experience were less likely to report diurnal bruxism (OR = 0.04, 95% CI 0.00-0.43) than those with 1 to 5 years of work experience. The study revealed that stress and less work experience were associated with diurnal bruxism among IT professionals in Bangalore city.

  7. Contribution of diurnal and nocturnal insects to the pollination of Jatropha curcas (Euphorbiaceae) in southwestern China.

    PubMed

    Luo, Chang W; Huang, Zachary Y; Chen, Xiao M; Li, Kun; Chen, You; Sun, Yong Y

    2011-02-01

    Jatropha curcas L. (Euphorbiaceae) is being increasingly planted worldwide, but questions remain regarding its pollination biology. This study examined the contribution of diurnal and nocturnal insects to the pollination of monoecious J. curcas, through its floral biology, pollination ecology, and foraging behavior of potential pollinators. Nectar production of both male and female flowers peaked in the morning, declined in the afternoon, and rapidly bottomed during the night in all of their anthesis days. The diurnal visitors to the flowers of J. curcas are bees and flies, and the nocturnal visitors are moths. Flowers received significantly more visits by diurnal insects than by nocturnal insects. Through bagging flowers during night or day or both or exclusion, we compared fruit and seed production caused by diurnal and nocturnal pollinators. Both nocturnal and diurnal visitors were successful pollinators. However, flowers exposed only to nocturnal visitors produced less fruits than those exposed only to diurnal visitors. Thus, diurnal pollinators contribute more to seed production by J. curcas at the study site.

  8. Cellular trade-offs and optimal resource allocation during cyanobacterial diurnal growth.

    PubMed

    Reimers, Alexandra-M; Knoop, Henning; Bockmayr, Alexander; Steuer, Ralf

    2017-07-18

    Cyanobacteria are an integral part of Earth's biogeochemical cycles and a promising resource for the synthesis of renewable bioproducts from atmospheric CO2 Growth and metabolism of cyanobacteria are inherently tied to the diurnal rhythm of light availability. As yet, however, insight into the stoichiometric and energetic constraints of cyanobacterial diurnal growth is limited. Here, we develop a computational framework to investigate the optimal allocation of cellular resources during diurnal phototrophic growth using a genome-scale metabolic reconstruction of the cyanobacterium Synechococcus elongatus PCC 7942. We formulate phototrophic growth as an autocatalytic process and solve the resulting time-dependent resource allocation problem using constraint-based analysis. Based on a narrow and well-defined set of parameters, our approach results in an ab initio prediction of growth properties over a full diurnal cycle. The computational model allows us to study the optimality of metabolite partitioning during diurnal growth. The cyclic pattern of glycogen accumulation, an emergent property of the model, has timing characteristics that are in qualitative agreement with experimental findings. The approach presented here provides insight into the time-dependent resource allocation problem of phototrophic diurnal growth and may serve as a general framework to assess the optimality of metabolic strategies that evolved in phototrophic organisms under diurnal conditions.

  9. Diurnal variation in the effect of the weekend in global seismic activity

    NASA Astrophysics Data System (ADS)

    Ruzhin, Yu. Ya.; Chertoprud, V. E.; Ivanov-Kholodnyi, G. S.

    2016-09-01

    The influence of the earthquake probability diurnal variation on specific features in the weekend effect in global seismic activity is revealed. The dependence of the global earthquake number on the local time and its possible relation to a quiet solar diurnal variation ( Sq) in the geomagnetic field have been considered in detail. It has been indicated that a stable diurnal effect, which has a maximum near midnight and a minimum near local noon, exists in the global seismicity of the Earth. The diurnal variation amplitude changes insignificantly during days of week and substantially decreases (by a factor of almost 3) on Saturday and Sunday. The weekend effect is not revealed during "local nights." Since the daily effect of a quiet solar diurnal variation ( Sq) should not depend on days of week, we arrive at the conclusion that the diurnal variation in global seismicity evidently contains the anthropogenic activity product. The Sunday effect in the earthquake number decreases over the course of time and is most probably real but weak and not stationary since weekly variations occur against a background (or under the action) of stronger variations, i.e., an increase in the earthquake number and diurnal variations.

  10. The Efficacy of a Transurethral Incision for Diurnal and Nocturnal Enuresis in Young Males.

    PubMed

    Tobu, Shohei; Noguchi, Mitsuru; Takahara, Kohei; Ichibagase, Yuka; Ikoma, Saya; Udo, Kazuma; Nanri, Maki; Uozumi, Jiro

    2016-05-01

    In this study, we investigated the effects of treatment with a transurethral incision (TUI) for congenital urethral stenosis, which was accompanied by diurnal and nocturnal enuresis. We recruited 21 young males who presented to our department for the treatment of diurnal and nocturnal enuresis from January 2010 to March 2014. All patients underwent TUI due to urethral stricture found by a close investigation. We surveyed each case to evaluate the improvement of diurnal and/or nocturnal enuresis after TUI. One and a half years after TUI, an improvement in diurnal enuresis was observed in 17 of 21 cases (80.9%), whereas that of nocturnal enuresis was observe in only 7 of 21 cases (33.3%), showing the significant contribution of TUI to the improvement of diurnal enuresis (p = 0.001). In the case of diurnal enuresis, continual improvement was observed more than a year after surgery, whereas no improvement was observed in nocturnal enuresis at more than 6 months after surgery. TUI is more effective for diurnal enuresis than nocturnal enuresis. At postoperative 6 months, clinicians should thus consider other etiologies for unresponsive cases and start other treatment options.

  11. The Efficacy of a Transurethral Incision for Diurnal and Nocturnal Enuresis in Young Males

    PubMed Central

    Tobu, Shohei; Noguchi, Mitsuru; Takahara, Kohei; Ichibagase, Yuka; Ikoma, Saya; Udo, Kazuma; Nanri, Maki; Uozumi, Jiro

    2016-01-01

    Introduction In this study, we investigated the effects of treatment with a transurethral incision (TUI) for congenital urethral stenosis, which was accompanied by diurnal and nocturnal enuresis. Methods We recruited 21 young males who presented to our department for the treatment of diurnal and nocturnal enuresis from January 2010 to March 2014. All patients underwent TUI due to urethral stricture found by a close investigation. We surveyed each case to evaluate the improvement of diurnal and/or nocturnal enuresis after TUI. Results One and a half years after TUI, an improvement in diurnal enuresis was observed in 17 of 21 cases (80.9%), whereas that of nocturnal enuresis was observe in only 7 of 21 cases (33.3%), showing the significant contribution of TUI to the improvement of diurnal enuresis (p = 0.001). In the case of diurnal enuresis, continual improvement was observed more than a year after surgery, whereas no improvement was observed in nocturnal enuresis at more than 6 months after surgery. Conclusion TUI is more effective for diurnal enuresis than nocturnal enuresis. At postoperative 6 months, clinicians should thus consider other etiologies for unresponsive cases and start other treatment options. PMID:27390580

  12. Diurnal Variability in Optical Properties and Carbon Stocks as Indicators of Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Mannino, A.

    2016-12-01

    On diurnal scales, biological, photochemical, and biogeochemical processes are regulated by the variation in solar radiation. Other physical factors, such as tides, river discharge, estuarine and coastal ocean circulation, wind-driven mixing, etc., impart further variability on biological and biogeochemical processes on diurnal to multi-day time scales. Efforts to determine the temporal frequency required from geostationary ocean color satellites to discern diurnal variability in optical properties and derived products including carbon stocks, fluxes, primary production and biogeochemical cycling culminated in a series of field campaigns in the Chesapeake Bay, northern Gulf of Mexico and Korean coastal seas with support from the NASA GEO-CAPE mission pre-formulation activities. Near-surface drogues were released and tracked in quasi-lagrangian space to monitor diurnal changes in community production, carbon and nitrogen stocks and optical properties. Signification diurnal variation in optical properties, particulate organic carbon and nitrogen, chlorophyll-a, and nutrients were measured. However, diurnal changes in dissolved organic carbon and colored dissolved organic matter absorption were generally small. Field measurements are compared with GOCI satellite observations. Our results suggest that satellite observations at hourly frequency are desirable to capture diurnal variability in optical properties, carbon stocks and net production within coastal ecosystems.

  13. Diurnal variations of mesospheric ozone obtained by ground-based microwave radiometry

    NASA Technical Reports Server (NTRS)

    Zommerfelds, W. C.; Kunzi, K. F.; Summers, M. E.; Bevilacqua, R. M.; Strobel, D. F.

    1989-01-01

    From December 1986 until April 1987 ground-based microwave observations of the diurnal variation of mesospheric ozone were made over Bern, Switzerland. These data were of sufficient quality to define the characteristics diurnal behavior of the ozone mixing ratio during winter and equinoctial conditions. The observed diurnal variation of ozone peaks at about 74 km, where its amplitude is about a factor of 6. At 65 km the observed diurnal variation is a factor of 3, whereas at 55 km it is only a factor of 1.4. One-dimensional model calculations accurately reproduce the relative diurnal variation of ozone at equinox, suggesting that the model value of the ozone photolysis rate coefficient is accurate to better that 10 percent. For winter conditions, however, the model underpredicts the observed relative diurnal variation by a factor of 2; a major part of this discrepancy is due to an observed postmidnight increase in ozone. Various suggested changes in model parameters to better produce the ozone abundance vertical profile result in only small differences in the relative diurnal variation, indicating that these observations do not provide a sensitive test of the mesospheric chemistry controlling the abundance of odd oxygen.

  14. Controls on the diurnal streamflow cycles in two subbasins of an alpine headwater catchment

    NASA Astrophysics Data System (ADS)

    Mutzner, Raphael; Weijs, Steven V.; Tarolli, Paolo; Calaf, Marc; Oldroyd, Holly J.; Parlange, Marc B.

    2015-05-01

    In high-altitude alpine catchments, diurnal streamflow cycles are typically dominated by snowmelt or ice melt. Evapotranspiration-induced diurnal streamflow cycles are less observed in these catchments but might happen simultaneously. During a field campaign in the summer 2012 in an alpine catchment in the Swiss Alps (Val Ferret catchment, 20.4 km2, glaciarized area: 2%), we observed a transition in the early season from a snowmelt to an evapotranspiration-induced diurnal streamflow cycle in one of two monitored subbasins. The two different cycles were of comparable amplitudes and the transition happened within a time span of several days. In the second monitored subbasin, we observed an ice melt-dominated diurnal cycle during the entire season due to the presence of a small glacier. Comparisons between ice melt and evapotranspiration cycles showed that the two processes were happening at the same times of day but with a different sign and a different shape. The amplitude of the ice melt cycle decreased exponentially during the season and was larger than the amplitude of the evapotranspiration cycle which was relatively constant during the season. Our study suggests that an evapotranspiration-dominated diurnal streamflow cycle could damp the ice melt-dominated diurnal streamflow cycle. The two types of diurnal streamflow cycles were separated using a method based on the identification of the active riparian area and measurement of evapotranspiration.

  15. Diurnal changes in epidermal UV transmittance of plants in naturally high UV environments.

    PubMed

    Barnes, Paul W; Flint, Stephan D; Slusser, James R; Gao, Wei; Ryel, Ronald J

    2008-06-01

    Studies were conducted on three herbaceous plant species growing in naturally high solar UV environments in the subalpine of Mauna Kea, Hawaii, USA, to determine if diurnal changes in epidermal UV transmittance (T(UV)) occur in these species, and to test whether manipulation of the solar radiation regime could alter these diurnal patterns. Additional field studies were conducted at Logan, Utah, USA, to determine if solar UV was causing diurnal T(UV) changes and to evaluate the relationship between diurnal changes in T(UV) and UV-absorbing pigments. Under clear skies, T(UV), as measured with a UV-A-pulse amplitude modulation fluorometer for leaves of Verbascum thapsus and Oenothera stricta growing in native soils and Vicia faba growing in pots, was highest at predawn and sunset and lowest at midday. These patterns in T(UV) closely tracked diurnal changes in solar radiation and were the result of correlated changes in fluorescence induced by UV-A and blue radiation but not photochemical efficiency (F(v)/F(m)) or initial fluorescence yield (F(o)). The magnitude of the midday reduction in T(UV) was greater for young leaves than for older leaves of Verbascum. Imposition of artificial shade eliminated the diurnal changes in T(UV) in Verbascum, but reduction in solar UV had no effect on diurnal T(UV) changes in Vicia. In Vicia, the diurnal changes in T(UV) occurred without detectable changes in the concentration of whole-leaf UV-absorbing compounds. Results suggest that plants actively control diurnal changes in UV shielding, and these changes occur in response to signals other than solar UV; however, the underlying mechanisms responsible for rapid changes in T(UV) remain unclear.

  16. Reproducibility of summertime diurnal precipitation over northern Eurasia simulated by CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Hirota, N.; Takayabu, Y. N.

    2015-12-01

    Reproducibility of diurnal precipitation over northern Eurasia simulated by CMIP5 climate models in their historical runs were evaluated, in comparison with station data (NCDC-9813) and satellite data (GSMaP-V5). We first calculated diurnal cycles by averaging precipitation at each local solar time (LST) in June-July-August during 1981-2000 over the continent of northern Eurasia (0-180E, 45-90N). Then we examined occurrence time of maximum precipitation and a contribution of diurnally varying precipitation to the total precipitation.The contribution of diurnal precipitation was about 21% in both NCDC-9813 and GSMaP-V5. The maximum precipitation occurred at 18LST in NCDC-9813 but 16LST in GSMaP-V5, indicating some uncertainties even in the observational datasets. The diurnal contribution of the CMIP5 models varied largely from 11% to 62%, and their timing of the precipitation maximum ranged from 11LST to 20LST. Interestingly, the contribution and the timing had strong negative correlation of -0.65. The models with larger diurnal precipitation showed precipitation maximum earlier around noon. Next, we compared sensitivity of precipitation to surface temperature and tropospheric humidity between 5 models with large diurnal precipitation (LDMs) and 5 models with small diurnal precipitation (SDMs). Precipitation in LDMs showed high sensitivity to surface temperature, indicating its close relationship with local instability. On the other hand, synoptic disturbances were more active in SDMs with a dominant role of the large scale condensation, and precipitation in SDMs was more related with tropospheric moisture. Therefore, the relative importance of the local instability and the synoptic disturbances was suggested to be an important factor in determining the contribution and timing of the diurnal precipitation. Acknowledgment: This study is supported by Green Network of Excellence (GRENE) Program by the Ministry of Education, Culture, Sports, Science and Technology

  17. Diurnal cycling of urban aerosols under different weather regimes

    NASA Astrophysics Data System (ADS)

    Gregorič, Asta; Drinovec, Luka; Močnik, Griša; Remškar, Maja; Vaupotič, Janja; Stanič, Samo

    2016-04-01

    A one month measurement campaign was performed in summer 2014 in Ljubljana, the capital of Slovenia (population 280,000), aiming to study temporal and spatial distribution of urban aerosols and the mixing state of primary and secondary aerosols. Two background locations were chosen for this purpose, the first one in the city center (urban background - KIS) and the second one in the suburban background (Brezovica). Simultaneous measurements of black carbon (BC) and particle number size distribution of submicron aerosols (PM1) were conducted at both locations. In the summer season emission from traffic related sources is expected to be the main local contribution to BC concentration. Concentrations of aerosol species and gaseous pollutants within the planetary boundary layer are controlled by the balance between emission sources of primary aerosols and gases, production of secondary aerosols, chemical reactions of precursor gases under solar radiation and the rate of dilution by mixing within the planetary boundary layer (PBL) as well as with tropospheric air. Only local emission sources contribute to BC concentration during the stable PBL with low mixing layer height, whereas during the time of fully mixed PBL, regionally transported BC and other aerosols can contribute to the surface measurements. The study describes the diurnal behaviour of the submicron aerosol at the urban and suburban background location under different weather regimes. Particles in three size modes - nucleation (< 25 nm, NUM), Aitken (25 - 90 nm, AIM) and accumulation mode (90 - 800 nm, ACM), as well as BC mass concentration were evaluated separately for sunny, cloudy and rainy days, taking into account modelled values of PBL height. Higher particle number and black carbon concentrations were observed at the urban background (KIS) than at the suburban background location (Brezovica). Significant diurnal pattern of total particle concentration and black carbon concentration was observed at both

  18. The impact of the diurnal cycle on the propagation of Madden-Julian Oscillation convection across the Maritime Continent: DIURNAL CYCLE AND MJO

    SciTech Connect

    Hagos, Samson M.; Zhang, Chidong; Feng, Zhe; Burleyson, Casey D.; De Mott, Charlotte; Kerns, Brandon; Benedict, James J.; Martini, Matus N.

    2016-10-08

    Influences of the diurnal cycle of convection on the propagation of the Madden-Julian Oscillation (MJO) across the Maritime Continent (MC) are examined using cloud-permitting regional model simulations and observations. A pair of ensembles of control (CONTROL) and no-diurnal cycle (NODC) simulations of the November 2011 MJO episode are performed. In the CONTROL simulations, the MJO signal is weakened as it propagates across the MC, with much of the convection stalling over the large islands of Sumatra and Borneo. In the NODC simulations, where the incoming shortwave radiation at the top of the atmosphere is maintained at its daily mean value, the MJO signal propagating across the MC is enhanced. Examination of the surface energy fluxes in the simulations indicates that in the presence of the diurnal cycle, surface downwelling shortwave radiation in CONTROL simulations is larger because clouds preferentially form in the afternoon. Furthermore, the diurnal co-variability of surface wind speed and skin temperature results in a larger sensible heat flux and a cooler land surface in CONTROL compared to NODC simulations. An analysis of observations indicates that the modulation of the downwelling shortwave radiation at the surface by the diurnal cycle of cloudiness negatively projects on the MJO intraseasonal cycle and therefore disrupts the propagation of the MJO across the MC.

  19. Is there a twenty year wave in the diurnal anisotropy of cosmic rays?

    NASA Technical Reports Server (NTRS)

    Ahluwalia, H. S.

    1988-01-01

    Data obtained with the Deep River neutron monitor and the underground vertical muon telescope at Embudo for the period 1965-1979 are analyzed. The data show that for 1957-1970 the diurnal anisotropy is unidirectional. During 1971-1979, the diurnal anisotropy consists of two components. One is in the east-west direction and the other is the radial component, with direction along 12:00 LT. The latter attains a maximum amplitude in 1976. No evidence is found for the existence of the twenty year wave in the diurnal anisotropy of cosmic rays.

  20. Measurement of the solar diurnal anisotropy of the cosmic-ray albedo neutron flux

    NASA Astrophysics Data System (ADS)

    Ifedili, S. O.

    1982-03-01

    The solar diurnal anisotropy of the cosmic-ray albedo neutron flux has been measured by a neutron detector on board the OGO-6 satellite. On the average the diurnal amplitudes and phases of the cosmic ray albedo neutron flux (less than or equal to 10 MeV) were respectively 0.18 + or - 0.02% and 15 + or - 1 hr LT, though there were substantial fluctuations of a few days' duration which did not depend on the solar sector structure polarity and a 27-day periodicity in the diurnal amplitudes which was associated with the sun's rotation.

  1. Diurnal variations of cosmic ray geomagnetic cut-off threshold rigidities

    NASA Technical Reports Server (NTRS)

    Dvornikov, V. M.; Sdobnov, V. E.; Sergeev, A. V.; Danilova, O. A.; Tyasto, M. I.

    1985-01-01

    The spectrographic global survey method was used to investigate the rigidity variations Rc of geomagnetic cut-off as a function of local time and the level of geomagnetic disturbance for a number of stations of the world wide network. It is shown that geomagnetic cut-off threshold rigidities undergo diurnal variations. The diurnal wave amplitude decreases with increasing threshold rigidity Rc, and the wave maximum occurs at 2 to 4 hr LT. The amplitude of diurnal variations increases with increasing geomagnetic activity. The results agree with those from trajectory calculations made for an asymmetric model of the magnetosphere during different geomagnetic disturbance conditions.

  2. Wavy and Cycloidal Lineament Formation on Europa from Combined Diurnal and Nonsynchronous Stresses

    NASA Technical Reports Server (NTRS)

    Gleeson, Damhnait; Crawford, Zane; Barr, Amy C.; Mullen, McCall; Pappalardo, Robert T.; Prockter, Louise M.; Stempel, Michelle M.; Wahr, John

    2005-01-01

    In a companion abstract, we show that fractures propagated into combined diurnal and nonsynchronous rotation (NSR) stress fields can be cycloidal, "wavy," or arcuate in planform as the relative proportion of NSR stress in increased. These transitions occur as NSR stress accumulates over approx. 0 to 10 deg of ice shell rotation, for average fracture propagation speeds of approx. 1 to 3 m/s. Here we consider the NSR speed parameter space for these morphological transitions, and explore the effects on cycloids of adding NSR to diurnal stress. Fitting individual Europan lineaments can constrain the combined NSR plus diurnal stress field at the time of formation.

  3. Long term variability in migrating diurnal tide observed by the TIMED Doppler Interferometer (TIDI)

    NASA Astrophysics Data System (ADS)

    Killeen, T. L.; Wu, Q.; Solomon, S. C.; Ortland, D. A.; Skinner, W. R.; Niciejewski, R. J.

    2007-12-01

    We will examine the temporal variations of migrating diurnal tide in the mesosphere and lower thermosphere using the TIMED Doppler interferometer neutral wind data. The stratosphere QBO is the major source for the interannual variability of the migrating tide in the mesosphere and lower thermosphere. Buy examine the tidal variations using spectral analysis method, we plan to examine long term variations in the migrating diurnal tides beyond these related to the QBO. The TIDI data will allow us to examine the diurnal tide variation at different latitudes and altitudes. We will also study stratosphere observations in search of possible connections to changes in the stratosphere.

  4. Diurnal variation in corticosterone release among wild tropical forest birds.

    PubMed

    Schwabl, Philipp; Bonaccorso, Elisa; Goymann, Wolfgang

    2016-01-01

    Glucocorticoids are adrenal steroid hormones essential to homeostatic maintenance. Their daily variation at low concentrations regulates physiology and behavior to sustain proper immunological and metabolic function. Glucocorticoids rise well above these baseline levels during stress to elicit emergency-state responses that increase short-term survival. Despite this essence in managing life processes under both regular and adverse conditions, relationships of glucocorticoid release to environmental and intrinsic factors that vary at daily and seasonal scales are rarely studied in the wild. This study on 41 passerine species of the Ecuadorian Chocó applied a standardized capture-and-restraint protocol to examine diurnal variation in baseline and stress-related release of corticosterone, the primary avian glucocorticoid. Tests for relationships to relative body mass, hemoglobin concentration, molt status and date complemented this evaluation of the time of day effect on corticosterone secretion in free-living tropical rainforest birds. Analyses were also partitioned by sex as well as performed separately on two common species, the wedge-billed woodcreeper and olive-striped flycatcher. Interspecific analyses indicated maximum baseline corticosterone levels at the onset of the active phase and reductions thereafter. Stress-related levels did not correspond to time of day but accompanied baseline reductions during molt and elevations in birds sampled later during the September - November study period. Baseline corticosterone related negatively to hemoglobin in the wedge-billed woodcreeper and stress-related levels increased with body mass in the olive-striped flycatcher. There were no substantial sex-related differences. The results of this study suggest a diurnal rhythmicity in baseline corticosterone release so robust as to emerge in pooled analyses across a highly variable dataset. While this detection in nature is singular, correspondent patterns have been

  5. Influence of entrainment and countergradient on the ABL diurnal development

    NASA Astrophysics Data System (ADS)

    Hernández-Ceballos, M. A.

    2009-09-01

    The representation of the diurnal evolution of the boundary layer (ABL) by NCAR-Penn State Mesoscale Model (MM5) and by the mesoscale model Weather Research Forecast (WRF) is compared. Special attention is paid to determine the role of processes that occur near and below the inversion zone: the positive correlation between the heat flux and the gradient (countergradient) and the role of entrainment of heat originating from the free troposphere. Both processes play a key role in the modelling of the diurnal variability of temperature, moisture and atmospheric compounds. A number of 13 simulations are carried out to determine the sensitivity of the model results to the formulation of the ABL height and countergradient heat flux in the Medium Range Forecast (MRF) ABL scheme. Model results are compared with experimental data obtained from the DOMINO (Diel Oxidant Mechanisms in relation to Nitrogen oxides) campaign. It was organized by Max Planck Institute for Atmospheric Chemistry (Germany) in collaboration with the National Institute for Aerospace Technology (Spain). The DOMINO campaign took place at the "Atmospheric Sounding Station - El Arenosillo", a platform dedicated to atmospheric measurements in the Southwest of Spain. All numerical experiments are grouped in four clusters, each focussing on the sensitivity of different relevant aspects. The following aspects of the formulation are analyzed: surface moisture availability (M), the countergradient term (γc) and the ABL height (h). This is done by modifying both the bulk critical Richardson number (Ric) at the inversion zone, and a coefficient of proportionality (b) that determines the excess temperature and countergradient. The importance of b is due to its direct relation in the definition of both, γc and h. The results got with MM5 model show that temperature and specific moisture temporal evolution is not very sensitive to changes in the soil moisture availability (M value from 0.6 to 0.1). Using the MRF

  6. Diurnal Variations of Titan's Surface Temperatures From Cassini -CIRS Observations

    NASA Astrophysics Data System (ADS)

    Cottini, Valeria; Nixon, Conor; Jennings, Don; Anderson, Carrie; Samuelson, Robert; Irwin, Patrick; Flasar, F. Michael

    The Cassini Composite Infrared Spectrometer (CIRS) observations of Saturn's largest moon, Titan, are providing us with the ability to detect the surface temperature of the planet by studying its outgoing radiance through a spectral window in the thermal infrared at 19 m (530 cm-1) characterized by low opacity. Since the first acquisitions of CIRS Titan data the in-strument has gathered a large amount of spectra covering a wide range of latitudes, longitudes and local times. We retrieve the surface temperature and the atmospheric temperature pro-file by modeling proper zonally averaged spectra of nadir observations with radiative transfer computations. Our forward model uses the correlated-k approximation for spectral opacity to calculate the emitted radiance, including contributions from collision induced pairs of CH4, N2 and H2, haze, and gaseous emission lines (Irwin et al. 2008). The retrieval method uses a non-linear least-squares optimal estimation technique to iteratively adjust the model parameters to achieve a spectral fit (Rodgers 2000). We show an accurate selection of the wide amount of data available in terms of footprint diameter on the planet and observational conditions, together with the retrieved results. Our results represent formal retrievals of surface brightness temperatures from the Cassini CIRS dataset using a full radiative transfer treatment, and we compare to the earlier findings of Jennings et al. (2009). The application of our methodology over wide areas has increased the planet coverage and accuracy of our knowledge of Titan's surface brightness temperature. In particular we had the chance to look for diurnal variations in surface temperature around the equator: a trend with slowly increasing temperature toward the late afternoon reveals that diurnal temperature changes are present on Titan surface. References: Irwin, P.G.J., et al.: "The NEMESIS planetary atmosphere radiative transfer and retrieval tool" (2008). JQSRT, Vol. 109, pp

  7. Simulation of diurnal thermal energy storage systems: Preliminary results

    NASA Astrophysics Data System (ADS)

    Katipamula, S.; Somasundaram, S.; Williams, H. R.

    1994-12-01

    This report describes the results of a simulation of thermal energy storage (TES) integrated with a simple-cycle gas turbine cogeneration system. Integrating TES with cogeneration can serve the electrical and thermal loads independently while firing all fuel in the gas turbine. The detailed engineering and economic feasibility of diurnal TES systems integrated with cogeneration systems has been described in two previous PNL reports. The objective of this study was to lay the ground work for optimization of the TES system designs using a simulation tool called TRNSYS (TRaNsient SYstem Simulation). TRNSYS is a transient simulation program with a sequential-modular structure developed at the Solar Energy Laboratory, University of Wisconsin-Madison. The two TES systems selected for the base-case simulations were: (1) a one-tank storage model to represent the oil/rock TES system; and (2) a two-tank storage model to represent the molten nitrate salt TES system. Results of the study clearly indicate that an engineering optimization of the TES system using TRNSYS is possible. The one-tank stratified oil/rock storage model described here is a good starting point for parametric studies of a TES system. Further developments to the TRNSYS library of available models (economizer, evaporator, gas turbine, etc.) are recommended so that the phase-change processes is accurately treated.

  8. Passive ranging redundancy reduction in diurnal weather conditions

    NASA Astrophysics Data System (ADS)

    Cha, Jae H.; Abbott, A. Lynn; Szu, Harold H.

    2013-05-01

    Ambiguity in binocular ranging (David Marr's paradox) may be resolved by using two eyes moving from side to side behind an optical bench while integrating multiple views. Moving a head from left to right with one eye closed can also help resolve the foreground and background range uncertainty. That empirical experiment implies redundancy in image data, which may be reduced by adopting a 3-D camera imaging model to perform compressive sensing. Here, the compressive sensing concept is examined from the perspective of redundancy reduction in images subject to diurnal and weather variations for the purpose of resolving range uncertainty at all weather conditions such as the dawn or dusk, the daytime with different light level or the nighttime at different spectral band. As an example, a scenario at an intersection of a country road at dawn/dusk is discussed where the location of the traffic signs needs to be resolved by passive ranging to answer whether it is located on the same side of the road or the opposite side, which is under the influence of temporal light/color level variation. A spectral band extrapolation via application of Lagrange Constrained Neural Network (LCNN) learning algorithm is discussed to address lost color restoration at dawn/dusk. A numerical simulation is illustrated along with the code example.

  9. Winter habitat associations of diurnal raptors in Californias Central Valley

    USGS Publications Warehouse

    Pandolrno, E.R.; Herzog, M.P.; Hooper, S.L.; Smith, Z.

    2011-01-01

    The wintering raptors of California's Central Valley are abundant and diverse. Despite this, little information exists on the habitats used by these birds in winter. We recorded diurnal raptors along 19 roadside survey routes throughout the Central Valley for three consecutive winters between 2007 and 2010. We obtained data sufficient to determine significant positive and negative habitat associations for the White-tailed Kite (Elanus leucurus), Bald Eagle {Haliaeetus leucocephalus), Northern Harrier (Circus cyaneus), Red-tailed Hawk (Buteo jamaicensis), Ferruginous Hawk (Buteo regalis), Rough-legged Hawk (Buteo lagopus), American Kestrel (Falco sparverius), and Prairie Falcon (Falco mexicanus). The Prairie Falcon and Ferruginous and Rough-legged hawks showed expected strong positive associations with grasslands. The Bald Eagle and Northern Harrier were positively associated not only with wetlands but also with rice. The strongest positive association for the White-tailed Kite was with wetlands. The Red-tailed Hawk was positively associated with a variety of habitat types but most strongly with wetlands and rice. The American Kestrel, Northern Harrier, and White-tailed Kite were positively associated with alfalfa. Nearly all species were negatively associated with urbanized landscapes, orchards, and other intensive forms of agriculture. The White-tailed Kite, Northern Harrier, Redtailed Hawk, Ferruginous Hawk, and American Kestrel showed significant negative associations with oak savanna. Given the rapid conversion of the Central Valley to urban and intensive agricultural uses over the past few decades, these results have important implications for conservation of these wintering raptors in this region.

  10. Modeling diurnal hormone profiles by hierarchical state space models.

    PubMed

    Liu, Ziyue; Guo, Wensheng

    2015-10-30

    Adrenocorticotropic hormone (ACTH) diurnal patterns contain both smooth circadian rhythms and pulsatile activities. How to evaluate and compare them between different groups is a challenging statistical task. In particular, we are interested in testing (1) whether the smooth ACTH circadian rhythms in chronic fatigue syndrome and fibromyalgia patients differ from those in healthy controls and (2) whether the patterns of pulsatile activities are different. In this paper, a hierarchical state space model is proposed to extract these signals from noisy observations. The smooth circadian rhythms shared by a group of subjects are modeled by periodic smoothing splines. The subject level pulsatile activities are modeled by autoregressive processes. A functional random effect is adopted at the pair level to account for the matched pair design. Parameters are estimated by maximizing the marginal likelihood. Signals are extracted as posterior means. Computationally efficient Kalman filter algorithms are adopted for implementation. Application of the proposed model reveals that the smooth circadian rhythms are similar in the two groups but the pulsatile activities in patients are weaker than those in the healthy controls. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Liegeverhalten und diurnale Verteilung der Liegeperioden von Dromedaren*.

    PubMed

    Sambraus, H H

    1994-01-12

    ZUSAMMENFASSUNG: In Kenia und in Indien wurde je eine Dromedarherde von ca. 70 bzw. ca. 85 Tieren tagsüber und nachts beobachtet. Ermittelt wurde in 30 Min Abständen die Zahl der liegenden Tiere. Die übliche Liegeposition von Kamelen ist in Zusammenhang mit besonderen morphologischen Strukturen zu sehen. Die Dromedare lagen fast ausschließlich (Kenia) bzw. weit überwiegend (Indien) nachts. Das Liegen nahm in beiden Herden bei den Stuten fast die Hälfte des 24-Stunden-Tages ein. Es werden Vergleiche mit dem Liegeverhalten von Rindern angestellt. Lying-down behaviour and its diurnal distribution in dromedaries Two herds of dromedaries, one in Kenya, consisting of about 70 animals, and one in India, consisting of about 85 animals, were observed during the day and at night. The number of animals lying down was determined at 30 min intervals. The usual lying position of camels is rotated to the specific morphological structure. The dromedaries in Kenya lie almost exclusively, and in India predominantly, at night. In both herds, the females spend almost half of the 24-h day lying down. This behaviour is compared to the lying-down behaviour of cattle. 1994 Blackwell Verlag GmbH.

  12. Diurnal height variations in growth of children: effects of gravity.

    PubMed

    Kobayashi, M; Kobayashi, M; Tanaka, T; Uchiyama, Y; Togo, M

    1999-07-01

    Many specialists in various scientific fields are interested in human growth and development of body sizes of children as a physiological phenomenon. However, our knowledge on human growth has not yet reached a solid foundation and consensus, and at present gravity potential is known to be a lasting condition that influences human lives in various ways. Therefore, more basic research is needed by examining detailed processes of human growth on the earth, with the effect of gravity in prospect. Although modern human growth study is constructed mainly on the basis of observations at one-year intervals, whether such long-interval observations can reveal a true statistical model of human growth is questionable. Togo and Togo (1982, 1989) observed growth in five siblings at one-month intervals for more than 15 years and found fluctuations observed from the start to the end of growth observations consisted of trend, regular, and irregular factors. This indicates the importance of examining human growth by short-interval observation. Thus, our study focused on diurnal variations of height, measuring twice daily, and discusses the effects of gravity on growth of children.

  13. Diurnal variation of airborne pollen at two different heights.

    PubMed

    Alcázar, P; Galán, C; Cariñanos, P; Domínguez-Vilches, E

    1999-01-01

    The diurnal variation in airborne pollen concentrations in the air of Córdoba at two different heights (1.5 m and 15 m) was studied during 2 consecutive years with the help of two Hirst volumetric samplers. According to pollen percentages obtained every hour, we determined whether every taxon studied presented a morning or an afternoon pattern, and whether this model was homogeneous (with a slight difference between the time of maximum and minimum reading) or heterogeneous (with a large difference between the two readings). We observed that the taxa that had many species in the area, such as Plantago, Poaceae, and Chenopodiaceae-Amaranthaceae showed a homogeneous model, while those taxa with few species present, such as Cupressaceae and Urticaceae showed a more heterogeneous model. Furthermore, the pattern of the plants with a large presence in the study area was more heterogeneous at 1.5 m because the pollen collected at this height is released from anthers. In the sampler placed at 15 m we detected airborne pollen, found that the curves were smoother and also observed a slight time delay for the taxa that were highly present in the area of study.

  14. Seasonal and diurnal melatonin production in exercising sled dogs.

    PubMed

    Dunlap, Kriya L; Reynolds, Arleigh J; Tosini, Gianluca; Kerr, Wendell W; Duffy, Lawrence K

    2007-08-01

    Melatonin is a hormone that is released from the pineal gland into the blood stream and is controlled by nerve impulses from the suprachiasmatic nuclei. Melatonin synthesis, which is inhibited by light on the mammalian retina, peaks in plasma concentrations during the night. Though still a subject of intense research, melatonin in mammals is known to effect the reproductive system, thyroid function, and adaptations to seasonal changes. Sled dogs in Fairbanks, Alaska (65 degrees N) can be exposed to anywhere from 21 h of daylight in the summer to 4 h in the winter. While light may be the primary factor influencing melatonin production, we hypothesized that exercise may also affect melatonin production. In the current study, sled dogs were used to study seasonal and diurnal variation in melatonin production. Sled dogs by nature are elite athletes and therefore exercise was a focus in the study. Both exercise and non exercise dogs from 2 distinct latitudes were used. The peak in melatonin production was prolonged in high latitude dogs (65 degrees N), compared with lower latitude dogs (45 degrees N). Dogs at both latitudes show a reduction in peak melatonin levels with exercise, and winter melatonin levels in both locations were higher than the summer. Surprisingly, sled dogs in Alaska had lower melatonin levels than sled dogs in New York.

  15. Diurnal modulation signal from dissipative hidden sector dark matter

    NASA Astrophysics Data System (ADS)

    Foot, R.; Vagnozzi, S.

    2015-09-01

    We consider a simple generic dissipative dark matter model: a hidden sector featuring two dark matter particles charged under an unbroken U(1) ‧ interaction. Previous work has shown that such a model has the potential to explain dark matter phenomena on both large and small scales. In this framework, the dark matter halo in spiral galaxies features nontrivial dynamics, with the halo energy loss due to dissipative interactions balanced by a heat source. Ordinary supernovae can potentially supply this heat provided kinetic mixing interaction exists with strength ɛ ∼10-9. This type of kinetically mixed dark matter can be probed in direct detection experiments. Importantly, this self-interacting dark matter can be captured within the Earth and shield a dark matter detector from the halo wind, giving rise to a diurnal modulation effect. We estimate the size of this effect for detectors located in the Southern hemisphere, and find that the modulation is large (≳ 10%) for a wide range of parameters.

  16. Diurnal Phototropism in Solar Tracking Leaves of Lavatera cretica

    PubMed Central

    Schwartz, Amnon; Koller, Dov

    1986-01-01

    On a clear day, leaf laminas of Lavatera cretica tracked the solar position throughout the day. The laminar azimuth did not diverge from the solar azimuth by more than 12° from sunrise to sunset. Tracking of the solar elevation started 1 to 2 hours after sunrise and ceased 1 to 2 hours before sunset. On an overcast day, the laminas reoriented horizontally. After sunset, following a clear day, the laminas performed a nocturnal reorientation, with three well defined phases. During the initial phase the laminas relaxed their strained sunset-facing orientation to one perpendicular to their petioles. This equilibrium configuration was maintained throughout the following phase, which was apparently concerned with time-measuring. During the final phase, the laminas reoriented, before sunrise, to a position facing the direction of the anticipated sunrise. This directional information is phototropic and was retained for 3 to 4 diurnal cycles, probably in the pulvinus itself, which is the site of the response. Laminas of plants transferred from sunlight either to darkness, or to a simulated natural photoperiod under overhead illumination, were facing the originally anticipated direction of sunrise at the time of each of the three to four subsequent sunrises (after which they reverted to the dark orientation in darkness, or to the horizontal one with overhead illumination). Cotyledonary laminas required directional information for the nocturnal reorientation during 3 or 4 cycles of simulated sunrise to sunset transitions. PMID:16664701

  17. Diurnal temperature fluctuations in an artificial small shallow water body.

    PubMed

    Jacobs, Adrie F G; Heusinkveld, Bert G; Kraai, Aline; Paaijmans, Krijn P

    2008-03-01

    For aquatic biological processes, diurnal and annual cycles of water temperature are very important to plants as well as to animals and microbes living in the water. An existing one-dimensional model has been extended to simulate the temperature profile within a small water body. A year-round outdoor experiment has been conducted to estimate the model input parameters and to verify the model. Both model simulations and measurements show a strong temperature stratification in the water during daytime. Throughout the night, however, a well-mixed layer starting at the water surface develops. Because the water body is relatively small, it appears that the sediment heat flux has a strong effect on the behaviour of the water temperature throughout the seasons. In spring, the water temperature remains relatively low due to the cold surrounding soil, while in autumn the opposite occurs due to the relatively warm soil. It appears that, in small water bodies, the total amount of incoming long wave radiation is sensitive to the sky view factor. In our experiments, the intensity of precipitation also appears to have a small effect on the stratification of the water temperature.

  18. Diurnal variation of nitric oxide in the upper stratosphere

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Aimedieu, P.; Pirre, M.; Ramaroson, R.; Matthews, W. A.

    1990-01-01

    Two recent measurements of the temporal variation of nitric oxide at constant altitude near 40 km are reported. The observations were made at float altitude with a balloon-borne chemiluminescence detector together with in situ ozone measurements. The first measurement was made at 44 N on September 17, 1987, at an altitude of 40 km from before sunrise until 1000 LT. The second observation was made at the same latitude on June 18, 1988, at 39 km from 0800 to 1230 LT. At an altitude of 40 km, nitric oxide was observed to start increasing very rapidly at sunrise when the solar zenith angle reached about 95 deg. After the rapid initial buildup, the rate of NO increase stabilized for 3 hours at about 1.2 ppbv/hour. Near 1100 LT at 39 km in summer, the NO mixing ratio was observed to become nearly constant. These features of the diurnal variation of NO are in accord with the temporal variation expected from a time-dependent zero-dimensional photochemical model.

  19. Observations of a "weekend effect" in diurnal temperature range.

    PubMed

    Forster, Piers M de F; Solomon, Susan

    2003-09-30

    Using surface measurements of maximum and minimum temperatures from the Global Daily Climatological Network data set, we find evidence of a weekly cycle in diurnal temperature range (DTR) for many stations in the United States, Mexico, Japan, and China. The "weekend effect," which we define as the average DTR for Saturday through Monday minus the average DTR for Wednesday through Friday, can be as large as 0.5 K, similar to the magnitude of observed long-term trends in DTR. This weekend effect has a distinct large-scale pattern that has changed only slightly over time, but its sign is not the same in all locations. The station procedures and the statistical robustness of both the individual station data and the patterns of DTR differences are thoroughly examined. We conclude that the weekend effect is a real short time scale and large spatial scale geophysical phenomenon, which is necessarily human in origin. We thus provide strong evidence of an anthropogenic link to DTR, an important climate indicator. Several possible anthropogenic mechanisms are discussed; we speculate that aerosol-cloud interactions are the most likely cause of this weekend effect, but we do not rule out others.

  20. Large diurnal temperature range increases bird sensitivity to climate change.

    PubMed

    Briga, Michael; Verhulst, Simon

    2015-11-13

    Climate variability is changing on multiple temporal scales, and little is known of the consequences of increases in short-term variability, particularly in endotherms. Using mortality data with high temporal resolution of zebra finches living in large outdoor aviaries (5 years, 359.220 bird-days), we show that mortality rate increases almost two-fold per 1°C increase in diurnal temperature range (DTR). Interestingly, the DTR effect differed between two groups with low versus high experimentally manipulated foraging costs, reflecting a typical laboratory 'easy' foraging environment and a 'hard' semi-natural environment respectively. DTR increased mortality on days with low minimum temperature in the easy foraging environment, but on days with high minimum temperature in the semi-natural environment. Thus, in a natural environment DTR effects will become increasingly important in a warming world, something not detectable in an 'easy' laboratory environment. These effects were particularly apparent at young ages. Critical time window analyses showed that the effect of DTR on mortality is delayed up to three months, while effects of minimum temperature occurred within a week. These results show that daily temperature variability can substantially impact the population viability of endothermic species.

  1. Effect of suprachiasmatic lesions on diurnal heart rate rhythm in the rat

    NASA Technical Reports Server (NTRS)

    Saleh, M. A.; Winget, C. M.

    1977-01-01

    Heart rate and locomotor activity of rats kept under 12L/12D illumination regimen were recorded every six minutes for ten days using implantable radio transmitters. Some of the rats then received bilateral RF lesions into the suprachiasmatic nucleus (SCN). Control sham operations were performed on the rest of the animals. After recovery from surgery, recording of heart rate and locomotor activity was continued for ten days. SCN-lesioned rats showed no significant diurnal fluctuation in heart rate, while normal and sham-operated rats showed the normal diurnal rhythm in that function. The arrhythmic diurnal heart-rate pattern of SCN rats appeared to be correlated with their sporadic activity pattern. The integrity of the suprachiasmatic nucleus is therefore necessary for the generation and/or expression of diurnal rhythmicity in heart rate in the rat.

  2. Resonant Third-Degree Diurnal Tides in the Seas Off Western Europe

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Smith, David E. (Technical Monitor)

    2000-01-01

    Third-degree diurnal tides are estimated from long time series of sea level measurements at three North Atlantic tide gauges. Although their amplitudes are only a few mm or less, their admittances are far larger than those of second-degree diurnal tides, just as Cartwright discovered for the M(sub 1) constituent. The tides are evidently resonantly enhanced owing to high spatial correlation between the third-degree spherical harmonic of the tidal potential and a near-diurnal oceanic normal mode that is most pronounced in the North Atlantic. By estimating the ocean tidal response across the diurnal band (5 tidal constituents plus nodal modulations), the period and Q of this mode and one nearby mode are estimated.

  3. Linking diurnal cycles of river flow to interannual variations in climate

    USGS Publications Warehouse

    Lundquist, Jessica D.; Dettinger, Michael D.

    2003-01-01

    Many rivers in the Western United States have diurnal variations exceeding 10% of their mean flow in the spring and summer months. The shape and timing of the diurnal cycle is influenced by an interplay of the snow, topography, vegetation, and meteorology in a basin, and the measured result differs between wet and dry years. The largest interannual differences occur during the latter half of the melt season, as the snowline retreats to the highest elevations and most shaded slopes in a basin. In most basins, during this period, the hour of peak discharge shifts to later in the day, and the relative amplitude of the diurnal cycle decreases. The magnitude and rate of these changes in the diurnal cycle vary between years and may provide clues about how long- term hydroclimatic variations affect short-term basin dynamics.

  4. Evaluation of the Sensitivity of the Amazonian Diurnal Cycle to Convective Intensity in Reanalyses

    NASA Technical Reports Server (NTRS)

    Itterly, Kyle F.; Taylor, Patrick C.

    2016-01-01

    Model parameterizations of tropical deep convection are unable to reproduce the observed diurnal and spatial variability of convection in the Amazon, which contributes to climatological biases in the water cycle and energy budget. Convective intensity regimes are defined using percentiles of daily minimum 3-hourly averaged outgoing longwave radiation (OLR) from Clouds and the Earth's Radiant Energy System (CERES). This study compares the observed spatial variability of convective diurnal cycle statistics for each regime to MERRA-2 and ERA-Interim (ERA) reanalysis data sets. Composite diurnal cycle statistics are computed for daytime hours (06:00-21:00 local time) in the wet season (December-January-February). MERRA-2 matches observations more closely than ERA for domain averaged composite diurnal statistics-specifically precipitation. However, ERA reproduces mesoscale features of OLR and precipitation phase associated with topography and the propagation of the coastal squall line. Both reanalysis models are shown to underestimate extreme convection.

  5. Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia

    PubMed Central

    Koyanagi, Satoru; Kusunose, Naoki; Taniguchi, Marie; Akamine, Takahiro; Kanado, Yuki; Ozono, Yui; Masuda, Takahiro; Kohro, Yuta; Matsunaga, Naoya; Tsuda, Makoto; Salter, Michael W.; Inoue, Kazuhide; Ohdo, Shigehiro

    2016-01-01

    Diurnal variations in pain hypersensitivity are common in chronic pain disorders, but the underlying mechanisms are enigmatic. Here, we report that mechanical pain hypersensitivity in sciatic nerve-injured mice shows pronounced diurnal alterations, which critically depend on diurnal variations in glucocorticoids from the adrenal glands. Diurnal enhancement of pain hypersensitivity is mediated by glucocorticoid-induced enhancement of the extracellular release of ATP in the spinal cord, which stimulates purinergic receptors on microglia in the dorsal horn. We identify serum- and glucocorticoid-inducible kinase-1 (SGK-1) as the key molecule responsible for the glucocorticoid-enhanced release of ATP from astrocytes. SGK-1 protein levels in spinal astrocytes are increased in response to glucocorticoid stimuli and enhanced ATP release by opening the pannexin-1 hemichannels. Our findings reveal an unappreciated circadian machinery affecting pain hypersensitivity caused by peripheral nerve injury, thus opening up novel approaches to the management of chronic pain. PMID:27739425

  6. Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia.

    PubMed

    Koyanagi, Satoru; Kusunose, Naoki; Taniguchi, Marie; Akamine, Takahiro; Kanado, Yuki; Ozono, Yui; Masuda, Takahiro; Kohro, Yuta; Matsunaga, Naoya; Tsuda, Makoto; Salter, Michael W; Inoue, Kazuhide; Ohdo, Shigehiro

    2016-10-14

    Diurnal variations in pain hypersensitivity are common in chronic pain disorders, but the underlying mechanisms are enigmatic. Here, we report that mechanical pain hypersensitivity in sciatic nerve-injured mice shows pronounced diurnal alterations, which critically depend on diurnal variations in glucocorticoids from the adrenal glands. Diurnal enhancement of pain hypersensitivity is mediated by glucocorticoid-induced enhancement of the extracellular release of ATP in the spinal cord, which stimulates purinergic receptors on microglia in the dorsal horn. We identify serum- and glucocorticoid-inducible kinase-1 (SGK-1) as the key molecule responsible for the glucocorticoid-enhanced release of ATP from astrocytes. SGK-1 protein levels in spinal astrocytes are increased in response to glucocorticoid stimuli and enhanced ATP release by opening the pannexin-1 hemichannels. Our findings reveal an unappreciated circadian machinery affecting pain hypersensitivity caused by peripheral nerve injury, thus opening up novel approaches to the management of chronic pain.

  7. Diurnal and spatial variability of lightning activity in northeastern Colorado and central Florida during the summer

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.; Holle, R. L.

    1986-01-01

    Lightning location data from northeastern Colorado and central Florida for the summer months of 1983 have been studied to ascertain the diurnal development of spatial distributions of flash frequencies. The data sources are discussed, and for both investigated regions, the regional geographic and climatic characteristics, the day-to-day variability of lightning activity, the diurnal cycle over the entire region, the spatial distribution of lightning activity, the diurnal changes of spatial distribution, and the diurnal variation of lightning at individual sites are described in detail. In both regions, the time and space distributions of lightning are modulated by the topographic features and the contrasts of the terrain. Lightning activity is a relatively rare and variable phenomenon in both regions when day-to-day frequencies are considered. There thus must be meteorological parameters that determine the extent and frequency of lightning occurrence.

  8. On the diurnal characteristics of cloud structure in the marine stratocumulus transition regime

    SciTech Connect

    Miller, M.A.

    1996-07-01

    It is known that stratus-topped marine boundary layers in the mid- latitudes are subject to significant diurnal changes in structure caused by solar heating. One characteristic of the transition cloud regime that has been thoroughly explored is its diurnal variability. Although this variability has been discussed in other studies, the size of the database was restrictive. Thus, it is of importance to examine the diurnal characteristics of transition cloud structure in a larger data sample to validate the conclusions of these previous studies and to enhance our understanding of the effects of this diurnal variability on the climatology of the transition itself. The Atlantic Stratocumulus Transition Experiment (ASTEX) was designed to help understand transition clouds by making comprehensive measurements of their structure over a one-month period. Data was collected using a suite of in-situ and surface-based remote sensors deployed on the island of Santa Maria.

  9. Evaluation of the sensitivity of the Amazonian diurnal cycle to convective intensity in reanalyses

    NASA Astrophysics Data System (ADS)

    Itterly, Kyle F.; Taylor, Patrick C.

    2017-02-01

    Model parameterizations of tropical deep convection are unable to reproduce the observed diurnal and spatial variability of convection in the Amazon, which contributes to climatological biases in the water cycle and energy budget. Convective intensity regimes are defined using percentiles of daily minimum 3-hourly averaged outgoing longwave radiation (OLR) from Clouds and the Earth's Radiant Energy System (CERES). This study compares the observed spatial variability of convective diurnal cycle statistics for each regime to MERRA-2 and ERA-Interim (ERA) reanalysis data sets. Composite diurnal cycle statistics are computed for daytime hours (06:00-21:00 local time) in the wet season (December-January-February). MERRA-2 matches observations more closely than ERA for domain averaged composite diurnal statistics—specifically precipitation. However, ERA reproduces mesoscale features of OLR and precipitation phase associated with topography and the propagation of the coastal squall line. Both reanalysis models are shown to underestimate extreme convection.

  10. Variability in diurnal testosterone, exposure to violence, and antisocial behavior in young adolescents.

    PubMed

    Peckins, Melissa K; Susman, Elizabeth J

    2015-11-01

    The purpose of this report is to provide evidence of an association between within-person variability in diurnal testosterone over 1 year, lifetime exposure to violence, and the manifestation of antisocial behavior in 135 pubertal-aged adolescents across 1 year. Adolescents' sex and lifetime history of violence exposure moderated the association between within-person variability in diurnal testosterone and antisocial behavior. Furthermore, sex-stratified analyses revealed that lifetime history of exposure to violence moderated the association between within-person variability in diurnal testosterone and antisocial behavior in females only. This report is unique in that it illuminates sex differences in within-person associations among exposure to violence, individual variability in diurnal testosterone, and antisocial behavior.

  11. New fire diurnal cycle characterizations to improve fire radiative energy assessments made from MODIS observations

    NASA Astrophysics Data System (ADS)

    Andela, N.; Kaiser, J. W.; van der Werf, G. R.; Wooster, M. J.

    2015-08-01

    Accurate near real time fire emissions estimates are required for air quality forecasts. To date, most approaches are based on satellite-derived estimates of fire radiative power (FRP), which can be converted to fire radiative energy (FRE) which is directly related to fire emissions. Uncertainties in these FRE estimates are often substantial. This is for a large part because the most often used low-Earth orbit satellite-based instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) have a relatively poor sampling of the usually pronounced fire diurnal cycle. In this paper we explore the spatial variation of this fire diurnal cycle and its drivers using data from the geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI). In addition, we sampled data from the SEVIRI instrument at MODIS detection opportunities to develop two approaches to estimate hourly FRE based on MODIS active fire detections. The first approach ignored the fire diurnal cycle, assuming persistent fire activity between two MODIS observations, while the second approach combined knowledge on the climatology of the fire diurnal cycle with active fire detections to estimate hourly FRE. The full SEVIRI time series, providing full coverage of the fire diurnal cycle, were used to evaluate the results. Our study period comprised of 3 years (2010-2012), and we focused on Africa and the Mediterranean basin to avoid the use of potentially lower quality SEVIRI data obtained at very far off-nadir view angles. We found that the fire diurnal cycle varies substantially over the study region, and depends on both fuel and weather conditions. For example, more "intense" fires characterized by a fire diurnal cycle with high peak fire activity, long duration over the day, and with nighttime fire activity are most common in areas of large fire size (i.e., large burned area per fire event). These areas are most prevalent in relatively arid regions. Ignoring the fire diurnal

  12. Surface diurnal warming in the East China Sea derived from satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Song, Dan; Duan, Zhigang; Zhai, Fangguo; He, Qiqi

    2017-09-01

    Process of sea surface diurnal warming has drawn a lot of attention in recent years, but that occurs in shelf seas was rarely addressed. In the present work, surface diurnal warming strength in the East China Sea was calculated by the sea surface temperature (SST) data derived from the MODIS sensors carried by the satellites Aqua and Terra. Due to transit time difference, both the number of valid data and the surface diurnal warming strength computed by the MODIS-Aqua data are relatively larger than Terra. Therefore, the 10-year MODIS-Aqua data from 2005 to 2014 were used to analyze the monthly variability of the surface diurnal warming. Generally, the surface diurnal warming in the East China sea is stronger in summer and autumn but weaker in winter and spring, while it shows different peaks in different regions. Large events with ΔT≥5 K have also been discussed. They were found mainly in coastal area, especially near the Changjiang (Yangtze) River estuary. And there exists a high-incidence period from April to July. Furthermore, the relationship between surface diurnal warming and wind speed was discussed. Larger diurnal warming mainly lies in areas with low wind speed. And its possibility decreases with the increase of wind speed. Events with ΔT≥2.5 K rarely occur when wind speed is over 12 m/s. Study on surface diurnal warming in the East China Sea may help to understand the daily scale air-sea interaction in the shelf seas. A potential application might be in the marine weather forecasts by numerical models. Its impact on the coastal eco-system and the activities of marine organisms can also be pursued.

  13. Diurnal heating and cloudiness in the NCAR Community Climate Model (CCM2)

    SciTech Connect

    Lieberman, R.S.; Leovy, C.B. ); Boville, B.A.; Briegleb, B.P. )

    1994-06-01

    In this paper, the authors assess the suitability of the heating fields in the latest version of the NCAR Community Climate Model (CCM2) for modeling the thermal forcing of atmospheric tides. Accordingly, diurnal variations of the surface pressure, outgoing longwave radiation, cloudiness, and precipitation are examined in the CCM2. The fields of radiative, sensible, and latent heating are similarly analyzed. These results are subjectively compared with available data. Equatorial diurnal surface pressure tides are fairly well simulated by CCM2. The model successfully reproduces the semidiurnal surface pressure tides; however, this may result in part from reflection of wave energy at the upper boundary. The CCM2 large-scale diurnal OLR is generally consistent with observations. The moist-convective scheme in the model is able to reproduce the diurnally varying cloudiness and precipitation patterns associated with land-sea contrasts; however, the amplitudes of CCM2 diurnal continental convective cloudiness are weaker than observations. The CCM2 boundary-layer sensible heating is consistent with a very limited set of observations, and with estimates obtained from simple models of diffusive heating. Although the CCM2 tropospheric solar radiative heating is similar in magnitude to previous estimates, there are substantial differences in the vertical structures. A definitive assessment of the validity of the CCM2 diurnal cycle is precluded by the lack of detailed observations and the limitations of our CCM2 sample. Nevertheless, the authors conclude that the global-scale components of the CCM2 diurnal heating are useful proxies for the true diurnal forcing of the tides. 45 refs., 18 figs.

  14. Characteristics of high energy cosmic ray diurnal anisotropy on day-to-day basis

    NASA Astrophysics Data System (ADS)

    Tiwari, C. M.; Tiwari, D. P.

    2008-10-01

    Diurnal variation of cosmic ray intensity for the period of 1989 to 2000 at Kiel, Haleakakla, Rome, Hermanus, Calgary, and Goose Bay neutron monitors has been studied. Frequency histograms are generated for each year by using the daily values of amplitudes and phases. In the present analysis we have derived the yearly mean amplitude and phase of the diurnal variation of cosmic ray intensity. It has been concluded from the analysis that the diurnal amplitude is mostly concentrated in between the amplitude values of 0.1% and 0.4%, whereas the phase of diurnal anisotropy is concentrated in the belt of 100 to 225 degrees. As such, the various characteristics of long-term diurnal variation of cosmic ray intensity for the maxima of solar activity cycle 22 to the next maxima of solar activity cycle 23 have been studied. The minimum amplitudes are apparent for the minimum solar activity periods starting from 1995 and up to 1997 at Kiel, Haleakakla, Rome, Hermanus, Calgary and Goose Bay stations. The diurnal amplitude has been found to have almost recovered to its values observed during 1989 to 1990. It is also seen that the diurnal amplitudes are much larger by a factor of two at high/middle latitude stations as compared to that for low latitude stations, where the amplitudes are even ˜01% or less during 1996. The phase is significantly earlier during 1996 and 1997 with some significant change starting in 1995. As such, competitive is a continuous decreasing trend in the diurnal phase with smaller change at high/middle latitude and significantly much larger change at low latitudes.

  15. Calcification responses to diurnal variation in seawater carbonate chemistry by the coral Acropora formosa

    NASA Astrophysics Data System (ADS)

    Chan, W. Y.; Eggins, S. M.

    2017-09-01

    Significant diurnal variation in seawater carbonate chemistry occurs naturally in many coral reef environments, yet little is known of its effect on coral calcification. Laboratory studies on the response of corals to ocean acidification have manipulated the carbonate chemistry of experimental seawater to compare calcification rate changes under present-day and predicted future mean pH/Ωarag conditions. These experiments, however, have focused exclusively on differences in mean chemistry and have not considered diurnal variation. The aim of this study was to compare calcification responses of branching coral Acropora formosa under conditions with and without diurnal variation in seawater carbonate chemistry. To achieve this aim, we explored (1) a method to recreate natural diurnal variation in a laboratory experiment using the biological activities of a coral-reef mesocosm, and (2) a multi-laser 3D scanning method to accurately measure coral surface areas, essential to normalize their calcification rates. We present a cost- and time-efficient method of coral surface area estimation that is reproducible within 2% of the mean of triplicate measurements. Calcification rates were compared among corals subjected to a diurnal range in pH (total scale) from 7.8 to 8.2, relative to those at constant pH values of 7.8, 8.0 or 8.2. Mean calcification rates of the corals at the pH 7.8-8.2 (diurnal variation) treatment were not statistically different from the pH 8.2 treatment and were 34% higher than the pH 8.0 treatment despite similar mean seawater pH and Ωarag. Our results suggest that calcification of adult coral colonies may benefit from diurnal variation in seawater carbonate chemistry. Experiments that compare calcification rates at different constant pH without considering diurnal variation may have limitations.

  16. Diurnal centroid of ecosystem energy and carbon fluxes at FLUXNET sites

    NASA Astrophysics Data System (ADS)

    Wilson, Kell B.; Baldocchi, Dennis; Falge, Eva; Aubinet, Marc; Berbigier, Paul; Bernhofer, Christian; Dolman, Han; Field, Chris; Goldstein, Allen; Granier, Andre; Hollinger, Dave; Katul, Gabriel; Law, B. E.; Meyers, Tilden; Moncrieff, John; Monson, Russ; Tenhunen, John; Valentini, Riccardo; Verma, Shashi; Wofsy, Steve

    2003-11-01

    Data from a network of eddy covariance stations in Europe and North America (FLUXNET) were analyzed to examine the diurnal patterns of surface energy and carbon fluxes during the summer period across a range of ecosystems and climates. Diurnal trends were quantified by assessing the time of day surface fluxes and meteorological variable reached peak values, using the "diurnal centroid" method; the diurnal centroid enabled us to discern whether the peak activity of the variable of interest is weighted more toward the morning or afternoon. In this paper, diurnal centroid estimates were used to diagnose which atmospheric and physiological processes controlled carbon dioxide, water vapor, and sensible heat fluxes across different ecosystems and climates. Sensitivity tests suggested that the diurnal centroids for latent (LE) and sensible (H) heat flux depend on atmospheric resistance, static stability in the free atmosphere, stomatal response to vapor pressure deficit, and advection. With respect to diurnal trends of surface energy fluxes at FLUXNET sites, maximum LE occurred later in the day relative to H at most tall forests with continental climates. The lag between LE and H was reduced or reversed at sites that were influenced by advection or by afternoon stomatal closure. The time of peak carbon uptake of temperate forests occurred earlier relative to the temporal peak of photosynthetically active radiation, as compared to boreal forests. The timing of this peak occurred earlier during periods with low soil water content, as it did during the summer in Mediterranean climates. In this case, the diurnal centroid for the CO2 flux was influenced by the response of respiration and photosynthesis to increasing afternoon temperature and by afternoon stomatal closure.

  17. Controls on diurnal streamflow cycles in a high altitude catchment in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Mutzner, R.; Weijs, S. V.; Tarolli, P.; Calaf, M.; Oldroyd, H. J.; Parlange, M. B.

    2014-12-01

    The study of streamflow diurnal cycles is of primary importance to understand hydrological processes happening at various spatial scales. In high altitude alpine catchments, streamflow diurnal cycles are typically dominated by snow or icemelt. During a field campaign in the summer 2012 in a small catchment in the Swiss Alps (Val Ferret catchment, draining area of 20.4 km2, mean altitude of 2423 m above sea level (asl), ranging from 1773 m to 3206 m asl, glaciarized area: 2%), we observed streamflow diurnal cycles throughout the season in two monitored sub-basins of the watershed. To study in detail the diurnal cycles, we make use of a wireless network of meteorological stations, time-lapse photography, a fully equipped energy-balance station and water electrical conductivity monitored at the gauging stations. In the first sub-basin, we observed a transition from a snowmelt to an evapotranspiration induced diurnal streamflow cycle. In the second sub-basin, we observed a snowmelt/icemelt dominated diurnal cycle during the entire season due to the presence of a small glacier. Comparisons between icemelt and evapotranspiration cycles showed that the two processes were happening at the same times of day but with a different sign. The amplitude of the icemelt cycle decreased exponentially during the season and was larger than of the amplitude of the evapotranspiration cycle which was relatively constant during the season. A conceptual model was applied to estimate the effect of evapotranspiration on the diurnal streamflow cycle in the icemelt dominated sub-basin. The model makes use of the latent heat measured at the energy balance station, the streamflow loss due to evapotranspiration and the computation of active evapotranspiration areas. Our study suggests that evapotranspiration from the riparian area damps the icemelt-diurnal streamflow cycle resulting in a possible underestimation of glacier mass changes.

  18. Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis.

    PubMed

    Adam, Emma K; Quinn, Meghan E; Tavernier, Royette; McQuillan, Mollie T; Dahlke, Katie A; Gilbert, Kirsten E

    2017-09-01

    Changes in levels of the stress-sensitive hormone cortisol from morning to evening are referred to as diurnal cortisol slopes. Flatter diurnal cortisol slopes have been proposed as a mediator between chronic psychosocial stress and poor mental and physical health outcomes in past theory and research. Surprisingly, neither a systematic nor a meta-analytic review of associations between diurnal cortisol slopes and health has been conducted to date, despite extensive literature on the topic. The current systematic review and meta-analysis examined associations between diurnal cortisol slopes and physical and mental health outcomes. Analyses were based on 179 associations from 80 studies for the time period up to January 31, 2015. Results indicated a significant association between flatter diurnal cortisol slopes and poorer health across all studies (average effect size, r=0.147). Further, flatter diurnal cortisol slopes were associated with poorer health in 10 out of 12 subtypes of emotional and physical health outcomes examined. Among these subtypes, the effect size was largest for immune/inflammation outcomes (r=0.288). Potential moderators of the associations between diurnal cortisol slopes and health outcomes were examined, including type of slope measure and study quality indices. The possible roles of flatter slopes as either a marker or a mechanism for disease etiology are discussed. We argue that flatter diurnal cortisol slopes may both reflect and contribute to stress-related dysregulation of central and peripheral circadian mechanisms, with corresponding downstream effects on multiple aspects of biology, behavior, and health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Impact of Diurnal Warming on Assimilation of Satellite Observations of Sea Surface Temperature

    DTIC Science & Technology

    2014-09-09

    scales according to variations in insolation , advection, and mixing. A prominent diurnal signal can frequently be identified in the SST of midlatitude...to tropical regions, particularly under conditions of high insolation and low wind speed. Case studies in the Gulf of Mexico and Mediterranean Sea... insolation , advection, and mixing. A prominent diurnal signal can frequently be identified in the SST of midlatitude to tropical regions, particularly

  20. Simulation of the Universal-Time Diurnal Variation of the Global Electric Circuit Charging Rate

    NASA Technical Reports Server (NTRS)

    Mackerras, D.; Darvenzia, M.; Orville, R. E.; Williams, E. R.; Goodman, S. J.

    1999-01-01

    A global lightning model that includes diurnal and annual lightning variation, and total flash density versus latitude for each major land and ocean, has been used as the basis for simulating the global electric circuit charging rate. A particular objective has been to reconcile the difference in amplitude ratios [AR=(max-min)/mean] between global lightning diurnal variation (AR approx. = 0.8) and the diurnal variation of typical atmospheric potential gradient curves (AR approx. = 0.35). A constraint on the simulation is that the annual mean charging current should be about 1000 A. The global lightning model shows that negative ground flashes can contribute, at most, about 10-15% of the required current. For the purpose of the charging rate simulation, it was assumed that each ground flash contributes 5 C to the charging process. It was necessary to assume that all electrified clouds contribute to charging by means other than lightning, that the total flash rate can serve as an indirect indicator of the rate of charge transfer, and that oceanic electrified clouds contribute to charging even though they are relatively inefficient in producing lightning. It was also found necessary to add a diurnally invariant charging current component. By trial and error it was found that charging rate diurnal variation curves in Universal time (UT) could be produced with amplitude ratios and general shapes similar to those of the potential gradient diurnal variation curves measured over ocean and arctic regions during voyages of the Carnegie Institute research vessels.

  1. Latitudinal and longitudinal dependence of the cosmic ray diurnal anisotropy during 2001-2014

    NASA Astrophysics Data System (ADS)

    Tezari, Anastasia; Mavromichalaki, Helen; Katsinis, Dimitrios; Kanellakopoulos, Anastasios; Kolovi, Sofia; Plainaki, Christina; Andriopoulou, Maria

    2016-11-01

    The diurnal anisotropy of cosmic ray intensity for the time period 2001 to 2014 is studied, covering the maximum and the descending phase of solar cycle 23, the minimum between solar cycles 23 and 24, and the ascending phase and maximum of solar cycle 24. Cosmic ray intensity data from 11 neutron monitor stations located at different places around the Northern Hemisphere obtained from the high-resolution Neutron Monitor Database (NMDB) were used. Special software was developed for the calculations of the amplitude and the phase of the diurnal anisotropy vectors on annual and monthly basis using Fourier analysis and for the creation of the harmonic dial diagrams. The geomagnetic bending for each station was taken into account in our calculations determined from the asymptotic cones of each station via the Tsyganenko96 (Tsyganenko and Stern, 1996) magnetospheric model. From our analysis, it was resulted that there is a different behavior of the diurnal anisotropy vectors during the different phases of the solar cycles depending on the solar magnetic field polarity. The latitudinal and longitudinal distribution of the cosmic ray diurnal anisotropy was also examined by grouping the stations according to their geographic coordinates, and it was shown that diurnal variation is modulated not only by the latitude but also by the longitude of the stations. The diurnal anisotropy during strong events of solar and/or cosmic ray activity is discussed.

  2. Diversity of photoreceptor arrangements in nocturnal, cathemeral and diurnal Malagasy lemurs.

    PubMed

    Peichl, Leo; Kaiser, Alexander; Rakotondraparany, Felix; Dubielzig, Richard R; Goodman, Steven M; Kappeler, Peter M

    2017-01-05

    The lemurs of Madagascar (Primates: Lemuriformes) are a monophyletic group that has lived in isolation from other primates for about 50 million years. Lemurs have diversified into species with diverse daily activity patterns and correspondingly different visual adaptations. We assessed the arrangements of retinal cone and rod photoreceptors in six nocturnal, three cathemeral and two diurnal lemur species and quantified different parameters in six of the species. The analysis revealed lower cone densities and higher rod densities in the nocturnal than in the cathemeral and diurnal species. The photoreceptor densities in the diurnal Propithecus verreauxi indicate a less "diurnal" retina than found in other diurnal primates. Immunolabeling for cone opsins showed the presence of both middle-to-longwave sensitive (M/L) and shortwave sensitive (S) cones in most species, indicating at least dichromatic color vision. S cones were absent in Allocebus trichotis and Cheirogaleus medius, indicating cone monochromacy. In the Microcebus species, the S cones had an inverse topography with very low densities in the central retina and highest densities in the peripheral retina. The S cones in the other species and the M/L cones in all species had a conventional topography with peak densities in the central area. With the exception of the cathemeral Eulemur species, the eyes of all studied taxa, including the diurnal Propithecus, possessed a tapetum lucidum, a feature only found among nocturnal and crepuscular mammals.

  3. Satellite observations of diurnal wind-convection coupling in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Kilpatrick, T.; Xie, S. P.; Gille, S. T.; Nasuno, T.

    2016-12-01

    Coupling of sea breeze circulations to diurnal rainfall is an important atmosphere-ocean-land surface interaction. Here we use satellite observations to directly observe diurnal wind-convection coupling in the Bay of Bengal. We obtain surface wind convergence from satellite scatterometer observations of surface winds, utilizing a new technique to avoid rain-flagging wind observations. The divergence diurnal cycle has a peak amplitude of 10-5 s-1 near the Indian coast. Surface wind convergence peaks at the coast around midnight, and peaks progressively later in the morning as one moves toward the center of the Bay of Bengal, consistent with offshore propagation of the land breeze. The diurnal cycle of cloud brightness temperature measured by geostationary satellite shows similar offshore propagation, with the coldest cloud tops lagging the surface wind convergence by 6-10 hours, indicating that the land breeze is an important forcing mechanism for diurnal convection in the Bay of Bengal. We compare the satellite observations with an explicit-convection numerical model and show that the model does a poor job of representing the co-propagation of the land breeze and convection, highlighting the difficulty in modeling the diurnal cycle of convection.

  4. Salt overly sensitive pathway members are influenced by diurnal rhythm in rice.

    PubMed

    Soni, Praveen; Kumar, Gautam; Soda, Neelam; Singla-Pareek, Sneh L; Pareek, Ashwani

    2013-07-01

    The diurnal rhythm controls many aspects of plant physiology such as flowering, photosynthesis and growth. Rice is one of the staple foods for world's population. Abiotic stresses such as salinity, drought, heat and cold severely affect rice production. Under salinity stress, maintenance of ion homeostasis is a major challenge, which also defines the tolerance level of a given genotype. Salt overly sensitive (SOS) pathway is well documented to play a key role in maintaining the Na(+) homeostasis in plant cell. However, it is not reported yet whether the transcriptional regulation of genes of this pathway are influenced by diurnal rhythm. In the present work, we have studied the diurnal pattern of transcript abundance of SOS pathway genes in rice at seedling stage.To rule out the effect of temperature fluctuations on the expression patterns of these genes, the seedlings were grown under constant temperature. We found that OsSOS3 and OsSOS2 exhibited a rhythmic and diurnal expression pattern, while OsSOS1did not have any specific pattern of expression. This analysis establishes a cross-link between diurnal rhythm and SOS pathway and suggests that SOS pathway is influenced by diurnal rhythm in rice.

  5. Mixing by semi-diurnal internal waves in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Jensen, T. G.; Wijesekera, H. W.

    2015-12-01

    Strong internal waves generated by tides found to propagate into the Bay of Bengal from their generation in the straits in Andaman Islands Archipelago. The waves has been observed in Synthetic Aperture Radar data, and appear as solitary wave packets. They are also present in subsurface temperature records from the RAMA mooring s. In this work the waves are simulated by a fully coupled ocean-atmosphere prediction system, exchanging surface fluxes between the air and sea at high frequency and high resolution. The ocean model includes diurnal and semi-diurnal tides and has a 2 km resolution in the entire Bay of Bengal. In the model simulations, large amplitude semi-diurnal internal waves interact with the meso-scale circulation and modify the flow and the stratification as far away as Sri Lanka. By comparing model runs with tides and without tides, but forced by identical surface fluxes from the atmosphere, we find that the inclusion of diurnal and semi-diurnal tides act to cool the thermocline due to vertical mixing. This imply that non-linear semi-diurnal internal waves may significantly contribute to mixing in the interior of the Bay of Bengal.

  6. Metabolic Cycles Are Linked to the Cardiovascular Diurnal Rhythm in Rats with Essential Hypertension

    PubMed Central

    Waki, Hidefumi; Bhuiyan, Mohammad E. R.; Gouraud, Sabine S.; Maeda, Masanobu

    2011-01-01

    Background The loss of diurnal rhythm in blood pressure (BP) is an important predictor of end-organ damage in hypertensive and diabetic patients. Recent evidence has suggested that two major physiological circadian rhythms, the metabolic and cardiovascular rhythms, are subject to regulation by overlapping molecular pathways, indicating that dysregulation of metabolic cycles could desynchronize the normal diurnal rhythm of BP with the daily light/dark cycle. However, little is known about the impact of changes in metabolic cycles on BP diurnal rhythm. Methodology/Principal Findings To test the hypothesis that feeding-fasting cycles could affect the diurnal pattern of BP, we used spontaneously hypertensive rats (SHR) which develop essential hypertension with disrupted diurnal BP rhythms and examined whether abnormal BP rhythms in SHR were caused by alteration in the daily feeding rhythm. We found that SHR exhibit attenuated feeding rhythm which accompanies disrupted rhythms in metabolic gene expression not only in metabolic tissues but also in cardiovascular tissues. More importantly, the correction of abnormal feeding rhythms in SHR restored the daily BP rhythm and was accompanied by changes in the timing of expression of key circadian and metabolic genes in cardiovascular tissues. Conclusions/Significance These results indicate that the metabolic cycle is an important determinant of the cardiovascular diurnal rhythm and that disrupted BP rhythms in hypertensive patients can be normalized by manipulating feeding cycles. PMID:21364960

  7. Simulation of the Universal-Time Diurnal Variation of the Global Electric Circuit Charging Rate

    NASA Technical Reports Server (NTRS)

    Mackerras, D.; Darvenzia, M.; Orville, R. E.; Williams, E. R.; Goodman, S. J.

    1999-01-01

    A global lightning model that includes diurnal and annual lightning variation, and total flash density versus latitude for each major land and ocean, has been used as the basis for simulating the global electric circuit charging rate. A particular objective has been to reconcile the difference in amplitude ratios [AR=(max-min)/mean] between global lightning diurnal variation (AR approx. = 0.8) and the diurnal variation of typical atmospheric potential gradient curves (AR approx. = 0.35). A constraint on the simulation is that the annual mean charging current should be about 1000 A. The global lightning model shows that negative ground flashes can contribute, at most, about 10-15% of the required current. For the purpose of the charging rate simulation, it was assumed that each ground flash contributes 5 C to the charging process. It was necessary to assume that all electrified clouds contribute to charging by means other than lightning, that the total flash rate can serve as an indirect indicator of the rate of charge transfer, and that oceanic electrified clouds contribute to charging even though they are relatively inefficient in producing lightning. It was also found necessary to add a diurnally invariant charging current component. By trial and error it was found that charging rate diurnal variation curves in Universal time (UT) could be produced with amplitude ratios and general shapes similar to those of the potential gradient diurnal variation curves measured over ocean and arctic regions during voyages of the Carnegie Institute research vessels.

  8. Seasonal resonance of diurnal coastal trapped waves in the southern Weddell Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Semper, Stefanie; Darelius, Elin

    2017-01-01

    The summer enhancement of diurnal tidal currents at the shelf break in the southern Weddell Sea is studied using velocity measurements from 29 moorings during the period 1968 to 2014. Kinetic energy associated with diurnal tidal frequencies is largest at the shelf break and decreases rapidly with distance from it. The diurnal tidal energy increases from austral winter to summer by, on average, 50 %. The austral summer enhancement is observed in all deployments. The observations are compared to results from an idealised numerical solution of the properties of coastal trapped waves (CTWs) for a given bathymetry, stratification and an along-slope current. The frequency at which the dispersion curve for mode 1 CTWs displays a maximum (i.e. where the group velocity is zero and resonance is possible) is found within or near the diurnal frequency band, and it is sensitive to the stratification in the upper part of the water column and to the background current. The maximum of the dispersion curve is shifted towards higher frequencies, above the diurnal band, for weak stratification and a strong background current (i.e. austral winter-like conditions) and towards lower frequencies for strong upper-layer stratification and a weak background current (austral summer). The seasonal evolution of hydrography and currents in the region is inferred from available mooring data and conductivity-temperature-depth profiles. Near-resonance of diurnal tidal CTWs during austral summer can explain the observed seasonality in tidal currents.

  9. [Diurnal and seasonal variations of surface atmospheric CO2 concentration in the river estuarine marsh].

    PubMed

    Zhang, Lin-Hai; Tong, Chuan; Zeng, Cong-Sheng

    2014-03-01

    Characteristics of diurnal and seasonal variations of surface atmospheric CO2 concentration were analyzed in the Minjiang River estuarine marsh from December 2011 to November 2012. The results revealed that both the diurnal and seasonal variation of surface atmospheric CO2 concentration showed single-peak patterns, with the valley in the daytime and the peak value at night for the diurnal variations, and the maxima in winter and minima in summer for the seasonal variation. Diurnal amplitude of CO2 concentration varied from 16.96 micromol x mol(-1) to 38.30 micromol x mol(-1). The seasonal averages of CO2 concentration in spring, summer, autumn and winter were (353.74 +/- 18.35), (327.28 +/- 8.58), (354.78 +/- 14.76) and (392.82 +/- 9.71) micromol x mol(-1), respectively, and the annual mean CO2 concentration was (357.16 +/- 26.89) micromol x mol(-1). The diurnal CO2 concentration of surface atmospheric was strongly negatively correlated with temperature, wind speed, photosynthetically active radiation and total solar radiation (P < 0.05). The diurnal concentration of CO2 was negatively related with tidal level in January, but significantly positively related in July.

  10. Diurnal Variation in Maize and Soybean Canopies and Implications for Remotely Sensed Biophysical Properties

    NASA Astrophysics Data System (ADS)

    Walter-Shea, E. A.; Arkebauer, T. J.; Zygielbaum, A. I.; Suyker, A.

    2016-12-01

    Plant canopies are dynamic; they respond to their changing environments. For example, on a diurnal basis, net carbon assimilation varies with light; canopy structure can change with afternoon stress. These changes are often accompanied by altered leaf and canopy optical properties which have implications for remote sensing studies. Data were analyzed from 14 years of ongoing measurements from irrigated and rainfed maize and soybean cropping systems in eastern Nebraska, USA (AmeriFlux sites US-Ne1, US-Ne2 and US-Ne3). Diurnal variations in APAR, GPP, and LUE were related to underlying changes in ambient environmental conditions. For example, morning to afternoon changes in the GPP vs APAR relationship were often observed under periods of water stress when soil water content was low or VPD was high. These results indicate diurnal changes in canopy LUE. Are these diurnal changes introducing noise in remotely sensed estimates of GPP, APAR and LUE? To address this question, morning and afternoon leaf and canopy reflectance were measured at similar solar zenith angles and used to quantify variation in derived vegetation indices. In particular, the red edge chlorophyll index implied dramatic diurnal changes in canopy chlorophyll content when actual canopy chlorophyll content is known to vary over longer time scales. Therefore, an awareness of the diurnal responses of vegetation canopies to their changing environments, and the influence of these changes on remotely sensed signals, is essential to fully capture information available in observed data.

  11. Diurnal Spectral Sensitivity of the Acute Alerting Effects of Light

    PubMed Central

    Rahman, Shadab A.; Flynn-Evans, Erin E.; Aeschbach, Daniel; Brainard, George C.; Czeisler, Charles A.; Lockley, Steven W.

    2014-01-01

    Study Objectives: Previous studies have demonstrated short-wavelength sensitivity for the acute alerting response to nocturnal light exposure. We assessed daytime spectral sensitivity in alertness, performance, and waking electroencephalogram (EEG). Design: Between-subjects (n = 8 per group). Setting: Inpatient intensive physiologic monitoring unit. Participants: Sixteen healthy young adults (mean age ± standard deviation = 23.8 ± 2.7 y). Interventions: Equal photon density exposure (2.8 × 1013 photons/cm2/s) to monochromatic 460 nm (blue) or 555 nm (green) light for 6.5 h centered in the middle of the 16-h episode of wakefulness during the biological day. Results were compared retrospectively to 16 individuals who were administered the same light exposure during the night. Measurements and Results: Daytime and nighttime 460-nm light exposure significantly improved auditory reaction time (P < 0.01 and P < 0.05, respectively) and reduced attentional lapses (P < 0.05), and improved EEG correlates of alertness compared to 555-nm exposure. Whereas subjective sleepiness ratings did not differ between the two spectral conditions during the daytime (P > 0.05), 460-nm light exposure at night significantly reduced subjective sleepiness compared to 555-nm light exposure at night (P < 0.05). Moreover, nighttime 460-nm exposure improved alertness to near-daytime levels. Conclusions: The alerting effects of short-wavelength 460-nm light are mediated by counteracting both the circadian drive for sleepiness and homeostatic sleep pressure at night, but only via reducing the effects of homeostatic sleep pressure during the day. Citation: Rahman SA; Flynn-Evans EE; Aeschbach D; Brainard GC; Czeisler CA; Lockley SW. Diurnal spectral sensitivity of the acute alerting effects of light. SLEEP 2014;37(2):271-281. PMID:24501435

  12. Diurnal variation in the quantitative EEG in healthy adult volunteers

    PubMed Central

    Cummings, L; Dane, A; Rhodes, J; Lynch, P; Hughes, A M

    2000-01-01

    Aims To define the change in power in standard waveband frequencies of quantitative cortical electroencephalogram (EEG) data over a 24 h period, in a drug free representative healthy volunteer population. Methods This was an open, non randomised study in which 18 volunteers (9 male and 9 female) were studied on 1 study day, over a 24 h period. Volunteers had a cortical EEG recording taken at 0, 2, 4, 6, 8, 10, 12, 16 and 24 h. Each recording lasted for 6 min (3 min eyes open, 3 min eyes closed). All EEG recordings were taken in a quietened ward environment with the curtains drawn round the bed and the volunteer supine. During the 3 min eyes open, volunteers were asked to look at a red circle on a screen at the foot of the bed, and refrain from talking. Results Plots produced of geometric mean power by time of the standard wave band frequencies gave some indication of a circadian rhythm over the 24 h period for θ (4.75–6.75 Hz), α1 (7.0–9.5 Hz) and β1 (12.75–18.50 Hz) wavebands. Mixed models were fitted to both the eyes open and eyes closed data which confirmed a change in mean waveband power with time with statistical significance at the conventional 5% level (P < 0.05). Conclusions These data indicate the presence of a diurnal variation in the cortical quantitative EEG. They support the use of a placebo control group when designing clinical trials which utilize quantitative EEG to screen for central nervous system (CNS) activity of pharmaceutical agents, to control for the confounding variable of time of day at which the EEG recordings were made. PMID:10886113

  13. Adrenal-dependent diurnal modulation of conditioned fear extinction learning

    PubMed Central

    Woodruff, Elizabeth R.; Greenwood, Benjamin N.; Chun, Lauren E.; Fardi, Sara; Hinds, Laura R.; Spencer, Robert L.

    2015-01-01

    Post Traumatic Stress Disorder (PTSD) is associated with altered conditioned fear extinction expression and impaired circadian function including dysregulation of glucocorticoid hormone secretion. We examined in adult male rats the relationship between conditioned fear extinction learning, circadian phase, and endogenous glucocorticoids (CORT). Rats maintained on a 12 hr light:dark cycle were trained and tested across 3 separate daily sessions (conditioned fear acquisition and 2 extinction sessions) that were administered during either the rats’ active or inactive circadian phase. In an initial experiment we found that rats at both circadian phases acquired and extinguished auditory cue conditioned fear to a similar degree in the first extinction session. However, rats trained and tested at zeitgeber time-16 (ZT16) (active phase) showed enhanced extinction memory expression during the second extinction session compared to rats trained and tested at ZT4 (inactive phase). In a follow-up experiment, adrenalectomized (ADX) or sham surgery rats were similarly trained and tested across 3 separate daily sessions at either ZT4 or ZT16. ADX had no effect on conditioned fear acquisition or conditioned fear memory. Sham ADX rats trained and tested at ZT16 exhibited better extinction learning across the two extinction sessions compared to all other groups of rats. These results indicate that conditioned fear extinction learning is modulated by time of day, and this diurnal modulation requires the presence of adrenal hormones. These results support an important role of CORT-dependent circadian processes in regulating conditioned fear extinction learning, which may be capitalized upon to optimize effective treatment of PTSD. PMID:25746455

  14. Diurnal Rhythms of Bone Turnover Markers in Three Ethnic Groups

    PubMed Central

    Redmond, Jean; Fulford, Anthony J.; Jarjou, Landing; Zhou, Bo; Prentice, Ann

    2016-01-01

    Context: Ethnic groups differ in fragility fracture risk and bone metabolism. Differences in diurnal rhythms (DRs) of bone turnover and PTH may play a role. Objective: We investigated the DRs of plasma bone turnover markers (BTMs), PTH, and 1,25(OH)2D in three groups with pronounced differences in bone metabolism and plasma PTH. Participants: Healthy Gambian, Chinese, and white British adults (ages 60–75 years; 30 per country). Interventions: Observational study with sample collection every 4 hours for 24 hours. Main Outcomes: Levels of plasma C-terminal telopeptide of type I collagen, procollagen type-1 N-propeptide, N-mid osteocalcin, bone alkaline phosphatase, PTH, and 1,25-dihydroxyvitamin D were measured. DRs were analyzed with random-effects Fourier regression and cross-correlation and regression analyses to assess associations between DRs and fasting and 24-hour means of BTMs and PTH. Results: Concentrations of BTMs, PTH, and 1,25-dihydroxyvitamin D were higher in Gambians compared to other groups (P < .05). The DRs were significant for all variables and groups (P < .03) and were unimodal, with a nocturnal peak and a daytime nadir for BTMs, whereas PTH had two peaks. The DRs of BTMs and PTH were significantly cross-correlated for all groups (P < .05). There was a significant positive association between C-terminal telopeptide of type I collagen and PTH in the British and Gambian groups (P = .03), but not the Chinese group. Conclusions: Despite ethnic differences in plasma BTMs and PTH, DRs were similar. This indicates that alteration of rhythmicity and loss of coupling of bone resorption and formation associated with an elevated PTH in other studies may not uniformly occur across different populations and needs to be considered in the interpretation of PTH as a risk factor of increased bone loss. PMID:27294326

  15. Diurnal Rhythms of Bone Turnover Markers in Three Ethnic Groups.

    PubMed

    Redmond, Jean; Fulford, Anthony J; Jarjou, Landing; Zhou, Bo; Prentice, Ann; Schoenmakers, Inez

    2016-08-01

    Ethnic groups differ in fragility fracture risk and bone metabolism. Differences in diurnal rhythms (DRs) of bone turnover and PTH may play a role. We investigated the DRs of plasma bone turnover markers (BTMs), PTH, and 1,25(OH)2D in three groups with pronounced differences in bone metabolism and plasma PTH. Healthy Gambian, Chinese, and white British adults (ages 60-75 years; 30 per country). Observational study with sample collection every 4 hours for 24 hours. Levels of plasma C-terminal telopeptide of type I collagen, procollagen type-1 N-propeptide, N-mid osteocalcin, bone alkaline phosphatase, PTH, and 1,25-dihydroxyvitamin D were measured. DRs were analyzed with random-effects Fourier regression and cross-correlation and regression analyses to assess associations between DRs and fasting and 24-hour means of BTMs and PTH. Concentrations of BTMs, PTH, and 1,25-dihydroxyvitamin D were higher in Gambians compared to other groups (P < .05). The DRs were significant for all variables and groups (P < .03) and were unimodal, with a nocturnal peak and a daytime nadir for BTMs, whereas PTH had two peaks. The DRs of BTMs and PTH were significantly cross-correlated for all groups (P < .05). There was a significant positive association between C-terminal telopeptide of type I collagen and PTH in the British and Gambian groups (P = .03), but not the Chinese group. Despite ethnic differences in plasma BTMs and PTH, DRs were similar. This indicates that alteration of rhythmicity and loss of coupling of bone resorption and formation associated with an elevated PTH in other studies may not uniformly occur across different populations and needs to be considered in the interpretation of PTH as a risk factor of increased bone loss.

  16. The association between diurnal temperature range and childhood bacillary dysentery.

    PubMed

    Wen, Li-ying; Zhao, Ke-fu; Cheng, Jian; Wang, Xu; Yang, Hui-hui; Li, Ke-sheng; Xu, Zhi-wei; Su, Hong

    2016-02-01

    Previous studies have found that mean, maximum, and minimum temperatures were associated with bacillary dysentery (BD). However, little is known about whether the within-day variation of temperature has any impact on bacillary dysentery. The current study aimed to identify the relationship between diurnal temperature range (DTR) and BD in Hefei, China. Daily data on BD counts among children aged 0-14 years from 1 January 2006 to 31 December 2012 were retrieved from Hefei Center for Disease Control and Prevention. Daily data on ambient temperature and relative humidity covering the same period were collected from the Hefei Bureau of Meteorology. A Poisson generalized linear regression model combined with a distributed lag non-linear model (DLNM) was used in the analysis after controlling the effects of season, long-term trends, mean temperature, and relative humidity. The results showed that there existed a statistically significant relationship between DTR and childhood BD. The DTR effect on childhood bacillary dysentery increased when DTR was over 8 °C. And it was greatest at 1-day lag, with an 8% (95% CI = 2.9-13.4%) increase of BD cases per 5 °C increment of DTR. Male children and children aged 0-5 years appeared to be more vulnerable to the DTR effect. The data indicate that large DTR may increase the incidence of childhood BD. Caregivers and health practitioners should be made aware of the potential threat posed by large DTR. Therefore, DTR should be taken into consideration when making targeted health policies and programs to protect children from being harmed by climate impacts.

  17. Global and Regional Diurnal Variations of Organized Convection.

    NASA Astrophysics Data System (ADS)

    Tsakraklides, Giorgos; Evans, Jenni L.

    2003-05-01

    An automated objective classification procedure, the Convection Classification and Automated Tracking System (CCATS), is used to analyze the mean life cycles of organized convection in the global Tropics and midlatitudes (40°N-40°S). Five years (1989-93) of infrared satellite imagery are examined for the Pacific and Atlantic basins and one year (April 1988-March 1989) is studied for the Indian basin.Two main classes of organized convection (lifetime of 6 h or more) are tracked: MCT and CCC. MCT represent a combined dataset of tropical cyclones and mesoscale convective complexes (MCC). Convective cloud clusters (CCC) meet the same cold cloud-top temperature, time, and size criteria used to distinguish MCC, but fail to sustain the same high degree of symmetry for at least 6 h. That is, CCC represent more elongated systems, such as squall lines. The frequency of CCC exceeds that of MCT by a factor of 30 over both land and sea.MCT and CCC are each stratified to into 12 continental and oceanic regions and the diurnal variation of system characteristics in each geographic region are studied, leading to composite life cycle descriptions for each region. Oceanic CCC formed overnight and the shorter-lived, land-based CCC formed in the afternoon; apart from this time offset, oceanic and land-based CCC were found to have very similar life cycle evolution patterns.Continental MCT exhibit a rapid size expansion early; this is not part of the oceanic system life cycle. Apart from this growth spurt, the evolution of land and ocean MCT follows the same pattern of CCC with early symmetry, then size expansion until just before termination. Land-based MCT are longer lived and more symmetric than oceanic MCT.

  18. The association between diurnal temperature range and childhood bacillary dysentery

    NASA Astrophysics Data System (ADS)

    Wen, Li-ying; Zhao, Ke-fu; Cheng, Jian; Wang, Xu; Yang, Hui-hui; Li, Ke-sheng; Xu, Zhi-wei; Su, Hong

    2016-02-01

    Previous studies have found that mean, maximum, and minimum temperatures were associated with bacillary dysentery (BD). However, little is known about whether the within-day variation of temperature has any impact on bacillary dysentery. The current study aimed to identify the relationship between diurnal temperature range (DTR) and BD in Hefei, China. Daily data on BD counts among children aged 0-14 years from 1 January 2006 to 31 December 2012 were retrieved from Hefei Center for Disease Control and Prevention. Daily data on ambient temperature and relative humidity covering the same period were collected from the Hefei Bureau of Meteorology. A Poisson generalized linear regression model combined with a distributed lag non-linear model (DLNM) was used in the analysis after controlling the effects of season, long-term trends, mean temperature, and relative humidity. The results showed that there existed a statistically significant relationship between DTR and childhood BD. The DTR effect on childhood bacillary dysentery increased when DTR was over 8 °C. And it was greatest at 1-day lag, with an 8 % (95 % CI = 2.9-13.4 %) increase of BD cases per 5 °C increment of DTR. Male children and children aged 0-5 years appeared to be more vulnerable to the DTR effect. The data indicate that large DTR may increase the incidence of childhood BD. Caregivers and health practitioners should be made aware of the potential threat posed by large DTR. Therefore, DTR should be taken into consideration when making targeted health policies and programs to protect children from being harmed by climate impacts.

  19. The visual system of diurnal raptors: updated review.

    PubMed

    González-Martín-Moro, J; Hernández-Verdejo, J L; Clement-Corral, A

    2017-05-01

    Diurnal birds of prey (raptors) are considered the group of animals with highest visual acuity (VA). The purpose of this work is to review all the information recently published about the visual system of this group of animals. A bibliographic search was performed in PubMed. The algorithm used was (raptor OR falcon OR kestrel OR hawk OR eagle) AND (vision OR «visual acuity» OR eye OR macula OR retina OR fovea OR «nictitating membrane» OR «chromatic vision» OR ultraviolet). The search was restricted to the «Title» and «Abstract» fields, and to non-human species, without time restriction. The proposed algorithm located 97 articles. Birds of prey are endowed with the highest VA of the animal kingdom. However most of the works study one individual or a small group of individuals, and the methodology is heterogeneous. The most studied bird is the Peregrine falcon (Falco peregrinus), with an estimated VA of 140 cycles/degree. Some eagles are endowed with similar VA. The tubular shape of the eye, the large pupil, and a high density of photoreceptors make this extraordinary VA possible. In some species, histology and optic coherence tomography demonstrate the presence of 2foveas. The nasal fovea (deep fovea) has higher VA. Nevertheless, the exact function of each fovea is unknown. The vitreous contained in the deep fovea could behave as a third lens, adding some magnification to the optic system. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Adrenal-dependent diurnal modulation of conditioned fear extinction learning.

    PubMed

    Woodruff, Elizabeth R; Greenwood, Benjamin N; Chun, Lauren E; Fardi, Sara; Hinds, Laura R; Spencer, Robert L

    2015-06-01

    Post traumatic stress disorder (PTSD) is associated with altered conditioned fear extinction expression and impaired circadian function including dysregulation of glucocorticoid hormone secretion. We examined in adult male rats the relationship between conditioned fear extinction learning, circadian phase, and endogenous glucocorticoids (CORT). Rats maintained on a 12h light:dark cycle were trained and tested across 3 separate daily sessions (conditioned fear acquisition and 2 extinction sessions) that were administered during either the rats' active or inactive circadian phase. In an initial experiment we found that rats at both circadian phases acquired and extinguished auditory cue conditioned fear to a similar degree in the first extinction session. However, rats trained and tested at zeitgeber time-16 (ZT16) (active phase) showed enhanced extinction memory expression during the second extinction session compared to rats trained and tested at ZT4 (inactive phase). In a follow-up experiment, adrenalectomized (ADX) or sham surgery rats were similarly trained and tested across 3 separate daily sessions at either ZT4 or ZT16. ADX had no effect on conditioned fear acquisition or conditioned fear memory. Sham ADX rats trained and tested at ZT16 exhibited better extinction learning across the two extinction sessions compared to all other groups of rats. These results indicate that conditioned fear extinction learning is modulated by time of day, and this diurnal modulation requires the presence of adrenal hormones. These results support an important role of CORT-dependent circadian processes in regulating conditioned fear extinction learning, which may be capitalized upon to optimize effective treatment of PTSD.

  1. Idealized Numerical Modeling Experiments of the Diurnal Cycle of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Navarro, Erika L.

    Numerical experiments are performed to evaluate the role of the daily cycle of radiation on axisymmetric hurricane structure. Although a diurnal response in the high cloudiness of tropical cyclones (TCs) has been well documented in the past, the impact to storm structure and intensity remains unknown. Previous modeling work attributes differences in results to experimental setup (e.g., initial and boundary conditions) as well as to radiative parameterization schemes. Here, a numerically-simulated TC in a statistical steady-state is examined to quantify the TC response to the daily cycle of radiation, and a modified, Sawyer-Eliassen approach is applied to evaluate the dynamical mechanism. Fourier analysis in time reveals a spatially coherent pattern in the temperature, wind, and latent heating tendency fields that is statistically significant at the 95% level. This signal accounts for up to 62% of the variance in the temperature field of the upper troposphere, and is mainly concentrated in the TC outflow layer. Composite analysis reveals a cycle in the storm intensity in the low-levels, which lags a periodic response in the latent heating tendency by 6 h. Average magnitudes of the azimuthal wind anomalies near the radius of maximum wind (RMW) are 1 m/s and account for 21% of the overall variance. A hypothesis is drawn from these results that the TC diurnal cycle is comprised of two distinct, periodic circulations: (1) a radiatively-driven circulation in the TC outflow layer due to absorption of solar radiation, and (2) a convectively-driven circulation in the lower and middle troposphere due to anomalous latent heating from convection. These responses are coupled and are periodic with respect to the diurnal cycle. Using a modified, Sawyer-Eliassen approach for time-varying heating, these hypotheses are evaluated to determine the impact of periodic diurnal heating on a balanced vortex. Periodic heating near the top of the vortex produces a local overturning

  2. Diurnal Cycle of Convective Cloud Systems over the Maritime Continent and Its Variability During MJO

    NASA Astrophysics Data System (ADS)

    Chen, S. S.

    2015-12-01

    It has been well documented that the diurnal maximum of convection and precipitation is observed during the morning hours (AM) over the ocean, whereas the maximum is during the afternoon hours (PM) over land. However, the difference between AM and PM precipitation in the coastal/adjacent seas over the Maritime Continent (MC) is 2-3 times larger than anywhere else in the tropics. Most large mesoscale convective systems (MCSs) during the local active phases of the MJO are over water of the MC. This makes the convective signals of the Madden-Julian Oscillation (MJO) much larger over the water than over the islands when the MJO moves through the MC. In this study, we examine the diurnal cycle of formation, propagation, and dissipation of MCSs by tracking cloud clusters in time and space using hourly satellite IR data and 3-hourly TRMM data. It is found that the large AM precipitation over the adjacent seas is a result of the propagating MCSs from the islands to the sea during the night, which are forced by the enhanced land breeze from the high mountains of the islands in the MC. MCSs can also initiate over the seas during the diurnal maximum of SST in the afternoon and continue to grow into the night and maximize during the early morning. The diurnal cycle of convection is modulated by the MJO. The two factors together may explain the large diurnal amplitude over the adjacent seas of the MC than that of the open ocean. The complex interactions of the convection, local and large-scale circulation, and the unique land-sea geography of the MC are further investigated using a high-resolution, coupled atmosphere-ocean model. The result indicates that the diurnal cycle of SST is affected by the tidal mixing in the ocean, which may be an important factor contributing to the air-sea interaction on the diurnal and MJO time scales.

  3. Changes in diurnal cycle of precipitation over Korea associated with large-scale variability

    NASA Astrophysics Data System (ADS)

    Jin, E. K.

    2016-12-01

    The diurnal variation of summer precipitation over Korea for the period of 1977-2013 is characterized by strong early morning peak and weak late afternoon peak. The early morning peak is resulted from some factors associated with the precipitation mechanism such as geographical location, land-sea breeze, surface convergence, and the afternoon peak is caused by the convection related to the solar radiation. The diurnal variation of precipitation is fundamentally dominated by the frequency of occurrence of precipitation rather than precipitation intensity. However, the amplitude of diurnal cycle increases as precipitation intensity increases, and the timing of the intense precipitation become earlier for the morning peak while later for the afternoon peak. For recent years, overall precipitation rate is increased and both morning peak and afternoon peak are intensified. The morning peak occurs earlier because the occurrence of heavy rainfall increases in the early morning and the afternoon peak becomes delayed in same manner. The relative contribution of precipitation intensity to the change of diurnal variation of precipitation amount is dominant than that of frequency. The regime change in the diurnal variations of precipitation for recent years is associated with the changes in relationship with large-scale variabilities. The interannual and interdecadal variations of most dominant mode of diurnal cycle are well matched with those of daily precipitation, which show the reversed thermodynamic and dynamics structures associated with tropical remote forcing and tropics-extratropics interaction. The changes in the semi-diurnal cycle of precipitation are also related with changes in the Asian summer monsoon circulations for recent years.

  4. Sensitivity of Amazonian TOA flux diurnal cycle composite monthly variability to choice of reanalysis

    PubMed Central

    Taylor, Patrick C.

    2016-01-01

    Abstract Amazonian deep convection experiences a strong diurnal cycle driven by the cycle in surface sensible heat flux, which contributes to a significant diurnal cycle in the top of the atmosphere (TOA) radiative flux. Even when accounting for seasonal variability, the TOA flux diurnal cycle varies significantly on the monthly timescale. Previous work shows evidence supporting a connection between variability in the convective and radiative cycles, likely modulated by variability in monthly atmospheric state (e.g., convective instability). The hypothesized relationships are further investigated with regression analysis of the radiative diurnal cycle and atmospheric state using additional meteorological variables representing convective instability and upper tropospheric humidity. The results are recalculated with three different reanalyses to test the reliability of the results. The radiative diurnal cycle sensitivity to upper tropospheric humidity is about equal in magnitude to that of convective instability. In addition, the results are recalculated with the data subdivided into the wet and dry seasons. Overall, clear‐sky radiative effects have a dominant role in radiative diurnal cycle variability during the dry season. Because of this, even in a convectively active region, the clear‐sky radiative effects must be accounted for in order to fully explain the monthly variability in diurnal cycle. Finally, while there is general agreement between the different reanalysis‐based results when examining the full data time domain (without regard to time of year), there are significant disagreements when the data are divided into wet and dry seasons. The questionable reliability of reanalysis data is a major limitation. PMID:27840782

  5. Diurnal variations in axial length, choroidal thickness, intraocular pressure, and ocular biometrics.

    PubMed

    Chakraborty, Ranjay; Read, Scott A; Collins, Michael J

    2011-07-11

    To investigate the pattern of diurnal variations in axial length (AL), choroidal thickness, intraocular pressure (IOP), and ocular biometrics over 2 consecutive days. Measurements of ocular biometrics and IOP were collected for 30 young adult subjects (15 myopes, 15 emmetropes) at 10 different times over 2 consecutive days. Five sets of measurements were collected each day at approximately 3-hour intervals, with the first measurement taken at ~9 AM and final measurement at ~9 PM. AL underwent significant diurnal variation (P < 0.0001) that was consistently observed across the 2 measurement days. The longest AL was typically observed at the second measurement session (mean time, 12:26) and the shortest AL at the final session of each day (mean time, 21:06). The mean diurnal change in AL was 0.032 ± 0.018 mm. Choroidal thickness underwent significant diurnal variation (mean change, 0.029 ± 0.016 mm; P < 0.001) and varied approximately in antiphase to the AL changes. Significant diurnal variations were also found in vitreous chamber depth (VCD; mean change, 0.06 ± 0.029 mm; P < 0.0001) and IOP (mean change, 3.54 ± 0.84 mm Hg; P < 0.0001). A positive association was found between the variations of AL and IOP (r(2) = 0.17, P < 0.0001) and AL and VCD (r(2) = 0.31, P < 0.0001) and a negative association between AL and choroidal thickness (r(2) = 0.13, P < 0.0001). There were no significant differences in the magnitude and timing of diurnal variations associated with refractive error. Significant diurnal variations in AL, choroidal thickness, and IOP were consistently observed over 2 consecutive days of testing.

  6. Impact of model resolution on the simulation of diurnal variations of precipitation over East Asia

    NASA Astrophysics Data System (ADS)

    Jin, Emilia Kyung; Choi, In-Jin; Kim, So-Young; Han, Ji-Young

    2016-02-01

    The impact of model resolution on the simulation of diurnal variations of precipitation over East Asia during the summer monsoon period of 2006 is investigated by conducting a suite of ensemble simulations of three different cumulus parameterization schemes (CPS), which are Kain-Fritsch, Kain-Fritsch with a modified trigger function, and Simplified Arakawa-Schubert, and the convection-permitting (CP) setting with the Weather Research and Forecasting model. The horizontal resolutions of 50 km, 27 km, and 9 km are applied for each different representation of convection process. Model simulations as a whole are able to mimic the diurnal and semidiurnal cycles with 24 h and 12 h peaks in the morning and the afternoon. However, the simulated afternoon peaks over land are earlier in the CPS runs, while delayed in the CP runs, compared to those observed. The increase of resolution improves the phase and amplitude of diurnal variations in the CP runs due to the explicit representation of the realistic cloud system. In addition, the contribution of nonconvective precipitation from the microphysical process significantly improves the phase of diurnal variations in the CPS runs, especially the afternoon peak over land. The KFtr scheme outperforms other schemes in reproducing the diurnal variations due to the relatively dominant role of nonconvective precipitation. Phase does not change with increasing resolution in the diurnal variations of convective precipitation. Only the modification of the convection scheme, such as the alternative trigger function in the KFtr scheme distinguished from the KF scheme, can make fundamental changes in phase of diurnal variation.

  7. Mechanisms for Diurnal Variability of Global Tropical Rainfall Observed from TRMM

    NASA Technical Reports Server (NTRS)

    Yang, Song; Smith, Eric A.

    2004-01-01

    The behavior and various controls of diurnal variability in tropical-subtropical rainfall are investigated using Tropical Rainfall Measuring Mission (TRMM) precipitation measurements retrieved from: (1) TRMM Microwave Imager (TMI), (2) Precipitation Radar (PR), and (3) TMI/PR Combined, standard level 2 algorithms for the 1998 annual cycle. Results show that the diurnal variability characteristics of precipitation are consistent for all three algorithms, providing assurance that TRMM retrievals are providing consistent estimates of rainfall variability. As anticipated, most ocean areas exhibit more rainfall at night, while over most land areas rainfall peaks during daytime ,however, various important exceptions are found. The dominant feature of the oceanic diurnal cycle is a rainfall maximum in late-evening/early-morning (LE-EM) hours, while over land the dominant maximum occurs in the mid- to late-afternoon (MLA). In conjunction with these maxima are pronounced seasonal variations of the diurnal amplitudes. Amplitude analysis shows that the diurnal pattern and its seasonal evolution are closely related to the rainfall accumulation pattern and its seasonal evolution. In addition, the horizontal distribution of diurnal variability indicates that for oceanic rainfall there is a secondary MLA maximum, co-existing with the LE-EM maximum, at latitudes dominated by large scale convergence and deep convection. Analogously, there is a preponderance for an LE-EM maximum over land, co-existing with the stronger MLA maximum, although it is not evident that this secondary continental feature is closely associated with the large scale circulation. The ocean results clearly indicate that rainfall diurnal variability associated with large scale convection is an integral part of the atmospheric general circulation.

  8. A twin study of genetic influences on diurnal preference and risk for alcohol use outcomes.

    PubMed

    Watson, Nathaniel F; Buchwald, Dedra; Harden, Kathryn Paige

    2013-12-15

    The population-based University of Washington Twin Registry (UWTR) was used to examine (1) genetic influences on chronobiology and (2) whether these genetic factors influence alcohol-use phenotypes. We used a reduced Horne-Östberg Morningness-Eveningness Questionnaire (rMEQ) to survey UWTR participants for diurnal preference. Frequency and quantity of alcohol use, as well as binge drinking (6+ drinks per occasion), were assessed on a 5-point Likert scale. Both diurnal preference and alcohol use were self-reported. Twin data were analyzed by using structural equation models. The sample consisted of 2,945 participants (mean age = 36.4 years), including 1,127 same-sex and opposite-sex twin pairs and 691 individual twins. The rMEQ range was 4-25, with a mean score of 15.3 (SD 4.0). Diurnal "morning types" comprised 30.7% (N = 903) of participants, while 17.4% (N = 513) were "evening types." Regarding alcohol use, 21.2% (N = 624) reported never drinking. Among drinkers, 35.7% (N = 829) reported ≥ 3 drinks per occasion and 48.1% (N = 1,116) reported at least one instance of binge drinking. Genetic influences accounted for 37% of the variance in diurnal preference, with the remaining 63% due to non-shared environmental influences. Genetic propensities toward diurnal eveningness were significantly associated with increased alcohol quantity (β = -0.17; SE = 0.05, p < 0.001) and increased binge drinking (β = -0.19; SE = 0.04, p < 0.001), but not with frequency of alcohol use. Environmental paths between diurnal preference and alcohol use phenotypes were not significant. Genetic influences on diurnal preference confer elevated risk for problematic alcohol use, including increased quantity and binge drinking. Differences in circadian rhythm may be an important and understudied pathway of risk for genetic influences on alcohol use.

  9. Initial full-diurnal-cycle mesopause region lidar observations: diurnal-means and tidal perturbations of temperature and winds over Fort Collins, CO (41°N,105°W)

    NASA Astrophysics Data System (ADS)

    She, Chiao-Yao

    2004-04-01

    The Colorado State Sodium lidar has been upgraded to a two-beam system capable of simultaneous measurements of mesopause region temperature and winds, over full diurnal-cycles, weather permitting. Though our lidar is a modest system with a power-aperture product of only 0.06Wm2, good data quality is demonstrated by means of contour plots depicting a 80-h continuous observation between August 9th and 12th, showing the existence of atmospheric waves with different periods along with their coherence and interactions. The salient feature of data with full-diurnal-cycle coverage lies in its ability to describe the vertical profiles of dynamical fields (temperature, zonal and meridional winds) as a unique linear superposition of diurnal-mean and oscillations with different tidal periods, plus a residual term. In this manner, we investigate diurnal-means and oscillations with diurnal and semidiurnal periods. Using 6 data sets between July 17 and August 12, each covering a full-diurnal-cycle as a case study, we found considerable day-to-day variability, as much as 20K, 35 and 75m/s for diurnal-mean temperature, zonal wind and meridional wind, respectively, and as 15K, and 50m/s, for the diurnal and semidiurnal tidal temperature and wind amplitudes, respectively. While a minimum of 3 full diurnal cycles appears to be adequate in the case studied here, the 6-day composite yields diurnal-means and diurnal tides in agreement with model predictions very well. Since the resulting amplitudes and phases of the observed diurnal oscillations agree well with the global scale wave model, GSWM00 predictions, we conclude that the migrating diurnal tide contributes significantly to the observed oscillations with diurnal period over Fort Collins, CO (41°N, 105°W). Unlike the diurnal perturbations, the observed semidiurnal amplitudes and phases differ from the GSWM00 predictions with considerably smaller model amplitudes. The coherence of solar forcing is found to prevail over the

  10. Diurnal variation in gait characteristics and transition speed.

    PubMed

    Bessot, Nicolas; Lericollais, Romain; Gauthier, Antoine; Sesboüé, Bruno; Bulla, Jan; Moussay, Sebastien

    2015-02-01

    The aim of this study was to investigate the effect of time-of-day on Preferred Transition Speed (PTS) and spatiotemporal organization of walking and running movements. Twelve active male subjects participated in the study (age: 27.2 ± 4.9 years; height: 177.9 ± 5.4 cm; body mass: 75.9 ± 5.86 kg). First, PTS was determined at 08:00 h and 18:00 h. The mean of the two PTS recorded at the two times-of-day tested was used as a reference (PTSm). Then, subjects were asked to walk and run on a treadmill at three imposed speeds (PTSm, PTSm + 0.3 m.s(-1), and PTSm - 0.3 m.s(-1)) at 08:00 h and 18:00 h. Mean stride length, temporal stride, spatial stride variability, and temporal stride variability were used for gait analysis. The PTS observed at 08:00 h (2.10 ± 0.17 m.s(-1)) tends to be lower (p = 0.077) than that recorded at 18:00 h (2.14 ± 0.19 m.s(-1)). Stride lengths recorded while walking (p = 0.038) and running (p = 0.041) were shorter at 08:00 h than 18:00 h. No time-of-day effect was observed for stride frequency during walking and running trials. When walking, spatial stride variability (p = 0.020) and temporal stride variability (p = 0.028) were lower at 08:00 h than at 18:00 h. When running, no diurnal variation of spatial stride variability or temporal stride variability was detected.

  11. Mesoscale Influences of Wind Farms Throughout a Diurnal Cycle

    NASA Astrophysics Data System (ADS)

    Fitch, A. C.; Lundquist, J. K.; Olson, J. B.

    2012-12-01

    Few observations are available to give insight into the interaction between large wind farms and the boundary layer. As wind farm deployment increases, questions are arising on the potential impact on meteorology within and downwind of large wind farms. While large-eddy simulation can provide insight into the detailed interaction between individual turbines and the boundary layer, to date it has been too computationally expensive to simulate wind farms with large numbers of turbines and the resulting wake far downstream. Mesoscale numerical weather prediction models provide the opportunity to investigate the flow in and around large wind farms as a whole, and the resulting impact on meteorology. To this end, we have implemented a wind farm parameterization in the Weather Research and Forecasting (WRF) model, which represents wind turbines by imposing a momentum sink on the mean flow; converting kinetic energy into electricity and turbulent kinetic energy (TKE). The parameterization improves upon previous models, basing the atmospheric drag of turbines on the thrust coefficient of a modern commercial turbine. In addition, the source of TKE varies with wind speed, reflecting the amount of energy extracted from the atmosphere by the turbines that does not produce electrical energy. We simulate a wind farm covering 10x10 km over land, consisting of 100 turbines each of nominal power output of 5 MW. Results will be presented showing how the wake structure varies dramatically over a diurnal cycle characteristic of a region in the Great Plains of the US, where wind farm deployment is planned. At night, a low-level jet forms within the rotor area, which is completely eliminated by energy extraction within the wind farm. The deep stable layer and lack of higher momentum air aloft at this time maximises the wind deficit and the length of the wake. The presentation will discuss the maximum reduction of wind speed within and downwind from the farm, and the wake e

  12. Diurnal Regulation of Phosphoenolpyruvate Carboxylase from Crassula1

    PubMed Central

    Wu, Min-Xian; Wedding, Randolph T.

    1985-01-01

    Phosphoenolpyruvate carboxylase appears to be located in or associated with the chloroplasts of Crassula. As has been found with this enzyme in other CAM plants, a crude extract of leaves gathered during darkness and rapidly assayed for phosphoenolpyruvate carboxylase (PEPc) activity is relatively insensitive to inhibition by malate. After illumination begins, the PEPc activity becomes progressively more sensitive to malate. This enzyme also shows a diurnal change in activation by glucose-6-phosphate, with the enzyme from dark leaves more strongly activated than that from leaves in the light. When the enzyme is partially purified in the presence of malate, the characteristic sensitivity of the day leaf enzyme is largely retained. Partial purification of the enzyme from dark leaves results in a small increase in sensitivity to malate inhibition. Partially purified enzyme is found by polyacrylamide gel electrophoresis analysis to have two bands of PEPc activity. In enzymes from dark leaves, the slower moving band predominates, but in the light, the faster moving band is preponderant. Both of these bands are shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be composed of the same subunit of 103,000 daltons. The enzyme partially purified from night leaves has a pH optimum of 5.6, and is relatively insensitive to malate inhibition over the range from pH 4.5 to 8. The enzyme from day leaves has a pH optimum of 6.6 and is strongly inhibited by malate at pH values below 7, but becomes insensitive at higher pH values. Gel filtration of partially purified PEPc showed two activity peaks, one corresponding approximately to a dimer of the single subunit, and the other twice as large. The larger protein was relatively insensitive to malate inhibition, the smaller was strongly inhibited by malate. Kinetic studies showed that malate is a mixed type inhibitor of the sensitive, day, enzyme, increasing Km for phosphoenolpyruvate and reducing Vmax. With the

  13. Changes in diurnal temperature range and national cereal yields

    SciTech Connect

    Lobell, D

    2007-04-26

    Models of yield responses to temperature change have often considered only changes in average temperature (Tavg), with the implicit assumption that changes in the diurnal temperature range (DTR) can safely be ignored. The goal of this study was to evaluate this assumption using a combination of historical datasets and climate model projections. Data on national crop yields for 1961-2002 in the 10 leading producers of wheat, rice, and maize were combined with datasets on climate and crop locations to evaluate the empirical relationships between Tavg, DTR, and crop yields. In several rice and maize growing regions, including the two major nations for each crop, there was a clear negative response of yields to increased DTR. This finding reflects a nonlinear response of yields to temperature, which likely results from greater water and heat stress during hot days. In many other cases, the effects of DTR were not statistically significant, in part because correlations of DTR with other climate variables and the relatively short length of the time series resulted in wide confidence intervals for the estimates. To evaluate whether future changes in DTR are relevant to crop impact assessments, yield responses to projected changes in Tavg and DTR by 2046-2065 from 11 climate models were estimated. The mean climate model projections indicated an increase in DTR in most seasons and locations where wheat is grown, mixed projections for maize, and a general decrease in DTR for rice. These mean projections were associated with wide ranges that included zero in nearly all cases. The estimated impacts of DTR changes on yields were generally small (<5% change in yields) relative to the consistently negative impact of projected warming of Tavg. However, DTR changes did significantly affect yield responses in several cases, such as in reducing US maize yields and increasing India rice yields. Because DTR projections tend to be positively correlated with Tavg, estimates of yields

  14. Transcriptome Phase Distribution Analysis Reveals Diurnal Regulated Biological Processes and Key Pathways in Rice Flag Leaves and Seedling Leaves

    PubMed Central

    Li, Meina; Xing, Zhuo; Yang, Wenqiang; Chen, Guang; Guo, Han; Gong, Xiaojie; Du, Zhou; Zhang, Zhenhai; Hu, Xingming; Wang, Dong; Qian, Qian; Wang, Tai; Su, Zhen; Xue, Yongbiao

    2011-01-01

    Plant diurnal oscillation is a 24-hour period based variation. The correlation between diurnal genes and biological pathways was widely revealed by microarray analysis in different species. Rice (Oryza sativa) is the major food staple for about half of the world's population. The rice flag leaf is essential in providing photosynthates to the grain filling. However, there is still no comprehensive view about the diurnal transcriptome for rice leaves. In this study, we applied rice microarray to monitor the rhythmically expressed genes in rice seedling and flag leaves. We developed a new computational analysis approach and identified 6,266 (10.96%) diurnal probe sets in seedling leaves, 13,773 (24.08%) diurnal probe sets in flag leaves. About 65% of overall transcription factors were identified as flag leaf preferred. In seedling leaves, the peak of phase distribution was from 2:00am to 4:00am, whereas in flag leaves, the peak was from 8:00pm to 2:00am. The diurnal phase distribution analysis of gene ontology (GO) and cis-element enrichment indicated that, some important processes were waken by the light, such as photosynthesis and abiotic stimulus, while some genes related to the nuclear and ribosome involved processes were active mostly during the switch time of light to dark. The starch and sucrose metabolism pathway genes also showed diurnal phase. We conducted comparison analysis between Arabidopsis and rice leaf transcriptome throughout the diurnal cycle. In summary, our analysis approach is feasible for relatively unbiased identification of diurnal transcripts, efficiently detecting some special periodic patterns with non-sinusoidal periodic patterns. Compared to the rice flag leaves, the gene transcription levels of seedling leaves were relatively limited to the diurnal rhythm. Our comprehensive microarray analysis of seedling and flag leaves of rice provided an overview of the rice diurnal transcriptome and indicated some diurnal regulated biological

  15. Transcriptome phase distribution analysis reveals diurnal regulated biological processes and key pathways in rice flag leaves and seedling leaves.

    PubMed

    Xu, Wenying; Yang, Rendong; Li, Meina; Xing, Zhuo; Yang, Wenqiang; Chen, Guang; Guo, Han; Gong, Xiaojie; Du, Zhou; Zhang, Zhenhai; Hu, Xingming; Wang, Dong; Qian, Qian; Wang, Tai; Su, Zhen; Xue, Yongbiao

    2011-03-02

    Plant diurnal oscillation is a 24-hour period based variation. The correlation between diurnal genes and biological pathways was widely revealed by microarray analysis in different species. Rice (Oryza sativa) is the major food staple for about half of the world's population. The rice flag leaf is essential in providing photosynthates to the grain filling. However, there is still no comprehensive view about the diurnal transcriptome for rice leaves. In this study, we applied rice microarray to monitor the rhythmically expressed genes in rice seedling and flag leaves. We developed a new computational analysis approach and identified 6,266 (10.96%) diurnal probe sets in seedling leaves, 13,773 (24.08%) diurnal probe sets in flag leaves. About 65% of overall transcription factors were identified as flag leaf preferred. In seedling leaves, the peak of phase distribution was from 2:00am to 4:00am, whereas in flag leaves, the peak was from 8:00pm to 2:00am. The diurnal phase distribution analysis of gene ontology (GO) and cis-element enrichment indicated that, some important processes were waken by the light, such as photosynthesis and abiotic stimulus, while some genes related to the nuclear and ribosome involved processes were active mostly during the switch time of light to dark. The starch and sucrose metabolism pathway genes also showed diurnal phase. We conducted comparison analysis between Arabidopsis and rice leaf transcriptome throughout the diurnal cycle. In summary, our analysis approach is feasible for relatively unbiased identification of diurnal transcripts, efficiently detecting some special periodic patterns with non-sinusoidal periodic patterns. Compared to the rice flag leaves, the gene transcription levels of seedling leaves were relatively limited to the diurnal rhythm. Our comprehensive microarray analysis of seedling and flag leaves of rice provided an overview of the rice diurnal transcriptome and indicated some diurnal regulated biological

  16. Numerical Modelling of the Observed Diurnal Cycle of Indian Monsoon Rainfall

    NASA Astrophysics Data System (ADS)

    Sahany, S.; Vuruputur, V.; Nanjundiah, R. S.

    2009-12-01

    We have analysed the diurnal cycle of rainfall over the Indian region (10S-35N, 60E-100E) using both satellite and in-situ data, and found many interesting features associated with this fundamental, yet under-explored, mode of variability. Since there is a distinct and strong diurnal mode of variability associated with the Indian summer monsoon rainfall, we evaluate the ability of the Weather Research and Forecasting Model (WRF) to simulate the observed diurnal rainfall characteristics. The model (at 54km grid-spacing) is integrated for the month of July, 2006, since this period was particularly favourable for the study of diurnal cycle. We first evaluate the sensitivity of the model to the prescribed sea surface temperature (SST), by using two different SST datasets, namely, Final Analyses (FNL) and Real-time Global (RTG). It was found that with RTG SST the rainfall simulation over central India (CI) was significantly better than that with FNL. On the other hand, over the Bay of Bengal (BoB), rainfall simulated with FNL was marginally better than with RTG. However, the overall performance of RTG SST was found to be better than FNL, and hence it was used for further model simulations. Next, we investigated the role of the convective parameterization scheme on the simulation of diurnal cycle of rainfall. We found that the Kain-Fritsch (KF) scheme performs significantly better than Betts-Miller-Janjić (BMJ) and Grell-Devenyi schemes. We also studied the impact of other physical parameterizations, namely, microphysics, boundary layer, land surface, and the radiation parameterization, on the simulation of diurnal cycle of rainfall, and identified the “best” model configuration. We used this configuration of the “best” model to perform a sensitivity study on the role of various convective components used in the KF scheme. In particular, we studied the role of convective downdrafts, convective timescale, and feedback fraction, on the simulated diurnal cycle of

  17. On the Sensitivity of the Diurnal Cycle in the Amazon to Convective Intensity

    NASA Astrophysics Data System (ADS)

    Itterly, K. F.; Taylor, P. C.

    2015-12-01

    The sensitivity of the diurnal cycle to convective intensity is investigated for the wet season (DJF) and dry season (JJA) in the Amazon region. Model output reveals large water and energy budget errors in tropical rainforests, arising from a misrepresentation of the diurnal cycle of the complex processes inherent to diurnally forced moist convection. Daily, 3-hourly satellite observations of CERES Ed3a SYN1DEG TOA fluxes and 3-hourly TRMM 3B42 precipitation rate from 2002-2012 are split into regimes of convective intensity using percentile definitions for both daily minimum OLR and daily maximum precipitation rate to define regimes. These satellite-defined regimes are then co-located with convective parameters calculated from radiosonde observations. Diurnal statistics from satellite include: phase, amplitude, precipitation onset, precipitation duration and diurnal mean. The diurnal phase of outgoing longwave radiation (OLR) and longwave cloud forcing (LWCF) occurs several hours earlier on convective days compared to stable days, however, climatological precipitation phase is less sensitive to convective intensity, occurring between 1-4PM local time for all regimes and 1-2 hours later on very convective days, which is related to longer duration precipitation events from increased humidity. Diurnal convection in the Amazon is strongly related to 8AM values of both dynamic and thermodynamic variables, most of which are related to: the background moisture content of the troposphere, the stability of the lower troposphere, convective inhibition (CIN) and wind speed and direction in the column. Morning values of CIN, lifted condensation level (LCL), level of free convection (LFC) and equilibrium level (EL) are lower in DJF than JJA, and lower on very convective days than stable days for all stations. Higher background humidity is related to longer duration precipitation events (r-values between 0.4-0.6, depending on station and season), earlier phases and onset times

  18. Comparison of modeled diurnally varying sea surface temperatures to satellite data

    NASA Astrophysics Data System (ADS)

    Weihs, R. R.; Bourassa, M. A.

    2012-12-01

    A subset of modeled, global diurnally varying sea surface temperatures (SSTs) is created using a physically based, one-dimensional, upper ocean heating model, POSH or Profiles in Oceanic Surface Heating. The model is forced with a nighttime minimum temperature approximated by the Reynolds OI daily AVHRR-only and reanalysis data from NASA's MERRA dataset. To assess the model's ability to replicate the diurnal cycle of SSTs, the model output is compared to satellite-retrieved data for the entire cycle. SEVIRI hourly 5-km SST swath data are used for the comparison and regridded to the 25-km model grid. In the analysis of SST differences between the two products, difference plots at each time step are not sufficient to determine the quality of POSH's representation of the diurnal cycle. The differences in SST can be a combination of a nighttime offset and a shift in the onset of the heating cycle. Furthermore, the caveats associated with gap filling by the interpolation technique can deteriorate the quality of the comparison, especially when the satellite data are not continuous over time. To establish quality criteria, a 2D histogram is computed to determine the percent of coverage per 0.25-degree grid cell. This is a combined measure of the density (how many satellite grid points lie within the 0.25-degree cell) and the continuity (how often, in hours, the grid cell is sampled over the day). In a best-case scenario approach for the comparison, a total of 89 grid locations are selected at which time series of SSTs are extracted from the satellite and model data. The results in Figure 1 indicate that the Reynolds product estimates the nighttime minimum temperature reasonably well, while the model consistently overestimates the peak of the diurnal cycle compared to the satellite data. Moreover, the diurnal heating in the satellite data persists approximately 3 hours longer than the diurnal heating produced by the model. Since the difference averaged over all hours of

  19. Diurnal Variations in Blood Flow at Optic Nerve Head and Choroid in Healthy Eyes

    PubMed Central

    Iwase, Takeshi; Yamamoto, Kentaro; Ra, Eimei; Murotani, Kenta; Matsui, Shigeyuki; Terasaki, Hiroko

    2015-01-01

    Abstract To investigate the diurnal variations of the ocular blood flow in healthy eyes using laser speckle flowgraphy (LSFG), and to determine the relationship of the diurnal variations between the ocular blood flow and other ocular parameters. This prospective cross-sectional study was conducted at Nagoya University Hospital. We studied 13 healthy volunteers whose mean age was 33.5 ± 7.6 years. The mean blur rate (MBR), expressing the relative blood flow, on the optic nerve head (ONH) and choroidal blood flow was determined by LSFG (LSFG-NAVI) every 3 hours from 6:00 to 24:00 hours. The intraocular pressure (IOP), choroidal thickness measured by enhanced depth imaging optical coherence tomography, systolic (SBP) and diastolic (DBP) blood pressure, and heart rate (HR) in the brachial artery were also recorded. We evaluated the diurnal variations of the parameters and compared the MBR to the other parameters using a linear mixed model. The diurnal variations of the MBR on the ONH varied significantly with a trough at 9:00 hours and a peak at 24:00 hours (P < 0.001, linear mixed model). The MBR of choroid also had significant diurnal variations with a trough at 15:00 hours and a peak at 18:00 hours (P = 0.001). The IOP (P < 0.001), choroidal thickness (P < 0.001), SBP (P = 0.005), DBP (P = 0.001), and HR (P < 0.001) also had significant diurnal variations. Although the diurnal variation of the MBR on the ONH was different from the other parameters, that on the choroid was significantly and positively correlated with the DBP (P = 0.002), mean arterial pressure (P = 0.023), and mean ocular perfusion pressure (P = 0.047). We found significant diurnal variations in the ONH and choroidal blood flow. Although the ONH blood flow had its own diurnal variation because of strong autoregulation, the choroidal blood flow was more likely affected by systemic circulatory factors because of poor autoregulation. PMID:25674750

  20. Interpretation of subplanetary-scale diurnal variance in the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Lieberman, R. S.; Riggin, D.

    2004-12-01

    Numerical studies indicate that diurnal waves of intermediate scale (zonal wavenumbers between 4 and 15) are significant momentum sources for the stratopause and mesopause semiannual oscillations. This paper presents observational support for such waves in the middle atmosphere. Day-night differences from the Limb Infrared Monitor of the Stratosphere (LIMS) temperatures are analyzed as proxies for the diurnal tide. The variance in zonal wavenumber 9-16 is weakest in the mesosphere when the underlying zonal mean winds are directed westward in the lower stratosphere, and eastward in the upper stratosphere and lower mesosphere. This behavior is consistent with critical level filtering of diurnal subplanetary scale waves by the zonal mean winds. However, this mechanism cannot be verified without information about the propagation directions of the diurnal waves. SABER sampling patterns enable such definitions. Preliminary analyses of SABER diurnal temperatures show further support for the existence of intermediate- scale waves, and filtering by the mean winds in the upper stratosphere. The westward-propagating waves dominate their eastward counterparts between zonal wavenumbers 7 and 11.

  1. Diurnal and circadian variation of sleep and alertness in men vs. naturally cycling women.

    PubMed

    Boivin, Diane B; Shechter, Ari; Boudreau, Philippe; Begum, Esmot Ara; Ng Ying-Kin, Ng Mien Kwong

    2016-09-27

    This study quantifies sex differences in the diurnal and circadian variation of sleep and waking while controlling for menstrual cycle phase and hormonal contraceptive use. We compared the diurnal and circadian variation of sleep and alertness of 8 women studied during two phases of the menstrual cycle and 3 women studied during their midfollicular phase with that of 15 men. Participants underwent an ultradian sleep-wake cycle (USW) procedure consisting of 36 cycles of 60-min wake episodes alternating with 60-min nap opportunities. Core body temperature (CBT), salivary melatonin, subjective alertness, and polysomnographically recorded sleep were measured throughout this procedure. All analyzed measures showed a significant diurnal and circadian variation throughout the USW procedure. Compared with men, women demonstrated a significant phase advance of the CBT but not melatonin rhythms, as well as an advance in the diurnal and circadian variation of sleep measures and subjective alertness. Furthermore, women experienced an increased amplitude of the diurnal and circadian variation of alertness, mainly due to a larger decline in the nocturnal nadir. Our results indicate that women are likely initiating sleep at a later circadian phase than men, which may be one factor contributing to the increased susceptibility to sleep disturbances reported in women. Lower nighttime alertness is also observed, suggesting a physiological basis for a greater susceptibility to maladaptation to night shift work in women.

  2. Local diurnal wind-driven variability and upwelling in a small coastal embayment

    NASA Astrophysics Data System (ADS)

    Walter, Ryan K.; Reid, Emma C.; Davis, Kristen A.; Armenta, Kevin J.; Merhoff, Kevin; Nidzieko, Nicholas J.

    2017-02-01

    The oceanic response to high-frequency local diurnal wind forcing is examined in a small coastal embayment located along an understudied stretch of the central California coast. We show that local diurnal wind forcing is the dominant control on nearshore temperature variability and circulation patterns. A complex empirical orthogonal function (CEOF) analysis of velocities in San Luis Obispo Bay reveals that the first-mode CEOF amplitude time series, which accounts for 47.9% of the variance, is significantly coherent with the local wind signal at the diurnal frequency and aligns with periods of weak and strong wind forcing. The diurnal evolution of the hydrographic structure and circulation in the bay is examined using both individual events and composite-day averages. During the late afternoon, the local wind strengthens and results in a sheared flow with near-surface warm waters directed out of the bay and a compensating flow of colder waters into the bay over the bottom portion of the water column. This cold water intrusion into the bay causes isotherms to shoal toward the surface and delivers subthermocline waters to shallow reaches of the bay, representing a mechanism for small-scale upwelling. When the local winds relax, the warm water mass advects back into the bay in the form of a buoyant plume front. Local diurnal winds are expected to play an important role in nearshore dynamics and local upwelling in other small coastal embayments with important implications for various biological and ecological processes.

  3. Hydraulic dispersion of diurnal reactive constituents in an open channel eutrophic flow

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Chen, G. Q.

    2016-06-01

    Closely related to the solar photocycle, plankton growth in eutrophic waters displays a diurnal variation because of photosynthesis and respiration. Presented in this paper is an analytical study of the diurnal variation of mean concentration of plankton and nutrient in an open channel eutrophic flow initiated by an instantaneous emission. The evolution of the concentration is shown driven by the combination of hydraulic dispersion and diurnal reaction between plankton and nutrient. The analytical solution for longitudinal distribution of concentration is rigorously derived and illustrated, based on the time dependent hydraulic dispersivity. Numerical results are presented and characterized by the reaction rate, yield factor and period for the diurnal reaction and the P e ´ clet number of the flow. For typical applications such as ecological risk assessment and environmental impact assessment, the upper and lower limits of critical length and duration of five typical pollutant concentrations are concretely illustrated for given concentration criterions. Remarkable diurnal variations are revealed up to around one third in the critical length and duration for plankton, and about ten percent for nutrient.

  4. The contributions of sleep-related risk factors to diurnal car accidents.

    PubMed

    Lucidi, Fabio; Mallia, Luca; Violani, Cristiano; Giustiniani, Gabriele; Persia, Luca

    2013-03-01

    This study was intended to estimate the presence and number of individual sleep-related risk factors in a sample of diurnal car accidents and to analyze the extent to which these risk factors tended to be more represented in diurnal accidents involving only one vehicle, involving young drivers or occurring on non-urban roads. Two hundred fifty-three drivers involved in diurnal accidents were interviewed immediately after the accidents to assess their sleepiness-related personal conditions and the circumstances prior to the accident (i.e., individual sleep-related risk factors), such as poor sleep, changes in habitual sleeping patterns, prolonged wakefulness, self-reported acute sleepiness and daytime sleepiness, night-shift jobs and insomnia. A total of 12.3% of the drivers were classified as having at least one of the seven risk factors assessed in the study, supporting the general notion that drivers' sleepiness conditions are crucial, even in diurnal driving circumstances in which they are less likely to depend on chrono-biological processes. Furthermore, consistent with the guiding hypotheses, specific sleep-related risk factors were more evident in single (vs. multiple) car accidents, among young drivers and in car accidents occurring on non-urban roads. In summary, sleep-related risk factors seemed to have a negative impact on drivers' safety in circumstances of diurnal driving, especially when the accidents involved young individuals and occurred on non-urban roads. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Regimes of Diurnal Variation of Summer Rainfall over Subtropical East Asia

    SciTech Connect

    Yuan W.; Lin W.; Yu, R.; Zhang, M.; Chen, H.; Li, J.

    2012-05-01

    Using hourly rain gauge records and Tropical Rainfall Measuring Mission 3B42 from 1998 to 2006, the authors present an analysis of the diurnal characteristics of summer rainfall over subtropical East Asia. The study shows that there are four different regimes of distinct diurnal variation of rainfall in both the rain gauge and the satellite data. They are located over the Tibetan Plateau with late-afternoon and midnight peaks, in the western China plain with midnight to early-morning peaks, in the eastern China plain with double peaks in late afternoon and early morning, and over the East China Sea with an early-morning peak. No propagation of diurnal phases is found from the land to the ocean across the coastlines. The different diurnal regimes are highly correlated with the inhomogeneous underlying surface, such as the plateau, plain, and ocean, with physical mechanisms consistent with the large-scale 'mountain-valley' and 'land-sea' breezes and convective instability. These diurnal characteristics over subtropical East Asia can be used as diagnostic metrics to evaluate the physical parameterization and hydrological cycle of climate models over East Asia.

  6. Impact of diurnal atmosphere-ocean coupling on tropical climate simulations using a coupled GCM

    NASA Astrophysics Data System (ADS)

    Ham, Yoo-Geun; Kug, Jong-Seong; Kang, In-Sik; Jin, Fei-Fei; Timmermann, Axel

    2009-05-01

    The impacts of diurnal atmosphere-ocean (air-sea) coupling on tropical climate simulations are investigated using the SNU coupled GCM. To investigate the effect of the atmospheric and oceanic diurnal cycles on a climate simulation, a 1-day air-sea coupling interval experiment is compared to a 2-h coupling experiment. As previous studies have suggested, cold temperature biases over equatorial western Pacific regions are significantly reduced when diurnal air-sea coupling strategy is implemented. This warming is initiated by diurnal rectification and amplified further by the air-sea coupled feedbacks. In addition to its effect on the mean climatology, the diurnal coupling has also a distinctive impact on the amplitude of the El Nino-Southern Oscillation (ENSO). It is demonstrated that a weakening of the ENSO magnitude is caused by reduced (increased) surface net heat fluxes into the ocean during El Nino (La Nina) events. Primarily, decreased (increased) incoming shortwave radiation during El Nino (La Nina) due to cloud shading is responsible for the net heat fluxes associated with ENSO.

  7. The Met Office's new operational analysis system for diurnally varying skin-SST

    NASA Astrophysics Data System (ADS)

    While, James; Mao, Chongyuan; Martin, Matthew; Good, Simon; Sykes, Peter

    2016-04-01

    Diurnal variations in skin Sea Surface Temperature (skin SST), which can be as large as several degrees, play an important role in determining the heat flux between the ocean and atmosphere. As such, since February 2015 the Met Office, as part of the Copernicus Marine Environment Monitoring Service (CMEMS), has been producing an operational analysis of the diurnal cycle of skin SST. This product consists of three components: an underlying 'foundation' SST (based on the OSTIA analysis), a warm layer where solar heating is important, and a cool skin where cooling due to long wave radiation dominates. A major development in this system is the use of a 4D-Var data assimilation technique with multiple outer-loops to improve estimates of the warm layer. Observations assimilated come from the SEVIRI, GOES-W, MTSAT2, and NOAA-AVHRR infra-red satellite instruments. Through their assimilation, the observations act to update the applied heat and wind flux such that the diurnal cycle in the warm layer is improved. In this presentation we describe the analysis system and how it produces a skin SST product. Particular attention is paid to the data assimilation aspects and on the observation processing. We also present results from a three month validation period showing that the system is well able to reproduce a drifter based climatology of the diurnal cycle in SST. A direct validation of our diurnal SST output against near surface Argo data is also given.

  8. Using a 1-D model to reproduce the diurnal variability of SST

    NASA Astrophysics Data System (ADS)

    Karagali, Ioanna; Høyer, Jacob L.; Donlon, Craig J.

    2017-04-01

    A wide range of applications, from air-sea interaction studies to fisheries and biological modeling, need accurate, high resolution SST which requires that the diurnal signal is known; for many applications, diurnal estimates are necessary and should be included in blended SST products. A widely preferred approach to bridge the gap between in situ and remotely sensed measurements and obtain diurnal warming estimates at large spatial scales is modeling of the upper ocean temperature. This study uses the one-dimensional General Ocean Turbulence Model (GOTM) to resolve diurnal signals identified from satellite SSTs and in situ measurements. Focus is given on testing and validation of different parameterizations of the basic physical processes known to influence the generation of a warm surface layer. GOTM is tested and validated using in situ measurements obtained at three locations, two in the Atlantic Ocean and one in the Baltic Sea, where different oceanographic and atmospheric conditions occur, in order to obtain an insight into its general performance. It is found that the model, with a 9 band solar absorption model rather than the standard 2 band scheme, performs well when using 3 hourly NWP forcing fields and is able to resolve daily SST variability seen both from satellite and in situ measurements. As such, and due to its low computational cost, it is proposed as a candidate model for diurnal variability estimates.

  9. Long-term Reliability of Diurnal Intraocular Pressure Patterns in Healthy Asians

    PubMed Central

    Chun, Yeoun Sook; Park, In Ki; Shin, Ko Un

    2017-01-01

    Purpose To determine the long-term repeatability of diurnal intraocular pressure (IOP) patterns in healthy Asian subjects without glaucoma. Methods Twenty-three eyes in 23 healthy Asian subjects without glaucoma underwent diurnal IOP measurements using Goldmann applanation tonometry every 2 hours from 9 AM to 11 PM during two visits that were 8 weeks apart. To validate repeatability between visits, we calculated intra-class correlation coefficients (ICCs) mean IOP, peak IOP, minimum IOP, and IOP fluctuation at each time point and expressed the results as the difference between peak IOP and minimum IOP or as the standard deviation of all diurnal IOP values in the diurnal IOP curve. Results IOP repeatability was excellent at all time points, with ICCs ranging from 0.812 to 0.946 (p < 0.001). The 9 AM IOP showed the best repeatability between visits (ICCs, 0.946). Repeatability of mean IOP, peak IOP, and minimum IOP was also excellent (ICCs ranging from 0.899 to 0.929). However, IOP fluctuations showed poor repeatability, with an ICC lower than 0.15. Conclusions Long-term repeatability of diurnal IOP patterns in healthy Asian subjects was excellent. These findings suggest that IOP measurements at standardized times of the day will be useful for assessing the effectiveness of glaucoma therapy. PMID:28367041

  10. Diurnal lighting patterns and habitat alter opsin expression and colour preferences in a killifish.

    PubMed

    Johnson, Ashley M; Stanis, Shannon; Fuller, Rebecca C

    2013-07-22

    Spatial variation in lighting environments frequently leads to population variation in colour patterns, colour preferences and visual systems. Yet lighting conditions also vary diurnally, and many aspects of visual systems and behaviour vary over this time scale. Here, we use the bluefin killifish (Lucania goodei) to compare how diurnal variation and habitat variation (clear versus tannin-stained water) affect opsin expression and the preference to peck at different-coloured objects. Opsin expression was generally lowest at midnight and dawn, and highest at midday and dusk, and this diurnal variation was many times greater than variation between habitats. Pecking preference was affected by both diurnal and habitat variation but did not correlate with opsin expression. Rather, pecking preference matched lighting conditions, with higher preferences for blue at noon and for red at dawn/dusk, when these wavelengths are comparatively scarce. Similarly, blue pecking preference was higher in tannin-stained water where blue wavelengths are reduced. In conclusion, L. goodei exhibits strong diurnal cycles of opsin expression, but these are not tightly correlated with light intensity or colour. Temporally variable pecking preferences probably result from lighting environment rather than from opsin production. These results may have implications for the colour pattern diversity observed in these fish.

  11. [Effects of Reduced Water and Diurnal Warming on Winter-Wheat Biomass and Soil Respiration].

    PubMed

    Wu, Yang-zhou; Chen, Jian; Hu, Zheng-hua; Xie, Yan; Chen, Shu-tao; Zhang, Xue-song; Shen, Shuang-he; Chen, Xi

    2016-01-15

    Field experiments were conducted in winter wheat-growing season to investigate the effect of reduced water and diurnal warming on wheat biomass and soil respiration. The experimental treatments included the control (CK), 30% reduced water (W), diurnal warming (T, enhanced 2 degrees C), and the combined treatment (TW, 30% reduced water plus diurnal warming 2 degrees C). Soil respiration rate was measured using a static chamber-gas chromatograph technique. The results showed that in the winter wheat-growing season, compared to CK, T and TW treatments significantly increased shoot biomass by 46.0% (P = 0.002) and 19.8% (P = 0.032) during the elongation-booting stage, respectively. T and TW treatments also significantly increased the harvested shoot biomass by 19.8% (P = 0.050) and 34.6% (P = 0.028), respectively. On the other hand, W treatment had no significant effect on shoot biomass, and W, T, and TW treatments didn't significantly change the root biomass. T and W treatments had no significant effect on the mean respiration rate (MRR) of soil (P > 0.05). TW treatment significantly decreased soil MRR by 22.4% (P = 0.049). We also found T treatment decreased the temperature sensitivity coefficients of soil respiration (Q10). The results of our study suggested that compared to the single treatment (reduced water or diurnal warming), the combined treatment (reduced water plus diurnal warming) may have different effects on agroecosystem.

  12. Diurnal Variation in Gravity Wave Activity at Low and Middle Latitudes

    NASA Technical Reports Server (NTRS)

    Andrioli, V. F.; Fritts, D. C.; Batista, P. P.; Clemesha, B. R.; Janches, Diego

    2013-01-01

    We employ a modified composite day extension of the Hocking (2005) analysis method to study gravity wave (GW) activity in the mesosphere and lower thermosphere using 4 meteor radars spanning latitudes from 7deg S to 53.6deg S. Diurnal and semidiurnal modulations were observed in GW variances over all sites. Semidiurnal modulation with downward phase propagation was observed at lower latitudes mainly near the equinoxes. Diurnal modulations occur mainly near solstice and, except for the zonal component at Cariri (7deg S), do not exhibit downward phase propagation. At a higher latitude (SAAMER, 53.6deg S) these modulations are only observed in the meridional component where we can observe diurnal variation from March to May, and semidiurnal, during January, February, October (above 88 km) and November. Some of these modulations with downward phase progression correlate well with wind shear. When the wind shear is well correlated with the maximum of the variances the diurnal tide has its largest amplitudes, i.e., near equinox. Correlations exhibiting variations with tidal phases suggest significant GW-tidal interactions that have different characters depending on the tidal components and possible mean wind shears. Modulations that do not exhibit phase variations could be indicative of diurnal variations in GW sources.

  13. Long-term Reliability of Diurnal Intraocular Pressure Patterns in Healthy Asians.

    PubMed

    Chun, Yeoun Sook; Park, In Ki; Shin, Ko Un; Kim, Joon Mo

    2017-04-01

    To determine the long-term repeatability of diurnal intraocular pressure (IOP) patterns in healthy Asian subjects without glaucoma. Twenty-three eyes in 23 healthy Asian subjects without glaucoma underwent diurnal IOP measurements using Goldmann applanation tonometry every 2 hours from 9 AM to 11 PM during two visits that were 8 weeks apart. To validate repeatability between visits, we calculated intra-class correlation coefficients (ICCs) mean IOP, peak IOP, minimum IOP, and IOP fluctuation at each time point and expressed the results as the difference between peak IOP and minimum IOP or as the standard deviation of all diurnal IOP values in the diurnal IOP curve. IOP repeatability was excellent at all time points, with ICCs ranging from 0.812 to 0.946 (p < 0.001). The 9 AM IOP showed the best repeatability between visits (ICCs, 0.946). Repeatability of mean IOP, peak IOP, and minimum IOP was also excellent (ICCs ranging from 0.899 to 0.929). However, IOP fluctuations showed poor repeatability, with an ICC lower than 0.15. Long-term repeatability of diurnal IOP patterns in healthy Asian subjects was excellent. These findings suggest that IOP measurements at standardized times of the day will be useful for assessing the effectiveness of glaucoma therapy.

  14. Monthly Covariability of Amazonian Convective Cloud Properties and Radiative Diurnal Cycle

    NASA Technical Reports Server (NTRS)

    Dodson, J. Brant; Taylor, Patrick C.

    2016-01-01

    The diurnal cycle of convective clouds greatly influences the top-of-atmosphere radiative energy balance in convectively active regions of Earth, through both direct presence and the production of anvil and stratiform clouds. CloudSat and CERES data are used to further examine these connections by determining the sensitivity of monthly anomalies in the radiative diurnal cycle to monthly anomalies in multiple cloud variables. During months with positive anomalies in convective frequency, the longwave diurnal cycle is shifted and skewed earlier in the day by the increased longwave cloud forcing during the afternoon from mature deep convective cores and associated anvils. This is consistent with previous studies using reanalysis data to characterize anomalous convective instability. Contrary to this, months with positive anomalies in convective cloud top height (commonly associated with more intense convection) shifts the longwave diurnal cycle later in the day. The contrary results are likely an effect of the inverse relationships between cloud top height and frequency. The albedo diurnal cycle yields inconsistent results when using different cloud variables.

  15. Monthly covariability of Amazonian convective cloud properties and radiative diurnal cycle

    NASA Astrophysics Data System (ADS)

    Dodson, J. Brant; Taylor, Patrick C.

    2017-02-01

    The diurnal cycle of convective clouds greatly influences the top-of-atmosphere radiative energy balance in convectively active regions of Earth, through both direct presence and the production of anvil and stratiform clouds. CloudSat and CERES data are used to further examine these connections by determining the sensitivity of monthly anomalies in the radiative diurnal cycle to monthly anomalies in multiple cloud variables. During months with positive anomalies in convective frequency, the longwave diurnal cycle is shifted and skewed earlier in the day by the increased longwave cloud forcing during the afternoon from mature deep convective cores and associated anvils. This is consistent with previous studies using reanalysis data to characterize anomalous convective instability. Contrary to this, months with positive anomalies in convective cloud top height (commonly associated with more intense convection) shifts the longwave diurnal cycle later in the day. The contrary results are likely an effect of the inverse relationships between cloud top height and frequency. The albedo diurnal cycle yields inconsistent results when using different cloud variables.

  16. Diurnal and circadian variation of sleep and alertness in men vs. naturally cycling women

    PubMed Central

    Boivin, Diane B.; Shechter, Ari; Boudreau, Philippe; Begum, Esmot Ara; Ng Ying-Kin, Ng Mien Kwong

    2016-01-01

    This study quantifies sex differences in the diurnal and circadian variation of sleep and waking while controlling for menstrual cycle phase and hormonal contraceptive use. We compared the diurnal and circadian variation of sleep and alertness of 8 women studied during two phases of the menstrual cycle and 3 women studied during their midfollicular phase with that of 15 men. Participants underwent an ultradian sleep–wake cycle (USW) procedure consisting of 36 cycles of 60-min wake episodes alternating with 60-min nap opportunities. Core body temperature (CBT), salivary melatonin, subjective alertness, and polysomnographically recorded sleep were measured throughout this procedure. All analyzed measures showed a significant diurnal and circadian variation throughout the USW procedure. Compared with men, women demonstrated a significant phase advance of the CBT but not melatonin rhythms, as well as an advance in the diurnal and circadian variation of sleep measures and subjective alertness. Furthermore, women experienced an increased amplitude of the diurnal and circadian variation of alertness, mainly due to a larger decline in the nocturnal nadir. Our results indicate that women are likely initiating sleep at a later circadian phase than men, which may be one factor contributing to the increased susceptibility to sleep disturbances reported in women. Lower nighttime alertness is also observed, suggesting a physiological basis for a greater susceptibility to maladaptation to night shift work in women. PMID:27621470

  17. Cycle-to-Cycle Variations in the Diurnal Variation of Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Thomas, Simon; Owen, Chris; Owens, Matt; Lockwood, Mike

    2016-04-01

    We examine mean profiles of the diurnal variations in galactic cosmic ray flux using a number of neutron monitors at different magnetic latitudes and longitudes. By splitting all of the hourly neutron monitor data by the solar magnetic polarity and analysing the mean normalised neutron monitor count rates between these, we see that the diurnal variation changes phase by 1-2 hours between the two polarity states for the majority of non-polar neutron monitors. The intensity and variability of a heliospheric magnetic field is analysed for every day and found not to be the cause of the phase change. Some polar neutron monitors, however, show different, smaller amplitude variations in phase between polarity cycles. Time series of the time of the maximum in the diurnal variation are presented between 1965 and 2013. Our results agree with previous work by confirming the presence of a 22-year variation in the peak time of the diurnal variation and a 11-year variation in the amplitude, but also show that not all neutron monitors show the same trend. An analysis of the magnetic latitude dependence of the diurnal variation shows that the time-of-day of the peak and trough of this variation gives opposing changes to the amplitude of the 22-year change. We suggest that this could be due to changes in the configeration of the heliospheric magnetic field for consecutive cycles.

  18. Did Adult Diurnal Activity Influence the Evolution of Wing Morphology in Opoptera Butterflies?

    PubMed

    Penz, C M; Heine, K B

    2016-02-01

    The butterfly genus Opoptera includes eight species, three of which have diurnal habits while the others are crepuscular (the usual activity period for members of the tribe Brassolini). Although never measured in the field, it is presumed that diurnal Opoptera species potentially spend more time flying than their crepuscular relatives. If a shift to diurnal habits potentially leads to a higher level of activity and energy expenditure during flight, then selection should operate on increased aerodynamic and energetic efficiency, leading to changes in wing shape. Accordingly, we ask whether diurnal habits have influenced the evolution of wing morphology in Opoptera. Using phylogenetically independent contrasts and Wilcoxon rank sum tests, we confirmed our expectation that the wings of diurnal species have higher aspect ratios (ARs) and lower wing centroids (WCs) than crepuscular congeners. These wing shape characteristics are known to promote energy efficiency during flight. Three Opoptera wing morphotypes established a priori significantly differed in AR and WC values. The crepuscular, cloud forest dweller Opoptera staudingeri (Godman & Salvin) was exceptional in having an extended forewing tip and the highest AR and lowest WC within Opoptera, possibly to facilitate flight in a cooler environment. Our study is the first to investigate how butterfly wing morphology might evolve as a response to a behavioral shift in adult time of activity.

  19. Diurnal lighting patterns and habitat alter opsin expression and colour preferences in a killifish

    PubMed Central

    Johnson, Ashley M.; Stanis, Shannon; Fuller, Rebecca C.

    2013-01-01

    Spatial variation in lighting environments frequently leads to population variation in colour patterns, colour preferences and visual systems. Yet lighting conditions also vary diurnally, and many aspects of visual systems and behaviour vary over this time scale. Here, we use the bluefin killifish (Lucania goodei) to compare how diurnal variation and habitat variation (clear versus tannin-stained water) affect opsin expression and the preference to peck at different-coloured objects. Opsin expression was generally lowest at midnight and dawn, and highest at midday and dusk, and this diurnal variation was many times greater than variation between habitats. Pecking preference was affected by both diurnal and habitat variation but did not correlate with opsin expression. Rather, pecking preference matched lighting conditions, with higher preferences for blue at noon and for red at dawn/dusk, when these wavelengths are comparatively scarce. Similarly, blue pecking preference was higher in tannin-stained water where blue wavelengths are reduced. In conclusion, L. goodei exhibits strong diurnal cycles of opsin expression, but these are not tightly correlated with light intensity or colour. Temporally variable pecking preferences probably result from lighting environment rather than from opsin production. These results may have implications for the colour pattern diversity observed in these fish. PMID:23698009

  20. Separating selection by diurnal and nocturnal pollinators on floral display and spur length in Gymnadenia conopsea.

    PubMed

    Sletvold, Nina; Trunschke, Judith; Wimmergren, Carolina; Agren, Jon

    2012-08-01

    Most plants attract multiple flower visitors that may vary widely in their effectiveness as pollinators. Floral evolution is expected to reflect interactions with the most important pollinators, but few studies have quantified the contribution of different pollinators to current selection on floral traits. To compare selection mediated by diurnal and nocturnal pollinators on floral display and spur length in the rewarding orchid Gymnadenia conopsea, we manipulated the environment by conducting supplemental hand-pollinations and selective pollinator exclusions in two populations in central Norway. In both populations, the exclusion of diurnal pollinators significantly reduced seed production compared to open pollination, whereas the exclusion of nocturnal pollinators did not. There was significant selection on traits expected to influence pollinator attraction and pollination efficiency in both the diurnal and nocturnal pollination treatment. The relative strength of selection among plants exposed to diurnal and nocturnal visitors varied among traits and populations, but the direction of selection was consistent. The results suggest that diurnal pollinators are more important than nocturnal pollinators for seed production in the study populations, but that both categories contribute to selection on floral morphology. The study illustrates how experimental manipulations can link specific categories of pollinators to observed selection on floral traits, and thus improve our understanding of how species interactions shape patterns of selection.

  1. Long term diurnal variations in contaminant removal in high rate ponds treating urban wastewater.

    PubMed

    García, J; Green, B F; Lundquist, T; Mujeriego, R; Hernández-Mariné, M; Oswald, W J

    2006-09-01

    In this investigation, diurnal variations in contaminant removal in high rate ponds (HRP) treating urban wastewater were evaluated. Two experimental HRPs (surface area 1.54 m2 and depth 0.3 m), each with a clarifier in series (surface area 0.025 m2), were operated in parallel with different hydraulic retention times (3-10 days) but with the same environmental conditions over a period of one year. The operating strategies adopted only yielded a significant overall difference in removal between the two HRPs for nutrients. Effluent total suspended solids and chemical oxygen demand were slightly higher at midday than at dawn, while for total nitrogen and total phosphorous the concentrations were slightly higher at dawn. All these differences were related to the diurnal changes of DO and pH. The main conclusion of this work is that the diurnal variations of the contaminant concentrations in HRPs do not seriously affect their reliability in treating wastewater.

  2. Diurnal cycles of precipitation, clouds, and lightning in the tropics from 9 years of TRMM observations

    NASA Astrophysics Data System (ADS)

    Liu, Chuntao; Zipser, Edward J.

    2008-02-01

    The diurnal cycles of surface rainfall, population of precipitation systems, deep intense convection reaching near the tropopause, lightning flash counts, cold clouds, and vertical structure of precipitation are analyzed over the tropics, using 9 years of TRMM Precipitation Radar, Visible and Infrared Scanner, and Lightning Imaging Sensor measurements. The diurnal cycles over land include a late afternoon maximum of precipitation systems, with phase differences among cloud, precipitation, flash counts, and radar echo at different altitudes. Over ocean, the diurnal cycles are interpreted as having contributions from nocturnal precipitation systems and early afternoon showers. There are double peaks of radar reflectivity above 12 km near 0230 and 0530 local time over oceans. The oceanic clouds with infrared brightness temperature < 235 K have two peaks, one during the night and the other in early afternoon.

  3. Diurnal and semidiurnal nitrogen density and temperature variations from thermosphere probe measurements.

    NASA Technical Reports Server (NTRS)

    Newton, G. P.; Mayr, H. G.

    1973-01-01

    Amplitudes and phases for the diurnal and semidiurnal variations of thermospheric molecular nitrogen density and temperature are determined from data obtained by six rocket-launched thermosphere probes. The semidiurnal tide is significant for the lower thermosphere variations, where it could dominate in the N2 density at 140 km and in the temperature for altitudes between 170 and 200 km. At exospheric heights, the magnitudes of the semidiurnal modes in density and temperature are significantly smaller than those of the diurnal mode. The temperature phase is height-dependent in both diurnal and semidiurnal components below 200 km, thus contributing to phase differences between N2 density and temperature in both modes. No significant phase differences are apparent between N2 density and thermospheric temperature above 250 km.

  4. Diurnal salivary cortisol and regression status in MECP2 Duplication syndrome

    PubMed Central

    Peters, Sarika U.; Byiers, Breanne J.; Symons, Frank J.

    2015-01-01

    MECP2 duplication syndrome is an X-linked genomic disorder that is characterized by infantile hypotonia, intellectual disability, and recurrent respiratory infections. Regression affects a subset of individuals, and the etiology of regression has yet to be examined. In this study, alterations in the hypothalamus-pituitary-adrenal axis, including diurnal patterns in salivary cortisol, were examined in four males with MECP2 duplication syndrome who had regression, and four males with the same syndrome without regression (ages 3–22 years). Individuals who had experienced regression do not exhibit typical diurnal cortisol rhythms, and their profiles were flatter through the day. In contrast, individuals with MECP2 duplication syndrome who had not experienced regression showed more typical patterns of higher cortisol levels in the morning with linear decreases throughout the day. This study is the first to suggest a link between atypical diurnal cortisol rhythms and regression status in MECP2 duplication syndrome, and may have implications for treatment. PMID:25999300

  5. Diurnal and circadian expression profiles of glycerolipid biosynthetic genes in Arabidopsis

    PubMed Central

    Nakamura, Yuki; Andrés, Fernando; Kanehara, Kazue; Liu, Yu-chi; Coupland, George; Dörmann, Peter

    2014-01-01

    Glycerolipid composition in plant membranes oscillates in response to diurnal change. However, its functional significance remained unclear. A recent discovery that Arabidopsis florigen FT binds diurnally oscillating phosphatidylcholine molecules to promote flowering suggests that diurnal oscillation of glycerolipid composition is an important input in flowering time control. Taking advantage of public microarray data, we globally analyzed the expression pattern of glycerolipid biosynthetic genes in Arabidopsis under long-day, short-day, and continuous light conditions. The results revealed that 12 genes associated with glycerolipid metabolism showed significant oscillatory profiles. Interestingly, expression of most of these genes followed circadian profiles, suggesting that glycerolipid biosynthesis is partially under clock regulation. The oscillating expression profile of one representative gene, PECT1, was analyzed in detail. Expression of PECT1 showed a circadian pattern highly correlated with that of the clock-regulated gene GIGANTEA. Thus, our study suggests that a considerable number of glycerolipid biosynthetic genes are under circadian control. PMID:25763705

  6. Diurnal variation of marine stratocumulus over San Nicolas Island during the FIRE IFO

    NASA Technical Reports Server (NTRS)

    Davies, R.; Blaskovic, M.

    1990-01-01

    Preliminary analysis was made of data collected at San Nicolas Island during the Intensive Field Observation (IFO) phase of the First International Satellite Cloud Climatology Program's Regional Experiment (FIRE). Of particular interest was an examination of a distinct diurnal variation in the cloud properties, despite an apparent absence of diurnal forcing from the surface. Direct or indirect radiative modulation of such clouds, as proposed by Fravalo at el. (1981) and Turton and Nicholls (1987) indeed seems likely. Preliminary observational evidence for diurnal change in the marine stratocumulus adjacent to San Nicolas Island is presented. A comparison is then made between the observed behavior and predictions from theoretical models of the interactive effect of radiation on boundary layer clouds.

  7. The relative importance of olfaction and vision in a diurnal and a nocturnal hawkmoth.

    PubMed

    Balkenius, Anna; Rosén, Wenqi; Kelber, Almut

    2006-04-01

    Nectar-feeding animals can use vision and olfaction to find rewarding flowers and different species may give different weight to the two sensory modalities. We have studied how a diurnal or nocturnal lifestyle affects the weight given to vision and olfaction. We tested naïve hawkmoths of two species in a wind tunnel, presenting an odour source and a visual stimulus. Although the two species belong to the same subfamily of sphingids, the Macroglossinae, their behaviour was quite different. The nocturnal Deilephila elpenor responded preferably to the odour while the diurnal Macroglossum stellatarum strongly favoured the visual stimulus. Since a nocturnal lifestyle is ancestral for sphingids, the diurnal species, M. stellatarum, has evolved from nocturnal moths that primarily used olfaction. During bright daylight visual cues may have became more important than odour.

  8. Proteomics analysis reveals a dynamic diurnal pattern of photosynthesis-related pathways in maize leaves.

    PubMed

    Feng, Dan; Wang, Yanwei; Lu, Tiegang; Zhang, Zhiguo; Han, Xiao

    2017-01-01

    Plant leaves exhibit differentiated patterns of photosynthesis rates under diurnal light regulation. Maize leaves show a single-peak pattern without photoinhibition at midday when the light intensity is maximized. This mechanism contributes to highly efficient photosynthesis in maize leaves. To understand the molecular basis of this process, an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics analysis was performed to reveal the dynamic pattern of proteins related to photosynthetic reactions. Steady, single-peak and double-peak protein expression patterns were discovered in maize leaves, and antenna proteins in these leaves displayed a steady pattern. In contrast, the photosystem, carbon fixation and citrate pathways were highly controlled by diurnal light intensity. Most enzymes in the limiting steps of these pathways were major sites of regulation. Thus, maize leaves optimize photosynthesis and carbon fixation outside of light harvesting to adapt to the changes in diurnal light intensity at the protein level.

  9. Comparative morphological analysis of the diurnal rhythms in geomagnetic and seismic activity

    NASA Astrophysics Data System (ADS)

    Desherevskii, A. V.; Sidorin, A. Ya.

    2016-12-01

    To verify the hypothesis of the possible influence of geomagnetic variations on seismicity, the structures of the diurnal rhythms of seismicity in Garm research area, Tajikistan, and geomagnetic activity are investigated in detail using the regional index of geomagnetic activity at the Tashkent Astronomical Observatory. We compare (1) the average shape of the diurnal variations and its seasonal changes; (2) temporal changes in special coefficients of the amplitude variations and the diurnal variation stability. It is revealed that the dynamics of the mentioned parameters differ considerably between the geomagnetic and seismic activities. We conclude that the results obtained on the basis of the used data and processing techniques do not confirm the hypothesis of possible influence of weak geomagnetic variations on background seismicity in the Garm region, Tajikistan.

  10. Diurnal cortisol amplitude and fronto-limbic activity in response to stressful stimuli.

    PubMed

    Cunningham-Bussel, Amy C; Root, James C; Butler, Tracy; Tuescher, Oliver; Pan, Hong; Epstein, Jane; Weisholtz, Daniel S; Pavony, Michelle; Silverman, Michael E; Goldstein, Martin S; Altemus, Margaret; Cloitre, Marylene; Ledoux, Joseph; McEwen, Bruce; Stern, Emily; Silbersweig, David

    2009-06-01

    The development and exacerbation of many psychiatric and neurologic conditions are associated with dysregulation of the hypothalamic pituitary adrenal (HPA) axis as measured by aberrant levels of cortisol secretion. Here we report on the relationship between the amplitude of diurnal cortisol secretion, measured across 3 typical days in 18 healthy individuals, and blood oxygen level dependant (BOLD) response in limbic fear/stress circuits, elicited by in-scanner presentation of emotionally negative stimuli, specifically, images of the World Trade Center (WTC) attack. Results indicate that subjects who secrete a greater amplitude of cortisol diurnally demonstrate less brain activation in limbic regions, including the amygdala and hippocampus/parahippocampus, and hypothalamus during exposure to traumatic WTC-related images. Such initial findings can begin to link our understanding, in humans, of the relationship between the diurnal amplitude of a hormone integral to the stress response, and those neuroanatomical regions that are implicated as both modulating and being modulated by that response.

  11. Diurnal heat storage in direct-gain passive-solar buildings

    SciTech Connect

    Balcomb, J.D.; Neeper, D.A.

    1983-01-01

    This paper presents a simplified method for predicting temperature swings in direct-gain buildings. It is called the DHC method due to the use of a diurnal heat capacity (DHC). Diurnal heat capacity is a measure of the effective amount of heat stored during a sunny day and then released at night - the typical 24-hour diurnal cycle. This enables prediction of the maximum temperature swings experienced in the building and can be calculated using a single 24-hour harmonic. The advantage is that closed-form analytic solutions can be obtained for a variety of simple and layered-wall configurations. Higher harmonic components are accounted for by a correction factor. The method is suitable for us by hand or on a programmable calculator.

  12. Wavy Lineaments on Europa: Fracture Propagation into Combined Nonsynchronous and Diurnal Stress Fields

    NASA Technical Reports Server (NTRS)

    Crawford, Zane; Pappalardo, Robert T.; Barr, Amy C.; Gleeson, Damhnait; Mullen, McCall; Nimmo, Francis; Stempel, Michelle M.; Wahr, John

    2005-01-01

    Understanding the processes that have operated on Europa and the manner in which they may have changed through time is fundamental to understanding the satellite's geology and present-day habitability. Previous studies have shown that lineament patterns on Europa can be explained by accumulation of tensile stress from slow nonsynchronous rotation (NSR), while the cycloidal planforms of other Europan lineaments can be explained if fractures propagate through a diurnally changing tensile stress field. We find that fractures propagated into combined diurnal and NSR stress fields can be "wavy" in planform for NSR stress accumulated over 2 to 8 of ice shell rotation and average propagation speeds of approx. 1 to 3 m/s. The variety of Europa's observed lineament planforms from cycloidal, to wavy, to arcuate can be produced by accumulation of NSR stress relative to the diurnal stress field. Varying proportions of these stress mechanisms plausibly may be related to a time-variable (slowing) NSR rate.

  13. Retrograde diurnal motion of the instantaneous rotation axis observed by a large ring laser gyroscope

    NASA Astrophysics Data System (ADS)

    Tian, W.

    2017-01-01

    Ring laser gyroscope technique directly senses the Earth's instantaneous rotation pole (IRP), whose polar motion contains strong retrograde diurnal components induced by external torques due to the gravitational attraction of the Moon and Sun. The first direct measurement of this retrograde diurnal motion with three large ring lasers was reported by Schreiber et al. (J Geophys Res 109(B18):B06405, significant increase in precision and stability of ring laser gyroscopes; however, precise determination of amplitude and phase at main partial waves has not been given in the literature. In this paper, I will report on determination of the retrograde diurnal motion of the IRP at main partial waves (Oo_1, J_1, K_1, M_1, O_1, Q_1) by the ring laser "G", located in Wettzell, Germany, which is the most stable one amongst the currently running large ring laser gyroscopes.

  14. Seasonal and Diurnal Variations of Hg(0) Over New England

    NASA Astrophysics Data System (ADS)

    Mao, H.; Talbot, R.; Sigler, J.; Sive, B.; Hegarty, J.

    2007-12-01

    Diurnal to interannual variability of Hg° over New England was investigated using multiple years of Hg° measurements at two inland sites, Thompson Farm (TF, 43.11° N, 70.95° W, 24 m, 25 km inland) and Pac Monadnock (PM, 42.86° N, 71.88° W, 700 m, 180 km inland), and one summer of measurements from a marine site, Appledore Island (AI, 42.97° N, 70.62° W, sea level), from the University of New Hampshire AIRMAP observing network. Possible sources were identified via a thorough examination of relationships between Hg° and a number of trace gases, e.g., CO, CO2, CH4, NOy, NO, SO2, and VOCs. The measurements of Hg at TF showed distinct seasonality with an annual maxima in late winter - early spring and a minima in early fall, with large day-to-day variation. A decreasing trend in the mixing ratio of Hg over the time period of March - September occurred at a rate of 0.5 - 0.6 ppqv d-1 for all years except 2004 (0.3 ppqv d-1). Measurements of Hg° at the elevated site PM exhibited much smaller daily and annual variation, particularly reflected in the slower warm season decline (relative to TF) of 0.2 and 0.3 ppqv d-1 in 2005 and 2006 respectively. The AI data appeared to track the variation observed at TF albeit with much higher minima. Hg° was correlated most strongly with CO and NOy in winter suggesting that anthropogenic emissions were the primary source of Hg° . Applying the Hg° - CO relationship, we found that the seasonally averaged Hg° mixing ratio of ~160 ppqv at PM can be considered the regional background level. The positive Hg° -NOy correlation along the lower boundary of all data points indicated dry deposition as a stronger sink for Hg° than suggested by previous studies. We estimated a dry deposition velocity for Hg° of 0.17 - 0.20 cm s-1, and a lifetime of ~11 days in the local PBL at TF. Correlation between Hg° and CHBr3 at both TF and AI suggested a role of the oceanic source influencing the ambient levels of Hg° in the marine and coastal

  15. Research of the diurnal soil respiration dynamic in two typical vegetation communities in Tianjin estuarine wetland

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Meng, W. Q.; Li, H. Y.

    2016-08-01

    Understanding the differences and diurnal variations of soil respiration in different vegetation communities in coastal wetland is to provide basic reliable scientific evidence for the carbon "source" function of wetland ecosystems in Tianjin.Measured soil respiration rate which changed during a day between two typical vegetation communities (Phragmites australis, Suaeda salsa) in coastal wetland in October, 2015. Soil temperature and moisture were measured at the same time. Each of the diurnal curves of soil temperature in two communities had a single peak value, and the diurnal variations of soil moisture showed a "two peak-one valley" trend. The diurnal dynamic of soil respiration under the two communities had obvious volatility which showed a single peak form with its maximum between 12:00-14:00 and minimum during 18:00. The diurnal average of soil respiration rate in Phragmites australis communities was 3.37 times of that in Suaeda salsa communities. Significant relationships were found by regression analysis among soil temperature, soil moisture and soil respiration rate in Suaeda salsa communities. There could be well described by exponential models which was y = -0.245e0.105t between soil respiration rate and soil temperature, by quadratic models which was y = -0.276×2 + 15.277× - 209.566 between soil respiration rate and soil moisture. But the results of this study showed that there were no significant correlations between soil respiration and soil temperature and soil moisture in Phragmites australis communities (P > 0.05). Therefore, under the specific wetland environment conditions in Tianjin, soil temperature and moisture were not main factors influencing the diurnal variations of soil respiration rate in Phragmites australis communities.

  16. Diurnal and nocturnal pollination of Marginatocereus marginatus (Pachycereeae: Cactaceae) in Central Mexico.

    PubMed

    Dar, Saleem; del Coro Arizmendi, Ma; Valiente-Banuet, Alfonso

    2006-03-01

    Chiropterophillous and ornithophillous characteristics can form part of a single reproductive strategy in plants that have flowers with diurnal and nocturnal anthesis. This broader pollination strategy can ensure seed set when pollinators are scarce or unpredictable. This appears to be true of hummingbirds, which presumably pollinate Marginatocereus marginatus, a columnar cactus with red nocturnal and diurnal flowers growing as part of dense bat-pollinated columnar cacti forests in arid regions of central Mexico. The aim of this study was to study the floral biology of M. marginatus, and evaluate the effectiveness of nocturnal vs. diurnal pollinators and the contribution of each pollinator group to overall plant fitness. Individual flower buds were marked and followed to evaluate flower phenology and anthesis time. Flowers and nectar production were measured. An exclusion experiment was conducted to measure the relative contribution of nocturnal and diurnal pollinators to seed set. Marginatocereus marginatus has red hermaphroditic flowers with nocturnal and diurnal anthesis. The plant cannot produce seeds by selfing and was pollinated during the day by hummingbirds and during the night by bats, demonstrating that both pollinator groups were important for plant reproduction. Strong pollen limitation was found in the absence of one of the pollinator guilds. Marginatocereus marginatus has an open pollination system in which both diurnal and nocturnal pollinators are needed to set seeds. This represents a fail-safe pollination system that can ensure both pollination, in a situation of low abundance of one of the pollinator groups (hummingbirds), and high competition for nocturnal pollinators with other columnar cacti that bloom synchronously with M. marginatus in the Tehuacan Valley, Mexico.

  17. Simulation of the Universal-Time Diurnal Variation of the Global Electric Circuit Charging Rate

    NASA Technical Reports Server (NTRS)

    Mackerras, David; Darveniza, Mat; Orville, Richard E.; Williams, Earle R.; Goodman, Steven J.

    1999-01-01

    A global lightning model that includes diurnal and annual lightning variation, and total flash density versus latitude for each major land and ocean, has been used as the basis for simulating the global electric circuit charging rate. A particular objective has been to reconcile the difference in amplitude ratios [AR=(max-min)/mean] between global lightning diurnal variation (AR approximately equals 0.8) and the diurnal variation of typical atmospheric potential gradient curves (AR approximately equals 0.35). A constraint on the simulation is that the annual mean charging current should be about 1000 A. The global lightning model shows that negative ground flashes can contribute, at most, about 10-15% of the required current. For the purpose of the charging rate simulation, it was assumed that each ground flash contributes 5 C to the charging process. It was necessary to assume that all electrified clouds contribute to charging by means other than lightning, that the total flash rate can serve as an indirect indicator of the rate of charge transfer, and that oceanic electrified clouds contribute to charging even though they are relatively inefficient in producing lightning. It was also found necessary to add a diurnally invariant charging current component. By trial and error it was found that charging rate diurnal variation curves could be produced with amplitude ratios and general shapes similar to those of the potential gradient diurnal variation curves measured over ocean and arctic regions during voyages of the Carnegie Institute research vessels. The comparisons were made for the northern winter (Nov.-Feb.), the equinox (Mar., Apr., Sept., Oct.), the northern summer (May-Aug.), and the whole year.

  18. Role of Vagal Innervation in Diurnal Rhythm of Intestinal Peptide Transporter 1 (PEPT1)

    PubMed Central

    Qandeel, Hisham G.; Alonso, Fernando; Hernandez, David J.; Duenes, Judith A.; Zheng, Ye; Scow, Jeffrey S.; Sarr, Michael G.

    2010-01-01

    BACKGROUND: Protein is absorbed predominantly as di/tripeptides via H+/peptide cotransporter-1 (PEPT1). We demonstrated previously diurnal variations in expression and function of duodenal and jejunal but not ileal PEPT1; neural regulation of this pattern is unexplored. HYPOTHESIS: Complete abdominal vagotomy abolishes diurnal variations in gene expression and transport function of PEPT1. METHODS: 24 rats maintained in a 12-h light/dark room [6AM-6PM] underwent abdominal vagotomy; 24 other rats were controls. Four weeks later, mucosal levels of mRNA and protein were measured at 9AM, 3PM, 9PM, and 3AM (n=6 each) by quantitative real time-PCR and Western blots, respectively; transporter-mediated uptake of di-peptide (Gly-Sar) was measured by the everted-sleeve technique. RESULTS: Diurnal variation in mRNA, as in controls, was retained post-vagotomy in duodenum and jejunum (peak at 3PM, p<0.05) but not in ileum. Diurnal variations in expression of protein and Gly-Sar uptake, however, were absent post-vagotomy (p>0.3). Similar to controls, maximal uptake was in jejunum after vagotomy (Vmax-nmol/cm/min: jejunum vs. duodenum and ileum; 163 vs. 88 and 71 at 3AM; p<0.04); Km remained unchanged. CONCLUSIONS: Vagal innervation appears to mediate in part diurnal variations in protein expression and transport function of PEPT1, but not diurnal variation in mRNA expression of PEPT1. PMID:19707837

  19. Diurnal variability in orthostatic tachycardia: implications for the postural tachycardia syndrome.

    PubMed

    Brewster, Jordan A; Garland, Emily M; Biaggioni, Italo; Black, Bonnie K; Ling, John F; Shibao, Cyndya A; Robertson, David; Raj, Satish R

    2012-01-01

    Patients with POTS (postural tachycardia syndrome) have excessive orthostatic tachycardia (>30 beats/min) when standing from a supine position. HR (heart rate) and BP (blood pressure) are known to exhibit diurnal variability, but the role of diurnal variability in orthostatic changes of HR and BP is not known. In the present study, we tested the hypothesis that there is diurnal variation of orthostatic HR and BP in patients with POTS and healthy controls. Patients with POTS (n=54) and healthy volunteers (n=26) were admitted to the Clinical Research Center. Supine and standing (5 min) HR and BP were obtained in the evening on the day of admission and in the following morning. Overall, standing HR was significantly higher in the morning (102±3 beats/min) than in the evening (93±2 beats/min; P<0.001). Standing HR was higher in the morning in both POTS patients (108±4 beats/min in the morning compared with 100±3 beats/min in the evening; P=0.012) and controls (89±3 beats/min in the morning compared with 80±2 beats/min in the evening; P=0.005) when analysed separately. There was no diurnal variability in orthostatic BP in POTS. A greater number of subjects met the POTS HR criterion in the morning compared with the evening (P=0.008). There was significant diurnal variability in orthostatic tachycardia, with a great orthostatic tachycardia in the morning compared with the evening in both patients with POTS and healthy subjects. Given the importance of orthostatic tachycardia in diagnosing POTS, this diurnal variability should be considered in the clinic as it may affect the diagnosis of POTS.

  20. On the sensitivity of the diurnal cycle in the Amazon to convective intensity

    PubMed Central

    Taylor, Patrick C.; Dodson, Jason B.; Tawfik, Ahmed B.

    2016-01-01

    Abstract Climate and reanalysis models contain large water and energy budget errors over tropical land related to the misrepresentation of diurnally forced moist convection. Motivated by recent work suggesting that the water and energy budget is influenced by the sensitivity of the convective diurnal cycle to atmospheric state, this study investigates the relationship between convective intensity, the convective diurnal cycle, and atmospheric state in a region of frequent convection—the Amazon. Daily, 3‐hourly satellite observations of top of atmosphere (TOA) fluxes from Clouds and the Earth's Radiant Energy System Ed3a SYN1DEG and precipitation from Tropical Rainfall Measuring Mission 3B42 data sets are collocated with twice daily Integrated Global Radiosonde Archive observations from 2002 to 2012 and hourly flux tower observations. Percentiles of daily minimum outgoing longwave radiation are used to define convective intensity regimes. The results indicate a significant increase in the convective diurnal cycle amplitude with increased convective intensity. The TOA flux diurnal phase exhibits 1–3 h shifts with convective intensity, and precipitation phase is less sensitive. However, the timing of precipitation onset occurs 2–3 h earlier and the duration lasts 3–5 h longer on very convective compared to stable days. While statistically significant changes are found between morning atmospheric state and convective intensity, variations in upper and lower tropospheric humidity exhibit the strongest relationships with convective intensity and diurnal cycle characteristics. Lastly, convective available potential energy (CAPE) is found to vary with convective intensity but does not explain the variations in Amazonian convection, suggesting that a CAPE‐based convective parameterization will not capture the observed behavior without incorporating the sensitivity of convection to column humidity. PMID:27867784

  1. Contrasting spatial patterns in the diurnal and semidiurnal temperature variability in the Santa Barbara Channel, California

    NASA Astrophysics Data System (ADS)

    Aristizábal, María. F.; Fewings, Melanie R.; Washburn, Libe

    2016-01-01

    The Santa Barbara Channel, California, experiences large temperature fluctuations during summer that have been associated with the input of nutrients to the euphotic zone. We studied the temperature fluctuations in the diurnal and semidiurnal bands, which account for as much as 65% of the total variance. We analyzed data from 25 moorings along the mainland and the Northern Channel Islands deployed at depths 8-18 m during 1999-2012. In the diurnal band, the temperature fluctuations vary almost simultaneously within two distinct regions, with a lag of 5 h between the regions: the mainland east of Point Conception and the west part of the Channel exposed to the large-scale winds. The two regions of in-phase temperature variability are in agreement with a previously published division of zones according to the wind characteristics. The portion of the diurnal temperature variance that is wind driven does not propagate along the coastline, but rather is directly forced by the wind. The semidiurnal temperature oscillations are more substantial in the Northern Channel Islands. These findings are consistent with a numerical study that predicted that the steep slopes of the Santa Cruz Basin, located south of the Channel Islands, are a source of semidiurnal internal tides. We conclude that the contrast between the spatial patterns of the diurnal and semidiurnal temperature oscillations on scales of tens of kilometers reflects the spatial distribution of the main forcing in each band, namely the diurnal wind and the locally generated semidiurnal internal tide. The spatial patterns of the diurnal and semidiurnal oscillations reflect the forcing in each band.

  2. Consequences of incongruency in diurnally varying resources for seedlings of Rumex crispus (Polygonaceae).

    PubMed

    Cavender-Bares, J M; Voss, P B; Bazzaz, F A

    1998-09-01

    The incongruency of diurnally varying resources essential to plants may detrimentally affect plants early in their development as indicated by reduced water use efficiency and carbon gain. Typical diurnal patterns of light and CO(2) availability in a midsized temperate herbaceous or forest gap were simulated in specially designed growth chambers. A sinusoidally varying CO(2) treatment (400 ppm minimum, 800 ppm maximum) approximated the diurnal cycle of CO(2) at the soil surface, while a steady-state CO(2) treatment (600 ppm) with the same average CO(2 )concentration provided a control. Crossed with these two CO(2) treatments were two light regimes, one with 3 h of high light (850 μmol·m·s) in the morning (west side of a gap), and the other with 3 h of high light in the afternoon (east side). All treatments received baseline low light (55 μmol·m·s) for 14 h during the day. Rumex crispus was selected as a model species because of its rosette leaves, which grow close to the ground where diurnal CO(2 )variation is greatest. The relative timing of diurnal variations in light and CO(2) significantly affected seedling water use efficiency, carbon gain, and morphology. Total biomass, photosynthetic rates, daily integrated carbon, water use efficiency, and leaf area were enhanced by morning exposure to high light. Seedlings that were exposed to peak values of light and CO(2) incongruently, i.e., those plants receiving intense afternoon light with diurnally varying CO(2), were detrimentally affected relative to control plants receiving intense afternoon light with steady-state CO(2). The results of this experiment indicate that the incongruent availability of required resources-such as light and CO(2)-can detrimentally affect performance relative to when resources are congruent. These contrasting resource regimes can occur on the east and west side of gaps.

  3. On the sensitivity of the diurnal cycle in the Amazon to convective intensity.

    PubMed

    Itterly, Kyle F; Taylor, Patrick C; Dodson, Jason B; Tawfik, Ahmed B

    2016-07-27

    Climate and reanalysis models contain large water and energy budget errors over tropical land related to the misrepresentation of diurnally forced moist convection. Motivated by recent work suggesting that the water and energy budget is influenced by the sensitivity of the convective diurnal cycle to atmospheric state, this study investigates the relationship between convective intensity, the convective diurnal cycle, and atmospheric state in a region of frequent convection-the Amazon. Daily, 3-hourly satellite observations of top of atmosphere (TOA) fluxes from Clouds and the Earth's Radiant Energy System Ed3a SYN1DEG and precipitation from Tropical Rainfall Measuring Mission 3B42 data sets are collocated with twice daily Integrated Global Radiosonde Archive observations from 2002 to 2012 and hourly flux tower observations. Percentiles of daily minimum outgoing longwave radiation are used to define convective intensity regimes. The results indicate a significant increase in the convective diurnal cycle amplitude with increased convective intensity. The TOA flux diurnal phase exhibits 1-3 h shifts with convective intensity, and precipitation phase is less sensitive. However, the timing of precipitation onset occurs 2-3 h earlier and the duration lasts 3-5 h longer on very convective compared to stable days. While statistically significant changes are found between morning atmospheric state and convective intensity, variations in upper and lower tropospheric humidity exhibit the strongest relationships with convective intensity and diurnal cycle characteristics. Lastly, convective available potential energy (CAPE) is found to vary with convective intensity but does not explain the variations in Amazonian convection, suggesting that a CAPE-based convective parameterization will not capture the observed behavior without incorporating the sensitivity of convection to column humidity.

  4. Study of the Cosmic Ray Diurnal Anisotropy During Different Solar and Magnetic Conditions

    NASA Astrophysics Data System (ADS)

    Singh, Munendra; Badruddin

    2006-02-01

    The pressure-corrected hourly counting rate data of four neutron monitor stations have been employed to study the variation of cosmic ray diurnal anisotropy for a period of about 50 years (1955-2003). These neutron monitors, at Oulu (Rc = 0.78 GV), Deep River (Rc = 1.07 GV), Climax (Rc = 2.99 GV), and Huancayo (Rc = 12.91 GV) are well distributed on the earth over different latitudes and their data have been analyzed. The amplitude of the diurnal anisotropy varies with a period of one solar cycle (~11 years), while the phase varies with a period of two solar cycles (~22 years). In addition to its variation on year-to-year basis, the average diurnal amplitude and phase has also been calculated by grouping the days for each solar cycle, viz. 19, 20, 21, 22, and 23. As a result of these groupings over solar cycles, no significant change in the diurnal vectors (amplitude as well as phase) from one cycle to other has been observed. Data were analyzed by arranging them into groups on the basis of the polarity of the solar polar magnetic field and consequently on the basis of polarity states of the heliosphere (A > 0 and A < 0). Difference in time of maximum of diurnal anisotropy (shift to earlier hours) is observed during A < 0 (1970s, 1990s) polarity states as compared to anisotropy observed during A > 0 (1960s, 1980s). This shift in phase of diurnal anisotropy appears to be related to change in preferential entry of cosmic ray particles (via the helioequatorial plane or via solar poles) into the heliosphere due to switch of the heliosphere from one physical/magnetic state to another following the solar polar field reversal.

  5. Effects of diurnally oscillating pCO2 on the calcification and survival of coral recruits.

    PubMed

    Dufault, Aaron M; Cumbo, Vivian R; Fan, Tung-Yung; Edmunds, Peter J

    2012-08-07

    Manipulative studies have demonstrated that ocean acidification (OA) is a threat to coral reefs, yet no experiments have employed diurnal variations in pCO(2) that are ecologically relevant to many shallow reefs. Two experiments were conducted to test the response of coral recruits (less than 6 days old) to diurnally oscillating pCO(2); one exposing recruits for 3 days to ambient (440 µatm), high (663 µatm) and diurnally oscillating pCO(2) on a natural phase (420-596 µatm), and another exposing recruits for 6 days to ambient (456 µatm), high (837 µatm) and diurnally oscillating pCO(2) on either a natural or a reverse phase (448-845 µatm). In experiment I, recruits exposed to natural-phased diurnally oscillating pCO(2) grew 6-19% larger than those in ambient or high pCO(2). In experiment II, recruits in both high and natural-phased diurnally oscillating pCO(2) grew 16 per cent larger than those at ambient pCO(2), and this was accompanied by 13-18% higher survivorship; the stimulatory effect on growth of oscillatory pCO(2) was diminished by administering high pCO(2) during the day (i.e. reverse-phased). These results demonstrate that coral recruits can benefit from ecologically relevant fluctuations in pCO(2) and we hypothesize that the mechanism underlying this response is highly pCO(2)-mediated, night-time storage of dissolved inorganic carbon that fuels daytime calcification.

  6. A numerical model of nonmigrating diurnal tides between the surface and 65 km

    NASA Technical Reports Server (NTRS)

    Lieberman, Ruth S.; Leovy, Conway B.

    1995-01-01

    Observations of surface pressure and middle atmosphere temperatures and winds indicate that a substantial nonmigrating component is present in the diurnal tide. The nonmigrating tides, which propagate with a zonal phase speed that is different from the earth's rotation, are attributed to the diurnal heating of geographically fixed sources. In this study we utilize a classical tidal model to examine the propagation characteristics of diurnal tides. The global fields of tropospheric sensible, radiative, and latent heating used to drive the model are supplied from summer and winter diurnal climatologies of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM2). A novel aspect of this study is the focus on the relative importance of the nonmigrating components. The classical model successfully reproduces many observed features of the low-latitude diurnal surface pressure tides. In the middle atmosphere, the simulated migrating (or sun-synchronous) tide shows qualitative agreement with November-March Limb Infrared Monitor of the Stratosphere (LIMS) observations. Tropospheric solar heating is clearly the dominant driving force for the migrating tide, with secondary contributions from boundary-layer sensible heating and tropospheric latent heat release. The leading modes of the zonal mean tide are also driven chiefly by tropospheric solar heating. The higher-order modes of the zonal mean and eastward propagating tides may be attributed to the joint effects of tropospheric solar heating, sensible heating, and latent heat release. The LIMS and other data reveal features that cannot be explained or examined within the context of the classical model used in the present study. These include upward phase propagation, vertical attenuation, and temporal variations in the migrating diurnal tide.

  7. Simulation of the Universal-Time Diurnal Variation of the Global Electric Circuit Charging Rate

    NASA Technical Reports Server (NTRS)

    Mackerras, David; Darveniza, Mat; Orville, Richard E.; Williams, Earle R.; Goodman, Steven J.

    1999-01-01

    A global lightning model that includes diurnal and annual lightning variation, and total flash density versus latitude for each major land and ocean, has been used as the basis for simulating the global electric circuit charging rate. A particular objective has been to reconcile the difference in amplitude ratios [AR=(max-min)/mean] between global lightning diurnal variation (AR approximately equals 0.8) and the diurnal variation of typical atmospheric potential gradient curves (AR approximately equals 0.35). A constraint on the simulation is that the annual mean charging current should be about 1000 A. The global lightning model shows that negative ground flashes can contribute, at most, about 10-15% of the required current. For the purpose of the charging rate simulation, it was assumed that each ground flash contributes 5 C to the charging process. It was necessary to assume that all electrified clouds contribute to charging by means other than lightning, that the total flash rate can serve as an indirect indicator of the rate of charge transfer, and that oceanic electrified clouds contribute to charging even though they are relatively inefficient in producing lightning. It was also found necessary to add a diurnally invariant charging current component. By trial and error it was found that charging rate diurnal variation curves could be produced with amplitude ratios and general shapes similar to those of the potential gradient diurnal variation curves measured over ocean and arctic regions during voyages of the Carnegie Institute research vessels. The comparisons were made for the northern winter (Nov.-Feb.), the equinox (Mar., Apr., Sept., Oct.), the northern summer (May-Aug.), and the whole year.

  8. Diurnal and Nocturnal Pollination of Marginatocereus marginatus (Pachycereeae: Cactaceae) in Central Mexico

    PubMed Central

    DAR, SALEEM; ARIZMENDI, Ma. del CORO; VALIENTE-BANUET, ALFONSO

    2006-01-01

    • Background and Aims Chiropterophillous and ornithophillous characteristics can form part of a single reproductive strategy in plants that have flowers with diurnal and nocturnal anthesis. This broader pollination strategy can ensure seed set when pollinators are scarce or unpredictable. This appears to be true of hummingbirds, which presumably pollinate Marginatocereus marginatus, a columnar cactus with red nocturnal and diurnal flowers growing as part of dense bat-pollinated columnar cacti forests in arid regions of central Mexico. The aim of this study was to study the floral biology of M. marginatus, and evaluate the effectiveness of nocturnal vs. diurnal pollinators and the contribution of each pollinator group to overall plant fitness. • Methods Individual flower buds were marked and followed to evaluate flower phenology and anthesis time. Flowers and nectar production were measured. An exclusion experiment was conducted to measure the relative contribution of nocturnal and diurnal pollinators to seed set. • Key Results Marginatocereus marginatus has red hermaphroditic flowers with nocturnal and diurnal anthesis. The plant cannot produce seeds by selfing and was pollinated during the day by hummingbirds and during the night by bats, demonstrating that both pollinator groups were important for plant reproduction. Strong pollen limitation was found in the absence of one of the pollinator guilds. • Conclusions Marginatocereus marginatus has an open pollination system in which both diurnal and nocturnal pollinators are needed to set seeds. This represents a fail-safe pollination system that can ensure both pollination, in a situation of low abundance of one of the pollinator groups (hummingbirds), and high competition for nocturnal pollinators with other columnar cacti that bloom synchronously with M. marginatus in the Tehuacan Valley, Mexico. PMID:16394025

  9. Diurnal and seasonal change in stem respiration of Larix principis-rupprechtii trees, northern China.

    PubMed

    Yang, Yan; Zhao, Miao; Xu, Xiangtao; Sun, Zhenzhong; Yin, Guodong; Piao, Shilong

    2014-01-01

    Stem respiration is a critical and uncertain component of ecosystem carbon cycle. Few studies reported diurnal change in stem respiration as well as its linkage with climate. In this study, we investigated the diurnal and seasonal change in stem respiration and its linkage with environmental factors, in larch plantations of northern China from 2010 to 2012. The stem respiration per unit surface area (RS) showed clear diurnal cycles, ranging from 1.65±0.10 to 2.69±0.15 µmol m(-2) s(-1), increased after 6∶00, peaked at 15∶00 and then decreased. Both stem temperature and air temperature show similar diurnal pattern, while the diurnal pattern of air relative humidity is just the opposite to Rs. Similar to the diurnal cycles, seasonal change in RS followed the pattern of stem temperature. RS increased from May (1.28±0.07 µmol m(-2) s(-1)) when the stem temperature was relatively low and peaked in July (3.02±0.10 µmol m(-2) s(-1)) when the stem temperature was also the highest. Further regression analyses show that RS exponentially increases with increasing temperature, and the Q10 of Rs at mid daytime (1.97±0.17 at 12∶00 and 1.96±0.10 at 15∶00) is significantly lower than that of mid nighttime (2.60±0.14 at 00∶00 and 2.71±0.25 at 03∶00) Q10. This result not only implies that Rs is more sensitive to night than day warming, but also highlights that temperature responses of Rs estimated by only daytime measurement can lead to underestimated stem respiration increase under global warming, especially considering that temperature increase is faster during nighttime.

  10. On the sensitivity of the diurnal cycle in the Amazon to convective intensity

    NASA Astrophysics Data System (ADS)

    Itterly, Kyle F.; Taylor, Patrick C.; Dodson, Jason B.; Tawfik, Ahmed B.

    2016-07-01

    Climate and reanalysis models contain large water and energy budget errors over tropical land related to the misrepresentation of diurnally forced moist convection. Motivated by recent work suggesting that the water and energy budget is influenced by the sensitivity of the convective diurnal cycle to atmospheric state, this study investigates the relationship between convective intensity, the convective diurnal cycle, and atmospheric state in a region of frequent convection—the Amazon. Daily, 3-hourly satellite observations of top of atmosphere (TOA) fluxes from Clouds and the Earth's Radiant Energy System Ed3a SYN1DEG and precipitation from Tropical Rainfall Measuring Mission 3B42 data sets are collocated with twice daily Integrated Global Radiosonde Archive observations from 2002 to 2012 and hourly flux tower observations. Percentiles of daily minimum outgoing longwave radiation are used to define convective intensity regimes. The results indicate a significant increase in the convective diurnal cycle amplitude with increased convective intensity. The TOA flux diurnal phase exhibits 1-3 h shifts with convective intensity, and precipitation phase is less sensitive. However, the timing of precipitation onset occurs 2-3 h earlier and the duration lasts 3-5 h longer on very convective compared to stable days. While statistically significant changes are found between morning atmospheric state and convective intensity, variations in upper and lower tropospheric humidity exhibit the strongest relationships with convective intensity and diurnal cycle characteristics. Lastly, convective available potential energy (CAPE) is found to vary with convective intensity but does not explain the variations in Amazonian convection, suggesting that a CAPE-based convective parameterization will not capture the observed behavior without incorporating the sensitivity of convection to column humidity.

  11. Physiological responses of soil crust-forming cyanobacteria to diurnal temperature variation.

    PubMed

    Wang, Weibo; Wang, Yingcai; Shu, Xiao; Zhang, Quanfa

    2013-01-01

    The optimum growth of soil crust-forming cyanobacterial species occurs between 21 and 30 °C. When the temperature decreases below -5 °C, the liquid water in the cyanobacterial cells may freeze. In the natural environment, the temperature gradually decreases from autumn to winter, and the diurnal temperatures fluctuate enormously. It was hypothesized that the physiology of cyanobacterial cells changes in later autumn to acclimatize the cells to the upcoming freezing temperatures. In the present study, an incubation experiment in growth chambers was designed to stimulate the responses of cyanobacterial cells to diurnal temperature variations before freezing in late autumn. The results showed that "light" cyanobacterial soil crusts are more tolerant to diurnal temperature fluctuations than "dark" cyanobacterial soil crusts. After the first diurnal temperature cycle between 24 and -4 °C, the malondialdehyde (MDA) contents increased and the photosynthetic activity decreased. The superoxide dismutase activity increased, more extracellular polysaccharides (EPS) were secreted and the ratios of the light-harvesting and light-screening pigments decreased. With increasing numbers of diurnal temperature cycles, the MDA contents and photosynthetic activity gradually returned to their initial levels. Our results suggest that there are at least three pathways by which crust-forming cyanobacteria acclimate to the diurnal temperature cycles in the late autumn in the Hopq Desert, Northwest China. These three pathways include increased secretion of EPS, regulation of the ratios of light-harvesting and light-screening pigments, and activation of the antioxidant system. The results also indicate that late autumn is a critical period for the protection and restoration of the cyanobacterial soil crusts in the Hopq Desert.

  12. Effects of diurnally oscillating pCO2 on the calcification and survival of coral recruits

    PubMed Central

    Dufault, Aaron M.; Cumbo, Vivian R.; Fan, Tung-Yung; Edmunds, Peter J.

    2012-01-01

    Manipulative studies have demonstrated that ocean acidification (OA) is a threat to coral reefs, yet no experiments have employed diurnal variations in pCO2 that are ecologically relevant to many shallow reefs. Two experiments were conducted to test the response of coral recruits (less than 6 days old) to diurnally oscillating pCO2; one exposing recruits for 3 days to ambient (440 µatm), high (663 µatm) and diurnally oscillating pCO2 on a natural phase (420–596 µatm), and another exposing recruits for 6 days to ambient (456 µatm), high (837 µatm) and diurnally oscillating pCO2 on either a natural or a reverse phase (448–845 µatm). In experiment I, recruits exposed to natural-phased diurnally oscillating pCO2 grew 6–19% larger than those in ambient or high pCO2. In experiment II, recruits in both high and natural-phased diurnally oscillating pCO2 grew 16 per cent larger than those at ambient pCO2, and this was accompanied by 13–18% higher survivorship; the stimulatory effect on growth of oscillatory pCO2 was diminished by administering high pCO2 during the day (i.e. reverse-phased). These results demonstrate that coral recruits can benefit from ecologically relevant fluctuations in pCO2 and we hypothesize that the mechanism underlying this response is highly pCO2-mediated, night-time storage of dissolved inorganic carbon that fuels daytime calcification. PMID:22513858

  13. Evaluation of the Sensitivity of the Amazonian Diurnal Cycle to Convective Intensity in Reanalyses

    NASA Astrophysics Data System (ADS)

    Itterly, K. F.; Taylor, P. C.; Dodson, J. B.

    2016-12-01

    Atmospheric model parameterizations of tropical deep convection are unable to reproduce the observed diurnal and spatial variability of convection in the Amazon. This shortcoming contributes to climatological biases in the simulated water cycle and energy budget in atmospheric reanalysis, especially in the Amazon. To understand the impacts of and to identify the physical processes that drive these biases, we analyze and evaluate the sensitivity of the convective diurnal cycle in the Amazon to variations in atmosphere state variables relevant to convection (including humidity, atmospheric stability, and other convective diagnostics) using satellite observations and 3 reanalysis products (MERRA, MERRA-2, ERA-Interim). The analysis first separates the convective diurnal cycle into 5 regimes by convective intensity using minimum 3-hourly averaged outgoing longwave radiation from Clouds and the Earth's Radiant Energy System; this step is taken to account for the physical process difference between deep, shallow, and non-convective conditions. The composite convective diurnal cycle (including radiative fluxes, cloud properties, and precipitation) and its sensitivity to atmospheric state is evaluated for each reanalysis product within each convective regime. Additionally, a compositing technique is used to identify important climatological spatial and temporal features of convection across the Amazon. The results indicate that all reanalysis products fail to represent extreme convective events and underestimate the diurnal amplitude of TOA fluxes, clouds and precipitation. MERRA-2 matches observations more closely than ERA for domain averaged composite diurnal statistics—specifically precipitation amplitude and phase. Models initiate convection 2-4 hours too early on average, which contributes to larger than observed shortwave cloud forcing because simulated convection is in phase with solar insolation. It seems that the influence of atmospheric state has a larger

  14. Diurnal and Seasonal Change in Stem Respiration of Larix principis-rupprechtii Trees, Northern China

    PubMed Central

    Yang, Yan; Zhao, Miao; Xu, Xiangtao; Sun, Zhenzhong; Yin, Guodong; Piao, Shilong

    2014-01-01

    Stem respiration is a critical and uncertain component of ecosystem carbon cycle. Few studies reported diurnal change in stem respiration as well as its linkage with climate. In this study, we investigated the diurnal and seasonal change in stem respiration and its linkage with environmental factors, in larch plantations of northern China from 2010 to 2012. The stem respiration per unit surface area (RS) showed clear diurnal cycles, ranging from 1.65±0.10 to 2.69±0.15 µmol m−2 s−1, increased after 6∶00, peaked at 15∶00 and then decreased. Both stem temperature and air temperature show similar diurnal pattern, while the diurnal pattern of air relative humidity is just the opposite to Rs. Similar to the diurnal cycles, seasonal change in RS followed the pattern of stem temperature. RS increased from May (1.28±0.07 µmol m−2 s−1) when the stem temperature was relatively low and peaked in July (3.02±0.10 µmol m−2 s−1) when the stem temperature was also the highest. Further regression analyses show that RS exponentially increases with increasing temperature, and the Q10 of Rs at mid daytime (1.97±0.17 at 12∶00 and 1.96±0.10 at 15∶00) is significantly lower than that of mid nighttime (2.60±0.14 at 00∶00 and 2.71±0.25 at 03∶00) Q10. This result not only implies that Rs is more sensitive to night than day warming, but also highlights that temperature responses of Rs estimated by only daytime measurement can lead to underestimated stem respiration increase under global warming, especially considering that temperature increase is faster during nighttime. PMID:24586668

  15. The circadian gene Clock oscillates in the suprachiasmatic nuclei of the diurnal rodent Barbary striped grass mouse, Lemniscomys barbarus: a general feature of diurnality?

    PubMed

    Chakir, Ibtissam; Dumont, Stéphanie; Pévet, Paul; Ouarour, Ali; Challet, Etienne; Vuillez, Patrick

    2015-01-12

    A major challenge in the field of circadian rhythms is to understand the neural mechanisms controlling the oppositely phased temporal organization of physiology and behaviour between night- and day-active animals. Most identified components of the master clock in the suprachiasmatic nuclei (SCN), called circadian genes, display similar oscillations according to the time of day, independent of the temporal niche. This has led to the predominant view that the switch between night- and day-active animals occurs downstream of the master clock, likely also involving differential feedback of behavioral cues onto the SCN. The Barbary striped grass mouse, Lemniscomys barbarus is known as a day-active Muridae. Here we show that this rodent, when housed in constant darkness, displays a temporal rhythmicity of metabolism matching its diurnal behaviour (i.e., high levels of plasma leptin and hepatic glycogen during subjective midday and dusk, respectively). Regarding clockwork in their SCN, these mice show peaks in the mRNA profiles of the circadian gene Period1 (Per1) and the clock-controlled gene Vasopressin (Avp), which occur during the middle and late subjective day, respectively, in accordance with many observations in both diurnal and nocturnal species. Strikingly, expression of the circadian gene Clock in the SCN of the Barbary striped grass mouse was not constitutive as in nocturnal rodents, but it was rhythmic. As this is also the case for the other diurnal species investigated in the literature (sheep, marmoset, and quail), a hypothesis is that the transcriptional control of Clock within the SCN participates in the mechanisms underlying diurnality and nocturnality. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Temporal partitioning among diurnally and nocturnally active desert spiny mice: energy and water turnover costs.

    PubMed

    Kronfeld-Schor, N; Shargal, E; Haim, A; Dayan, T; Zisapel, N; Heldmaier, G

    2001-04-01

    Nocturnal Acomys cahirinus and diurnally active A. russatus coexist in hot rocky deserts. Diurnal and nocturnal activity exposes them to different climatic challenges. A doubly-labelled water field study revealed no significant differences in water turnover between the species at all seasons, reflecting the adaptations of A. russatus to water conservation. In summers the energy expenditure of A. russatus tended to be higher than that of A. cahirinus. Energy requirements of A. cahirinus in winter are double than that of A. russatus, and may reflect the cost of thermoregulating during cold nights.

  17. Strong Diurnal Surface Currents in the Bay of La Paz, Mexico

    NASA Astrophysics Data System (ADS)

    Zaitsev, O. V.; Rabinovich, A.; Thomson, R.; Silverberg, N.

    2009-12-01

    To characterize the tidal regime and vertical structure of tidal currents in the Bay of La Paz an Acoustic Doppler Current Profiler (ADCP) was deployed at a depth of about 185 m in the northern part of the bay in the period from 17 February to 25 October 2007. Flow variability was dominated by tidal motions that accounted for 43% (33% diurnal, 10% semidiurnal) of the total kinetic energy. The currents measured by the ADCP were harmonically analyzed with focus on five constituents: K1, O1, M2, S2 and S1. Our results indicate that diurnal and semidiurnal currents in the Bay of La Paz are generated by two dominant mechanisms: radiational (seabreeze) and gravitational (tidal) forcing. The first mechanism is responsible for the generation of surface-intensified counterclockwise (CCW) rotary diurnal (up to 55 cm/s) and semidiurnal (up to 20 cm/s) currents in the upper mixed layer while the second is responsible for the relatively weak (~3-10 cm/s) nearly barotropic clockwise (CW) rotary tidal currents observed throughout the remainder of the water column. Motions in the upper layer were dominated by strong, counterclockwise S1 diurnal currents that were coherent with the counterclockwise local seabreeze. Significant semidiurnal S2 radiational tidal currents, as well as S3 and S4 currents, were also highly coherent with the wind. In contrast to the cross-bay orientation prevalent in tidal ellipses of other constituents, tidal ellipses for the S1 and S2 bands were oriented normal to the entrance of the bay with semi-major axes of up to 55 and 20 cm/s, respectively. Coherent (“deterministic”) tidal currents account for roughly 65 % (59% for S1) of the total diurnal kinetic energy in the surface layer, while incoherent tidal motions account for 18% and background noise for 17% of the kinetic energy. Below 30 m depth, the corresponding estimates are 40%, 32% and 28%, respectively. The persistent, surface-intensified CCW rotary diurnal currents observed at the mooring site

  18. First results from the Spatial Heterodyne Imager for Mesospheric Radicals (SHIMMER): Diurnal variation of mesospheric hydroxyl

    NASA Astrophysics Data System (ADS)

    Englert, Christoph R.; Stevens, Michael H.; Siskind, David E.; Harlander, John M.; Roesler, Fred L.; Pickett, Herbert M.; von Savigny, Christian; Kochenash, Andrew J.

    2008-10-01

    We present the first SHIMMER observations of the diurnal variation of mesospheric hydroxyl (OH). We compare our data with Aura Microwave Limb Sounder (MLS) observations at about 13h local time near 55°N and find very good agreement. This validates the Spatial Heterodyne Spectroscopy technique for space-borne optical remote sensing applications. We extend our analysis to other local times, not observed by MLS, for latitudes near 55°N in the summer of 2007. At 74 km, we find excellent agreement with a photochemical model, but above 76 km, significant model/data differences in the shape of the OH diurnal variation are observed.

  19. A diurnal study of the electrical structure of the equatorial middle atmosphere

    NASA Astrophysics Data System (ADS)

    Croskey, C. L.; Hale, L. C.; Mitchell, J. D.; Muha, D.; Maynard, N. C.

    1985-10-01

    Electrical parameters measured from 115 km down to below 20 km during the Project Condor campaign at the Punta Lobos Rocket Range near Lima, Peru, are presented. Ten rocket-launched payloads measured electrical conductivity. A strong diurnal influence due to solar ultraviolet radiation is shown. Nine of the payloads also measured electric fields. No large mesospheric vertical electric fields are found in the data. A calculation of the dc global conduction current density at 18 km is smaller than previously measured at low latitudes and does not show the conventional diurnal variation.

  20. Diurnal variability of the hydrologic cycle in a general circulation model

    NASA Technical Reports Server (NTRS)

    Randall, David A.; Dazlich, Donald A.; HARSHVARDHAN

    1991-01-01

    In the present Colorado State University GCM simulation-based analysis of the diurnal and semidiurnal variability of precipitation, precipitable water, evaporation, cloudiness, horizontal moisture flux convergence, and cloud radiative forcing, a realistic afternoon precipitation maximum is obtained over land in warm rainy regions, as well as an early morning maximum over the oceans. The model has been further used to investigate the bases for the oceanic diurnal-precipitation cycle; the results thus obtained indicate that such an oceanic cycle occurs even in the absence of neighboring continents, and tends to have a morning maximum, although the observed phenomenon is generally stronger than the results indicate.

  1. The Seasonal and Diurnal Variations of Lower and Middle Atmosphere Temperatures at the South Pole

    NASA Astrophysics Data System (ADS)

    Chu, X.; Pan, W.; Gardner, C. S.

    2001-05-01

    An Fe Boltzmann Temperature Lidar was operated at the Amundsen-Scott South Pole Station from 1999-2001. Temperature profiles were obtained by combining the lidar data from 30-75 km and the balloon data from ground to around 35 km. We summarize the seasonal variations of the troposphere up to mesosphere temperatures at the South Pole. Furthermore, more than 24 hours continuous lidar observations at the South Pole allow us to study the diurnal variations of the stratosphere temperatures. We also present the seasonal and diurnal variations of the mesospheric Fe densities, which indicate the effects of Fe chemistry and the persistent oscillations at the South Pole.

  2. Imaging of Ultraweak Spontaneous Photon Emission from Human Body Displaying Diurnal Rhythm

    PubMed Central

    Kobayashi, Masaki; Kikuchi, Daisuke; Okamura, Hitoshi

    2009-01-01

    The human body literally glimmers. The intensity of the light emitted by the body is 1000 times lower than the sensitivity of our naked eyes. Ultraweak photon emission is known as the energy released as light through the changes in energy metabolism. We successfully imaged the diurnal change of this ultraweak photon emission with an improved highly sensitive imaging system using cryogenic charge-coupled device (CCD) camera. We found that the human body directly and rhythmically emits light. The diurnal changes in photon emission might be linked to changes in energy metabolism. PMID:19606225

  3. A diurnal study of the electrical structure of the equatorial middle atmosphere

    NASA Technical Reports Server (NTRS)

    Croskey, C. L.; Hale, L. C.; Mitchell, J. D.; Muha, D.; Maynard, N. C.

    1985-01-01

    Electrical parameters measured from 115 km down to below 20 km during the Project Condor campaign at the Punta Lobos Rocket Range near Lima, Peru, are presented. Ten rocket-launched payloads measured electrical conductivity. A strong diurnal influence due to solar ultraviolet radiation is shown. Nine of the payloads also measured electric fields. No large mesospheric vertical electric fields are found in the data. A calculation of the dc global conduction current density at 18 km is smaller than previously measured at low latitudes and does not show the conventional diurnal variation.

  4. A Twin Study of Genetic Influences on Diurnal Preference and Risk for Alcohol Use Outcomes

    PubMed Central

    Watson, Nathaniel F.; Buchwald, Dedra; Harden, Kathryn Paige

    2013-01-01

    Objective: The population-based University of Washington Twin Registry (UWTR) was used to examine (1) genetic influences on chronobiology and (2) whether these genetic factors influence alcohol-use phenotypes. Methods: We used a reduced Horne-Östberg Morningness-Eveningness Questionnaire (rMEQ) to survey UWTR participants for diurnal preference. Frequency and quantity of alcohol use, as well as binge drinking (6+ drinks per occasion), were assessed on a 5-point Likert scale. Both diurnal preference and alcohol use were self-reported. Twin data were analyzed by using structural equation models. Results: The sample consisted of 2,945 participants (mean age = 36.4 years), including 1,127 same-sex and opposite-sex twin pairs and 691 individual twins. The rMEQ range was 4-25, with a mean score of 15.3 (SD 4.0). Diurnal “morning types” comprised 30.7% (N = 903) of participants, while 17.4% (N = 513) were “evening types.” Regarding alcohol use, 21.2% (N = 624) reported never drinking. Among drinkers, 35.7% (N = 829) reported ≥ 3 drinks per occasion and 48.1% (N = 1,116) reported at least one instance of binge drinking. Genetic influences accounted for 37% of the variance in diurnal preference, with the remaining 63% due to non-shared environmental influences. Genetic propensities toward diurnal eveningness were significantly associated with increased alcohol quantity (β = -0.17; SE = 0.05, p < 0.001) and increased binge drinking (β = -0.19; SE = 0.04, p < 0.001), but not with frequency of alcohol use. Environmental paths between diurnal preference and alcohol use phenotypes were not significant. Conclusions: Genetic influences on diurnal preference confer elevated risk for problematic alcohol use, including increased quantity and binge drinking. Differences in circadian rhythm may be an important and understudied pathway of risk for genetic influences on alcohol use. Citation: Watson NF; Buchwald D; Harden KP. A twin study of genetic influences on diurnal

  5. Imaging of ultraweak spontaneous photon emission from human body displaying diurnal rhythm.

    PubMed

    Kobayashi, Masaki; Kikuchi, Daisuke; Okamura, Hitoshi

    2009-07-16

    The human body literally glimmers. The intensity of the light emitted by the body is 1000 times lower than the sensitivity of our naked eyes. Ultraweak photon emission is known as the energy released as light through the changes in energy metabolism. We successfully imaged the diurnal change of this ultraweak photon emission with an improved highly sensitive imaging system using cryogenic charge-coupled device (CCD) camera. We found that the human body directly and rhythmically emits light. The diurnal changes in photon emission might be linked to changes in energy metabolism.

  6. Observations of Diurnal Temperature Fluctuations on the California Inner Shelf during the Point Sal Inner Shelf Experiment (PSIEX)

    NASA Astrophysics Data System (ADS)

    Freismuth, T. M.

    2016-12-01

    A 43-day field experiment in the summer of 2015 near Pt. Sal, California obtained cross- and alongshore measures of temperature and current throughout the water column in depths ranging from 50 m to 5 m and cross-shore distances of 6 km offshore to the edge of the surf zone around a rocky promontory. Here, analysis is focused on the significant diurnal variability of both the temperature and current observations. The observations presented here differ from those of previous studies in that the diurnal currents are accompanied by a significant temperature fluctuation. Spectra reveal that up to 45% of the total temperature variance is in the diurnal band, and this variance is three times greater than that of the semi-diurnal band. Both the diurnal temperature and currents exhibit intermittent periods of intensification. Within the diurnal band, important forcing processes include (1) the diurnal winds (sea breeze), (2) barotropic tides that advect large scale horizontal temperature gradients, and (3) surface heat flux. These mechanisms are explored to describe both the diurnal temperature and current variability at Pt. Sal.

  7. Absence of diurnal variation of C-reactive protein concentrations in healthy human subjects

    NASA Technical Reports Server (NTRS)

    Meier-Ewert, H. K.; Ridker, P. M.; Rifai, N.; Price, N.; Dinges, D. F.; Mullington, J. M.

    2001-01-01

    BACKGROUND: The concentration of C-reactive protein (CRP) in otherwise healthy subjects has been shown to predict future risk of myocardial infarction and stroke. CRP is synthesized by the liver in response to interleukin-6, the serum concentration of which is subject to diurnal variation. METHODS: To examine the existence of a time-of-day effect for baseline CRP values, we determined CRP concentrations in hourly blood samples drawn from healthy subjects (10 males, 3 females; age range, 21-35 years) during a baseline day in a controlled environment (8 h of nighttime sleep). RESULTS: Overall CRP concentrations were low, with only three subjects having CRP concentrations >2 mg/L. Comparison of raw data showed stability of CRP concentrations throughout the 24 h studied. When compared with cutoff values of CRP quintile derived from population-based studies, misclassification of greater than one quintile did not occur as a result of diurnal variation in any of the subjects studied. Nonparametric ANOVA comparing different time points showed no significant differences for both raw and z-transformed data. Analysis for rhythmic diurnal variation using a method fitting a cosine curve to the group data was negative. CONCLUSIONS: Our data show that baseline CRP concentrations are not subject to time-of-day variation and thus help to explain why CRP concentrations are a better predictor of vascular risk than interleukin-6. Determination of CRP for cardiovascular risk prediction may be performed without concern for diurnal variation.

  8. Diurnal Convection Peaks over the Eastern Indian Ocean over Sumatra during Different MJO Phases

    NASA Astrophysics Data System (ADS)

    Fujita, M.; Nasuno, T.; Yoneyama, K.

    2015-12-01

    The diurnal convection peak characteristics over the eastern Indian Ocean over the island of Sumatra during different phases of the Madden-Julian oscillation (MJO) were investigated. During MJO phases 2 to 3 (P2 and P3) defined by Wheeler and Hendon (2004), prominent diurnal variation in convection was observed by satellites when moderate low-level westerly winds were dominant over the eastern Indian Ocean. The diurnal convection peaks were prominent over the island of Sumatra in the evening, while migrations of the convection toward the Indian Ocean were observed in the early morning. By using the Global Positioning System around the western region offshore of Sumatra, a significant reduction in water vapor was observed from evening until midnight, compensating for the upward motion over the island. During midnight to early morning, the water vapor increased in the western offshore region as the convections migrated from the island. During P2 to P3, the atmosphere over the eastern Indian Ocean contains abundant water vapor, while the Maritime Continent is fairly well heated by solar radiation under calm conditions. This situation should be favorable for the development of two diurnal convection peaks: the evening convection over the land induced by solar radiative heating and the midnight convection over the ocean triggered by convergence of the low-level westerly wind and the land breeze.

  9. Diurnal-period currents trapped above Fieberling Guyot: observed characteristics and model comparisons

    USGS Publications Warehouse

    Noble, M.A.; Brink, K.H.; Eriksen, C.C.

    1994-01-01

    Current measurements at depths of 19, 115, 264 and 464 m above the summit of Fieberling Guyot (32??28???N, 127??47???W) for 13 months in 1989 show that the diurnal tides are strongly amplified. The measured variances for K1, P1 and O1 at the 115 m depth were 810, 140 and 80 times larger than the variances of the respective estimated barotropic tides. The diurnal currents closer to the summit were also strongly amplified, through the variance ratios were 40-50% of the ratios observed at 115 m. The diurnal band currents were only amplified at the precise tidal frequencies; the bandwidth of the response was less than 0.0002 cph. The discrete character of the response suggests that only currents with large spatial scales will be amplified. The characteristics of the amplified diurnal currents are compared to those predicted by a model for Fieberling Guyot of seamount-trapped waves driven by the barotropic tide. The amplitudes of the responses at this one site on the seamount compare favourably to the predicted. ?? 1994.

  10. Thermoregulatory Behavior in Diurnal Lizards as a Vehicle for Teaching Scientific Process

    ERIC Educational Resources Information Center

    Platz, James E.

    2009-01-01

    Field experiments offer the opportunity for hands on experience with the scientific process. While this is true of a wide variety of activities, many have pitfalls both experimental and logistical that reduce the overall rate of success, in turn, influencing student learning outcomes. Relying on small, territorial, diurnal lizards and an array of…

  11. Sensitivity of diurnal variation in simulated precipitation during East Asian summer monsoon to cumulus parameterization schemes

    NASA Astrophysics Data System (ADS)

    Choi, In-Jin; Jin, Emilia Kyung; Han, Ji-Young; Kim, So-Young; Kwon, Young

    2015-12-01

    The capability to simulate the diurnal variation of precipitation over East Asia region during the summertime of 2011 is investigated using five different cumulus parameterization schemes with the Weather Research and Forecasting model. A semidiurnal cycle with a 12 h interval over land and a diurnal cycle with a 24 h interval over ocean are commonly found in all simulations, consistent with the observed diurnal cycle. Two observed dominant peaks in the early morning and afternoon are reproduced in all simulations. With overestimated precipitation rate, however, the simulated afternoon peaks occur earlier than the observed peaks by 2 h for the Kain-Fritsch (KF) and Simplified Arakawa-Schubert schemes, and by 3 h for the Betts-Miller-Janjić and Tiedtke schemes. The overestimation of simulated precipitation frequency leads to amplitude and phase errors in the precipitation rate, and the early peak time of simulated precipitation intensity intensifies the phase error in the simulation over land. The KF scheme with alternative trigger function (KFtr) based on moisture advection provides slightly better results in terms of alleviating the overestimated precipitation rate and frequency and delaying the afternoon peaks. Additional sensitivity simulations based on the change of temperature perturbation in the trigger function of the KF and KFtr schemes demonstrate the afternoon peak tends to be delayed as temperature perturbation decreases, implying the significant role of convective initiation frequency in determining diurnal peaks of precipitation. Modulation of temperature perturbation alleviates the precipitation frequency bias, while it could not resolve the precipitation intensity bias.

  12. Metrics for the Diurnal Cycle of Precipitation: Toward Routine Benchmarks for Climate Models

    SciTech Connect

    Covey, Curt; Gleckler, Peter J.; Doutriaux, Charles; Williams, Dean N.; Dai, Aiguo; Fasullo, John; Trenberth, Kevin; Berg, Alexis

    2016-06-08

    In this paper, metrics are proposed—that is, a few summary statistics that condense large amounts of data from observations or model simulations—encapsulating the diurnal cycle of precipitation. Vector area averaging of Fourier amplitude and phase produces useful information in a reasonably small number of harmonic dial plots, a procedure familiar from atmospheric tide research. The metrics cover most of the globe but down-weight high-latitude wintertime ocean areas where baroclinic waves are most prominent. This enables intercomparison of a large number of climate models with observations and with each other. The diurnal cycle of precipitation has features not encountered in typical climate model intercomparisons, notably the absence of meaningful “average model” results that can be displayed in a single two-dimensional map. Displaying one map per model guides development of the metrics proposed here by making it clear that land and ocean areas must be averaged separately, but interpreting maps from all models becomes problematic as the size of a multimodel ensemble increases. Global diurnal metrics provide quick comparisons with observations and among models, using the most recent version of the Coupled Model Intercomparison Project (CMIP). This includes, for the first time in CMIP, spatial resolutions comparable to global satellite observations. Finally, consistent with earlier studies of resolution versus parameterization of the diurnal cycle, the longstanding tendency of models to produce rainfall too early in the day persists in the high-resolution simulations, as expected if the error is due to subgrid-scale physics.

  13. Winter bulge and diurnal variations in hydrogen inferred from AE-C composition measurements

    NASA Technical Reports Server (NTRS)

    Brinton, H. C.; Mayr, H. G.; Potter, W. E.

    1975-01-01

    The atomic hydrogen distribution at 250 km during December 1974 solstice was inferred, considering charge exchange equilibrium, from Atmosphere Explorer-C measurements of n(H(+)), n(O(+) and N(O). An empirical model, derived from the observations by least suqare analysis in terms of spherical harmonics, has the following characteristics: (1) n(H) increases by as much as a factor of two between the summer and winter hemispheres, (2) the n(H) diurnal variation is largest at the equator and (3) the diurnal variation is larger in the winter hemisphere than in the summer. Similar analysis of the gas temperature derived from n(N2) measurements reveals that all n(H) and Tg spherical harmonic coefficients are anticorrelated. Both the diurnal and latitudinal (annual) n(H) and Tg amplitudes are in substantial agreement with the zero flux condition, in which exospheric flow dominates the hydrogen distribution. The observed diurnal phase lag of n(H) with respect to Tg is about one hour, agreeing with theory.

  14. Diurnal and seasonal variation in physico-chemical conditions within intertidal rock pools

    NASA Astrophysics Data System (ADS)

    Morris, S.; Taylor, A. C.

    1983-09-01

    A study of the diurnal and seasonal variation in the physico-chemical conditions within intertidal rock pools on the West coast of Scotland was undertaken to provide data on the environmental conditions experienced by animals inhabiting these pools. The temperature, pH, partial pressure of oxygen ( PO2) and salinity were measured every hour for 24 h and the total alkalinity, partial pressure of carbon dioxide ( PCO2) and carbon dioxide content ( CCO2) calculated. This sampling regime was carried out once a month for 12 months to determine the extent of seasonal variation in conditions within temperate pools. Large diurnal variations were recorded in nearly all the physico-chemical parameters measured. The greatest variation was recorded in the temperature and PO2 of the water but significant changes in pH and PCO2 were also recorded. Total alkalinity varied little during any 24 h period but carbonate alkalinity, which was always lower than total alkalinity, showed slightly greater variation. There was also considerable variation in the magnitude of these diurnal changes between pools at different heights on the shore. Diurnal variation in the physico-chemical conditions within the pools were observed throughout the year although the magnitude of these changes varied seasonally. Detailed studies on individual pools demonstrated that appreciable local variation existed in the physico-chemical conditions within each pool.

  15. Variability of diurnal tides and planetary waves during November 1978-May 1979

    NASA Astrophysics Data System (ADS)

    Lieberman, R. S.; Oberheide, J.; Hagan, M. E.; Remsberg, E. E.; Gordley, L. L.

    2004-04-01

    Nonlinear interactions between stationary waves and the migrating tides have been proposed as possible sources of nonmigrating tides in the middle and upper atmosphere. The objective of this study is to increase observational support for these processes. We examine the evolution of stationary planetary waves and nonmigrating diurnal tides in the lower mesosphere during November 1978-May 1979, based on a newly released, version 6 of the Nimbus 7 LIMS dataset. Planetary wavenumber one is large and variable during the Northern hemisphere winter months, reaching peak amplitude in the lower mesosphere between 20 and 30 January. This behavior is accompanied by rapid amplification of nonmigrating diurnal tides with zonal wavenumbers zero and two. These components correspond to product waves generated by interaction between the migrating diurnal tide and the stationary wave. The westward traveling zonal wavenumber two diurnal tide is dominant at tropical latitudes, in accordance with theoretical studies. The correlation between the nonmigrating tide and stationary wavenumber one is highest when the stationary wave penetrates to subtropical latitudes.

  16. Gross ecosystem photosynthesis causes a diurnal pattern in methane emission from rice

    NASA Astrophysics Data System (ADS)

    Hatala, Jaclyn A.; Detto, Matteo; Baldocchi, Dennis D.

    2012-03-01

    Understanding the relative contribution of environmental and substrate controls on rice paddy methanogenesis is critical for developing mechanistic models of landscape-scale methane (CH4) flux. A diurnal pattern in observed rice paddy CH4 flux has been attributed to fluctuations in soil temperature physically driving diffusive CH4 transport from the soil to atmosphere. Here we make direct landscape-scale measurements of carbon dioxide and CH4 fluxes and show that gross ecosystem photosynthesis (GEP) is the dominant cause of the diurnal pattern in CH4 flux, even after accounting for the effects of soil temperature. The time series of GEP and CH4 flux show strong spectral coherency throughout the rice growing season at the diurnal timescale, where the peak in GEP leads that of CH4 flux by 1.3 ± 0.08 hours. By applying the method of conditional Granger causality in the spectral domain, we demonstrated that the diurnal pattern in CH4 flux is primarily caused by GEP.

  17. Diurnal change in trees as observed by optical and microwave sensors - The EOS Synergism Study

    NASA Technical Reports Server (NTRS)

    Way, Jobea; Mcdonald, Kyle; Paris, Jack; Dobson, Myron C.; Ulaby, Fawwaz T.; Weber, James A.; Ustin, Susan L.; Vanderbilt, Vern C.; Kasischke, Eric S.

    1991-01-01

    The EOS (Earth Observing System) Synergism Study examined the temporal variability of the optical and microwave backscatter due to diurnal change in canopy properties of interest to ecosystem modelers. The experiment was designed to address diurnal changes in canopy water status that relate to transpiration. Multispectral optical and multifrequency, multipolarization microwave measurements were acquired using boom-truck-based systems over a two-week period. Sensor and canopy properties were collected around the clock. The canopy studied was a walnut orchard in the San Joaquin Valley of California. The results demonstrate a large diurnal variation in the dielectric properties of the tree that in turn produces significant diurnal changes in the microwave backscatter. The results suggest that permanently orbiting spaceborne sensors such as those on EOS should be placed in orbits that are optimized for the individual sensor and need not be tied together by a tight simultaneity requirement on the order of minutes to hours for the purpose of monitoring ecosystem properties.

  18. Diurnal variation of surface ozone in mountainous areas: Case study of Mt. Huang, East China.

    PubMed

    Zhang, Lei; Jin, Lianji; Zhao, Tianliang; Yin, Yan; Zhu, Bin; Shan, Yunpeng; Guo, Xiaomei; Tan, Chenghao; Gao, Jinhui; Wang, Haoliang

    2015-12-15

    To explore the variations in atmospheric environment over mountainous areas, measurements were made from an intensive field observation at the summit of Mt. Huang (30.13°N, 118.15°E, 1841m above sea level), a rural site located in East China, from June to August 2011. The measurements revealed a diurnal change of surface O3 with low concentrations during the daytime and high concentrations during the nighttime. The causes of diurnal O3 variations over the mountain peak in East China were investigated by using a fairly comprehensive WRF-Chem and HYSPLIT4 modeling approach with observational analysis. By varying model inputs and comparing the results to a baseline modeling and actual air quality observations, it is found that nearby ozone urban/anthropogenic emission sources were contributing to a nighttime increase in mountaintop ozone levels due to a regional transport lag and residual layer effects. Positive correlation of measured O3 and CO concentrations suggested that O3 was associated with anthropogenic emissions. Sensitivity modeling experiments indicated that local anthropogenic emissions had little impact on the diurnal pattern of O3. The diurnal pattern of O3 was mainly influenced by regional O3 transport from the surrounding urban areas located 100-150km away from the summit, with a lag time of 10h for transport. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. 40 CFR 1045.625 - What requirements apply under the Diurnal Transition Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What requirements apply under the Diurnal Transition Program? 1045.625 Section 1045.625 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  20. 40 CFR 1045.625 - What requirements apply under the Diurnal Transition Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What requirements apply under the Diurnal Transition Program? 1045.625 Section 1045.625 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  1. 40 CFR 1045.625 - What requirements apply under the Diurnal Transition Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What requirements apply under the Diurnal Transition Program? 1045.625 Section 1045.625 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  2. 40 CFR 1045.625 - What requirements apply under the Diurnal Transition Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What requirements apply under the Diurnal Transition Program? 1045.625 Section 1045.625 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  3. Diurnal activities of the brown stink bug (Hemiptera: Pentatomidae) in and near tasseling corn fields

    USDA-ARS?s Scientific Manuscript database

    The demand for effective management of the brown stink bug, Euschistus servus, in corn and other crops has been increasing in recent years. To identify when and where the stink bugs are most likely to occur for targeted insecticide application, diurnal activities of stink bugs in and near the field...

  4. Retinular fine structure in compound eyes of diurnal and nocturnal sphingid moths.

    PubMed

    Eguchi, E

    1982-01-01

    Retinular fine structure has been compared in the superposition compound eyes of three sphingid moths, one nocturnal, Cechenena, and two diurnal, Cephonodes and Macroglossum. Cechenena and Cephonodes have tiered retinas with three kinds of retinular cells: two distal, six regular and one basal. The distal retinular cells in Cechenena are special in having a complex partially intracellular rhabdomere not present in Cephonodes. Macroglossum lacks the distal retinular cell. In Cephonodes a unique rhabdom type, formed by the six regular retinular cells in the middle region of the retinula, is divided into three separate longitudinal plates arranged closely parallel to one another. Their constituent microvilli are consequently all nearly unidirectional. The ratio of rhabdom volume to retinular cell volume in the two diurnal sphingids is 10-27%; this is about the same as that (25%) of skipper butterflies, but significantly smaller than in the nocturnal Cechenena (60%). In the diurnal sphingids retinular cell membranes show elongate meandering profiles with septate junctions between adjacent retinular cells. From the comparative fine structure of their eyes the diurnal sphingids and the skippers would appear to be phylogenetically closely related.

  5. Time to decide: Diurnal variations on the speed and quality of human decisions.

    PubMed

    Leone, María Juliana; Fernandez Slezak, Diego; Golombek, Diego; Sigman, Mariano

    2017-01-01

    Human behavior and physiology exhibit diurnal fluctuations. These rhythms are entrained by light and social cues, with vast individual differences in the phase of entrainment - referred as an individual's chronotype - ranging in a continuum between early larks and late owls. Understanding whether decision-making in real-life situations depends on the relation between time of the day and an individual's diurnal preferences has both practical and theoretical implications. However, answering this question has remained elusive because of the difficulty of measuring precisely the quality of a decision in real-life scenarios. Here we investigate diurnal variations in decision-making as a function of an individual's chronotype capitalizing on a vast repository of human decisions: online chess servers. In a chess game, every player has to make around 40 decisions using a finite time budget and both the time and quality of each decision can be accurately determined. We found reliable diurnal rhythms in activity and decision-making policy. During the morning, players adopt a prevention focus policy (slower and more accurate decisions) which is later modified to a promotion focus (faster but less accurate decisions), without daily changes in performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Diurnal Radiation Cycle Impact in Different Stages of Hurricane Edouard (2014)

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Tang, X.

    2015-12-01

    This work examines the impact of diurnally varying radiation cycle on the intensity, structure and track of Hurricane Edouard (2014) at different stages of its life cycle through convection-permitting simulations.During the formation stage, nighttime destabilization through radiative cooling may promote deep moist convection that eventually leads to the genesis of the storm while a tropical cyclone fails to develop in the absence of the night phase despite a strong incipient vortex under favorable environmental conditions. The nighttime radiative cooling further enhances the primary vortex before the storm undergoes rapid intensification (RI). Thereafter, the nighttime radiative cooling mainly increases convective activities outside of the primary eyewall that leads to stronger/broader outer rainbands and larger storm size during the mature stage of the hurricane but there is little impact on the hurricane intensity in terms of maximum surface wind speed. There is no apparent eyewall replacement cycle (ERC) simulated in both sensitivity experiments without the diurnal cycle (daytime only and nighttime only) while the control forecast undergoes secondary eyewall formation during the mature stage of Edourad (as observed), suggesting the potential role of the diurnally varying radiative impact. Through changing the strength of the initial vortex during the formation stage, the diurnal cycle may also alter the track of the storm.

  7. Diurnal patterns of chlorophyll fluorescence and CO2 fixation in orchard grown Torreya taxifolia (Arn.).

    Treesearch

    Anita C. Koehn; Robert L. Doudrick

    1999-01-01

    Diurnal patterns of chlorophyll fluorescence and CO2 fixation in orchard measurements were taken on sunny days in October 1996, on three Torreya taxifolia (Arn.) plants grown in an open canopy orchard. Information from chlorophyll fluorescence quenching analysis indicated that during periods of highest light intensity and temperatures there were...

  8. Diurnal change in trees as observed by optical and microwave sensors - The EOS Synergism Study

    NASA Technical Reports Server (NTRS)

    Way, Jobea; Mcdonald, Kyle; Paris, Jack; Dobson, Myron C.; Ulaby, Fawwaz T.; Weber, James A.; Ustin, Susan L.; Vanderbilt, Vern C.; Kasischke, Eric S.

    1991-01-01

    The EOS (Earth Observing System) Synergism Study examined the temporal variability of the optical and microwave backscatter due to diurnal change in canopy properties of interest to ecosystem modelers. The experiment was designed to address diurnal changes in canopy water status that relate to transpiration. Multispectral optical and multifrequency, multipolarization microwave measurements were acquired using boom-truck-based systems over a two-week period. Sensor and canopy properties were collected around the clock. The canopy studied was a walnut orchard in the San Joaquin Valley of California. The results demonstrate a large diurnal variation in the dielectric properties of the tree that in turn produces significant diurnal changes in the microwave backscatter. The results suggest that permanently orbiting spaceborne sensors such as those on EOS should be placed in orbits that are optimized for the individual sensor and need not be tied together by a tight simultaneity requirement on the order of minutes to hours for the purpose of monitoring ecosystem properties.

  9. Diurnal variability of the global tropical tropopause: results inferred from COSMIC observations

    NASA Astrophysics Data System (ADS)

    Suneeth, K. V.; Das, Siddarth Shankar; Das, Subrata Kumar

    2017-01-01

    Short and long-term variability of the tropical tropopause controls the exchange of minor constituents between the troposphere and the stratosphere. We present the diurnal variability of the global tropical tropopause altitude and temperature using 7 years of COSMIC observations. The aim of the study is to extract diurnal tropopause signals and their impact on stratosphere-troposphere exchange processes. The possible role of atmospheric tides and convection in controlling the tropopause characteristics are discussed. The most significant and new observation is that in the deep tropics the cold-point tropopause altitude is higher and temperatue is cooler over the land (ocean) during evening to late evening hours (afternoon to early evening). Lower tropopause altitude allows the stratospheric air intrusion into the troposphere during the day time. The combined effect of diurnal tropopause altitude changes and turbulent mixing increases the possibility of stratospheric intrusions. A warmer forenoon tropopause allows increased injection of water vapor from the troposphere to the lower stratosphere. Over the tropical land (ocean), the zonal mean diurnal amplitude is 130-200 m (140-180 m) for tropopause altitude and 0.6-0.9 K (0.6-0.8 K) for tropopause temperature.

  10. Diurnal testosterone variability is differentially associated with parenting quality in mothers and fathers.

    PubMed

    Endendijk, Joyce J; Hallers-Haalboom, Elizabeth T; Groeneveld, Marleen G; van Berkel, Sheila R; van der Pol, Lotte D; Bakermans-Kranenburg, Marian J; Mesman, Judi

    2016-04-01

    Previous studies on the relation between testosterone (T) levels and parenting have found ample evidence for the challenge hypothesis, demonstrating that high T levels inhibit parental involvement and that becoming a parent is related to a decrease in T levels in both mothers and fathers. However, less is known about the relation between T levels and more qualitative aspects of parenting. In the current study we examined basal T levels and diurnal variability in T levels in relation to mothers' and fathers' parenting quality. Participants included 217 fathers and 124 mothers with two children (3 and 5years of age). Evening and morning salivary T samples were analyzed with radio-immunoassays to determine circulating T levels. Parental sensitivity (i.e., child-centered responsiveness) and respect for children's autonomy were observed during free play in the family home. The results showed that higher evening T levels in mothers were associated with more sensitivity to the oldest and youngest child. Diurnal T variability was more consistently associated with parenting behavior towards their children than basal T levels. For fathers, more diurnal variability in T was associated with more sensitivity and more respect for autonomy with their youngest children. For mothers, more diurnal variability in T was associated with less sensitivity to both children and less respect for the youngest child's autonomy. These findings suggest that the T system might act differently in relation to parenting behavior in males and females.

  11. Diurnal Cortisol Profile in Williams Syndrome in Novel and Familiar Settings

    ERIC Educational Resources Information Center

    Lense, Miriam Diane; Tomarken, Andrew J.; Dykens, Elisabeth M.

    2013-01-01

    Williams syndrome (WS) is a neurodevelopmental genetic disorder associated with high rates of anxiety and social issues. We examined diurnal cortisol, a biomarker of the stress response, in adults with WS in novel and familiar settings, and compared these profiles to typically developing (TD) adults. WS and TD participants had similar profiles in…

  12. Diurnal dependence of growth responses to shade in Arabidopsis: role of hormone, clock, and light signaling.

    PubMed

    Sellaro, Romina; Pacín, Manuel; Casal, Jorge J

    2012-05-01

    We investigated the diurnal dependence of the hypocotyl-growth responses to shade under sunlight-night cycles in Arabidopsis thaliana. Afternoon shade events promoted hypocotyl growth, while morning shade was ineffective. The lhy-D, elf3, lux, pif4 pif5, toc1, and quadruple della mutants retained the response to afternoon shade and the lack of response to morning shade while the lhy cca1 mutant responded to both morning and afternoon shade. The phyB mutant, plants overexpressing the multidrug resistance-like membrane protein ABCB19, and the iaa17/axr3 loss-of-function mutant failed to respond to shade. Transient exposure of sunlight-grown seedlings to synthetic auxin in the afternoon caused a stronger promotion of hypocotyl growth than morning treatments. The promotion of hypocotyl growth by afternoon shade or afternoon auxin required light perceived by phytochrome A or cryptochromes during the previous hours of the photoperiod. Although the ELF4-ELF3-LUX complex, PIF4, PIF5, and DELLA are key players in the generation of diurnal hypocotyl-growth patterns, they exert a minor role in the control of the diurnal pattern of growth responses to shade. We conclude that the strong diurnal dependency of hypocotyl-growth responses to shade relates to the balance between the antagonistic actions of LHY-CCA1 and a light-derived signal.

  13. Using cloud and climate data to understand warm season hydrometeorology from diurnal to monthly timescales

    NASA Astrophysics Data System (ADS)

    Betts, A. K.; Tawfik, A. B.; Desjardins, R. L.

    2016-12-01

    We use 600 station years of hourly data from 14 stations on the Canadian Prairies to map the warm season hydrometeorology. The months from April (after snowmelt) to September, have a very similar coupling between surface thermodynamics and opaque cloud cover, which has been calibrated to give cloud radiative forcing. We can derive both the mean diurnal ranges and the diurnal imbalances as a function of opaque cloud cover. For the monthly diurnal climate, we compute the coupling coefficients with opaque cloud cover and lagged precipitation. In April the diurnal cycle climate has memory of precipitation back to freeze-up in November. During the growing season months of June, July and August, there is memory of precipitation back to March. Monthly mean temperature depends strongly on cloud but little on precipitation, while monthly mean mixing ratio depends on precipitation, but rather little on cloud. The coupling coefficients to cloud and precipitation change with increasing monthly precipitation anomaly. This observational climate analysis provides a firm basis for model evaluation.

  14. A Combined Infrared and Microwave Technique for Studying the Diurnal Variation of Rainfall Over Amazonia

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Xu, L.; Adler, R. F.; Anagnostou, E.; Rickenbach, T. M.

    1999-01-01

    In this paper we present results from the application of a satellite infrared (IR) technique for estimating rainfall over northern South America. Our main objectives are to examine the diurnal variability of rainfall and to investigate the relative contributions from the convective and stratiform components. Additional information is contained in the original.

  15. Trans-ionospheric pulse pairs (TIPPs): Their occurrence rates and diurnal variation

    NASA Astrophysics Data System (ADS)

    Zuelsdorf, R. S.; Strangeway, R. J.; Russell, C. T.; Franz, R.

    Trans-Ionospheric Pulse Pairs (TIPPs) have been detected by the Blackbeard instrument aboard the ALEXIS spacecraft in the VHF band between 28 and 166 MHz with dispersion indicating a subionospheric source. Using a database that runs from 2 November 1993 to 19 November 1996, the rate and diurnal variation of TIPP detection are calculated for central Africa, Indonesia, and North America. The rate of TIPP detection by Blackbeard in the frequency band from 28-95 MHz is 0.02 and 0.04 TIPPs per second for central Africa and Indonesia respectively. For North America the data were acquired in a narrow band from 28-37.9 MHz and the TIPP detection rate is 0.007 events per second. The diurnal variation of TIPPs resembles the diurnal variation of CG lightning during daylight hours. However the TIPP production remains strong through midnight and into the morning hours, whereas CG flash production tends to decrease more sharply after peaking around 4 PM local time. Thus the diurnal variation suggests that TIPPs are not produced in CG flashes, a conclusion consistent with their correlation with intracloud pulses.

  16. The diurnal variation in urine acidification differs between normal individuals and uric acid stone formers

    PubMed Central

    Cameron, Mary Ann; Maalouf, Naim M.; Poindexter, John; Adams-Huet, Beverley; Sakhaee, Khashayar; Moe, Orson W.

    2012-01-01

    Many biologic functions follow circadian rhythms driven by internal and external cues that synchronize and coordinate organ physiology to diurnal changes in the environment and behavior. Urinary acid-base parameters follow diurnal patterns and it is thought these changes are due to periodic surges in gastric acid secretion. Abnormal urine pH is a risk factor for specific types of nephrolithiasis and uric acid stones are typical of excessively low urine pH. Here we placed 9 healthy volunteers and 10 uric acid stone formers on fixed metabolic diets to study the diurnal pattern of urinary acidification. All showed clear diurnal trends in urinary acidification but none of the patterns were affected by inhibitors of the gastric proton pump. Uric acid stone formers had similar patterns of change through the day but their urine pH was always lower compared to healthy volunteers. Uric acid stone formers excreted more acid (normalized to acid ingestion) with the excess excreted primarily as titratable acid rather than ammonium. Urine base excretion was also lower in uric acid stone formers (normalized to base ingestion) along with lower plasma bicarbonate concentrations during part of the day. Thus, increased net acid presentation to the kidney and the preferential use of buffers, other than ammonium, result in much higher concentrations of un-dissociated uric acid throughout the day and consequently an increased risk of uric acid stones. PMID:22297671

  17. Global evaluation of ammonia bidirectional exchange and livestock diurnal variation schemes

    EPA Science Inventory

    Bidirectional air–surface exchange of ammonia (NH3) has been neglected in many air quality models. In this study, we implement the bidirectional exchange of NH3 in the GEOS-Chem global chemical transport model. We also introduce an updated diurnal variability scheme for NH3...

  18. Diurnal Albedo Variations of the Martian North Polar Water Ice Cap

    NASA Technical Reports Server (NTRS)

    Troy, R. F.; Bass, D.

    2002-01-01

    Presentation of findings regarding diurnal variations in the north polar water ice cap of Mars as part of a larger study of the interannual and seasonal variations of the Martian north polar water ice cap. Additional information is contained in the original extended abstract.

  19. 40 CFR 1060.105 - What diurnal requirements apply for equipment?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equipment? (a) Fuel tanks must meet diurnal emission requirements as follows: (1) Marine SI fuel tanks....40 g/gal/day when measured using the test procedures specified in § 1060.525 for general fuel temperatures. An alternative standard of 0.16 g/gal/day applies for fuel tanks installed in nontrailerable...

  20. 40 CFR 1060.105 - What diurnal requirements apply for equipment?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equipment? (a) Fuel tanks must meet diurnal emission requirements as follows: (1) Marine SI fuel tanks....40 g/gal/day when measured using the test procedures specified in § 1060.525 for general fuel temperatures. An alternative standard of 0.16 g/gal/day applies for fuel tanks installed in nontrailerable...

  1. 40 CFR 1060.105 - What diurnal requirements apply for equipment?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equipment? (a) Fuel tanks must meet diurnal emission requirements as follows: (1) Marine SI fuel tanks....40 g/gal/day when measured using the test procedures specified in § 1060.525 for general fuel temperatures. An alternative standard of 0.16 g/gal/day applies for fuel tanks installed in nontrailerable...

  2. Diurnal variations in the plasma concentrations of mevalonic acid in patients with abetalipoproteinaemia.

    PubMed

    Pappu, A S; Illingworth, D R

    1994-10-01

    Previous studies have demonstrated that changes in the rates of cholesterol biosynthesis can be evaluated by the determination of plasma concentrations of sterol intermediates, including mevalonic acid and lathosterol and that, in normal human subjects, a diurnal rhythm exists in which the highest concentrations of sterol intermediates are observed at night. The factors responsible for this diurnal rhythm in cholesterol synthesis are, however, unknown. To test the hypothesis that the nocturnal increase in cholesterol biosynthesis is attributable to a reduced rate of hepatic uptake of chylomicron remnants at night as compared to higher rates of uptake during the daytime in response to alimentary lipaemia, we have examined the diurnal rhythm of mevalonic acid in six normal volunteers and three patients with phenotypic abetalipoproteinaemia. The latter patients do not absorb appreciable amounts of dietary cholesterol and are unable to synthesize chylomicron particles. Plasma concentrations of mevalonic acid exhibited a diurnal rhythm in the normal subjects, and the highest plasma concentrations were observed between 24.00 hours/04.00 hours. A similar rhythm was observed in the plasma of patients with abetalipoproteinaemia. These results suggest that the nocturnal increase in cholesterol biosynthesis which occurs in humans is not attributable to reduced hepatic uptake of chylomicron remnants at night; further studies are needed to better define those factors which influence the periodicity of cholesterol biosynthesis in humans.

  3. Diurnal Cortisol Profile in Williams Syndrome in Novel and Familiar Settings

    ERIC Educational Resources Information Center

    Lense, Miriam Diane; Tomarken, Andrew J.; Dykens, Elisabeth M.

    2013-01-01

    Williams syndrome (WS) is a neurodevelopmental genetic disorder associated with high rates of anxiety and social issues. We examined diurnal cortisol, a biomarker of the stress response, in adults with WS in novel and familiar settings, and compared these profiles to typically developing (TD) adults. WS and TD participants had similar profiles in…

  4. Seasonal and Diurnal Variations of Atmospheric Non-Methane Hydrocarbons in Guangzhou, China

    PubMed Central

    Li, Longfeng; Wang, Xinming

    2012-01-01

    In recent decades, high ambient ozone concentrations have become one of the major regional air quality issues in the Pearl River Delta (PRD) region. Non-methane hydrocarbons (NMHCs), as key precursors of ozone, were found to be the limiting factor in photochemical ozone formation for large areas in the PRD. For source apportioning of NMHCs as well as ozone pollution control strategies, it is necessary to obtain typical seasonal and diurnal patterns of NMHCs with a large pool of field data. To date, few studies have focused on seasonal and diurnal variations of NMHCs in urban areas of Guangzhou. This study explored the seasonal variations of most hydrocarbons concentrations with autumn maximum and spring minimum in Guangzhou. The diurnal variations of most anthropogenic NMHCs typically showed two-peak pattern with one at 8:00 in the morning and another at 20:00 in the evening, both corresponding to traffic rush hours in Guangzhou, whereas isoprene displayed a different bimodal diurnal curve. Propene, ethene, m, p-xylene and toluene were the four largest contributors to ozone formation in Guangzhou, based on the evaluation of individual NMHCs’ photochemical reactivity. Therefore, an effective strategy for controlling ozone pollution may be achieved by the reduction of vehicle emissions in Guangzhou. PMID:22754478

  5. Diurnal Variability of Organic Carbon Distributions and Phytoplankton in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    de Meo, O.; Mannino, A.

    2009-12-01

    The full effects of fossil fuel combustion on the carbon cycle are not well understood. To address rising environmental concerns, NASA is studying a new satellite mission concept called Geostationary Coastal and Air Pollution Events (GEO-CAPE), which will take more frequent images than the two current ocean color satellite sensors, SeaWiFS and MODIS-Aqua. GEO-CAPE will be able to study the diurnal variation associated with natural processes, climate change, and other human impacts on the coastal ocean. The purpose of this study was to collect preliminary data for organic carbon distributions and phytoplankton in Chesapeake Bay through high frequency sampling. Local water samples showed greater regional and daily differences in colored dissolved organic matter (CDOM), which may be explained by river discharge. Small diurnal variation likely due to the tidal cycle was also observed. Mean particulate organic carbon (POC) showed more substantial diurnal variation, which coincided with diurnal variability in chlorophyll from algal biomass. This variability supports the need for the GEO-CAPE satellite mission to further our understanding of the ocean’s role in the carbon cycle.

  6. A diurnal reflectance model using grass: Surface-substrate interaction and inverse solution - October 16, 2011

    EPA Science Inventory

    We report an analysis of canopy reflectance (ρ) experiment, using hand-held radiometer to measure distribution of biomass in a grass field. The analysis: 1) separates the green-fraction from thatch and soil background, 2) accounts for the changing diurnal ρ with the sun elevation...

  7. Diurnal temperature range compression hastens berry development and modifies flavonoid partitioning in grapes

    USDA-ARS?s Scientific Manuscript database

    Temperatures during the day and night are known to influence grape berry metabolism and resulting composition. In this study, the flavonoid composition of field-grown Vitis vinifera L. cv. Merlot berries was investigated as a function of diurnal temperature range (DTR). The DTR was compressed by c...

  8. 40 CFR 1060.105 - What diurnal requirements apply for equipment?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY... meet the diurnal emission standards adopted by the California Air Resources Board in the Final... sealed up to a positive pressure of 24.5 kPa (3.5 psig); however, they may contain air inlets that open...

  9. Amazon forest structure generates diurnal and seasonal variability in light utilization

    Treesearch

    Douglas C. Morton; Jeremy Rubio; Bruce D. Cook; Jean-Philippe Gastellu-Etchegorry; Marcos Longo; Hyeungu Choi; Maria Hunter; Michael Keller

    2016-01-01

    The complex three-dimensional (3-D) structure of tropical forests generates a diversity of light environments for canopy and understory trees. Understanding diurnal and seasonal changes in light availability is critical for interpreting measurements of net ecosystem exchange and improving ecosystem models. Here, we used the Discrete Anisotropic Radiative Transfer (DART...

  10. A DIURNAL REFLECTANCE MODEL USING GRASS: SURFACE-SUBSTRATE INTERACTION AND INVERSE SOLUTION

    EPA Science Inventory

    The accuracy of using remote sensing data from earth orbiting radiometers can be improved by using a model that helps to separate the green-fraction in a canopy reflectance () from thatch and soil background, accounts for their diurnal changes, and inverts to a solution of a biop...

  11. Salivary Biomarker Levels and Diurnal Variation: Associations with Medications Prescribed to Control Children's Problem Behavior

    ERIC Educational Resources Information Center

    Hibel, Leah C.; Granger, Douglas A.; Cicchetti, Dante; Rogosch, Fred

    2007-01-01

    This study examined associations between medications prescribed to control children's problem behaviors and levels of, and diurnal variation in, salivary cortisol (C), testosterone (T), and dehydroepiandrosterone (DHEA). Saliva was collected in the morning, midday, and afternoon from 432 children ages 6-13 years. Relative to a no-medication…

  12. 40 CFR 1060.525 - How do I test fuel systems for diurnal emissions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fuel tanks, and volume-compensating air bags. (b) You may subtract your fuel tank's permeation...) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY... diurnal emission standard. (8) For emission control technologies that rely on a sealed fuel system,...

  13. 40 CFR 1060.525 - How do I test fuel systems for diurnal emissions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fuel tanks, and volume-compensating air bags. (b) You may subtract your fuel tank's permeation...) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY... diurnal emission standard. (8) For emission control technologies that rely on a sealed fuel system,...

  14. 40 CFR 1060.525 - How do I test fuel systems for diurnal emissions?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fuel tanks, and volume-compensating air bags. (b) You may subtract your fuel tank's permeation...) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY... diurnal emission standard. (8) For emission control technologies that rely on a sealed fuel system,...

  15. Dichromatic vision in a fruit bat with diurnal proclivities: the Samoan flying fox (Pteropus samoensis).

    PubMed

    Melin, Amanda D; Danosi, Christina F; McCracken, Gary F; Dominy, Nathaniel J

    2014-12-01

    A nocturnal bottleneck during mammalian evolution left a majority of species with two cone opsins, or dichromatic color vision. Primate trichromatic vision arose from the duplication and divergence of an X-linked opsin gene, and is long attributed to tandem shifts from nocturnality to diurnality and from insectivory to frugivory. Opsin gene variation and at least one duplication event exist in the order Chiroptera, suggesting that trichromatic vision could evolve under favorable ecological conditions. The natural history of the Samoan flying fox (Pteropus samoensis) meets these conditions--it is a large bat that consumes nectar and fruit and demonstrates strong diurnal proclivities. It also possesses a visual system that is strikingly similar to that of primates. To explore the potential for opsin gene duplication and divergence in this species, we sequenced the opsin genes of 11 individuals (19 X-chromosomes) from three South Pacific islands. Our results indicate the uniform presence of two opsins with predicted peak sensitivities of ca. 360 and 553 nm. This result fails to support a causal link between diurnal frugivory and trichromatic vision, although it remains plausible that the diurnal activities of P. samoensis have insufficient antiquity to favor opsin gene renovation.

  16. The Diurnal Temperature Cycle and Its Relation to Boundary-Layer Structure During the Morning Transition

    NASA Astrophysics Data System (ADS)

    Ketzler, G.

    2014-05-01

    The morning portion of the near-surface diurnal temperature cycle is analyzed in combination with heat-flux and vertical temperature-gradient data. During summer, mean diurnal cycles of temperature rates-of-change show periods that can be related to defined points of the morning transition (MT). The start of the MT is clearly marked with a temperature discontinuity, apparent even on individual days, while the end of the transition is apparent only when using averages over many days. The findings concerning the timing of the MT using temperature cycle analysis correspond well with studies using heat-flux measurements. Mean diurnal cycles of temperature rates-of-change for stations in different urban and valley positions show differences that can partly be explained by apparent effects of the surroundings. For the valley situation, the timing differences and their relation to station position in the valley are generally plausible, while urban effects on the diurnal cycle are apparent but less distinct, which may be due to the small number of stations used. The results indicate that warming already begins before heat-flux crossover, which is the current definition of the beginning of the MT. This definition should be extended to include the phase between the temperature rate-of-change crossover and heat-flux crossover, which represents the early part of the MT before warming reaches instrument level.

  17. Absence of diurnal variation of C-reactive protein concentrations in healthy human subjects

    NASA Technical Reports Server (NTRS)

    Meier-Ewert, H. K.; Ridker, P. M.; Rifai, N.; Price, N.; Dinges, D. F.; Mullington, J. M.

    2001-01-01

    BACKGROUND: The concentration of C-reactive protein (CRP) in otherwise healthy subjects has been shown to predict future risk of myocardial infarction and stroke. CRP is synthesized by the liver in response to interleukin-6, the serum concentration of which is subject to diurnal variation. METHODS: To examine the existence of a time-of-day effect for baseline CRP values, we determined CRP concentrations in hourly blood samples drawn from healthy subjects (10 males, 3 females; age range, 21-35 years) during a baseline day in a controlled environment (8 h of nighttime sleep). RESULTS: Overall CRP concentrations were low, with only three subjects having CRP concentrations >2 mg/L. Comparison of raw data showed stability of CRP concentrations throughout the 24 h studied. When compared with cutoff values of CRP quintile derived from population-based studies, misclassification of greater than one quintile did not occur as a result of diurnal variation in any of the subjects studied. Nonparametric ANOVA comparing different time points showed no significant differences for both raw and z-transformed data. Analysis for rhythmic diurnal variation using a method fitting a cosine curve to the group data was negative. CONCLUSIONS: Our data show that baseline CRP concentrations are not subject to time-of-day variation and thus help to explain why CRP concentrations are a better predictor of vascular risk than interleukin-6. Determination of CRP for cardiovascular risk prediction may be performed without concern for diurnal variation.

  18. Impact of diurnal variation in vegetation water content on radar backscatter of maize during water stress

    NASA Astrophysics Data System (ADS)

    van Emmerik, Tim; Steele-Dunne, Susan; Judge, Jasmeet; van de Giesen, Nick

    2014-05-01

    Microwave emission and backscatter of vegetated surfaces are influenced by vegetation water content (VWC), which varies in response to availability of soil moisture in the root zone. Understanding the influence of diurnal VWC dynamics on radar backscatter will improve soil moisture retrievals using microwave remote sensing, and will provide insight into the potential use for radar to directly monitor vegetation water status. The goal of this research is to investigate the effect of diurnal variation in VWC of an agricultural canopy on backscatter for different radar configurations. Water stress was induced in a corn (Zea mays) canopy near Citra, Florida, between September 1 and October 20, 2013. Diurnal destructive samples from the canopy were collected to determine leaf, stalk and total VWC. Water stress was quantified by calculating the evaporation deficit and measuring the soil water tension. The water-cloud model was used to model the influence of VWC and soil moisture variations on backscatter for a range of frequencies, polarizations and incidence angles. Furthermore, radar backscatter time series was simulated to show the effect of water stress on the diurnal variation in backscatter due to VWC. Results of this study show the very significant effects that VWC dynamics have on radar backscatter. We also highlight the potential for vegetation and soil water status monitoring using microwave remote sensing.

  19. Seasonal and diurnal variations of atmospheric non-methane hydrocarbons in Guangzhou, China.

    PubMed

    Li, Longfeng; Wang, Xinming

    2012-05-01

    In recent decades, high ambient ozone concentrations have become one of the major regional air quality issues in the Pearl River Delta (PRD) region. Non-methane hydrocarbons (NMHCs), as key precursors of ozone, were found to be the limiting factor in photochemical ozone formation for large areas in the PRD. For source apportioning of NMHCs as well as ozone pollution control strategies, it is necessary to obtain typical seasonal and diurnal patterns of NMHCs with a large pool of field data. To date, few studies have focused on seasonal and diurnal variations of NMHCs in urban areas of Guangzhou. This study explored the seasonal variations of most hydrocarbons concentrations with autumn maximum and spring minimum in Guangzhou. The diurnal variations of most anthropogenic NMHCs typically showed two-peak pattern with one at 8:00 in the morning and another at 20:00 in the evening, both corresponding to traffic rush hours in Guangzhou, whereas isoprene displayed a different bimodal diurnal curve. Propene, ethene, m, p-xylene and toluene were the four largest contributors to ozone formation in Guangzhou, based on the evaluation of individual NMHCs' photochemical reactivity. Therefore, an effective strategy for controlling ozone pollution may be achieved by the reduction of vehicle emissions in Guangzhou.

  20. A DIURNAL REFLECTANCE MODEL USING GRASS: SURFACE-SUBSTRATE INTERACTION AND INVERSE SOLUTION

    EPA Science Inventory

    The accuracy of using remote sensing data from earth orbiting radiometers can be improved by using a model that helps to separate the green-fraction in a canopy reflectance () from thatch and soil background, accounts for their diurnal changes, and inverts to a solution of a biop...

  1. Global evaluation of ammonia bidirectional exchange and livestock diurnal variation schemes

    EPA Science Inventory

    Bidirectional air–surface exchange of ammonia (NH3) has been neglected in many air quality models. In this study, we implement the bidirectional exchange of NH3 in the GEOS-Chem global chemical transport model. We also introduce an updated diurnal variability scheme for NH3...

  2. Long-Term Effectiveness of the Response Restriction Method for Establishing Diurnal Bladder Control

    ERIC Educational Resources Information Center

    van Oorsouw, Wietske M. W. J.; Duker, P. C.; Melein, L.; Averink, M.

    2009-01-01

    The long-term effectiveness of the response restriction method for establishing diurnal bladder control was assessed with 48 participants with intellectual disabilities. Intervals of assessment ranged from 28 to 66 months across the individuals following initial baseline. Difference scores in terms of the mean number of toileting accidents per…

  3. Scale-dependent effects of landscape structure and composition on diurnal roost selection by forest bats

    Treesearch

    Roger W. Perry; Ronald E. Thill; David M. Leslie

    2008-01-01

    Forest management affects the quality and availability of roost sites for forest-dwelling bats, but information on roost selection beyond the scale of individual forest stands is limited. We evaluated effects of topography (elevation, slope, and proximity of roads and streams), forest habitat class, and landscape patch configuration on selection of summer diurnal oosts...

  4. Diurnal Regulation of the Brassinosteroid-Biosynthetic CPD Gene in Arabidopsis1[W

    PubMed Central

    Bancos, Simona; Szatmári, Anna-Mária; Castle, Julie; Kozma-Bognár, László; Shibata, Kyomi; Yokota, Takao; Bishop, Gerard J.; Nagy, Ferenc; Szekeres, Miklós

    2006-01-01

    Plant steroid hormones, brassinosteroids (BRs), are essential for normal photomorphogenesis. However, the mechanism by which light controls physiological functions via BRs is not well understood. Using transgenic plants carrying promoter-luciferase reporter gene fusions, we show that in Arabidopsis (Arabidopsis thaliana) the BR-biosynthetic CPD and CYP85A2 genes are under diurnal regulation. The complex diurnal expression profile of CPD is determined by dual, light-dependent, and circadian control. The severely decreased expression level of CPD in phytochrome-deficient background and the red light-specific induction in wild-type plants suggest that light regulation of CPD is primarily mediated by phytochrome signaling. The diurnal rhythmicity of CPD expression is maintained in brassinosteroid insensitive 1 transgenic seedlings, indicating that its transcriptional control is independent of hormonal feedback regulation. Diurnal changes in the expression of CPD and CYP85A2 are accompanied by changes of the endogenous BR content during the day, leading to brassinolide accumulation at the middle of the light phase. We also show that CPD expression is repressed in extended darkness in a BR feedback-dependent manner. In the dark the level of the bioactive hormone did not increase; therefore, our data strongly suggest that light also influences the sensitivity of plants to BRs. PMID:16531479

  5. A diurnal reflectance model using grass: Surface-substrate interaction and inverse solution - October 16, 2011

    EPA Science Inventory

    We report an analysis of canopy reflectance (ρ) experiment, using hand-held radiometer to measure distribution of biomass in a grass field. The analysis: 1) separates the green-fraction from thatch and soil background, 2) accounts for the changing diurnal ρ with the sun elevation...

  6. Entrainment of the diurnal rhythm of plasma leptin to meal timing.

    PubMed Central

    Schoeller, D A; Cella, L K; Sinha, M K; Caro, J F

    1997-01-01

    To identify the physiologic factor(s) that entrain the diurnal rhythm of plasma leptin, leptin levels were measured hourly after changes in light/dark cycle, sleep/wake cycle, and meal timing. Four young male subjects were studied during each of two protocols, those being a simulated 12-h time zone shift and a 6.5-h meal shift. During the baseline day, plasma leptin demonstrated a strong diurnal rhythm with an amplitude of 21%, zenith at 2400 h, and nadir between 0900 and 1200 h. Acute sleep deprivation did not alter plasma leptin, but day/night reversal (time zone shift) caused a 12+/-2 h shift (P < 0.01) in the timing of the zenith and nadir. When meals were shifted 6.5 h without changing the light or sleep cycles, the plasma leptin rhythm was shifted by 5-7 h (P < 0.01). The phase change occurred rapidly when compared with changes in the diurnal rhythm of cortisol, suggesting that leptin levels are not acutely entrained to the circadian clock. The leptin rhythm was altered by meal timing in a manner very similar to the rhythm of de novo cholesterol synthesis. We conclude that the diurnal rhythm of plasma leptin in young males is entrained to meal timing. PMID:9312190

  7. Retirement and Socioeconomic Differences in Diurnal Cortisol: Longitudinal Evidence From a Cohort of British Civil Servants.

    PubMed

    Chandola, Tarani; Rouxel, Patrick; Marmot, Michael G; Kumari, Meena

    2017-05-05

    Early old age and the period around retirement are associated with a widening in socioeconomic inequalities in health. There are few studies that address the stress-biological factors related to this widening. This study examined whether retirement is associated with more advantageous (steeper) diurnal cortisol profiles, and differences in this association by occupational grade. Data from the 7th (2002-2004), 8th (2006), and 9th (2007-09) phases of the London-based Whitehall II civil servants study were analysed. Thousand hundred and forty three respondents who were employed at phase 8 (mean age 59.9 years) and who had salivary cortisol measured from five samples collected across the day at phases 7 and 9 were analysed. Retirement was associated with steeper diurnal slopes compared to those who remained in work. Employees in the lowest grades had flatter diurnal cortisol slopes compared to those in the highest grades. Low-grade retirees in particular had flatter diurnal slopes compared to high-grade retirees. Socioeconomic differences in a biomarker associated with stress increase, rather than decrease, around the retirement period. These biological differences associated with transitions into retirement for different occupational groups may partly explain the pattern of widening social inequalities in health in early old age.

  8. Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content

    Treesearch

    Diego A. Riveros-Iregui; Ryan E. Emanuel; Daniel J. Muth; L. McGlynn Brian; Howard E. Epstein; Daniel L. Welsch; Vincent J. Pacific; Jon M. Wraith

    2007-01-01

    Recent years have seen a growing interest in measuring and modeling soil CO2 efflux, as this flux represents a large component of ecosystem respiration and is a key determinant of ecosystem carbon balance. Process-based models of soil CO2 production and efflux, commonly based on soil temperature, are limited by nonlinearities such as the observed diurnal hysteresis...

  9. SIMULATION OF SUMMER-TIME DIURNAL BACTERIAL DYNAMICS IN THE ATMOSPHERIC SURFACE LAYER

    EPA Science Inventory

    A model was prepared to simulate the observed concentration dynamics of culturable bacteria in the diurnal summer atmosphere at a Willamette River Valley, Oregon location. The meteorological and bacterial mechanisms included in a dynamic null-dimensional model with one-second tim...

  10. Global characteristics in the diurnal variations of the thermospheric temperature and composition

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Hedin, A. E.; Reber, C. A.; Carignan, G. R.

    1973-01-01

    Global characteristics in the diurnal components of OGO-6 neutral mass spectrometer measurements near 450 km are discussed qualitatively as well as quantitatively on the basis of a theoretical model. Observations and conclusion are summarized: (1) During equinox the temperature maximum occurs after 1600 LT at the equator and shifts toward 1500 LT at the poles, while the oxygen concentration at 450 km peaks about one hour earlier. (2) There is general agreement between the magnitudes and phases of the diurnal, semidiurnal and terdiuranal temperature components at 450 km from theory as well as OGO-6 and radar backscatter measurements. (3) The maximum in the diurnal variation of He is observed near 1030 LT consistent with theoretical results which further emphasize the importance of dynamics and diffusion. (4) During solstice conditions the diurnal temperature maximum shifts toward later local times, in substantial agreement with radar temperature measurements. (5) the temperature-oxygen density phase difference at 450 km is observed to decrease with latitude from the winter toward the summer hemisphere, where oxygen may even peak after the temperature at high latitudes.

  11. Approximate analytical solution to diurnal atmospheric boundary-layer growth under well-watered conditions

    USDA-ARS?s Scientific Manuscript database

    The system of governing equations of a simplified slab model of the uniformly-mixed, purely convective, diurnal atmospheric boundary layer (ABL) is shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed i...

  12. Salivary Biomarker Levels and Diurnal Variation: Associations with Medications Prescribed to Control Children's Problem Behavior

    ERIC Educational Resources Information Center

    Hibel, Leah C.; Granger, Douglas A.; Cicchetti, Dante; Rogosch, Fred

    2007-01-01

    This study examined associations between medications prescribed to control children's problem behaviors and levels of, and diurnal variation in, salivary cortisol (C), testosterone (T), and dehydroepiandrosterone (DHEA). Saliva was collected in the morning, midday, and afternoon from 432 children ages 6-13 years. Relative to a no-medication…

  13. Diurnal sampling reveals significant variation in CO2 emission from a tropical productive lake.

    PubMed

    Reis, P C J; Barbosa, F A R

    2014-08-01

    It is well accepted in the literature that lakes are generally net heterotrophic and supersaturated with CO2 because they receive allochthonous carbon inputs. However, autotrophy and CO2 undersaturation may happen for at least part of the time, especially in productive lakes. Since diurnal scale is particularly important to tropical lakes dynamics, we evaluated diurnal changes in pCO2 and CO2 flux across the air-water interface in a tropical productive lake in southeastern Brazil (Lake Carioca) over two consecutive days. Both pCO2 and CO2 flux were significantly different between day (9:00 to 17:00) and night (21:00 to 5:00) confirming the importance of this scale for CO2 dynamics in tropical lakes. Net heterotrophy and CO2 outgassing from the lake were registered only at night, while significant CO2 emission did not happen during the day. Dissolved oxygen concentration and temperature trends over the diurnal cycle indicated the dependence of CO2 dynamics on lake metabolism (respiration and photosynthesis). This study indicates the importance of considering the diurnal scale when examining CO2 emissions from tropical lakes.

  14. Diurnal cycles of NOx over the United States: Comprehensive evaluations and implications for NOx emissions

    NASA Astrophysics Data System (ADS)

    Li, J.; Wang, Y.; Smeltzer, C. D.; Zhang, Y.; Zhang, R.; Weinheimer, A. J.; Celarier, E. A.; Herman, J. R.

    2016-12-01

    Reactive nitrogen (NOx=NO+NO2) plays a crucial role in the formation of ozone and has significant impacts on the production of secondary organic and inorganic aerosols, thus affecting global radiation budget and climate. The diurnal cycle of NOx is a function of emissions and photochemistry. Its observations therefore provide useful constraints in our understanding of these factors. We employ a regional chemical transport model (REAM) to simulate the observed diurnal cycles of NO2 concentrations over the United States. The simulated diurnal cycles are evaluated by using the 2011 DISCOVER-AQ campaign (Maryland) measurements, EPA Air Quality System (AQS) observations, and OMI and GOME-2 column measurements. The model simulations are in reasonably good agreement with the observations except that PANDORA measured column NO2 showed much less variation in early morning and late afternoon than simulated in the model. High resolution (4 km in the horizontal) model simulations are also performed to examine the effects of emission distribution. By analyzing model simulations with the observations, we show that the diurnal emission profiles of NOx is different over the weekend from the weekdays and that weekend emissions are about 1/3 lower than weekdays.

  15. Diurnal and seasonal variation of the brain serotonin system in healthy male subjects.

    PubMed

    Matheson, Granville J; Schain, Martin; Almeida, Rita; Lundberg, Johan; Cselényi, Zsolt; Borg, Jacqueline; Varrone, Andrea; Farde, Lars; Cervenka, Simon

    2015-05-15

    The mammalian circadian clock underlies both diurnal and seasonal changes in physiology, and its function is thought to be disturbed in both seasonal and non-seasonal depression. In humans, molecular imaging studies have reported seasonal changes in the serotonin system. Despite the role of the circadian clock in generating seasonal physiological changes, however, diurnal variation of serotonin receptors and transporters has never been directly studied in humans. We used positron emission tomography to examine diurnal and seasonal changes in the serotonin 5-HT1A receptor and serotonin transporter in two large cohorts of healthy male subjects, employing a cross-sectional design. In 56 subjects measured with [(11)C]WAY-100635, we observed diurnal increases in the availability of 5-HT1A receptors in the cortex. In 40 subjects measured with [(11)C]MADAM, a decrease in 5-HTT was observed in the midbrain across the day. We also found seasonal changes in the 5-HT1A receptor in serotonin projection regions, with higher availability on days with a longer duration of daylight. Our observation that serotonin receptor and transporter levels may change across the day in humans is corroborated by experimental research in rodents. These findings have important implications for understanding the relationship between the circadian and serotonin systems in both the healthy brain and in affective disorders, as well as for the design of future molecular imaging studies.

  16. The impact of the diurnal insolation cycle on the tropical cyclone heat engine

    NASA Astrophysics Data System (ADS)

    O'Neill, Morgan E.; Perez-Betancourt, Diamilet; Wing, Allison A.

    A hurricane, or tropical cyclone, is understood as a heat engine that moves heat from the warm sea surface to the cold tropopause. The efficiency of this engine depends in part on the strength and duration of solar heating. Over land, peak rainfall associated with individual thunderstorms occurs in the late afternoon. Over ocean, with its markedly higher surface heat capacity, deep convection responds more to radiational cooling than daytime surface heating. However, the role of daily varying solar forcing on the dynamics of tropical cyclones is poorly understood. Recently, Dunion et al. (2014) reported significant, repeating diurnal behavior propagating outward from tropical cyclone centers, using infrared imagery from nine years of North Atlantic tropical cyclones. We study the impact of the diurnal cycle on tropical cyclones using a high resolution 3D numerical model, the System for Atmospheric Modeling (Khairoutdinov and Randall 2003). Simulations are run with and without variable sunlight. We are able to reproduce the observational finding of Dunion et al. (2014), and further identify a diurnally-varying residual circulation in the tropical cyclone at midlevels. The impact of the diurnal cycle on the equilibrium dynamics of tropical cyclones is also discussed.

  17. SIMULATION OF SUMMER-TIME DIURNAL BACTERIAL DYNAMICS IN THE ATMOSPHERIC SURFACE LAYER

    EPA Science Inventory

    A model was prepared to simulate the observed concentration dynamics of culturable bacteria in the diurnal summer atmosphere at a Willamette River Valley, Oregon location. The meteorological and bacterial mechanisms included in a dynamic null-dimensional model with one-second tim...

  18. Diurnal and stress-reactive dehydroepiandrosterone levels and telomere length in youth

    PubMed Central

    Dismukes, Andrew R; Meyer, Vanessa J; Shirtcliff, Elizabeth A; Theall, Katherine P; Esteves, Kyle C

    2016-01-01

    The current investigation examined the association between the aging-related biomarkers dehydroepiandrosterone (DHEA) and telomere length (TL) in community-recruited African-American youth. The examination of DHEA included stress reactive, basal and diurnal sampling, in order to elucidate the underlying physiological process that may overlap with TL. One hundred and two participants completed the Trier Social Stressor Test for children (TSST-C). TL was obtained from all youth from buccal swabs on the same day as the TSST-C. Saliva samples from 83 participants were obtained over the course of two additional days to measure waking and diurnal levels of DHEA. DHEA diurnal slope was a robust predictor of TL (B=0.516, P<0.05), while other DHEA values were not significantly associated with TL. This study is one of the first studies to examine basal, diurnal and reactivity measurements of DHEA in youth. Furthermore, this is the first study, to our knowledge, to demonstrate a positive association between DHEA, a putative anti-aging hormone, and TL, an indicator of cellular aging. PMID:27221260

  19. Muscle Directs Diurnal Energy Homeostasis through a Myokine-Dependent Hormone Module in Drosophila.

    PubMed

    Zhao, Xiao; Karpac, Jason

    2017-07-10

    Inter-tissue communication is critical to control organismal energy homeostasis in response to temporal changes in feeding and activity or external challenges. Muscle is emerging as a key mediator of this homeostatic control through consumption of lipids, carbohydrates, and amino acids, as well as governing systemic signaling networks. However, it remains less clear how energy substrate usage tissues, such as muscle, communicate with energy substrate storage tissues in order to adapt with diurnal changes in energy supply and demand. Using Drosophila, we show here that muscle plays a crucial physiological role in promoting systemic synthesis and accumulation of lipids in fat storage tissues, which subsequently impacts diurnal changes in circulating lipid levels. Our data reveal that the metabolic transcription factor Foxo governs expression of the cytokine unpaired 2 (Upd2) in skeletal muscle, which acts as a myokine to control glucagon-like adipokinetic hormone (AKH) secretion from specialized neuroendocrine cells. Circulating AKH levels in turn regulate lipid homeostasis in fat body/adipose and the intestine. Our data also reveal that this novel myokine-dependent hormone module is critical to maintain diurnal rhythms in circulating lipids. This tissue crosstalk provides a putative mechanism that allows muscle to integrate autonomous energy demand with systemic energy storage and turnover. Together, these findings reveal a diurnal inter-tissue signaling network between muscle and fat storage tissues that constitutes an ancestral mechanism governing systemic energy homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Reproductive biology of Echinopsis terscheckii (Cactaceae): the role of nocturnal and diurnal pollinators.

    PubMed

    Ortega-Baes, P; Saravia, M; Sühring, S; Godínez-Alvarez, H; Zamar, M

    2011-01-01

    The aim of this study was to analyse the reproductive biology of Echinopsis terscheckii, a species endemic to northwest Argentina that has nocturnal flowers. We expected that this species had a generalised pollination system, with moths and diurnal visitors as the primary pollinators. To test this, we studied the floral biology, breeding system and floral visitors of this species and the effectiveness of nocturnal and diurnal visitors. Floral biology was defined based on floral morphology, floral cycle and nectar production of the flowers. The breeding system and relative contributions of diurnal and nocturnal visitors to fruit and seed set were analysed through field experiments. E. terscheckii flowers opened at sunset and closed the following day. The peak of nectar production occurred at midnight. Flowers were determined to be self-incompatible. Moths, bees and birds were identified as floral visitors. Moths were the most frequent visitors at night, whereas bees were the most frequent visitors during the day. Fruit production by diurnal pollinators was less than that by nocturnal pollinators; among all floral visitors, moths were the most effective pollinators. We have demonstrated for the first time that moths are the primary pollinators of columnar cacti of the genus Echinopsis. Our results suggest that moths might be important pollinators of columnar cactus species with nocturnal flowers in the extra-tropical deserts of South America. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Diurnal Cycle Variability of Rainfall Over the Indian Region: Perspectives From the TRMM Satellite

    NASA Astrophysics Data System (ADS)

    Sahany, S.; Venugopal, V.; Nanjundiah, R. S.

    2008-12-01

    Using the TRMM 3-hourly, 0.25x0.25 degree 3B42 rainfall product for nine years (1999-2007), we characterise the summer season (JJAS) diurnal cycle of rainfall over the Indian land and its neighbouring oceans (10S to 35N, 60E to 100E). Most previous studies have provided an analysis of a single or few years of satellite- or station-based rainfall data (e.g., Basu, 2007; Yang and Smith, 2006; Nesbitt and Zipser, 2003) and, to our knowledge, this is one of the first studies that aims to exhaustively characterise the diurnal scale statistical characteristics of rainfall over the Indian and surrounding regions. Using harmonic analysis, we extract, at each grid point, every year, the signal corresponding to time periods smaller than 1 day, i.e., the signal that relates to diurnal and sub-diurnal variability. Subsequently, the time of rainfall peak for this filtered signal, referred to as the "peak hour," is estimated, with care taken to eliminate spurious peaks arising out of Gibbs oscillations. Our analysis suggests that the mode of the peak hour (of the diurnal-scale rainfall) over a significant part of Indian land is at 12 UTC (i.e. 5:30PM local time), a finding similar to that reported in previous studies (e.g., Liu and Zipser, 2008; Krishnamurti and Kishtawal, 2000). The Himalayan foothills were found to have a mode of peak hour at 21 UTC (i.e. 2:30AM local time), whereas over the Burmese mountains the rainfall peaks at 9 to 12 UTC (i.e. 3:30 PM to 6:30 PM local time). In addition, over the Bay of Bengal, there is a stratified spatial structure of mode of the peak hour of diurnal rainfall at 6, 9 and 12 UTC from North central to South Bay. This finding, not reported before, could be seen to be consistent with southward propagation of the diurnal rainfall pattern (e.g., Hoyos and Webster, 2007; Zuidema, 2003). We also find that the Arabian sea (to the east of 65E and north of the Equator, along a region where it rains for more than 50% of the time) shows a peak hour

  2. Diurnal variability of inner-shelf circulation in the lee of a cape under upwelling conditions

    NASA Astrophysics Data System (ADS)

    Lamas, L.; Peliz, A.; Dias, J.; Oliveira, P. B.; Angélico, M. M.; Castro, J. J.; Fernandes, J. N.; Trindade, A.; Cruz, T.

    2017-07-01

    The nearshore circulation in the lee of a cape under upwelling conditions was studied using in-situ data from 3 consecutive summers (2006-2008). Focus was given to a period between 20 July and 04 August 2006 to study the diurnal variability of the cross-shelf circulation. This period was chosen because it had a steady upwelling-favourable wind condition modulated by a diurnal cycle much similar to sea breeze. The daily variability of the observed cross-shelf circulation consisted of three distinct periods: a morning period with a 3-layer vertical structure with onshore velocities at mid-depth, a mid-day period where the flow is reversed and has a 2-layer structure with onshore velocities at the surface and offshore flow below, and, lastly, in the evening, a 2-layer period with intensified offshore velocities at the surface and onshore flow at the bottom. The observed cross-shelf circulation showed a peculiar vertical shape and diurnal variability different from several other systems described in literature. We hypothesize that the flow reversal of the cross-shelf circulation results as a response to the rapid change of the wind magnitude and direction at mid-day with the presence of the cape north of the mooring site influencing this response. A numerical modelling experiment exclusively forced by winds simulated successfully most of the circulation at the ADCP site, especially the mid-day reversal and the evening's upwelling-type structure. This supports the hypothesis that the cross-shelf circulation at diurnal timescales is mostly wind-driven. By analysing the 3D circulation in the vicinity of Cape Sines we came to the conclusion that the diurnal variability of the wind and the flow interaction with topography are responsible for the circulation variability at the ADCP site, though only a small region in the south of the cape showed a similar diurnal variability. The fact that the wind diurnally undergoes relaxation and intensification strongly affects the

  3. Diurnal Human Activity and Introduced Species Affect Occurrence of Carnivores in a Human-Dominated Landscape

    PubMed Central

    Moreira-Arce, Dario; Vergara, Pablo M.; Boutin, Stan

    2015-01-01

    Diurnal human activity and domestic dogs in agro-forestry mosaics should theoretically modify the diurnal habitat use patterns of native carnivores, with these effects being scale-dependent. We combined intensive camera trapping data with Bayesian occurrence probability models to evaluate both diurnal and nocturnal patterns of space use by carnivores in a mosaic of land-use types in southern Chile. A total of eight carnivores species were recorded, including human-introduced dogs. During the day the most frequently detected species were the culpeo fox and the cougar. Conversely, during the night, the kodkod and chilla fox were the most detected species. The best supported models showed that native carnivores responded differently to landscape attributes and dogs depending on both the time of day as well as the spatial scale of landscape attributes. The positive effect of native forest cover at 250m and 500 m radius buffers was stronger during the night for the Darwin's fox and cougar. Road density at 250m scale negatively affected the diurnal occurrence of Darwin´s fox, whereas at 500m scale roads had a stronger negative effect on the diurnal occurrence of Darwin´s foxes and cougars. A positive effect of road density on dog occurrence was evidenced during both night and day. Patch size had a positive effect on cougar occurrence during night whereas it affected negatively the occurrence of culpeo foxes and skunks during day. Dog occurrence had a negative effect on Darwin's fox occurrence during day-time and night-time, whereas its negative effect on the occurrence of cougar was evidenced only during day-time. Carnivore occurrences were not influenced by the proximity to a conservation area. Our results provided support for the hypothesis that diurnal changes to carnivore occurrence were associated with human and dog activity. Landscape planning in our study area should be focused in reducing both the levels of diurnal human activity in native forest remnants and

  4. Diurnal Human Activity and Introduced Species Affect Occurrence of Carnivores in a Human-Dominated Landscape.

    PubMed

    Moreira-Arce, Dario; Vergara, Pablo M; Boutin, Stan

    2015-01-01

    Diurnal human activity and domestic dogs in agro-forestry mosaics should theoretically modify the diurnal habitat use patterns of native carnivores, with these effects being scale-dependent. We combined intensive camera trapping data with Bayesian occurrence probability models to evaluate both diurnal and nocturnal patterns of space use by carnivores in a mosaic of land-use types in southern Chile. A total of eight carnivores species were recorded, including human-introduced dogs. During the day the most frequently detected species were the culpeo fox and the cougar. Conversely, during the night, the kodkod and chilla fox were the most detected species. The best supported models showed that native carnivores responded differently to landscape attributes and dogs depending on both the time of day as well as the spatial scale of landscape attributes. The positive effect of native forest cover at 250 m and 500 m radius buffers was stronger during the night for the Darwin's fox and cougar. Road density at 250 m scale negatively affected the diurnal occurrence of Darwin´s fox, whereas at 500 m scale roads had a stronger negative effect on the diurnal occurrence of Darwin´s foxes and cougars. A positive effect of road density on dog occurrence was evidenced during both night and day. Patch size had a positive effect on cougar occurrence during night whereas it affected negatively the occurrence of culpeo foxes and skunks during day. Dog occurrence had a negative effect on Darwin's fox occurrence during day-time and night-time, whereas its negative effect on the occurrence of cougar was evidenced only during day-time. Carnivore occurrences were not influenced by the proximity to a conservation area. Our results provided support for the hypothesis that diurnal changes to carnivore occurrence were associated with human and dog activity. Landscape planning in our study area should be focused in reducing both the levels of diurnal human activity in native forest remnants

  5. Dysregulated diurnal cortisol pattern is associated with glucocorticoid resistance in women with major depressive disorder

    PubMed Central

    Jarcho, Michael R.; Slavich, George M.; Tylova-Stein, Hana; Wolkowitz, Owen M.; Burke, Heather M.

    2013-01-01

    Dysfunction of the hypothalamic–pituitary–adrenal (HPA) axis is believed to play a role in the pathophysiology of depression. To investigate mechanisms that may underlie this effect, we examined several indices of HPA axis function – specifically, diurnal cortisol slope, cortisol awakening response, and suppression of cortisol release following dexamethasone administration – in 26 pre-menopausal depressed women and 23 never depressed women who were matched for age and body mass index. Salivary cortisol samples were collected at waking, 30 min after waking, and at bedtime over three consecutive days. On the third day, immediately after the bedtime sample, participants ingested a 0.5 mg dexamethasone tablet; they then collected cortisol samples at waking and 30 min after waking the following morning. As predicted, depressed women exhibited flatter diurnal cortisol rhythms and more impaired suppression of cortisol following dexamethasone administration than non-depressed women over the three sampling days. In addition, flatter diurnal cortisol slopes were associated with reduced cortisol response to dexamethasone treatment, both for all women and for depressed women when considered separately. Finally, greater self-reported depression severity was associated with flatter diurnal cortisol slopes and with less dexamethasone-related cortisol suppression for depressed women. Depression in women thus appears to be characterized by altered HPA axis functioning, as indexed by flatter diurnal cortisol slopes and an associated impaired sensitivity of cortisol to dexamethasone. Given that altered HPA axis functioning has been implicated in several somatic conditions, the present findings may be relevant for understanding the pathophysiology of both depression and depression-related physical disease. PMID:23410758

  6. Use of Salivary Diurnal Cortisol as an Outcome Measure in Randomised Controlled Trials: a Systematic Review.

    PubMed

    Ryan, Richella; Booth, Sara; Spathis, Anna; Mollart, Sarah; Clow, Angela

    2016-04-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is associated with diverse adverse health outcomes, making it an important therapeutic target. Measurement of the diurnal rhythm of cortisol secretion provides a window into this system. At present, no guidelines exist for the optimal use of this biomarker within randomised controlled trials (RCTs). The aim of this study is to describe the ways in which salivary diurnal cortisol has been measured within RCTs of health or behavioural interventions in adults. Six electronic databases (up to May 21, 2015) were systematically searched for RCTs which used salivary diurnal cortisol as an outcome measure to evaluate health or behavioural interventions in adults. A narrative synthesis was undertaken of the findings in relation to salivary cortisol methodology and outcomes. From 78 studies that fulfilled the inclusion criteria, 30 included healthy participants (38.5 %), 27 included pati