Science.gov

Sample records for 1-h plasma glucose

  1. Metabolic profile of normal glucose-tolerant subjects with elevated 1-h plasma glucose values

    PubMed Central

    Pramodkumar, Thyparambil Aravindakshan; Priya, Miranda; Jebarani, Saravanan; Anjana, Ranjit Mohan; Mohan, Viswanathan; Pradeepa, Rajendra

    2016-01-01

    Aim: The aim of this study was to compare the metabolic profiles of subjects with normal glucose tolerance (NGT) with and without elevated 1-h postglucose (1HrPG) values during an oral glucose tolerance test (OGTT). Methodology: The study group comprised 996 subjects without known diabetes seen at tertiary diabetes center between 2010 and 2014. NGT was defined as fasting plasma glucose <100 mg/dl (5.5 mmol/L) and 2-h plasma glucose <140 mg/dl (7.8 mmol/L) after an 82.5 g oral glucose (equivalent to 75 g of anhydrous glucose) OGTT. Anthropometric measurements and biochemical investigations were done using standardized methods. The prevalence rate of generalized and central obesity, hypertension, dyslipidemia, and metabolic syndrome (MS) was determined among the NGT subjects stratified based on their 1HrPG values as <143 mg/dl, ≥143–<155 mg/dl, and ≥155 mg/dl, after adjusting for age, sex, body mass index (BMI), waist circumference, alcohol consumption, smoking, and family history of diabetes. Results: The mean age of the 996 NGT subjects was 48 ± 12 years and 53.5% were male. The mean glycated hemoglobin for subjects with 1HrPG <143 mg/dl was 5.5%, for those with 1HrPG ≥143–<155 mg/dl, 5.6% and for those with 1HrPG ≥155 mg/dl, 5.7%. NGT subjects with 1HrPG ≥143–<155 mg/dl and ≥155 mg/dl had significantly higher BMI, waist circumference, systolic and diastolic blood pressure, triglyceride, total cholesterol/high-density lipoprotein (HDL) ratio, triglyceride/HDL ratio, leukocyte count, and gamma glutamyl aminotransferase (P < 0.05) compared to subjects with 1HrPG <143 mg/dl. The odds ratio for MS for subjects with 1HrPG ≥143 mg/dl was 1.84 times higher compared to subjects with 1HrPG <143 mg/dl taken as the reference. Conclusion: NGT subjects with elevated 1HrPG values have a worse metabolic profile than those with normal 1HrPG during an OGTT. PMID:27730069

  2. Quantitative analysis of D-(+)-glucose in fruit juices using diffusion ordered-1H nuclear magnetic resonance spectroscopy.

    PubMed

    Cao, Ruge; Komura, Fusae; Nonaka, Airi; Kato, Takeshi; Fukumashi, Junji; Matsui, Toshiro

    2014-01-01

    This study works on D-(+)-glucose quantitative analysis using diffusion ordered-quantitative (1)H nuclear magnetic resonance spectroscopy (DOSY-qNMR), by which an analyte could be distinguished from interferences based upon a characteristic diffusion coefficient (D) in gradient magnetic fields. The D value of D-(+)-glucose in deuterium oxide at 30°C was 5.6 × 10(-10) m(2)/s at a field gradient pulse of between 5.0 × 10(-2) and 3.0 × 10(-1) T/m, distinguished from fructose, sucrose and starch. Good linearity (r(2) = 0.9998) was obtained between D-(+)-glucose (0.5-20.0 g/L) and the ratio of the resonance area of α-C1 proton (5.21 ppm) in D-(+)-glucose to that of the β-C1 proton (5.25 ppm) in D-glucuronic acid (50.0 g/L) as an internal standard. The DOSY-qNMR method was successfully applied to quantify D-(+)-glucose in orange juice (18.3 ± 1.0 g/L), apple juice (26.3 ± 0.4 g/L) and grape juice (45.6 ± 0.6 g/L); the values agreed well with a conventional F-kit glucose method.

  3. (1)H-Nuclear magnetic resonance-based plasma metabolic profiling of dairy cows with clinical and subclinical ketosis.

    PubMed

    Sun, L W; Zhang, H Y; Wu, L; Shu, S; Xia, C; Xu, C; Zheng, J S

    2014-03-01

    The purpose of this study was to assess the metabolic profile of plasma samples from cows with clinical and subclinical ketosis. According to clinical signs and 3-hydroxybutyrate plasma levels, 81 multiparous Holstein cows were selected from a dairy farm 7 to 21 d after calving. The cows were divided into 3 groups: cows with clinical ketosis, cows with subclinical ketosis, and healthy control cows. (1)H-Nuclear magnetic resonance-based metabolomics was used to assess the plasma metabolic profiles of the 3 groups. The data were analyzed by principal component analysis, partial least squares discriminant analysis, and orthogonal partial least-squares discriminant analysis. The differences in metabolites among the 3 groups were assessed. The orthogonal partial least-squares discriminant analysis model differentiated the 3 groups of plasma samples. The model predicted clinical ketosis with a sensitivity of 100% and a specificity of 100%. In the case of subclinical ketosis, the model had a sensitivity of 97.0% and specificity of 95.7%. Twenty-five metabolites, including acetoacetate, acetone, lactate, glucose, choline, glutamic acid, and glutamine, were different among the 3 groups. Among the 25 metabolites, 4 were upregulated, 7 were downregulated, and 14 were both upregulated and downregulated. The results indicated that plasma (1)H-nuclear magnetic resonance-based metabolomics, coupled with pattern recognition analytical methods, not only has the sensitivity and specificity to distinguish cows with clinical and subclinical ketosis from healthy controls, but also has the potential to be developed into a clinically useful diagnostic tool that could contribute to a further understanding of the disease mechanisms.

  4. 1H-Nuclear Magnetic Resonance-Based Plasma Metabolic Profiling of Dairy Cows with Fatty Liver

    PubMed Central

    Xu, Chuang; Sun, Ling-wei; Xia, Cheng; Zhang, Hong-you; Zheng, Jia-san; Wang, Jun-song

    2016-01-01

    Fatty liver is a common metabolic disorder of dairy cows during the transition period. Historically, the diagnosis of fatty liver has involved liver biopsy, biochemical or histological examination of liver specimens, and ultrasonographic imaging of the liver. However, more convenient and noninvasive methods would be beneficial for the diagnosis of fatty liver in dairy cows. The plasma metabolic profiles of dairy cows with fatty liver and normal (control) cows were investigated to identify new biomarkers using 1H nuclear magnetic resonance. Compared with the control group, the primary differences in the fatty liver group included increases in β-hydroxybutyric acid, acetone, glycine, valine, trimethylamine-N-oxide, citrulline, and isobutyrate, and decreases in alanine, asparagine, glucose, γ-aminobutyric acid glycerol, and creatinine. This analysis revealed a global profile of endogenous metabolites, which may present potential biomarkers for the diagnosis of fatty liver in dairy cows. PMID:26732447

  5. (1)H-Nuclear Magnetic Resonance-Based Plasma Metabolic Profiling of Dairy Cows with Fatty Liver.

    PubMed

    Xu, Chuang; Sun, Ling-Wei; Xia, Cheng; Zhang, Hong-You; Zheng, Jia-San; Wang, Jun-Song

    2016-02-01

    Fatty liver is a common metabolic disorder of dairy cows during the transition period. Historically, the diagnosis of fatty liver has involved liver biopsy, biochemical or histological examination of liver specimens, and ultrasonographic imaging of the liver. However, more convenient and noninvasive methods would be beneficial for the diagnosis of fatty liver in dairy cows. The plasma metabolic profiles of dairy cows with fatty liver and normal (control) cows were investigated to identify new biomarkers using (1)H nuclear magnetic resonance. Compared with the control group, the primary differences in the fatty liver group included increases in β-hydroxybutyric acid, acetone, glycine, valine, trimethylamine-N-oxide, citrulline, and isobutyrate, and decreases in alanine, asparagine, glucose, γ-aminobutyric acid glycerol, and creatinine. This analysis revealed a global profile of endogenous metabolites, which may present potential biomarkers for the diagnosis of fatty liver in dairy cows.

  6. 1H NMR studies of reactions of copper complexes with human blood plasma and urine.

    PubMed

    Bligh, S W; Boyle, H A; McEwen, A B; Sadler, P J; Woodham, R H

    1992-01-22

    Reactions of the copper complexes Cu(II)Cl2, [Cu(II)(EDTA)]2-, [Cu(II)2(DIPS)4] and [Cu(I)(DMP)2]+ (where DIPS is 3,5-diisopropylsalicylate and DMP is 2,9-dimethylphenanthroline) with human blood plasma and urine have been studied by 500 MHz 1H NMR spectroscopy, and CD spectroscopy has been used to monitor the transfer of Cu(II) onto albumin in plasma. The rate of transfer of Cu(II) from [Cu(II)(EDTA)]2- onto albumin as measured by CD (T1/2 26 min, 0.5 mM Cu, 21 degrees), was similar to the rate of Cu(II) binding to amino acids and citrate, and to the rate of formation of [Ca(II)(EDTA)]2- in plasma. Reactions of Cu(II)Cl2 and [Cu(II)2(DIPS)4] in plasma followed a similar course, but were more rapid. The latter complex also appeared to give rise to the displacement of lactate from protein binding. Reactions of copper complexes in plasma therefore involve a range of low Mr ligands as well as albumin, and the ligands play a major role in determining the kinetics of the reactions. These factors, as well as the partitioning of both complexes and displaced ligands into lipoproteins, are likely to play important roles in the molecular pharmacology of copper-containing drugs. In urine, His and formate were involved in EDTA and DIPS displacement from their respective copper complexes, and peaks for free DIPS and [Ca(II)(EDTA)]2- were observed. The complex (Cu(I)(DMP)2]+ appeared to be relatively stable in both plasma and urine. PMID:1739401

  7. One-Hour Postload Plasma Glucose Levels Are Associated with Kidney Dysfunction

    PubMed Central

    Succurro, Elena; Arturi, Franco; Lugarà, Marina; Grembiale, Alessandro; Fiorentino, Teresa Vanessa; Caruso, Vittoria; Andreozzi, Francesco; Sciacqua, Angela; Hribal, Marta Letizia; Perticone, Francesco

    2010-01-01

    Background and objectives: A cutoff of 155 mg/dl for 1-hour postload plasma glucose (1hPG) during the oral glucose tolerance test (OGTT) is able to identify patients who are at high risk for type 2 diabetes and vascular atherosclerosis. We aimed to examine whether individuals with 1hPG ≥155 mg/dl are also at increased risk for chronic kidney disease (CKD). Design, setting, participants, & measurements: Atherosclerosis risk factors, OGTT, and estimated GFR by Chronic Kidney Disease Epidemiology Collaboration equation were analyzed in 1075 white individuals without diabetes. Results: The area under the receiver operating characteristic curve for 1hPG was the highest (0.700) compared with the areas under the receiver operating characteristic curve of 0, 30-minute, and 2-hour glucose concentrations. Individuals with 1hPG ≥155 mg/dl had a worse cardiometabolic risk profile, exhibiting significantly higher body mass index, BP, triglycerides, and fasting insulin levels and lower HDL, IGF-1 levels, and insulin sensitivity, than individuals with 1hPG <155 mg/dl. Estimated GFR was significantly lower in individuals with 1hPG ≥155 mg/dl. In a logistic regression model adjusted for age and gender, individuals with 1hPG ≥155 mg/dl showed an increased risk for CKD compared with individuals with 1hPG <155 mg/dl. When the logistic regression analysis was restricted to individuals who had normal glucose tolerance, those with 1hPG ≥155 mg/dl showed a higher risk for CKD compared with individuals with 1hPG <155 mg/dl. Conclusions: These data suggest that a cutoff point of 155 mg/dl for the 1hPG during OGTT may be helpful in the identification of individuals who are at increased risk for CKD. PMID:20595688

  8. Misled by the Morning "Fasting" Plasma Glucose.

    PubMed

    King, Allen B

    2015-11-01

    Because of its ease and simplicity of its measurement, the morning fasting plasma glucose (FPG), has been as used a surrogate marker for the entire basal day when titrating once-nightly basal insulin. Common in obese insulin-treated patients with type 2 diabetes, late and large evening meals elevate the FPG. This has led to dosing of basal insulin well beyond the basal requirements and contributes to hypoglycemia and weight gain seen with this therapy. It is recommended that during basal insulin titration, the evening meal be limited and hypoglycemia be monitored early in the morning, that bewitching time when the "peakless" basal insulin's action is peaking and the predawn phenomenon insulin sensitivity is higher. PMID:25972281

  9. Design of a sup 13 C (1H) RF probe for monitoring the in vivo metabolism of (1- sup 13 C)glucose in primate brain

    SciTech Connect

    Hammer, B.E.; Sacks, W.; Bigler, R.E.; Hennessy, M.J.; Sacks, S.; Fleischer, A.; Zanzonico, P.B. )

    1990-01-01

    The design of an RF probe suitable for obtaining proton-decoupled {sup 13}C spectra from a subhuman primate brain is described. Two orthogonal saddle coils, one tuned to the resonant frequency of {sup 13}C and the other to the resonant frequency of 1H, were used to monitor the in vivo metabolism of (1-{sup 13}C)glucose in rhesus monkey brain at 2.1 T. Difference spectra showed the appearance of {sup 13}C-enriched glutamate and glutamine 30 to 40 min after a bolus injection of (1-{sup 13}C)glucose.

  10. Structure and equilibria of Ca 2+-complexes of glucose and sorbitol from multinuclear ( 1H, 13C and 43Ca) NMR measurements supplemented with molecular modelling calculations

    NASA Astrophysics Data System (ADS)

    Pallagi, A.; Dudás, Cs.; Csendes, Z.; Forgó, P.; Pálinkó, I.; Sipos, P.

    2011-05-01

    Ca 2+-complexation of D-glucose and D-sorbitol have been investigated with the aid of multinuclear ( 1H, 13C and 43Ca) NMR spectroscopy and ab initio quantum chemical calculations. Formation constants of the forming 1:1 complexes have been estimated from one-dimensional 13C NMR spectra obtained at constant ionic strength (1 M NaCl). Binding sites were identified from 2D 1H- 43Ca NMR spectra. 2D NMR measurements and ab initio calculations indicated that Ca 2+ ions were bound in a tridentate manner via the glycosidic OH, the ethereal oxygen in the ring and the OH on the terminal carbon for the α- and β-anomers of glucose and for sorbitol simultaneous binding of four hydroxide moieties (C1, C2, C4 and C6) was suggested.

  11. 1H NMR metabonomics of plasma lipoprotein subclasses: elucidation of metabolic clustering by self-organising maps.

    PubMed

    Suna, Teemu; Salminen, Aino; Soininen, Pasi; Laatikainen, Reino; Ingman, Petri; Mäkelä, Sanna; Savolainen, Markku J; Hannuksela, Minna L; Jauhiainen, Matti; Taskinen, Marja-Riitta; Kaski, Kimmo; Ala-Korpela, Mika

    2007-11-01

    (1)H NMR spectra of plasma are known to provide specific information on lipoprotein subclasses in the form of complex overlapping resonances. A combination of (1)H NMR and self-organising map (SOM) analysis was applied to investigate if automated characterisation of subclass-related metabolic interactions can be achieved. To reliably assess the intrinsic capability of (1)H NMR for resolving lipoprotein subclass profiles, sum spectra representing the pure lipoprotein subclass part of actual plasma were simulated with the aid of experimentally derived model signals for 11 distinct lipoprotein subclasses. Two biochemically characteristic categories of spectra, representing normolipidaemic and metabolic syndrome status, were generated with corresponding lipoprotein subclass profiles. A set of spectra representing a metabolic pathway between the two categories was also generated. The SOM analysis, based solely on the aliphatic resonances of these simulated spectra, clearly revealed the lipoprotein subclass profiles and their changes. Comparable SOM analysis in a group of 69 experimental (1)H NMR spectra of serum samples, which according to biochemical analyses represented a wide range of lipoprotein lipid concentrations, corroborated the findings based on the simulated data. Interestingly, the choline-N(CH(3))(3) region seems to provide more resolved clustering of lipoprotein subclasses in the SOM analyses than the methyl-CH(3) region commonly used for subclass quantification. The results illustrate the inherent suitability of (1)H NMR metabonomics for automated studies of lipoprotein subclass-related metabolism and demonstrate the power of SOM analysis in an extensive and representative case of (1)H NMR metabonomics.

  12. Effects of fasting on plasma glucose and prolonged tracer measurement of hepatic glucose output in NIDDM

    SciTech Connect

    Glauber, H.; Wallace, P.; Brechtel, G.

    1987-10-01

    We studied the measurement of hepatic glucose output (HGO) with prolonged (3-/sup 3/H)glucose infusion in 14 patients with non-insulin-dependent diabetes mellitus (NIDDM). Over the course of 10.5 h, plasma glucose concentration fell with fasting by one-third, from 234 +/- 21 to 152 +/- 12 mg/dl, and HGO fell from 2.35 +/- 0.18 to 1.36 +/- 0.07 mg . kg-1 . min-1 (P less than .001). In the basal state, HGO and glucose were significantly correlated (r = 0.68, P = .03), and in individual patients, HGO and glucose were closely correlated as both fell with fasting (mean r = 0.79, P less than .01). Plasma (3-/sup 3/H)glucose radioactivity approached a steady state only 5-6 h after initiation of the primed continuous infusion, and a 20% overestimate of HGO was demonstrated by not allowing sufficient time for tracer labeling of the glucose pool. Assumption of steady-state instead of non-steady-state kinetics in using Steele's equations to calculate glucose turnover resulted in a 9-24% overestimate of HGO. Stimulation of glycogenolysis by glucagon injection demonstrated no incorporation of (3-/sup 3/H)glucose in hepatic glycogen during the prolonged tracer infusion. In a separate study, plasma glucose was maintained at fasting levels (207 +/- 17 mg/dl) for 8 h with the glucose-clamp technique. Total glucose turnover rates remained constant during this prolonged tracer infusion. However, HGO fell to 30% of the basal value simply by maintaining fasting hyperglycemia in the presence of basal insulin levels.

  13. Normal fasting plasma glucose levels in some birds of prey.

    PubMed

    O'Donnell, J A; Garbett, R; Morzenti, A

    1978-10-01

    Blood samples taken from five great horned owls (Bubo virginianus), eight red-tailed hawks (Buteo jamaicensis), four marsh hawks (Circus cyaneus), two prairie falcons (Falco mexicanus), five golden eagles (Aquila chrysaetos), and five white leghorn chickens (Gallus domesticus) that had been fasted for 24 h were used to determine plasma levels of glucose by the glucose oxidase method. The mean plasma glucose levels were: great horned owls 374.6 mg/100 ml, red-tailed hawks 346.5 mg/00 ml, marsh hawks 369.3 mg/100 ml, prairie falcons 414.5 mg/100 ml, golden eagles 368.4 mg/100 ml, and white Leghorn chickens 218.2 mg/100 ml. The plasma glucose levels obtained for the raptorial birds in this study were considerably higher than those found for the chickens. These values are discussed in relation to the carnivorous food habits of raptors. PMID:739587

  14. Ceylon cinnamon does not affect postprandial plasma glucose or insulin in subjects with impaired glucose tolerance.

    PubMed

    Wickenberg, Jennie; Lindstedt, Sandra; Berntorp, Kerstin; Nilsson, Jan; Hlebowicz, Joanna

    2012-06-01

    Previous studies on healthy subjects have shown that the intake of 6 g Cinnamomum cassia reduces postprandial glucose and that the intake of 3 g C. cassia reduces insulin response, without affecting postprandial glucose concentrations. Coumarin, which may damage the liver, is present in C. cassia, but not in Cinnamomum zeylanicum. The aim of the present study was to study the effect of C. zeylanicum on postprandial concentrations of plasma glucose, insulin, glycaemic index (GI) and insulinaemic index (GII) in subjects with impaired glucose tolerance (IGT). A total of ten subjects with IGT were assessed in a crossover trial. A standard 75 g oral glucose tolerance test (OGTT) was administered together with placebo or C. zeylanicum capsules. Finger-prick capillary blood samples were taken for glucose measurements and venous blood for insulin measurements, before and at 15, 30, 45, 60, 90, 120, 150 and 180 min after the start of the OGTT. The ingestion of 6 g C. zeylanicum had no significant effect on glucose level, insulin response, GI or GII. Ingestion of C. zeylanicum does not affect postprandial plasma glucose or insulin levels in human subjects. The Federal Institute for Risk Assessment in Europe has suggested the replacement of C. cassia by C. zeylanicum or the use of aqueous extracts of C. cassia to lower coumarin exposure. However, the positive effects seen with C. cassia in subjects with poor glycaemic control would then be lost.

  15. Mechanism of glucose and maltose transport in plasma-membrane vesicles from the yeast Candida utilis.

    PubMed Central

    van den Broek, P J; van Gompel, A E; Luttik, M A; Pronk, J T; van Leeuwen, C C

    1997-01-01

    Transport of glucose and maltose was studied in plasma-membrane vesicles from Candida utilis. The yeast was grown on a mixture of glucose and maltose in aerobic carbon-limited continuous cultures which enabled transport to be studied for both sugars with the same vesicles. Vesicles were prepared by fusion of isolated plasma membranes with proteoliposomes containing bovine heart cytochrome c oxidase as a proton-motive-force-generating system. Addition of reduced cytochrome c generated a proton-motive force, consisting of a membrane potential, negative inside, and a pH gradient, alkaline inside. Energization led to accumulation of glucose and maltose in these vesicles, reaching accumulation ratios of about 40-50. Accumulation also occurred in the presence of valinomycin or nigericin, but was prevented by a combination of the two ionophores or by uncoupler, showing that glucose and maltose transport are dependent on the proton-motive force. Comparison of sugar accumulation with quantitative data on the proton-motive force indicated a 1:1 H+/sugar stoichiometry for both transport systems. Efflux of accumulated glucose was observed on dissipation of the proton-motive force. Exchange and counterflow experiments confirmed the reversible character of the H+-glucose symporter. In contrast, uncoupler or a mixture of valinomycin plus nigericin induced only a slow efflux of accumulated maltose. Moreover under counterflow conditions, the expected transient accumulation was small. Thus the H+-maltose symporter has some characteristics of a carrier that is not readily reversible. It is concluded that in C. utilis the transport systems for glucose and maltose are both driven by the proton-motive force, but the mechanisms are different. PMID:9020885

  16. Gestational diabetes mellitus: Screening with fasting plasma glucose.

    PubMed

    Agarwal, Mukesh M

    2016-07-25

    Fasting plasma glucose (FPG) as a screening test for gestational diabetes mellitus (GDM) has had a checkered history. During the last three decades, a few initial anecdotal reports have given way to the recent well-conducted studies. This review: (1) traces the history; (2) weighs the advantages and disadvantages; (3) addresses the significance in early pregnancy; (4) underscores the benefits after delivery; and (5) emphasizes the cost savings of using the FPG in the screening of GDM. It also highlights the utility of fasting capillary glucose and stresses the value of the FPG in circumventing the cumbersome oral glucose tolerance test. An understanding of all the caveats is crucial to be able to use the FPG for investigating glucose intolerance in pregnancy. Thus, all health professionals can use the patient-friendly FPG to simplify the onerous algorithms available for the screening and diagnosis of GDM - thereby helping each and every pregnant woman. PMID:27525055

  17. Gestational diabetes mellitus: Screening with fasting plasma glucose

    PubMed Central

    Agarwal, Mukesh M

    2016-01-01

    Fasting plasma glucose (FPG) as a screening test for gestational diabetes mellitus (GDM) has had a checkered history. During the last three decades, a few initial anecdotal reports have given way to the recent well-conducted studies. This review: (1) traces the history; (2) weighs the advantages and disadvantages; (3) addresses the significance in early pregnancy; (4) underscores the benefits after delivery; and (5) emphasizes the cost savings of using the FPG in the screening of GDM. It also highlights the utility of fasting capillary glucose and stresses the value of the FPG in circumventing the cumbersome oral glucose tolerance test. An understanding of all the caveats is crucial to be able to use the FPG for investigating glucose intolerance in pregnancy. Thus, all health professionals can use the patient-friendly FPG to simplify the onerous algorithms available for the screening and diagnosis of GDM - thereby helping each and every pregnant woman. PMID:27525055

  18. A Fall in Plasma Free Fatty Acid (FFA) Level Activates the Hypothalamic-Pituitary-Adrenal Axis Independent of Plasma Glucose: Evidence for Brain Sensing of Circulating FFA

    PubMed Central

    Oh, Young Taek; Oh, Ki-Sook; Kang, Insug

    2012-01-01

    The brain responds to a fall in blood glucose by activating neuroendocrine mechanisms for its restoration. It is unclear whether the brain also responds to a fall in plasma free fatty acids (FFA) to activate mechanisms for its restoration. We examined whether lowering plasma FFA increases plasma corticosterone or catecholamine levels and, if so, whether the brain is involved in these responses. Plasma FFA levels were lowered in rats with three independent antilipolytic agents: nicotinic acid (NA), insulin, and the A1 adenosine receptor agonist SDZ WAG 994 with plasma glucose clamped at basal levels. Lowering plasma FFA with these agents all increased plasma corticosterone, but not catecholamine, within 1 h, accompanied by increases in plasma ACTH. These increases in ACTH or corticosterone were abolished when falls in plasma FFA were prevented by Intralipid during NA or insulin infusion. In addition, the NA-induced increases in plasma ACTH were completely prevented by administration of SSR149415, an arginine vasopressin receptor antagonist, demonstrating that the hypothalamus is involved in these responses. Taken together, the present data suggest that the brain may sense a fall in plasma FFA levels and activate the hypothalamic-pituitary-adrenal axis to increase plasma ACTH and corticosterone, which would help restore FFA levels. Thus, the brain may be involved in the sensing and control of circulating FFA levels. PMID:22669895

  19. Plasma Efavirenz Concentrations Are Associated With Lipid and Glucose Concentrations.

    PubMed

    Sinxadi, Phumla Zuleika; McIlleron, Helen Margaret; Dave, Joel Alex; Smith, Peter John; Levitt, Naomi Sharlene; Haas, David William; Maartens, Gary

    2016-01-01

    Efavirenz-based antiretroviral therapy (ART) has been associated with dyslipidemia and dysglycemia, risk factors for cardiovascular disease. However, the pathogenesis is not well understood. We characterized relationships between plasma efavirenz concentrations and lipid and glucose concentrations in HIV-infected South Africans.Participants on efavirenz-based ART were enrolled into a cross-sectional study. The oral glucose tolerance test was performed after an overnight fast, and plasma drawn for mid-dosing interval efavirenz, fasting total cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, and triglycerides concentrations.Among 106 participants (77 women), median age was 38 years, median CD4 + T-cell count was 322 cells/μL, median duration on ART was 18 months, and median (interquartile range) efavirenz concentration was 2.23 (1.66 to 4.10) μg/mL. On multivariable analyses (adjusting for age, sex, body mass index, and ART duration) doubling of efavirenz concentrations resulted in mean changes in mmol/L (95%CI) of: total cholesterol (0.40 [0.22 to 0.59]), LDL cholesterol (0.19 [0.04 to 0.30]), HDL cholesterol (0.14 [0.07 to 0.20]), triglycerides (0.17 [0.03 to 0.33]), fasting glucose (0.18 [0.03 to 0.33]), and 2-h glucose concentrations (0.33 [0.08 to 0.60]). Among 57 participants with CYP2B6 genotype data, associations between slow metabolizer genotypes and metabolic profiles were generally consistent with those for measured efavirenz concentrations.Higher plasma efavirenz concentrations are associated with higher plasma lipid and glucose concentrations. This may have implications for long-term cardiovascular complications of efavirenz-based ART, particularly among populations with high prevalence of CYP2B6 slow metabolizer genotypes. PMID:26765416

  20. Fasting and 2-Hour Plasma Glucose and Insulin

    PubMed Central

    Libman, Ingrid M.; Barinas-Mitchell, Emma; Bartucci, Andrea; Chaves-Gnecco, Diego; Robertson, Robert; Arslanian, Silva

    2010-01-01

    OBJECTIVE To determine whether elevated fasting or 2-h plasma glucose and/or insulin better reflects the presence of cardiovascular disease (CVD) risk markers in an overweight pediatric population with normal glucose tolerance. RESEARCH DESIGN AND METHODS A total of 151 overweight youths (8–17 years old) were evaluated with oral glucose tolerance tests and measurement of CVD risk factors. The study population was categorized according to quartiles of fasting and 2-h glucose and insulin levels. ANCOVA, adjusted for age, sex, race, Tanner stage, and percent body fat (measured by dual-energy X-ray absorptiometry), was used to compare metabolic variables between the quartiles of glucose and insulin groups. RESULTS Increasing quartiles of fasting and 2-h insulin were associated with increasing CVD risk factors. Glucose quartiles on the other hand, either fasting or at 2 h, were not. CONCLUSIONS These data suggest that hyperinsulinemia may be the earliest and/or primary metabolic alteration in childhood associated with risk markers for CVD. Prospective studies are needed. PMID:21115769

  1. Discovery, screening and evaluation of a plasma biomarker panel for subjects with psychological suboptimal health state using (1)H-NMR-based metabolomics profiles.

    PubMed

    Tian, Jun-Sheng; Xia, Xiao-Tao; Wu, Yan-Fei; Zhao, Lei; Xiang, Huan; Du, Guan-Hua; Zhang, Xiang; Qin, Xue-Mei

    2016-01-01

    Individuals in the state of psychological suboptimal health keep increasing, only scales and questionnaires were used to diagnose in clinic under current conditions, and symptoms of high reliability and accuracy are destitute. Therefore, the noninvasive and precise laboratory diagnostic methods are needed. This study aimed to develop an objective method through screen potential biomarkers or a biomarker panel to facilitate the diagnosis in clinic using plasma metabolomics. Profiles were based on H-nuclear magnetic resonance ((1)H-NMR) metabolomics techniques combing with multivariate statistical analysis. Furthermore, methods of correlation analysis with Metaboanalyst 3.0 for selecting a biomarker panel, traditional Chinese medicine (TCM) drug intervention for validating the close relations between the biomarker panel and the state and the receiver operating characteristic curves (ROC curves) analysis for evaluation of clinical diagnosis ability were carried out. 9 endogenous metabolites containing trimethylamine oxide (TMAO), glutamine, N-acetyl-glycoproteins, citrate, tyrosine, phenylalanine, isoleucine, valine and glucose were identified and considered as potential biomarkers. Then a biomarker panel consisting of phenylalanine, glutamine, tyrosine, citrate, N-acetyl-glycoproteins and TMAO was selected, which exhibited the highest area under the curve (AUC = 0.971). This study provided critical insight into the pathological mechanism of psychological suboptimal health and would supply a novel and valuable diagnostic method. PMID:27650680

  2. Discovery, screening and evaluation of a plasma biomarker panel for subjects with psychological suboptimal health state using (1)H-NMR-based metabolomics profiles.

    PubMed

    Tian, Jun-Sheng; Xia, Xiao-Tao; Wu, Yan-Fei; Zhao, Lei; Xiang, Huan; Du, Guan-Hua; Zhang, Xiang; Qin, Xue-Mei

    2016-09-21

    Individuals in the state of psychological suboptimal health keep increasing, only scales and questionnaires were used to diagnose in clinic under current conditions, and symptoms of high reliability and accuracy are destitute. Therefore, the noninvasive and precise laboratory diagnostic methods are needed. This study aimed to develop an objective method through screen potential biomarkers or a biomarker panel to facilitate the diagnosis in clinic using plasma metabolomics. Profiles were based on H-nuclear magnetic resonance ((1)H-NMR) metabolomics techniques combing with multivariate statistical analysis. Furthermore, methods of correlation analysis with Metaboanalyst 3.0 for selecting a biomarker panel, traditional Chinese medicine (TCM) drug intervention for validating the close relations between the biomarker panel and the state and the receiver operating characteristic curves (ROC curves) analysis for evaluation of clinical diagnosis ability were carried out. 9 endogenous metabolites containing trimethylamine oxide (TMAO), glutamine, N-acetyl-glycoproteins, citrate, tyrosine, phenylalanine, isoleucine, valine and glucose were identified and considered as potential biomarkers. Then a biomarker panel consisting of phenylalanine, glutamine, tyrosine, citrate, N-acetyl-glycoproteins and TMAO was selected, which exhibited the highest area under the curve (AUC = 0.971). This study provided critical insight into the pathological mechanism of psychological suboptimal health and would supply a novel and valuable diagnostic method.

  3. Discovery, screening and evaluation of a plasma biomarker panel for subjects with psychological suboptimal health state using 1H-NMR-based metabolomics profiles

    PubMed Central

    Tian, Jun-sheng; Xia, Xiao-tao; Wu, Yan-fei; Zhao, Lei; Xiang, Huan; Du, Guan-hua; Zhang, Xiang; Qin, Xue-mei

    2016-01-01

    Individuals in the state of psychological suboptimal health keep increasing, only scales and questionnaires were used to diagnose in clinic under current conditions, and symptoms of high reliability and accuracy are destitute. Therefore, the noninvasive and precise laboratory diagnostic methods are needed. This study aimed to develop an objective method through screen potential biomarkers or a biomarker panel to facilitate the diagnosis in clinic using plasma metabolomics. Profiles were based on H-nuclear magnetic resonance (1H-NMR) metabolomics techniques combing with multivariate statistical analysis. Furthermore, methods of correlation analysis with Metaboanalyst 3.0 for selecting a biomarker panel, traditional Chinese medicine (TCM) drug intervention for validating the close relations between the biomarker panel and the state and the receiver operating characteristic curves (ROC curves) analysis for evaluation of clinical diagnosis ability were carried out. 9 endogenous metabolites containing trimethylamine oxide (TMAO), glutamine, N-acetyl-glycoproteins, citrate, tyrosine, phenylalanine, isoleucine, valine and glucose were identified and considered as potential biomarkers. Then a biomarker panel consisting of phenylalanine, glutamine, tyrosine, citrate, N-acetyl-glycoproteins and TMAO was selected, which exhibited the highest area under the curve (AUC = 0.971). This study provided critical insight into the pathological mechanism of psychological suboptimal health and would supply a novel and valuable diagnostic method. PMID:27650680

  4. A comparison of fasting plasma glucose and glucose challenge test for screening of gestational diabetes mellitus.

    PubMed

    Poomalar, G K; Rangaswamy, V

    2013-07-01

    Glucose challenge test (GCT) has been used as an effective screening test for gestational diabetes mellitus (GDM), though it has its own limitations. Hence, we assessed the effectiveness of fasting plasma glucose (FPG) as a simpler alternative procedure. A prospective study was done in 500 pregnant women with gestational age between 22 and 37 weeks. FPG, GCT and GTT were performed in all patients using the glucose oxidase/peroxidase method. The overall sensitivity and specificity of GCT were 75.0% and 92.0%, respectively and the corresponding values for FPG were 88.8% and 95.2%. The positive predictive value and negative predictive value were 42.2% and 97.9% for GCT and 59.2% and 99.1% for FPG, respectively. We conclude that FPG can be used as an effective screening tool for gestational diabetes mellitus.

  5. Dynamin 2 regulates biphasic insulin secretion and plasma glucose homeostasis

    PubMed Central

    Fan, Fan; Ji, Chen; Wu, Yumei; Ferguson, Shawn M.; Tamarina, Natalia; Philipson, Louis H.; Lou, Xuelin

    2015-01-01

    Alterations in insulin granule exocytosis and endocytosis are paramount to pancreatic β cell dysfunction in diabetes mellitus. Here, using temporally controlled gene ablation specifically in β cells in mice, we identified an essential role of dynamin 2 GTPase in preserving normal biphasic insulin secretion and blood glucose homeostasis. Dynamin 2 deletion in β cells caused glucose intolerance and substantial reduction of the second phase of glucose-stimulated insulin secretion (GSIS); however, mutant β cells still maintained abundant insulin granules, with no signs of cell surface expansion. Compared with control β cells, real-time capacitance measurements demonstrated that exocytosis-endocytosis coupling was less efficient but not abolished; clathrin-mediated endocytosis (CME) was severely impaired at the step of membrane fission, which resulted in accumulation of clathrin-coated endocytic intermediates on the plasma membrane. Moreover, dynamin 2 ablation in β cells led to striking reorganization and enhancement of actin filaments, and insulin granule recruitment and mobilization were impaired at the later stage of GSIS. Together, our results demonstrate that dynamin 2 regulates insulin secretory capacity and dynamics in vivo through a mechanism depending on CME and F-actin remodeling. Moreover, this study indicates a potential pathophysiological link between endocytosis and diabetes mellitus. PMID:26413867

  6. Alcohol, postprandial plasma glucose, and prognosis of hepatocellular carcinoma

    PubMed Central

    Abe, Hiroshi; Aida, Yuta; Ishiguro, Haruya; Yoshizawa, Kai; Miyazaki, Tamihiro; Itagaki, Munenori; Sutoh, Satoshi; Aizawa, Yoshio

    2013-01-01

    AIM: To identify factors associated with prognosis of hepatocellular carcinoma (HCC) after initial therapy. METHODS: A total of 377 HCC patients who were newly treated at Katsushika Medical Center, Japan from January 2000 to December 2009 and followed up for > 2 years, or died during follow-up, were enrolled. The factors related to survival were first analyzed in 377 patients with HCC tumor stage T1-T4 using multivariate Cox proportional hazards regression analysis. A similar analysis was performed in 282 patients with tumor stage T1-T3. Additionally, factors associated with the period between initial and subsequent therapy were examined in 144 patients who did not show local recurrence. Finally, 214 HCC stage T1-T3 patients who died during the observation period were classified into four groups according to their alcohol consumption and postprandial glucose levels, and differences in their causes of death were examined. RESULTS: On multivariate Cox proportional hazards regression analysis, the following were significantly associated with survival: underlying liver disease stage [non-cirrhosis/Child-Pugh A vs B/C, hazard ratio (HR): 0.603, 95% CI: 0.417-0.874, P = 0.0079], HCC stage (T1/T2 vs T3/T4, HR: 0.447, 95% CI: 0.347-0.576, P < 0.0001), and mean postprandial plasma glucose after initial therapy (< 200 vs ≥ 200 mg/dL, HR: 0.181, 95% CI: 0.067-0.488, P = 0.0008). In T1-T3 patients, uninterrupted alcohol consumption after initial therapy (no vs yes, HR: 0.641, 95% CI: 0.469-0.877, P = 0.0055) was significant in addition to underlying liver disease stage (non-cirrhosis/Child-Pugh A vs B/C, HR: 0649, 95% CI: 0.476-0.885, P = 0.0068), HCC stage (T1 vs T2/T3, HR: 0.788, 95% CI: 0.653-0.945, P = 0.0108), and mean postprandial plasma glucose after initial therapy (< 200 mg/dL vs ≥ 200 mg/dL, HR: 0.502, 95% CI: 0.337-0.747, P = 0.0005). In patients without local recurrence, time from initial to subsequent therapy for newly emerging HCC was significantly longer in

  7. A mechanistic study to increase understanding of titanium dioxide nanoparticles-increased plasma glucose in mice.

    PubMed

    Hu, Hailong; Li, Li; Guo, Qian; Jin, Sanli; Zhou, Ying; Oh, Yuri; Feng, Yujie; Wu, Qiong; Gu, Ning

    2016-09-01

    Titanium dioxide nanoparticle (TiO2 NP) is an authorized food additive. Previous studies determined oral administration of TiO2 NPs increases plasma glucose in mice via inducing insulin resistance. An increase in reactive oxygen species (ROS) has been considered the possible mechanism of increasing plasma glucose. However, persistently high plasma glucose is also a mechanism of increasing ROS. This study aims to explore whether TiO2 NPs increase plasma glucose via ROS. We found after oral administration of TiO2 NPs, an increase in ROS preceded an increase in plasma glucose. Subsequently, mice were treated with two antioxidants (resveratrol and vitamin E) at the same time as oral administration of TiO2 NPs. Results showed resveratrol and vitamin E reduced TiO2 NPs-increased ROS. An increase in plasma glucose was also inhibited. Further research showed resveratrol and vitamin E inhibited the secretion of TNF-α and IL-6, and the phosphorylation of JNK and p38 MAPK, resulting in improved insulin resistance. These results suggest TiO2 NPs increased ROS levels, and then ROS activated inflammatory cytokines and phosphokinases, and thus induced insulin resistance, resulting in an increase in plasma glucose. Resveratrol and vitamin E can reduce TiO2 NPs-increased ROS and thereby inhibit an increase in plasma glucose in mice. PMID:27430421

  8. A mechanistic study to increase understanding of titanium dioxide nanoparticles-increased plasma glucose in mice.

    PubMed

    Hu, Hailong; Li, Li; Guo, Qian; Jin, Sanli; Zhou, Ying; Oh, Yuri; Feng, Yujie; Wu, Qiong; Gu, Ning

    2016-09-01

    Titanium dioxide nanoparticle (TiO2 NP) is an authorized food additive. Previous studies determined oral administration of TiO2 NPs increases plasma glucose in mice via inducing insulin resistance. An increase in reactive oxygen species (ROS) has been considered the possible mechanism of increasing plasma glucose. However, persistently high plasma glucose is also a mechanism of increasing ROS. This study aims to explore whether TiO2 NPs increase plasma glucose via ROS. We found after oral administration of TiO2 NPs, an increase in ROS preceded an increase in plasma glucose. Subsequently, mice were treated with two antioxidants (resveratrol and vitamin E) at the same time as oral administration of TiO2 NPs. Results showed resveratrol and vitamin E reduced TiO2 NPs-increased ROS. An increase in plasma glucose was also inhibited. Further research showed resveratrol and vitamin E inhibited the secretion of TNF-α and IL-6, and the phosphorylation of JNK and p38 MAPK, resulting in improved insulin resistance. These results suggest TiO2 NPs increased ROS levels, and then ROS activated inflammatory cytokines and phosphokinases, and thus induced insulin resistance, resulting in an increase in plasma glucose. Resveratrol and vitamin E can reduce TiO2 NPs-increased ROS and thereby inhibit an increase in plasma glucose in mice.

  9. Determining diabetes prevalence: a rational basis for the use of fasting plasma glucose concentrations?

    PubMed

    Finch, C F; Zimmet, P Z; Alberti, K G

    1990-08-01

    The World Health Organization and the National Diabetes Data Group each recommend a diagnostic cut-off point for diabetes of 7.8 mmol l-1 for fasting plasma glucose concentrations as part of the diagnostic criteria for epidemiological studies. However, this cut-off has been shown to be insensitive compared with a screening test based on 2-h plasma glucose levels. In thirteen Pacific populations, from four ethnic groups (Asian Indian, Melanesian, Micronesian, and Polynesian), we have examined whether a different cut-off point for fasting plasma glucose would be more accurate for obtaining an estimate of the prevalence of diabetes when compared with 2-h levels. A fasting plasma glucose diagnostic cut-off of 7.0 mmol l-1 gave an estimate of prevalence not significantly different from that based on the 2-h plasma glucose in 12 of the 13 populations (mean difference 0.27, range -1.51 to +2.44,%). On the other hand, when a cut-off of 7.8 mmol l-1 for fasting plasma glucose was used, the resulting prevalence over-estimated the 2-h glucose prevalence in all populations (mean difference 1.91, range 0.14-5.80,%). Thus for Pacific populations, a fasting plasma glucose cut-off of 7.0 mmol l-1 provides estimates of prevalence that are equivalent to those based on 2-h plasma glucose levels. In epidemiological studies designed to estimate diabetes prevalence, we recommend use of a fasting plasma glucose cut-off of 7.0 mmol l-1 in preference to a detection level of 7.8 mmol l-1, if glucose loading is not possible.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Interaction between facilitated diffusion of glucose across the plasma membrane and its metabolism in Trichomonas vaginalis.

    PubMed

    ter Kuile, B H; Müller, M

    1993-06-01

    The parasitic protist Trichomonas vaginalis transports glucose across the plasma membrane by facilitated diffusion. The Km of the transporter for glucose was 1.6 mM. The uptake of labelled glucose in a minimal medium not allowing growth reached saturation only after 2.5 h, indicating the turnover of storage carbohydrate. Organisms grown on glucose showed higher activities both of the transporter and of the subsequent metabolic pathway than organisms grown on maltose. At low external glucose concentrations the transport step was rate limiting, at higher levels a subsequent enzymatic step. The uptake mechanism for glucose of T. vaginalis resembled that of parasitic kinetoplastid protists and Entamoeba histolytica.

  11. Lack of correlation of glucose levels in filtered blood plasma to density and conductivity measurements.

    PubMed

    Gordon, David M; Ash, Stephen R

    2009-01-01

    The purpose of this research project was to determine whether the glucose level of a blood plasma sample from a diabetic patient could be predicted by measuring the density and conductivity of ultrafiltrate of plasma created by a 30,000 m.w. cutoff membrane. Conductivity of the plasma filtrate measures electrolyte concentration and should correct density measurements for changes in electrolytes and water concentration. In vitro studies were performed measuring conductivity and density of solutions of varying glucose and sodium chloride concentrations. Plasma from seven hospitalized patients with diabetes was filtered across a 30,000 m.w. cutoff membrane. The filtrate density and conductivity were measured and correlated to glucose levels. In vitro studies confirmed the ability to predict glucose from density and conductivity measurements, in varying concentrations of glucose and saline. In plasma filtrate, the conductivity and density measurements of ultrafiltrate allowed estimation of glucose in some patients with diabetes but not others. The correlation coefficient for the combined patient data was 0.45 which was significant but only explained 20% of the variability in the glucose levels. Individually, the correlation was significant in only two of the seven patients with correlation coefficients of 0.79 and 0.88. The reasons for lack of correlation are not clear, and cannot be explained by generation of idiogenic osmoles, effects of alcohol dehydrogenase, water intake, etc. This combination of physical methods for glucose measurement is not a feasible approach to measuring glucose in plasma filtrate.

  12. Quantifying the extent to which random plasma glucose underestimates diabetes prevalence in the Nauruan population.

    PubMed

    Finch, C F; Dowse, G K; Collins, V R; Zimmet, P Z

    1990-10-01

    The extent to which random plasma glucose levels underestimate the true prevalence of diabetes has been determined in Micronesian Nauruans. In 337 individuals who were screened on the basis of their random plasma glucose levels, the age-standardised prevalence based on a cut-off of 11.1 mmol/l underestimated the population prevalence based on a complete oral glucose tolerance test by 42% in males and 63% in females. At a cut-off level of 7.8 mmol/l the true age-standardised prevalence was underestimated by 16 and 38%, in males and females, respectively. The use of random plasma glucose concentrations to determine the prevalence of diabetes, as currently defined, seems inappropriate. Performing oral glucose tolerance tests on smaller representative population samples should provide more accurate data at less expense than through large-scale screening utilizing random glucose levels.

  13. Plasma cortisol and glucose concentrations in the striped mullet ( Mugil cephalus L.) subjected to intense handling stress

    NASA Astrophysics Data System (ADS)

    Hong, Wanshu

    1992-03-01

    The plasma cortisol and glucose concentrations were determined in mature female striped mullet ( Mugil cephalus L.) subjected to short term intense handling stress. The results indicated that plasma cortisol levels reached a peak 20 min after stress and declined gradually afterwards. The highest concentration of plasma glucose was observed 30 min after stress. The present study showed that the rise of plasma glucose was associated with the plasma cortisol levels.

  14. Plasma volume expansion from the intravenous glucose tolerance test before and after hip replacement surgery

    PubMed Central

    2013-01-01

    Background Hyperosmotic glucose is injected intravenously when an intravenous glucose tolerance test (IVGTT) is initiated. The extent and time period of plasma volume expansion that occurs in response to the glucose load has not been studied in the perioperative setting. Methods Twenty-two non-diabetic patients aged between 57 and 76 years (mean 68) underwent an IVGTT, during which 0.3 g/kg of glucose 30% (1 ml/kg) was injected as a bolus over one minute, one day before and two days after hip replacement surgery. Twelve blood samples were collected over 75 minutes from each patient. The turnover of both the exogenous glucose and the injected fluid volume was calculated by means of mass balance and volume kinetic analysis. Results The IVGTT raised plasma glucose by 9 mmol/L and the plasma volume by 8%. The extracellular fluid volume increased by 320 (SD 60) ml of which 2/3 could be accounted for in the plasma. The half-life of the exogenous glucose averaged 30 minutes before surgery and 36 minutes postoperatively (P < 0.02). The glucose elimination governed 86% of the decay of the plasma volume expansion, which occurred with a half-life of 12 minutes before to 21 minutes after the surgery (median, P < 0.001). Conclusion Hyperosmotic glucose translocated intracellular water to the plasma volume rather than to the entire extracellular fluid volume. The preferential re-distribution acts to dilute the plasma concentrations used to quantify insulin sensitivity and ß-cell function from an IVGTT. The greater-than-expected plasma dilution lasted longer after than before surgery. PMID:23978219

  15. Rapid rehydration and moderate plasma glucose elevation by fluid containing enzymatically synthesized glycogen.

    PubMed

    Inagaki, Kei; Ishihara, Kengo; Ishida, Mariko; Watanabe, Ai; Fujiwara, Mika; Komatsu, Yuko; Shirai, Mika; Kato, Yoshiho; Takanezawa, Ami; Furuyashiki, Takashi; Takata, Hiroki; Seyama, Yousuke

    2011-01-01

    Enzymatically synthesized glycogen (ESG) has high solubility and its solution has low osmotic pressure. Therefore ESG solution could be rapidly absorbed and could be adequate for water rehydration and carbohydrate supplementation during exercise. The object of this study was to evaluate the gastric emptying time and plasma glucose elevation after an administration of ESG solution in comparison with another carbohydrate solution by using a laboratory animal. Male BALB/c mice were administered 10% w/v solution of glucose, maltodextrin, starch, naturally synthesized glycogen (NSG) and ESG at a dose of 20 µL/g body weight for the measurement of gastric emptying rate (Experiment 1) and 10 µL/g body weight for the measurement of plasma glucose elevation (Experiment 2). The osmolarity of gastric content was lower in the ESG and maltodextrin group than the other carbohydrate group. Weight of gastric fluid was significantly lower in the ESG and water group than the glucose group (p<0.01). Plasma glucose level was significantly lower in the ESG group than the glucose group from 0 to 60 min after administration (p<0.01), whereas plasma glucose level was same from 60 to 120 min for the ESG and glucose group (p=0.948). In Experiment 3, BALB/c mice ran on a treadmill for 2 h and were administered 8% of ESG or glucose solution (1.75, 3.5 or 7.0 µL/g body weight) every 20 min during running. There was no difference in post-exercise muscle glycogen level. These data suggest that 1) ESG beverage does not disturb water absorption because of its short gastric emptying time and 2) ESG slowly elevates plasma glucose level and maintains it for a prolonged time compared to the glucose solution.

  16. Effects of oral administration of titanium dioxide fine-sized particles on plasma glucose in mice.

    PubMed

    Gu, Ning; Hu, Hailong; Guo, Qian; Jin, Sanli; Wang, Changlin; Oh, Yuri; Feng, Yujie; Wu, Qiong

    2015-12-01

    Titanium dioxide (TiO2) is an authorized additive used as a food colorant, is composed of nano-sized particles (NP) and fine-sized particles (FP). Previous study reported that oral administration of TiO2 NPs triggers an increase in plasma glucose of mice. However, no previous studies have focused on toxic effects of TiO2 FPs on plasma glucose homeostasis following oral administration. In the current study, mice were orally administered TiO2 FPs greater than 100 nm in size (64 mg/kg body weight per day), and effects on plasma glucose levels examined. Our results showed that titanium levels was not changed in mouse blood, livers and pancreases after mice were orally administered TiO2 FPs. Biochemical analyzes showed that plasma glucose and ROS levels were not affected by TiO2 FPs. Histopathological results showed that TiO2 FPs did not induce pathology changes in organs, especially plasma glucose homeostasis regulation organs, such as pancreas and liver. Western blotting showed that oral administration of TiO2 FPs did not induce insulin resistance (IR) in mouse liver. These results showed that, TiO2 FPs cannot be absorbed via oral administration and affect plasma glucose levels in mice. PMID:26472183

  17. Effects of oral administration of titanium dioxide fine-sized particles on plasma glucose in mice.

    PubMed

    Gu, Ning; Hu, Hailong; Guo, Qian; Jin, Sanli; Wang, Changlin; Oh, Yuri; Feng, Yujie; Wu, Qiong

    2015-12-01

    Titanium dioxide (TiO2) is an authorized additive used as a food colorant, is composed of nano-sized particles (NP) and fine-sized particles (FP). Previous study reported that oral administration of TiO2 NPs triggers an increase in plasma glucose of mice. However, no previous studies have focused on toxic effects of TiO2 FPs on plasma glucose homeostasis following oral administration. In the current study, mice were orally administered TiO2 FPs greater than 100 nm in size (64 mg/kg body weight per day), and effects on plasma glucose levels examined. Our results showed that titanium levels was not changed in mouse blood, livers and pancreases after mice were orally administered TiO2 FPs. Biochemical analyzes showed that plasma glucose and ROS levels were not affected by TiO2 FPs. Histopathological results showed that TiO2 FPs did not induce pathology changes in organs, especially plasma glucose homeostasis regulation organs, such as pancreas and liver. Western blotting showed that oral administration of TiO2 FPs did not induce insulin resistance (IR) in mouse liver. These results showed that, TiO2 FPs cannot be absorbed via oral administration and affect plasma glucose levels in mice.

  18. Post-glucose-load urinary C-peptide and glucose concentration obtained during OGTT do not affect oral minimal model-based plasma indices.

    PubMed

    Jainandunsing, Sjaam; Wattimena, J L Darcos; Rietveld, Trinet; van Miert, Joram N I; Sijbrands, Eric J G; de Rooij, Felix W M

    2016-05-01

    The purpose of this study was to investigate how renal loss of both C-peptide and glucose during oral glucose tolerance test (OGTT) relate to and affect plasma-derived oral minimal model (OMM) indices. All individuals were recruited during family screening between August 2007 and January 2011 and underwent a 3.5-h OGTT, collecting nine plasma samples and urine during OGTT. We obtained the following three subgroups: normoglycemic, at risk, and T2D. We recruited South Asian and Caucasian families, and we report separate analyses if differences occurred. Plasma glucose, insulin, and C-peptide concentrations were analyzed as AUCs during OGTT, OMM estimate of renal C-peptide secretion, and OMM beta-cell and insulin sensitivity indices were calculated to obtain disposition indices. Post-glucose load glucose and C-peptide in urine were measured and related to plasma-based indices. Urinary glucose corresponded well with plasma glucose AUC (Cau r = 0.64, P < 0.01; SA r = 0.69, P < 0.01), S I (Cau r = -0.51, P < 0.01; SA r = -0.41, P < 0.01), Φ dynamic (Cau r = -0.41, P < 0.01; SA r = -0.57, P < 0.01), and Φ oral (Cau r = -0.61, P < 0.01; SA r = -0.73, P < 0.01). Urinary C-peptide corresponded well to plasma C-peptide AUC (Cau r = 0.45, P < 0.01; SA r = 0.33, P < 0.05) and OMM estimate of renal C-peptide secretion (r = 0.42, P < 0.01). In general, glucose excretion plasma threshold for the presence of glucose in urine was ~10-10.5 mmol L(-1) in non-T2D individuals, but not measurable in T2D individuals. Renal glucose secretion during OGTT did not influence OMM indices in general nor in T2D patients (renal clearance range 0-2.1 %, with median 0.2 % of plasma glucose AUC). C-indices of urinary glucose to detect various stages of glucose intolerance were excellent (Cau 0.83-0.98; SA 0.75-0.89). The limited role of renal glucose secretion validates the neglecting of urinary glucose secretion in kinetic models of glucose homeostasis using plasma glucose concentrations. Both C

  19. Differential Responses of Plasma Adropin Concentrations To Dietary Glucose or Fructose Consumption In Humans.

    PubMed

    Butler, Andrew A; St-Onge, Marie-Pierre; Siebert, Emily A; Medici, Valentina; Stanhope, Kimber L; Havel, Peter J

    2015-10-05

    Adropin is a peptide hormone encoded by the Energy Homeostasis Associated (ENHO) gene whose physiological role in humans remains incompletely defined. Here we investigated the impact of dietary interventions that affect systemic glucose and lipid metabolism on plasma adropin concentrations in humans. Consumption of glucose or fructose as 25% of daily energy requirements (E) differentially affected plasma adropin concentrations (P < 0.005) irrespective of duration, sex or age. Glucose consumption reduced plasma adropin from 3.55 ± 0.26 to 3.28 ± 0.23 ng/ml (N = 42). Fructose consumption increased plasma adropin from 3.63 ± 0.29 to 3.93 ± 0.34 ng/ml (N = 45). Consumption of high fructose corn syrup (HFCS) as 25% E had no effect (3.43 ± 0.32 versus 3.39 ± 0.24 ng/ml, N = 26). Overall, the effect of glucose, HFCS and fructose on circulating adropin concentrations were similar to those observed on postprandial plasma triglyceride concentrations. Furthermore, increases in plasma adropin levels with fructose intake were most robust in individuals exhibiting hypertriglyceridemia. Individuals with low plasma adropin concentrations also exhibited rapid increases in plasma levels following consumption of breakfasts supplemented with lipids. These are the first results linking plasma adropin levels with dietary sugar intake in humans, with the impact of fructose consumption linked to systemic triglyceride metabolism. In addition, dietary fat intake may also increase circulating adropin concentrations.

  20. Differential Responses of Plasma Adropin Concentrations To Dietary Glucose or Fructose Consumption In Humans.

    PubMed

    Butler, Andrew A; St-Onge, Marie-Pierre; Siebert, Emily A; Medici, Valentina; Stanhope, Kimber L; Havel, Peter J

    2015-01-01

    Adropin is a peptide hormone encoded by the Energy Homeostasis Associated (ENHO) gene whose physiological role in humans remains incompletely defined. Here we investigated the impact of dietary interventions that affect systemic glucose and lipid metabolism on plasma adropin concentrations in humans. Consumption of glucose or fructose as 25% of daily energy requirements (E) differentially affected plasma adropin concentrations (P < 0.005) irrespective of duration, sex or age. Glucose consumption reduced plasma adropin from 3.55 ± 0.26 to 3.28 ± 0.23 ng/ml (N = 42). Fructose consumption increased plasma adropin from 3.63 ± 0.29 to 3.93 ± 0.34 ng/ml (N = 45). Consumption of high fructose corn syrup (HFCS) as 25% E had no effect (3.43 ± 0.32 versus 3.39 ± 0.24 ng/ml, N = 26). Overall, the effect of glucose, HFCS and fructose on circulating adropin concentrations were similar to those observed on postprandial plasma triglyceride concentrations. Furthermore, increases in plasma adropin levels with fructose intake were most robust in individuals exhibiting hypertriglyceridemia. Individuals with low plasma adropin concentrations also exhibited rapid increases in plasma levels following consumption of breakfasts supplemented with lipids. These are the first results linking plasma adropin levels with dietary sugar intake in humans, with the impact of fructose consumption linked to systemic triglyceride metabolism. In addition, dietary fat intake may also increase circulating adropin concentrations. PMID:26435060

  1. Sourdough-leavened bread improves postprandial glucose and insulin plasma levels in subjects with impaired glucose tolerance.

    PubMed

    Maioli, Mario; Pes, Giovanni Mario; Sanna, Manuela; Cherchi, Sara; Dettori, Mariella; Manca, Elena; Farris, Giovanni Antonio

    2008-06-01

    Sourdough bread has been reported to improve glucose metabolism in healthy subjects. In this study postprandial glycaemic and insulinaemic responses were evaluated in subjects with impaired glucose tolerance (IGT) who had a meal containing sourdough bread leavened with lactobacilli, in comparison to a reference meal containing bread leavened with baker yeast. Sixteen IGT subjects (age range 52-75, average BMI 29.9 +/- 4.2 kg/ m2) were randomly given a meal containing sourdough bread (A) and a meal containing the reference bread (B) in two separate occasions at the beginning of the study and after 7 days. Sourdough bread was leavened for 8 h using a starter containing autochthonous Saccharomyces cerevisiae and several bacilli able to produce a significant amount of D-and L-lactic acid, whereas the reference bread was leavened for 2 h with commercial baker yeast containing Saccharomyces cerevisiae. Plasma glucose and insulin levels were measured at time 0, 30, 60, 120, and 180 min. In IGT subjects sourdough bread induced a significantly lower plasma glucose response at 30 minutes (p = 0.048) and a smaller incremental area under curve (AUC) delta 0-30 and delta 0-60 min (p = 0.020 and 0.018 respectively) in comparison to the bread leavened with baker yeast. Plasma insulin response to this type of bread showed lower values at 30 min (p = 0.045) and a smaller AUC delta 0-30 min (p = 0.018). This study shows that in subjects with IGT glycaemic and insulinaemic responses after the consumption of sourdough bread are lower than after the bread leavened with baker yeast. This effect is likely due to the lactic acid produced during dough leavening as well as the reduced availability of simple carbohydrates. Thus, sour-dough bread may potentially be of benefit in subjects with impaired glucose metabolism.

  2. Glycaemia regulates the glucose transporter number in the plasma membrane of rat skeletal muscle.

    PubMed Central

    Dimitrakoudis, D; Ramlal, T; Rastogi, S; Vranic, M; Klip, A

    1992-01-01

    The number of glucose transporters was measured in isolated membranes from diabetic-rat skeletal muscle to determine the role of circulating blood glucose levels in the control of glucose uptake into skeletal muscle. Three experimental groups of animals were investigated in the post-absorptive state: normoglycaemic/normoinsulinaemic, hyperglycaemic/normoinsulinaemic and hyperglycaemic/normoinsulinaemic made normoglycaemic/normoinsulinaemic by phlorizin treatment. Hyperglycaemia caused a reversible decrease in total transporter number, as measured by cytochalasin B binding, in both plasma membranes and internal membranes of skeletal muscle. Changes in GLUT4 glucose transporter protein mirrored changes in cytochalasin B binding in plasma membranes. However, there was no recovery of GLUT4 levels in intracellular membranes with correction of glycaemia. GLUT4 mRNA levels decreased with hyperglycaemia and recovered only partially with correction of glycaemia. Conversely, GLUT1 glucose transporters were only detectable in the plasma membranes; the levels of this protein varied directly with glycaemia, i.e. in the opposite direction to GLUT4 glucose transporters. This study demonstrates that hyperglycaemia, in the absence of hypoinsulinaemia, is capable of down-regulating the glucose transport system in skeletal muscle, the major site of peripheral resistance to insulin-stimulated glucose transport in diabetes. Furthermore, correction of hyperglycaemia causes a complete restoration of the transport system in the basal state (determined by the transporter number in the plasma membrane), but possibly only an incomplete recovery of the transport system's ability to respond to insulin (since there is no recovery of GLUT4 levels in the intracellular membrane insulin-responsive transporter pool). Finally, the effect of hyperglycaemia is specific for glucose transporter isoforms, with GLUT1 and GLUT4 proteins varying respectively in parallel and opposite directions to levels of

  3. Evaluation of the serum fructosamine test to monitor plasma glucose concentration in the transition dairy cow.

    PubMed

    Sorondo, María L; Cirio, Alberto

    2009-05-01

    The usefulness of the serum fructosamine (Fser) to monitor the retrospective glucose concentrations in transitional dairy cows (n=17) was evaluated. In weekly blood samples (3 weeks before to 5 weeks after calving) concentrations of plasma glucose and serum fructosamine, beta-hydroxybutyrate (beta OHB) and total proteins were determined. The observed Fser concentrations (271+/-55 mean value, range 152-423 mumol/l) were within the range reported in the literature, and showed a progressive and significant decrease after calving. Mean plasma glucose concentration was 60.6+/-5.0 (range 39.9-82.2) mg/dl increasing from week 3 before calving to the week of calving and then decreasing during the next 5 weeks of lactation. This decrease was coincident with inverse relationships between plasma glucose and milk yield (P=0.03) and serum beta OHB (P<0.001). Linear regression analysis performed between serum fructosamine and (a) plasma glucose concentration of the same sampling and (b) plasma glucose concentration of 1, 2 and 3 weeks preceding the sampling, did not show significant and systematizing positive correlations. Persistent hypoproteinaemias that could affect the fructosamine concentrations were not found: mean value and range of serum proteins was 6.3+/-1.0 and 4.8-7.8 g/dl, respectively, and no correlation was found between serum proteins and Fser (P=0.26). Results did not support the possibility of retrospective monitoring of the plasma glucose concentration by serum fructosamine in dairy cows in the transition period.

  4. Higher fasting plasma glucose is associated with striatal and hippocampal shape differences: the 2sweet project

    PubMed Central

    Zhang, Tianqi; Shaw, Marnie; Humphries, Jacob; Sachdev, Perminder; Anstey, Kaarin J; Cherbuin, Nicolas

    2016-01-01

    Objective Previous studies have demonstrated associations between higher normal fasting plasma glucose levels (NFG) (<6.1 mmol/L), type 2 diabetes (T2D) and hippocampal atrophy and other cerebral abnormalities. Little is known about the association between plasma glucose and the striatum despite sensorimotor deficits being implicated in T2D. This study aimed to investigate the relationship between plasma glucose levels and striatal and hippocampal morphology using vertex-based shape analysis. Design A population-based, cross-sectional study. Setting Canberra and Queanbeyan, Australia. Participants 287 cognitively healthy individuals (mean age 63 years, 132 female, 273 Caucasian) with (n=261) or without T2D (n=26), selected from 2551 participants taking part in the Personality & Total Health (PATH) Through Life study by availability of glucose data, MRI scan, and absence of gross brain abnormalities and cognitive impairment. Outcome measures Fasting plasma glucose was measured at first assessment, and MRI images were collected 8 years later. Shape differences indicating outward and inward deformation at the hippocampus and the striatum were examined with FMRIB Software Library-Integrated Registration and Segmentation Toolbox (FSL-FIRST) after controlling for sociodemographic and health variables. Results Higher plasma glucose was associated with shape differences indicating inward deformation, particularly at the caudate and putamen, among participants with NFG after controlling for age, sex, body mass index (BMI), hypertension, smoking and depressive symptoms. Those with T2D showed shape differences indicating inward deformation at the right hippocampus and bilateral striatum, but outward deformation at the left hippocampus, compared with participants with NFG. Conclusions These findings further emphasize the importance of early monitoring and management of plasma glucose levels, even within the normal range, as a risk factor for cerebral atrophy. PMID

  5. Plasma glucose responses in recreational divers with insulin-requiring diabetes.

    PubMed

    Dear, G de L; Pollock, N W; Uguccioni, D M; Dovenbarger, J; Feinglos, M N; Moon, R E

    2004-01-01

    Insulin-requiring diabetes mellitus (IRDM) is commonly described as an absolute contraindication to scuba diving. A 1993 Divers Alert Network survey, however, identified many active IRDM divers. We report on the plasma glucose response to recreational diving in IRDM divers. Plasma glucose values were collected before and after diving in IRDM and healthy control divers. Time/depth profiles of 555 dives in IRDM divers were recorded. IRDM divers had been diving for a mean of almost nine years and had diabetes for a mean of over 15 years. No symptoms or complications related to hypoglycemia were reported (or observed). Post-dive plasma glucose fell below 70 mg x dL(-1) in 7% (37/555) of the IRDM group dives compared to 1% (6/504) of the controls (p<0.05). Moderate levels of hyperglycemia were also noted in 23 divers with IRDM on 84 occasions. While large plasma glucose swings from pre-dive to post-dive were noted, our observations indicate that plasma glucose levels, in moderately-controlled IRDM, can be managed to avoid hypoglycemia during routine recreational dives under ordinary environmental conditions and low risk decompression profiles.

  6. An acute bout of whole body passive hyperthermia increases plasma leptin, but does not alter glucose or insulin responses in obese type 2 diabetics and healthy adults.

    PubMed

    Rivas, Eric; Newmire, Dan E; Crandall, Craig G; Hooper, Philip L; Ben-Ezra, Vic

    2016-07-01

    Acute and chronic hyperthermic treatments in diabetic animal models repeatedly improve insulin sensitivity and glycemic control. Therefore, the purpose of this study was to test the hypothesis that an acute 1h bout of hyperthermic treatment improves glucose, insulin, and leptin responses to an oral glucose challenge (OGTT) in obese type 2 diabetics and healthy humans. Nine obese (45±7.1% fat mass) type 2 diabetics (T2DM: 50.1±12y, 7.5±1.8% HbA1c) absent of insulin therapy and nine similar aged (41.1±13.7y) healthy non-obese controls (HC: 33.4±7.8% fat mass, P<0.01; 5.3±0.4% HbA1c, P<0.01) participated. Using a randomized design, subjects underwent either a whole body passive hyperthermia treatment via head-out hot water immersion (1h resting in 39.4±0.4°C water) that increased internal temperature above baseline by ∆1.6±0.4°C or a control resting condition. Twenty-four hours post treatments, a 75g OGTT was administered to evaluate changes in plasma glucose, insulin, C-peptide, and leptin concentrations. Hyperthermia itself did not alter area under the curve for plasma glucose, insulin, or C-peptide during the OGTT in either group. Fasting absolute and normalized (kg·fat mass) plasma leptin was significantly increased (P<0.01) only after the hyperthermic exposure by 17% in T2DM and 24% in HC groups (P<0.001) when compared to the control condition. These data indicate that an acute hyperthermic treatment does not improve glucose tolerance 24h post treatment in moderate metabolic controlled obese T2DM or HC individuals. PMID:27264884

  7. Plasma Glucose Levels for Red Drum Sciaenops Ocellatus in a Florida Estuarine Fisheries Reserve

    NASA Technical Reports Server (NTRS)

    Bourtis, Carla M.; Francis-Floyd, Ruth; Boggs, Ashley S P.; Reyier, Eric A.; Stolen, Eric D.; Yanong, Roy P.; Guillette, Louis J., Jr.

    2015-01-01

    Despite the significant value of the southeastern United States' red drum (Sciaenops ocellatus) fishery, there is a lack of clinical blood chemistry data. This was the first study to assess plasma glucose values as an indicator of stress response to evaluate variation and the effect of reproductive activity for wild adult red drum in Florida. Red drum (n=126) were collected from NASA's Kennedy Space Center waters during three reproductive periods in 2011. Samples were obtained from the branchial vessels of the gill arch. Plasma glucose levels were significantly different among reproductive periods, with the highest mean values recorded during the spawning period, September- October (38.23 mg / dL +/- 10.0). The glucose range was 17 - 69 mg / dL. Glucose values were lower during all three periods than previous values recorded for cultured or captive red drum studies. This may indicate that fish from this population were under less stress than other populations previously sampled.

  8. Detecting Prediabetes and Diabetes: Agreement between Fasting Plasma Glucose and Oral Glucose Tolerance Test in Thai Adults

    PubMed Central

    Aekplakorn, Wichai; Tantayotai, Valla; Numsangkul, Sakawduan; Sripho, Wilarwan; Tatsato, Nutchanat; Burapasiriwat, Tuanjai; Pipatsart, Rachada; Sansom, Premsuree; Luckanajantachote, Pranee; Chawarokorn, Pongpat; Thanonghan, Anek; Lakhamkaew, Watchira; Mungkung, Aungsumalin; Boonkean, Rungnapa; Chantapoon, Chanidsa; Kungsri, Mayuree; Luanseng, Kasetsak; Chaiyajit, Kornsinun

    2015-01-01

    Aim. To evaluate an agreement in identifying dysglycemia between fasting plasma glucose (FPG) and the 2 hr postprandial glucose tolerance test (OGTT) in a population with high risk of diabetes. Methods. A total of 6,884 individuals aged 35–65 years recruited for a community-based diabetes prevention program were tested for prediabetes including impaired fasting glucose (IFG) or impaired glucose tolerance (IGT), and diabetes. The agreement was assessed by Kappa statistics. Logistic regression was used to examine factors associated with missed prediabetes and diabetes by FPG. Results. A total of 2671 (38.8%) individuals with prediabetes were identified. The prevalence of prediabetes identified by FPG and OGTT was 32.2% and 22.3%, respectively. The proportions of diabetes classified by OGTT were two times higher than those identified by FPG (11.0% versus 5.4%, resp.). The Kappa statistics for agreement of both tests was 0.55. Overall, FPG missed 46.3% of all prediabetes and 54.7% of all diabetes cases. Prediabetes was more likely to be missed by FPG among female, people aged <45 yrs, and those without family history of diabetes. Conclusion. The detection of prediabetes and diabetes using FPG only may miss half of the cases. Benefit of adding OGTT to FPG in some specific groups should be confirmed. PMID:26347060

  9. Real-time estimation of plasma insulin concentration from continuous glucose monitor measurements.

    PubMed

    de Pereda, Diego; Romero-Vivo, Sergio; Ricarte, Beatriz; Rossetti, Paolo; Ampudia-Blasco, Francisco Javier; Bondia, Jorge

    2016-01-01

    Continuous glucose monitors can measure interstitial glucose concentration in real time for closed-loop glucose control systems, known as artificial pancreas. These control systems use an insulin feedback to maintain plasma glucose concentration within a narrow and safe range, and thus to avoid health complications. As it is not possible to measure plasma insulin concentration in real time, insulin models have been used in literature to estimate them. Nevertheless, the significant inter- and intra-patient variability of insulin absorption jeopardizes the accuracy of these estimations. In order to reduce these limitations, our objective is to perform a real-time estimation of plasma insulin concentration from continuous glucose monitoring (CGM). Hovorka's glucose-insulin model has been incorporated in an extended Kalman filter in which different selected time-variant model parameters have been considered as extended states. The observability of the original Hovorka's model and of several extended models has been evaluated by their Lie derivatives. We have evaluated this methodology with an in-silico study with 100 patients with Type 1 diabetes during 25 h. Furthermore, it has been also validated using clinical data from 12 insulin pump patients with Type 1 diabetes who underwent four mixed meal studies. Real-time insulin estimations have been compared to plasma insulin measurements to assess performance showing the validity of the methodology here used in comparison with that formerly used for insulin models. Hence, real-time estimations for plasma insulin concentration based on subcutaneous glucose monitoring can be beneficial for increasing the efficiency of control algorithms for the artificial pancreas. PMID:26343364

  10. Serial plasma glucose changes in dogs suffering from severe dog bite wounds.

    PubMed

    Schoeman, J P; Kitshoff, A M; du Plessis, C J; Thompson, P N

    2011-03-01

    The objective of this study was to describe the changes in plasma glucose concentration in 20 severely injured dogs suffering from dog bite wounds over a period of 72 hours from the initiation of trauma. Historical, signalment, clinical and haematological factors were investigated for their possible effect on plasma glucose concentration. Haematology was repeated every 24 hours and plasma glucose concentrations were measured at 8-hourly intervals post-trauma. On admission, 1 dog was hypoglycaemic, 8 were normoglycaemic and 11 were hyperglycaemic. No dogs showed hypoglycaemia at any other stage during the study period. The median blood glucose concentrations at each of the 10 collection points, excluding the 56-hour and 64-hour collection points, were in the hyperglycaemic range (5.8- 6.2 mmol/l). Puppies and thin dogs had significantly higher median plasma glucose concentrations than adult and fat dogs respectively (P < 0.05 for both). Fifteen dogs survived the 72-hour study period. Overall 13 dogs (81.3 %) made a full recovery after treatment. Three of 4 dogs that presented in a collapsed state died, whereas all dogs admitted as merely depressed or alert survived (P = 0.004). The high incidence of hyperglycaemia can possibly be explained by the "diabetes of injury" phenomenon. However, hyperglycaemia in this group of dogs was marginal and potential benefits of insulin therapy are unlikely to outweigh the risk of adverse effects such as hypoglycaemia.

  11. A 1H NMR-Based Metabonomic Investigation of Time-Related Metabolic Trajectories of the Plasma, Urine and Liver Extracts of Hyperlipidemic Hamsters

    PubMed Central

    Yang, Liu; Miao, Zhao-xia; Wang, Ying-hong; Zhu, Hai-bo

    2013-01-01

    The hamster has been previously found to be a suitable model to study the changes associated with diet-induced hyperlipidemia in humans. Traditionally, studies of hyperlipidemia utilize serum- or plasma-based biochemical assays and histopathological evaluation. However, unbiased metabonomic technologies have the potential to identify novel biomarkers of disease. Thus, to obtain a better understanding of the progression of hyperlipidemia and discover potential biomarkers, we have used a proton nuclear magnetic resonance spectroscopy (1H-NMR)-based metabonomics approach to study the metabolic changes occurring in the plasma, urine and liver extracts of hamsters fed a high-fat/high-cholesterol diet. Samples were collected at different time points during the progression of hyperlipidemia, and individual proton NMR spectra were visually and statistically assessed using two multivariate analyses (MVA): principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA). Using the commercial software package Chenomx NMR suite, 40 endogenous metabolites in the plasma, 80 in the urine and 60 in the water-soluble fraction of liver extracts were quantified. NMR analysis of all samples showed a time-dependent transition from a physiological to a pathophysiological state during the progression of hyperlipidemia. Analysis of the identified biomarkers of hyperlipidemia suggests that significant perturbations of lipid and amino acid metabolism, as well as inflammation, oxidative stress and changes in gut microbiota metabolites, occurred following cholesterol overloading. The results of this study substantially broaden the metabonomic coverage of hyperlipidemia, enhance our understanding of the mechanism of hyperlipidemia and demonstrate the effectiveness of the NMR-based metabonomics approach to study a complex disease. PMID:23840531

  12. Interrelations between cerebrospinal fluid and plasma inorganic ions and glucose in patients with chronic renal failure.

    PubMed Central

    Pye, I F; Aber, G M

    1982-01-01

    The concentrations of inorganic ions and glucose in the plasma and CSF of 11 patients with "steady-state" chronic renal failure have been measured and their CSF: plasma interrelations studied. The results have been compared with the corresponding data from 34 control subjects. In the patients with renal failure, there was a positive correlation between raised CSF and plasma potassium concentrations. In contrast to the impaired potassium homeostasis, normal CSF magnesium and calcium concentrations were observed despite wide variations in the plasma concentrations of these ions. PMID:7085915

  13. Differential Responses of Plasma Adropin Concentrations To Dietary Glucose or Fructose Consumption In Humans

    PubMed Central

    Butler, Andrew A.; St-Onge, Marie-Pierre; Siebert, Emily A.; Medici, Valentina; Stanhope, Kimber L.; Havel, Peter J.

    2015-01-01

    Adropin is a peptide hormone encoded by the Energy Homeostasis Associated (ENHO) gene whose physiological role in humans remains incompletely defined. Here we investigated the impact of dietary interventions that affect systemic glucose and lipid metabolism on plasma adropin concentrations in humans. Consumption of glucose or fructose as 25% of daily energy requirements (E) differentially affected plasma adropin concentrations (P < 0.005) irrespective of duration, sex or age. Glucose consumption reduced plasma adropin from 3.55 ± 0.26 to 3.28 ± 0.23 ng/ml (N = 42). Fructose consumption increased plasma adropin from 3.63 ± 0.29 to 3.93 ± 0.34 ng/ml (N = 45). Consumption of high fructose corn syrup (HFCS) as 25% E had no effect (3.43 ± 0.32 versus 3.39 ± 0.24 ng/ml, N = 26). Overall, the effect of glucose, HFCS and fructose on circulating adropin concentrations were similar to those observed on postprandial plasma triglyceride concentrations. Furthermore, increases in plasma adropin levels with fructose intake were most robust in individuals exhibiting hypertriglyceridemia. Individuals with low plasma adropin concentrations also exhibited rapid increases in plasma levels following consumption of breakfasts supplemented with lipids. These are the first results linking plasma adropin levels with dietary sugar intake in humans, with the impact of fructose consumption linked to systemic triglyceride metabolism. In addition, dietary fat intake may also increase circulating adropin concentrations. PMID:26435060

  14. The Unscented Kalman Filter estimates the plasma insulin from glucose measurement.

    PubMed

    Eberle, Claudia; Ament, Christoph

    2011-01-01

    Understanding the simultaneous interaction within the glucose and insulin homeostasis in real-time is very important for clinical treatment as well as for research issues. Until now only plasma glucose concentrations can be measured in real-time. To support a secure, effective and rapid treatment e.g. of diabetes a real-time estimation of plasma insulin would be of great value. A novel approach using an Unscented Kalman Filter that provides an estimate of the current plasma insulin concentration is presented, which operates on the measurement of the plasma glucose and Bergman's Minimal Model of the glucose insulin homeostasis. We can prove that process observability is obtained in this case. Hence, a successful estimator design is possible. Since the process is nonlinear we have to consider estimates that are not normally distributed. The symmetric Unscented Kalman Filter (UKF) will perform best compared to other estimator approaches as the Extended Kalman Filter (EKF), the simplex Unscented Kalman Filter (UKF), and the Particle Filter (PF). The symmetric UKF algorithm is applied to the plasma insulin estimation. It shows better results compared to the direct (open loop) estimation that uses a model of the insulin subsystem.

  15. Plasma glucose kinetics and response of insulin and GIP following a cereal breakfast in female subjects: effect of starch digestibility

    PubMed Central

    Péronnet, F; Meynier, A; Sauvinet, V; Normand, S; Bourdon, E; Mignault, D; St-Pierre, D H; Laville, M; Rabasa-Lhoret, R; Vinoy, S

    2015-01-01

    Background/Objectives: Foods with high contents of slowly digestible starch (SDS) elicit lower glycemic responses than foods with low contents of SDS but there has been debate on the underlying changes in plasma glucose kinetics, that is, respective contributions of the increase in the rates of appearance and disappearance of plasma glucose (RaT and RdT), and of the increase in the rate of appearance of exogenous glucose (RaE) and decrease in endogenous glucose production (EGP). Subjects/Methods: Sixteen young healthy females ingested in random order four types of breakfasts: an extruded cereal (0.3% SDS: Lo-SDS breakfast) or one of three biscuits (39–45% SDS: Hi-SDS breakfasts). The flour in the cereal products was labeled with 13C, and plasma glucose kinetics were measured using [6,6-2H2]glucose infusion, along with the response of plasma glucose, insulin and glucose-dependent insulinotropic peptide (GIP) concentrations. Results: When compared with the Lo-SDS breakfast, after the three Hi-SDS breakfasts, excursions in plasma glucose, the response of RaE, RaT and RdT, and the reduction in EGP were significantly lower (P<0.05). The amount of exogenous glucose absorbed over the 4.5-h postprandial period was also significantly lower by ~31% (P<0.001). These differences were associated with lower responses of GIP and insulin concentrations. Conclusions: Substituting extruded cereals with biscuits slows down the availability of glucose from the breakfast and its appearance in peripheral circulation, blunts the changes in plasma glucose kinetics and homeostasis, reduces excursions in plasma glucose, and possibly distributes the glucose ingested over a longer period following the meal. PMID:25852025

  16. The “Metabolic Syndrome” Is Less Useful than Random Plasma Glucose to Screen for Glucose Intolerance

    PubMed Central

    El Bassuoni, Eman A.; Ziemer, David C.; Kolm, Paul; Rhee, Mary K.; Vaccarino, Viola; Tsui, Circe W.; Kaufman, Jack M.; Osinski, G. Eileen; Koch, David D.; Venkat Narayan, K. M.; Weintraub, William S.; Phillips, Lawrence S.

    2008-01-01

    Aims To compare the utility of metabolic syndrome (MetS) to random plasma glucose (RPG) in identifying people with diabetes or prediabetes. Methods RPG was measured and an OGTT was performed in 1,155 adults. Test performance was measured by are under the receiver-operating-characteristic curve (AROC). Results Diabetes was found in 5.1% and prediabetes in 20.0%. AROC for MetS with FPG was 0.80 to detect diabetes, and 0.76 for diabetes or prediabetes – similar to RPG (0.82 and 0.72). However, the AROC for MetS excluding fasting plasma glucose (FPG) was lower: 0.69 for diabetes (p<0.01 vs. both RPG and MetS with FPG), and 0.69 for diabetes or prediabetes. AROCs for MetS with FPG and RPG were comparable and higher for recognizing diabetes in blacks vs. whites, and females vs. males. MetS with FPG was superior to RPG for identifying diabetes only in subjects with age <40 or BMI <25. Conclusions MetS features can be used to identify risk of diabetes, but predictive usefulness is driven largely by FPG. Overall, to identify diabetes or prediabetes in blacks and whites with varying age and BMI, MetS is no better than RPG – a more convenient and less expensive test. PMID:18779039

  17. Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats.

    PubMed

    Diepenbroek, Charlene; van der Plasse, Geoffrey; Eggels, Leslie; Rijnsburger, Merel; Feenstra, Matthijs G P; Kalsbeek, Andries; Denys, Damiaan; Fliers, Eric; Serlie, Mireille J; la Fleur, Susanne E

    2013-01-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is an effective therapy for obsessive compulsive disorder (OCD) and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc) influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation, for a period of 1 h. To assess the effects of stimulation on blood glucose and glucoregulatory hormones, blood samples were drawn before, during and after stimulation. Subsequently, all animals were used for quantitative assessment of Fos immunoreactivity in the lateral hypothalamic area (LHA) using computerized image analysis. DBS of the sNAc rapidly increased plasma concentrations of glucagon and glucose while sham stimulation and DBS outside the sNAc were ineffective. In addition, the increase in glucose was dependent on DBS intensity. In contrast, the DBS-induced increase in plasma corticosterone concentrations was independent of intensity and region, indicating that the observed DBS-induced metabolic changes were not due to corticosterone release. Stimulation of the sNAc with 200 μA increased Fos immunoreactivity in the LHA compared to sham or 100 μA stimulated animals. These data show that DBS of the sNAc alters glucose metabolism in a region- and intensity- dependent manner in association with neuronal activation in the LHA. Moreover, these data illustrate the need to monitor changes in glucose metabolism during DBS-treatment of OCD patients. PMID:24339800

  18. Plasma glucose, insulin and catecholamine responses to a Wingate test in physically active women and men.

    PubMed

    Vincent, Sophie; Berthon, Phanélie; Zouhal, Hassane; Moussa, Elie; Catheline, Michel; Bentué-Ferrer, Danièle; Gratas-Delamarche, Arlette

    2004-01-01

    The influence of gender on the glucose response to exercise remains contradictory. Moreover, to our knowledge, the glucoregulatory responses to anaerobic sprint exercise have only been studied in male subjects. Hence, the aim of the present study was to compare glucoregulatory metabolic (glucose and lactate) and hormonal (insulin, catecholamines and estradiol only in women) responses to a 30-s Wingate test, in physically active students. Eight women [19.8 (0.7) years] and eight men [22.0 (0.6) years] participated in a 30-s Wingate test on a bicycle ergometer. Plasma glucose, insulin, and catecholamine concentrations were determined at rest, at the end of both the warm-up and the exercise period and during the recovery (5, 10, 20, and 30 min). Results showed that the plasma glucose increase in response to a 30-s Wingate test was significantly higher in women than in men [0.99 (0.15) versus 0.33 (0.20) mmol l(-1) respectively, P<0.05]. Plasma insulin concentrations peaked at 10 min post-exercise and the increase between this time of recovery and the end of the warm-up was also significantly higher in women than in men [14.7 (2.9) versus 2.3 (1.9) pmol l(-1) respectively, P<0.05]. However, there was no gender difference concerning the catecholamine response. The study indicates a gender-related difference in post-exercise plasma glucose and insulin responses after a supramaximal exercise.

  19. Noninvasive measurement of plasma glucose from exhaled breath in healthy and type 1 diabetic subjects

    PubMed Central

    Oliver, Stacy R.; Ngo, Jerry; Flores, Rebecca; Midyett, Jason; Meinardi, Simone; Carlson, Matthew K.; Rowland, F. Sherwood; Blake, Donald R.; Galassetti, Pietro R.

    2011-01-01

    Effective management of diabetes mellitus, affecting tens of millions of patients, requires frequent assessment of plasma glucose. Patient compliance for sufficient testing is often reduced by the unpleasantness of current methodologies, which require blood samples and often cause pain and skin callusing. We propose that the analysis of volatile organic compounds (VOCs) in exhaled breath can be used as a novel, alternative, noninvasive means to monitor glycemia in these patients. Seventeen healthy (9 females and 8 males, 28.0 ± 1.0 yr) and eight type 1 diabetic (T1DM) volunteers (5 females and 3 males, 25.8 ± 1.7 yr) were enrolled in a 240-min triphasic intravenous dextrose infusion protocol (baseline, hyperglycemia, euglycemia-hyperinsulinemia). In T1DM patients, insulin was also administered (using differing protocols on 2 repeated visits to separate the effects of insulinemia on breath composition). Exhaled breath and room air samples were collected at 12 time points, and concentrations of ∼100 VOCs were determined by gas chromatography and matched with direct plasma glucose measurements. Standard least squares regression was used on several subsets of exhaled gases to generate multilinear models to predict plasma glucose for each subject. Plasma glucose estimates based on two groups of four gases each (cluster A: acetone, methyl nitrate, ethanol, and ethyl benzene; cluster B: 2-pentyl nitrate, propane, methanol, and acetone) displayed very strong correlations with glucose concentrations (0.883 and 0.869 for clusters A and B, respectively) across nearly 300 measurements. Our study demonstrates the feasibility to accurately predict glycemia through exhaled breath analysis over a broad range of clinically relevant concentrations in both healthy and T1DM subjects. PMID:21467303

  20. Changes in blood glucose and plasma insulin levels induced by bradykinin in anaesthetized rats

    PubMed Central

    Damas, Jacques; Hallet, Claude; Lefebvre, Pierre J

    2001-01-01

    The influence of bradykinin (BK) on blood glucose and plasma insulin levels was investigated in anaesthetized rats. Blood glucose level was dose-dependently increased by intravenous infusion of BK. This effect of BK was enhanced by captopril, an inhibitor of angiotensin-converting enzyme (ACE). Des-Arg9-bradykinin (DABK), a kinin B1 receptor agonist, did not modify blood glucose levels while the effect of BK was inhibited by Hoe-140, a kinin B2 receptor antagonist. The effect of BK was reduced by the NO-synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME), and by the cyclo-oxygenase inhibitor, indomethacin. The effect of BK was suppressed by the association of propranolol with phentolamine or phenoxybenzamine. It was also reduced by hexamethonium, a ganglion-blocking drug. In adrenalectomized rats, the infusion of BK slightly decreased blood glucose levels. The hyperglycaemic effect of adrenaline was suppressed by propranolol associated with phentolamine or phenoxybenzamine, but it was not modified by L-NAME. Infusion of BK did not modify plasma insulin levels. However, after phentolamine and propranolol, BK induced a transient 2 fold rise in plasma insulin levels. The release of insulin was dose-dependent and inhibited by Hoe-140. We conclude that infusion of BK induces, via a stimulation of B2 receptors, the release of NO and of prostanoids. The latter agents activate through a reflex pathway the release of catecholamines from the adrenal medulla. This release increases blood glucose levels and reduces plasma insulin levels. After adrenoceptor inhibition, BK induces a secretion of insulin, via the stimulation of B2 receptors. PMID:11704652

  1. The effect of insulin on plasma glucose concentrations, expression of hepatic glucose transporters and key gluconeogenic enzymes during the perinatal period in broiler chickens.

    PubMed

    Franssens, Lies; Lesuisse, Jens; Wang, Yufeng; Willems, Els; Willemsen, Hilke; Koppenol, Astrid; Guo, Xiaoquan; Buyse, Johan; Decuypere, Eddy; Everaert, Nadia

    2016-06-01

    Chickens have blood glucose concentrations that are twofold higher than those observed in mammals. Moreover, the insulin sensitivity seems to decrease with postnatal age in both broiler and layer chickens. However, little is known about the response of insulin on plasma glucose concentrations and mRNA abundance of hepatic glucose transporters 1, 2, 3, 8, 9 and 12 (GLUT1, 2, 3, 8, 9 and 12) and three regulatory enzymes of the gluconeogenesis, phosphoenolpyruvate carboxykinase 1 and 2 (PCK1 and 2) or fructose-1,6-biphosphatase 1 (FBP1) in chicks during the perinatal period. In the present study, broiler embryos on embryonic day (ED)16, ED18 or newly-hatched broiler chicks were injected intravenously with bovine insulin (1μg/g body weight (BW)) to examine plasma glucose response and changes in hepatic mRNA abundance of the GLUTs, PCK1 and 2 and FBP1. Results were compared with a non-treated control group and a saline-injected sham group. Plasma glucose levels of insulin-treated ED18 embryos recovered faster from their minimum level than those of insulin-treated ED16 embryos or newly-hatched chicks. In addition, at the minimum plasma glucose level seven hours post-injection (PI), hepatic GLUT2, FBP1 and PCK2 mRNA abundance was decreased in insulin-injected embryos, compared to sham and control groups, being most pronounced when insulin injection occurred on ED16. PMID:26723190

  2. The effect of insulin on plasma glucose concentrations, expression of hepatic glucose transporters and key gluconeogenic enzymes during the perinatal period in broiler chickens.

    PubMed

    Franssens, Lies; Lesuisse, Jens; Wang, Yufeng; Willems, Els; Willemsen, Hilke; Koppenol, Astrid; Guo, Xiaoquan; Buyse, Johan; Decuypere, Eddy; Everaert, Nadia

    2016-06-01

    Chickens have blood glucose concentrations that are twofold higher than those observed in mammals. Moreover, the insulin sensitivity seems to decrease with postnatal age in both broiler and layer chickens. However, little is known about the response of insulin on plasma glucose concentrations and mRNA abundance of hepatic glucose transporters 1, 2, 3, 8, 9 and 12 (GLUT1, 2, 3, 8, 9 and 12) and three regulatory enzymes of the gluconeogenesis, phosphoenolpyruvate carboxykinase 1 and 2 (PCK1 and 2) or fructose-1,6-biphosphatase 1 (FBP1) in chicks during the perinatal period. In the present study, broiler embryos on embryonic day (ED)16, ED18 or newly-hatched broiler chicks were injected intravenously with bovine insulin (1μg/g body weight (BW)) to examine plasma glucose response and changes in hepatic mRNA abundance of the GLUTs, PCK1 and 2 and FBP1. Results were compared with a non-treated control group and a saline-injected sham group. Plasma glucose levels of insulin-treated ED18 embryos recovered faster from their minimum level than those of insulin-treated ED16 embryos or newly-hatched chicks. In addition, at the minimum plasma glucose level seven hours post-injection (PI), hepatic GLUT2, FBP1 and PCK2 mRNA abundance was decreased in insulin-injected embryos, compared to sham and control groups, being most pronounced when insulin injection occurred on ED16.

  3. Taste-induced changes in plasma insulin and glucose turnover in lean and genetically obese rats.

    PubMed

    Ionescu, E; Rohner-Jeanrenaud, F; Proietto, J; Rivest, R W; Jeanrenaud, B

    1988-06-01

    Cephalic-phase insulin release (CPIR) and the changes in glucose turnover induced by saccharin ingestion were studied in freely moving lean and genetically obese fa/fa rats equipped with chronic catheters for blood sampling. Six-hour-fasted lean and obese rats were trained to drink 1 ml sodium saccharin (0.15%) or 1 ml glucose (70%), and blood samples were taken before and after the stimuli. As early as 1-1.5 min poststimulus, there was a significant increase in CPIR in lean and obese rats. The amplitude of the CPIR induced either by saccharin or by glucose in the obese rats was significantly higher than it was in the lean rats. The effect of saccharin ingestion on the hepatic glucose production (HGP) and the rate of glucose disappearance (Rd) was studied in 6-h-fasted lean and obese rats, under non-steady-state conditions, according to a method previously validated. Saccharin ingestion produced a significant increase in HGP and Rd in lean and obese rats compared with basal values. The saccharin-induced increments in HGP and Rd were higher in the obese than in the lean animals. We conclude that saccharin (through taste) appears to elicit parasympathetic (insulin release) and sympathetic (HGP increase) reflexes in lean and obese rats. These taste-induced changes in plasma insulin and glucose turnover are exaggerated in the obese rats and may participate in obesity and in insulin resistance of the overall syndrome.

  4. The validation of the Z-Scan technique for the determination of plasma glucose

    NASA Astrophysics Data System (ADS)

    Alves, Sarah I.; Silva, Elaine A. O.; Costa, Simone S.; Sonego, Denise R. N.; Hallack, Maira L.; Coppini, Ornela L.; Rowies, Fernanda; Azzalis, Ligia A.; Junqueira, Virginia B. C.; Pereira, Edimar C.; Rocha, Katya C.; Fonseca, Fernando L. A.

    2013-11-01

    Glucose is the main energy source for the human body. The concentration of blood glucose is regulated by several hormones including both antagonists: insulin and glucagon. The quantification of glucose in the blood is used for diagnosing metabolic disorders of carbohydrates, such as diabetes, idiopathic hypoglycemia and pancreatic diseases. Currently, the methodology used for this determination is the enzymatic colorimetric with spectrophotometric. This study aimed to validate the use of measurements of nonlinear optical properties of plasma glucose via the Z-Scan technique. For this we used samples of calibrator patterns that simulate commercial samples of patients (ELITech ©). Besides calibrators, serum glucose levels within acceptable reference values (normal control serum - Brazilian Society of Clinical Pathology and Laboratory Medicine) and also overestimated (pathological control serum - Brazilian Society of Clinical Pathology and Laboratory Medicine) were used in the methodology proposal. Calibrator dilutions were performed and determined by the Z-Scan technique for the preparation of calibration curve. In conclusion, Z-Scan method can be used to determinate glucose levels in biological samples with enzymatic colorimetric reaction and also to apply the same quality control parameters used in biochemistry clinical.

  5. Associations between plasma glucose and DSM-III-R cluster B personality traits in psychiatric outpatients.

    PubMed

    Svanborg, P; Mattila-Evenden, M; Gustavsson, P J; Uvnäs-Moberg, K; Asberg, M

    2000-01-01

    Associations between personality traits, measured with the Karolinska Scales of Personality, the Impulsiveness subscale from the Impulsiveness, Venturesomeness and Empathy (IVE) Inventory, and with self-assessed personality traits and disorders (SCID-II Screen Questionnaire), and plasma insulin, glucagon and glucose, respectively, were explored in a sample of 101 psychiatric outpatients of both sexes. No relationships between the peptide hormones and personality measures were found. However, fasting glucose values, which were all essentially within the normal biological variation, were significantly related to several personality measures. For males, a low blood glucose was associated with low stable general level of functioning, with high IVE Impulsiveness, and with self-assessed histrionic and narcissistic traits. High number of self-assessed personality traits for all cluster B personality disorders was strongly associated with high IVE Impulsiveness. The results of the present study support the generalizability of earlier findings from alcoholic impulsive offenders: in males, low blood glucose is associated with an extrovert and impulsive, acting-out behavior that includes the breaking of societal norms and rules. In contrast, for females a positive relationship between fasting glucose and self-assessed histrionic personality traits was found. Because no association between global level of functioning and glucose was found in women, these personality traits may not necessarily be maladaptive, as was the case for males.

  6. Carob pulp preparation rich in insoluble dietary fibre and polyphenols increases plasma glucose and serum insulin responses in combination with a glucose load in humans.

    PubMed

    Gruendel, Sindy; Otto, Baerbel; Garcia, Ada L; Wagner, Karen; Mueller, Corinna; Weickert, Martin O; Heldwein, Walter; Koebnick, Corinna

    2007-07-01

    Dietary fibre consumption is associated with improved glucose homeostasis. In contrast, dietary polyphenols have been suggested to exert both beneficial and detrimental effects on glucose and insulin metabolism. Recently, we reported that a polyphenol-rich insoluble dietary fibre preparation from carob pulp (carob fibre) resulted in lower postprandial acylated ghrelin levels after a liquid meal challenge test compared with a control meal without supplementation. The effects may, however, differ when a different food matrix is used. Thus, we investigated the effects of carob fibre on glucose, insulin and ghrelin responses in healthy humans in combination with a glucose load. In a randomized single-blind cross-over study involving twenty healthy subjects (aged 22-62 years), plasma glucose, total and acylated ghrelin, and serum insulin were repeatedly assessed before and after the ingestion of 200 ml water with 50 g glucose and 0, 5, 10 or 20 g carob fibre over a period of 180 min. The intake of 5 and 10 g carob fibre increased the plasma glucose by 47 % and 64 % (P < 0.001), and serum insulin by 19.9 and 24.8 % (P < 0.001), compared with the control. Plasma acylated ghrelin concentrations did not change significantly after the consumption of carob-enriched glucose solution. Total ghrelin decreased only after 10 g carob fibre (P < 0.001) compared with control. In conclusion, we showed that polyphenol-rich carob fibre, administered within a water-glucose solution, increases postprandial glucose and insulin responses, suggesting a deterioration in glycaemic control.

  7. Mediation of beta-endorphin by the isoflavone puerarin to lower plasma glucose in streptozotocin-induced diabetic rats.

    PubMed

    Chen, Wang-Chuan; Hayakawa, Satoshi; Yamamoto, Tatsuo; Su, Hui-Chen; Liu, I-Min; Cheng, Juei-Tang

    2004-02-01

    We investigate the mechanism(s) of plasma glucose lowering action of puerarin in streptozotocin-induced diabetic rats (STZ-diabetic rats). Puerarin at the effective dosage to lower higher plasma glucose increased plasma beta-endorphin-like immunoreactivity (BER) in STZ-diabetic rats. Both effects of puerarin were abolished by the pretreatment with prazosin. Also, puerarin enhanced BER release from isolated rat adrenal medulla in a concentration-dependent manner that can be abolished by prazosin. Moreover, bilateral adrenalectomy in STZ-diabetic rats eliminated the actions of puerarin including the plasma glucose lowering effect and plasma BER elevating effect. In addition, naloxone and naloxonazine inhibited the plasma glucose lowering action of puerarin. Unlike in wild-type diabetic mice, puerarin failed to lower the plasma glucose in opioid micro-receptor knockout diabetic mice. In conclusion, our results suggest that puerarin may activate alpha (1)-adrenoceptors on the adrenal gland to enhance the secretion of beta-endorphin to result in a decrease of plasma glucose in STZ-diabetic rats.

  8. Glucose-induced activation of the plasma membrane H(+)-ATPase in Fusarium oxysporum.

    PubMed

    Brandão, R L; Castro, I M; Passos, J B; Nicoli, J R; Thevelein, J M

    1992-08-01

    Addition of glucose and other sugars to derepressed cells of the fungus Fusarium oxysporum var. lini triggered activation of the plasma membrane H(+)-ATPase within 5 min. Glucose was the best activator while galactose and lactose had a lesser effect. The activation was not prevented by previous addition of cycloheximide and it was fully reversible when the glucose was removed. The activation process in vivo also caused changes in the kinetic properties of the enzyme. The non-activated enzyme had an apparent Km of about 3.2 mM for ATP whereas the activated enzyme showed an apparent Km of 0.26 mM. In addition, the pH optimum of the H(+)-ATPase changed from 6.0 to 7.5 upon activation. The activated enzyme was more sensitive to inhibition by vanadate. When F. oxysporum was cultivated in media containing glucose as the major carbon source, enhanced H(+)-ATPase activity was largely confined to the period corresponding to the lag phase, i.e. just before the start of acidification of the medium. This suggests that the activation process might play a role in the onset of extracellular acidification. Addition of glucose to F. oxysporum var. lini cells also caused an increase in the cAMP level. No reliable increase could be demonstrated for the other sugars. Addition of proton ionophores such as DNP and CCCP at pH 5.0 caused both a large increase in the intracellular level of cAMP and in the activity of the plasma membrane H(+)-ATPase. Inhibition of the DNP-induced increase in the cAMP level by acridine orange also resulted in inhibition of the activation of plasma membrane H(+)-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Postnatal Stress in Mice: Effects on Body Fat, Plasma Lipids, Glucose and Insulin.

    PubMed

    d'Amore, A; Caiola, S; Maroccia, E; Loizzo, A

    2000-01-01

    Mice pups were exposed to stressful stimuli everyday during the first 3 weeks of life. Body weight, food intake and spontaneous locomotor activity, triglycerides, cholesterol, phospholipids, glucose and insulin basal levels, as well as epididymal fat pad weight and its cell volume were measured in stressed and control animals. Results indicated that postnatal stressful manipulations induced an increase in body weight, epididymal fat pad weight and its cell volume, as well as in insulin, glucose, cholesterol and triglycerides plasma levels, at 4 months of age. No significant changes in food consumption, locomotor activity and phospholipids plasma levels were found. Present data suggest that early stressful manipulations may induce residual effects on lipid and glucid metabolism. PMID:27414054

  10. Spectral analysis of time functions of plasma glucose and immunoreactive insulin during intravenous glucose tolerance testing on atherosclerosis and noninsulin-dependent diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Malinov, Igor A.; Denisova, Tatyana P.; Malinova, Lidia I.; Brook, Sergey B.

    2000-04-01

    The time functions of plasma glucose and insulin obtained during intravenous glucose tolerance test were approximated by sections of Fourier series. The convincing quantitative and quality distinctions of amplitudes both phases of the first and second harmonics of decomposition of the indicated time functions are obtained. These distinctions were used as a basis of diagnostic algorithm of metabolic violations appropriate for atherosclerosis and non-insulin dependent diabetes mellitus in clinically obvious and preclinical stages.

  11. Effects of sauna and glucose intake on TSH and thyroid hormone levels in plasma of euthyroid subjects.

    PubMed

    Strbák, V; Tatár, P; Angyal, R; Strec, V; Aksamitová, K; Vigas, M; Jánosová, H

    1987-05-01

    The effect of sauna on thyroid function parameters and its modification by glucose was studied in young euthyroid male volunteers. A 30-minute stay in sauna resulted in an increase in plasma TSH; the response was exaggerated if glycemia had been increased by oral glucose intake at the beginning of the experiment. Plasma rT3 also increased in sauna, this response was, however, blunted by the higher glycemia. TSH response to sauna was definitely present in young men (aged 20 to 25) and absent in middle-aged ones (50 to 55). To explore the mechanism of the effect of increased glycemia, TRH tests were performed and dopamine infusions were administered with and without glucose pretreatment. Increased glycemia did not affect TSH and T3 response to TRH in young volunteers; however, 90 minutes after the administration, plasma rT3 levels were significantly lower in glucose pretreated subjects than in those receiving TRH injections after water pretreatment. Simultaneous infusion of glucose prevented the inhibitory effect of dopamine infusion on plasma TSH. It was concluded that glucose directly modulates the effect of sauna on plasma TSH at a suprapituitary level, while the inhibiting effect of glucose on plasma rT3 response to sauna and TRH is probably mediated by the insulin effect on thyroid hormone metabolism. PMID:3106755

  12. Simultaneous quantification of labeled (2)H5-glycerol, (13)C6-glucose, and endogenous D-glucose in mouse plasma using liquid chromatography tandem mass spectrometry.

    PubMed

    Jahouh, Farid; Wang, Rong

    2015-11-01

    Monitoring the level of glucose and glycerol or their labeled derivatives in biological fluid for kinetic studies has always been challenging, especially in mice, because of the limited volume in addition to the complexity of plasma. For such application, we developed a simple, fast, and sensitive method for the simultaneous measurement of absolute concentrations of labeled (2)H5-glycerol and (13)C6-glucose as well as endogenous D-glucose using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). In our study, 15.0 μL of mouse plasma was processed by a one-step protein precipitation, followed by LC-MS/MS analysis. The quantification of the analytes was carried out by monitoring the product ion scan of their corresponding deprotonated molecular ions and constructing the extracted ion fragmentogram by choosing a specific product ion for each analyte (equivalent to precursor ion to product ion transitions). The limit of detection (LOD) was evaluated to be 1.0 μM for both (2)H5-glycerol and (13)C6-glucose, and the limit of quantitation (LOQ) was observed to be 5.0 μM for both (2)H5-glycerol and (13)C6-glucose in diluted mice plasma that corresponds to 50 μM in plasma or 4.60 and 9.01 mg/dL of glycerol and glucose in plasma, respectively. The extraction recoveries are 81.9 % (CV = 8.1 %) for (2)H5-glycerol and 26.2 % (CV = 13.6 %) for (13)C6-glucose. PMID:26362155

  13. Diurnal Variation in Oral Glucose Tolerance: Blood Sugar and Plasma Insulin Levels Morning, Afternoon, and Evening

    PubMed Central

    Jarrett, R. J.; Baker, I. A.; Keen, H.; Oakley, N. W.

    1972-01-01

    Twenty-four subjects received three oral glucose tolerance tests, in the morning, afternoon, and evening of separate days. The mean blood sugar levels in the afternoon and evening tests were similar, and they were both significantly higher than those in the morning test. Plasma immunoreactive insulin levels, however, were highest in the morning test. The pattern of insulin levels during the afternoon and evening tests resembled that described as typical of maturity-onset diabetes. PMID:5058728

  14. Risk Factors and Plasma Glucose Profile of Gestational Diabetes in Omani Women

    PubMed Central

    Chitme, Havagiray R; Al Shibli, Sumaiya Abdallah Said; Al-Shamiry, Raya Mahmood

    2016-01-01

    Objectives We sought to conduct a detailed study on the risk factors of gestational diabetes mellitus (GDM) in Omani women to determine the actual and applicable risk factors and glucose profile in this population. Methods We conducted a cross-sectional case-control study using pregnant women diagnosed with GDM. Pregnant women without GDM were used as a control group. We collected information related to age, family history, prior history of pregnancy complications, age of marriage, age of first pregnancy, fasting glucose level, and oral glucose tolerance test (OGTT) results from three hospitals in Oman through face-to-face interviews and hospital records. Results The median age of women with GDM was 33 years old (p < 0.050). A significant risk was noted in women with a history of diabetes (p < 0.001), and those with mothers’ with a history of GDM. A significant (p < 0.010) relationship with a likelihood ratio of 43.9 was observed between the incidence of GDM in women with five or six pregnancies, a history of > 3 deliveries, height < 155 cm, and pregnancy or marriage at age < 18 years (p < 0.010). The mean difference in random plasma glucose, one-hour OGTT, and two-hour OGTT was significantly higher in GDM cases compared to control. Conclusions Glucose profile, family history, anthropometric profile, and age of first pregnancy and marriage should be considered while screening for GDM and determining the care needs of Omani women with GDM.

  15. Risk Factors and Plasma Glucose Profile of Gestational Diabetes in Omani Women

    PubMed Central

    Chitme, Havagiray R; Al Shibli, Sumaiya Abdallah Said; Al-Shamiry, Raya Mahmood

    2016-01-01

    Objectives We sought to conduct a detailed study on the risk factors of gestational diabetes mellitus (GDM) in Omani women to determine the actual and applicable risk factors and glucose profile in this population. Methods We conducted a cross-sectional case-control study using pregnant women diagnosed with GDM. Pregnant women without GDM were used as a control group. We collected information related to age, family history, prior history of pregnancy complications, age of marriage, age of first pregnancy, fasting glucose level, and oral glucose tolerance test (OGTT) results from three hospitals in Oman through face-to-face interviews and hospital records. Results The median age of women with GDM was 33 years old (p < 0.050). A significant risk was noted in women with a history of diabetes (p < 0.001), and those with mothers’ with a history of GDM. A significant (p < 0.010) relationship with a likelihood ratio of 43.9 was observed between the incidence of GDM in women with five or six pregnancies, a history of > 3 deliveries, height < 155 cm, and pregnancy or marriage at age < 18 years (p < 0.010). The mean difference in random plasma glucose, one-hour OGTT, and two-hour OGTT was significantly higher in GDM cases compared to control. Conclusions Glucose profile, family history, anthropometric profile, and age of first pregnancy and marriage should be considered while screening for GDM and determining the care needs of Omani women with GDM. PMID:27602192

  16. Glucose ameliorates the metabolic profile and mitochondrial function of platelet concentrates during storage in autologous plasma

    PubMed Central

    Amorini, Angela M.; Tuttobene, Michele; Tomasello, Flora M.; Biazzo, Filomena; Gullotta, Stefano; De Pinto, Vito; Lazzarino, Giuseppe; Tavazzi, Barbara

    2013-01-01

    Background It is essential that the quality of platelet metabolism and function remains high during storage in order to ensure the clinical effectiveness of a platelet transfusion. New storage conditions and additives are constantly evaluated in order to achieve this. Using glucose as a substrate is controversial because of its potential connection with increased lactate production and decreased pH, both parameters triggering the platelet lesion during storage. Materials and methods In this study, we analysed the morphological status and metabolic profile of platelets stored for various periods in autologous plasma enriched with increasing glucose concentrations (13.75, 27.5 and 55 mM). After 0, 2, 4, 6 and 8 days, high energy phosphates (ATP, GTP, ADP, AMP), oxypurines (hypoxanthine, xanthine, uric acid), lactate, pH, mitochondrial function, cell lysis and morphology, were evaluated. Results The data showed a significant dose-dependent improvement of the different parameters in platelets stored with increasing glucose, compared to what detected in controls. Interestingly, this phenomenon was more marked at the highest level of glucose tested and in the period of time generally used for platelet transfusion (0–6 days). Conclusion These results indicate that the addition of glucose during platelet storage ameliorates, in a dose-dependent manner, the biochemical parameters related to energy metabolism and mitochondrial function. Since there was no correspondence between glucose addition, lactate increase and pH decrease in our experiments, it is conceivable that platelet derangement during storage is not directly caused by glucose through an increase of anaerobic glycolysis, but rather to a loss of mitochondrial functions caused by reduced substrate availability. PMID:22682337

  17. Titanium dioxide nanoparticles increase plasma glucose via reactive oxygen species-induced insulin resistance in mice.

    PubMed

    Hu, Hailong; Guo, Qian; Wang, Changlin; Ma, Xiao; He, Hongjuan; Oh, Yuri; Feng, Yujie; Wu, Qiong; Gu, Ning

    2015-10-01

    There have been few reports about the possible toxic effects of titanium dioxide (TiO2 ) nanoparticles on the endocrine system. We explored the endocrine effects of oral administration to mice of anatase TiO2 nanoparticles (0, 64 and 320 mg kg(-1) body weight per day to control, low-dose and high-dose groups, respectively, 7 days per week for 14 weeks). TiO2 nanoparticles were characterized by scanning and transmission electron microscopy (TEM) and dynamic light scattering (DLS), and their physiological distribution was investigated by inductively coupled plasma. Biochemical analyzes included plasma glucose, insulin, heart blood triglycerides (TG), free fatty acid (FFA), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6 and reactive oxygen species (ROS)-related markers (total SOD, GSH and MDA). Phosphorylation of IRS1, Akt, JNK1, and p38 MAPK were analyzed by western blotting. Increased titanium levels were found in the liver, spleen, small intestine, kidney and pancreas. Biochemical analyzes showed that plasma glucose significantly increased whereas there was no difference in plasma insulin secretion. Increased ROS levels were found in serum and the liver, as evidenced by reduced total SOD activity and GSH level and increased MDA content. Western blotting showed that oral administration of TiO2 nanoparticles induced insulin resistance (IR) in mouse liver, shown by increased phosphorylation of IRS1 (Ser307) and reduced phosphorylation of Akt (Ser473). The pathway by which TiO2 nanoparticles increase ROS-induced IR were included in the inflammatory response and phosphokinase, as shown by increased serum levels of TNF-α and IL-6 and increased phosphorylation of JNK1 and p38 MAPK in liver. These results show that oral administration of TiO2 nanoparticles increases ROS, resulting in IR and increasing plasma glucose in mice.

  18. Mediation of Endogenous β-endorphin by Tetrandrine to Lower Plasma Glucose in Streptozotocin-induced Diabetic Rats

    PubMed Central

    2004-01-01

    The role of β-endorphin in the plasma glucose-lowering action of tetrandrine in streptozotocin-induced diabetic rats (STZ-diabetic rats) was investigated. The plasma glucose concentration was assessed by the glucose oxidase method. The enzyme-linked immunosorbent assay was used to determine the plasma level of β-endorphin-like immunoreactivity (BER). The mRNA levels of glucose transporter subtype 4 (GLUT4) in soleus muscle and phosphoenolpyruvate carboxykinase (PEPCK) in the liver of STZ-diabetic rats were detected by Northern blotting analysis. The expressed protein of GLUT4 or PEPCK was characterized by Western blotting analysis. Tetrandrine dose-dependently increased plasma BER in a manner parallel to the decrease of plasma glucose in STZ-diabetic rats. Moreover, the plasma glucose-lowering effect of tetrandrine was inhibited by naloxone and naloxonazine at doses sufficient to block opioid μ-receptors. Further, tetrandrine failed to produce plasma glucose-lowering action in opioid μ-receptor knockout diabetic mice. Bilateral adrenalectomy eliminated the plasma glucose-lowering effect and plasma BER-elevating effect of tetrandrine in STZ-diabetic rats. Both effects were abolished by treatment with hexamethonium or pentolinium at doses sufficient to block nicotinic receptors. Tetrandrine enhanced BER release directly from the isolated adrenal medulla of STZ-diabetic rats and this action was abolished by the blockade of nicotinic receptors. Repeated intravenous administration of tetrandrine (1.0 mg/kg) to STZ-diabetic rats for 3 days resulted in an increase in the mRNA and protein levels of the GLUT4 in soleus muscle, in addition to the lowering of plasma glucose. Similar treatment with tetrandrine reversed the elevated mRNA and protein levels of PEPCK in the liver of STZ-diabetic rats. The obtained results suggest that tetrandrine may induce the activation of nicotinic receptors in adrenal medulla to enhance the secretion of β-endorphin, which could

  19. Plasma glucose response and glycemic indices in pigs fed diets differing in in vitro hydrolysis indices.

    PubMed

    Giuberti, G; Gallo, A; Masoero, F

    2012-07-01

    Different dietary starch sources can have a great impact in determining starch digestion potential, thus influencing the postprandial blood glucose response. Our objectives were to define: (i) the incremental plasma glucose response in pigs fed diets containing various sources of starch differing in in vitro digestion patterns, (ii) the in vivo glycemic index (GI) values for the same diets, (iii) the possible relationship between in vitro and in vivo data. Diets, formulated with 70% of starch from five heterogeneous sources, were characterized in depth by using two distinct in vitro evaluations. The first one was based on the Englyst-assay for nutritional classification of starch fractions, whereas the second one was based on a time-course multi-enzymatic assay up to 180 min from which the hydrolysis indices (HIs) were calculated and used as a link between the physicochemical properties of starch from diets and the in vivo responses. For the in vivo study, five jugular-catheterized pigs (35.3 ± 1.1 kg body weight) were fed one of the five diets for 6-day periods in a 5 × 5 Latin square design. On day 5, blood was collected for 8 h postprandially for evaluating glucose appearance. On day 6, blood was collected for 3 h postprandially for the estimation of the GI. Starchy diets differed for rapidly digestible starch (from 8.6% to 79.8% of total starch (TS)) and resistant starch contents (from 72.5% to 4.5% of TS). Wide between-diets variations were recorded for all the kinetic parameters and for the HI calculated from the in vitro digestion curves (P < 0.05). On the basis of the obtained HI, diets contained starch with a very low to a very high in vitro digestion potential (ranging from 26.7% to 100.0%; P < 0.05). The glucose response differed among diets (P < 0.05), with marked differences between 15 and 120 min postprandial. Overall, the ranking of incremental glucose appearance among diets agreed with their in vitro HI classification: high HI diets increased

  20. The effect of different alcoholic beverages on blood alcohol levels, plasma insulin and plasma glucose in humans.

    PubMed

    Nogueira, L C; Couri, S; Trugo, N F; Lollo, P C B

    2014-09-01

    In the present work we studied the effects of four alcoholic beverages on blood alcohol levels, plasma insulin concentrations and plasma glucose concentrations in men and women. The volunteers were healthy non-smokers and they were divided according to sex into two groups of ten individuals. The alcoholic beverages used in the study were beer, red wine, whisky and "cachaça". In men, ingestion of the distilled drinks promoted a spike in blood alcohol levels more quickly than ingestion of the fermented drinks. In women, beer promoted the lowest blood alcohol levels over the 6h of the experiment. Whisky promoted highest blood alcohol levels in both sexes. The ingestion of wine promoted a significant difference in relation to the blood alcohol concentration (BAC) as a function of gender. The ingestion of cachaça by women produced BAC levels significantly smaller than those obtained for wine.

  1. Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice.

    PubMed

    Seo, Kwon-Il; Choi, Myung-Sook; Jung, Un Ju; Kim, Hye-Jin; Yeo, Jiyoung; Jeon, Seon-Min; Lee, Mi-Kyung

    2008-09-01

    We investigated the effect of curcumin on insulin resistance and glucose homeostasis in male C57BL/KsJ-db/db mice and their age-matched lean non-diabetic db/+ mice. Both db/+ and db/db mice were fed with or without curcumin (0.02%, wt/wt) for 6 wks. Curcumin significantly lowered blood glucose and HbA 1c levels, and it suppressed body weight loss in db/db mice. Curcumin improved homeostasis model assessment of insulin resistance and glucose tolerance, and elevated the plasma insulin level in db/db mice. Hepatic glucokinase activity was significantly higher in the curcumin-supplemented db/db group than in the db/db group, whereas glucose-6-phosphatase and phosphoenolpyruvate carboxykinase activities were significantly lower. In db/db mice, curcumin significantly lowered the hepatic activities of fatty acid synthase, beta-oxidation, 3-hydroxy-3-methylglutaryl coenzyme reductase, and acyl-CoA: cholesterol acyltransferase. Curcumin significantly lowered plasma free fatty acid, cholesterol, and triglyceride concentrations and increased the hepatic glycogen and skeletal muscle lipoprotein lipase in db/db mice. Curcumin normalized erythrocyte and hepatic antioxidant enzyme activities (superoxide dismutase, catalase, gluthathione peroxidase) in db/db mice that resulted in a significant reduction in lipid peroxidation. However, curcumin showed no effect on the blood glucose, plasma insulin, and glucose regulating enzyme activities in db/+ mice. These results suggest that curcumin seemed to be a potential glucose-lowering agent and antioxidant in type 2 diabetic db/db mice, but had no affect in non-diabetic db/+ mice.

  2. Effect of consumption of micronutrient enriched wheat steamed bread on postprandial plasma glucose in healthy and type 2 diabetic subjects

    PubMed Central

    2013-01-01

    Background Steamed wheat bread have previously been shown to induce comparatively high postprandial plasma glucose responses, on the contrary, buckwheat products induced lower postprandial plasma glucose. The present study was to assess the effects of micronutrient enriched bread wheat variety Jizi439 and buckwheat on postprandial plasma glucose in healthy and diabetic subjects comparing with buckwheat and other bread wheat varieties. Methods Two experiments were conducted to study the effects of bread wheat variety Jizi439 on the postprandial plasma glucose levels of the randomly selected subjects. The first experiment involved three types of steamed bread with equivalent of 50 g available carbohydrate fed to 10 normal weight young healthy subjects. Two types of steamed bread were made from two purple-grain bread wheat varieties, Jizi439 and Chu20, respectively, and the third type was made from the mixture of different white grain wheat varieties. Plasma glucose levels of each subject were measured at 15, 30, 45, 60, 120 min after eating. Glucose was used as a reference, the total area under curve (AUC) and glycemic index (GI) was calculated for test meal. The second experiment was performed among ten type 2 diabetics who were served equivalent of 50 g available carbohydrate of steamed bread made from Jizi 439, the mixture of white grain bread wheat and buckwheat, respectively. The plasma glucose increment was determined two hours thereafter. Results In the first experiment, consumption of the steamed bread made from Jizi439 resulted in the least increase in plasma glucose and the GI was significantly lower than that of Chu20 and the mixture. In the second experiment, the average of postprandial 2 h plasma glucose increment of Jizi439 was 2.46 mmol/L which was significantly lower than that of the mixture of white wheat but was not significantly different from buckwheat. Conclusions The results indicated that consumption of Jizi439 steamed bread resulted in

  3. Effects of Cr methionine on glucose metabolism, plasma metabolites, meat lipid peroxidation, and tissue chromium in Mahabadi goat kids.

    PubMed

    Emami, A; Ganjkhanlou, M; Zali, A

    2015-03-01

    This study was designed to investigate the effects of chromium methionine (Cr-Met) on glucose metabolism, blood metabolites, meat lipid peroxidation, and tissue chromium (Cr) in Mahabadi goat kids. Thirty-two male kids (16.5 ± 2.8 kg BW, 4-5 months of age) were fed for 90 days in a completely randomized design with four treatments. Treatments were supplemented with 0 (control), 0.5, 1, and 1.5 mg Cr as Cr-Met/animal/daily. Blood samples were collected via heparin tubes from the jugular vein on 0, 21, 42, 63, and 90 days of experiment. On day 70, an intravenous glucose tolerance test (IVGTT) was conducted. At the end of the feeding trial, the kids were slaughtered, and the liver, kidney, and longissimus dorsi (LD) muscle samples were collected. Plasma glucose, insulin, and triglyceride concentrations were decreased by Cr supplementation (P < 0.05). LD muscle malondialdehyde (MDA) decreased, and plasma and tissue Cr contents increased with increasing supplemental Cr levels (P < 0.05). Plasma glucose concentrations at 30 and 60 min after glucose infusion were lower in the kids fed 1.5 mg Cr diet than the kids fed control diet (P < 0.05). The IVGTT indicated that the kids supplemented with 1.5 mg Cr had higher glucose clearance rate (K) and lower glucose half-life (T½; P < 0.05). Glucose area under the response curve (AUC) from 0 to 180 min after glucose infusion was decreased linearly (P < 0.01) by supplemental Cr. The results suggested that supplemental Cr may improve glucose utilization and lipid oxidation of meat in fattening kid.

  4. Plasma glucose, lactate, sodium, and potassium levels in children hospitalized with acute alcohol intoxication.

    PubMed

    Tõnisson, Mailis; Tillmann, Vallo; Kuudeberg, Anne; Väli, Marika

    2010-09-01

    The aim of our research was to study prevalence of changes in plasma levels of lactate, potassium, glucose, and sodium in relation to alcohol concentration in children hospitalized with acute alcohol intoxication (AAI). Data from 194 under 18-year-old children hospitalized to the two only children's hospital in Estonia over a 2-year period were analyzed. The pediatrician on call filled in a special form on the clinical symptoms of AAI; a blood sample was drawn for biochemical tests, and a urine sample taken to exclude narcotic intoxication. The most common finding was hyperlactinemia occurring in 66% of the patients (n=128) followed by hypokalemia (<3.5 mmol/L) in 50% (n=97), and glucose above of reference value (>6.1 mmol/L) in 40.2% of the children (n=78). Hypernatremia was present in five children. In conclusion, hyperlactinemia, hypokalemia, and glucose levels above of reference value are common biochemical findings in children hospitalized with acute AAI. PMID:20846615

  5. Multilayer film analysis for glucose in 1-microL samples of plasma.

    PubMed

    Neeley, W E; Zettner, A

    1983-12-01

    With the ultramicroanalytical system described here we can measure glucose in 1 microL of plasma or serum. The sample is placed on a dry, multilayer film element (Eastman Kodak), where a colored spot about 3.5 mm in diameter develops. The reflectance of these spots is measured with a reflectance digital matrix photometer that was conceived, designed, and constructed in our laboratory. The spot is illuminated with monochromatic light and its image is projected by a camera lens onto the photosensitive surface of a linear photodiode array containing 512 individual photodetectors. The photodetector signals are processed by a computer to obtain the reflectance and diameter of the spot. The latter is proportional to sample volume. Because the reflectance of the spot does not depend greatly on sample volume, accurate pipetting is not required. The coefficients of variation of repeatable glucose analyses were, for 400, 3000, and 5120 mg/L, 1.7, 2.3, and 2.8%, respectively. The correlation coefficient (r) between glucose analyses by our method (y) and with the Ektachem 400 (x) was 0.9918; the regression equation was y = 1.07x - 94.3 mg/L. PMID:6640910

  6. Plasma kinetics of an LDL-like nanoemulsion and lipid transfer to HDL in subjects with glucose intolerance

    PubMed Central

    Bertato, Marina P; Oliveira, Carolina P; Wajchenberg, Bernardo L; Lerario, Antonio C; Maranhão, Raul C

    2012-01-01

    OBJECTIVE: Glucose intolerance is frequently associated with an altered plasma lipid profile and increased cardiovascular disease risk. Nonetheless, lipid metabolism is scarcely studied in normolipidemic glucose-intolerant patients. The aim of this study was to investigate whether important lipid metabolic parameters, such as the kinetics of LDL free and esterified cholesterol and the transfer of lipids to HDL, are altered in glucose-intolerant patients with normal plasma lipids. METHODS: Fourteen glucose-intolerant patients and 15 control patients were studied; none of the patients had cardiovascular disease manifestations, and they were paired for age, sex, race and co-morbidities. A nanoemulsion resembling a LDL lipid composition (LDE) labeled with 14C-cholesteryl ester and 3H-free cholesterol was intravenously injected, and blood samples were collected over a 24-h period to determine the fractional clearance rate of the labels by compartmental analysis. The transfer of free and esterified cholesterol, triglycerides and phospholipids from the LDE to HDL was measured by the incubation of the LDE with plasma and radioactivity counting of the supernatant after chemical precipitation of non-HDL fractions. RESULTS: The levels of LDL, non-HDL and HDL cholesterol, triglycerides, apo A1 and apo B were equal in both groups. The 14C-esterified cholesterol fractional clearance rate was not different between glucose-intolerant and control patients, but the 3H-free- cholesterol fractional clearance rate was greater in glucose-intolerant patients than in control patients. The lipid transfer to HDL was equal in both groups. CONCLUSION: In these glucose-intolerant patients with normal plasma lipids, a faster removal of LDE free cholesterol was the only lipid metabolic alteration detected in our study. This finding suggests that the dissociation of free cholesterol from lipoprotein particles occurs in normolipidemic glucose intolerance and may participate in atherogenic

  7. Effects of a sodium glucose co-transporter 2 selective inhibitor, ipragliflozin, on the diurnal profile of plasma glucose in patients with type 2 diabetes: A study using continuous glucose monitoring

    PubMed Central

    Yamada, Kentaro; Nakayama, Hitomi; Yoshinobu, Satoko; Kawano, Seiko; Tsuruta, Munehisa; Nohara, Masayuki; Hasuo, Rika; Akasu, Shoko; Tokubuchi, Ichiro; Wada, Nobuhiko; Hirao, Saori; Iwata, Shinpei; Kaku, Hiroo; Tajiri, Yuji

    2015-01-01

    Aims/Introduction To assess the effects of sodium glucose co-transporter 2 inhibitor therapy on the pathophysiology of type 2 diabetes. Materials and Methods We administered ipragliflozin to 21 inpatients with type 2 diabetes for 7 days, and analyzed the diurnal profiles of plasma glucose and 3-hydroxybutyrate. A total of 21 age-, sex- and body mass index-matched diabetic patients served as controls. Results Continuous glucose monitoring showed that the 24-h glucose curve was shifted downward without hypoglycemia by the administration of ipragliflozin. The average glucose level was reduced from 182 ± 54 mg/dL to 141 ± 33 mg/dL (P < 0.0001). The magnitude of the reduction was highly correlated with the baseline average glucose level. Homeostasis model assessment of insulin resistance was decreased, and homeostasis model assessment of β-cell function was increased during the treatment. Urinary glucose excretion was correlated with the average glucose level both on day 0 and on day 7, although the regression line was steeper and shifted leftward on day 7. The ipragliflozin-treated patients lost more weight than the control patients (1.4 ± 0.5 vs 0.5 ± 0.6 kg, P < 0.0001). Plasma levels of 3-hydroxybutyrate were significantly increased with peaks before breakfast and before dinner. Patient age and bodyweight loss were negatively and positively correlated with the peak levels of 3-hydroxybutyrate on day 7, respectively. Conclusions The ipragliflozin treatment improved the 24-h glucose curve without causing hypoglycemia. The close correlation between the magnitude of glucose reduction and the baseline plasma glucose concentration suggests that the risk of hypoglycemia is likely low. It might be prudent to monitor ketone body levels in younger patients and in patients with rapid weight loss. PMID:26543545

  8. Changes in plasma glucose in Otsuka Long-Evans Tokushima Fatty rats after oral administration of maple syrup.

    PubMed

    Nagai, Noriaki; Yamamoto, Tetsushi; Tanabe, Wataru; Ito, Yoshimasa; Kurabuchi, Satoshi; Mitamura, Kuniko; Taga, Atsushi

    2015-01-01

    We investigate whether maple syrup is a suitable sweetener in the management of type 2 diabetes using the Otsuka Long-Evans Tokushima Fatty (OLETF) rat. The enhancement in plasma glucose (PG) and glucose absorption in the small intestine were lower after the oral administration of maple syrup than after sucrose administration in OLETF rats, and no significant differences were observed in insulin levels. These data suggested that maple syrup might inhibit the absorption of glucose from the small intestine and preventing the enhancement of PG in OLETF rats. Therefore, maple syrup might help in the prevention of type 2 diabetes.

  9. Effects of aspartame and glucose administration on brain and plasma levels of large neutral amino acids and brain 5-hydroxyindoles.

    PubMed

    Yokogoshi, H; Roberts, C H; Caballero, B; Wurtman, R J

    1984-07-01

    Administration of the artificial sweetener aspartame (L-aspartylphenylalanylmethyl ester; 200 mg/kg) by gavage to rats caused large increments in brain and plasma levels of phenylalanine and its product tyrosine. Glucose administration (3 g/kg, by gavage, a dose sufficient to cause insulin-mediated reductions in plasma levels of the large neutral amino acids leucine, isoleucine, and valine) also elevated brain phenylalanine and tyrosine, and enhanced the increments caused by the aspartame, nearly doubling the rise in brain phenylalanine. Each animal's brain phenylalanine or tyrosine levels were highly correlated (r = 0.97 and 0.99, respectively) with its plasma phenylalanine or tyrosine ratios, affirming that aspartame's effects on the brain amino acids result from the changes it produces in plasma composition. As described previously, glucose consumption increased brain tryptophan levels, and consequently, brain levels of the 5-hydroxyindoles serotonin and 5-hydroxyindoleacetic acid. Aspartame alone had no effect on these compounds but completely blocked the changes in 5-hydroxyindoles caused by glucose. Each animal's brain level of tryptophan (r = 0.89) and 5-hydroxyindoles (r = 0.74) was also significantly correlated with its plasma tryptophan ratio, affirming that the effects of glucose or aspartame on these brain constituents also result from the changes they produce in plasma composition. The aspartame-glucose combination also reduced brain levels of leucine, isoleucine, and valine to a significantly greater extent than aspartame or glucose alone. These observations indicate that high aspartame doses can generate major neurochemical changes in rats, especially when consumed along with carbohydrate-containing foods. However, they should not in any way be interpreted as demonstrating that aspartame significantly affects the human brain.

  10. Temporal effects of infused corticosterone and aldosterone on plasma glucose levels in the American bullfrog (Rana catesbeiana).

    PubMed

    Broughton, R E; deRoos, R

    1984-02-01

    The effects of a single infusion of corticosterone or aldosterone on plasma glucose levels were compared in the American bullfrog (Rana catesbeiana). The corticoids were administered, and serial blood samples were collected, via a cannula placed in the common iliac artery. Plasma glucose was estimated by the glucose oxidase method. Plasma glucose levels were essentially unchanged from the time-zero levels at 3 hr after the infusion of 1.0 mg/100 g body wt of corticosterone. The levels subsequently increased to maxima that were approximately 45% greater than the time-zero levels at 9 through 24 hr and then declined to approximately the initial levels by 48 hr after treatment. Infusion of 0.24 mg/100 g body wt of aldosterone did not significantly alter plasma glucose levels. The results suggest that elevated circulating corticosterone is not involved in the primary hyperglycemic response to a stress, but may function synergistically and sequentially with elevated circulating catecholamines in subsequent compensatory adjustments.

  11. Modification of a traditional breakfast leads to increased satiety along with attenuated plasma increments of glucose, C-peptide, insulin, and glucose-dependent insulinotropic polypeptide in humans.

    PubMed

    Ohlsson, Bodil; Höglund, Peter; Roth, Bodil; Darwiche, Gassan

    2016-04-01

    Our hypothesis was that carbohydrate, fat, and protein contents of meals affect satiety, glucose homeostasis, and hormone secretion. The objectives of this crossover trial were to examine satiety, glycemic-insulinemic response, and plasma peptide levels in response to 2 different recommended diabetes diets with equivalent energy content. One traditional reference breakfast and one test breakfast, with lower carbohydrate and higher fat and protein content, were randomly administered to healthy volunteers (8 men, 12 women). Blood samples were collected, and satiety was scored on a visual analog scale before and 3 hours after meals. Plasma glucose was measured, and levels of C-peptide, ghrelin, glucagon, glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide (GIP), insulin, plasminogen activator inhibitor-1, and adipokines were analyzed by Luminex. Greater satiety, visual analog scale, and total and delta area under the curve (P < .001), and lower glucose postprandial peak (max) and change from baseline (dmax; P < .001) were observed after test meal compared with reference meal. Postprandial increments of C-peptide, insulin, and GIP were suppressed after test meal compared with reference meal (total delta area under the curve [P = .03, .006, and .004], delta area under the curve [P = .006, .003, and .02], max [P = .01, .007, and .002], and dmax [P = .004, .008, and .007], respectively). Concentrations of other peptides were similar between meals. A lower carbohydrate and higher fat and protein content provides greater satiety and attenuation of C-peptide, glucose, insulin, and GIP responses compared with the reference breakfast but does not affect adipokines, ghrelin, glucagon, glucagon-like peptide-1, and plasminogen activator inhibitor-1. PMID:27001281

  12. Oral green tea catechins transiently lower plasma glucose concentrations in female db/db mice.

    PubMed

    Wein, Silvia; Schrader, Eva; Rimbach, Gerald; Wolffram, Siegfried

    2013-04-01

    Polyphenols, including green tea catechins, are secondary plant compounds often discussed in the context of health-promoting potential. Evidence for such effects is mainly derived from epidemiological and cell culture studies. The aim of the present study was to investigate antidiabetic, antiadipogenic, and anti-inflammatory effects at nonpharmacological doses in an obese diabetic mouse model that exerts early relevant clinical signs of non-insulin-dependent diabetes mellitus. Female db/db mice received a flavonoid-poor diet either without additive, with rosiglitazone (RSG, 0.02 g/kg diet), or with green tea extract (low-dose green tea extract [LGTE] and high-dose green tea extract [HGTE], 0.1 and 1 g/kg diet). Food and water were freely available. The body weight was monitored weekly. Blood was sampled (12-h fasted) from the tail vein on day 28 and analyzed for glucose, cholesterol, triacylglycerol, nonesterified fatty acids, insulin, adiponectin, and soluble intercellular adhesion molecule-1 (sICAM-1). Blood glucose was also analyzed on day 14. Furthermore, sICAM-1 release was investigated in tumor necrosis factor alpha-stimulated EAhy926 cells. After 14 days, fasting glycemia was improved by RSG or HGTE supplementation compared to controls. However, at the end of the study (day 28), only RSG exhibited glucose-lowering effects and induced plasma adiponectin concentrations, paralleled by higher body weight gain and reduced periuterine fat pads compared to controls. However, only GTE treatment reduced sICAM-1 release in vitro and in vivo. Nonpharmacological HGTE supplementation in db/db mice caused (1) no adiponectin-inducing or antiadipogenic effects, (2) reduced sICAM-1 release, thereby potentially exerting anti-inflammatory effects in the progressive diabetic state, and (3) a transient improvement in glycemia.

  13. Oral green tea catechins transiently lower plasma glucose concentrations in female db/db mice.

    PubMed

    Wein, Silvia; Schrader, Eva; Rimbach, Gerald; Wolffram, Siegfried

    2013-04-01

    Polyphenols, including green tea catechins, are secondary plant compounds often discussed in the context of health-promoting potential. Evidence for such effects is mainly derived from epidemiological and cell culture studies. The aim of the present study was to investigate antidiabetic, antiadipogenic, and anti-inflammatory effects at nonpharmacological doses in an obese diabetic mouse model that exerts early relevant clinical signs of non-insulin-dependent diabetes mellitus. Female db/db mice received a flavonoid-poor diet either without additive, with rosiglitazone (RSG, 0.02 g/kg diet), or with green tea extract (low-dose green tea extract [LGTE] and high-dose green tea extract [HGTE], 0.1 and 1 g/kg diet). Food and water were freely available. The body weight was monitored weekly. Blood was sampled (12-h fasted) from the tail vein on day 28 and analyzed for glucose, cholesterol, triacylglycerol, nonesterified fatty acids, insulin, adiponectin, and soluble intercellular adhesion molecule-1 (sICAM-1). Blood glucose was also analyzed on day 14. Furthermore, sICAM-1 release was investigated in tumor necrosis factor alpha-stimulated EAhy926 cells. After 14 days, fasting glycemia was improved by RSG or HGTE supplementation compared to controls. However, at the end of the study (day 28), only RSG exhibited glucose-lowering effects and induced plasma adiponectin concentrations, paralleled by higher body weight gain and reduced periuterine fat pads compared to controls. However, only GTE treatment reduced sICAM-1 release in vitro and in vivo. Nonpharmacological HGTE supplementation in db/db mice caused (1) no adiponectin-inducing or antiadipogenic effects, (2) reduced sICAM-1 release, thereby potentially exerting anti-inflammatory effects in the progressive diabetic state, and (3) a transient improvement in glycemia. PMID:23514230

  14. Native fluorescence spectroscopy of blood plasma of rats with experimental diabetes: identifying fingerprints of glucose-related metabolic pathways

    NASA Astrophysics Data System (ADS)

    Shirshin, Evgeny; Cherkasova, Olga; Tikhonova, Tatiana; Berlovskaya, Elena; Priezzhev, Alexander; Fadeev, Victor

    2015-05-01

    We present the results of a native fluorescence spectroscopy study of blood plasma of rats with experimental diabetes. It was shown that the fluorescence emission band shape at 320 nm excitation is the most indicative of hyperglycemia in the blood plasma samples. We provide the interpretation of this fact based on the changes in reduced nicotinamide adenine dinucleotide phosphate concentration due to glucose-related metabolic pathways and protein fluorescent cross-linking formation following nonenzymatic glycation.

  15. Does sugar content matter? Blood plasma glucose levels in an occasional and a specialist avian nectarivore.

    PubMed

    Witteveen, Minke; Brown, Mark; Downs, Colleen T

    2014-01-01

    Nectar composition within a plant pollinator group can be variable, and bird pollinated plants can be segregated into two groups based on their adaptations to either a specialist or an occasional bird pollination system. Specialist nectarivores rely primarily on nectar for their energy requirements, while occasional nectarivores meet their energy requirements from nectar as well as from seeds, fruit and insects. Avian blood plasma glucose concentration (PGlu) is generally high compared with mammals. It is also affected by a range of factors including species, gender, age, ambient temperature, feeding pattern, reproductive status, circadian rhythm and moult status, among others. We examined whether sugar content affected PGlu of two avian nectarivores, a specialist nectarivore the Amethyst Sunbird Chalcomitra amethystina, and an occasional nectarivore the Cape White-eye Zosterops virens, when fed sucrose-hexose sugar solution diets of varying concentrations (5%-35%). Both species regulated PGlu within a range which was affected by sampling time (fed or fasted) and not dietary sugar concentration. The range in mean PGlu was broader in Amethyst Sunbirds (11.52-16.51mmol/L) compared with Cape White-eyes (14.33-15.85mmol/L). This suggests that these birds are not constrained by dietary sugar concentration with regard to PGlu regulation, and consequently selective pressure on plants for their nectar characteristics is due to reasons other than glucose regulation. PMID:24095723

  16. Amperometric biosensor based on glucose dehydrogenase and plasma-polymerized thin films.

    PubMed

    Hiratsuka, Atsunori; Fujisawa, Kohta; Muguruma, Hitoshi

    2008-04-01

    A novel design is described for an amperometric biosensor based on NAD(P)-dependent glucose dehydrogenase (GDH) combined with a plasma-polymerized thin film (PPF). The GDH is sandwiched between several nanometer thick acetonitrile PPFs on a sputtered gold electrode (PPF/GDH/PPF/Au). The lower PPF layer plays the role as an interface between enzyme and electrode because it is extremely thin, adheres well to the substrate (electrode), has a flat surface and a highly-crosslinked network structure, and is hydrophilic in nature. The upper PPF layer (overcoating) was directly deposited on immobilized GDH. The optimized amperometric biosensor characteristics covered 2.5-26 mM glucose concentration at +0.6 V of applied potential; the least-squares slope was 320 nA mM(-1) cm(-2) and the correlation coefficient was 0.990. Unlike conventional wet-chemical processes that are incompatible with mass production techniques, this dry-chemistry procedure has great potential for enabling high-throughput production of bioelectronic devices.

  17. Does sugar content matter? Blood plasma glucose levels in an occasional and a specialist avian nectarivore.

    PubMed

    Witteveen, Minke; Brown, Mark; Downs, Colleen T

    2014-01-01

    Nectar composition within a plant pollinator group can be variable, and bird pollinated plants can be segregated into two groups based on their adaptations to either a specialist or an occasional bird pollination system. Specialist nectarivores rely primarily on nectar for their energy requirements, while occasional nectarivores meet their energy requirements from nectar as well as from seeds, fruit and insects. Avian blood plasma glucose concentration (PGlu) is generally high compared with mammals. It is also affected by a range of factors including species, gender, age, ambient temperature, feeding pattern, reproductive status, circadian rhythm and moult status, among others. We examined whether sugar content affected PGlu of two avian nectarivores, a specialist nectarivore the Amethyst Sunbird Chalcomitra amethystina, and an occasional nectarivore the Cape White-eye Zosterops virens, when fed sucrose-hexose sugar solution diets of varying concentrations (5%-35%). Both species regulated PGlu within a range which was affected by sampling time (fed or fasted) and not dietary sugar concentration. The range in mean PGlu was broader in Amethyst Sunbirds (11.52-16.51mmol/L) compared with Cape White-eyes (14.33-15.85mmol/L). This suggests that these birds are not constrained by dietary sugar concentration with regard to PGlu regulation, and consequently selective pressure on plants for their nectar characteristics is due to reasons other than glucose regulation.

  18. Glucose metabolism in the amygdala in depression: relationship to diagnostic subtype and plasma cortisol levels.

    PubMed

    Drevets, Wayne C; Price, Joseph L; Bardgett, Mark E; Reich, Theodore; Todd, Richard D; Raichle, Marcus E

    2002-03-01

    In a previous positron emission tomography (PET) study of major depression, we demonstrated that cerebral blood flow was increased in the left amygdala in unipolar depressives with familial pure depressive disease (FPDD) relative to healthy controls [J. Neurosci. 12 (1992) 3628.]. These measures were obtained from relatively low-resolution PET images using a stereotaxic method based upon skull X-ray landmarks. The current experiments aimed to replicate and extend these results using higher-resolution glucose metabolism images and magnetic resonance imaging (MRI)-based region-of-interest (ROI) analysis. The specificity of this finding to FPDD was also investigated by assessing depressed samples with bipolar disorder (BD-D) and depression spectrum disease (DSD). Finally, the relationship between amygdala metabolism and plasma cortisol levels obtained during the scanning procedure was assessed. Glucose metabolism was measured using PET and 18F-fluorodeoxyglucose (18FDG) in healthy control (n=12), FPDD (n=12), DSD (n=9) and BD-D (n=7) samples in the amygdala and the adjacent hippocampus. The left amygdala metabolism differed across groups (P<.001), being increased in both the FPDD and BD-D groups relative to the control group. The left amygdala metabolism was positively correlated with stressed plasma cortisol levels in both the unipolar (r=.69; P<.005) and the bipolar depressives (r=0.68;.1plasma cortisol were evident in post hoc analyses of metabolism in the right amygdala or the hippocampus. Preliminary assessment of BD subjects imaged during remission suggested that amygdala metabolism is also elevated in remitted subjects who are not taking mood-stabilizing drugs, but within the normal range in subjects taking mood stabilizers. These data confirm our previous finding that neurophysiological activity is abnormally increased in FPDD, and extend it to BD-D. These

  19. Effects of clozapine administration on body weight, glucose tolerance, blood glucose concentrations, plasma lipids, and insulin in male C57BL/6 mice: A parallel controlled study

    PubMed Central

    Yuan, Hai-Yan; Liang, Hai-Xia; Liang, Guang-Rong; Zhang, Gui-Xiang; Li, Huan-De

    2008-01-01

    Background: Clozapine has been associated with metabolic adverse events (AEs) (eg, elevated body weight, blood glucose concentrations, cholesterol, triglycerides [TG]), all of which have deleterious effects on health and medication compliance. However, little focus has been directed toward finding a suitable experimental model to study the metabolic AEs associated with clozapine. Objective: The aim of this study was to assess the effects of clozapine administration for 28 days on body weight, glucose tolerance, blood glucose concentrations, plasma lipids, and insulin in C57BL/6 mice. Methods: C57BL/6 mice were grouped and treated with clozapine 2 or 10 mg/kg or vehicle intraperitoneally QD for 28 days. Body weight was assessed on days 0 (baseline), 7, 14, 21, and 28, and glucose tolerance, blood glucose concentrations, insulin (calculated by insulin resistance index [IRI]), and plasma lipids (including total cholesterol, TG, high-density lipoprotein cholesterol [HDL-C], and low-density lipoprotein cholesterol) were assessed on day 29. Results: Sixty 10-week-old, male C57BL/6 mice were included in the study and were divided into 3 groups (20 mice per group). The body weight significantly decreased in the clozapine 10-mg-treated group on days 14, 21, and 28 compared with the vehicle group (mean [SD] body weight: 21.61 [1.05] vs 22.79 [1.11], 22.53 [1.05] vs 24.17 [1.24], and 22.21 [1.07] vs 24.99 [1.39] g, respectively; all, P < 0.05). In the clozapine 10-mg/kg group, blood glucose concentrations significantly increased 0, 30, 60, and 120 minutes after glucose administration compared with the vehicle group (mean [SD]: 6.67 [1.25], 25.34 [5.85], 12.68 [3.39], and 7.52 [1.45] mmol/L, respectively, vs 4.61 [0.78], 21.54 [6.55], 11.46 [3.46], and 6.55 [1.42] mmol/L, respectively; all P < 0.05). The clozapine 10-mg/kg group also had significant increases in plasma insulin concentrations compared with the vehicle group (12.70 [5.27] vs 7.62 [4.54] μIU/mL; P < 0.05) and

  20. The effect of low zinc (Zn) intake on the plasma Zn response to a meal or glucose load

    SciTech Connect

    Hambidge, K.M.; Mellman, D.; Westcott, J.L. )

    1991-03-15

    The objective of this study was to test the hypothesis that the post-prandial net efflux of Zn from the plasma compartment is greater following a period of acute Zn deprivation. For 8 days, 5 healthy adults received their normal diet plus a 15 mg Zn supplement, following which they were fed a liquid synthetic egg albumin, high phytate diet providing less than 1 mg Zn per day for 8 days. On the 7th day on each diet, subjects were fed the low Zn liquid breakfast providing 240-400 kcal according to body weight. On the 8th day on each diet, subjects received an isocaloric quantity of glucose. Blood samples were collected before and for 6 hrs after both the test breakfast and glucose load. Post-prandial changes in plasma Zn were analyzed by a two-factor analysis of variance with repeated measures. Mean fasting plasma Zn did not change after a week of severe dietary Zn restriction. Post glucose decline in plasma Zn did not change significantly, but post-breakfast decline in plasma Zn was consistently greater across the 6 hr period. The maximal post-prandial decline was 11.6 {plus minus} 6.1 ug/dl in the control period and 19.3 {plus minus} 2.6 ug/dl in the Zn restricted period. It is concluded that the plasma Zn response is greater with a meal than with an equicaloric glucose load and that plasma Zn is more sensitive to a Zn restricted diet post-prandially than in the fasting state.

  1. The natural 13C abundance of plasma glucose is a useful biomarker of recent dietary caloric sweetener intake.

    PubMed

    Cook, Chad M; Alvig, Amy L; Liu, Yu Qiu David; Schoeller, Dale A

    2010-02-01

    There is a need for objective biomarkers of dietary intake, because self-reporting is often subject to bias. We tested the validity of a biomarker for the fraction of dietary carbohydrate (CHO) from cane sugar and high fructose corn syrup (C(4) sugars) using natural (13)C abundance of plasma glucose. In a randomized, single-blinded, crossover design, 5 participants consumed 3 weight-maintaining diets for 7 d, with a 2-wk washout between diet periods. Diets differed in the fraction of total CHO energy from C(4) sugars (5, 16, or 32%). During each diet period, blood samples were drawn at hours 0800 and 1600 on d 1, 3, and 5 and at 0800, 1000, 1200, 1400, and 1600 on d 7. The delta(13)C abundance of plasma glucose was analyzed via GC- isotope ratio MS. Within each diet period, delta(13)C abundance of the 0800 fasting glucose did not change from baseline with increasing time during a diet period; however, there was a strong positive correlation (R(2) = 0.89) between delta(13)C abundance of the glucose concentration at 1000 on d 7 and the percent of breakfast CHO from C(4) sugars. Also, delta(13)C abundance of the combined plasma glucose samples on d 7 demonstrated a strong positive correlation (R(2) = 0.90) with the percent of total daily CHO from C(4) sugars. The natural delta(13)C abundance of postprandial plasma glucose relative to dietary C(4) CHO content was a valid biomarker for contributions of C(4) caloric sweeteners from the previous meal. PMID:20018804

  2. The natural 13C abundance of plasma glucose is a useful biomarker of recent dietary caloric sweetener intake.

    PubMed

    Cook, Chad M; Alvig, Amy L; Liu, Yu Qiu David; Schoeller, Dale A

    2010-02-01

    There is a need for objective biomarkers of dietary intake, because self-reporting is often subject to bias. We tested the validity of a biomarker for the fraction of dietary carbohydrate (CHO) from cane sugar and high fructose corn syrup (C(4) sugars) using natural (13)C abundance of plasma glucose. In a randomized, single-blinded, crossover design, 5 participants consumed 3 weight-maintaining diets for 7 d, with a 2-wk washout between diet periods. Diets differed in the fraction of total CHO energy from C(4) sugars (5, 16, or 32%). During each diet period, blood samples were drawn at hours 0800 and 1600 on d 1, 3, and 5 and at 0800, 1000, 1200, 1400, and 1600 on d 7. The delta(13)C abundance of plasma glucose was analyzed via GC- isotope ratio MS. Within each diet period, delta(13)C abundance of the 0800 fasting glucose did not change from baseline with increasing time during a diet period; however, there was a strong positive correlation (R(2) = 0.89) between delta(13)C abundance of the glucose concentration at 1000 on d 7 and the percent of breakfast CHO from C(4) sugars. Also, delta(13)C abundance of the combined plasma glucose samples on d 7 demonstrated a strong positive correlation (R(2) = 0.90) with the percent of total daily CHO from C(4) sugars. The natural delta(13)C abundance of postprandial plasma glucose relative to dietary C(4) CHO content was a valid biomarker for contributions of C(4) caloric sweeteners from the previous meal.

  3. Elevation of plasma glucose, alanine, and urea levels by mammalian ACTH in the American bullfrog (Rana catesbeiana).

    PubMed

    Rosenthal, E J; deRoos, R

    1985-08-01

    The effects of a single infusion of mammalian ACTH on plasma glucose, alanine, urea, and lactate were determined in the American bullfrog (Rana catesbeiana). The ACTH (10 U/250 g body wt) was administered, and serial blood samples were collected via a nonocclusive cannula chronically placed in the right truncus arteriosus. Plasma metabolite levels were estimated by standard enzymatic techniques. The plasma metabolites declined following the surgery to levels that were relatively stable by postoperative Day 2. The levels did not vary significantly for the remainder of the 3- or 4-day pretreatment period and in the control bullfrogs during the 48-hr experiments. Plasma glucose levels were essentially unchanged from the time-zero levels at 6 hr following ACTH infusion. Plasma glucose levels subsequently increased to levels that were approximately 24% greater than the control levels by 24 hr and then declined to near control levels by 48 hr. Plasma alanine increased to levels that were approximately 60% greater than the control levels by 12 hr after ACTH treatment and returned to essentially the time-zero levels by 24 hr. Plasma urea rose to levels that were approximately 110% greater than the control levels by 45 min after ACTH infusion, but urea returned to essentially the time-zero levels by 1.5 through 3 hr. Plasma urea increased again to levels that were approximately 90% greater than the control levels by 6 hr and returned to essentially the initial levels by 24 hr. Plasma lactate levels were not significantly influenced by ACTH treatment. The results suggest that a function of the bullfrog hypothalamic-pituitary-adrenocortical axis is to regulate gluconeogenesis from alanine, and probably other glucogenic amino acids.

  4. Stable isotope models of sugar intake using hair, red blood cells, and plasma, but not fasting plasma glucose, predict sugar intake in a Yup'ik study population.

    PubMed

    Nash, Sarah H; Kristal, Alan R; Hopkins, Scarlett E; Boyer, Bert B; O'Brien, Diane M

    2014-01-01

    Objectively measured biomarkers will help to resolve the controversial role of sugar intake in the etiology of obesity and related chronic diseases. We recently validated a dual-isotope model based on RBC carbon (δ(13)C) and nitrogen (δ(15)N) isotope ratios that explained a large percentage of the variation in self-reported sugar intake in a Yup'ik study population. Stable isotope ratios can easily be measured from many tissues, including RBCs, plasma, and hair; however, it is not known how isotopic models of sugar intake compare among these tissues. Here, we compared self-reported sugar intake with models based on RBCs, plasma, and hair δ(13)C and δ(15)N in Yup'ik people. We also evaluated associations of sugar intake with fasting plasma glucose δ(13)C. Finally, we evaluated relations between δ(13)C and δ(15)N values in hair, plasma, RBCs, and fasting plasma glucose to allow comparison of isotope ratios across tissue types. Models using RBCs, plasma, or hair isotope ratios explained similar amounts of variance in total sugar, added sugar, and sugar-sweetened beverage intake (∼53%, 48%, and 34%, respectively); however, the association with δ(13)C was strongest for models based on RBCs and hair. There were no associations with fasting plasma glucose δ(13)C (R(2) = 0.03). The δ(13)C and δ(15)N values of RBCs, plasma, and hair showed strong, positive correlations; the slopes of these relations did not differ from 1. This study demonstrates that RBC, plasma, and hair isotope ratios predict sugar intake and provides data that will allow comparison of studies using different sample types.

  5. U1h Superstructure

    SciTech Connect

    Glen Sykes

    2000-11-01

    The U1H Shaft Project is a design build subcontract to supply the U. S. Department of Energy (DOE) a 1,045 ft. deep, 20 ft. diameter, concrete lined shaft for unspecified purposes. The subcontract awarded to Atkinson Construction by Bechtel Nevada to design and construct the shaft for the DOE has been split into phases with portions of the work being released as dictated by available funding. The first portion released included the design for the shaft, permanent hoist, headframe, and collar arrangement. The second release consisted of constructing the shaft collar to a depth of 110 ft., the service entry, utility trenches, and installation of the temporary sinking plant. The temporary sinking plant included the installation of the sinking headframe, the sinking hoist, two deck winches, the shaft form, the sinking work deck, and temporary utilities required to sink the shaft. Both the design and collar construction were completed on schedule. The third release consisted of excavating and lining the shaft to the station depth of approximately 950 feet. Work is currently proceeding on this production sinking phase. At a depth of approximately 600 feet, Atkinson has surpassed production expectation and is more than 3 months ahead of schedule. Atkinson has employed the use of a Bobcat 331 excavator as the primary means of excavation. the shaft is being excavated entirely in an alluvial deposit with varying degrees of calcium carbonate cementation. Several more work packages are expected to be released in the near future. The remaining work packages include, construction of the shaft station a depth of 975 ft. and construction of the shaft sump to a depth of 1,045 ft., installation of the loading pocket and station steel and equipment, installation of the shaft steel and guides, installation of the shaft utilities, and installation of the permanent headframe, hoist, collar utilities, and facilities.

  6. Six weeks' sebacic acid supplementation improves fasting plasma glucose, HbA1c and glucose tolerance in db/db mice

    PubMed Central

    Membrez, M; Chou, C J; Raymond, F; Mansourian, R; Moser, M; Monnard, I; Ammon-Zufferey, C; Mace, K; Mingrone, G; Binnert, C

    2010-01-01

    Aim: To investigate the impact of chronic ingestion of sebacic acid (SA), a 10-carbon medium-chain dicarboxylic acid, on glycaemic control in a mouse model of type 2 diabetes (T2D). Methods: Three groups of 15 db/db mice were fed for 6 weeks either a chow diet (Ctrl) or a chow diet supplemented with 1.5 or 15% (SA1.5% and SA15%, respectively) energy from SA. Fasting glycaemia was measured once a week and HbA1c before and after supplementation. An oral glucose tolerance test (OGTT) was performed at the end of the supplementation. Gene expression was determined by transcriptomic analysis on the liver of the Ctrl and SA15% groups. Results: After 42 days of supplementation, fasting glycaemia and HbA1c were ∼70 and 25% lower in the SA15% group compared with the other groups showing a beneficial effect of SA on hyperglycaemia. During OGTT, plasma glucose area under the curve was reduced after SA15% compared with the other groups. This effect was associated with a tendency for an improved insulin response. In the liver, Pck1 and FBP mRNA were statistically decreased in the SA15% compared with Ctrl suggesting a reduced hepatic glucose output induced by SA. Conclusion: Dietary supplementation of SA largely improves glycaemic control in a mouse model of T2D. This beneficial effect may be due to (i) an improved glucose-induced insulin secretion and (ii) a reduced hepatic glucose output. PMID:20977585

  7. Surface modification of polyvinyl alcohol/malonic acid nanofibers by gaseous dielectric barrier discharge plasma for glucose oxidase immobilization

    NASA Astrophysics Data System (ADS)

    Afshari, Esmail; Mazinani, Saeedeh; Ranaei-Siadat, Seyed-Omid; Ghomi, Hamid

    2016-11-01

    Polymeric nanofiber prepares a suitable situation for enzyme immobilization for variety of applications. In this research, we have fabricated polyvinyl alcohol (PVA)/malonic acid nanofibers using electrospinning. After fabrication of nanofibers, the effect of air, nitrogen, CO2, and argon DBD (dielectric barrier discharge) plasmas on PVA/malonic acid nanofibers were analysed. Among them, air plasma had the most significant effect on glucose oxidase (GOx) immobilization. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum analysis and X-ray photoelectron spectroscopy (XPS) results revealed that in case of air plasma modified nanofibers, the carboxyl groups on the surface are increased. The scanning electron microscopy (SEM) images showed that, after GOx immobilization, the modified nanofibers with plasma has retained its nanofiber structure. Finally, we analysed reusability and storage stability of GOx immobilized on plasma modified and unmodified nanofibers. The results were more satisfactory for modified nanofibers with respect to unmodified ones.

  8. The Prevalence and Associated Factors of Periodontitis According to Fasting Plasma Glucose in the Korean Adults

    PubMed Central

    Hong, Jae Won; Noh, Jung Hyun; Kim, Dong-Jun

    2016-01-01

    Abstract Although the relationship between diabetes and periodontitis is well established, the association between periodontitis and prediabetes has been investigated less extensively. Furthermore, there has been little research on the prevalence of periodontitis among individuals with prediabetes and diabetes as well as in the overall population using nationally representative data. Among 12,406 adults (≥19 years’ old) who participated in the 2012–2013 Korea National Health and Nutrition Examination Survey, a total of 9977 subjects completed oral and laboratory examinations and were included in this analysis. Periodontitis was defined as a community periodontal index score of ≥3 according to the World Health Organization criteria. The fasting plasma glucose level was categorized into the following 5 groups: normal fasting glucose (NFG) 1 (<90 mg/dL), NFG 2 (90–99 mg/dL), impaired fasting glucose (IFG) 1 (100–110 mg/dL), IFG 2 (111–125 mg/dL), and diabetes (≥126 mg/dL). Overall, the weighted prevalence of periodontitis among the Korean adult population was 24.8% (23.3–26.4%) (weight n = 8,455,952/34,086,014). The unadjusted weighted prevalences of periodontitis were 16.7%, 22.8%, 29.6%, 40.7%, and 46.7% in the NFG 1, NFG 2, IFG 1, IFG 2, and diabetes groups, respectively (P < 0.001). After adjusting for age, sex, smoking history, heavy alcohol drinking, college graduation, household income, waist circumference, serum triglyceride level, serum high-density lipoprotein cholesterol level, and the presence of hypertension, the adjusted weighted prevalence of periodontitis increased to 29.7% in the IFG 2 group (P = 0.045) and 32.5% in the diabetes group (P < 0.001), compared with the NFG 1 group (24%). The odds ratios for periodontitis with the above-mentioned variables as covariates were 1.42 (95% confidence interval [CI] 1.14–1.77, P = 0.002) in the diabetes group and 1.33 (95% CI 1.01–1.75, P = 0.044) in the IFG

  9. Plasma and liver proteomic analysis of 3Z-3-[(1H-pyrrol-2-yl)-methylidene]-1-(1-piperidinylmethyl)-1,3-2H-indol-2-one-induced hepatotoxicity in Wistar rats.

    PubMed

    Wang, Ying; Yang, Baohua; Wu, Chunqi; Zheng, Zhibing; Yuan, Ye; Hu, ZhongHui; Ma, HuaZhi; Li, Song; Liao, Mingyang; Wang, Quanjun

    2010-08-01

    3Z-3-[(1H-pyrrol-2-yl)-methylidene]-1-(1-piperidinylmethyl)-1,3-2H-indol-2-one (Z24), a synthetic anti-angiogenic compound, inhibits the growth and metastasis of certain tumors. Previous works have shown that Z24 induces hepatotoxicity in rodents. We examined the hepatotoxic mechanism of Z24 at the protein level and looked for potential biomarkers. We used 2-DE and MALDI-TOF/TOF MS to analyze alternatively expressed proteins in rat liver and plasma after Z24 administration. We also examined apoptosis in rat liver and measured levels of intramitochondrial ROS and NAD(P)H redox in liver cells. We found that 22 nonredundant proteins in the liver and 11 in the plasma were differentially expressed. These proteins were involved in several important metabolic pathways, including carbohydrate, lipid, amino acid, and energy metabolism, biotransformation, apoptosis, etc. Apoptosis in rat liver was confirmed with the terminal deoxynucleotidyl transferase dUTP-nick end labeling assay. In mitochondria, Z24 increased the ROS and decreased the NAD(P)H levels. Thus, inhibition of carbohydrate aerobic oxidation, fatty acid beta-oxidation, and oxidative phosphorylation is a potential mechanism of Z24-induced hepatotoxicity, resulting in mitochondrial dysfunction and apoptosis-mediated cell death. In addition, fetub protein and argininosuccinate synthase in plasma may be potential biomarkers of Z24-induced hepatotoxicity.

  10. Effects of dietary D-psicose on diurnal variation in plasma glucose and insulin concentrations of rats.

    PubMed

    Matsuo, Tatsuhiro; Izumori, Ken

    2006-09-01

    The effects of supplemental D-psicose in the diet on diurnal variation in plasma glucose and insulin concentrations were investigated in rats. Forty-eight male Wistar rats were divided into four groups. Each group except for the control group was fed a diet of 5% D-fructose, D-psicose, or psico-rare sugar (3:1 mixture of D-fructose and D-psicose) for 8 weeks. Plasma glucose levels were lower and plasma insulin levels were higher at all times of day in the psicose and psico-rare sugar groups than in the control and fructose groups. Weight gain was significantly lower in the psicose group than in the control and fructose groups. Liver glycogen content, both before and after meals was higher in the psicose group than in the control and fructose groups. These results suggest that supplemental D-psicose can lower plasma glucose levels and reduce body fat accumulation. Hence, D-psicose might be useful in preventing postprandial hyperglycemia in diabetic patients.

  11. Determination of a novel phosphodiesterase4 inhibitor, 3-[1-(3cyclopropylmethoxy-4-difluoromethoxybenzyl)-1H-pyrazol-3-yl]-benzoic acid (PDE-423) in rat plasma using liquid chromatography-tandem mass spectrometry.

    PubMed

    Cho, Woon-Ki; Seo, Hyewon; Choi, Sung Heum; Kwak, Hyun Jeong; Cheon, Hyae Gyeong; Jeon, Dong Ju; Kim, Sang Kyum; Bae, Myung Ae; Song, Jin Sook

    2015-03-01

    A method for determining a novel phosphodiesterase-4 inhibitor, 3-[1-(3cyclopropylmethoxy-4-difluoromethoxybenzyl)-1H-pyrazol-3-yl]-benzoic acid (PDE-423), in rat plasma was developed and validated using liquid chromatography-tandem mass spectrometry for further pharmacokinetic study for development as a novel anti-asthmatic drug. PDE-423 in the concentration range of 0.02-10 µg/mL was linear with a correlation coefficient of >0.99, and the mean intra- and inter-assay precisions of the assay were 7.50 and 3.86%, respectively. The validated method was used successfully for a pharmacokinetic study of PDE-423 in rats.

  12. The Influence of Long Term Hydrochlorothiazide Administration on the Relationship between Renin-Angiotensin-Aldosterone System Activity and Plasma Glucose in Patients with Hypertension

    PubMed Central

    Xiao, Xu; Du, Hong-jun; Hu, Wei-jian; Shaw, Peter X.

    2013-01-01

    Objective. To observe the relationship between changes in renin-angiotensin-aldosterone system (RAAS) activity and blood plasma glucose after administration of hydrochlorothiazide (HCTZ) for one year in patients with hypertension. Methods. 108 hypertensive patients were given 12.5 mg HCTZ per day for one year. RAAS activity, plasma glucose levels, and other biochemical parameters, as well as plasma oxidized low density lipoprotein (oxLDL) levels, were measured and analyzed at baseline, six weeks, and one year after treatment. Results. After one year of treatment, the reduction in plasma glucose observed between the elevated plasma renin activity (PRA) group (−0.26 ± 0.26 mmol/L) and the nonelevated PRA group (−1.36 ± 0.23 mmol/L) was statistically significant (P < 0.05). The decrease of plasma glucose in the elevated Ang II group (−0.17 ± 0.18 mmol/L) compared to the nonelevated Ang II group (−1.07 ± 0.21 mmol/L) was statistically significant (P < 0.05). The proportion of patients with elevated plasma glucose in the elevated Ang II group (40.5%) was significantly higher than those in the nonelevated Ang II group (16.3%) (P < 0.05). The relative oxLDL level was not affected by the treatment. Conclusions. Changes in RAAS activity were correlated with changes in plasma glucose levels after one year of HCTZ therapy. PMID:24349612

  13. Digestibility, fecal characteristics, and plasma glucose and urea in dogs fed a commercial dog food once or three times daily

    PubMed Central

    Brambillasca, Sebastián; Purtscher, Frederick; Britos, Alejandro; Repetto, José L.; Cajarville, Cecilia

    2010-01-01

    Digestibility, fecal characteristics, and levels of glucose and urea in the plasma were determined in 8 dogs that received 2 different dog foods once or 3 times daily. One dog food (A) was 5 times more expensive than the other (B). Fecal pH and consistency, digestibility of dry matter (DM), organic matter (OM), crude protein (CP), and crude fiber (CF) were determined. Blood samples were taken from 30 min before to 60 min after a meal. Digestibilities of DM, OM, and CP, and fecal consistency were higher, and daily fecal excretion and fecal pH were lower when dogs were fed food A (P < 0.001). The feeding schedule had no effect on plasma glucose and urea. Neither feeding frequency nor food × frequency interactions was significant for the parameters studied. PMID:20440906

  14. Overexpression of Rad in muscle worsens diet-induced insulin resistance and glucose intolerance and lowers plasma triglyceride level

    NASA Astrophysics Data System (ADS)

    Ilany, Jacob; Bilan, Philip J.; Kapur, Sonia; Caldwell, James S.; Patti, Mary-Elizabeth; Marette, Andre; Kahn, C. Ronald

    2006-03-01

    Rad is a low molecular weight GTPase that is overexpressed in skeletal muscle of some patients with type 2 diabetes mellitus and/or obesity. Overexpression of Rad in adipocytes and muscle cells in culture results in diminished insulin-stimulated glucose uptake. To further elucidate the potential role of Rad in vivo, we have generated transgenic (tg) mice that overexpress Rad in muscle using the muscle creatine kinase (MCK) promoter-enhancer. Rad tg mice have a 6- to 12-fold increase in Rad expression in muscle as compared to wild-type littermates. Rad tg mice grow normally and have normal glucose tolerance and insulin sensitivity, but have reduced plasma triglyceride levels. On a high-fat diet, Rad tg mice develop more severe glucose intolerance than the wild-type mice; this is due to increased insulin resistance in muscle, as exemplified by a rightward shift in the dose-response curve for insulin stimulated 2-deoxyglucose uptake. There is also a unexpected further reduction of the plasma triglyceride levels that is associated with increased levels of lipoprotein lipase in the Rad tg mice. These results demonstrate a potential synergistic interaction between increased expression of Rad and high-fat diet in creation of insulin resistance and altered lipid metabolism present in type 2 diabetes. diabetes mellitus | glucose transport | RGK GTPase | transgenic mouse

  15. Insulin-stimulated plasma membrane fusion of Glut4 glucose transporter-containing vesicles is regulated by phospholipase D1.

    PubMed

    Huang, Ping; Altshuller, Yelena M; Hou, June Chunqiu; Pessin, Jeffrey E; Frohman, Michael A

    2005-06-01

    Insulin stimulates glucose uptake in fat and muscle by mobilizing Glut4 glucose transporters from intracellular membrane storage sites to the plasma membrane. This process requires the trafficking of Glut4-containing vesicles toward the cell periphery, docking at exocytic sites, and plasma membrane fusion. We show here that phospholipase D (PLD) production of the lipid phosphatidic acid (PA) is a key event in the fusion process. PLD1 is found on Glut4-containing vesicles, is activated by insulin signaling, and traffics with Glut4 to exocytic sites. Increasing PLD1 activity facilitates glucose uptake, whereas decreasing PLD1 activity is inhibitory. Diminished PA production does not substantially hinder trafficking of the vesicles or their docking at the plasma membrane, but it does impede fusion-mediated extracellular exposure of the transporter. The fusion block caused by RNA interference-mediated PLD1 deficiency is rescued by exogenous provision of a lipid that promotes fusion pore formation and expansion, suggesting that the step regulated by PA is late in the process of vesicle fusion. PMID:15772157

  16. The serum insulin and plasma glucose responses to milk and fruit products in type 2 (non-insulin-dependent) diabetic patients.

    PubMed

    Gannon, M C; Nuttall, F Q; Krezowski, P A; Billington, C J; Parker, S

    1986-11-01

    The plasma glucose and serum insulin responses were determined in untreated Type 2 (non-insulin-dependent) diabetic patients following the ingestion of foods containing sucrose, glucose, fructose or lactose in portions that contained 50 g of carbohydrate. The results were compared to those obtained following the ingestion of pure fructose, sucrose, glucose + fructose and lactose. The objectives were to determine 1) if the glucose response to naturally occurring foods could be explained by the known carbohydrate content, and 2) whether the insulin response could be explained by the glucose response. The glucose response was essentially the same whether the carbohydrate was given as a pure substance, or in the form of a naturally occurring food. The glucose response to each type of carbohydrate was that expected from the known metabolism of the constituent monosaccharides. The glucose areas following the ingestion of the foods were: Study 1: glucose 11.7, orange juice 7.3, sucrose 5.2, glucose + fructose 6.3, and fructose 0.7 mmol X h/l; Study 2: glucose 14.6, orange juice 7.3, apples 5.5, and apple juice 4.7 mmol X h/l; Study 3: glucose 12.6, ice cream 8.1, milk 3.7, and lactose 4.1 mmol X h/l. The insulin response was greater than could be explained by the glucose response for all meals except apples. Milk was a particularly potent insulin secretagogue; the observed insulin response was approximately 5-fold greater than would be anticipated from the glucose response. In summary, the plasma glucose response to ingestion of fruits and milk products can be predicted from the constituent carbohydrate present. The serum insulin response cannot.

  17. The effect of short-term metformin treatment on plasma prolactin levels in bromocriptine-treated patients with hyperprolactinaemia and impaired glucose tolerance: a pilot study.

    PubMed

    Krysiak, Robert; Okrzesik, Joanna; Okopien, Boguslaw

    2015-05-01

    Metformin was found to affect plasma levels of some pituitary hormones. This study was aimed at investigating whether metformin treatment has an impact on plasma prolactin levels in bromocriptine-treated patients with hyperprolactinaemia and impaired glucose tolerance. The study included 27 patients with hyperprolactinaemia, who had been treated for at least 6 months with bromocriptine. Based on prolactin levels, bromocriptine-treated patients were divided into two groups: patients with elevated (group A, n = 12) and patients with normal (group B, n = 15) prolactin levels. The control group included 16 age-, sex- and weight-matched hyperprolactinaemia-free individuals with impaired glucose tolerance (group C).The lipid profile, fasting plasma glucose levels, the homeostatic model assessment of insulin resistance ratio (HOMA-IR), glycated haemoglobin, as well as plasma levels of prolactin, thyrotropin and insulin-like growth factor-1 (IGF-1) were assessed at baseline and after 4 months of metformin treatment (2.55-3 g daily). In all treatment groups, metformin reduced HOMA-IR, plasma triglycerides and 2-h postchallenge plasma glucose. In patients with hyperprolactinaemia, but not in the other groups of patients, metformin slightly reduced plasma levels of prolactin, and this effect correlated weakly with the metabolic effects of this drug. Our study shows that metformin decreases plasma prolactin levels only in patients with elevated levels of this hormone. The obtained results suggest that metformin treatment may bring some benefits to hyperprolactinaemic patients with coexisting glucose metabolism disturbances already receiving dopamine agonist therapy.

  18. Plasma glucose response to recreational diving in novice teenage divers with insulin-requiring diabetes mellitus.

    PubMed

    Pollock, N W; Uguccioni, D M; Dear, G deL; Bates, S; Albushies, T M; Prosterman, S A

    2006-01-01

    A growing number of individuals with insulin-requiring diabetes mellitus (IRDM) dive, but data on plasma glucose (PG) response to diving are limited, particularly for adolescents. We report on seven 16-17 year old novice divers with IRDM participating in a tropical diving camp who had recent at least moderate PG control (HbA1c 7.3 +/- 1.1%) (mean +/- SD). PG was measured at 60, 30 and 10 min pre-dive and immediately following 42 dives. Maximum depth (17 +/- 6 msw) and total underwater times (44 +/- 14 min) were not extreme. Pre-dive PG exceeded 16.7 mmol x L(-1) (300 mg x dL(-1)) in 22% of dives. Males had significantly higher pre-dive levels (15.4 +/- 5.6 mmol x L(-1) [277 +/- 100 mg x dL(-1)] vs. 12.8 +/- 2.9 mmol x L(-1) [230 +/- 52 mg x dL(-1)], respectively) and greater pre-post-dive changes (-4.3 +/- 4.4 mmol x L(-1) [-78 +/- 79 mg x dL(-1)] vs. -0.5 +/- 4.3 mmol x L(-1) [-9 +/- 77 mg x dL(-1)], respectively). Post-dive PG was < 4.4 mmol x L(-1) [< 80 mg x dL(-1)] in two dives by two different males (3.4 and 3.9 mmol x L(-1) [61 and 70 mg x dL(-1)]). No symptoms or complications of hypoglycemia were reported. These data show that in a closely monitored situation, and with benign diving conditions, some diabetic adolescents with good control and no secondary complications may be able to dive safely. The impact of purposeful elevation of PG to protect against hypoglycemia during diving remains to be determined.

  19. Changes in plasma non-esterified fatty acids, glucose and alpha-amino nitrogen and their relationship with body weight and plasma growth hormone in growing buffaloes (Bubalus bubalis).

    PubMed

    Mondal, M; Prakash, B S

    2004-06-01

    A study was undertaken to investigate the changes of plasma non-esterified fatty acids (NEFA), glucose and alpha-amino nitrogen and their relationship with age, body weight (BW) and plasma growth hormone (GH) in growing buffaloes. For the purpose, six growing female Murrah buffalo calves of 6-8 months of age were selected on the basis of their BW and fed according to Kearl standard (Nutrient Requirements of Ruminants in Developing Countries, International Feedstuffs Institute, Utah State University, Utah, USA, 1982, p. 89) for growing buffaloes (target growth rate 500 g/day) to meet energy and protein requirement of the animals. Blood samples collected at fortnight intervals for 1 year were analysed for plasma NEFA, glucose, alpha-amino nitrogen and GH. The animals were also weighed at fortnight intervals. Plasma NEFA and glucose levels were found to decrease (p < 0.01) with age. Unlike plasma NEFA and glucose, plasma alpha-amino nitrogen level increased (p < 0.01) as the buffaloes become older. Plasma NEFA and glucose concentrations in growing buffaloes were found to be positively correlated with plasma GH (r = 0.379 and 0.420 respectively), but these were non-significant (p > 0.01). However, plasma NEFA and glucose showed a good correlation (p < 0.01; r = 0.780 and 0.652 respectively) with plasma GH per 100 kg live weight. Plasma alpha-amino nitrogen exhibited non-significant (p > 0.01) negative correlation (r = -0.295) with plasma GH but a negative correlation (p < 0.01; r = -0.641) with GH per 100 kg BW. So, plasma metabolites showed a definite pattern of change during growth and these have a significant (p < 0.01) correlation with plasma GH per 100 kg BW than GH. PMID:15189427

  20. Effects of Rice Straw Supplemented with Urea and Molasses on Intermediary Metabolism of Plasma Glucose and Leucine in Sheep

    PubMed Central

    Alam, Mohammad Khairul; Ogata, Yasumichi; Sato, Yukari; Sano, Hiroaki

    2016-01-01

    An isotope dilution method using [U-13C]glucose and [1-13C]leucine (Leu) was conducted to evaluate the effects of rice straw supplemented with urea and molasses (RSUM-diet) on plasma glucose and Leu turnover rates in sheep. Nitrogen (N) balance, rumen fermentation characteristics and blood metabolite concentrations were also determined. Four sheep were fed either mixed hay (MH-diet), or a RSUM-diet with a crossover design for two 21 days period. Feed allowance was computed on the basis of metabolizable energy at maintenance level. The isotope dilution method was performed as the primed-continuous infusion on day 21 of each dietary period. Nitrogen intake was lower (p = 0.01) for the RSUM-diet and N digestibility did not differ (p = 0.57) between diets. Concentrations of rumen total volatile fatty acids tended to be higher (p = 0.09) for the RSUM-diet than the MH-diet. Acetate concentration in the rumen did not differ (p = 0.38) between diets, whereas propionate concentration was higher (p = 0.01) for the RSUM-diet compared to the MH-diet. Turnover rates as well as concentrations of plasma glucose and Leu did not differ between diets. It can be concluded that kinetics of plasma glucose and Leu metabolism were comparable between the RSUM-diet and the MH-diet, and rumen fermentation characteristics were improved in sheep fed the RSUM-diet compared to the MH-diet. PMID:26949953

  1. Comparison of several insulin sensitivity indices derived from basal plasma insulin and glucose levels with minimal model indices.

    PubMed

    García-Estévez, D A; Araújo-Vilar, D; Fiestras-Janeiro, G; Saavedra-González, A; Cabezas-Cerrato, J

    2003-01-01

    Some techniques for the evaluation of insulin resistance (IR), such as the clamp technique, are not viable for the study of large populations; and for this reason, alternative approaches based on fasting plasma glucose (FPG) and plasma insulin (FPI) have been proposed. The aim of this study was to compare the IR calculations obtained from FPI and FPG values with the insulin sensitivity (IS) index derived from the minimal model. Eighty-seven healthy subjects with a wide range of body mass index (18 - 44 kg x m -2) and 16 DM2 non-obese patients were included in the study. All of the patients underwent a frequently sampled intravenous glucose tolerance test (FSIGTT), and the minimal model of glucose was used for the estimation of insulin sensitivity (IS MINIMAL ). The HOMA-IR index, the Avignon index, and the quotient FPG/FPI were used to calculate basal steady-state IR. The basal IR value that best correlated with IS was Log (1/HOMA-IR) (r = 0.70, p < 0.001). All of the basal indices showed a high correlation with each other. In conclusions, insulin sensitivity indices as determined from the basal glycaemia and insulinemia values are not good estimators for metabolic reality from the perspective of the minimal model. Nevertheless, they might well have an IR screening value for epidemiological studies, as long as there is no pancreatic beta-cell dysfunction. PMID:12669265

  2. Influence of Acarbose on Plasma Glucose Fluctuations in Insulin-Treated Patients with Type 2 Diabetes: A Pilot Study

    PubMed Central

    Li, Feng-fei; Xu, Xiao-hua; Fu, Li-yuan; Su, Xiao-fei; Wu, Jin-dan; Lu, Chun-feng; Ye, Lei; Ma, Jian-hua

    2015-01-01

    Background and Aims. To evaluate the effect of adding acarbose on glycemic excursions measured by continuous glucose monitoring system (CGMS) in patients with type 2 diabetes mellitus (T2DM) already on insulin therapy. Materials and Methods. This was an opened and unblended study. 134 patients with T2DM were recruited. After initial rapidly corrected hyperglycaemia by continuous subcutaneous insulin infusion (CSII) for 7 d, a 4–6-day premixed insulin titration period subsequently followed. Patients were then randomized 1 : 1 to acarbose plus insulin group or insulin therapy group for 2 weeks. CGMS was used to measure glucose fluctuations for at least 3 days after therapy cessation. Results. Patients in acarbose plus insulin group achieved a significant improvement of MAGE compared to that of insulin therapy only group (5.56 ± 2.16 versus 7.50 ± 3.28 mmol/L, P = 0.044), accompanied by a significant decrease in the incremental AUC of plasma glucose concentration above 10.0 mmol/L (0.5 [0.03, 0.9] versus 0.85 [0.23,1.4]  mmol/L per day, P = 0.037). Conclusions. Add-on acarbose to insulin therapy further improves glucose fluctuation in patients with T2DM. This study was registered with ClinicalTrials.gov registration number ChiCTR-TRC-11001218. PMID:26640487

  3. Plasma levels of sex hormone-binding globulin, corticosteroid-binding globulin and cortisol in overweight subjects who develop impaired fasting glucose: a 3-year prospective study.

    PubMed

    Lewis, J G; Shand, B I; Frampton, C M; Elder, P A; Scott, R S

    2009-03-01

    Circulating sex hormone-binding globulin (SHBG), corticosteroid-binding globulin (CBG), and total and calculated free cortisol were measured in 206 overweight subjects to investigate whether or not they were markers of insulin resistance. Measurements were carried out on two occasions 36 months apart and subjects were grouped according to fasting plasma glucose. Fifty-one subjects, with a normal basal fasting glucose (<5.6 mmol/l) developed impaired fasting glucose 3 years later (> or = 5.6 mmol/l). Analysis either in toto or based on gender showed a highly significant increase in fasting insulin and insulin resistance, a modest increase in body mass index (BMI), but importantly no change in plasma SHBG, CBG, or cortisol concentrations. Subjects (n=101) with a normal fasting glucose both at baseline (<5.6 mmol/l) and at 36 months showed no significant change in fasting insulin, insulin resistance, SHBG, CBG, cortisol, or BMI. Cross-sectional analysis of the study population showed that plasma SHBG correlated negatively with insulin resistance both in men and women. Overall SHBG at baseline was not predictive of changes in fasting glucose. In females, plasma CBG correlated negatively with BMI. The major finding is that overweight subjects who developed impaired fasting glucose showed no significant change in plasma SHBG, CBG or cortisol, and therefore these indices are probably not early markers of insulin resistance in overweight subjects.

  4. Fasting modifies Aroclor 1254 impact on plasma cortisol, glucose and lactate responses to a handling disturbance in Arctic charr

    USGS Publications Warehouse

    Jorgensen, E.H.; Vijayan, M.M.; Aluru, N.; Maule, A.G.

    2002-01-01

    Integrated effects of polychlorinated biphenyl (PCB) and nutritional status on responses to handling disturbance were investigated in the Arctic charr (Salvelinus alpinus). The fish were orally contaminated with Aroclor 1254 and held either with or without food for 5 months before they were subjected to a 10-min handling disturbance. Food-deprived fish were given 0, 1, 10 or 100 mg PCB kg-1 and the fed fish 0 or 100 mg PCB kg-1. Plasma cortisol, glucose and lactate levels were measured at 0 (pre-handling), 1, 3, 6 and 23 h after the handling disturbance. Food-deprived control fish had elevated plasma cortisol levels compared with fed fish before handling. These basal cortisol levels were suppressed by PCB in food-deprived fish, and elevated by PCB in fed fish. The immediate cortisol and glucose responses to handling disturbance were suppressed by PCB in a dose-dependent way in food-deprived fish. Although these responses were also lowered by PCB in the fed fish, the effect was much less pronounced than in food-deprived fish. There were only minor effects on plasma lactate responses. Our findings suggest that the stress responses of the Arctic charr are compromised by PCB and that the long-term fasting, typical of high-latitude fish, makes these species particularly sensitive to organochlorines such as PCB. ?? 2002 Elsevier Science Inc. All rights reserved.

  5. Carbon Nanotube-Plasma Polymer-Based Amperometric Biosensors: Enzyme-Friendly Platform for Ultrasensitive Glucose Detection

    NASA Astrophysics Data System (ADS)

    Muguruma, Hitoshi; Matsui, Yasunori; Shibayama, Yu

    2007-09-01

    An amperometric enzyme biosensor fabricated with carbon nanotubes (CNTs) and plasma-polymerized thin films (PPFs) is reported. A mixture of the enzyme glucose oxidase (GOD) and a CNT film is sandwiched with 10-nm-thick acetonitrile PPFs. Under PPF layer was deposited onto a sputtered gold electrode. To facilitate the electrochemical communication between the CNT layer and GOD, CNT was treated with oxygen plasma. The device with single-walled CNTs showed a sensitivity higher than that of multiwalled CNTs. The glucose biosensor showed ultrasensitivity (a sensitivity of 40 μA mM-1 cm-2, a correlation coefficient of 0.992, a linear response range of 0.025-1.9 mM, a detection limit of 6.2 μM at S/N = 3, +0.8 V vs Ag/AgCl), and a rapid response (< 4 s in reaching 95% of maximum response). This high performance is attributed to the fact that CNTs have excellent electrocatalytic activity and enhance electron transfer, and that PPFs and/or the plasma process for CNTs are the enzyme-friendly platform, i.e., a suitable design of the interface between GOD and CNTs.

  6. Chronic growth hormone treatment in normal rats reduces post-prandial skeletal muscle plasma membrane GLUT1 content, but not glucose transport or GLUT4 expression and localization.

    PubMed Central

    Napoli, R; Cittadini, A; Chow, J C; Hirshman, M F; Smith, R J; Douglas, P S; Horton, E S

    1996-01-01

    Whether skeletal muscle glucose transport system is impaired in the basal, post-prandial state during chronic growth hormone treatment is unknown. The current study was designed to determine whether 4 weeks of human growth hormone (hGH) treatment (3.5 mg/kg per day) would impair glucose transport and/or the number of glucose transporters in plasma membrane vesicles isolated from hindlimb skeletal muscle of Sprague-Dawley rats under basal, post-prandial conditions. hGH treatment was shown to have no effect on glucose influx (Vmax or K(m)) determined under equilibrium exchange conditions in isolated plasma membrane vesicles. Plasma membrane glucose transporter number (Ro) measured by cytochalasin B binding was also unchanged by hGH treatment. Consequently, glucose transporter turnover number (Vmax/Ro), a measure of average glucose transporter intrinsic activity, was similar in hGH-treated and control rats. hGH did not change GLUT4 protein content in whole muscle or in the plasma membrane, and muscle content of GLUT4 mRNA also was unchanged. In contrast, GLUT1 protein content in the plasma membrane fraction was significantly reduced by hGH treatment. This was associated with a modest, although not significant, decrease in muscle content of GLUT1 mRNA. In conclusion, high-dose hGH treatment for 4 weeks did not alter post-prandial skeletal muscle glucose transport activity. Neither the muscle level nor the intracellular localization of GLUT4 was changed by the hormone treatment. On the contrary, the basal post-prandial level of GLUT1 in the plasma membrane was reduced by hGH. The mRNA data suggest that this reduction might result from a decrease in the synthesis of GLUT1. PMID:8645183

  7. Plasma 25-Hydroxyvitamin D Is Related to Protein Signaling Involved in Glucose Homeostasis in a Tissue-Specific Manner

    PubMed Central

    Parker, Lewan; Levinger, Itamar; Mousa, Aya; Howlett, Kirsten; de Courten, Barbora

    2016-01-01

    Vitamin D has been suggested to play a role in glucose metabolism. However, previous findings are contradictory and mechanistic pathways remain unclear. We examined the relationship between plasma 25-hydroxyvitamin D (25(OH)D), insulin sensitivity, and insulin signaling in skeletal muscle and adipose tissue. Seventeen healthy adults (Body mass index: 26 ± 4; Age: 30 ± 12 years) underwent a hyperinsulinemic-euglycemic clamp, and resting skeletal muscle and adipose tissue biopsies. In this cohort, the plasma 25(OH)D concentration was not associated with insulin sensitivity (r = 0.19, p = 0.56). However, higher plasma 25(OH)D concentrations correlated with lower phosphorylation of glycogen synthase kinase-3 (GSK-3) αSer21 and βSer9 in skeletal muscle (r = −0.66, p = 0.015 and r = −0.53, p = 0.06, respectively) and higher GSK-3 αSer21 and βSer9 phosphorylation in adipose tissue (r = 0.82, p < 0.01 and r = 0.62, p = 0.042, respectively). Furthermore, higher plasma 25(OH)D concentrations were associated with greater phosphorylation of both protein kinase-B (AktSer473) (r = 0.78, p < 0.001) and insulin receptor substrate-1 (IRS-1Ser312) (r = 0.71, p = 0.01) in adipose tissue. No associations were found between plasma 25(OH)D concentration and IRS-1Tyr612 phosphorylation in skeletal muscle and adipose tissue. The divergent findings between muscle and adipose tissue with regard to the association between 25(OH)D and insulin signaling proteins may suggest a tissue-specific interaction with varying effects on glucose homeostasis. Further research is required to elucidate the physiological relevance of 25(OH)D in each tissue. PMID:27754361

  8. Rutin ameliorates diabetic neuropathy by lowering plasma glucose and decreasing oxidative stress via Nrf2 signaling pathway in rats.

    PubMed

    Tian, Ruifeng; Yang, Wenqing; Xue, Qiang; Gao, Liang; Huo, Junli; Ren, Dongqing; Chen, Xiaoyan

    2016-01-15

    Rutin exhibits antidiabetic, antioxidant and anti-inflammatory properties, which makes rutin an attractive candidate for diabetic complications. The present study was designed to investigate the potential effect of rutin on diabetic neuropathy. After induction of diabetic neuropathy, rutin (5mg/kg, 25mg/kg and 50mg/kg) were daily given to the diabetic rats for 2 weeks. At the end of rutin administration, rutin produced a significant inhibition of mechanical hyperalgesia, thermal hyperalgesia and cold allodynia, as well as partial restoration of nerve conduction velocities in diabetic rats. Furthermore, rutin significantly increased Na(+), K(+)-ATPase activities in sciatic nerves and decreased caspase-3 expression in dorsal root ganglions (DRG). In addition, rutin significantly decreased plasma glucose, attenuated oxidative stress and neuroinflammation. Further studies showed that rutin significantly increased hydrogen sulfide (H2S) level, up-regulated the expression of nuclear factor-E2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1) in DRG. The evidences suggest the beneficial effect of rutin on diabetic neuropathy. Additionally, insulin (2 IU) and BG-12 (15mg/kg) were used to investigate the mechanisms underlying the beneficial effect of rutin on diabetic neuropathy. Insulin achieved lower plasma glucose and BG-12 achieved comparable Nrf2 expression than/to rutin (50mg/kg), respectively. In contrast, the beneficial effect of insulin and BG-12 was inferior to that of rutin (50mg/kg), suggesting that both lowered plasma glucose and Nrf2 signaling contribute to the beneficial effect of rutin on diabetic neuropathy. In conclusion, rutin produces significant protection in diabetic neuropathy, which makes it an attractive candidate for the treatment of diabetic neuropathy.

  9. Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria.

    PubMed

    Kennedy, H J; Pouli, A E; Ainscow, E K; Jouaville, L S; Rizzuto, R; Rutter, G A

    1999-05-01

    Increases in the concentration of free ATP within the islet beta-cell may couple elevations in blood glucose to insulin release by closing ATP-sensitive K+ (KATP) channels and activating Ca2+ influx. Here, we use recombinant targeted luciferases and photon counting imaging to monitor changes in free [ATP] in subdomains of single living MIN6 and primary beta-cells. Resting [ATP] in the cytosol ([ATP]c), in the mitochondrial matrix ([ATP]m), and beneath the plasma membrane ([ATP]pm) were similar ( approximately 1 mM). Elevations in extracellular glucose concentration (3-30 mM) increased free [ATP] in each domain with distinct kinetics. Thus, sustained increases in [ATP]m and [ATP]pm were observed, but only a transient increase in [ATP]c. However, detectable increases in [ATP]c and [ATP]pm, but not [ATP]m, required extracellular Ca2+. Enhancement of glucose-induced Ca2+ influx with high [K+] had little effect on the apparent [ATP]c and [ATP]m increases but augmented the [ATP]pm increase. Underlying these changes, glucose increased the mitochondrial proton motive force, an effect mimicked by high [K+]. These data support a model in which glucose increases [ATP]m both through enhanced substrate supply and by progressive Ca2+-dependent activation of mitochondrial enzymes. This may then lead to a privileged elevation of [ATP]pm, which may be essential for the sustained closure of KATP channels. Luciferase imaging would appear to be a useful new tool for dynamic in vivo imaging of free ATP concentration.

  10. Deficiency in apolipoprotein A-I ablates the pharmacological effects of metformin on plasma glucose homeostasis and hepatic lipid deposition.

    PubMed

    Karavia, Eleni A; Hatziri, Aikaterini; Kalogeropoulou, Christina; Papachristou, Nikolaos I; Xepapadaki, Eva; Constantinou, Caterina; Natsos, Anastasios; Petropoulou, Peristera-Ioanna; Sasson, Shlomo; Papachristou, Dionysios J; Kypreos, Kyriakos E

    2015-11-01

    Recently, we showed that deficiency in apolipoprotein A-I (ApoA-I) sensitizes mice to diet-induced obesity, glucose intolerance and NAFLD. Here we investigated the potential involvement of ApoA-I in the pharmacological effects of metformin on glucose intolerance and NAFLD development. Groups of apoa1-deficient (apoa1(-/-)) and C57BL/6 mice fed western-type diet were either treated with a daily dose of 300 mg/kg metformin for 18 weeks or left untreated for the same period. Then, histological and biochemical analyses were performed. Metformin treatment led to a comparable reduction in plasma insulin levels in both C57BL/6 and apoa1(-/-) mice following intraperitoneal glucose tolerance test. However, only metformin-treated C57BL/6 mice maintained sufficient peripheral insulin sensitivity to effectively clear glucose following the challenge, as indicated by a [(3)H]-2-deoxy-D-glucose uptake assay in isolated soleus muscle. Similarly, deficiency in ApoA-I ablated the effect of metformin on hepatic lipid deposition and NAFLD development. Gene expression analysis indicated that the effects of ApoA-I on metformin treatment may be independent of adenosine monophosphate-activated protein kinase (AMPK) activation and de novo lipogenesis. Interestingly, metformin treatment reduced mitochondrial oxidative phosphorylation function only in apoa1(-/-) mice. Our data show that the role of ApoA-I in diabetes extends to the modulation of the pharmacological actions of metformin, a common drug for the treatment of type 2 diabetes.

  11. Plasma Periostin Levels Are Increased in Chinese Subjects with Obesity and Type 2 Diabetes and Are Positively Correlated with Glucose and Lipid Parameters

    PubMed Central

    Luo, Yuanyuan; Qu, Hua; Wang, Hang; Wei, Huili; Wu, Jing; Duan, Yang; Liu, Dan; Deng, Huacong

    2016-01-01

    The purpose of this study is to examine the relations among plasma periostin, glucose and lipid metabolism, insulin resistance and inflammation in Chinese patients with obesity (OB), and type 2 diabetes mellitus (T2DM). Plasma periostin levels in the T2DM group were significantly higher than the NGT group (P < 0.01). Patients with both OB and T2DM had the highest periostin levels. Correlation analysis showed that plasma periostin levels were positively correlated with weight, waist circumference (WC), body mass index (BMI), waist-hip ratio (WHR), fasting plasma glucose (FPG), 2 h postchallenge plasma glucose (2 h PG), glycated hemoglobin (HbA1c), triglyceride (TG), total cholesterol (TC), fasting insulin (FINS), homeostasis model assessment of insulin resistance (HOMA-IR), TNF-α, and IL-6 (P < 0.05 or 0.001) and negatively correlated with high-density lipoprotein cholesterol (HDL-C) (P < 0.001). Multiple linear regression analysis showed that TG, TNF-α, and HOMA-IR were independent related factors in influencing the levels of plasma periostin (P < 0.001). These results suggested that Chinese patients with obesity and T2DM had significantly higher plasma periostin levels. Plasma periostin levels were strongly associated with plasma TG, chronic inflammation, and insulin resistance. PMID:27313402

  12. Concomitant Intake of Quercetin with a Grain-Based Diet Acutely Lowers Postprandial Plasma Glucose and Lipid Concentrations in Pigs

    PubMed Central

    Wein, Silvia; Wolffram, Siegfried

    2014-01-01

    Treatment goals of diabetes mellitus type 2 (DMT2) include glycemic control and reduction of nonglycemic risk factors, for example, dyslipidemia. Quercetin, a plant-derived polyphenol, often discussed for possible antidiabetic effects, was investigated for acute postprandial glucose- and lipid-lowering effects in healthy growing pigs. Male pigs (n = 16, body weight = BW 25–30 kg) were fed flavonoid-poor grain-based meals without (GBM) or with quercetin (GBMQ). In a first experiment, postprandial plasma concentrations of glucose, nonesterified fatty acids (NEFA), and triacylglycerols were analyzed in 8 pigs receiving 500 g of either GBM or GBMQ (10 mg/kg BW) in a cross-over design. Blood samples were collected before, and up to 5 h every 30 min, as well as 6 and 8 h after the feeding. In the second experiment, 2 h after ingestions of 1000 g of either GBM or GBMQ (50 mg/kg BW) animals were sacrificed; gastric content was collected and analyzed for dry matter content. Quercetin ingestion reduced postprandial glucose, NEFA, and TG concentration, but two hours after ingestion of the meal no effect on gastric emptying was observed. Our results point to inhibitory effects of quercetin on nutrient absorption, which appear not to be attributable to delayed gastric emptying. PMID:24847478

  13. Change in fasting plasma glucose and incident type 2 diabetes mellitus: results from a prospective cohort study

    PubMed Central

    Mozaffary, Amirhossein; Asgari, Samaneh; Tohidi, Maryam; Kazempour-Ardebili, Sara; Azizi, Fereidoun; Hadaegh, Farzad

    2016-01-01

    Objective To investigate the association between changes in fasting plasma glucose (FPG) values and incident type 2 diabetes (T2D) in a cohort of the Iranian population. Design Prospective cohort study. Setting This study was conducted within the framework of the Tehran Lipid and Glucose Study (TLGS) to investigate the association between change in FPG between baseline examination (1999–2001) and the second visit (2002–2005) with incident T2D. Participants A total of 3981 non-diabetic participants aged ≥20 years. Outcome measure T2D was defined if the participant was using antidiabetic drugs or if FPG was ≥7 mmol/L or if the 2 h post-challenge plasma glucose (2-hPCG) was ≥11.1 mmol/L. Results During a median follow-up of 6.17 years, after the second examination, 288 new cases of T2D were identified. In a multivariate Cox proportional hazard analysis using age as timescale, we presented a simple model including FPG change (HR 1.19, 95% CI 1.07 to 1.33) and baseline waist circumference (WC) (HR 1.004, 95% CI 1.001 to 1.008) with a discriminative power (C-index) of 72%. Furthermore, we showed that the highest quartile of FPG change enhanced the T2D risk to 1.65 (95% CI 1.2 to 2.27) compared with the lowest quartile (p for trend=0.004).The independent risk of FPG change resisted further adjustment with 2-hPCG change. Adding the 2-hPCG change only slightly increased the discriminative power of the model including FPG change and baseline value of WC (0.73% vs 0.72%). After the study population had been limited to those with normal fasting glucose/normal glucose tolerance, FPG change remained an independent predictor (HR 1.57, 95% CI 1.31 to 1.88). Conclusions Two measurements of FPG obtained about 3 years apart can help to identify populations at risk of incident T2D independently of important traditional risk factors and their changes, including 2-hPCG change. PMID:27217283

  14. Enhancement of glucose uptake in skeletal muscle L6 cells and insulin secretion in pancreatic hamster-insulinoma-transfected cells by application of non-thermal plasma jet

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Kaushik, Nagendra K.; Park, Gyungsoon; Choi, Eun H.; Uhm, Han S.

    2013-11-01

    Type-II diabetes Mellitus is characterized by defects in insulin action on peripheral tissues, such as skeletal muscle, adipose tissue, and liver and pancreatic beta cells. Since the skeletal muscle accounts for approximately 75% of insulin-stimulated glucose-uptake in our body, impaired insulin secretion from defected beta cell plays a major role in the afflicted glucose homoeostasis. It was shown that the intracellular reactive oxygen species and nitric oxide level was increased by non-thermal-plasma treatment in ambient air. These increased intracellular reactive species may enhance glucose uptake and insulin secretion through the activation of intracellular calcium (Ca+) and cAMP production.

  15. Blood glucose and plasma insulin responses to fat-free milk and low-lactose fat-free milk in young type 1 diabetics.

    PubMed

    Wright, J; Marks, V; Salminen, S

    1987-12-01

    The blood glucose and plasma insulin responses to test milk samples were studied in eight insulin-dependent diabetics. After an overnight fast, the subjects (aged 20-45 years) were given a breakfast containing two Weetabix biscuits (20 g carbohydrate) with 500 ml of either regular (S) fat-free milk (25 g lactose) or 500 ml of a new low-lactose (D) fat-free milk (3.75 g lactose and 4.25 g fructose). The regular morning insulin dose was omitted. Mean basal plasma glucose level was slightly higher before S milk (11.4 vs. 10.1 mmol/l). The peak increment in plasma glucose was higher in S milk (9.4 vs. 6.6 mmol/l). The rise was 83% above basal (S) vs. 65% (D). Although the final mean plasma glucose concentration was not significantly higher 3 h after S milk compared with D milk (17.9 vs. 14.3 mmol/l) the incremental area under the plasma glucose curve was much greater (p less than 0.001) with S milk than with D milk (1266 +/- 295 units vs. 909 +/- 242 units). No galactose was detectable in any sample and there was no difference in plasma beta-hydroxybutyrate levels. The results suggest that the low-lactose fat-free milk (D) may be suitable for diabetic diets and weight reducing diets due to the lower contribution of energy. The results suggest that fat-free milk does not exert a fast action on blood glucose concentration and therefore fat-free milk and especially low-lactose fat-free milk may also prove to be suitable for diabetic diets.

  16. Comparative effects of epinephrine, norepinephrine, and a gentle handling stress on plasma lactate, glucose, and hematocrit levels in the American bullfrog (Rana catesbeiana).

    PubMed

    MbangKollo, D; deRoos, R

    1983-02-01

    The effects of a single infusion of epinephrine or norepinephrine and of a 2-min handling stress on plasma lactate, glucose, and hematocrit levels were compared in the American bullfrog (Rana catesbeiana). The catecholamines were administered, and serial blood samples were collected, via a cannula placed in the truncus arteriosus. Plasma lactate was estimated by the lactate dehydrogenase method and glucose by the glucose oxidase method. Dose-dependent increases occurred in plasma lactate, glucose, and hematocrit levels after the infusion of 50 and 500 micrograms/kg body weight of epinephrine. Norepinephrine infusion resulted in dose-dependent increases in hematocrit levels, but plasma lactate and glucose levels were not increased significantly by 50 micrograms/kg body weight of norepinephrine. The infusion of 500 micrograms/kg body weight of norepinephrine caused a lactacidemia that was similar to that which occurred with the same dose of epinephrine, but the hyperglycemia was less. The plasma lactate increases after handling were similar to those that occurred after treatment with 500 micrograms/kg body weight of the catecholamines; however, the hematocrit elevations were less and the glucose levels were not increased significantly. In addition, the plasma lactate and hematocrit responses to handling were more rapid than those that occurred after the catecholamines. The results suggest that immediate physiological adjustments to a sudden threat are mediated in the bullfrog by direct nervous stimulation of the relevant organs. Catecholamines and corticoids secreted by the adrenal glands probably function synergistically and sequentially when a stress is more severe and/or more prolonged than the brief, gentle handling employed in this study.

  17. L-asparaginase-induced abnormality in plasma glucose level in patients of acute lymphoblastic leukemia admitted to a tertiary care hospital of Odisha

    PubMed Central

    Panigrahi, Mousumee; Swain, Trupti Rekha; Jena, Rabindra Kumar; Panigrahi, Ashutosh

    2016-01-01

    Objectives: The objective of this study was to evaluate any abnormal change in plasma glucose levels in patients treated with L-asparaginase (L-Asp)-based chemotherapy regimen in patients of acute lymphoblastic leukemia (ALL). Materials and Methods: This retrospective, hospital-based study was conducted in patients of ALL, admitted to the Clinical Haematology Department of a tertiary care hospital of Odisha from August 2014 to July 2015. Indoor records of 146 patients on multi-centered protocol-841 were evaluated for any alteration in plasma glucose level, time of onset of hypo/hyperglycemia, and persistence of plasma glucose alteration. Results: Twenty-one percent of patients showed abnormal plasma glucose level. Most of these patients developed hypoglycemia and were of lower age group. Most of these patients developed hypoglycemia and were of lower age group, whereas a majority of higher age group patients developed hyperglycemia. In majority of the cases, abnormal glucose developed after three doses of L-Asp. Hypoglycemia subsided whereas hyperglycemia persisted till the end of our observation period. Conclusions: L-Asp produces more incidences of hypoglycemia than hyperglycemia in a good number of ALL patients towards which clinicians should be more vigilant. However, hyperglycemia persists for a longer duration than hypoglycemia. PMID:27721550

  18. Plasma Lactate Levels Increase during Hyperinsulinemic Euglycemic Clamp and Oral Glucose Tolerance Test.

    PubMed

    Berhane, Feven; Fite, Alemu; Daboul, Nour; Al-Janabi, Wissam; Msallaty, Zaher; Caruso, Michael; Lewis, Monique K; Yi, Zhengping; Diamond, Michael P; Abou-Samra, Abdul-Badi; Seyoum, Berhane

    2015-01-01

    Insulin resistance, which plays a central role in the pathogenesis of type 2 diabetes (T2D), is an early indicator that heralds the occurrence of T2D. It is imperative to understand the metabolic changes that occur at the cellular level in the early stages of insulin resistance. The objective of this study was to determine the pattern of circulating lactate levels during oral glucose tolerance test (OGTT) and hyperinsulinemic euglycemic clamp (HIEC) study in normal nondiabetic subjects. Lactate and glycerol were determined every 30 minutes during OGTT and HIEC on 22 participants. Lactate progressively increased throughout the HIEC study period (P < 0.001). Participants with BMI < 30 had significantly higher mean M-values compared to those with BMI ≥ 30 at baseline (P < 0.05). This trend also continued throughout the OGTT. In addition, those with impaired glucose tolerance test (IGT) had significantly higher mean lactate levels compared to those with normal glucose tolerance (P < 0.001). In conclusion, we found that lactate increased during HIEC study, which is a state of hyperinsulinemia similar to the metabolic milieu seen during the early stages in the development of T2D. PMID:25961050

  19. Development of diagnotors based on time-average values of plasma glucose and immunoreactive insulin levels during intravenous glucose tolerance testing

    NASA Astrophysics Data System (ADS)

    Denisova, Tatyana P.; Malinov, Igor A.; Malinova, Lidia I.; Brook, Sergey B.

    2000-04-01

    The diagnostic algorithm of glucose-insulinic violations for the patients with a clinically obvious atherosclerosis of coronary arteries, non-insulin dependent diabetes mellitus and persons with the heritable predisposition to these forms of pathology was designed. The realization of intravenous glucose tolerance test in specially fitted groups of patients served as basis of the algorithm.

  20. Deoxyandrographolide promotes glucose uptake through glucose transporter-4 translocation to plasma membrane in L6 myotubes and exerts antihyperglycemic effect in vivo.

    PubMed

    Arha, Deepti; Pandeti, Sukanya; Mishra, Akansha; Srivastava, Swayam Prakash; Srivastava, Arvind Kumar; Narender, Tadigoppula; Tamrakar, Akhilesh Kumar

    2015-12-01

    Skeletal muscle is the principal site for postprandial glucose utilization and augmenting the rate of glucose utilization in this tissue may help to control hyperglycemia associated with diabetes mellitus. Here, we explored the effect of Deoxyandrographolide (DeoAn) isolated from the Andrographis paniculata Nees on glucose utilization in skeletal muscle and investigated its antihyperglycemic effect in vivo in streptozotocin-induced diabetic rats and genetically diabetic db/db mice. In L6 myotubes, DeoAn dose-dependently stimulated glucose uptake by enhancing the translocation of glucose transporter 4 (GLUT4) to cell surface, without affecting the total cellular GLUT4 and GLUT1 content. These effects of DeoAn were additive to insulin. Further analysis revealed that DeoAn activated PI-3-K- and AMPK-dependent signaling pathways, account for the augmented glucose transport in L6 myotubes. Furthermore, DeoAn lowered postprandial blood glucose levels in streptozotocin-induced diabetic rats and also suppressed the rises in the fasting blood glucose, serum insulin, triglycerides and LDL-Cholesterol levels of db/db mice. These findings suggest the therapeutic efficacy of the DeoAn for type 2 diabetes mellitus and can be potential phytochemical for its management.

  1. The effects of a nutraceutical combination on plasma lipids and glucose: A systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Pirro, Matteo; Mannarino, Massimo Raffaele; Bianconi, Vanessa; Simental-Mendía, Luis E; Bagaglia, Francesco; Mannarino, Elmo; Sahebkar, Amirhossein

    2016-08-01

    Dyslipidemia and hyperglycemia are associated with an increased risk of ischemic cardiovascular disease. Positive effects of a nutraceutical combination comprising red yeast rice, berberine, policosanol, astaxanthin, coenzyme Q10 and folic acid (NComb) on plasma lipid and glucose levels have been reported in some but not all clinical trials. To address this inconsistency, we tried to estimate the size of lipid- and glucose-lowering effects of NComb through a systematic review and meta-analysis of randomized controlled trials. A systematic literature search in PubMed-Medline, SCOPUS and Google Scholar databases was conducted to identify randomized controlled trials investigating the effects of NComb on plasma lipids and glucose levels. Inverse variance-weighted mean differences (WMDs) and 95% confidence intervals (CIs) were calculated for net changes in lipid and glucose levels using a random-effects model. Random-effects meta-regression was performed to assess the effect of putative confounders on plasma lipid and glucose levels. Fourteen trials (1670 subjects in the NComb arm and 1489 subjects in the control arm) met the eligibility criteria for lipid analysis and 10 trials (1014 subjects in the NComb arm and 962 subjects in the control arm) for glucose analysis. Overall, WMDs were significant for the impact of NComb supplementation on plasma levels of total cholesterol (-26.15mg/dL, p<0.001), LDL-cholesterol (-23.85mg/dL, p<0.001), HDL-cholesterol (2.53mg/dL, p<0.001), triglycerides (-13.83mg/dL, p<0.001) and glucose (-2.59mg/dL, p=0.010). NComb-induced amelioration of lipid profile was not affected by duration of supplementation nor by baseline lipid levels; conversely, a greater glucose-lowering effect of NComb was found with higher baseline glucose levels and longer durations of supplementation. In conclusion, the present results suggest that NComb supplementation is associated with improvement of lipid and glucose profile. Short-term beneficial effects of

  2. Comparison of the clinical characteristics of diabetes mellitus diagnosed using fasting plasma glucose and haemoglobin A1c: The 2011 Korea National Health and Nutrition Examination Survey.

    PubMed

    Hong, Sangmo; Kang, Jun Goo; Kim, Chul Sik; Lee, Seong Jin; Lee, Chang Beom; Ihm, Sung-Hee

    2016-03-01

    We compared the characteristics of a Korean adult population diagnosed with diabetes using only a fasting plasma glucose criterion or an HbA1c criterion. The single difference between these two groups was age. Further studies should be undertaken to clarify whether age-specific diagnostic criteria would be appropriate in Korean populations.

  3. Picoliter 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Minard, Kevin R.; Wind, Robert A.

    2002-02-01

    In this study, a 267-μm-diameter solenoid transceiver is used to acquire localized 1H NMR spectra and the measured signal-to-noise ratio (SNR) at 500 MHz is shown to be within 20-30% of theoretical limits formulated by considering only its resistive losses. This is illustrated using a 100-μm-diameter globule of triacylglycerols (∼900 mM) that may be an oocyte precursor in young Xenopus laevis frogs and a water sample containing choline at a concentration often found in live mammalian cells (∼33 mM). In chemical shift imaging (CSI) experiments performed using a few thousand total scans, the choline methyl line is shown to have an acceptable SNR in resolved volume elements containing only 50 pL of sample, and localized spectra are resolved from just 5 pL in the Xenopus globule. These findings demonstrate the feasibility of performing 1H NMR on picoliter-scale sample volumes in biological cells and tissues and illustrate how the achieved SNR in spectroscopic images can be predicted with reasonable accuracy at microscopic spatial resolutions.

  4. Effect of altered eating pattern on serum fructosamine: total protein ratio and plasma glucose level.

    PubMed

    Ch'ng, S L; Cheah, S H; Husain, R; Duncan, M T

    1989-05-01

    The effect of alteration of eating pattern during Ramadan on body mass index (BMI), serum fructosamine: total protein ratio (F/TP), and glucose level in 18 healthy male Asiatic Moslems were studied. The results showed a significant decrease (p less than 0.025) in F/TP at the second week of Ramadan in 11 subjects who experienced continuous decrease in BMI throughout Ramadan. The remaining 7 subjects showed no significant changes in BMI and F/TP. No evidence of hypoglycaemia was observed in the subjects during the study. Serum fructosamine: total protein ratio in subjects with altered eating pattern preferably should be interpreted along with the change in body mass index.

  5. Effects of pentobarbital on plasma glucose and free fatty acids in the rat.

    NASA Technical Reports Server (NTRS)

    Furner, R. L.; Neville, E. D.; Talarico, K. S.; Feller, D. D.

    1972-01-01

    Hyperglycemia and hypolipemia were observed in rats after the injection of sodium pentobarbital. The observed changes were independent of whether the blood was collected by decapitation or by needle puncture of the aorta. The hyperglycemic response was caused by two factors including the stress of the injection per se and the pharmacological action of the drug. Hyperlipemia was observed at 5 min postinjection. However, pentobarbital decreased plasma free fatty acids by 15 min postinjection. Both the hyperglycemia and hypolipemia responses were dose dependent.

  6. Mass spectrometry-based microassay of (2)H and (13)C plasma glucose labeling to quantify liver metabolic fluxes in vivo.

    PubMed

    Hasenour, Clinton M; Wall, Martha L; Ridley, D Emerson; Hughey, Curtis C; James, Freyja D; Wasserman, David H; Young, Jamey D

    2015-07-15

    Mouse models designed to examine hepatic metabolism are critical to diabetes and obesity research. Thus, a microscale method to quantitatively assess hepatic glucose and intermediary metabolism in conscious, unrestrained mice was developed. [(13)C3]propionate, [(2)H2]water, and [6,6-(2)H2]glucose isotopes were delivered intravenously in short- (9 h) and long-term-fasted (19 h) C57BL/6J mice. GC-MS and mass isotopomer distribution (MID) analysis were performed on three 40-μl arterial plasma glucose samples obtained during the euglycemic isotopic steady state. Model-based regression of hepatic glucose and citric acid cycle (CAC)-related fluxes was performed using a comprehensive isotopomer model to track carbon and hydrogen atom transitions through the network and thereby simulate the MIDs of measured fragment ions. Glucose-6-phosphate production from glycogen diminished, and endogenous glucose production was exclusively gluconeogenic with prolonged fasting. Gluconeogenic flux from phosphoenolpyruvate (PEP) remained stable, whereas that from glycerol modestly increased from short- to long-term fasting. CAC flux [i.e., citrate synthase (VCS)] was reduced with long-term fasting. Interestingly, anaplerosis and cataplerosis increased with fast duration; accordingly, pyruvate carboxylation and the conversion of oxaloacetate to PEP were severalfold higher than VCS in long-term fasted mice. This method utilizes state-of-the-art in vivo methodology and comprehensive isotopomer modeling to quantify hepatic glucose and intermediary fluxes during physiological stress in mice. The small plasma requirements permit serial sampling without stress and the affirmation of steady-state glucose kinetics. Furthermore, the approach can accommodate a broad range of modeling assumptions, isotope tracers, and measurement inputs without the need to introduce ad hoc mathematical approximations.

  7. Plasma levels of glucose, ketone bodies, lactate, and alanine in the vascular supply to and from the brain of the adult American bullfrog (Rana catesbeiana).

    PubMed

    Gibbs, S R; deRoos, R M

    1991-04-01

    Serial, paired blood samples were collected via cannulae chronically placed in the common carotid artery (A) to and the internal jugular vein (V) from the brain of the fasted adult American bullfrog (Rana catesbeiana). Plasma glucose, beta-hydroxybutyrate, acetoacetate, lactate, and alanine levels were measured by standard enzymatic procedures. Cannula failure ended sampling after 1-2 days in most animals. The common carotid artery plasma metabolite levels were greatest at the time of surgery and subsequently declined to relatively stable levels. The summarized data indicated glucose uptake and alanine release by the brain, but no significant beta-hydroxybutyrate or lactate A-V percentage changes. Initially, acetoacetate levels also were measured, but were discontinued in favor of continued beta-hydroxybutyrate determinations when no significant A-V percentage changes occurred. Separate analysis of the metabolite levels during the surgery and recovery period (less than or equal to 24 hr) and the "normal" under the experimental conditions period (greater than 24 hr) revealed that summarizing the data masked important A-V percentage changes during the two different physiological conditions. Glucose was the only metabolite extracted by the brain during the less than or equal to 24 hr period of elevated and subsequently declining metabolite levels. In contrast, glucose uptake did not occur during the greater than 24 hr period of stable levels, but there was lactate release. If the bullfrog brain stores substantial glycogen as do the other ectothermic vertebrates studied, glucose uptake when plasma levels are elevated, for example after feeding, may serve both to fuel the brain and to replenish endogenous glycogen reserves that may be mobilized to provide glucose for the brain after plasma glucose levels return to normal. Assuming that mammalian and bullfrog metabolic pathways are the same, the release of lactate and alanine by the brain, possibly to remove excess

  8. Short communication: plasma concentration of glucose-dependent insulinotropic polypeptide may regulate milk energy production in lactating dairy cows.

    PubMed

    Relling, A E; Crompton, L A; Loerch, S C; Reynolds, C K

    2014-01-01

    In dairy cows, an increase in plasma concentration of glucose-dependent insulinotropic polypeptide (GIP) is associated with an increase in metabolizable energy intake, but the role of GIP in energy partitioning of dairy cattle is not certain. The objective of this study was to examine the relationship between plasma GIP concentrations and energy partitioning toward milk production. Four mid-lactation, primiparous, rumen-fistulated Holstein-Friesian cows were fed a control diet of 55% forage and 45% concentrate [dry matter (DM) basis] in a 4×4 Latin square design with 4-wk periods. The 4 treatments were (1) control diet fed at 1000 and 1600h, and (2) once-daily (1000h) feeding, (3) twice-daily (1000 and 1600h) feeding, and (4) 4 times/d (1000, 1600, 2200 and 0400h) feeding of the control diet plus 1 dose (1.75kg on a DM basis at 0955h) into the rumen of supplemental vegetable proteins (Amino Green; SCA NuTec Ltd., Thirsk, UK). Measurements of respiratory exchange and energy balance were obtained over 4d during the last week of each period while cows were housed in open-circuit respiration chambers. Blood was collected from the jugular vein every 30min for 12h, using indwelling catheters, starting at 0800h on d 20 of each period. Plasma GIP concentration was measured in samples pooled over each 5 consecutive blood samplings. The relationships between plasma GIP, DM intake, heat production, respiratory quotient (RQ), milk yield, and milk energy output were analyzed using linear correlation procedures, with metabolizable intake as a partial variant. Plasma GIP concentration was not correlated with heat production, or milk yield, but was positively correlated with milk energy yield (correlation coefficient=0.67) and negatively correlated with RQ (correlation coefficient=-0.72). The correlations between GIP with RQ and milk energy output do not imply causality, but support a role for GIP in the regulation of energy metabolism in dairy cows.

  9. Analysis of rapid oscillations of glucose and free fatty acids in plasma.

    PubMed

    Brodan, V; Hájek, M; Kuhn, E; Andĕl, M

    1979-07-01

    The authors analyzed rapid oscillations of blood sugar (GL) and free fatty acid levels (FFA) in serum of healthy subjects. They investigated a series of blood samples taken under conditions of absolute rest from the cubital vein at 15-s intervals for a period of 6 min. In addition to common statistical parameters, they calculated the course of autocorrelation and cross-correlation functions and periodograms. The magnitude of oscillations is significantly higher than the error of the biochemical methods. In some sequences periodicities were detected which were statistically significant in 23.8% of GL and in 38.1% of FFA. 24-point series of GL collected in parallel from both arms correlate in 36.3% positively, in 27.3% negatively, and in 36.4% they do not correlate. Series of FFA and GL collected simultaneously from one site correlate mutaually in almost all instances either positively or negatively, frequently with a time shift. The oscillations may be due to (a) feedback regulations of the levels of the two metabolites, (b) permanent mutual interaction between the FFA and glucose level and (c) an uneven concentration of the two metabolites in different parts of the circulation. The above factors may combine, and the list of possible factors may not be complete.

  10. Determinants of fasting plasma glucose and glycosylated hemoglobin among low income Latinos with poorly controlled type 2 diabetes.

    PubMed

    Kollannoor-Samuel, Grace; Chhabra, Jyoti; Fernandez, Maria Luz; Vega-López, Sonia; Pérez, Sofia Segura; Damio, Grace; Calle, Mariana C; D'Agostino, Darrin; Pérez-Escamilla, Rafael

    2011-10-01

    The objective of this study was to identify demographic, socio-economic, acculturation, lifestyle, sleeping pattern, and biomedical determinants of fasting plasma glucose (FPG) and glycosylated hemoglobin (HbA1c), among Latinos with type 2 diabetes (T2D). Latino adults (N = 211) with T2D enrolled in the DIALBEST trial were interviewed in their homes. Fasting blood samples were also collected in the participants' homes. Because all participants had poor glucose control, above-median values for FPG (173 mg/dl) and HbA1c (9.2%) were considered to be indicative of poorer glycemic control. Multivariate analyses showed that receiving heating assistance (OR: 2.20; 95% CI: 0.96-4.96), and having a radio (3.11, 1.16-8.35), were risk factors for higher FPG levels, and lower income (10.4, 1.54-69.30) was a risk factor for higher HbA1c levels. Lower carbohydrate intake during the previous day (0.04; 0.005-0.37), as well as regular physical activity (0.30; 0.13-0.69), breakfast (2.78; 1.10-6.99) and dinner skipping (3.9; 1.03-14.9) during previous week were significantly associated with FPG concentrations. Being middle aged (2.24, 1.12-4.47), 30-60 min of sleep during the day time (0.07, 0.01-0.74) and having medical insurance (0.31, 0.10-0.96) were predictors of HbA1c. Results suggest that contemporaneous lifestyle behaviors were associated with FPG and contextual biomedical factors such as health care access with HbA1c. Lower socio-economic status indicators were associated with poorer FPG and HbA1c glycemic control.

  11. 1H NMR global metabolic phenotyping of acute pancreatitis in the emergency unit.

    PubMed

    Villaseñor, Alma; Kinross, James M; Li, Jia V; Penney, Nicholas; Barton, Richard H; Nicholson, Jeremy K; Darzi, Ara; Barbas, Coral; Holmes, Elaine

    2014-12-01

    We have investigated the urinary and plasma metabolic phenotype of acute pancreatitis (AP) patients presenting to the emergency room at a single center London teaching hospital with acute abdominal pain using (1)H NMR spectroscopy and multivariate modeling. Patients were allocated to either the AP (n = 15) or non-AP patients group (all other causes of abdominal pain, n = 21) on the basis of the national guidelines. Patients were assessed for three clinical outcomes: (1) diagnosis of AP, (2) etiology of AP caused by alcohol consumption and cholelithiasis, and (3) AP severity based on the Glasgow score. Samples from AP patients were characterized by high levels of urinary ketone bodies, glucose, plasma choline and lipid, and relatively low levels of urinary hippurate, creatine and plasma-branched chain amino acids. AP could be reliably identified with a high degree of sensitivity and specificity (OPLS-DA model R(2) = 0.76 and Q(2)Y = 0.59) using panel of discriminatory biomarkers consisting of guanine, hippurate and creatine (urine), and valine, alanine and lipoproteins (plasma). Metabolic phenotyping was also able to distinguish between cholelithiasis and colonic inflammation among the heterogeneous non-AP group. This work has demonstrated that combinatorial biomarkers have a strong diagnostic and prognostic potential in AP with relevance to clinical decision making in the emergency unit. PMID:25160714

  12. Comparison of the Current Diagnostic Criterion of HbA1c with Fasting and 2-Hour Plasma Glucose Concentration

    PubMed Central

    Karnchanasorn, Rudruidee; Huang, Jean; Feng, Wei; Chuang, Lee-Ming

    2016-01-01

    To determine the effectiveness of hemoglobin A1c (HbA1c) ≥ 6.5% in diagnosing diabetes compared to fasting plasma glucose (FPG) ≥ 126 mg/dL and 2-hour plasma glucose (2hPG) ≥ 200 mg/dL in a previously undiagnosed diabetic cohort, we included 5,764 adult subjects without established diabetes for whom HbA1c, FPG, 2hPG, and BMI measurements were collected. Compared to the FPG criterion, the sensitivity of HbA1c ≥ 6.5% was only 43.3% (106 subjects). Compared to the 2hPG criterion, the sensitivity of HbA1c ≥ 6.5% was only 28.1% (110 subjects). Patients who were diabetic using 2hPG criterion but had HbA1c < 6.5% were more likely to be older (64 ± 15 versus 60 ± 15 years old, P = 0.01, mean ± STD), female (53.2% versus 38.2%, P = 0.008), leaner (29.7 ± 6.1 versus 33.0 ± 6.6 kg/m2, P = 0.000005), and less likely to be current smokers (18.1% versus 29.1%, P = 0.02) as compared to those with HbA1c ≥ 6.5%. The diagnostic agreement in the clinical setting revealed the current HbA1c ≥ 6.5% is less likely to detect diabetes than those defined by FPG and 2hPG. HbA1c ≥ 6.5% detects less than 50% of diabetic patients defined by FPG and less than 30% of diabetic patients defined by 2hPG. When the diagnosis of diabetes is in doubt by HbA1c, FPG and/or 2hPG should be obtained.

  13. Comparison of the Current Diagnostic Criterion of HbA1c with Fasting and 2-Hour Plasma Glucose Concentration.

    PubMed

    Karnchanasorn, Rudruidee; Huang, Jean; Ou, Horng-Yih; Feng, Wei; Chuang, Lee-Ming; Chiu, Ken C; Samoa, Raynald

    2016-01-01

    To determine the effectiveness of hemoglobin A1c (HbA1c) ≥ 6.5% in diagnosing diabetes compared to fasting plasma glucose (FPG) ≥ 126 mg/dL and 2-hour plasma glucose (2hPG) ≥ 200 mg/dL in a previously undiagnosed diabetic cohort, we included 5,764 adult subjects without established diabetes for whom HbA1c, FPG, 2hPG, and BMI measurements were collected. Compared to the FPG criterion, the sensitivity of HbA1c ≥ 6.5% was only 43.3% (106 subjects). Compared to the 2hPG criterion, the sensitivity of HbA1c ≥ 6.5% was only 28.1% (110 subjects). Patients who were diabetic using 2hPG criterion but had HbA1c < 6.5% were more likely to be older (64 ± 15 versus 60 ± 15 years old, P = 0.01, mean ± STD), female (53.2% versus 38.2%, P = 0.008), leaner (29.7 ± 6.1 versus 33.0 ± 6.6 kg/m(2), P = 0.000005), and less likely to be current smokers (18.1% versus 29.1%, P = 0.02) as compared to those with HbA1c ≥ 6.5%. The diagnostic agreement in the clinical setting revealed the current HbA1c ≥ 6.5% is less likely to detect diabetes than those defined by FPG and 2hPG. HbA1c ≥ 6.5% detects less than 50% of diabetic patients defined by FPG and less than 30% of diabetic patients defined by 2hPG. When the diagnosis of diabetes is in doubt by HbA1c, FPG and/or 2hPG should be obtained. PMID:27597979

  14. Intensive lifestyle intervention including high-intensity interval training program improves insulin resistance and fasting plasma glucose in obese patients☆

    PubMed Central

    Marquis-Gravel, Guillaume; Hayami, Douglas; Juneau, Martin; Nigam, Anil; Guilbeault, Valérie; Latour, Élise; Gayda, Mathieu

    2015-01-01

    Objectives To analyze the effects of a long-term intensive lifestyle intervention including high-intensity interval training (HIIT) and Mediterranean diet (MedD) counseling on glycemic control parameters, insulin resistance and β-cell function in obese subjects. Methods The glycemic control parameters (fasting plasma glucose, glycated hemoglobin), insulin resistance, and β-cell function of 72 obese subjects (54 women; mean age = 53 ± 9 years) were assessed at baseline and upon completion of a 9-month intensive lifestyle intervention program conducted at the cardiovascular prevention and rehabilitation center of the Montreal Heart Institute, from 2009 to 2012. The program included 2–3 weekly supervised exercise training sessions (HIIT and resistance exercise), combined to MedD counseling. Results Fasting plasma glucose (FPG) (mmol/L) (before: 5.5 ± 0.9; after: 5.2 ± 0.6; P < 0.0001), fasting insulin (pmol/L) (before: 98 ± 57; after: 82 ± 43; P = 0.003), and insulin resistance, as assessed by the HOMA-IR score (before: 3.6 ± 2.5; after: 2.8 ± 1.6; P = 0.0008) significantly improved, but not HbA1c (%) (before: 5.72 ± 0.55; after: 5.69 ± 0.39; P = 0.448), nor β-cell function (HOMA-β, %) (before: 149 ± 78; after: 144 ± 75; P = 0.58). Conclusion Following a 9-month intensive lifestyle intervention combining HIIT and MedD counseling, obese subjects experienced significant improvements of FPG and insulin resistance. This is the first study to expose the effects of a long-term program combining HIIT and MedD on glycemic control parameters among obese subjects. PMID:26844086

  15. Comparison of the Current Diagnostic Criterion of HbA1c with Fasting and 2-Hour Plasma Glucose Concentration

    PubMed Central

    Karnchanasorn, Rudruidee; Huang, Jean; Feng, Wei; Chuang, Lee-Ming

    2016-01-01

    To determine the effectiveness of hemoglobin A1c (HbA1c) ≥ 6.5% in diagnosing diabetes compared to fasting plasma glucose (FPG) ≥ 126 mg/dL and 2-hour plasma glucose (2hPG) ≥ 200 mg/dL in a previously undiagnosed diabetic cohort, we included 5,764 adult subjects without established diabetes for whom HbA1c, FPG, 2hPG, and BMI measurements were collected. Compared to the FPG criterion, the sensitivity of HbA1c ≥ 6.5% was only 43.3% (106 subjects). Compared to the 2hPG criterion, the sensitivity of HbA1c ≥ 6.5% was only 28.1% (110 subjects). Patients who were diabetic using 2hPG criterion but had HbA1c < 6.5% were more likely to be older (64 ± 15 versus 60 ± 15 years old, P = 0.01, mean ± STD), female (53.2% versus 38.2%, P = 0.008), leaner (29.7 ± 6.1 versus 33.0 ± 6.6 kg/m2, P = 0.000005), and less likely to be current smokers (18.1% versus 29.1%, P = 0.02) as compared to those with HbA1c ≥ 6.5%. The diagnostic agreement in the clinical setting revealed the current HbA1c ≥ 6.5% is less likely to detect diabetes than those defined by FPG and 2hPG. HbA1c ≥ 6.5% detects less than 50% of diabetic patients defined by FPG and less than 30% of diabetic patients defined by 2hPG. When the diagnosis of diabetes is in doubt by HbA1c, FPG and/or 2hPG should be obtained. PMID:27597979

  16. Effects of 2-, 4- and 12-hour fasting intervals on preoperative gastric fluid pH and volume, and plasma glucose and lipid homeostasis in children.

    PubMed

    Maekawa, N; Mikawa, K; Yaku, H; Nishina, K; Obara, H

    1993-11-01

    We evaluated 105 randomly-selected unpremedicated children aged 1-14 years to determine the effects of a 2-, 4- and 12-h preoperative fasting interval on the preoperative gastric fluid pH and volume, and plasma glucose and lipid homeostasis. Each child undergoing elective surgery ingested a large volume (approximately 10 ml/kg b.w.) of apple juice and then fasted for 2, 4 or 12 h before the estimated induction of anaesthesia. After induction of anaesthesia, gastric fluid was aspirated through a large-bore, multiorifice orogastric tube. Plasma concentrations of glucose, total ketone bodies, non-esterified fatty acid (NEFA), triglycerides, and cortisol were measured at the time of induction to evaluate the fasting interval effects on preoperative plasma glucose and lipid homeostasis. There were no significant differences between the three groups in either gastric fluid volume or pH. In addition, there were no significant differences between the groups with respect to the proportion with a pH < 2.5 and volume > 0.4 ml/kg b.w. Neither plasma concentrations of glucose, triglycerides, nor cortisol at the time of anaesthetic induction differed between the three groups. Both 4 and 12 h nil per os (NPO) caused an increase in lipolysis, which was presumably a compensatory mechanism to maintain normoglycaemia. The plasma NEFA and total ketone bodies concentrations were therefore significantly higher in these two fasting intervals than in 2 h NPO. These data suggest that a 2-h NPO, after a large volume of ingested apple juice, may offer additional benefits by preventing an increase in lipolysis during the fasting interval without either increasing the volume of gastric fluid or decreasing the gastric pH.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. The Effects of Hyperhydrating Supplements Containing Creatine and Glucose on Plasma Lipids and Insulin Sensitivity in Endurance-Trained Athletes

    PubMed Central

    Polyviou, Thelma P.; Pitsiladis, Yannis P.; Celis-Morales, Carlos; Brown, Benjamin; Speakman, John R.; Malkova, Dalia

    2015-01-01

    The addition of carbohydrate (CHO) in the form of simple sugars to creatine (Cr) supplements is central. The study aimed to determine whether ingestion of glucose (Glu) simultaneously with Cr and glycerol (Cr/Gly) supplement is detrimental to plasma lipids of endurance-trained individuals and find out whether modification arising can be attenuated by replacing part of the Glu with alpha lipoic acid (Ala). Twenty-two endurance-trained cyclists were randomized to receive Cr/Gly/Glu (11.4 g Cr-H2O, 1 g Gly/kg BM, and 150 g Glu) or Cr/Gly/Glu/Ala (11.4 g Cr-H2O, 1 g Gly/kg BM, 100 g Glu, and 1 g Ala) for 7 days. Fasting concentration of TAG increased significantly (P < 0.01) after supplementation with Cr/Gly/Glu (before: 0.9 ± 0.2 mmol/L; after: 1.3 ± 0.4 mmol/L) and Cr/Gly/Glu/Ala (before: 0.8 ± 0.2 mmol/L; after: 1.2 ± 0.5 mmol/L) but changes were not different between the groups. Supplementation significantly (P < 0.05) increased the TAG to HDL-cholesterol ratio but had no effect on fasting concentration of total, HDL-, and LDL-cholesterol and insulin resistance. Thus, addition of Glu to Cr containing supplements enhances plasma TAG concentration and the TAG to HDL-cholesterol ratio and this enhancement cannot be attenuated by partial replacement of Glu with Ala. PMID:26167296

  18. High Fasting Plasma Glucose Mortality Effect: A Comparative Risk Assessment in 25–64 Years Old Iranian Population

    PubMed Central

    Peykari, Niloofar; Saeedi, Moghaddam Sahar; Djalalinia, Shirin; Kasaeian, Amir; Sheidaei, Ali; Mansouri, Anita; Mohammadi, Younes; Parsaeian, Mahboubeh; Mehdipour, Parinaz; Larijani, Bagher; Farzadfar, Farshad

    2016-01-01

    Background: High fasting plasma glucose (FPG) is one of the main leading risk factors of ischemic heart disease (IHD), stroke, and chronic kidney diseases (CKDs). We estimated population attributable fraction (PAF) and attributed death of these fatal outcomes of high FPG at national and subnational levels in 25–64 years old Iranian adult. Methods: We used national and subnational data of the Non-Communicable Disease Surveillance Survey for exposure to risk factors in 2005 and 2011 among Iranian adults of 25–64 years old. For estimating the attributed death, using the death registration system data of Iran, we multiply the cause-specific PAFs by the number of outcome-specific deaths. Results: In Iran, high FPG was responsible for about 31% of attributed total deaths of IHD, stroke, and CKD in 2011. The related attributed deaths had increased from 2005 to 2011. In females, the PAFs for the effect of high FPG on IHD, stroke, and CKD were higher in 2011 than 2005 in all age groups. In males, this increase has occurred in over 45 years old. The highest PAFs of high FPG outcomes mostly related to central provinces of Iran. The central region of Iran had the highest and the southeast of the country had the lowest levels of attributed deaths. Conclusions: Considering the global 25 × 25 targets for noncommunicable disease mortality reduction, high FPG as a leading risk factor of fatal outcomes should be more targeted through the dietary, behavioral, and pharmacological interventions in Iran. PMID:27280011

  19. Evaluating the transferability of 15 European-derived fasting plasma glucose SNPs in Mexican children and adolescents

    PubMed Central

    Langlois, Christine; Abadi, Arkan; Peralta-Romero, Jesus; Alyass, Akram; Suarez, Fernando; Gomez-Zamudio, Jaime; Burguete-Garcia, Ana I.; Yazdi, Fereshteh T.; Cruz, Miguel; Meyre, David

    2016-01-01

    Genome wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNPs) that are associated with fasting plasma glucose (FPG) in adult European populations. The contribution of these SNPs to FPG in non-Europeans and children is unclear. We studied the association of 15 GWAS SNPs and a genotype score (GS) with FPG and 7 metabolic traits in 1,421 Mexican children and adolescents from Mexico City. Genotyping of the 15 SNPs was performed using TaqMan Open Array. We used multivariate linear regression models adjusted for age, sex, body mass index standard deviation score, and recruitment center. We identified significant associations between 3 SNPs (G6PC2 (rs560887), GCKR (rs1260326), MTNR1B (rs10830963)), the GS and FPG level. The FPG risk alleles of 11 out of the 15 SNPs (73.3%) displayed significant or non-significant beta values for FPG directionally consistent with those reported in adult European GWAS. The risk allele frequencies for 11 of 15 (73.3%) SNPs differed significantly in Mexican children and adolescents compared to European adults from the 1000G Project, but no significant enrichment in FPG risk alleles was observed in the Mexican population. Our data support a partial transferability of European GWAS FPG association signals in children and adolescents from the admixed Mexican population. PMID:27782183

  20. The seasonal glucocorticoid response of male Rufous-winged Sparrows to acute stress correlates with changes in plasma uric acid, but neither glucose nor testosterone.

    PubMed

    Deviche, Pierre; Valle, Shelley; Gao, Sisi; Davies, Scott; Bittner, Stephanie; Carpentier, Elodie

    2016-09-01

    We sought to clarify functional relationships between baseline and acute stress-induced changes in plasma levels of the stress hormone corticosterone (CORT) and the reproductive hormone testosterone (T), and those of two main metabolites, uric acid (UA) and glucose (GLU). Acute stress in vertebrates generally stimulates the secretion of glucocorticoids, which in birds is primarily CORT. This stimulation is thought to promote behavioral and metabolic changes, including increased glycemia. However, limited information in free-ranging birds supports the view that acutely elevated plasma CORT stimulates glycemia. Acute stress also often decreases the secretion of reproductive hormones (e.g., T in males), but the role of CORT in this decrease and the contribution of T to the regulation of plasma GLU remain poorly understood. We measured initial (pre-stress) and acute stress-induced plasma CORT and T as well as GLU in adult male Rufous-winged Sparrows, Peucaea carpalis, sampled during the pre-breeding, breeding, post-breeding molt, and non-breeding stages. Stress increased plasma CORT and the magnitude of this increase did not differ across life history stages. The stress-induced elevation of plasma CORT was consistently associated with decreased plasma UA, suggesting a role for CORT in the regulation of plasma UA during stress. During stress plasma GLU either increased (pre-breeding), did not change (breeding), or decreased (molt and non-breeding), and plasma T either decreased (pre-breeding and breeding) or did not change (molt and non-breeding). These data provide only partial support to the hypothesis that CORT secretion during acute stress exerts a hyperglycemic action or is responsible for the observed decrease in plasma T taking place at certain life history stages. They also do not support the hypothesis that rapid changes in plasma T influence glycemia. PMID:27292791

  1. Determinants of Fasting Plasma Glucose and Glycosylated Hemoglobin Among Low Income Latinos with Poorly Controlled Type 2 Diabetes

    PubMed Central

    Kollannoor-Samuel, Grace; Chhabra, Jyoti; Fernandez, Maria Luz; Vega-LÓpez, Sonia; Pérez, Sofia Segura; Damio, Grace; Calle, Mariana C.; D’Agostino, Darrin; Pérez-Escamilla, Rafael

    2011-01-01

    The objective of this study was to identify demographic, socio-economic, acculturation, lifestyle, sleeping pattern, and biomedical determinants of fasting plasma glucose (FPG) and glycosylated hemoglobin (HbA1c), among Latinos with type 2 diabetes (T2D). Latino adults (N = 211) with T2D enrolled in the DIALBEST trial were interviewed in their homes. Fasting blood samples were also collected in the participants’ homes. Because all participants had poor glucose control, above-median values for FPG (173 mg/dl) and HbA1c (9.2%) were considered to be indicative of poorer glycemic control. Multivariate analyses showed that receiving heating assistance (OR: 2.20; 95% CI: 0.96–4.96), and having a radio (3.11, 1.16–8.35), were risk factors for higher FPG levels, and lower income (10.4, 1.54–69.30) was a risk factor for higher HbA1c levels. Lower carbohydrate intake during the previous day (0.04; 0.005–0.37), as well as regular physical activity (0.30; 0.13–0.69), breakfast (2.78; 1.10–6.99) and dinner skipping (3.9; 1.03–14.9) during previous week were significantly associated with FPG concentrations. Being middle aged (2.24, 1.12–4.47), 30–60 min of sleep during the day time (0.07, 0.01–0.74) and having medical insurance (0.31, 0.10–0.96) were predictors of HbA1c. Results suggest that contemporaneous lifestyle behaviors were associated with FPG and contextual biomedical factors such as health care access with HbA1c. Lower socio-economic status indicators were associated with poorer FPG and HbA1c glycemic control. PMID:21181446

  2. The Association of Retinopathy and Plasma Glucose and HbA1c: A Validation of Diabetes Diagnostic Criteria in a Chinese Population

    PubMed Central

    Li, Yufeng; Zhang, Simin

    2016-01-01

    Aims. This study aimed to evaluate the associations of diabetic retinopathy (DR) with fasting plasma glucose (FPG), 2-hour postload plasma glucose (2hPG), and glycated hemoglobin A1c (HbA1c) in a Chinese population. Materials and Methods. A total of 3124 participants, identified from a population-based survey in Pinggu district, were examined by retinal photography (45°). DR was classified according to the Early Treatment Diabetic Retinopathy Study scale. FPG, 2hPG, and HbA1c were tested and categorized by deciles, with the prevalence of DR calculated in each decile. Results. The prevalence of DR increased sharply in the 10th deciles, when FPG exceeded 7.03 mmol/L and HbA1c exceeded 6.4%. Analysis of the receiver operating characteristic curves showed that the optimal cutoffs for detecting DR were 6.52 mmol/L and 5.9% for FPG and HbA1c, respectively. The World Health Organization (WHO) criteria for diagnosing diabetes showed high specificity (90.5–99.5%) and low sensitivity (35.3–65.0%). Further, 6 individuals with retinopathy had normal plasma glucose; however, their characteristics did not differ from those without retinopathy. Conclusions. Thresholds of FPG and HbA1c for detecting DR were observed, and the WHO criteria of diagnosing diabetes were shown to have high specificity and low sensitivity in this population. PMID:27807545

  3. Quantification of [1-(5-fluoropentyl)-1H-indol-3-yl](naphthalene-1-yl)methanone (AM-2201) and 13 metabolites in human and rat plasma by liquid chromatography-tandem mass spectrometry.

    PubMed

    Carlier, Jeremy; Scheidweiler, Karl B; Wohlfarth, Ariane; Salmeron, Bonita D; Baumann, Michael H; Huestis, Marilyn A

    2016-06-17

    AM-2201 is a popular synthetic cannabinoid first synthesized in 2000. AM-2201 pharmacokinetic and pharmacodynamic data are scarce, requiring further investigation. We developed a sensitive method for quantifying AM-2201 and 13 metabolites in plasma to provide a tool to further metabolic, pharmacokinetic and pharmacodynamic studies. Analysis was performed by liquid chromatography-tandem mass spectrometry. Chromatographic separation was performed by gradient elution on a biphenyl column with 0.1% formic acid in water/0.1% formic acid in acetonitrile:methanol 50:50 (v/v) mobile phase. Sample preparation (75μL) consisted of an enzymatic hydrolysis and a supported liquid extraction. The method was validated with human plasma with a 0.025 or 0.050-50μg/L working range, and cross-validated for rat plasma. Analytical recovery was 88.8-110.1% of target concentration, and intra- (n=30) and inter-day (n=30) imprecision<11.9% coefficient of variation. Method recoveries and matrix effects ranged from 58.4-84.4% and -62.1 to -15.6%, respectively. AM-2201 and metabolites were stable (±20%) at room temperature for 24h, at 4°C for 72h, and after three freeze-thaw cycles, and for 72h in the autosampler after extraction. The method was developed for pharmacodynamic and pharmacokinetic studies with controlled administration in rats but is applicable for pre-clinical and clinical research and forensic investigations. Rat plasma specimen analysis following subcutaneous AM-2201 administration demonstrated the suitability of the method. AM-2201, JWH-018 N-(5-hydroxypentyl), and JWH-018 N-pentanoic acid concentrations were 4.8±1.0, 0.15±0.03, and 0.34±0.07μg/L, respectively, 8h after AM-2201 administration at 0.3mg/kg (n=5).

  4. Multiple Functional Polymorphisms in the G6PC2 Gene Contribute to the Association with Higher Fasting Plasma Glucose Levels

    PubMed Central

    Baerenwald, D. A.; Bonnefond, A.; Bouatia-Naji, N.; Flemming, B. P.; Umunakwe, O. C.; Oeser, J. K.; Pound, L. D.; Conley, N. L.; Cauchi, S.; Lobbens, S.; Eury, E.; Balkau, B.; Lantieri, O.; Dadi, P. K.; Jacobson, D. A.; Froguel, P.; O’Brien, R. M.

    2014-01-01

    Aims We previously identified the G6PC2 locus as a strong determinant of fasting plasma glucose (FPG) and showed that a common G6PC2 intronic single nucleotide polymorphism (SNP) (rs560887) and two common G6PC2 promoter SNPs (rs573225 and rs13431652) are highly associated with FPG. However, these promoter SNPs have complex effects on G6PC2 fusion gene expression, and our data suggested that only rs13431652 is a potentially causative SNP. Here we examine the effect of rs560887 on G6PC2 pre-mRNA splicing and the contribution of an additional common G6PC2 promoter SNP, rs2232316, to the association signal. Methods Mini-gene analyzes characterized the effect of rs560887 on G6PC2 pre-mRNA splicing. Fusion gene and gel retardation analyses characterized the effect of rs2232316 on G6PC2 promoter activity and transcription factor binding. The genetic association of rs2232316 with FPG variation was assessed using regression adjusted for age, gender and body mass index in 4,220 Europeans with normal FPG. Results & Conclusions The rs560887-G allele was shown to enhance G6PC2 pre-mRNA splicing while the rs2232316-A allele enhanced G6PC2 transcription by promoting Foxa2 binding. Genetic analyses provide evidence for association of the rs2232316-A allele with increased FPG (β=0.04 mmol/l; P=4.3×10−3) as part of the same signal as rs560887, rs573225 and rs13431652. As with rs13431652 the in situ functional data with rs560887 and rs2232316 are in accord with the putative function of G6PC2 in pancreatic islets and suggest that all three are potentially causative SNPs that contribute to the association between G6PC2 and FPG. PMID:23508304

  5. Pasta supplemented with isolated lupin protein fractions reduces body weight gain and food intake of rats and decreases plasma glucose concentration upon glucose overload trial.

    PubMed

    Capraro, Jessica; Magni, Chiara; Scarafoni, Alessio; Caramanico, Rosita; Rossi, Filippo; Morlacchini, Mauro; Duranti, Marcello

    2014-02-01

    The supplementation of foods with biologically active compounds can be a powerful approach for improving diet and well being. In this study we separately included in pasta matrices a concentrate of γ-conglutin, a glucose-lowering protein from Lupinus albus seeds, an isolate of the other main lupin storage proteins and ovalbumin, at a ratio corresponding to 125 mg of pure protein in 100 g of pasta. With these products we fed rats made hyperglycaemic, for 3 weeks. Among the most relevant changes measured in body and blood parameters were: (i) a significant reduction in food intake of rats fed γ-conglutin concentrate supplemented pasta and a significant limitation in the body weight increase in rats fed α, β and δ-conglutin isolate supplemented pasta, while the food conversion indices were unchanged; (ii) a reduction in glycaemia upon glucose overload trial, especially in the γ-conglutin concentrate supplemented pasta fed animals, at a dose of 45 mg per kg body weight. The correlations among the measured parameters are discussed. Overall, the results evidence the potentiality of supplementing traditional foods with exogenous nutraceutical seed proteins to control body weight gain and glycaemia.

  6. Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Neha; Lee, Su Jae; Choi, Tae Gyu; Baik, Ku Youn; Uhm, Han Sup; Kim, Chung Hyeok; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-03-01

    In this study, we show the selective and efficient anti-cancer effects of plasma (at a low dose) when cell metabolic modifiers are also included. 2-deoxy-D-glucose (2-DG), a glycolytic inhibitor, was used with effective doses of non-thermal plasma, synergistically attenuating cell metabolic viability and inducing caspase-dependent and independent cell death. The combination treatment decreased the intracellular ATP and lactate production in various types of blood cancer cells in vitro. Taken together, our findings suggest that 2-DG enhances the efficacy and selectivity of plasma and induces the synergistic inhibition of cancer cell growth by targeting glycolysis and apoptosis. Specifically, this treatment strategy demonstrated an enhanced growth inhibitory effect of plasma in the presence of a metabolic modifier that was selective against cancer cells, not non-malignant cells. This is the first study to report the advantage of combining plasma with 2-DG to eradicate blood cancer cells. Finally, we conclude that 2-DG with non-thermal plasma may be used as a combination treatment against blood cancer cells.

  7. Effect of aspartame and protein, administered in phenylalanine-equivalent doses, on plasma neutral amino acids, aspartate, insulin and glucose in man.

    PubMed

    Møller, S E

    1991-05-01

    Six human males each received 0.56 g phenylalanine (Phe) in the form of 1.0 g aspartame or 12.2 g bovine albumin in 200 ml water or water alone. Venous blood samples collected before consumption and during the following 4 hr were assayed for plasma levels of large, neutral amino acids (LNAA), aspartate, insulin and glucose. The area under the curve for plasma Phe was 40% greater, although not significant, after aspartame compared with albumin intake. The indicated increased clearance rate of plasma Phe after albumin may be caused by the significant increase of insulin, on which aspartame had no effect. There was a significant main effect of aspartame for plasma tyrosine but not for tryptophan, valine, isoleucine or leucine. Plasma aspartate was significantly increased at 0.25 hr after the aspartame intake. The percentage Phe/LNAA decreased slightly in response to albumin but increased 55% after aspartame and remained significantly increased for 2 hr. Tyrosine/LNAA increased and tryptophan/LNAA decreased modestly after aspartame intake. The study showed that the intake of aspartame in a not unrealistically high dose produced a marked and persistent increase of the availability of Phe to the brain, which was not observed after protein intake. The study indicated, furthermore, that Phe was cleared faster from the plasma after consumption of protein compared with aspartame.

  8. Changes in glucose tolerance and plasma insulin during lipid-lowering treatment with diet, clofibrate and niceritrol.

    PubMed

    Lithell, H; Vessby, B; Hellsing, K

    1982-06-01

    In an effort to reduce serum lipids in patients with atherosclerotic manifestations, a combined treatment with a conventional lipid-lowering diet, clofibrate and niceritrol was used. The effect on glucose metabolism of such treatment was studied. Among the 106 patients 66 took the full dose of both drugs and of these 51 were weight-stable and non-diabetic. The effects of the diet and the drugs were evaluated in this subsample. Diet had no effect on fasting blood glucose concentration, the K value of an intravenous glucose tolerance test (IVGTT) and concentrations of serum insulin. Niceritrol treatment was associated with increased blood glucose, decreased K value, elevated fasting serum insulin and serum insulin at 60 min during IVGTT. Clofibrate had the opposite effects to niceritrol and when both drugs were combined, carbohydrate metabolism was unchanged compared with the pre-treatment state. PMID:7052096

  9. A VISTA on PD-1H.

    PubMed

    Liu, Yang

    2014-05-01

    Three years ago, two research groups independently identified a previously undescribed T cell cosignaling molecule; one referred to it as V-domain Ig suppressor of T cell activation (VISTA), and the other used the term programmed death-1 homolog (PD-1H). Recombinant and ectopically expressed PD-1H functions as a coinhibitory ligand for T cell responses. However, the function of endogenous PD-1H is not clear. In this issue of the JCI, Flies and colleagues demonstrate that endogenous PD-1H on both T cells and APCs serves as a coinhibitory molecule for T cell activation and provide further support for targeting PD-1H as a therapeutic strategy for transplantation and cancers.

  10. Associations between meal size, gastric emptying and post-prandial plasma glucose, insulin and lactate concentrations in meal-fed cats.

    PubMed

    Coradini, M; Rand, J S; Filippich, L J; Morton, J M; O'Leary, C A

    2015-08-01

    Plasma glucose and insulin concentrations are increased for 12-24 h in healthy cats following moderate- to high-carbohydrate meals. This study investigated associations between gastric emptying time and post-prandial plasma glucose, insulin and lactate concentrations in cats fed an extruded dry, high-carbohydrate, moderate-fat, low-protein diet (51, 28, 21% metabolizable energy, respectively) once daily by varying meal volume. Eleven healthy, non-obese, neutered adult cats were enrolled in a prospective study and fed to maintain body weight. Ultrasound examinations were performed for up to 26 h, and blood collections over 24 h after eating meals containing approximately 100% and 50% of the cats' daily caloric intake (209 and 105 kJ/kg BW, respectively). Gastric emptying time was increased after a meal of 209 kJ/kg BW compared with 105 kJ/kg BW (median gastric emptying times 24 and 14 h, respectively; p = 0.03). Time for glucose to return to fasting was longer after the 209 kJ/kg BW meal (median 20 h; 25th and 75th percentiles 15 and 23 h, respectively) than the 105 kJ/kg BW meal (13, 12 and 14 h; p < 0.01); however, peak glucose was not higher after the 209 kJ/kg BW meal compared with the 105 kJ/kg BW meal [(mean ± SD) 6.6 ± 0.6 and 7.8 ± 1.2 mmol/l, respectively, p = 0.07]. Times for insulin to return to fasting were not significantly longer after the 209 kJ/kg BW meal than the 105 kJ/kg BW meal (p = 0.29). d- and l-lactate concentrations were not associated with gastric emptying time or post-prandial blood glucose and insulin. Based on results obtained, prolonged gastric emptying contributes to prolonged post-prandial hyperglycemia in cats meal fed a high-carbohydrate, low-protein, dry diet and fasting times for cats' meal-fed diets of similar composition should be 14-26 h, depending on meal size.

  11. Association of Roadway Proximity with Fasting Plasma Glucose and Metabolic Risk Factors for Cardiovascular Disease in a Cross-Sectional Study of Cardiac Catheterization Patients

    PubMed Central

    Kraus, William E.; Blach, Colette; Haynes, Carol S.; Dowdy, Elaine; Miranda, Marie Lynn; Devlin, Robert B.; Diaz-Sanchez, David; Cascio, Wayne E.; Mukerjee, Shaibal; Stallings, Casson; Smith, Luther A.; Gregory, Simon G.; Shah, Svati H.; Hauser, Elizabeth R.; Neas, Lucas M.

    2015-01-01

    Background The relationship between traffic-related air pollution (TRAP) and risk factors for cardiovascular disease needs to be better understood in order to address the adverse impact of air pollution on human health. Objective We examined associations between roadway proximity and traffic exposure zones, as markers of TRAP exposure, and metabolic biomarkers for cardiovascular disease risk in a cohort of patients undergoing cardiac catheterization. Methods We performed a cross-sectional study of 2,124 individuals residing in North Carolina (USA). Roadway proximity was assessed via distance to primary and secondary roadways, and we used residence in traffic exposure zones (TEZs) as a proxy for TRAP. Two categories of metabolic outcomes were studied: measures associated with glucose control, and measures associated with lipid metabolism. Statistical models were adjusted for race, sex, smoking, body mass index, and socioeconomic status (SES). Results An interquartile-range (990 m) decrease in distance to roadways was associated with higher fasting plasma glucose (β = 2.17 mg/dL; 95% CI: –0.24, 4.59), and the association appeared to be limited to women (β = 5.16 mg/dL; 95% CI: 1.48, 8.84 compared with β = 0.14 mg/dL; 95% CI: –3.04, 3.33 in men). Residence in TEZ 5 (high-speed traffic) and TEZ 6 (stop-and-go traffic), the two traffic zones assumed to have the highest levels of TRAP, was positively associated with high-density lipoprotein cholesterol (HDL-C; β = 8.36; 95% CI: –0.15, 16.9 and β = 5.98; 95% CI: –3.96, 15.9, for TEZ 5 and 6, respectively). Conclusion Proxy measures of TRAP exposure were associated with intermediate metabolic traits associated with cardiovascular disease, including fasting plasma glucose and possibly HDL-C. Citation Ward-Caviness CK, Kraus WE, Blach C, Haynes CS, Dowdy E, Miranda ML, Devlin RB, Diaz-Sanchez D, Cascio WE, Mukerjee S, Stallings C, Smith LA, Gregory SG, Shah SH, Hauser ER, Neas LM. 2015. Association of roadway

  12. Detection of orally administered inositol stereoisomers in mouse blood plasma and their effects on translocation of glucose transporter 4 in skeletal muscle cells.

    PubMed

    Yamashita, Yoko; Yamaoka, Masaru; Hasunuma, Tomohisa; Ashida, Hitoshi; Yoshida, Ken-ichi

    2013-05-22

    Simple pharmacological studies on inositol stereoisomers are presented in this study. Male ICR mice were orally administered 1 g/kg BW of three inositol stereoisomers, myo-inositol (MI), d-chiro-inositol (DCI), and scyllo-inositol (SI), and blood plasma samples and skeletal muscle fractions were prepared after an hour. The plasma samples were subjected to gas chromatography-coupled time-of-flight mass spectrometry (GC-TOF-MS) analysis. None of the three stereoisomers was seen in untreated samples, but substantial amounts ranging from 2.5 to 6.5 mM were detected only after administration, indicating that orally administered inositol stereoisomers were readily absorbed and their levels elevated in the bloodstream. In addition, plasma of SI-administered animals contained substantial MI, suggesting a possible metabolic conversion of SI to MI. In the skeletal muscle fractions, glucose transporter type 4 (GLUT4) content in the plasma membrane increased, indicating that inositol stereoisomers stimulated GLUT4 translocation.

  13. Plasma glucose and insulin response to two oral nutrition supplements in adults with type 2 diabetes mellitus

    PubMed Central

    Huhmann, Maureen B; Smith, Kristen N; Schwartz, Sherwyn L; Haller, Stacie K; Irvin, Sarah; Cohen, Sarah S

    2016-01-01

    Objective The purpose of this clinical trial was to compare the glucose usage of two oral nutritional supplement (ONS) products and to assess whether a diabetes-specific formulation provides improved glucose stabilization and management compared with a standard formula. Research design and methods A total of 12 subjects with type 2 diabetes (7 males and 5 females) completed a randomized, cross-over design trial. Each subject consumed isocaloric amounts of either the standard ONS or the diabetes-specific formula ONS on different dates, 1 week apart. Glucose and insulin measures were recorded at baseline, and 10, 20, 30, 60, 90, 120, 150, 180, 210 and 240 min after the beverage was consumed and then used to calculate area under the curve (AUC) for each subject. Results The mean glucose AUC was lower in the diabetes-specific ONS group than in the standard group (p<0.0001), but there was not a significant difference observed for mean insulin AUC (p=0.068). A sensitivity analysis of the mean insulin AUC measures was performed by removing a potential outlier from the analysis, and this resulted in a significant difference between the groups (p=0.012). First-phase insulin measures and an insulinogenic index calculated for the beverages showed no significant differences. Conclusions On the basis of the results of this trial of 12 subjects, the diabetes-specific ONS appears to provide better glucose maintenance in persons with type 2 diabetes when compared to the standard formula ONS. Trial registration number NCT02612675. PMID:27648290

  14. Plasma glucose and insulin response to two oral nutrition supplements in adults with type 2 diabetes mellitus

    PubMed Central

    Huhmann, Maureen B; Smith, Kristen N; Schwartz, Sherwyn L; Haller, Stacie K; Irvin, Sarah; Cohen, Sarah S

    2016-01-01

    Objective The purpose of this clinical trial was to compare the glucose usage of two oral nutritional supplement (ONS) products and to assess whether a diabetes-specific formulation provides improved glucose stabilization and management compared with a standard formula. Research design and methods A total of 12 subjects with type 2 diabetes (7 males and 5 females) completed a randomized, cross-over design trial. Each subject consumed isocaloric amounts of either the standard ONS or the diabetes-specific formula ONS on different dates, 1 week apart. Glucose and insulin measures were recorded at baseline, and 10, 20, 30, 60, 90, 120, 150, 180, 210 and 240 min after the beverage was consumed and then used to calculate area under the curve (AUC) for each subject. Results The mean glucose AUC was lower in the diabetes-specific ONS group than in the standard group (p<0.0001), but there was not a significant difference observed for mean insulin AUC (p=0.068). A sensitivity analysis of the mean insulin AUC measures was performed by removing a potential outlier from the analysis, and this resulted in a significant difference between the groups (p=0.012). First-phase insulin measures and an insulinogenic index calculated for the beverages showed no significant differences. Conclusions On the basis of the results of this trial of 12 subjects, the diabetes-specific ONS appears to provide better glucose maintenance in persons with type 2 diabetes when compared to the standard formula ONS. Trial registration number NCT02612675.

  15. Effect of pertussis toxin pretreated centrally on blood glucose level induced by stress.

    PubMed

    Suh, Hong-Won; Sim, Yun-Beom; Park, Soo-Hyun; Sharma, Naveen; Im, Hyun-Ju; Hong, Jae-Seung

    2016-09-01

    In the present study, we examined the effect of pertussis toxin (PTX) administered centrally in a variety of stress-induced blood glucose level. Mice were exposed to stress after the pretreatment of PTX (0.05 or 0.1 µg) i.c.v. or i.t. once for 6 days. Blood glucose level was measured at 0, 30, 60 and 120 min after stress stimulation. The blood glucose level was increased in all stress groups. The blood glucose level reached at maximum level after 30 min of stress stimulation and returned to a normal level after 2 h of stress stimulation in restraint stress, physical, and emotional stress groups. The blood glucose level induced by cold-water swimming stress was gradually increased up to 1 h and returned to the normal level. The intracerebroventricular (i.c.v.) or intrathecal (i.t.) pretreatment with PTX, a Gi inhibitor, alone produced a hypoglycemia and almost abolished the elevation of the blood level induced by stress stimulation. The central pretreatment with PTX caused a reduction of plasma insulin level, whereas plasma corticosterone level was further up-regulated in all stress models. Our results suggest that the hyperglycemia produced by physical stress, emotional stress, restraint stress, and the cold-water swimming stress appear to be mediated by activation of centrally located PTX-sensitive G proteins. The reduction of blood glucose level by PTX appears to due to the reduction of plasma insulin level. The reduction of blood glucose level by PTX was accompanied by the reduction of plasma insulin level. Plasma corticosterone level up-regulation by PTX in stress models may be due to a blood glucose homeostatic mechanism. PMID:27610033

  16. Effect of pertussis toxin pretreated centrally on blood glucose level induced by stress

    PubMed Central

    Suh, Hong-Won; Sim, Yun-Beom; Park, Soo-Hyun; Sharma, Naveen; Im, Hyun-Ju

    2016-01-01

    In the present study, we examined the effect of pertussis toxin (PTX) administered centrally in a variety of stress-induced blood glucose level. Mice were exposed to stress after the pretreatment of PTX (0.05 or 0.1 µg) i.c.v. or i.t. once for 6 days. Blood glucose level was measured at 0, 30, 60 and 120 min after stress stimulation. The blood glucose level was increased in all stress groups. The blood glucose level reached at maximum level after 30 min of stress stimulation and returned to a normal level after 2 h of stress stimulation in restraint stress, physical, and emotional stress groups. The blood glucose level induced by cold-water swimming stress was gradually increased up to 1 h and returned to the normal level. The intracerebroventricular (i.c.v.) or intrathecal (i.t.) pretreatment with PTX, a Gi inhibitor, alone produced a hypoglycemia and almost abolished the elevation of the blood level induced by stress stimulation. The central pretreatment with PTX caused a reduction of plasma insulin level, whereas plasma corticosterone level was further up-regulated in all stress models. Our results suggest that the hyperglycemia produced by physical stress, emotional stress, restraint stress, and the cold-water swimming stress appear to be mediated by activation of centrally located PTX-sensitive G proteins. The reduction of blood glucose level by PTX appears to due to the reduction of plasma insulin level. The reduction of blood glucose level by PTX was accompanied by the reduction of plasma insulin level. Plasma corticosterone level up-regulation by PTX in stress models may be due to a blood glucose homeostatic mechanism. PMID:27610033

  17. Effect of pertussis toxin pretreated centrally on blood glucose level induced by stress

    PubMed Central

    Suh, Hong-Won; Sim, Yun-Beom; Park, Soo-Hyun; Sharma, Naveen; Im, Hyun-Ju

    2016-01-01

    In the present study, we examined the effect of pertussis toxin (PTX) administered centrally in a variety of stress-induced blood glucose level. Mice were exposed to stress after the pretreatment of PTX (0.05 or 0.1 µg) i.c.v. or i.t. once for 6 days. Blood glucose level was measured at 0, 30, 60 and 120 min after stress stimulation. The blood glucose level was increased in all stress groups. The blood glucose level reached at maximum level after 30 min of stress stimulation and returned to a normal level after 2 h of stress stimulation in restraint stress, physical, and emotional stress groups. The blood glucose level induced by cold-water swimming stress was gradually increased up to 1 h and returned to the normal level. The intracerebroventricular (i.c.v.) or intrathecal (i.t.) pretreatment with PTX, a Gi inhibitor, alone produced a hypoglycemia and almost abolished the elevation of the blood level induced by stress stimulation. The central pretreatment with PTX caused a reduction of plasma insulin level, whereas plasma corticosterone level was further up-regulated in all stress models. Our results suggest that the hyperglycemia produced by physical stress, emotional stress, restraint stress, and the cold-water swimming stress appear to be mediated by activation of centrally located PTX-sensitive G proteins. The reduction of blood glucose level by PTX appears to due to the reduction of plasma insulin level. The reduction of blood glucose level by PTX was accompanied by the reduction of plasma insulin level. Plasma corticosterone level up-regulation by PTX in stress models may be due to a blood glucose homeostatic mechanism.

  18. Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia

    NASA Astrophysics Data System (ADS)

    Gjedde, Albert; Crone, Christian

    1981-10-01

    Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.

  19. Longitudinal Modeling of the Relationship Between Mean Plasma Glucose and HbA1c Following Antidiabetic Treatments.

    PubMed

    Møller, J B; Overgaard, R V; Kjellsson, M C; Kristensen, N R; Klim, S; Ingwersen, S H; Karlsson, M O

    2013-01-01

    Late-phase clinical trials within diabetes generally have a duration of 12-24 weeks, where 12 weeks may be too short to reach steady-state glycated hemoglobin (HbA1c). The main determinant for HbA1c is blood glucose, which reaches steady state much sooner. In spite of this, few publications have used individual data to assess the time course of both glucose and HbA1c, for predicting HbA1c. In this paper, we present an approach for predicting HbA1c at end-of-trial (24-28 weeks) using glucose and HbA1c measurements up to 12 weeks. The approach was evaluated using data from 4 trials covering 12 treatment arms (oral antidiabetic drug, glucagon-like peptide-1, and insulin treatment) with measurements at 24-28 weeks to evaluate predictions vs. observations. HbA1c percentage was predicted for each arm at end-of-trial with a mean prediction error of 0.14% [0.01;0.24]. Furthermore, end points in terms of HbA1c reductions relative to comparator were accurately predicted. The proposed model provides a good basis to optimize late-stage clinical development within diabetes.CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e82; doi:10.1038/psp.2013.58; advance online publication 30 October 2013. PMID:24172651

  20. Regional cerebral incorporation of plasma (/sup 14/C)palmitate, and cerebral glucose utilization, in water-deprived Long-Evans and Brattleboro rats

    SciTech Connect

    Noronha, J.G.; Larson, D.M.; Rapoport, S.I.

    1989-03-01

    Regional rates of incorporation into brain of intravenously administered (/sup 14/C)palmitate and regional cerebral metabolic rates for glucose (rCMRglc) were measured in water-provided (WP) and water-deprived (WD) homozygous (DI) and heterozygous (HZ) Brattleboro rats, a mutant strain unable to synthesize vasopressin, and in the parent Long-Evans (LE) strain. Following 15 h or 4 days of water deprivation, rCMRglc was elevated threefold in the pituitary neural lobe of LE-WD and DI-WD as compared with LE-WP rats, and in the paraventricular nucleus of LE-WD, and the supraoptic nucleus of DI-WD rats. However, incorporation of (/sup 14/C)palmitate into these regions was not specifically altered. The results indicate that water deprivation for up to 4 days increases rCMRglc in some brain regions involved with vasopressin, but does not alter (/sup 14/C)palmitate incorporation into these regions. Incorporation of plasma (/sup 14/C)palmitate is independent of unlabeled plasma palmitate at brain regions which have an intact blood-brain barrier, but at nonbarrier regions falls according to saturation kinetics as cold plasma concentration rises, with a mean half-saturation constant (Km) equal to 0.136 mumol.ml-1.

  1. Comparison of measurements of canine plasma creatinine, glucose, proteins, urea, alanine aminotransferase, and alkaline phosphatase obtained with Spotchem SP 4430 and Vitros 250 analyzers.

    PubMed

    Trumel, C; Diquélou, A; Germain, C; Palanché, F; Braun, J P

    2005-12-01

    The suitability of the Spotchem 4430 benchtop biochemistry analyzer for canine blood samples was tested for creatinine, glucose, proteins, urea, alkaline phosphatases and alanine aminotransferase. Results obtained from whole blood and corresponding heparin plasma were identical except for proteins which were higher in plasma (n=10). Between series imprecision (n=10) was <5% for substrates and <10% for enzymes. Comparison of results from 100 Li-heparin samples with those measured with a Vitros 250 analyzer showed good correlation (r>0.93). The slopes of the Passing-Bablock's regression ranged from 0.90 to 1.20 and intercepts were low. The mean biases were low, except for creatinine for which the results obtained by Spotchem (Jaffe reaction) were about 20 micromol/L higher than with the Vitros (enzymatic reaction). The results of this study show that the Spotchem analyzer is suitable for use in canine whole blood or plasma when small numbers of tests are to be performed and large analyzers are not available. PMID:16054888

  2. Enhanced Y1H Assays for Arabidopis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcription regulation plays a key role in development and response to environment. To understand this mechanism, we need to know which transcription factor (TFs) would bind to which promoter, thus regulate their target gene expression. Yeast one-hybrid (Y1H) technique can be used to map this kind...

  3. Common variants in the LAMA5 gene associate with fasting plasma glucose and serum triglyceride levels in a cohort of pre- and early pubertal children.

    PubMed

    De Luca, Maria; Chandler-Laney, Paula C; Wiener, Howard; Fernandez, Jose R

    2012-12-01

    Laminins are glycoproteins found in basement membranes where they play a vital role in tissue architecture and cell behavior. Previously, we reported the association of two polymorphisms (rs659822 and rs944895) in the laminin alpha5 (LAMA5) gene with anthropometric traits, fasting lipid profile, and glucose levels in pre-menopausal women and elderly subjects. Furthermore, studies in mice showed that Lama5 is involved in organogenesis and placental function during pregnancy. The objective of this study was to investigate whether rs659822 and/or rs944895 are associated with inter-individual variability in birth weight as well as anthropometric traits and metabolic phenotypes in children. Two hundred and eighty nine healthy children aged 7-12 yr of European, Hispanic, and African-American ancestry were studied. Co-dominant models adjusted for genetic admixture, age, gender, and stages of puberty were used to test for the association of the polymorphisms with each trait. Our analysis showed significant associations of rs659822 with fasting plasma glucose levels (P = 0.0004) and of rs944895 with fasting serum triglycerides (P = 0.004) after Bonferroni correction for multiple testing. Our results corroborate our previous findings that genetic variants in LAMA5 contribute to variation in metabolic phenotypes and provide evidence that this may occur early in life. PMID:27625828

  4. Effects of Topical Anesthetics on Behavior, Plasma Corticosterone, and Blood Glucose Levels after Tail Biopsy of C57BL/6NHSD Mice (Mus musculus).

    PubMed

    Dudley, Emily S; Johnson, Robert A; French, DeAnne C; Boivin, Gregory P

    2016-01-01

    Tail biopsy is a common procedure that is performed to obtain genetic material for determining genotype of transgenic mice. The use of anesthetics or analgesics is recommended, although identifying safe and effective drugs for this purpose has been challenging. We evaluated the effects of topical 2.5% lidocaine-2.5% prilocaine cream applied to the distal tail tip at 5 or 60 min before biopsy, immersion of the tail tip for 10 seconds in ice-cold 70% ethanol just prior to biopsy, and immersion of the tail tip in 0.5% bupivacaine for 30 s after biopsy. Mice were 7, 11, or 15 d old at the time of tail biopsy. Acute behavioral responses, plasma corticosterone, and blood glucose were measured after biopsy, and body weight and performance in elevated plus maze and open-field tests after weaning. Ice-cold ethanol prior to biopsy prevented acute behavioral responses to biopsy, and both ice-cold ethanol and bupivacaine prevented elevations in corticosterone and blood glucose after biopsy. Tail biopsy with or without anesthesia did not affect body weight or performance on elevated plus maze or open-field tests. We recommend the use of ice-cold ethanol for topical anesthesia prior to tail biopsy in mice 7 to 15 d old. PMID:27423152

  5. Common variants in the LAMA5 gene associate with fasting plasma glucose and serum triglyceride levels in a cohort of pre- and early pubertal children

    PubMed Central

    De Luca, Maria; Chandler-Laney, Paula C.; Wiener, Howard; Fernandez, Jose R.

    2012-01-01

    Laminins are glycoproteins found in basement membranes where they play a vital role in tissue architecture and cell behavior. Previously, we reported the association of two polymorphisms (rs659822 and rs944895) in the laminin alpha5 (LAMA5) gene with anthropometric traits, fasting lipid profile, and glucose levels in pre-menopausal women and elderly subjects. Furthermore, studies in mice showed that Lama5 is involved in organogenesis and placental function during pregnancy. The objective of this study was to investigate whether rs659822 and/or rs944895 are associated with inter-individual variability in birth weight as well as anthropometric traits and metabolic phenotypes in children. Two hundred and eighty nine healthy children aged 7–12 yr of European, Hispanic, and African-American ancestry were studied. Co-dominant models adjusted for genetic admixture, age, gender, and stages of puberty were used to test for the association of the polymorphisms with each trait. Our analysis showed significant associations of rs659822 with fasting plasma glucose levels (P = 0.0004) and of rs944895 with fasting serum triglycerides (P = 0.004) after Bonferroni correction for multiple testing. Our results corroborate our previous findings that genetic variants in LAMA5 contribute to variation in metabolic phenotypes and provide evidence that this may occur early in life.

  6. Rapid Preparation of a Plasma Membrane Fraction: Western Blot Detection of Translocated Glucose Transporter 4 from Plasma Membrane of Muscle and Adipose Cells and Tissues.

    PubMed

    Yamamoto, Norio; Yamashita, Yoko; Yoshioka, Yasukiyo; Nishiumi, Shin; Ashida, Hitoshi

    2016-01-01

    Membrane proteins account for 70% to 80% of all pharmaceutical targets, indicating their clinical relevance and underscoring the importance of identifying differentially expressed membrane proteins that reflect distinct disease properties. The translocation of proteins from the bulk of the cytosol to the plasma membrane is a critical step in the transfer of information from membrane-embedded receptors or transporters to the cell interior. To understand how membrane proteins work, it is important to separate the membrane fraction of cells. This unit provides a protocol for rapidly obtaining plasma membrane fractions for western blot analysis. © 2016 by John Wiley & Sons, Inc. PMID:27479506

  7. Study of aqueous humour by 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tkadlecová, Marcela; Havlíček, Jaroslav; Volka, Karel; Souček, Petr; Karel, Ivan

    1999-05-01

    The aim of this work was to study the composition of the samples of human aqueous humour including the protein content. Using 1H NMR spectroscopy many compounds (proteins, glucose, lactate, citrate and other metabolites) can be identified and their concentrations evaluated using the internal standard. While the concentrations of non-proteins in aqueous humour were relatively stable, the amount of proteins differed much more. In most of the spectra, the signals of proteins were hardly distinguishable from the baseline. For some samples a significantly higher protein content (more than 1 mg/ml) was found. The total protein concentration expressed in albumin equivalents can be determined by comparing the spectra measured by S2PUL (standard measurement) and CPMG (protein suppression) pulse sequentions. For comparison, the spectra of rabbit and bovine aqueous humour are also given.

  8. One-hour postload plasma glucose and risks of fatal coronary heart disease and stroke among nondiabetic men and women: the Chicago Heart Association Detection Project in Industry (CHA) Study.

    PubMed

    Orencia, A J; Daviglus, M L; Dyer, A R; Walsh, M; Greenland, P; Stamler, J

    1997-12-01

    Associations of baseline one-hour postload plasma glucose with 22-year coronary heart disease, stroke, cardiovascular diseases, and all cause mortality were assessed in five age-specific cohorts of nondiabetic men and women from the Chicago Heart Association Detection Project in Industry: 10,269 men ages 18-39 years; 7993 men ages 40-59 years; 1240 men ages 60-74 years; 6319 women ages 40-59 years; and 932 women ages 60-74 years. Plasma glucose was determined one hour after a 50-gram oral glucose load. Cox regression analyses were used to control for age and other covariates. Generally, higher glucose was significantly associated with mortality from coronary heart disease, stroke, cardiovascular diseases, and all cause mortality in men and women. This large longitudinal study provides evidence that one-hour postload plasma glucose in the absence of clinical diabetes at baseline apparently is an independent risk factor for fatal coronary heart disease and stroke in middle-aged and older nondiabetic men and women, and also for cardiovascular diseases and for all cause mortality. PMID:9449940

  9. Comparison of Plasma Glucose and Gut Hormone Levels Between Drinking Enteral Formula Over a Period of 5 and 20 Minutes in Japanese Patients With Type 2 Diabetes: A Pilot Study

    PubMed Central

    Kamiko, Kazunari; Aoki, Kazutaka; Kamiyama, Hiroshi; Taguri, Masataka; Terauchi, Yasuo

    2016-01-01

    Background A fast eating speed is reportedly associated with obesity, fatty liver, and metabolic syndrome. As a comparison of postprandial glucose levels after eating quickly or slowly has not been previously reported for Japanese patients with type 2 diabetes, we evaluated the impact of the fast or slow ingestion of an enteral formula (liquid meal) on glucose metabolism. Methods Ten Japanese patients with type 2 diabetes who had been hospitalized at our hospital were enrolled. All the subjects received an enteral formula for breakfast. The study was performed over a 2-day period in each subject (day 1: enteral formula was consumed over a 5-minute period; day 2: enteral formula was consumed over a 20-minute period). The subjects were requested to fast for at least 12 hours before eating breakfast, and blood samples were collected at 0, 30, 60, and 120 min after the start of breakfast. Results The areas under the curve (AUCs) of the plasma glucose, serum insulin, plasma active ghrelin, glucagon-like peptide-1 (GLP-1), plasma total glucose-dependent insulinotropic polypeptide (GIP), and serum total peptide YY (PYY) levels were not significantly changed by intake over a 5-minute or 20-minute period. Conclusions Eating quickly per se probably does not affect postprandial glucose excursions, but the increased energy intake resulting from eating quickly may increase the body weight and increase insulin resistance. Eating quickly may increase energy intake and worsen long-term metabolic parameters.

  10. Comparison of Plasma Glucose and Gut Hormone Levels Between Drinking Enteral Formula Over a Period of 5 and 20 Minutes in Japanese Patients With Type 2 Diabetes: A Pilot Study

    PubMed Central

    Kamiko, Kazunari; Aoki, Kazutaka; Kamiyama, Hiroshi; Taguri, Masataka; Terauchi, Yasuo

    2016-01-01

    Background A fast eating speed is reportedly associated with obesity, fatty liver, and metabolic syndrome. As a comparison of postprandial glucose levels after eating quickly or slowly has not been previously reported for Japanese patients with type 2 diabetes, we evaluated the impact of the fast or slow ingestion of an enteral formula (liquid meal) on glucose metabolism. Methods Ten Japanese patients with type 2 diabetes who had been hospitalized at our hospital were enrolled. All the subjects received an enteral formula for breakfast. The study was performed over a 2-day period in each subject (day 1: enteral formula was consumed over a 5-minute period; day 2: enteral formula was consumed over a 20-minute period). The subjects were requested to fast for at least 12 hours before eating breakfast, and blood samples were collected at 0, 30, 60, and 120 min after the start of breakfast. Results The areas under the curve (AUCs) of the plasma glucose, serum insulin, plasma active ghrelin, glucagon-like peptide-1 (GLP-1), plasma total glucose-dependent insulinotropic polypeptide (GIP), and serum total peptide YY (PYY) levels were not significantly changed by intake over a 5-minute or 20-minute period. Conclusions Eating quickly per se probably does not affect postprandial glucose excursions, but the increased energy intake resulting from eating quickly may increase the body weight and increase insulin resistance. Eating quickly may increase energy intake and worsen long-term metabolic parameters. PMID:27635181

  11. Role of exercise intensity on GLUT4 content, aerobic fitness and fasting plasma glucose in type 2 diabetic mice.

    PubMed

    Cunha, Verusca Najara; de Paula Lima, Mérica; Motta-Santos, Daisy; Pesquero, Jorge Luiz; de Andrade, Rosangela Vieira; de Almeida, Jeeser Alves; Araujo, Ronaldo Carvalho; Grubert Campbell, Carmen Silvia; Lewis, John E; Simões, Herbert Gustavo

    2015-10-01

    Type 2 diabetes mellitus (T2D) results in several metabolic and cardiovascular dysfunctions, clinically characterized by hyperglycaemia due to lower glucose uptake and oxidation. Physical exercise is an effective intervention for glycaemic control. However, the effects of exercising at different intensities have not yet been addressed. The present study analysed the effects of 8 weeks of training performed at different exercise intensities on type 4 glucose transporters (GLUT4) content and glycaemic control of T2D (ob/ob) and non-diabetic mice (ob/OB). The animals were divided into six groups, with four groups being subjected either to low-intensity (ob/obL and ob/OBL: 3% body weight, three times/week/40 min) or high-intensity (ob/obH and ob/OBH: 6% body weight, three times per week per 20 min) swimming training. An incremental swimming test was performed to measure aerobic fitness. After the training intervention period, glycaemia and the content of GLUT4 were quantified. Although both training intensities were beneficial, the high-intensity regimen induced a more significant improvement in GLUT4 levels and glycaemic profile compared with sedentary controls (p < 0.05). Only animals in the high-intensity exercise group improved aerobic fitness. Thus, our study shows that high-intensity training was more effective for increasing GLUT4 content and glycaemia reduction in insulin-resistant mice, perhaps because of a higher metabolic demand imposed by this form of exercise.

  12. Comparison of the performance of HbA1c and fasting plasma glucose in identifying dysglycaemic status in Chinese high-risk subjects.

    PubMed

    Du, Ting-Ting; Yin, Ping; Zhang, Jian-Hua; Zhang, Dan; Shi, Wei; Yu, Xue-Feng

    2013-02-01

    The aim of the present study was to compare the performance of HbA1c and fasting plasma glucose (FPG) in identifying dysglycaemic status among Chinese participants. Fasting plasma glucose and HbA1c were measured in 2318 subjects with at least one risk factor for diabetes but without being previously diagnosed with diabetes. Using HbA1c to diagnose diabetes resulted in the same classification as FPG for 90.5% of the study participants, with 21.0% (n = 487) classified as having diabetes by both FPG and HbA1c and 69.5% (n = 1610) classified as not having diabetes by both FPG and HbA1c. The kappa (κ) coefficient of the FPG criterion with the HbA1c criterion for diabetes was 0.75 (95% confidence interval (CI) 0.72-0.78). The overlap index regarding diabetes diagnosed by FPG or HbA1c was 68.8%. Of 1610 subjects with FPG < 126 mg/dL and HbA1c < 6.5%, 220 (13.7%) had FPG ≥ 100 mg/dL and HbA1c < 5.7%, whereas 277 (17.2%) had FPG < 100 mg/dL and HbA1c ≥ 5.7%. The κ coefficient of the FPG criterion with the HbA1c criterion for prediabetes was 0.30 (95% CI 0.25-0.35). The overlap index between subjects diagnosed as having prediabetes by FPG of 100-125 mg/dL (impaired fasting glucose (IFG)) or HbA1c of 5.7-6.4% (increased HbA1c (IGH)) was 35.9%. The HbA1c criterion demonstrates reasonable concordance with the FPG criterion for diabetes. Hence, HbA1c and FPG can be used for the diagnosis of diabetes. However, the IGH shows limited overlap with IFG for prediabetes. Introduction of the IGH criterion in addition to IFG for the screening of prediabetes could lead to the identification of more people with this condition.

  13. Optimal cut-off points of fasting plasma glucose for two-step strategy in estimating prevalence and screening undiagnosed diabetes and pre-diabetes in Harbin, China.

    PubMed

    Bao, Chundan; Zhang, Dianfeng; Sun, Bo; Lan, Li; Cui, Wenxiu; Xu, Guohua; Sui, Conglan; Wang, Yibaina; Zhao, Yashuang; Wang, Jian; Li, Hongyuan

    2015-01-01

    To identify optimal cut-off points of fasting plasma glucose (FPG) for two-step strategy in screening abnormal glucose metabolism and estimating prevalence in general Chinese population. A population-based cross-sectional study was conducted on 7913 people aged 20 to 74 years in Harbin. Diabetes and pre-diabetes were determined by fasting and 2 hour post-load glucose from the oral glucose tolerance test in all participants. Screening potential of FPG, cost per case identified by two-step strategy, and optimal FPG cut-off points were described. The prevalence of diabetes was 12.7%, of which 65.2% was undiagnosed. Twelve percent or 9.0% of participants were diagnosed with pre-diabetes using 2003 ADA criteria or 1999 WHO criteria, respectively. The optimal FPG cut-off points for two-step strategy were 5.6 mmol/l for previously undiagnosed diabetes (area under the receiver-operating characteristic curve of FPG 0.93; sensitivity 82.0%; cost per case identified by two-step strategy ¥261), 5.3 mmol/l for both diabetes and pre-diabetes or pre-diabetes alone using 2003 ADA criteria (0.89 or 0.85; 72.4% or 62.9%; ¥110 or ¥258), 5.0 mmol/l for pre-diabetes using 1999 WHO criteria (0.78; 66.8%; ¥399), and 4.9 mmol/l for IGT alone (0.74; 62.2%; ¥502). Using the two-step strategy, the underestimates of prevalence reduced to nearly 38% for pre-diabetes or 18.7% for undiagnosed diabetes, respectively. Approximately a quarter of the general population in Harbin was in hyperglycemic condition. Using optimal FPG cut-off points for two-step strategy in Chinese population may be more effective and less costly for reducing the missed diagnosis of hyperglycemic condition.

  14. Optimal cut-off points of fasting plasma glucose for two-step strategy in estimating prevalence and screening undiagnosed diabetes and pre-diabetes in Harbin, China.

    PubMed

    Bao, Chundan; Zhang, Dianfeng; Sun, Bo; Lan, Li; Cui, Wenxiu; Xu, Guohua; Sui, Conglan; Wang, Yibaina; Zhao, Yashuang; Wang, Jian; Li, Hongyuan

    2015-01-01

    To identify optimal cut-off points of fasting plasma glucose (FPG) for two-step strategy in screening abnormal glucose metabolism and estimating prevalence in general Chinese population. A population-based cross-sectional study was conducted on 7913 people aged 20 to 74 years in Harbin. Diabetes and pre-diabetes were determined by fasting and 2 hour post-load glucose from the oral glucose tolerance test in all participants. Screening potential of FPG, cost per case identified by two-step strategy, and optimal FPG cut-off points were described. The prevalence of diabetes was 12.7%, of which 65.2% was undiagnosed. Twelve percent or 9.0% of participants were diagnosed with pre-diabetes using 2003 ADA criteria or 1999 WHO criteria, respectively. The optimal FPG cut-off points for two-step strategy were 5.6 mmol/l for previously undiagnosed diabetes (area under the receiver-operating characteristic curve of FPG 0.93; sensitivity 82.0%; cost per case identified by two-step strategy ¥261), 5.3 mmol/l for both diabetes and pre-diabetes or pre-diabetes alone using 2003 ADA criteria (0.89 or 0.85; 72.4% or 62.9%; ¥110 or ¥258), 5.0 mmol/l for pre-diabetes using 1999 WHO criteria (0.78; 66.8%; ¥399), and 4.9 mmol/l for IGT alone (0.74; 62.2%; ¥502). Using the two-step strategy, the underestimates of prevalence reduced to nearly 38% for pre-diabetes or 18.7% for undiagnosed diabetes, respectively. Approximately a quarter of the general population in Harbin was in hyperglycemic condition. Using optimal FPG cut-off points for two-step strategy in Chinese population may be more effective and less costly for reducing the missed diagnosis of hyperglycemic condition. PMID:25785585

  15. Optimal Cut-Off Points of Fasting Plasma Glucose for Two-Step Strategy in Estimating Prevalence and Screening Undiagnosed Diabetes and Pre-Diabetes in Harbin, China

    PubMed Central

    Sun, Bo; Lan, Li; Cui, Wenxiu; Xu, Guohua; Sui, Conglan; Wang, Yibaina; Zhao, Yashuang; Wang, Jian; Li, Hongyuan

    2015-01-01

    To identify optimal cut-off points of fasting plasma glucose (FPG) for two-step strategy in screening abnormal glucose metabolism and estimating prevalence in general Chinese population. A population-based cross-sectional study was conducted on 7913 people aged 20 to 74 years in Harbin. Diabetes and pre-diabetes were determined by fasting and 2 hour post-load glucose from the oral glucose tolerance test in all participants. Screening potential of FPG, cost per case identified by two-step strategy, and optimal FPG cut-off points were described. The prevalence of diabetes was 12.7%, of which 65.2% was undiagnosed. Twelve percent or 9.0% of participants were diagnosed with pre-diabetes using 2003 ADA criteria or 1999 WHO criteria, respectively. The optimal FPG cut-off points for two-step strategy were 5.6 mmol/l for previously undiagnosed diabetes (area under the receiver-operating characteristic curve of FPG 0.93; sensitivity 82.0%; cost per case identified by two-step strategy ¥261), 5.3 mmol/l for both diabetes and pre-diabetes or pre-diabetes alone using 2003 ADA criteria (0.89 or 0.85; 72.4% or 62.9%; ¥110 or ¥258), 5.0 mmol/l for pre-diabetes using 1999 WHO criteria (0.78; 66.8%; ¥399), and 4.9 mmol/l for IGT alone (0.74; 62.2%; ¥502). Using the two-step strategy, the underestimates of prevalence reduced to nearly 38% for pre-diabetes or 18.7% for undiagnosed diabetes, respectively. Approximately a quarter of the general population in Harbin was in hyperglycemic condition. Using optimal FPG cut-off points for two-step strategy in Chinese population may be more effective and less costly for reducing the missed diagnosis of hyperglycemic condition. PMID:25785585

  16. Phenotype and Age Differences in Blood Gas Characteristics, Electrolytes, Hemoglobin, Plasma Glucose and Cortisol in Female Squirrel Monkeys

    NASA Technical Reports Server (NTRS)

    Brizzee, K. R.; Ordy, J. M.; Dunlap, W. P.; Kendrick, R.; Wengenack, T. M.

    1988-01-01

    Due to its small size, lower cost, tractable nature, successful breeding in captivity and its status near the middle of the primate phylogenetic scale, the squirrel monkey has become an attractive primate model for basic and biomedical research. Although the squirrel monkey now is being used more extensively in many laboratories with diverse interests, only fragmentary reports have been published regarding basic physiological characteristics, or baseline blood reference values of different phenotypes, particularly blood gases, hematology and serum chemical constituents. It is becoming recognized increasingly that these baseline blood reference values are important not only in the care and maintenance of the squirrel monkey, but are critical for assessing normal physiological status, as well as the effects of various experimental treatments. The purpose of this study was to compare differences in blood gases, electrolytes, hematology, blood glucose and cortisol among young and old Bolivian (Roman type) and Colombian (Gothic type) phenotypes of the squirrel monkey.

  17. Metabolic profiles using (1)H-nuclear magnetic resonance spectroscopy in postpartum dairy cows with ovarian inactivity.

    PubMed

    Xu, Chuchu; Xia, Cheng; Sun, Yuhang; Xiao, Xinhuan; Wang, Gang; Fan, Ziling; Shu, Shi; Zhang, Hongyou; Xu, Chuang; Yang, Wei

    2016-10-01

    To understand the differences in metabolic changes between cows with ovarian inactivity and estrus cows, we selected cows at 60-90 days postpartum from an intensive dairy farm. According to clinical manifestations, B-ultrasound scan, rectal examination, 10 cows were assigned to the estrus group (A) and 10 to the ovarian inactivity group (B). All plasma samples were analyzed by (1)H-nuclear magnetic resonance spectroscopy to compare plasma metabolomic profiles between the groups. We used multivariate pattern recognition to screen for different metabolites in plasma of anestrus cows. Compared with normal estrous cows, there were abnormalities in 12 kinds of metabolites in postpartum cows with ovarian inactivity (|r|> 0.602), including an increase in acetic acid (r = -0.817), citric acid (r = -0.767), and tyrosine (r = -0.714), and a decrease in low-density lipoprotein (r = 0.820), very low-density lipoprotein (r = 0.828), lipids (r = 0.769), alanine (r = 0.816), pyruvate (r = 0.721), creatine (r = 0.801), choline (r = 0.639), phosphorylcholine (r = 0.741), and glycerophosphorylcholine (r = 0.881). These metabolites were closely related to abnormality of glucose, amino acid, lipoprotein and choline metabolism, which may disturb the normal estrus. The decrease in plasma creatine and the increase in tyrosine were new changes for ovarian inactivity of postpartum cows. The decrease in plasma creatine and choline and the increase in tyrosine and p-hydroxyphenylalanine in cows with ovarian inactivity provide new directions for research on the mechanism of ovarian inactivity in cows.

  18. First-pass uptake and oxidation of glucose by the splanchnic tissue in young goats fed soy protein-based milk diets with or without amino acid supplementation: glucose metabolism in goat kids after soy feeding.

    PubMed

    Schönhusen, U; Junghans, P; Flöter, A; Steinhoff-Wagner, J; Görs, S; Schneider, F; Metges, C C; Hammon, H M

    2013-04-01

    The study was designed to examine whether feeding soy protein isolate as partial replacement of casein (CN) affects glucose metabolism in young goats and whether effects may be ameliorated by supplementation of those AA known to be lower concentrated in soy than in CN. Goat kids (d 20 of age) were fed comparable milk protein diets, in which 50% of the crude protein was either CN (control, CON), soy protein isolate (SPI), or soy protein isolate supplemented with AA (SPIA) for 43 d (n=8 per group). On d 62 of age, a single bolus dose of d-[(13)C6]glucose (10mg/kg of BW) was given with the morning diet, and simultaneously, a single bolus dose of d-[6,6-(2)H2]glucose (5mg/kg of BW) was injected into a jugular vein. Blood samples were collected between -30 and +420 min relative to the tracer administration to measure the (13)C and (2)H enrichments of plasma glucose and the (13)C enrichment of blood CO2. Glucose first-pass uptake by the splanchnic tissues was calculated from the rate of appearance of differentially labeled glucose tracer in plasma. Glucose oxidation was calculated from (13)C enrichment in blood CO2. In addition, plasma concentrations of triglycerides, nonesterified fatty acids, glucose, insulin, and glucagon were measured. On d 63 of age, kids were killed and jejunal mucosa and liver samples were collected to measure lactase mRNA levels and lactase and maltase activities in the jejunum and activities of pyruvate carboxylase and phosphoenolpyruvate carboxykinase (PEPCK) in the liver. Basal plasma glucose concentration tended to be higher in the CON than the SPIA group, whereas basal insulin was higher in the CON group than the SPI and SPIA groups, and glucagon was higher in the CON than the SPIA group. Plasma glucose and insulin concentrations increased during the first hour after feeding, whereas plasma glucagon increased immediately after feeding and after 1h of feeding. First-pass uptake and glucose oxidation were not affected by diet. Maltase

  19. Revealing Potential Biomarkers of Functional Dyspepsia by Combining 1H NMR Metabonomics Techniques and an Integrative Multi-objective Optimization Method

    PubMed Central

    Wu, Qiaofeng; Zou, Meng; Yang, Mingxiao; Zhou, Siyuan; Yan, Xianzhong; Sun, Bo; Wang, Yong; Chang, Shyang; Tang, Yong; Liang, Fanrong; Yu, Shuguang

    2016-01-01

    Metabonomics methods have gradually become important auxiliary tools for screening disease biomarkers. However, recognition of metabolites or potential biomarkers closely related to either particular clinical symptoms or prognosis has been difficult. The current study aims to identify potential biomarkers of functional dyspepsia (FD) by a new strategy that combined hydrogen nuclear magnetic resonance (1H NMR)-based metabonomics techniques and an integrative multi-objective optimization (LPIMO) method. First, clinical symptoms of FD were evaluated using the Nepean Dyspepsia Index (NDI), and plasma metabolic profiles were measured by 1H NMR. Correlations between the key metabolites and the NDI scores were calculated. Then, LPIMO was developed to identify a multi-biomarker panel by maximizing diagnostic ability and correlation with the NDI score. Finally, a KEGG database search elicited the metabolic pathways in which the potential biomarkers are involved. The results showed that glutamine, alanine, proline, HDL, β-glucose, α-glucose and LDL/VLDL levels were significantly altered in FD patients. Among them, phosphatidycholine (PtdCho) and leucine/isoleucine (Leu/Ile) were positively and negatively correlated with the NDI Symptom Index (NDSI) respectively. Our procedure not only significantly improved the credibility of the biomarkers, but also demonstrated the potential of further explorations and applications to diagnosis and treatment of complex disease. PMID:26743458

  20. Effect of chromium-enriched yeast on fasting plasma glucose, glycated haemoglobin and serum lipid levels in patients with type 2 diabetes mellitus treated with insulin.

    PubMed

    Racek, Jaroslav; Sindberg, C D; Moesgaard, S; Mainz, Josef; Fabry, Jaroslav; Müller, Luděk; Rácová, Katarína

    2013-10-01

    Chromium is required for a normal insulin function, and low levels have been linked with insulin resistance. The aim of this study was to follow the effect of chromium supplementation on fasting plasma glucose (FPG), glycated haemoglobin (HbA1c) and serum lipids in patients with type 2 diabetes mellitus (DM2) on insulin therapy. Eleven randomly selected patients with DM2 on insulin therapy were supplemented with a daily dose of 100 μg chromium yeast for the first supplementation period of 2 weeks. In the second supplementation period, the chromium dose was doubled and continued for the next 6 weeks. The third phase was a 6-week washout period. After each period, the levels of FPG and HbA1c were compared with the corresponding values at the end of the previous period. Serum triglycerides, total HDL and LDL cholesterol values after supplementation were compared with the baseline values. FPG decreased significantly after the first period of chromium supplementation (p < 0.001), and a tendency to a further reduction was observed after the second supplementation period. Similarly, HbA1c decreased significantly in both periods (p < 0.02 and p < 0.002, respectively). Eight weeks after withdrawal of chromium supplementation, both FPG and HbA1c levels returned to their pre-intervention values. The serum lipid concentrations were not significantly influenced by chromium supplementation. Chromium supplementation could be beneficial in patients with DM2 treated with insulin, most likely due to lowered insulin resistance leading to improved glucose tolerance. This finding needs to be confirmed in a larger study.

  1. The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Preserves Endothelial Function in Mesenteric Arteries from Type 1 Diabetic Rats without Decreasing Plasma Glucose

    PubMed Central

    Salheen, Salheen M.; Panchapakesan, Usha; Pollock, Carol A.; Woodman, Owen L.

    2015-01-01

    The aim of the study was to investigate the effect of the DPP-4 inhibitor linagliptin on the mechanism(s) of endothelium-dependent relaxation in mesenteric arteries from STZ-induced diabetic rats. Both normal and diabetic animals received linagliptin (2 mg/kg) daily by oral gavage for a period of 4 weeks. To measure superoxide generation in mesenteric arteries, lucigenin-enhanced chemiluminescence was used. ACh-induced relaxation of mesenteric arteries was assessed using organ bath techniques and Western blotting was used to investigate protein expression. Pharmacological tools (1μM TRAM-34, 1μM apamin, 100 nM Ibtx, 100 μM L-NNA, 10 μM ODQ) were used to distinguish between NO and EDH-mediated relaxation. Linagliptin did not affect plasma glucose, but did decrease vascular superoxide levels. Diabetes reduced responses to ACh but did not affect endothelium-independent responses to SNP. Linagliptin improved endothelial function indicated by a significant increase in responses to ACh. Diabetes impaired the contribution of both nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) to endothelium-dependent relaxation and linagliptin treatment significantly enhanced the contribution of both relaxing factors. Western blotting demonstrated that diabetes also increased expression of Nox2 and decreased expression and dimerization of endothelial NO synthase, effects that were reversed by linagliptin. These findings demonstrate treatment of type 1 diabetic rats with linagliptin significantly reduced vascular superoxide levels and preserved both NO and EDH-mediated relaxation indicating that linagliptin can improve endothelial function in diabetes independently of any glucose lowering activity. PMID:26618855

  2. The Prevalence and Associated Factors of Periodontitis According to Fasting Plasma Glucose in the Korean Adults: The 2012-2013 Korea National Health and Nutrition Examination Survey.

    PubMed

    Hong, Jae Won; Noh, Jung Hyun; Kim, Dong-Jun

    2016-04-01

    Although the relationship between diabetes and periodontitis is well established, the association between periodontitis and prediabetes has been investigated less extensively. Furthermore, there has been little research on the prevalence of periodontitis among individuals with prediabetes and diabetes as well as in the overall population using nationally representative data.Among 12,406 adults (≥19 years' old) who participated in the 2012-2013 Korea National Health and Nutrition Examination Survey, a total of 9977 subjects completed oral and laboratory examinations and were included in this analysis. Periodontitis was defined as a community periodontal index score of ≥ 3 according to the World Health Organization criteria. The fasting plasma glucose level was categorized into the following 5 groups: normal fasting glucose (NFG) 1 (<90  mg/dL), NFG 2 (90-99  mg/dL), impaired fasting glucose (IFG) 1 (100-110  mg/dL), IFG 2 (111-125  mg/dL), and diabetes (≥126  mg/dL).Overall, the weighted prevalence of periodontitis among the Korean adult population was 24.8% (23.3-26.4%) (weight n = 8,455,952/34,086,014). The unadjusted weighted prevalences of periodontitis were 16.7%, 22.8%, 29.6%, 40.7%, and 46.7% in the NFG 1, NFG 2, IFG 1, IFG 2, and diabetes groups, respectively (P < 0.001). After adjusting for age, sex, smoking history, heavy alcohol drinking, college graduation, household income, waist circumference, serum triglyceride level, serum high-density lipoprotein cholesterol level, and the presence of hypertension, the adjusted weighted prevalence of periodontitis increased to 29.7% in the IFG 2 group (P = 0.045) and 32.5% in the diabetes group (P < 0.001), compared with the NFG 1 group (24%). The odds ratios for periodontitis with the above-mentioned variables as covariates were 1.42 (95% confidence interval [CI] 1.14-1.77, P = 0.002) in the diabetes group and 1.33 (95% CI 1.01-1.75, P = 0.044) in the IFG 2 group

  3. HbA1c, fasting and 2-hour plasma glucose in current-, ex-, and non-smokers: a meta-analysis

    PubMed Central

    Soulimane, Soraya; Simon, Dominique; Herman, William H; Lange, Celine; Lee, Crystal MY; Colagiuri, Stephen; Shaw, Jonathan E; Zimmet, Paul Z; Magliano, Dianna; Ferreira, Sandra RS; Dong, Yanghu; Zhang, Lei; Jorgensen, Torben; Tuomilehto, Jaakko; Mohan, Viswanathan; Christensen, Dirk L; Kaduka, Lydia; Dekker, Jacqueline M; Nijpels, Giel; Stehouwer, Coen DA; Lantieri, Olivier; Fujimoto, Wilfred Y; Leonetti, Donna L; McNeely, Marguerite J; Borch-Johnsen, Knut; Boyko, Edward J; Vistisen, Dorte; Balkau, Beverley

    2014-01-01

    Aim The relations between smoking and glycaemic parameters are not well explored. We compare HbA1c, fasting plasma glucose (FPG) and 2-hour plasma glucose (2H-PG) in current-, ex- and never-smokers. Methods This meta-analysis used individual data from 16 886 men and 18 539 women without known diabetes, in 12 DETECT-2 consortium studies and in the French D.E.S.I.R. and TELECOM studies. Means of the three glycaemic parameters in current-, ex- and never-smokers were modelled by linear regression, with study as a random factor. The I2 statistic evaluated heterogeneity among studies. Results HbA1c was 0.10 (95%CI:0.08,0.12) % [1.1 (0.9,1.3) mmol/mol] higher in current-smokers and 0.03 (0.01,0.05) % [0.3 (0.1,0.5) mmol/l] higher in ex-smokers, compared with never-smokers. For FPG, there was no significant difference between current- and never-smokers: −0.004 (−0.03,0.02) mmol/l but FPG was higher in ex-smokers: 0.12 (0.09,0.14) mmol/l. In comparison to never-smokers, 2H-PG was lower: −0.44 (−0.52,−0.37) mmol/l in current-smokers, with no difference for ex-smokers: 0.02 (−0.06,0.09) mmol/l. There was a large and unexplained heterogeneity among studies, with I2 always higher than 50%: after stratification by sex and adjustment for age and BMI, I2 changed little. In this study population, current-smokers had a prevalence of diabetes as screened by HbA1c, 1.30% higher and that screened by 2H-PG, 0.52% lower than in comparison to never-smokers. Conclusion Current-smokers had a higher HbA1c and a lower 2H-PG than never-smokers, across this heterogeneous group of studies; this will effect the chances of smokers being diagnosed with diabetes. PMID:24065153

  4. Nutrient Excess and AMPK Downregulation in Incubated Skeletal Muscle and Muscle of Glucose Infused Rats

    PubMed Central

    Valentine, Rudy J.; Petrocelli, Robert; Schultz, Vera; Brandon, Amanda; Cooney, Gregory J.; Kraegen, Edward W.; Ruderman, Neil B.; Saha, Asish K.

    2015-01-01

    We have previously shown that incubation for 1h with excess glucose or leucine causes insulin resistance in rat extensor digitorum longus (EDL) muscle by inhibiting AMP-activated protein kinase (AMPK). To examine the events that precede and follow these changes, studies were performed in rat EDL incubated with elevated levels of glucose or leucine for 30min-2h. Incubation in high glucose (25mM) or leucine (100μM) significantly diminished AMPK activity by 50% within 30min, with further decreases occurring at 1 and 2h. The initial decrease in activity at 30min coincided with a significant increase in muscle glycogen. The subsequent decreases at 1h were accompanied by phosphorylation of αAMPK at Ser485/491, and at 2h by decreased SIRT1 expression and increased PP2A activity, all of which have previously been shown to diminish AMPK activity. Glucose infusion in vivo, which caused several fold increases in plasma glucose and insulin, produced similar changes but with different timing. Thus, the initial decrease in AMPK activity observed at 3h was associated with changes in Ser485/491 phosphorylation and SIRT1 expression and increased PP2A activity was a later event. These findings suggest that both ex vivo and in vivo, multiple factors contribute to fuel-induced decreases in AMPK activity in skeletal muscle and the insulin resistance that accompanies it. PMID:25996822

  5. Models for plasma glucose, HbA1c, and hemoglobin interrelationships in patients with type 2 diabetes following tesaglitazar treatment.

    PubMed

    Hamrén, B; Björk, E; Sunzel, M; Karlsson, Mo

    2008-08-01

    Pharmacokinetic (PK) pharmacodynamic (PD) modeling was applied to understand and quantitate the interplay between tesaglitazar (a peroxisome proliferator-activated receptor alpha/gamma agonist) exposure, fasting plasma glucose (FPG), hemoglobin (Hb), and glycosylated hemoglobin (HbA1c) in type 2 diabetic patients. Data originated from a 12-week dose-ranging study with tesaglitazar. The primary objective was to develop a mechanism-based PD model for the FPG-HbA1c relationship. The secondary objective was to investigate possible mechanisms for the tesaglitazar effect on Hb. Following initiation of tesaglitazar therapy, time to new FPG steady state was approximately 9 weeks, and tesaglitazar potency in females was twice that in males. The model included aging of red blood cells (RBCs) using a transit compartment approach. The RBC life span was estimated to 135 days. The transformation from RBC to HbA1c was modeled as an FPG-dependent process. The model indicated that the tesaglitazar effect on Hb was caused by hemodilution of RBCs.

  6. Sustaining Effect of Intensive Nutritional Intervention Combined with Health Education on Dietary Behavior and Plasma Glucose in Type 2 Diabetes Mellitus Patients.

    PubMed

    Fan, Rui; Xu, Meihong; Wang, Junbo; Zhang, Zhaofeng; Chen, Qihe; Li, Ye; Gu, Jiaojiao; Cai, Xiaxia; Guo, Qianying; Bao, Lei; Li, Yong

    2016-01-01

    Diabetes mellitus is very common in elderly Chinese individuals. Although nutritional intervention can provide a balanced diet, the sustaining effect on at-home dietary behavior and long-term plasma glucose control is not clear. Consequently, we conducted a long-term survey following one month of experiential nutritional intervention combined with health education. Based on the Dietary Guidelines for a Chinese Resident, we found that the food items met the recommended values, the percentages of energy provided from fat, protein, and carbohydrate were more reasonable after one year. The newly formed dietary patterns were "Healthy", "Monotonous", "Vegetarian", "Japanese", "Low energy", and "Traditional" diets. The 2h-PG of female participants as well as those favoring the "Japanese diet" decreased above 12 mmol/L. Participants who selected "Japanese" and "Healthy" diets showed an obvious reduction in FPG while the FPG of participants from Group A declined slightly. "Japanese" and "Healthy" diets also obtained the highest DDP scores, and thus can be considered suitable for T2DM treatment in China. The results of the newly formed dietary patterns, "Japanese" and "Healthy" diets, confirmed the profound efficacy of nutritional intervention combined with health education for improving dietary behavior and glycemic control although health education played a more important role. The present study is encouraging with regard to further exploration of comprehensive diabetes care. PMID:27649232

  7. Sustaining Effect of Intensive Nutritional Intervention Combined with Health Education on Dietary Behavior and Plasma Glucose in Type 2 Diabetes Mellitus Patients.

    PubMed

    Fan, Rui; Xu, Meihong; Wang, Junbo; Zhang, Zhaofeng; Chen, Qihe; Li, Ye; Gu, Jiaojiao; Cai, Xiaxia; Guo, Qianying; Bao, Lei; Li, Yong

    2016-01-01

    Diabetes mellitus is very common in elderly Chinese individuals. Although nutritional intervention can provide a balanced diet, the sustaining effect on at-home dietary behavior and long-term plasma glucose control is not clear. Consequently, we conducted a long-term survey following one month of experiential nutritional intervention combined with health education. Based on the Dietary Guidelines for a Chinese Resident, we found that the food items met the recommended values, the percentages of energy provided from fat, protein, and carbohydrate were more reasonable after one year. The newly formed dietary patterns were "Healthy", "Monotonous", "Vegetarian", "Japanese", "Low energy", and "Traditional" diets. The 2h-PG of female participants as well as those favoring the "Japanese diet" decreased above 12 mmol/L. Participants who selected "Japanese" and "Healthy" diets showed an obvious reduction in FPG while the FPG of participants from Group A declined slightly. "Japanese" and "Healthy" diets also obtained the highest DDP scores, and thus can be considered suitable for T2DM treatment in China. The results of the newly formed dietary patterns, "Japanese" and "Healthy" diets, confirmed the profound efficacy of nutritional intervention combined with health education for improving dietary behavior and glycemic control although health education played a more important role. The present study is encouraging with regard to further exploration of comprehensive diabetes care.

  8. Sustaining Effect of Intensive Nutritional Intervention Combined with Health Education on Dietary Behavior and Plasma Glucose in Type 2 Diabetes Mellitus Patients

    PubMed Central

    Fan, Rui; Xu, Meihong; Wang, Junbo; Zhang, Zhaofeng; Chen, Qihe; Li, Ye; Gu, Jiaojiao; Cai, Xiaxia; Guo, Qianying; Bao, Lei; Li, Yong

    2016-01-01

    Diabetes mellitus is very common in elderly Chinese individuals. Although nutritional intervention can provide a balanced diet, the sustaining effect on at-home dietary behavior and long-term plasma glucose control is not clear. Consequently, we conducted a long-term survey following one month of experiential nutritional intervention combined with health education. Based on the Dietary Guidelines for a Chinese Resident, we found that the food items met the recommended values, the percentages of energy provided from fat, protein, and carbohydrate were more reasonable after one year. The newly formed dietary patterns were “Healthy”, “Monotonous”, “Vegetarian”, “Japanese”, “Low energy”, and “Traditional” diets. The 2h-PG of female participants as well as those favoring the “Japanese diet” decreased above 12 mmol/L. Participants who selected “Japanese” and “Healthy” diets showed an obvious reduction in FPG while the FPG of participants from Group A declined slightly. “Japanese” and “Healthy” diets also obtained the highest DDP scores, and thus can be considered suitable for T2DM treatment in China. The results of the newly formed dietary patterns, “Japanese” and “Healthy” diets, confirmed the profound efficacy of nutritional intervention combined with health education for improving dietary behavior and glycemic control although health education played a more important role. The present study is encouraging with regard to further exploration of comprehensive diabetes care. PMID:27649232

  9. Comparison of the enhancement of plasma glucose levels in type 2 diabetes Otsuka Long-Evans Tokushima Fatty rats by oral administration of sucrose or maple syrup.

    PubMed

    Nagai, Noriaki; Ito, Yoshimasa; Taga, Atsushi

    2013-01-01

    Maple syrup is used as a premium natural sweeter, and is known for being good for human health. In the present study, we investigate whether maple syrup is suitable as a sweetener in the management of type 2 diabetes using Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model of type 2 diabetes mellitus. OLETF rats develop type 2 diabetes mellitus by 30 weeks of age, and 60-week-old OLETF rats show hyperglycemia and hypoinsulinemia via pancreatic β-cell dysfunction. The administration of sucrose or maple syrup following an OGT test increased plasma glucose (PG) levels in OLETF rats, but the enhancement in PG following the oral administration of maple syrup was lower than in the case of sucrose administration in both 30- and 60-week-old OLETF rats. Although, the insulin levels in 30-week-old OLETF rats also increased following the oral administration of sucrose or maple syrup, no increase in insulin levels was seen in 60-week-old OLETF rats following the oral administration of either sucrose or maple syrup. No significant differences were observed in insulin levels between sucrose- and maple syrup-administered OLETF rats at either 30 or 60 weeks of age. The present study strongly suggests that the maple syrup may have a lower glycemic index than sucrose, which may help in the prevention of type 2 diabetes.

  10. A randomised crossover placebo-controlled trial investigating the effect of brown seaweed (Ascophyllum nodosum and Fucus vesiculosus) on postchallenge plasma glucose and insulin levels in men and women.

    PubMed

    Paradis, Marie-Eve; Couture, Patrick; Lamarche, Benoît

    2011-12-01

    This study examined the impact of brown seaweed on post-load plasma glucose and insulin concentrations in men and women. Twenty-three participants (11 men, 12 women) aged 19-59 years were recruited in this double-blind, randomized, placebo-controlled crossover study. The test product consisted of a commercially available blend of brown seaweed (Ascophyllum nodosum and Fucus vesiculosus) with known inhibitory action on α-amylase and α-glucosidase activities (InSea²). Two 250 mg seaweed capsules and 2 placebo capsules were consumed on each occasion 30 min prior to the consumption of 50 g of carbohydrates from bread. Plasma glucose and insulin concentrations were measured over a period of 3 h postcarbohydrate ingestion at predetermined time points. Both treatments were separated by a 1-week washout period. Data were analysed using mixed models for repeated measures. Compared with placebo, consumption of seaweed was associated with a 12.1% reduction in the insulin incremental area under the curve (p = 0.04, adjusted for baseline) and a 7.9% increase in the Cederholm index of insulin sensitivity (p < 0.05). The single ingestion of 500 mg of brown seaweed had no significant effect on the glucose response (p = 0.24, adjusted for baseline). Glucose and insulin responses were similar between men and women. Consumption of the seaweed capsules was not associated with any adverse event. These data suggest that brown seaweed may alter the insulin homeostasis in response to carbohydrate ingestion. PMID:22087795

  11. 1H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis

    PubMed Central

    Cocco, Eleonora; Murgia, Federica; Lorefice, Lorena; Barberini, Luigi; Poddighe, Simone; Frau, Jessica; Fenu, Giuseppe; Coghe, Giancarlo; Murru, Maria Rita; Murru, Raffaele; Del Carratore, Francesco; Atzori, Luigi

    2015-01-01

    Objective: To investigate the metabolomic profiles of patients with multiple sclerosis (MS) and to define the metabolic pathways potentially related to MS pathogenesis. Methods: Plasma samples from 73 patients with MS (therapy-free for at least 90 days) and 88 healthy controls (HC) were analyzed by 1H-NMR spectroscopy. Data analysis was conducted with principal components analysis followed by a supervised analysis (orthogonal partial least squares discriminant analysis [OPLS-DA]). The metabolites were identified and quantified using Chenomx software, and the receiver operating characteristic (ROC) curves were calculated. Results: The model obtained with the OPLS-DA identified predictive metabolic differences between the patients with MS and HC (R2X = 0.615, R2Y = 0.619, Q2 = 0.476; p < 0.001). The differential metabolites included glucose, 5-OH-tryptophan, and tryptophan, which were lower in the MS group, and 3-OH-butyrate, acetoacetate, acetone, alanine, and choline, which were higher in the MS group. The suitability of the model was evaluated using an external set of samples. The values returned by the model were used to build the corresponding ROC curve (area under the curve of 0.98). Conclusion: NMR metabolomic analysis was able to discriminate different metabolic profiles in patients with MS compared with HC. With the exception of choline, the main metabolic changes could be connected to 2 different metabolic pathways: tryptophan metabolism and energy metabolism. Metabolomics appears to represent a promising noninvasive approach for the study of MS. PMID:26740964

  12. Contiguously substituted cyclooctane polyols. configurational assignments via (1)H NMR correlations and symmetry considerations.

    PubMed

    Moura-Letts, Gustavo; Paquette, Leo A

    2008-10-01

    More advanced oxidation of the cyclooctadienol shown, readily available in enantiomerically pure form from D-glucose, has given rise to a series of intermediates whose relative (and ultimately absolute) configuration was assigned on the basis of (1)H/(1)H coupling constant analysis. The selectivities that were deduced in this manner were drawn from the sequential application of CrO3 oxidation in tandem with Luche reduction, two-step NMO-promoted osmylations bracketed by acetonide formation, and wholesale deprotection. The stereoselectivities of these reactions were traced by (1)H NMR spectroscopy, and the stereochemical assignments were confirmed by the presence or absence of symmetry in the final cyclooctane polyols (four shown) generated in this investigation.

  13. Spontaneous subarachnoid hemorrhage and glucose management.

    PubMed

    Schmutzhard, Erich; Rabinstein, Alejandro A

    2011-09-01

    Although metabolic abnormalities have been linked with poor outcome after subarachnoid hemorrhage, there are limited data addressing the impact of glycemic control or benefits of glucose management after aneurysmal subarachnoid hemorrhage. A systematic literature search was conducted of English-language articles describing original research on glycemic control in patients with subarachnoid hemorrhage. Case reports and case series were excluded. A total of 22 publications were selected for this review. Among the 17 studies investigating glucose as an outcome predictor, glucose levels during hospitalization were more likely to predict outcome than admission glucose. In general, hyperglycemia was linked to worse outcome. While insulin therapy in subarachnoid hemorrhage patients was shown to effectively control plasma glucose levels, plasma glucose control was not necessarily reflective of cerebral glucose such that very tight glucose control may lead to neuroglycopenia. Furthermore, tight glycemic control was associated with an increased risk for hypoglycemia which was linked to worse outcome. PMID:21850563

  14. Low density lipoprotein receptor-related protein 1 is upregulated in epicardial fat from type 2 diabetes mellitus patients and correlates with glucose and triglyceride plasma levels.

    PubMed

    Nasarre, L; Juan-Babot, O; Gastelurrutia, P; Llucia-Valldeperas, A; Badimon, L; Bayes-Genis, A; Llorente-Cortés, V

    2014-02-01

    Lipoprotein receptor expression plays a crucial role in the pathophysiology of adipose tissue in in vivo models of diabetes. However, there are no studies in diabetic patients. The aims of this study were to analyze (a) low-density lipoprotein receptor-related protein 1 (LRP1) and very low-density lipoprotein receptor (VLDLR) expression in epicardial and subcutaneous fat from type 2 diabetes mellitus compared with nondiabetic patients and (b) the possible correlation between the expression of these receptors and plasmatic parameters. Adipose tissue biopsy samples were obtained from diabetic (n = 54) and nondiabetic patients (n = 22) undergoing cardiac surgery before the initiation of cardiopulmonary bypass. Adipose LRP1 and VLDLR expression was analyzed at mRNA level by real-time PCR and at protein level by Western blot analysis. Adipose samples were also subjected to lipid extraction, and fat cholesterol ester, triglyceride, and free cholesterol contents were analyzed by thin-layer chromatography. LRP1 expression was higher in epicardial fat from diabetic compared with nondiabetic patients (mRNA 17.63 ± 11.37 versus 7.01 ± 4.86; P = 0.02; protein 11.23 ± 7.23 versus 6.75 ± 5.02, P = 0.04). VLDLR expression was also higher in epicardial fat from diabetic patients but only at mRNA level (231.25 ± 207.57 versus 56.64 ± 45.64, P = 0.02). No differences were found in the expression of LRP1 or VLDLR in the subcutaneous fat from diabetic compared with nondiabetic patients. Epicardial LRP1 and VLDLR mRNA overexpression positively correlated with plasma triglyceride levels (R(2) = 0.50, P = 0.01 and R(2) = 0.44, P = 0.03, respectively) and epicardial LRP1 also correlated with plasma glucose levels (R(2) = 0.33, P = 0.03). These results suggest that epicardial overexpression of certain lipoprotein receptors such as LRP1 and VLDLR expression may play a key role in the alterations of lipid metabolism associated with type 2 diabetes mellitus.

  15. Glucose cycling in islets from healthy and diabetic rats

    SciTech Connect

    Khan, A.; Chandramouli, V.; Ostenson, C.G.; Loew, H.L.; Landau, B.R.; Efendic, S. )

    1990-04-01

    Pancreatic islets from healthy (control) and neonatally streptozocin-induced diabetic (STZ-D) rats, a model for non-insulin-dependent diabetes mellitus, were incubated with {sup 3}H{sub 2}O and 5.5 or 16.7 mM glucose. At 5.5 mM glucose, no detectable ({sup 3}H)glucose was formed. At 16.7 mM, 2.2 patom.islet-1.h-1 of {sup 3}H was incorporated into glucose by the control islets and 5.4 patom.islet-1.h-1 by STZ-D islets. About 75% of the {sup 3}H was bound to carbon-2 of the glucose. Glucose utilization was 35.3 pmol.islet-1.h-1 by the control and 19.0 pmol.islet-1.h-1 by the STZ-D islets. Therefore, 4.5% of the glucose-6-phosphate formed by the control islets and 15.7% by the STZ-D islets was dephosphorylated. This presumably occurred in the beta-cells of the islets catalyzed by glucose-6-phosphatase. An increased glucose cycling, i.e., glucose----glucose-6-phosphate----glucose, in islets of STZ-D rats may contribute to the decreased insulin secretion found in these animals.

  16. Maturation of spermatozoa from rainbow trout (Oncorhynchus mykiss) sex-reversed females using artificial seminal plasma or glucose-methanol extender.

    PubMed

    Ciereszko, Andrzej; Dietrich, Grzegorz J; Nynca, Joanna; Dobosz, Stefan; Krom, Janusz

    2015-04-15

    Masculinized females (sex-reversed females) produce only homogametic spermatozoa (X) for fertilization which is desired for the production of all-female rainbow trout populations. The milt of sex-reversed females is of low quality and must be matured through extension in maturation solutions. The aim of this study was to compare the usefulness of glucose-methanol (GM) extender with artificial seminal plasma (ASP) extender for the maturation of milt of sex-reversed female rainbow trout. Milt suspensions were incubated at 4 °C for either 15 minutes (GM extender) or 120 minutes (ASP extender). Incubation of milt diluted in either the GM or ASP extender caused a significant (P < 0.05) increase in the percentage of sperm motility to 76.1 ± 10.9% and 74.7 ± 18.6% for GM and ASP, respectively, but no differences between both the extenders were found. Incubation also increased the average path velocity, straight line velocity, and linearity values of spermatozoa diluted with the GM extender; at the same time, none of the other parameters changed for ASP suspensions. Sperm diluted with ASP was characterized by higher curvilinear velocity and lateral head displacement values. Percentage of eyed embryos produced by fertilization using milt diluted in the GM extender amounted to 63.6 ± 16.4% and 67.2 ± 11.9% for sperm-to-egg ratio of 300,000:1 or 600,000:1, respectively and was lower (P < 0.05) compared with that of ASP extender (79.5 ± 5.8% and 80.3 ± 4.7% for sperm-to-egg ratio of 300,000:1 or 600,000:1, respectively). The results of our study clearly report that the mechanism of sperm maturation by the GM extender differs from that based on ASP. PMID:25638350

  17. Risk of Future Diabetes in Japanese People with High-normal Fasting Plasma Glucose Levels: A 4-Year Follow-up Study.

    PubMed

    Watanabe, Yoh; Eto, Tanenao; Taniguchi, Shotaro; Terauchi, Yasuo

    2016-01-01

    Objective There is no definite consensus regarding the treatment and guidance for individuals with high-normal fasting plasma glucose levels (FPG;100-109 mg/dL). The present study aimed to determine the risk factors for future diabetes in Japanese people with high-normal FPG. Methods Retrospective cohort studies were conducted from 2008 to 2012, including 15,097 individuals who underwent medical examinations. First, the participants were divided into normal FPG (n=13,065) and high-normal FPG (n=2,032) groups to compare the diabetes incidence. Second, the high FPG group was divided into diabetes onset (n=133) and non-diabetes onset (n=1,899) groups to compare the baseline values. Third, to determine the risk factors for future diabetes in the high-normal FPG group, multivariate analyses were conducted. Results The cumulative incidence during the mean follow-up of 4 years was 94/13,065 (0.72%) and 133/2,032 (6.55%) in the normal FPG and high-normal FPG groups, respectively. Within the high-normal FPG group, the baseline body mass index, waist circumference, triglycerides, FPG, alanine aminotransferase (ALT), and gamma-glutamyl transferase were significantly higher and high-density lipoprotein cholesterol (HDL-C) was significantly lower in the diabetes onset group than in the non-diabetes onset group. Obesity, abdominal obesity, hypertriglyceridemia, low HDL-C, and high ALT were significant risk factors for diabetes according to a multivariate analysis. Conclusion The high-normal FPG group had a higher risk of diabetes than the normal FPG group, particularly when accompanied with obesity, abdominal obesity, hypertriglyceridemia, low HDL-C, and high ALT. Thus, this high risk group should receive appropriate guidance for lifestyle changes to avoid developing diabetes at an early stage. PMID:27580535

  18. Modelling the Relative Contribution of Fasting and Post-Prandial Plasma Glucose to HbA1c in Healthy and Type 2 Diabetic Subjects

    ERIC Educational Resources Information Center

    Ollerton, Richard L.; Luzio, Steven D.; Owens, David R.

    2004-01-01

    Glycated haemoglobin (HbA1c) is regarded as the gold standard of glucose homeostasis assessment in diabetes. There has been much discussion in recent medical literature of experimental results concerning the relative contribution of fasting and post-prandial glucose levels to the value of HbA1c. A mathematical model of haemoglobin glycation is…

  19. Haemolymph from Mytilus galloprovincialis: Response to copper and temperature challenges studied by (1)H-NMR metabonomics.

    PubMed

    Digilio, Giuseppe; Sforzini, Susanna; Cassino, Claudio; Robotti, Elisa; Oliveri, Caterina; Marengo, Emilio; Musso, Davide; Osella, Domenico; Viarengo, Aldo

    2016-01-01

    Numerous studies on molluscs have been carried out to clarify the physiological roles of haemolymph serum proteins and haemocytes. However, little is known about the presence and functional role of the serum metabolites. In this study, Nuclear Magnetic Resonance (NMR) was used to assess whether changes of the metabolic profile of Mytilus galloprovincialis haemolymph may reflect alterations of the physiological status of the organisms due to environmental stressors, namely copper and temperature. Mussel haemolymph was taken from the posterior adductor muscle after a 4-day exposure to ambient (16 °C) or high temperature (24 °C) and in the absence or presence (5 μg/L, 20 μg/L, or 40 μg/L) of sublethal copper (Cu(2+)). The total glutathione (GSH) concentration in the haemolymph of both control and treated mussels was minimal, indicating the absence of significant contaminations by muscle intracellular metabolites due to the sampling procedure. In the (1)H-NMR spectrum of haemolymph, 27 metabolites were identified unambiguously. The separate and combined effects of exposure to copper and temperature on the haemolymph metabolic profile were assessed by Principal Component Analysis (PCA) and Ranking-PCA multivariate analysis. Changes of the metabolomic profile due to copper exposure at 16 °C became detectable at a dose of 20 μg/L copper. Alanine, lysine, serine, glutamine, glycogen, glucose and protein aliphatics played a major role in the classification of the metabolic changes according to the level of copper exposition. High temperature (24 °C) and high copper levels caused a coherent increase of a common set of metabolites (mostly glucose, serine, and lysine), indicating that the metabolic impairment due to high temperature is enforced by the presence of copper. Overall, the results demonstrate that, as for human blood plasma, the analysis of haemolymph metabolites represents a promising tool for the diagnosis of pollutant-induced stress syndrome in marine

  20. A UPLC-MS/MS method for simultaneous determination of danshensu, protocatechuic aldehyde, rosmarinic acid, and ligustrazine in rat plasma, and its application to pharmacokinetic studies of Shenxiong glucose injection in rats.

    PubMed

    Zheng, Lin; Gong, Zipeng; Lu, Yuan; Xie, Yumin; Huang, Yong; Liu, Yue; Lan, Yanyu; Wang, Aimin; Wang, Yonglin

    2015-08-01

    A rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the simultaneous determination of the four major active ingredients, danshensu, protocatechuic aldehyde, rosmarinic acid, and ligustrazine, in the traditional Chinese medicine Shenxiong glucose injection in rat plasma. Acidified and alkalized plasma samples were extracted using ethyl acetate, and separated on a Waters C18 column (2.1mm×50mm, 1.7μm) by using a gradient mobile phase system of acetonitrile-water containing 0.1% formic acid and luteoloside as an internal standard. Electrospray ionization in the positive-ion mode and multiple reaction monitoring were used to identify and quantitate the active components. All calibration curves showed good linearity (r>0.994) over the concentration range, with a lower limit of quantification (LLOQ) between 0.02 and 0.21μg/mL. The precision of the in vivo study was evaluated by intra- and inter-day assays, and the percentage of relative standard deviation was within 15%. Moreover, satisfactory extraction efficiency was obtained (between 83.94 and 117.81%) by liquid-liquid extraction. The validated method was successfully applied in a pharmacokinetic study in rats after intravenous administration of Shenxiong glucose injection. The results showed that the four bioactive ingredients in Shenxiong glucose injection have linear pharmacokinetic properties in rats after intravenous injection within the administered dose range and partially different ones compared to single ingredient.

  1. (1)H NMR spectroscopy for the in vitro understanding of the glycaemic index.

    PubMed

    Dona, Anthony C; Landrey, Karola; Atkinson, Fiona S; Brand Miller, Jennie C; Kuchel, Philip W

    2013-06-01

    The glycaemic index (GI) characterises foods by using the incremental area under the glycaemic response curve relative to the same amount of oral glucose. Its ability to differentiate between curves of different shapes, the peak response and other aspects of the glycaemic response is contentious. The present pilot study aimed to explore the possibility of using 1H NMR spectroscopy to better understand in vivo digestion characteristics as reflected in the glycaemic response of carbohydrate-rich foods; such an approach might be an adjunct to the in vivo GI test. The glycaemic response of two types of raw wheat flour (2005 from Griffith NSW, Chara, Row 10, Plot 6:181 and store-bought Colese Plain Flour) and a cooked store-bought flour was tested and compared with results recorded during the in vitro enzymatic digestion of the wheat flour samples by glucoamylase from Aspergillus niger (EC 3.2.1.3) as monitored by 1H NMR spectroscopy. Comparing the digestion time courses of raw and cooked wheat starch recorded in vitro strongly suggests that the initial rate of glucose release in vitro correlates with the glycaemic spike in vivo. During the in vitro time courses, approximately four times as much glucose was released from cooked starch samples than from raw starch samples in 90 min. Monitoring enzymatic digestion of heterogeneous mixtures (food) by 1H NMR spectroscopy showcases the effectiveness of the technique in measuring glucose release and its potential use as the basis of an in vitro method for a better understanding of the GI.

  2. The effect on plasma lipids of the isoenergetic replacement of table sucrose by dried glucose syrup (maize-syrup solids) in the normal diet of adult men over a period of 1 year.

    PubMed

    Lock, S; Ford, M A; Bagley, R; Green, L F

    1980-03-01

    1. Eighteen males (31-62 years) who habitually consumed significant amounts of table sucrose (approximately 25% of total carbohydrate intake) were supplied with their usual intake of sucrose for consumption in conjunction with their normal diet for 1 year, and a record kept of the amount consumed. The sucrose was then replaced isoenergetically by dried glucose syrup (55 D.E.) which contained saccharin to equate the sweetness to that of sucrose. 2. Fasting blood samples were taken every 4 weeks during the 2 years, and the plasma analysed for glucose, cholesterol, triglycerides and phospholipid-P by automated colorimetric methods. Dietary questionnaires were issued every 3 months to confirm the subjects were not substantially altering their diets. 3. In subjects whose weight remained unchanged and in those who lost weight there was a significant fall in cholesterol (P less than 0.025) and phospholipid.P (P less than 0.025) in the glucose-syrup period compared with the sucrose period; triglycerides did not change. In subjects who gained weight there was a significant increase in triglycerides (P less than 0.05), but no change in cholesterol; phospholipid-P fell significantly (P less than 0.0005). 4. The dietary modification in this experiment was sufficiently long to ensure that subjects had adapted, and the results obtained show stable changes in blood lipids which may be attributed to the isoenergetic replacement of table sucrose by glucose syrup.

  3. Restraint Stress Impairs Glucose Homeostasis Through Altered Insulin Signalling in Sprague-Dawley Rat.

    PubMed

    Morakinyo, Ayodele O; Ajiboye, Kolawole I; Oludare, Gabriel O; Samuel, Titilola A

    2016-01-01

    The study investigated the potential alteration in the level of insulin and adiponectin, as well as the expression of insulin receptors (INSR) and glucose transporter 4 GLUT-4 in chronic restraint stress rats. Sprague-Dawley rats were randomly divided into two groups: the control group and stress group in which the rats were exposed to one of the four different restraint stressors; 1 h, twice daily for a period of 7 days (S7D), 14 days (S14D) and 28 days (S28D). Glucose tolerance and insulin sensitivity were evaluated following the final stress exposure. ELISA were performed to assess the level of insulin and adiponectin as well as expression of INSR and GLUT4 protein in skeletal muscle. Plasma corticosterone level was also determined as a marker of stress exposure. Restraint stress for 7 days caused transient glucose intolerance, while S14D rats demonstrated increased glucose intolerance and insulin insensitivity. However, restraint stress for 28 days had no effect on glucose tolerance, but did cause an increase in glucose response to insulin challenge. The serum level of adiponectin was significantly (p< 0.05) lower compared with the control value while insulin remained unchanged except at in S28D rats that had a significant (p<0.05) increase. The expression of INSR and GLUT4 receptors were significantly (p< 0.05) decreased in the skeletal muscle of restraint stress exposed rats. There was a significant (p< 0.05) increase in the plasma corticosterone level of the stress rats compared with their control counterparts. Restraint stress caused glucose intolerance and insulin insensitivity in male Sprague-Dawley rats, which becomes accommodated with prolonged exposure and was likely related to the blunted insulin signalling in skeletal muscle. PMID:27574760

  4. Serum leptin concentrations are not related to dietary patterns but are related to sex, age, body mass index, serum triacylglycerol, serum insulin, and plasma glucose in the US population

    PubMed Central

    Ganji, Vijay; Kafai, Mohammad R; McCarthy, Erin

    2009-01-01

    Background Leptin is known to play a role in food intake regulation. The aim of this study was to investigate the relation between serum leptin concentrations and dietary patterns and demographic, lifestyle, and health factors in the US population. Methods Data from the third National Health and Nutrition Examination Survey, 1988–1994 were used to study the association between fasting serum leptin and dietary patterns, sex, race-ethnicity, smoking, age, energy and alcohol intakes, body mass index (BMI), plasma glucose, serum triacylglycerol, and serum insulin in 4009 individuals. Factor analysis was used to derive three principle factors and these were labeled as Vegetable, Fruit, and Lean Meat, Western, and Mixed dietary patterns. Results Serum leptin concentrations were significantly higher in Vegetable, Fruit, and Lean Meat (8.5 fg/L) and Mixed patterns (8.0 fg/L) compared to Western pattern (6.29 fg/L) (P < 0.0001). When analysis was adjusted for confounding variables, no significant association was observed between serum leptin and dietary patterns (P = 0.22). Multivariate adjusted serum leptin concentrations were significantly associated with sex (higher in women than in men; β = -1.052; P < 0.0001), age (direct relation, β = 0.006, P < 0.0001), BMI, (direct relation, β = 0.082, P < 0.0001), fasting plasma glucose (inverse relation, β = -0.024, P = 0.0146), serum triacylglycerol (direct relation, β = 0.034, P = 0.0022), and serum insulin (direct relation, β = 0.003, P < 0.0001) but not with race-ethnicity (P = 0.65), smoking (P = 0.20), energy intake (P = 0.42), and alcohol intake (P = 0.73). Conclusion In this study, serum leptin was not independently associated with dietary patterns. Sex, age, BMI, serum triacylglycerol, plasma glucose, and serum insulin are independent predictors of serum leptin concentrations. PMID:19144201

  5. 1H NMR spectra part 31: 1H chemical shifts of amides in DMSO solvent.

    PubMed

    Abraham, Raymond J; Griffiths, Lee; Perez, Manuel

    2014-07-01

    The (1)H chemical shifts of 48 amides in DMSO solvent are assigned and presented. The solvent shifts Δδ (DMSO-CDCl3 ) are large (1-2 ppm) for the NH protons but smaller and negative (-0.1 to -0.2 ppm) for close range protons. A selection of the observed solvent shifts is compared with calculated shifts from the present model and from GIAO calculations. Those for the NH protons agree with both calculations, but other solvent shifts such as Δδ(CHO) are not well reproduced by the GIAO calculations. The (1)H chemical shifts of the amides in DMSO were analysed using a functional approach for near ( ≤ 3 bonds removed) protons and the electric field, magnetic anisotropy and steric effect of the amide group for more distant protons. The chemical shifts of the NH protons of acetanilide and benzamide vary linearly with the π density on the αN and βC atoms, respectively. The C=O anisotropy and steric effect are in general little changed from the values in CDCl3. The effects of substituents F, Cl, Me on the NH proton shifts are reproduced. The electric field coefficient for the protons in DMSO is 90% of that in CDCl3. There is no steric effect of the C=O oxygen on the NH proton in an NH…O=C hydrogen bond. The observed deshielding is due to the electric field effect. The calculated chemical shifts agree well with the observed shifts (RMS error of 0.106 ppm for the data set of 257 entries). PMID:24824670

  6. Glucose control.

    PubMed

    Preiser, Jean-Charles

    2013-01-01

    Stress-related hyperglycemia is a common finding in acutely ill patients, and is related to the severity and outcome of the critical illness. The pathophysiology of stress hyperglycemia includes hormonal and neural signals, leading to increased production of glucose by the liver and peripheral insulin resistance mediated by the translocation of transmembrane glucose transporters. In one pioneering study, tight glycemic control by intensive insulin therapy in critically ill patients was associated with improved survival. However, this major finding was not confirmed in several other prospective randomized controlled trials. The reasons underlying the discrepancy between the first and the subsequent studies could include nutritional strategy (amount of calories provided, use of parenteral nutrition), case-mix, potential differences in the optimal blood glucose level (BG) in different types of patients, hypoglycemia and its correction, and the magnitude of glucose variability. Therefore, an improved understanding of the physiology and pathophysiology of glycemic regulation during acute illness is needed. Safe and effective glucose control will need improvement in the definition of optimal BG and in the measurement techniques, perhaps including continuous monitoring of insulin algorithms and closed-loop systems. PMID:23075589

  7. Postprandial glucose and insulin profiles following a glucose-loaded meal in cats and dogs.

    PubMed

    Hewson-Hughes, Adrian K; Gilham, Matthew S; Upton, Sarah; Colyer, Alison; Butterwick, Richard; Miller, Andrew T

    2011-10-01

    Data from intravenous (i.v.) glucose tolerance tests suggest that glucose clearance from the blood is slower in cats than in dogs. Since different physiological pathways are activated following oral administration compared with i.v. administration, we investigated the profiles of plasma glucose and insulin in cats and dogs following ingestion of a test meal with or without glucose. Adult male and female cats and dogs were fed either a high-protein (HP) test meal (15 g/kg body weight; ten cats and eleven dogs) or a HP + glucose test meal (13 g/kg body-weight HP diet + 2 g/kg body-weight D-glucose; seven cats and thirteen dogs) following a 24 h fast. Marked differences in plasma glucose and insulin profiles were observed in cats and dogs following ingestion of the glucose-loaded meal. In cats, mean plasma glucose concentration reached a peak at 120 min (10.2, 95 % CI 9.7, 10.8 mmol/l) and returned to baseline by 240 min, but no statistically significant change in plasma insulin concentration was observed. In dogs, mean plasma glucose concentration reached a peak at 60 min (6.3, 95 % CI 5.9, 6.7 mmol/l) and returned to baseline by 90 min, while plasma insulin concentration was significantly higher than pre-meal values from 30 to 120 min following the glucose-loaded meal. These results indicate that cats are not as efficient as dogs at rapidly decreasing high blood glucose levels and are consistent with a known metabolic adaptation of cats, namely a lack of glucokinase, which is important for both insulin secretion and glucose uptake from the blood. PMID:22005400

  8. Insulin Signaling in the Control of Glucose and Lipid Homeostasis.

    PubMed

    Saltiel, Alan R

    2016-01-01

    A continuous supply of glucose is necessary to ensure proper function and survival of all organs. Plasma glucose levels are thus maintained in a narrow range around 5 mM, which is considered the physiological set point. Glucose homeostasis is controlled primarily by the liver, fat, and skeletal muscle. Following a meal, most glucose disposals occur in the skeletal muscle, whereas fasting plasma glucose levels are determined primarily by glucose output from the liver. The balance between the utilization and production of glucose is primarily maintained at equilibrium by two opposing hormones, insulin and glucagon. In response to an elevation in plasma glucose and amino acids (after consumption of a meal), insulin is released from the beta cells of the islets of Langerhans in the pancreas. When plasma glucose falls (during fasting or exercise), glucagon is secreted by α cells, which surround the beta cells in the pancreas. Both cell types are extremely sensitive to glucose concentrations, can regulate hormone synthesis, and are released in response to small changes in plasma glucose levels. At the same time, insulin serves as the major physiological anabolic agent, promoting the synthesis and storage of glucose, lipids, and proteins and inhibiting their degradation and release back into the circulation. This chapter will focus mainly on signal transduction mechanisms by which insulin exerts its plethora of effects in liver, muscle, and fat cells, focusing on those pathways that are crucial in the control of glucose and lipid homeostasis.

  9. Multivariate modelling with 1H NMR of pleural effusion in murine cerebral malaria

    PubMed Central

    2011-01-01

    Background Cerebral malaria is a clinical manifestation of Plasmodium falciparum infection. Although brain damage is the predominant pathophysiological complication of cerebral malaria (CM), respiratory distress, acute lung injury, hydrothorax/pleural effusion are also observed in several cases. Immunological parameters have been assessed in pleural fluid in murine models; however there are no reports of characterization of metabolites present in pleural effusion. Methods 1H NMR of the sera and the pleural effusion of cerebral malaria infected mice were analyzed using principal component analysis, orthogonal partial least square analysis, multiway principal component analysis, and multivariate curve resolution. Results It has been observed that there was 100% occurrence of pleural effusion (PE) in the mice affected with CM, as opposed to those are non-cerebral and succumbing to hyperparasitaemia (NCM/HP). An analysis of 1H NMR and SDS-PAGE profile of PE and serum samples of each of the CM mice exhibited a similar profile in terms of constituents. Multivariate analysis on these two classes of biofluids was performed and significant differences were detected in concentrations of metabolites. Glucose, creatine and glutamine contents were high in the PE and lipids being high in the sera. Multivariate curve resolution between sera and pleural effusion showed that changes in PE co-varied with that of serum in CM mice. The increase of glucose in PE is negatively correlated to the glucose in serum in CM as obtained from the result of multiway principal component analysis. Conclusions This study reports for the first time, the characterization of metabolites in pleural effusion formed during murine cerebral malaria. The study indicates that the origin of PE metabolites in murine CM may be the serum. The loss of the components like glucose, glutamine and creatine into the PE may worsen the situation of patients, in conjunction with the enhanced glycolysis, glutaminolysis and

  10. A UPLC-MS/MS method for simultaneous determination of danshensu, protocatechuic aldehyde, rosmarinic acid, and ligustrazine in rat plasma, and its application to pharmacokinetic studies of Shenxiong glucose injection in rats.

    PubMed

    Zheng, Lin; Gong, Zipeng; Lu, Yuan; Xie, Yumin; Huang, Yong; Liu, Yue; Lan, Yanyu; Wang, Aimin; Wang, Yonglin

    2015-08-01

    A rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the simultaneous determination of the four major active ingredients, danshensu, protocatechuic aldehyde, rosmarinic acid, and ligustrazine, in the traditional Chinese medicine Shenxiong glucose injection in rat plasma. Acidified and alkalized plasma samples were extracted using ethyl acetate, and separated on a Waters C18 column (2.1mm×50mm, 1.7μm) by using a gradient mobile phase system of acetonitrile-water containing 0.1% formic acid and luteoloside as an internal standard. Electrospray ionization in the positive-ion mode and multiple reaction monitoring were used to identify and quantitate the active components. All calibration curves showed good linearity (r>0.994) over the concentration range, with a lower limit of quantification (LLOQ) between 0.02 and 0.21μg/mL. The precision of the in vivo study was evaluated by intra- and inter-day assays, and the percentage of relative standard deviation was within 15%. Moreover, satisfactory extraction efficiency was obtained (between 83.94 and 117.81%) by liquid-liquid extraction. The validated method was successfully applied in a pharmacokinetic study in rats after intravenous administration of Shenxiong glucose injection. The results showed that the four bioactive ingredients in Shenxiong glucose injection have linear pharmacokinetic properties in rats after intravenous injection within the administered dose range and partially different ones compared to single ingredient. PMID:26118621

  11. An improved technique for the 2H/1H analysis of urines from diabetic volunteers

    USGS Publications Warehouse

    Coplen, T.B.; Harper, I.T.

    1994-01-01

    The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, ~ 1-2???, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, approximately 1-2%, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.

  12. (1)H NMR Spectroscopy of Fecal Extracts Enables Detection of Advanced Colorectal Neoplasia.

    PubMed

    Amiot, Aurelien; Dona, Anthony C; Wijeyesekera, Anisha; Tournigand, Christophe; Baumgaertner, Isabelle; Lebaleur, Yann; Sobhani, Iradj; Holmes, Elaine

    2015-09-01

    Colorectal cancer (CRC) is a growing cause of mortality in developing countries, warranting investigation into its etiopathogenesis and earlier diagnosis. Here, we investigated the fecal metabolic phenotype of patients with advanced colorectal neoplasia and controls using (1)H-nuclear magnetic resonance (NMR) spectroscopy and multivariate modeling. The fecal microbiota composition was assessed by quantitative real-time PCR as well as Wif-1 methylation levels in stools, serum, and urine and correlated to the metabolic profile of each patient. The predictivity of the model was 0.507 (Q(2)Y), and the explained variance was 0.755 (R(2)Y). Patients with advanced colorectal neoplasia demonstrated increased fecal concentrations of four short-chain fatty acids (valerate, acetate, propionate, and butyrate) and decreased signals relating to β-glucose, glutamine, and glutamate. The predictive accuracy of the multivariate (1)H NMR model was higher than that of the guaiac-fecal occult blood test and the Wif-1 methylation test for predicting advanced colorectal neoplasia. Correlation analysis between fecal metabolites and bacterial profiles revealed strong associations between Faecalibacterium prausnitzii and Clostridium leptum species with short-chain fatty acids concentration and inverse correlation between Faecalibacterium prausnitzii and glucose. These preliminary results suggest that fecal metabonomics may potentially have a future role in a noninvasive colorectal screening program and may contribute to our understanding of the role of these dysregulated molecules in the cross-talk between the host and its bacterial microbiota.

  13. Aspartame ingestion with and without carbohydrate in phenylketonuric and normal subjects: effect on plasma concentrations of amino acids, glucose, and insulin.

    PubMed

    Wolf-Novak, L C; Stegink, L D; Brummel, M C; Persoon, T J; Filer, L J; Bell, E F; Ziegler, E E; Krause, W L

    1990-04-01

    Seven subjects homozygous for phenylketonuria (PKU) and seven normal subjects were administered four beverage regimens after an overnight fast: unsweetened beverage, beverage providing carbohydrate (CHO), beverage providing aspartame (APM), and beverage providing APM plus CHO. The APM dose (200 mg) was the amount provided in 12 oz of diet beverage; the CHO was partially hydrolyzed starch (60 g). Plasma amino acid concentrations were determined after dosing and the molar plasma phenylalanine (Phe) to large neutral amino acid (LNAA) ratio calculated. APM administration without CHO did not increase plasma Phe concentrations over baseline values in either normal or PKU subjects (5.48 +/- 0.85 and 150 +/- 23.0 mumols/dL, respectively). Similarly, the Phe/LNAA did not increase significantly. Ingestion of beverage providing APM and CHO did not significantly increase plasma Phe concentrations over baseline values in either normal or PKU subjects. However, ingestion of beverage providing CHO (with or without APM) significantly decreased plasma levels of valine, isoleucine, and leucine 1.5 to 4 hours after dosing in both normal and PKU subjects, thereby increasing the Phe/LNAA ratio significantly. These data indicate that changes noted in Phe/LNAA values after ingestion of beverage providing APM plus CHO were due to CHO. The plasma insulin response to beverage providing CHO (with or without APM) was significantly higher in PKU subjects than in normals.

  14. Teaching 1H NMR Spectrometry Using Computer Modeling.

    ERIC Educational Resources Information Center

    Habata, Yoichi; Akabori, Sadatoshi

    2001-01-01

    Molecular modeling by computer is used to display stereochemistry, molecular orbitals, structure of transition states, and progress of reactions. Describes new ideas for teaching 1H NMR spectroscopy using computer modeling. (Contains 12 references.) (ASK)

  15. Identifying metabolites related to nitrogen mineralisation using 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    . T McDonald, Noeleen; Graham, Stewart; Watson, Catherine; Gordon, Alan; Lalor, Stan; Laughlin, Ronnie; Elliott, Chris; . P Wall, David

    2015-04-01

    Exploring new analysis techniques to enhance our knowledge of the various metabolites within our soil systems is imperative. Principally, this knowledge would allow us to link key metabolites with functional influences on critical nutrient processes, such as the nitrogen (N) mineralisation in soils. Currently there are few studies that utilize proton nuclear magnetic resonance spectroscopy (1H NMR) to characterize multiple metabolites within a soil sample. The aim of this research study was to examine the effectiveness of 1H NMR for isolating multiple metabolites that are related to the mineralizable N (MN) capacity across a range of 35 Irish grassland soils. Soils were measured for MN using the standard seven day anaerobic incubation (AI-7). Additionally, soils were also analysed for a range of physio-chemical properties [e.g. total N, total C, mineral N, texture and soil organic matter (SOM)]. Proton NMR analysis was carried on these soils by extracting with 40% methanol:water, lyophilizing and reconstituting in deuterium oxide and recording the NMR spectra on a 400MHz Bruker AVANCE III spectrometer. Once the NMR data were spectrally processed and analysed using multivariate statistical analysis, seven metabolites were identified as having significant relationships with MN (glucose, trimethylamine, glutamic acid, serine, aspartic acid, 4-aminohippuirc acid and citric acid). Following quantification, glucose was shown to explain the largest percentage variability in MN (72%). These outcomes suggest that sources of labile carbon are essential in regulating N mineralisation and the capacity of plant available N derived from SOM-N pools in these soils. Although, smaller in concentration, the amino acids; 4-aminohippuirc acid, glutamic acid and serine also significantly (P<0.05) explained 43%, 27% and 19% of the variability in MN, respectively. This novel study highlights the effectiveness of using 1H NMR as a practical approach to profile multiple metabolites in

  16. Regulation of Arabidopsis thaliana plasma membrane glucose-responsive regulator (AtPGR) expression by A. thaliana storekeeper-like transcription factor, AtSTKL, modulates glucose response in Arabidopsis.

    PubMed

    Chung, Moon-Soo; Lee, Sungbeom; Min, Ji-Hee; Huang, Ping; Ju, Hyun-Woo; Kim, Cheol Soo

    2016-07-01

    Biochemical, genetic, physiological, and molecular research in plants has demonstrated a central role of glucose (Glc) in the control of plant growth, metabolism, and development, and has revealed networks that integrate light, stresses, nutrients, and hormone signaling. Previous studies have reported that AtPGR protein as potential candidates for Glc signaling protein. In the present study, we characterized transcription factors that bind to the upstream region of the AtPGR gene isolated using the yeast one-hybrid screening with an Arabidopsis cDNA library. One of the selected genes (AtSTKL) appeared to confer elevated sensitivity to Glc response. Overexpression of AtSTKLs (AtSTKL1 and AtSTKL2) increased the sensitivity to Glc during the post-germination stages. In contrast, atstkl1 and atstkl2 antisense lines displayed reduced sensitivity to high Glc concentration during the early seedling stage. Furthermore, we showed that the two AtSTKLs bind to the 5'-GCCT-3' element of the upstream promoter region of the AtPGR gene in vitro and repress the beta-glucuronidase (GUS) activity in AtPGR promoter-GUS (P999-GUS) transgenic plants. Green fluorescent protein (GFP)-tagged AtSTKLs were localized in the nuclei of transgenic Arabidopsis cells. Collectively, these results suggest that AtSTKL1 and AtSTKL2 function both as repressors of AtPGR transcription and as novel transcription factors in the Glc signaling pathway. PMID:27031427

  17. Oxytocin increases extrapancreatic glucagon secretion and glucose production in pancreatectomized dogs

    SciTech Connect

    Altszuler, N.; Puma, F.; Winkler, B.; Fontan, N.; Saudek, C.D.

    1986-05-01

    Infusion of oxytocin into normal dogs increases plasma levels of insulin and glucagon and glucose production and uptake. To determine whether infused oxytocin also increases glucagon secretion from extrapancreatic sites, pancreatectomized dogs, off insulin of 18 hr, were infused with oxytocin and plasma glucagon, and glucose production and uptake were measured using the (6-/sup 3/H)glucose primer-infusion technique. The diabetic dogs, in the control period, had elevated plasma glucose and glucagon levels, an increased rate of glucose production, and a relative decrease in glucose uptake (decreased clearance). Infusion of oxytocin (500 ..mu..U/kg/min) caused a rise in plasma glucagon and glucose levels, increased glucose production, and further decreased glucose clearance. it is concluded that oxytocin can stimulate secretion of extrapancreatic glucagon, which contributes to the increased glucose production.

  18. Determination of a novel diacylglycerol acyltransferase 1 inhibitor, 2-[4-(4-{5-[2-phenyl-5-(trifluoromethyl) oxazole-4-carboxamido]-1H-benzo[d]imidazol-2-yl} phenyl) cyclohexyl] acetic acid (KR-69232) in rat plasma using liquid chromatography-tandem mass spectrometry and its application to a pharmacokinetic study.

    PubMed

    Seo, Hyewon; Choi, Sung Heum; Kwak, Eun-Young; Zheng, Zhi; Kwak, Hyun Jung; Ahn, Jin Hee; Lee, Yong-Moon; Ahn, Sung-Hoon; Bae, Myung Ae; Song, Jin Sook

    2014-03-01

    A liquid chromatography-tandem mass spectrometry method was developed and validated for the quantification of KR-69232, a diacyltransferase 1 inhibitor, in rat plasma. KR-69232 in the concentration range of 0.004-4 µg/mL was linear. The intra-and inter-day precision and accuracy were acceptable (<20%). KR-69232 was stable under various storage and handling conditions. The method was applied successfully in a pharmacokinetic study of KR-69232 in rats.

  19. Determination of a peroxisome proliferator-activated receptor γ agonist, 1-(trans-methylimino-N-oxy)-6-(2-morpholinoethoxy-3-phenyl-1H-indene-2-carboxylic acid ethyl ester (KR-62980) in rat plasma by liquid chromatography-tandem mass spectrometry.

    PubMed

    Kim, Min-Sun; Song, Jin Sook; Roh, Hyeongjin; Park, Jong-Shik; Ahn, Jin Hee; Ahn, Sung-Hoon; Bae, Myung Ae

    2011-01-01

    A novel peroxisome proliferator-activated receptor γ (PPARγ) agonist, KR-62980, was determined by liquid-liquid extraction with ethyl acetate and liquid chromatography-tandem mass spectrometry (LC/MS/MS) in rat plasma. In order to evaluate the pharmacokinetics of KR-62980, a reliable, selective and sensitive high-performance liquid chromatographic method with electrospray ionization tandem mass spectrometry was developed for the quantification of KR-62980 in rat plasma. KR-62980 and imipramine (IS) were separated on Hypersil GOLD C18 column with a mixture of acetonitrile-ammonium formate (10mM) (80:20, v/v) as mobile phase. The ion transitions monitored were m/z 437.2 → 114.2 for KR-62980, m/z 281.3 → 86.1 for imipramine in multiple reaction monitoring (MRM) mode. The percent recoveries of KR-62980 and imipramine were 90.1 and 98.4% from rat plasma, respectively. The linear dynamic range extended from 0.01 to 10 μg/ml with a correlation coefficient (R(2)) greater than 0.99 and the lower limit of quantification was 0.01 μg/ml. The mean of intra- and inter-assay precisions was 2.1 and 9.3%. The method was validated and successfully applied to the pharmacokinetic study of KR-62980 in rat.

  20. Noninvasive glucose sensing by transcutaneous Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Shih, Wei-Chuan; Bechtel, Kate L.; Rebec, Mihailo V.

    2015-05-01

    We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ˜1.5-2 mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies.

  1. Noninvasive glucose sensing by transcutaneous Raman spectroscopy

    PubMed Central

    Shih, Wei-Chuan; Bechtel, Kate L.; Rebec, Mihailo V.

    2015-01-01

    Abstract. We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ∼1.5−2  mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies. PMID:25688542

  2. Following Metabolism in Living Microorganisms by Hyperpolarized (1)H NMR.

    PubMed

    Dzien, Piotr; Fages, Anne; Jona, Ghil; Brindle, Kevin M; Schwaiger, Markus; Frydman, Lucio

    2016-09-21

    Dissolution dynamic nuclear polarization (dDNP) is used to enhance the sensitivity of nuclear magnetic resonance (NMR), enabling monitoring of metabolism and specific enzymatic reactions in vivo. dDNP involves rapid sample dissolution and transfer to a spectrometer/scanner for subsequent signal detection. So far, most biologically oriented dDNP studies have relied on hyperpolarizing long-lived nuclear spin species such as (13)C in small molecules. While advantages could also arise from observing hyperpolarized (1)H, short relaxation times limit the utility of prepolarizing this sensitive but fast relaxing nucleus. Recently, it has been reported that (1)H NMR peaks in solution-phase experiments could be hyperpolarized by spontaneous magnetization transfers from bound (13)C nuclei following dDNP. This work demonstrates the potential of this sensitivity-enhancing approach to probe the enzymatic process that could not be suitably resolved by (13)C dDNP MR. Here we measured, in microorganisms, the action of pyruvate decarboxylase (PDC) and pyruvate formate lyase (PFL)-enzymes that catalyze the decarboxylation of pyruvate to form acetaldehyde and formate, respectively. While (13)C NMR did not possess the resolution to distinguish the starting pyruvate precursor from the carbonyl resonances in the resulting products, these processes could be monitored by (1)H NMR at 500 MHz. These observations were possible in both yeast and bacteria in minute-long kinetic measurements where the hyperpolarized (13)C enhanced, via (13)C → (1)H cross-relaxation, the signals of protons binding to the (13)C over the course of enzymatic reactions. In addition to these spontaneous heteronuclear enhancement experiments, single-shot acquisitions based on J-driven (13)C → (1)H polarization transfers were also carried out. These resulted in higher signal enhancements of the (1)H resonances but were not suitable for multishot kinetic studies. The potential of these (1)H-based approaches for

  3. Syntheses, structures, and 1H, 13C{1H} and 119Sn{1H} NMR chemical shifts of a family of trimethyltin alkoxide, amide, halide and cyclopentadienyl compounds

    DOE PAGES

    Lichtscheidl, Alejandro G.; Janicke, Michael T.; Scott, Brian L.; Nelson, Andrew T.; Kiplinger, Jaqueline L.

    2015-08-21

    The synthesis and full characterization, including Nuclear Magnetic Resonance (NMR) data (1H, 13C{1H} and 119Sn{1H}), for a series of Me3SnX (X = O-2,6-tBu2C6H3 (1), (Me3Sn)N(2,6-iPr2C6H3) (3), NH-2,4,6-tBu3C6H2 (4), N(SiMe3)2 (5), NEt2, C5Me5 (6), Cl, Br, I, and SnMe3) compounds in benzene-d6, toluene-d8, dichloromethane-d2, chloroform-d1, acetonitrile-d3, and tetrahydrofuran-d8 are reported. The X-ray crystal structures of Me3Sn(O-2,6-tBu2C6H3) (1), Me3Sn(O-2,6-iPr2C6H3) (2), and (Me3Sn)(NH-2,4,6-tBu3C6H2) (4) are also presented. As a result, these compiled data complement existing literature data and ease the characterization of these compounds by routine NMR experiments.

  4. Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor.

    PubMed

    Scheen, André J

    2014-03-01

    Empagliflozin is an orally active, potent and selective inhibitor of sodium glucose co-transporter 2 (SGLT2), currently in clinical development to improve glycaemic control in adults with type 2 diabetes mellitus (T2DM). SGLT2 inhibitors, including empagliflozin, are the first pharmacological class of antidiabetes agents to target the kidney in order to remove excess glucose from the body and, thus, offer new options for T2DM management. SGLT2 inhibitors exert their effects independently of insulin. Following single and multiple oral doses (0.5-800 mg), empagliflozin was rapidly absorbed and reached peak plasma concentrations after approximately 1.33-3.0 h, before showing a biphasic decline. The mean terminal half-life ranged from 5.6 to 13.1 h in single rising-dose studies, and from 10.3 to 18.8 h in multiple-dose studies. Following multiple oral doses, increases in exposure were dose-proportional and trough concentrations remained constant after day 6, indicating a steady state had been reached. Oral clearance at steady state was similar to corresponding single-dose values, suggesting linear pharmacokinetics with respect to time. No clinically relevant alterations in pharmacokinetics were observed in mild to severe hepatic impairment, or in mild to severe renal impairment and end-stage renal disease. Clinical studies did not reveal any relevant drug-drug interactions with several other drugs commonly prescribed to patients with T2DM, including warfarin. Urinary glucose excretion (UGE) rates were higher with empagliflozin versus placebo and increased with dose, but no relevant impact on 24-h urine volume was observed. Increased UGE resulted in proportional reductions in fasting plasma glucose and mean daily glucose concentrations.

  5. Characterisation of Human Embryonic Stem Cells Conditioning Media by 1H-Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    MacIntyre, David A.; Melguizo Sanchís, Darío; Jiménez, Beatriz; Moreno, Rubén; Stojkovic, Miodrag; Pineda-Lucena, Antonio

    2011-01-01

    Background Cell culture media conditioned by human foreskin fibroblasts (HFFs) provide a complex supplement of protein and metabolic factors that support in vitro proliferation of human embryonic stem cells (hESCs). However, the conditioning process is variable with different media batches often exhibiting differing capacities to maintain hESCs in culture. While recent studies have examined the protein complement of conditioned culture media, detailed information regarding the metabolic component of this media is lacking. Methodology/Principal Findings Using a 1H-Nuclear Magnetic Resonance (1H-NMR) metabonomics approach, 32 metabolites and small compounds were identified and quantified in media conditioned by passage 11 HFFs (CMp11). A number of metabolites were secreted by HFFs with significantly higher concentration of lactate, alanine, and formate detected in CMp11 compared to non-conditioned media. In contrast, levels of tryptophan, folate and niacinamide were depleted in CMp11 indicating the utilisation of these metabolites by HFFs. Multivariate statistical analysis of the 1H-NMR data revealed marked age-related differences in the metabolic profile of CMp11 collected from HFFs every 24 h over 72 h. Additionally, the metabolic profile of CMp11 was altered following freezing at −20°C for 2 weeks. CM derived from passage 18 HFFs (CMp18) was found to be ineffective at supporting hESCs in an undifferentiated state beyond 5 days culture. Multivariate statistical comparison of CMp11 and CMp18 metabolic profiles enabled rapid and clear discrimination between the two media with CMp18 containing lower concentrations of lactate and alanine as well as higher concentrations of glucose and glutamine. Conclusions/Significance 1H-NMR-based metabonomics offers a rapid and accurate method of characterising hESC conditioning media and is a valuable tool for monitoring, controlling and optimising hESC culture media preparation. PMID:21347425

  6. Acute consumption of organic and conventional tropical grape juices (Vitis labrusca L.) increases antioxidants in plasma and erythrocytes, but not glucose and uric acid levels, in healthy individuals.

    PubMed

    Toaldo, Isabela Maia; Cruz, Fernanda Alves; da Silva, Edson Luiz; Bordignon-Luiz, Marilde T

    2016-08-01

    Bioactive polyphenols in grapes are influenced by grape variety and cultivation conditions. The Vitis labrusca L. varieties are cultivated in tropical regions and used for grape juice production. We hypothesized that polyphenols from tropical grape juices would beneficially affect redox homeostasis in humans. Therefore, the effects of acute consumption of organic and conventional grape juices from V labrusca L. on antioxidants biomarkers were investigated in healthy individuals. In a controlled, randomized, crossover, intervention trial, 24 individuals were assigned to drink 400 mL of conventional juice, organic juice, or water. Each intervention was followed by a 14-day washout period. Blood samples were obtained before and 1 hour after acute intake and analyzed for erythrocyte reduced glutathione, serum total antioxidant capacity, antioxidant enzymes in erythrocytes, and glucose and uric acid in serum. The ingestion of both grape juices resulted in elevated levels of reduced glutathione (P< .001) and serum total antioxidant capacity (P< .05) and increased activity of catalase (P< .001), superoxide dismutase (P< .001), and glutathione peroxidase (P< .05) compared with the control intervention, with no significant differences between grape juices (P< .05). The intake of juices did not affect significantly the concentrations of glucose or uric acid. Grape juice polyphenols were associated with increased antioxidants, and the chemical differences between organic and conventional juices were not predictive of the observed responses. The results suggest a bioactive potential of V labrusca L. juices to improve redox homeostasis, which is involved in defense against oxidative stress in humans. PMID:27440535

  7. Acute consumption of organic and conventional tropical grape juices (Vitis labrusca L.) increases antioxidants in plasma and erythrocytes, but not glucose and uric acid levels, in healthy individuals.

    PubMed

    Toaldo, Isabela Maia; Cruz, Fernanda Alves; da Silva, Edson Luiz; Bordignon-Luiz, Marilde T

    2016-08-01

    Bioactive polyphenols in grapes are influenced by grape variety and cultivation conditions. The Vitis labrusca L. varieties are cultivated in tropical regions and used for grape juice production. We hypothesized that polyphenols from tropical grape juices would beneficially affect redox homeostasis in humans. Therefore, the effects of acute consumption of organic and conventional grape juices from V labrusca L. on antioxidants biomarkers were investigated in healthy individuals. In a controlled, randomized, crossover, intervention trial, 24 individuals were assigned to drink 400 mL of conventional juice, organic juice, or water. Each intervention was followed by a 14-day washout period. Blood samples were obtained before and 1 hour after acute intake and analyzed for erythrocyte reduced glutathione, serum total antioxidant capacity, antioxidant enzymes in erythrocytes, and glucose and uric acid in serum. The ingestion of both grape juices resulted in elevated levels of reduced glutathione (P< .001) and serum total antioxidant capacity (P< .05) and increased activity of catalase (P< .001), superoxide dismutase (P< .001), and glutathione peroxidase (P< .05) compared with the control intervention, with no significant differences between grape juices (P< .05). The intake of juices did not affect significantly the concentrations of glucose or uric acid. Grape juice polyphenols were associated with increased antioxidants, and the chemical differences between organic and conventional juices were not predictive of the observed responses. The results suggest a bioactive potential of V labrusca L. juices to improve redox homeostasis, which is involved in defense against oxidative stress in humans.

  8. A Common Missense Variant in the Glucokinase Regulatory Protein Gene (GCKR) Is Associated with Increased Plasma Triglyceride and C-Reactive Protein but Lower Fasting Glucose Concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    OBJECTIVE-Using the genome-wide-association approach, we recently identified the glucokinase regulatory protein gene (GCKR, rs780094) region as a novel quantitative trait locus for plasma triglyceride concentration in Europeans. Here, we sought to study the association of GCKR variants with metaboli...

  9. Phloem mobility and translocation of fluorescent conjugate containing glucose and NBD in castor bean (Ricinus communis).

    PubMed

    Lei, Zhiwei; Wang, Jie; Mao, Genlin; Wen, Yingjie; Xu, Hanhong

    2014-03-01

    Phloem mobility is an important factor for long-distance transport of systemic pesticides in plants. Our previous study revealed that a fluorescent glucose-insecticide conjugate, N-{3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-iodo-1H-pyrazol-5-yl}-N-{[1-(β-D-glucopyranosyl)-1H-1,2,3-triazole-4-yl]methyl}-N-{[1-((N-(7-nitrobenz-2-oxa-1,3-diazole-4-amine))-propyl)-1H-1,2,3-triazole-4-yl]methyl}amine (IPGN), can be transported in tobacco cells. Several studies have also indicated that glucose moieties can guide the conjugates into plant cells. In this study, we investigated the phloem mobility of IPGN within castor bean seedlings. Cotyledon uptake experiment results show that IPGN could enter the phloem of the mid-veins of cotyledons. The results of further quantitative analysis show that IPGN was present in small amounts in the phloem sap despite the inconsistencies of physicochemical properties with diffusion through the plasma membrane. Its concentration in the phloem sap (about 370nM at 5h) was much lower than that in the incubation medium (100μM), which suggests that IPGN exhibited weak phloem mobility. After the leaves of Ricinus plantlets were treated with IPGN, green fluorescence could be observed in the phloem of the petioles, bud apical nodes, bud mid-veins, and mid-veins of the untreated leaves. The localization of the fluorescent conjugate at various levels of Ricinus plantlets indicates that it was translocated at a distance to sink organs via sieve tubes. The results proved that introducing a glucose group is a feasible approach to modify non-phloem-mobile pesticides and produce phloem-mobile pesticides.

  10. Increasing intravenous infusions of glucose improve body condition but not lactation performance in midlactation dairy cows.

    PubMed

    Al-Trad, B; Reisberg, K; Wittek, T; Penner, G B; Alkaassem, A; Gäbel, G; Fürll, M; Aschenbach, J R

    2009-11-01

    The present study was intended to test whether intravenously applied glucose would elicit dose effects on lactation performance similar to those observed after gastrointestinal glucose application. Six midlactation cows received intravenous glucose infusions (GI), increasing by 1.25% of the calculated net energy for lactation (NE(L)) requirement per day, whereas control cows received volume-equivalent saline infusions (SI). Measurements and samples were taken at surplus glucose dose levels of 0, 10, 20, and 30% of the NE(L) requirement, respectively. Body weight and backfat thickness increased linearly with increasing glucose dose for cows on GI compared with SI. No differences were observed in daily feed intake, milk energy output, and energy-corrected milk yield between treatments. However, milk protein percentage and yield increased linearly with the dose of glucose infused in the GI group. Although milk lactose was not affected by treatment during the infusion period, milk lactose percentage and yield decreased for GI, but not SI, once infusions ceased. Based on 5 diurnal blood samples, daily mean and maximum concentrations of plasma glucose and serum insulin showed linear increases with increasing GI, whereas their daily minimum concentrations were unaffected. At GI of 30% of the NE(L) requirement, marked hyperglycemia and hyperinsulinemia were observed at 1600 h (i.e., 1 h postprandially), coinciding with glucosuria. The revised quantitative insulin-sensitivity check index indicated linear development of insulin resistance for the GI treatment but no such change in SI cows. Glucose infusion decreased daily mean and maximum serum beta-hydroxybutyrate and daily minimum nonesterified fatty acid concentrations relative to SI, whereas serum urea nitrogen was only numerically decreased by GI. No changes were observed in the serum activities of gamma-glutamyl transferase and aspartate transaminase and in the serum concentrations of bilirubin and macrominerals

  11. Fast-induced changes in plasma glucose, insulin and free fatty acid concentration compared in rats during the night and day.

    PubMed

    Larue-Achagiotis, C; Le Magnen, J

    1983-01-01

    Changes in PG, PI and PFFA were examined and compared in fed rats or after 0 to 12 hours of fasting, during the night or during the day. At night, a progressive decrease in PG and PI and an increase in PFFA were induced by 0 to 12 hours of food deprivation. During the light period a decrease in PG occurred only from the 6th hour of fasting. A slight, progressive increase in PFFA levels was induced from 0 to 12 hours of fasting, while no significant variation of PI levels was observed. The results are discussed in terms of relationships between blood glucose, PFFA levels, and food intake in control rats over the circadian cycle.

  12. Dietary effects in the early recovery phase of kwashiorkor. Plasma levels of triglycerides, FFA, D-beta-hydroxybutyrate, glycerol, postheparin lipoprotein lipase (LPL), glucose and insulin.

    PubMed

    Persson, B; Habte, D; Sterky, G

    1976-05-01

    The fatty liver often found in untreated kwashiorkor has been associated with highly variable concentration of circulating lipids. The effect on lipid metabolism of two isocaloric diets--one synthetic monomolecular (Vivonex) and one standard (Casilan)--which both initiated satisfactory clinical improvement was studied in 21 Ethiopian children with kwashiorkor during the first weeks of rehabilitation. Before treatment mean fasting values of all biochemical parameters were within normal ranges except for moderately elevated triglycerides--an unexpected finding-and low insulin. Individual values varied greatly; triglyceride between 0.39 and 3.49 mmol/1. FFA correlated both to glycerol, D-beta-hydroxybutyrate and triglyceride values. During treatment insulin, glucose and glycerol remained essentially unchanged and were similar in both dietary groups. In the Vivonex group only there was an initial marked, parallel fall of FFA and D-beta-hydroxybutyrate suggesting greater availability of carbohydrate and enhanced glucose utilization. This pattern of response seemed to occur without comparable inhibition of lipolysis. Triglycerides--like serum albumin--increased faster in the Casilan group. The highest mean triglyceride value was reached by day 8 in the Casilan group and by day 15 in the Vivonex group. Ten minutes following heparin injection triglycerides declined, FFA and glycerol increased indicating release of in vivo active lipase. LPL activity assayed in vitro was similar and unaffected by 2 weeks of dietary treatment in both groups. LPL activity was inversely correlated to triglycerides providing--beside the type of diet--another possible explanation for the wide variations seen in circulatory triglycerides. PMID:1274567

  13. An Investigation into the Antiobesity Effects of Morinda citrifolia L. Leaf Extract in High Fat Diet Induced Obese Rats Using a (1)H NMR Metabolomics Approach.

    PubMed

    Gooda Sahib Jambocus, Najla; Saari, Nazamid; Ismail, Amin; Khatib, Alfi; Mahomoodally, Mohamad Fawzi; Abdul Hamid, Azizah

    2016-01-01

    The prevalence of obesity is increasing worldwide, with high fat diet (HFD) as one of the main contributing factors. Obesity increases the predisposition to other diseases such as diabetes through various metabolic pathways. Limited availability of antiobesity drugs and the popularity of complementary medicine have encouraged research in finding phytochemical strategies to this multifaceted disease. HFD induced obese Sprague-Dawley rats were treated with an extract of Morinda citrifolia L. leaves (MLE 60). After 9 weeks of treatment, positive effects were observed on adiposity, fecal fat content, plasma lipids, and insulin and leptin levels. The inducement of obesity and treatment with MLE 60 on metabolic alterations were then further elucidated using a (1)H NMR based metabolomics approach. Discriminating metabolites involved were products of various metabolic pathways, including glucose metabolism and TCA cycle (lactate, 2-oxoglutarate, citrate, succinate, pyruvate, and acetate), amino acid metabolism (alanine, 2-hydroxybutyrate), choline metabolism (betaine), creatinine metabolism (creatinine), and gut microbiome metabolism (hippurate, phenylacetylglycine, dimethylamine, and trigonelline). Treatment with MLE 60 resulted in significant improvement in the metabolic perturbations caused obesity as demonstrated by the proximity of the treated group to the normal group in the OPLS-DA score plot and the change in trajectory movement of the diseased group towards the healthy group upon treatment.

  14. An Investigation into the Antiobesity Effects of Morinda citrifolia L. Leaf Extract in High Fat Diet Induced Obese Rats Using a 1H NMR Metabolomics Approach

    PubMed Central

    Gooda Sahib Jambocus, Najla; Saari, Nazamid; Ismail, Amin; Mahomoodally, Mohamad Fawzi; Abdul Hamid, Azizah

    2016-01-01

    The prevalence of obesity is increasing worldwide, with high fat diet (HFD) as one of the main contributing factors. Obesity increases the predisposition to other diseases such as diabetes through various metabolic pathways. Limited availability of antiobesity drugs and the popularity of complementary medicine have encouraged research in finding phytochemical strategies to this multifaceted disease. HFD induced obese Sprague-Dawley rats were treated with an extract of Morinda citrifolia L. leaves (MLE 60). After 9 weeks of treatment, positive effects were observed on adiposity, fecal fat content, plasma lipids, and insulin and leptin levels. The inducement of obesity and treatment with MLE 60 on metabolic alterations were then further elucidated using a 1H NMR based metabolomics approach. Discriminating metabolites involved were products of various metabolic pathways, including glucose metabolism and TCA cycle (lactate, 2-oxoglutarate, citrate, succinate, pyruvate, and acetate), amino acid metabolism (alanine, 2-hydroxybutyrate), choline metabolism (betaine), creatinine metabolism (creatinine), and gut microbiome metabolism (hippurate, phenylacetylglycine, dimethylamine, and trigonelline). Treatment with MLE 60 resulted in significant improvement in the metabolic perturbations caused obesity as demonstrated by the proximity of the treated group to the normal group in the OPLS-DA score plot and the change in trajectory movement of the diseased group towards the healthy group upon treatment. PMID:26798649

  15. An Investigation into the Antiobesity Effects of Morinda citrifolia L. Leaf Extract in High Fat Diet Induced Obese Rats Using a (1)H NMR Metabolomics Approach.

    PubMed

    Gooda Sahib Jambocus, Najla; Saari, Nazamid; Ismail, Amin; Khatib, Alfi; Mahomoodally, Mohamad Fawzi; Abdul Hamid, Azizah

    2016-01-01

    The prevalence of obesity is increasing worldwide, with high fat diet (HFD) as one of the main contributing factors. Obesity increases the predisposition to other diseases such as diabetes through various metabolic pathways. Limited availability of antiobesity drugs and the popularity of complementary medicine have encouraged research in finding phytochemical strategies to this multifaceted disease. HFD induced obese Sprague-Dawley rats were treated with an extract of Morinda citrifolia L. leaves (MLE 60). After 9 weeks of treatment, positive effects were observed on adiposity, fecal fat content, plasma lipids, and insulin and leptin levels. The inducement of obesity and treatment with MLE 60 on metabolic alterations were then further elucidated using a (1)H NMR based metabolomics approach. Discriminating metabolites involved were products of various metabolic pathways, including glucose metabolism and TCA cycle (lactate, 2-oxoglutarate, citrate, succinate, pyruvate, and acetate), amino acid metabolism (alanine, 2-hydroxybutyrate), choline metabolism (betaine), creatinine metabolism (creatinine), and gut microbiome metabolism (hippurate, phenylacetylglycine, dimethylamine, and trigonelline). Treatment with MLE 60 resulted in significant improvement in the metabolic perturbations caused obesity as demonstrated by the proximity of the treated group to the normal group in the OPLS-DA score plot and the change in trajectory movement of the diseased group towards the healthy group upon treatment. PMID:26798649

  16. 27Al-->1H cross-polarization in aluminosilicates.

    PubMed

    Kolodziejski, W; Corma, A

    1994-06-01

    Solid-state nuclear magnetic resonance (NMR) cross-polarization (CP) from 27Al to 1H was set on kaolinite, verified by a variable-contact time experiment and applied to ultrastable zeolite Y. The technique is useful for the selective NMR observation of AlOH sites in aluminosilicates, especially those from extraframework species in zeolites.

  17. Nuclear receptor NR1H3 in familial multiple sclerosis

    PubMed Central

    Wang, Zhe; Sadovnick, A. Dessa; Traboulsee, Anthony L.; Ross, Jay P.; Bernales, Cecily Q.; Encarnacion, Mary; Yee, Irene M.; de Lemos, Madonna; Greenwood, Talitha; Lee, Joshua D.; Wright, Galen; Ross, Colin J.; Zhang, Si; Song, Weihong; Vilariño-Güell, Carles

    2016-01-01

    SUMMARY Multiple sclerosis (MS) is an inflammatory disease characterized by myelin loss and neuronal dysfunction. Despite the aggregation observed in some families, pathogenic mutations have remained elusive. In this study we describe the identification of NR1H3 p.Arg415Gln in seven MS patients from two multi-incident families presenting severe and progressive disease, with an average age at onset of 34 years. Additionally, association analysis of common variants in NR1H3 identified rs2279238 conferring a 1.35-fold increased risk of developing progressive MS. The p.Arg415Gln position is highly conserved in orthologs and paralogs, and disrupts NR1H3 heterodimerization and transcriptional activation of target genes. Protein expression analysis revealed that mutant NR1H3 (LXRA) alters gene expression profiles, suggesting a disruption in transcriptional regulation as one of the mechanisms underlying MS pathogenesis. Our study indicates that pharmacological activation of LXRA or its targets may lead to effective treatments for the highly debilitating and currently untreatable progressive phase of MS. PMID:27253448

  18. Zinc dosing and glucose tolerance in humans

    SciTech Connect

    Greenley, S.; Taylor, M.

    1986-03-05

    Animal data suggest the existence of a physiologic relationship between glucoregulatory hormones and zinc metabolism. In order to investigate this proposed relationship in humans, they examined the effect of moderately elevated plasma zinc levels on blood glucose clearance. Eight women (24-37 yrs) served as subjects for the study. Fasted volunteers were tested under two experimental conditions (a) ingestion of 50 g D-glucose (b) ingestion of 25 mg zinc followed 60 min later by ingestion of 50 g D-glucose. Five ml venous blood was drawn into trace-metal-free, fluoride-containing vacutainer tubes prior to and 15, 30, 45, 60, 90, and 120 min after glucose ingestion. Plasma was analyzed for glucose and zinc; glycemic responses were quantified by computing areas under the curves and times to peak concentration. Their human data indicate varied glycemic responses to the acute elevation of plasma zinc: 4 subjects showed little apparent effect; 3 subjects marginally increased either the area under the curve or time to peak and 1 subject (classified as suspect diabetic in the non-zinc condition) showed marked improvement in glycemic response following zinc ingestion. Their preliminary results suggest that blood glucose clearance may be affected in some individuals by the acute elevation of plasma zinc.

  19. A validated LC-MS/MS method for the determination of canagliflozin, a sodium-glucose co-transporter 2 (SGLT-2) inhibitor, in a lower volume of rat plasma: application to pharmacokinetic studies in rats.

    PubMed

    Kobuchi, Shinji; Yano, Kyoka; Ito, Yukako; Sakaeda, Toshiyuki

    2016-10-01

    Canagliflozin is a novel, orally selective inhibitor of sodium-dependent glucose co-transporter-2 (SGLT2) for the treatment of patients with type 2 diabetes mellitus. In this study, a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantitative analysis of canagliflozin in a lower volume of rat plasma (0.1 mL) was established and applied to a pharmacokinetic study in rats. Following liquid-liquid extraction by tert-butyl methyl ether, chromatographic separation of canagliflozin was performed on a Quicksorb ODS (2.1 mm i.d. × 150 mm, 5 µm size) using acetonitrile-0.1% formic acid (90:10, v/v) as the mobile phase at a flow rate of 0.2 mL/min. The detection was carried out using an API 3200 triple-quadrupole mass spectrometer operating in the positive electrospray ionization mode. Selected ion monitoring transitions of m/z = 462.0 [M + NH4 ](+)  → 191.0 for canagliflozin and m/z = 451.2 [M + H](+)  → 71.0 for empagliflozin (internal standard) were obtained. The validation of the method was investigated, and it was found to be of sufficient specificity, accuracy and precision. Canagliflozin in rat plasma was stable under the analytical conditions used. This validated method was successfully applied to assess the pharmacokinetics of canagliflozin in rats using 0.1 mL rat plasma. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Insulin Control of Glucose Metabolism in Man

    PubMed Central

    Insel, Paul A.; Liljenquist, John E.; Tobin, Jordan D.; Sherwin, Robert S.; Watkins, Paul; Andres, Reubin; Berman, Mones

    1975-01-01

    Analyses of the control of glucose metabolism by insulin have been hampered by changes in bloog glucose concentration induced by insulin administration with resultant activation of hypoglycemic counterregulatory mechanisms. To eliminate such mechanisms, we have employed the glucose clamp technique which allows maintenance of fasting blood glucose concentration during and after the administration of insulin. Analyses of six studies performed in young healthy men in the postabsorptive state utilizing the concurrent administration of [14C]glucose and 1 mU/kg per min (40 mU/m2 per min) porcine insulin led to the development of kinetic models for insulin and for glucose. These models account quantitatively for the control of insulin on glucose utilization and on endogenous glucose production during nonsteady states. The glucose model, a parallel three-compartment model, has a central compartment (mass = 68±7 mg/kg; space of distribution = blood water volume) in rapid equilibrium with a smaller compartment (50±17 mg/kg) and in slow equilibrium with a larger compartment (96±21 mg/kg). The total plasma equivalent space for the glucose system averaged 15.8 liters or 20.3% body weight. Two modes of glucose loss are introduced in the model. One is a zero-order loss (insulin and glucose independent) from blood to the central nervous system; its magnitude was estimated from published data. The other is an insulin-dependent loss, occurring from the rapidly equilibrating compartment and, in the basal period, is smaller than the insulin-independent loss. Endogenous glucose production averaged 1.74 mg/kg per min in the basal state and enters the central compartment directly. During the glucose clamp experiments plasma insulin levels reached a plateau of 95±8 μU/ml. Over the entire range of insulin levels studied, glucose losses were best correlated with levels of insulin in a slowly equilibrating insulin compartment of a three-compartment insulin model. A proportional control

  1. Impact of Glucose Tolerance Status, Sex, and Body Size on Glucose Absorption Patterns During OGTTs

    PubMed Central

    Færch, Kristine; Pacini, Giovanni; Nolan, John J.; Hansen, Torben; Tura, Andrea; Vistisen, Dorte

    2013-01-01

    OBJECTIVE We studied whether patterns of glucose absorption during oral glucose tolerance tests (OGTTs) were abnormal in individuals with impaired glucose regulation and whether they were related to sex and body size (height and fat-free mass). We also examined how well differences in insulin sensitivity and β-cell function measured by gold-standard tests were reflected in the corresponding OGTT-derived estimates. RESEARCH DESIGN AND METHODS With validated methods, various aspects of glucose absorption were estimated from 12-point, 3-h, 75-g OGTTs in 66 individuals with normal glucose tolerance (NGT), isolated impaired fasting glucose (i-IFG), or isolated impaired glucose tolerance (i-IGT). Insulin sensitivity and β-cell function were measured with the euglycemic-hyperinsulinemic clamp and intravenous glucose tolerance tests, respectively. Surrogate markers of both conditions were calculated from OGTTs. RESULTS More rapid glucose absorption (P ≤ 0.036) and reduced late glucose absorption (P ≤ 0.039) were observed in the i-IFG group relative to NGT and i-IGT groups. Women with i-IGT had a lower early glucose absorption than did men with i-IGT (P = 0.041); however, this difference did not persist when differences in body size were taken into account (P > 0.28). Faster glucose absorption was related to higher fasting (P = 0.001) and lower 2-h (P = 0.001) glucose levels and to greater height and fat-free mass (P < 0.001). All OGTT-derived measures of insulin sensitivity, but only one of three measures of β-cell function, reflected the differences for these parameters between those with normal and impaired glucose regulation as measured by gold-standard tests. CONCLUSIONS Glucose absorption patterns during an OGTT are significantly related to plasma glucose levels and body size, which should be taken into account when estimating β-cell function from OGTTs in epidemiological studies. PMID:24062321

  2. Role for the pineal and melatonin in glucose homeostasis: pinealectomy increases night-time glucose concentrations.

    PubMed

    la Fleur, S E; Kalsbeek, A; Wortel, J; van der Vliet, J; Buijs, R M

    2001-12-01

    The effects of melatonin on glucose metabolism are far from understood. In rats, the biological clock generates a 24-h rhythm in plasma glucose concentrations, with declining concentrations in the dark period. We hypothesized that, in the rat, melatonin enhances the dark signal of the biological clock, decreasing glucose concentrations in the dark period. We measured 24-h rhythms of plasma concentrations of glucose and insulin in pinealectomized rats fed ad libitum and subjected to a scheduled feeding regimen with six meals equally distributed over the light/dark cycle and compared them with previous data of intact rats. Pinealectomy dampened the amplitude of the 24-h rhythm in plasma glucose concentrations in rats fed ad libitum, and abolished it completely in rats subjected to the scheduled feeding regimen, while plasma insulin concentrations did not change under both conditions. Pinealectomy abolished the nocturnal decline in plasma glucose concentrations irrespective of whether rats were fed ad libitum or subjected to the scheduled feeding regimen. Melatonin replacement restored 24-h mean plasma glucose concentrations in pinealectomized rats that were subjected to the scheduled feeding regimen but, interestingly, it did not restore the 24-h rhythm. Melatonin treatment also resulted in higher meal-induced insulin responses, probably mediated via an increased sensitivity of the beta-cells. Taken together, our data demonstrate that the pineal hormone, melatonin, influences both glucose metabolism and insulin secretion from the pancreatic beta-cell. The present study also demonstrates that removal of the pineal gland cannot be compensated by mimicking plasma melatonin concentrations only.

  3. Norbixin ingestion did not induce any detectable DNA breakage in liver and kidney but caused a considerable impairment in plasma glucose levels of rats and mice.

    PubMed

    Fernandes, Ana C.S.; Almeida, Carla A.; Albano, Franco; Laranja, Gustavo A.T.; Felzenszwalb, Israel; Lage, Celso L.S.; de Sa, Cristiano C.N.F.; Moura, Anibal S.; Kovary, Karla

    2002-07-01

    From the seeds of Bixa orellana are extracted the carotenoids bixin and norbixin that have been widely used for coloring food. In this study, the toxicity of norbixin, purified or not (annatto extract containing 50% norbixin), was investigated in mice and rats after 21 days of ingestion through drinking water. Mice were exposed to doses of 56 and 351 mg/kg (annatto extract) and 0.8, 7.6, 66 and 274 mg/kg (norbixin). Rats were exposed to doses of 0.8, 7.5 and 68 mg/kg (annatto extract) and 0.8, 8.5 and 74 mg/kg (norbixin). In rats, no toxicity was detected by plasma chemistry. In mice, norbixin induced an increase in plasma alanine aminotransferase activity (ALT) while both norbixin and annatto extract induced a decrease in plasma total protein and globulins (P < 0.05). However, no signs of toxicity were detected in liver by histopathological analysis. No enhancement in DNA breakage was detected in liver or kidney from mice treated with annatto pigments, as evaluated by the comet assay. Nevertheless, there was a remarkable effect of norbixin on the glycemia of both rodent species. In rats, norbixin induced hyperglycemia that ranged from 26.9% (8.5 mg/kg norbixin, to 52.6% (74 mg/kg norbixin, P < 0.01) above control levels. In mice, norbixin induced hypoglycemia that ranged from 14.4% (0.8 mg/kg norbixin, P < 0.05) to 21.5% (66 mg/kg norbixin, P < 0.001) below control levels. Rats and mice treated with annatto pigments showed hyperinsulinemia and hypoinsulinemia, respectively indicating that pancreatic beta-cells were functional. More studies should be performed to fully understand of how species-related differences influences the biological fate of norbixin. PMID:12121828

  4. Low Blood Glucose (Hypoglycemia)

    MedlinePlus

    ... Other Dental Problems Diabetic Eye Disease Low Blood Glucose (Hypoglycemia) What is hypoglycemia? Hypoglycemia, also called low ... actions can also help prevent hypoglycemia: Check blood glucose levels Knowing your blood glucose level can help ...

  5. Glucose test (image)

    MedlinePlus

    ... person with diabetes constantly manages their blood's sugar (glucose) levels. After a blood sample is taken and tested, it is determined whether the glucose levels are low or high. If glucose levels ...

  6. Rate and regulation of copper transport by human copper transporter 1 (hCTR1).

    PubMed

    Maryon, Edward B; Molloy, Shannon A; Ivy, Kristin; Yu, Huijun; Kaplan, Jack H

    2013-06-21

    Human copper transporter 1 (hCTR1) is a homotrimer of a 190-amino acid monomer having three transmembrane domains believed to form a pore for copper permeation through the plasma membrane. The hCTR1-mediated copper transport mechanism is not well understood, nor has any measurement been made of the rate at which copper ions are transported by hCTR1. In this study, we estimated the rate of copper transport by the hCTR1 trimer in cultured cells using (64)Cu uptake assays and quantification of plasma membrane hCTR1. For endogenous hCTR1, we estimated a turnover number of about 10 ions/trimer/s. When overexpressed in HEK293 cells, a second transmembrane domain mutant of hCTR1 (H139R) had a 3-fold higher Km value and a 4-fold higher turnover number than WT. Truncations of the intracellular C-terminal tail and an AAA substitution of the putative metal-binding HCH C-terminal tripeptide (thought to be required for transport) also exhibited elevated transport rates and Km values when compared with WT hCTR1. Unlike WT hCTR1, H139R and the C-terminal mutants did not undergo regulatory endocytosis in elevated copper. hCTR1 mutants combining methionine substitutions that block transport (M150L,M154L) on the extracellular side of the pore and the high transport H139R or AAA intracellular side mutations exhibited the blocked transport of M150L,M154L, confirming that Cu(+) first interacts with the methionines during permeation. Our results show that hCTR1 elements on the intracellular side of the hCTR1 pore, including the carboxyl tail, are not essential for permeation, but serve to regulate the rate of copper entry.

  7. Water ingestion does not improve 1-h cycling performance in moderate ambient temperatures.

    PubMed

    Robinson, T A; Hawley, J A; Palmer, G S; Wilson, G R; Gray, D A; Noakes, T D; Dennis, S C

    1995-01-01

    Eight endurance-trained cyclists rode as far as possible in 1 h on a stationary cycle simulator in a moderate environment (20 degrees C, 60% relative humidity, 3 m.s-1 wind speed) while randomly receiving either no fluid (NF) or attempting to replace their approximate 1.71 sweat loss measured in a previous 1-h familiarisation performance ride at approximately 85% of peak oxygen uptake with artificially sweetened, coloured water (F). During F, the cyclists drank mean 1.49 (SEM 0.14) 1 of which mean 0.27 (SEM 0.08) 1 remained in the stomach at the end of exercise and mean 0.20 (SEM 0.05) 1 was urinated after the trial. Thus, only mean 1.02 (SEM 0.12) 1 of the ingested fluid was available to replace sweat losses during the 1-h performance ride. That fluid decreased the mean average heart rate from 166 (SEM 3) to 157 (SEM 5) beats.min-1 (P < 0.0001) and reduced the final mean serum [Na+] and osmolalities from 143 (SEM 0.6) to 139 (SEM 0.6) matom.l-1 (P < 0.005) and from 294 (SEM 1.7) to 290 (SEM 1.9) mosmol.l-1 (P = 0.05), respectively. Fluid ingestion did not significantly attenuate rises in plasma anti-diuretic hormone and angiotensin concentrations, or decrease the approximate-15% falls in estimated plasma volume in the F and NF trials. Nor did fluid ingestion significantly affect the approximate 1.71.h-1 sweat rates, the rises in rectal temperature (from 36.6 degrees to 38.3 degrees C) or the ratings of perceived exertion in the two trials.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Quantitative produced water analysis using mobile 1H NMR

    NASA Astrophysics Data System (ADS)

    Wagner, Lisabeth; Kalli, Chris; Fridjonsson, Einar O.; May, Eric F.; Stanwix, Paul L.; Graham, Brendan F.; Carroll, Matthew R. J.; Johns, Michael L.

    2016-10-01

    Measurement of oil contamination of produced water is required in the oil and gas industry to the (ppm) level prior to discharge in order to meet typical environmental legislative requirements. Here we present the use of compact, mobile 1H nuclear magnetic resonance (NMR) spectroscopy, in combination with solid phase extraction (SPE), to meet this metrology need. The NMR hardware employed featured a sufficiently homogeneous magnetic field, such that chemical shift differences could be used to unambiguously differentiate, and hence quantitatively detect, the required oil and solvent NMR signals. A solvent system consisting of 1% v/v chloroform in tetrachloroethylene was deployed, this provided a comparable 1H NMR signal intensity for the oil and the solvent (chloroform) and hence an internal reference 1H signal from the chloroform resulting in the measurement being effectively self-calibrating. The measurement process was applied to water contaminated with hexane or crude oil over the range 1-30 ppm. The results were validated against known solubility limits as well as infrared analysis and gas chromatography.

  9. Plasma leptin, ghrelin and indexes of glucose and lipid metabolism in relation to the appearance of post-weaning oestrus in Mediterranean obese sows (Iberian pig).

    PubMed

    Torres-Rovira, L; Pallares, P; Vigo, E; Gonzalez-Añover, P; Sanchez-Sanchez, R; Mallo, F; Gonzalez-Bulnes, A

    2011-06-01

    Iberian pig is the most abundant Mediterranean swine. The lack of knowledge of the reproductive physiology of Mediterranean genotypes, with predisposition to obesity, led us to evaluate the influence of body condition and metabolic status at weaning on the resumption of follicular growth and the appearance of post-weaning oestrus. Females failing to display post-weaning oestrus showed a high decrease in backfat mass during lactation; backfat depth at weaning was therefore lower than in sows becoming in oestrus. Females not bearing oestrus behaviour showed lower plasma leptin levels and higher ghrelin concentrations at weaning. Moreover, these sows evidenced dyslipidemic profile (increased triglyceridemia and cholesterolemia) and mobilization of fat reserves. Hence, changes in metabolic regulation of Iberian pigs may originate large effects on the resumption of ovulatory activity after weaning.

  10. Intermittent hypoxia and diet-induced obesity: effects on oxidative status, sympathetic tone, plasma glucose and insulin levels, and arterial pressure.

    PubMed

    Olea, Elena; Agapito, Maria Teresa; Gallego-Martin, Teresa; Rocher, Asuncion; Gomez-Niño, Angela; Obeso, Ana; Gonzalez, Constancio; Yubero, Sara

    2014-10-01

    Obstructive sleep apnea (OSA) consists of sleep-related repetitive obstructions of upper airways that generate episodes of recurrent or intermittent hypoxia (IH). OSA commonly generates cardiovascular and metabolic pathologies defining the obstructive sleep apnea syndrome (OSAS). Literature usually links OSA-associated pathologies to IH episodes that would cause an oxidative status and a carotid body-mediated sympathetic hyperactivity. Because cardiovascular and metabolic pathologies in obese patients and those with OSAS are analogous, we used models (24-wk-old Wistar rats) of IH (applied from weeks 22 to 24) and diet-induced obesity (O; animals fed a high-fat diet from weeks 12 to 24) to define the effect of each individual maneuver and their combination on the oxidative status and sympathetic tone of animals, and to quantify cardiovascular and metabolic parameters and their deviation from normality. We found that IH and O cause an oxidative status (increased lipid peroxides and diminished activities of superoxide dismutases), an inflammatory status (augmented C-reactive protein and nuclear factor kappa-B activation), and sympathetic hyperactivity (augmented plasma and renal artery catecholamine levels and synthesis rate); combined treatments worsened those alterations. IH and O augmented liver lipid content and plasma cholesterol, triglycerides, leptin, glycemia, insulin levels, and HOMA index, and caused hypertension; most of these parameters were aggravated when IH and O were combined. IH diminished ventilatory response to hypoxia, and hypercapnia and O created a restrictive ventilatory pattern; a combination of treatments led to restrictive hypoventilation. Data demonstrate that IH and O cause comparable metabolic and cardiovascular pathologies via misregulation of the redox status and sympathetic hyperactivity. PMID:25103975

  11. General aspects of muscle glucose uptake.

    PubMed

    Alvim, Rafael O; Cheuhen, Marcel R; Machado, Silmara R; Sousa, André Gustavo P; Santos, Paulo C J L

    2015-03-01

    Glucose uptake in peripheral tissues is dependent on the translocation of GLUT4 glucose transporters to the plasma membrane. Studies have shown the existence of two major signaling pathways that lead to the translocation of GLUT4. The first, and widely investigated, is the insulin activated signaling pathway through insulin receptor substrate-1 and phosphatidylinositol 3-kinase. The second is the insulin-independent signaling pathway, which is activated by contractions. Individuals with type 2 diabetes mellitus have reduced insulin-stimulated glucose uptake in skeletal muscle due to the phenomenon of insulin resistance. However, those individuals have normal glucose uptake during exercise. In this context, physical exercise is one of the most important interventions that stimulates glucose uptake by insulin-independent pathways, and the main molecules involved are adenosine monophosphate-activated protein kinase, nitric oxide, bradykinin, AKT, reactive oxygen species and calcium. In this review, our main aims were to highlight the different glucose uptake pathways and to report the effects of physical exercise, diet and drugs on their functioning. Lastly, with the better understanding of these pathways, it would be possible to assess, exactly and molecularly, the importance of physical exercise and diet on glucose homeostasis. Furthermore, it would be possible to assess the action of drugs that might optimize glucose uptake and consequently be an important step in controlling the blood glucose levels in diabetic patients, in addition to being important to clarify some pathways that justify the development of drugs capable of mimicking the contraction pathway.

  12. Campath-1H + FK506 and Methylprednisolone for GVHD

    ClinicalTrials.gov

    2010-06-10

    Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Graft Versus Host Disease; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Diseases; Neuroblastoma; Ovarian Cancer; Testicular Germ Cell Tumor

  13. Diurnal Variation in Response to Intravenous Glucose*

    PubMed Central

    Whichelow, Margaret J.; Sturge, R. A.; Keen, H.; Jarrett, R. J.; Stimmler, L.; Grainger, Susan

    1974-01-01

    Intravenous glucose tolerance tests (25 g) were performed in the morning and afternoon on 13 apparently normal persons. The individual K values (rate of decline of blood sugar) were all higher in the morning tests, and the mean values were significantly higher in the morning. Fasting blood sugar levels were slightly lower in the afternoon. There was no difference between the fasting morning and afternoon plasma insulin levels, but the levels after glucose were lower in the afternoon. Growth hormone levels were low at all times in non-apprehensive subjects and unaffected by glucose. The results suggest that the impaired afternoon intravenous glucose tolerance, like oral glucose tolerance, is associated with impaired insulin release and insulin resistance. PMID:4817160

  14. Measurement of lactate formation from glucose using (6- sup 3 H)- and (6- sup 14 C)glucose in humans

    SciTech Connect

    Virkamaeki, A.P.; Puhakainen, I.; Nurjhan, N.; Gerich, J.E.; Yki-Jaervinen, H. )

    1990-09-01

    To assess the validity of determining the origin of plasma lactate from the ratio of lactate and glucose specific activities (SA) during infusion of labeled glucose, normal subjects received infusions of (6-3H)- and (6-14C)glucose for 4 h after a 12 h fast, and, on another day, cold glucose labeled with both tracers during 4-6 h of hyperinsulinemia (approximately 650 microU/ml). Basally, less lactate was derived from plasma glucose when measured with (6-3H)glucose (27 +/- 2%) than with (6-14C)glucose (40 +/- 2%, P less than 0.001). Insulin did not increase the percent of lactate derived from plasma glucose when measured with (6-3H)glucose (29 +/- 2%) but did increase when measured with (6-14C)glucose (60 +/- 4%). The arterialized blood (A) (3H)lactate SA was 30-40% higher (P less than 0.01) than deep venous blood (V) (3H)lactate SA, whereas A and V (14C)lactate SA were similar. During conversion of alanine to lactate with glutamic-pyruvic transaminase (GPT) and lactate dehydrogenase (LDH) in vitro, 32 +/- 2% of 3H in (3-3H)alanine was found in water and 68 +/- 2% in lactate. During infusion of (6-3H)- and (6-14C)glucose, the ratio of (14C)alanine to lactate SA (0.88 +/- 0.05) was less than the ratio of (3H)alanine to lactate SA (0.31 +/- 0.03, P less than 0.001). In conclusion (1) loss of 3H relative to 14C from position 6 in glucose occurs during lactate formation in extrahepatic tissues possibly due to the GPT reaction (alanine conversion to pyruvate), and (2) even under supraphysiologic hyperinsulinemic conditions not all of plasma lactate originates from plasma glucose.

  15. Proton-detected 3D 1H/13C/1H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-10-01

    A proton-detected 3D 1H/13C/1H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of 13C-1H connectivities, and proximities of 13C-1H and 1H-1H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including 1H-1H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) 1H/1H and 2D 13C/1H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of 1H-1H proximity and 13C-1H connectivity. In addition, the 2D (F1/F2) 1H/13C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of 1H-1H dipolar couplings, enables the measurement of proximities between 13C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of 1H-1H-13C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ṡ H2O ṡ HCl demonstrate the efficiency of the 3D experiment.

  16. Proton-detected 3D (1)H/(13)C/(1)H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz.

    PubMed

    Zhang, Rongchun; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-10-28

    A proton-detected 3D (1)H/(13)C/(1)H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of (13)C-(1)H connectivities, and proximities of (13)C-(1)H and (1)H-(1)H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including (1)H-(1)H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) (1)H/(1)H and 2D (13)C/(1)H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of (1)H-(1)H proximity and (13)C-(1)H connectivity. In addition, the 2D (F1/F2) (1)H/(13)C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of (1)H-(1)H dipolar couplings, enables the measurement of proximities between (13)C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of (1)H-(1)H-(13)C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H2O ⋅ HCl demonstrate the efficiency of the 3D experiment.

  17. Direct vs. indirect pathway of hepatic glycogen synthesis as a function of glucose infusion rate

    SciTech Connect

    Bagby, G.J.; Lang, C.H.; Johnson, J.L.; Blakesly, H.L.; Spitzer, J.J.

    1986-03-05

    This study was initiated to determine the influence of the rate of exogenous glucose administration on liver glycogen synthesis by the direct (glucose uptake and incorporation into glycogen) vs the indirect pathway (glucose degradation to 3-carbon intermediates, e.g., lactate, prior to incorporation into glycogen). Catheterized rats were fasted 2 days prior to receiving a 3 hr infusion of glucose at rates of 0 to 230 ..mu..mol/min/kg containing tracer (6-/sup 3/H)- and (U-/sup 14/C)-glucose. Plasma glucose (r = 0.80), insulin (r = 0.90) and lactate (r = 0.84) were correlated with glucose infusion rate. The rate of liver glycogen deposition (0.46 +/- 0.03 ..mu..mol/min/g) did not differ between a glucose infusion rate of 20 and 230 ..mu..mol/min/kg. At the lowest and highest glucose infusion rates hepatic glycogenesis accounted for 87 +/- 6 and 9 +/- 1% of the total glucose load, respectively. The percent contribution of the direct pathways to glycogen deposition ((/sup 3/H) specific activity in hepatic glycogen/(/sup 3/H) specific activity in plasma glucose) increased from 16 +/- 3 to 83 +/- 5% from lowest to highest glucose infusion rates (prevailing plasma glucose concentrations: 9 +/- 1 and 21 +/- 2 mM, respectively). The results indicate that the relative contribution of the direct and indirect pathways of glucogen synthesis are dependent upon the glucose load or plasma glucose concentration.

  18. Mechanism for underestimation of isotopically determined glucose disposal

    SciTech Connect

    Yki-Jaervinen, H.C.; Consoli, A.; Nurjhan, N.; Young, A.A.; Gerich, J.E.

    1989-06-01

    Use of (3H)glucose and a one-compartment model to determine glucose kinetics frequently underestimates the rate of glucose production (Ra). To assess to what extent an isotope effect, a tracer contaminant, or inadequacy of the model was responsible, we measured glucose Ra and forearm clearance of tracer and unlabeled glucose at various concentrations of plasma insulin (approximately 50, approximately 160, and approximately 1800 microU/ml) and plasma glucose (approximately 90, approximately 160, approximately 250, and approximately 400 mg/dl) under steady-state and non-steady-state conditions. Under isotopic steady-state conditions, the clearances of tracer and unlabeled glucose across the forearm were identical, and exogenous glucose infusion rates did not differ significantly from the isotopically determined glucose Ra (10.0 +/- 1.3 vs. 10.5 +/- 1.0 mg.kg-1 fat-free mass.min-1, respectively). However, under isotopic non-steady-state conditions, the isotopically determined Ra was significantly lower than the glucose infusion rate (11.5 +/- 1.3 vs. 13.7 +/- 1.5 mg.kg-1 fat-free mass.min-1, respectively, P less than .001), and the underestimation was related to the deviation from the isotopic steady state. When (3H)glucose specific activity of plasma samples from experiments with the greatest underestimation of Ra was determined by high-performance liquid chromatography, less than 7% of the underestimation could be accounted for by a contaminant. These results indicate that inadequacy of the one-compartment model is responsible for underestimation of glucose Ra under non-steady-state conditions and that there is no detectable isotopic effect or appreciable contaminant of (3-3H)glucose. We conclude that under isotopic steady-state conditions, (3-3H)glucose is a reliable tracer for glucose kinetic studies in humans.

  19. Blood Test: Glucose

    MedlinePlus

    ... Things to Know About Zika & Pregnancy Blood Test: Glucose KidsHealth > For Parents > Blood Test: Glucose Print A A A Text Size What's in ... de sangre: glucosa What It Is A blood glucose test measures the amount of glucose (the main ...

  20. CSF glucose test

    MedlinePlus

    Glucose test - CSF; Cerebrospinal fluid glucose test ... The glucose level in the CSF should be 50 to 80 mg/100 mL (or greater than 2/3 ... Abnormal results include higher and lower glucose levels. Abnormal ... or fungus) Inflammation of the central nervous system Tumor

  1. Detection of intracellular lactate with localized diffusion { 1H- 13C}-spectroscopy in rat glioma in vivo

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Josef; Lin, Joseph C.; DelaBarre, Lance; Ugurbil, Kamil; Garwood, Michael

    2005-11-01

    The aim of this study was to compare the diffusion characteristic of lactate and alanine in a brain tumor model to that of normal brain metabolites known to be mainly intracellular such as N-acetylaspartate or creatine. The diffusion of 13C-labeled metabolites was measured in vivo with localized NMR spectroscopy at 9.4 T (400 MHz) using a previously described localization and editing pulse sequence known as ACED-STEAM ('adiabatic carbon editing and decoupling'). 13C-labeled glucose was administered and the apparent diffusion coefficients of the glycolytic products, { 1H- 13C}-lactate and { 1H- 13C}-alanine, were determined in rat intracerebral 9L glioma. To obtain insights into { 1H- 13C}-lactate compartmentation (intra- versus extracellular), the pulse sequence used very large diffusion weighting (50 ms/μm 2). Multi-exponential diffusion attenuation of the lactate metabolite signals was observed. The persistence of a lactate signal at very large diffusion weighting provided direct experimental evidence of significant intracellular lactate concentration. To investigate the spatial distribution of lactate and other metabolites, 1H spectroscopic images were also acquired. Lactate and choline-containing compounds were consistently elevated in tumor tissue, but not in necrotic regions and surrounding normal-appearing brain. Overall, these findings suggest that lactate is mainly associated with tumor tissue and that within the time-frame of these experiments at least some of the glycolytic product ([ 13C] lactate) originates from an intracellular compartment.

  2. Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH.

    PubMed

    Bjursell, Mikael; Wedin, Marianne; Admyre, Therése; Hermansson, Majlis; Böttcher, Gerhard; Göransson, Melker; Lindén, Daniel; Bamberg, Krister; Oscarsson, Jan; Bohlooly-Y, Mohammad

    2013-01-01

    Nuclear receptor subfamily 1, group H, member 4 (Nr1h4, FXR) is a bile acid activated nuclear receptor mainly expressed in the liver, intestine, kidney and adrenal glands. Upon activation, the primary function is to suppress cholesterol 7 alpha-hydroxylase (Cyp7a1), the rate-limiting enzyme in the classic or neutral bile acid synthesis pathway. In the present study, a novel Fxr deficient mouse line was created and studied with respect to metabolism and liver function in ageing mice fed chow diet. The Fxr deficient mice were similar to wild type mice in terms of body weight, body composition, energy intake and expenditure as well as behaviours at a young age. However, from 15 weeks of age and onwards, the Fxr deficient mice had almost no body weight increase up to 39 weeks of age mainly because of lower body fat mass. The lower body weight gain was associated with increased energy expenditure that was not compensated by increased food intake. Fasting levels of glucose and insulin were lower and glucose tolerance was improved in old and lean Fxr deficient mice. However, the Fxr deficient mice displayed significantly increased liver weight, steatosis, hepatocyte ballooning degeneration and lobular inflammation together with elevated plasma levels of ALT, bilirubin and bile acids, findings compatible with non-alcoholic steatohepatitis (NASH) and cholestasis. In conclusion, ageing Fxr deficient mice display late onset leanness associated with elevated energy expenditure and improved glucose control but develop severe NASH-like liver pathology.

  3. Dynamic 1H NMR Studies of Schiff Base Derivatives

    NASA Astrophysics Data System (ADS)

    Köylü, M. Z.; Ekinci, A.; Böyükata, M.; Temel, H.

    2016-01-01

    The spin-lattice relaxation time T 1 and the spin-spin relaxation time T 2 of two Schiff base derivatives, N,N'-ethylenebis(salicylidene)-1,2-diaminoethane (H2L1) and N,N'-ethylenebis (salicylidene)-1,3-diaminopropane (H2L2), in DMSO-d6 solvent were studied as a function of temperature in the range of 20-50°C using a Bruker Avance 400.132 MHz 1H NMR spectrometer. Based on the activation energy ( E a) and correlation time (τc), we believe that the Schiff base derivatives perform a molecular tumbling motion.

  4. Higher plasma betatrophin/ANGPTL8 level in Type 2 Diabetes subjects does not correlate with blood glucose or insulin resistance

    PubMed Central

    Abu-Farha, Mohamed; Abubaker, Jehad; Al-Khairi, Irina; Cherian, Preethi; Noronha, Fiona; Hu, Frank B.; Behbehani, Kazem; Elkum, Naser

    2015-01-01

    Betatrophin/ANGPTL8 is a newly identified hormone produced in liver and adipose tissue that has been shown to be induced as a result of insulin resistance and regulates lipid metabolism. Little is known about betatrophin level in humans and its association with T2D and metabolic risk factors. Plasma level of betatrophin was measured by ELISA in 1603 subjects: 1047 non-diabetic and 556 T2D subjects and its associations with metabolic risk factors in both non-diabetic and T2D were also studied. Our data show a significant difference in betatrophin levels between non-diabetic (731.3 (59.5–10625.0) pg/ml) and T2D (1710.5 (197.4–12361.1) p < 0.001. Betatrophin was positively correlated with age, BMI, waist/hip ratio, FBG, HbA1C, HOMA-IR and TG in the non-diabetic subjects. However, no association was observed with BMI, FBG, HbA1C or HOMA-IR in T2D subjects. TC and LDL showed negative association with betatrophin in T2D subjects. Multivariate analysis showed that subjects in the highest tertile of betatrophin had higher odds of having T2D (odd ratio [OR] = 6.15, 95% confidence interval [CI] = (3.15 – 12.01). Our data show strong positive associations between betatrophin and FBG and insulin resistance in non-diabetic subjects. However, correlations with FBG and insulin resistance were diminished in T2D subjects. PMID:26077345

  5. Depletion of norepinephrine of the central nervous system Down-regulates the blood glucose level in d-glucose-fed and restraint stress models.

    PubMed

    Park, Soo-Hyun; Kim, Sung-Su; Lee, Jae-Ryeong; Sharma, Naveen; Suh, Hong-Won

    2016-05-01

    DSP-4[N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride] is a neurotoxin that depletes norepinephrine. The catecholaminergic system has been implicated in the regulation of blood glucose level. In the present study, the effect of DSP-4 administered intracerebroventricularly (i.c.v.) or intrathecally (i.t.) on blood glucose level was examined in d-glucose-fed and restraint stress mice models. Mice were pretreated once i.c.v. or i.t. with DSP-4 (10-40μg) for 3days, and d-glucose (2g/kg) was fed orally. Blood glucose level was measured 0 (prior to glucose feeding or restraint stress), 30, 60, and 120min after d-glucose feeding or restraint stress. The i.c.v. or i.t. pretreatment with DSP-4 attenuated blood glucose level in the d-glucose-fed model. Plasma corticosterone level was downregulated in the d-glucose-fed model, whereas plasma insulin level increased in the d-glucose-fed group. The i.c.v. or i.t. pretreatment with DSP-4 reversed the downregulation of plasma corticosterone induced by feeding d-glucose. In addition, the d-glucose-induced increase in plasma insulin was attenuated by the DSP-4 pretreatment. Furthermore, i.c.v. or i.t. pretreatment with DSP-4 reduced restraint stress-induced increases in blood glucose levels. Restraint stress increased plasma corticosterone and insulin levels. The i.c.v. pretreatment with DSP-4 attenuated restraint stress-induced plasma corticosterone and insulin levels. Our results suggest that depleting norepinephrine at the supraspinal and spinal levels appears to be responsible for downregulating blood glucose levels in both d-glucose-fed and restraint stress models.

  6. Sleep restriction acutely impairs glucose tolerance in rats.

    PubMed

    Jha, Pawan K; Foppen, Ewout; Kalsbeek, Andries; Challet, Etienne

    2016-06-01

    Chronic sleep curtailment in humans has been related to impairment of glucose metabolism. To better understand the underlying mechanisms, the purpose of the present study was to investigate the effect of acute sleep deprivation on glucose tolerance in rats. A group of rats was challenged by 4-h sleep deprivation in the early rest period, leading to prolonged (16 h) wakefulness. Another group of rats was allowed to sleep during the first 4 h of the light period and sleep deprived in the next 4 h. During treatment, food was withdrawn to avoid a postmeal rise in plasma glucose. An intravenous glucose tolerance test (IVGTT) was performed immediately after the sleep deprivation period. Sleep deprivation at both times of the day similarly impaired glucose tolerance and reduced the early-phase insulin responses to a glucose challenge. Basal concentrations of plasma glucose, insulin, and corticosterone remained unchanged after sleep deprivation. Throughout IVGTTs, plasma corticosterone concentrations were not different between the control and sleep-deprived group. Together, these results demonstrate that independent of time of day and sleep pressure, short sleep deprivation during the resting phase favors glucose intolerance in rats by attenuating the first-phase insulin response to a glucose load. In conclusion, this study highlights the acute adverse effects of only a short sleep restriction on glucose homeostasis. PMID:27354542

  7. Atorvastatin delays the glucose clearance rate in hypercholesterolemic rabbits.

    PubMed

    Cheng, Daxin; Wang, Yanli; Gao, Shoucui; Wang, Xiaojing; Sun, Wentao; Bai, Liang; Cheng, Gong; Chu, Yonglie; Zhao, Sihai; Liu, Enqi

    2015-05-01

    The administration of statin might increase the risk of new-onset diabetes in hypercholesterolemic patients based on the recent clinical evidence. However, the causal relationship must be clarified and confirmed in animal experiments. Therefore, we mimicked hypercholesterolemia by feeding rabbits a high-cholesterol diet (HCD) and performed 16 weeks of atorvastatin administration to investigate the effect of statin on glucose metabolism. The intravenous glucose tolerance test showed that plasma glucose levels in the statin-treated rabbits were consistently higher and that there was a slower rate of glucose clearance from the blood than in HCD rabbits. The incremental area under the curve for glucose in the statin-treated rabbits was also significantly larger than in the HCD rabbits. However, there was no significant difference between the two groups in the intravenous insulin tolerance test. The glucose-lowering ability of exogenous insulin was not impaired by statin treatment in hypercholesterolemic rabbits. The administration of a single dose of statin did not affect glucose metabolism in normal rabbits. The statin also significantly increased the levels of high-density lipoprotein cholesterol, alanine aminotransferase and aspartate transaminase and decreased plasma levels of total cholesterol, triglycerides and low-density lipoprotein cholesterol in the hypercholesterolemic rabbits, whereas it did not affect plasma levels of glucose and insulin. The current results showed that atorvastatin treatment resulted in a significant delay of glucose clearance in hypercholesterolemic rabbits, and this rabbit model could be suitable for studying the effects of statin on glucose metabolism.

  8. The 1H NMR Profile of Healthy Dog Cerebrospinal Fluid

    PubMed Central

    Musteata, Mihai; Nicolescu, Alina; Solcan, Gheorghe; Deleanu, Calin

    2013-01-01

    The availability of data for reference values in cerebrospinal fluid for healthy humans is limited due to obvious practical and ethical issues. The variability of reported values for metabolites in human cerebrospinal fluid is quite large. Dogs present great similarities with humans, including in cases of central nervous system pathologies. The paper presents the first study on healthy dog cerebrospinal fluid metabolomic profile using 1H NMR spectroscopy. A number of 13 metabolites have been identified and quantified from cerebrospinal fluid collected from a group of 10 mix breed healthy dogs. The biological variability as resulting from the relative standard deviation of the physiological concentrations of the identified metabolites had a mean of 18.20% (range between 9.3% and 44.8%). The reported concentrations for metabolites may be used as normal reference values. The homogeneity of the obtained results and the low biologic variability show that the 1H NMR analysis of the dog’s cerebrospinal fluid is reliable in designing and interpreting clinical and therapeutic trials in dogs with central nervous system pathologies. PMID:24376499

  9. 23Na and 1H NMR Microimaging of Intact Plants

    NASA Astrophysics Data System (ADS)

    Olt, Silvia; Krötz, Eva; Komor, Ewald; Rokitta, Markus; Haase, Axel

    2000-06-01

    23Na NMR microimaging is described to map, for the first time, the sodium distribution in living plants. As an example, the response of 6-day-old seedlings of Ricinus communis to exposure to sodium chloride concentrations from 5 to 300 mM was observed in vivo using 23Na as well as 1H NMR microimaging. Experiments were performed at 11.75 T with a double resonant 23Na-1H probehead. The probehead was homebuilt and equipped with a climate chamber. T1 and T2 of 23Na were measured in the cross section of the hypocotyl. Within 85 min 23Na images with an in-plane resolution of 156 × 156 μm were acquired. With this spatial information, the different types of tissue in the hypocotyl can be discerned. The measurement time appears to be short compared to the time scale of sodium uptake and accumulation in the plant so that the kinetics of salt stress can be followed. In conclusion, 23Na NMR microimaging promises great potential for physiological studies of the consequences of salt stress on the macroscopic level and thus may become a unique tool for characterizing plants with respect to salt tolerance and salt sensitivity.

  10. Dynamics-based selective 2D 1H/1H chemical shift correlation spectroscopy under ultrafast MAS conditions

    PubMed Central

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-01-01

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of 1H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of 1H/1H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials. PMID:26026440

  11. Lack of predictive power of plasma lipids or lipoproteins for gestational diabetes mellitus in Japanese women

    PubMed Central

    Iimura, Yuko; Matsuura, Masaaki; Yao, Zemin; Ito, Satoru; Fujiwara, Mutsunori; Yoshitsugu, Michiyasu; Miyauchi, Akito; Hiyoshi, Toru

    2015-01-01

    Aims/Introduction To determine the diagnostic potential of plasma lipids and apolipoproteins in gestational diabetes mellitus (GDM), we carried out a retrospective cohort study of 1,161 Japanese women at 20–28 weeks of gestation who underwent a glucose challenge test (GCT). Materials and Methods A total of 1,161 Japanese women at 20–28 weeks of gestation underwent a GCT. Participants with a positive test (GCT[+]) underwent a subsequent oral glucose tolerance test. Clinical and biochemical parameters were determined and quantification of apolipoproteins (Apo), including ApoB, ApoB48, ApoA-I and ApoC-III, was carried out. Results The prevalence of GCT(+; with a 130 mg/dL glucose cut-off) and GDM was 20% and 4%, respectively. There was a trend for increased triglycerides and ApoC-III in GDM(+) participants. However, the difference in plasma triglycerides, ApoC-III or ApoB48 did not reach statistical significance between GDM(+) and GDM(−) women. Values of 1-h glucose (P < 0.001) and fasting glucose (P = 0.002) were significant risk factors for GDM. Conclusions Prediction of GDM using only the ApoC-III value is not easy, although triglycerides and ApoC-III were higher in the GDM(+) group. The present findings show no significant difference in plasma lipid levels between women diagnosed with GDM and those with normal glucose tolerance. PMID:26543537

  12. Crystal structure of 1H,1'H-[2,2'-biimid-azol]-3-ium hydrogen tartrate hemi-hydrate.

    PubMed

    Gao, Xiao-Li; Bian, Li-Fang; Guo, Shao-Wei

    2014-11-01

    In the crystal of the title hydrated salt, C6H7N4 (+)·C4H5O6 (-)·0.5H2O, the bi-imidazole monocation, 1H,1'H-[2,2'-biimidazol]-3-ium, is hydrogen bonded, via N-H⋯O, O-H⋯O and O-H⋯N hydrogen bonds, to the hydrogen tartrate anion and the water mol-ecule, which is located on a twofold rotation axis, forming sheets parallel to (001). The sheets are linked via C-H⋯O hydrogen bonds, forming a three-dimensional structure. There are also C=O⋯π inter-actions present [O⋯π distances are 3.00 (9) and 3.21 (7) Å], involving the carbonyl O atoms and the imidazolium ring, which may help to consolidate the structure. In the cation, the dihedral angle between the rings is 11.6 (2)°.

  13. In vivo 1H chemical shift imaging of silicone implants.

    PubMed

    Pfleiderer, B; Ackerman, J L; Garrido, L

    1993-05-01

    In order to study the aging process (i.e., silicone migration, fat infiltration) of silicone (polydimethylsiloxane, PDMS) based biomaterials in living subjects by NMR imaging, a hybrid 1H selective excitation and saturation chemical shift imaging technique (IR/CHESS-CSSE) has been developed. This sequence allows selective mapping of the distribution of silicone protons in vivo, while suppressing the contributions of fat and water. Our results indicate that a combined inversion recovery and CHESS pulse, followed by a spoiler gradient, must be applied to suppress all contributions of fat protons to the NMR signal. The sensitivity of our experiments allows the detection of a chemically unchanged silicone concentration of 5% in a voxel of 0.9 mm3 at a signal/noise ratio of 2.

  14. One dimensional 1H, 2H and 3H

    NASA Astrophysics Data System (ADS)

    Vidal, A. J.; Astrakharchik, G. E.; Vranješ Markić, L.; Boronat, J.

    2016-05-01

    The ground-state properties of one-dimensional electron-spin-polarized hydrogen 1H, deuterium 2H, and tritium 3H are obtained by means of quantum Monte Carlo methods. The equations of state of the three isotopes are calculated for a wide range of linear densities. The pair correlation function and the static structure factor are obtained and interpreted within the framework of the Luttinger liquid theory. We report the density dependence of the Luttinger parameter and use it to identify different physical regimes: Bogoliubov Bose gas, super-Tonks-Girardeau gas, and quasi-crystal regimes for bosons; repulsive, attractive Fermi gas, and quasi-crystal regimes for fermions. We find that the tritium isotope is the one with the richest behavior. Our results show unambiguously the relevant role of the isotope mass in the properties of this quantum system.

  15. Determination of relative orientation between (1)H CSA tensors from a 3D solid-state NMR experiment mediated through (1)H/(1)H RFDR mixing under ultrafast MAS.

    PubMed

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-09-01

    To obtain piercing insights into inter and intramolecular H-bonding, and π-electron interactions measurement of (1)H chemical shift anisotropy (CSA) tensors is gradually becoming an obvious choice. While the magnitude of CSA tensors provides unique information about the local electronic environment surrounding the nucleus, the relative orientation between these tensors can offer further insights into the spatial arrangement of interacting nuclei in their respective three-dimensional (3D) space. In this regard, we present a 3D anisotropic/anisotropic/isotropic proton chemical shift (CSA/CSA/CS) correlation experiment mediated through (1)H/(1)H radio frequency-driven recoupling (RFDR) which enhances spin diffusion through recoupled (1)H-(1)H dipolar couplings under ultrafast magic angle spinning (MAS) frequency (70kHz). Relative orientation between two interacting 1H CSA tensors is obtained by fitting two-interacting (1)H CSA tensors by fitting two-dimensional (2D) (1)H/(1)H CSA/CSA spectral slices through extensive numerical simulations. To recouple (1)H CSAs in the indirect frequency dimensions of a 3D experiment we have employed γ-encoded radio frequency (RF) pulse sequence based on R-symmetry (R188(7)) with a series of phase-alternated 2700(°)-90180(°) composite-180° pulses on citric acid sample. Due to robustness of applied (1)H CSA recoupling sequence towards the presence of RF field inhomogeneity, we have successfully achieved an excellent (1)H/(1)H CSA/CSA cross-correlation efficiency between H-bonded sites of citric acid. PMID:26065628

  16. Studies of Secondary Melanoma on C57BL/6J Mouse Liver Using 1H NMR Metabolomics

    SciTech Connect

    Feng, Ju; Isern, Nancy G.; Burton, Sarah D.; Hu, Jian Z.

    2013-10-31

    NMR metabolomics, consisting of solid state high resolution (hr) magic angle spinning (MAS) 1H NMR (1H hr-MAS), liquid state high resolution 1H-NMR, and principal components analysis (PCA) has been used to study secondary metastatic B16-F10 melanoma in C57BL/6J mouse liver . The melanoma group can be differentiated from its control group by PCA analysis of the absolute concentrations or by the absolute peak intensities of metabolites from either 1H hr-MAS NMR data on intact liver tissues or liquid state 1H-NMR spectra on liver tissue extracts. In particular, we found that the absolute concentrations of alanine, glutamate, creatine, creatinine, fumarate and cholesterol are elevated in the melanoma group as compared to controls, while the absolute concentrations of succinate, glycine, glucose, and the family of linear lipids including long chain fatty acids, total choline and acylglycerol are decreased. The ratio of glycerophosphocholine to phosphocholine is increased by about 1.5 fold in the melanoma group, while the absolute concentration of total choline is actually lower in melanoma mice. These results suggest the following picture in secondary melanoma metastasis: Linear lipid levels are decreased by beta oxidation in the melanoma group, which contributes to an increase in the synthesis of cholesterol, and also provides an energy source input for TCA cycle. These findings suggest a link between lipid oxidation, the TCA cycle and the hypoxia-inducible factors (HIF) signal pathway in tumor metastases. Thus this study indicates that the metabolic profile derived from NMR analysis can provide a valuable bio-signature of malignancy and cell hypoxia in metastatic melanoma.

  17. Glucose, memory, and aging.

    PubMed

    Korol, D L; Gold, P E

    1998-04-01

    Circulating glucose concentrations regulate many brain functions, including learning and memory. Much of the evidence for this view comes from experiments assessing stress-related release of epinephrine with subsequent increases in blood glucose concentrations. One application of this work has been to investigate whether age-related memory impairments result from dysfunctions in the neuroendocrine regulation of the brain processes responsible for memory. Like humans, aged rodents exhibit some memory impairments that can be reversed by administration of epinephrine or glucose. In elderly humans, ingestion of glucose enhances some cognitive functions, with effects best documented thus far on tests of verbal contextual and noncontextual information. Glucose also effectively enhances cognition in persons with Alzheimer disease or Down syndrome. Although earlier evidence suggested that glucose does not enhance cognitive function in healthy young adults, more recent findings suggest that glucose is effective in this population, provided the tests are sufficiently difficult. In college students, glucose consumption significantly enhanced memory of material in a paragraph. Glucose also appeared to enhance attentional processes in these students. Neither face and word recognition nor working memory was influenced by treatment with glucose. The neurobiological mechanisms by which glucose acts are under current investigation. Initial evidence suggests that glucose or a metabolite may activate release of the neurotransmitter acetylcholine in rats when they are engaged in learning. Consequently, the issue of nutrition and cognition becomes increasingly important in light of evidence that circulating glucose concentrations have substantial effects on brain and cognitive functions.

  18. (1)H NMR based metabolomic profiling revealed doxorubicin-induced systematic alterations in a rat model.

    PubMed

    Niu, Qian-Yun; Li, Zhen-Yu; Du, Guan-Hua; Qin, Xue-Mei

    2016-01-25

    Doxorubicin (DOX) is used as a chemotherapy drug with severe carditoxicity. In this study, an integrated echocardiography along with pathological examination and (1)H NMR analysis of multiple biological matrices (urine, serum, heart, and kidney) was employed to systemically assess the toxicity of DOX. Echocardiographic results showed that impaired left ventricular contractility and degenerative pathology lesions in DOX group, which were in consistent with pathology. The endogenous metabolites in the urine, serum, heart and kidney was identified by comparison with the data from the literature and databases. Multivariate analysis, including PCA and OPLS, revealed 8 metabolites in urine, including succinate, 2-ketoglutarate, citrate, hippurate, methylamine, benzoate, allantion, and acetate were the potential changed biomarkers. In serum, perturbed metabolites include elevation of leucine, β-glucose, O-acetyl-glycoprotein, creatine, lysine, glycerin, dimethylglycine, trimethylamine-N-oxide, myo-inositol, and N-acetyl-glycoprotein, together with level decreases of acetone, lipid, lactate, glutamate, phosphocholine, acetoacetate and pyruvate. For heart, DOX exposure caused decline of lipid, lactate, leucine, alanine, glutamate, choline, xanthine, glycerin, carnitine, and fumarate, together with elevation of glutamine, creatine, inosine, taurine and malate. Metabolic changes of kidney were mainly involved in the accumulation of α-glucose, lactate, phosphocholine, betaine, threonine, choline, taurine, glycine, urea, hypoxanthine, glutamate, and nicotinamide, coupled with reduction of asparagine, valine, methionine, tyrosine, lysine, alanine, leucine, ornithine, creatine, lipid, and acetate. In addition, alterations of urinary metabolites exhibited a time-dependent manner. Complementary evidences by multiple matrices revealed disturbed pathways concerning energy metabolism, fatty acids oxidation, amino acids and purine metabolism, choline metabolism, and gut microbiota

  19. 1H nuclear magnetic resonance-based extracellular metabolomic analysis of multidrug resistant Tca8113 oral squamous carcinoma cells

    PubMed Central

    WANG, HUI; CHEN, JIAO; FENG, YUN; ZHOU, WENJIE; ZHANG, JIHUA; YU, YU; WANG, XIAOQIAN; ZHANG, PING

    2015-01-01

    A major obstacle of successful chemotherapy is the development of multidrug resistance (MDR) in the cancer cells, which is difficult to reverse. Metabolomic analysis, an emerging approach that has been increasingly applied in various fields, is able to reflect the unique chemical fingerprints of specific cellular processes in an organism. The assessment of such metabolite changes can be used to identify novel therapeutic biomarkers. In the present study, 1H nuclear magnetic resonance (NMR) spectroscopy was used to analyze the extracellular metabolomic spectrum of the Tca8113 oral squamous carcinoma cell line, in which MDR was induced using the carboplatin (CBP) and pingyangmycin (PYM) chemotherapy drugs in vitro. The data were analyzed using the principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) methods. The results demonstrated that the extracellular metabolomic spectrum of metabolites such as glutamate, glycerophosphoethanol amine, α-Glucose and β-Glucose for the drug-induced Tca8113 cells was significantly different from the parental Tca8113 cell line. A number of biochemicals were also significantly different between the groups based on their NMR spectra, with drug-resistant cells presenting relatively higher levels of acetate and lower levels of lactate. In addition, a significantly higher peak was observed at δ 3.35 ppm in the spectrum of the PYM-induced Tca8113 cells. Therefore, 1H NMR-based metabolomic analysis has a high potential for monitoring the formation of MDR during clinical tumor chemotherapy in the future. PMID:26137105

  20. Determination of metabolites by 1H NMR and GC: analysis for organic osmolytes in crude tissue extracts.

    PubMed

    Fan, T W; Colmer, T D; Lane, A N; Higashi, R M

    1993-10-01

    World-wide salinity and drought problems necessitate the understanding of biological adaptation to water deficit. Osmotic adjustment via organic solutes is a common strategy for organisms to deal with water deficit problems. Numerous water-soluble organic metabolites across several chemical classes are commonly utilized as osmolytes, including betaines, sulfonium and sulfonate compounds, amino acids, carbohydrates, and polyols. To deal with the complexity and variability in osmolyte composition, we have devised an analytical approach that combines high-resolution 1H NMR and GLC to provide both structure identification and quantification of a broad spectrum of compounds. This combined approach also facilitated direct analyses of crude tissue extracts without extensive sample preparation, making it well-suited for a convenient screening of potential osmolytes. The structures of known osmolytes were confirmed from two-dimensional total correlation 1H NMR spectra, which also yielded structural information about unknown compounds. Five each terrestrial plant and marine animal species were examined for 41 metabolites, including osmolyte candidates glycinebetaine, dimethylsulfoniopropionate, taurine, proline, glycine, asparagine, alanine, glutamine, glucose, and sucrose. The osmotic function of glycinebetaine, proline, asparagine, glutamine, glucose, and sucrose was also demonstrated in leaves of Distichlis spicata under different salinity treatments.

  1. Direct determination of phosphate sugars in biological material by (1)H high-resolution magic-angle-spinning NMR spectroscopy.

    PubMed

    Diserens, Gaëlle; Vermathen, Martina; Gjuroski, Ilche; Eggimann, Sandra; Precht, Christina; Boesch, Chris; Vermathen, Peter

    2016-08-01

    The study aim was to unambiguously assign nucleotide sugars, mainly UDP-X that are known to be important in glycosylation processes as sugar donors, and glucose-phosphates that are important intermediate metabolites for storage and transfer of energy directly in spectra of intact cells, as well as in skeletal muscle biopsies by (1)H high-resolution magic-angle-spinning (HR-MAS) NMR. The results demonstrate that sugar phosphates can be determined quickly and non-destructively in cells and biopsies by HR-MAS, which may prove valuable considering the importance of phosphate sugars in cell metabolism for nucleic acid synthesis. As proof of principle, an example of phosphate-sugar reaction and degradation kinetics after unfreezing the sample is shown for a cardiac muscle, suggesting the possibility to follow by HR-MAS NMR some metabolic pathways. Graphical abstract Glucose-phosphate sugars (Glc-1P and Glc-6P) detected in muscle by 1H HR-MAS NMR.

  2. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  3. Your Glucose Meter

    MedlinePlus

    ... by Audience For Women Women's Health Topics Your Glucose Meter Share Tweet Linkedin Pin it More sharing ... Español Basic Facts 7 Tips for Testing Your Blood Sugar and Caring for Your Meter Glucose meters test ...

  4. Glucose-lowering effects of intestinal bile acid sequestration through enhancement of splanchnic glucose utilization.

    PubMed

    Prawitt, Janne; Caron, Sandrine; Staels, Bart

    2014-05-01

    Intestinal bile acid (BA) sequestration efficiently lowers plasma glucose concentrations in type 2 diabetes (T2D) patients. Because BAs act as signaling molecules via receptors, including the G protein-coupled receptor TGR5 and the nuclear receptor FXR (farnesoid X receptor), to regulate glucose homeostasis, BA sequestration, which interrupts the entero-hepatic circulation of BAs, constitutes a plausible action mechanism of BA sequestrants. An increase of intestinal L-cell glucagon-like peptide-1 (GLP-1) secretion upon TGR5 activation is the most commonly proposed mechanism, but recent studies also argue for a direct entero-hepatic action to enhance glucose utilization. We discuss here recent findings on the mechanisms of sequestrant-mediated glucose lowering via an increase of splanchnic glucose utilization through entero-hepatic FXR signaling.

  5. Identification of glucose transporters in Aspergillus nidulans.

    PubMed

    Dos Reis, Thaila Fernanda; Menino, João Filipe; Bom, Vinícius Leite Pedro; Brown, Neil Andrew; Colabardini, Ana Cristina; Savoldi, Marcela; Goldman, Maria Helena S; Rodrigues, Fernando; Goldman, Gustavo Henrique

    2013-01-01

    To characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and -E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose. PMID:24282591

  6. Abomasal amino acid infusion in postpartum dairy cows: Effect on whole-body, splanchnic, and mammary glucose metabolism.

    PubMed

    Galindo, C; Larsen, M; Ouellet, D R; Maxin, G; Pellerin, D; Lapierre, H

    2015-11-01

    Nine Holstein cows fitted with rumen cannulas and indwelling catheters in splanchnic blood vessels were used to study the effects of supplementing AA on milk lactose secretion, whole-body rate of appearance (WB-Ra) of glucose, and tissue metabolism of glucose, lactate, glycerol, and β-OH-butyrate (BHBA) in postpartum dairy cows according to a generalized randomized incomplete block design with repeated measures in time. At calving, cows were blocked according to parity (second and third or greater) and were allocated to 2 treatments: abomasal infusion of water (n=4) or abomasal infusion of free AA with casein profile (AA-CN; n=5) in addition to the same basal diet. The AA-CN infusion started with half the maximal dose at 1 d in milk (DIM) and then steadily decreased from 791 to 226 g/d from DIM 2 to 29 to cover the estimated essential AA deficit. On DIM 5, 15, and 29, D[6,6-(2)H2]-glucose (23.7 mmol/h) was infused into a jugular vein for 5h, and 6 blood samples were taken from arterial, portal, hepatic, and mammary sources at 45-min intervals, starting 1h after the initiation of the D[6,6-(2)H2]glucose infusion. Trans-organ fluxes were calculated as veno-arterial differences times plasma flow (splanchnic: downstream dilution of deacetylated para-aminohippurate; mammary: Fick principle using Phe+Tyr). Energy-corrected milk and lactose yields increased on average with AA-CN by 6.4 kg/d and 353 g/d, respectively, with no DIM × treatment interaction. Despite increased AA supply and increased demand for lactose secretion with AA-CN, net hepatic release of glucose remained unchanged, but WB-Ra of glucose tended to increase with AA-CN. Portal true flux of glucose increased with AA-CN and represented, on average, 17% of WB-Ra. Splanchnic true flux of glucose was unaltered by treatments and was numerically equivalent to WB-Ra, averaging 729 and 741 mmol/h, respectively. Mammary glucose utilization increased with AA-CN infusion, averaging 78% of WB-Ra, and increased

  7. Abomasal amino acid infusion in postpartum dairy cows: Effect on whole-body, splanchnic, and mammary glucose metabolism.

    PubMed

    Galindo, C; Larsen, M; Ouellet, D R; Maxin, G; Pellerin, D; Lapierre, H

    2015-11-01

    Nine Holstein cows fitted with rumen cannulas and indwelling catheters in splanchnic blood vessels were used to study the effects of supplementing AA on milk lactose secretion, whole-body rate of appearance (WB-Ra) of glucose, and tissue metabolism of glucose, lactate, glycerol, and β-OH-butyrate (BHBA) in postpartum dairy cows according to a generalized randomized incomplete block design with repeated measures in time. At calving, cows were blocked according to parity (second and third or greater) and were allocated to 2 treatments: abomasal infusion of water (n=4) or abomasal infusion of free AA with casein profile (AA-CN; n=5) in addition to the same basal diet. The AA-CN infusion started with half the maximal dose at 1 d in milk (DIM) and then steadily decreased from 791 to 226 g/d from DIM 2 to 29 to cover the estimated essential AA deficit. On DIM 5, 15, and 29, D[6,6-(2)H2]-glucose (23.7 mmol/h) was infused into a jugular vein for 5h, and 6 blood samples were taken from arterial, portal, hepatic, and mammary sources at 45-min intervals, starting 1h after the initiation of the D[6,6-(2)H2]glucose infusion. Trans-organ fluxes were calculated as veno-arterial differences times plasma flow (splanchnic: downstream dilution of deacetylated para-aminohippurate; mammary: Fick principle using Phe+Tyr). Energy-corrected milk and lactose yields increased on average with AA-CN by 6.4 kg/d and 353 g/d, respectively, with no DIM × treatment interaction. Despite increased AA supply and increased demand for lactose secretion with AA-CN, net hepatic release of glucose remained unchanged, but WB-Ra of glucose tended to increase with AA-CN. Portal true flux of glucose increased with AA-CN and represented, on average, 17% of WB-Ra. Splanchnic true flux of glucose was unaltered by treatments and was numerically equivalent to WB-Ra, averaging 729 and 741 mmol/h, respectively. Mammary glucose utilization increased with AA-CN infusion, averaging 78% of WB-Ra, and increased

  8. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, Kenneth N.; Xu, Jide

    1997-01-01

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of said chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to said 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities.

  9. Preliminary 1H NMR study on archaeological waterlogged wood.

    PubMed

    Maccotta, Antonella; Fantazzini, Paola; Garavaglia, Carla; Donato, Ines D; Perzia, Patrizia; Brai, Maria; Morreale, Filippa

    2005-01-01

    Magnetic Resonance Relaxation (MRR) and Magnetic Resonance Imaging (MRI) are powerful tools to obtain detailed information on the pore space structure that one is unlikely to obtain in other ways. These techniques are particularly suitable for Cultural Heritage materials, because they use water 1H nuclei as a probe. Interaction with water is one of the main causes of deterioration of materials. Porous structure in wood, for example, favours the penetration of water, which can carry polluting substances and promote mould growth. A particular case is waterlogged wood from underwater discoveries and moist sites; in fact, these finds are very fragile because of chemical, physical and biological decay from the long contact with the water. When wood artefacts are brought to the surface and directly dried in air, there is the collapse of the cellular structures, and wood loses its original form and dimensions and cannot be used for study and museum exhibits. In this work we have undertaken the study of some wood finds coming from Ercolano's harbour by MRR and MRI under different conditions, and we have obtained a characterization of pore space in wood and images of the spatial distribution of the confined water in the wood. PMID:16485652

  10. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, K.N.; Xu, J.

    1997-04-29

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities. 2 figs.

  11. Preliminary 1H NMR study on archaeological waterlogged wood.

    PubMed

    Maccotta, Antonella; Fantazzini, Paola; Garavaglia, Carla; Donato, Ines D; Perzia, Patrizia; Brai, Maria; Morreale, Filippa

    2005-01-01

    Magnetic Resonance Relaxation (MRR) and Magnetic Resonance Imaging (MRI) are powerful tools to obtain detailed information on the pore space structure that one is unlikely to obtain in other ways. These techniques are particularly suitable for Cultural Heritage materials, because they use water 1H nuclei as a probe. Interaction with water is one of the main causes of deterioration of materials. Porous structure in wood, for example, favours the penetration of water, which can carry polluting substances and promote mould growth. A particular case is waterlogged wood from underwater discoveries and moist sites; in fact, these finds are very fragile because of chemical, physical and biological decay from the long contact with the water. When wood artefacts are brought to the surface and directly dried in air, there is the collapse of the cellular structures, and wood loses its original form and dimensions and cannot be used for study and museum exhibits. In this work we have undertaken the study of some wood finds coming from Ercolano's harbour by MRR and MRI under different conditions, and we have obtained a characterization of pore space in wood and images of the spatial distribution of the confined water in the wood.

  12. 1H homonuclear editing of rat brain using semiselective pulses

    SciTech Connect

    Hetherington, H.P.; Avison, M.J.; Shulman, R.G.

    1985-05-01

    The authors have used a semiselective Hahn spin-echo sequence of the form (1331)-tau-(2662)-tau-AQ, delivered by a surface coil to obtain high-resolution 1H NMR spectra from the brains of intact dead rats. This sequence gave suppression of the tissue water resonance by a factor of 80,000 when tau = 68 ms. Delivery of a frequency-selective Dante pulse train to the alpha-CH resonance of lactate at 4.11 ppm, simultaneously with the 2662 refocusing pulse, altered the j-modulation in the spin-coupled beta-CH3 protons. Subtraction of this spectrum from one in which the Dante was ineffective gave an edited spectrum containing only the beta-CH3 resonance of lactate at 1.31 ppm. When the position of the Dante was shifted to 3.78 ppm to selectively invert the alpha-CH protons of alanine, an edited spectrum of alanine was obtained.

  13. Tacrine derivatives-acetylcholinesterase interaction: 1H NMR relaxation study.

    PubMed

    Delfini, Maurizio; Di Cocco, Maria Enrica; Piccioni, Fabiana; Porcelli, Fernando; Borioni, Anna; Rodomonte, Andrea; Del Giudice, Maria Rosaria

    2007-06-01

    Two acetylcholinesterase (AChE) inhibitors structurally related to Tacrine, 6-methoxytacrine (1a) and 9-heptylamino-6-methoxytacrine (1b), and their interaction with Electrophorus Electricus AChE were investigated. The complete assignment of the 1H and 13C NMR spectra of 1a and 1b was performed by mono-dimensional and homo- and hetero-correlated two-dimensional NMR experiments. This study was undertaken to elucidate the interaction modes between AChE and 1a and 1b in solution, using NMR. The interaction between the two inhibitors and AChE was studied by the analysis of the motional parameters non-selective and selective spin-lattice relaxation times, thereby allowing the motional state of 1a and 1b, both free and bound with AChE, to be defined. The relaxation data pointed out the ligands molecular moiety most involved in the binding with AChE. The relevant ligand/enzyme interaction constants were also evaluated for both compounds and resulted to be 859 and 5412M(-1) for 1a and1b, respectively.

  14. Vigorous exercise increases brain lactate and Glx (glutamate+glutamine): a dynamic 1H-MRS study.

    PubMed

    Maddock, Richard J; Casazza, Gretchen A; Buonocore, Michael H; Tanase, Costin

    2011-08-15

    Vigorous exercise increases lactate and glucose uptake by the brain in excess of the increase in brain oxygen uptake. The metabolic fate of this non-oxidized carbohydrate entering the brain is poorly understood, but accumulation of lactate in the brain and/or increased net synthesis of amino acid neurotransmitters are possible explanations. Previous proton magnetic resonance spectroscopy (1H-MRS) studies using conventional pulse sequences have not detected changes in brain lactate following exercise. This contrasts with 1H-MRS studies showing increased brain lactate when blood lactate levels are raised by an intravenous infusion of sodium lactate. Using a J-editing 1H-MRS technique for measuring lactate, we demonstrated a significant 19% increase in lactate in the visual cortex following graded exercise to approximately 85% of predicted maximum heart rate. However, the magnitude of the increase was insufficient to account for more than a small fraction of the non-oxidized carbohydrate entering the brain with exercise. We also report a significant 18% increase in Glx (combined signal from glutamate and glutamine) in visual cortex following exercise, which may represent an activity-dependent increase in glutamate. Future studies will be necessary to test the hypothesis that non-oxidized carbohydrate entering the brain during vigorous exercise is directed, in part, toward increased net synthesis of amino acid neurotransmitters. The possible relevance of these findings to panic disorder and major depression is discussed. PMID:21640838

  15. Metabolomics in Lung Inflammation: A High Resolution 1H NMR Study of Mice Exposed to Silica Dust

    PubMed Central

    Hu, Jian Zhi; Rommereim, Donald N.; Minard, Kevin R.; Woodstock, Angie; Harrer, Bruce J.; Wind, Robert A.; Phipps, Richard P.; Sime, Patricia J.

    2010-01-01

    Here we report the first 1H NMR metabolomics studies on excised lungs and bronchoalveolar lavage fluid (BALF) from mice exposed to crystalline silica. High resolution 1H NMR metabolic profiling on intact excised lungs was performed using slow magic angle sample spinning (slow-MAS) 1H PASS (phase altered spinning sidebands) at a sample spinning rate of 80 Hz. Metabolic profiling on BALF was completed using fast magic angle spinning at 2kHz. Major findings are that the relative concentrations of choline, phosphocholine (PC) and glycerophosphocholine(GPC) were statistically significantly increased in silica-exposed mice compared to sham controls, indicating an altered membrane choline phospholipids metabolism (MCPM). The relative concentrations of glycogen/glucose, lactate and creatine were also statistically significantly increased in mice exposed to silica dust, suggesting that cellular energy pathways were affected by silica dust. Elevated levels of glycine, lysine, glutamate, proline and 4-hydroxyproline were also increased in exposed mice, suggesting the activation of a collagen pathway. Furthermore, metabolic profiles in mice exposed to silica dust were found to be spatially heterogeneous, in consistent with regional inflammation revealed by in vivo magnetic resonance imaging (MRI). PMID:20020862

  16. Vigorous exercise increases brain lactate and Glx (glutamate+glutamine): a dynamic 1H-MRS study.

    PubMed

    Maddock, Richard J; Casazza, Gretchen A; Buonocore, Michael H; Tanase, Costin

    2011-08-15

    Vigorous exercise increases lactate and glucose uptake by the brain in excess of the increase in brain oxygen uptake. The metabolic fate of this non-oxidized carbohydrate entering the brain is poorly understood, but accumulation of lactate in the brain and/or increased net synthesis of amino acid neurotransmitters are possible explanations. Previous proton magnetic resonance spectroscopy (1H-MRS) studies using conventional pulse sequences have not detected changes in brain lactate following exercise. This contrasts with 1H-MRS studies showing increased brain lactate when blood lactate levels are raised by an intravenous infusion of sodium lactate. Using a J-editing 1H-MRS technique for measuring lactate, we demonstrated a significant 19% increase in lactate in the visual cortex following graded exercise to approximately 85% of predicted maximum heart rate. However, the magnitude of the increase was insufficient to account for more than a small fraction of the non-oxidized carbohydrate entering the brain with exercise. We also report a significant 18% increase in Glx (combined signal from glutamate and glutamine) in visual cortex following exercise, which may represent an activity-dependent increase in glutamate. Future studies will be necessary to test the hypothesis that non-oxidized carbohydrate entering the brain during vigorous exercise is directed, in part, toward increased net synthesis of amino acid neurotransmitters. The possible relevance of these findings to panic disorder and major depression is discussed.

  17. Chronic Reduction of Plasma Free Fatty Acid Improves Mitochondrial Function and Whole-Body Insulin Sensitivity in Obese and Type 2 Diabetic Individuals

    PubMed Central

    Daniele, Giuseppe; Eldor, Roy; Merovci, Aurora; Clarke, Geoffrey D.; Xiong, Juan; Tripathy, Devjit; Taranova, Anna; Abdul-Ghani, Muhammad

    2014-01-01

    Insulin resistance and dysregulation of free fatty acid (FFA) metabolism are core defects in type 2 diabetic (T2DM) and obese normal glucose tolerant (NGT) individuals. Impaired muscle mitochondrial function (reduced ATP synthesis) also has been described in insulin-resistant T2DM and obese subjects. We examined whether reduction in plasma FFA concentration with acipimox improved ATP synthesis rate and altered reactive oxygen species (ROS) production. Eleven NGT obese and 11 T2DM subjects received 1) OGTT, 2) euglycemic insulin clamp with muscle biopsy, and 3) 1H-magnetic resonance spectroscopy of tibialis anterior muscle before and after acipimox (250 mg every 6 h for 12 days). ATP synthesis rate and ROS generation were measured in mitochondria isolated from muscle tissue ex vivo with chemoluminescence and fluorescence techniques, respectively. Acipimox 1) markedly reduced the fasting plasma FFA concentration and enhanced suppression of plasma FFA during oral glucose tolerance tests and insulin clamp in obese NGT and T2DM subjects and 2) enhanced insulin-mediated muscle glucose disposal and suppression of hepatic glucose production. The improvement in insulin sensitivity was closely correlated with the decrease in plasma FFA in obese NGT (r = 0.81) and T2DM (r = 0.76) subjects (both P < 0.001). Mitochondrial ATP synthesis rate increased by >50% in both obese NGT and T2DM subjects and was strongly correlated with the decrease in plasma FFA and increase in insulin-mediated glucose disposal (both r > 0.70, P < 0.001). Production of ROS did not change after acipimox. Reduction in plasma FFA in obese NGT and T2DM individuals improves mitochondrial ATP synthesis rate, indicating that the mitochondrial defect in insulin-resistant individuals is, at least in part, reversible. PMID:24353180

  18. (1)H NMR-based metabolomic approach for understanding the fermentation behaviors of wine yeast strains.

    PubMed

    Son, Hong-Seok; Hwang, Geum-Sook; Kim, Ki Myong; Kim, Eun-Young; van den Berg, Frans; Park, Won-Mok; Lee, Cherl-Ho; Hong, Young-Shick

    2009-02-01

    (1)H NMR spectroscopy coupled with multivariate statistical analysis was used for the first time to investigate metabolic changes in musts during alcoholic fermentation and wines during aging. Three Saccharomyces cerevisiae yeast strains (RC-212, KIV-1116, and KUBY-501) were also evaluated for their impacts on the metabolic changes in must and wine. Pattern recognition (PR) methods, including PCA, PLS-DA, and OPLS-DA scores plots, showed clear differences for metabolites among musts or wines for each fermentation stage up to 6 months. Metabolites responsible for the differentiation were identified as valine, 2,3-butanediol (2,3-BD), pyruvate, succinate, proline, citrate, glycerol, malate, tartarate, glucose, N-methylnicotinic acid (NMNA), and polyphenol compounds. PCA scores plots showed continuous movements away from days 1 to 8 in all musts for all yeast strains, indicating continuous and active fermentation. During alcoholic fermentation, the highest levels of 2,3-BD, succinate, and glycerol were found in musts with the KIV-1116 strain, which showed the fastest fermentation or highest fermentative activity of the three strains, whereas the KUBY-501 strain showed the slowest fermentative activity. This study highlights the applicability of NMR-based metabolomics for monitoring wine fermentation and evaluating the fermentative characteristics of yeast strains.

  19. Application of diffusion ordered-1H-nuclear magnetic resonance spectroscopy to quantify sucrose in beverages.

    PubMed

    Cao, Ruge; Nonaka, Airi; Komura, Fusae; Matsui, Toshiro

    2015-03-15

    This work focuses on a quantitative analysis of sucrose using diffusion ordered-quantitative (1)H-nuclear magnetic resonance spectroscopy (DOSY-qNMR), where an analyte can be isolated from interference based on its characteristic diffusion coefficient (D) in gradient magnetic fields. The D value of sucrose in deuterium oxide at 30°C was 4.9 × 10(-10)m(2)/s at field gradient pulse from 5.0 × 10(-2) to 3.0 × 10(-1)T/m, separated from other carbohydrates (glucose and fructose). Good linearity (r(2)=0.9999) was obtained between sucrose (0.5-20.0 g/L) and the resonance area of target glucopyranosyl-α-C1 proton normalised to that of cellobiose C1 proton (100.0 g/L, as an internal standard) in 1D sliced DOSY spectrum. The DOSY-qNMR method was successfully applied to quantify sucrose in orange juice (36.1 ± 0.5 g/L), pineapple juice (53.5 ± 1.1g/L) and a sports drink (24.7 ± 0.6g/L), in good agreement with the results obtained by an F-kit method.

  20. Application of diffusion ordered-1H-nuclear magnetic resonance spectroscopy to quantify sucrose in beverages.

    PubMed

    Cao, Ruge; Nonaka, Airi; Komura, Fusae; Matsui, Toshiro

    2015-03-15

    This work focuses on a quantitative analysis of sucrose using diffusion ordered-quantitative (1)H-nuclear magnetic resonance spectroscopy (DOSY-qNMR), where an analyte can be isolated from interference based on its characteristic diffusion coefficient (D) in gradient magnetic fields. The D value of sucrose in deuterium oxide at 30°C was 4.9 × 10(-10)m(2)/s at field gradient pulse from 5.0 × 10(-2) to 3.0 × 10(-1)T/m, separated from other carbohydrates (glucose and fructose). Good linearity (r(2)=0.9999) was obtained between sucrose (0.5-20.0 g/L) and the resonance area of target glucopyranosyl-α-C1 proton normalised to that of cellobiose C1 proton (100.0 g/L, as an internal standard) in 1D sliced DOSY spectrum. The DOSY-qNMR method was successfully applied to quantify sucrose in orange juice (36.1 ± 0.5 g/L), pineapple juice (53.5 ± 1.1g/L) and a sports drink (24.7 ± 0.6g/L), in good agreement with the results obtained by an F-kit method. PMID:25308635

  1. 1H NMR Spectroscopy and MVA Analysis of Diplodus sargus Eating the Exotic Pest Caulerpa cylindracea

    PubMed Central

    De Pascali, Sandra A.; Del Coco, Laura; Felline, Serena; Mollo, Ernesto; Terlizzi, Antonio; Fanizzi, Francesco P.

    2015-01-01

    The green alga Caulerpa cylindracea is a non-autochthonous and invasive species that is severely affecting the native communities in the Mediterranean Sea. Recent researches show that the native edible fish Diplodus sargus actively feeds on this alga and cellular and physiological alterations have been related to the novel alimentary habits. The complex effects of such a trophic exposure to the invasive pest are still poorly understood. Here we report on the metabolic profiles of plasma from D. sargus individuals exposed to C. cylindracea along the southern Italian coast, using 1H NMR spectroscopy and multivariate analysis (Principal Component Analysis, PCA, Orthogonal Partial Least Square, PLS, and Orthogonal Partial Least Square Discriminant Analysis, OPLS-DA). Fish were sampled in two seasonal periods from three different locations, each characterized by a different degree of algal abundance. The levels of the algal bisindole alkaloid caulerpin, which is accumulated in the fish tissues, was used as an indicator of the trophic exposure to the seaweed and related to the plasma metabolic profiles. The profiles appeared clearly influenced by the sampling period beside the content of caulerpin, while the analyses also supported a moderate alteration of lipid and choline metabolism related to the Caulerpa-based diet. PMID:26058009

  2. Effects of high fructose and salt feeding on systematic metabonome probed via (1) H NMR spectroscopy.

    PubMed

    Yang, Yongxia; Zheng, Lingyun; Wang, Linlin; Wang, Shumei; Wang, Yaling; Han, Zhihui

    2015-04-01

    Diets rich in high fructose and salt are increasingly popular in our daily life. A combination consumption of excessive fructose and salt can induce insulin resistance (IR) and hypertension (HT), which are major public health problems around the world. However, the effects of high fructose and salt on systematic metabonome remain unknown, which is very important for revealing the molecular mechanism of IR and HT induced by this dietary pattern. The metabolic profiling in urine, plasma, and fecal extracts from high fructose and salt-fed rats was investigated by use of (1) H nuclear magnetic resonance (NMR)-based metabonomics approach in this study. Multivariate analysis of NMR data showed the effects of high fructose and salt on the global metabonome. The metabolite analysis in urine and fecal extracts showed the time-dependent metabolic changes, which displayed metabonomic progression axes from normal to IR and HT status. The changes of 2-oxoglutarate, creatine and creatinine, citrate, hippurate, trimethylamine N-oxide (TMAO), and betaine in urine, together with gut microbiota disorder in feces, were observed at the preliminary formation stage of IR and HT (fourth week). At the severe stage (eighth week), the previously mentioned metabolic changes were aggravated, and the changes of lipid and choline metabolism in plasma suggested the increased risk of cardiovascular diseases. These findings provide an overview of biochemistry consequences of high fructose and salt feeding and comprehensive insights into the progression of systematic metabonome for IR and HT induced by this dietary pattern.

  3. Glucose screening tests during pregnancy

    MedlinePlus

    Oral glucose tolerance test - pregnancy; OGTT - pregnancy; Glucose challenge test - pregnancy; Gestational diabetes - glucose screening ... first step, you will have a glucose screening test: You DO NOT need to prepare or change ...

  4. Insulin and glucose regulation.

    PubMed

    Ralston, Sarah L

    2002-08-01

    Abnormally high or low blood glucose and insulin concentrations after standardized glucose tolerance tests can reflect disorders such as pituitary dysfunction, polysaccharide storage myopathies, and other clinical disorders. Glucose and insulin responses, however, are modified by the diet to which the animal has adapted, time since it was last fed, and what it was fed. Body fat (obesity), fitness level, physiologic status, and stress also alter glucose and insulin metabolism. Therefore, it is important to consider these factors when evaluating glucose and insulin tests, especially if only one sample it taken. This article describes the factors affecting glucose and insulin metabolism in horses and how they might influence the interpretation of standardized tests of glucose tolerance.

  5. [Glucose Metabolism: Stress Hyperglycemia and Glucose Control].

    PubMed

    Tanaka, Katsuya; Tsutsumi, Yasuo M

    2016-05-01

    It is important for the anesthesiologists to understand pathophysiology of perioperative stress hyperglycemia, because it offers strategies for treatment of stress hyperglycemia. The effect of glucose tolerance is different in the choice of the anesthetic agent used in daily clinical setting. Specifically, the volatile anesthetics inhibit insulin secretion after glucose load and affects glucose tolerance. During minor surgery by the remifentanil anesthesia, the stress reaction is hard to be induced, suggesting that we should consider low-dose glucose load. Finally it is necessary to perform the glycemic control of the patients who fell into stress hyperglycemia depending on the individual patient. However, there are a lot of questions to be answered in the future. The prognosis of the perioperative patients is more likely to be greatly improved if we can control stress hyperglycemia.

  6. [Glucose Metabolism: Stress Hyperglycemia and Glucose Control].

    PubMed

    Tanaka, Katsuya; Tsutsumi, Yasuo M

    2016-05-01

    It is important for the anesthesiologists to understand pathophysiology of perioperative stress hyperglycemia, because it offers strategies for treatment of stress hyperglycemia. The effect of glucose tolerance is different in the choice of the anesthetic agent used in daily clinical setting. Specifically, the volatile anesthetics inhibit insulin secretion after glucose load and affects glucose tolerance. During minor surgery by the remifentanil anesthesia, the stress reaction is hard to be induced, suggesting that we should consider low-dose glucose load. Finally it is necessary to perform the glycemic control of the patients who fell into stress hyperglycemia depending on the individual patient. However, there are a lot of questions to be answered in the future. The prognosis of the perioperative patients is more likely to be greatly improved if we can control stress hyperglycemia. PMID:27319094

  7. {sup 1}H NMR-based spectroscopy detects metabolic alterations in serum of patients with early-stage ulcerative colitis

    SciTech Connect

    Zhang, Ying; Lin, Lianjie; Xu, Yanbin; Lin, Yan; Jin, Yu; Zheng, Changqing

    2013-04-19

    Highlights: •Twenty ulcerative colitis patients and nineteen healthy controls were enrolled. •Increased 3-hydroxybutyrate, glucose, phenylalanine, and decreased lipid were found. •We report early stage diagnosis of ulcerative colitis using NMR-based metabolomics. -- Abstract: Ulcerative colitis (UC) has seriously impaired the health of citizens. Accurate diagnosis of UC at an early stage is crucial to improve the efficiency of treatment and prognosis. In this study, proton nuclear magnetic resonance ({sup 1}H NMR)-based metabolomic analysis was performed on serum samples collected from active UC patients (n = 20) and healthy controls (n = 19), respectively. The obtained spectral profiles were subjected to multivariate data analysis. Our results showed that consistent metabolic alterations were present between the two groups. Compared to healthy controls, UC patients displayed increased 3-hydroxybutyrate, β-glucose, α-glucose, and phenylalanine, but decreased lipid in serum. These findings highlight the possibilities of NMR-based metabolomics as a non-invasive diagnostic tool for UC.

  8. Pharmacokinetic and pharmacodynamic modeling of the effect of an sodium-glucose cotransporter inhibitor, phlorizin, on renal glucose transport in rats.

    PubMed

    Yamaguchi, Koji; Kato, Motohiro; Suzuki, Masayuki; Asanuma, Kimie; Aso, Yoshinori; Ikeda, Sachiya; Ishigai, Masaki

    2011-10-01

    A pharmacokinetic and pharmacodynamic (PK-PD) model for the inhibitory effect of sodium-glucose cotransporter (SGLT) inhibitors on renal glucose reabsorption was developed to predict in vivo efficacy. First, using the relationship between renal glucose clearance and plasma glucose level in rats and both the glucose affinity and transport capacity obtained from in vitro vesicle experiments, a pharmacodynamic model analysis was performed based on a nonlinear parallel tube model to express the renal glucose transport mediated by SGLT1 and SGLT2. This model suitably expressed the relationship between plasma glucose level and renal glucose excretion. A PK-PD model was developed next to analyze the inhibitory effect of phlorizin on renal glucose reabsorption. The PK-PD model analysis was performed using averaged concentrations of both the drug and glucose in plasma and the corresponding renal glucose clearance. The model suitably expressed the concentration-dependent inhibitory effect of phlorizin on renal glucose reabsorption. The in vivo inhibition constants of phlorizin for SGLT in rats were estimated to be 67 nM for SGLT1 and 252 nM for SGLT2, which are similar to the in vitro data reported previously. This suggests that the in vivo efficacy of SGLT inhibitors could be predicted from an in vitro study based on the present PK-PD model. The present model is based on physiological and biochemical parameters and, therefore, would be helpful in understanding individual differences in the efficacy of an SGLT inhibitor.

  9. Evaluation of systematic and random factors in measurements of fasting plasma glucose as the basis for analytical quality specifications in the diagnosis of diabetes. 3. Impact of the new WHO and ADA recommendations on diagnosis of diabetes mellitus.

    PubMed

    Hyltoft Petersen, P; Brandslund, I; Jørgensen, L; Stahl, M; de Fine Olivarius, N; Borch-Johnsen, K

    2001-05-01

    On behalf of the Danish Society of Clinical Endocrinology and the Danish Society of Clinical Chemistry we were commissioned to evaluate the influence of analytical and pre-analytical systematic and random factors on the diagnosis of diabetes, in order to provide a tool for conclusions on the analytical quality specifications needed to diagnose diabetes. A systems analysis was performed in accordance with the principles for evaluation of analytical quality specifications. The clinical setting was defined--diagnosis of diabetes in accordance with the WHO and ADA criteria with determination of fasting plasma glucose concentration (FPG) > or =7.0 mmol/L in two independent samples--with well-documented data on In (loge)-Gaussian distribution of reference values from a low-risk population and values for within-subject biological variation taken from the literature. An investigation was made of the consequences for the clinical setting of assumed errors related to the measurement of FPG. Four approaches were investigated for a single sampling and measurement and also for two independent samples: one showing the percentage of healthy individuals who had values > or = 7.0 mmol/L, one illustrating the origin of biological set-points for results > or = 7.0 mmol/L, one showing the risk of being measured > or =7.0 mmol/L when the biological set-point is known, and one showing the combined bias and imprecision for assumed percentages of false-positive (FP), defined as measurements > or = 7.0 mmol/L for the low-risk population and false-negative (FN), defined as measurements <6.4 mmol/L (the upper reference limit) for diabetics. This leaves a "grey zone" which includes the upper part of low-risk individuals, and defined by ADA and WHO as "impaired fasting glucose" (IFG). In the analysis, increasing systematic and random errors (combined analytical and pre-analytical) were assumed, and for each error condition the fractions of FP and FN were calculated. This gave plots from which

  10. Toxicometabolomics approach to urinary biomarkers for mercuric chloride (HgCl{sub 2})-induced nephrotoxicity using proton nuclear magnetic resonance ({sup 1}H NMR) in rats

    SciTech Connect

    Kim, Kyu-Bong; Um, So Young; Chung, Myeon Woo; Jung, Seung Chul; Oh, Ji Seon; Kim, Seon Hwa; Na, Han Sung; Lee, Byung Mu; Choi, Ki Hwan

    2010-12-01

    The primary objective of this study was to determine and characterize surrogate biomarkers that can predict nephrotoxicity induced by mercuric chloride (HgCl{sub 2}) using urinary proton nuclear magnetic resonance ({sup 1}H NMR) spectral data. A procedure for {sup 1}H NMR urinalysis using pattern recognition was proposed to evaluate nephrotoxicity induced by HgCl{sub 2} in Sprague-Dawley rats. HgCl{sub 2} at 0.1 or 0.75 mg/kg was administered intraperitoneally (i.p.), and urine was collected every 24 h for 6 days. Animals (n = 6 per group) were sacrificed 3 or 6 days post-dosing in order to perform clinical blood chemistry tests and histopathologic examinations. Urinary {sup 1}H NMR spectroscopy revealed apparent differential clustering between the control and HgCl{sub 2} treatment groups as evidenced by principal component analysis (PCA) and partial least square (PLS)-discriminant analysis (DA). Time- and dose-dependent separation of HgCl{sub 2}-treated animals from controls was observed by PCA of {sup 1}H NMR spectral data. In HgCl{sub 2}-treated rats, the concentrations of endogenous urinary metabolites of glucose, acetate, alanine, lactate, succinate, and ethanol were significantly increased, whereas the concentrations of 2-oxoglutarate, allantoin, citrate, formate, taurine, and hippurate were significantly decreased. These endogenous metabolites were selected as putative biomarkers for HgCl{sub 2}-induced nephrotoxicity. A dose response was observed in concentrations of lactate, acetate, succinate, and ethanol, where severe disruption of the concentrations of 2-oxoglutarate, citrate, formate, glucose, and taurine was observed at the higher dose (0.75 mg/kg) of HgCl{sub 2}. Correlation of urinary {sup 1}H NMR PLS-DA data with renal histopathologic changes suggests that {sup 1}H NMR urinalysis can be used to predict or screen for HgCl{sub 2}-induced nephrotoxicity{sub .}

  11. Evaluation of the appropriateness of using glucometers for measuring the blood glucose levels in mice.

    PubMed

    Togashi, Yu; Shirakawa, Jun; Okuyama, Tomoko; Yamazaki, Shunsuke; Kyohara, Mayu; Miyazawa, Ayumi; Suzuki, Takafumi; Hamada, Mari; Terauchi, Yasuo

    2016-01-01

    Glucometers are also widely used in diabetes research conducted using animal models. However, the appropriateness of measuring blood glucose levels using glucometers in animal models remains unclear. In this study, we evaluated the consistency between the blood glucose levels measured by 11 models of glucometers and plasma glucose levels measured by a laboratory biochemical test in blood samples collected by retro-orbital sinus puncture or tail-tip amputation. In both blood samples obtained by retro-orbital sinus puncture and those obtained by tail-tip amputation, 10 of the 11 models of glucometers yielded higher glucose values, while 1 yielded lower glucose values, than the plasma glucose values yielded by the laboratory test, the differences being in direct proportion to the plasma glucose values. Most glucometers recorded higher blood glucose levels after glucose loading and lower blood glucose levels after insulin loading in retro-orbital sinus blood as compared to tail vein blood. Our data suggest that the blood glucose levels measured by glucometers in mice tended to be higher than the plasma glucose levels yielded by the biochemical test under the hyperglycemic state, and that differences in the measured levels were observed according to the blood collection method depending on the glycemia status. PMID:27151424

  12. Evaluation of the appropriateness of using glucometers for measuring the blood glucose levels in mice

    PubMed Central

    Togashi, Yu; Shirakawa, Jun; Okuyama, Tomoko; Yamazaki, Shunsuke; Kyohara, Mayu; Miyazawa, Ayumi; Suzuki, Takafumi; Hamada, Mari; Terauchi, Yasuo

    2016-01-01

    Glucometers are also widely used in diabetes research conducted using animal models. However, the appropriateness of measuring blood glucose levels using glucometers in animal models remains unclear. In this study, we evaluated the consistency between the blood glucose levels measured by 11 models of glucometers and plasma glucose levels measured by a laboratory biochemical test in blood samples collected by retro-orbital sinus puncture or tail-tip amputation. In both blood samples obtained by retro-orbital sinus puncture and those obtained by tail-tip amputation, 10 of the 11 models of glucometers yielded higher glucose values, while 1 yielded lower glucose values, than the plasma glucose values yielded by the laboratory test, the differences being in direct proportion to the plasma glucose values. Most glucometers recorded higher blood glucose levels after glucose loading and lower blood glucose levels after insulin loading in retro-orbital sinus blood as compared to tail vein blood. Our data suggest that the blood glucose levels measured by glucometers in mice tended to be higher than the plasma glucose levels yielded by the biochemical test under the hyperglycemic state, and that differences in the measured levels were observed according to the blood collection method depending on the glycemia status. PMID:27151424

  13. Glucose turnover in 48-hour-fasted running rats

    SciTech Connect

    Sonne, B.; Mikines, K.J.; Galbo, H.

    1987-03-01

    In fed rats, hyperglycemia develops during exercise. This contrasts with the view based on studies of fasted human and dog that euglycemia is maintained in exercise and glucose production (R/sub a/) controlled by feedback mechanisms. Forty-eight-hour-fasted rats (F) were compared to fed rats (C) and overnight food-restricted (FR) rats. (3-/sup 3/H)- and (U-/sup 14/C)glucose were infused and blood and tissue sampled. During running (21 m/min, 0% grade) R/sub a/ increased most in C and least in F and only in F did R/sub a/ not significantly exceed glucose disappearance. Plasma glucose increased more in C (3.3 mmol/1) than in FR (1.6 mmol/l) and only modestly (0.6 mmol/l) and transiently in F. Resting liver glycogen and exercise glycogenolysis were highest in C and similar in FR and F. Resting muscle glycogen and exercise glycogenolysis were highest in C and lowest in F. During running, lactate production and gluconeogenesis were higher in FR than in F. At least in rats, responses of production and plasma concentration of glucose to exercise depend on size of liver and muscle glycogen stores; glucose production matches increase in clearance better in fasted than in fed states. Probably glucose production is stimulated by feedforward mechanisms and feedback mechanisms are added if plasma glucose decreases.

  14. Hourly analysis of cerebrospinal fluid glucose shows large diurnal fluctuations.

    PubMed

    Verbeek, Marcel M; Leen, Wilhelmina G; Willemsen, Michèl A; Slats, Diane; Claassen, Jurgen A

    2016-05-01

    Cerebrospinal fluid analysis is important in the diagnostics of many neurological disorders. Since the influence of food intake on the cerebrospinal fluid glucose concentration and the cerebrospinal fluid/plasma glucose ratio is largely unknown, we studied fluctuations in these parameters in healthy adult volunteers during a period of 36 h. Our observations show large physiological fluctuations of cerebrospinal fluid glucose and the cerebrospinal fluid/plasma glucose ratio, and their relation to food intake. These findings provide novel insights into the physiology of cerebral processes dependent on glucose levels such as energy formation (e.g. glycolysis), enzymatic reactions (e.g. glycosylation), and non-enzymatic reactions (e.g. advanced endproduct glycation).

  15. Glucose-6-phosphate dehydrogenase-dependent hydrogen peroxide production is involved in the regulation of plasma membrane H+-ATPase and Na+/H+ antiporter protein in salt-stressed callus from Carex moorcroftii.

    PubMed

    Li, Jisheng; Chen, Guichen; Wang, Xiaomin; Zhang, Yanli; Jia, Honglei; Bi, Yurong

    2011-03-01

    Glucose-6-phosphate dehydrogenase (G6PDH) is important for the activation of plant resistance to environmental stresses, and ion homeostasis is the physiological foundation for living cells. In this study, we investigated G6PDH roles in modulating ion homeostasis under salt stress in Carex moorcroftii callus. G6PDH activity increased to its maximum in 100 mM NaCl treatment and decreased with further increased NaCl concentrations. K+/Na+ ratio in 100 mM NaCl treatment did not exhibit significant difference compared with the control; however, in 300 mM NaCl treatment, it decreased. Low-concentration NaCl (100 mM) stimulated plasma membrane (PM) H+-ATPase and NADPH oxidase activities as well as Na+/H+ antiporter protein expression, whereas high-concentration NaCl (300 mM) decreased their activity and expression. When G6PDH activity and expression were reduced by glycerol treatments, PM H+-ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio dramatically decreased. Simultaneously, NaCl-induced hydrogen peroxide (H₂O₂) accumulation was abolished. Exogenous application of H₂O₂ increased G6PDH, PM H+-ATPase and NADPH oxidase activities, Na+/H+ antiporter protein expression and K+/Na+ ratio in the control and glycerol treatments. Diphenylene iodonium (DPI), the NADPH oxidase inhibitor, which counteracted NaCl-induced H₂O₂ accumulation, decreased G6PDH, PM H+-ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio. Western blot result showed that G6PDH expression was stimulated by NaCl and H₂O₂, and blocked by DPI. Taken together, G6PDH is involved in H₂O₂ accumulation under salt stress. H₂O₂, as a signal, upregulated PM H+-ATPase activity and Na+/H+ antiporter protein level, which subsequently resulted in the enhanced K+/Na+ ratio. G6PDH played a central role in the process.

  16. Jejunal administration of glucose enhances acyl ghrelin suppression in obese humans.

    PubMed

    Tamboli, Robyn A; Sidani, Reem M; Garcia, Anna E; Antoun, Joseph; Isbell, James M; Albaugh, Vance L; Abumrad, Naji N

    2016-07-01

    Ghrelin is a gastric hormone that stimulates hunger and worsens glucose metabolism. Circulating ghrelin is decreased after Roux-en-Y gastric bypass (RYGB) surgery; however, the mechanism(s) underlying this change is unknown. We tested the hypothesis that jejunal nutrient exposure plays a significant role in ghrelin suppression after RYGB. Feeding tubes were placed in the stomach or jejunum in 13 obese subjects to simulate pre-RYGB or post-RYGB glucose exposure to the gastrointestinal (GI) tract, respectively, without the confounding effects of caloric restriction, weight loss, and surgical stress. On separate study days, the plasma glucose curves obtained with either gastric or jejunal administration of glucose were replicated with intravenous (iv) infusions of glucose. These "isoglycemic clamps" enabled us to determine the contribution of the GI tract and postabsorptive plasma glucose to acyl ghrelin suppression. Plasma acyl ghrelin levels were suppressed to a greater degree with jejunal glucose administration compared with gastric glucose administration (P < 0.05). Jejunal administration of glucose also resulted in a greater suppression of acyl ghrelin than the corresponding isoglycemic glucose infusion (P ≤ 0.01). However, gastric and isoglycemic iv glucose infusions resulted in similar degrees of acyl ghrelin suppression (P > 0.05). Direct exposure of the proximal jejunum to glucose increases acyl ghrelin suppression independent of circulating glucose levels. The enhanced suppression of acyl ghrelin after RYGB may be due to a nutrient-initiated signal in the jejunum that regulates ghrelin secretion. PMID:27279247

  17. Alterations in glucose kinetics induced by pentobarbital anesthesia

    SciTech Connect

    Lang, C.H.; Bagby, G.J.; Spitzer, J.J.

    1986-03-05

    Pentobarbital is a common anesthetic agent used in animal research that is known to alter sympathetic function and may also affect carbohydrate metabolism. The in vivo effects of iv pentobarbital on glucose homeostasis were studied in chronically catheterized fasted rats. Whole body glucose kinetics, assessed by the constant iv infusion of (6-/sup 3/H)- and (U-/sup 14/C)-glucose, were determined in all rats in the conscious state. Thereafter, glucose metabolism was followed over the next 4 hr in 3 subgroups of rats; conscious, anesthetized with body temperature maintained, and anesthetized with body temperature not maintained. Hypothermia (a 5/sup 0/C decrease) developed spontaneously in anesthetized rats kept at ambient temperature (22/sup 0/C). No differences were seen in MABP and heart rate between conscious and normothermic anesthetized rats; however, hypothermic anesthetized rats showed a decrease in MABP (20%) and heart rate (35%). Likewise, plasma glucose and lactate concentrations, the rate of glucose appearance (Ra), recycling and metabolic clearance (MCR) did not differ between conscious and normothermic anesthetized animals. In contrast, hypothermic anesthetized rats showed a 50% reduction in plasma lactate, a 40% drop in glucose Ra, and a 30-40% decrease in glucose recycling and MCR. Thus, pentobarbital does not appear to alter in vivo glucose kinetics, compared to unanesthetized controls, provided that body temperature is maintained.

  18. Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways

    SciTech Connect

    Liu, Yansong; Xu, Dan; Feng, Jianghua; Kou, Hao; Liang, Gai; Yu, Hong; He, Xiaohua; Zhang, Baifang; Chen, Liaobin; Magdalou, Jacques; Wang, Hui

    2012-07-15

    The aims of this study were to clarify the metabonome alteration in fetal rats after prenatal caffeine ingestion and to explore the underlying mechanism pertaining to the increased fetal circulatory glucocorticoid (GC). Pregnant Wistar rats were daily intragastrically administered with different doses of caffeine (0, 20, 60 and 180 mg/kg) from gestational days (GD) 11 to 20. Metabonome of fetal plasma and amniotic fluid on GD20 were analyzed by {sup 1}H nuclear magnetic resonance-based metabonomics. Gene and protein expressions involved in the GC metabolism, glucose and lipid metabolic pathways in fetal liver and gastrocnemius were measured by real-time RT-PCR and immunohistochemistry. Fetal plasma metabonome were significantly altered by caffeine, which presents as the elevated α- and β‐glucose, reduced multiple lipid contents, varied apolipoprotein contents and increased levels of a number of amino acids. The metabonome of amniotic fluids showed a similar change as that in fetal plasma. Furthermore, the expressions of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD-2) were decreased, while the level of blood GC and the expressions of 11β-HSD-1 and glucocorticoid receptor (GR) were increased in fetal liver and gastrocnemius. Meanwhile, the expressions of insulin-like growth factor 1 (IGF-1), IGF-1 receptor and insulin receptor were decreased, while the expressions of adiponectin receptor 2, leptin receptors and AMP-activated protein kinase α2 were increased after caffeine treatment. Prenatal caffeine ingestion characteristically change the fetal metabonome, which is probably attributed to the alterations of glucose and lipid metabolic pathways induced by increased circulatory GC, activated GC metabolism and enhanced GR expression in peripheral metabolic tissues. -- Highlights: ► Prenatal caffeine ingestion altered the metabonome of IUGR fetal rats. ► Caffeine altered the glucose and lipid metabolic pathways of IUGR fetal rats. ► Prenatal caffeine

  19. 13C and 1H Nuclear Magnetic Resonance Study of Glycogen Futile Cycling in Strains of the Genus Fibrobacter

    PubMed Central

    Matheron, Christelle; Delort, Anne-Marie; Gaudet, Geneviève; Forano, Evelyne; Liptaj, Tibor

    1998-01-01

    We investigated the carbon metabolism of three strains of Fibrobacter succinogenes and one strain of Fibrobacter intestinalis. The four strains produced the same amounts of the metabolites succinate, acetate, and formate in approximately the same ratio (3.7/1/0.3). The four strains similarly stored glycogen during all growth phases, and the glycogen-to-protein ratio was close to 0.6 during the exponential growth phase. 13C nuclear magnetic resonance (NMR) analysis of [1-13C]glucose utilization by resting cells of the four strains revealed a reversal of glycolysis at the triose phosphate level and the same metabolic pathways. Glycogen futile cycling was demonstrated by 13C NMR by following the simultaneous metabolism of labeled [13C]glycogen and exogenous unlabeled glucose. The isotopic dilutions of the CH2 of succinate and the CH3 of acetate when the resting cells were metabolizing [1-13C]glucose and unlabeled glycogen were precisely quantified by using 13C-filtered spin-echo difference 1H NMR spectroscopy. The measured isotopic dilutions were not the same for succinate and acetate; in the case of succinate, the dilutions reflected only the contribution of glycogen futile cycling, while in the case of acetate, another mechanism was also involved. Results obtained in complementary experiments are consistent with reversal of the succinate synthesis pathway. Our results indicated that for all of the strains, from 12 to 16% of the glucose entering the metabolic pathway originated from prestored glycogen. Although genetically diverse, the four Fibrobacter strains studied had very similar carbon metabolism characteristics. PMID:12033219

  20. Glucose metabolism in the newborn rat. Temporal studies in vivo.

    PubMed

    Snell, K; Walker, D G

    1973-04-01

    1. The concentrations of plasma d-glucose, l-lactate, free fatty acids and ketone bodies and of liver glycogen were measured in caesarian-delivered newborn rats at time-intervals up to 4h after delivery. Glucose and lactate concentrations decreased markedly during the first hours after delivery, but there was a delay of 60-90min before significant glycogen mobilization occurred. 2. The specific radioactivity of plasma d-glucose was measured as a function of time for up to 75min after the intraperitoneal injection of d-[6-(14)C]glucose and d-[6-(3)H]glucose into caesarian-delivered rats at 0, 1 and 2h after delivery. Calculations revealed that there was an appreciable rate of glucose formation at all ages studied, but immediately after delivery this was exceeded by the rate of glucose utilization. Around 2h post partum the rate of glucose utilization decreased dramatically and this coincided with a reversal of the immediately postnatal hypoglycaemia. 3. The specific radioactivity of plasma l-lactate and the incorporation of (14)C into plasma d-glucose and liver glycogen was measured as a function of time after the intraperitoneal injection of l-[U-(14)C]lactate into rats immediately after delivery. The logarithm of the specific radioactivity of plasma l-[U-(14)C]lactate decreased linearly with time for at least 60min after injection and the calculated rate of lactate utilization exceeded the rate of lactate formation. 4. (14)C incorporation into plasma d-glucose was maximal from 30-60min after injection of l-[U-(14)C]lactate and the amount incorporated at 60min was 23% of that present in plasma lactate. Although (14)C was also incorporated into liver glycogen the amount was always less than 3% of that present in plasma glucose. 5. The results are discussed in relationship to the adaptation of the newly born rat to the extra-uterine environment and the possible involvement of gluconeogenesis at this time before feeding is established.

  1. Okara ameliorates glucose tolerance in GK rats.

    PubMed

    Hosokawa, Masaya; Katsukawa, Michiko; Tanaka, Hiroshi; Fukuda, Hitomi; Okuno, Sonomi; Tsuda, Kinsuke; Iritani, Nobuko

    2016-05-01

    Okara, a food by-product from the production of tofu and soy milk, is rich in three beneficial components: insoluble dietary fiber, β-conglycinin, and isoflavones. Although isoflavones and β-conglycinin have recently been shown to improve glucose tolerance, the effects of okara have not yet been elucidated. Therefore, we herein investigated the effects of okara on glucose tolerance in Goto-Kakizaki (GK) rats, a representative animal model of Japanese type 2 diabetes. Male GK rats were fed a 10% lard diet with or without 5% dry okara powder for 2 weeks and an oral glucose tolerance test was performed. Rats were then fed each diet for another week and sacrificed. The expression of genes that are the master regulators of glucose metabolism in adipose tissue was subsequently examined. No significant differences were observed in body weight gain or food intake between the two groups of GK rats. In the oral glucose tolerance test, increases in plasma glucose levels were suppressed by the okara diet. The mRNA expression levels of PPARγ, adiponectin, and GLUT4, which up-regulate the effects of insulin, were increased in epididymal adipose tissue by the okara diet. These results suggest that okara provides a useful means for treating type 2 diabetes. PMID:27257347

  2. Direct measurement of brain glucose concentrations in humans by sup 13 C NMR spectroscopy

    SciTech Connect

    Gruetter, R.; Novotny, E.J.; Boulware, S.D.; Rothman, D.L.; Mason, G.F.; Shulman, G.I.; Shulan, R.G.; Tamborlane, W.V. )

    1992-02-01

    Glucose is the main fuel for energy metabolism in the normal human brain. It is generally assumed that glucose transport into the brain is not rate-limiting for metabolism. Since brain glucose concentrations cannot be determined directly by radiotracer techniques, the authors used {sup 13}C NMR spectroscopy after infusing enriched D-(1-{sup 13}C)glucose to measure brain glucose concentrations at euglycemia and at hyperglycemia in six healthy children. Brain glucose concentrations averaged 1.0 {plus minus} 0.1 {mu}mol/ml at euglycemia and 1.8-2.7 {mu}mol/ml at hyperglycemia. Michaelis-Menten parameters of transport were calculated from the relationship between plasma and brain glucose concentrations. The brain glucose concentrations and transport constants are consistent with transport not being rate-limiting for resting brain metabolism at plasma levels >3 mM.

  3. Simple Approaches for Estimating Vicinal 1H- 1H Coupling-Constants and for Obtaining Stereospecific Resonance Assignments in Leucine Side Chains

    NASA Astrophysics Data System (ADS)

    Constantine, K. L.; Friedrichs, M. S.; Mueller, L.

    An approach for deriving stereospecific δ-methyl assignments and χ 2 dihedral angle constraints for leucine residues, based on easily recognized patterns of 1H- 1H spin-spin coupling constants and intraresidue nuclear-Overhauser-effect spectroscopy (NOESY) cross-peak intensities, is described. The approach depends on resolved H γ and/or δ-methyl resonances and on initially obtaining stereospecific assignments for H β2 and H β3. As part of the overall strategy, a method is presented for obtaining qualitative or, in favorable cases, semiquantitative estimates of vicinal 1H- 1H coupling constants from peak intensities measured in a short-mixing-time 1H- 1H total correlation spectroscopy (TOCSY) experiment. This method of estimating 1H- 1H spin-spin coupling constants is generally applicable to all side-chain types. The approach is illustrated for several leucine residues within uniformly 15N-labeled and 15N/ 13C-double-labeled isolated light-chain variable domain of the anti-digoxin antibody 26-10. Estimates of 3Jαβ and 3Jβγ coupling constants are derived from a three-dimensional (3D) 13C-edited TOCSY-heteronuclear multiple-quantum coherence (HMQC) spectrum. These data are combined with information from 3D 15N-edited NOESY and 3D 13C-edited NOESY spectra to yield stereospecific H β2, H β3, and δ-methyl assignments, as well as constraints on χ (1) and χ 2 dihedral angles. Although the overall approach is illustrated using 3D 15N-edited and 13C-edited data, it is equally applicable to analysis of two-dimensional 1H- 1H NOESY and TOCSY spectra.

  4. 40 CFR 721.10373 - 1H-Imidazole, 1-(1-methylethyl)-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 1H-Imidazole, 1-(1-methylethyl)-. 721... Substances § 721.10373 1H-Imidazole, 1-(1-methylethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1H-imidazole, 1-(1-methylethyl)- (PMN...

  5. 40 CFR 721.10373 - 1H-Imidazole, 1-(1-methylethyl)-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 1H-Imidazole, 1-(1-methylethyl)-. 721... Substances § 721.10373 1H-Imidazole, 1-(1-methylethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1H-imidazole, 1-(1-methylethyl)- (PMN...

  6. 40 CFR 721.10373 - 1H-Imidazole, 1-(1-methylethyl)-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 1H-Imidazole, 1-(1-methylethyl)-. 721... Substances § 721.10373 1H-Imidazole, 1-(1-methylethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1H-imidazole, 1-(1-methylethyl)- (PMN...

  7. Complete assignments of 1H and 13C NMR data for ten phenylpiperazine derivatives.

    PubMed

    Xiao, Zhihui; Yuan, Mu; Zhang, Si; Wu, Jun; Qi, Shuhua; Li, Qingxin

    2005-10-01

    Ten phenylpiperazine derivatives were designed and synthesized. The first complete assignments of (1)H and (13)C NMR chemical shifts for these phenylpiperazine derivatives were achieved by means of 1D and 2D NMR techniques, including (1)H-(1)H COSY, HSQC and HMBC spectra.

  8. Complete assignments of 1H and 13C NMR data for 10 phenylethanoid glycosides.

    PubMed

    Wu, Jun; Huang, Jianshe; Xiao, Qiang; Zhang, Si; Xiao, Zhihui; Li, Qingxin; Long, Lijuan; Huang, Liangmin

    2004-07-01

    Ten phenylethanoid glycosides, including two new ones, isolated from the aerial parts of the mangrove plant Acanthus ilicifolius were identified. The first complete assignments of the 1H and 13C NMR chemical shifts for these glycosides were achieved by means of 2D NMR techniques, including 1H-1H COSY, TOCSY, HSQC and HMBC spectra.

  9. Analysis of glucose metabolism in farmed European sea bass (Dicentrarchus labrax L.) using deuterated water.

    PubMed

    Viegas, Ivan; Mendes, Vera M; Leston, Sara; Jarak, Ivana; Carvalho, Rui A; Pardal, Miguel Â; Manadas, Bruno; Jones, John G

    2011-11-01

    Glucose metabolism in free-swimming fasted and fed seabass was studied using deuterated water ((2)H(2)O). After transfer to seawater enriched with 4.9% (2)H(2)O for 6-h or for 72-h, positional and mole percent enrichment (MPE) of plasma glucose and water were quantified by (2)H NMR and ESI-MS/MS. Plasma water (2)H-enrichment reached that of seawater within 6h. In both fasted and fed fish, plasma glucose MPE increased asymptotically attaining ~55% of plasma water enrichment by 72 h. The distribution of (2)H-enrichment between the different glucose positions was relatively uniform. The gluconeogenic contribution to glucose that was synthesized during (2)H(2)O administration was estimated from the ratio of position 5 and 2 glucose enrichments. For both fed and fasted fish, gluconeogenesis accounted for 98±1% of the glucose that was produced during the 72-h (2)H(2)O administration period. For fasted fish, gluconeogenic contributions measured after 6h were identical to 72-h values (94±3%). For fed fish, the apparent gluconeogenic contribution at 6-h was significantly lower compared to 72-h (79±5% versus 98±1%, p<0.05). This may reflect a brief augmentation of gluconeogenic flux by glycogenolysis after feeding and/or selective enrichment of plasma glucose position 2 via futile glucose-glucose-6-phosphate cycling. PMID:21777686

  10. Metabolite profiling of Curcuma species grown in different regions using 1H NMR spectroscopy and multivariate analysis.

    PubMed

    Jung, Youngae; Lee, Jueun; Kim, Ho Kyoung; Moon, Byeong Cheol; Ji, Yunui; Ryu, Do Hyun; Hwang, Geum-Sook

    2012-12-01

    Curcuma is used to treat skin diseases and colic inflammatory disorders, and in insect repellants and antimicrobial and antidiabetic medications. Two Curcuma species (C. aromatica and C. longa) grown in Jeju-do and Jin-do were used in this study. Methanolic extracts were analyzed by (1)H NMR spectroscopy, and metabolite profiling coupled with multivariate analysis was applied to characterize the differences between species or origin. PCA analysis showed significantly greater differences between species than origins, and the metabolites responsible for the differences were identified. The concentrations of sugars (glucose, fructose, and sucrose) and essential oils (eucalyptol, curdione, and germacrone) were significantly different between the two species. However, the samples from Jeju-do and Jin-do were different mainly in their concentrations of organic acids (fumarate, succinate, acetate, and formate) and sugars. This study demonstrates that NMR-based metabolomics is an efficient method for fingerprinting and determining differences between Curcuma species or those grown in different regions.

  11. Impact of Adenovirus infection in host cell metabolism evaluated by (1)H-NMR spectroscopy.

    PubMed

    Silva, Ana Carina; P Teixeira, Ana; M Alves, Paula

    2016-08-10

    Adenovirus-based vectors are powerful vehicles for gene transfer applications in vaccination and gene therapy. Although highly exploited in the clinical setting, key aspects of the adenovirus biology are still not well understood, in particular the subversion of host cell metabolism during viral infection and replication. The aim of this work was to gain insights on the metabolism of two human cell lines (HEK293 and an amniocyte-derived cell line, 1G3) after infection with an adenovirus serotype 5 vector (AdV5). In order to profile metabolic alterations, we used (1)H-NMR spectroscopy, which allowed the quantification of 35 metabolites in cell culture supernatants with low sample preparation and in a relatively short time. Significant differences between both cell lines in non-infected cultures were identified, namely in glutamine and acetate metabolism, as well as by-product secretion. The main response to AdV5 infection was an increase in glucose consumption and lactate production rates. Moreover, cultures performed with or without glutamine supplementation confirmed the exhaustion of this amino acid as one of the main causes of lower AdV5 production at high cell densities (10- and 1.5-fold less specific yields in HEK293 and 1G3 cells, respectively), and highlighted different degrees of glutamine dependency of adenovirus replication in each cell line. The observed metabolic alterations associated with AdV5 infection and specificity of the host cell line can be useful for targeted bioprocess optimization. PMID:27215342

  12. Glucose: detection and analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucose is an aldosic monosaccharide that is centrally entrenched in the processes of photosynthesis and respiration, serving as an energy reserve and metabolic fuel in most organisms. As both a monomer and as part of more complex structures such as polysaccharides and glucosides, glucose also pla...

  13. Monitor blood glucose - slideshow

    MedlinePlus

    ... medlineplus.gov/ency/presentations/100220.htm Monitoring blood glucose - Series—Monitoring blood glucose: Using a self-test meter To use the ... A.M. Editorial team. Related MedlinePlus Health Topics Blood Sugar A.D.A.M., Inc. is accredited by ...

  14. Platelet-activating factor-induced increases in glucose kinetics

    SciTech Connect

    Lang, C.H.; Dobrescu, C.; Hargrove, D.M.; Bagby, G.J.; Spitzer, J.J. )

    1988-02-01

    Platelet-activating factor (PAF) is a postulated mediator of many of the early hemodynamic effects of endotoxin. The aim of the present study was to determine whether in vivo administration of PAF could produce alterations in whole-body glucose metabolism that would mimic those seen during endotoxemia. Glucose kinetics were assessed in chronically catheterized conscious rats by the constant infusion of (6-{sup 3}H)- and (U-{sup 14}C)glucose before and for 4 h after either a bolus injection or a constant infusion of PAF. The bolus injection of PAF elevated the rate of glucose appearance (R{sub a}; 44%) for 1.5 h. The lower PAF infusion rate decreased blood pressure 11% to 104 mmHg, whereas the higher infusion rate decreased pressure 34% to 77 mmHg. Both PAF infusion rates produced elevations in plasma glucose and glucose R{sub a} throughout the 4-h infusion period in a dose-related manner. The PAF infusions also induced dose-related increases in plasma glucagon and catecholamine levels throughout the infusion period. Because the constant infusion of PAF did stimulate many of the hemodynamic and metabolic alterations produced by endotoxin, this study provides additional support for the potential importance of PAF as a mediator of the early hemodynamic and metabolic sequela of endotoxin shock. Furthermore, the PAF-induced changes in glucose metabolism appear to be mediated by the resultant elevation in plasma catecholamines.

  15. Effect of anesthesia on glucose production and utilization in rats

    SciTech Connect

    Penicaud, L.; Ferre, P.; Kande, J.; Leturque, A.; Issad, T.; Girard, J.

    1987-03-01

    This study was undertaken to determine the effects of pentobarbital anesthesia (50 mg/kg ip) on glucose kinetics and individual tissue glucose utilization in vivo, in chronically catheterized rats. Glucose turnover studies were carried out using (3-/sup 3/H) glucose as tracer. A transient hyperglycemia and an increased glucose production were observed 3 min after induction of anesthesia. However, 40 min after induction of anesthesia, glycemia returned to the level observed in awake animals, whereas glucose turnover was decreased by 30% as compared with unanesthetized rats. These results are discussed with regard to the variations observed in plasma insulin, glucagon, and catecholamine levels. Glucose utilization by individual tissues was studied by the 2-(1-/sup 3/H) deoxyglucose technique. A four- to fivefold decrease in glucose utilization was observed in postural muscles (soleus and adductor longus), while in other nonpostural muscles (epitrochlearis, tibialis anterior, extensor digitorum longus, and diaphragm) and other tissues (white and brown adipose tissues) anesthesia did not modify the rate of glucose utilization. A decrease in glucose utilization was also observed in the brain.

  16. Evaluation of standard and advanced preprocessing methods for the univariate analysis of blood serum 1H-NMR spectra.

    PubMed

    De Meyer, Tim; Sinnaeve, Davy; Van Gasse, Bjorn; Rietzschel, Ernst-R; De Buyzere, Marc L; Langlois, Michel R; Bekaert, Sofie; Martins, José C; Van Criekinge, Wim

    2010-10-01

    Proton nuclear magnetic resonance ((1)H-NMR)-based metabolomics enables the high-resolution and high-throughput assessment of a broad spectrum of metabolites in biofluids. Despite the straightforward character of the experimental methodology, the analysis of spectral profiles is rather complex, particularly due to the requirement of numerous data preprocessing steps. Here, we evaluate how several of the most common preprocessing procedures affect the subsequent univariate analyses of blood serum spectra, with a particular focus on how the standard methods perform compared to more advanced examples. Carr-Purcell-Meiboom-Gill 1D (1)H spectra were obtained for 240 serum samples from healthy subjects of the Asklepios study. We studied the impact of different preprocessing steps--integral (standard method) and probabilistic quotient normalization; no, equidistant (standard), and adaptive-intelligent binning; mean (standard) and maximum bin intensity data summation--on the resonance intensities of three different types of metabolites: triglycerides, glucose, and creatinine. The effects were evaluated by correlating the differently preprocessed NMR data with the independently measured metabolite concentrations. The analyses revealed that the standard methods performed inferiorly and that a combination of probabilistic quotient normalization after adaptive-intelligent binning and maximum intensity variable definition yielded the best overall results (triglycerides, R = 0.98; glucose, R = 0.76; creatinine, R = 0.70). Therefore, at least in the case of serum metabolomics, these or equivalent methods should be preferred above the standard preprocessing methods, particularly for univariate analyses. Additional optimization of the normalization procedure might further improve the analyses.

  17. Imaging the Tissue Distribution of Glucose in Livers Using A PARACEST Sensor

    PubMed Central

    Ren, Jimin; Trokowski, Robert; Zhang, Shanrong; Malloy, Craig R.; Sherry, A. Dean

    2009-01-01

    Noninvasive imaging of glucose in tissues could provide important insights about glucose gradients in tissue, the origins of gluconeogenesis, or perhaps differences in tissue glucose utilization in vivo. Direct spectral detection of glucose in vivo by 1H NMR is complicated by interfering signals from other metabolites and the much larger water signal. One potential way to overcome these problems is to use an exogenous glucose sensor that reports glucose concentrations indirectly through the water signal by chemical exchange saturation transfer (CEST). Such a method is demonstrated here in mouse liver perfused with a Eu3+-based glucose sensor containing two phenylboronate moieties as the recognition site. Activation of the sensor by applying a frequency-selective presaturation pulse at 42 ppm resulted in a 17% decrease in water signal in livers perfused with 10 mM sensor and 10 mM glucose compared with livers with the same amount of sensor but without glucose. It was shown that livers perfused with 5 mM sensor but no glucose can detect glucose exported from hepatocytes after hormonal stimulation of glycogenolysis. CEST images of livers perfused in the magnet responded to changes in glucose concentrations demonstrating that the method has potential for imaging the tissue distribution of glucose in vivo. PMID:18958853

  18. Complete 1H NMR spectral analysis of ten chemical markers of Ginkgo biloba

    PubMed Central

    Napolitano, José G.; Lankin, David C.; Chen, Shao-Nong; Pauli, Guido F.

    2013-01-01

    The complete and unambiguous 1H NMR assignments of ten marker constituents of Ginkgo biloba are described. The comprehensive 1H NMR profiles (fingerprints) of ginkgolide A, ginkgolide B, ginkgolide C, ginkgolide J, bilobalide, quercetin, kaempferol, isorhamnetin, isoquercetin, and rutin in DMSO-d6 were obtained through the examination of 1D 1H NMR and 2D 1H,1H-COSY data, in combination with 1H iterative Full Spin Analysis (HiFSA). The computational analysis of discrete spin systems allowed a detailed characterization of all the 1H NMR signals in terms of chemical shifts (δH) and spin-spin coupling constants (JHH), regardless of signal overlap and higher order coupling effects. The capability of the HiFSA-generated 1H fingerprints to reproduce experimental 1H NMR spectra at different field strengths was also evaluated. As a result of this analysis, a revised set of 1H NMR parameters for all ten phytoconstituents was assembled. Furthermore, precise 1H NMR assignments of the sugar moieties of isoquercetin and rutin are reported for the first time. PMID:22730238

  19. Accuracy of a Novel Noninvasive Multisensor Technology to Estimate Glucose in Diabetic Subjects During Dynamic Conditions

    PubMed Central

    Sobel, Sandra I.; Chomentowski, Peter J.; Vyas, Nisarg; Andre, David

    2014-01-01

    The purpose of this study was to determine whether an approach of multisensor technology with integrated data analysis in an armband system (SenseWear® Pro Armband, SWA) can provide estimates of plasma glucose concentration in diabetes. In all, 41 subjects with diabetes participated. On day 1 subjects underwent an oral glucose tolerance test (OGTT) and on day 2 a 60-minute treadmill test (TT). SWA plasma glucose estimates were compared against reference peripheral venous glucose concentrations. A continuous glucose monitoring device (CGM) was also placed on each subject to serve as a reference for clinical comparison. Pearson coefficient, Clarke error grid (CEG), and mean absolute relative difference (MARD) analyses were used to compare the performance of plasma glucose estimation. There were significant correlations between plasma glucose concentrations estimated by the SWA and the reference plasma glucose concentration during the OGTT (r = .65, P < .05) and the TT (r = .91, P < .05). CEG analysis revealed that during the OGTT, 93% of plasma glucose concentration readings were in the clinically acceptable zone A+B for the SWA and 95% for the CGM. During the TT, the SWA had 96% of readings in zone A+B, compared to 97% for the CGM. During OGTTs, MARDs for the SWA and CGM were 26% and 18%, respectively. During TTs, MARDs were 16% and 12%, respectively. Plasma glucose concentration estimation by the SWA’s noninvasive multisensor approach appears to be feasible and its performance in estimating glucose approaches that of a CGM. The success of this pilot study suggests that multisensor technology holds promising potential for the development of a wearable, noninvasive, painless glucose monitor. PMID:24876538

  20. SY 10-1 RENAL GLUCOSE HANDLING AND SGLT2.

    PubMed

    Poudel, Resham

    2016-09-01

    The kidneys maintain glucose homeostasis through its utilization, gluconeogenesis, and reabsorption. Glucose is freely filtered and reabsorbed in order to retain energy essential between meals. The amount of glucose reabsorbed by the kidneys is equivalent to the amount entering the filtration system. With a daily glomerular filtration rate of 180 L, approximately 180 g (180 L/day × 100 mg/dL) of glucose must be reabsorbed each day to maintain an average fasting plasma glucose concentration of 5.6 mmol/L (100 mg/dL). The reabsorption increases with increase in plasma glucose concentration up to approximately 11 mmol/L (198 mg/dL). At this threshold level, the system becomes saturated and the maximal resabsorption rate-the glucose transport maximum (Tm G ) is reached. No more glucose can be absorbed, and the kidneys begin excreting it in the urine-the beginning of glycosuria. Reabsorption of glucose occurs mainly in the proximal tubule and is mediated by 2 different transport proteins, Sodium Glucose Cotransporter (SGLT)1 and SGLT2. SGLT1, which are found in the straight section of the proximal tubule (S3), are responsible for approximately 10% of glucose reabsorption. The other 90% of filtered glucose is reabsorbed through by SGLT2, which are located in the convoluted section on the proximal tubule (S1). The SGLT2 are located on the luminal side of the early proximal tubule S1 segment. Absorption of sodium across the cell membrane creates an energy gradient that in turn allows glucose to be absorbed. On the other side of the cell, sodium is reabsorbed through sodium-potassium ATPase pump into the bloodstream. The concentration gradient within the cell, resulting from this exchange drives glucose reabsorption into the bloodstream via the Glucose transporter (GLUT) 2. The role of kidneys in glucose regulation has been well recognized in the recent years, and inhibition of glucose reabsorption by SGLT2 inhibitors has evolved as a promising target for

  1. Ketosis proportionately spares glucose utilization in brain.

    PubMed

    Zhang, Yifan; Kuang, Youzhi; Xu, Kui; Harris, Donald; Lee, Zhenghong; LaManna, Joseph; Puchowicz, Michelle A

    2013-08-01

    The brain is dependent on glucose as a primary energy substrate, but is capable of utilizing ketones such as β-hydroxybutyrate and acetoacetate, as occurs with fasting, starvation, or chronic feeding of a ketogenic diet. The relationship between changes in cerebral metabolic rates of glucose (CMRglc) and degree or duration of ketosis remains uncertain. To investigate if CMRglc decreases with chronic ketosis, 2-[(18)F]fluoro-2-deoxy-D-glucose in combination with positron emission tomography, was applied in anesthetized young adult rats fed 3 weeks of either standard or ketogenic diets. Cerebral metabolic rates of glucose (μmol/min per 100 g) was determined in the cerebral cortex and cerebellum using Gjedde-Patlak analysis. The average CMRglc significantly decreased in the cerebral cortex (23.0±4.9 versus 32.9±4.7) and cerebellum (29.3±8.6 versus 41.2±6.4) with increased plasma ketone bodies in the ketotic rats compared with standard diet group. The reduction of CMRglc in both brain regions correlates linearly by ∼9% for each 1 mmol/L increase of total plasma ketone bodies (0.3 to 6.3 mmol/L). Together with our meta-analysis, these data revealed that the degree and duration of ketosis has a major role in determining the corresponding change in CMRglc with ketosis.

  2. Ferrocene-Functionalized 4-(2,5-Di(thiophen-2-yl)-1H-pyrrol-1-yl)aniline: A Novel Design in Conducting Polymer-Based Electrochemical Biosensors

    PubMed Central

    Ayranci, Rukiye; Demirkol, Dilek Odaci; Ak, Metin; Timur, Suna

    2015-01-01

    Herein, we report a novel ferrocenyldithiophosphonate functional conducting polymer and its use as an immobilization matrix in amperometric biosensor applications. Initially, 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)amidoferrocenyldithiophosphonate was synthesized and copolymerized with 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine at graphite electrodes. The amino groups on the polymer were utilized for covalent attachment of the enzyme glucose oxidase. Besides, ferrocene on the backbone was used as a redox mediator during the electrochemical measurements. Prior to the analytical characterization, optimization studies were carried out. The changes in current signals at +0.45 V were proportional to glucose concentration from 0.5 to 5.0 mM. Finally, the resulting biosensor was applied for glucose analysis in real samples and the data were compared with the spectrophotometric Trinder method. PMID:25591169

  3. Ferrocene-functionalized 4-(2,5-Di(thiophen-2-yl)-1H-pyrrol-1-yl)aniline: a novel design in conducting polymer-based electrochemical biosensors.

    PubMed

    Ayranci, Rukiye; Demirkol, Dilek Odaci; Ak, Metin; Timur, Suna

    2015-01-01

    Herein, we report a novel ferrocenyldithiophosphonate functional conducting polymer and its use as an immobilization matrix in amperometric biosensor applications. Initially, 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)amidoferrocenyldithiophosphonate was synthesized and copolymerized with 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine at graphite electrodes. The amino groups on the polymer were utilized for covalent attachment of the enzyme glucose oxidase. Besides, ferrocene on the backbone was used as a redox mediator during the electrochemical measurements. Prior to the analytical characterization, optimization studies were carried out. The changes in current signals at +0.45 V were proportional to glucose concentration from 0.5 to 5.0 mM. Finally, the resulting biosensor was applied for glucose analysis in real samples and the data were compared with the spectrophotometric Trinder method. PMID:25591169

  4. Diagnostic value of fasting capillary glucose, fructosamine and glycosylated haemoglobin in detecting diabetes and other glucose tolerance abnormalities compared to oral glucose tolerance test.

    PubMed

    Herdzik, E; Safranow, K; Ciechanowski, K

    2002-04-01

    New diagnostic criteria for diabetes mellitus recommend lowering of the fasting plasma glucose to 7.0 mmol/l. In contrast to recommendations of the American Diabetes Association (ADA), WHO recommends using the oral glucose tolerance test (OGTT) in clinical practice. In this study. based on OGTT results and WHO 1998 criteria, we determined if measuring fasting capillary glycaemia (FCG) along with fructosamine and/or glycosylated haemoglobin allows the detection of glucose tolerance abnormalities better than FCG alone. OGTT was performed in 538 patients. Serum fructosamine was determined in 480 of the patients, and glycosylated haemoglobin in 234 of the patients. According to WHO 1998 criteria, the patients were divided into groups due to glucose tolerance abnormalities. Fructosamine correlated stronger with 2-h post-load glucose concentrations than with FCG. HbAlc correlated stronger with FCG than with 2-h post-load glucose. Combined use of fructosamine and FCG predicted 2-h post-load glucose better than combined use of FCG and HbA1c. Receiver operating characteristic curve analyses showed that FCG was the best criterion in discriminating diabetes. Combined use of FCG and fructosamine slightly improved the ability to discriminate glucose tolerance abnormalities from normal glucose tolerance. FCG is the most effective predictor of 2-h post-load glucose and the best criterion for discriminating diabetes and other glucose tolerance abnormalities from normal glucose tolerance. Fructosamine is a potentially useful post-load glycaemia index. OGTT is irreplaceable in identification of patients with high post-load glycaemia.

  5. Glucose and glycerol concentrations and their tracer enrichment measurements using liquid chromatography tandem mass spectrometry.

    PubMed

    Bornø, Andreas; Foged, Lene; van Hall, Gerrit

    2014-10-01

    The present study describes a new liquid chromatography tandem mass spectrometry method for high-throughput quantification of glucose and glycerol in human plasma using stable isotopically labeled internal standards and is suitable for simultaneous measurements of glucose and glycerol enrichments in connection to in vivo metabolic studies investigating glucose turnover and lipolytic rate. Moreover, in order to keep up with this new fast analysis, simple derivatization procedures have been developed. Prior to analysis, glucose and glycerol were derivatized using benzoyl chloride in order to form benzoylated derivatives via new simplified fast procedures. For glucose, two internal standards were evaluated, [U-(13) C(6)]glucose and [U-(13) C(6), D(7)]glucose, and for glycerol, [U-(13) C(3), D(8)]glycerol was used. The method was validated by means of calibration curves, quality control samples, and plasma samples spiked with [6,6-D(2)]glucose, [U-(13) C(6)]glucose, and [1,1,2,3,3-D(5)]glycerol in order to test accuracy, precision, and recovery of the method. Moreover, post preparative and freeze-thaw sample stability were tested. The correlation of calibration curves for the glucose concentration were r(2) = 0.9998 for [U-(13) C(6)]glucose and r(2) = 0.9996 for [U-(13) C(6), D(7)]glucose, and r(2) = 0.9995 for the glycerol concentration. Interday accuracy for glucose using [U-(13) C(6)]glucose and glycerol determined in spiked plasma were respectively 103.5% and 106.0%, and the coefficients of variation were 2.0% and 9.7%, respectively. After derivatization, plasma samples were stable for at least 14 days. In conclusion, we have developed and validated a novel, accurate, and sensitive high-throughput liquid chromatography tandem mass spectrometry method for simultaneous determination of glucose and glycerol concentrations and enrichment of infused tracers most commonly used in human metabolic kinetic studies.

  6. Optimized [1-13C]glucose infusion protocol for 13C magnetic resonance spectroscopy at 3 Tesla of human brain glucose metabolism under euglycemic and hypoglycemic conditions

    PubMed Central

    van de Ven, Kim C.C.; van der Graaf, Marinette; Tack, Cees J.J.; Klomp, Dennis W.J.; Heerschap, Arend; de Galan, Bastiaan E.

    2009-01-01

    The effect of insulin-induced hypoglycemia on cerebral glucose metabolism is largely unknown. 13C MRS is a unique tool to study cerebral glucose metabolism, but the concurrent requirement for [1-13C]glucose administration limits its use under hypoglycemic conditions. To facilitate 13C MRS data analysis we designed separate [1-13C]glucose infusion protocols for hyperinsulinemic euglycemic and hypoglycemic clamps in such a way that plasma isotopic enrichment of glucose was stable and comparable under both glycemic conditions. 13C MR spectra were acquired with optimized 13C MRS measurement techniques to obtain high quality 13C MR spectra with these protocols. PMID:19913052

  7. A Kinetic Model of Whole-Body Glucose Metabolism with Reference to the Domestic Dog (Canis lupus familiaris).

    PubMed

    McKnight, Leslie L; Shoveller, Anna K; Lopez, Secundino; France, James

    2015-01-01

    A new two-pool model to describe glucose kinetics in the steady state is presented. The pools are plasma glucose, Q 1, and tissue glucose, Q 2 (both µmol). The flows (all µmol/min) into the plasma pool (Pool 1) are absorbed glucose entry from dietary sources, labelled glucose infusion, and hepatic glucose production. There is one flow out of Pool 1, glucose uptake by the tissues. Inflows to the tissues pool (Pool 2) are from plasma and glycogenolysis. Outflows from Pool 2 are to plasma, glucose oxidation, and glycogenesis and other metabolism. Application of the model was illustrated using experimental data derived from healthy adult Labrador Retrievers in the fasted and fed (repeated meal feeding) states. In general, model derived estimates of glucose kinetics were representative of normal glucose metabolism, where rates of glucose production and uptake are similar and act to maintain blood glucose concentrations. Furthermore, estimates of within tissue glucose cycling indicated glycogenolysis in fasting and glycogenesis when fed. In the fasted state, model outputs were consistent with those reported in the canine literature derived using a single pool model.

  8. A glucose-centric perspective of hyperglycemia.

    PubMed

    Ramasarma, T; Rafi, M

    2016-02-01

    Digestion of food in the intestines converts the compacted storage carbohydrates, starch and glycogen, to glucose. After each meal, a flux of glucose (> 200 g) passes through the blood pool (4-6 g) in a short period of 2 h, keeping its concentration ideally in the range of 80-120 mg/100 mL. Tissue-specific glucose transporters (GLUTs) aid in the distribution of glucose to all tissues. The balance glucose after meeting the immediate energy needs is converted into glycogen and stored in liver (up to 100 g) and skeletal muscle (up to 300 g) for later use. High blood glucose gives the signal for increased release of insulin from pancreas. Insulin binds to insulin receptor on the plasma membrane and activates its autophosphorylation. This initiates the post-insulin-receptor signal cascade that accelerates synthesis of glycogen and triglyceride. Parallel control by phos-dephos and redox regulation of proteins exists for some of these steps. A major action of insulin is to inhibit gluconeogensis in the liver decreasing glucose output into blood. Cases with failed control of blood glucose have alarmingly increased since 1960 coinciding with changed life-styles and large scale food processing. Many of these turned out to be resistant to insulin, usually accompanied by dysfunctional glycogen storage. Glucose has an extended stay in blood at 8 mM and above and then indiscriminately adds on to surface protein-amino groups. Fructose in common sugar is 10-fold more active. This random glycation process interferes with the functions of many proteins (e.g., hemoglobin, eye lens proteins) and causes progressive damage to heart, kidneys, eyes and nerves. Some compounds are known to act as insulin mimics. Vanadium-peroxide complexes act at post-receptor level but are toxic. The fungus-derived 2,5-dihydroxybenzoquinone derivative is the first one known to act on the insulin receptor. The safe herbal products in use for centuries for glucose control have multiple active principles and

  9. A glucose-centric perspective of hyperglycemia.

    PubMed

    Ramasarma, T; Rafi, M

    2016-02-01

    Digestion of food in the intestines converts the compacted storage carbohydrates, starch and glycogen, to glucose. After each meal, a flux of glucose (> 200 g) passes through the blood pool (4-6 g) in a short period of 2 h, keeping its concentration ideally in the range of 80-120 mg/100 mL. Tissue-specific glucose transporters (GLUTs) aid in the distribution of glucose to all tissues. The balance glucose after meeting the immediate energy needs is converted into glycogen and stored in liver (up to 100 g) and skeletal muscle (up to 300 g) for later use. High blood glucose gives the signal for increased release of insulin from pancreas. Insulin binds to insulin receptor on the plasma membrane and activates its autophosphorylation. This initiates the post-insulin-receptor signal cascade that accelerates synthesis of glycogen and triglyceride. Parallel control by phos-dephos and redox regulation of proteins exists for some of these steps. A major action of insulin is to inhibit gluconeogensis in the liver decreasing glucose output into blood. Cases with failed control of blood glucose have alarmingly increased since 1960 coinciding with changed life-styles and large scale food processing. Many of these turned out to be resistant to insulin, usually accompanied by dysfunctional glycogen storage. Glucose has an extended stay in blood at 8 mM and above and then indiscriminately adds on to surface protein-amino groups. Fructose in common sugar is 10-fold more active. This random glycation process interferes with the functions of many proteins (e.g., hemoglobin, eye lens proteins) and causes progressive damage to heart, kidneys, eyes and nerves. Some compounds are known to act as insulin mimics. Vanadium-peroxide complexes act at post-receptor level but are toxic. The fungus-derived 2,5-dihydroxybenzoquinone derivative is the first one known to act on the insulin receptor. The safe herbal products in use for centuries for glucose control have multiple active principles and

  10. Unique Backbone-Water Interaction Detected in Sphingomyelin Bilayers with 1H/31P and 1H/13C HETCOR MAS NMR Spectroscopy

    PubMed Central

    Holland, Gregory P.; Alam, Todd M.

    2008-01-01

    Two-dimensional 1H/31P dipolar heteronuclear correlation (HETCOR) magic-angle spinning nuclear magnetic resonance (NMR) is used to investigate the correlation of the lipid headgroup with various intra- and intermolecular proton environments. Cross-polarization NMR techniques involving 31P have not been previously pursued to a great extent in lipid bilayers due to the long 1H-31P distances and high degree of headgroup mobility that averages the dipolar coupling in the liquid crystalline phase. The results presented herein show that this approach is very promising and yields information not readily available with other experimental methods. Of particular interest is the detection of a unique lipid backbone-water intermolecular interaction in egg sphingomyelin (SM) that is not observed in lipids with glycerol backbones like phosphatidylcholines. This backbone-water interaction in SM is probed when a mixing period allowing magnetization exchange between different 1H environments via the nuclear Overhauser effect (NOE) is included in the NMR pulse sequence. The molecular information provided by these 1H/31P dipolar HETCOR experiments with NOE mixing differ from those previously obtained by conventional NOE spectroscopy and heteronuclear NOE spectroscopy NMR experiments. In addition, two-dimensional 1H/13C INEPT HETCOR experiments with NOE mixing support the 1H/31P dipolar HETCOR results and confirm the presence of a H2O environment that has nonvanishing dipolar interactions with the SM backbone. PMID:18390621

  11. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS.

    PubMed

    Pandey, Manoj Kumar; Yarava, Jayasubba Reddy; Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2016-01-01

    Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).

  12. Acidosis effects on insulin response during glucose tolerance tests in Jersey cows.

    PubMed

    Bigner, D R; Goff, J P; Faust, M A; Burton, J L; Tyler, H D; Horst, R L

    1996-12-01

    The effect of metabolic alkalosis and acidosis on insulin response to glucose tolerance tests was determined for cows fed a high cation diet to induce a state of metabolic acidosis. The anion diet to induce a state of metabolic acidosis. The glucose tolerance test (500 mg of glucose/kg of BW infused i.v. over 10 min) caused a rapid increase in plasma glucose and insulin concentrations. Plasma glucose concentrations were highest, and plasma insulin concentrations were lowest, during metabolic acidosis. These results suggest that insulin secretion is impaired during metabolic acidosis, which may reduce tissue uptake of glucose. Correction of metabolic acidosis by oral administration of sodium bicarbonate prior to glucose tolerance testing increased blood pH and bicarbonate concentrations and partially restored insulin response to the glucose tolerance test. Interestingly, sodium bicarbonate also caused an elevation in plasma cortisol concentrations. We concluded that glucose utilization is altered in cows with metabolic acidosis. The correction of acidosis associated with diseases such as diarrhea and ketosis may improve the therapeutic benefit of glucose infusions used to treat these diseases.

  13. A prospective longitudinal in vivo 1H MR spectroscopy study of the SIV/macaque model of neuroAIDS

    PubMed Central

    Fuller, Robert A; Westmoreland, Susan V; Ratai, Eva; Greco, Jane B; Kim, John P; Lentz, Margaret R; He, Julian; Sehgal, Prabhat K; Masliah, Eliezer; Halpern, Elkan; Lackner, Andrew A; González, R Gilberto

    2004-01-01

    Background The neurological complications of HIV infection remain poorly understood. Clinically, in vivo 1H magnetic resonance spectroscopy (MRS) demonstrates brain injury caused by HIV infection even when the MRI is normal. Our goal was to undertsand the dynamics of cerebral injury by performing a longitudinal in vivo 1H MRS study of the SIV/macaque model of neuroAIDS. Results Eight rhesus macaques were infected with SIVmac251 and serially imaged with MRI and 1H MRS to terminal AIDS or the endpoint of 2 years. During acute infection, there were stereotypical brain MRS changes, dominated by a significant elevation of the Cho/Cr ratio in the frontal cortex. Subsequently, brain metabolic patterns diverged between animals. There was an elevation of basal ganglia Cho/Cr four weeks post-inoculation in 2 animals that developed SIV encephalitis (p = 0.022). Metabolite ratios averaged across all 8 animals were not significantly different from baseline at any time point after 2 weeks post inoculation. However, linear regression analysis on all 8 animals revealed a positive correlation between a change in frontal lobe Cho/Cr and plasma viral load (P < 0.001, R = 0.80), and a negative correlation between NAA/Cr in the basal ganglia and the plasma viral load (P < 0.02, R = -0.73). No MRI abnormalities were detected at any time. Conclusions After infection with SIV, macaque brain metabolism changes in a complex manner that is dependent on brain region, host factors and viral load. An elevation of basal ganglia Cho/Cr 4 weeks after SIV infection may be marker of a propensity to develop SIV encephalitis. Elevations of Cho/Cr, often observed in CNS inflammation, were associated with increased plasma viral load during acute and chronic infection. Evidence of neuronal injury in the basal ganglia was associated with increased plasma viral load in the chronic stage of infection. These observations support the use of drugs capable of controlling the viral replication and trafficking of

  14. Effect of hydroxyethyl starch on blood glucose levels

    PubMed Central

    Shim, Soo Bin; Choi, Woo Young

    2016-01-01

    Background Hydroxyethyl starch (HES), a commonly used resuscitation fluid, has the property to induce hyperglycemia as it contains large ethyl starch, which can be metabolized to produce glucose. We evaluated the effect of 6% HES-130 on the blood glucose levels in non-diabetic patients undergoing surgery under spinal anesthesia. Methods Patients scheduled to undergo elective lower limb surgery were enrolled. Fifty-eight patients were divided into two groups according to the type of the main intravascular fluid used before spinal anesthesia (Group LR: lactated Ringer's solution, n = 30 vs. Group HES: 6% hydroxyethyl starch 130/0.4, n = 28). Blood glucose levels were measured at the following time points: 0 (baseline), 20 min (T1), 1 h (T2), 2 h (T3), 4 h (T4), and 6 h (T6). Results Mean blood glucose levels at T5 in the LR group and T4, T5 in the HES group, increased significantly compared to baseline. There were no significant changes in the serial differences of mean blood glucose levels from baseline between the two groups. Conclusions Administration of 6% HES-130 increased blood glucose levels within the physiologic limits, but the degree of glucose increase was not greater than that caused by administration of lactated Ringer's solution. In conclusion, we did not find evidence that 6% HES-130 induces hyperglycemia in non-diabetic patients. PMID:27482311

  15. Mechanistic Assessment of PD-1H Coinhibitory Receptor-Induced T Cell Tolerance to Allogeneic Antigens.

    PubMed

    Flies, Dallas B; Higuchi, Tomoe; Chen, Lieping

    2015-06-01

    PD-1H is a recently identified cell surface coinhibitory molecule of the B7/CD28 immune modulatory gene family. We showed previously that single injection of a PD-1H agonistic mAb protected mice from graft-versus-host disease (GVHD). In this study, we report two distinct mechanisms operate in PD-1H-induced T cell tolerance. First, signaling via PD-1H coinhibitory receptor potently arrests alloreactive donor T cells from activation and expansion in the initiation phase. Second, donor regulatory T cells are subsequently expanded to maintain long-term tolerance and GVHD suppression. Our study reveals the crucial function of PD-1H as a coinhibitory receptor on alloreactive T cells and its function in the regulation of T cell tolerance. Therefore, PD-1H may be a target for the modulation of alloreactive T cells in GVHD and transplantation. PMID:25917101

  16. Glucose tolerance and peripheral glucose utilization in rainbow trout (Oncorhynchus mykiss), American eel (Anguilla rostrata), and black bullhead catfish (Ameiurus melas).

    PubMed

    Legate, N J; Bonen, A; Moon, T W

    2001-04-01

    This study tests the hypothesis that glucose tolerance in fish is related to nutrient preference and is correlated with white muscle glucose transporter and phosphorylation (hexokinase) activities. Glucose clearance was investigated in the carnivorous rainbow trout (Oncorhynchus mykiss) and American eel (Anguilla rostrata) (feeding and fasting) and the omnivorous black bullhead catfish (Ameiurus melas). Glucose tolerance was assessed by an intravenous glucose tolerance test, injecting 250 mg glucose/kg body weight and tracking blood glucose concentrations over 24 h. Both feeding eel and feeding catfish returned plasma glucose levels to baseline within 60 min of glucose injection. Glucose values remained elevated for more than 360 min in both the food-deprived eel and the feeding rainbow trout. Glucose transport studies in white muscle membrane vesicles provided evidence for the presence of a stereospecific, saturable glucose transporter in all three species. Affinity constants (K(m)) ranged from 8 to 14 mM while V(max) values ranged from 75 to 150 pmol/s/mg protein. Neither kinetic parameter differed significantly between species. Cytochalasin B and phloretin did not significantly inhibit glucose transport, implying that these transporters are unlike the mammalian muscle glucose transporters (GLUT). In fact, Northern and Western blot analyses of mRNA and protein from white and red muscles and heart did not detect a mammalian-type GLUT-1 or -4 in any of the species examined. Glucose phosphorylation indicated the presence of a hexokinase activity (low K(m) enzyme) but again there were no differences in kinetic parameters between species. These studies demonstrate that glucose tolerance in fish is species-dependent but none of the parameters examined clearly differentiate between the species examined. Certainly a stereospecific glucose transporter exists in white skeletal muscle of the fish studied but no molecular or kinetic similarities to the mammalian GLUTs were

  17. Blood Glucose Monitoring Devices

    MedlinePlus

    ... Glucose NIH Medline Plus - Diabetes Spotlight FDA permits marketing of first system of mobile medical apps for ... feeds Follow FDA on Twitter Follow FDA on Facebook View FDA videos on YouTube View FDA photos ...

  18. Vascular Glucose Sensor Symposium

    PubMed Central

    Joseph, Jeffrey I; Torjman, Marc C.; Strasma, Paul J.

    2015-01-01

    Hyperglycemia, hypoglycemia, and glycemic variability have been associated with increased morbidity, mortality, length of stay, and cost in a variety of critical care and non–critical care patient populations in the hospital. The results from prospective randomized clinical trials designed to determine the risks and benefits of intensive insulin therapy and tight glycemic control have been confusing; and at times conflicting. The limitations of point-of-care blood glucose (BG) monitoring in the hospital highlight the great clinical need for an automated real-time continuous glucose monitoring system (CGMS) that can accurately measure the concentration of glucose every few minutes. Automation and standardization of the glucose measurement process have the potential to significantly improve BG control, clinical outcome, safety and cost. PMID:26078254

  19. All about Blood Glucose

    MedlinePlus

    ... Blood Glucose Before meals: 80 to 130 mg/dl My Usual Results My Goals ______ to ______ ______ to ______ 2 ... the start of a meal: below 180 mg/dl below ______ below ______ What’s the best way to keep ...

  20. Recombinant glucose uptake system

    DOEpatents

    Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico

    1997-01-01

    Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.

  1. Glucose: Detection and analysis.

    PubMed

    Galant, A L; Kaufman, R C; Wilson, J D

    2015-12-01

    Glucose is an aldosic monosaccharide that is centrally entrenched in the processes of photosynthesis and respiration, serving as an energy reserve and metabolic fuel in most organisms. As both a monomer and as part of more complex structures such as polysaccharides and glucosides, glucose also plays a major role in modern food products, particularly where flavor and or structure are concerned. Over the years, many diverse methods for detecting and quantifying glucose have been developed; this review presents an overview of the most widely employed and historically significant, including copper iodometry, HPLC, GC, CZE, and enzyme based systems such as glucose meters. The relative strengths and limitations of each method are evaluated, and examples of their recent application in the realm of food chemistry are discussed.

  2. Sodium-Glucose Cotransporter Inhibitors: Effects on Renal and Intestinal Glucose Transport: From Bench to Bedside.

    PubMed

    Mudaliar, Sunder; Polidori, David; Zambrowicz, Brian; Henry, Robert R

    2015-12-01

    Type 2 diabetes is a chronic disease with disabling micro- and macrovascular complications that lead to excessive morbidity and premature mortality. It affects hundreds of millions of people and imposes an undue economic burden on populations across the world. Although insulin resistance and insulin secretory defects play a major role in the pathogenesis of hyperglycemia, several other metabolic defects contribute to the initiation/worsening of the diabetic state. Prominent among these is increased renal glucose reabsorption, which is maladaptive in patients with diabetes. Instead of an increase in renal glucose excretion, which could ameliorate hyperglycemia, there is an increase in renal glucose reabsorption, which helps sustain hyperglycemia in patients with diabetes. The sodium-glucose cotransporter (SGLT) 2 inhibitors are novel antidiabetes agents that inhibit renal glucose reabsorption and promote glucosuria, thereby leading to reductions in plasma glucose concentrations. In this article, we review the long journey from the discovery of the glucosuric agent phlorizin in the bark of the apple tree through the animal and human studies that led to the development of the current generation of SGLT2 inhibitors. PMID:26604280

  3. Organometallic 3-(1H-Benzimidazol-2-yl)-1H-pyrazolo[3,4-b]pyridines as Potential Anticancer Agents

    PubMed Central

    2011-01-01

    Six organometallic complexes of the general formula [MIICl(η6-p-cymene)(L)]Cl, where M = Ru (11a, 12a, 13a) or Os (11b, 12b, 13b) and L = 3-(1H-benzimidazol-2-yl)-1H-pyrazolo[3,4-b]pyridines (L1–L3) have been synthesized. The latter are known as potential cyclin-dependent kinase (Cdk) inhibitors. All compounds have been comprehensively characterized by elemental analysis, one- and two-dimensional NMR spectroscopy, UV–vis spectroscopy, ESI mass spectrometry, and X-ray crystallography (11b and 12b). The multistep synthesis of 3-(1H-benzimidazol-2-yl)-1H-pyrazolo[3,4-b]pyridines (L1–L3), which was reported by other researchers, has been modified by us essentially (e.g., the synthesis of 5-bromo-1H-pyrazolo[3,4-b]pyridine-3-carboxylic acid (3) via 5-bromo-3-methyl-1H-pyrazolo[3,4-b]pyridine (2); the synthesis of 1-methoxymethyl-2,3-diaminobenzene (5) by avoiding the use of unstable 2,3-diaminobenzyl alcohol; and the activation of 1H-pyrazolo[3,4-b]pyridine-3-carboxylic acids (1, 3) through the use of an inexpensive coupling reagent, N,N′-carbonyldiimidazole (CDI)). Stabilization of the 7b tautomer of methoxymethyl-substituted L3 by coordination to a metal(II) center, as well as the NMR spectroscopic characterization of two tautomers 7b-L3 and 4b′-L3 in a metal-free state are described. Structure–activity relationships with regard to cytotoxicity and cell cycle effects in human cancer cells, as well as Cdk inhibitory activity, are also reported. PMID:22032295

  4. An acoustic glucose sensor.

    PubMed

    Hu, Ruifen; Stevenson, Adrian C; Lowe, Christopher R

    2012-05-15

    In vivo glucose monitoring is required for tighter glycaemic control. This report describes a new approach to construct a miniature implantable device based on a magnetic acoustic resonance sensor (MARS). A ≈ 600-800 nm thick glucose-responsive poly(acrylamide-co-3-acrylamidophenylboronic acid) (poly(acrylamide-co-3-APB)) film was polymerised on the quartz disc (12 mm in diameter and 0.25 mm thick) of the MARS. The swelling/shrinking of the polymer film induced by the glucose binding to the phenylboronate caused changes in the resonance amplitude of the quartz disc in the MARS. A linear relationship between the response of the MARS and the glucose concentration in the range ≈ 0-15 mM was observed, with the optimum response of the MARS sensor being obtained when the polymer films contained ≈ 20 mol% 3-APB. The MARS glucose sensor also functioned under flow conditions (9 μl/min) with a response almost identical to the sensor under static or non-flow conditions. The results suggest that the MARS could offer a promising strategy for developing a small subcutaneously implanted continuous glucose monitor.

  5. Alterations in glucose kinetics induced by pentobarbital anesthesia

    SciTech Connect

    Lang, C.H.; Bagby, G.J.; Hargrove, D.M.; Hyde, P.M.; Spitzer, J.J. )

    1987-12-01

    Because pentobarbital is often used in investigations related to carbohydrate metabolism, the in vivo effect of this drug on glucose homeostasis was studied. Glucose kinetics assessed by the constant intravenous infusion of (6-{sup 3}H)- and (U-{sup 14}C)glucose, were determined in three groups of catheterized fasted rats: conscious, anesthetized and body temperature maintained, and anesthetized but body temperature not maintained. After induction of anesthesia, marked hypothermia developed in rats not provided with external heat. Anesthetized rats that developed hypothermia showed a decrease in mean arterial blood pressure (25%) and heart rate (40%). Likewise, the plasma lactate concentration and the rates of glucose appearance, recycling, and metabolic clearance were reduced by 30-50% in the hypothermic anesthetized rats. Changes in whole-body carbohydrate metabolism were prevented when body temperature was maintained. Because plasma pentobarbital levels were similar between the euthermic and hypothermic rats during the first 2 h of the experiment, the rapid reduction in glucose metabolism in this latter group appears related to the decrease in body temperature. The continuous infusion of epinephrine produced alterations in glucose kinetics that were not different between conscious animals and anesthetized rats with body temperature maintained. Thus pentobarbital-anesthetized rats became hypothermic when kept at room temperature and exhibited marked decreases in glucose metabolism. Such changes were absent when body temperature was maintained during anesthesia.

  6. Biology of glucose transport in the mammary gland.

    PubMed

    Zhao, Feng-Qi

    2014-03-01

    Glucose is the major precursor of lactose, which is synthesized in Golgi vesicles of mammary secretory alveolar epithelial cells during lactation. Glucose is taken up by mammary epithelial cells through a passive, facilitative process, which is driven by the downward glucose concentration gradient across the plasma membrane. This process is mediated by facilitative glucose transporters (GLUTs), of which there are 14 known isoforms. Mammary glands mainly express GLUT1 and GLUT8, and GLUT1 is the predominant isoform with a Km of ~10 mM and transport activity for mannose and galactose in addition to glucose. Mammary glucose transport activity increases dramatically from the virgin state to the lactation state, with a concomitant increase in GLUT expression. The increased GLUT expression during lactogenesis is not stimulated by the accepted lactogenic hormones. New evidence indicates that a possible low oxygen tension resulting from increased metabolic rate and oxygen consumption may play a major role in stimulating glucose uptake and GLUT1 expression in mammary epithelial cells during lactogenesis. In addition to its primary presence on the plasma membrane, GLUT1 is also expressed on the Golgi membrane of mammary epithelial cells and is likely involved in facilitating the uptake of glucose and galactose to the site of lactose synthesis. Because lactose synthesis dictates milk volume, regulation of GLUT expression and trafficking represents potentially fruitful areas for further research in dairy production. In addition, this research will have pathological implications for the treatment of breast cancer because glucose uptake and GLUT expression are up-regulated in breast cancer cells to accommodate the increased glucose need.

  7. Palmitate stimulates glucose transport in rat adipocytes by a mechanism involving translocation of the insulin sensitive glucose transporter (GLUT4)

    NASA Technical Reports Server (NTRS)

    Hardy, R. W.; Ladenson, J. H.; Henriksen, E. J.; Holloszy, J. O.; McDonald, J. M.

    1991-01-01

    In rat adipocytes, palmitate: a) increases basal 2-deoxyglucose transport 129 +/- 27% (p less than 0.02), b) decreases the insulin sensitive glucose transporter (GLUT4) in low density microsomes and increases GLUT4 in plasma membranes and c) increases the activity of the insulin receptor tyrosine kinase. Palmitate-stimulated glucose transport is not additive with the effect of insulin and is not inhibited by the protein kinase C inhibitors staurosporine and sphingosine. In rat muscle, palmitate: a) does not affect basal glucose transport in either the soleus or epitrochlearis and b) inhibits insulin-stimulated glucose transport by 28% (p less than 0.005) in soleus but not in epitrochlearis muscle. These studies demonstrate a potentially important differential role for fatty acids in the regulation of glucose transport in different insulin target tissues.

  8. The relationship between glucose transport and the production of succinoglucan exopolysaccharide by Agrobacterium radiobacter.

    PubMed

    Cornish, A; Greenwood, J A; Jones, C W

    1988-12-01

    Agrobacterium radiobacter NCIB 11883 was grown in ammonia-limited continuous culture at low dilution rate with glucose as the carbon source. Under these conditions the organism produced an extracellular succinoglucan polysaccharide and transported glucose using the same periplasmic glucose-binding proteins (GBP1 and GBP2) as during glucose-limited growth. Transition from glucose- to ammonia-limited growth was accompanied by a very rapid decrease in glucose uptake capacity, whereas the glucose-binding proteins were diluted out much more slowly (t1/2 approximately 1 h and 14 h respectively). Although the rate of glucose uptake and the concentrations of GBP1 and GBP2 were much lower during ammonia limitation, the activities of enzymes involved in the early stages of glucose metabolism and in the production of succinoglucan precursors were essentially unchanged. Glucose transport was also investigated in two new strains of A. radiobacter which had been isolated following prolonged growth under glucose limitation. Glucose uptake by strain AR18 was significantly less repressed during ammonia limitation compared with either the original parent strain or strain AR9, and this was reflected both in its relatively high concentration of GBP1 and in its significantly higher rate of succinoglucan synthesis. Flux control analysis using 6-chloro-6-deoxy-D-glucose as an inhibitor of glucose transport showed that the latter was a major kinetic control point for succinoglucan production. It is concluded that glucose uptake by A. radiobacter, particularly via the GBP1-dependent system, is only moderately repressed during ammonia-limited growth and that the organism avoids the potentially deleterious effects of accumulating excess glucose by converting the surplus into succinoglucan.

  9. Stereospecificity of (1) H, (13) C and (15) N shielding constants in the isomers of methylglyoxal bisdimethylhydrazone: problem with configurational assignment based on (1) H chemical shifts.

    PubMed

    Afonin, Andrei V; Pavlov, Dmitry V; Ushakov, Igor A; Keiko, Natalia A

    2012-07-01

    In the (13) C NMR spectra of methylglyoxal bisdimethylhydrazone, the (13) C-5 signal is shifted to higher frequencies, while the (13) C-6 signal is shifted to lower frequencies on going from the EE to ZE isomer following the trend found previously. Surprisingly, the (1) H-6 chemical shift and (1) J(C-6,H-6) coupling constant are noticeably larger in the ZE isomer than in the EE isomer, although the configuration around the -CH═N- bond does not change. This paradox can be rationalized by the C-H⋯N intramolecular hydrogen bond in the ZE isomer, which is found from the quantum-chemical calculations including Bader's quantum theory of atoms in molecules analysis. This hydrogen bond results in the increase of δ((1) H-6) and (1) J(C-6,H-6) parameters. The effect of the C-H⋯N hydrogen bond on the (1) H shielding and one-bond (13) C-(1) H coupling complicates the configurational assignment of the considered compound because of these spectral parameters. The (1) H, (13) C and (15) N chemical shifts of the 2- and 8-(CH(3) )(2) N groups attached to the -C(CH(3) )═N- and -CH═N- moieties, respectively, reveal pronounced difference. The ab initio calculations show that the 8-(CH(3) )(2) N group conjugate effectively with the π-framework, and the 2-(CH(3) )(2) N group twisted out from the plane of the backbone and loses conjugation. As a result, the degree of charge transfer from the N-2- and N-8- nitrogen lone pairs to the π-framework varies, which affects the (1) H, (13) C and (15) N shieldings. PMID:22615146

  10. A classical approach in simple nuclear fusion reaction {sub 1}H{sup 2}+{sub 1}H{sup 3} using two-dimension granular molecular dynamics model

    SciTech Connect

    Viridi, S.; Kurniadi, R.; Waris, A.; Perkasa, Y. S.

    2012-06-06

    Molecular dynamics in 2-D accompanied by granular model provides an opportunity to investigate binding between nuclei particles and its properties that arises during collision in a fusion reaction. A fully classical approach is used to observe the influence of initial angle of nucleus orientation to the product yielded by the reaction. As an example, a simplest fusion reaction between {sub 1}H{sup 2} and {sub 1}H{sup 3} is observed. Several products of the fusion reaction have been obtained, even the unreported ones, including temporary {sub 2}He{sup 4} nucleus.

  11. Molecular structure studies of (1S,2S)-2-benzyl-2,3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol

    PubMed Central

    Zhang, Tao; Paluch, Krzysztof; Scalabrino, Gaia; Frankish, Neil; Healy, Anne-Marie; Sheridan, Helen

    2015-01-01

    The single enantiomer (1S,2S)-2-benzyl-2,3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol (2), has recently been synthesized and isolated from its corresponding diastereoisomer (1). The molecular and crystal structures of this novel compound have been fully analyzed. The relative and absolute configurations have been determined by using a combination of analytical tools including X-ray crystallography, X-ray Powder Diffraction (XRPD) analysis and Nuclear Magnetic Resonance (NMR) spectroscopy. PMID:25750458

  12. Electroacupuncture improves glucose tolerance through cholinergic nerve and nitric oxide synthase effects in rats.

    PubMed

    Lin, Rong-Tsung; Chen, Ching-Yuan; Tzeng, Chung-Yuh; Lee, Yu-Chen; Cheng, Yu-Wen; Chen, Ying-I; Ho, Wai-Jane; Cheng, Juei-Tang; Lin, Jaung-Geng; Chang, Shih-Liang

    2011-04-25

    The purpose of this investigation was to evaluate the effect and mechanisms of electroacupuncture (EA) at the bilateral Zusanli acupoints (ST-36) on glucose tolerance in normal rats. Intravenous glucose tolerance test (IVGTT) was performed to examine the effects of electroacupuncture (EA) on glucose tolerance in rats. The EA group underwent EA at the ST-36, with settings of 15 Hz, 10 mA, and 60 min; the control group underwent the same treatments, but without EA. Atropine, hemicholinium-3 (HC-3) or NG-nitro-L-arginine methyl ester (L-NAME) were injected into the rats alone or simultaneously and EA was performed to investigate differences in plasma glucose levels compared to the control group. Plasma samples were obtained for assaying plasma glucose and free fatty acid (FFA) levels. Western blot was done to determine the insulin signal protein and nNOS to exam the correlation between EA and improvement in glucose tolerance. The EA group had significantly lower plasma glucose levels compared to the control group. Plasma glucose levels differed significantly between the EA and control groups after the administration of L-NAME, atropine, or HC-3 treatments alone, but there were no significant differences in plasma glucose with combined treatment of L-NAME and atropine or L-NAME and HC-3. EA decreased FFA levels and enhanced insulin signal protein (IRS1) and nNOS activities in skeletal muscle during IVGTT. In summary, EA stimulated cholinergic nerves and nitric oxide synthase for lowering plasma FFA levels to improve glucose tolerance. PMID:21376780

  13. A glucose sensor protein for continuous glucose monitoring.

    PubMed

    Veetil, Jithesh V; Jin, Sha; Ye, Kaiming

    2010-12-15

    In vivo continuous glucose monitoring has posed a significant challenge to glucose sensor development due to the lack of reliable techniques that are non- or at least minimally-invasive. In this proof-of-concept study, we demonstrated the development of a new glucose sensor protein, AcGFP1-GBPcys-mCherry, and an optical sensor assembly, capable of generating quantifiable FRET (fluorescence resonance energy transfer) signals for glucose monitoring. Our experimental data showed that the engineered glucose sensor protein can generate measurable FRET signals in response to glucose concentrations varying from 25 to 800 μM. The sensor developed based on this protein had a shelf-life of up to 3 weeks. The sensor response was devoid of interference from compounds like galactose, fructose, lactose, mannose, and mannitol when tested at physiologically significant concentrations of these compounds. This new glucose sensor protein can potentially be used to develop implantable glucose sensors for continuous glucose monitoring.

  14. Insulin and Insulin-like Growth Factor 1 (IGF-1) Modulate Cytoplasmic Glucose and Glycogen Levels but Not Glucose Transport across the Membrane in Astrocytes.

    PubMed

    Muhič, Marko; Vardjan, Nina; Chowdhury, Helena H; Zorec, Robert; Kreft, Marko

    2015-04-24

    Astrocytes contain glycogen, an energy buffer, which can bridge local short term energy requirements in the brain. Glycogen levels reflect a dynamic equilibrium between glycogen synthesis and glycogenolysis. Many factors that include hormones and neuropeptides, such as insulin and insulin-like growth factor 1 (IGF-1) likely modulate glycogen stores in astrocytes, but detailed mechanisms at the cellular level are sparse. We used a glucose nanosensor based on Förster resonance energy transfer to monitor cytosolic glucose concentration with high temporal resolution and a cytochemical approach to determine glycogen stores in single cells. The results show that after glucose depletion, glycogen stores are replenished. Insulin and IGF-1 boost the process of glycogen formation. Although astrocytes appear to express glucose transporter GLUT4, glucose entry across the astrocyte plasma membrane is not affected by insulin. Stimulation of cells with insulin and IGF-1 decreased cytosolic glucose concentration, likely because of elevated glucose utilization for glycogen synthesis.

  15. Investigating the effect of glucose on aortic pulse wave velocity using pancreatic clamping methodology.

    PubMed

    Puzantian, Houry; Teff, Karen; Townsend, Raymond R

    2015-05-01

    Aortic stiffness, determined by carotid-femoral pulse wave velocity (cfPWV), independently predicts cardiovascular outcomes. Recent studies suggest that glucose levels influence arterial stiffness indices. It is not clear, however, whether glucose affects cfPWV independently of glucoregulatory hormones. The aim of this study was to utilize a pancreatic clamping approach to determine whether plasma glucose independently predicts cfPWV. Healthy participants (N = 10) underwent pancreatic clamping to control glucose at varying concentrations using a 20% dextrose infusion while suppressing endogenous glucagon, insulin, and growth hormone by octreotide and replacing the hormones intravenously to achieve basal concentrations. Tonometric cfPWV, blood pressure, heart rate, plasma glucose, glucagon, insulin, growth hormone, and vasoactive biomarkers were measured. Plasma glucose levels of 150 mg/dl at 1 hr and 200 mg/dl at 2 hr postbaseline were achieved. There were no significant changes in cfPWV (5.8 m/s at 0 hr, 5.9 m/s at 1 hr, and 5.9 m/s at 2 hr) with increased glucose levels. There were small increases in insulin secretion. A definitive role for glucose in cfPWV modulation was not determined; there is a potential role for insulin as a cfPWV modulator. Continued efforts in clarifying the independent roles of glucose and insulin can elucidate novel vessel-related targets for cardiovascular disease prevention and management in patients with impaired glucose tolerance and diabetes.

  16. [Effects of quinazoline-2, 4(1H, 3H)-dione compound, H-88 and pyridopyrimidine-2, 4(1H, 3H)-dione compound, HN-37 on pituitary-adrenal axis in rats (author's transl)].

    PubMed

    Tsuji, M; Saita, M; Soejima, Y; Takamori, M; Noda, K; Ueki, S; Fujiwara, M

    1980-11-01

    Anti-carrageenin paw edema effects of 1-(m-trifluoromethylphenyl)-3-(2-hydroxyethyl)-quinazoline-2, 4(1H, 3H)-dione [H-88] and 1-(m-trifluoromethylphenyl)-3-ethylpyridopyrimidine-2, 4(1H, 3H)-dione [HN-37] in rats were dissipated or reduced markedly by adrenalectomy. The effects of both compounds on the pituitary-adrenal axis were therefore investigated in male Wistar rats at 5-6 weeks of age. Oral treatments with H-88 in a dose of 100 mg/kg and HN-37 at 10 mg/kg induced the same degree of responses in intact animals, namely, a marked increase of blood corticosterone level at one hr of the peak time (360%), a decrease of adrenal ascorbic acid level at 3 hr (52-59%), an increase of blood glucose level at 6-12 hr (25-59%) and of liver glycogen level at 12-4 hr (97-153%). In addition, a significant hypertrophy of the pituitary and adrenals (p less than 0.05) at 6-12 hr and/or atrophy of the thymus and spleen at 3-24 hr were noted. The effect of HN-37 on blood corticosterone level was approximately 10 times as potent as that of H-88 as well as on the carrageenin paw edema. The effects of both compounds on blood corticosterone level were dissipated by adrenalectomy, and those on blood corticosterone level and adrenal ascorbic acid level were abolished by hypophysectomy. These results suggest that hypophysis-adrenal axis stimulation may play an important role in antiedematous effects of N-88 and HN-37.

  17. Insulin, catecholamines, glucose and antioxidant enzymes in oxidative damage during different loads in healthy humans.

    PubMed

    Koska, J; Blazícek, P; Marko, M; Grna, J D; Kvetnanský, R; Vigas, M

    2000-01-01

    Exercise, insulin-induced hypoglycemia and oral glucose loads (50 g and 100 g) were used to compare the production of malondialdehyde and the activity of antioxidant enzymes in healthy subjects. Twenty male volunteers participated in the study. Exercise consisted of three consecutive work loads on a bicycle ergometer of graded intensity (1.5, 2.0, and 2.5 W/kg, 6 min each). Hypoglycemia was induced by insulin (Actrapid MC Novo, 0.1 IU/kg, i.v.). Oral administration of 50 g and 100 g of glucose was given to elevate plasma glucose. The activity of superoxide dismutase (SOD) was determined in red blood cells, whereas glutathione peroxidase (GSH-Px) activity was measured in whole blood. The concentration of malondialdehyde (MDA) was determined by HPLC, catecholamines were assessed radioenzymatically and glucose was measured by the glucose-oxidase method. Exercise increased MDA concentrations, GSH-Px and SOD activities as well as plasma noradrenaline and adrenaline levels. Insulin hypoglycemia increased plasma adrenaline levels, but the concentrations of MDA and the activities of GSH-Px and SOD were decreased. Hyperglycemia increased plasma MDA concentrations, but the activities of GSH-Px and SOD were significantly higher after a larger dose of glucose only. Plasma catecholamines were unchanged. These results indicate that the transient increase of plasma catecholamine and insulin concentrations did not induce oxidative damage, while glucose already in the low dose was an important triggering factor for oxidative stress. PMID:10984077

  18. Chlorogenic acid differentially affects postprandial glucose and glucose-dependent insulinotropic polypeptide response in rats.

    PubMed

    Tunnicliffe, Jasmine M; Eller, Lindsay K; Reimer, Raylene A; Hittel, Dustin S; Shearer, Jane

    2011-10-01

    Regular coffee consumption significantly lowers the risk of type 2 diabetes (T2D). Coffee contains thousands of compounds; however, the specific component(s) responsible for this reduced risk is unknown. Chlorogenic acids (CGA) found in brewed coffee inhibit intestinal glucose uptake in vitro. The objective of this study was to elucidate the mechanisms by which CGA acts to mediate blood glucose response in vivo. Conscious, unrestrained, male Sprague-Dawley rats were chronically catheterized and gavage-fed a standardized meal (59% carbohydrate, 25% fat, 12% protein), administered with or without CGA (120 mg·kg(-1)), in a randomized crossover design separated by a 3-day washout period. Acetaminophen was co-administered to assess the effects of CGA on gastric emptying. The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) were measured. GLP-1 response in the presence of glucose and CGA was further examined, using the human colon cell line NCI-H716. Total area under the curve (AUC) for blood glucose was significantly attenuated in rats fed CGA (p < 0.05). Despite this, no differences in plasma insulin or nonesterified fatty acids were observed, and gastric emptying was not altered. Plasma GIP response was blunted in rats fed CGA, with a lower peak concentration and AUC up to 180 min postprandially (p < 0.05). There were no changes in GLP-1 secretion in either the in vivo or in vitro study. In conclusion, CGA treatment resulted in beneficial effects on blood glucose response, with alterations seen in GIP concentrations. Given the widespread consumption and availability of coffee, CGA may be a viable prevention tool for T2D. PMID:21977912

  19. Glucose infusion does not suppress increased lipolysis after abdominal surgery.

    PubMed

    Schricker, T; Carli, F; Lattermann, R; Wachter, U; Georgieff, M

    2001-02-01

    The purpose of this study was to investigate the effect of glucose infusion on lipid metabolism after abdominal surgery. Patients (n = 6) with non-metastasized colorectal carcinoma were investigated on the second day after surgery and healthy volunteers were studied after an overnight fast. The rates of glycerol appearance (R(a) glycerol), i.e., lipolysis rates, were assessed by primed continuous infusion of [1,1,2,3,3,-5H2]glycerol before and after 3 h of glucose infusion (4 mg x kg(-1) x min(-1)). Plasma concentrations of glycerol, free fatty acids, glucose, lactate, insulin, and glucagon were determined. Fasting R(a) glycerol was higher in patients than in volunteers (7.7 +/- 1.8 versus 1.9 +/- 0.3 micromol x kg(-1) x min(-1), P < 0.05). Glucose infusion suppressed the R(a) glycerol in volunteers to 1.0 +/- 0.2 micromol x kg(-1) x min(-1) (P < 0.05), whereas lipolysis was not affected in patients. Plasma concentrations of glycerol and free fatty acids similarly decreased during glucose administration by 50% in both groups (P < 0.05). In contrast to the patients, a significant correlation (r = 0.78, P < 0.05) between the R(a) glycerol and plasma glycerol concentration was observed in normal subjects. The hyperglycemic response to glucose infusion was significantly more pronounced (P < 0.05) in patients (10.7 +/- 0.7 mmol/L) than in volunteers (7.1 +/- 0.4 mmol/L), whereas the plasma insulin increased to the same extent in the two groups (P < 0.001). In conclusion, lipolysis rates are increased after abdominal surgery and glucose administration, most likely due to insulin resistance, and fail to inhibit stimulated whole-body lipolysis. PMID:11240333

  20. Glucose and lactate kinetics in American eel Anguilla rostrata.

    PubMed

    Cornish, I; Moon, T W

    1985-07-01

    Simultaneous infusion of [6-3H]glucose and [U-14C]lactate was used to calculate the turnover rate of glucose, the irreversible replacement rate of lactate, and the rates of the exchange of carbon atoms between glucose and lactate in free-swimming American eels (Anguilla rostrata) fed or food deprived for 6, 15, and 36 (maturing) mo. The mean turnover rate of glucose in fed animals averaged 1.0 mg X min-1 X 100 g-1, while the lactate irreversible replacement rate was approximately 4.0 micrograms X min-1 X 100 g-1. The conversion of 35% of lactate carbon to glucose implied a substantial Cori cycle activity, but this amounted to less than 1% of total glucose production. Food deprivation for 6 mo altered few kinetic patterns, except for an increased lactate irreversible replacement rate and a minor increase in gluconeogenesis from lactate. After a 15-mo fast, glucose turnover decreased to 0.09 +/- 0.02 mg X min-1 X 100 g-1. Plasma lactate concentrations and production rates continuously increased during the experiment. Maturing eels that had been food deprived for 36 mo maintained glucose and lactate concentrations and kinetics similar to values in animals food deprived for only 6 mo. This study stresses the importance of carbohydrate in the metabolism of this species under fed and food-deprived conditions and further supports the tolerance of Anguillid species to food deprivation.

  1. Prognosis Biomarkers of Severe Sepsis and Septic Shock by 1H NMR Urine Metabolomics in the Intensive Care Unit

    PubMed Central

    Modesto-Alapont, Vicente; Gonzalez-Marrachelli, Vannina; Vento-Rehues, Rosa; Jorda-Miñana, Angela; Blanquer-Olivas, Jose; Monleon, Daniel

    2015-01-01

    Early diagnosis and patient stratification may improve sepsis outcome by a timely start of the proper specific treatment. We aimed to identify metabolomic biomarkers of sepsis in urine by 1H-NMR spectroscopy to assess the severity and to predict outcomes. Urine samples were collected from 64 patients with severe sepsis or septic shock in the ICU for a 1H NMR spectra acquisition. A supervised analysis was performed on the processed spectra, and a predictive model for prognosis (30-days mortality/survival) of sepsis was constructed using partial least-squares discriminant analysis (PLS-DA). In addition, we compared the prediction power of metabolomics data respect the Sequential Organ Failure Assessment (SOFA) score. Supervised multivariate analysis afforded a good predictive model to distinguish the patient groups and detect specific metabolic patterns. Negative prognosis patients presented higher values of ethanol, glucose and hippurate, and on the contrary, lower levels of methionine, glutamine, arginine and phenylalanine. These metabolites could be part of a composite biopattern of the human metabolic response to sepsis shock and its mortality in ICU patients. The internal cross-validation showed robustness of the metabolic predictive model obtained and a better predictive ability in comparison with SOFA values. Our results indicate that NMR metabolic profiling might be helpful for determining the metabolomic phenotype of worst-prognosis septic patients in an early stage. A predictive model for the evolution of septic patients using these metabolites was able to classify cases with more sensitivity and specificity than the well-established organ dysfunction score SOFA. PMID:26565633

  2. Prognosis Biomarkers of Severe Sepsis and Septic Shock by 1H NMR Urine Metabolomics in the Intensive Care Unit.

    PubMed

    Garcia-Simon, Monica; Morales, Jose M; Modesto-Alapont, Vicente; Gonzalez-Marrachelli, Vannina; Vento-Rehues, Rosa; Jorda-Miñana, Angela; Blanquer-Olivas, Jose; Monleon, Daniel

    2015-01-01

    Early diagnosis and patient stratification may improve sepsis outcome by a timely start of the proper specific treatment. We aimed to identify metabolomic biomarkers of sepsis in urine by (1)H-NMR spectroscopy to assess the severity and to predict outcomes. Urine samples were collected from 64 patients with severe sepsis or septic shock in the ICU for a (1)H NMR spectra acquisition. A supervised analysis was performed on the processed spectra, and a predictive model for prognosis (30-days mortality/survival) of sepsis was constructed using partial least-squares discriminant analysis (PLS-DA). In addition, we compared the prediction power of metabolomics data respect the Sequential Organ Failure Assessment (SOFA) score. Supervised multivariate analysis afforded a good predictive model to distinguish the patient groups and detect specific metabolic patterns. Negative prognosis patients presented higher values of ethanol, glucose and hippurate, and on the contrary, lower levels of methionine, glutamine, arginine and phenylalanine. These metabolites could be part of a composite biopattern of the human metabolic response to sepsis shock and its mortality in ICU patients. The internal cross-validation showed robustness of the metabolic predictive model obtained and a better predictive ability in comparison with SOFA values. Our results indicate that NMR metabolic profiling might be helpful for determining the metabolomic phenotype of worst-prognosis septic patients in an early stage. A predictive model for the evolution of septic patients using these metabolites was able to classify cases with more sensitivity and specificity than the well-established organ dysfunction score SOFA.

  3. Metabolic profiling studies on the toxicological effects of realgar in rats by {sup 1}H NMR spectroscopy

    SciTech Connect

    Wei Lai; Liao Peiqiu; Wu Huifeng; Li Xiaojing Pei Fengkui Li Weisheng; Wu Yijie

    2009-02-01

    The toxicological effects of realgar after intragastrical administration (1 g/kg body weight) were investigated over a 21 day period in male Wistar rats using metabonomic analysis of {sup 1}H NMR spectra of urine, serum and liver tissue aqueous extracts. Liver and kidney histopathology examination and serum clinical chemistry analyses were also performed. {sup 1}H NMR spectra and pattern recognition analyses from realgar treated animals showed increased excretion of urinary Kreb's cycle intermediates, increased levels of ketone bodies in urine and serum, and decreased levels of hepatic glucose and glycogen, as well as hypoglycemia and hyperlipoidemia, suggesting the perturbation of energy metabolism. Elevated levels of choline containing metabolites and betaine in serum and liver tissue aqueous extracts and increased serum creatine indicated altered transmethylation. Decreased urinary levels of trimethylamine-N-oxide, phenylacetylglycine and hippurate suggested the effects on the gut microflora environment by realgar. Signs of impairment of amino acid metabolism were supported by increased hepatic glutamate levels, increased methionine and decreased alanine levels in serum, and hypertaurinuria. The observed increase in glutathione in liver tissue aqueous extracts could be a biomarker of realgar induced oxidative injury. Serum clinical chemistry analyses showed increased levels of lactate dehydrogenase, aspartate aminotransferase, and alkaline phosphatase as well as increased levels of blood urea nitrogen and creatinine, indicating slight liver and kidney injury. The time-dependent biochemical variations induced by realgar were achieved using pattern recognition methods. This work illustrated the high reliability of NMR-based metabonomic approach on the study of the biochemical effects induced by traditional Chinese medicine.

  4. 1H and 15N NMR Analyses on Heparin, Heparan Sulfates and Related Monosaccharides Concerning the Chemical Exchange Regime of the N-Sulfo-Glucosamine Sulfamate Proton

    PubMed Central

    Pomin, Vitor H.

    2016-01-01

    Heparin and heparan sulfate are structurally related glycosaminoglycans (GAGs). Both GAGs present, although in different concentrations, N-sulfo-glucosamine (GlcNS) as one of their various composing units. The conditional fast exchange property of the GlcNS sulfamate proton in these GAGs has been pointed as the main barrier to its signal detection via NMR experiments, especially 1H-15N HSQC. Here, a series of NMR spectra is collected on heparin, heparan sulfate and related monosaccharides. The N-acetyl glucosamine-linked uronic acid types of these GAGs were properly assigned in the 1H-15N HSQC spectra. Dynamic nuclear polarization (DNP) was employed in order to facilitate 1D spectral acquisition of the sulfamate 15N signal of free GlcNS. Analyses on the multiplet pattern of scalar couplings of GlcNS 15N has helped to understand the chemical properties of the sulfamate proton in solution. The singlet peak observed for GlcNS happens due to fast chemical exchange of the GlcNS sulfamate proton in solution. Analyses on kinetics of alpha-beta anomeric mutarotation via 1H NMR spectra have been performed in GlcNS as well as other glucose-based monosaccharides. 1D 1H and 2D 1H-15N HSQC spectra recorded at low temperature for free GlcNS dissolved in a proton-rich solution showed signals from all exchangeable protons, including those belonging to the sulfamate group. This work suits well to the current grand celebration of one-century-anniversary of the discovery of heparin. PMID:27618066

  5. 2D 1H and 3D 1H-15N NMR of zinc-rubredoxins: contributions of the beta-sheet to thermostability.

    PubMed Central

    Richie, K. A.; Teng, Q.; Elkin, C. J.; Kurtz, D. M.

    1996-01-01

    Based on 2D 1H-1H and 2D and 3D 1H-15N NMR spectroscopies, complete 1H NMR assignments are reported for zinc-containing Clostridium pasteurianum rubredoxin (Cp ZnRd). Complete 1H NMR assignments are also reported for a mutated Cp ZnRd, in which residues near the N-terminus, namely, Met 1, Lys 2, and Pro 15, have been changed to their counterparts, (-), Ala and Glu, respectively, in rubredoxin from the hyperthermophilic archaeon, Pyrococcus furiosus (Pf Rd). The secondary structure of both wild-type and mutated Cp ZnRds, as determined by NMR methods, is essentially the same. However, the NMR data indicate an extension of the three-stranded beta-sheet in the mutated Cp ZnRd to include the N-terminal Ala residue and Glu 15, as occurs in Pf Rd. The mutated Cp Rd also shows more intense NOE cross peaks, indicating stronger interactions between the strands of the beta-sheet and, in fact, throughout the mutated Rd. However, these stronger interactions do not lead to any significant increase in thermostability, and both the mutated and wild-type Cp Rds are much less thermostable than Pf Rd. These correlations strongly suggest that, contrary to a previous proposal [Blake PR et al., 1992, Protein Sci 1:1508-1521], the thermostabilization mechanism of Pf Rd is not dominated by a unique set of hydrogen bonds or electrostatic interactions involving the N-terminal strand of the beta-sheet. The NMR results also suggest that an overall tighter protein structure does not necessarily lead to increased thermostability. PMID:8732760

  6. Abnormal transient rise in hepatic glucose production after oral glucose in non-insulin-dependent diabetic subjects.

    PubMed

    Thorburn, A; Litchfield, A; Fabris, S; Proietto, J

    1995-05-01

    A transient rise in hepatic glucose production (HGP) after an oral glucosa load has been reported in some insulin-resistant states such as in obese fa/fa Zucker rats. The aim of this study was to determine whether this rise in HGP also occurs in subjects with established non-insulin-dependent diabetes mellitus (NIDDM). Glucose kinetics were measured basally and during a double-label oral glucose tolerance test (OGTT) in 12 NIDDM subjects and 12 non-diabetic 'control' subjects. Twenty minutes after the glucose load, HGP had increased 73% above basal in the NIDDM subjects (7.29 +/- 0.52 to 12.58 +/- 1.86 mumol/kg/min, P < 0.02). A transient rise in glucagon (12 pg/ml above basal, P < 0.004) occurred at a similar time. In contrast, the control subjects showed no rise in HGP or plasma glucagon. HGP began to suppress 40-50 min after the OGTT in both the NIDDM and control subjects. A 27% increase in the rate of gut-derived glucose absorption was also observed in the NIDDM group, which could be the result of increased gut glucose absorption or decreased first pass extraction of glucose by the liver. Therefore, in agreement with data in animal models of NIDDM, a transient rise in HGP partly contributes to the hyperglycemia observed after an oral glucose load in NIDDM subjects. PMID:7587920

  7. Assessing Glucose Uptake through the Yeast Hexose Transporter 1 (Hxt1)

    PubMed Central

    Roy, Adhiraj; Dement, Angela D.; Cho, Kyu Hong; Kim, Jeong-Ho

    2015-01-01

    The transport of glucose across the plasma membrane is mediated by members of the glucose transporter family. In this study, we investigated glucose uptake through the yeast hexose transporter 1 (Hxt1) by measuring incorporation of 2-NBDG, a non-metabolizable, fluorescent glucose analog, into the yeast Saccharomyces cerevisiae. We find that 2-NBDG is not incorporated into the hxt null strain lacking all glucose transporter genes and that this defect is rescued by expression of wild type Hxt1, but not of Hxt1 with mutations at the putative glucose-binding residues, inferred from the alignment of yeast and human glucose transporter sequences. Similarly, the growth defect of the hxt null strain on glucose is fully complemented by expression of wild type Hxt1, but not of the mutant Hxt1 proteins. Thus, 2-NBDG, like glucose, is likely to be transported into the yeast cells through the glucose transport system. Hxt1 is internalized and targeted to the vacuole for degradation in response to glucose starvation. Among the mutant Hxt1 proteins, Hxt1N370A and HXT1W473A are resistant to such degradation. Hxt1N370A, in particular, is able to neither uptake 2-NBDG nor restore the growth defect of the hxt null strain on glucose. These results demonstrate 2-NBDG as a fluorescent probe for glucose uptake in the yeast cells and identify N370 as a critical residue for the stability and function of Hxt1. PMID:25816250

  8. An ultrasensitive, non-enzymatic glucose assay via gold nanorod-assisted generation of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Xianyu, Yunlei; Sun, Jiashu; Li, Yixuan; Tian, Yue; Wang, Zhuo; Jiang, Xingyu

    2013-06-01

    This report demonstrates a colorimetric, non-enzymatic glucose assay with a low detection limit of 0.07 μM based on negatively charged gold nanorod-enhanced redox reaction. This glucose assay could generate silver nanoparticles as the readout that can be visualized by the naked eye, and only 4 femtomoles of nanorods are needed for glucose determination in one human plasma sample.This report demonstrates a colorimetric, non-enzymatic glucose assay with a low detection limit of 0.07 μM based on negatively charged gold nanorod-enhanced redox reaction. This glucose assay could generate silver nanoparticles as the readout that can be visualized by the naked eye, and only 4 femtomoles of nanorods are needed for glucose determination in one human plasma sample. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01697h

  9. Impaired Glucose Regulation is Associated with Poorer Performance on the Stroop Task

    PubMed Central

    Gluck, Marci E.; Ziker, Cindy; Schwegler, Matthew; Thearle, Marie; Votruba, Susanne B.; Krakoff, Jonathan

    2013-01-01

    Background Type 2 diabetes is a risk factor for development of cognitive dysfunction. Impairments in glucose regulation have been associated with poorer performance on tests of executive function and information processing speed. Methods We administered the Stroop Color Word Task, where higher interference scores are indicative of decreased selective attention, to 98 non-diabetic volunteers (64m; %fat=37±12; age=36±9 y, race=41 NA/30 C/13 H/14 AA) on our inpatient unit. After 3d on a weight maintaining diet, % body fat was measured by DXA and a 75g oral glucose tolerance test (OGTT) was administered. Impaired glucose regulation (IGR) was defined as: fasting plasma glucose ≥100 and ≤125 mg/dL and/or 2h plasma glucose between ≥140 and ≤199 mg/dL (IGR; n = 48; NGR; n = 50). Total and incremental area under the curve (AUC) for insulin and glucose were calculated. Results Stroop interference scores were not significantly associated with any measure of adiposity or insulin concentrations. Individuals with IGR had significantly higher interference scores than those with normal glucose regulation (NGR; p=0.003). Higher interference scores were significantly correlated with fasting plasma glucose concentrations (r=0.26, p = 0.007) and total glucose AUC (r=0.30, p = 0.02) and only trending so for iAUC and 2h plasma glucose (r=0.18, p=0.08; r=0.17, p=0.09 respectively). In separate multivariate linear models, fasting plasma glucose (p = 0.002) and total glucose AUC (p = 0.0005) remained significant predictors of Stroop interference scores, even after adjustment for age, sex, race, education and %fat. Conclusions Individuals with IGR had decreased performance on a test of selective attention. Fasting plasma glucose was more strongly associated with lower performance scores than 2h plasma glucose. Our results indicate that even mild hyperglycemia in the non-diabetic range is associated with attentional processing difficulties in a sample of younger adults. Whether

  10. Proposed structure of putative glucose channel in GLUT1 facilitative glucose transporter.

    PubMed

    Zeng, H; Parthasarathy, R; Rampal, A L; Jung, C Y

    1996-01-01

    A family of structurally related intrinsic membrane proteins (facilitative glucose transporters) catalyzes the movement of glucose across the plasma membrane of animal cells. Evidence indicates that these proteins show a common structural motif where approximately 50% of the mass is embedded in lipid bilayer (transmembrane domain) in 12 alpha-helices (transmembrane helices; TMHs) and accommodates a water-filled channel for substrate passage (glucose channel) whose tertiary structure is currently unknown. Using recent advances in protein structure prediction algorithms we proposed here two three-dimensional structural models for the transmembrane glucose channel of GLUT1 glucose transporter. Our models emphasize the physical dimension and water accessibility of the channel, loop lengths between TMHs, the macrodipole orientation in four-helix bundle motif, and helix packing energy. Our models predict that five TMHs, either TMHs 3, 4, 7, 8, 11 (Model 1) or TMHs 2, 5, 11, 8, 7 (Model 2), line the channel, and the remaining TMHs surround these channel-lining TMHs. We discuss how our models are compatible with the experimental data obtained with this protein, and how they can be used in designing new biochemical and molecular biological experiments in elucidation of the structural basis of this important protein function.

  11. A common polymorphism in NR1H2 (LXRbeta) is associated with preeclampsia

    PubMed Central

    2011-01-01

    Background Preeclampsia is a frequent complication of pregnancy and a leading cause of perinatal mortality. Both genetic and environmental risk factors have been identified. Lipid metabolism, particularly cholesterol metabolism, is associated with this disease. Liver X receptors alpha (NR1H3, also known as LXRalpha) and beta (NR1H2, also known as LXRbeta) play a key role in lipid metabolism. They belong to the nuclear receptor superfamily and are activated by cholesterol derivatives. They have been implicated in preeclampsia because they modulate trophoblast invasion and regulate the expression of the endoglin (CD105) gene, a marker of preeclampsia. The aim of this study was to investigate associations between the NR1H3 and NR1H2 genes and preeclampsia. Methods We assessed associations between single nucleotide polymorphisms of NR1H3 (rs2279238 and rs7120118) and NR1H2 (rs35463555 and rs2695121) and the disease in 155 individuals with preeclampsia and 305 controls. Genotypes were determined by high-resolution melting analysis. We then used a logistic regression model to analyze the different alleles and genotypes for those polymorphisms as a function of case/control status. Results We found no association between NR1H3 SNPs and the disease, but the NR1H2 polymorphism rs2695121 was found to be strongly associated with preeclampsia (genotype C/C: adjusted odds ratio, 2.05; 95% CI, 1.04-4.05; p = 0.039 and genotype T/C: adjusted odds ratio, 1.85; 95% CI, 1.01-3.42; p = 0.049). Conclusions This study provides the first evidence of an association between the NR1H2 gene and preeclampsia, adding to our understanding of the links between cholesterol metabolism and this disease. PMID:22029530

  12. Intermolecular Interactions between Eosin Y and Caffeine Using 1H-NMR Spectroscopy

    PubMed Central

    Okuom, Macduff O.; Wilson, Mark V.; Jackson, Abby; Holmes, Andrea E.

    2014-01-01

    DETECHIP has been used in testing analytes including caffeine, cocaine, and tetrahydrocannabinol (THC) from marijuana, as well as date rape and club drugs such as flunitrazepam, gamma-hydroxybutyric acid (GHB), and methamphetamine. This study investigates the intermolecular interaction between DETECHIP sensor eosin Y (DC1) and the analyte (caffeine) that is responsible for the fluorescence and color changes observed in the actual array. Using 1H-NMR, 1H-COSY, and 1H-DOSY NMR methods, a proton exchange from C-8 of caffeine to eosin Y is proposed. PMID:25018772

  13. Intermolecular Interactions between Eosin Y and Caffeine Using (1)H-NMR Spectroscopy.

    PubMed

    Okuom, Macduff O; Wilson, Mark V; Jackson, Abby; Holmes, Andrea E

    2013-12-31

    DETECHIP has been used in testing analytes including caffeine, cocaine, and tetrahydrocannabinol (THC) from marijuana, as well as date rape and club drugs such as flunitrazepam, gamma-hydroxybutyric acid (GHB), and methamphetamine. This study investigates the intermolecular interaction between DETECHIP sensor eosin Y (DC1) and the analyte (caffeine) that is responsible for the fluorescence and color changes observed in the actual array. Using (1)H-NMR, (1)H-COSY, and (1)H-DOSY NMR methods, a proton exchange from C-8 of caffeine to eosin Y is proposed. PMID:25018772

  14. Glucose Tolerance and Hyperkinesis.

    ERIC Educational Resources Information Center

    Langseth, Lillian; Dowd, Judith

    Examined were medical records of 265 hyperkinetic children (7-9 years old). Clinical blood chemistries, hematology, and 5-hour glucose tolerance test (GTT) results indicated that hematocrit levels were low in 27% of the Ss, eosinophil levels were abnormally high in 86% of the Ss, and GTT results were abnormal in a maority of Ss. (CL)

  15. Blood glucose monitoring.

    PubMed

    Davey, Sarah

    2014-06-10

    I found the CPD article on blood glucose monitoring and management in acute stroke care interesting and informative. As I am a mental health nursing student, my knowledge of chronic physical conditions is limited, so I learned a lot. PMID:24894257

  16. A Metabolomic Approach (1H HRMAS NMR Spectroscopy) Supported by Histology to Study Early Post-transplantation Responses in Islet-transplanted Livers

    PubMed Central

    Vivot, Kevin; Benahmed, Malika A.; Seyfritz, Elodie; Bietiger, William; Elbayed, Karim; Ruhland, Elisa; Langlois, Allan; Maillard, Elisa; Pinget, Michel; Jeandidier, Nathalie; Gies, Jean-Pierre; Namer, Izzie-Jacques; Sigrist, Séverine; Reix, Nathalie

    2016-01-01

    Intrahepatic transplantation of islets requires a lot of islets because more than 50% of the graft is lost during the 24 hours following transplantation. We analyzed, in a rat model, early post-transplantation inflammation using systemic inflammatory markers, or directly in islet-transplanted livers by immunohistochemistry. 1H HRMAS NMR was employed to investigate metabolic responses associated with the transplantation. Inflammatory markers (Interleukin-6, α2-macroglobulin) are not suitable to follow islet reactions as they are not islet specific. To study islet specific inflammatory events, immunohistochemistry was performed on sections of islet transplanted livers for thrombin (indicator of the instant blood-mediated inflammatory reaction (IBMIR)) and granulocytes and macrophages. We observed a specific correlation between IBMIR and granulocyte and macrophage infiltration after 12 h. In parallel, we identified a metabolic response associated with transplantation: after 12 h, glucose, alanine, aspartate, glutamate and glutathione were significantly increased. An increase of glucose is a marker of tissue degradation, and could be explained by immune cell infiltration. Alanine, aspartate and glutamate are inter-connected in a common metabolic pathway known to be activated during hypoxia. An increase of glutathione revealed the presence of antioxidant protection. In this study, IBMIR visualization combined with 1H HRMAS NMR facilitated the characterization of cellular and molecular pathways recruited following islet transplantation. PMID:27766032

  17. Tracing bacterial metabolism using multi-nuclear (1H, 2H, and 13C) Solid State NMR: Realizing an Idea Initiated by James Scott

    NASA Astrophysics Data System (ADS)

    Cody, G.; Fogel, M. L.; Jin, K.; Griffen, P.; Steele, A.; Wang, Y.

    2011-12-01

    Approximately 6 years ago, while at the Geophysical Laboratory, James Scott became interested in the application of Solid State Nuclear Magnetic Resonance Spectroscopy to study bacterial metabolism. As often happens, other experiments intervened and the NMR experiments were not pursued. We have revisited Jame's question and find that using a multi-nuclear approach (1H, 2H, and 13C Solid State NMR) on laboratory cell culture has some distinct advantages. Our experiments involved batch cultures of E. coli (MG1655) harvested at stationary phase. In all experiments the growth medium consisted of MOPS medium for enterobacteria, where the substrate is glucose. In one set of experiments, 10 % of the water was D2O; in another 10 % of the glucose was per-deuterated. The control experiment used both water and glucose at natural isotopic abundance. A kill control of dead E. coli immersed in pure D2O for an extended period exhibited no deuterium incorporation. In both deuterium enriched experiments, considerable incorporation of deuterium into E. coli's biomolecular constituents was detected via 2H Solid State NMR. In the case of the D2O enriched experiment, 58 % of the incorporated deuterium is observed in a sharp peak at a frequency of 0.31 ppm, consistent with D incorporation in the cell membrane lipids, the remainder is observed in a broad peak at a higher frequency (centered at 5.4 ppm, but spanning out to beyond 10 ppm) that is consistent with D incorporation into predominantly DNA and RNA. In the case of the D-glucose experiments, 61 % of the deuterium is observed in a sharp resonance peak at 0.34 ppm, also consistent with D incorporation into membrane lipids, the remainder of the D is observed at a broad resonance peak centered at 4.3 ppm, consistent with D enrichment in glycogen. Deuterium abundance in the E. coli cells grown in 10 % D2O is nearly 2X greater than that grown with 10 % D-glucose. Very subtle differences are observed in both the 1H and 13C solid

  18. Finite-pulse radio frequency driven recoupling with phase cycling for 2D 1H/1H correlation at ultrafast MAS frequencies

    NASA Astrophysics Data System (ADS)

    Nishiyama, Yusuke; Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2014-06-01

    The first-order recoupling sequence radio frequency driven dipolar recoupling (RFDR) is commonly used in single-quantum/single-quantum homonuclear correlation 2D experiments under magic angle spinning (MAS) to determine homonuclear proximities. From previously reported analysis of the use of XY-based super-cycling schemes to enhance the efficiency of the finite-pulse-RFDR (fp-RFDR) pulse sequence, XY814 phase cycling was found to provide the optimum performance for 2D correlation experiments on low-γ nuclei. In this study, we analyze the efficiency of different phase cycling schemes for proton-based fp-RFDR experiments. We demonstrate the advantages of using a short phase cycle, XY4, and its super-cycle XY414 that only recouples the zero-quantum homonuclear dipolar coupling, for the fp-RFDR sequence in 2D 1H/1H correlation experiments at ultrafast MAS frequencies. The dipolar recoupling efficiencies of XY4, XY414 and XY814 phase cycling schemes are compared based on results obtained from 2D 1H/1H correlation experiments, utilizing the fp-RFDR pulse sequence, on powder samples of U-13C,15N-L-alanine, N-acetyl-15N-L-valyl-15N-L-leucine, and glycine. Experimental results and spin dynamics simulations show that XY414 performs the best when a high RF power is used for the 180° pulse, whereas XY4 renders the best performance when a low RF power is used. The effects of RF field inhomogeneity and chemical shift offsets are also examined. Overall, our results suggest that a combination of fp-RFDR-XY414 employed in the recycle delay with a large RF-field to decrease the recycle delay, and fp-RFDR-XY4 in the mixing period with a moderate RF-field, is a robust and efficient method for 2D single-quantum/single-quantum 1H/1H correlation experiments at ultrafast MAS frequencies.

  19. Effect of Intravenous Glucose Tolerance Test on Bone Turnover Markers in Adults with Normal Glucose Tolerance

    PubMed Central

    Xiang, Shou-Kui; Wan, Jing-Bo; Jiang, Xiao-Hong; Zhu, Yong-Hua; Ma, Jin-Hong; Hua, Fei

    2016-01-01

    Background It is well known that enteral nutrients result in acute suppression of bone turnover markers (BTMs), and incretin hormones are believed to play a significant role in this physiological skeletal response. However, there is limited research exploring the impact of parenteral nutrients on BTMs. Our aim was to assess the influence of intravenous glucose on BTMs in adults with normal glucose tolerance (NGT). Material/Methods We conducted 1-h intravenous glucose tolerance test (IVGTT) in 24 subjects with NGT. Blood samples were collected before and 5, 10, 15, 20, 30, 60 min after administration of glucose, then serum levels of bone formation marker procollagen type I N-terminal propeptide (P1NP) and resorption marker C-terminal cross-linking telopeptides of collagen type I (CTX) were measured. Results During IVGTT, the fasting CTX level fell gradually and reached a nadir of 80.4% of the basal value at 60 min. Conversely, the fasting P1NP level decreased mildly and reached a nadir of 90.6% of the basal value at 15 min, then gradually increased and reached 96.6% at 60 min. The CTX-to-P1NP ratio increased slightly and reached a peak of 104.3% of the basal value at 10 min, then fell gradually and reached a nadir of 83% at 60 min. Conclusions Our study indicates that intravenous glucose results in an acute suppression of BTMs in the absence of incretin hormones. The mechanism responsible for this needs further investigation. PMID:27447783

  20. Potential role of body fluid 1H NMR metabonomics as a prognostic and diagnostic tool.

    PubMed

    Ala-Korpela, Mika

    2007-11-01

    This review briefly handles the use of (1)H NMR spectroscopy in lipoprotein subclass analytics. Potential diagnostic uses of (1)H NMR metabonomics of human serum for coronary heart disease, diabetic nephropathy and cancer are also discussed. In addition, miscellaneous recent applications of NMR metabonomics (e.g., a pharmacometabonomic tactic to personalize drug treatment) as well as multi-organ, multispecies and multi-omics approaches to molecular systems biology are featured. Some related experimental and data analysis methodologies are briefly introduced with respect to the biochemical rationales. Critical considerations on the potential diagnostic value of in vitro (1)H NMR are presented together with optimism toward the usage of body fluid (1)H NMR metabonomics in disease risk assessment and as an aid for personalized medicine.

  1. Estimation of the Relative Contribution of Postprandial Glucose Exposure to Average Total Glucose Exposure in Subjects with Type 2 Diabetes.

    PubMed

    Ahrén, Bo; Foley, James E

    2016-01-01

    We hypothesized that the relative contribution of fasting plasma glucose (FPG) versus postprandial plasma glucose (PPG) to glycated haemoglobin (HbA1c) could be calculated using an algorithm developed by the A1c-Derived Average Glucose (ADAG) study group to make HbA1c values more clinically relevant to patients. The algorithm estimates average glucose (eAG) exposure, which can be used to calculate apparent PPG (aPPG) by subtracting FPG. The hypothesis was tested in a large dataset (comprising 17 studies) from the vildagliptin clinical trial programme. We found that 24 weeks of treatment with vildagliptin monotherapy (n = 2523) reduced the relative contribution of aPPG to eAG from 8.12% to 2.95% (by 64%, p < 0.001). In contrast, when vildagliptin was added to metformin (n = 2752), the relative contribution of aPPG to eAG insignificantly increased from 1.59% to 2.56%. In conclusion, glucose peaks, which are often prominent in patients with type 2 diabetes, provide a small contribution to the total glucose exposure assessed by HbA1c, and the ADAG algorithm is not robust enough to assess this small relative contribution in patients receiving combination therapy. PMID:27635135

  2. Estimation of the Relative Contribution of Postprandial Glucose Exposure to Average Total Glucose Exposure in Subjects with Type 2 Diabetes

    PubMed Central

    2016-01-01

    We hypothesized that the relative contribution of fasting plasma glucose (FPG) versus postprandial plasma glucose (PPG) to glycated haemoglobin (HbA1c) could be calculated using an algorithm developed by the A1c-Derived Average Glucose (ADAG) study group to make HbA1c values more clinically relevant to patients. The algorithm estimates average glucose (eAG) exposure, which can be used to calculate apparent PPG (aPPG) by subtracting FPG. The hypothesis was tested in a large dataset (comprising 17 studies) from the vildagliptin clinical trial programme. We found that 24 weeks of treatment with vildagliptin monotherapy (n = 2523) reduced the relative contribution of aPPG to eAG from 8.12% to 2.95% (by 64%, p < 0.001). In contrast, when vildagliptin was added to metformin (n = 2752), the relative contribution of aPPG to eAG insignificantly increased from 1.59% to 2.56%. In conclusion, glucose peaks, which are often prominent in patients with type 2 diabetes, provide a small contribution to the total glucose exposure assessed by HbA1c, and the ADAG algorithm is not robust enough to assess this small relative contribution in patients receiving combination therapy.

  3. Estimation of the Relative Contribution of Postprandial Glucose Exposure to Average Total Glucose Exposure in Subjects with Type 2 Diabetes

    PubMed Central

    2016-01-01

    We hypothesized that the relative contribution of fasting plasma glucose (FPG) versus postprandial plasma glucose (PPG) to glycated haemoglobin (HbA1c) could be calculated using an algorithm developed by the A1c-Derived Average Glucose (ADAG) study group to make HbA1c values more clinically relevant to patients. The algorithm estimates average glucose (eAG) exposure, which can be used to calculate apparent PPG (aPPG) by subtracting FPG. The hypothesis was tested in a large dataset (comprising 17 studies) from the vildagliptin clinical trial programme. We found that 24 weeks of treatment with vildagliptin monotherapy (n = 2523) reduced the relative contribution of aPPG to eAG from 8.12% to 2.95% (by 64%, p < 0.001). In contrast, when vildagliptin was added to metformin (n = 2752), the relative contribution of aPPG to eAG insignificantly increased from 1.59% to 2.56%. In conclusion, glucose peaks, which are often prominent in patients with type 2 diabetes, provide a small contribution to the total glucose exposure assessed by HbA1c, and the ADAG algorithm is not robust enough to assess this small relative contribution in patients receiving combination therapy. PMID:27635135

  4. Pro-Oxidant Role of Silibinin in DMBA/TPA Induced Skin Cancer: 1H NMR Metabolomic and Biochemical Study.

    PubMed

    Sati, Jasmine; Mohanty, Biraja Prasad; Garg, Mohan Lal; Koul, Ashwani

    2016-01-01

    Silibinin, a major bioactive flavonolignan in Silybum marianum, has received considerable attention in view of its anticarcinogenic activity. The present study examines its anticancer potential against 7, 12-dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA) induced skin cancer. Male LACA mice were randomly segregated into 4 groups: Control, DMBA/TPA, Silibinin and Silibinin+DMBA/TPA. Tumors in DMBA/TPA and Silibinin+DMBA/TPA groups were histologically graded as squamous cell carcinoma. In the Silibinin+DMBA/TPA group, significant reduction in tumor incidence (23%), tumor volume (64.4%), and tumor burden (84.8%) was observed when compared to the DMBA/TPA group. The underlying protective mechanism of Silibinin action was studied at pre-initiation (2 weeks), post-initiation (10 weeks) and promotion (22 weeks) stages of the skin carcinogenesis. The antioxidant nature of Silibinin was evident at the end of 2 weeks of its treatment. However, towards the end of 10 and 22 weeks, elevated lipid peroxidation (LPO) levels indicate the pro-oxidative nature of Silibinin in the cancerous tissue. TUNEL assay revealed enhanced apoptosis in the Silibinin+DMBA/TPA group with respect to the DMBA/TPA group. Therefore, it may be suggested that raised LPO could be responsible for triggering apoptosis in the Silibinin+DMBA/TPA group. 1H Nuclear Magnetic Resonance (NMR) spectroscopy was used to determine the metabolic profile of the skin /skin tumors. Dimethylamine (DMA), glycerophosphocholine (GPC), glucose, lactic acid, taurine and guanine were identified as the major contributors for separation between the groups from the Principal Component Analysis (PCA) of the metabolite data. Enhanced DMA levels with no alteration in GPC, glucose and lactate levels reflect altered choline metabolism with no marked Warburg effect in skin tumors. However, elevated guanine levels with potent suppression of taurine and glucose levels in the Silibinin+DMBA/TPA group are

  5. Pro-Oxidant Role of Silibinin in DMBA/TPA Induced Skin Cancer: 1H NMR Metabolomic and Biochemical Study

    PubMed Central

    Sati, Jasmine; Mohanty, Biraja Prasad; Garg, Mohan Lal; Koul, Ashwani

    2016-01-01

    Silibinin, a major bioactive flavonolignan in Silybum marianum, has received considerable attention in view of its anticarcinogenic activity. The present study examines its anticancer potential against 7, 12-dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA) induced skin cancer. Male LACA mice were randomly segregated into 4 groups: Control, DMBA/TPA, Silibinin and Silibinin+DMBA/TPA. Tumors in DMBA/TPA and Silibinin+DMBA/TPA groups were histologically graded as squamous cell carcinoma. In the Silibinin+DMBA/TPA group, significant reduction in tumor incidence (23%), tumor volume (64.4%), and tumor burden (84.8%) was observed when compared to the DMBA/TPA group. The underlying protective mechanism of Silibinin action was studied at pre-initiation (2 weeks), post-initiation (10 weeks) and promotion (22 weeks) stages of the skin carcinogenesis. The antioxidant nature of Silibinin was evident at the end of 2 weeks of its treatment. However, towards the end of 10 and 22 weeks, elevated lipid peroxidation (LPO) levels indicate the pro-oxidative nature of Silibinin in the cancerous tissue. TUNEL assay revealed enhanced apoptosis in the Silibinin+DMBA/TPA group with respect to the DMBA/TPA group. Therefore, it may be suggested that raised LPO could be responsible for triggering apoptosis in the Silibinin+DMBA/TPA group. 1H Nuclear Magnetic Resonance (NMR) spectroscopy was used to determine the metabolic profile of the skin /skin tumors. Dimethylamine (DMA), glycerophosphocholine (GPC), glucose, lactic acid, taurine and guanine were identified as the major contributors for separation between the groups from the Principal Component Analysis (PCA) of the metabolite data. Enhanced DMA levels with no alteration in GPC, glucose and lactate levels reflect altered choline metabolism with no marked Warburg effect in skin tumors. However, elevated guanine levels with potent suppression of taurine and glucose levels in the Silibinin+DMBA/TPA group are

  6. Dysregulation of Glucose Homeostasis Following Chronic Exogenous Administration of Leptin in Healthy Sprague-Dawley Rats

    PubMed Central

    Wjidan, Khalil; Ibrahim, Effendi; Caszo, Brinnell; Gnanou, Justin

    2015-01-01

    Introduction Impaired glucose utilization is seen in chronic hyperleptinaemia associated conditions such as obesity and type 2 diabetes mellitus. It is unclear if this impaired glucose utilization is due to the effect of persistent hyperleptinaemia on insulin secretion from the beta cells of pancreas. Aim To examine the effects of chronic leptin administration on plasma glucose regulation in rats. Materials and Methods Glucose challenge curves were plotted for male Sprague-Dawley rats treated with either normal saline (Control; n=8) or subcutaneous leptin injection for 42 days (60 μg/kg body weight/day; n=8). Plasma glucose and plasma insulin levels were measured at 0, 5, 10, 15, 20 and 25 minutes after glucose challenege. Skeletal muscle tissue was collected at the end of a glucose challenge for glucose transporter-4 protein content, insulin receptor and glucose transporter-4 mRNA expression. Data were analysed using repeated measures and one-way ANOVA with post-hoc analysis. Results Chronic leptin treatment caused significantly higher fasting insulin level. Post glucose challenge, there was a significant increase in blood glucose levels and insulin level in the leptin treated rats. There was no significant difference in the skeletal muscle glucose transporter-4 content. However, leptin treated rats showed decreased mRNA expression of Insulin Receptor and glucose transporter-4 in the skeletal muscle. Conclusion Leptin administration for 42 days caused hyperinsulinaemia and decreased the expression of insulin receptors in insulin sensitive tissues leading to the development of an insulin resistance-like state in the rats. PMID:26816939

  7. One-Pot Synthesis of Substituted Trifluoromethylated 2,3-Dihydro-1H-imidazoles.

    PubMed

    Deutsch, Amrei; Jessen, Christoph; Deutsch, Carl; Karaghiosoff, Konstantin; Hoffmann-Röder, Anja

    2016-07-15

    An operationally simple one-pot reaction for the preparation of a novel class of racemic trifluoromethylated 2,3-dihydro-1H-imidazoles derived from electron-poor N,O-acetals and aryl Grignard reagents is described. In addition, access to highly functionalized 2-trifluoromethyl-2,3-dihydro-1H-imidazoles was accomplished by reaction of N-aryl hemiaminal ethers and N-aryl trifluoroethylamines in the presence of an excess of n-butyllithium. PMID:27359260

  8. Measurements of heavy-atom isotope effects using 1H NMR spectroscopy.

    PubMed

    Pabis, Anna; Kamiński, Rafał; Ciepielowski, Grzegorz; Jankowski, Stefan; Paneth, Piotr

    2011-10-01

    A novel method for measuring heavy-atom KIEs for magnetically active isotopes using (1)H NMR is presented. It takes advantage of the resonance split of the protons coupled with the heavy atom in the (1)H spectrum. The method is validated by the example of the (13)C-KIE on the hydroamination of styrene with aniline, catalyzed by phosphine-ligated palladium triflates.

  9. Complete 1H, 15N and 13C assignment of trappin-2 and 1H assignment of its two domains, elafin and cementoin.

    PubMed

    Loth, Karine; Alami, Soha Abou Ibrahim; Habès, Chahrazed; Garrido, Solène; Aucagne, Vincent; Delmas, Agnès F; Moreau, Thierry; Zani, Marie-Louise; Landon, Céline

    2016-04-01

    Trappin-2 is a serine protease inhibitor with a very narrow inhibitory spectrum and has significant anti-microbial activities. It is a 10 kDa cationic protein composed of two distinct domains. The N-terminal domain (38 residues) named cementoin is known to be intrinsically disordered when it is not linked to the elafin. The C-terminal domain (57 residues), corresponding to elafin, is a cysteine-rich domain stabilized by four disulfide bridges and is characterized by a flat core and a flexible N-terminal part. To our knowledge, there is no structural data available on trappin-2. We report here the complete (1)H, (15)N and (13)C resonance assignment of the recombinant trappin-2 and the (1)H assignments of cementoin and elafin, under the same experimental conditions. This is the first step towards the 3D structure determination of the trappin-2.

  10. Magnesium Silicate Dissolution Investigated by 29Si MAS, 1H-29Si CP MAS, 25Mg QCPMG, and 1H-25Mg CP QCPMG NMR

    SciTech Connect

    Davis, Michael C.; Brouwer, William J.; Wesolowski, David J.; Anovitz, Lawrence M.; Lipton, Andrew S.; Mueller, Karl T.

    2009-08-01

    Olivine has been the subject of frequent investigation in the earth sciences because of its simple structure and rapid dissolution kinetics. Several studies have observed a preferential release of magnesium with respect to silica during weathering under acidic conditions, which has been correlated to the formation of a silicon rich leached layer. While leached layer formation has been inferred through the changing solution chemistry, a thorough spectroscopic investigation of olivine reacted under acidic conditions has not been conducted. In particular, the fate of magnesium in the system is not understood and spectroscopic interrogations through nuclear magnetic resonance can elucidate the changing magnesium coordination and bonding environment. In this study, we combine analysis of the changing solution chemistry with advanced spectroscopic techniques (29Si MAS, 1H-29Si CP MAS, 25Mg QCPMG, and 1H-25Mg 2 CP QCPMG NMR) to probe leached layer formation and possible secondary phase precipitation during the dissolution of forsterite at 150 oC.

  11. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples. PMID:23913630

  12. Bioinspired, cysteamine-catalyzed co-silicification of (1H, 1H, 2H, 2HPerfluorooctyl) triethoxysilane and tetraethyl orthosilicate: formation of superhydrophobic surfaces.

    PubMed

    Park, Ji Hun; Kim, Ji Yup; Cho, Woo Kyung; Choi, Insung S

    2014-03-01

    Bioinspired silicification attracts a great deal of interest because of its physiologically relevant, mild conditions for hydrolysis and condensation of silica precursors, which makes the bioinspired approach superior to the conventional sol–gel process, particularly when dealing with biological entities. However, the morphological control of silica structures with incorporation of functional groups in the bioinspired silicilication has been unexplored. In this work, we co-silicificated (1H, 1H, 2H, 2H-perfluorooctyl)triethoxysilane and tetraethyl orthosilicate to investigate the morphological evolution of fluorinated silica structures in the cetyltrimethylammonium bromide-mediated, cysteamine-catalyzed silicification. The generated micrometer-long wormlike and spherical silica structures display superhydrophobicity after film formation. Interestingly, the measurement of dynamic water contact angles shows that the morphological difference leads to a different wetting state, either the self-cleaning or the pinning state of the superhydrophobic surface.

  13. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples.

  14. Proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-10-28

    A proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of {sup 13}C-{sup 1}H connectivities, and proximities of {sup 13}C-{sup 1}H and {sup 1}H-{sup 1}H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including {sup 1}H-{sup 1}H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) {sup 1}H/{sup 1}H and 2D {sup 13}C/{sup 1}H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of {sup 1}H-{sup 1}H proximity and {sup 13}C-{sup 1}H connectivity. In addition, the 2D (F1/F2) {sup 1}H/{sup 13}C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of {sup 1}H-{sup 1}H dipolar couplings, enables the measurement of proximities between {sup 13}C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of {sup 1}H-{sup 1}H-{sup 13}C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H{sub 2}O ⋅ HCl demonstrate the efficiency of the 3D experiment.

  15. Coinhibitory receptor PD-1H preferentially suppresses CD4+ T cell–mediated immunity

    PubMed Central

    Flies, Dallas B.; Han, Xue; Higuchi, Tomoe; Zheng, Linghua; Sun, Jingwei; Ye, Jessica Jane; Chen, Lieping

    2014-01-01

    T cell activation is regulated by the interactions of surface receptors with stimulatory and inhibitory ligands. Programmed death-1 homolog (PD-1H, also called VISTA) is a member of the CD28 family of proteins and has been shown to act as a coinhibitory ligand on APCs that suppress T cell responses. Here, we determined that PD-1H functions as a coinhibitory receptor for CD4+ T cells. CD4+ T cells in mice lacking PD-1H exhibited a dramatically increased response to antigen stimulation. Furthermore, delivery of a PD-1H–specific agonist mAb directly inhibited CD4+ T cell activation both in vitro and in vivo, validating a coinhibitory function of PD-1H. In a murine model of acute hepatitis, administration of a PD-1H agonist mAb suppressed CD4+ T cell–mediated acute inflammation. PD-1H–deficient animals were highly resistant to tumor induction in a murine brain glioma model, and depletion of CD4+ T cells, but not CD8+ T cells, promoted tumor formation. Together, our findings suggest that PD-1H has potential as a target of immune modulation in the treatment of human inflammation and malignancies. PMID:24743150

  16. Effect of Global ATGL Knockout on Murine Fasting Glucose Kinetics

    PubMed Central

    Coelho, Margarida; Nunes, Patricia; Mendes, Vera M.; Manadas, Bruno; Heerschap, Arend; Jones, John G.

    2015-01-01

    Mice deficient in adipose triglyceride lipase (ATGL−/−) present elevated ectopic lipid levels but are paradoxically glucose-tolerant. Measurement of endogenous glucose production (EGP) and Cori cycle activity provide insights into the maintenance of glycemic control in these animals. These parameters were determined in 7 wild-type (ATGL+/−) and 6 ATGL−/− mice by a primed-infusion of [U-13C6]glucose followed by LC-MS/MS targeted mass-isotopomer analysis of blood glucose. EGP was quantified by isotope dilution of [U-13C6]glucose while Cori cycling was estimated by analysis of glucose triose 13C-isotopomers. Fasting plasma free fatty-acids were significantly lower in ATGL−/− versus control mice (0.43 ± 0.05 mM versus 0.73 ± 0.11 mM, P < 0.05). Six-hour fasting EGP rates were identical for both ATGL−/− and control mice (79 ± 11 versus 71 ± 7 μmol/kg/min, resp.). Peripheral glucose metabolism was dominated by Cori cycling (80 ± 2% and 82 ± 7% of glucose disposal for ATGL−/− and control mice, resp.) indicating that peripheral glucose oxidation was not significantly upregulated in ATGL−/− mice under these conditions. The glucose 13C-isotopomer distributions in both ATGL−/− and control mice were consistent with extensive hepatic pyruvate recycling. This suggests that gluconeogenic outflow from the Krebs cycle was also well compensated in ATGL−/− mice. PMID:26236747

  17. (1)H NMR analysis of the lactose/β-galactosidase-derived galacto-oligosaccharide components of Vivinal® GOS up to DP5.

    PubMed

    van Leeuwen, Sander S; Kuipers, Bas J H; Dijkhuizen, Lubbert; Kamerling, Johannis P

    2014-12-01

    Vivinal® GOS is a galacto-oligosaccharide (GOS) product, prepared from lactose by incubation with Bacillus circulans β-galactosidase (EC 3.2.1.23). This complex mixture of saccharides with degree of polymerization (DP) between 1 and 8 is generally applied in infant nutrition. Here, a detailed structural description of the commercial product up to the DP5 level is given. First, Vivinal® GOS was subjected to DP analysis using HPLC-SEC (Rezex RSO-01 oligosaccharide Ag(+) column) and (1)H NMR analysis. Then, the product was fractionated on Bio-Gel P-2, and the obtained fractions were pooled according to DP, as indicated by MALDI-TOF-MS analysis. Finally, fractions of single DP, as well as their subfractions obtained by HPAEC-PAD on CarboPac PA-1, were analyzed by 1D/2D (1)H/(13)C NMR spectroscopy and linkage analysis. In total, over 40 structures, providing a structural coverage of over 99% of the product, have been characterized. Detailed (1)H and (13)C NMR data, as well as G.U. values (glucose units; malto-oligosaccharide ladder) on CarboPac PA-1 of all oligosaccharides are included.

  18. Influence of glucose solution on the erythrocyte scattering properties

    NASA Astrophysics Data System (ADS)

    Naumenko, Elena K.

    2007-02-01

    The scattering characteristics of erythrocytes (the coefficients of extinction, scattering, absorption and indicatrixes) were calculated with using the theory Mie for spherical homogeneous spherical particles and the theory for two-layered spherical concentric particles. Transmission spectrums were measured with the spectrophotometer Cary500 in the wavelength range 460-860 n m. Specimens of liquid for imbedding of erythrocytes were preparing by mixing blood plasma a nd 50-% glucose solution with the different concentrations. The volume concentrations (hematocrit) of red blood cells (RBC) were maintained to have the same values in all specimens by adding equal volume of whole blood to immersion liquid of equal volumes. It has been shown that, contrary to theretical prediction, transmission is decreasing for all wavelengths with the addition of glucose solution in interval glucose volume concentrations 0.05 - 0.35-0.4. The subsequent increase of the glucose concentration leads to increasing of spectral transmission as a result of erythrocyte hemolysis.

  19. Comparative study of normal and osteoarthritic canine synovial fluid using 500 MHz 1H magnetic resonance spectroscopy.

    PubMed

    Damyanovich, A Z; Staples, J R; Chan, A D; Marshall, K W

    1999-03-01

    High resolution 1H nuclear magnetic resonance spectroscopy has been used to investigate and compare the metabolic profiles of normal and osteoarthritic synovial fluids in a canine model of osteoarthritis. The spectra of osteoarthritic synovial fluid showed (a) increased concentrations of lactate, pyruvate, lipoprotein-associated fatty acids, and glycerol as well as the ketones hydroxybutyrate and hydroxyisobutyrate, (b) reduced levels of glucose, and (c) elevated levels of N-acetylglycoproteins, acetate, and acetamide compared with healthy normal canine synovial fluid. An increase was also observed in the concentrations of the amino acids alanine and isoleucine. These results suggest that (a) the intraarticular environment in canine osteoarthritis is more hypoxic and acidotic than in a normal joint, (b) lipolysis may play an increasingly important role as a source of energy in osteoarthritis, and (c) the N-acetylglycoprotein polymer component of synovial fluid (mostly hyaluronan) seems to be increasingly fragmented and degraded into acetate by way of an acetamide intermediate with progressive osteoarthritis. The observed changes in the biochemical profile of canine osteoarthritic synovial fluid may be useful in understanding alterations in joint metabolism consequent to arthritic diseases and helpful in identifying potential markers of osteoarthritis. PMID:10221839

  20. 1H-NMR metabolic profiling of cerebrospinal fluid in patients with complex regional pain syndrome-related dystonia.

    PubMed

    Meissner, Axel; van der Plas, Anton A; van Dasselaar, Nick T; Deelder, André M; van Hilten, Jacobus J; Mayboroda, Oleg A

    2014-01-01

    In complex regional pain syndrome (CRPS)-related dystonia, compelling evidence points to the involvement of the central nervous system, but the underpinning pathobiology is still unclear. Thus, to enable a hypothesis-free, unbiased view of the problem and to obtain new insight into the pathobiology of dystonia in CRPS, we applied an exploratory metabolomics analysis of cerebrospinal fluid (CSF) of patients with CRPS-related dystonia. (1)H-NMR spectroscopy in combination with multivariate modeling were used to investigate metabolic profiles of a total of 105 CSF samples collected from patients with CRPS-related dystonia and controls. We found a significantly different metabolic profile of CSF in CRPS patients compared to controls. The differences were already reflected in the first two principal components of the principal component analysis model, which is an indication that the variance associated with CRPS is stronger than variance caused by such classical confounders as gender, age, or individual differences. A supervised analysis generated a strong model pinpointing the most important metabolites contributed to the metabolic signature of patients with CRPS-related dystonia. From the set of identified discriminators, the most relevant metabolites were 2-keto-isovalerate, glucose, glutamine, and lactate, which all showed increased concentrations, and urea, which showed decreased concentration in CRPS subjects. Our findings point at a catabolic state in chronic CRPS patients with dystonia that is likely associated with inflammation.

  1. High-Resolution (1)H NMR Spectroscopy Discriminates Amniotic Fluid of Fetuses with Congenital Diaphragmatic Hernia from Healthy Controls.

    PubMed

    Croitor-Sava, Anca; Beck, Veronika; Sandaite, Inga; Van Huffel, Sabine; Dresselaers, Tom; Claus, Filip; Himmelreich, Uwe; Deprest, Jan

    2015-11-01

    Lung hypoplasia in congenital diaphragmatic hernia (CDH) is a life-threatening birth defect. Severe cases can be offered tracheal occlusion to boost prenatal lung development, although defining those to benefit remains challenging. Metabonomics of (1)H NMR spectra collected from amniotic fluid (AF) can identify general changes in diseased versus healthy fetuses. AF embodies lung secretions and hence might contain pulmonary next to general markers of disease in CDH fetuses. AF from 81 healthy and 22 CDH fetuses was collected. NMR spectroscopy was performed at 400 MHz to compare AF from fetuses with CDH against controls. Several advanced feature extraction methods based on statistical tests that explore spectral variability, similarity, and dissimilarity were applied and compared. This resulted in the identification of 30 spectral regions, which accounted for 80% variability between CDH and controls. Combination with automated classification discriminates AF from CDH versus healthy fetuses with up to 92% accuracy. Within the identified spectral regions, isoleucine, leucine, valine, pyruvate, GABA, glutamate, glutamine, citrate, creatine, creatinine, taurine, and glucose were the most concentrated metabolites. As the metabolite pattern of AF changes with fetal development, we have excluded metabolites with a high age-related variability and repeated the analysis with 12 spectral regions, which has resulted in similar classification accuracy. From this analysis, it was possible to distinguish between AF from CDH fetuses versus healthy controls independent of gestational age. PMID:26348471

  2. Quantitative determination of carboxylic acids, amino acids, carbohydrates, ethanol and hydroxymethylfurfural in honey by (1)H NMR.

    PubMed

    del Campo, Gloria; Zuriarrain, Juan; Zuriarrain, Andoni; Berregi, Iñaki

    2016-04-01

    A method using (1)H NMR spectroscopy has been developed to quantify simultaneously thirteen analytes in honeys without previous separation or pre-concentration steps. The method has been successfully applied to determine carboxylic acids (acetic, formic, lactic, malic and succinic acids), amino acids (alanine, phenylalanine, proline and tyrosine), carbohydrates (α- and β-glucose and fructose), ethanol and hydroxymethylfurfural in eucalyptus, heather, lavender, orange blossom, thyme and rosemary honeys. Quantification was performed by using the area of the signal of each analyte in the honey spectra, together with external standards. The regression analysis of the signal area against concentration plots, used for the calibration of each analyte, indicates a good linearity over the concentration ranges found in honeys, with correlation coefficients higher than 0.985 for the thirteen quantified analytes. The recovery studies give values over the 93.7-105.4% range with relative standard deviations lower than 7.4%. Good precision, with relative standard deviations over the range of 0.78-5.21% is obtained. PMID:26593586

  3. (1)H NMR based metabolomics approach to study the toxic effects of dichlorvos on goldfish (Carassius auratus).

    PubMed

    Liu, Yan; Chen, Ting; Li, Ming-Hui; Xu, Hua-Dong; Jia, Ai-Qun; Zhang, Jian-Fa; Wang, Jun-Song

    2015-11-01

    Dichlorvos (DDVP), one of the most widely used organophosphorus pesticides (OPs), has caused serious pollution in environment. In this study, (1)H nuclear magnetic resonance (NMR) based metabolomics approach combined with histopathological and immunohistochemical examination, and biochemical assays were used to investigate toxicities of DDVP on goldfish (Carassius auratus). After 10 days' exposure of DDVP at three dosages of 5.18, 2.59 and 1.73 mg/L, goldfish tissues (gill, brain, liver and kidney) and serum were collected. Histopathology revealed severe impairment of gills, livers and kidneys, and immunohistochemistry disclosed glial fibrillary acidic protein (GFAP) positive reactive astrocytes in brains. Orthogonal signal correction-partial least squares-discriminant analysis (OSC-PLS-DA) of NMR profiles disclosed that DDVP influenced many metabolites (glutamate, aspartate, acetylcholine, 4-aminobutyrate, glutathione, AMP and lactate in brain; glutathione, glucose, histamine in liver; BCAAs, AMP, aspartate, glutamate, riboflavin in kidney) dose-dependently, involved with imbalance of neurotransmitters, oxidative stress, and disorders of energy and amino acid metabolism. Several self-protection mechanisms concerning glutamate degradation and glutathione (GSH) redox system were found in DDVP intoxicated goldfish.

  4. Quantitative determination of carboxylic acids, amino acids, carbohydrates, ethanol and hydroxymethylfurfural in honey by (1)H NMR.

    PubMed

    del Campo, Gloria; Zuriarrain, Juan; Zuriarrain, Andoni; Berregi, Iñaki

    2016-04-01

    A method using (1)H NMR spectroscopy has been developed to quantify simultaneously thirteen analytes in honeys without previous separation or pre-concentration steps. The method has been successfully applied to determine carboxylic acids (acetic, formic, lactic, malic and succinic acids), amino acids (alanine, phenylalanine, proline and tyrosine), carbohydrates (α- and β-glucose and fructose), ethanol and hydroxymethylfurfural in eucalyptus, heather, lavender, orange blossom, thyme and rosemary honeys. Quantification was performed by using the area of the signal of each analyte in the honey spectra, together with external standards. The regression analysis of the signal area against concentration plots, used for the calibration of each analyte, indicates a good linearity over the concentration ranges found in honeys, with correlation coefficients higher than 0.985 for the thirteen quantified analytes. The recovery studies give values over the 93.7-105.4% range with relative standard deviations lower than 7.4%. Good precision, with relative standard deviations over the range of 0.78-5.21% is obtained.

  5. Biodegradation mechanism of 1H-1,2,4-triazole by a newly isolated strain Shinella sp. NJUST26

    PubMed Central

    Wu, Haobo; Shen, Jinyou; Wu, Ruiqin; Sun, Xiuyun; Li, Jiansheng; Han, Weiqing; Wang, Lianjun

    2016-01-01

    The highly recalcitrant 1H-1,2,4-triazole (TZ) is widely used in the synthesis of agricultural pesticide and considered to be an environmental pollutant. In this study, a novel strain NJUST26 capable of utilizing TZ as the sole carbon and nitrogen source, was isolated from TZ-contaminated soil, and identified as Shinella sp. The biodegradation assays suggested that optimal temperature and pH for TZ degradation by NJUST26 were 30 °C and 6–7, respectively. With the increase of initial TZ concentration from 100 to 320 mg L−1, the maximum volumetric degradation rate increased from 29.06 to 82.96 mg L−1 d−1, indicating high tolerance of NJUST26 towards TZ. TZ biodegradation could be accelerated through the addition of glucose, sucrose and yeast extract at relatively low dosage. The main metabolites, including 1,2-dihydro-3H-1,2,4-triazol-3-one (DHTO), semicarbazide and urea were identified. Based on these results, biodegradation pathway of TZ by NJUST26 was proposed, i.e., TZ was firstly oxidized to DHTO, and then the cleavage of DHTO ring occurred to generate N-hydrazonomethyl-formamide, which could be further degraded to biodegradable semicarbazide and urea. PMID:27436634

  6. Ceramide 1-phosphate stimulates glucose uptake in macrophages

    PubMed Central

    Ouro, Alberto; Arana, Lide; Gangoiti, Patricia; Rivera, Io-Guané; Ordoñez, Marta; Trueba, Miguel; Lankalapalli, Ravi S.; Bittman, Robert; Gomez-Muñoz, Antonio

    2014-01-01

    It is well established that ceramide 1-phosphate (C1P) is mitogenic and antiapoptotic, and that it is implicated in the regulation of macrophage migration. These activities require high energy levels to be available in cells. Macrophages obtain most of their energy from glucose. In this work, we demonstrate that C1P enhances glucose uptake in RAW264.7 macrophages. The major glucose transporter involved in this action was found to be GLUT 3, as determined by measuring its translocation from the cytosol to the plasma membrane. C1P-stimulated glucose uptake was blocked by selective inhibitors of phosphatidylinositol 3-kinase (PI3K) or Akt, also known as protein kinase B (PKB), and by specific siRNAs to silence the genes encoding for these kinases. C1P-stimulated glucose uptake was also inhibited by pertussis toxin (PTX) and by the siRNA that inhibited GLUT 3 expression. C1P increased the affinity of the glucose transporter for its substrate, and enhanced glucose metabolism to produce ATP. The latter action was also inhibited by PI3K- and Akt-selective inhibitors, PTX, or by specific siRNAs to inhibit GLUT 3 expression. PMID:23333242

  7. Effect of high glucose concentrations on human erythrocytes in vitro

    PubMed Central

    Viskupicova, Jana; Blaskovic, Dusan; Galiniak, Sabina; Soszyński, Mirosław; Bartosz, Grzegorz; Horakova, Lubica; Sadowska-Bartosz, Izabela

    2015-01-01

    Exposure to high glucose concentrations in vitro is often employed as a model for understanding erythrocyte modifications in diabetes. However, effects of such experiments may be affected by glucose consumption during prolonged incubation and changes of cellular parameters conditioned by impaired energy balance. The aim of this study was to compare alterations in various red cell parameters in this type of experiment to differentiate between those affected by glycoxidation and those affected by energy imbalance. Erythrocytes were incubated with 5, 45 or 100 mM glucose for up to 72 h. High glucose concentrations intensified lipid peroxidation and loss of activities of erythrocyte enzymes (glutathione S-transferase and glutathione reductase). On the other hand, hemolysis, eryptosis, calcium accumulation, loss of glutathione and increase in the GSSG/GSH ratio were attenuated by high glucose apparently due to maintenance of energy supply to the cells. Loss of plasma membrane Ca2+-ATPase activity and decrease in superoxide production were not affected by glucose concentration, being seemingly determined by processes independent of both glycoxidation and energy depletion. These results point to the necessity of careful interpretation of data obtained in experiments, in which erythrocytes are subject to treatment with high glucose concentrations in vitro. PMID:26141922

  8. Evaluation of a Self-Administered Oral Glucose Tolerance Test

    PubMed Central

    Bethel, M. Angelyn; Price, Hermione C.; Sourij, Harald; White, Sarah; Coleman, Ruth L.; Ring, Arne; Kennedy, Irene E.C.; Tucker, Lynne; Holman, Rury R.

    2013-01-01

    OBJECTIVE To assess the feasibility of using a disposable, self-administered, capillary blood sampling oral glucose tolerance test (OGTT) device in a community setting. RESEARCH DESIGN AND METHODS Eighteen healthy and 12 type 2 diabetic volunteers underwent six 75-g OGTTs using a prototype device in the following three settings: unaided at home (twice); unaided but observed in clinic (twice); and performed by a nurse with simultaneous laboratory glucose assays of 0- and 120-min venous plasma samples (twice). The device displayed no results. A detachable data recorder returned to the clinic provided plasma-equivalent 0- and 120-min glucose values and key parameters, including test date, start and end times, and time taken to consume the glucose drink. RESULTS The device was universally popular with participants and was perceived as easy to use, and the ability to test at home was well liked. Device failures meant that 0- and 120-min glucose values were obtained for only 141 (78%) of the 180 OGTTs performed, independent of setting. Device glucose measurements showed a mean bias compared with laboratory-measured values of +0.9 at 5.0 mmol/L increasing to +4.4 at 15.0 mmol/L. Paired device glucose values were equally reproducible across settings, with repeat testing showing no training effect regardless of setting order. CONCLUSIONS Self-administered OGTTs can be performed successfully by untrained individuals in a community setting. With improved device reliability and appropriate calibration, this novel technology could be used in routine practice to screen people who might need a formal OGTT to confirm the presence of impaired glucose tolerance or diabetes. PMID:23321216

  9. Phosphorylation of the adipose/muscle-type glucose transporter (GLUT4) and its relationship to glucose transport activity.

    PubMed Central

    Schürmann, A; Mieskes, G; Joost, H G

    1992-01-01

    The effects of protein phosphorylation and dephosphorylation on glucose transport activity reconstituted from adipocyte membrane fractions and its relationship to the phosphorylation state of the adipose/muscle-type glucose transporter (GLUT4) were studied. In vitro phosphorylation of membranes in the presence of ATP and protein kinase A produced a stimulation of the reconstituted glucose transport activity in plasma membranes and low-density microsomes (51% and 65% stimulation respectively), provided that the cells had been treated with insulin prior to isolation of the membranes. Conversely, treatment of membrane fractions with alkaline phosphatase produced an inhibition of reconstituted transport activity. However, in vitro phosphorylation catalysed by protein kinase C failed to alter reconstituted glucose transport activity in membrane fractions from both basal and insulin-treated cells. In experiments run under identical conditions, the phosphorylation state of GLUT4 was investigated by immunoprecipitation of glucose transporters from membrane fractions incubated with [32P]ATP and protein kinases A and C. Protein kinase C stimulated a marked phosphate incorporation into GLUT4 in both plasma membranes and low-density microsomes. Protein kinase A, in contrast to its effect on reconstituted glucose transport activity, produced a much smaller phosphorylation of the GLUT4 in plasma membranes than in low-density microsomes. The present data suggest that glucose transport activity can be modified by protein phosphorylation via an insulin-dependent mechanism. However, the phosphorylation of the GLUT4 itself was not correlated with changes in its reconstituted transport activity. Images Fig. 1. Fig. 2. Fig. 3. PMID:1637303

  10. Plasma and intestinal concentrations of GIP and GLP-1 (7-36) amide during suckling and after weaning in pigs.

    PubMed

    Knapper, J M; Morgan, L M; Fletcher, J M; Marks, V

    1995-11-01

    Plasma concentrations of glucose dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1(7-36)amide (GLP-1[7-36]amide) were measured after milk ingestion in 15-18 day old piglets and after weaning diet ingestion in 33 day old piglets weaned at 21 days. Intestinal concentrations of these two hormones were also measured in unsuckled piglets of less than 24 h of age, and piglets whose ages corresponded with those used for plasma measurements. Suckling piglets showed a moderate glycaemic and insulinaemic response to milk ingestion. Plasma GIP and GLP-1(7-36)amide levels were significantly elevated at 1 and 3-h post-prandially. Weaned piglets showed a much more marked glucose and insulin response to meal ingestion. Plasma GIP and GLP-1(7-36)amide levels were again significantly elevated at 1 and 3 h in these animals. The mean plasma GIP response was greater in the weaned animals compared with the suckling animals at the time points investigated. The plasma GLP-1(7-36)amide response in contrast was significantly greater at 1 h in the suckling animals. In comparison, GIP concentrations in acid ethanol extracts of the small intestine were significantly higher during suckling and GLP-1(7-36)amide concentrations significantly higher after weaning. The circulating levels of both hormones seen during suckling and after weaning were far higher than those previously reported in humans. We conclude that both milk ingestion and the weaning diet are capable of stimulating GIP and GLP-1(7-36)amide in piglets and suggest that the levels of both hormones seen in this study may be important in adipose tissue metabolism at this time.

  11. Glucose and Aging

    NASA Astrophysics Data System (ADS)

    Ely, John T. A.

    2008-04-01

    When a human's enzymes attach glucose to proteins they do so at specific sites on a specific molecule for a specific purpose that also can include ascorbic acid (AA) at a high level such as 1 gram per hour during exposure. In an AA synthesizing animal the manifold increase of AA produced in response to illness is automatic. In contrast, the human non-enzymatic process adds glucose haphazardly to any number of sites along available peptide chains. As Cerami clarified decades ago, extensive crosslinking of proteins contributes to loss of elasticity in aging tissues. Ascorbic acid reduces the random non-enyzmatic glycation of proteins. Moreover, AA is a cofactor for hydroxylase enzymes that are necessary for the production and replacement of collagen and other structural proteins. We will discuss the relevance of ``aging is scurvy'' to the biochemistry of human aging.

  12. Effects of dietary manipulations and glucose infusion on glucagon response during exercise in rats.

    PubMed

    Tadjoré, M; Bergeron, R; Latour, M; Désy, F; Warren, C; Lavoie, J M

    1997-07-01

    The purpose of the present investigation was to test the hypothesis that blood glucose concentration is not always related to glucagon response during exercise. Three groups of rats were submitted to a prolonged (3-h) swimming exercise. Two groups of rats had their normal food intake restricted by 50% the night before the experiment. One of these two groups of rats was intravenously infused with glucose throughout exercise to maintain euglycemia. The third group of rats swam while under normal dietary conditions. Plasma glucose, sampled in arterial blood, was reduced (P < 0.05) at 75, 105, 150, and 170 min of exercise (from approximately 130 to 110 mg/dl) in the food-restricted animals without glucose infusion, whereas a significant (P < 0.05) increase was measured in the two other groups during exercise. A significant (P < 0.01) difference in the mean integrated areas under the glucose-concentration curve was found only between the fed and the two food-restricted groups. Plasma insulin concentrations decreased (P < 0.05) similarly in all groups during exercise, whereas plasma epinephrine and norepinephrine concentrations increased significantly (P < 0.01) in all groups. Despite differences between groups in plasma glucose response during exercise, and despite the absence of any decrease in exercising blood glucose levels in at least two of the three groups, plasma glucagon responses were increased (P < 0.05) similarly in all groups (from approximately 250 to 550 pg/ml) at the end of the exercise period. The increase in glucagon was significant after 90 min of exercise in the food-restricted groups, with or without glucose infusion, but only after 140 min in the fed group. These results indicate that the glucagon response during exercise is not always linked to the decrease in plasma glucose.

  13. Glycemic Effects of Rebaudioside A and Erythritol in People with Glucose Intolerance

    PubMed Central

    Shin, Dong Hee; Lee, Ji Hye; Kang, Myung Shin; Kim, Tae Hoon; Jeong, Su Jin; Kim, Sang Soo

    2016-01-01

    Background Rebaudioside A and erythritol are nonnutritive sweeteners. There have been several studies of their glycemic effects, but the outcomes remain controversial. The purpose of this study was to evaluate the glycemic effects of rebaudioside A and erythritol as a sweetener in people with glucose intolerance. Methods This trial evaluated the glycemic effect after 2 weeks of consumption of rebaudioside A and erythritol as sweeteners in a pre-diabetic population. The patients were evaluated for fructosamine, fasting plasma glucose, C-peptide, insulin, and 2-hour plasma glucose before and after consumption of sweetener. The primary outcome was a change in fructosamine levels from the baseline to the end of treatment. Secondary outcomes were the changes in levels of fasting plasma glucose and 2-hour plasma glucose. Results From the baseline to the end of experiment, the changes in fructosamine levels after consumption of rebaudioside A and erythritol, did not differ significantly (244.00±19.57 vs. 241.68±23.39 µmol/L, P=0.366). The change in levels from the baseline to end of the study for rebaudioside A and erythritol were fasting plasma glucose (102.56±10.72 vs. 101.32±9.20 mg/dL), 2-hour plasma glucose (154.92±54.53 vs. 141.92±42.22 mg/dL), insulin (7.56±4.29 vs. 7.20±5.12 IU/mL), and C-peptide (2.92±1.61 vs. 2.73±1.31 ng/mL), respectively, and also did not differ significantly (P>0.05 for all). Conclusion Our study suggests that consumption of rebaudioside A and erythritol does not alter the glucose homeostasis in people with glucose intolerance. PMID:27352150

  14. Evidence for the absence of cerebral glucose-6-phosphatase activity in glycogen storage disease type I (Von Gierke's disease)

    SciTech Connect

    Phelps, M.E.; Mazziotta, J.C.; Hawkins, R.A.; Philippart, M.

    1981-01-01

    Glycogen storage disease type I (GSD-I) is characterized by a functional deficit in glucose-6-phosphatase that normally hydrolyzes glucose-6-PO/sub 4/ to glucose. This enzyme is primarily found in liver, kidney, and muscle but it is also present in brain, where it appears to participate in the regulation of cerebral tissue glucose. Since most neurological symptoms in GSD-I patients in