Science.gov

Sample records for 1-hour ogtt glucose

  1. Impact of Glucose Tolerance Status, Sex, and Body Size on Glucose Absorption Patterns During OGTTs

    PubMed Central

    Færch, Kristine; Pacini, Giovanni; Nolan, John J.; Hansen, Torben; Tura, Andrea; Vistisen, Dorte

    2013-01-01

    OBJECTIVE We studied whether patterns of glucose absorption during oral glucose tolerance tests (OGTTs) were abnormal in individuals with impaired glucose regulation and whether they were related to sex and body size (height and fat-free mass). We also examined how well differences in insulin sensitivity and β-cell function measured by gold-standard tests were reflected in the corresponding OGTT-derived estimates. RESEARCH DESIGN AND METHODS With validated methods, various aspects of glucose absorption were estimated from 12-point, 3-h, 75-g OGTTs in 66 individuals with normal glucose tolerance (NGT), isolated impaired fasting glucose (i-IFG), or isolated impaired glucose tolerance (i-IGT). Insulin sensitivity and β-cell function were measured with the euglycemic-hyperinsulinemic clamp and intravenous glucose tolerance tests, respectively. Surrogate markers of both conditions were calculated from OGTTs. RESULTS More rapid glucose absorption (P ≤ 0.036) and reduced late glucose absorption (P ≤ 0.039) were observed in the i-IFG group relative to NGT and i-IGT groups. Women with i-IGT had a lower early glucose absorption than did men with i-IGT (P = 0.041); however, this difference did not persist when differences in body size were taken into account (P > 0.28). Faster glucose absorption was related to higher fasting (P = 0.001) and lower 2-h (P = 0.001) glucose levels and to greater height and fat-free mass (P < 0.001). All OGTT-derived measures of insulin sensitivity, but only one of three measures of β-cell function, reflected the differences for these parameters between those with normal and impaired glucose regulation as measured by gold-standard tests. CONCLUSIONS Glucose absorption patterns during an OGTT are significantly related to plasma glucose levels and body size, which should be taken into account when estimating β-cell function from OGTTs in epidemiological studies. PMID:24062321

  2. Mild insulin resistance during oral glucose tolerance test (OGTT) in women with acne.

    PubMed

    Aizawa, H; Niimura, M

    1996-08-01

    The purpose of this study was to evaluate serum levels of basal insulin and glucose-stimulated insulin, and to evaluate their correlations with androgen levels in women with acne. Serum levels of total testosterone (T), free testosterone (FT), dihydrotestosterone (DHT), dehydroepiandrosterone sulfate (DHEA-S), sex hormone binding globulin (SHBG), insulin-like growth factor-1 (IFG-1), and immunoreactive insulin (IRI) were measured and compared in thirty women with moderate or severe acne and thirteen healthy controls. Serum FT, DHT and DHEA-S levels in the acne group were significantly higher than those in the control group. In the acne group, there were no significant correlations between insulin or IGF-1 levels and T, FT, DHT and SHBG, despite the positive correlation between insulin and IGF-1. In order to determine the effects of insulin secretion as a dynamic response to an oral glucose tolerance test (OGTT) on serum androgen levels in acne patients, we examined the responses of serum insulin and androgen levels to a 75 g, 2 hour OGTT in the acne group and in the control group. Basal insulin levels were not significantly higher than those in the control group, but the summed insulin levels during the OGTT in the acne group were significantly higher than those in the control group. Serum T and FT levels in the acne group decreased during the OGTT, but these changes were not so significant when compared to normal controls. In conclusion, we tried to demonstrate mild insulin resistance during the OGTT in acne patients. However, postmeal transient hyperinsulinemia does not seem to play an important role in determining hyperandrogenemia in acne patients. PMID:8854583

  3. Post-glucose-load urinary C-peptide and glucose concentration obtained during OGTT do not affect oral minimal model-based plasma indices.

    PubMed

    Jainandunsing, Sjaam; Wattimena, J L Darcos; Rietveld, Trinet; van Miert, Joram N I; Sijbrands, Eric J G; de Rooij, Felix W M

    2016-05-01

    The purpose of this study was to investigate how renal loss of both C-peptide and glucose during oral glucose tolerance test (OGTT) relate to and affect plasma-derived oral minimal model (OMM) indices. All individuals were recruited during family screening between August 2007 and January 2011 and underwent a 3.5-h OGTT, collecting nine plasma samples and urine during OGTT. We obtained the following three subgroups: normoglycemic, at risk, and T2D. We recruited South Asian and Caucasian families, and we report separate analyses if differences occurred. Plasma glucose, insulin, and C-peptide concentrations were analyzed as AUCs during OGTT, OMM estimate of renal C-peptide secretion, and OMM beta-cell and insulin sensitivity indices were calculated to obtain disposition indices. Post-glucose load glucose and C-peptide in urine were measured and related to plasma-based indices. Urinary glucose corresponded well with plasma glucose AUC (Cau r = 0.64, P < 0.01; SA r = 0.69, P < 0.01), S I (Cau r = -0.51, P < 0.01; SA r = -0.41, P < 0.01), Φ dynamic (Cau r = -0.41, P < 0.01; SA r = -0.57, P < 0.01), and Φ oral (Cau r = -0.61, P < 0.01; SA r = -0.73, P < 0.01). Urinary C-peptide corresponded well to plasma C-peptide AUC (Cau r = 0.45, P < 0.01; SA r = 0.33, P < 0.05) and OMM estimate of renal C-peptide secretion (r = 0.42, P < 0.01). In general, glucose excretion plasma threshold for the presence of glucose in urine was ~10-10.5 mmol L(-1) in non-T2D individuals, but not measurable in T2D individuals. Renal glucose secretion during OGTT did not influence OMM indices in general nor in T2D patients (renal clearance range 0-2.1 %, with median 0.2 % of plasma glucose AUC). C-indices of urinary glucose to detect various stages of glucose intolerance were excellent (Cau 0.83-0.98; SA 0.75-0.89). The limited role of renal glucose secretion validates the neglecting of urinary glucose secretion in kinetic models of glucose homeostasis using plasma glucose concentrations. Both C

  4. Fasting, post-OGTT challenge, and nocturnal free fatty acids in prediabetic versus normal glucose tolerant overweight and obese Latino adolescents.

    PubMed

    Toledo-Corral, Claudia M; Alderete, Tanya L; Richey, Joyce; Sequeira, Paola; Goran, Michael I; Weigensberg, Marc J

    2015-04-01

    Type 2 diabetes risk and its relationship to free fatty acid (FFA) exposure and visceral fat by prediabetes status in minority adolescents have yet to be explored. Therefore, the objective of this study was to examine the association of circulating FFA under varying conditions with prediabetes in Latino adolescents and to determine the relative relationships of FFA and visceral adiposity to insulin sensitivity, secretion, and β-cell function. Overweight or obese, but otherwise healthy Latino adolescent males and females (n = 164, 14.2 ± 2.5 years), were recruited for assessment of prediabetes, abdominal fat, and FFA levels taken at a fasting state (FFAF), during an OGTT (FFAOGTT), and overnight (FFANOCTURNAL). Prediabetic adolescents had a higher FFAF than those with normal glucose tolerance when controlling for age, sex, pubertal status, total percent body fat, and visceral fat. FFAOGTT and FFANOCTURNAL did not differ between participants with prediabetes and those with normal glucose tolerance after adjusting for covariates. Visceral fat was independently related to insulin sensitivity and secretion in pubertal adolescents; however, in post-pubertal adolescents, FFAF and visceral fat were both independent and negatively related to β-cell function. These results support a plausible progression of the lipotoxicity theory of diabetes development during the pubertal transition. PMID:25109287

  5. Glucose screening tests during pregnancy

    MedlinePlus

    Oral glucose tolerance test - pregnancy; OGTT - pregnancy; Glucose challenge test - pregnancy; Gestational diabetes - glucose screening ... first step, you will have a glucose screening test: You DO NOT need to prepare or change ...

  6. Prognosis of Pregnant Women with One Abnormal Value on 75g OGTT.

    PubMed

    Kozuma, Yutaka; Inoue, Shigeru; Horinouchi, Takashi; Shinagawa, Takaaki; Nakayama, Hitomi; Kawaguchi, Atsushi; Hori, Daizo; Kamura, Toshiharu; Yamada, Kentaro; Ushijima, Kimio

    2015-01-01

    The aim of this study was to identify risk factors to allow us to detect patients at high risk of requiring insulin therapy, among Japanese pregnant women with one abnormal value (OAV) on a 75-g oral glucose tolerance test (75-g OGTT). A total of 118 pregnant women with OAV on a previous 75-g OGTT between 1997 and 2010 were studied. We identified the factors which can predict patients at high risk of requiring insulin therapy among Japanese pregnant women with OAV, by comparing severe abnormal glucose tolerance (insulin treatment; n=17) with mild glucose tolerance patients (diet only; n=101). The following factors were examined; plasma level of glucose (PG) and immunoreactive insulin (IRI) at fasting, 0.5, 1 and 2 hours after loading glucose, insulinogenic index, homeostasis model assessment insulin resistance (HOMA-IR), insulin sensitivity index-composite (ISI composite), and HbA1c at the time of the 75-g OGTT. Univariate analysis showed a positive correlation between insulin therapy and 2-h PG value, 0.5-h and 1-h IRI values, AUC-IRI and insulinogenic index (p<0.05). Multivariate analysis showed that the PG 2-h value and insulinogenic index were independent predictive factors of insulin therapy. A 2-h PG ≥153 mg / dl and an insulinogenic index of <0.42 had a sensitivity of 81.8%, a specificity of 83.8%, a positive predictive value of 60.0% and a negative predictive value of 93.9% for the prediction of patients who required insulin therapy among pregnant women with OAV. These results suggest that a level of 2-h PG ≥153 mg/dl and an insulinogenic index of <0.42 on 75-g OGTT are predictive factors for insulin therapy in Japanese pregnant women with OAV.

  7. Prevalence of Undiagnosed Diabetes in Rheumatoid Arthritis: an OGTT Study.

    PubMed

    Ursini, Francesco; Russo, Emilio; D'Angelo, Salvatore; Arturi, Franco; Hribal, Marta Letizia; D'Antona, Lucia; Bruno, Caterina; Tripepi, Giovanni; Naty, Saverio; De Sarro, Giovambattista; Olivieri, Ignazio; Grembiale, Rosa Daniela

    2016-02-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by an excess of cardiovascular disease (CVD) risk, estimated to be at least 50% greater when compared to the general population. Although the widespread diffusion of type 2 diabetes mellitus (T2DM) awareness, there is still a significant proportion of patients with T2DM that remain undiagnosed. Aim of this cross-sectional study was to evaluate the prevalence of undiagnosed diabetes and prediabetes in RA patients. For the present study, 100 consecutive nondiabetic RA patients were recruited. Age- and sex-matched subjects with noninflammatory diseases (osteoarthritis or fibromyalgia) were used as controls. After overnight fasting, blood samples were obtained for laboratory evaluation including serum glucose, total cholesterol, high-density lipoprotein (HDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol, triglycerides, uric acid, erythrocyte sedimentation rate (ESR), high sensitivity C-reactive protein (hs-CRP), rheumatoid factor (RF), and anti-Cyclic Citrullinated Peptide Antibodies (ACPA). A standard Oral Glucose Tolerance Test (OGTT) with 75 g of glucose was performed and blood samples were collected at time 0, 30, 60, 90, and 120 minutes, for measurement of plasma glucose concentrations. The prevalence of impaired fasting glucose (IFG) (9/100 vs 12/100, P = 0.49), impaired glucose tolerance (IGT) (19/100 vs 12/100, P = 0.17), and concomitant IFG/IGT (5/100 vs 9/100, P = 0.27) was similar between groups, whereas the prevalence of diabetes was significantly higher in RA patients (10/100 vs 2/100, P = 0.02). In a logistic regression analysis, increasing age (OR = 1.13, 95% CI 1.028-1.245, P = 0.01) and disease duration (OR = 1.90, 95% CI 1.210-2.995, P = 0.005) were both associated with an increased likelihood of being classified as prediabetes (i.e. IFG and/or IGT) or T2DM. A ROC curve was built to evaluate the predictivity of disease duration on the

  8. Glucose tolerance test - non-pregnant

    MedlinePlus

    Oral glucose tolerance test - non-pregnant; OGTT - non-pregnant; Diabetes - glucose tolerance test ... The most common glucose tolerance test is the oral glucose tolerance test (OGTT). Before the test begins, a sample of blood will be taken. You will then ...

  9. Prevalence of Undiagnosed Diabetes in Rheumatoid Arthritis: an OGTT Study

    PubMed Central

    Ursini, Francesco; Russo, Emilio; D’Angelo, Salvatore; Arturi, Franco; Hribal, Marta Letizia; D’Antona, Lucia; Bruno, Caterina; Tripepi, Giovanni; Naty, Saverio; De Sarro, Giovambattista; Olivieri, Ignazio; Grembiale, Rosa Daniela

    2016-01-01

    Abstract Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by an excess of cardiovascular disease (CVD) risk, estimated to be at least 50% greater when compared to the general population. Although the widespread diffusion of type 2 diabetes mellitus (T2DM) awareness, there is still a significant proportion of patients with T2DM that remain undiagnosed. Aim of this cross-sectional study was to evaluate the prevalence of undiagnosed diabetes and prediabetes in RA patients. For the present study, 100 consecutive nondiabetic RA patients were recruited. Age- and sex-matched subjects with noninflammatory diseases (osteoarthritis or fibromyalgia) were used as controls. After overnight fasting, blood samples were obtained for laboratory evaluation including serum glucose, total cholesterol, high-density lipoprotein (HDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol, triglycerides, uric acid, erythrocyte sedimentation rate (ESR), high sensitivity C-reactive protein (hs-CRP), rheumatoid factor (RF), and anti-Cyclic Citrullinated Peptide Antibodies (ACPA). A standard Oral Glucose Tolerance Test (OGTT) with 75 g of glucose was performed and blood samples were collected at time 0, 30, 60, 90, and 120 minutes, for measurement of plasma glucose concentrations. The prevalence of impaired fasting glucose (IFG) (9/100 vs 12/100, P = 0.49), impaired glucose tolerance (IGT) (19/100 vs 12/100, P = 0.17), and concomitant IFG/IGT (5/100 vs 9/100, P = 0.27) was similar between groups, whereas the prevalence of diabetes was significantly higher in RA patients (10/100 vs 2/100, P = 0.02). In a logistic regression analysis, increasing age (OR = 1.13, 95% CI 1.028–1.245, P = 0.01) and disease duration (OR = 1.90, 95% CI 1.210–2.995, P = 0.005) were both associated with an increased likelihood of being classified as prediabetes (i.e. IFG and/or IGT) or T2DM. A ROC curve was built to evaluate the predictivity of disease

  10. Effects of Exercise Intensity on Postprandial Improvement in Glucose Disposal and Insulin Sensitivity in Prediabetic Adults

    PubMed Central

    Rynders, Corey A.; Weltman, Judy Y.; Jiang, Boyi; Breton, Marc; Patrie, James; Barrett, Eugene J.

    2014-01-01

    Background: A single bout of exercise improves postprandial glycemia and insulin sensitivity in prediabetic patients; however, the impact of exercise intensity is not well understood. The present study compared the effects of acute isocaloric moderate (MIE) and high-intensity (HIE) exercise on glucose disposal and insulin sensitivity in prediabetic adults. Methods: Subjects (n = 18; age 49 ± 14 y; fasting glucose 105 ± 11 mg/dL; 2 h glucose 170 ± 32 mg/dL) completed a peak O2 consumption/lactate threshold (LT) protocol plus three randomly assigned conditions: 1) control, 1 hour of seated rest, 2) MIE (at LT), and 3) HIE (75% of difference between LT and peak O2 consumption). One hour after exercise, subjects received an oral glucose tolerance test (OGTT). Plasma glucose, insulin, and C-peptide concentrations were sampled at 5- to 10-minute intervals at baseline, during exercise, after exercise, and for 3 hours after glucose ingestion. Total, early-phase, and late-phase area under the glucose and insulin response curves were compared between conditions. Indices of insulin sensitivity (SI) were derived from OGTT data using the oral minimal model. Results: Compared with control, SI improved by 51% (P = .02) and 85% (P < .001) on the MIE and HIE days, respectively. No differences in SI were observed between the exercise conditions (P = .62). Improvements in SI corresponded to significant reductions in the glucose, insulin, and C-peptide area under the curve values during the late phase of the OGTT after HIE (P < .05), with only a trend for reductions after MIE. Conclusion: These results suggest that in prediabetic adults, acute exercise has an immediate and intensity-dependent effect on improving postprandial glycemia and insulin sensitivity. PMID:24243632

  11. One-Hour Postload Plasma Glucose Levels Are Associated with Kidney Dysfunction

    PubMed Central

    Succurro, Elena; Arturi, Franco; Lugarà, Marina; Grembiale, Alessandro; Fiorentino, Teresa Vanessa; Caruso, Vittoria; Andreozzi, Francesco; Sciacqua, Angela; Hribal, Marta Letizia; Perticone, Francesco

    2010-01-01

    Background and objectives: A cutoff of 155 mg/dl for 1-hour postload plasma glucose (1hPG) during the oral glucose tolerance test (OGTT) is able to identify patients who are at high risk for type 2 diabetes and vascular atherosclerosis. We aimed to examine whether individuals with 1hPG ≥155 mg/dl are also at increased risk for chronic kidney disease (CKD). Design, setting, participants, & measurements: Atherosclerosis risk factors, OGTT, and estimated GFR by Chronic Kidney Disease Epidemiology Collaboration equation were analyzed in 1075 white individuals without diabetes. Results: The area under the receiver operating characteristic curve for 1hPG was the highest (0.700) compared with the areas under the receiver operating characteristic curve of 0, 30-minute, and 2-hour glucose concentrations. Individuals with 1hPG ≥155 mg/dl had a worse cardiometabolic risk profile, exhibiting significantly higher body mass index, BP, triglycerides, and fasting insulin levels and lower HDL, IGF-1 levels, and insulin sensitivity, than individuals with 1hPG <155 mg/dl. Estimated GFR was significantly lower in individuals with 1hPG ≥155 mg/dl. In a logistic regression model adjusted for age and gender, individuals with 1hPG ≥155 mg/dl showed an increased risk for CKD compared with individuals with 1hPG <155 mg/dl. When the logistic regression analysis was restricted to individuals who had normal glucose tolerance, those with 1hPG ≥155 mg/dl showed a higher risk for CKD compared with individuals with 1hPG <155 mg/dl. Conclusions: These data suggest that a cutoff point of 155 mg/dl for the 1hPG during OGTT may be helpful in the identification of individuals who are at increased risk for CKD. PMID:20595688

  12. 76 FR 61098 - Guidance for 1-Hour SO2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ...Notice is hereby given that the EPA has posted its draft non- binding guidance titled, ``Guidance for 1-Hour SO2 NAAQS SIP Submissions'' on its Web site. The EPA invites public comments on this guidance document during the comment period specified below, and plans to issue an updated version of the guidance after reviewing timely submitted...

  13. No differences in metabolic outcomes between nadir GH 0.4 and 1.0 ng/mL during OGTT in surgically cured acromegalic patients (observational study).

    PubMed

    Ku, Cheol Ryong; Choe, Eun Yeong; Hong, Jae Won; Kim, Eui Hyun; Park, Se Hee; Kim, Sun Ho; Lee, Eun Jig

    2016-06-01

    Metabolic impairment is the common cause for mortality in acromegalic patients. In this study, long-term improvements of metabolic parameters were evaluated according to 2 different remission criteria.This was an observational cohort study before and up to 1 year after transsphenoidal adenomectomy (TSA). Participants were 187 patients with acromegaly. At 6 months after TSA, remitted patients with age- and sex-matched normalized IGF-1 were divided into 2 groups: remission 1 (R1), nadir growth hormone (GH) below 0.4 ng/mL; and remission 2 (R2), nadir GH between 0.4 and 1.0 ng/mL in oral glucose tolerance test (OGTT). Metabolic parameters during serial OGTTs were evaluated for 12 months. Remission was achieved in 157 (R1-136; R2-21) patients. Immediate postoperative metabolic parameters including body weight, body mass index, glucose, insulin, and free fatty acid in OGTT were all significantly improved in R1 and R2. HOMA-%β and HOMA-IR scores also improved in both R1 and R2. These improvements persisted for duration (12 months) of this study. However, no difference was present in metabolic parameters between R1 and R2. Although the patients with preoperative adrenal insufficiency presented significantly increased HOMA scores before TSA, there was no difference between classifications of deficient pituitary axes and changes of metabolic parameters after TSA. Remitted patients exhibited rapid restoration of metabolic parameters immediate postoperative period. Long-term improvements in metabolic parameters were not different between the 2 different nadir GH cut-offs, 0.4 and 1.0 ng/mL. PMID:27310957

  14. No differences in metabolic outcomes between nadir GH 0.4 and 1.0 ng/mL during OGTT in surgically cured acromegalic patients (observational study)

    PubMed Central

    Ku, Cheol Ryong; Choe, Eun Yeong; Hong, Jae Won; Kim, Eui Hyun; Park, Se Hee; Kim, Sun Ho; Lee, Eun Jig

    2016-01-01

    Abstract Metabolic impairment is the common cause for mortality in acromegalic patients. In this study, long-term improvements of metabolic parameters were evaluated according to 2 different remission criteria. This was an observational cohort study before and up to 1 year after transsphenoidal adenomectomy (TSA). Participants were 187 patients with acromegaly. At 6 months after TSA, remitted patients with age- and sex-matched normalized IGF-1 were divided into 2 groups: remission 1 (R1), nadir growth hormone (GH) below 0.4 ng/mL; and remission 2 (R2), nadir GH between 0.4 and 1.0 ng/mL in oral glucose tolerance test (OGTT). Metabolic parameters during serial OGTTs were evaluated for 12 months. Remission was achieved in 157 (R1–136; R2–21) patients. Immediate postoperative metabolic parameters including body weight, body mass index, glucose, insulin, and free fatty acid in OGTT were all significantly improved in R1 and R2. HOMA-%β and HOMA-IR scores also improved in both R1 and R2. These improvements persisted for duration (12 months) of this study. However, no difference was present in metabolic parameters between R1 and R2. Although the patients with preoperative adrenal insufficiency presented significantly increased HOMA scores before TSA, there was no difference between classifications of deficient pituitary axes and changes of metabolic parameters after TSA. Remitted patients exhibited rapid restoration of metabolic parameters immediate postoperative period. Long-term improvements in metabolic parameters were not different between the 2 different nadir GH cut-offs, 0.4 and 1.0 ng/mL. PMID:27310957

  15. Genetic polymorphisms of PCSK2 are associated with glucose homeostasis and progression to type 2 diabetes in a Chinese population.

    PubMed

    Chang, Tien-Jyun; Chiu, Yen-Feng; Sheu, Wayne H-H; Shih, Kuang-Chung; Hwu, Chii-Min; Quertermous, Thomas; Jou, Yuh-Shan; Kuo, Shan-Shan; Chang, Yi-Cheng; Chuang, Lee-Ming

    2015-11-26

    Proprotein convertase subtilisin/kexin type 2 (PCSK2) is a prohormone processing enzyme involved in insulin and glucagon biosynthesis. We previously found the genetic polymorphism of PCSK2 on chromosome 20 was responsible for the linkage peak of several glucose homeostasis parameters. The aim of this study is to investigate the association between genetic variants of PCSK2 and glucose homeostasis parameters and incident diabetes. Total 1142 Chinese participants were recruited from the Stanford Asia-Pacific Program for Hypertension and Insulin Resistance (SAPPHIRe) family study, and 759 participants were followed up for 5 years. Ten SNPs of the PCSK2 gene were genotyped. Variants of rs6044695 and rs2284912 were associated with fasting plasma glucose, and variants of rs2269023 were associated with fasting plasma glucose and 1-hour plasma glucose during OGTT. Haplotypes of rs4814605/rs1078199 were associated with fasting plasma insulin levels and HOMA-IR. Haplotypes of rs890609/rs2269023 were also associated with fasting plasma glucose, fasting insulin and HOMA-IR. In the longitudinal study, we found individuals carrying TA/AA genotypes of rs6044695 or TC/CC genotypes of rs2284912 had lower incidence of diabetes during the 5-year follow-up. Our results indicated that PCSK2 gene polymorphisms are associated with pleiotropic effects on various traits of glucose homeostasis and incident diabetes.

  16. Exercise Intensity Modulates Glucose-Stimulated Insulin Secretion when Adjusted for Adipose, Liver and Skeletal Muscle Insulin Resistance

    PubMed Central

    Malin, Steven K.; Rynders, Corey A.; Weltman, Judy Y.; Barrett, Eugene J.; Weltman, Arthur

    2016-01-01

    Little is known about the effects of exercise intensity on compensatory changes in glucose-stimulated insulin secretion (GSIS) when adjusted for adipose, liver and skeletal muscle insulin resistance (IR). Fifteen participants (8F, Age: 49.9±3.6yr; BMI: 31.0±1.5kg/m2; VO2peak: 23.2±1.2mg/kg/min) with prediabetes (ADA criteria, 75g OGTT and/or HbA1c) underwent a time-course matched Control, and isocaloric (200kcal) exercise at moderate (MIE; at lactate threshold (LT)), and high-intensity (HIE; 75% of difference between LT and VO2peak). A 75g OGTT was conducted 1 hour post-exercise/Control, and plasma glucose, insulin, C-peptide and free fatty acids were determined for calculations of skeletal muscle (1/Oral Minimal Model; SMIR), hepatic (HOMAIR), and adipose (ADIPOSEIR) IR. Insulin secretion rates were determined by deconvolution modeling for GSIS, and disposition index (DI; GSIS/IR; DISMIR, DIHOMAIR, DIADIPOSEIR) calculations. Compared to Control, exercise lowered SMIR independent of intensity (P<0.05), with HIE raising HOMAIR and ADIPOSEIR compared with Control (P<0.05). GSIS was not reduced following exercise, but DIHOMAIR and DIADIPOSEIR were lowered more following HIE compared with Control (P<0.05). However, DISMIR increased in an intensity based manner relative to Control (P<0.05), which corresponded with lower post-prandial blood glucose levels. Taken together, pancreatic insulin secretion adjusts in an exercise intensity dependent manner to match the level of insulin resistance in skeletal muscle, liver and adipose tissue. Further work is warranted to understand the mechanism by which exercise influences the cross-talk between tissues that regulate blood glucose in people with prediabetes. PMID:27111219

  17. Acute effects of concentric and eccentric exercise on glucose metabolism and interleukin-6 concentration in healthy males

    PubMed Central

    Krüsmann, PJ; Mersa, L; Eder, EM; Gatterer, H; Melmer, A; Ebenbichler, C; Burtscher, M

    2016-01-01

    Acute muscle-damaging eccentric exercise (EE) negatively affects glucose metabolism. On the other hand, long-term eccentric endurance exercise seems to result in equal or superior positive effects on glucose metabolism compared to concentric endurance exercise. However, it is not known if acute non-muscle-damaging EE will have the same positive effects on glucose metabolism as acute concentric exercise (CE). Interleukin-6 (IL-6) released from the exercising muscles may be involved in the acute adaptations of glucose metabolism after CE and non-muscle-damaging EE. The aim of this study was to assess acute effects of uphill walking (CE) and non-muscle-damaging downhill walking (EE) on glucose metabolism and IL-6 secretion. Seven sedentary non-smoking, healthy males participated in a crossover trial consisting of a 1 h uphill (CE) and a 1 h downhill (EE) walking block on a treadmill. Venous blood samples were drawn before (pre), directly after (acute) and 24 h after (post) exercise. An oral glucose tolerance test (OGTT) was performed before and 24 h after exercise. Glucose tolerance after 1 and 2 hours significantly improved 24 hours after CE (-10.12±3.22%: P=0.039; -13.40±8.24%: P=0.028). After EE only the 1-hour value was improved (-5.03±5.48%: P=0.043). Acute IL-6 concentration rose significantly after CE but not after EE. We conclude that both a single bout of CE and a single bout of non-muscle-damaging EE elicit positive changes in glucose tolerance even in young, healthy subjects. Our experiment indicates that the overall metabolic cost is a major trigger for acute adaptations of glucose tolerance after exercise, but only the IL-6 production during EE was closely related to changes in glycaemic control. PMID:27274108

  18. Diagnostic value of fasting capillary glucose, fructosamine and glycosylated haemoglobin in detecting diabetes and other glucose tolerance abnormalities compared to oral glucose tolerance test.

    PubMed

    Herdzik, E; Safranow, K; Ciechanowski, K

    2002-04-01

    New diagnostic criteria for diabetes mellitus recommend lowering of the fasting plasma glucose to 7.0 mmol/l. In contrast to recommendations of the American Diabetes Association (ADA), WHO recommends using the oral glucose tolerance test (OGTT) in clinical practice. In this study. based on OGTT results and WHO 1998 criteria, we determined if measuring fasting capillary glycaemia (FCG) along with fructosamine and/or glycosylated haemoglobin allows the detection of glucose tolerance abnormalities better than FCG alone. OGTT was performed in 538 patients. Serum fructosamine was determined in 480 of the patients, and glycosylated haemoglobin in 234 of the patients. According to WHO 1998 criteria, the patients were divided into groups due to glucose tolerance abnormalities. Fructosamine correlated stronger with 2-h post-load glucose concentrations than with FCG. HbAlc correlated stronger with FCG than with 2-h post-load glucose. Combined use of fructosamine and FCG predicted 2-h post-load glucose better than combined use of FCG and HbA1c. Receiver operating characteristic curve analyses showed that FCG was the best criterion in discriminating diabetes. Combined use of FCG and fructosamine slightly improved the ability to discriminate glucose tolerance abnormalities from normal glucose tolerance. FCG is the most effective predictor of 2-h post-load glucose and the best criterion for discriminating diabetes and other glucose tolerance abnormalities from normal glucose tolerance. Fructosamine is a potentially useful post-load glycaemia index. OGTT is irreplaceable in identification of patients with high post-load glycaemia.

  19. Evaluation of a Self-Administered Oral Glucose Tolerance Test

    PubMed Central

    Bethel, M. Angelyn; Price, Hermione C.; Sourij, Harald; White, Sarah; Coleman, Ruth L.; Ring, Arne; Kennedy, Irene E.C.; Tucker, Lynne; Holman, Rury R.

    2013-01-01

    OBJECTIVE To assess the feasibility of using a disposable, self-administered, capillary blood sampling oral glucose tolerance test (OGTT) device in a community setting. RESEARCH DESIGN AND METHODS Eighteen healthy and 12 type 2 diabetic volunteers underwent six 75-g OGTTs using a prototype device in the following three settings: unaided at home (twice); unaided but observed in clinic (twice); and performed by a nurse with simultaneous laboratory glucose assays of 0- and 120-min venous plasma samples (twice). The device displayed no results. A detachable data recorder returned to the clinic provided plasma-equivalent 0- and 120-min glucose values and key parameters, including test date, start and end times, and time taken to consume the glucose drink. RESULTS The device was universally popular with participants and was perceived as easy to use, and the ability to test at home was well liked. Device failures meant that 0- and 120-min glucose values were obtained for only 141 (78%) of the 180 OGTTs performed, independent of setting. Device glucose measurements showed a mean bias compared with laboratory-measured values of +0.9 at 5.0 mmol/L increasing to +4.4 at 15.0 mmol/L. Paired device glucose values were equally reproducible across settings, with repeat testing showing no training effect regardless of setting order. CONCLUSIONS Self-administered OGTTs can be performed successfully by untrained individuals in a community setting. With improved device reliability and appropriate calibration, this novel technology could be used in routine practice to screen people who might need a formal OGTT to confirm the presence of impaired glucose tolerance or diabetes. PMID:23321216

  20. Opuntia ficus-indica ingestion stimulates peripheral disposal of oral glucose before and after exercise in healthy men.

    PubMed

    Van Proeyen, Karen; Ramaekers, Monique; Pischel, Ivo; Hespel, Peter

    2012-08-01

    The purpose of this study was to investigate the effect of Opuntia ficus-indica (OFI) cladode and fruit-skin extract on blood glucose and plasma insulin increments due to high-dose carbohydrate ingestion, before and after exercise. Healthy, physically active men (n = 6; 21.0 ± 1.6 years, 78.1 ± 6.0 kg) participated in a double-blind placebo-controlled crossover study involving 2 experimental sessions. In each session, the subjects successively underwent an oral glucose tolerance test at rest (OGTT(R)), a 30-min cycling bout at ~75% VO(2max), and another OGTT after exercise (OGTT(EX)). They received capsules containing either 1,000 mg OFI or placebo (PL) 30 min before and immediately after the OGTT(R). Blood samples were collected before (t₀) and at 30-min intervals after ingestion of 75 g glucose for determination of blood glucose and serum insulin. In OGTT(EX) an additional 75-g oral glucose bolus was administered at t₆₀. In OGTT(R), OFI administration reduced the area under the glucose curve (AUC(GLUC)) by 26%, mainly due to lower blood glucose levels at t₃₀ and t₆₀ (p < .05). Furthermore, a higher serum insulin concentration was noted after OFI intake at baseline and at t₃₀ (p < .05). In OGTT(EX), blood glucose at t₆₀ was ~10% lower in OFI than in PL, which resulted in a decreased AUC(GLUC) (-37%, p < .05). However, insulin values and AUC(INS) were not different between OFI and PL. In conclusion, the current study shows that OFI extract can increase plasma insulin and thereby facilitate the clearance of an oral glucose load from the circulation at rest and after endurance exercise in healthy men.

  1. Extraction of glucose information in blood glucose measurement by noninvasive near-infrared spectra

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Chen, Wenliang; Gu, Xiaoyu; Luo, Yunhan; Xu, Kexin

    2005-03-01

    Near infrared spectroscopy has been proposed as an effective way for measuring blood glucose non-invasively. However the change of spectrum due to an increase in glucose level is very small compared to the changes due to other variations such as absorption of major blood components, skin surface reflectance, temperature and pressure and so on. So the complexity of spectrum makes it difficult to identify unique glucose information. In this paper, the effect of background correction is discussed firstly. Then a simple substitution is proposed to compute the net analyte signal of glucose using the subspace spanned by the background spectra. For the in vitro experiment, the net analyte signals of glucose using the traditional methods and the subspace spanned by background have the same peaks in the absorption peaks of glucose for the glucose aqueous solution. For in vivo experiment, there is significant spectral difference between the subject who took OGTT test and the subject who took no glucose or water. And the net analyte signal of glucose is computed for OGTT test based on the subspace spanned by the spectra of subject who didn"t take glucose. Results show that, the spectral information induced by glucose taking is quite significant but it does not have the same peak at the absorption peak of glucose in near-infrared region.

  2. Impaired glucose utilization in man during acute exposure to environmental heat.

    PubMed

    Tatár, P; Vigas, M; Jurcovicová, J; Jezová, D; Strec, V; Palát, M

    1985-12-01

    In 6 healthy males the oral glucose tolerance test (OGTT) was performed after the administration of 100 g glucose during the hyperthermic Finnish sauna bath (85 degrees C) of 30 min duration. The lowered insulin response (P less than 0.001) to glucose challenge during heating and the subsequent prolonged hyperglycemia (P less than 0.001) after heating were observed, when compared to OGTT under thermoneutral conditions (23 degrees C). It is suggested that the heat-induced decrease in visceral blood flow and stimulation of sympathoadrenomedullary and pituitary activity may be responsible for this effect. PMID:3910408

  3. Detecting Prediabetes and Diabetes: Agreement between Fasting Plasma Glucose and Oral Glucose Tolerance Test in Thai Adults

    PubMed Central

    Aekplakorn, Wichai; Tantayotai, Valla; Numsangkul, Sakawduan; Sripho, Wilarwan; Tatsato, Nutchanat; Burapasiriwat, Tuanjai; Pipatsart, Rachada; Sansom, Premsuree; Luckanajantachote, Pranee; Chawarokorn, Pongpat; Thanonghan, Anek; Lakhamkaew, Watchira; Mungkung, Aungsumalin; Boonkean, Rungnapa; Chantapoon, Chanidsa; Kungsri, Mayuree; Luanseng, Kasetsak; Chaiyajit, Kornsinun

    2015-01-01

    Aim. To evaluate an agreement in identifying dysglycemia between fasting plasma glucose (FPG) and the 2 hr postprandial glucose tolerance test (OGTT) in a population with high risk of diabetes. Methods. A total of 6,884 individuals aged 35–65 years recruited for a community-based diabetes prevention program were tested for prediabetes including impaired fasting glucose (IFG) or impaired glucose tolerance (IGT), and diabetes. The agreement was assessed by Kappa statistics. Logistic regression was used to examine factors associated with missed prediabetes and diabetes by FPG. Results. A total of 2671 (38.8%) individuals with prediabetes were identified. The prevalence of prediabetes identified by FPG and OGTT was 32.2% and 22.3%, respectively. The proportions of diabetes classified by OGTT were two times higher than those identified by FPG (11.0% versus 5.4%, resp.). The Kappa statistics for agreement of both tests was 0.55. Overall, FPG missed 46.3% of all prediabetes and 54.7% of all diabetes cases. Prediabetes was more likely to be missed by FPG among female, people aged <45 yrs, and those without family history of diabetes. Conclusion. The detection of prediabetes and diabetes using FPG only may miss half of the cases. Benefit of adding OGTT to FPG in some specific groups should be confirmed. PMID:26347060

  4. beta-Cell function and insulin sensitivity in adolescents from an OGTT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Given the increase in the incidence of insulin resistance, obesity, and type 2 diabetes in children and adolescents, it would be of paramount importance to assess quantitative indices of insulin secretion and action during a physiological perturbation, such as a meal or an oral glucose-tolerance tes...

  5. Serum Galanin Levels in Young Healthy Lean and Obese Non-Diabetic Men during an Oral Glucose Tolerance Test

    PubMed Central

    Sandoval-Alzate, Héctor Fabio; Agudelo-Zapata, Yessica; González-Clavijo, Angélica María; Poveda, Natalia E.; Espinel-Pachón, Cristian Felipe; Escamilla-Castro, Jorge Augusto; Márquez-Julio, Heidy Lorena; Alvarado-Quintero, Hernando; Rojas-Rodríguez, Fabián Guillermo; Arteaga-Díaz, Juan Manuel; Eslava-Schmalbach, Javier Hernando; Garcés-Gutiérrez, Maria Fernanda; Vrontakis, Maria; Castaño, Justo P.; Luque, Raul M.; Diéguez, Carlos; Nogueiras, Rubén; Caminos, Jorge E.

    2016-01-01

    Galanin (GAL) is a neuropeptide involved in the homeostasis of energy metabolism. The objective of this study was to investigate the serum levels of GAL during an oral glucose tolerance test (OGTT) in lean and obese young men. This cross-sectional study included 30 obese non-diabetic young men (median 22 years; mean BMI 37 kg/m2) and 30 healthy lean men (median 23 years; mean BMI 22 kg/m2). Serum GAL was determined during OGTT. The results of this study include that serum GAL levels showed a reduction during OGTT compared with basal levels in the lean subjects group. Conversely, serum GAL levels increased significantly during OGTT in obese subjects. Serum GAL levels were also higher in obese non-diabetic men compared with lean subjects during fasting and in every period of the OGTT (p < 0.001). Serum GAL levels were positively correlated with BMI, total fat, visceral fat, HOMA–IR, total cholesterol, triglycerides and Leptin. A multiple regression analysis revealed that serum insulin levels at 30, 60 and 120 minutes during the OGTT is the most predictive variable for serum GAL levels (p < 0.001). In conclusion, serum GAL levels are significantly higher in the obese group compared with lean subjects during an OGTT. PMID:27550417

  6. Serum Galanin Levels in Young Healthy Lean and Obese Non-Diabetic Men during an Oral Glucose Tolerance Test.

    PubMed

    Sandoval-Alzate, Héctor Fabio; Agudelo-Zapata, Yessica; González-Clavijo, Angélica María; Poveda, Natalia E; Espinel-Pachón, Cristian Felipe; Escamilla-Castro, Jorge Augusto; Márquez-Julio, Heidy Lorena; Alvarado-Quintero, Hernando; Rojas-Rodríguez, Fabián Guillermo; Arteaga-Díaz, Juan Manuel; Eslava-Schmalbach, Javier Hernando; Garcés-Gutiérrez, Maria Fernanda; Vrontakis, Maria; Castaño, Justo P; Luque, Raul M; Diéguez, Carlos; Nogueiras, Rubén; Caminos, Jorge E

    2016-01-01

    Galanin (GAL) is a neuropeptide involved in the homeostasis of energy metabolism. The objective of this study was to investigate the serum levels of GAL during an oral glucose tolerance test (OGTT) in lean and obese young men. This cross-sectional study included 30 obese non-diabetic young men (median 22 years; mean BMI 37 kg/m(2)) and 30 healthy lean men (median 23 years; mean BMI 22 kg/m(2)). Serum GAL was determined during OGTT. The results of this study include that serum GAL levels showed a reduction during OGTT compared with basal levels in the lean subjects group. Conversely, serum GAL levels increased significantly during OGTT in obese subjects. Serum GAL levels were also higher in obese non-diabetic men compared with lean subjects during fasting and in every period of the OGTT (p < 0.001). Serum GAL levels were positively correlated with BMI, total fat, visceral fat, HOMA-IR, total cholesterol, triglycerides and Leptin. A multiple regression analysis revealed that serum insulin levels at 30, 60 and 120 minutes during the OGTT is the most predictive variable for serum GAL levels (p < 0.001). In conclusion, serum GAL levels are significantly higher in the obese group compared with lean subjects during an OGTT. PMID:27550417

  7. Monitoring breath during oral glucose tolerance tests.

    PubMed

    Ghimenti, S; Tabucchi, S; Lomonaco, T; Di Francesco, F; Fuoco, R; Onor, M; Lenzi, S; Trivella, M G

    2013-03-01

    The evolution of breath composition during oral glucose tolerance tests (OGTTs) was analysed by thermal desorption/gas chromatography/mass spectrometry in 16 subjects and correlated to blood glucose levels. The glucose tolerance tests classified five of the subjects as diabetics, eight as affected by impaired glucose tolerance and three as normoglycaemic. Acetone levels were generally higher in diabetics (average concentration values: diabetics, 300 ± 40 ppbv; impaired glucose tolerance, 350 ± 30 ppbv; normoglycaemic, 230 ± 20 ppbv) but the large inter-individual variability did not allow us to identify the three groups by this parameter alone. The exhalation of 3-hydroxy-butan-2-one and butane-2,3-dione, likely due to the metabolization of glucose by bacteria in the mouth, was also observed. Future work will involve the extension of the analyses to other volatile compounds by attempting to improve the level of discrimination between the various classes of subjects. PMID:23446273

  8. Ceylon cinnamon does not affect postprandial plasma glucose or insulin in subjects with impaired glucose tolerance.

    PubMed

    Wickenberg, Jennie; Lindstedt, Sandra; Berntorp, Kerstin; Nilsson, Jan; Hlebowicz, Joanna

    2012-06-01

    Previous studies on healthy subjects have shown that the intake of 6 g Cinnamomum cassia reduces postprandial glucose and that the intake of 3 g C. cassia reduces insulin response, without affecting postprandial glucose concentrations. Coumarin, which may damage the liver, is present in C. cassia, but not in Cinnamomum zeylanicum. The aim of the present study was to study the effect of C. zeylanicum on postprandial concentrations of plasma glucose, insulin, glycaemic index (GI) and insulinaemic index (GII) in subjects with impaired glucose tolerance (IGT). A total of ten subjects with IGT were assessed in a crossover trial. A standard 75 g oral glucose tolerance test (OGTT) was administered together with placebo or C. zeylanicum capsules. Finger-prick capillary blood samples were taken for glucose measurements and venous blood for insulin measurements, before and at 15, 30, 45, 60, 90, 120, 150 and 180 min after the start of the OGTT. The ingestion of 6 g C. zeylanicum had no significant effect on glucose level, insulin response, GI or GII. Ingestion of C. zeylanicum does not affect postprandial plasma glucose or insulin levels in human subjects. The Federal Institute for Risk Assessment in Europe has suggested the replacement of C. cassia by C. zeylanicum or the use of aqueous extracts of C. cassia to lower coumarin exposure. However, the positive effects seen with C. cassia in subjects with poor glycaemic control would then be lost.

  9. Aerosolized Red Tide Toxins (Brevetoxins) and Asthma: Continued health effects after 1 hour beach exposure.

    PubMed

    Kirkpatrick, Barbara; Fleming, Lora E; Bean, Judy A; Nierenberg, Kate; Backer, Lorraine C; Cheng, Yung Sung; Pierce, Richard; Reich, Andrew; Naar, Jerome; Wanner, Adam; Abraham, William M; Zhou, Yue; Hollenbeck, Julie; Baden, Daniel G

    2011-01-01

    Blooms of the toxic dinoflagellate, Karenia brevis, produce potent neurotoxins in marine aerosols. Recent studies have demonstrated acute changes in both symptoms and pulmonary function in asthmatics after only 1 hour of beach exposure to these aerosols. This study investigated if there were latent and/or sustained effects in asthmatics in the days following the initial beach exposure during periods with and without an active Florida red tide.Symptom data and spirometry data were collected before and after 1 hour of beach exposure. Subjects kept daily symptom diaries and measured their peak flow each morning for 5 days following beach exposure. During non-exposure periods, there were no significant changes in symptoms or pulmonary function either acutely or over 5 days of follow-up. After the beach exposure during an active Florida red tide, subjects had elevated mean symptoms which did not return to the pre-exposure baseline for at least 4 days. The peak flow measurements decreased after the initial beach exposure, decreased further within 24 hours, and continued to be suppressed even after 5 days. Asthmatics may continue to have increased symptoms and delayed respiratory function suppression for several days after 1 hour of exposure to the Florida red tide toxin aerosols.

  10. Aerosolized Red Tide Toxins (Brevetoxins) and Asthma: Continued health effects after 1 hour beach exposure.

    PubMed

    Kirkpatrick, Barbara; Fleming, Lora E; Bean, Judy A; Nierenberg, Kate; Backer, Lorraine C; Cheng, Yung Sung; Pierce, Richard; Reich, Andrew; Naar, Jerome; Wanner, Adam; Abraham, William M; Zhou, Yue; Hollenbeck, Julie; Baden, Daniel G

    2011-01-01

    Blooms of the toxic dinoflagellate, Karenia brevis, produce potent neurotoxins in marine aerosols. Recent studies have demonstrated acute changes in both symptoms and pulmonary function in asthmatics after only 1 hour of beach exposure to these aerosols. This study investigated if there were latent and/or sustained effects in asthmatics in the days following the initial beach exposure during periods with and without an active Florida red tide.Symptom data and spirometry data were collected before and after 1 hour of beach exposure. Subjects kept daily symptom diaries and measured their peak flow each morning for 5 days following beach exposure. During non-exposure periods, there were no significant changes in symptoms or pulmonary function either acutely or over 5 days of follow-up. After the beach exposure during an active Florida red tide, subjects had elevated mean symptoms which did not return to the pre-exposure baseline for at least 4 days. The peak flow measurements decreased after the initial beach exposure, decreased further within 24 hours, and continued to be suppressed even after 5 days. Asthmatics may continue to have increased symptoms and delayed respiratory function suppression for several days after 1 hour of exposure to the Florida red tide toxin aerosols. PMID:21499552

  11. Accuracy of a Novel Noninvasive Multisensor Technology to Estimate Glucose in Diabetic Subjects During Dynamic Conditions

    PubMed Central

    Sobel, Sandra I.; Chomentowski, Peter J.; Vyas, Nisarg; Andre, David

    2014-01-01

    The purpose of this study was to determine whether an approach of multisensor technology with integrated data analysis in an armband system (SenseWear® Pro Armband, SWA) can provide estimates of plasma glucose concentration in diabetes. In all, 41 subjects with diabetes participated. On day 1 subjects underwent an oral glucose tolerance test (OGTT) and on day 2 a 60-minute treadmill test (TT). SWA plasma glucose estimates were compared against reference peripheral venous glucose concentrations. A continuous glucose monitoring device (CGM) was also placed on each subject to serve as a reference for clinical comparison. Pearson coefficient, Clarke error grid (CEG), and mean absolute relative difference (MARD) analyses were used to compare the performance of plasma glucose estimation. There were significant correlations between plasma glucose concentrations estimated by the SWA and the reference plasma glucose concentration during the OGTT (r = .65, P < .05) and the TT (r = .91, P < .05). CEG analysis revealed that during the OGTT, 93% of plasma glucose concentration readings were in the clinically acceptable zone A+B for the SWA and 95% for the CGM. During the TT, the SWA had 96% of readings in zone A+B, compared to 97% for the CGM. During OGTTs, MARDs for the SWA and CGM were 26% and 18%, respectively. During TTs, MARDs were 16% and 12%, respectively. Plasma glucose concentration estimation by the SWA’s noninvasive multisensor approach appears to be feasible and its performance in estimating glucose approaches that of a CGM. The success of this pilot study suggests that multisensor technology holds promising potential for the development of a wearable, noninvasive, painless glucose monitor. PMID:24876538

  12. Population screening for glucose intolerant subjects using decision tree analyses.

    PubMed

    Barriga, K J; Hamman, R F; Hoag, S; Marshall, J A; Shetterly, S M

    1996-10-01

    The purpose of this study was to develop a method of screening for impaired glucose tolerance and previously undiagnosed NIDDM that could be used preliminary to the administration of an oral glucose tolerance test (OGTT) for final classification of glucose tolerance status. The purpose of a preliminary screening of this type would be to reduce the number of OGTT's needed to identify cases of IGT and NIDDM in the population. We used NIDDM risk indicators and decision tree analysis methods (CART software) to identify subgroups of the population at increased risk. We examined a population of Hispanic (n = 583) and non-Hispanic white (n = 768) subjects without a prior history of diabetes. Subjects were classified as normal, IGT or NIDDM (WHO criteria) based on results from a 75 g oral glucose tolerance test (OGTT). Sensitivity (SEN) and specificity (SPE) of the CART models were calculated using the OGTT as the 'gold standard.' Two approaches to screening were simulated. In the simultaneous approach all risk variables were entered into CART models at once. In the serial approach, risk variables were grouped according to degree of effort required for data collection, and were entered into CART models in stages. Fasting glucose, age and body mass index (BMI) were selected as risk variables by CART when simulating the simultaneous approach (SEN = 91%, SPE = 55%). In the serial approach, CART used age and BMI to eliminate 35% of the population from further screening, and then used fasting glucose, glycohemoglobin, age and BMI to classify the remaining higher risk subjects (SEN = 85%, SPE = 64%). These models suggest that screening for IGT and previously undiagnosed NIDDM can be based on measurement of relatively simple indicators, and yet maintain a level of both sensitivity and specificity acceptable for this type of preliminary screening. PMID:9015666

  13. Multi-instrument overview of the 1-hour pulsations in Saturn's magnetosphere and auroral emissions (invited)

    NASA Astrophysics Data System (ADS)

    Palmaerts, Benjamin; Roussos, Elias; Radioti, Aikaterini; Krupp, Norbert; Grodent, Denis; Kurth, William S.; Yates, Japheth N.

    2016-04-01

    The in-situ exploration of the magnetospheres of Jupiter and Saturn has revealed different periodic processes which differ from the rotation period. In particular, in the Saturnian magnetosphere, several studies have reported pulsations in the outer magnetosphere with a periodicity of about 1 hour in the measurements of charged particle fluxes, plasma wave, magnetic field strength and auroral emission brightness. We made a 10-year survey of the quasi-periodic 1-hour energetic electron injections observed in the Saturn's outer magnetosphere by the Low-Energy Magnetospheric Imaging Instrument (MIMI/LEMMS) on board Cassini. The signature of these injections is pulsations in the electron fluxes at energies between a hundred keV up to several MeV. We investigated the topology and the morphology of these pulsations, as well as the signatures of the electron injections in the radio emissions and the magnetic field, respectively, measured by the Radio and Plasma Wave Science (RPWS) instrument and the magnetometer (MAG) on board Cassini. The morphology of the pulsations (interpulse period, number of pulsations per event, growth and decay time) shows a weak local time dependence, which suggests a high-latitude source for the pulsed energetic electrons. This suggestion is reinforced by the observation of strong radio bursts in the auroral hiss coincident with the electron pulsations and by the higher growth rate and decay rate magnitudes at high latitudes. Moreover, since the morphological properties of the pulsations are similar at the various locations where the electron injections are observed, the acceleration mechanism of the electrons is likely common for all the events and may be directly or indirectly involving magnetic reconnection. The auroral emissions, which display the ionospheric response to magnetospheric dynamics, exhibit some quasi-periodic 1-hour pulsations as well. Some pulsed auroral brightenings are observed while Cassini detects several electron

  14. Interstitial lactate levels in human skin at rest and during an oral glucose load: a microdialysis study.

    PubMed

    Petersen, L J

    1999-05-01

    In vitro data have suggested that the skin is a significant lactate source. The purpose of the present study was to measure lactate and glucose concentrations in intact human skin in vivo using the microdialysis technique. Microdialysis fibres of 216 microns were inserted intradermally and perfused at a rate of 3 microliters min-1. In the first experimental protocol, dialysis fibres were calibrated by the method of no net flux in eight subjects. Skin lactate concentrations of 2.48 +/- 0.17 mmol l-1 were significantly greater than lactate concentrations of 0.84 +/- 0.15 mmol l-1 in venous plasma (P < 0.01). Glucose concentrations in skin and venous plasma were similar (5.49 +/- 0.18 vs. 5.26 +/- 0.24 mmol l-1). In the second experimental protocol, changes in lactate and glucose levels were studied in 10 subjects after an oral glucose tolerance test (OGTT). After the OGTT, plasma glucose and lactate levels increased by 54% and 39% to peak levels at 30 and 60 min respectively. In comparison, skin glucose and lactate increased by 41% and 18% at 60 and 90 min. No changes in skin blood flow were observed during the OGTT. The data suggest that resting skin is a significant lactate source with no significant lactate production during OGTT. The cellular source of lactate in the skin remains undetermined to date.

  15. Acute Effects of Decaffeinated Coffee and the Major Coffee Components Chlorogenic Acid and Trigonelline on Glucose Tolerance

    PubMed Central

    van Dijk, Aimée E.; Olthof, Margreet R.; Meeuse, Joke C.; Seebus, Elin; Heine, Rob J.; van Dam, Rob M.

    2009-01-01

    OBJECTIVE Coffee consumption has been associated with lower risk of type 2 diabetes. We evaluated the acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. RESEARCH DESIGN AND METHODS We conducted a randomized crossover trial of the effects of 12 g decaffeinated coffee, 1 g chlorogenic acid, 500 mg trigonelline, and placebo (1 g mannitol) on glucose and insulin concentrations during a 2-h oral glucose tolerance test (OGTT) in 15 overweight men. RESULTS Chlorogenic acid and trigonelline ingestion significantly reduced glucose (−0.7 mmol/l, P = 0.007, and −0.5 mmol/l, P = 0.024, respectively) and insulin (−73 pmol/l, P = 0.038, and −117 pmol/l, P = 0.007) concentrations 15 min following an OGTT compared with placebo. None of the treatments affected insulin or glucose area under the curve values during the OGTT compared with placebo. CONCLUSIONS Chlorogenic acid and trigonelline reduced early glucose and insulin responses during an OGTT. PMID:19324944

  16. Acute Inactivity Impairs Glycemic Control but Not Blood Flow to Glucose Ingestion

    PubMed Central

    Reynolds, Leryn J; Credeur, Daniel P; Holwerda, Seth W; Leidy, Heather J; Fadel, Paul J; Thyfault, John P

    2014-01-01

    Purpose Insulin-stimulated increases in skeletal muscle blood flow play a role in glucose disposal. Indeed, 7 days of aerobic exercise in type 2 diabetes patients increased blood flow responses to an oral glucose tolerance test (OGTT) and improved glucose tolerance. More recent work suggests that reduced daily physical activity impairs glycemic control (GC) in healthy individuals. Herein, we sought to determine if an acute reduction in daily activity (from >10,000 to <5,000 steps/day) for 5 days (RA5) in healthy individuals reduced insulin-stimulated blood flow and GC in parallel and if a 1 day return to activity (RTA1) improved these outcomes. Methods OGTTs were performed as a stimulus to increase insulin in 14 healthy, recreationally active men (24±1.1 yrs) at baseline, RA5, and RTA1. Measures of insulin sensitivity (Matsuda index) and femoral and brachial artery blood flow were made during the OGTT. Free living measures of GC including peak postprandial glucose (peak PPG) were also made via continuous glucose monitoring. Results Femoral and brachial artery blood flow increased during the OGTT but neither was significantly impacted by changes in physical activity (p>0.05). However, insulin sensitivity was decreased by RA5 (11.3±1.5 to 8.0±1.0; p<0.05). Likewise, free living GC measures of peak post prandial blood glucose (113±3 to 123±5 mg/dL; p<0.05) was significantly increased at RA5. Interestingly, insulin sensitivity and GC as assessed by peak PPG were not restored after RTA1 (p>0.05). Conclusions Thus, acute reductions in physical activity impaired GC and insulin sensitivity; however blood flow responses to an OGTT were not affected. Further, a 1 day return to activity was not sufficient to normalize GC following 5 days of reduced daily physical activity. PMID:25207931

  17. Beta-cell function, incretin effect, and incretin hormones in obese youth along the span of glucose tolerance from normal to prediabetes to Type 2 diabetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using the hyperglycemic and euglycemic clamp, we demonstrated impaired Beta-cell function in obese youth with increasing dysglycemia. Herein we describe oral glucose tolerance test (OGTT)-modeled Beta-cell function and incretin effect in obese adolescents spanning the range of glucose tolerance. Bet...

  18. Kidney Function, β-Cell Function and Glucose Tolerance in Older Men

    PubMed Central

    Jia, Ting; Risérus, Ulf; Xu, Hong; Lindholm, Bengt; Ärnlöv, Johan; Sjögren, Per; Cederholm, Tommy; Larsson, Tobias E.; Ikizler, Talat Alp

    2015-01-01

    Context: Kidney dysfunction induces insulin resistance, but it is unknown if β cell function is affected. Objective: To investigate insulin release (β cell function) and glucose tolerance following a standardized oral glucose tolerance test (OGTT) across kidney function strata. Setting and Design: Community-based cohort study from the Uppsala Longitudinal Study of Adult Men (ULSAM). Participants and Main Outcome Measure: Included were 1015 nondiabetic Swedish men aged 70–71 years. All participants underwent OGTT and euglycaemic hyperinsulinaemic clamp (HEGC) tests, allowing determination of insulin sensitivity, β cell function, and glucose tolerance. Kidney function was estimated by cystatin C-algorithms. Mixed models were used to identify determinants of insulin secretion after the hyperglycemic load. Results: As many as 466 (46%) of participants presented moderate-advanced kidney disease. Insulin sensitivity (by HEGC) decreased across decreasing kidney function quartiles. After the OGTT challenge, however, β cell function indices (area under the curve for insulin release, the estimated first phase insulin release, and the insulinogenic index) were incrementally higher. Neither the oral disposition index nor the 2-h postload glucose tolerance differed across the kidney function strata. Mixed models showed that dynamic insulin release during the OGTT was inversely associated with kidney function, despite the correction for each individual's insulin sensitivity or its risk factors. Conclusions: In older men, β cell function after a hyperglycemic load appropriately compensated the loss in insulin sensitivity that accompanies kidney dysfunction. As a result, the net balance between insulin sensitivity and β cell function was preserved. PMID:25429626

  19. 40 CFR 62.15210 - How do I convert my 1-hour arithmetic averages into appropriate averaging times and units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of 40 CFR part 60, section 4.3, to calculate the daily geometric average concentrations of sulfur... 40 Protection of Environment 8 2010-07-01 2010-07-01 false How do I convert my 1-hour arithmetic... convert my 1-hour arithmetic averages into appropriate averaging times and units? (a) Use the equation...

  20. The effect of glucose loading on urinary excretion of chromium in normal adults, in individuals from diabetic families and in diabetics.

    PubMed

    Gürson, C T; Saner, G

    1978-07-01

    This study was designed to investigate the effect of oral glucose tolerance tests (OGTT) on urinary chromium excretion in normal individuals, in individuals belonging to diabetic families, and in diabetics. The results can be summarized as: 1) eight of the 10 normal adults showed a significant increase both in terms of chromium per minute and chromium/creatinine (Cr/Cre) ratio after OGTT, and the difference between the mean values before and after OGTT was significant, 2) Of the 13 individuals from diabetic families, only five increased their chromium excretion and chromium/creatinine ratio after the glucose challenge (39%). However, the mean values for the group before and after OGTT remained statistically unchanged, 3) three of eight overt diabetic subjects (38%) showed moderate increase the chromium excretion and Cr/Cre ratio after OGTT, but the mean values were not effected. The creatinine values in urine remained constant before and after OGTT in all groups. These results suggest that a positive Cr/Cre response is more likely to occur in groups of normals than in groups of diabetics, and in individuals from diabetic families.

  1. Are the WHO (1980) criteria for the 75 g oral glucose tolerance test appropriate for pregnant women?

    PubMed

    Cheng, L C; Salmon, Y M

    1993-07-01

    To assess the normal response to the 75 gm oral glucose tolerance test (OGTT) in normal pregnant women, healthy Chinese and Malay women who had been referred to the antenatal clinic of the Department of Reproductive Medicine, Kandang Kerbau Hospital, Singapore, were evaluated. The women were selected on the basis of having none of the generally accepted risk factors for diabetes mellitus: their age was 35 years, they weighed 80 kg, they did not have a personal history of diabetes or a family history of diabetes or a family history of diabetes in first degree relatives, nor did they have a history of babies weighing 4000 gm at birth, still-births, neonatal deaths, congenital malformations, or recurrent miscarriages. All OGTTs were performed after 28 weeks of gestation. The fasting blood sample was taken from the antecubital vein. Further samples were taken 1 and 2 hours after the glucose drink. A glucose analyzer using 5 mcl of plasma was employed. The analytical method was based on the glucose oxidase/peroxidase/aminophenazone process. There was no significant difference in mean glucose levels at corresponding points of the OGTT in Chinese and Malay women. correlation calculations confirmed the absence of any influence of gestational age after 28 weeks on glucose tolerance. Of the 64 women, 47 were Chinese and 17 Malays; 20 wee nulliparous, and 44 were parous. Their mean age was 27.2 years (range 18-35). The mean birthweight of the infants was 3140 gm (range 2094-4240 gm). There were 33 female and 31 male infants. The mean apgar scores at 1 and 5 min were 8.8 (range 7-9) and 9.0 (range 6-10). The mean values and the proposed upper limits of normality for the 75 gm OGTT were 3.9 and 4.9 mmol/1, respectively. 6 women had abnormal OGTT results according to the WHO criteria (fasting glucose 6 mmol/1; 2 hour glucose 8 mmol/1).

  2. Abnormal transient rise in hepatic glucose production after oral glucose in non-insulin-dependent diabetic subjects.

    PubMed

    Thorburn, A; Litchfield, A; Fabris, S; Proietto, J

    1995-05-01

    A transient rise in hepatic glucose production (HGP) after an oral glucosa load has been reported in some insulin-resistant states such as in obese fa/fa Zucker rats. The aim of this study was to determine whether this rise in HGP also occurs in subjects with established non-insulin-dependent diabetes mellitus (NIDDM). Glucose kinetics were measured basally and during a double-label oral glucose tolerance test (OGTT) in 12 NIDDM subjects and 12 non-diabetic 'control' subjects. Twenty minutes after the glucose load, HGP had increased 73% above basal in the NIDDM subjects (7.29 +/- 0.52 to 12.58 +/- 1.86 mumol/kg/min, P < 0.02). A transient rise in glucagon (12 pg/ml above basal, P < 0.004) occurred at a similar time. In contrast, the control subjects showed no rise in HGP or plasma glucagon. HGP began to suppress 40-50 min after the OGTT in both the NIDDM and control subjects. A 27% increase in the rate of gut-derived glucose absorption was also observed in the NIDDM group, which could be the result of increased gut glucose absorption or decreased first pass extraction of glucose by the liver. Therefore, in agreement with data in animal models of NIDDM, a transient rise in HGP partly contributes to the hyperglycemia observed after an oral glucose load in NIDDM subjects. PMID:7587920

  3. Pre-Type 1 Diabetes Dysmetabolism: Maximal sensitivity achieved with Both Oral and Intravenous Glucose Tolerance Testing

    PubMed Central

    Barker, Jennifer M.; McFann, Kim; Harrison, Leonard C.; Fourlanos, Spiros; Krischer, Jeffrey; Cuthbertson, David; Chase, H. Peter; Eisenbarth, George S.; Group, the DPT-1 Study

    2007-01-01

    Objective To determine the relationship of intravenous (IVGTT) and oral (OGTT) glucose tolerance tests abnormalities to diabetes development in a high-risk pre-diabetic cohort and identify an optimal testing strategy for detecting pre-clinical diabetes. Study design Diabetes Prevention Trial Type 1 randomized subjects to oral (n=372) and parenteral (n=339) insulin prevention trials. Subjects were followed with IVGTTs and OGTTs. Factors associated with progression to diabetes were evaluated. Results Survival analysis revealed that higher quartiles of 2-hour glucose and lower quartiles of FPIR at baseline were associated with decreased diabetes-free survival. Cox proportional hazards modeling showed that baseline BMI, FPIR and 2-hour glucose levels were significantly associated with an increased hazard for diabetes. On testing performed within 6 months of diabetes diagnosis, 3% (1/32) had normal first phase insulin response (FPIR) and normal 2-hour glucose on OGTT. The sensitivities for impaired glucose tolerance (IGT) and low FPIR performed within 6 months of diabetes diagnosis were equivalent (76% vs. 73%). Conclusions Most (97%) subjects had abnormal IVGTTs and/or OGTTs prior to the development of diabetes. The highest sensitivity is achieved using both tests. PMID:17188609

  4. Effects of sitagliptin on ectopic fat contents and glucose metabolism in type 2 diabetic patients with fatty liver: A pilot study

    PubMed Central

    Watanabe, Takahiro; Tamura, Yoshifumi; Kakehi, Saori; Funayama, Takashi; Gastaldelli, Amalia; Takeno, Kageumi; Kawaguchi, Minako; Yamamoto, Risako; Sato, Fumihiko; Ikeda, Shin-ichi; Taka, Hikari; Fujimura, Tsutomu; Fujitani, Yoshio; Kawamori, Ryuzo; Watada, Hirotaka

    2015-01-01

    Aims/Introduction Recent data have shown that ectopic fat accumulation in the liver worsens hepatic glucose metabolism, suggesting that fatty liver in patients with type 2 diabetes is a therapeutic target. Glucagon-like peptide (GLP)-1 improves fatty liver, but the effect of dipeptidyl peptidase-4 inhibitor on fatty liver is still unclear. The present pilot study determined the effects of 12-week treatment with sitagliptin, a dipeptidyl peptidase-4 inhibitor, on liver fat content in type 2 diabetes with fatty liver. We also evaluated intramyocellular lipid (IMCL) and glucose kinetics during oral glucose tolerance test (OGTT) before and after the treatment. Materials and Methods The study participants were seven type 2 diabetes patients with fatty liver who were studied at baseline and 12 weeks after sitagliptin treatment. Intrahepatic lipid (IHL) and IMCL were assessed by 1H magnetic resonance spectroscopy. Glucose kinetics was assessed during double-tracer OGTT (U-[13C]-glucose orally and 6,6-[2H2]-glucose intravenously). Results Sitagliptin significantly reduced glycated hemoglobin (from 7.1 ± 0.2 to 6.5 ± 0.3%, P < 0.005), but had no effects on IHL and IMCL. The glucose level diminished, whereas GLP-1 concentration increased during OGTT at the end of treatment. These changes were not accompanied by significant changes in insulin or glucagon levels. However, long-term sitagliptin treatment partially decreased the rate of appearance of oral glucose during OGTT, but did not affect endogenous glucose production or the rate of disappearance. Conclusions It was found that 12-week sitagliptin treatment improved glycated hemoglobin and glucose excursion during OGTT in type 2 diabetes with fatty liver, independent of changes in lipid accumulation in the liver. This trial was registered with the Japan Clinical Trials Registry (UMIN-CTR000005666). PMID:25802724

  5. Oral Glucose Tolerance Testing identifies HIV+ infected women with Diabetes Mellitus (DM) not captured by standard DM definition

    PubMed Central

    Tian, Fang; Anastos, Kathryn; Cohen, Mardge H; Tien, Phyllis C

    2016-01-01

    Objective HIV-infected (HIV+) individuals may have differential risk of diabetes mellitus (DM) compared to the general population, and the optimal diagnostic algorithm for DM in HIV+ persons remains unclear. We aimed to assess the utility of oral glucose tolerance testing (OGTT) for DM diagnosis in a cohort of women with or at risk for HIV infection. Methods Using American Diabetic Association DM definitions, DM prevalence and incidence were assessed among women enrolled in the Women’s Interagency HIV Study. DM was defined by 2-hour OGTT ≥ 200 mg/dL (DM_OGTT) or a clinical definition (DM_C) that included any of the following: (i) anti-diabetic medication use or self-reported DM confirmed by either fasting glucose (FG) ≥126 mg/dL or HbA1c ≥ 6.5%, (ii) FG ≥ 126 mg/dL confirmed by a second FG ≥ 126 mg/dL or HbA1c 6.5%, or (iii) HbA1c 6.5% confirmed by FG ≥ 126 mg/dL cohort. Results Overall, 390 women (285 HIV+, median age 43 years; 105 HIV−, median age 37 years) were enrolled between 2003-2006. Over half of all women were African American. Using DM_C, DM prevalence rates were 5.6% and 2.8% among HIV+ and HIV− women, respectively. Among HIV+ women, adding DM_OGTT to DM_C increased DM prevalence from 5.6% to 7.4%, a 31% increase in the number of diabetes cases diagnosed (p=0.02). In HIV− women, no additional cases were diagnosed by DM-OGTT. Conclusion In HIV+ women, OGTT identified DM cases that were not identified by a standardized clinical definition. Further investigation is needed to determine whether OGTT should be considered as an adjunctive tool for DM diagnosis in the setting of HIV infection. PMID:27066296

  6. Identification of Differential Responses to an Oral Glucose Tolerance Test in Healthy Adults

    PubMed Central

    Morris, Ciara; O’Grada, Colm; Ryan, Miriam; Roche, Helen M.; Gibney, Michael J.; Gibney, Eileen R.; Brennan, Lorraine

    2013-01-01

    Background In recent years an individual’s ability to respond to an acute dietary challenge has emerged as a measure of their biological flexibility. Analysis of such responses has been proposed to be an indicator of health status. However, for this to be fully realised further work on differential responses to nutritional challenge is needed. This study examined whether metabolic phenotyping could identify differential responders to an oral glucose tolerance test (OGTT) and examined the phenotypic basis of the response. Methods and Results A total of 214 individuals were recruited and underwent challenge tests in the form of an OGTT and an oral lipid tolerance test (OLTT). Detailed biochemical parameters, body composition and fitness tests were recorded. Mixed model clustering was employed to define 4 metabotypes consisting of 4 different responses to an OGTT. Cluster 1 was of particular interest, with this metabotype having the highest BMI, triacylglycerol, hsCRP, c-peptide, insulin and HOMA- IR score and lowest VO2max. Cluster 1 had a reduced beta cell function and a differential response to insulin and c-peptide during an OGTT. Additionally, cluster 1 displayed a differential response to the OLTT. Conclusions This work demonstrated that there were four distinct metabolic responses to the OGTT. Classification of subjects based on their response curves revealed an “at risk” metabolic phenotype. PMID:23991163

  7. Failure of Hyperglycemia and Hyperinsulinemia to Compensate for Impaired Metabolic Response to an Oral Glucose Load

    PubMed Central

    Hussain, M; Janghorbani, M; Schuette, S; Considine, RV; Chisholm, RL; Mather, KJ

    2014-01-01

    Objective To evaluate whether the augmented insulin and glucose response to a glucose challenge is sufficient to compensate for defects in glucose utilization in obesity and type 2 diabetes, using a breath test measurement of integrated glucose metabolism. Methods Non-obese, obese normoglycemic and obese Type 2 diabetic subjects were studied on 2 consecutive days. A 75g oral glucose load spiked with 13C-glucose was administered, measuring exhaled breath 13CO2 as an integrated measure of glucose metabolism and oxidation. A hyperinsulinemic euglycemic clamp was performed, measuring whole body glucose disposal rate. Body composition was measured by DEXA. Multivariable analyses were performed to evaluate the determinants of the breath 13CO2. Results Breath 13CO2 was reduced in obese and type 2 diabetic subjects despite hyperglycemia and hyperinsulinemia. The primary determinants of breath response were lean mass, fat mass, fasting FFA concentrations, and OGTT glucose excursion. Multiple approaches to analysis showed that hyperglycemia and hyperinsulinemia were not sufficient to compensate for the defect in glucose metabolism in obesity and diabetes. Conclusions Augmented insulin and glucose responses during an OGTT are not sufficient to overcome the underlying defects in glucose metabolism in obesity and diabetes. PMID:25511878

  8. Cancerous glucose metabolism in lung cancer-evidence from exhaled breath analysis.

    PubMed

    Feinberg, Tali; Alkoby-Meshulam, Layah; Herbig, Jens; Cancilla, John C; Torrecilla, Jose S; Gai Mor, Naomi; Bar, Jair; Ilouze, Maya; Haick, Hossam; Peled, Nir

    2016-06-01

    Cancer cells prefer hyperglycolysis versus oxidative phosphorylation, even in the presence of oxygen. This phenomenon is used through the FDG-PET scans, and may affect the exhaled volatile signature. This study investigates the volatile signature in lung cancer (LC) before and after an oral glucose tolerance test (OGTT) to determine if tumor cells' hyperglycolysis would affect the volatile signature. Blood glucose levels and exhaled breath samples were analyzed before the OGTT, and 90 min after, in both LC patients and controls. The volatile signature was measured by proton transfer reaction mass spectrometry (PTR-MS). Twenty-two LC patients (age 66.6  ±  12.7) with adenocarcinoma (n  =  14), squamous (n  =  6), small cell carcinoma (n  =  2), and twenty-one controls (age 54.4  ±  13.7; 10 non-smokers and 11 smokers) were included. All LC patients showed a hyperglycolytic state in their FDG-PET scans. Both baseline and post OGTT volatile signatures discriminate between the groups. The OGTT has a minimal effect in LC (a decrease in m/z 54 by 39%, p v  =  0.0499); whereas in the control group, five masses (m/z 64, 87,88, 142 and 161) changed by  -13%, -49%, -40% and  -29% and 46% respectively. To conclude, OGTT has a minimal effect on the VOC signature in LC patients, where a hyperglycolytic state already exists. In contrast, in the control group the OGTT has a profound effect in which induced hyperglycolysis significantly changed the VOC pattern. We hypothesized that a ceiling effect in cancerous patients is responsible for this discrepancy. PMID:27272440

  9. Role of body fat distribution in the decline in insulin sensitivity and glucose tolerance with age.

    PubMed

    Coon, P J; Rogus, E M; Drinkwater, D; Muller, D C; Goldberg, A P

    1992-10-01

    The relationships of body composition and physical fitness [maximal aerobic capacity (VO2max)] to the decline in insulin sensitivity with age were examined in healthy older (47-73 yr; n = 36) and young (19-36 yr; n = 13) men. In 18 older men with normal glucose tolerance (OGTT), glucose disposal rates (M) during hyperinsulinemic euglycemic clamps correlated negatively with the waist to hip ratio (WHR; r = -0.77; P < .001) and percent body fat (r = -0.46; P < 0.05) and positively with VO2max (r = 0.54; P < 0.05), but not with age. Similar relationships existed in the 36 older men with a spectrum of OGTT responses; however, only WHR was independently related to M (r2 = 0.32; P < 0.01). In the older men with normal OGTT, M (mean +/- SEM, 7.88 +/- 0.43 mg/kg fat-free mass.min) was not different from that in the young men (8.56 +/- 0.47; P = NS). Furthermore, in older and young men with normal OGTT matched for WHR, percent fat, or VO2max, glucose disposal was comparable at sequential 15-min intervals during the clamp and in its relationship to insulin concentrations at the tissue level (multicompartmental analysis). In contrast, despite higher steady state plasma insulin levels during the clamp, M was significantly lower in the older men with a higher WHR, greater percent fat, lower VO2max, or impaired OGTT. Thus, in healthy older men up to the age of 73 yr, insulin sensitivity and glucose tolerance are affected primarily by the regional body fat distribution, not age, obesity, or VO2max.

  10. Amino Acid and Biogenic Amine Profile Deviations in an Oral Glucose Tolerance Test: A Comparison between Healthy and Hyperlipidaemia Individuals Based on Targeted Metabolomics

    PubMed Central

    Li, Qi; Gu, Wenbo; Ma, Xuan; Liu, Yuxin; Jiang, Lidan; Feng, Rennan; Liu, Liyan

    2016-01-01

    Hyperlipidemia (HLP) is characterized by a disturbance in lipid metabolism and is a primary risk factor for the development of insulin resistance (IR) and a well-established risk factor for cardiovascular disease and atherosclerosis. The aim of this work was to investigate the changes in postprandial amino acid and biogenic amine profiles provoked by an oral glucose tolerance test (OGTT) in HLP patients using targeted metabolomics. We used ultra-high-performance liquid chromatography-triple quadrupole mass spectrometry to analyze the serum amino acid and biogenic amine profiles of 35 control and 35 HLP subjects during an OGTT. The amino acid and biogenic amine profiles from 30 HLP subjects were detected as independent samples to validate the changes in the metabolites. There were differences in the amino acid and biogenic amine profiles between the HLP individuals and the healthy controls at baseline and after the OGTT. The per cent changes of 13 metabolites from fasting to the 2 h samples during the OGTT in the HLP patients were significantly different from those of the healthy controls. The lipid parameters were associated with the changes in valine, isoleucine, creatine, creatinine, dimethylglycine, asparagine, serine, and tyrosine (all p < 0.05) during the OGTT in the HLP group. The postprandial changes in isoleucine and γ-aminobutyric acid (GABA) during the OGTT were positively associated with the homeostasis model assessment of insulin resistance (HOMA-IR; all p < 0.05) in the HLP group. Elevated oxidative stress and disordered energy metabolism during OGTTs are important characteristics of metabolic perturbations in HLP. Our findings offer new insights into the complex physiological regulation of metabolism during the OGTT in HLP. PMID:27338465

  11. Amino Acid and Biogenic Amine Profile Deviations in an Oral Glucose Tolerance Test: A Comparison between Healthy and Hyperlipidaemia Individuals Based on Targeted Metabolomics.

    PubMed

    Li, Qi; Gu, Wenbo; Ma, Xuan; Liu, Yuxin; Jiang, Lidan; Feng, Rennan; Liu, Liyan

    2016-01-01

    Hyperlipidemia (HLP) is characterized by a disturbance in lipid metabolism and is a primary risk factor for the development of insulin resistance (IR) and a well-established risk factor for cardiovascular disease and atherosclerosis. The aim of this work was to investigate the changes in postprandial amino acid and biogenic amine profiles provoked by an oral glucose tolerance test (OGTT) in HLP patients using targeted metabolomics. We used ultra-high-performance liquid chromatography-triple quadrupole mass spectrometry to analyze the serum amino acid and biogenic amine profiles of 35 control and 35 HLP subjects during an OGTT. The amino acid and biogenic amine profiles from 30 HLP subjects were detected as independent samples to validate the changes in the metabolites. There were differences in the amino acid and biogenic amine profiles between the HLP individuals and the healthy controls at baseline and after the OGTT. The per cent changes of 13 metabolites from fasting to the 2 h samples during the OGTT in the HLP patients were significantly different from those of the healthy controls. The lipid parameters were associated with the changes in valine, isoleucine, creatine, creatinine, dimethylglycine, asparagine, serine, and tyrosine (all p < 0.05) during the OGTT in the HLP group. The postprandial changes in isoleucine and γ-aminobutyric acid (GABA) during the OGTT were positively associated with the homeostasis model assessment of insulin resistance (HOMA-IR; all p < 0.05) in the HLP group. Elevated oxidative stress and disordered energy metabolism during OGTTs are important characteristics of metabolic perturbations in HLP. Our findings offer new insights into the complex physiological regulation of metabolism during the OGTT in HLP. PMID:27338465

  12. Insulin and glucose responses during bed rest with isotonic and isometric exercise

    NASA Technical Reports Server (NTRS)

    Dolkas, C. B.; Greenleaf, J. E.

    1977-01-01

    The effects of daily intensive isotonic (68% maximum oxygen uptake) and isometric (21% maximum extension force) leg exercise on plasma insulin and glucose responses to an oral glucose tolerance test (OGTT) during 14-day bed-rest (BR) periods were investigated in seven young healthy men. The OGTT was given during ambulatory control and on day 10 of the no-exercise, isotonic, and isometric exercise BR periods during the 15-wk study. The subjects were placed on a controlled diet starting 10 days before each BR period. During BR, basal plasma glucose concentration remained unchanged with no exercise, but increased (P less 0.05) to 87-89 mg/100 ml with both exercise regimens on day 2, and then fell slightly below control levels on day 13. The fall in glucose content during BR was independent of the exercise regimen and was an adjustment for the loss of plasma volume. The intensity of the responses of insulin and glucose to the OGTT was inversely proportional to the total daily energy expenditure during BR. It was estimated that at least 1020 kcal/day must be provided by supplemental exercise to restore the hyperinsulinemia to control levels.

  13. Risk Factors and Plasma Glucose Profile of Gestational Diabetes in Omani Women

    PubMed Central

    Chitme, Havagiray R; Al Shibli, Sumaiya Abdallah Said; Al-Shamiry, Raya Mahmood

    2016-01-01

    Objectives We sought to conduct a detailed study on the risk factors of gestational diabetes mellitus (GDM) in Omani women to determine the actual and applicable risk factors and glucose profile in this population. Methods We conducted a cross-sectional case-control study using pregnant women diagnosed with GDM. Pregnant women without GDM were used as a control group. We collected information related to age, family history, prior history of pregnancy complications, age of marriage, age of first pregnancy, fasting glucose level, and oral glucose tolerance test (OGTT) results from three hospitals in Oman through face-to-face interviews and hospital records. Results The median age of women with GDM was 33 years old (p < 0.050). A significant risk was noted in women with a history of diabetes (p < 0.001), and those with mothers’ with a history of GDM. A significant (p < 0.010) relationship with a likelihood ratio of 43.9 was observed between the incidence of GDM in women with five or six pregnancies, a history of > 3 deliveries, height < 155 cm, and pregnancy or marriage at age < 18 years (p < 0.010). The mean difference in random plasma glucose, one-hour OGTT, and two-hour OGTT was significantly higher in GDM cases compared to control. Conclusions Glucose profile, family history, anthropometric profile, and age of first pregnancy and marriage should be considered while screening for GDM and determining the care needs of Omani women with GDM.

  14. Risk Factors and Plasma Glucose Profile of Gestational Diabetes in Omani Women

    PubMed Central

    Chitme, Havagiray R; Al Shibli, Sumaiya Abdallah Said; Al-Shamiry, Raya Mahmood

    2016-01-01

    Objectives We sought to conduct a detailed study on the risk factors of gestational diabetes mellitus (GDM) in Omani women to determine the actual and applicable risk factors and glucose profile in this population. Methods We conducted a cross-sectional case-control study using pregnant women diagnosed with GDM. Pregnant women without GDM were used as a control group. We collected information related to age, family history, prior history of pregnancy complications, age of marriage, age of first pregnancy, fasting glucose level, and oral glucose tolerance test (OGTT) results from three hospitals in Oman through face-to-face interviews and hospital records. Results The median age of women with GDM was 33 years old (p < 0.050). A significant risk was noted in women with a history of diabetes (p < 0.001), and those with mothers’ with a history of GDM. A significant (p < 0.010) relationship with a likelihood ratio of 43.9 was observed between the incidence of GDM in women with five or six pregnancies, a history of > 3 deliveries, height < 155 cm, and pregnancy or marriage at age < 18 years (p < 0.010). The mean difference in random plasma glucose, one-hour OGTT, and two-hour OGTT was significantly higher in GDM cases compared to control. Conclusions Glucose profile, family history, anthropometric profile, and age of first pregnancy and marriage should be considered while screening for GDM and determining the care needs of Omani women with GDM. PMID:27602192

  15. 40 CFR 50.9 - National 1-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hour standards are codified in 40 CFR part 81. (c) EPA's authority under paragraph (b) of this section... ambient air quality standards for ozone. 50.9 Section 50.9 Protection of Environment ENVIRONMENTAL....9 National 1-hour primary and secondary ambient air quality standards for ozone. (a) The level...

  16. 40 CFR 50.9 - National 1-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hour standards are codified in 40 CFR part 81. ... ambient air quality standards for ozone. 50.9 Section 50.9 Protection of Environment ENVIRONMENTAL....9 National 1-hour primary and secondary ambient air quality standards for ozone. (a) The level...

  17. 40 CFR 50.9 - National 1-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hour standards are codified in 40 CFR part 81. ... ambient air quality standards for ozone. 50.9 Section 50.9 Protection of Environment ENVIRONMENTAL....9 National 1-hour primary and secondary ambient air quality standards for ozone. (a) The level...

  18. 40 CFR 50.9 - National 1-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hour standards are codified in 40 CFR part 81. (c) EPA's authority under paragraph (b) of this section... ambient air quality standards for ozone. 50.9 Section 50.9 Protection of Environment ENVIRONMENTAL....9 National 1-hour primary and secondary ambient air quality standards for ozone. (a) The level...

  19. 40 CFR 50.9 - National 1-hour primary and secondary ambient air quality standards for ozone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-hour standards are codified in 40 CFR part 81. ... ambient air quality standards for ozone. 50.9 Section 50.9 Protection of Environment ENVIRONMENTAL....9 National 1-hour primary and secondary ambient air quality standards for ozone. (a) The level...

  20. 40 CFR 60.1755 - How do I convert my 1-hour arithmetic averages into appropriate averaging times and units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false How do I convert my 1-hour arithmetic averages into appropriate averaging times and units? 60.1755 Section 60.1755 Protection of Environment... or Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1755 How do I convert my...

  1. 77 FR 4940 - Determination of Failure To Attain by 2005 and Determination of Current Attainment of the 1-Hour...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ... Air pollution control, National parks, Wilderness Areas. Authority: 42 U.S.C. 7401 et seq. Dated... Attainment of the 1-Hour Ozone National Ambient Air Quality Standards in the Baltimore Nonattainment Area in... National Ambient Air Quality Standards (NAAQS) by the applicable attainment date of November 15,...

  2. 76 FR 28195 - Approval and Promulgation of Air Quality Implementation Plans; New Mexico; Sunland Park 1-Hour...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-16

    ... attainment of the 8-hour ozone National Ambient Air Quality Standard (NAAQS) through the year 2014. The... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; New Mexico; Sunland Park 1-Hour Ozone Maintenance Plan AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed...

  3. Limitations in the use of indices using glucose and insulin levels to predict insulin sensitivity: impact of race and gender and superiority of the indices derived from oral glucose tolerance test in African Americans.

    PubMed

    Pisprasert, Veeradej; Ingram, Katherine H; Lopez-Davila, Maria F; Munoz, A Julian; Garvey, W Timothy

    2013-04-01

    OBJECTIVE To examine the utility of commonly used insulin sensitivity indices in nondiabetic European Americans (EAs) and African Americans (AAs). RESEARCH DESIGN AND METHODS Two-hundred forty nondiabetic participants were studied. Euglycemic-hyperinsulinemic clamp was the gold standard approach to assess glucose disposal rates (GDR) normalized by lean body mass. The homeostatic model assessment for insulin resistance (HOMA-IR) and the quantitative insulin sensitivity check index (QUICKI) were calculated from fasting plasma glucose and insulin (FIL). Oral glucose tolerance test (OGTT) was performed to determine Matsuda index, the simple index assessing insulin sensitivity (SI(is)OGTT), Avignon index, and Stomvoll index. Relationships among these indices with GDR were analyzed by multiple regression. RESULTS GDR values were similar in EA and AA subgroups; even so, AA exhibited higher FIL and were insulin-resistant compared with EA, as assessed by HOMA-IR, QUICKI, Matsuda index, SI(is)OGTT, Avignon index, and Stumvoll index. In the overall study population, GDR was significantly correlated with all studied insulin sensitivity indices (/r/ = 0.381-0.513); however, these indices were not superior to FIL in predicting GDR. Race and gender affected the strength of this relationship. In AA males, FIL and HOMA-IR were not correlated with GDR. In contrast, Matsuda index and SI(is)OGTT were significantly correlated with GDR in AA males, and Matsuda index was superior to HOMA-IR and QUICKI in AAs overall. CONCLUSIONS Insulin sensitivity indices based on glucose and insulin levels should be used cautiously as measures of peripheral insulin sensitivity when comparing mixed gender and mixed race populations. Matsuda index and SI(is)OGTT are reliable in studies that include AA males.

  4. A Randomized Clinical Trial of an Intensive Behavior Education Program in Gestational Diabetes Mellitus Women Designed to Improve Glucose Levels on the 2-Hour Oral Glucose Tolerance Test.

    PubMed

    Durnwald, Celeste P; Kallan, Michael J; Allison, Kelly C; Sammel, Mary D; Wisch, Susan; Elovitz, Michal; Parry, Samuel

    2016-10-01

    Objective To evaluate whether women with gestational diabetes mellitus (GDM) enrolled in an intensive behavior education program (IBEP) demonstrate lower mean fasting glucose levels on the 2-hour 75 g oral glucose tolerance test (2-hour OGTT) at 6 to 12 weeks postpartum compared with women who undergo routine GDM management. Study Design A prospective randomized controlled trial of women diagnosed with GDM was conducted. Exclusion criteria were GDM diagnosis ≥ 33 weeks or < 20 weeks. Women were randomly assigned to one of two treatment arms: (1) routine GDM management or (2) an IBEP. Women underwent a 2-hour OGTT at 6 to 12 weeks postpartum. Fisher exact test, t-test, and Wilcoxon rank sum test were used as appropriate. Results Of the 101 women randomized, 49 were assigned to IBEP and 52 received routine GDM management. There was no difference in mean fasting and 2-hour glucose levels on the postpartum 2-hour OGTT between the IBEP and routine management group (88.5 ± 22.9 mg/dL vs. 85.2 ± 13.3 mg/dL, p = 0.49 and 109.8 ± 38.5 mg/dL vs. 109.4 ± 40.8 mg/dL, p = 0.97, respectively). Conclusion GDM women enrolled in a healthy lifestyle intervention program did not demonstrate lower glucose values on the postpartum 2-hour OGTT.

  5. Comparison of glycosylated hemoglobin with the oral glucose tolerance test. A study in subjects with normoglycemia, glucose intolerance and non-insulin-dependent diabetes mellitus.

    PubMed

    Cederholm, J; Ronquist, G; Wibell, L

    1984-10-01

    At a health survey of 819 subjects, 47-54 years old, the rate of glucose intolerance (GI) was 6.2% (51 subjects) according to 75 g oral glucose tolerance tests (OGTT) and WHO criteria. In GI-subjects, the mean HbA1 was 7.3% (10th-90th percentile range 6.2-8.3%), and significantly higher than the mean HbA1 in 150 subjects with normal OGTT, which was 6.5% (10th-90th percentile range 5.7-7.4%). With an upper normal limit of 7.8% (mean + 2 SD) only 20% of all GI-subjects had a raised HbA1. The differences between 31 GI-subjects, with low HbA1 (mean 6.9%), and 20 GI-subjects, with relatively high HbA1 (mean 7.9%), were not significant with respect to fasting and 2-hour blood glucose, area under glucose curve, body mass index, index of physical activity, rate of hypertension or rate of first degree relatives with diabetes. In an unselected group of 157 subjects, sampled consecutively during the first part of the survey, the mean HbA1 was 6.6% (10th-90th percentile range 5.8-7.5 %) 150 subjects were those with normal OGTT, 6 subjects had GI and only one subject had previously unknown diabetes. No distinct correlations between HbA1 and OGTT fasting or 2 hour values were found in this sample. No correlation was found within the separate groups of 51 GI-subjects and 150 normal subjects.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Application of dynamic metabolomics to examine in vivo skeletal muscle glucose metabolism in the chronically high-fat fed mouse

    SciTech Connect

    Kowalski, Greg M.; De Souza, David P.; Burch, Micah L.; Hamley, Steven; Kloehn, Joachim; Selathurai, Ahrathy; Tull, Dedreia; O'Callaghan, Sean; McConville, Malcolm J.; Bruce, Clinton R.

    2015-06-19

    Rationale: Defects in muscle glucose metabolism are linked to type 2 diabetes. Mechanistic studies examining these defects rely on the use of high fat-fed rodent models and typically involve the determination of muscle glucose uptake under insulin-stimulated conditions. While insightful, they do not necessarily reflect the physiology of the postprandial state. In addition, most studies do not examine aspects of glucose metabolism beyond the uptake process. Here we present an approach to study rodent muscle glucose and intermediary metabolism under the dynamic and physiologically relevant setting of the oral glucose tolerance test (OGTT). Methods and results: In vivo muscle glucose and intermediary metabolism was investigated following oral administration of [U-{sup 13}C] glucose. Quadriceps muscles were collected 15 and 60 min after glucose administration and metabolite flux profiling was determined by measuring {sup 13}C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates via gas chromatography–mass spectrometry. While no dietary effects were noted in the glycolytic pathway, muscle from mice fed a high fat diet (HFD) exhibited a reduction in labelling in TCA intermediates. Interestingly, this appeared to be independent of alterations in flux through pyruvate dehydrogenase. In addition, our findings suggest that TCA cycle anaplerosis is negligible in muscle during an OGTT. Conclusions: Under the dynamic physiologically relevant conditions of the OGTT, skeletal muscle from HFD fed mice exhibits alterations in glucose metabolism at the level of the TCA cycle. - Highlights: • Dynamic metabolomics was used to investigate muscle glucose metabolism in vivo. • Mitochondrial TCA cycle metabolism is altered in muscle of HFD mice. • This defect was not pyruvate dehydrogenase mediated, as has been previously thought. • Mitochondrial TCA cycle anaplerosis in muscle is virtually absent during the OGTT.

  7. Circulating irisin and glucose metabolism in overweight/obese women: effects of α-lipoic acid and eicosapentaenoic acid.

    PubMed

    Huerta, A E; Prieto-Hontoria, P L; Fernández-Galilea, M; Sáinz, N; Cuervo, M; Martínez, J A; Moreno-Aliaga, M J

    2015-09-01

    Irisin is a myokine/adipokine with potential role in obesity and diabetes. The objectives of the present study were to analyse the relationship between irisin and glucose metabolism at baseline and during an oral glucose tolerance test (OGTT) and to determine the effects of eicosapentaenoic acid (EPA) and/or α-lipoic acid treatment on irisin production in cultured human adipocytes and in vivo in healthy overweight/obese women following a weight loss program. Seventy-three overweight/obese women followed a 30% energy-restricted diet supplemented without (control) or with EPA (1.3 g/day), α-lipoic acid (0.3 g/day) or both EPA + α-lipoic acid (1.3 + 0.3 g/day) during 10 weeks. An OGTT was performed at baseline. Moreover, human adipocytes were treated with EPA (100-200 μM) or α-lipoic acid (100-250 μM) during 24 h. At baseline plasma, irisin circulating levels were positively associated with glucose levels; however, serum irisin concentrations were not affected by the increment in blood glucose or insulin during the OGTT. Treatment with α-lipoic acid (250 μM) upregulated Fndc5 messenger RNA (mRNA) and irisin secretion in cultured adipocytes. In overweight/obese women, irisin circulating levels decreased significantly after weight loss in all groups, while no additional differences were induced by EPA or α-lipoic acid supplementation. Moreover, plasma irisin levels were positively associated with higher glucose concentrations at beginning and at endpoint of the study. The data from the OGTT suggest that glucose is not a direct contributing factor of irisin release. The higher irisin levels observed in overweight/obese conditions could be a protective response of organism to early glucose impairments.

  8. Metabolic profile of normal glucose-tolerant subjects with elevated 1-h plasma glucose values

    PubMed Central

    Pramodkumar, Thyparambil Aravindakshan; Priya, Miranda; Jebarani, Saravanan; Anjana, Ranjit Mohan; Mohan, Viswanathan; Pradeepa, Rajendra

    2016-01-01

    Aim: The aim of this study was to compare the metabolic profiles of subjects with normal glucose tolerance (NGT) with and without elevated 1-h postglucose (1HrPG) values during an oral glucose tolerance test (OGTT). Methodology: The study group comprised 996 subjects without known diabetes seen at tertiary diabetes center between 2010 and 2014. NGT was defined as fasting plasma glucose <100 mg/dl (5.5 mmol/L) and 2-h plasma glucose <140 mg/dl (7.8 mmol/L) after an 82.5 g oral glucose (equivalent to 75 g of anhydrous glucose) OGTT. Anthropometric measurements and biochemical investigations were done using standardized methods. The prevalence rate of generalized and central obesity, hypertension, dyslipidemia, and metabolic syndrome (MS) was determined among the NGT subjects stratified based on their 1HrPG values as <143 mg/dl, ≥143–<155 mg/dl, and ≥155 mg/dl, after adjusting for age, sex, body mass index (BMI), waist circumference, alcohol consumption, smoking, and family history of diabetes. Results: The mean age of the 996 NGT subjects was 48 ± 12 years and 53.5% were male. The mean glycated hemoglobin for subjects with 1HrPG <143 mg/dl was 5.5%, for those with 1HrPG ≥143–<155 mg/dl, 5.6% and for those with 1HrPG ≥155 mg/dl, 5.7%. NGT subjects with 1HrPG ≥143–<155 mg/dl and ≥155 mg/dl had significantly higher BMI, waist circumference, systolic and diastolic blood pressure, triglyceride, total cholesterol/high-density lipoprotein (HDL) ratio, triglyceride/HDL ratio, leukocyte count, and gamma glutamyl aminotransferase (P < 0.05) compared to subjects with 1HrPG <143 mg/dl. The odds ratio for MS for subjects with 1HrPG ≥143 mg/dl was 1.84 times higher compared to subjects with 1HrPG <143 mg/dl taken as the reference. Conclusion: NGT subjects with elevated 1HrPG values have a worse metabolic profile than those with normal 1HrPG during an OGTT. PMID:27730069

  9. Electrical stimulation of embryonic neurons for 1 hour improves axon regeneration and the number of reinnervated muscles that function.

    PubMed

    Liu, Yang; Grumbles, Robert M; Thomas, Christine K

    2013-07-01

    Motoneuron death after spinal cord injury or disease results in muscle denervation, atrophy, and paralysis. We have previously transplanted embryonic ventral spinal cord cells into the peripheral nerve to reinnervate denervated muscles and to reduce muscle atrophy, but reinnervation was incomplete. Here, our aim was to determine whether brief electrical stimulation of embryonic neurons in the peripheralnerve changes motoneuron survival, axon regeneration, and muscle reinnervation and function because neural depolarization is crucial for embryonic neuron survival and may promote activity-dependent axon growth. At 1 week after denervation by sciatic nerve section, embryonic day 14 to 15 cells were purified for motoneurons, injected into the tibial nerve of adult Fischer rats, and stimulated immediatelyfor up to 1 hour. More myelinated axons were present in tibial nerves 10 weeks after transplantation when transplants had been stimulated acutely at 1 Hz for 1 hour. More muscles were reinnervated if the stimulation treatment lasted for 1 hour. Reinnervation reduced muscle atrophy, with or without the stimulation treatment. These data suggest that brief stimulation of embryonic neurons promotes axon growth, which has a long-term impact on muscle reinnervation and function. Muscle reinnervation is important because it may enable the use of functional electrical stimulation to restore limb movements. PMID:23771218

  10. Altered glucose tolerance in women with deliberate self-harm.

    PubMed

    Westling, Sofie; Ahrén, Bo; Sunnqvist, Charlotta; Träskman-Bendz, Lil

    2009-07-01

    Disturbances in glucose metabolism are of importance for violent behaviour in men, but studies in women are lacking. We used the 5h-oral glucose tolerance test (OGTT) in this study of 17 female psychiatric patients, selected for violent behaviour directed against themselves (deliberate self-harm) and 17 healthy controls matched for age and BMI. Following OGTT, patients had higher glucose levels at 30 min (p=0.007) and increased glucagon area under the curve (p=0.011). Since a co-morbid eating disorder might affect results, we as a post-hoc analysis subgrouped the patients and found that the increased glucagon levels only were present in patients with an eating disorder. In contrast, those without an eating disorder showed a significantly lower p-glucose nadir (p=0.015) and unaltered glucagon levels compared to controls. There were no significant differences in insulin and C-peptide levels between patients and controls. We conclude that deliberate self-harm in women may be associated with alterations in carbohydrate metabolism in certain groups. Eating disorder is a confounding factor.

  11. An inverse U-shaped association of late and peak insulin levels during an oral glucose load with glucose intolerance in a Japanese population: a cross-sectional study.

    PubMed

    Takahara, Mitsuyoshi; Katakami, Naoto; Matsuoka, Taka-Aki; Noguchi, Midori; Shimomura, Iichiro

    2015-01-01

    The current study investigated the association of post-load insulin levels with glucose tolerance in a Japanese population. A total of 1450 Japanese employees who underwent a 75-g oral glucose tolerance test (OGTT) were included. Glucose tolerance was assessed by 120-min glucose levels during a 75-g OGTT. A penalized cubic regression spline model analysis revealed that the 60- and 120-min insulin levels, but not 0- or 30-min insulin levels, had an inverse U-shaped relationship to the 120-min glucose level. Furthermore, peak insulin level followed an inverse U shape in relation to the 120-min glucose level, whereas the peak of insulin appeared at a later point in time as the 120-min glucose level increased. These associations were similarly observed in both obese and non-obese subgroups, although obesity was associated with higher insulin levels. Peak insulin levels also demonstrated an inverse U shape in association with 0-min glucose levels and indices of β cell function, assessed by the disposition index and the β-cell function index. In conclusion, peak insulin levels followed an inverse U shape in relation to glucose intolerance in a Japanese population, whereas the impairment of glucose tolerance was associated with a delay in the time to reach peak insulin levels.

  12. The effect of low-glycemic carbohydrate on insulin and glucose response in vivo and in vitro in patients with coronary heart disease.

    PubMed

    Frost, G; Keogh, B; Smith, D; Akinsanya, K; Leeds, A

    1996-06-01

    The insulin resistance syndrome has recently been implicated in the etiology of coronary heart disease, with a possible metabolic defect at the level of the adipocyte. We report the effects of a low- versus high-glycemic-index (LGI and HGI, respectively) diet on insulin and glucose response as assessed by oral glucose tolerance test (OGTT) and insulin-stimulated glucose uptake in isolated adipocytes in a group of 32 patients with advanced coronary heart disease. The area under the insulin curve following OGTT was significantly reduced after 4 weeks in the LGI group (P < .03), but not in the HGI group. Insulin-stimulated glucose uptake in isolated adipocytes harvested from a presternal fat biopsy was significantly greater following the LGI diet (P < .05). This study demonstrates that simple short-term dietary measures can improve insulin sensitivity in patients with coronary heart disease.

  13. Plasma Lactate Levels Increase during Hyperinsulinemic Euglycemic Clamp and Oral Glucose Tolerance Test.

    PubMed

    Berhane, Feven; Fite, Alemu; Daboul, Nour; Al-Janabi, Wissam; Msallaty, Zaher; Caruso, Michael; Lewis, Monique K; Yi, Zhengping; Diamond, Michael P; Abou-Samra, Abdul-Badi; Seyoum, Berhane

    2015-01-01

    Insulin resistance, which plays a central role in the pathogenesis of type 2 diabetes (T2D), is an early indicator that heralds the occurrence of T2D. It is imperative to understand the metabolic changes that occur at the cellular level in the early stages of insulin resistance. The objective of this study was to determine the pattern of circulating lactate levels during oral glucose tolerance test (OGTT) and hyperinsulinemic euglycemic clamp (HIEC) study in normal nondiabetic subjects. Lactate and glycerol were determined every 30 minutes during OGTT and HIEC on 22 participants. Lactate progressively increased throughout the HIEC study period (P < 0.001). Participants with BMI < 30 had significantly higher mean M-values compared to those with BMI ≥ 30 at baseline (P < 0.05). This trend also continued throughout the OGTT. In addition, those with impaired glucose tolerance test (IGT) had significantly higher mean lactate levels compared to those with normal glucose tolerance (P < 0.001). In conclusion, we found that lactate increased during HIEC study, which is a state of hyperinsulinemia similar to the metabolic milieu seen during the early stages in the development of T2D. PMID:25961050

  14. Noninvasive blood glucose monitoring with laser diode

    NASA Astrophysics Data System (ADS)

    Zhang, Xiqin; Chen, Jianhong; Ooi, Ean Tat; Yeo, Joon Hock

    2006-02-01

    The non-invasive measurement of blood sugar level was studied by use of near infrared laser diodes. The in vitro and in vivo experiments were carried out using six laser diodes having wavelengths range from 1550 nm to 1750nm. Several volunteers were tested for OGTT (Oral Glucose Tolerance Test) experiment. We took blood from a fingertip and measured its concentration with a glucose meter while taking signal voltage from laser diodes system. The data of signal voltage were processed to do calibration and prediction; in this paper PLS (Partial Least Square) method was used to do modeling. For in vitro experiment, good linear relationship between predicted glucose concentration and real glucose concentration was obtained. For in vivo experiments, we got the blood sugar level distributions in Clarke error grid that is a reference for doctors to do diagnosis and treatment. In the Clarke error grid, 75% of all data was in area A and 25 % was in area B. From the in vitro and in vivo results we know that multiple laser diodes are suitable for non-invasive blood glucose monitoring.

  15. Oral Administration of Collagen Hydrolysates Improves Glucose Tolerance in Normal Mice Through GLP-1-Dependent and GLP-1-Independent Mechanisms.

    PubMed

    Iba, Yoshinori; Yokoi, Koji; Eitoku, Itsuka; Goto, Masaki; Koizumi, Seiko; Sugihara, Fumihito; Oyama, Hiroshi; Yoshimoto, Tadashi

    2016-09-01

    The aim of this study was to evaluate the antidiabetic properties of collagen hydrolysates (CHs). CHs exhibited dipeptidyl peptidase-IV inhibitory activity and stimulated glucagon-like-peptide-1 (GLP-1) secretion in vitro. We also determined whether CHs improve glucose tolerance in normal mice. Oral administration of CHs suppressed the glycemic response during the oral and intraperitoneal glucose tolerance tests (OGTT and IPGTT), but the effects were weaker in IPGTT than in OGTT. CHs had no effect on the gastric emptying rate. A pretreatment with the GLP-1 receptor antagonist, exendin 9-39 (Ex9), partially reversed the glucose-lowering effects of CHs, but only when coadministered with glucose. CHs administered 45 min before the glucose load potentiated the glucose-stimulated insulin secretion. This potentiating effect on insulin secretion was not reversed by the pretreatment with Ex9, it appeared to be enhanced. These results suggest that CHs improve glucose tolerance by inhibiting intestinal glucose uptake and enhancing insulin secretion, and also demonstrated that GLP-1 was partially involved in the inhibition of glucose uptake, but not essential for the enhancement of insulin secretion. PMID:27540823

  16. The effect of endurance training and subsequent physical inactivity on glycaemic control after oral glucose load and physical exercise in healthy men

    NASA Astrophysics Data System (ADS)

    Radikova, Zofia; Ksinantova, Lucia; Kaciuba-Uscilko, Hanna; Nazar, Krystyna; Vigas, Milan; Koska, Juraj

    2007-02-01

    Physical inactivity during space flight has a profound effect on glucose metabolism. The aim of this study was to test whether endurance training (ET) may improve a negative effect of subsequent -6∘ head-down bed rest (HDBR) on glucose metabolism. Fourteen healthy males completed the study consisting of 6 weeks lasting ET followed by 6 days HDBR. Treadmill exercise at 80% of pre-training VO2max and 75 g oral glucose tolerance test (OGTT) were performed before and after ET as well as after HDBR. ET increased VO2max by 11%. ET significantly lowered while HDBR had no effect on fasting and OGTT plasma glucose levels. ET had no effect while HDBR was followed by an augmentation of insulin and C-peptide response to OGTT. Insulin sensitivity tended to increase after ET and to decrease during HDBR, however, mostly without statistical significance. Plasma glucose, insulin and C-peptide response to exercise were elevated after HDBR only. Our study shows that antecedent physical training could ameliorate a negative effect of simulated microgravity on insulin-mediated glucose metabolism.

  17. Improvement in depression scores after 1 hour of light therapy treatment in patients with seasonal affective disorder.

    PubMed

    Reeves, Gloria M; Nijjar, Gagan Virk; Langenberg, Patricia; Johnson, Mary A; Khabazghazvini, Baharak; Sleemi, Aamar; Vaswani, Dipika; Lapidus, Manana; Manalai, Partam; Tariq, Muhammad; Acharya, Monika; Cabassa, Johanna; Snitker, Soren; Postolache, Teodor T

    2012-01-01

    The purpose of this study was to investigate possible rapid effects of light therapy on depressed mood in patients with seasonal affective disorder. Participants received 1 hour of bright light therapy and 1 hour of placebo dim red light in a randomized order crossover design. Depressed mood was measured at baseline and after each hour of light treatment using two self-report depression scales (Profile of Mood States-Depression-Dejection [POMS-D] subscale and the Beck Depression Inventory II [BDI-II]). When light effects were grouped for the two sessions, there was significantly greater reduction in self-report depression scores by -1.3 (p = 0.02) on the BDI-II and -1.2 (p = 0.02) on the POMS-D. A significant but modest improvement was detected after a single active light session. This is the first study, to our knowledge, to document an immediate improvement with light treatment using a placebo-controlled design with a clinical sample of depressed individuals.

  18. Development and assessment of the disposition index based on the oral glucose tolerance test in subjects with different glycaemic status.

    PubMed

    Santos, J L; Yévenes, I; Cataldo, L R; Morales, M; Galgani, J; Arancibia, C; Vega, J; Olmos, P; Flores, M; Valderas, J P; Pollak, F

    2016-06-01

    Insulin secretion and insulin sensitivity indexes are related by hyperbolic functions, allowing the calculation of the disposition index (DI) as the product of the acute insulin response (AIR) and the insulin sensitivity index (Si) from intravenous glucose tolerance test (IVGTT). Our objective was to develop an oral-DI based on the oral glucose tolerance test (OGTT) and to assess its association with glucose tolerance status. This research is structured in three studies. Study 1: OGTT were performed in 833 non-diabetic Chilean women (18-60 years) without family history of diabetes mellitus. Study 2: an independent group of n = 57 non-diabetic (18-46 years) without family history of diabetes mellitus carried out an OGTT and an abbreviated IVGTT. Study 3: a sample of 1674 Chilean adults (18-60 years) with different glycaemic status performed an OGTT. An adequate statistical fit for a rectangular hyperbola was found between the area under the curve of insulin-to-glucose ratio (AUCI/G-R) and the Matsuda ISI-COMP index (study 1). The oral-DI derived as AUCI/G-R × ISI-COMP was previously termed insulin-secretion-sensitivity index-2 (ISSI-2). ISSI-2 significantly correlated with DI from IVGTT (rho = 0.34; p = 0.009) (study 2). ISSI-2 shows important differences across groups of subjects with different glycaemic status (study 3). We have confirmed that ISSI-2 replicates the mathematical properties of DI, showing significant correlations with DI from the abbreviated MM-IVGTT. These results indicate that ISSI-2 constitutes a surrogate measure of insulin secretion relative to insulin sensitivity and emphasizes the pivotal role of impaired insulin secretion in the development of glucose homeostasis dysregulation.

  19. Leptin Gene Epigenetic Adaptation to Impaired Glucose Metabolism During Pregnancy

    PubMed Central

    Bouchard, Luigi; Thibault, Stéphanie; Guay, Simon-Pierre; Santure, Marta; Monpetit, Alexandre; St-Pierre, Julie; Perron, Patrice; Brisson, Diane

    2010-01-01

    OBJECTIVE To verify whether the leptin gene epigenetic (DNA methylation) profile is altered in the offspring of mothers with gestational impaired glucose tolerance (IGT). RESEARCH DESIGN AND METHODS Placental tissues and maternal and cord blood samples were obtained from 48 women at term including 23 subjects with gestational IGT. Leptin DNA methylation, gene expression levels, and circulating concentration were measured using the Sequenom EpiTYPER system, quantitative real-time RT-PCR, and enzyme-linked immunosorbent assay, respectively. IGT was assessed after a 75-g oral glucose tolerance test (OGTT) at 24–28 weeks of gestation. RESULTS We have shown that placental leptin gene DNA methylation levels were correlated with glucose levels (2-h post-OGTT) in women with IGT (fetal side: ρ = −0.44, P ≤ 0.05; maternal side: ρ = 0.53, P ≤ 0.01) and with decreased leptin gene expression (n = 48; ρ ≥ −0.30, P ≤ 0.05) in the whole cohort. Placental leptin mRNA levels accounted for 16% of the variance in maternal circulating leptin concentration (P < 0.05). CONCLUSIONS IGT during pregnancy was associated with leptin gene DNA methylation adaptations with potential functional impacts. These epigenetic changes provide novel mechanisms that could contribute to explaining the detrimental health effects associated with fetal programming, such as long-term increased risk of developing obesity and type 2 diabetes. PMID:20724651

  20. 40 CFR 60.1265 - How do I convert my 1-hour arithmetic averages into the appropriate averaging times and units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false How do I convert my 1-hour arithmetic averages into the appropriate averaging times and units? 60.1265 Section 60.1265 Protection of Environment... Continuous Emission Monitoring § 60.1265 How do I convert my 1-hour arithmetic averages into the...

  1. 40 CFR 60.2943 - How do I convert my 1-hour arithmetic averages into the appropriate averaging times and units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false How do I convert my 1-hour arithmetic averages into the appropriate averaging times and units? 60.2943 Section 60.2943 Protection of Environment... SOURCES Operator Training and Qualification Monitoring § 60.2943 How do I convert my 1-hour...

  2. Investigation of the Blood Glucose Lowering Potential of the Jamaican Momordica charantia (Cerasee) Fruit in Sprague-Dawley Rats

    PubMed Central

    Burnett, A; McKoy, M-L; Singh, P

    2015-01-01

    ABSTRACT The Momordica charantia (MC) fruit has been documented to possess antidiabetic properties. However, these studies were not without controversy surrounding the blood glucose-lowering ability and the mechanism of action in diabetes therapy. In an effort to evaluate such claims in the Jamaican MC species known as cerasee, aqueous extracts of the unripe fruit were studied in normal and diabetic rats. Normal male Sprague-Dawley rats were divided into groups (n = 6) orally administered distilled water, 10% dimethyl sulfoxide (DMSO) solution, the aqueous extract (400 mg/kg body weight) and glibenclamide (15 mg/kg body weight), respectively prior to assessment of fasting blood glucose (FBG) concentration. The oral glucose tolerance test (OGTT) was conducted in normoglycaemic rats orally administered distilled water, 10% DMSO solution, glibenclamide (15 mg/kg body weight) or aqueous extracts of the fruit (200 and 400 mg/kg body weight). Blood glucose concentration was also monitored in streptozotocin-induced diabetic rats administered the aqueous extract (250 mg/kg body weight) or water vehicle after an overnight fast. The aqueous extracts showed no hypoglycaemic or antidiabetic activity. However, the administration of the aqueous extracts (200 and 400 mg/kg body weight) resulted in significant improvement in glucose tolerance of glucose-primed normoglycaemic rats during the OGTT. These data suggest that the glucose-lowering mechanism of the Jamaican MC fruit species likely involves altered glucose absorption across the gastrointestinal tract. PMID:26624580

  3. Glucose tolerance status is a better predictor of diabetes and cardiovascular outcomes than metabolic syndrome: a prospective cohort study

    PubMed Central

    2012-01-01

    Backround To evaluate the importance of oral glucose tolerance test (OGTT) in predicting diabetes and cardiovascular disease in patients with and without Metabolic Syndrome from a population treated in a primary care unit. Research design and methods A prospective cohort study was conducted with subjects regularly attending the primary care unit of Hospital de Clínicas de Porto Alegre. Participants underwent a 75 g OGTT. Metabolic syndrome definition was based on the criteria of IDF/AHA/NHLBI-2010. Results Participants mean age was 61 ± 12 years (males: 38%; whites: 67%). Of the 148 subjects included, 127 (86%) were followed for 36 ± 14 months, 21 (14%) were lost. Subjects were classified into four groups based on baseline OGTT: 29% normal (n = 43), 28% impaired fasting glucose (IFG; n = 42), 26% impaired glucose tolerance (IGT; n = 38), and 17% diabetes (n = 25). Metabolic syndrome prevalence was lower in normal group (28%), intermediate in IFG (62%) and IGT (65%) groups, and higher among subjects with diabetes (92%; P <0.001). Incidence of diabetes increased along with the stages of glucose metabolism disturbance (normal: 0%, IFG: 16%, IGT: 28%; P = 0.004). No patient with normal OGTT developed diabetes, regardless metabolic syndrome presence. Diabetes at baseline was the major determinant of cardiovascular disease occurrence (normal: 0%, IFG: 4%, IGT: 0%, diabetes: 24%; P = 0.001). In Cox-regression analysis, only the 2 h OGTT results were associated with diabetes (OR = 1.03; 95%CI 1.01–1.06; P <0.001) and cardiovascular disease development (OR = 1.013; 95%CI 1.002–1.025; P = 0.024). Conclusions In this sample of subjects undergoing diabetes screening, the OGTT predicted diabetes and cardiovascular disease more effectively than the metabolic syndrome status. PMID:22682107

  4. Glucose Intolerance after a Recent History of Gestational Diabetes Based on the 2013 WHO Criteria

    PubMed Central

    Benhalima, Katrien; Jegers, Katleen; Devlieger, Roland; Verhaeghe, Johan; Mathieu, Chantal

    2016-01-01

    Aims Uncertainty exists on the prevalence of glucose intolerance in women with a recent diagnosis of gestational diabetes (GDM) based on a two-step screening strategy and the 2013 World Health Organization (WHO) criteria. Our aim was to evaluate the uptake of postpartum screening, the prevalence and the risk factors for glucose intolerance in women with a recent history of GDM. Methods Retrospective analysis of the medical records of women with a recent history of GDM diagnosed in a universal two-step screening strategy with the 2013 WHO criteria. All women with a history of GDM are advised to undergo a 75g oral glucose tolerance test (OGTT) around 12 weeks postpartum. Indices of insulin sensitivity (the Matsuda index and the reciprocal of the homeostasis model assessment of insulin resistance, 1/HOMA-IR) and an index of beta-cell function, the Insulin Secretion-Sensitivity Index-2 (ISSI-2) were calculated based on the OGTT postpartum. Multivariable logistic regression was used to adjust for confounders such as age, BMI, ethnicity and breastfeeding. Results Of the 191 women with GDM, 29.3% (56) did not attend the scheduled postpartum OGTT. These women had a higher BMI (28.6 ±6.8 vs. 26.2 ± 5.6, p = 0.015), were more often from an ethnic minority (EM) background (41.1% vs. 25.2%, p = 0.029) and smoked more often during pregnancy (14.3% vs. 2.2%, p = 0.001) than women who attended the OGTT postpartum. Of all women (135) who received an OGTT postpartum, 42.2% (57) had prediabetes (11.9% impaired fasting glucose, 24.4% impaired glucose tolerance and 5.9% both impaired fasting and impaired glucose tolerance) and 1.5% (2) had overt diabetes. Compared to women with a normal OGTT postpartum, women with glucose intolerance were older (32.5±4.3 vs. 30.8±4.8 years, p = 0.049), were more often obese (34.5% vs. 17.3%, p = 0.023), were more often from an EM background (33.9% vs. 18.4%, p = 0.040), less often breastfed (69.5% vs. 84.2%, p = 0.041) and had more often an

  5. Statistical analysis and multi-instrument overview of the quasi-periodic 1-hour pulsations in Saturn's outer magnetosphere

    NASA Astrophysics Data System (ADS)

    Palmaerts, B.; Roussos, E.; Krupp, N.; Kurth, W. S.; Mitchell, D. G.; Dougherty, M. K.

    2015-10-01

    The in-situ exploration of the magnetospheres of Jupiter and Saturn has revealed different periodic processes. In particular, in the Saturnian magnetosphere, several studies have reported pulsations in the outer magnetosphere with a periodicity of about 1 hour in the measurements of charged particle fluxes, plasma wave, magnetic field strength and auroral emissions brightness. The Low- Energy Magnetospheric Measurement System detector of the Magnetospheric Imaging Instrument (MIMI/LEMMS) on board Cassini regularly detects 1-hour quasi-periodic enhancements in the intensities of electrons with an energy range from a hundred keV to several MeV. We extend an earlier survey of these relativistic electron injections, using 10 years of LEMMS observations in addition to context measurements by several other Cassini magnetospheric experiments. During this period, we identified 720 pulsed events in the outer magnetosphere over a wide range of latitudes and local times, revealing that this phenomenon is common and frequent in Saturn's magnetosphere. However, the distribution of the injection events presents a strong local time asymmetry with ten times more events in the duskside than in the dawnside. In addition to the study of their topology, we present a first statistical analysis of these pulsed events to investigate their properties. This analysis reveals that the mean interpulse period is 68 ± 10 minutes and that the events are made up of less than 9 pulses in general, but they can include up to 19 pulses. The most common shape of these pulses is a fast rise followed by a slow decay. Moreover, the ratio between the rise rate and the decay rate increases with the energy. We have also investigated the signatures of each electron injection event in the observations acquired by the Radio and Plasma Wave Science (RPWS) instrument and the magnetometer (MAG). Correlated pulsed signatures are observed in the plasma wave emissions, especially in the auroral hiss, for 12% of the

  6. No difference in exogenous carbohydrate oxidation during exercise in children with and without impaired glucose tolerance.

    PubMed

    Chu, Lisa; Morrison, Katherine M; Riddell, Michael C; Raha, Sandeep; Timmons, Brian W

    2016-09-01

    The capacity to match carbohydrate (CHO) utilization with availability is impaired in insulin-resistant, obese adults at rest. Understanding exogenous carbohydrate (CHOexo) oxidation during exercise and its association to insulin resistance (IR) is important, especially in children at risk for type 2 diabetes. Our objective was to examine the oxidative efficiency of CHOexo during exercise in obese children with normal glucose tolerance (NGT) or impaired glucose tolerance (IGT). Children attended two visits and were identified as NGT (n = 22) or IGT (n = 12) based on 2-h oral glucose tolerance test (OGTT) glucose levels of <7.8 mmol/l or ≥7.8 mmol/l, respectively. Anthropometry, body composition, and aerobic fitness (V̇o2max) were assessed. Insulin and glucose at baseline, 30, 60, 90, and 120 min during the OGTT were used to calculate measures of insulin sensitivity. On a separate day, a (13)C-enriched CHO drink was ingested before exercise (3 × 20 min bouts) at 45% V̇o2max Breath measurements were collected to calculate CHOexo oxidative efficiency. CHOexo oxidative efficiency during exercise was similar in IGT (17.0 ± 3.6%) compared with NGT (17.1 ± 4.4%) (P = 0.90) despite lower whole body insulin sensitivity in IGT at rest (P = 0.02). Area under the curve for insulin (AUCins) measured at rest during the OGTT was greater in IGT compared with NGT (P = 0.04). The ability of skeletal muscle to utilize CHOexo was not impaired during exercise in children with IGT. PMID:27493197

  7. No difference in exogenous carbohydrate oxidation during exercise in children with and without impaired glucose tolerance.

    PubMed

    Chu, Lisa; Morrison, Katherine M; Riddell, Michael C; Raha, Sandeep; Timmons, Brian W

    2016-09-01

    The capacity to match carbohydrate (CHO) utilization with availability is impaired in insulin-resistant, obese adults at rest. Understanding exogenous carbohydrate (CHOexo) oxidation during exercise and its association to insulin resistance (IR) is important, especially in children at risk for type 2 diabetes. Our objective was to examine the oxidative efficiency of CHOexo during exercise in obese children with normal glucose tolerance (NGT) or impaired glucose tolerance (IGT). Children attended two visits and were identified as NGT (n = 22) or IGT (n = 12) based on 2-h oral glucose tolerance test (OGTT) glucose levels of <7.8 mmol/l or ≥7.8 mmol/l, respectively. Anthropometry, body composition, and aerobic fitness (V̇o2max) were assessed. Insulin and glucose at baseline, 30, 60, 90, and 120 min during the OGTT were used to calculate measures of insulin sensitivity. On a separate day, a (13)C-enriched CHO drink was ingested before exercise (3 × 20 min bouts) at 45% V̇o2max Breath measurements were collected to calculate CHOexo oxidative efficiency. CHOexo oxidative efficiency during exercise was similar in IGT (17.0 ± 3.6%) compared with NGT (17.1 ± 4.4%) (P = 0.90) despite lower whole body insulin sensitivity in IGT at rest (P = 0.02). Area under the curve for insulin (AUCins) measured at rest during the OGTT was greater in IGT compared with NGT (P = 0.04). The ability of skeletal muscle to utilize CHOexo was not impaired during exercise in children with IGT.

  8. Predictive Value of Glucose Parameters Obtained From Oral Glucose Tolerance Tests in Identifying Individuals at High Risk for the Development of Diabetes in Korean Population.

    PubMed

    Yang, Hae Kyung; Ha, Hee-Sung; Rhee, Marie; Lee, Jin-Hee; Park, Yong-Moon; Kwon, Hyuk-Sang; Yim, Hyeon-Woo; Kang, Moo-Il; Lee, Won-Chul; Son, Ho-Young; Lee, Seung-Hwan; Yoon, Kun-Ho

    2016-03-01

    Previous studies suggest that the future risk for type 2 diabetes is not similar among subjects in the same glucose tolerance category. In this study, we aimed to evaluate simple intuitive indices to identify subjects at high risk for future diabetes development by using 0, 30, 120 minute glucose levels obtained during 75 g OGTTs from participants of a prospective community-based cohort in Korea.Among subjects enrolled at the Chungju Metabolic disease Cohort, those who performed an OGTT between 2007 and 2010 and repeated the test between 2011 and 2014 were recruited after excluding subjects with diabetes at baseline. Subjects were categorized according to their 30 minute glucose (G30) and the difference between 120 and 0 minute glucose (G(120-0)) levels with cutoffs of 9.75 and 2.50 mmol/L, respectively.Among 1126 subjects, 117 (10.39%) developed type 2 diabetes after 4 years. In diabetes nonconverters, increased insulin resistance was accompanied by compensatory insulin secretion, but this was not observed in converters during 4 years of follow-up. Subjects with G(120-0) ≥ 2.50 mmol/L or G30 ≥ 9.75 mmol/L demonstrated lower degrees of insulin secretion, higher degrees of insulin resistance, and ∼6-fold higher risk of developing future diabetes compared to their lower counterparts after adjustment for possible confounding factors. Moreover, subjects with high G(120-0) and high G30 demonstrated 22-fold higher risk for diabetes development compared to subjects with low G(120-0) and low G30.By using the G(120-0) and G30 values obtained during the OGTT, which are less complicated measurements than previously reported methods, we were able to select individuals at risk for future diabetes development. Further studies in different ethnicities are required to validate our results.

  9. Predictive Value of Glucose Parameters Obtained From Oral Glucose Tolerance Tests in Identifying Individuals at High Risk for the Development of Diabetes in Korean Population.

    PubMed

    Yang, Hae Kyung; Ha, Hee-Sung; Rhee, Marie; Lee, Jin-Hee; Park, Yong-Moon; Kwon, Hyuk-Sang; Yim, Hyeon-Woo; Kang, Moo-Il; Lee, Won-Chul; Son, Ho-Young; Lee, Seung-Hwan; Yoon, Kun-Ho

    2016-03-01

    Previous studies suggest that the future risk for type 2 diabetes is not similar among subjects in the same glucose tolerance category. In this study, we aimed to evaluate simple intuitive indices to identify subjects at high risk for future diabetes development by using 0, 30, 120 minute glucose levels obtained during 75 g OGTTs from participants of a prospective community-based cohort in Korea.Among subjects enrolled at the Chungju Metabolic disease Cohort, those who performed an OGTT between 2007 and 2010 and repeated the test between 2011 and 2014 were recruited after excluding subjects with diabetes at baseline. Subjects were categorized according to their 30 minute glucose (G30) and the difference between 120 and 0 minute glucose (G(120-0)) levels with cutoffs of 9.75 and 2.50 mmol/L, respectively.Among 1126 subjects, 117 (10.39%) developed type 2 diabetes after 4 years. In diabetes nonconverters, increased insulin resistance was accompanied by compensatory insulin secretion, but this was not observed in converters during 4 years of follow-up. Subjects with G(120-0) ≥ 2.50 mmol/L or G30 ≥ 9.75 mmol/L demonstrated lower degrees of insulin secretion, higher degrees of insulin resistance, and ∼6-fold higher risk of developing future diabetes compared to their lower counterparts after adjustment for possible confounding factors. Moreover, subjects with high G(120-0) and high G30 demonstrated 22-fold higher risk for diabetes development compared to subjects with low G(120-0) and low G30.By using the G(120-0) and G30 values obtained during the OGTT, which are less complicated measurements than previously reported methods, we were able to select individuals at risk for future diabetes development. Further studies in different ethnicities are required to validate our results. PMID:26962830

  10. The oral glucose tolerance test for the diagnosis of diabetes mellitus in patients during acute coronary syndrome hospitalization: a meta-analysis of diagnostic test accuracy

    PubMed Central

    2012-01-01

    Background The appropriateness of the routine performance of an oral glucose tolerance test (OGTT) to screen for diabetes mellitus (DM) during acute coronary syndrome hospitalization is still under debate. Methods A systematic search of databases (MEDLINE [1985 to March 2012], EMBASE [1985 to March 2012]) was conducted. All prospective cohort studies assessing the accuracy or reproducibility of an OGTT in ACS or non-ACS individuals were included. A bivariate model was used to calculate the pooled sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR). Heterogeneity was explored using subgroup analysis and meta-regression. Results Fifteen studies with 8,027 participants were included (10 ACS and 5 non-ACS studies). The pooled results on SEN, SPE, PLR, NLR, and DOR were 0.70 (95% CI, 0.60-0.78), 0.91 (95% CI, 0.86-0.94), 7.6 (95% CI, 4.9-11.7), 0.33 (95% CI, 0.25-0.45), and 23 (95% CI, 12–41), respectively. The OGTT has a slightly lower SPE in diagnosing DM in ACS than in non-ACS patients (0.86 [95% CI 0.81-0.92] versus 0.95 [95% CI 0.93-0.98], p<0.01), while the SEN values are comparable (0.71 [95% CI 0.60-0.82] versus 0.67 [95% CI 0.54-0.81], p=0.43). After adjusting the interval between repeated tests and age, the meta-regression did not show a difference in DOR between ACS and non-ACS studies. Conclusions Despite the discrepancy in the interval between the two OGTTs, performing an OGTT in patients with ACS provides accuracy that is similar to that in in non-ACS patients. It is reasonable to screen patients hospitalized for ACS for previously undiagnosed DM using an OGTT. PMID:23270530

  11. A Physiology-Based Model Describing Heterogeneity in Glucose Metabolism

    PubMed Central

    Maas, Anne H.; Rozendaal, Yvonne J. W.; van Pul, Carola; Hilbers, Peter A. J.; Cottaar, Ward J.; Haak, Harm R.; van Riel, Natal A. W.

    2014-01-01

    Background: Current diabetes education methods are costly, time-consuming, and do not actively engage the patient. Here, we describe the development and verification of the physiological model for healthy subjects that forms the basis of the Eindhoven Diabetes Education Simulator (E-DES). E-DES shall provide diabetes patients with an individualized virtual practice environment incorporating the main factors that influence glycemic control: food, exercise, and medication. Method: The physiological model consists of 4 compartments for which the inflow and outflow of glucose and insulin are calculated using 6 nonlinear coupled differential equations and 14 parameters. These parameters are estimated on 12 sets of oral glucose tolerance test (OGTT) data (226 healthy subjects) obtained from literature. The resulting parameter set is verified on 8 separate literature OGTT data sets (229 subjects). The model is considered verified if 95% of the glucose data points lie within an acceptance range of ±20% of the corresponding model value. Results: All glucose data points of the verification data sets lie within the predefined acceptance range. Physiological processes represented in the model include insulin resistance and β-cell function. Adjusting the corresponding parameters allows to describe heterogeneity in the data and shows the capabilities of this model for individualization. Conclusion: We have verified the physiological model of the E-DES for healthy subjects. Heterogeneity of the data has successfully been modeled by adjusting the 4 parameters describing insulin resistance and β-cell function. Our model will form the basis of a simulator providing individualized education on glucose control. PMID:25526760

  12. An Integrated 0-1 Hour First-Flash Lightning Nowcasting, Lightning Amount and Lightning Jump Warning Capability

    NASA Technical Reports Server (NTRS)

    Mecikalski, John; Jewett, Chris; Carey, Larry; Zavodsky, Brad; Stano, Geoffrey; Chronis, Themis

    2015-01-01

    Using satellite-based methods that provide accurate 0-1 hour convective initiation (CI) nowcasts, and rely on proven success coupling satellite and radar fields in the Corridor Integrated Weather System (CIWS; operated and developed at MIT-Lincoln Laboratory), to subsequently monitor for first-flash lightning initiation (LI) and later period lightning trends as storms evolve. Enhance IR-based methods within the GOES-R CI Algorithm (that must meet specific thresholds for a given cumulus cloud before the cloud is considered to have an increased likelihood of producing lightning next 90 min) that forecast LI. Integrate GOES-R CI and LI fields with radar thresholds (e.g., first greater than or equal to 40 dBZ echo at the -10 C altitude) and NWP model data within the WDSS-II system for LI-events from new convective storms. Track ongoing lightning using Lightning Mapping Array (LMA) and pseudo-Geostationary Lightning Mapper (GLM) data to assess per-storm lightning trends (e.g., as tied to lightning jumps) and outline threat regions. Evaluate the ability to produce LI nowcasts through a "lightning threat" product, and obtain feedback from National Weather Service forecasters on its value as a decision support tool.

  13. Effects of insulin-like growth factor-I on glucose tolerance, insulin levels, and insulin secretion.

    PubMed Central

    Zenobi, P D; Graf, S; Ursprung, H; Froesch, E R

    1992-01-01

    Insulin-like growth factor-I (IGF-I) and insulin interact with related receptors to lower plasma glucose and to exert mitogenic effects. Recombinant human IGF-I (rhIGF-I) was recently shown to decrease serum levels of insulin and C-peptide in fasted normal subjects without affecting plasma glucose levels. In this study we have investigated in six healthy volunteers the responses of glucose, insulin, and C-peptide levels to intravenous rhIGF-I infusions (7 and 14 micrograms/kg.h) during standard oral glucose tolerance tests (oGTT) and meal tolerance tests (MTT), respectively. Glucose tolerance remained unchanged during the rhIGF-I infusions in the face of lowered insulin and C-peptide levels. The decreased insulin/glucose-ratio presumably is caused by an enhanced tissue sensitivity to insulin. The lowered area under the insulin curve during oGTT and MTT as a result of the administration of rhIGF-I were related to the fasting insulin levels during saline infusion (oGTT: r = 0.825, P less than 0.05; MTT: r = 0.895, P less than 0.02). RhIGF-I, however, did not alter the ratio between C-peptide and insulin, suggesting that the metabolic clearance of endogenous insulin remained unchanged. In conclusion, rhIGF-I increased glucose disposal and directly suppressed insulin secretion. RhIGF-I probably increased insulin sensitivity as a result of decreased insulin levels and suppressed growth hormone secretion. RhIGF-I, therefore, may be therapeutically useful in insulin resistance of type 2 diabetes, obesity, and hyperlipidemia. PMID:1601998

  14. CD226 reduces endothelial cell glucose uptake under hyperglycemic conditions with inflammation in type 2 diabetes mellitus

    PubMed Central

    Dong, Zilong; Zhang, Jinxue; Sun, Yizheng; Jin, Boquan; Gao, Feng; Guo, Shuzhong; Zhuang, Ran

    2016-01-01

    CD226 is a co-stimulatory adhesion molecule found on immune and endothelial cells. Here, we evaluated a possible role for CD226 in inhibiting glucose uptake in isolated human umbilical vein endothelial cells (HUVECs) and in wild-type (WT) and CD226 knockout (KO) mice with high-fat diet (HFD)-induced type 2 diabetes (T2DM). CD226 expression increased under hyperglycemic conditions in the presence of TNF-α. Furthermore, CD226 knockdown improved glucose uptake in endothelial cells, and CD226 KO mice exhibited increased glucose tolerance. Levels of soluble CD226 in plasma were higher in T2DM patients following an oral glucose tolerance test (OGTT) than under fasting conditions. Our results indicate that low-grade inflammation coupled with elevated blood glucose increases CD226 expression, resulting in decreased endothelial cell glucose uptake in T2DM. PMID:26910838

  15. Short-Term Regulation of Lipocalin-2 but not RBP-4 During Oral Lipid Tolerance Test and Oral Glucose Tolerance Test.

    PubMed

    Schmid, A; Leszczak, S; Ober, I; Schäffler, A; Karrasch, T

    2016-02-01

    The postprandial regulation of lipocalin-2 and retinol binding protein-4 (RBP-4) by oral uptake of lipids and carbohydrates in healthy individuals has not yet been investigated. The regulation of lipocalin-2 and RBP-4 in 2 large cohorts of healthy volunteers during oral lipid tolerance test (OLTT; n=100) and oral glucose tolerance test (OGTT; n=100) was analyzed. One hundred healthy volunteers underwent OLTT and OGTT in an outpatient setting. Venous blood was drawn after 0, 2, 4, and 6 h in OLTT and after 0, 1, and 2 h in OGTT. In order to dissect carbohydrate-induced from lipid-induced effects, a novel OLTT solution completely free of carbohydrates and protein was applied. Subjects were characterized by anthropometric and laboratory parameters. Serum concentrations of lipocalin-2 and RBP-4 were measured by enzyme-linked immunosorbent assay (ELISA). Whereas RBP-4 levels remained unchanged during OGTT, lipocalin-2 concentrations significantly decreased during OGTT. During OLTT, RBP-4 levels were not influenced, whereas lipocalin-2 levels decreased significantly and stepwise. Fasting concentrations of RBP-4 were negatively correlated with BMI and waist-hip ratio, whereas lipocalin-2 levels were positively associated with BMI and waist-hip ratio. Female users of hormonal contraception had higher RBP-4 levels than females not on contraceptives. There is no significant short-term regulation of RBP-4 by orally ingested lipids or carbohydrates. Lipocalin-2 is downregulated after lipid and carbohydrate ingestion and this kind of regulation was not predicted by age, sex, triglycerides, glucose, or insulin levels. PMID:26069091

  16. GOES Infrared and Reflectance 0-1 hour Lightning Initiation Indicators: Development and Initial Testing within a Convective Nowcasting System

    NASA Astrophysics Data System (ADS)

    Mecikalski, J. R.; Harris, R.; MacKenzie, W.; Durkee, P. A.; Iskenderian, H.; Bickmeier, L.; Nielsen, K. E.

    2010-12-01

    Within cumulus cloud fields that develop in conditionally unstable air masses, only a fraction of the cumuli may eventually develop into deep convection. Identifying which of these convective clouds most likely to generate lightning often starts with little more than a qualitative visual satellite analysis. The goal of this study is to identify the observed satellite infrared (IR) signatures associated with growing cumulus clouds prior to the first lightning strike, so-called lightning initiation (LI). This study quantifies the behavior of ten Geostationary Operational Environmental Satellite (GOES-12) IR interest fields in the 1-hour in advance of LI. A total of 172 lightning-producing storms that occurred during the 2009 convective season are manually tracked and studied over four regions: Northern Alabama, Central Oklahoma, the Kennedy Space Center and Washington D.C. Four-dimensional and cloud-to-ground lightning array data provide a total cloud lightning picture (in-cloud, cloud-to-cloud, cloud-to-air, cloud-to-ground) and thus precise LI points for each storm in both time and space. Statistical significance tests are conducted on observed trends for each of the ten LI fields to determine the unique information each field provides in terms of behavior prior to LI. Eight out of ten LI fields exhibited useful information at least 15 min in advance of LI, with 35 min being the average. Statistical tests on these eight fields are compared for separate large geographical areas. IR temperature thresholds are then determined as an outcome, which may be valuable when implementing a LI prediction algorithm into real-time satellite-based systems. The key LI indicators from GOES IR data (as well as 3.9 μm reflectance) will be presented. Beginning in 2010, the feasibility of using the satellite-based LI indicators found in the above analysis to forecast first lightning will be assessed within the Federal Aviation Administration’s (FAA) CoSPA nowcasting system. The goal

  17. Statistical analysis and multi-instrument overview of the quasi-periodic 1-hour pulsations in Saturn's outer magnetosphere

    NASA Astrophysics Data System (ADS)

    Palmaerts, B.; Roussos, E.; Krupp, N.; Kurth, W. S.; Mitchell, D. G.; Yates, J. N.

    2016-06-01

    The in-situ exploration of the magnetospheres of Jupiter and Saturn has revealed different periodic processes. In particular, in the Saturnian magnetosphere, several studies have reported pulsations in the outer magnetosphere with a periodicity of about 1 h in the measurements of charged particle fluxes, plasma wave, magnetic field strength and auroral emissions brightness. The Low-Energy Magnetospheric Measurement System detector of the Magnetospheric Imaging Instrument (MIMI/LEMMS) on board Cassini regularly detects 1-hour quasi-periodic enhancements in the intensities of electrons with an energy range from a hundred keV to several MeV. We extend an earlier survey of these relativistic electron injections using 10 years of LEMMS observations in addition to context measurements by several other Cassini magnetospheric experiments. The one-year extension of the data and a different method of detection of the injections do not lead to a discrepancy with the results of the previous survey, indicating an absence of a long-term temporal evolution of this phenomenon. We identified 720 pulsed events in the outer magnetosphere over a wide range of latitudes and local times, revealing that this phenomenon is common and frequent in Saturn's magnetosphere. However, the distribution of the injection events presents a strong local time asymmetry with ten times more events in the duskside than in the dawnside. In addition to the study of their topology, we present a first statistical analysis of the pulsed events properties. The morphology of the pulsations shows a weak local time dependence which could imply a high-latitude acceleration source. We provide some clues that the electron population associated with this pulsed phenomenon is distinct from the field-aligned electron beams previously observed in Saturn's magnetosphere, but both populations can be mixed. We have also investigated the signatures of each electron injection event in the observations acquired by the Radio

  18. An Integrated 0-1 Hour First-Flash Lightning Nowcasting, Lightning Amount and Lightning Jump Warning Capability

    NASA Technical Reports Server (NTRS)

    Mecikalski, John; Jewett, Chris; Carey, Larry; Zavodsky, Brad; Stano, Geoffrey

    2015-01-01

    Lightning one of the most dangerous weather-related phenomena, especially as many jobs and activities occur outdoors, presenting risk from a lightning strike. Cloud-to-ground (CG) lightning represents a considerable safety threat to people at airfields, marinas, and outdoor facilities-from airfield personnel, to people attending outdoor stadium events, on beaches and golf courses, to mariners, as well as emergency personnel. Holle et al. (2005) show that 90% of lightning deaths occurred outdoors, while 10% occurred indoors despite the perception of safety when inside buildings. Curran et al. (2000) found that nearly half of fatalities due to weather were related to convective weather in the 1992-1994 timeframe, with lightning causing a large component of the fatalities, in addition to tornadoes and flash flooding. Related to the aviation industry, CG lightning represents a considerable hazard to baggage-handlers, aircraft refuelers, food caterers, and emergency personnel, who all become exposed to the risk of being struck within short time periods while convective storm clouds develop. Airport safety protocols require that ramp operations be modified or discontinued when lightning is in the vicinity (typically 16 km), which becomes very costly and disruptive to flight operations. Therefore, much focus has been paid to nowcasting the first-time initiation and extent of lightning, both of CG and of any lightning (e.g, in-cloud, cloud-to-cloud). For this project three lightning nowcasting methodologies will be combined: (1) a GOESbased 0-1 hour lightning initiation (LI) product (Harris et al. 2010; Iskenderian et al. 2012), (2) a High Resolution Rapid Refresh (HRRR) lightning probability and forecasted lightning flash density product, such that a quantitative amount of lightning (QL) can be assigned to a location of expected LI, and (3) an algorithm that relates Pseudo-GLM data (Stano et al. 2012, 2014) to the so-called "lightning jump" (LJ) methodology (Shultz et al

  19. Dietary Fatty Acids Differentially Associate with Fasting Versus 2-Hour Glucose Homeostasis: Implications for The Management of Subtypes of Prediabetes.

    PubMed

    Guess, Nicola; Perreault, Leigh; Kerege, Anna; Strauss, Allison; Bergman, Bryan C

    2016-01-01

    Over-nutrition has fuelled the global epidemic of type 2 diabetes, but the role of individual macronutrients to the diabetogenic process is not well delineated. We aimed to examine the impact of dietary fatty acid intake on fasting and 2-hour plasma glucose concentrations, as well as tissue-specific insulin action governing each. Normoglycemic controls (n = 15), athletes (n = 14), and obese (n = 23), as well as people with prediabetes (n = 10) and type 2 diabetes (n = 11), were queried about their habitual diet using a Food Frequency Questionnaire. All subjects were screened by an oral glucose tolerance test (OGTT) and studied using the hyperinsulinemic/euglycemic clamp with infusion of 6,62H2-glucose. Multiple regression was performed to examine relationships between dietary fat intake and 1) fasting plasma glucose, 2) % suppression of endogenous glucose production, 3) 2-hour post-OGTT plasma glucose, and 4) skeletal muscle insulin sensitivity (glucose rate of disappearance (Rd) and non-oxidative glucose disposal (NOGD)). The %kcal from saturated fat (SFA) was positively associated with fasting (β = 0.303, P = 0.018) and 2-hour plasma glucose (β = 0.415, P<0.001), and negatively related to % suppression of hepatic glucose production (β = -0.245, P = 0.049), clamp Rd (β = -0.256, P = 0.001) and NOGD (β = -0.257, P = 0.001). The %kcal from trans fat was also negatively related to clamp Rd (β = -0.209, P = 0.008) and NOGD (β = -0.210, P = 0.008). In contrast, the %kcal from polyunsaturated fat (PUFA) was negatively associated with 2-hour glucose levels (β = -0.383, P = 0.001), and positively related to Rd (β = 0.253, P = 0.007) and NOGD (β = 0.246, P = 0.008). Dietary advice to prevent diabetes should consider the underlying pathophysiology of the prediabetic state.

  20. Glucose Intolerance, Insulin Resistance and Alzheimer’s Disease Pathology in the Baltimore Longitudinal Study of Aging

    PubMed Central

    Thambisetty, M.; Metter, E.J.; Yang, A.; Dolan, H.; Marano, C.; Zonderman, A.B.; Troncoso, J.; Zhou, Y; Wong, D.F.; Ferrucci, L.; Egan, J.M.; Resnick, S.M.; OBrien, R.

    2014-01-01

    Objective To investigate associations between serial measures of glucose intolerance and insulin resistance with in vivo amyloid burden, measured with 11C-PiB, and Alzheimer’s disease (AD) pathology at autopsy in a prospective cohort from the Baltimore Longitudinal Study of Aging. Methods Brain CERAD and Braak scores were correlated with measures of hyperglycemia, hyperinsulinemia, glucose intolerance and insulin resistance in 197 participants who had come to autopsy and had two or more oral glucose tolerance tests (OGTT) during life. Glucose intolerance was measured by fasting and 120-minute post-load glucose values. Insulin resistance was measured by fasting and 120-minute post-load serum insulin values and the ratio of serum glucose to insulin at baseline and following a glucose load. In addition, the same measures of glucose intolerance and insulin resistance were correlated with brain 11C-PiB retention in 53 living subjects. Results There were no significant correlations between measures of brain AD pathology or 11C-PiB derived amyloid load and either glucose intolerance or insulin resistance in subjects who had a mean of 6.4 ± 3.2 (S.D.) OGTT evaluations over 22.1 ± 8.0 (S.D.) years of follow-up. Thirty subjects with frank diabetes on medication also had AD pathology scores that were similar to the cohort as a whole. Conclusions In this prospective cohort with multiple assessments of glucose intolerance and insulin resistance, measures of glucose and insulin homeostasis were not associated with AD pathology. PMID:23897112

  1. Dietary Fatty Acids Differentially Associate with Fasting Versus 2-Hour Glucose Homeostasis: Implications for The Management of Subtypes of Prediabetes.

    PubMed

    Guess, Nicola; Perreault, Leigh; Kerege, Anna; Strauss, Allison; Bergman, Bryan C

    2016-01-01

    Over-nutrition has fuelled the global epidemic of type 2 diabetes, but the role of individual macronutrients to the diabetogenic process is not well delineated. We aimed to examine the impact of dietary fatty acid intake on fasting and 2-hour plasma glucose concentrations, as well as tissue-specific insulin action governing each. Normoglycemic controls (n = 15), athletes (n = 14), and obese (n = 23), as well as people with prediabetes (n = 10) and type 2 diabetes (n = 11), were queried about their habitual diet using a Food Frequency Questionnaire. All subjects were screened by an oral glucose tolerance test (OGTT) and studied using the hyperinsulinemic/euglycemic clamp with infusion of 6,62H2-glucose. Multiple regression was performed to examine relationships between dietary fat intake and 1) fasting plasma glucose, 2) % suppression of endogenous glucose production, 3) 2-hour post-OGTT plasma glucose, and 4) skeletal muscle insulin sensitivity (glucose rate of disappearance (Rd) and non-oxidative glucose disposal (NOGD)). The %kcal from saturated fat (SFA) was positively associated with fasting (β = 0.303, P = 0.018) and 2-hour plasma glucose (β = 0.415, P<0.001), and negatively related to % suppression of hepatic glucose production (β = -0.245, P = 0.049), clamp Rd (β = -0.256, P = 0.001) and NOGD (β = -0.257, P = 0.001). The %kcal from trans fat was also negatively related to clamp Rd (β = -0.209, P = 0.008) and NOGD (β = -0.210, P = 0.008). In contrast, the %kcal from polyunsaturated fat (PUFA) was negatively associated with 2-hour glucose levels (β = -0.383, P = 0.001), and positively related to Rd (β = 0.253, P = 0.007) and NOGD (β = 0.246, P = 0.008). Dietary advice to prevent diabetes should consider the underlying pathophysiology of the prediabetic state. PMID:26999667

  2. Delayed β-cell response and glucose intolerance in young women with Turner syndrome

    PubMed Central

    2011-01-01

    Background To investigate glucose homeostasis in detail in Turner syndrome (TS), where impaired glucose tolerance (IGT) and type 2 diabetes are frequent. Methods Cross sectional study of women with Turner syndrome (TS)(n = 13) and age and body mass index matched controls (C) (n = 13), evaluated by glucose tolerance (oral and intravenous glucose tolerance test (OGTT and IVGTT)), insulin sensitivity (hyperinsulinemic, euglycemic clamp), beta-cell function (hyperglycaemic clamp, arginine and GLP-1 stimulation) and insulin pulsatility. Results Fasting glucose and insulin levels were similar. Higher glucose responses was seen in TS during OGTT and IVGTT, persisting after correction for body weight or muscle mass, while insulin responses were similar in TS and C, despite the higher glucose level in TS, leading to an insufficient increase in insulin response during dynamic testing. Insulin sensitivity was comparable in the two groups (TS vs. control: 8.6 ± 1.8 vs. 8.9 ± 1.8 mg/kg*30 min; p = 0.6), and the insulin responses to dynamic β-cell function tests were similar. Insulin secretion patterns examined by deconvolution analysis, approximate entropy, spectral analysis and autocorrelation analysis were similar. In addition we found low IGF-I, higher levels of cortisol and norepinephrine and an increased waist-hip ratio in TS. Conclusions Young normal weight TS women show significant glucose intolerance in spite of normal insulin secretion during hyperglycaemic clamping and normal insulin sensitivity. We recommend regularly testing for diabetes in TS. Trial Registration Registered with http://clinicaltrials.com, ID nr: NCT00419107 PMID:21406078

  3. In vivo interstitial glucose characterization and monitoring in the skin by ATR-FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Skrebova Eikje, Natalja

    2011-03-01

    Successful development of real-time non-invasive glucose monitoring would represent a major advancement not only in the treatment and management of patients with diabetes mellitus and carbohydrate metabolism disorders, but also for understanding in those biochemical, metabolic and (patho-)physiological processes of glucose at the molecular level in vivo. Here, ATR-FTIR spectroscopy technique has been challenged not only for in vivo measurement of interstitial glucose levels, but also for their non-invasive molecular qualitative and quantitative comparative characterization in the skin tissue. The results, based on calculated mean values of determined 5 glucose-specific peaks in the glucose-related 1000-1160 cm-1 region, showed intra- and inter-subject differences in interstitial glucose activity levels with their changes at different times and doses of OGTT, while raising questions about the relationships between interstitial and blood glucose levels. In conclusion, the introduction of ATR-FTIR spectroscopy technique has opened up an access to the interstitial fluid space in the skin tissue for interstitial glucose characterization and monitoring in vivo. Though interstitial versus blood glucose monitoring has different characteristics, it can be argued that accurate and precise measurements of interstitial glucose levels may be more important clinically.

  4. Serum progranulin concentrations are not responsive during oral lipid tolerance test and oral glucose tolerance test.

    PubMed

    Schmid, A; Leszczak, S; Ober, I; Schäffler, A; Karrasch, T

    2015-07-01

    The postprandial regulation of progranulin by oral uptake of lipids and carbohydrates in healthy individuals has not yet been investigated. The regulation of progranulin in 2 large cohorts of healthy volunteers during oral lipid tolerance test (OLTT; n=100) and oral glucose tolerance test (OGTT; n=100) was analyzed. One hundred healthy volunteers underwent OLTT and OGTT in an outpatient setting. Venous blood was drawn at 0 hours (h) (fasting) and at 2, 4, and 6 h in OLTT or 1 and 2 h in OGTT. A novel OLTT solution completely free of carbohydrates and protein was applied. Subjects were characterized by anthropometric and laboratory parameters. Serum concentrations of progranulin were measured by enzyme-linked immunosorbent assay (ELISA). Circulating progranulin levels remained unchanged during OLTT and OGTT. Fasting progranulin levels ranged between 31.3±8.7 and 40.6±7.7 ng/ml and were not different in subgroups addressing BMI, gender, family history, smoking habits, and hormonal contraception. There was a reciprocal correlation of progranulin with HDL (negative) and LDL cholesterol levels (positive). In healthy adults, fasting and postprandial circulating progranulin levels are not different in BMI subgroups. Oral uptake of carbohydrates and lipids does not influence circulating progranulin levels in a short-term manner. A postprandial and short-term regulation of this adipokine is absent, at least in healthy subjects. There is a negative correlation of progranulin with HDL cholesterol, but a positive correlation with LDL cholesterol. This reciprocal association might be of physiological importance for an individual's atherosclerotic risk. PMID:25565096

  5. Impaired Glucose Tolerance or Newly Diagnosed Diabetes Mellitus Diagnosed during Admission Adversely Affects Prognosis after Myocardial Infarction: An Observational Study

    PubMed Central

    George, Anish; Bhatia, Raghav T.; Buchanan, Gill L.; Whiteside, Anne; Moisey, Robert S.; Beer, Stephen F.; Chattopadhyay, Sudipta; Sathyapalan, Thozhukat; John, Joseph

    2015-01-01

    Objective To investigate the prognostic effect of newly diagnosed diabetes mellitus (NDM) and impaired glucose tolerance (IGT) post myocardial infarction (MI). Research Design and Methods Retrospective cohort study of 768 patients without preexisting diabetes mellitus post-MI at one centre in Yorkshire between November 2005 and October 2008. Patients were categorised as normal glucose tolerance (NGT n = 337), IGT (n = 279) and NDM (n = 152) on pre- discharge oral glucose tolerance test (OGTT). Primary end-point was the first occurrence of major adverse cardiovascular events (MACE) including cardiovascular death, non-fatal MI, severe heart failure (HF) or non-haemorrhagic stroke. Secondary end-points were all cause mortality and individual components of MACE. Results Prevalence of NGT, impaired fasting glucose (IFG), IGT and NDM changed from 90%, 6%, 0% and 4% on fasting plasma glucose (FPG) to 43%, 1%, 36% and 20% respectively after OGTT. 102 deaths from all causes (79 as first events of which 46 were cardiovascular), 95 non fatal MI, 18 HF and 9 non haemorrhagic strokes occurred during 47.2 ± 9.4 months follow up. Event free survival was lower in IGT and NDM groups. IGT (HR 1.54, 95% CI: 1.06–2.24, p = 0.024) and NDM (HR 2.15, 95% CI: 1.42–3.24, p = 0.003) independently predicted MACE free survival. IGT and NDM also independently predicted incidence of MACE. NDM but not IGT increased the risk of secondary end-points. Conclusion Presence of IGT and NDM in patients presenting post-MI, identified using OGTT, is associated with increased incidence of MACE and is associated with adverse outcomes despite adequate secondary prevention. PMID:26571120

  6. Kwashiorkor and marasmus are both associated with impaired glucose clearance related to pancreatic β-cell dysfunction.

    PubMed

    Spoelstra, Martijn N; Mari, Andrea; Mendel, Marijke; Senga, Edward; van Rheenen, Patrick; van Dijk, Theo H; Reijngoud, Dirk-Jan; Zegers, Remco G T; Heikens, Geert Tom; Bandsma, Robert H J

    2012-09-01

    Severe malnutrition is a major health problem in developing countries and can present as kwashiorkor or marasmus. Kwashiorkor is associated with septicaemia, profound metabolic changes including hepatic steatosis, altered protein metabolism and increased oxidative stress. Limited data suggest that children with kwashiorkor have an impaired glucose tolerance and insulin secretion. Our objective was to determine glucose tolerance in children with kwashiorkor compared to marasmus and its relation to insulin secretion and sensitivity. Six children with kwashiorkor and 8 children with marasmus were studied. We were also able to include 3 healthy children for comparison. They received a primed (13 mg/kg), constant infusion (0.15 mg/kg/min) of [6,6-(2)H(2)]glucose for 4 h with serial blood sampling. In addition, an oral glucose tolerance test (OGTT) was performed with labeled 10 mg/g [U-(13)C]glucose. Glucose clearance was determined using mathematical modeling. Glucose clearance rates during the OGTT were -392 (range 309) mL/kg in children with kwashiorkor, -156 (426) mL/kg in marasmus and 279 (345) mL/kg in the control group. Glucose clearance rates correlated with plasma albumin concentrations (r=0.67, P=.001). Insulin responses were strongly impaired in both kwashiorkor and marasmus. There was no indication of peripheral or hepatic insulin resistance in the malnourished groups. We show that glucose clearance rates are affected in both children with marasmus as well as kwashiorkor, which correlate with plasma albumin concentrations. The disturbed glucose clearance in malnutrition is related to an impairment in insulin availability.

  7. [Effect of aging and physical inactivity on glucose tolerance and insulin sensitivity].

    PubMed

    Sato, Y; Yamanouchi, K; Nakajima, H; Shinozaki, T; Fujii, S; Chikada, N; Suzuki, Y; Chikada, K; Kato, K; Oshida, Y

    1990-09-01

    It has been well documented that glucose intolerance is associated with aging, but it is not yet clear whether this phenomenon is due to the aging process itself or is secondary to the appearance of other age-related conditions among which physical inactivity is one of most important variables. To evaluate the effect of aging process and/or physical inactivity on insulin action, this study was undertaken using the euglycemic insulin clamp technique and the oral glucose tolerance test (OGTT). Subjects without diabetes mellitus and other serious diseases consisted of 14 non-obese aged individuals and 10 young controls (YC group), ranging in age from 63 to 85 yrs, and from 19 to 21 yrs, respectively. The aged individuals were further divided into two groups (one was termed as the AS group, in which 7 aged subjects had been confined to bed for at least 3 months and the other was termed as the AC group in which 7 aged controls kept their daily physical activity such as walking). The results of OGTT did not show any remarkable differences between AC and YC groups. In the AS group, however, glucose intolerance and low insulin response during OGTT were observed. In view of the tissue insulin action, MCR, which is thought as a reliable marker for tissue insulin action, evaluated by euglycemic insulin clamp was 5.31 +/- 0.68, 8.57 +/- 1.20, 9.60 +/- 0.35 ml/kg/min in the AS, AC and YC groups, respectively (AS less than AC, p less than 0.05, AS less than YC, p less than 0.01, AC less than YCM, N.S.).(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Decreased permeability surface area for glucose in obese women with postprandial hyperglycemia: no effect of phosphodiesterase-5 (PDE-5) inhibition.

    PubMed

    Sandqvist, M; Strindberg, L; Lönnroth, P; Jansson, P-A

    2013-08-01

    Insulin-mediated microvascular recruitment is recognized as a potential mechanism contributing to insulin resistance. In this study, we compared a marker of microvascular function, the permeability surface area for glucose (PS(glu)), and forearm glucose uptake after an OGTT in obese women with impaired glucose metabolism and healthy lean nondiabetic women, with the aim to characterize whether decreased permeability surface area for glucose or decreased glucose uptake may contribute to postprandial hyperglycemia in the obese group. In addition, we evaluated whether the phosphodiesterase-5 (PDE-5) inhibitor tadalafil, in a randomized double blind placebo controlled design, might attenuate postprandial glucose levels in obese women. For these purposes, intramuscular microdialysis, blood sampling from arterial and venous blood of the forearm, and measurements of forearm blood flow were performed. The results showed an impaired permeability surface area for glucose (IAUC PS(glu) 31±13 vs. 124±31; p<0.05) in obese when compared with lean participants, but no differences in forearm glucose uptake appeared between the groups. Furthermore, a single dose of tadalafil 10 mg showed no improvement of the permeability surface area for glucose, glucose uptake, or circulating glucose levels in obese participants. In conclusion, the postprandial PS(glu) response was impaired in obese women showing postprandial hyperglycemia, indicating a compromised microcirculation. However, we were unable to demonstrate any acute effect on either vascular function or glucose uptake of the phosphodiesterase-5 (PDE-5) inhibitor tadalafil. PMID:23613014

  9. Possibility to predict early postpartum glucose abnormality following gestational diabetes mellitus based on the results of routine mid-gestational screening

    PubMed Central

    Bartáková, Vendula; Malúšková, Denisa; Mužík, Jan; Bělobrádková, Jana; Kaňková, Kateřina

    2015-01-01

    Introduction Women with previous gestational diabetes mellitus (GDM) have increased risk of developing glucose abnormality, but current diagnostic criteria are evidence-based for adverse pregnancy outcome. The aims of our study were: (i) to ascertain a frequency of early conversion of GDM into permanent glucose abnormality, (ii) to determine predictive potential of current GDM diagnostic criteria for prediction of postpartum glucose abnormality and (iii) to find optimal cut-off values of oral glucose tolerance test (oGTT) to stratify GDM population according to postpartum risk. Materials and methods Electronic medical records of an ethnically homogenous cohort of women diagnosed and treated for GDM in a single medical centre during the period 2005–2011 who completed postpartum oGTT up to 1 year after the index delivery were retrospectively analysed (N = 305). Results Postpartum glucose abnormality was detected in 16.7% subjects. Mid-trimester oGTT values, respective area under the curve and HbA1c were significantly associated with early postpartum glucose abnormality (P < 0.05, Mann-Whitney) and exhibited significant predictive potential for postpartum glucose abnormality risk assessment. Optimal cut-off values for discrimination of at-risk sub-population were identified using ROC analysis and their comparison with WHO and IADPSG criteria exhibited superiority of IADPSG for risk-stratification of GDM population. Conclusion Risk-based stratification at the time of GDM diagnosis could improve efficiency of the post-gestational screening for diabetes. IADPSG criteria seem to optimally capture both perinatal and maternal metabolic risks and are therefore medically and economically justified. PMID:26526166

  10. 40 CFR 60.3042 - How do I convert my 1-hour arithmetic averages into the appropriate averaging times and units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false How do I convert my 1-hour arithmetic averages into the appropriate averaging times and units? 60.3042 Section 60.3042 Protection of Environment... Construction On or Before December 9, 2004 Model Rule-Monitoring § 60.3042 How do I convert my...

  11. 40 CFR 51.905 - How do areas transition from the 1-hour NAAQS to the 1997 8-hour NAAQS and what are the anti...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... National Ambient Air Quality Standard § 51.905 How do areas transition from the 1-hour NAAQS to the 1997 8... NAAQS maintenance area, the State may request that obligations under the applicable requirements of § 51.... Control obligations approved into the SIP pursuant to 40 CFR 51.121 and 51.122 may be modified by...

  12. 40 CFR 51.905 - How do areas transition from the 1-hour NAAQS to the 8-hour NAAQS and what are the anti...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ambient Air Quality Standard § 51.905 How do areas transition from the 1-hour NAAQS to the 8-hour NAAQS...)(3)(iii) of this section. 40 CFR part 81, subpart C identifies the boundaries of areas and the area... obligations approved into the SIP pursuant to 40 CFR 51.121 and 51.122 may be modified by the State only...

  13. 40 CFR 51.905 - How do areas transition from the 1-hour NAAQS to the 8-hour NAAQS and what are the anti...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Ambient Air Quality Standard § 51.905 How do areas transition from the 1-hour NAAQS to the 8-hour NAAQS...)(3)(iii) of this section. 40 CFR part 81, subpart C identifies the boundaries of areas and the area... obligations approved into the SIP pursuant to 40 CFR 51.121 and 51.122 may be modified by the State only...

  14. 40 CFR 51.905 - How do areas transition from the 1-hour NAAQS to the 1997 8-hour NAAQS and what are the anti...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... National Ambient Air Quality Standard § 51.905 How do areas transition from the 1-hour NAAQS to the 1997 8... requirement to submit a maintenance plan for purposes of paragraph (a)(3)(iii) of this section. 40 CFR part 81.... Control obligations approved into the SIP pursuant to 40 CFR 51.121 and 51.122 may be modified by...

  15. Glucose control.

    PubMed

    Preiser, Jean-Charles

    2013-01-01

    Stress-related hyperglycemia is a common finding in acutely ill patients, and is related to the severity and outcome of the critical illness. The pathophysiology of stress hyperglycemia includes hormonal and neural signals, leading to increased production of glucose by the liver and peripheral insulin resistance mediated by the translocation of transmembrane glucose transporters. In one pioneering study, tight glycemic control by intensive insulin therapy in critically ill patients was associated with improved survival. However, this major finding was not confirmed in several other prospective randomized controlled trials. The reasons underlying the discrepancy between the first and the subsequent studies could include nutritional strategy (amount of calories provided, use of parenteral nutrition), case-mix, potential differences in the optimal blood glucose level (BG) in different types of patients, hypoglycemia and its correction, and the magnitude of glucose variability. Therefore, an improved understanding of the physiology and pathophysiology of glycemic regulation during acute illness is needed. Safe and effective glucose control will need improvement in the definition of optimal BG and in the measurement techniques, perhaps including continuous monitoring of insulin algorithms and closed-loop systems. PMID:23075589

  16. A preliminary investigation of EZSCAN™ screening for impaired glucose tolerance and diabetes in a patient population

    PubMed Central

    CHEN, XIAOLU; CHEN, LIZHU; DING, RONGJING; SHI, QIUTING; ZHANG, YUANYUAN; HU, DAYI

    2015-01-01

    EZSCAN™ is a non-invasive technology that evaluates sweat gland dysfunction using electrochemical skin conductance measurements, providing an opportunity to determine the risk of impaired glucose tolerance (IGT) and diabetes mellitus (DM). This study was conducted with the aims of detecting IGT and DM and investigating the efficacy and cut-off points of the EZSCAN test in a patient population. The traditional serum and plasma glucose tests were used as comparators. In this cross-sectional study, 270 previously undiagnosed patients (180 women and 90 men) with a high risk of glucose metabolism disorders (≥45 years old) were enrolled. All patients underwent an oral glucose tolerance test (OGTT) and hemoglobin A1c (HbA1c), fasting plasma glucose (FPG) and EZSCAN tests. Forty (14.8%) patients had newly diagnosed DM (NDM), 79 (29.3%) had IGT and 151 (55.9%) had normal glucose tolerance. The EZSCAN values of these groups were 48±11, 47±11 and 34±13%, respectively. For all patients, the correlation coefficient of EZSCAN was 0.462 with the OGTT (P<0.001), 0.182 with the FPG test (P<0.001) and 0.379 with the HbA1c test (P<0.001). The EZSCAN cut-off point for the detection of IGT was 37% [sensitivity, 82%; specificity, 62%; area under the curve (AUC), 0.778], and the cut-off point for NDM was 50% (sensitivity, 53%; specificity, 59%; AUC, 0.528). This study demonstrated that the non-invasive EZSCAN system is an effective screening tool for the detection of glucose dysfunction in the population tested, and that its performance in detecting previously undiagnosed IGT is superior to its performance in detecting DM. PMID:26136878

  17. Assessment of incretins in oral glucose and lipid tolerance tests may be indicative in the diagnosis of metabolic syndrome aggravation.

    PubMed

    Kiec-Klimczak, M; Malczewska-Malec, M; Razny, U; Zdzienicka, A; Gruca, A; Goralska, J; Pach, D; Gilis-Januszewska, A; Dembinska-Kiec, A; Hubalewska-Dydejczyk, A

    2016-04-01

    Incretins stimulated by oral meals are claimed to be protective for the pancreatic beta cells, to increase insulin secretion, to inhibit glucagon release, slow gastric emptying (glucagon-like peptide-1) and suppress appetite. Recently it has however been suggested that glucagon-like peptide-1 (GLP-1) is putative early biomarker of metabolic consequences of the obesity associated proinflammatory state. The study was aimed to compare the release of incretins and some of early markers of inflammation at the fasting and postprandial period induced by functional oral glucose as well as lipid load in healthy controls and patients with metabolic syndrome (MS) to see if functional tests may be helpful in searching for the inflammatory status of patients. Fifty patients with MS and 20 healthy volunteers (C) participated in this study. The 3-hour oral glucose (OGTT) and the 8-hour oral lipid (OLTT) tolerance tests were performed. At fasting leptin and adiponectin, as well as every 30 minutes of OGTT and every 2 hours of OLTT blood concentration of GLP-1, glucose-dependent insulinotropic polypeptide (GIP), glucose, insulin, triglycerides, free fatty acids, glutathione peroxidase, interleukin-6, sE-selectin, monocyte chemoattractant protein-1 (MCP1) and visfatin were measured. At fasting and during both OGTT and OLTT the level of incretins did not differ between the MS and the C group. Both glucose and lipids reach food activated incretins secretion. Glucose was the main GLP-1 release activator, while the lipid load activated evidently GIP secretion. A significantly larger AUC-GIP after the lipid-rich meal over the carbohydrate meal was observed, while statistically bigger value of AUC-GLP-1 was noticed in OGTT than in OLTT (P < 0.001) within each of the investigated groups. In patients with the highest fasting plasma GIP concentration (3(rd) tertile), IL-6, MCP-1, sE-selectin and visfatin blood levels were increased and correlated with glutathione peroxydase, leptin

  18. Metabolic syndrome and the early detection of impaired glucose tolerance among professionals living in Beijing, China: a cross sectional study

    PubMed Central

    2013-01-01

    Background The purpose of this study is to investigate the association of metabolic syndrome (MS) and its components with the risk of impaired glucose tolerance (IGT) in high risk urban professionals. The goal is to improve the selection of candidates who would most benefit from an oral glucose tolerance test (OGTT). Methods This is a cross sectional study in which MS was identified by both the definitions proposed by the National Cholesterol Education Program (NCEP) and the International Diabetes Federation (IDF). Results There were 928 eligible subjects in the study, and 23.9% of them failed in OGTT. The odds ratio of IGT was increased 3.16-fold for MS defined by the NCEP criteria and 2.79-fold for the hyperglycemia factor alone. Both MS and hyperglycemia were shown to be acceptable measures to discriminate subjects with IGT from those with normal glucose tolerance (NGT). The clustering of any 1, 2, or ≥3 metabolic components resulted in increased odds ratios for IGT: i.e., 1.71, 2.38 and 5.92, respectively. Even without hyperglycemia in the cluster, an increased odds ratio was still observed. The risk of IGT increased dramatically when the fasting plasma glucose and waist circumference were both at their highest defined level. Conclusions MS and its components are associated with the increased risk of IGT. People with MS, one of its components, especially hyperglycemia and central obesity, or a cluster of its components are strong candidates for an OGTT in order to achieve early cost-effective detection of IGT. PMID:24499585

  19. Six weeks' sebacic acid supplementation improves fasting plasma glucose, HbA1c and glucose tolerance in db/db mice

    PubMed Central

    Membrez, M; Chou, C J; Raymond, F; Mansourian, R; Moser, M; Monnard, I; Ammon-Zufferey, C; Mace, K; Mingrone, G; Binnert, C

    2010-01-01

    Aim: To investigate the impact of chronic ingestion of sebacic acid (SA), a 10-carbon medium-chain dicarboxylic acid, on glycaemic control in a mouse model of type 2 diabetes (T2D). Methods: Three groups of 15 db/db mice were fed for 6 weeks either a chow diet (Ctrl) or a chow diet supplemented with 1.5 or 15% (SA1.5% and SA15%, respectively) energy from SA. Fasting glycaemia was measured once a week and HbA1c before and after supplementation. An oral glucose tolerance test (OGTT) was performed at the end of the supplementation. Gene expression was determined by transcriptomic analysis on the liver of the Ctrl and SA15% groups. Results: After 42 days of supplementation, fasting glycaemia and HbA1c were ∼70 and 25% lower in the SA15% group compared with the other groups showing a beneficial effect of SA on hyperglycaemia. During OGTT, plasma glucose area under the curve was reduced after SA15% compared with the other groups. This effect was associated with a tendency for an improved insulin response. In the liver, Pck1 and FBP mRNA were statistically decreased in the SA15% compared with Ctrl suggesting a reduced hepatic glucose output induced by SA. Conclusion: Dietary supplementation of SA largely improves glycaemic control in a mouse model of T2D. This beneficial effect may be due to (i) an improved glucose-induced insulin secretion and (ii) a reduced hepatic glucose output. PMID:20977585

  20. Detection of Abnormal Glucose Tolerance in Africans Is Improved by Combining A1C With Fasting Glucose: The Africans in America Study

    PubMed Central

    Thoreson, Caroline K.; O'Connor, Michelle Y.; Ricks, Madia; Chung, Stephanie T.; Tulloch-Reid, Marshall K.; Lozier, Jay N.; Sacks, David B.

    2015-01-01

    OBJECTIVE Abnormal glucose tolerance is rising in sub-Saharan Africa. Hemoglobin A1c by itself and in combination with fasting plasma glucose (FPG) is used to diagnose abnormal glucose tolerance. The diagnostic ability of A1C in Africans with heterozygous variant hemoglobin, such as sickle cell trait or hemoglobin C trait, has not been rigorously evaluated. In U.S.-based Africans, we determined by hemoglobin status the sensitivities of 1) FPG ≥5.6 mmol/L, 2) A1C ≥ 5.7% (39 mmol/mol), and 3) FPG combined with A1C (FPG ≥5.6 mmol/L and/or A1C ≥5.7% [39 mmol/mol]) for the detection of abnormal glucose tolerance. RESEARCH DESIGN AND METHODS An oral glucose tolerance test (OGTT) was performed in 216 African immigrants (68% male, age 37 ± 10 years [mean ± SD], range 20–64 years). Abnormal glucose tolerance was defined as 2-h glucose ≥7.8 mmol/L. RESULTS Variant hemoglobin was identified in 21% (46 of 216). Abnormal glucose tolerance occurred in 33% (72 of 216). When determining abnormal glucose tolerance from the OGTT (2-h glucose ≥7.8 mmol/L), sensitivities of FPG for the total, normal, and variant hemoglobin groups were 32%, 32%, and 33%, respectively. Sensitivities for A1C were 53%, 54%, and 47%. For FPG and A1C combined, sensitivities were 64%, 63%, and 67%. Sensitivities for FPG and A1C and the combination did not vary by hemoglobin status (all P > 0.6). For the entire cohort, sensitivity was higher for A1C than FPG and for both tests combined than for either test alone (all P values ≤ 0.01). CONCLUSIONS No significant difference in sensitivity of A1C by variant hemoglobin status was detected. For the diagnosis of abnormal glucose tolerance in Africans, the sensitivity of A1C combined with FPG is significantly superior to either test alone. PMID:25338926

  1. Lack of TRPM2 Impaired Insulin Secretion and Glucose Metabolisms in Mice

    PubMed Central

    Uchida, Kunitoshi; Dezaki, Katsuya; Damdindorj, Boldbaatar; Inada, Hitoshi; Shiuchi, Tetsuya; Mori, Yasuo; Yada, Toshihiko; Minokoshi, Yasuhiko; Tominaga, Makoto

    2011-01-01

    OBJECTIVE TRPM2 is a Ca2+-permeable nonselective cation channel activated by adenosine dinucleotides. We previously demonstrated that TRPM2 is activated by coapplication of heat and intracellular cyclic adenosine 5′-diphosphoribose, which has been suggested to be involved in intracellular Ca2+ increase in immunocytes and pancreatic β-cells. To clarify the involvement of TRPM2 in insulin secretion, we analyzed TRPM2 knockout (TRPM2-KO) mice. RESEARCH DESIGN AND METHODS Oral and intraperitoneal glucose tolerance tests (OGTT and IPGTT) were performed in TRPM2-KO and wild-type mice. We also measured cytosolic free Ca2+ in single pancreatic cells using fura-2 microfluorometry and insulin secretion from pancreatic islets. RESULTS Basal blood glucose levels were higher in TRPM2-KO mice than in wild-type mice without any difference in plasma insulin levels. The OGTT and IPGTT demonstrated that blood glucose levels in TRPM2-KO mice were higher than those in wild-type mice, which was associated with an impairment in insulin secretion. In isolated β-cells, smaller intracellular Ca2+ increase was observed in response to high concentrations of glucose and incretin hormone in TRPM2-KO cells than in wild-type cells. Moreover, insulin secretion from the islets of TRPM2-KO mice in response to glucose and incretin hormone treatment was impaired, whereas the response to tolbutamide, an ATP-sensitive potassium channel inhibitor, was not different between the two groups. CONCLUSIONS These results indicate that TRPM2 is involved in insulin secretion stimulated by glucose and that further potentiated by incretins. Thus, TRPM2 may be a new target for diabetes therapy. PMID:20921208

  2. Relation between Delayed Superfluous Insulin Secretion during An Oral Glucose Tolerance Test and Metabolic Disorders in Obese Japanese Children.

    PubMed

    Sato, Hidetoshi; Kikuchi, Toru; Harada, Waka; Yoshida, Hiroshi; Ito, Sueshi; Uchiyama, Makoto

    2011-04-01

    The aim of this study was to clarify the relation between postprandial hyperinsulinemia and metabolic disorders in obese children. Twenty-eight obese Japanese children (8.8-16.2 yr) were divided into four groups: without impaired liver function and dyslipidemia (Group A), with impaired liver function (Group B), with dyslipidemia (Group C), and with impaired liver function and dyslipidemia (Group D). The levels of PG, serum immunoreactive insulin (IRI) and serum C-peptide (CPR) were measured during an oral glucose tolerance test (OGTT). The subjects had delayed superfluous insulin and CPR secretion during the OGTT compared with healthy references. In regard to the insulin secretion pattern, Group A's response peaked at 60 min and then decreased gradually until 120 min, Group B's response peaked at 60 min, remained at the peak until 120 min and then decreased gradually until 180 min, Group C's response peaked at 120 min and then decreased gradually until 180 min, and Group D's response peaked at 120 min and remained at the peak until 180 min. These results suggest that delayed superfluous insulin secretion during an OGTT is related to metabolic disorders in obese Japanese children and that these patients will experience a vicious cycle of postprandial hyperinsulinemia and metabolic disorders. It is important to prevent healthy children from becoming obese and to improve management of childhood obesity.

  3. Insulin Secretory Defect and Insulin Resistance in Isolated Impaired Fasting Glucose and Isolated Impaired Glucose Tolerance

    PubMed Central

    Aoyama-Sasabe, Sae; Fukushima, Mitsuo; Xin, Xin; Taniguchi, Ataru; Nakai, Yoshikatsu; Mitsui, Rie; Takahashi, Yoshitaka; Tsuji, Hideaki; Yabe, Daisuke; Yasuda, Koichiro; Kurose, Takeshi; Inagaki, Nobuya; Seino, Yutaka

    2016-01-01

    Objective. To investigate the characteristics of isolated impaired glucose tolerance (IGT) and isolated impaired fasting glucose (IFG), we analyzed the factors responsible for elevation of 2-hour postchallenge plasma glucose (2 h PG) and fasting plasma glucose (FPG) levels. Methods. We investigated the relationship between 2 h PG and FPG levels who underwent 75 g OGTT in 5620 Japanese subjects at initial examination for medical check-up. We compared clinical characteristics between isolated IGT and isolated IFG and analyzed the relationships of 2 h PG and FPG with clinical characteristics, the indices of insulin secretory capacity, and insulin sensitivity. Results. In a comparison between isolated IGT and isolated IFG, insulinogenic index was lower in isolated IGT than that of isolated IFG (0.43 ± 0.34 versus 0.50 ± 0.47, resp.; p < 0.01). ISI composite was lower in isolated IFG than that of isolated IGT (6.87 ± 3.38 versus 7.98 ± 4.03, resp.; p < 0.0001). In isolated IGT group, insulinogenic index showed a significant correlation with 2 h PG (r = −0.245, p < 0.0001) and had the strongest correlation with 2 h PG (β = −0.290). In isolated IFG group, ISI composite showed a significant correlation with FPG (r = −0.162, p < 0.0001) and had the strongest correlation with FPG (β = −0.214). Conclusions. We have elucidated that decreased early-phase insulin secretion is the most important factor responsible for elevation of 2 h PG levels in isolated IGT subjects, and decreased insulin sensitivity is the most important factor responsible for elevation of FPG levels in isolated IFG subjects. PMID:26788515

  4. An acute bout of whole body passive hyperthermia increases plasma leptin, but does not alter glucose or insulin responses in obese type 2 diabetics and healthy adults.

    PubMed

    Rivas, Eric; Newmire, Dan E; Crandall, Craig G; Hooper, Philip L; Ben-Ezra, Vic

    2016-07-01

    Acute and chronic hyperthermic treatments in diabetic animal models repeatedly improve insulin sensitivity and glycemic control. Therefore, the purpose of this study was to test the hypothesis that an acute 1h bout of hyperthermic treatment improves glucose, insulin, and leptin responses to an oral glucose challenge (OGTT) in obese type 2 diabetics and healthy humans. Nine obese (45±7.1% fat mass) type 2 diabetics (T2DM: 50.1±12y, 7.5±1.8% HbA1c) absent of insulin therapy and nine similar aged (41.1±13.7y) healthy non-obese controls (HC: 33.4±7.8% fat mass, P<0.01; 5.3±0.4% HbA1c, P<0.01) participated. Using a randomized design, subjects underwent either a whole body passive hyperthermia treatment via head-out hot water immersion (1h resting in 39.4±0.4°C water) that increased internal temperature above baseline by ∆1.6±0.4°C or a control resting condition. Twenty-four hours post treatments, a 75g OGTT was administered to evaluate changes in plasma glucose, insulin, C-peptide, and leptin concentrations. Hyperthermia itself did not alter area under the curve for plasma glucose, insulin, or C-peptide during the OGTT in either group. Fasting absolute and normalized (kg·fat mass) plasma leptin was significantly increased (P<0.01) only after the hyperthermic exposure by 17% in T2DM and 24% in HC groups (P<0.001) when compared to the control condition. These data indicate that an acute hyperthermic treatment does not improve glucose tolerance 24h post treatment in moderate metabolic controlled obese T2DM or HC individuals. PMID:27264884

  5. Prospective validation of a 1-hour algorithm to rule-out and rule-in acute myocardial infarction using a high-sensitivity cardiac troponin T assay

    PubMed Central

    Reichlin, Tobias; Twerenbold, Raphael; Wildi, Karin; Gimenez, Maria Rubini; Bergsma, Nathalie; Haaf, Philip; Druey, Sophie; Puelacher, Christian; Moehring, Berit; Freese, Michael; Stelzig, Claudia; Krivoshei, Lian; Hillinger, Petra; Jäger, Cedric; Herrmann, Thomas; Kreutzinger, Philip; Radosavac, Milos; Weidmann, Zoraida Moreno; Pershyna, Kateryna; Honegger, Ursina; Wagener, Max; Vuillomenet, Thierry; Campodarve, Isabel; Bingisser, Roland; Miró, Òscar; Rentsch, Katharina; Bassetti, Stefano; Osswald, Stefan; Mueller, Christian

    2015-01-01

    Background: We aimed to prospectively validate a novel 1-hour algorithm using high-sensitivity cardiac troponin T measurement for early rule-out and rule-in of acute myocardial infarction (MI). Methods: In a multicentre study, we enrolled 1320 patients presenting to the emergency department with suspected acute MI. The high-sensitivity cardiac troponin T 1-hour algorithm, incorporating baseline values as well as absolute changes within the first hour, was validated against the final diagnosis. The final diagnosis was then adjudicated by 2 independent cardiologists using all available information, including coronary angiography, echocardiography, follow-up data and serial measurements of high-sensitivity cardiac troponin T levels. Results: Acute MI was the final diagnosis in 17.3% of patients. With application of the high-sensitivity cardiac troponin T 1-hour algorithm, 786 (59.5%) patients were classified as “rule-out,” 216 (16.4%) were classified as “rule-in” and 318 (24.1%) were classified to the “observational zone.” The sensitivity and the negative predictive value for acute MI in the rule-out zone were 99.6% (95% confidence interval [CI] 97.6%–99.9%) and 99.9% (95% CI 99.3%–100%), respectively. The specificity and the positive predictive value for acute MI in the rule-in zone were 95.7% (95% CI 94.3%–96.8%) and 78.2% (95% CI 72.1%–83.6%), respectively. The 1-hour algorithm provided higher negative and positive predictive values than the standard interpretation of highsensitivity cardiac troponin T using a single cut-off level (both p < 0.05). Cumulative 30-day mortality was 0.0%, 1.6% and 1.9% in patients classified in the rule-out, observational and rule-in groups, respectively (p = 0.001). Interpretation: This rapid strategy incorporating high-sensitivity cardiac troponin T baseline values and absolute changes within the first hour substantially accelerated the management of suspected acute MI by allowing safe rule-out as well as accurate

  6. Objectively-measured sleep duration and hyperglycemia in pregnancy

    PubMed Central

    Herring, Sharon J.; Nelson, Deborah B.; Pien, Grace W.; Homko, Carol; Goetzl, Laura M.; Davey, Adam; Foster, Gary D.

    2013-01-01

    Objective Our primary purpose was to assess the impact of objectively-measured nighttime sleep duration on gestational glucose tolerance. We additionally examined associations of objectively-measured daytime sleep duration and nap frequency on maternal glycemic control. Methods 63 urban, low-income, pregnant women wore wrist actigraphs for an average of 6 full days in mid-pregnancy prior to screening for hyperglycemia using the 1-hour oral glucose tolerance test (OGTT). Correlations of nighttime and daytime sleep durations with 1-hour OGTT values were analyzed. Multivariable logistic regression was used to evaluate independent associations between sleep parameters and hyperglycemia, defined as 1-hour OGTT values ≥ 130 mg/dL. Results Mean nighttime sleep duration was 6.9 ± 0.9 hours which was inversely correlated with 1-hour OGTT values (r = −0.28, p = 0.03). Shorter nighttime sleep was associated with hyperglycemia, even after controlling for age and body mass index (adjusted OR: 0.2; 95% CI: 0.1, 0.8). There were no associations of daytime sleep duration and nap frequency with 1-hour OGTT values or hyperglycemia. Conclusions Using objective measures of maternal sleep time, we found that women with shorter nighttime sleep durations had an increased risk of gestational hyperglycemia. Larger prospective studies are needed to confirm our negative daytime sleep findings. PMID:24239498

  7. Finger temperature controller for non-invasive blood glucose measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Xiqin; Ting, Choon Meng; Yeo, Joon Hock

    2010-11-01

    Blood glucose level is an important parameter for doctors to diagnose and treat diabetes. The Near-Infra-Red (NIR) spectroscopy method is the most promising approach and this involves measurement on the body skin. However it is noted that the skin temperature does fluctuate with the environmental and physiological conditions and we found that temperature has important influences on the glucose measurement. In-vitro and in-vivo investigations on the temperature influence on blood glucose measurement have been carried out. The in-vitro results show that water temperature has significant influence on water absorption. Since 90% of blood components are water, skin temperature of measurement site has significant influence on blood glucose measurement. Also the skin temperature is related to the blood volume, blood volume inside capillary vessels changes with skin temperature. In this paper the relationship of skin temperature and signal from the skin and inside tissue was studied at different finger temperatures. Our OGTT (oral glucose tolerance test) trials results show the laser signals follow the skin temperature trend and the correlation of signal and skin temperature is much stronger than the correlation of signal and glucose concentration. A finger heater device is designed to heat and maintain the skin temperature of measurement site. The heater is controlled by an electronic circuit according to the skin temperature sensed by a thermocouple that is put close to the measurement site. In vivo trials were carried out and the results show that the skin temperature significantly influences the signal fluctuations caused by pulsate blood and the average signal value.

  8. Characterization of pancreatic islets in two selectively bred mouse lines with different susceptibilities to high-fat diet-induced glucose intolerance.

    PubMed

    Nagao, Mototsugu; Asai, Akira; Inaba, Wataru; Kawahara, Momoyo; Shuto, Yuki; Kobayashi, Shunsuke; Sanoyama, Daisuke; Sugihara, Hitoshi; Yagihashi, Soroku; Oikawa, Shinichi

    2014-01-01

    Hereditary predisposition to diet-induced type 2 diabetes has not yet been fully elucidated. We recently established 2 mouse lines with different susceptibilities (resistant and prone) to high-fat diet (HFD)-induced glucose intolerance by selective breeding (designated selectively bred diet-induced glucose intolerance-resistant [SDG-R] and -prone [SDG-P], respectively). To investigate the predisposition to HFD-induced glucose intolerance in pancreatic islets, we examined the islet morphological features and functions in these novel mouse lines. Male SDG-P and SDG-R mice were fed a HFD for 5 weeks. Before and after HFD feeding, glucose tolerance was evaluated by oral glucose tolerance test (OGTT). Morphometry and functional analyses of the pancreatic islets were also performed before and after the feeding period. Before HFD feeding, SDG-P mice showed modestly higher postchallenge blood glucose levels and lower insulin increments in OGTT than SDG-R mice. Although SDG-P mice showed greater β cell proliferation than SDG-R mice under HFD feeding, SDG-P mice developed overt glucose intolerance, whereas SDG-R mice maintained normal glucose tolerance. Regardless of whether it was before or after HFD feeding, the isolated islets from SDG-P mice showed impaired glucose- and KCl-stimulated insulin secretion relative to those from SDG-R mice; accordingly, the expression levels of the insulin secretion-related genes in SDG-P islets were significantly lower than those in SDG-R islets. These findings suggest that the innate predispositions in pancreatic islets may determine the susceptibility to diet-induced diabetes. SDG-R and SDG-P mice may therefore be useful polygenic animal models to study the gene-environment interactions in the development of type 2 diabetes.

  9. Effects of calcium channel blockers on glucose tolerance, inflammatory state, and circulating progenitor cells in non-diabetic patients with essential hypertension: a comparative study between Azelnidipine and amlodipine on glucose tolerance and endothelial function - a crossover trial (AGENT)

    PubMed Central

    2011-01-01

    Background Hypertension is associated with impaired glucose tolerance and insulin resistance. Medical treatment that interferes with various steps in the renin-angiotensin system improves glucose tolerance and insulin resistance. However, it remains unclear if long-acting calcium channel blockers (CCBs) such as azelnidipine and amlodipine affect glucose tolerance and insulin resistance in clinical practice. Methods Seventeen non-diabetic patients with essential hypertension who had controlled blood pressure levels using amlodipine (5 mg/day) were enrolled in this study. After randomization, either azelnidipine (16 mg/day) or amlodipine (5 mg/day) was administered in a crossover design for 12-weeks. At baseline and the end of each CCB therapy, samples of blood and urine were collected and 75 g oral glucose tolerance test (OGTT) was performed. In addition, hematopoietic progenitor cells (HPCs) were measured at each point by flow cytometry and endothelial functions were measured by fingertip pulse amplitude tonometry using EndoPAT. Results Although blood pressure levels were identical after each CCB treatment, the heart rate significantly decreased after azelnidipine administration than that after amlodipine administration (P < 0.005). Compared with amlodipine administration, azelnidipine significantly decreased levels of glucose and insulin 120 min after the 75 g OGTT (both P < 0.05). Serum levels of high-sensitivity C-reactive protein (P = 0.067) and interleukin-6 (P = 0.035) were decreased. Although endothelial functions were not different between the two medication groups, the number of circulating HPCs was significantly increased after azelnidipine administration (P = 0.016). Conclusions These results suggest that azelnidipine treatment may have beneficial effects on glucose tolerance, insulin sensitivity, the inflammatory state, and number of circulating progenitor cells in non-diabetic patients with essential hypertension. PMID:21906391

  10. Prevalence and risk factors of impaired glucose tolerance and diabetes mellitus at diagnosis of acromegaly: a study in 148 patients.

    PubMed

    Alexopoulou, Orsalia; Bex, Marie; Kamenicky, Peter; Mvoula, Augustine Bessomo; Chanson, Philippe; Maiter, Dominique

    2014-02-01

    Acromegaly is frequently associated with alterations of glucose metabolism but factors predisposing these patients to exhibit impaired glucose tolerance or overt diabetes at diagnosis are poorly understood. This study included 148 patients with newly diagnosed acromegaly (80 men; mean age: 45 ± 20 year). All patients underwent an oral glucose tolerance test (OGTT), unless already treated for diabetes. Insulin sensitivity (S) and β-cell function (B) were also evaluated by homeostasis model assessment (HOMA). Normal glucose tolerance (NGT) was observed in 67 patients (46 %), impaired fasting glycaemia (IFG) or glucose tolerance (IGT) were found in 39 (26 %), and diabetes mellitus (DM) in 42 (28 %). NGT patients were 10 years younger than patients with abnormal glucose metabolism (p < 0.001) and diabetic patients had a higher BMI (p < 0.05). While HOMA-S was similar, HOMA-B was reduced in the IFG/IGT group (p < 0.05) and further in the DM group (p < 0.001). IGF-I z-score was higher in IFG/IGT (5.2 ± 1.4) and DM patients (5.4 ± 1.3) than in NGT patients (4.4 ± 1.3; p < 0.05), but fasting and post-OGTT GH levels were not different between groups. In multivariate analyses, family history of diabetes and IGF-I were associated with hyperglycaemia, BMI and IGF-I predicted insulin resistance, and age was inversely correlated with β-cell function. Impaired glucose metabolism is present in more than 50 % of patients at diagnosis of acromegaly, and is associated with an older age, a higher BMI, a family history of diabetes and a higher IGF-I z-score, but not with fasting or post-OGTT GH levels.

  11. Breed differences in insulin sensitivity and insulinemic responses to oral glucose in horses and ponies of moderate body condition score.

    PubMed

    Bamford, N J; Potter, S J; Harris, P A; Bailey, S R

    2014-04-01

    Breed-related differences may occur in the innate insulin sensitivity (SI) of horses and ponies, an important factor believed to be associated with the risk of laminitis. The aim of this study was to measure the glucose and insulin responses of different breeds of horses and ponies in moderate body condition to a glucose-containing meal and to compare these responses with the indices of SI as determined by a frequently sampled intravenous glucose tolerance test (FSIGT). Eight Standardbred horses, 8 mixed-breed ponies, and 7 Andalusian-cross horses with a mean ± SEM BCS 5.0 ± 0.3 of 9 were used in this study. Each animal underwent an oral glucose tolerance test (OGTT) in which they were fed a fiber-based ration (2.0 g/kg BW) containing 1.5 g/kg BW added glucose, as well as a standard FSIGT with minimal model analysis. The glucose response variables from the OGTT were similar between groups; however, the peak insulin concentration was higher in ponies (94.1 ± 29.1 μIU/mL; P = 0.003) and Andalusians (85.3 ± 18.6; P = 0.004) than in Standardbreds (21.2 ± 3.5). The insulin area under the curve was also higher in ponies (13.5 ± 3.6 IU · min · L(-1); P = 0.009) and Andalusians (15.0 ± 2.7; P = 0.004) than in Standardbreds (3.1 ± 0.6). Insulin sensitivity, as determined by the FSIGT, was lower in Andalusians (0.99 ± 0.18 × 10(-4)/[mIU · min]) than in Standardbreds (5.43 ± 0.94; P < 0.001) and in ponies (2.12 ± 0.44; P = 0.003) than in Standardbreds. Peak insulin concentrations from the OGTT were negatively correlated with SI (P < 0.001; rs = -0.75). These results indicate that there are clear breed-related differences in the insulin responses of horses and ponies to oral and intravenous glucose. All animals were in moderate body condition, indicating that breed-related differences in insulin dynamics occurred independent of obesity. PMID:24308928

  12. Do glucose and lipid metabolism affect cancer development in Nagasaki atomic bomb survivors?

    PubMed

    Hida, Ayumi; Akahoshi, Masazumi; Toyama, Kyoko; Imaizumi, Misa; Soda, Midori; Maeda, Renju; Ichimaru, Shinichiro; Nakashima, Eiji; Eguchi, Katsumi

    2005-01-01

    The relationship between lipid or glucose metabolism and cancer has not yet been elucidated. We conducted 75-g oral glucose tolerance tests (75-g OGTTs) and lipid measurements between 1983 and 1985 in 516 Nagasaki atomic bomb survivors. Excluding those who already had cancer at the baseline examinations and those who developed cancers or died of any cause within 5 yr after the baseline examinations, we determined incident cancer cases until 2000 in the remaining 451 subjects (214 males and 237 females) and evaluated, by means of the Cox proportional hazard model, whether glucose or lipid metabolism predicts cancer development. The age- and sex-adjusted relative risk (RR) for incident cancer was 0.903 (95% confidence interval, CI = 0.842-0.968), 1.740 (95% CI = 1.238-2.446), 1.653 (95% CI = 0.922-2.965), and 1.024 (95% CI = 0.996-1.053) for total cholesterol (10 mg/dl), radiation dose (1 Sv), smoking, and 1-h blood glucose (1-h BG; 10 mg/dl) in 75-g OGTTs, respectively. Multiple regression analysis of age, sex, smoking, body mass index, 1-h BG, triglycerides, total cholesterol, high-density lipoprotein cholesterol, and radiation dose also showed that total cholesterol was negatively (RR = 0.872; 95% CI = 0.793-0.958) and radiation dose positively (RR = 1.809; 95% CI = 1.252-2.613) related to incident cancer. Cholesterol could be negatively and radiation dose positively associated with cancer development independently.

  13. Low Blood Glucose (Hypoglycemia)

    MedlinePlus

    ... Other Dental Problems Diabetic Eye Disease Low Blood Glucose (Hypoglycemia) What is hypoglycemia? Hypoglycemia, also called low ... actions can also help prevent hypoglycemia: Check blood glucose levels Knowing your blood glucose level can help ...

  14. Glucose test (image)

    MedlinePlus

    ... person with diabetes constantly manages their blood's sugar (glucose) levels. After a blood sample is taken and tested, it is determined whether the glucose levels are low or high. If glucose levels ...

  15. Valine Pyrrolidide Preserves Intact Glucose-Dependent Insulinotropic Peptide and Improves Abnormal Glucose Tolerance in Minipigs With Reduced β-Cell Mass

    PubMed Central

    Rolin, Bidda; Ribel, Ulla; Wilken, Michael; Deacon, Carolyn F.; Svendsen, Ove; Gotfredsen, Carsten F.; Carr, Richard David

    2003-01-01

    The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are important in blood glucose regulation.However, both incretin hormones are rapidly degraded by the enzyme dipeptidyl peptidase IV (DPPIV). The concept of DPPIV inhibition as a treatment for type 2 diabetes was evaluated in a new large animal model of insulin-deficient diabetes and reduced β-cell mass, the nicotinamide (NIA) (67 mg/kg) and streptozotocin (STZ) (125 mg/kg)–treated minipig, using the DPPIV inhibitor, valine pyrrolidide (VP) (50 mg/kg).VP did not significantly affect levels of intact GLP-1 but increased levels of intact GIP (from 4543 ± 1880 to 9208 ± 3267 pM × min; P<.01), thus improving glucose tolerance (area under the curve [AUC] for glucose reduced from 1904 ± 480 to 1582 ± 353 mM × min;P = .05).VP did not increase insulin levels during the oral glucose tolerance test (OGTT) but increased the insulinogenic index in normal animals (from 83 ± 42 to 192 ± 108; P < .05), but not after NIA + STZ, possibly because of less residual insulin secretory capacity in these animals. GIP seems to contribute to the antihyperglycemic effect of VP in this model; however, additional mechanisms for the effect of DPPIV inhibition cannot be excluded. The authors conclude that DPPIV inhibitors may be useful to treat type 2 diabetes, even when this is due to reduced β-cell mass. PMID:14630571

  16. Synthesized Peptides from Yam Dioscorin Hydrolysis in Silico Exhibit Dipeptidyl Peptidase-IV Inhibitory Activities and Oral Glucose Tolerance Improvements in Normal Mice.

    PubMed

    Lin, Yin-Shiou; Han, Chuan-Hsiao; Lin, Shyr-Yi; Hou, Wen-Chi

    2016-08-24

    RRDY, RL, and DPF were the top 3 of 21 peptides for inhibitions against dipeptidyl peptidase-IV (DPP-IV) from the pepsin hydrolysis of yam dioscorin in silico and were further investigated in a proof-of-concept study in normal ICR mice for regulating glucose metabolism by the oral glucose tolerance test (OGTT). The sample or sitagliptin (positive control) was orally administered by a feeding gauge; 30 min later, the glucose loads (2.5 g/kg) were performed. RRDY, yam dioscorin, or sitagliptin preload, but not DPF, lowered the area under the curve (AUC0-120) of blood glucose and DPP-IV activity and elevated the AUC0-120 of blood insulin, which showed significant differences compared to control (P < 0.05 or 0.001). These results suggested that RRDY and yam dioscorin might be beneficial in glycemic control in normal mice and need further investigations in diabetic animal models. PMID:27499387

  17. Cigarette Smoking Is Associated with a Lower Prevalence of Newly Diagnosed Diabetes Screened by OGTT than Non-Smoking in Chinese Men with Normal Weight

    PubMed Central

    Chen, Peizhu; Lu, Jun; Ma, Xiaojing; Lu, Juming; Weng, Jianping; Ji, Linong; Shan, Zhongyan; Liu, Jie; Tian, Haoming; Ji, Qiuhe; Zhu, Dalong; Ge, Jiapu; Lin, Lixiang; Chen, Li; Guo, Xiaohui; Zhao, Zhigang; Li, Qiang; Zhou, Zhiguang; Yang, Wenying; Jia, Weiping

    2016-01-01

    Different studies have produced conflicting results regarding the association between smoking and diabetes mellitus, and detailed analysis of this issue in Chinese males based on nationwide samples is lacking. We explored the association between cigarette smoking and newly-diagnosed diabetes mellitus (NDM) in Chinese males using a population-based case-control analysis; 16,286 male participants without previously diagnosed diabetes were included. Prediabetes and NDM were diagnosed using the oral glucose tolerance test. The cohort included 6,913 non-smokers (42.4%), 1,479 ex-smokers (9.1%) and 7,894 current smokers (48.5%). Age-adjusted glucose concentrations (mmol/L) were significantly lower at fasting and 120 min in current smokers than non-smokers (5.25 vs. 5.30, 6.46 vs. 6.55, respectively, both P < 0.01). After adjustment for demographic and behavioral variables (age, region, alcohol consumption status, physical activity, education, and family history of diabetes), logistic regression revealed significant negative associations between smoking and NDM in males of a normal weight (BMI < 25 kg/m2: adjusted odds ratio [AOR] = 0.75, P = 0.007; waist circumference < 90 cm: AOR = 0.71, P = 0.001) and males living in southern China (AOR = 0.75, P = 0.009), but not in males who were overweight/obese, males with central obesity, or males living in northern China. Compared to non-smokers, current smokers were less likely to be centrally obese or have elevated BP (AOR: 0.82 and 0.74, both P < 0.05), and heavy smokers (≥ 20 pack-years) were less likely to have elevated TG (AOR = 0.84, P = 0.012) among males of a normal weight. There were no significant associations between quitting smoking and metabolic disorders either among males of a normal weight or males who were overweight/obese. In conclusion, smokers have a lower likelihood of NDM than non-smokers among Chinese males with a lower BMI/smaller waist. PMID:26954355

  18. Cigarette Smoking Is Associated with a Lower Prevalence of Newly Diagnosed Diabetes Screened by OGTT than Non-Smoking in Chinese Men with Normal Weight.

    PubMed

    Hou, Xuhong; Qiu, Jieyuzhen; Chen, Peizhu; Lu, Jun; Ma, Xiaojing; Lu, Juming; Weng, Jianping; Ji, Linong; Shan, Zhongyan; Liu, Jie; Tian, Haoming; Ji, Qiuhe; Zhu, Dalong; Ge, Jiapu; Lin, Lixiang; Chen, Li; Guo, Xiaohui; Zhao, Zhigang; Li, Qiang; Zhou, Zhiguang; Yang, Wenying; Jia, Weiping

    2016-01-01

    Different studies have produced conflicting results regarding the association between smoking and diabetes mellitus, and detailed analysis of this issue in Chinese males based on nationwide samples is lacking. We explored the association between cigarette smoking and newly-diagnosed diabetes mellitus (NDM) in Chinese males using a population-based case-control analysis; 16,286 male participants without previously diagnosed diabetes were included. Prediabetes and NDM were diagnosed using the oral glucose tolerance test. The cohort included 6,913 non-smokers (42.4%), 1,479 ex-smokers (9.1%) and 7,894 current smokers (48.5%). Age-adjusted glucose concentrations (mmol/L) were significantly lower at fasting and 120 min in current smokers than non-smokers (5.25 vs. 5.30, 6.46 vs. 6.55, respectively, both P < 0.01). After adjustment for demographic and behavioral variables (age, region, alcohol consumption status, physical activity, education, and family history of diabetes), logistic regression revealed significant negative associations between smoking and NDM in males of a normal weight (BMI < 25 kg/m2: adjusted odds ratio [AOR] = 0.75, P = 0.007; waist circumference < 90 cm: AOR = 0.71, P = 0.001) and males living in southern China (AOR = 0.75, P = 0.009), but not in males who were overweight/obese, males with central obesity, or males living in northern China. Compared to non-smokers, current smokers were less likely to be centrally obese or have elevated BP (AOR: 0.82 and 0.74, both P < 0.05), and heavy smokers (≥ 20 pack-years) were less likely to have elevated TG (AOR = 0.84, P = 0.012) among males of a normal weight. There were no significant associations between quitting smoking and metabolic disorders either among males of a normal weight or males who were overweight/obese. In conclusion, smokers have a lower likelihood of NDM than non-smokers among Chinese males with a lower BMI/smaller waist.

  19. Cigarette Smoking Is Associated with a Lower Prevalence of Newly Diagnosed Diabetes Screened by OGTT than Non-Smoking in Chinese Men with Normal Weight.

    PubMed

    Hou, Xuhong; Qiu, Jieyuzhen; Chen, Peizhu; Lu, Jun; Ma, Xiaojing; Lu, Juming; Weng, Jianping; Ji, Linong; Shan, Zhongyan; Liu, Jie; Tian, Haoming; Ji, Qiuhe; Zhu, Dalong; Ge, Jiapu; Lin, Lixiang; Chen, Li; Guo, Xiaohui; Zhao, Zhigang; Li, Qiang; Zhou, Zhiguang; Yang, Wenying; Jia, Weiping

    2016-01-01

    Different studies have produced conflicting results regarding the association between smoking and diabetes mellitus, and detailed analysis of this issue in Chinese males based on nationwide samples is lacking. We explored the association between cigarette smoking and newly-diagnosed diabetes mellitus (NDM) in Chinese males using a population-based case-control analysis; 16,286 male participants without previously diagnosed diabetes were included. Prediabetes and NDM were diagnosed using the oral glucose tolerance test. The cohort included 6,913 non-smokers (42.4%), 1,479 ex-smokers (9.1%) and 7,894 current smokers (48.5%). Age-adjusted glucose concentrations (mmol/L) were significantly lower at fasting and 120 min in current smokers than non-smokers (5.25 vs. 5.30, 6.46 vs. 6.55, respectively, both P < 0.01). After adjustment for demographic and behavioral variables (age, region, alcohol consumption status, physical activity, education, and family history of diabetes), logistic regression revealed significant negative associations between smoking and NDM in males of a normal weight (BMI < 25 kg/m2: adjusted odds ratio [AOR] = 0.75, P = 0.007; waist circumference < 90 cm: AOR = 0.71, P = 0.001) and males living in southern China (AOR = 0.75, P = 0.009), but not in males who were overweight/obese, males with central obesity, or males living in northern China. Compared to non-smokers, current smokers were less likely to be centrally obese or have elevated BP (AOR: 0.82 and 0.74, both P < 0.05), and heavy smokers (≥ 20 pack-years) were less likely to have elevated TG (AOR = 0.84, P = 0.012) among males of a normal weight. There were no significant associations between quitting smoking and metabolic disorders either among males of a normal weight or males who were overweight/obese. In conclusion, smokers have a lower likelihood of NDM than non-smokers among Chinese males with a lower BMI/smaller waist. PMID:26954355

  20. Effect of the consumption of β-lactoglobulin and epigallocatechin-3-gallate with or without calcium on glucose tolerance in C57BL/6 mice.

    PubMed

    Carnovale, Valérie; Pilon, Geneviève; Britten, Michel; Bazinet, Laurent; Couillard, Charles

    2016-01-01

    Interactions between β-lactoglobulin (β-lg) and epigallocatechin-3-gallate (EGCG) may modulate their health benefits. The objective of this study was therefore to investigate the synergistic effect of consuming β-lg and EGCG complexes on glucose tolerance of C57BL/6 male mice given an oral glucose tolerance test (OGTT) and randomized to one of the following treatments administered prior to the OGTT: 1) simulated milk ultrafiltrate (SMUF(-)), 2) SMUF(-) + EGCG, 3) SMUF(-) + β-lg, 4) SMUF(-) + EGCG + β-lg, 5) SMUF + calcium (SMUF(+)) and 6) SMUF(+) + EGCG + β-lg. We found no significant between-group difference in postprandial glucose response. However, when mice were separated in those who received β-lg from those who did not, we found that the latter displayed significantly higher postprandial glucose concentrations. Our results support the beneficial impact of β-lg on glycemic control and suggest that concomitant EGCG or calcium consumption does not improve this effect. PMID:26960683

  1. The importance of diabetes heredity in lean subjects on insulin secretion, blood lipids and oxygen uptake in the pathogenesis of glucose intolerance.

    PubMed

    Berntorp, K; Eriksson, K F; Lindgärde, F

    1986-06-01

    Insulin secretion, work capacity and plasma lipids were evaluated in 52 middle-aged men with impaired glucose tolerance (IGT), and the values were compared with those of 23 normoglycemic subjects with family histories of Type 2 diabetes and of 22 non-hereditary normoglycemic controls. All subjects were non-obese males of comparable age. Estimated maximal oxygen uptake was significantly lower (p less than 0.01) and triglyceride concentrations significantly higher (p less than 0.01) in IGT individuals than in subjects of the non-hereditary normoglycemic group, while no significant differences were noted in comparison with the hereditary group. IGT individuals showed an impaired insulin response to glucose with significantly lower absolute values of insulin and C-peptide during the early phase of the oral glucose tolerance test (OGTT) than in non-hereditary normoglycemic subjects, but not significantly lower than in the hereditary group. Similarly, at most time points of the OGTT the ratios of insulin and C-peptide to glucose were significantly lower in the IGT group than in the non-hereditary group, while these differences were less pronounced in comparison with the hereditary group. These findings suggest some similarities of metabolic disturbances in lean normoglycemics with positive family histories of Type 2 diabetes and in lean IGT individuals. Family history of diabetes (both first degree and second degree only) was significantly more prevalent among IGT individuals than among normals.

  2. Use of anesthesia dramatically alters the oral glucose tolerance and insulin secretion in C57Bl/6 mice.

    PubMed

    Windeløv, Johanne A; Pedersen, Jens; Holst, Jens J

    2016-06-01

    Evaluation of the impact of anesthesia on oral glucose tolerance in mice. Anesthesia is often used when performing OGTT in mice to avoid the stress of gavage and blood sampling, although anesthesia may influence gastrointestinal motility, blood glucose, and plasma insulin dynamics. C57Bl/6 mice were anesthetized using the following commonly used regimens: (1) hypnorm/midazolam repetitive or single injection; (2) ketamine/xylazine; (3) isoflurane; (4) pentobarbital; and (5) A saline injected, nonanesthetized group. Oral glucose was administered at time 0 min and blood glucose measured in the time frame -15 to +150 min. Plasma insulin concentration was measured at time 0 and 20 min. All four anesthetic regimens resulted in impaired glucose tolerance compared to saline/no anesthesia. (1) hypnorm/midazolam increased insulin concentrations and caused an altered glucose tolerance; (2) ketamine/xylazine lowered insulin responses and resulted in severe hyperglycemia throughout the experiment; (3) isoflurane did not only alter the insulin secretion but also resulted in severe hyperglycemia; (4) pentobarbital resulted in both increased insulin secretion and impaired glucose tolerance. All four anesthetic regimens altered the oral glucose tolerance, and we conclude that anesthesia should not be used when performing metabolic studies in mice. PMID:27255361

  3. Study on optical measurement conditions for noninvasive blood glucose sensing

    NASA Astrophysics Data System (ADS)

    Xu, Kexin; Chen, Wenliang; Jiang, Jingying; Qiu, Qingjun

    2004-05-01

    Utilizing Near-infrared Spectroscopy for non-invasive glucose concentration sensing has been a focusing topic in biomedical optics applications. In this paper study on measuring conditions of spectroscopy on human body is carried out and a series of experiments on glucose concentration sensing are conducted. First, Monte Carlo method is applied to simulate and calculate photons" penetration depth within skin tissues at 1600 nm. The simulation results indicate that applying our designed optical probe, the detected photons can penetrate epidermis of the palm and meet the glucose sensing requirements within the dermis. Second, we analyze the influence of the measured position variations and the contact pressure between the optical fiber probe and the measured position on the measured spectrum during spectroscopic measurement of a human body. And, a measurement conditions reproduction system is introduced to enhance the measurement repeatability. Furthermore, through a series of transmittance experiments on glucose aqueous solutions sensing from simple to complex we found that though some absorption variation information of glucose can be obtained from measurements using NIR spectroscopy, while under the same measuring conditions and with the same modeling method, choices toward measured components reduce when complication degree of components increases, and this causes a decreased prediction accuracy. Finally, OGTT experiments were performed, and a PLS (Partial Least Square) mathematical model for a single experiment was built. We can easily get a prediction expressed as RMSEP (Root Mean Square Error of Prediction) with a value of 0.5-0.8mmol/dl. But the model"s extended application and reliability need more investigation.

  4. Noninvasive blood glucose measurement using multiple laser diodes

    NASA Astrophysics Data System (ADS)

    Ooi, E. T.; Zhang, X. Q.; Chen, J. H.; Soh, P. H.; Ng, K.; Yeo, J. H.

    2007-02-01

    In the event of diabetes clinicians have advocated that frequent monitoring of a diabetic's blood glucose level is the key to avoid future complications (kidney failure, blindness, amputations, premature death, etc.,) associated with the disease. While the test-strip glucose meters available in current consumer markets allow for frequent monitoring, a more convenient technique that is accurate, painless and sample-free is preferable in a diabetic's daily routine. This paper presents a non-invasive blood glucose measurement technique using diffuse reflectance near infrared (NIR) signals. This technique uses a set of laser diodes, each operating at fixed wavelengths in the first overtone region. The NIR signals from the laser diodes are channeled to the measurement site viz., the nail-bed by means of optical fibers. A series of in vivo experiments have been performed on eight normal human subjects using a standard Oral Glucose Tolerance Test (OGTT) protocol. The reflected NIR signals are inputs to a Partial Least Squares (PLS) algorithm for calibration and future predictions. The calibration models used are developed using in vivo datasets and are unique to a particular individual. The 1218 paired points collected from the eight test subjects plotted on the Clarke Error Grid, revealed that 87.3% of these points fall within the A zone while the remainder, within the B zone, both of which, are clinically accepted. The standard error of prediction was +/-13.14mg/dL for the best calibration model. A Bland-Altman analysis of the 1218 paired points yields a 76.3% confidence level for a measurement accuracy of +/-20mg/dL. These results demonstrate the initial potential of the technique for non-invasive blood glucose measurements in vivo.

  5. Impact of Reduced Meal Frequency Without Caloric Restriction on Glucose Regulation in Healthy, Normal Weight Middle-Aged Men and Women

    PubMed Central

    Carlson, Olga; Martin, Bronwen; Stote, Kim S.; Golden, Erin; Maudsley, Stuart; Najjar, Samer S.; Ferrucci, Luigi; Ingram, Donald K.; Longo, Dan L.; Rumpler, William V.; Baer, David J.; Egan, Josephine; Mattson, Mark P.

    2007-01-01

    An unresolved issue in the field of diet and health is if and how changes in meal frequency affect energy metabolism in humans. We therefore evaluated the influence of reduced meal frequency without a reduction in energy intake on glucose metabolism in normal weight healthy male and female subjects. The study was a randomized cross-over design, with 2 eight-week treatment periods (with an intervening 11 week off-diet period) in which subjects consumed all of their calories for weight maintenance distributed in either 3 meals or 1 meal per day (consumed between 17:00 and 21:00). Energy metabolism was evaluated at designated time points throughout the study by performing morning oral glucose tolerance tests (OGTT) and measuring levels of glucose, insulin, glucagon, leptin, ghrelin, adiponectin, resistin and brain-derived neurotrophic factor (BDNF). Subjects consuming 1 meal/d exhibited higher morning fasting plasma glucose levels, greater and more sustained elevations of plasma glucose concentrations and a delayed insulin response in the OGTT compared to subjects consuming 3 meal/d. Levels of ghrelin were elevated in response to the 1 meal/d regimen. Fasting levels of insulin, leptin, ghrelin, adiponectin, resistin and BDNF were not significantly affected by meal frequency. Subjects consuming a single large daily meal exhibit elevated fasting glucose levels, and impaired morning glucose tolerance associated with a delayed insulin response, during a 2 month diet period compared to those consuming 3 meals/day. The impaired glucose tolerance was reversible and was not associated with alterations in the levels of adipokines or BDNF. PMID:17998028

  6. Cooking enhances beneficial effects of pea seed coat consumption on glucose tolerance, incretin, and pancreatic hormones in high-fat-diet-fed rats.

    PubMed

    Hashemi, Zohre; Yang, Kaiyuan; Yang, Han; Jin, Alena; Ozga, Jocelyn; Chan, Catherine B

    2015-04-01

    Pulses, including dried peas, are nutrient- and fibre-rich foods that improve glucose control in diabetic subjects compared with other fibre sources. We hypothesized feeding cooked pea seed coats to insulin-resistant rats would improve glucose tolerance by modifying gut responses to glucose and reducing stress on pancreatic islets. Glucose intolerance induced in male Sprague-Dawley rats with high-fat diet (HFD; 10% cellulose as fibre) was followed by 3 weeks of HFD with fibre (10%) provided by cellulose, raw-pea seed coat (RP), or cooked-pea seed coat (CP). A fourth group consumed low-fat diet with 10% cellulose. Oral and intraperitoneal glucose tolerance tests (oGTT, ipGTT) were done. CP rats had 30% and 50% lower glucose and insulin responses in oGTT, respectively, compared with the HFD group (P < 0.05) but ipGTT was not different. Plasma islet and incretin hormone concentrations were measured. α- and β-cell areas in the pancreas and density of K- and L-cells in jejunum and ileum were quantified. Jejunal expression of hexose transporters was measured. CP feeding increased fasting glucagon-like peptide 1 and glucose-stimulated gastric inhibitory polypeptide responses (P < 0.05), but K- and L-cells densities were comparable to HFD, as was abundance of SGLT1 and GLUT2 mRNA. No significant difference in β-cell area between diet groups was observed. α-cell area was significantly smaller in CP compared with RP rats (P < 0.05). Overall, our results demonstrate that CP feeding can reverse adverse effects of HFD on glucose homeostasis and is associated with enhanced incretin secretion and reduced α-cell abundance.

  7. Blood Test: Glucose

    MedlinePlus

    ... Things to Know About Zika & Pregnancy Blood Test: Glucose KidsHealth > For Parents > Blood Test: Glucose Print A A A Text Size What's in ... de sangre: glucosa What It Is A blood glucose test measures the amount of glucose (the main ...

  8. CSF glucose test

    MedlinePlus

    Glucose test - CSF; Cerebrospinal fluid glucose test ... The glucose level in the CSF should be 50 to 80 mg/100 mL (or greater than 2/3 ... Abnormal results include higher and lower glucose levels. Abnormal ... or fungus) Inflammation of the central nervous system Tumor

  9. Smoking is associated with impaired glucose regulation and a decrease in insulin sensitivity and the disposition index in first-degree relatives of type 2 diabetes subjects independently of the presence of metabolic syndrome.

    PubMed

    Piatti, PierMarco; Setola, Emanuela; Galluccio, Elena; Costa, Sabrina; Fontana, Barbara; Stuccillo, Michela; Crippa, Valentina; Cappelletti, Alberto; Margonato, Alberto; Bosi, Emanuele; Monti, Lucilla D

    2014-10-01

    The aim of this study was to investigate glucose tolerance, insulin secretion and insulin resistance according to smoking habits in first-degree relatives of type 2 diabetes patients, a population at high risk for developing diabetes. One thousand three hundred (646 females and 654 males) subjects underwent an oral glucose tolerance test (OGTT) to investigate their glucose metabolism and answered questionnaires about their lifestyle habits. Smoker subjects showed significant impairment compared with non-smoker subjects in 2-h post-oral glucose tolerance test (2hOGTT, 129.3 ± 40.2 vs. 117.7 ± 37.6 mg/dl, p < 0.001), the OGTT insulin sensitivity (386.3 ± 54.9 vs. 400.5 ± 53.4 ml min(-1) m(2), p < 0.01) method and the insulin sensitivity and secretion index-2 (ISSI-2, 1.7 ± 0.8 vs. 2.0 ± 1.0, p < 0.005). Metabolic syndrome (MS) was higher in the smoker than in the non-smoker group (46.5 vs. 29.7 %, p < 0001), and smokers were more sedentary than non-smokers (3.94 ± 3.77 vs. 4.86 ± 4.41 h/week, p < 0.001). Smokers showed an increased risk of impaired glucose regulation (IGR: impaired glucose tolerance or diabetes mellitus) with a hazard ratio (HR) adjusted by gender, metabolic syndrome and physical activity of 1.78, 95 % CI 1.27-2.47 (p < 0.001). The association between smoking and MS conferred a risk of IGR that was five times higher (HR 5.495, 95 % CI 4.07-7.41, p < 0.001). Smoking habit was a significant explanatory variable in a multiple forward stepwise regression analysis performed using 2hOGTT and ISSI-2 as dependent variables (p < 0.0001, R = 0.313 and p < 0.0001, R = 0.347, respectively). In conclusions, our results show that tobacco smoking is tightly associated with impairments in glucose metabolism and insulin sensitivity and insulin secretion.

  10. Evolution of Glucose Tolerance After Treatment of Acromegaly: A Study in 57 Patients.

    PubMed

    Jonas, C; Maiter, D; Alexopoulou, O

    2016-05-01

    The aim of our study was to evaluate the evolution of glucose metabolism in 57 patients after treatment of their acromegaly and to determine risk factors for the persistence of abnormal glucose tolerance. Therefore, we performed IGF-I measurements, oral glucose tolerance tests (OGTTs), and HOMA to evaluate insulin sensitivity (HOMA-S) and β-cell function (HOMA-β) at diagnosis and at last visit (median follow-up 7 years). At diagnosis of acromegaly, 14 patients (25%) were diabetic and 15 (26%) had impaired glucose tolerance, whereas at the last visit, 32% were diabetic and 26% remained glucose intolerant. There was a decrease in fasting glucose (median - 7.0 mg/dl) in the 20 patients cured by surgery, whereas it increased in the 28 patients controlled under medical therapy (median + 2.0 mg/dl; p<0.05 vs. cured group) and in the 9 patients with active disease (median + 4.0 mg/dl). Loss of β-cell function was more pronounced in the patients under medical treatment (median - 87.9%) vs. the cured group (median - 30.4%; p<0.05). There was a decrease in HbA1c between diagnosis and last visit in patients under pegvisomant (mean - 19.2 mmol/mol) vs. a small increase in patient treated by somatostatin analogues (+ 3.4 mmol/mol; p<0.05). Independent risk factors for persistent abnormal glucose tolerance were the glucose tolerance status at diagnosis and ongoing treatment with somatostatin analogues. In conclusion, we found that more than 50% of patients still have IGT or diabetes after treatment of acromegaly. Improvement of glucose metabolism is mainly observed in cured patients and in patients treated with pegvisomant. PMID:26849822

  11. The effect of hydroxychloroquine on glucose control and insulin resistance in the prediabetes condition

    PubMed Central

    Sheikhbahaie, Fahimeh; Amini, Masoud; Gharipour, Mojgan; Aminoroaya, Ashraf; Taheri, Nader

    2016-01-01

    Background: Hydroxychloroquine can improve most underlying coronary risk factors; however, there are a few studies on the effects of hydroxychloroquine on blood glucose and insulin resistance. The current study aimed to assess the effects of hydroxychloroquine on blood glucose control status as well as on level of lipid profile and inflammatory biomarkers in prediabetic patients. Materials and Methods: In a randomized, double-blinded, controlled trial, 39 consecutive patients who were suffering from prediabetes and were referred to the Isfahan Endocrinology Center in January 2013 were randomly assigned to receive hydroxychloroquine (6.5 mg/kg/day) (n = 20) or placebo (n = 19) for 12 weeks. The biomarker indices and anthropometric parameters were tested before and after completion of treatment. Results: In both groups of patients receiving hydroxychloroquine and placebo, except for serum level of insulin that was significantly elevated after treatment by hydroxychloroquine, the changes in other parameters remained insignificant. Both groups experienced increase of insulin level, but this change was considerably higher in those groups receiving hydroxychloroquine. The group receiving hydroxychloroquine experienced reduction of glucose at 60 min of Oral Glucose Tolerance Test (OGTT) test after intervention, while the placebo group experienced increase of blood glucose at the same time. Conclusion: The use of hydroxychloroquine may increase the serum insulin level in patients with prediabetic states who are at risk of developing diabetes mellitus. PMID:27656614

  12. [Neonatal diarrhea due to congenital glucose-galactose malabsorption: report of seven cases].

    PubMed

    Chedane-Girault, C; Dabadie, A; Maurage, C; Piloquet, H; Chailloux, E; Colin, E; Pelatan, C; Giniès, J-L

    2012-12-01

    Congenital glucose-galactose malabsorption (CGGM) is a rare autosomal recessive disorder, which presents as a protracted diarrhea in early neonatal life. We describe the clinical history, diagnostic evaluation, and management of 7 children with CGGM in western France. There were 4 girls and 3 boys from 5 families, born between 1984 and 2010. The principal complaint was a neonatal onset of watery and acidic severe diarrhea complicated by hypertonic dehydration. The diarrhea stopped with fasting. In 2 cases, the family history supported the diagnosis. In the other cases, elimination of glucose and galactose (lactose) from the diet resulted in the complete resolution of diarrhea symptoms. In 2 cases, the H2 breath tests were positive. In 2 cases, the HGPO or oral glucose tolerance test (OGTT) demonstrated an abnormal curve with glucose and a normal curve with fructose. DNA sequencing was not used. When glucose and galactose were eliminated from the diet, the infants had normal growth and development. In conclusion, CGGM is a rare etiology of neonatal diarrhea; however, the diagnosis is easy to make and the prognosis is excellent. PMID:23107089

  13. The effect of hydroxychloroquine on glucose control and insulin resistance in the prediabetes condition

    PubMed Central

    Sheikhbahaie, Fahimeh; Amini, Masoud; Gharipour, Mojgan; Aminoroaya, Ashraf; Taheri, Nader

    2016-01-01

    Background: Hydroxychloroquine can improve most underlying coronary risk factors; however, there are a few studies on the effects of hydroxychloroquine on blood glucose and insulin resistance. The current study aimed to assess the effects of hydroxychloroquine on blood glucose control status as well as on level of lipid profile and inflammatory biomarkers in prediabetic patients. Materials and Methods: In a randomized, double-blinded, controlled trial, 39 consecutive patients who were suffering from prediabetes and were referred to the Isfahan Endocrinology Center in January 2013 were randomly assigned to receive hydroxychloroquine (6.5 mg/kg/day) (n = 20) or placebo (n = 19) for 12 weeks. The biomarker indices and anthropometric parameters were tested before and after completion of treatment. Results: In both groups of patients receiving hydroxychloroquine and placebo, except for serum level of insulin that was significantly elevated after treatment by hydroxychloroquine, the changes in other parameters remained insignificant. Both groups experienced increase of insulin level, but this change was considerably higher in those groups receiving hydroxychloroquine. The group receiving hydroxychloroquine experienced reduction of glucose at 60 min of Oral Glucose Tolerance Test (OGTT) test after intervention, while the placebo group experienced increase of blood glucose at the same time. Conclusion: The use of hydroxychloroquine may increase the serum insulin level in patients with prediabetic states who are at risk of developing diabetes mellitus.

  14. Personalized Metabolomics for Predicting Glucose Tolerance Changes in Sedentary Women After High-Intensity Interval Training

    PubMed Central

    Kuehnbaum, Naomi L.; Gillen, Jenna B.; Gibala, Martin J.; Britz-McKibbin, Philip

    2014-01-01

    High-intensity interval training (HIIT) offers a practical approach for enhancing cardiorespiratory fitness, however its role in improving glucose regulation among sedentary yet normoglycemic women remains unclear. Herein, multi-segment injection capillary electrophoresis-mass spectrometry is used as a high-throughput platform in metabolomics to assess dynamic responses of overweight/obese women (BMI > 25, n = 11) to standardized oral glucose tolerance tests (OGTTs) performed before and after a 6-week HIIT intervention. Various statistical methods were used to classify plasma metabolic signatures associated with post-prandial glucose and/or training status when using a repeated measures/cross-over study design. Branched-chain/aromatic amino acids and other intermediates of urea cycle and carnitine metabolism decreased over time in plasma after oral glucose loading. Adaptive exercise-induced changes to plasma thiol redox and orthinine status were measured for trained subjects while at rest in a fasting state. A multi-linear regression model was developed to predict changes in glucose tolerance based on a panel of plasma metabolites measured for naïve subjects in their untrained state. Since treatment outcomes to physical activity are variable between-subjects, prognostic markers offer a novel approach to screen for potential negative responders while designing lifestyle modifications that maximize the salutary benefits of exercise for diabetes prevention on an individual level. PMID:25164777

  15. Personalized metabolomics for predicting glucose tolerance changes in sedentary women after high-intensity interval training.

    PubMed

    Kuehnbaum, Naomi L; Gillen, Jenna B; Gibala, Martin J; Britz-McKibbin, Philip

    2014-01-01

    High-intensity interval training (HIIT) offers a practical approach for enhancing cardiorespiratory fitness, however its role in improving glucose regulation among sedentary yet normoglycemic women remains unclear. Herein, multi-segment injection capillary electrophoresis-mass spectrometry is used as a high-throughput platform in metabolomics to assess dynamic responses of overweight/obese women (BMI > 25, n = 11) to standardized oral glucose tolerance tests (OGTTs) performed before and after a 6-week HIIT intervention. Various statistical methods were used to classify plasma metabolic signatures associated with post-prandial glucose and/or training status when using a repeated measures/cross-over study design. Branched-chain/aromatic amino acids and other intermediates of urea cycle and carnitine metabolism decreased over time in plasma after oral glucose loading. Adaptive exercise-induced changes to plasma thiol redox and orthinine status were measured for trained subjects while at rest in a fasting state. A multi-linear regression model was developed to predict changes in glucose tolerance based on a panel of plasma metabolites measured for naïve subjects in their untrained state. Since treatment outcomes to physical activity are variable between-subjects, prognostic markers offer a novel approach to screen for potential negative responders while designing lifestyle modifications that maximize the salutary benefits of exercise for diabetes prevention on an individual level.

  16. A cross-sectional study of glucose regulation in young adults with very low birth weight: impact of male gender on hyperglycaemia

    PubMed Central

    Watanabe, Hiroshi; Shirai, Kenji; Ohki, Shigeru; Genma, Rieko; Morita, Hiroshi; Inoue, Eisuke; Takeuchi, Masahiro; Maekawa, Masato; Nakamura, Hirotoshi

    2012-01-01

    Objectives To investigate glucose regulation in young adults with very low birth weight (VLBW; <1500 g) in an Asian population. Design Cross-sectional observational study. Setting A general hospital in Hamamatsu, Japan. Participants 111 young adults (42 men and 69 women; aged 19–30 years) born with VLBW between 1980 and 1990. Participants underwent standard 75 g oral glucose tolerance test (OGTT). Primary and secondary outcome measures The primary outcomes were glucose and insulin levels during OGTT and risk factors for a category of hyperglycaemia defined as follows: diabetes mellitus, impaired glucose tolerance (IGT), impaired fasting glycaemia (IFG) and non-diabetes/IGT/IFG with elevated 1 h glucose levels (>8.6 mmol/l). The secondary outcomes were the pancreatic β cell function (insulinogenic index and homeostasis model of assessment for beta cell (HOMA-β)) and insulin resistance (homeostasis model of assessment for insulin resistance (HOMA-IR)). Results Of 111 young adults with VLBW, 21 subjects (19%) had hyperglycaemia: one had type 2 diabetes, six had IGT, one had IFG and 13 had non-diabetes/IGT/IFG with elevated 1 h glucose levels. In logistic regression analysis, male gender was an independent risk factor associated with hyperglycaemia (OR 3.34, 95% CI 1.08 to 10.3, p=0.036). Male subjects had significantly higher levels of glucose and lower levels of insulin during OGTT than female subjects (p<0.001 for glucose and p=0.005 for insulin by repeated measures analysis of variance). Pancreatic β cell function was lower in men (insulinogenic index: p=0.002; HOMA-β: p=0.001), although no gender difference was found in insulin resistance (HOMA-IR: p=0.477). In male subjects, logistic regression analysis showed that small for gestational age was an independent risk factor associated with hyperglycaemia (OR 33.3, 95% CI 1.67 to 662.6, p=0.022). Conclusions 19% of individuals with VLBW already had hyperglycaemia in young adulthood, and male gender

  17. The “Metabolic Syndrome” Is Less Useful than Random Plasma Glucose to Screen for Glucose Intolerance

    PubMed Central

    El Bassuoni, Eman A.; Ziemer, David C.; Kolm, Paul; Rhee, Mary K.; Vaccarino, Viola; Tsui, Circe W.; Kaufman, Jack M.; Osinski, G. Eileen; Koch, David D.; Venkat Narayan, K. M.; Weintraub, William S.; Phillips, Lawrence S.

    2008-01-01

    Aims To compare the utility of metabolic syndrome (MetS) to random plasma glucose (RPG) in identifying people with diabetes or prediabetes. Methods RPG was measured and an OGTT was performed in 1,155 adults. Test performance was measured by are under the receiver-operating-characteristic curve (AROC). Results Diabetes was found in 5.1% and prediabetes in 20.0%. AROC for MetS with FPG was 0.80 to detect diabetes, and 0.76 for diabetes or prediabetes – similar to RPG (0.82 and 0.72). However, the AROC for MetS excluding fasting plasma glucose (FPG) was lower: 0.69 for diabetes (p<0.01 vs. both RPG and MetS with FPG), and 0.69 for diabetes or prediabetes. AROCs for MetS with FPG and RPG were comparable and higher for recognizing diabetes in blacks vs. whites, and females vs. males. MetS with FPG was superior to RPG for identifying diabetes only in subjects with age <40 or BMI <25. Conclusions MetS features can be used to identify risk of diabetes, but predictive usefulness is driven largely by FPG. Overall, to identify diabetes or prediabetes in blacks and whites with varying age and BMI, MetS is no better than RPG – a more convenient and less expensive test. PMID:18779039

  18. ADRB2 haplotype is associated with glucose tolerance and insulin sensitivity in obese postmenopausal women.

    PubMed

    Prior, Steven J; Goldberg, Andrew P; Ryan, Alice S

    2011-02-01

    The β(2)-adrenergic receptor (ADRB2) mediates obesity, cardiorespiratory fitness, and insulin resistance. We examined the hypothesis that ADRB2 Arg16Gly-Gln27Glu haplotype is associated with body composition, glucose tolerance, and insulin sensitivity in obese, postmenopausal women. Obese (>35% body fat), postmenopausal (age 45-75 years) women (n = 123) underwent genotyping, dual-energy X-ray absorptiometry, and computed tomography scans, exercise testing (VO(2(max))), 2-h oral glucose tolerance tests (OGTTs), and hyperinsulinemic-euglycemic clamps (80 mU/m(2)/min). Analysis of covariance (ANCOVA) tested for differences among haplotypes, with race, % body fat, and VO(2(max)) as covariates. We found that ADRB2 haplotype was independently associated with % body fat, abdominal fat distribution, VO(2(max)), insulin sensitivity (M/ΔInsulin), and glucose tolerance (ANOVA, P < 0.05 for all). Women homozygous for Gly16-Gln27 haplotype had the highest % body fat (52.7 ± 1.9%), high abdominal fat, low M/ΔInsulin (0.49 ± 0.08 mg/kg/min/pmol/l/10(2)), and impaired glucose tolerance (IGT) during an OGTT (G(120) = 10.2 ± 0.9 mmol/l). Women homozygous for Gly16-Glu27 haplotype also had low M/ΔInsulin (0.51 ± 0.05 mg/kg/min/pmol/l/10(2)) and IGT (G(120) = 8.2 ± 0.7 mmol/l). Subjects with Arg16-Gln27/Gly16-Gln27 haplotype combination had the highest VO(2(max)) (1.84 ± 0.07 l/min) and M/ΔInsulin (0.7 ± 0.04 mg/kg/min/pmol/l/10(2)), and normal glucose tolerance (G(120) = 6.4 ± 0.4 mmol/l), despite being obese. These data show associations of the ADRB2 Arg16Gly-Gln27Glu haplotype with VO(2(max)) and body composition, and an independent association with glucose metabolism, which persists after controlling for body composition and fitness. This suggests that ADRB2 haplotypes may mediate insulin action, glucose tolerance, and potentially risk for type 2 diabetes mellitus (T2DM) in obese, postmenopausal women.

  19. Impaired Glucose Regulation is Associated with Poorer Performance on the Stroop Task

    PubMed Central

    Gluck, Marci E.; Ziker, Cindy; Schwegler, Matthew; Thearle, Marie; Votruba, Susanne B.; Krakoff, Jonathan

    2013-01-01

    Background Type 2 diabetes is a risk factor for development of cognitive dysfunction. Impairments in glucose regulation have been associated with poorer performance on tests of executive function and information processing speed. Methods We administered the Stroop Color Word Task, where higher interference scores are indicative of decreased selective attention, to 98 non-diabetic volunteers (64m; %fat=37±12; age=36±9 y, race=41 NA/30 C/13 H/14 AA) on our inpatient unit. After 3d on a weight maintaining diet, % body fat was measured by DXA and a 75g oral glucose tolerance test (OGTT) was administered. Impaired glucose regulation (IGR) was defined as: fasting plasma glucose ≥100 and ≤125 mg/dL and/or 2h plasma glucose between ≥140 and ≤199 mg/dL (IGR; n = 48; NGR; n = 50). Total and incremental area under the curve (AUC) for insulin and glucose were calculated. Results Stroop interference scores were not significantly associated with any measure of adiposity or insulin concentrations. Individuals with IGR had significantly higher interference scores than those with normal glucose regulation (NGR; p=0.003). Higher interference scores were significantly correlated with fasting plasma glucose concentrations (r=0.26, p = 0.007) and total glucose AUC (r=0.30, p = 0.02) and only trending so for iAUC and 2h plasma glucose (r=0.18, p=0.08; r=0.17, p=0.09 respectively). In separate multivariate linear models, fasting plasma glucose (p = 0.002) and total glucose AUC (p = 0.0005) remained significant predictors of Stroop interference scores, even after adjustment for age, sex, race, education and %fat. Conclusions Individuals with IGR had decreased performance on a test of selective attention. Fasting plasma glucose was more strongly associated with lower performance scores than 2h plasma glucose. Our results indicate that even mild hyperglycemia in the non-diabetic range is associated with attentional processing difficulties in a sample of younger adults. Whether

  20. Diabetes alters the blood glucose response to ketamine in streptozotocin-diabetic rats

    PubMed Central

    Chen, Huayong; Li, Li; Xia, Hui

    2015-01-01

    Ketamine is a commonly used short-acting anesthetic and recently attempted to treat pain which is a complication of diabetes. In this study we investigated the effect of ketamine on glucose levels of normal rats and diabetic rats. The results showed that no significance between the glucose levels in ketamine treatment group and saline treatment group at all time points was observed in normal rats. Ketamine did not produce hyperglycemia in normal fasted rats. However, ketamine dose dependently elevated glucose in diabetic rats from 80 mg/kg to 120 mg/kg at 1 hour after injection. The glucose did not return to the levels before treatment in streptozotocin (STZ) induced diabetic rats. Insulin revealed a powerful potency in decreasing glucose levels in diabetic rats. Ketamine did not induce acute hyperglycemia any more after diabetic rats pretreated with insulin. Serum corticosterone was significantly increased in all treatment groups including saline group after 1 hour treatment compared with baseline values. Then the corticosterone declined in both saline treatment groups. However, ketamine induced a more significant increase in corticosterone at 1 hour after injection compared with that of saline control group of diabetic rats. And no decline trend of corticosterone was observed after ketamine treatment 2 hours. Insulin did not reduce the elevated corticosterone level induced by ketamine either. The results suggested that the diabetic rats had a risk of hyperglycaemia when they were treated with ketamine. Pretreatment with insulin is a good symptomatic treatment for hyperglycaemia induced by ketamine. PMID:26379948

  1. Development of cookie test for the simultaneous determination of glucose intolerance, hyperinsulinemia, insulin resistance and postprandial dyslipidemia.

    PubMed

    Harano, Yutaka; Miyawaki, Takeshi; Nabiki, Junko; Shibachi, Miki; Adachi, Tomomi; Ikeda, Michiko; Ueda, Fukuhiro; Nakano, Takamitsu

    2006-04-01

    A new cookie test was developed for the simultaneous evaluation of multiple risk factors such as glucose intolerance, hyperinsulinemia, insulin resistance and postprandial dyslipidemia. The cookie consisting of 75 g carbohydrate and 25 g fat is ingested and the blood samples are obtained at 0, 1 and 2 hours later. When the two carbohydrate sources, liquid glucose and test cookie, were compared as a glucose load within 3 months, the 2 hr plasma glucose levels were not statistically different, proposing the use of the same criteria at 2 hour glucose level for the diagnosis of diabetes and impaired glucose tolerance (IGT) in subjects without exocrine pancreatic dysfunction. In addition, hyperinsulinemia, insulin resistance (AUC insulin, and/or AUC insulin X AUC glucose), and postprandial hyperlipidemia (DeltaTG, Triglyceride; DeltaRLP, remnant like particles) have been simultaneously uncovered. Reactive hypoglycemia with adverse epigastric discomfort was observed in 26.3% of the control subjects with liquid glucose, while it was observed in only 1 case (5.3%) without any symptom with cookie tests. In fact, one reactive hypoglycemia out of 5 with liquid glucose turned out to be IGT with cookie test. In 64 subjects with lifestyle-related diseases, cookie test revealed hyperinsulinemia and insulin resistance in 56% respectively, postprandial hyperlipidemia in 39%, diabetes and IGT in 22-23% of each of the subjects and all showed at least one abnormal value. In contrast, in university students with exercise habit, all showed normal results with cookie test. In addition, improved insulin sensitivity over non-exercise group was obverved. In summary, the cookie test provided more informations compared with OGTT using liquid glucose and with fewer side effects. Simultaneous evaluation of glucose intolerance, hyperinsulinemia, insulin resistance, and postprandial hyperlipidemia was also possible.

  2. Glucose, memory, and aging.

    PubMed

    Korol, D L; Gold, P E

    1998-04-01

    Circulating glucose concentrations regulate many brain functions, including learning and memory. Much of the evidence for this view comes from experiments assessing stress-related release of epinephrine with subsequent increases in blood glucose concentrations. One application of this work has been to investigate whether age-related memory impairments result from dysfunctions in the neuroendocrine regulation of the brain processes responsible for memory. Like humans, aged rodents exhibit some memory impairments that can be reversed by administration of epinephrine or glucose. In elderly humans, ingestion of glucose enhances some cognitive functions, with effects best documented thus far on tests of verbal contextual and noncontextual information. Glucose also effectively enhances cognition in persons with Alzheimer disease or Down syndrome. Although earlier evidence suggested that glucose does not enhance cognitive function in healthy young adults, more recent findings suggest that glucose is effective in this population, provided the tests are sufficiently difficult. In college students, glucose consumption significantly enhanced memory of material in a paragraph. Glucose also appeared to enhance attentional processes in these students. Neither face and word recognition nor working memory was influenced by treatment with glucose. The neurobiological mechanisms by which glucose acts are under current investigation. Initial evidence suggests that glucose or a metabolite may activate release of the neurotransmitter acetylcholine in rats when they are engaged in learning. Consequently, the issue of nutrition and cognition becomes increasingly important in light of evidence that circulating glucose concentrations have substantial effects on brain and cognitive functions.

  3. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  4. Your Glucose Meter

    MedlinePlus

    ... by Audience For Women Women's Health Topics Your Glucose Meter Share Tweet Linkedin Pin it More sharing ... Español Basic Facts 7 Tips for Testing Your Blood Sugar and Caring for Your Meter Glucose meters test ...

  5. The effects of chitosan oligosaccharide (GO2KA1) supplementation on glucose control in subjects with prediabetes.

    PubMed

    Kim, Hee Jun; Ahn, Hyeon Yeong; Kwak, Jung Hyun; Shin, Dong Yeob; Kwon, Young-In; Oh, Chen-Gum; Lee, Jong Ho

    2014-10-01

    We aimed to evaluate the effect of chitosan oligosaccharide (GO2KA1) supplementation on glucose control in subjects with prediabetes. This study was a randomized, double-blind, placebo-controlled clinical trial. Subjects with prediabetes were randomly assigned to the GO2KA1 intervention group or the placebo group for 12 weeks. We assessed the serum levels of glucose, insulin, and C-peptide by a 2 hour value in the 75 g oral glucose tolerance test (OGTT), HbA1c, pro-inflammatory cytokines, and plasma adiponectin at baseline and after the 12 week intervention. The treatment group showed a significant decrease in the serum glucose level at 30 min (p = 0.013) and at 60 min (p = 0.028). The change of the serum glucose level at 60 min was significant in the treatment group compared with the placebo group (p = 0.030). Also, the plasma level of HbA1c (p = 0.023) and the pro-inflammatory cytokines (IL-6 and TNF-α) were reduced and plasma adiponectin was increased in the GO2KA1 intervention group after the 12 week treatment. However, the placebo group did not show any significant changes in these biomarkers. In subjects with prediabetes, 12 week supplement with GO2KA1 may help control postprandial glucose compared with control.

  6. Effect of guava (Psidium guajava Linn.) leaf soluble solids on glucose metabolism in type 2 diabetic rats.

    PubMed

    Shen, Szu-Chuan; Cheng, Fang-Chi; Wu, Ning-Jung

    2008-11-01

    This study investigated the effect of aqueous and ethanol soluble solid extracts of guava (Psidium guajava Linn.) leaves on hypoglycemia and glucose metabolism in type 2 diabetic rats. Low-dose streptozotocin (STZ) and nicotinamide were injected into Sprague-Dawley (SD) rats to induce type 2 diabetes. Acute and long-term feeding tests were carried out, and an oral glucose tolerance test (OGTT) to follow the changes in plasma glucose and insulin levels was performed to evaluate the antihyperglycemic effect of guava leaf extracts in diabetic rats.The results of acute and long-term feeding tests showed a significant reduction in the blood sugar level in diabetic rats fed with either the aqueous or ethanol extract of guava leaves (p < 0.05). Long-term administration of guava leaf extracts increased the plasma insulin level and glucose utilization in diabetic rats. The results also indicated that the activities of hepatic hexokinase, phosphofructokinase and glucose-6-phosphate dehydrogenase in diabetic rats fed with aqueous extracts were higher than in the normal diabetic group (p < 0.05). On the other hand, diabetic rats treated with the ethanol extract raised the activities of hepatic hexokinase and glucose-6-phosphate dehydrogenase (p < 0.05) only. The experiments provided evidence to support the antihyperglycemic effect of guava leaf extract and the health function of guava leaves against type 2 diabetes.

  7. Knockdown of neuropeptide Y in the dorsomedial hypothalamus reverses high-fat diet-induced obesity and impaired glucose tolerance in rats.

    PubMed

    Kim, Yonwook J; Bi, Sheng

    2016-01-15

    Neuropeptide Y (NPY) in the dorsomedial hypothalamus (DMH) plays an important role in the regulation of energy balance. While DMH NPY overexpression causes hyperphagia and obesity in rats, knockdown of NPY in the DMH via adeno-associated virus (AAV)-mediated RNAi (AAVshNPY) ameliorates these alterations. Whether this knockdown has a therapeutic effect on obesity and glycemic disorder has yet to be determined. The present study sought to test this potential using a rat model of high-fat diet (HFD)-induced obesity and insulin resistance, mimicking human obesity with impaired glucose homeostasis. Rats had ad libitum access to rodent regular chow (RC) or HFD. Six weeks later, an oral glucose tolerance test (OGTT) was performed for verifying HFD-induced glucose intolerance. After verification, obese rats received bilateral DMH injections of AAVshNPY or the control vector AAVshCTL, and OGTT and insulin tolerance test (ITT) were performed at 16 and 18 wk after viral injection (23 and 25 wk on HFD), respectively. Rats were killed at 26 wk on HFD. We found that AAVshCTL rats on HFD remained hyperphagic, obese, glucose intolerant, and insulin resistant relative to lean control RC-fed rats receiving DMH injection of AAVshCTL, whereas these alterations were reversed in NPY knockdown rats fed a HFD. NPY knockdown rats exhibited normal food intake, body weight, glucose tolerance, and insulin sensitivity, as seen in lean control rats. Together, these results demonstrate a therapeutic action of DMH NPY knockdown against obesity and impaired glucose homeostasis in rats, providing a potential target for the treatment of obesity and diabetes.

  8. Effects of xylitol on carbohydrate digesting enzymes activity, intestinal glucose absorption and muscle glucose uptake: a multi-mode study.

    PubMed

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2015-03-01

    The present study investigated the possible mechanism(s) behind the effects of xylitol on carbohydrate digesting enzymes activity, muscle glucose uptake and intestinal glucose absorption using in vitro, ex vivo and in vivo experimental models. The effects of increasing concentrations of xylitol (2.5%-40% or 164.31 mM-2628.99 mM) on alpha amylase and alpha glucosidase activity in vitro and intestinal glucose absorption and muscle glucose uptake were investigated under ex vivo conditions. Additionally, the effects of an oral bolus dose of xylitol (1 g per kg BW) on gastric emptying and intestinal glucose absorption and digesta transit in the different segments of the intestinal tract were investigated in normal and type 2 diabetic rats at 1 hour after dose administration, when phenol red was used as a recovery marker. Xylitol exhibited concentration-dependent inhibition of alpha amylase (IC₅₀ = 1364.04 mM) and alpha glucosidase (IC₅₀ = 1127.52 mM) activity in vitro and small intestinal glucose absorption under ex vivo condition. Xylitol also increased dose dependent muscle glucose uptake with and without insulin, although the uptake was not significantly affected by the addition of insulin. Oral single bolus dose of xylitol significantly delayed gastric emptying, inhibited intestinal glucose absorption but increased the intestinal digesta transit rate in both normal and diabetic rats compared to their respective controls. The data of this study suggest that xylitol reduces intestinal glucose absorption via inhibiting major carbohydrate digesting enzymes, slowing gastric emptying and fastening the intestinal transit rate, but increases muscle glucose uptake in normal and type 2 diabetic rats.

  9. Effects of Growth Hormone (GH) Therapy Withdrawal on Glucose Metabolism in Not Confirmed GH Deficient Adolescents at Final Height

    PubMed Central

    Prodam, Flavia; Savastio, Silvia; Genoni, Giulia; Babu, Deepak; Giordano, Mara; Ricotti, Roberta; Aimaretti, Gianluca; Bona, Gianni; Bellone, Simonetta

    2014-01-01

    Context, objective Growth hormone deficiency (GHD) is associated with insulin resistance and diabetes, in particular after treatment in children and adults with pre-existing metabolic risk factors. Our aims were. i) to evaluate the effect on glucose metabolism of rhGH treatment and withdrawal in not confirmed GHD adolescents at the achievement of adult height; ii) to investigate the impact of GH receptor gene genomic deletion of exon 3 (d3GHR). Design, setting We performed a longitudinal study (1 year) in a tertiary care center. Methods 23 GHD adolescent were followed in the last year of rhGH treatment (T0), 6 (T6) and 12 (T12) months after rhGH withdrawal with fasting and post-OGTT evaluations. 40 healthy adolescents were used as controls. HOMA-IR, HOMA%β, insulinogenic (INS) and disposition (DI) indexes were calculated. GHR genotypes were determined by multiplex PCR. Results In the group as a whole, fasting insulin (p<0.05), HOMA-IR (p<0.05), insulin and glucose levels during OGTT (p<0.01) progressively decreased from T0 to T12 becoming similar to controls. During rhGH, a compensatory insulin secretion with a stable DI was recorded, and, then, HOMAβ and INS decreased at T6 and T12 (p<0.05). By evaluating the GHR genotype, nDel GHD showed a decrease from T0 to T12 in HOMA-IR, HOMAβ, INS (p<0.05) and DI. Del GHD showed a gradual increase in DI (p<0.05) and INS with a stable HOMA-IR and higher HDL-cholesterol (p<0.01). Conclusions In not confirmed GHD adolescents the fasting deterioration in glucose homeostasis during rhGH is efficaciously coupled with a compensatory insulin secretion and activity at OGTT. The presence of at least one d3GHR allele is associated with lower glucose levels and higher HOMA-β and DI after rhGH withdrawal. Screening for the d3GHR in the pediatric age may help physicians to follow and phenotype GHD patients also by a metabolic point of view. PMID:24498035

  10. Effects of sugar-sweetened beverage intake on the development of type 2 diabetes mellitus in subjects with impaired glucose tolerance: the Mihama diabetes prevention study.

    PubMed

    Teshima, Nobuko; Shimo, Miho; Miyazawa, Kae; Konegawa, Sachi; Matsumoto, Aki; Onishi, Yuki; Sasaki, Ryoma; Suzuki, Toshinari; Yano, Yutaka; Matsumoto, Kazutaka; Yamada, Tomomi; Gabazza, Esteban Cesar; Takei, Yoshiyuki; Sumida, Yasuhiro

    2015-01-01

    In Japan, the incidence of type 2 diabetes mellitus (T2DM) is increasing for several reasons, including increased consumption of sugar-sweetened beverages (SSBs). However, whether SSBs cause T2DM by excess of energy production resulting in obesity remains unclear. Therefore, the present study was designed to evaluate the effects of SSB intake on the development of T2DM in subjects with impaired glucose tolerance (IGT). Ninety-three subjects (30 males and 63 females) with IGT aged 40-69 y and residing in the Mihama district (southern Mie Prefecture, Japan) were included in the study. The mean observational period was 3.6 y. All subjects underwent the 75-g oral glucose tolerance test (OGTT) and completed a lifestyle questionnaire survey related to SSB intake. OGTT results and SSB intake were evaluated before and after the observational period. In addition, the correlation between SSB intake and development of T2DM was investigated. Of the 93 subjects, 20 (21.5%) developed T2DM (T2DM group) and demonstrated a significantly high SSB intake compared with the group that did not develop the disease (non-T2DM group). The odds ratio for the incidence of T2DM based on SSB intake was 3.26 (95% confidence interval, 1.17-9.06). The body mass index (BMI; kg/m(2)) and the homeostasis model assessment for insulin resistance (HOMA-R) values was significantly higher in the T2DM group than in the non-T2DM group, while the insulinogenic indices were significantly lower in the former than in the latter group. The sum of insulin secretion levels during OGTT was not significantly different between groups. SSB intake correlated with the predisposition for developing T2DM, possibly by influencing body weight, insulin resistance, and the ability of the pancreatic beta cells to effectively compensate for the insulin resistance. PMID:25994135

  11. Insulin and glucose regulation.

    PubMed

    Ralston, Sarah L

    2002-08-01

    Abnormally high or low blood glucose and insulin concentrations after standardized glucose tolerance tests can reflect disorders such as pituitary dysfunction, polysaccharide storage myopathies, and other clinical disorders. Glucose and insulin responses, however, are modified by the diet to which the animal has adapted, time since it was last fed, and what it was fed. Body fat (obesity), fitness level, physiologic status, and stress also alter glucose and insulin metabolism. Therefore, it is important to consider these factors when evaluating glucose and insulin tests, especially if only one sample it taken. This article describes the factors affecting glucose and insulin metabolism in horses and how they might influence the interpretation of standardized tests of glucose tolerance.

  12. [Glucose Metabolism: Stress Hyperglycemia and Glucose Control].

    PubMed

    Tanaka, Katsuya; Tsutsumi, Yasuo M

    2016-05-01

    It is important for the anesthesiologists to understand pathophysiology of perioperative stress hyperglycemia, because it offers strategies for treatment of stress hyperglycemia. The effect of glucose tolerance is different in the choice of the anesthetic agent used in daily clinical setting. Specifically, the volatile anesthetics inhibit insulin secretion after glucose load and affects glucose tolerance. During minor surgery by the remifentanil anesthesia, the stress reaction is hard to be induced, suggesting that we should consider low-dose glucose load. Finally it is necessary to perform the glycemic control of the patients who fell into stress hyperglycemia depending on the individual patient. However, there are a lot of questions to be answered in the future. The prognosis of the perioperative patients is more likely to be greatly improved if we can control stress hyperglycemia.

  13. [Glucose Metabolism: Stress Hyperglycemia and Glucose Control].

    PubMed

    Tanaka, Katsuya; Tsutsumi, Yasuo M

    2016-05-01

    It is important for the anesthesiologists to understand pathophysiology of perioperative stress hyperglycemia, because it offers strategies for treatment of stress hyperglycemia. The effect of glucose tolerance is different in the choice of the anesthetic agent used in daily clinical setting. Specifically, the volatile anesthetics inhibit insulin secretion after glucose load and affects glucose tolerance. During minor surgery by the remifentanil anesthesia, the stress reaction is hard to be induced, suggesting that we should consider low-dose glucose load. Finally it is necessary to perform the glycemic control of the patients who fell into stress hyperglycemia depending on the individual patient. However, there are a lot of questions to be answered in the future. The prognosis of the perioperative patients is more likely to be greatly improved if we can control stress hyperglycemia. PMID:27319094

  14. Influence of ingesting a carbohydrate-electrolyte solution before and during a 1-hour run in fed endurance-trained runners.

    PubMed

    Rollo, Ian; Williams, Clyde

    2010-04-01

    The aim of this study was to determine whether the ingestion of a carbohydrate-electrolyte solution would improve 1-h running performance in runners who had consumed a meal 3 h before exercise. Ten endurance-trained male runners completed two trials that required them to run as far as possible in 1 h on an automated treadmill that allowed changes in running speed without manual input. Following the consumption of the pre-exercise meal, which provided 2.5 g carbohydrate per kilogram body mass (BM), runners ingested either a 6.4% carbohydrate-electrolyte solution or placebo solution (i.e. 8 ml x kg BM(-1)) 30 min before and 2 ml x kg BM(-1) at 15-min intervals throughout the 1-h run. There were no differences in total distance covered (placebo: 13,680 m, s = 1525; carbohydrate: 13,589 m, s = 1635) (P > 0.05). Blood glucose and lactate concentration, respiratory exchange ratio, and carbohydrate oxidation during exercise were not different between trials (P > 0.05). There were also no differences in ratings of perceived exertion, felt arousal or pleasure-displeasure between trials (P > 0.05). In conclusion, the ingestion of a 6.4% carbohydrate-electrolyte solution did not improve 1-h running performance when a high carbohydrate meal was consumed 3 h before exercise.

  15. Effects of body composition and exercise capacity on glucose tolerance, insulin, and lipoprotein lipids in healthy older men: a cross-sectional and longitudinal intervention study.

    PubMed

    Coon, P J; Bleecker, E R; Drinkwater, D T; Meyers, D A; Goldberg, A P

    1989-12-01

    The relationships of age, body composition, and physical conditioning status to glucose tolerance, insulin, and lipoprotein levels were examined in 77 healthy, nonsmoking white male volunteers, aged 46 to 73 years with no evidence of coronary artery or endocrine-metabolic disease. The men had a wide range of body fat (13% to 39%), indexed as waist-to-hip ratio (WHR, 0.84 to 1.08), and maximal aerobic capacity (VO2max, 17 to 48 mL/kg.min). Multiple regression analysis with age, VO2max, WHR, and percent body fat as independent variables demonstrated that fasting plasma insulin, triglyceride (TG), and high density lipoprotein cholesterol (HDL-C) levels were independently related to both percent body fat and WHR. In contrast, fasting plasma glucose levels and insulin responses during oral glucose tolerance tests (OGTT) correlated independently with percent body fat, and glucose responses to OGTT correlated only with WHR. Although fasting plasma TG and HDL-C correlated with glucose and insulin levels, in multiple regression analyses only percent body fat and WHR were the significant independent variables. Fasting total and low density lipoprotein cholesterol values were not related to these variables. To test the effects of weight loss and exercise training on these relationships, 20 obese men of comparable age, percent body fat, WHR, and VO2max were randomly assigned to weight loss or aerobic exercise training programs. A 12% +/- 3% loss in body weight (P less than .01, mean +/- SD) resulted in a 19% +/- 9% decline in body fat (P less than .01) with no change in fat free mass, WHR, or VO2max.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. To Assess the Association between Glucose Metabolism and Ectopic Lipid Content in Different Clinical Classifications of PCOS

    PubMed Central

    Göbl, Christian S.; Ott, Johannes; Bozkurt, Latife; Feichtinger, Michael; Rehmann, Victoria; Cserjan, Anna; Heinisch, Maike; Steinbrecher, Helmut; JustKukurova, Ivica; Tuskova, Radka; Leutner, Michael; Vytiska-Binstorfer, Elisabeth; Kurz, Christine; Weghofer, Andrea; Tura, Andrea; Egarter, Christian; Kautzky-Willer, Alexandra

    2016-01-01

    Aims There are emerging data indicating an association between PCOS (polycystic ovary syndrome) and metabolic derangements with potential impact on its clinical presentation. This study aims to evaluate the pathophysiological processes beyond PCOS with particular focus on carbohydrate metabolism, ectopic lipids and their possible interaction. Differences between the two established classifications of the disease should be additionally evaluated. Methods A metabolic characterization was performed in 53 untreated PCOS patients as well as 20 controls including an extended oral glucose tolerance test (OGTT, to assess insulin sensitivity, secretion and ß-cell function) in addition to a detailed examination of ectopic lipid content in muscle and liver by nuclear magnetic resonance spectroscopy. Results Women with PCOS classified by the original NIH 1990 definition showed a more adverse metabolic risk profile compared to women characterized by the additional Rotterdam 2003 phenotypes. Subtle metabolic derangements were observed in both subgroups, including altered shapes of OGTT curves, impaired insulin action and hyperinsulinemia due to increased secretion and attenuated hepatic extraction. No differences were observed for ectopic lipids between the groups. However, particularly hepatocellular lipid content was significantly related to clinical parameters of PCOS like whole body insulin sensitivity, dyslipidemia and free androgen index. Conclusions Subtle alterations in carbohydrate metabolism are present in both PCOS classifications, but more profound in subjects meeting the NIH 1990 criteria. Females with PCOS and controls did not differ in ectopic lipids, however, liver fat was tightly related to hyperandrogenism and an adverse metabolic risk profile. PMID:27505055

  17. Triglycerides to High-Density Lipoprotein Cholesterol Ratio Can Predict Impaired Glucose Tolerance in Young Women with Polycystic Ovary Syndrome

    PubMed Central

    Song, Do Kyeong; Lee, Hyejin; Sung, Yeon-Ah

    2016-01-01

    Purpose The triglycerides to high-density lipoprotein cholesterol (TG/HDL-C) ratio could be related to insulin resistance (IR). We previously reported that Korean women with polycystic ovary syndrome (PCOS) had a high prevalence of impaired glucose tolerance (IGT). We aimed to determine the cutoff value of the TG/HDL-C ratio for predicting IR and to examine whether the TG/HDL-C ratio is useful for identifying individuals at risk of IGT in young Korean women with PCOS. Materials and Methods We recruited 450 women with PCOS (24±5 yrs) and performed a 75-g oral glucose tolerance test (OGTT). IR was assessed by a homeostasis model assessment index over that of the 95th percentile of regular-cycling women who served as the controls (n=450, 24±4 yrs). Results The cutoff value of the TG/HDL-C ratio for predicting IR was 2.5 in women with PCOS. Among the women with PCOS who had normal fasting glucose (NFG), the prevalence of IGT was significantly higher in the women with PCOS who had a high TG/HDL-C ratio compared with those with a low TG/HDL-C ratio (15.6% vs. 5.6%, p<0.05). Conclusion The cutoff value of the TG/HDL-C ratio for predicting IR was 2.5 in young Korean women with PCOS, and women with NFG and a high TG/HDL-C ratio had a higher prevalence of IGT. Therefore, Korean women with PCOS with a TG/HDL-C ratio >2.5 are recommended to be administered an OGTT to detect IGT even if they have NFG. PMID:27593868

  18. Evaluation of the effects of 80% methanolic leaf extract of Caylusea abyssinica (fresen.) fisch. & Mey. on glucose handling in normal, glucose loaded and diabetic rodents

    PubMed Central

    2012-01-01

    Background The leaves of Caylusea abyssinica (fresen.) Fisch. & Mey. (Resedaceae), a plant widely distributed in East African countries, have been used for management of diabetes mellitus in Ethiopian folklore medicine. However, its use has not been scientifically validated. The present study was undertaken to investigate antidiabetic effects of the hydroalcoholic leaf extract of C. abyssinica extract in rodents. Materials and method Male Animals were randomly divided into five groups for each diabetic, normoglycemic and oral glucose tolerance test (OGTT) studies. Group 1 served as controls and administered 2% Tween-80 in distilled water, (TW80); Group 2 received 5 mg/kg glibenclamide (GL5); Groups 3, 4 and 5 were given 100 (CA100), 200 (CA200) and 300 (CA300) mg/kg, respectively, of the hydroalcoholic extract of C. abyssinica. Blood samples were then collected at different time points to determine blood glucose levels (BGL). Data were analyzed using one way ANOVA followed by Dunnet’s post hoc test and p < 0.05was considered as statistically significant. Results In normal mice, CA200 and GL5 induced hypoglycemia starting from the 2nd h but the hypoglycemic effect of CA300 was delayed and appeared at the 4th h (p < 0.05 in all cases). In diabetic mice, BGL was significantly reduced by CA100 (p < 0.05) and CA300 (p < 0.01) starting from the 3rd h, whereas CA200 (p < 0.001) and GL5 (p < 0.05) attained this effect as early as the 2nd h. In OGTT, TW80 (p < 0.01) and CA100 (p < 0.01) brought down BGL significantly at 120 min, while CA200 (p < 0.001) and GL5 (p < 0.001) achieved this effect at 60 min indicating the oral glucose load improving activity of the extract. By contrast, CA300 was observed to have no effect on OGTT. Acute toxicity study revealed the safety of the extract even at a dose of 2000 mg/kg. Preliminary phytochemical study demonstrated the presence of various secondary metabolites, including, among others

  19. Glucose: detection and analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucose is an aldosic monosaccharide that is centrally entrenched in the processes of photosynthesis and respiration, serving as an energy reserve and metabolic fuel in most organisms. As both a monomer and as part of more complex structures such as polysaccharides and glucosides, glucose also pla...

  20. Monitor blood glucose - slideshow

    MedlinePlus

    ... medlineplus.gov/ency/presentations/100220.htm Monitoring blood glucose - Series—Monitoring blood glucose: Using a self-test meter To use the ... A.M. Editorial team. Related MedlinePlus Health Topics Blood Sugar A.D.A.M., Inc. is accredited by ...

  1. Rare sugar D-psicose improves insulin sensitivity and glucose tolerance in type 2 diabetes Otsuka Long-Evans Tokushima Fatty (OLETF) rats.

    PubMed

    Hossain, Mohammad A; Kitagaki, Shigeru; Nakano, Daisuke; Nishiyama, Akira; Funamoto, Yasunobu; Matsunaga, Toru; Tsukamoto, Ikuko; Yamaguchi, Fuminori; Kamitori, Kazuyo; Dong, Youyi; Hirata, Yuko; Murao, Koji; Toyoda, Yukiyasu; Tokuda, Masaaki

    2011-02-01

    A rare sugar, D-psicose has progressively been evaluated as a unique metabolic regulator of glucose and lipid metabolism, and thus represents a promising compound for the treatment of type 2 diabetes mellitus (T2DM). The present study was undertaken to examine the underlying effector organs of D-psicose in lowering blood glucose and abdominal fat by exploiting a T2DM rat model, Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Rats were fed 5% D-psicose or 5% D-glucose supplemented in drinking water, and only water in the control for 13 weeks and the protective effects were compared. A non-diabetic Long-Evans Tokushima Otsuka (LETO), fed with water served as a counter control of OLETF. After 13 weeks feeding, D-psicose treatment significantly reduced the increase in body weight and abdominal fat mass. Oral glucose tolerance test (OGTT) showed the reduced blood glucose and insulin levels suggesting the improvement of insulin resistance in OLETF rats. Oil-red-O staining elucidated that D-psicose significantly reduced lipid accumulation in the liver. Immunohistochemical analysis showed D-psicose induced glucokinase translocation from nucleus to cytoplasm of the liver which enhances glucokinase activity and subsequent synthesis of glycogen in the liver. D-psicose also protected the pathological change of the β-cells of pancreatic islets. These data demonstrate that D-psicose controls blood glucose levels by reducing lipotoxicity in liver and by preserving pancreatic β-cell function.

  2. Hepatic fat and abdominal adiposity in early pregnancy together predict impaired glucose homeostasis in mid-pregnancy.

    PubMed

    De Souza, L R; Berger, H; Retnakaran, R; Vlachou, P A; Maguire, J L; Nathens, A B; Connelly, P W; Ray, J G

    2016-01-01

    Hepatic fat and abdominal adiposity individually reflect insulin resistance, but their combined effect on glucose homeostasis in mid-pregnancy is unknown. A cohort of 476 pregnant women prospectively underwent sonographic assessment of hepatic fat and visceral (VAT) and total (TAT) adipose tissue at 11-14 weeks' gestation. Logistic regression was used to assess the relation between the presence of maternal hepatic fat and/or the upper quartile (Q) of either VAT or TAT and the odds of developing the composite outcome of impaired fasting glucose (IFG), impaired glucose tolerance (IGT) or gestational diabetes mellitus at 24-28 weeks' gestation, based on a 75 g OGTT. Upon adjusting for maternal age, ethnicity, family history of DM and body mass index (BMI), the co-presence of hepatic fat and quartile 4 (Q4) of VAT (adjusted odds ratio (aOR) 6.5, 95% CI: 2.3-18.5) or hepatic fat and Q4 of TAT (aOR 7.8 95% CI 2.8-21.7) were each associated with the composite outcome, relative to women with neither sonographic feature. First-trimester sonographic evidence of maternal hepatic fat and abdominal adiposity may independently predict the development of impaired glucose homeostasis and GDM in mid-pregnancy. PMID:27643724

  3. Hepatic fat and abdominal adiposity in early pregnancy together predict impaired glucose homeostasis in mid-pregnancy

    PubMed Central

    De Souza, L R; Berger, H; Retnakaran, R; Vlachou, P A; Maguire, J L; Nathens, A B; Connelly, P W; Ray, J G

    2016-01-01

    Hepatic fat and abdominal adiposity individually reflect insulin resistance, but their combined effect on glucose homeostasis in mid-pregnancy is unknown. A cohort of 476 pregnant women prospectively underwent sonographic assessment of hepatic fat and visceral (VAT) and total (TAT) adipose tissue at 11–14 weeks' gestation. Logistic regression was used to assess the relation between the presence of maternal hepatic fat and/or the upper quartile (Q) of either VAT or TAT and the odds of developing the composite outcome of impaired fasting glucose (IFG), impaired glucose tolerance (IGT) or gestational diabetes mellitus at 24–28 weeks' gestation, based on a 75 g OGTT. Upon adjusting for maternal age, ethnicity, family history of DM and body mass index (BMI), the co-presence of hepatic fat and quartile 4 (Q4) of VAT (adjusted odds ratio (aOR) 6.5, 95% CI: 2.3–18.5) or hepatic fat and Q4 of TAT (aOR 7.8 95% CI 2.8–21.7) were each associated with the composite outcome, relative to women with neither sonographic feature. First-trimester sonographic evidence of maternal hepatic fat and abdominal adiposity may independently predict the development of impaired glucose homeostasis and GDM in mid-pregnancy. PMID:27643724

  4. Poor sleep quality is associated with impaired glucose tolerance in women after gestational diabetes.

    PubMed

    Ferrari, U; Künzel, H; Tröndle, K; Rottenkolber, M; Kohn, D; Fugmann, M; Banning, F; Weise, M; Sacco, V; Hasbargen, U; Hutter, S; Parhofer, K G; Kloiber, S; Ising, M; Seissler, J; Lechner, A

    2015-06-01

    We analyzed the association of sleep quality and glucose metabolism in women after gestational diabetes (pGDM) and in women after normoglycemic pregnancy (controls). Data during pregnancy and a visit within the first 15 months after delivery were collected from 61 pGDM and 30 controls in a prospective cohort study. This included a medical history, physical examination, questionnaires (Pittsburgh Sleep Quality Index (PSQI), and Perceived Stress Scale (PSS)), and 5-point oral glucose tolerance test with insulin measurements to determine indices of insulin sensitivity and insulin secretion. We used Spearman correlation coefficients and multivariate regression models for analysis.9.3 ± 3.2 months after delivery, pGDM had significantly higher fasting and 2 h glucose levels and lower insulin sensitivity than controls. There was no significant difference in age, BMI and sleep quality as assessed with the PSQI between the two groups. The PSQI score correlated with the ogtt-2 h plasma glucose in pGDM (δ = 0.41; p = 0.0012), but not in controls. This association was confirmed with a multivariate linear regression model with adjustment for age, BMI and months post-delivery. Perceived stress was an independent risk factor (OR 1.12; 95% CI 1.02-1.23) for impaired sleep. Our findings suggest that post-delivery sleep quality significantly influences glucose tolerance in women after GDM and that impaired sleep is associated with increased stress perception. Measures to improve of sleep quality and reduce perceived stress should therefore be tested as additional strategies to prevent progression to type 2 diabetes after GDM. PMID:25930074

  5. Blood Glucose Monitoring Devices

    MedlinePlus

    ... Glucose NIH Medline Plus - Diabetes Spotlight FDA permits marketing of first system of mobile medical apps for ... feeds Follow FDA on Twitter Follow FDA on Facebook View FDA videos on YouTube View FDA photos ...

  6. Vascular Glucose Sensor Symposium

    PubMed Central

    Joseph, Jeffrey I; Torjman, Marc C.; Strasma, Paul J.

    2015-01-01

    Hyperglycemia, hypoglycemia, and glycemic variability have been associated with increased morbidity, mortality, length of stay, and cost in a variety of critical care and non–critical care patient populations in the hospital. The results from prospective randomized clinical trials designed to determine the risks and benefits of intensive insulin therapy and tight glycemic control have been confusing; and at times conflicting. The limitations of point-of-care blood glucose (BG) monitoring in the hospital highlight the great clinical need for an automated real-time continuous glucose monitoring system (CGMS) that can accurately measure the concentration of glucose every few minutes. Automation and standardization of the glucose measurement process have the potential to significantly improve BG control, clinical outcome, safety and cost. PMID:26078254

  7. All about Blood Glucose

    MedlinePlus

    ... Blood Glucose Before meals: 80 to 130 mg/dl My Usual Results My Goals ______ to ______ ______ to ______ 2 ... the start of a meal: below 180 mg/dl below ______ below ______ What’s the best way to keep ...

  8. Recombinant glucose uptake system

    DOEpatents

    Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico

    1997-01-01

    Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.

  9. Glucose: Detection and analysis.

    PubMed

    Galant, A L; Kaufman, R C; Wilson, J D

    2015-12-01

    Glucose is an aldosic monosaccharide that is centrally entrenched in the processes of photosynthesis and respiration, serving as an energy reserve and metabolic fuel in most organisms. As both a monomer and as part of more complex structures such as polysaccharides and glucosides, glucose also plays a major role in modern food products, particularly where flavor and or structure are concerned. Over the years, many diverse methods for detecting and quantifying glucose have been developed; this review presents an overview of the most widely employed and historically significant, including copper iodometry, HPLC, GC, CZE, and enzyme based systems such as glucose meters. The relative strengths and limitations of each method are evaluated, and examples of their recent application in the realm of food chemistry are discussed.

  10. An acoustic glucose sensor.

    PubMed

    Hu, Ruifen; Stevenson, Adrian C; Lowe, Christopher R

    2012-05-15

    In vivo glucose monitoring is required for tighter glycaemic control. This report describes a new approach to construct a miniature implantable device based on a magnetic acoustic resonance sensor (MARS). A ≈ 600-800 nm thick glucose-responsive poly(acrylamide-co-3-acrylamidophenylboronic acid) (poly(acrylamide-co-3-APB)) film was polymerised on the quartz disc (12 mm in diameter and 0.25 mm thick) of the MARS. The swelling/shrinking of the polymer film induced by the glucose binding to the phenylboronate caused changes in the resonance amplitude of the quartz disc in the MARS. A linear relationship between the response of the MARS and the glucose concentration in the range ≈ 0-15 mM was observed, with the optimum response of the MARS sensor being obtained when the polymer films contained ≈ 20 mol% 3-APB. The MARS glucose sensor also functioned under flow conditions (9 μl/min) with a response almost identical to the sensor under static or non-flow conditions. The results suggest that the MARS could offer a promising strategy for developing a small subcutaneously implanted continuous glucose monitor.

  11. Protein quality and quantity and insulin control of mammary gland glucose utilization during lactation

    SciTech Connect

    Masor, M.L.

    1987-01-01

    Virgin Sprague-Dawley rats were bred, and fed laboratory stock (STOCK), 13% casein plus methionine, 13% wheat gluten, or 5% casein plus methionine through gestation and 4 days of lactation. Diets were switched at parturition to determine the effects of dietary protein quality and quantity fed during gestation and/or lactation on insulin stimulation of mammary glucose utilization. On day 20 of gestation (20G) and day 4 of lactation (4L) the right inguinal-abdominal mammary glands were removed, and acini and tissue slices were incubated in Krebs buffer with or without insulin containing (U-/sup 14/C)-glucose and 5mM glucose for 1 hour at 37/degrees/C. Glucose incorporation into CO/sub 2/, lipid and lactose was determined. Glucose incorporation into CO/sub 2/ and lipid, but not lactose was stimulated by insulin in mammary slices. Diet effects on glucose utilization in acini were confirmed in slices for basal and insulin stimulated levels. Treatment affected the absolute increase of insulin stimulation. Regression analysis significantly correlated pup weight gain with total glucose utilization. Poor dietary protein quality and quantity fed during gestation impaired both overall response of mammary glucose utilization to insulin stimulation, and mammary development during pregnancy. Improving protein value at parturition did not overcome those deficits by 4L.

  12. Effects of different periods of paradoxical sleep deprivation and sleep recovery on lipid and glucose metabolism and appetite hormones in rats.

    PubMed

    Brianza-Padilla, Malinalli; Bonilla-Jaime, Herlinda; Almanza-Pérez, Julio César; López-López, Ana Laura; Sánchez-Muñoz, Fausto; Vázquez-Palacios, Gonzalo

    2016-03-01

    Sleep has a fundamental role in the regulation of energy balance, and it is an essential and natural process whose precise impacts on health and disease have not yet been fully elucidated. The aim of this study was to assess the consequences of different periods of paradoxical sleep deprivation (PSD) and recovery from PSD on lipid profile, oral glucose tolerance test (OGTT) results, and changes in insulin, corticosterone, ghrelin, and leptin concentrations. Three-month-old male Wistar rats weighing 250-350 g were submitted to 24, 96, or 192 h of PSD or 192 h of PSD with 480 h of recovery. The PSD was induced by the multiple platforms method. Subsequently, the animals were submitted to an OGTT. One day later, the animals were killed and the levels of triglycerides, total cholesterol, lipoproteins (low-density lipoprotein, very-low-density lipoprotein, and high-density lipoprotein), insulin, ghrelin, leptin, and corticosterone in plasma were quantified. There was a progressive decrease in body weight with increasing duration of PSD. The PSD induced basal hypoglycemia over all time periods evaluated. Evaluation of areas under the curve revealed progressive hypoglycemia only after 96 and 192 h of PSD. There was an increase in corticosterone levels after 192 h of PSD. We conclude that PSD induces alterations in metabolism that are reversed after a recovery period of 20 days.

  13. Effects of the Soluble Fiber Complex PolyGlycopleX® on Glucose Homeostasis and Body Weight in Young Zucker Diabetic Rats

    PubMed Central

    Grover, Gary James; Koetzner, Lee; Wicks, Joan; Gahler, Roland J.; Lyon, Michael R.; Reimer, Raylene A.; Wood, Simon

    2011-01-01

    Dietary fiber can reduce insulin resistance, body weight, and hyperlipidemia depending on fiber type, water solubility, and viscosity. PolyGlycopleX® (PGX®) is a natural, novel water soluble, non-starch polysaccharide complex that with water forms a highly viscous gel compared to other naturally occurring dietary fiber. We determined the effect of dietary PGX® vs. cellulose and inulin on the early development of insulin resistance, body weight, hyperlipidemia, and glycemia-induced tissue damage in young Zucker diabetic rats (ZDFs) in fasted and non-fasted states. ZDFs (5 weeks old) were fed a diet containing 5% (wgt/wgt) cellulose, inulin, or PGX® for 8 weeks. Body weight, lipids, insulin, and glucose levels were determined throughout the study and homeostasis model assessment (HOMA) was used to measure insulin sensitivity throughout the study in fasted animals. At study termination, insulin sensitivity (oral glucose tolerance test, OGTT) and kidney, liver, and pancreatic histopathology were determined. Body weight and food intake were significantly reduced by PGX® vs. inulin and cellulose. Serum insulin in fasted and non-fasted states was significantly reduced by PGX® as was non-fasted blood glucose. Insulin resistance, measured as a HOMA score, was significantly reduced by PGX® in weeks 5 through 8 as well as terminal OGTT scores in fed and fasted states. Serum total cholesterol was also significantly reduced by PGX®. PGX® significantly reduced histological kidney and hepatic damage in addition to reduced hepatic steatosis and cholestasis. A greater mass of pancreatic β-cells was found in the PGX® group. PGX® therefore may be a useful dietary additive in the control of the development of the early development of the metabolic syndrome. PMID:21922008

  14. A glucose sensor protein for continuous glucose monitoring.

    PubMed

    Veetil, Jithesh V; Jin, Sha; Ye, Kaiming

    2010-12-15

    In vivo continuous glucose monitoring has posed a significant challenge to glucose sensor development due to the lack of reliable techniques that are non- or at least minimally-invasive. In this proof-of-concept study, we demonstrated the development of a new glucose sensor protein, AcGFP1-GBPcys-mCherry, and an optical sensor assembly, capable of generating quantifiable FRET (fluorescence resonance energy transfer) signals for glucose monitoring. Our experimental data showed that the engineered glucose sensor protein can generate measurable FRET signals in response to glucose concentrations varying from 25 to 800 μM. The sensor developed based on this protein had a shelf-life of up to 3 weeks. The sensor response was devoid of interference from compounds like galactose, fructose, lactose, mannose, and mannitol when tested at physiologically significant concentrations of these compounds. This new glucose sensor protein can potentially be used to develop implantable glucose sensors for continuous glucose monitoring.

  15. How reliable is the fifty-gram, one-hour glucose screening test?

    PubMed

    Sacks, D A; Abu-Fadil, S; Greenspoon, J S; Fotheringham, N

    1989-09-01

    The Second International Workshop-Conference on Gestational Diabetes recommended screening all pregnant women with a 1-hour 50 gm oral glucose screening test, given without regard to time of day or time elapsed from the last meal. This study was designed to evaluate the reproducibility of that test, given under those clinical conditions. Thirty women with gestational diabetes and 80 control volunteers between 24 and 28 weeks' gestation were tested at the same time of day on two successive days. Of the 30 women with diabetes, three (10%) had glucose screening test results below the 135 mg/dl threshold on both days and 10 (33%) had results that straddled the threshold on successive days. Test results of 11 control women also straddled the threshold. Among these 21 women with results that straddled the threshold, there was no difference in mean glucose screening test results in diabetic women compared with nondiabetic ones. We conclude that, as currently recommended, the 1-hour glucose screening test is moderately reproducible. Reliance should not be placed on a single normal test result, particularly among patients with risk factors.

  16. Glucose Tolerance and Hyperkinesis.

    ERIC Educational Resources Information Center

    Langseth, Lillian; Dowd, Judith

    Examined were medical records of 265 hyperkinetic children (7-9 years old). Clinical blood chemistries, hematology, and 5-hour glucose tolerance test (GTT) results indicated that hematocrit levels were low in 27% of the Ss, eosinophil levels were abnormally high in 86% of the Ss, and GTT results were abnormal in a maority of Ss. (CL)

  17. Blood glucose monitoring.

    PubMed

    Davey, Sarah

    2014-06-10

    I found the CPD article on blood glucose monitoring and management in acute stroke care interesting and informative. As I am a mental health nursing student, my knowledge of chronic physical conditions is limited, so I learned a lot. PMID:24894257

  18. Impact of Vitamin D Replacement on Markers of Glucose Metabolism and Cardio-Metabolic Risk in Women with Former Gestational Diabetes--A Double-Blind, Randomized Controlled Trial.

    PubMed

    Yeow, Toh Peng; Lim, Shueh Lin; Hor, Chee Peng; Khir, Amir S; Wan Mohamud, Wan Nazaimoon; Pacini, Giovanni

    2015-01-01

    Gestational Diabetes Mellitus (GDM) and vitamin D deficiency are related to insulin resistance and impaired beta cell function, with heightened risk for future development of diabetes. We evaluated the impact of vitamin D supplementation on markers of glucose metabolism and cardio metabolic risk in Asian women with former GDM and hypovitaminosis D. In this double blind, randomized controlled trial, 26 participants were randomized to receive either daily 4000 IU vitamin D3 or placebo capsules. 75 g Oral Glucose Tolerance Test (OGTT) and biochemistry profiles were performed at baseline and 6 month visits. Mathematical models, using serial glucose, insulin and C peptide measurements from OGTT, were employed to calculate insulin sensitivity and beta cell function. Thirty three (76%) women with former GDM screened had vitamin D level of <50 nmol/L at baseline. Supplementation, when compared with placebo, resulted in increased vitamin D level (+51.1 nmol/L vs 0.2 nmol/L, p<0.001) and increased fasting insulin (+20% vs 18%, p = 0.034). The vitamin D group also demonstrated a 30% improvement in disposition index and an absolute 0.2% (2 mmol/mol) reduction in HbA1c. There was no clear change in insulin sensitivity or markers of cardio metabolic risk. This study highlighted high prevalence of vitamin D deficiency among Asian women with former GDM. Six months supplementation with 4000 IU of vitamin D3 safely restored the vitamin D level, improved basal pancreatic beta-cell function and ameliorated the metabolic state. There was no effect on markers of cardio metabolic risk. Further mechanistic studies exploring the role of vitamin D supplementation on glucose homeostasis among different ethnicities may be needed to better inform future recommendations for these women with former GDM at high risk of both hypovitaminosis D and future diabetes. PMID:26057782

  19. Impact of Vitamin D Replacement on Markers of Glucose Metabolism and Cardio-Metabolic Risk in Women with Former Gestational Diabetes--A Double-Blind, Randomized Controlled Trial.

    PubMed

    Yeow, Toh Peng; Lim, Shueh Lin; Hor, Chee Peng; Khir, Amir S; Wan Mohamud, Wan Nazaimoon; Pacini, Giovanni

    2015-01-01

    Gestational Diabetes Mellitus (GDM) and vitamin D deficiency are related to insulin resistance and impaired beta cell function, with heightened risk for future development of diabetes. We evaluated the impact of vitamin D supplementation on markers of glucose metabolism and cardio metabolic risk in Asian women with former GDM and hypovitaminosis D. In this double blind, randomized controlled trial, 26 participants were randomized to receive either daily 4000 IU vitamin D3 or placebo capsules. 75 g Oral Glucose Tolerance Test (OGTT) and biochemistry profiles were performed at baseline and 6 month visits. Mathematical models, using serial glucose, insulin and C peptide measurements from OGTT, were employed to calculate insulin sensitivity and beta cell function. Thirty three (76%) women with former GDM screened had vitamin D level of <50 nmol/L at baseline. Supplementation, when compared with placebo, resulted in increased vitamin D level (+51.1 nmol/L vs 0.2 nmol/L, p<0.001) and increased fasting insulin (+20% vs 18%, p = 0.034). The vitamin D group also demonstrated a 30% improvement in disposition index and an absolute 0.2% (2 mmol/mol) reduction in HbA1c. There was no clear change in insulin sensitivity or markers of cardio metabolic risk. This study highlighted high prevalence of vitamin D deficiency among Asian women with former GDM. Six months supplementation with 4000 IU of vitamin D3 safely restored the vitamin D level, improved basal pancreatic beta-cell function and ameliorated the metabolic state. There was no effect on markers of cardio metabolic risk. Further mechanistic studies exploring the role of vitamin D supplementation on glucose homeostasis among different ethnicities may be needed to better inform future recommendations for these women with former GDM at high risk of both hypovitaminosis D and future diabetes.

  20. Improvements in blood pressure, glucose metabolism, and lipoprotein lipids after aerobic exercise plus weight loss in obese, hypertensive middle-aged men.

    PubMed

    Dengel, D R; Hagberg, J M; Pratley, R E; Rogus, E M; Goldberg, A P

    1998-09-01

    The clustering of metabolic abnormalities often associated with hypertension, including insulin resistance, glucose intolerance, and dyslipidemia, in middle-aged men may be the result of a decrease in cardiovascular fitness (VO2max) and the accumulation of body fat with aging. This study examines the effects of a 6-month program of aerobic exercise training plus weight loss (AEX+WL) on VO2max, body composition, blood pressure (BP), glucose and insulin responses during an oral glucose tolerance test (OGTT), glucose infusion rates (GIR) during 3-dose hyperinsulinemic-euglycemic clamps at insulin infusion rates of 120, 600, and 3,000 pmol x m(-2) x min(-1), and plasma lipoprotein levels. Compared with eight non-obese, normotensive, sedentary men (age, 62+/-2 years; 19%+/-2% fat; BP, 117+/-4/72+/-2 mm Hg), the nine obese, hypersensitive, sedentary men studied (age, 56+/-1 year; 32%+/-1% body fat; BP, 147+/-3/93+/-2 mm Hg) initially had a larger waist girth and waist-to-hip ratio (WHR) and were more hyperinsulinemic and insulin resistant with lower GIR at the two lower insulin infusion rates of the clamp and had a 2.9-fold higher EC50, the insulin concentration producing a half-maximal increase in GIR. They had higher triglyceride (TG) and lower high-density lipoprotein cholesterol (HDL-C) levels. The AEX+WL intervention reduced body weight by 9%, percent body fat by 21%, waist girth by 9%, and WHR by 3%, and increased VO2max by 16% (P < .01 for all). This was associated with decreases of 14+/-3 mm Hg in systolic and 10+/-2 mm Hg in diastolic BP, significant changes in GIR at the low (+42%) and intermediate (+39%) insulin infusion rates and EC50 (-39%) and in glucose (-21%) and insulin (-51%) responses during OGTT (P < .02 for all). AEX+WL also lowered total cholesterol by 14% and TG by 34%, and raised HDL2-C levels twofold (P < .01 for all). Thus, a 6-month AEX+WL intervention substantially lowers BP and improves glucose and lipid metabolism in obese, sedentary

  1. Glucose and Aging

    NASA Astrophysics Data System (ADS)

    Ely, John T. A.

    2008-04-01

    When a human's enzymes attach glucose to proteins they do so at specific sites on a specific molecule for a specific purpose that also can include ascorbic acid (AA) at a high level such as 1 gram per hour during exposure. In an AA synthesizing animal the manifold increase of AA produced in response to illness is automatic. In contrast, the human non-enzymatic process adds glucose haphazardly to any number of sites along available peptide chains. As Cerami clarified decades ago, extensive crosslinking of proteins contributes to loss of elasticity in aging tissues. Ascorbic acid reduces the random non-enyzmatic glycation of proteins. Moreover, AA is a cofactor for hydroxylase enzymes that are necessary for the production and replacement of collagen and other structural proteins. We will discuss the relevance of ``aging is scurvy'' to the biochemistry of human aging.

  2. Endurance exercise training effects on body fatness, VO2max, HDL-C subfractions, and glucose tolerance are influenced by a PLIN haplotype in older Caucasians.

    PubMed

    Jenkins, Nathan T; McKenzie, Jennifer A; Damcott, Coleen M; Witkowski, Sarah; Hagberg, James M

    2010-03-01

    Perilipins are lipid droplet-coating proteins that regulate intracellular lipolysis in adipocytes. A haplotype of two perilipin gene (PLIN) single nucleotide polymorphisms, 13041A>G and 14995A>T, has been previously associated with obesity risk. Furthermore, the available data indicate that this association may be modified by sex. We hypothesized that this haplotype would associate with body fatness, aerobic fitness, and a number of cardiovascular (CV) risk factor phenotypes before and after a 6-mo endurance exercise training program in sedentary older Caucasians. The major haplotype group (13041A/14995A; n = 57) had significantly lower body mass index (BMI) and body fatness compared with noncarriers of the AA haplotype (n = 44) before the training intervention. Training improved body composition in both groups, but fatness remained higher in noncarriers than AA carriers after training. This fat retention in noncarriers blunted their maximal oxygen uptake (Vo(2 max)) adaptation to training. Female noncarriers had substantially higher concentrations of several conventionally and NMR-measured HDL-C subfractions than male noncarriers before and after training, but only minimal differences were found between the sexes in the AA haplotype group. Haplotype group differences in baseline and after-training responses to an oral glucose tolerance test (OGTT) also differed by sex, as noncarrier men had the highest baseline area under the insulin curve (insulin AUC), but were the only group to significantly improve insulin AUC with training. The insulin sensitivity index and plasma glucose responses to the OGTT were more favorable in AA carriers than noncarriers before and after training. Overall, our findings suggest that PLIN variation explains some of the interindividual differences in the response of obesity and CV phenotypes to exercise training. Furthermore, these data contribute to the growing understanding of PLIN as a candidate gene for human obesity and the

  3. Effects of simulated acid rain on glucose mineralization and some physicochemical properties of forest soils

    SciTech Connect

    Strayer, R.F.; Alexander, M.

    1981-10-01

    To study the effects of acid rain, samples of forest soils were exposed to a continuous application of 100 cm of simulated acid rain (pH 3.2-4.1) at 5 cm/hour, or to intermittent 1-hour applications of 5 cm of simulated acid rain three times per week for 7 weeks. The major effects of the simulated acid rain were localized at the top of the soil and included lower pH values and glucose mineralization rates, and higher exchangeable Al and total and exchange acidity. The acidity penetrated further in the more acid soils. The mineralization of /sup 14/C-glucose was measured at concentrations of 1.5-54 ..mu..g glucose/g of soil. Glucose mineralization in the test soils (pH values of 4.4-7.1) was inhibited by the continuous exposure to simulated acid rain at pH 3.2 but not a pH 4.1. The extent of inhibition depended on the soil and the initial glucose concentration. Exposure of one soil to 7 weeks of intermittent applications of simulated acid rain at pH 3.2 reduced the mineralization rate at the three glucose concentrations tested. These data suggest that acid rain may have a significant impact on microbial activity.

  4. Coconut-derived D-xylose affects postprandial glucose and insulin responses in healthy individuals

    PubMed Central

    Bae, Yun Jung; Bak, Youn-Kyung; Kim, Bumsik; Kim, Min-Sun; Lee, Jin-Hee

    2011-01-01

    Metabolic alterations including postprandial hyperglycemia have been implicated in the development of obesity-related diseases. Xylose is a sucrase inhibitor suggested to suppress the postprandial glucose surge. The objectives of this study were to assess the inhibitory effects of two different concentrations of xylose on postprandial glucose and insulin responses and to evaluate its efficacy in the presence of other macronutrients. Randomized double-blind cross-over studies were conducted to examine the effect of D-xylose on postprandial glucose and insulin response following the oral glucose tolerance test (OGTT). In study 1, the overnight-fasted study subjects (n = 49) consumed a test sucrose solution (50 g sucrose in 130 ml water) containing 0, 5, or 7.5 g D-xylose powder. In study 2, the overnight-fasted study subjects (n = 50) consumed a test meal (50 g sucrose in a 60 g muffin and 200 ml sucrose-containing solution). The control meal provided 64.5 g of carbohydrates, 4.5 g of fat, and 10 g of protein. The xylose meal was identical to the control meal except 5 g of xylose was added to the muffin mix. In study 1, the 5 g xylose-containing solutions exhibited significantly lower area under the glucose curve (AUCg) and area under the insulin curve (AUCi) values for 0-15 min (P < 0.0001, P < 0.0001), 0-30 min (P < 0.0001, P < 0.0001), 0-45 min (P < 0.0001, P < 0.0001), 0-60 min (P < 0.0001, P < 0.0001), 0-90 min (P < 0.0001, P < 0.0001) and 0-120 min (P = 0.0071, P = 0.0016). In study 2, the test meal exhibited significantly lower AUCg and AUCi values for 0-15 min (P < 0.0001, P < 0.0001), 0-30 min (P < 0.0001, P < 0.0001), 0-45 min (P < 0.0001, P = 0.0005), 0-60 min (P = 0.0002, P = 0.0025), and 0-90 min (P = 0.0396, P = 0.0246). In conclusion, xylose showed an acute suppressive effect on the postprandial glucose and insulin surges. PMID:22259678

  5. Glucose repression in Saccharomyces cerevisiae.

    PubMed

    Kayikci, Ömur; Nielsen, Jens

    2015-09-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression.

  6. Glucose repression in Saccharomyces cerevisiae

    PubMed Central

    Kayikci, Ömur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. PMID:26205245

  7. Thermoresponsive amperometric glucose biosensor.

    PubMed

    Pinyou, Piyanut; Ruff, Adrian; Pöller, Sascha; Barwe, Stefan; Nebel, Michaela; Alburquerque, Natalia Guerrero; Wischerhoff, Erik; Laschewsky, André; Schmaderer, Sebastian; Szeponik, Jan; Plumeré, Nicolas; Schuhmann, Wolfgang

    2016-03-01

    The authors report on the fabrication of a thermoresponsive biosensor for the amperometric detection of glucose. Screen printed electrodes with heatable gold working electrodes were modified by a thermoresponsive statistical copolymer [polymer I: poly(ω-ethoxytriethylenglycol methacrylate-co-3-(N,N-dimethyl-N-2-methacryloyloxyethyl ammonio) propanesulfonate-co-ω-butoxydiethylenglycol methacrylate-co-2-(4-benzoyl-phenoxy)ethyl methacrylate)] with a lower critical solution temperature of around 28 °C in aqueous solution via electrochemically induced codeposition with a pH-responsive redox-polymer [polymer II: poly(glycidyl methacrylate-co-allyl methacrylate-co-poly(ethylene glycol)methacrylate-co-butyl acrylate-co-2-(dimethylamino)ethyl methacrylate)-[Os(bpy)2(4-(((2-(2-(2-aminoethoxy)ethoxy)ethyl)amino)methyl)-N,N-dimethylpicolinamide)](2+)] and pyrroloquinoline quinone-soluble glucose dehydrogenase acting as biological recognition element. Polymer II bears covalently bound Os-complexes that act as redox mediators for shuttling electrons between the enzyme and the electrode surface. Polymer I acts as a temperature triggered immobilization matrix. Probing the catalytic current as a function of the working electrode temperature shows that the activity of the biosensor is dramatically reduced above the phase transition temperature of polymer I. Thus, the local modulation of the temperature at the interphase between the electrode and the bioactive layer allows switching the biosensor from an on- to an off-state without heating of the surrounding analyte solution. PMID:26702635

  8. Optical monitoring of glucose concentration

    NASA Astrophysics Data System (ADS)

    Ross, I. N.; Mbanu, A.

    1985-02-01

    A device for the monitoring of blood glucose levels is investigated. It measures the sugar concentration using the effect of the glucose on the optical refractive index. Light is transmitted along an optical fibre, and, as most of the internal rays are incident at the fibre surface at an angle less than the critical angle, the refractive index of the surrounding liquid can be calculated. The device can measure glucose concentrations with a sensitivity of better than 0.1%.

  9. Optoelectronic Apparatus Measures Glucose Noninvasively

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Rovati, Luigi L.

    2003-01-01

    An optoelectronic apparatus has been invented as a noninvasive means of measuring the concentration of glucose in the human body. The apparatus performs polarimetric and interferometric measurements of the human eye to acquire data from which the concentration of glucose in the aqueous humor can be computed. Because of the importance of the concentration of glucose in human health, there could be a large potential market for instruments based on this apparatus.

  10. Association between maternal diet factors and hemoglobin levels, glucose tolerance, blood pressure and gestational age in a Hispanic population.

    PubMed

    Soto, Roxana; Guilloty, Natacha; Anzalota, Liza; Rosario, Zaira; Cordero, José F; Palacios, Cristina

    2015-06-01

    The aim of this study was to describe the dietary patterns of pregnant women in northern Puerto Rico and explore associations between diet factors with pregnancy related measurements. This analysis is based on the Puerto Rico Testsite for Exploring Contamination Threats (PROTECT), a prospective cohort that is studying environmental risk factors for preterm births in PR. Participants completed a food frequency questionnaire (FFQ) around 20-28 weeks of gestation. The following pregnancy related measures were collected from the medical records: hemoglobin, blood glucose, blood pressure and gestational age. Potential associations between diet factors and pregnancy measures were assessed using chi square analysis with SPSS. A total of 180 participants completed the FFQ; low hemoglobin levels was found in 19.2%, high blood glucose levels was found in 21.1% by fasting blood glucose test and 24.6%by 1-hour 50 g oral glucose screening test, high blood pressure was found in 2.9% (systolic) and 6.5% (diastolic), and pre-term birth was found in 10.4% of the participants. High consumption of rice, desserts and sweets was associated with higher levels of fasting blood glucose levels (p < 0.05), while high consumption of vegetables was associated with higher 1-hour glucose challenge test (p < 0.05).No other significant associations were found. In conclusion, consumption of high dense energy food diets in pregnancy, such as rice, sweets and desserts, can lead to high levels of blood glucose and can be a potential predictor of other pregnancy complications during pregnancy in these study participants, such as gestational diabetes. PMID:26817380

  11. Morning cortisol levels and glucose metabolism parameters in moderate and severe obstructive sleep apnea patients.

    PubMed

    Bozic, Josko; Galic, Tea; Supe-Domic, Daniela; Ivkovic, Natalija; Ticinovic Kurir, Tina; Valic, Zoran; Lesko, Josip; Dogas, Zoran

    2016-09-01

    Obstructive sleep apnea (OSA) has been associated with dysregulation of the hypothalamic-pituitary-adrenal axis and alterations in glucose metabolism with increased risk for type 2 diabetes. The aim of the current study was to compare morning plasma cortisol levels and glucose metabolism parameters between moderate (apnea-hypopnea index (AHI): 15-30 events/h) and severe OSA patients (AHI >30 events/h), with respective controls. A total of 56 male OSA patients, 24 moderate (AHI = 21.1 ± 5.3) and 32 severe (AHI = 49.7 ± 18.1), underwent a full-night polysomnography, oral glucose tolerance test (OGTT), and measurement of morning plasma cortisol levels. These groups were compared to 20 matched subjects in a control group. Morning plasma cortisol levels were statistically lower in severe OSA group than in moderate OSA and control groups (303.7 ± 93.5 vs. 423.9 ± 145.1 vs. 417.5 ± 99.8 pmol/L, P < 0.001). Significant negative correlations were found between morning plasma cortisol levels and AHI (r = -0.444, P = 0.002), as well as oxygen desaturation index (r = -0.381, P = 0.011). Fasting plasma glucose (5.0 ± 0.5 vs. 5.4 ± 0.7 vs. 4.9 ± 0.6 mmol/L, P = 0.009) was higher in the severe OSA group compared to moderate OSA and controls. Homeostasis model assessment insulin resistance (HOMA-IR) was higher in the severe OSA group compared to moderate OSA and controls (4.6 ± 3.7 vs. 2.7 ± 2.0 and 2.2 ± 1.8, respectively, P = 0.006). In conclusion, our study showed that morning plasma cortisol levels measured at 8 a.m. were significantly lower in severe OSA patients than those in moderate OSA group and controls. Morning plasma cortisol levels showed a negative correlation with AHI and oxygen desaturation index. Additionally, this study confirmed the evidence of glucose metabolism impairment in moderate and severe OSA patients, with more pronounced effect in the severe OSA patients group. PMID:27000083

  12. Review of Glucose Oxidases and Glucose Dehydrogenases: A Bird's Eye View of Glucose Sensing Enzymes

    PubMed Central

    Ferri, Stefano; Kojima, Katsuhiro; Sode, Koji

    2011-01-01

    The evolution from first-generation through third-generation glucose sensors has witnessed the appearance of a number of very diverse oxidoreductases, which vary tremendously in terms of origin, structure, substrate specificity, cofactor used as primary electron acceptor, and acceptable final electron acceptor. This article summarizes our present knowledge of redox enzymes currently utilized in commercially available glucose monitoring systems to promote a fuller appreciation of enzymatic properties and principles employed in blood glucose monitoring to help avoid potential errors. PMID:22027299

  13. Glucose metabolism in Acetobacter aceti.

    PubMed

    Flückiger, J; Ettlinger, L

    1977-08-26

    Acetobacter aceti NCIB 8554 grows on a minimal medium with ethanol but not with glucose as carbon and energy source. Addition of glucose to a wild type culture on ethanol has no influence on growth of the organism. Growth of a glucose sensitive mutant A5 is inhibited by the addition of glucose until all glucose has disappeared from the medium. In order to determine the routes by which glucose is metabolised in wild type and mutant, radiorespirometric, enzymatic, and uptake experiments have been performed. For the radiorespirometric experiments of the "continuous substrate feeding" type as apparatus has been constructed. Of the glucose entering the cells about 30% is excreted as gluconate and 6% metabolised with liberation of C-1 as CO2. The rest is accumulated intracellularly. No differences were found between wild type and mutant. Under different growth conditions and with different enzymatic assay methods no pyruvate kinase activity (EC 2.7.1.40) could be detected. This might explain the inability of A. aceti to grow on glucose.

  14. Antihypertensive drugs and glucose metabolism

    PubMed Central

    Rizos, Christos V; Elisaf, Moses S

    2014-01-01

    Hypertension plays a major role in the development and progression of micro- and macrovascular disease. Moreover, increased blood pressure often coexists with additional cardiovascular risk factors such as insulin resistance. As a result the need for a comprehensive management of hypertensive patients is critical. However, the various antihypertensive drug categories have different effects on glucose metabolism. Indeed, angiotensin receptor blockers as well as angiotensin converting enzyme inhibitors have been associated with beneficial effects on glucose homeostasis. Calcium channel blockers (CCBs) have an overall neutral effect on glucose metabolism. However, some members of the CCBs class such as azelnidipine and manidipine have been shown to have advantageous effects on glucose homeostasis. On the other hand, diuretics and β-blockers have an overall disadvantageous effect on glucose metabolism. Of note, carvedilol as well as nebivolol seem to differentiate themselves from the rest of the β-blockers class, being more attractive options regarding their effect on glucose homeostasis. The adverse effects of some blood pressure lowering drugs on glucose metabolism may, to an extent, compromise their cardiovascular protective role. As a result the effects on glucose homeostasis of the various blood pressure lowering drugs should be taken into account when selecting an antihypertensive treatment, especially in patients which are at high risk for developing diabetes. PMID:25068013

  15. Alginate cryogel based glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  16. Glucose-stat, a glucose-controlled continuous culture.

    PubMed Central

    Kleman, G L; Chalmers, J J; Luli, G W; Strohl, W R

    1991-01-01

    A predictive and feedback proportional control algorithm, developed for fed-batch fermentations and described in a companion paper (G. L. Kleman, J. J. Chalmers, G. W. Luli, and W. R. Strohl, Appl. Environ. Microbiol. 57:910-917, 1991), was used in this work to control a continuous culture on the basis of the soluble-glucose concentration (called the glucose-stat). This glucose-controlled continuous-culture system was found to reach and maintain steady state for 11 to 24 residence times when four different background glucose concentrations (0.27, 0.50, 0.7, and 1.5 g/liter) were used. The predictive-plus-feedback control system yielded very tight control of the continuous nutristat cultures; glucose concentrations were maintained at the set points with less than 0.003 standard error. Acetate production by Escherichia coli B in glucose-stats was found not to be correlated with the level of steady-state soluble-glucose concentration. PMID:2059050

  17. Glucose-stat, a glucose-controlled continuous culture.

    PubMed

    Kleman, G L; Chalmers, J J; Luli, G W; Strohl, W R

    1991-04-01

    A predictive and feedback proportional control algorithm, developed for fed-batch fermentations and described in a companion paper (G. L. Kleman, J. J. Chalmers, G. W. Luli, and W. R. Strohl, Appl. Environ. Microbiol. 57:910-917, 1991), was used in this work to control a continuous culture on the basis of the soluble-glucose concentration (called the glucose-stat). This glucose-controlled continuous-culture system was found to reach and maintain steady state for 11 to 24 residence times when four different background glucose concentrations (0.27, 0.50, 0.7, and 1.5 g/liter) were used. The predictive-plus-feedback control system yielded very tight control of the continuous nutristat cultures; glucose concentrations were maintained at the set points with less than 0.003 standard error. Acetate production by Escherichia coli B in glucose-stats was found not to be correlated with the level of steady-state soluble-glucose concentration. PMID:2059050

  18. Mathematical Modeling of Renal Tubular Glucose Absorption after Glucose Load

    PubMed Central

    De Gaetano, Andrea; Panunzi, Simona; Eliopoulos, Dimitris; Hardy, Thomas; Mingrone, Geltrude

    2014-01-01

    A partial differential Progressive Tubular Reabsorption (PTR) model, describing renal tubular glucose reabsorption and urinary glucose excretion following a glucose load perturbation, is proposed and fitted to experimental data from five subjects. For each subject the Glomerular Filtration Rate was estimated and both blood and urine glucose were sampled following an Intra-Venous glucose bolus. The PTR model was compared with a model representing the conventional Renal Threshold Hypothesis (RTH). A delay bladder compartment was introduced in both formulations. For the RTH model, the average threshold for glycosuria varied between 9.90±4.50 mmol/L and 10.63±3.64 mmol/L (mean ± Standard Deviation) under different hypotheses; the corresponding average maximal transport rates varied between 0.48±0.45 mmol/min (86.29±81.22 mg/min) and 0.50±0.42 mmol/min (90.62±76.15 mg/min). For the PTR Model, the average maximal transports rates varied between 0.61±0.52 mmol/min (109.57±93.77 mg/min) and 0.83±0.95 mmol/min (150.13±171.85 mg/min). The time spent by glucose inside the tubules before entering the bladder compartment varied between 1.66±0.73 min and 2.45±1.01 min. The PTR model proved much better than RTH at fitting observations, by correctly reproducing the delay of variations of glycosuria with respect to the driving glycemia, and by predicting non-zero urinary glucose elimination at low glycemias. This model is useful when studying both transients and steady-state glucose elimination as well as in assessing drug-related changes in renal glucose excretion. PMID:24489817

  19. Conversion of glucose to sorbose

    DOEpatents

    Davis, Mark E.; Gounder, Rajamani

    2016-02-09

    The present invention is directed to methods for preparing sorbose from glucose, said method comprising: (a) contacting the glucose with a silica-containing structure comprising a zeolite having a topology of a 12 membered-ring or larger, an ordered mesoporous silica material, or an amorphous silica, said structure containing Lewis acidic Ti.sup.4+ or Zr.sup.4+ or both Ti.sup.4+ and Zr.sup.4+ framework centers, said contacting conducted under reaction conditions sufficient to isomerize the glucose to sorbose. The sorbose may be (b) separated or isolated; or (c) converted to ascorbic acid.

  20. Placental weight and placental weight-to-birth weight ratio are increased in diet- and exercise-treated gestational diabetes mellitus subjects but not in subjects with one abnormal value on 100-g oral glucose tolerance test.

    PubMed

    Kucuk, Mert; Doymaz, Fadime

    2009-01-01

    The aim of the present study was to determine whether the placental weight and placental weight-to-birth weight ratio (PW/BW) increased in pregnant women with one abnormal value (OAV) on 100-g oral glucose tolerance test (OGTT) and diet- and exercise-treated, non-insulin-requiring gestational diabetes mellitus (GDM) subjects. The 50-g glucose challenge test (GCT) was administered to 324 pregnant women. Women with abnormal 50-g test received a 100-g, 3-h OGTT using National Diabetes Data Group criteria. Women with GDM and OAV were treated with diet and exercise. Twenty subjects who required insulin or met exclusion criteria were excluded from the study. After the exclusion of 20 subjects, the GDM group consisted of 30 (9.7%) pregnant women and the OAV group consisted of 32 (9.9%) pregnant women. The control group consisted of 242 pregnant women. Birth weight (GDM: 3288.3+/-364.2 g; OAV: 3278.1+/-409.9 g; control group: 3270.6+/-346.5 g) did not differ significantly between groups (P>.05). Significantly higher placental weights (GDM: 694.8+/-152.1 g; OAV: 622.2+/-105.3 g; control group: 610.2+/-116.6 g; P<.01) and PW/BW (GDM: 0.21+/-0.03; OAV: 0.193+/-0.04; control group: 0.188+/-0.04; P<.01) were observed in GDM group compared to OAV and control group. No significant difference was found for OAV group in terms of placental weight and PW/BW compared to the control group. Our data indicated that women with OAV delivered infants and placenta of similar weight to those of normal pregnancies.

  1. Glucose-6-phosphatase deficiency

    PubMed Central

    2011-01-01

    Glucose-6-phosphatase deficiency (G6P deficiency), or glycogen storage disease type I (GSDI), is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea). Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty), generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma) and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency). GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia) which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib). Mutations in the genes G6PC (17q21) and SLC37A4 (11q23) respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most commonly confirmed

  2. [Contribution of the kidney to glucose homeostasis].

    PubMed

    Segura, Julián; Ruilope, Luis Miguel

    2013-09-01

    The kidney is involved in glucose homeostasis through three major mechanisms: renal gluconeogenesis, renal glucose consumption, and glucose reabsorption in the proximal tubule. Glucose reabsorption is one of the most important physiological functions of the kidney, allowing full recovery of filtered glucose, elimination of glucose from the urine, and prevention of calorie loss. Approximately 90% of the glucose is reabsorbed in the S1 segment of the proximal tubule, where glucose transporter-2 (GLUT2) and sodium-glucose transporter-2 (SGLT2) are located, while the remaining 10% is reabsorbed in the S3 segment by SGLT1 and GLUT1 transporters. In patients with hyperglycemia, the kidney continues to reabsorb glucose, thus maintaining hyperglycemia. Most of the renal glucose reabsorption is mediated by SGLT2. Several experimental and clinical studies suggest that pharmacological blockade of this transporter might be beneficial in the management of hyperglycemia in patients with type 2 diabetes. PMID:24444521

  3. [Contribution of the kidney to glucose homeostasis].

    PubMed

    Segura, Julián; Ruilope, Luis Miguel

    2013-09-01

    The kidney is involved in glucose homeostasis through three major mechanisms: renal gluconeogenesis, renal glucose consumption, and glucose reabsorption in the proximal tubule. Glucose reabsorption is one of the most important physiological functions of the kidney, allowing full recovery of filtered glucose, elimination of glucose from the urine, and prevention of calorie loss. Approximately 90% of the glucose is reabsorbed in the S1 segment of the proximal tubule, where glucose transporter-2 (GLUT2) and sodium-glucose transporter-2 (SGLT2) are located, while the remaining 10% is reabsorbed in the S3 segment by SGLT1 and GLUT1 transporters. In patients with hyperglycemia, the kidney continues to reabsorb glucose, thus maintaining hyperglycemia. Most of the renal glucose reabsorption is mediated by SGLT2. Several experimental and clinical studies suggest that pharmacological blockade of this transporter might be beneficial in the management of hyperglycemia in patients with type 2 diabetes.

  4. Effect of Low Frequency Neuromuscular Electrical Stimulation on Glucose Profile of Persons with Type 2 Diabetes: A Pilot Study

    PubMed Central

    Belliveau, Lise; Probizanski, David; Newhouse, Ian; McAuliffe, Jim; Jakobi, Jennifer; Johnson, Michel

    2015-01-01

    The purpose of this study was to examine the effect of low-frequency neuromuscular electrical stimulation (NMES) on glucose profile in persons with type 2 diabetes mellitus (T2DM). Eight persons with T2DM (41 to 65 years) completed a glucose tolerance test with and without NMES delivered to the knee extensors for a 1-hour period at 8 Hz. Three blood samples were collected: at rest, and then 60 and 120 minutes after consumption of a glucose load on the NMES and control days. In NMES groups glucose concentrations were significantly lower (P<0.01) than in the control conditions. Moreover, a significant positive correlation (r=0.9, P<0.01) was obtained between the intensity of stimulation and changes in blood glucose. Our results suggest that low-frequency stimulation seem suitable to induce enhance glucose uptake in persons with T2DM. Moreover, the intensity of stimulation reflecting the motor contraction should be considered during NMES procedure. PMID:26124997

  5. Glycemic variability in relation to oral disposition index in the subjects with different stages of glucose tolerance

    PubMed Central

    2013-01-01

    Background Glucose variability could be an independent risk factor for diabetes complications in addition to average glucose. The deficiency in islet β cell secretion and insulin sensitivity, the two important pathophysiological mechanisms of diabetes, are responsible for glycemic disorders. The oral disposition index evaluated by product of insulin secretion and sensitivity is a useful marker of islet β cell function. The aim of the study is to investigate glycemic variability in relation to oral disposition index in the subjects across a range of glucose tolerance from the normal to overt type 2 diabetes. Methods 75-g oral glucose tolerance test (OGTT) was performed in total 220 subjects: 47 with normal glucose regulation (NGR), 52 with impaired glucose metabolism (IGM, 8 with isolated impaired fasting glucose [IFG], 18 with isolated impaired glucose tolerance [IGT] and 26 with combined IFG and IGT), 61 screen-diagnosed diabetes by isolated 2-h glucose (DM2h) and 60 newly diagnosed diabetes by both fasting and 2-h glucose (DM). Insulin sensitivity index (Matsuda index, ISI), insulin secretion index (ΔI30/ΔG30), and integrated β cell function measured by the oral disposition index (ΔI30/ΔG30 multiplied by the ISI) were derived from OGTT. All subjects were monitored using the continuous glucose monitoring system for consecutive 72 hours. The multiple parameters of glycemic variability included the standard deviation of blood glucose (SD), mean of blood glucose (MBG), high blood glucose index (HBGI), continuous overlapping net glycemic action calculated every 1 h (CONGA1), mean of daily differences (MODD) and mean amplitude of glycemic excursions (MAGE). Results From the NGR to IGM to DM2h to DM group, the respective values of SD (mean ± SD) (0.9 ± 0.3, 1.5 ± 0.5, 1.9 ± 0.6 and 2.2 ± 0.6 mmol/), MBG (5.9 ± 0.5, 6.7 ± 0.7, 7.7 ± 1.0 and 8.7 ± 1.5 mmol/L), HGBI [median(Q1–Q3)][0.8(0.2–1.2), 2.0(1.2–3.7), 3

  6. Short-Term Thermal-Humidity Shock Affects Point-of-Care Glucose Testing

    PubMed Central

    Lam, Mandy; Curtis, Corbin M.; Ferguson, William J.; Vy, John H.; Truong, Anh-Thu; Sumner, Stephanie L.; Kost, Gerald J.

    2014-01-01

    The objective was to assess the effects of short-term (≤1 hour) static high temperature and humidity stresses on the performance of point-of-care (POC) glucose test strips and meters. Glucose meters are used by medical responders and patients in a variety of settings including hospitals, clinics, homes, and the field. Reagent test strips and instruments are potentially exposed to austere environmental conditions. Glucose test strips and meters were exposed to a mean relative humidity of 83.0% (SD = 8.0%) and temperature of 42°C (107.6°F, SD = 3.2) in a Tenney BTRC environmental chamber. Stressed and unstressed glucose reagent strips and meters were tested with spiked blood samples (n = 40 measurements per time point for each of 4 trials) after 15, 30, 45, and 60 minutes of exposure. Wilcoxon’s signed rank test was applied to compare measurements test strip and meter measurements to isolate and characterize the magnitude of meter versus test strip effects individually. Stressed POC meters and test strips produced elevated glucose results, with stressed meter bias as high as 20 mg/dL (17.7% error), and stressed test strip bias as high as 13 mg/dL (12.2% error). The aggregate stress effect on meter and test strips yielded a positive bias as high as 33 mg/dL (30.1% error) after 15 minutes of exposure. Short-term exposure (15 minutes) to high temperature and humidity can significantly affect the performance of POC glucose test strips and meters, with measurement biases that potentially affect clinical decision making and patient safety. PMID:24876542

  7. Breakfast, blood glucose, and cognition.

    PubMed

    Benton, D; Parker, P Y

    1998-04-01

    This article compares the findings of three studies that explored the role of increased blood glucose in improving memory function for subjects who ate breakfast. An initial improvement in memory function for these subjects was found to correlate with blood glucose concentrations. In subsequent studies, morning fasting was found to adversely affect the ability to recall a word list and a story read aloud, as well as recall items while counting backwards. Failure to eat breakfast did not affect performance on an intelligence test. It was concluded that breakfast consumption preferentially influences tasks requiring aspects of memory. In the case of both word list recall and memory while counting backwards, the decline in performance associated with not eating breakfast was reversed by the consumption of a glucose-supplemented drink. Although a morning fast also affected the ability to recall a story read aloud, the glucose drink did not reverse this decline. It appears that breakfast consumption influences cognition via several mechanisms, including an increase in blood glucose. PMID:9537627

  8. Polyamines alter intestinal glucose transport.

    PubMed

    Johnson, L R; Brockway, P D; Madsen, K; Hardin, J A; Gall, D G

    1995-03-01

    Polyamines are required for the growth of all eukaryotic cells. Enterocytes respond to luminal nutrients with large increases in polyamine synthesis, even though they are mature, nonproliferating cells. The role of polyamines in these cells is unknown. The current experiments examined whether polyamines affected intestinal transport of glucose, since absorption is the primary activity of enterocytes and since polyamines are known to affect membrane function and stability. Glucose transport was examined in rabbit brush-border membrane vesicles (BBMV). BBMV from rabbits given 5% alpha-difluoromethylornithine (DFMO) in their drinking water 24 h before they were killed transported significantly less glucose than control vesicles [38% decrease in maximal transport rate (Jmax)]. Orogastric administration of spermine, spermidine, or putrescine to DFMO-treated animals 24 h before they were killed prevented the decrease. In rabbits receiving only orogastric spermine, glucose transport was significantly increased (64% increase in Jmax), whereas in vivo spermidine and putrescine decreased Jmax. This increase in Jmax caused by in vivo administration of spermine was not dependent on protein synthesis. Addition of polyamines whether in vivo or in vitro decreased Michaelis constant in vesicles from control and DFMO-treated animals. The change in glucose transport induced by DFMO or polyamines was not related to altered membrane lipid composition or fluidity.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Glucose metabolism and cardiac hypertrophy

    PubMed Central

    Kolwicz, Stephen C.; Tian, Rong

    2011-01-01

    The most notable change in the metabolic profile of hypertrophied hearts is an increased reliance on glucose with an overall reduced oxidative metabolism, i.e. a reappearance of the foetal metabolic pattern. In animal models, this change is attributed to the down-regulation of the transcriptional cascades promoting gene expression for fatty acid oxidation and mitochondrial oxidative phosphorylation in adult hearts. Impaired myocardial energetics in cardiac hypertrophy also triggers AMP-activated protein kinase (AMPK), leading to increased glucose uptake and glycolysis. Aside from increased reliance on glucose as an energy source, changes in other glucose metabolism pathways, e.g. the pentose phosphate pathway, the glucosamine biosynthesis pathway, and anaplerosis, are also noted in the hypertrophied hearts. Studies using transgenic mouse models and pharmacological compounds to mimic or counter the switch of substrate preference in cardiac hypertrophy have demonstrated that increased glucose metabolism in adult heart is not harmful and can be beneficial when it provides sufficient fuel for oxidative metabolism. However, improvement in the oxidative capacity and efficiency rather than the selection of the substrate is likely the ultimate goal for metabolic therapies. PMID:21502371

  10. Glucose-sensing neurons of the hypothalamus

    PubMed Central

    Burdakov, Denis; Luckman, Simon M; Verkhratsky, Alexei

    2005-01-01

    Specialized subgroups of hypothalamic neurons exhibit specific excitatory or inhibitory electrical responses to changes in extracellular levels of glucose. Glucose-excited neurons were traditionally assumed to employ a ‘β-cell’ glucose-sensing strategy, where glucose elevates cytosolic ATP, which closes KATP channels containing Kir6.2 subunits, causing depolarization and increased excitability. Recent findings indicate that although elements of this canonical model are functional in some hypothalamic cells, this pathway is not universally essential for excitation of glucose-sensing neurons by glucose. Thus glucose-induced excitation of arcuate nucleus neurons was recently reported in mice lacking Kir6.2, and no significant increases in cytosolic ATP levels could be detected in hypothalamic neurons after changes in extracellular glucose. Possible alternative glucose-sensing strategies include electrogenic glucose entry, glucose-induced release of glial lactate, and extracellular glucose receptors. Glucose-induced electrical inhibition is much less understood than excitation, and has been proposed to involve reduction in the depolarizing activity of the Na+/K+ pump, or activation of a hyperpolarizing Cl− current. Investigations of neurotransmitter identities of glucose-sensing neurons are beginning to provide detailed information about their physiological roles. In the mouse lateral hypothalamus, orexin/hypocretin neurons (which promote wakefulness, locomotor activity and foraging) are glucose-inhibited, whereas melanin-concentrating hormone neurons (which promote sleep and energy conservation) are glucose-excited. In the hypothalamic arcuate nucleus, excitatory actions of glucose on anorexigenic POMC neurons in mice have been reported, while the appetite-promoting NPY neurons may be directly inhibited by glucose. These results stress the fundamental importance of hypothalamic glucose-sensing neurons in orchestrating sleep-wake cycles, energy expenditure and

  11. Pretreatment glucose status determines HCC development in HCV patients with mild liver disease after curative antiviral therapy.

    PubMed

    Huang, Chung-Feng; Yeh, Ming-Lun; Huang, Cing-Yi; Tsai, Pei-Chien; Ko, Yu-Min; Chen, Kuan-Yu; Lin, Zu-Yau; Chen, Shinn-Cherng; Dai, Chia-Yen; Chuang, Wan-Long; Huang, Jee-Fu; Yu, Ming-Lung

    2016-07-01

    Although diabetes mellitus (DM) is known to increase the risk of hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), the impact of dynamic glucose status on HCC occurrence in chronic hepatitis C (CHC) patients receiving antiviral therapy is unclear. In total, 1112 biopsy-proven patients treated with peginterferon/ribavirin were enrolled in this study. Both pretreatment and post-treatment glucose status, including 75 g oral glucose tolerance test (OGTT), were measured to evaluate the association between glucose status and the development of HCC. Of the 1112 patients evaluated, 93 (8.4%) developed HCC >5183.8 person-years of follow-up (annual incidence rate: 1.79%). DM only influenced the risk of developing CC in patients with mild liver disease (F0-2) and a sustained virological response (SVR) but not in other patient subpopulations. Cox-regression analysis demonstrated that the strongest factor associated with HCC in patients with mild liver disease and SVR was the presence of DM (hazard ratio [HR]/95 % confidence intervals [CI]: 3.79/1.420-10.136, P = 0.008), followed by age (HR/CI: 1.06/1.001-1.117, P = 0.046) and platelet count (HR/CI: 0.989/0.979-1.000, P = 0.05). The percentages of SVR patients with F0-2 with normoglycemia, pre-DM, sub-DM (pre-sDM), and DM before treatment were 45.3% (n = 267), 29.9% (n = 176), 15.6% (n = 92), and 9.2% (n = 54), respectively. The percentages of HCC in patients with normoglycemia, pre-sDM, and DM were 1.1%, 3.7%, and 11.1%, respectively (trend P < 0.001). Sixteen of the 19 (84.2 %) HCC patients possessed glucose abnormality (including 6 patients with DM and 10 patients with pre-sDM) before antiviral therapy. Compared to patients with normoglycemia, the incidence of HCC increased gradually from pre-sDM (HR: 3.6, P = 0.05) to DM (HR: 11.6, P = 0.001) (adjusted trend P = 0.004). We concluded that DM is a critical determinant for the development of HCC in SVR patients with mild liver disease. Pre-sDM status

  12. Urinary glucose and vitamin C.

    PubMed

    Brandt, R; Guyer, K E; Banks, W L

    1977-11-01

    The recent popularization of self-prescribed large doses of vitamin C has increased the possibility for erroneous conclusions to be drawn from standard clinical methods used in urinary glucose monitoring, due to interference with these methods by the greatly elevated excretion of vitamin C. The coupled-enzyme-chromogen strip tests showed erroneously negative glucose levels in urines of both a diabetic individual and a subject with a genetic low renal threshold for glucose when they were supplementing their normal diets with 1-2 g vitamin C per day. With this regimen, their urinary vitamin C levels reached 200 mg/dl (11.4 mmol/l). For normal urine with vitamin C added, false-positive tests for glucose were found using Benedict's reagent when vitamin C was present at 250 mg/dl (14.3 mmol/l) or higher concentrations. In diabetic individuals consuming large quantities of vitamin C, this interference with standard coupled-enzyme-chromogen strip tests or Benedict's test could present a significant problem in diagnosis and clinical management of the disease. A simple anion exchange method of treating the urine was used to correct the false results. PMID:920657

  13. [Continuous monitoring systems of glucose].

    PubMed

    Vidal, Mercè; Jansà, Margarida

    2013-04-01

    The possibility of obtaining a continuous reading of glucose may represent a breakthrough and a useful tool for the management of diabetes. Technological advances can improve the quality of life and people with diabetes metabolic control, even if this means having to learn and incorporate new technical concepts, new algorithms for pattern modification and new challenges in Therapeutic Education.

  14. Glucose polymer regimens and hypernatraemia.

    PubMed

    Verber, I G; Bain, M

    1990-06-01

    A 3 year old boy who had glutaric aciduria diagnosed at 22 months of age was admitted with a history of lethargy, vomiting, and fever. He had been receiving glucose polymers as part of his dietary management. He was severely hypernatraemic, but after resuscitation and rehydration made a good recovery. The possible aetiology of his hypernatraemia is discussed.

  15. Basal and glucose-suppressed GH levels less than 1 microg/L in newly diagnosed acromegaly.

    PubMed

    Freda, Pamela U; Reyes, Carlos M; Nuruzzaman, Abu T; Sundeen, Robert E; Bruce, Jeffrey N

    2003-01-01

    The development of highly sensitive and specific GH assays has necessitated a critical re-evaluation of the biochemical criteria needed for the diagnosis of acromegaly. Use of these assays has revealed that GH levels after oral glucose in healthy subjects and postoperative patients with active acromegaly can be significantly less than previously recognized with older GH assays. In order to assess GH criteria for newly diagnosed acromegaly with a modern assay we have evaluated GH levels in 25 patients referred to our Neuroendocrine Unit for evaluation of untreated acromegaly. All patients underwent measurement of basal GH and IGF-I levels and 15 of these patients also underwent oral glucose tolerance testing for GH suppression (OGTT). Basal GH levels were < 1.0 microg/L at diagnosis in 5 of these 25 patients. Nadir GH levels were less than 1 microg/L also in 5 of 15 patients, and as low as 0.42 microg/L. All patients had elevated IGF-I levels preoperatively and pathological confirmation of a GH secreting pituitary tumor at the time of transsphenoidal surgery. The clinical presentations of these patients was variable. Most patients presented with classical manifestations of acromegaly, but 3 of the 5 patients with low nadir GH values had only very subtle signs of acromegaly. Although most newly diagnosed patients have classically elevated GH levels and obvious clinical features of acromegaly, early recognition of disease may uncover patients with milder biochemical and clinical abnormalities. The diagnosis should not be discounted in patients who have elevated IGF-I levels, but have basal or nadir GH levels less than 1 microg/L. Conventional GH criteria for the diagnosis of acromegaly cannot be applied to the use of modern sensitive and specific GH assays. PMID:15237928

  16. Spontaneous subarachnoid hemorrhage and glucose management.

    PubMed

    Schmutzhard, Erich; Rabinstein, Alejandro A

    2011-09-01

    Although metabolic abnormalities have been linked with poor outcome after subarachnoid hemorrhage, there are limited data addressing the impact of glycemic control or benefits of glucose management after aneurysmal subarachnoid hemorrhage. A systematic literature search was conducted of English-language articles describing original research on glycemic control in patients with subarachnoid hemorrhage. Case reports and case series were excluded. A total of 22 publications were selected for this review. Among the 17 studies investigating glucose as an outcome predictor, glucose levels during hospitalization were more likely to predict outcome than admission glucose. In general, hyperglycemia was linked to worse outcome. While insulin therapy in subarachnoid hemorrhage patients was shown to effectively control plasma glucose levels, plasma glucose control was not necessarily reflective of cerebral glucose such that very tight glucose control may lead to neuroglycopenia. Furthermore, tight glycemic control was associated with an increased risk for hypoglycemia which was linked to worse outcome. PMID:21850563

  17. Microwave-Based Biosensor for Glucose Detection

    NASA Astrophysics Data System (ADS)

    Salim, N. S. M.; Khalid, K.; Yusof, N. A.

    2010-07-01

    In this project, microwave-based biosensor for glucose detection has been studied. The study is based on the dielectric properties changes at microwave frequency for glucose-enzyme reaction. Glucose interaction with glucose oxidase (GOD) produced gluconic acid and hydrogen peroxide. The reaction of the glucose solutions with an enzyme was carried out in 1:3 of glucose and enzyme respectively. The measurements were done using the Open Ended Coaxial Probe (OECP) coupled with computer controlled software automated network analyzer (ANA) with frequency range from 200MHz to 20GHz at room temperature (25 °C). The differences of enzyme and glucose-enzyme reaction were calculated and plotted. In the microwave interaction with the glucose-enzyme reaction, ionic conduction and dipole molecules was detected at 0.99GHz and 16.44GHz respectively based on changes of dielectric loss factor.

  18. Genetics Home Reference: glucose phosphate isomerase deficiency

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions GPI deficiency glucose phosphate isomerase deficiency Enable Javascript to view the ... boxes. Download PDF Open All Close All Description Glucose phosphate isomerase (GPI) deficiency is an inherited disorder ...

  19. Glucose Effect in the Acute Porphyrias

    MedlinePlus

    ... You are here Home Diet and Nutrition The glucose effect in acute porphyrias The disorders Acute Intermittent ... are treated initially with the administration of carbohydrate/glucose. This therapy has its basis in the ability ...

  20. Glucose sensing by means of silicon photonics

    NASA Astrophysics Data System (ADS)

    Bockstaele, Ronny; Ryckeboer, Eva; Hattasan, Nannicha; De Koninck, Yannick; Muneeb, Muhammad; Verstuyft, Steven; Delbeke, Danaë; Bogaerts, Wim; Roelkens, Gunther; Baets, Roel

    2014-03-01

    Diabetes is a fast growing metabolic disease, where the patients suffer from disordered glucose blood levels. Monitoring the blood glucose values in combination with extra insulin injection is currently the only therapy to keep the glucose concentration in diabetic patients under control, minimizing the long-term effects of elevated glucose concentrations and improving quality of life of the diabetic patients. Implantable sensors allow continuous glucose monitoring, offering the most reliable data to control the glucose levels. Infrared absorption spectrometers offer a non-chemical measurement method to determine the small glucose concentrations in blood serum. In this work, a spectrometer platform based on silicon photonics is presented, allowing the realization of very small glucose sensors suitable for building implantable sensors. A proof-of-concept of a spectrometer with integrated evanescent sample interface is presented, and the route towards a fully implantable spectrometer is discussed.

  1. 21 CFR 168.120 - Glucose sirup.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Glucose sirup. 168.120 Section 168.120 Food and... § 168.120 Glucose sirup. (a) Glucose sirup is the purified, concentrated, aqueous solution of nutritive... equivalent), expressed as D-glucose, is not less than 20.0 percent m/m calculated on a dry basis. (2)...

  2. 21 CFR 168.120 - Glucose sirup.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Glucose sirup. 168.120 Section 168.120 Food and... § 168.120 Glucose sirup. (a) Glucose sirup is the purified, concentrated, aqueous solution of nutritive... equivalent), expressed as D-glucose, is not less than 20.0 percent m/m calculated on a dry basis. (2)...

  3. 21 CFR 168.120 - Glucose sirup.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Glucose sirup. 168.120 Section 168.120 Food and... § 168.120 Glucose sirup. (a) Glucose sirup is the purified, concentrated, aqueous solution of nutritive... equivalent), expressed as D-glucose, is not less than 20.0 percent m/m calculated on a dry basis. (2)...

  4. Glucose transport machinery reconstituted in cell models.

    PubMed

    Hansen, Jesper S; Elbing, Karin; Thompson, James R; Malmstadt, Noah; Lindkvist-Petersson, Karin

    2015-02-11

    Here we demonstrate the production of a functioning cell model by formation of giant vesicles reconstituted with the GLUT1 glucose transporter and a glucose oxidase and hydrogen peroxidase linked fluorescent reporter internally. Hence, a simplified artificial cell is formed that is able to take up glucose and process it. PMID:25562394

  5. Glucose Transport Machinery Reconstituted in Cell Models

    PubMed Central

    Hansen, Jesper S.; Elbing, Karin; Thompson, James R.; Malmstadt, Noah

    2015-01-01

    Here we demonstrate the production of a functioning cell model by formation of giant vesicles reconstituted with the GLUT1 glucose transporter and a glucose oxidase and hydrogen peroxidase linked fluorescent reporter internally. Hence, a simplified artificial cell is formed that is able to take up glucose and process it. PMID:25562394

  6. A MEMS Dielectric Affinity Glucose Biosensor

    PubMed Central

    Huang, Xian; Li, Siqi; Davis, Erin; Li, Dachao; Wang, Qian; Lin, Qiao

    2013-01-01

    Continuous glucose monitoring (CGM) sensors based on affinity detection are desirable for long-term and stable glucose management. However, most affinity sensors contain mechanical moving structures and complex design in sensor actuation and signal readout, limiting their reliability in subcutaneously implantable glucose detection. We have previously demonstrated a proof-of-concept dielectric glucose sensor that measured pre-mixed glucose-sensitive polymer solutions at various glucose concentrations. This sensor features simplicity in sensor design, and possesses high specificity and accuracy in glucose detection. However, lack of glucose diffusion passage, this device is unable to fulfill real-time in-vivo monitoring. As a major improvement to this device, we present in this paper a fully implantable MEMS dielectric affinity glucose biosensor that contains a perforated electrode embedded in a suspended diaphragm. This capacitive-based sensor contains no moving parts, and enables glucose diffusion and real-time monitoring. The experimental results indicate that this sensor can detect glucose solutions at physiological concentrations and possesses good reversibility and reliability. This sensor has a time constant to glucose concentration change at approximately 3 min, which is comparable to commercial systems. The sensor has potential applications in fully implantable CGM that require excellent long-term stability and reliability. PMID:24511215

  7. Blood Glucose Levels and Problem Behavior

    ERIC Educational Resources Information Center

    Valdovinos, Maria G.; Weyand, David

    2006-01-01

    The relationship between varying blood glucose levels and problem behavior during daily scheduled activities was examined. The effects that varying blood glucose levels had on problem behavior during daily scheduled activities were examined. Prior research has shown that differing blood glucose levels can affect behavior and mood. Results of this…

  8. Effect of amiloride, or amiloride plus hydrochlorothiazide, versus hydrochlorothiazide on glucose tolerance and blood pressure (PATHWAY-3): a parallel-group, double-blind randomised phase 4 trial

    PubMed Central

    Brown, Morris J; Williams, Bryan; Morant, Steve V; Webb, David J; Caulfield, Mark J; Cruickshank, J Kennedy; Ford, Ian; McInnes, Gordon; Sever, Peter; Salsbury, Jackie; Mackenzie, Isla S; Padmanabhan, Sandosh; MacDonald, Thomas M

    2016-01-01

    Summary Background Potassium depletion by thiazide diuretics is associated with a rise in blood glucose. We assessed whether addition or substitution of a potassium-sparing diuretic, amiloride, to treatment with a thiazide can prevent glucose intolerance and improve blood pressure control. Methods We did a parallel-group, randomised, double-blind trial in 11 secondary and two primary care sites in the UK. Eligible patients were aged 18–80 years; had clinic systolic blood pressure of 140 mm Hg or higher and home systolic blood pressure of 130 mmHg or higher on permitted background drugs of angiotensin-converting enzyme inhibitors, angiotensin-receptor blockers, β blockers, calcium-channel blockers, or direct renin inhibitors (previously untreated patients were also eligible in specific circumstances); and had at least one component of the metabolic syndrome in addition to hypertension. Patients with known diabetes were excluded. Patients were randomly assigned (1:1:1) to 24 weeks of daily oral treatment with starting doses of 10 mg amiloride, 25 mg hydrochlorothiazide, or 5 mg amiloride plus 12·5 mg hydrochlorothiazide; all doses were doubled after 12 weeks. Random assignment was done via a central computer system. Both participants and investigators were masked to assignment. Our hierarchical primary endpoints, assessed on a modified intention-to-treat basis at 12 and 24 weeks, were the differences from baseline in blood glucose measured 2 h after a 75 g oral glucose tolerance test (OGTT), compared first between the hydrochlorothiazide and amiloride groups, and then between the hydrochlorothiazide and combination groups. A key secondary endpoint was change in home systolic blood pressure at 12 and 24 weeks. This trial is registered with ClinicalTrials.gov, number NCT00797862, and the MHRA, Eudract number 2009-010068-41, and is now complete. Findings Between Nov 18, 2009, and Dec 15, 2014, 145 patients were randomly assigned to amiloride, 146 to

  9. Diagnostic effectiveness of 75 g oral glucose tolerance test for gestational diabetes in India based on the International Association of the Diabetes and Pregnancy Study Groups guidelines

    PubMed Central

    Nikhat, Irfana; Nirmalan, Praveen K

    2013-01-01

    Background To determine the diagnostic effectiveness of the fasting and one-hour plasma glucose levels for gestational diabetes (GDM) based on International Association of the Diabetes and Pregnancy Study Groups (IADPSG) criteria. Methods A Cross-sectional study that included 2348 pregnant women booked for antenatal care in 2011 at a tertiary care perinatal institute. Pregnant women underwent a 75 g oral glucose tolerance test (OGTT) between 24 and 28 weeks of gestation. Outcome measures include the incidence of GDM based on the IADPSG criteria and the diagnostic effectiveness of the recommended fasting and one-hour plasma glucose cut-off if used in isolation. Results The incidence of GDM was 21.81% (n = 520, 95% CI: 20.15, 23.57) with the IADPSG criteria. A fasting plasma glucose cut-off 92 mg/dL, in isolation, correctly classified 87.16% of GDM, with a specificity of 96.08%, clinically significant positive likelihood ratio (14.08) and a post-test probability of 79.71%. The one-hour 75 g test, in isolation, correctly classified 85.74% of GDM, had specificity of 99.68% and clinically significant positive likelihood ratio (111.12) and post-test probability of 96.87%. The application of the World Health Organization criteria would misclassify 11.91% (95% CI: 10.66, 13.26) of GDM as normal. Conclusions Additional testing of plasma glucose levels can be avoided for 18.25% (n = 435, 95% CI: 16.73, 19.84) if the IADPSG diagnostic criteria for GDM are applied with exit on a positive fasting or one-hour test result.

  10. Non-invasive glucose monitor

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2001-01-01

    A non-invasive method for determining blood level of an analyte of interest, such as glucose, comprises: generating an excitation laser beam (e.g., at a wavelength of 700 to 900 nanometers); focusing the excitation laser beam into the anterior chamber of an eye of the subject so that aqueous humor in the anterior chamber is illuminated; detecting (preferably confocally detecting) a Raman spectrum from the illuminated aqueous humor; and then determining the blood glucose level (or the level of another analyte of interest) for the subject from the Raman spectrum. Preferably, the detecting step is followed by the step of subtracting a confounding fluorescence spectrum from the Raman spectrum to produce a difference spectrum; and determining the blood level of the analyte of interest for the subject from that difference spectrum, preferably using linear or nonlinear multivariate analysis such as partial least squares analysis. Apparatus for carrying out the foregoing method is also disclosed.

  11. Reimbursement for Continuous Glucose Monitoring.

    PubMed

    Heinemann, Lutz; DeVries, J Hans

    2016-02-01

    Continuous glucose monitoring (CGM) systems have been available for more than 15 years by now. However, market uptake is relatively low in most countries; in other words, relatively few patients with diabetes use CGM systems regularly. One major reason for the reluctance of patients to use CGM systems is the costs associated (i.e., in most countries no reimbursement is provided by the health insurance companies). In case reimbursement is in place, like in the United States, only certain patient groups get reimbursement that fulfills strict indications. This situation is somewhat surprising in view of the mounting evidence for benefits of CGM usage from clinical trials: most meta-analyses of these trials consistently show a clinically relevant improvement of glucose control associated with a reduction in hypoglycemic events. More recent trials with CGM systems with an improved CGM technology showed even more impressive benefits, especially if CGM systems are used in different combinations with an insulin pump (e.g., with automated bolus calculators and low glucose suspend features). Nevertheless, sufficient evidence is not available for all patient groups, and more data on cost-efficacy are needed. In addition, good data from real-world studies/registers documenting the benefits of CGM usage under daily life conditions would be of help to convince healthcare systems to cover the costs of CGM systems. In view of the ongoing improvements in established needle-type CGM systems, the fact that new CGM technology will come to the market soon (e.g., implantable sensors), that CGM-like systems are quite successfully at least in certain markets (like the flash glucose monitoring systems), and that the first artificial pancreas systems will come to the market in the next few years, there is a need to make sure that this major improvement in diabetes therapy becomes more widely available for patients with diabetes, for which better reimbursement is essential. PMID:26784130

  12. Reimbursement for Continuous Glucose Monitoring

    PubMed Central

    DeVries, J. Hans

    2016-01-01

    Abstract Continuous glucose monitoring (CGM) systems have been available for more than 15 years by now. However, market uptake is relatively low in most countries; in other words, relatively few patients with diabetes use CGM systems regularly. One major reason for the reluctance of patients to use CGM systems is the costs associated (i.e., in most countries no reimbursement is provided by the health insurance companies). In case reimbursement is in place, like in the United States, only certain patient groups get reimbursement that fulfills strict indications. This situation is somewhat surprising in view of the mounting evidence for benefits of CGM usage from clinical trials: most meta-analyses of these trials consistently show a clinically relevant improvement of glucose control associated with a reduction in hypoglycemic events. More recent trials with CGM systems with an improved CGM technology showed even more impressive benefits, especially if CGM systems are used in different combinations with an insulin pump (e.g., with automated bolus calculators and low glucose suspend features). Nevertheless, sufficient evidence is not available for all patient groups, and more data on cost–efficacy are needed. In addition, good data from real-world studies/registers documenting the benefits of CGM usage under daily life conditions would be of help to convince healthcare systems to cover the costs of CGM systems. In view of the ongoing improvements in established needle-type CGM systems, the fact that new CGM technology will come to the market soon (e.g., implantable sensors), that CGM-like systems are quite successfully at least in certain markets (like the flash glucose monitoring systems), and that the first artificial pancreas systems will come to the market in the next few years, there is a need to make sure that this major improvement in diabetes therapy becomes more widely available for patients with diabetes, for which better reimbursement is essential. PMID

  13. Impact of Maternal Glucose and Gestational Weight Gain on Child Obesity over the First Decade of Life in Normal Birth Weight Infants.

    PubMed

    Hillier, Teresa A; Pedula, Kathryn L; Vesco, Kimberly K; Oshiro, Caryn E S; Ogasawara, Keith K

    2016-08-01

    Objective To determine, among children with normal birth weight, if maternal hyperglycemia and weight gain independently increase childhood obesity risk in a very large diverse population. Methods Study population was 24,141 individuals (mothers and their normal birth weight offspring, born 1995-2003) among a diverse population with universal GDM screening [50-g glucose-challenge test (GCT); 3 h. 100 g oral glucose tolerance test (OGTT) if GCT+]. Among the 13,037 full-term offspring with normal birth weight (2500-4000 g), annual measured height/weight was ascertained between ages 2 and 10 years to calculate gender-specific BMI-for-age percentiles using USA norms (1960-1995 standard). Results Among children who began life with normal birth weight, we found a significant trend for developing both childhood overweight (>85 %ile) and obesity (>95 %ile) during the first decade of life with both maternal hyperglycemia (normal GCT, GCT+ but no GDM, GDM) and excessive gestational weight gain [>40 pounds (18.1 kg)]; p < 0.0001 for both trends. These maternal glucose and/or weight gain effects to imprint for childhood obesity in the first decade remained after adjustment for potential confounders including maternal age, parity, as well as pre-pregnancy BMI. The attributable risk (%) for childhood obesity was 28.5 % (95 % CI 15.9-41.1) for GDM and 16.4 % (95 % CI 9.4-23.2) for excessive gestational weight gain. Conclusions for Practice Both maternal hyperglycemia and excessive weight gain have independent effects to increase childhood obesity risk. Future research should focus on prevention efforts during pregnancy as a potential window of opportunity to reduce childhood obesity.

  14. Impact of Maternal Glucose and Gestational Weight Gain on Child Obesity over the First Decade of Life in Normal Birth Weight Infants.

    PubMed

    Hillier, Teresa A; Pedula, Kathryn L; Vesco, Kimberly K; Oshiro, Caryn E S; Ogasawara, Keith K

    2016-08-01

    Objective To determine, among children with normal birth weight, if maternal hyperglycemia and weight gain independently increase childhood obesity risk in a very large diverse population. Methods Study population was 24,141 individuals (mothers and their normal birth weight offspring, born 1995-2003) among a diverse population with universal GDM screening [50-g glucose-challenge test (GCT); 3 h. 100 g oral glucose tolerance test (OGTT) if GCT+]. Among the 13,037 full-term offspring with normal birth weight (2500-4000 g), annual measured height/weight was ascertained between ages 2 and 10 years to calculate gender-specific BMI-for-age percentiles using USA norms (1960-1995 standard). Results Among children who began life with normal birth weight, we found a significant trend for developing both childhood overweight (>85 %ile) and obesity (>95 %ile) during the first decade of life with both maternal hyperglycemia (normal GCT, GCT+ but no GDM, GDM) and excessive gestational weight gain [>40 pounds (18.1 kg)]; p < 0.0001 for both trends. These maternal glucose and/or weight gain effects to imprint for childhood obesity in the first decade remained after adjustment for potential confounders including maternal age, parity, as well as pre-pregnancy BMI. The attributable risk (%) for childhood obesity was 28.5 % (95 % CI 15.9-41.1) for GDM and 16.4 % (95 % CI 9.4-23.2) for excessive gestational weight gain. Conclusions for Practice Both maternal hyperglycemia and excessive weight gain have independent effects to increase childhood obesity risk. Future research should focus on prevention efforts during pregnancy as a potential window of opportunity to reduce childhood obesity. PMID:27154523

  15. Glucose metabolism in diabetic blood vessels

    SciTech Connect

    Brown, B.J.; Crass, M.F. III

    1986-03-05

    Since glycolysis appears to be coupled to active ion transport in vascular smooth muscle, alterations in glucose metabolism may contribute to cellular dysfunction and angiopathy in diabetes. Uptake and utilization of glucose were studied in perfused blood vessels in which pulsatile flow and perfusion pressure were similar to those measured directly in vivo. Thoracic aortae isolated from 8-wk alloxan diabetic (D) and nondiabetic control rabbits were cannulated, tethered, and perfused with oxygenated buffer containing 7 or 25 mM glucose and tracer amounts of glucose-U/sup -14/ C. Norepinephrine (NE) (10/sup -6/ M) and/or insulin (I) (150 ..mu..U/ml) and albumin (0.2%) were added. NE-induced tension development increased glucose uptake 39% and /sup 14/CO/sub 2/ and lactate production 2.3-fold. With 7 mM glucose, marked decreases in glucose uptake (74%), /sup 14/CO/sub 2/ (68%), lactate (30%), total tissue glycogen (75%), and tissue phospholipids (70%) were observed in D. Addition of I or elevation of exogenous glucose to 25 mM normalized glucose uptake, but had differential effects on the pattern of substrate utilization. Thus, in D, there was a marked depression of vascular glucose metabolism that was partially reversed by addition of low concentrations of insulin or D levels of glucose.

  16. Measurement of Glucose Uptake in Cultured Cells.

    PubMed

    Yamamoto, Norio; Ueda-Wakagi, Manabu; Sato, Takuya; Kawasaki, Kengo; Sawada, Keisuke; Kawabata, Kyuichi; Akagawa, Mitsugu; Ashida, Hitoshi

    2015-12-08

    Facilitative glucose uptake transport systems are ubiquitous in animal cells and are responsible for transporting glucose across cell surface membranes. Evaluation of glucose uptake is crucial in the study of numerous diseases and metabolic disorders such as myocardial ischemia, diabetes mellitus, and cancer. Detailed in this unit are laboratory methods for assessing glucose uptake into mammalian cells. The unit is divided into five sections: (1) a brief overview of glucose uptake assays in cultured cells; (2) a method for measuring glucose uptake using radiolabeled 3-O-methylglucose; (3) a method for measuring glucose uptake using radiolabeled 2-deoxyglucose (2DG); (4) a microplate method for measuring 2DG-uptake using an enzymatic, fluorometric assay; and (5) a microplate-based method using a fluorescent analog of 2DG.

  17. Comparison of single and combination diuretics on glucose tolerance (PATHWAY-3): protocol for a randomised double-blind trial in patients with essential hypertension

    PubMed Central

    Brown, Morris J; Williams, Bryan; MacDonald, Thomas M; Caulfield, Mark; Cruickshank, J Kennedy; McInnes, Gordon; Sever, Peter; Webb, David J; Salsbury, Jackie; Morant, Steve; Ford, Ian

    2015-01-01

    Introduction Thiazide diuretics are associated with increased risk of diabetes mellitus. This risk may arise from K+-depletion. We hypothesised that a K+-sparing diuretic will improve glucose tolerance, and that combination of low-dose thiazide with K+-sparing diuretic will improve both blood pressure reduction and glucose tolerance, compared to a high-dose thiazide. Methods and analysis This is a parallel-group, randomised, double-blind, multicentre trial, comparing hydrochlorothiazide 25–50 mg, amiloride 10–20 mg and combination of both diuretics at half these doses. A single-blind placebo run-in of 1 month is followed by 24 weeks of blinded active treatment. There is forced dose-doubling after 3 months. The Primary end point is the blood glucose 2 h after oral ingestion of a 75 g glucose drink (OGTT), following overnight fasting. The primary outcome is the difference between 2 h glucose at weeks 0, 12 and 24. Secondary outcomes include the changes in home systolic blood pressure (BP) and glycated haemoglobin and prediction of response by baseline plasma renin. Eligibility criteria are: age 18–79, systolic BP on permitted background treatment ≥140 mm Hg and home BP ≥130 mm Hg and one component of the metabolic syndrome additional to hypertension. Principal exclusions are diabetes, estimated-glomerular filtration rate <45 mL/min, abnormal plasma K+, clinic SBP >200 mm Hg or DBP >120 mm Hg (box 2). The sample size calculation indicates that 486 patients will give 80% power at α=0.01 to detect a difference in means of 1 mmol/L (SD=2.2) between 2 h glucose on hydrochlorothiazide and comparators. Ethics and dissemination PATHWAY-3 was approved by Cambridge South Ethics Committee, number 09/H035/19. The trial results will be published in a peer-reviewed scientific journal. Trial registration numbers Eudract number 2009-010068-41 and clinical trials registration number: NCT02351973. PMID:26253567

  18. Differential effects of glucose and alcohol on reactive oxygen species generation and intranuclear nuclear factor-kappaB in mononuclear cells.

    PubMed

    Dhindsa, Sandeep; Tripathy, Devjit; Mohanty, Priya; Ghanim, Husam; Syed, Tufail; Aljada, Ahmad; Dandona, Paresh

    2004-03-01

    It has previously been shown that oral intake of 300 calories of glucose (75 g), lipid, or protein increases reactive oxygen species (ROS) generation by polymorphonuclear cells (PMNL) and mononuclear cells (MNCs). We investigated the effects of 75 g glucose on proinflammatory transcription factor, nuclear factor-kappaB (NFkappaB), in mononuclear cells. To further investigate whether the effects of macronutrient-induced oxidative stress are due to consumption of calories or are nutrient specific, we investigated the effects of acute oral challenge of equicaloric amounts of alcohol (300 calories) on ROS generation and NF-kappaB activation in MNCs and PMNL and compared them with those of glucose and water (control). Sixteen normal healthy adult volunteers were given either vodka (10 subjects), glucose solution (10 subjects), or 300 mL water (7 subjects). Vodka and glucose drinks were equivalent to 300 calories. We measured ROS generation and intranuclear NF-kappaB activation by PMNL cells and MNCs at 1 hour, 2 hours, and 3 hours following ingestion. ROS generation by both MNC and PMNL increased significantly (P <.05 for MNC and P <.01 for PMNL) following intake of glucose solution, but did not change significantly following alcohol or water. NF-kappaB binding activity in MNC nuclear extracts also increased (P <.001) following ingestion of glucose solution, but did not change after the administration of alcohol or water. We conclude that (1) 75 g oral glucose increases NF-kappaB binding activity in MNCs. (2) While 75 g glucose (300 calories) induces an increase in ROS generation and intranuclear NF-kappaB, equicaloric amounts of alcohol did not produce these effects.

  19. Central acylated ghrelin improves memory function and hippocampal AMPK activation and partly reverses the impairment of energy and glucose metabolism in rats infused with β-amyloid.

    PubMed

    Kang, Suna; Moon, Na Rang; Kim, Da Sol; Kim, Sung Hoon; Park, Sunmin

    2015-09-01

    Ghrelin is a gastric hormone released during the fasting state that targets the hypothalamus where it induces hunger; however, emerging evidence suggests it may also affect memory function. We examined the effect of central acylated-ghrelin and DES-acetylated ghrelin (native ghrelin) on memory function and glucose metabolism in an experimentally induced Alzheimer's disease (AD) rat model. AD rats were divided into 3 groups and Non-AD rats were used as a normal-control group. Each rat in the AD groups had intracerebroventricular (ICV) infusion of β-amyloid (25-35; 16.8nmol/day) into the lateral ventricle for 3 days, and then the pumps were changed to infuse either acylated-ghrelin (0.2nmol/h; AD-G), DES-acylated ghrelin (0.2nmol/h; AD-DES-G), or saline (control; AD-C) for 3 weeks. The Non-AD group had ICV infusion of β-amyloid (35-25) which does not deposit in the hippocampus. During the next 3 weeks memory function, food intake, body weight gain, body fat composition, and glucose metabolism were measured. AD-C exhibited greater β-amyloid deposition compared to Non-AD-C, and AD-G suppressed the increased β-amyloid deposition and potentiated the phosphorylation AMPK. In addition, AD-G increased the phosphorylation GSK and decreased the phosphorylation of Tau in comparison to AD-C and AD-DES-G. Cognitive function, measured by passive avoidance and water maze tests, was much lower in AD-C than Non-AD-C whereas AD-G but not AD-DES-G prevented the decrease (p<0.021). Body weight gain was lower in AD-C group than Non-AD-C group without changing epididymal fat mass. AD-G reversed the decrease in body weight which was due to increased energy intake and decreased energy expenditure. The AD-G group exhibited a decrease in the second part of serum glucose levels during an oral glucose tolerance test (OGTT) compared to the AD-C and AD-DES-G group (p<0.009). However, area under the curve of insulin during the first part of OGTT was higher in AD-DES-G than other groups

  20. Central acylated ghrelin improves memory function and hippocampal AMPK activation and partly reverses the impairment of energy and glucose metabolism in rats infused with β-amyloid.

    PubMed

    Kang, Suna; Moon, Na Rang; Kim, Da Sol; Kim, Sung Hoon; Park, Sunmin

    2015-09-01

    Ghrelin is a gastric hormone released during the fasting state that targets the hypothalamus where it induces hunger; however, emerging evidence suggests it may also affect memory function. We examined the effect of central acylated-ghrelin and DES-acetylated ghrelin (native ghrelin) on memory function and glucose metabolism in an experimentally induced Alzheimer's disease (AD) rat model. AD rats were divided into 3 groups and Non-AD rats were used as a normal-control group. Each rat in the AD groups had intracerebroventricular (ICV) infusion of β-amyloid (25-35; 16.8nmol/day) into the lateral ventricle for 3 days, and then the pumps were changed to infuse either acylated-ghrelin (0.2nmol/h; AD-G), DES-acylated ghrelin (0.2nmol/h; AD-DES-G), or saline (control; AD-C) for 3 weeks. The Non-AD group had ICV infusion of β-amyloid (35-25) which does not deposit in the hippocampus. During the next 3 weeks memory function, food intake, body weight gain, body fat composition, and glucose metabolism were measured. AD-C exhibited greater β-amyloid deposition compared to Non-AD-C, and AD-G suppressed the increased β-amyloid deposition and potentiated the phosphorylation AMPK. In addition, AD-G increased the phosphorylation GSK and decreased the phosphorylation of Tau in comparison to AD-C and AD-DES-G. Cognitive function, measured by passive avoidance and water maze tests, was much lower in AD-C than Non-AD-C whereas AD-G but not AD-DES-G prevented the decrease (p<0.021). Body weight gain was lower in AD-C group than Non-AD-C group without changing epididymal fat mass. AD-G reversed the decrease in body weight which was due to increased energy intake and decreased energy expenditure. The AD-G group exhibited a decrease in the second part of serum glucose levels during an oral glucose tolerance test (OGTT) compared to the AD-C and AD-DES-G group (p<0.009). However, area under the curve of insulin during the first part of OGTT was higher in AD-DES-G than other groups

  1. Continuous Glucose Monitoring in Patients with Abnormal Glucose Tolerance during Pregnancy: A Case Series.

    PubMed

    Tonoike, Mie; Kishimoto, Miyako; Yamamoto, Mayumi; Yano, Tetsu; Noda, Mitsuhiko

    2016-01-01

    Abnormal glucose tolerance during pregnancy is associated with perinatal complications. We used continuous glucose monitoring (CGM) in pregnant women with glucose intolerance to achieve better glycemic control and to evaluate the maternal glucose fluctuations. We also used CGM in women without glucose intolerance (the control cases). Furthermore, the standard deviation (SD) and mean amplitude of glycemic excursions (MAGE) were calculated for each case. For the control cases, the glucose levels were tightly controlled within a very narrow range; however, the SD and MAGE values in pregnant women with glucose intolerance were relativity high, suggesting postprandial hyperglycemia. Our results demonstrate that pregnant women with glucose intolerance exhibited greater glucose fluctuations compared with the control cases. The use of CGM may help to improve our understanding of glycemic patterns and may have beneficial effects on perinatal glycemic control, such as the detection of postprandial hyperglycemia in pregnant women. PMID:26949348

  2. A MEMS differential viscometric sensor for affinity glucose detection in continuous glucose monitoring.

    PubMed

    Huang, Xian; Li, Siqi; Davis, Erin; Leduc, Charles; Ravussin, Yann; Cai, Haogang; Song, Bing; Li, Dachao; Accili, Domenico; Leibel, Rudolph; Wang, Qian; Lin, Qiao

    2013-05-01

    Micromachined viscometric affinity glucose sensors have been previously demonstrated using vibrational cantilever and diaphragm. These devices featured a single glucose detection module that determines glucose concentrations through viscosity changes of glucose-sensitive polymer solutions. However, fluctuations in temperature and other environmental parameters might potentially affect the stability and reliability of these devices, creating complexity in their applications in subcutaneously implanted continuous glucose monitoring (CGM). To address these issues, we present a MEMS differential sensor that can effectively reject environmental disturbances while allowing accurate glucose detection. The sensor consists of two magnetically driven vibrating diaphragms situated inside microchambers filled with a boronic-acid based glucose-sensing solution and a reference solution insensitive to glucose. Glucose concentrations can be accurately determined by characteristics of the diaphragm vibration through differential capacitive detection. Our in-vitro and preliminary in-vivo experimental data demonstrate the potential of this sensor for highly stable subcutaneous CGM applications. PMID:23956499

  3. A MEMS differential viscometric sensor for affinity glucose detection in continuous glucose monitoring

    NASA Astrophysics Data System (ADS)

    Huang, Xian; Li, Siqi; Davis, Erin; Leduc, Charles; Ravussin, Yann; Cai, Haogang; Song, Bing; Li, Dachao; Accili, Domenico; Leibel, Rudolph; Wang, Qian; Lin, Qiao

    2013-05-01

    Micromachined viscometric affinity glucose sensors have been previously demonstrated using vibrational cantilever and diaphragm. These devices featured a single glucose detection module that determines glucose concentrations through viscosity changes of glucose-sensitive polymer solutions. However, fluctuations in temperature and other environmental parameters might potentially affect the stability and reliability of these devices, creating complexity in their applications in subcutaneously implanted continuous glucose monitoring (CGM). To address these issues, we present a MEMS differential sensor that can effectively reject environmental disturbances while allowing accurate glucose detection. The sensor consists of two magnetically driven vibrating diaphragms situated inside microchambers filled with a boronic-acid based glucose-sensing solution and a reference solution insensitive to glucose. Glucose concentrations can be accurately determined by characteristics of the diaphragm vibration through differential capacitive detection. Our in vitro and preliminary in vivo experimental data demonstrate the potential of this sensor for highly stable subcutaneous CGM applications.

  4. FRET-based glucose monitoring for bioprocessing

    NASA Astrophysics Data System (ADS)

    Bartolome, Amelita; Smalls-Mantey, Lauren; Lin, Debora; Rao, Govind; Tolosa, Leah

    2006-02-01

    The glucose-mediated conformational changes in the glucose binding protein (GBP) have been exploited in the development of fluorescence based glucose sensors. The fluorescence response is generated by a polarity sensitive dye attached to a specific site. Such fluorescent sensors respond to submicromolar glucose at diffusion-controlled rates mimicking the wild type. However, such sensors have been limited to in vitro glucose sensing because of the preliminary dye-labeling step. In the study described here, the dye-labeling step is omitted by genetically encoding the GBP with two green fluorescent mutants namely, the green fluorescent protein (GFP) and the yellow fluorescent protein (YFP) in the N- and C-terminal ends, respectively. These two GFP mutants comprise a fluorescence resonance energy transfer (FRET) donor and acceptor pair. Thus, when glucose binds with GBP, the conformational changes affect the FRET efficiency yielding a dose-dependent response. A potential application for this FRET-based glucose biosensor is online glucose sensing in bioprocessing and cell culture. This was demonstrated by the measurement of glucose consumption in yeast fermentation. Further development of this system should yield in vivo measurement of glucose in bioprocesses.

  5. Neural control of blood glucose level.

    PubMed

    Niijima, A

    1986-01-01

    All of the experimental results described above can be categorized as follows: the relationship between glucose levels and pancreatic and adrenal nerve activities; innervations of the liver and their role in the regulation of blood glucose level; central integration of blood glucose level; glucose-sensitive afferent nerve fibers in the liver and regulation of blood glucose; oral and intestinal inputs involved in reflex control of blood glucose level. We showed that an increase in blood glucose content produced an increase in the activity of the pancreatic branch of the vagus nerve, whereas it induced a decrease in the activity of the adrenal nerve. It was also shown that a decrease in blood glucose activated the sympatho-adrenal system and suppressed the vago-pancreatic system. It seems rational that these responses are involved in the maintenance of blood glucose level. Studies on the innervation of the liver led us to a conclusion that sympathetic innervation of the liver might play a role in eliciting a prompt hyperglycemic response through liberation of norepinephrine from the nerve terminals, and that the vagal innervation synergically worked with the humoral factor (insulin) for glycogen synthesis in the hyperglycemic condition. The glucose-sensitive afferents from the liver seem to initiate a reflex control of blood glucose level. The gustatory information on EIR response, reported by STEFFENS, is supported by the electrophysiological observations. MEI's reports also indicated the importance of information from the intestinal glucoreceptors in the reflex control of insulin secretion. The role of integrative functions of the hypothalamus and brainstem through neuronal networks on neural control of blood glucose levels is also evident. A schematic diagram of the nervous networks involved in the regulation of the blood glucose levels is shown in Fig. 3. PMID:3550186

  6. Coping with an exogenous glucose overload: glucose kinetics of rainbow trout during graded swimming.

    PubMed

    Choi, Kevin; Weber, Jean-Michel

    2016-03-15

    This study examines how chronically hyperglycemic rainbow trout modulate glucose kinetics in response to graded exercise up to critical swimming speed (Ucrit), with or without exogenous glucose supply. Our goals were 1) to quantify the rates of hepatic glucose production (Ra glucose) and disposal (Rd glucose) during graded swimming, 2) to determine how exogenous glucose affects the changes in glucose fluxes caused by exercise, and 3) to establish whether exogenous glucose modifies Ucrit or the cost of transport. Results show that graded swimming causes no change in Ra and Rd glucose at speeds below 2.5 body lengths per second (BL/s), but that glucose fluxes may be stimulated at the highest speeds. Excellent glucoregulation is also achieved at all exercise intensities. When exogenous glucose is supplied during exercise, trout suppress hepatic production from 16.4 ± 1.6 to 4.1 ± 1.7 μmol·kg(-1)·min(-1) and boost glucose disposal to 40.1 ± 13 μmol·kg(-1)·min(-1). These responses limit the effects of exogenous glucose to a 2.5-fold increase in glycemia, whereas fish showing no modulation of fluxes would reach dangerous levels of 114 mM of blood glucose. Exogenous glucose reduces metabolic rate by 16% and, therefore, causes total cost of transport to decrease accordingly. High glucose availability does not improve Ucrit because the fish are unable to take advantage of this extra fuel during maximal exercise and rely on tissue glycogen instead. In conclusion, trout have a remarkable ability to adjust glucose fluxes that allows them to cope with the cumulative stresses of a glucose overload and graded exercise.

  7. Glucose oxidase activity of actinomycetes.

    PubMed

    St Vlahov, S

    1978-01-01

    The ability of 311 actiomycete, belonging to 12 species to produce glucose oxidase was studied. It was found that 174 of them formed exoenzymes on solid medium and 133 in liquid medium. The composition of the nutrient medium has an essential effect on the amount of enzyme formed. Strains with considerably higher activity form a greater amount of exoenzymes on soya meal medium and on synthetic medium with KNO2. The highest activity of the culture liquid of some strains was observed between the 6th and 7th day of cultivation. During this phase of growth the highest productivity of the biomas was established. PMID:76424

  8. Hepatic glucose and lipid metabolism.

    PubMed

    Jones, John G

    2016-06-01

    The liver has a central role in the regulation of systemic glucose and lipid fluxes during feeding and fasting and also relies on these substrates for its own energy needs. These parallel requirements are met by coordinated control of carbohydrate and lipid fluxes into and out of the Krebs cycle, which is highly tuned to nutrient availability and heavily regulated by insulin and glucagon. During progression of type 2 diabetes, hepatic carbohydrate and lipid biosynthesis fluxes become elevated, thus contributing to hyperglycaemia and hypertriacylglycerolaemia. Over this interval there are also significant fluctuations in hepatic energy state. To date, it is not known to what extent abnormal glucose and lipid fluxes are causally linked to altered energy states. Recent evidence that the glucose-lowering effects of metformin appear to be mediated by attenuation of hepatic energy generation places an additional spotlight on the interdependence of hepatic biosynthetic and oxidative fluxes. The transition from fasting to feeding results in a significant re-direction of hepatic glucose and lipid fluxes and may also incur a temporary hepatic energy deficit. At present, it is not known to what extent these variables are additionally modified by type 2 diabetes and/or non-alcoholic fatty liver disease. Thus, there is a compelling need to measure fluxes through oxidative, gluconeogenic and lipogenic pathways and determine their relationship with hepatic energy state in both fasting and fed conditions. New magnetic resonance-based technologies allow these variables to be non-invasively studied in animal models and humans. This review summarises a presentation given at the symposium entitled 'The liver in focus' at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Kenneth Cusi, DOI: 10.1007/s00125-016-3952-1 , and by Hannele Yki-Järvinen, DOI: 10.1007/s00125-016-3944-1 ) and a commentary by the Session Chair, Michael

  9. Short-Term Thermal-Humidity Shock Affects Point-of-Care Glucose Testing: Implications for Health Professionals and Patients.

    PubMed

    Lam, Mandy; Louie, Richard F; Curtis, Corbin M; Ferguson, William J; Vy, John H; Truong, Anh-Thu; Sumner, Stephanie L; Kost, Gerald J

    2014-01-01

    The objective was to assess the effects of short-term (≤1 hour) static high temperature and humidity stresses on the performance of point-of-care (POC) glucose test strips and meters. Glucose meters are used by medical responders and patients in a variety of settings including hospitals, clinics, homes, and the field. Reagent test strips and instruments are potentially exposed to austere environmental conditions. Glucose test strips and meters were exposed to a mean relative humidity of 83.0% (SD = 8.0%) and temperature of 42°C (107.6°F, SD = 3.2) in a Tenney BTRC environmental chamber. Stressed and unstressed glucose reagent strips and meters were tested with spiked blood samples (n = 40 measurements per time point for each of 4 trials) after 15, 30, 45, and 60 minutes of exposure. Wilcoxon's signed rank test was applied to compare measurements test strip and meter measurements to isolate and characterize the magnitude of meter versus test strip effects individually. Stressed POC meters and test strips produced elevated glucose results, with stressed meter bias as high as 20 mg/dL (17.7% error), and stressed test strip bias as high as 13 mg/dL (12.2% error). The aggregate stress effect on meter and test strips yielded a positive bias as high as 33 mg/dL (30.1% error) after 15 minutes of exposure. Short-term exposure (15 minutes) to high temperature and humidity can significantly affect the performance of POC glucose test strips and meters, with measurement biases that potentially affect clinical decision making and patient safety. PMID:24876542

  10. Regulation of Blood Glucose by Hypothalamic Pyruvate Metabolism

    NASA Astrophysics Data System (ADS)

    Lam, Tony K. T.; Gutierrez-Juarez, Roger; Pocai, Alessandro; Rossetti, Luciano

    2005-08-01

    The brain keenly depends on glucose for energy, and mammalians have redundant systems to control glucose production. An increase in circulating glucose inhibits glucose production in the liver, but this negative feedback is impaired in type 2 diabetes. Here we report that a primary increase in hypothalamic glucose levels lowers blood glucose through inhibition of glucose production in rats. The effect of glucose requires its conversion to lactate followed by stimulation of pyruvate metabolism, which leads to activation of adenosine triphosphate (ATP)-sensitive potassium channels. Thus, interventions designed to enhance the hypothalamic sensing of glucose may improve glucose homeostasis in diabetes.

  11. Modeling Glucose Metabolism in the Kidney.

    PubMed

    Chen, Ying; Fry, Brendan C; Layton, Anita T

    2016-06-01

    The mammalian kidney consumes a large amount of energy to support the reabsorptive work it needs to excrete metabolic wastes and to maintain homeostasis. Part of that energy is supplied via the metabolism of glucose. To gain insights into the transport and metabolic processes in the kidney, we have developed a detailed model of the renal medulla of the rat kidney. The model represents water and solute flows, transmural fluxes, and biochemical reactions in the luminal fluid of the nephrons and vessels. In particular, the model simulates the metabolism of oxygen and glucose. Using that model, we have identified parameters concerning glucose transport and basal metabolism that yield predicted blood glucose concentrations that are consistent with experimental measurements. The model predicts substantial axial gradients in blood glucose levels along various medullary structures. Furthermore, the model predicts that in the inner medulla, owing to the relatively limited blood flow and low tissue oxygen tension, anaerobic metabolism of glucose dominates. PMID:27371260

  12. Continuous Glucose Monitoring Systems: A Review

    PubMed Central

    Vashist, Sandeep Kumar

    2013-01-01

    There have been continuous advances in the field of glucose monitoring during the last four decades, which have led to the development of highly evolved blood glucose meters, non-invasive glucose monitoring (NGM) devices and continuous glucose monitoring systems (CGMS). Glucose monitoring is an integral part of diabetes management, and the maintenance of physiological blood glucose concentration is the only way for a diabetic to avoid life-threatening diabetic complications. CGMS have led to tremendous improvements in diabetic management, as shown by the significant lowering of glycated hemoglobin (HbA1c) in adults with type I diabetes. Most of the CGMS have been minimally-invasive, although the more recent ones are based on NGM techniques. This manuscript reviews the advances in CGMS for diabetes management along with the future prospects and the challenges involved. PMID:26824930

  13. Pancreatic regulation of glucose homeostasis.

    PubMed

    Röder, Pia V; Wu, Bingbing; Liu, Yixian; Han, Weiping

    2016-01-01

    In order to ensure normal body function, the human body is dependent on a tight control of its blood glucose levels. This is accomplished by a highly sophisticated network of various hormones and neuropeptides released mainly from the brain, pancreas, liver, intestine as well as adipose and muscle tissue. Within this network, the pancreas represents a key player by secreting the blood sugar-lowering hormone insulin and its opponent glucagon. However, disturbances in the interplay of the hormones and peptides involved may lead to metabolic disorders such as type 2 diabetes mellitus (T2DM) whose prevalence, comorbidities and medical costs take on a dramatic scale. Therefore, it is of utmost importance to uncover and understand the mechanisms underlying the various interactions to improve existing anti-diabetic therapies and drugs on the one hand and to develop new therapeutic approaches on the other. This review summarizes the interplay of the pancreas with various other organs and tissues that maintain glucose homeostasis. Furthermore, anti-diabetic drugs and their impact on signaling pathways underlying the network will be discussed. PMID:26964835

  14. Pancreatic regulation of glucose homeostasis.

    PubMed

    Röder, Pia V; Wu, Bingbing; Liu, Yixian; Han, Weiping

    2016-03-11

    In order to ensure normal body function, the human body is dependent on a tight control of its blood glucose levels. This is accomplished by a highly sophisticated network of various hormones and neuropeptides released mainly from the brain, pancreas, liver, intestine as well as adipose and muscle tissue. Within this network, the pancreas represents a key player by secreting the blood sugar-lowering hormone insulin and its opponent glucagon. However, disturbances in the interplay of the hormones and peptides involved may lead to metabolic disorders such as type 2 diabetes mellitus (T2DM) whose prevalence, comorbidities and medical costs take on a dramatic scale. Therefore, it is of utmost importance to uncover and understand the mechanisms underlying the various interactions to improve existing anti-diabetic therapies and drugs on the one hand and to develop new therapeutic approaches on the other. This review summarizes the interplay of the pancreas with various other organs and tissues that maintain glucose homeostasis. Furthermore, anti-diabetic drugs and their impact on signaling pathways underlying the network will be discussed.

  15. Pancreatic regulation of glucose homeostasis

    PubMed Central

    Röder, Pia V; Wu, Bingbing; Liu, Yixian; Han, Weiping

    2016-01-01

    In order to ensure normal body function, the human body is dependent on a tight control of its blood glucose levels. This is accomplished by a highly sophisticated network of various hormones and neuropeptides released mainly from the brain, pancreas, liver, intestine as well as adipose and muscle tissue. Within this network, the pancreas represents a key player by secreting the blood sugar-lowering hormone insulin and its opponent glucagon. However, disturbances in the interplay of the hormones and peptides involved may lead to metabolic disorders such as type 2 diabetes mellitus (T2DM) whose prevalence, comorbidities and medical costs take on a dramatic scale. Therefore, it is of utmost importance to uncover and understand the mechanisms underlying the various interactions to improve existing anti-diabetic therapies and drugs on the one hand and to develop new therapeutic approaches on the other. This review summarizes the interplay of the pancreas with various other organs and tissues that maintain glucose homeostasis. Furthermore, anti-diabetic drugs and their impact on signaling pathways underlying the network will be discussed. PMID:26964835

  16. Sex steroids and glucose metabolism.

    PubMed

    Allan, Carolyn A

    2014-01-01

    Testosterone levels are lower in men with metabolic syndrome and type 2 diabetes mellitus (T2DM) and also predict the onset of these adverse metabolic states. Body composition (body mass index, waist circumference) is an important mediator of this relationship. Sex hormone binding globulin is also inversely associated with insulin resistance and T2DM but the data regarding estrogen are inconsistent. Clinical models of androgen deficiency including Klinefelter's syndrome and androgen deprivation therapy in the treatment of advanced prostate cancer confirm the association between androgens and glucose status. Experimental manipulation of the insulin/glucose milieu and suppression of endogenous testicular function suggests the relationship between androgens and insulin sensitivity is bidirectional. Androgen therapy in men without diabetes is not able to differentiate the effect on insulin resistance from that on fat mass, in particular visceral adiposity. Similarly, several small clinical studies have examined the efficacy of exogenous testosterone in men with T2DM, however, the role of androgens, independent of body composition, in modifying insulin resistance is uncertain. PMID:24457840

  17. Sex steroids and glucose metabolism

    PubMed Central

    Allan, Carolyn A

    2014-01-01

    Testosterone levels are lower in men with metabolic syndrome and type 2 diabetes mellitus (T2DM) and also predict the onset of these adverse metabolic states. Body composition (body mass index, waist circumference) is an important mediator of this relationship. Sex hormone binding globulin is also inversely associated with insulin resistance and T2DM but the data regarding estrogen are inconsistent. Clinical models of androgen deficiency including Klinefelter's syndrome and androgen deprivation therapy in the treatment of advanced prostate cancer confirm the association between androgens and glucose status. Experimental manipulation of the insulin/glucose milieu and suppression of endogenous testicular function suggests the relationship between androgens and insulin sensitivity is bidirectional. Androgen therapy in men without diabetes is not able to differentiate the effect on insulin resistance from that on fat mass, in particular visceral adiposity. Similarly, several small clinical studies have examined the efficacy of exogenous testosterone in men with T2DM, however, the role of androgens, independent of body composition, in modifying insulin resistance is uncertain. PMID:24457840

  18. Is fructose sweeter than glucose for rats?

    PubMed

    Ramirez, I

    1996-11-01

    Because it is generally thought that the intensity of the taste of fructose is greater than that of glucose for rats, it seemed surprising when sham-fed rats drank substantially less of a mixture of 6% fructose plus saccharin than of a mixture of 6% glucose plus saccharin. At least 3 different factors contribute to this effect. First, the taste of fructose is less attractive to rats than is the taste of glucose; sham-fed rats strongly preferred glucose over fructose (no saccharin was used in this experiment). The second factor is experience. Rats having substantial previous experience with glucose, but not with fructose, consistently preferred glucose over fructose. Conversely, rats having substantial previous experience with fructose, but not with glucose, initially showed no consistent preference but subsequently tended to prefer glucose. The third factor is an interaction between saccharin and the type of sugar. Rats given only one solution at a time drink approximately as much fructose as glucose when the solutions contain no saccharin. The addition of 0.25% saccharin to 6% glucose stimulated intake, whereas the addition of the same amount of saccharin to 6% fructose did not stimulate intake. As a result, rats ingested substantially more of a mixture of 0.25% saccharin plus 6% glucose than they did of a comparable mixture of saccharin and fructose, even though rats ingest similar amounts of fructose and glucose without saccharin in single-bottle tests. Because the differential effect of saccharin on intake appeared within 2 h in naive rats, and did not greatly change over a 3-day period, it is probably not attributable to conditioning. These results suggest that these sugars have qualitatively different tastes. PMID:8916185

  19. A self-powered glucose biosensing system.

    PubMed

    Slaughter, Gymama; Kulkarni, Tanmay

    2016-04-15

    A self-powered glucose biosensor (SPGS) system is fabricated and in vitro characterization of the power generation and charging frequency characteristics in glucose analyte are described. The bioelectrodes consist of compressed network of three-dimensional multi-walled carbon nanotubes with redox enzymes, pyroquinoline quinone glucose dehydrogenase (PQQ-GDH) and laccase functioning as the anodic and cathodic catalyst, respectively. When operated in 45 mM glucose, the biofuel cell exhibited an open circuit voltage and power density of 681.8 mV and 67.86 µW/cm(2) at 335 mV, respectively, with a current density of 202.2 µA/cm(2). Moreover, at physiological glucose concentration (5mM), the biofuel cell exhibits open circuit voltage and power density of 302.1 mV and 15.98 µW/cm(2) at 166.3 mV, respectively, with a current density of 100 µA/cm(2). The biofuel cell assembly produced a linear dynamic range of 0.5-45 mM glucose. These findings show that glucose biofuel cells can be further investigated in the development of a self-powered glucose biosensor by using a capacitor as the transducer element. By monitoring the capacitor charging frequencies, which are influenced by the concentration of the glucose analyte, a linear dynamic range of 0.5-35 mM glucose is observed. The operational stability of SPGS is monitored over a period of 63 days and is found to be stable with 15.38% and 11.76% drop in power density under continuous discharge in 10mM and 20mM glucose, respectively. These results demonstrate that SPGSs can simultaneously generate bioelectricity to power ultra-low powered devices and sense glucose.

  20. Diagnosis of prediabetes in cats: glucose concentration cut points for impaired fasting glucose and impaired glucose tolerance.

    PubMed

    Reeve-Johnson, M K; Rand, J S; Vankan, D; Anderson, S T; Marshall, R; Morton, J M

    2016-10-01

    Diabetes is typically diagnosed in cats once clinical signs are evident. Diagnostic criteria for prediabetes in cats have not been defined. The objective of the study was to establish methodology and cut points for fasting and 2-h blood glucose concentrations in healthy client-owned senior cats (≥8 yr) using ear/paw samples and a portable glucose meter calibrated for feline blood. Of the 78 cats, 27 were ideal (body condition score [BCS] 4 or 5 of 9), 31 overweight (BCS 6 or 7), and 20 obese (BCS 8 or 9); 19 were Burmese and 59 non-Burmese. After an 18-24-h fast and an ear/paw blood glucose measurement using a portable glucose meter, glucose (0.5 g/kg bodyweight) was administered intravenous and blood glucose measured at 2 min and 2 h. Cut points for fasting and 2-h glucose concentrations were defined as the upper limits of 95% reference intervals using cats with BCS 4 or 5. The upper cut point for fasting glucose was 6.5 mmol/L. Of the overweight and obese cats, 1 (BCS 7) was above this cut point indicating evidence of impaired fasting glucose. The cut point for 2-h glucose was 9.8 mmol/L. A total of 7 cats (4 with BCS 8 or 9 including 1 Burmese; 3 with BCS 6 or 7, non-Burmese) were above this cut point and thus had evidence of impaired glucose tolerance. In conclusion, the methodology and cutpoints for diagnosis of prediabetes are defined for use in healthy cats 8 yr and older with a range of BCSs. PMID:27565231

  1. General aspects of muscle glucose uptake.

    PubMed

    Alvim, Rafael O; Cheuhen, Marcel R; Machado, Silmara R; Sousa, André Gustavo P; Santos, Paulo C J L

    2015-03-01

    Glucose uptake in peripheral tissues is dependent on the translocation of GLUT4 glucose transporters to the plasma membrane. Studies have shown the existence of two major signaling pathways that lead to the translocation of GLUT4. The first, and widely investigated, is the insulin activated signaling pathway through insulin receptor substrate-1 and phosphatidylinositol 3-kinase. The second is the insulin-independent signaling pathway, which is activated by contractions. Individuals with type 2 diabetes mellitus have reduced insulin-stimulated glucose uptake in skeletal muscle due to the phenomenon of insulin resistance. However, those individuals have normal glucose uptake during exercise. In this context, physical exercise is one of the most important interventions that stimulates glucose uptake by insulin-independent pathways, and the main molecules involved are adenosine monophosphate-activated protein kinase, nitric oxide, bradykinin, AKT, reactive oxygen species and calcium. In this review, our main aims were to highlight the different glucose uptake pathways and to report the effects of physical exercise, diet and drugs on their functioning. Lastly, with the better understanding of these pathways, it would be possible to assess, exactly and molecularly, the importance of physical exercise and diet on glucose homeostasis. Furthermore, it would be possible to assess the action of drugs that might optimize glucose uptake and consequently be an important step in controlling the blood glucose levels in diabetic patients, in addition to being important to clarify some pathways that justify the development of drugs capable of mimicking the contraction pathway.

  2. Fabrication of Nanoindented Electrodes for Glucose Detection

    PubMed Central

    Slaughter, Gymama

    2010-01-01

    Background The objective of this article was to design, fabricate, and evaluate a novel type of glucose biosensors based on the use of atomic force microscopy to create nanoindented electrodes (NIDEs) for the selective detection of glucose. Methods Atomic force microscopy nanoindentation techniques were extended to covalently immobilized glucose oxidase on NIDEs via composite hydrogel membranes composed of interpenetrating networks of inherently conductive poly(3,4-ethylenedioxythiophene) tetramethacrylate grown within ultraviolet cross-linked hydroxyethylmethacrylate-based hydrogels to produce an in vitro amperometric NIDE biosensor for the long-term monitoring of glucose. Results The calibration curve for glucose was linear from 0.25 to 20 mM. Results showed that the NIDE glucose biosensor has a much higher detection sensitivity of 0.32 μA/mM and rapid response times (<5 seconds). There was no interference from the competing interferent (fructose) present; the only interference was from species that react with H2O2 (ascorbic acid). The linear equation was Bresponse (μA) = 0.323 [glucose] (mM) + 0.634 (μA); n = 24, r2 = 0.994. Conclusion Results showed that the resultant NIDE glucose biosensor increases the dynamic range, device sensitivity, and response time and has excellent detecting performance for glucose. PMID:20307392

  3. Glucose and insulin metabolism in cirrhosis.

    PubMed

    Petrides, A S; DeFronzo, R A

    1989-01-01

    Glucose intolerance, overt diabetes mellitus, and insulin resistance are characteristic features of patients with cirrhosis. Insulin secretion, although increased in absolute terms, is insufficient to offset the presence of insulin resistance. The defect in insulin-mediated glucose disposal involves peripheral tissues, primarily muscle, and most likely reflects a disturbance in glycogen synthesis. Hepatic glucose production is normally sensitive to insulin; at present, it is unknown whether hepatic glucose uptake is impaired in cirrhosis. One of the more likely candidates responsible for the insulin-resistant state is insulin itself. The hyperinsulinemia results from three abnormalities: diminished hepatic extraction, portosystemic/intrahepatic shunting, and enhanced insulin secretion. PMID:2646365

  4. Glucose metabolism in rat retinal pigment epithelium.

    PubMed

    Coffe, Víctor; Carbajal, Raymundo C; Salceda, Rocío

    2006-01-01

    The retinal pigment epithelium (RPE) is the major transport pathway for exchange of metabolites and ions between choroidal blood supply and the neural retina. To gain insight into the mechanisms controlling glucose metabolism in RPE and its possible relationship to retinopathy, we studied the influence of different glucose concentrations on glycogen and lactate levels and CO(2) production in RPE from normal and streptozotocin-treated diabetic rats. Incubation of normal RPE in the absence of glucose caused a decrease in lactate production and glycogen content. In normal RPE, increasing glucose concentrations from 5.6 mM to 30 mM caused a four-fold increase in glucose accumulation and CO(2) yield, as well as reduction in lactate and glycogen production. In RPE from diabetic rats glucose accumulation did not increase in the presence of high glucose substrate, but it showed a four- and a seven-fold increase in CO(2) production through the mitochondrial and pentose phosphate pathways, respectively. We found high glycogen levels in RPE which can be used as an energy reserve for RPE itself and/or neural retina. Findings further show that the RPE possesses a high oxidative capacity. The large increase in glucose shunting to the pentose phosphate pathway in diabetic retina exposed to high glucose suggests a need for reducing capacity, consistent with increased oxidative stress. PMID:16475003

  5. Blood Glucose Measurements in Critically Ill Patients

    PubMed Central

    Van Herpe, Tom; Mesotten, Dieter

    2012-01-01

    Studies on tight glycemic control by intensive insulin therapy abruptly changed the climate of limited interest in the problem of hyperglycemia in critically ill patients and reopened the discussion on accuracy and reliability of glucose sensor devices. This article describes important components of blood glucose measurements and their interferences with the focus on the intensive care unit setting. Typical methodologies, organized from analytical accuracy to clinical accuracy, to assess imprecision and bias of a glucose sensor are also discussed. Finally, a list of recommendations and requirements to be considered when evaluating (time-discrete) glucose sensor devices is given. PMID:22401319

  6. Glucose Transporters in Cardiac Metabolism and Hypertrophy

    PubMed Central

    Shao, Dan; Tian, Rong

    2016-01-01

    The heart is adapted to utilize all classes of substrates to meet the high-energy demand, and it tightly regulates its substrate utilization in response to environmental changes. Although fatty acids are known as the predominant fuel for the adult heart at resting stage, the heart switches its substrate preference toward glucose during stress conditions such as ischemia and pathological hypertrophy. Notably, increasing evidence suggests that the loss of metabolic flexibility associated with increased reliance on glucose utilization contribute to the development of cardiac dysfunction. The changes in glucose metabolism in hypertrophied hearts include altered glucose transport and increased glycolysis. Despite the role of glucose as an energy source, changes in other nonenergy producing pathways related to glucose metabolism, such as hexosamine biosynthetic pathway and pentose phosphate pathway, are also observed in the diseased hearts. This article summarizes the current knowledge regarding the regulation of glucose transporter expression and translocation in the heart during physiological and pathological conditions. It also discusses the signaling mechanisms governing glucose uptake in cardiomyocytes, as well as the changes of cardiac glucose metabolism under disease conditions. PMID:26756635

  7. Enzyme Analysis to Determine Glucose Content

    NASA Astrophysics Data System (ADS)

    Carpenter, Charles; Ward, Robert E.

    Enzyme analysis is used for many purposes in food science and technology. Enzyme activity is used to indicate adequate processing, to assess enzyme preparations, and to measure constituents of foods that are enzyme substrates. In this experiment, the glucose content of corn syrup solids is determined using the enzymes, glucose oxidase and peroxidase. Glucose oxidase catalyzes the oxidation of glucose to form hydrogen peroxide (H2O2), which then reacts with a dye in the presence of peroxidase to give a stable colored product.

  8. Naked eye detection of glucose in urine using glucose oxidase immobilized gold nanoparticles.

    PubMed

    Radhakumary, Changerath; Sreenivasan, Kunnatheeri

    2011-04-01

    Colloidal gold is extensively used for molecular sensing because of the flexibilities it offers in terms of modification of the gold nanoparticle surface with a variety of functional groups using thiol chemistry. We describe a simple assay that allows the visual detection of glucose in aqueous samples and demonstrates its applicability by estimating glucose in urine. To enable the glucose detection, we functionalized the thiol capped gold nanoparticles with glucose oxidase, the enzyme specific to β-D glucose, using carbodiimide chemistry. The visible color change of the GOD-functionalized gold nanoparticles from red to blue on interaction with glucose is the principle applied here for the sensing of urine glucose level. The solution turns blue when the glucose concentration exceeds 100 μg/mL. The approach depicted here seems to be important, particularly in third world countries where high tech diagnostics aids are inaccessible to the bulk of the population. PMID:21391552

  9. Kinetics of glucose isomerization to fructose by immobilized glucose isomerase: anomeric reactivity of D-glucose in kinetic model.

    PubMed

    Lee, H S; Hong, J

    2001-11-30

    The substrate specificity of immobilized D-glucose isomerase (EC 5.3. 1.5) is investigated with an immobilized enzyme-packed reactor. A series of isomerization experiments with alpha-, beta-, and equilibrated D-glucose solutions indicates that beta anomer as well as alpha anomer is a substrate of the glucose isomerase at pH 7.5 and 60 degrees C. For substrate concentration of 0.028 mol l(-1) (1% w/v), the initial conversion rate of alpha-D-glucose was 43% higher than that with equilibrated glucose at the same concentration and 113% higher than beta-D-glucose conversion rate. This anomeric reactivity of glucose isomerase is mathematically described with a set of kinetic equations based on the reaction steps complying with Briggs-Haldane mechanism and the experimentally determined kinetic constants. The proposed reaction mechanism includes the mutarotation and the isomerization reactions of alpha- and beta-D-glucose with different rate constants.

  10. 46 CFR 386.1 - Hours of admission to property.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Regimental leave periods and indoctrination training for the fourth class year. The closing of property shall... athletic facilities for authorized activities. During normal working hours, property shall be closed to...

  11. 46 CFR 386.1 - Hours of admission to property.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Regimental leave periods and indoctrination training for the fourth class year. The closing of property shall... athletic facilities for authorized activities. During normal working hours, property shall be closed to...

  12. 46 CFR 386.1 - Hours of admission to property.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Regimental leave periods and indoctrination training for the fourth class year. The closing of property shall... athletic facilities for authorized activities. During normal working hours, property shall be closed to...

  13. 46 CFR 386.1 - Hours of admission to property.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Regimental leave periods and indoctrination training for the fourth class year. The closing of property shall... athletic facilities for authorized activities. During normal working hours, property shall be closed to...

  14. 46 CFR 386.1 - Hours of admission to property.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Regimental leave periods and indoctrination training for the fourth class year. The closing of property shall... athletic facilities for authorized activities. During normal working hours, property shall be closed to...

  15. Development of a Robust Optical Glucose Sensor

    NASA Astrophysics Data System (ADS)

    Cote, Gerard Laurence

    1990-01-01

    The long term objective of this research was the development of a noninvasive, optically-based, polarimetric sensor to monitor in vivo glucose concentrations. The goal of diabetes therapy is to approximate the 24-hour blood glucose profile of a normal individual. There have been major advances in the development of reliable, versatile, and accurate pumps for the delivery of insulin to diabetic patients and in the development of control algorithms for closed-loop insulin delivery, however, there remain major obstacles to the development of clinically useful, continuous glucose sensors. The development of an accurate noninvasive glucose sensor would have significant application in the diagnosis and management of diabetes mellitis both in conjunction with, and independent of, the glucose pump controller applications. The linear polarization vector of light routes when it interacts with an optically active material such as glucose. The amount of rotation of polarization is directly proportional to the glucose concentration and to the path length. The ability to quantitate blood glucose levels for the limited available path length in our primary sensing site, namely, the anterior chamber of the eye, therefore depends on the signal-to-noise ratio of the polarization detector. Our primary research focused on the development and testing of a prototype optical polarimetry system using D + glucose solution in a test cell, as well as using an enucleated human eye to assess the sensitivity of the system to measure physiologic glucose levels for the approximate one centimeter path length present in the anterior chamber of the eye. Our research has led to the development of a true phase technique in which helium neon laser light was coupled through a rotating linear polarizer along with two stationary linear polarizers and two detectors to produce reference and signal outputs whose amplitudes varied sinusoidally and whose phase was proportional to the rotation of light caused by

  16. Hypothalamic glucose sensing: making ends meet

    PubMed Central

    Routh, Vanessa H.; Hao, Lihong; Santiago, Ammy M.; Sheng, Zhenyu; Zhou, Chunxue

    2014-01-01

    The neuroendocrine system governs essential survival and homeostatic functions. For example, growth is needed for development, thermoregulation maintains optimal core temperature in a changing environment, and reproduction ensures species survival. Stress and immune responses enable an organism to overcome external and internal threats while the circadian system regulates arousal and sleep such that vegetative and active functions do not overlap. All of these functions require a significant portion of the body's energy. As the integrator of the neuroendocrine system, the hypothalamus carefully assesses the energy status of the body in order to appropriately partition resources to provide for each system without compromising the others. While doing so the hypothalamus must ensure that adequate glucose levels are preserved for brain function since glucose is the primary fuel of the brain. To this end, the hypothalamus contains specialized glucose sensing neurons which are scattered throughout the nuclei controlling distinct neuroendocrine functions. We hypothesize that these neurons play a key role in enabling the hypothalamus to partition energy to meet these peripheral survival needs without endangering the brain's glucose supply. This review will first describe the varied mechanisms underlying glucose sensing in neurons within discrete hypothalamic nuclei. We will then evaluate the way in which peripheral energy status regulates glucose sensitivity. For example, during energy deficit such as fasting specific hypothalamic glucose sensing neurons become sensitized to decreased glucose. This increases the gain of the information relay when glucose availability is a greater concern for the brain. Finally, changes in glucose sensitivity under pathological conditions (e.g., recurrent insulin-hypoglycemia, diabetes) will be addressed. The overall goal of this review is to place glucose sensing neurons within the context of hypothalamic control of neuroendocrine function

  17. Thermoinactivation Mechanism of Glucose Isomerase

    NASA Astrophysics Data System (ADS)

    Lim, Leng Hong; Saville, Bradley A.

    In this article, the mechanisms of thermoinactivation of glucose isomerase (GI) from Streptomyces rubiginosus (in soluble and immobilized forms) were investigated, particularly the contributions of thiol oxidation of the enzyme's cysteine residue and a "Maillard-like" reaction between the enzyme and sugars in high fructose corn syrup (HFCS). Soluble GI (SGI) was successfully immobilized on silica gel (13.5 μm particle size), with an activity yield between 20 and 40%. The immobilized GI (IGI) has high enzyme retention on the support during the glucose isomerization process. In batch reactors, SGI (half-life =145 h) was more stable than IGI (half-life=27 h) at 60°C in HFCS, whereas at 80°C, IGI (half-life=12 h) was more stable than SGI (half-life=5.2 h). IGI was subject to thiol oxidation at 60°C, which contributed to the enzyme's deactivation. IGI was subject to thiol oxidation at 80°C, but this did not contribute to the deactivation of the enzyme. SGI did not undergo thiol oxidation at 60°C, but at 80°C SGI underwent severe precipitation and thiol oxidation, which caused the enzyme to deactivate. Experimental results show that immobilization suppresses the destablizing effect of thiol oxidation on GI. A "Maillard-like" reaction between SGI and the sugars also caused SGI thermoinactivation at 60, 70, and 80°C, but had minimal effect on IGI. At 60 and 80°C, IGI had higher thermostability in continuous reactors than in batch reactors, possibily because of reduced contact with deleterious compounds in HFCS.

  18. Insulin Control of Glucose Metabolism in Man

    PubMed Central

    Insel, Paul A.; Liljenquist, John E.; Tobin, Jordan D.; Sherwin, Robert S.; Watkins, Paul; Andres, Reubin; Berman, Mones

    1975-01-01

    Analyses of the control of glucose metabolism by insulin have been hampered by changes in bloog glucose concentration induced by insulin administration with resultant activation of hypoglycemic counterregulatory mechanisms. To eliminate such mechanisms, we have employed the glucose clamp technique which allows maintenance of fasting blood glucose concentration during and after the administration of insulin. Analyses of six studies performed in young healthy men in the postabsorptive state utilizing the concurrent administration of [14C]glucose and 1 mU/kg per min (40 mU/m2 per min) porcine insulin led to the development of kinetic models for insulin and for glucose. These models account quantitatively for the control of insulin on glucose utilization and on endogenous glucose production during nonsteady states. The glucose model, a parallel three-compartment model, has a central compartment (mass = 68±7 mg/kg; space of distribution = blood water volume) in rapid equilibrium with a smaller compartment (50±17 mg/kg) and in slow equilibrium with a larger compartment (96±21 mg/kg). The total plasma equivalent space for the glucose system averaged 15.8 liters or 20.3% body weight. Two modes of glucose loss are introduced in the model. One is a zero-order loss (insulin and glucose independent) from blood to the central nervous system; its magnitude was estimated from published data. The other is an insulin-dependent loss, occurring from the rapidly equilibrating compartment and, in the basal period, is smaller than the insulin-independent loss. Endogenous glucose production averaged 1.74 mg/kg per min in the basal state and enters the central compartment directly. During the glucose clamp experiments plasma insulin levels reached a plateau of 95±8 μU/ml. Over the entire range of insulin levels studied, glucose losses were best correlated with levels of insulin in a slowly equilibrating insulin compartment of a three-compartment insulin model. A proportional control

  19. Glucose-Induced Acidification in Yeast Cultures

    ERIC Educational Resources Information Center

    Myers, Alan; Bourn, Julia; Pool, Brynne

    2005-01-01

    We present an investigation (for A-level biology students and equivalent) into the mechanism of glucose-induced extracellular acidification in unbuffered yeast suspensions. The investigation is designed to enhance understanding of aspects of the A-level curriculum that relate to the phenomenon (notably glucose catabolism) and to develop key skills…

  20. Master Regulators in Plant Glucose Signaling Networks

    PubMed Central

    Sheen, Jen

    2014-01-01

    The daily life of photosynthetic plants revolves around sugar production, transport, storage and utilization, and the complex sugar metabolic and signaling networks integrate internal regulators and environmental cues to govern and sustain plant growth and survival. Although diverse sugar signals have emerged as pivotal regulators from embryogenesis to senescence, glucose is the most ancient and conserved regulatory signal that controls gene and protein expression, cell-cycle progression, central and secondary metabolism, as well as growth and developmental programs. Glucose signals are perceived and transduced by two principal mechanisms: direct sensing through glucose sensors and indirect sensing via a variety of energy and metabolite sensors. This review focuses on the comparative and functional analyses of three glucose-modulated master regulators in Arabidopsis thaliana, the hexokinase1 (HXK1) glucose sensor, the energy sensor kinases KIN10/KIN11 inactivated by glucose, and the glucose-activated target of rapamycin (TOR) kinase. These regulators are evolutionarily conserved, but have evolved universal and unique regulatory wiring and functions in plants and animals. They form protein complexes with multiple partners as regulators or effectors to serve distinct functions in different subcellular locales and organs, and play integrative and complementary roles from cellular signaling and metabolism to development in the plant glucose signaling networks. PMID:25530701

  1. Molecular pathophysiology of hepatic glucose production.

    PubMed

    Sharabi, Kfir; Tavares, Clint D J; Rines, Amy K; Puigserver, Pere

    2015-12-01

    Maintaining blood glucose concentration within a relatively narrow range through periods of fasting or excess nutrient availability is essential to the survival of the organism. This is achieved through an intricate balance between glucose uptake and endogenous glucose production to maintain constant glucose concentrations. The liver plays a major role in maintaining normal whole body glucose levels by regulating the processes of de novo glucose production (gluconeogenesis) and glycogen breakdown (glycogenolysis), thus controlling the levels of hepatic glucose release. Aberrant regulation of hepatic glucose production (HGP) can result in deleterious clinical outcomes, and excessive HGP is a major contributor to the hyperglycemia observed in Type 2 diabetes mellitus (T2DM). Indeed, adjusting glycemia as close as possible to a non-diabetic range is the foremost objective in the medical treatment of patients with T2DM and is currently achieved in the clinic primarily through suppression of HGP. Here, we review the molecular mechanisms controlling HGP in response to nutritional and hormonal signals and discuss how these signals are altered in T2DM.

  2. Glucose stabilizes collagen sterilized with gamma irradiation.

    PubMed

    Ohan, Mark P; Dunn, Michael G

    2003-12-15

    Gamma irradiation sterilization (gamma-irradiation) fragments and denatures collagen, drastically decreasing critical physical properties. Our goal was to maintain strength and stability of gamma-irradiated collagen by adding glucose, which in theory can initiate crosslink formation in collagen during exposure to gamma-irradiation. Collagen films prepared with and without glucose were gamma-irradiated with a standard dose of 2.5 Mrad. Relative amounts of crosslinking and denaturation were approximated based on solubility and the mechanical properties of the films after hydration, heat denaturation, or incubation in enzymes (collagenase and trypsin). After exposure to gamma-irradiation, collagen films containing glucose had significantly higher mechanical properties, greater resistance to enzymatic degradation, and decreased solubility compared with control films. The entire experiment was repeated with a second set of films that were exposed first to ultraviolet irradiation (254 nm) to provide higher initial strength and then gamma-irradiated. Again, films containing glucose had significantly greater mechanical properties and resistance to enzymatic degradation compared with controls. Gel electrophoresis showed that glucose did not prevent peptide fragmentation; therefore, the higher strength and stability in glucose-incorporated films may be due to glucose-derived crosslinks. The results of this study suggest that glucose may be a useful additive to stabilize collagenous materials or tissues sterilized by gamma-irradiation.

  3. Glucose Catabolism in Micrococcus sodonensis1

    PubMed Central

    Perry, Jerome J.; Evans, James B.

    1967-01-01

    The inability of Micrococcus sodonensis to grow on glucose as the sole source of carbon and energy was investigated. Estimation of pathways of glucose catabolism indicated that both the glycolytic and hexose monophosphate pathways are present in this organism. Comparative studies with Escherichia coli demonstrated that key enzymes for glucose catabolism were present in M. sodonensis in quantities equivalent to those of E. coli. The glucose-6-phosphate and 6-phosphogluconate dehydrogenases of M. sodonensis were nicotinamide adenine dinucleotide phosphate (NADP) specific, and glyceraldehyde-3-phosphate dehydrogenase was nicotinamide adenine dinucleotide specific. Transhydrogenase and reduced NADP oxidase were absent. Growth of the organism in the presence of glucose did not result in a repressed ability to oxidize tricarboxylic acid cycle intermediates, but these cells did have a decreased capacity for glucose degradation. The addition of substrates rich in growth-promoting substances, e.g., yeast extract, did not provide requisite nutrients for growth on glucose. Studies with 32P suggest that M. sodonensis is incapable of synthesizing energy-rich phosphate compounds during the catabolism of glucose. PMID:4381630

  4. Type 2 Diabetes Risk Allele UBE2E2 Is Associated With Decreased Glucose-Stimulated Insulin Release in Elderly Chinese Han Individuals.

    PubMed

    Xu, Kuanfeng; Jiang, Lin; Zhang, Mei; Zheng, Xuqin; Gu, Yong; Wang, Zhixiao; Cai, Yun; Dai, Hao; Shi, Yun; Zheng, Shuai; Chen, Yang; Ji, Li; Xu, Xinyu; Chen, Heng; Sun, Min; Yang, Tao

    2016-05-01

    Recently, rs163182 in KCNQ1, rs7612463 in UBE2E2, rs7119 in HMG20A, and rs6815464 in MAEA were discovered as type 2 diabetes (T2D) loci unique to Asians, and rs13342692 in SLC16A11 were newly reported as T2D loci in multiethnicities by genome-wide association (GWA) studies. The aim of the present study is to ascertain the potential associations between these variants and T2D risk in the Chinese population, and characterize diabetic-related quantitative traits underlying these variants.A total of 4268 Chinese Han individuals (1754 patients with T2D and 2514 glucose-tolerant health subjects, age ≥40 years) were genotyped for these 5 variants. All the health individuals underwent an oral glucose tolerance test (OGTT), and measures of insulin release and sensitivity were estimated from insulinogenic, BIGTT, Matsuda, and disposition indices. The associations were determined by using logistic regression analysis.After adjustment for age, sex, and BMI, rs163182 in KCNQ1 (P = 0.002) and rs7612463 in UBE2E2 (P = 0.024) were found to be associated with T2D risk in Chinese Han population. The risk C allele of rs7612463 in UBE2E2 is associated with decreased IGI (P = 0.001), BIGTT-AIR (P = 0.002), CIR (P = 0.002), and DI (P = 0.006). The other 4 variants did not associate with insulin release or sensitivity.UBE2E2 rs7612463 may mediate its diabetogenic impact on insulin response, which highly depends on the impairment of β-cell function.

  5. Hydrogen production from glucose by anaerobes.

    PubMed

    Ogino, Hiroyasu; Miura, Takashi; Ishimi, Kosaku; Seki, Minoru; Yoshida, Hiroyuki

    2005-01-01

    Various anaerobes were cultivated in media containing glucose. When 100 mL of thioglycollate medium containing 2.0% (w/v) glucose was used, Clostridium butyricum ATCC 859, NBRC 3315, and NBRC 13949 evolved 227-243 mL of biogas containing about 180 mL of hydrogen in 1 day. Although some strains had some resistance against oxygen, C. butyricum ATCC 859 and 860 did not have it. C. butyricum NBRC 3315 and Enterobacter aerogenes NBRC 13534 produced hydrogen in the presence of glucose or pyruvic acid, and E. aerogenes NBRC 13534 produced hydrogen by not only glucose and pyruvic acid but also dextrin, sucrose, maltose, galactose, fructose, mannose, and mannitol. When a medium containing 0.5% (w/v) yeast extract and 2.0% (w/v) glucose was used, E. aerogenes NBRC 13534 evolved more biogas and hydrogen than C. butyricum NBRC 3315 in the absence of reducing agent.

  6. Glucose Recognition in Vitro Using Fluorescent Spectroscopy

    SciTech Connect

    Noronha, G; Heiss, A M; Reilly, J R; Vachon, Jr, D J; Cary, D R; Zaitseva, N P; Reibold, R A; Lane, S M; Peyser, T A; Satcher, J H

    2001-04-25

    Diabetes is a disease that affects over 16 million people in the USA at a cost of 100 billion dollars annually. The ability to regulate insulin delivery in people with Type 1 diabetes is imperative as is the need to manage glucose levels in all people with this disease. Our current method for monitoring glucose is a (FDA approved) minimally invasive enzymatic sensor that can measure glucose levels in vivo for three days. We are focused on developing a noninvasive implantable glucose sensor that will be interrogated by an external device. The material must be robust, easy to process, biocompatible and resistant to biofouling. In this Presentation we will discuss the development of a new polymeric matrix that can recognize physiological levels of glucose in vitro using fluorescent spectroscopy.

  7. Diurnal Variation in Response to Intravenous Glucose*

    PubMed Central

    Whichelow, Margaret J.; Sturge, R. A.; Keen, H.; Jarrett, R. J.; Stimmler, L.; Grainger, Susan

    1974-01-01

    Intravenous glucose tolerance tests (25 g) were performed in the morning and afternoon on 13 apparently normal persons. The individual K values (rate of decline of blood sugar) were all higher in the morning tests, and the mean values were significantly higher in the morning. Fasting blood sugar levels were slightly lower in the afternoon. There was no difference between the fasting morning and afternoon plasma insulin levels, but the levels after glucose were lower in the afternoon. Growth hormone levels were low at all times in non-apprehensive subjects and unaffected by glucose. The results suggest that the impaired afternoon intravenous glucose tolerance, like oral glucose tolerance, is associated with impaired insulin release and insulin resistance. PMID:4817160

  8. Blood glucose measurement by infrared spectroscopy.

    PubMed

    Zeller, H; Novak, P; Landgraf, R

    1989-02-01

    For the development of an implantable artificial endocrine pancreas, a sensor for blood glucose measurement is needed providing a long-term stability. This goal can be achieved by the application of infrared spectroscopy which, unlike electrochemical sensors, responds directly to the glucose molecule. An investigation under physiological conditions revealed five glucose absorption bands in the near and middle infrared range. These are 1040, 1085, 1109, 1160 and 1365 cm-1. Only the 1040 cm-1 frequency coincides with none of the other infrared-active blood substances like proteins, lipids and urea. Nevertheless, the other absorption bands too, especially the 1109 cm-1 frequency, can be used for blood glucose measurement, if the superimposed absorptions are compensated. Methods for the compensation have been found. Technically feasible embodiments of an infrared glucose sensor are described.

  9. Glucose Biosensor Based on Immobilization of Glucose Oxidase in Platinum Nanoparticles/Graphene/Chitosan Nanocomposite Film

    SciTech Connect

    Wu, Hong; Wang, Jun; Kang, Xinhuang; Wang, Chong M.; Wang, Donghai; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2009-09-01

    The bionanocomposite film consisting of glucose oxidase/Pt/functional graphene sheets/chitosan (GOD/Pt/FGS/chitosan) for glucose sensing was described. With the electrocatalytic synergy of FGS and Pt nanoparticles to hydrogen peroxide, a sensitive biosensor with detection limit of 0.6 µM glucose was achieved. The biosensor also had good reproducibility, long term stability and negligible interfering signals from ascorbic acid and uric acid comparing to the response to glucose. The large surface area and good conductivity of graphene suggests that graphene is a potential candidate for sensor material. The hybrid nanocomposite glucose sensor provides new opportunity for clinical diagnosis and point-of-care applications.

  10. Identification of glucose transporters in Aspergillus nidulans.

    PubMed

    Dos Reis, Thaila Fernanda; Menino, João Filipe; Bom, Vinícius Leite Pedro; Brown, Neil Andrew; Colabardini, Ana Cristina; Savoldi, Marcela; Goldman, Maria Helena S; Rodrigues, Fernando; Goldman, Gustavo Henrique

    2013-01-01

    To characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and -E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose. PMID:24282591

  11. Potentiometric measurement of glucose concentration with an immobilized glucose oxidase/catalase electrode.

    PubMed

    Wingard, L B; Liu, C C; Wolfson, S K; Yao, S J; Drash, A L

    1982-01-01

    A series of enzyme electrodes for measurement of glucose have been constructed. The electrodes contain glucose oxidase immobilized on platinum, either with or without co-immobilization of catalase. When placed in buffered glucose, the enzyme electrodes show a potentiometric response to glucose with respect to a Ag/AgCl reference electrode. This response is reproducible in the physiologic range of glucose concentrations. The immobilization technique, some of the environmental variables such as oxygen concentration and pH, and several compounds that might interfere with the selectivity of the enzyme electrodes for glucose have received preliminary study. This direct potentiometric approach is undergoing further evaluation to determine the basic electrochemical mechanism responsible for the potentiometric signal and whether it can be adapted for continuous in vivo monitoring of the glucose concentration in body fluids. PMID:7172983

  12. Injectable and Glucose-Responsive Hydrogels Based on Boronic Acid-Glucose Complexation.

    PubMed

    Dong, Yizhou; Wang, Weiheng; Veiseh, Omid; Appel, Eric A; Xue, Kun; Webber, Matthew J; Tang, Benjamin C; Yang, Xi-Wen; Weir, Gordon C; Langer, Robert; Anderson, Daniel G

    2016-08-30

    Injectable hydrogels have been widely used for a number of biomedical applications. Here, we report a new strategy to form an injectable and glucose-responsive hydrogel using the boronic acid-glucose complexation. The ratio of boronic acid and glucose functional groups is critical for hydrogel formation. In our system, polymers with 10-60% boronic acid, with the balance being glucose-modified, are favorable to form hydrogels. These hydrogels are shear-thinning and self-healing, recovering from shear-induced flow to a gel state within seconds. More importantly, these polymers displayed glucose-responsive release of an encapsulated model drug. The hydrogel reported here is an injectable and glucose-responsive hydrogel constructed from the complexation of boronic acid and glucose within a single component polymeric material.

  13. Glucose and fructose 6-phosphate cycle in humans

    SciTech Connect

    Karlander, S.; Roovete, A.; Vranic, M.; Efendic, S.

    1986-11-01

    We have determined the rate of glucose cycling by comparing turnovers of (2-/sup 3/H)- and (6-/sup 3/H)glucose under basal conditions and during a glucose infusion. Moreover, the activity of the fructose 6-phosphate cycle was assessed by comparing (3-/sup 3/H)- and (6-/sup 3/H)glucose. The study included eight lean subjects with normal glucose tolerance. They participated in two randomly performed investigations. In one experiment (2-/sup 3/H)- and (6-/sup 3/H)glucose were given simultaneously, while in the other only (3-/sup 3/H)glucose was given. The basal rate of glucose cycling was 0.32 +/- 0.08 mg X kg-1 X min-1 or 17% of basal glucose production (P less than 0.005). During glucose infusion the activity of endogenous glucose cycling did not change but since glucose production was suppressed it amounted to 130% of glucose production. The basal fructose 6-phosphate cycle could be detected only in three subjects and was suppressed during glucose infusion. In conclusion, the glucose cycle is active in healthy humans both in basal conditions and during moderate hyperglycemia. In some subjects, the fructose 6-phosphate cycle also appears to be active. Thus it is preferable to use (6-/sup 3/H)glucose rather than (3-/sup 3/H)glucose when measuring glucose production and particularly when assessing glucose cycle.

  14. A glucose oxidase-coupled DNAzyme sensor for glucose detection in tears and saliva.

    PubMed

    Liu, Chengcheng; Sheng, Yongjie; Sun, Yanhong; Feng, Junkui; Wang, Shijin; Zhang, Jin; Xu, Jiacui; Jiang, Dazhi

    2015-08-15

    Biosensors have been widely investigated and utilized in a variety of fields ranging from environmental monitoring to clinical diagnostics. Glucose biosensors have triggered great interest and have been widely exploited since glucose determination is essential for diabetes diagnosis. In here, we designed a novel dual-enzyme biosensor composed of glucose oxidase (GOx) and pistol-like DNAzyme (PLDz) to detect glucose levels in tears and saliva. First, GOx, as a molecular recognition element, catalyzes the oxidation of glucose forming H2O2; then PLDz recognizes the produced H2O2 as a secondary signal and performs a self-cleavage reaction promoted by Mn(2+), Co(2+) and Cu(2+). Thus, detection of glucose could be realized by monitoring the cleavage rate of PLDz. The slope of the cleavage rate of PLDz versus glucose concentration curve was fitted with a Double Boltzmann equation, with a range of glucose from 100 nM to 10mM and a detection limit of 5 μM. We further applied the GOx-PLDz 1.0 biosensor for glucose detection in tears and saliva, glucose levels in which are 720±81 μM and 405±56 μM respectively. Therefore, the GOx-PLDz 1.0 biosensor is able to determine glucose levels in tears and saliva as a noninvasive glucose biosensor, which is important for diabetic patients with frequent/continuous glucose monitoring requirements. In addition, induction of DNAzyme provides a new approach in the development of glucose biosensors.

  15. A Glucose Sensor in Candida albicans†

    PubMed Central

    Brown, Victoria; Sexton, Jessica A.; Johnston, Mark

    2006-01-01

    The Hgt4 protein of Candida albicans (orf19.5962) is orthologous to the Snf3 and Rgt2 glucose sensors of Saccharomyces cerevisiae that govern sugar acquisition by regulating the expression of genes encoding hexose transporters. We found that HGT4 is required for glucose induction of the expression of HGT12, HXT10, and HGT7, which encode apparent hexose transporters in C. albicans. An hgt4Δ mutant is defective for growth on fermentable sugars, which is consistent with the idea that Hgt4 is a sensor of glucose and similar sugars. Hgt4 appears to be sensitive to glucose levels similar to those in human serum (∼5 mM). HGT4 expression is repressed by high levels of glucose, which is consistent with the idea that it encodes a high-affinity sugar sensor. Glucose sensing through Hgt4 affects the yeast-to-hyphal morphological switch of C. albicans cells: hgt4Δ mutants are hypofilamented, and a constitutively signaling form of Hgt4 confers hyperfilamentation of cells. The hgt4Δ mutant is less virulent than wild-type cells in a mouse model of disseminated candidiasis. These results suggest that Hgt4 is a high-affinity glucose sensor that contributes to the virulence of C. albicans. PMID:17030998

  16. Exercising Tactically for Taming Postmeal Glucose Surges.

    PubMed

    Chacko, Elsamma

    2016-01-01

    This review seeks to synthesize data on the timing, intensity, and duration of exercise found scattered over some 39 studies spanning 3+ decades into optimal exercise conditions for controlling postmeal glucose surges. The results show that a light aerobic exercise for 60 min or moderate activity for 20-30 min starting 30 min after meal can efficiently blunt the glucose surge, with minimal risk of hypoglycemia. Exercising at other times could lead to glucose elevation caused by counterregulation. Adding a short bout of resistance exercise of moderate intensity (60%-80%  VO2max) to the aerobic activity, 2 or 3 times a week as recommended by the current guidelines, may also help with the lowering of glucose surges. On the other hand, high-intensity exercise (>80%  VO2max) causes wide glucose fluctuations and its feasibility and efficacy for glucose regulation remain to be ascertained. Promoting the kind of physical activity that best counters postmeal hyperglycemia is crucial because hundreds of millions of diabetes patients living in developing countries and in the pockets of poverty in the West must do without medicines, supplies, and special diets. Physical activity is the one tool they may readily utilize to tame postmeal glucose surges. Exercising in this manner does not violate any of the current guidelines, which encourage exercise any time.

  17. Noninvasive glucose sensing by transcutaneous Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Shih, Wei-Chuan; Bechtel, Kate L.; Rebec, Mihailo V.

    2015-05-01

    We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ˜1.5-2 mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies.

  18. Noninvasive glucose sensing by transcutaneous Raman spectroscopy

    PubMed Central

    Shih, Wei-Chuan; Bechtel, Kate L.; Rebec, Mihailo V.

    2015-01-01

    Abstract. We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ∼1.5−2  mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies. PMID:25688542

  19. Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia

    NASA Astrophysics Data System (ADS)

    Gjedde, Albert; Crone, Christian

    1981-10-01

    Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.

  20. Determination of glucose turnover in sea bass Dicentrarchus labrax. Comparative aspects of glucose utilization.

    PubMed

    Garin, D; Rombaut, A; Fréminet, A

    1987-01-01

    1. Parameters of in vivo glucose utilization by sea bass (132 +/- 6 g, mean +/- SEM) acclimated at 15 degrees C in sea-water were measured after single injection of labelled glucose. 2. Glucose turnover rate (RG; mumol . min-1 . kg-1) was found to be 0.55-065 (2-3H glucose) and 0.34 +/- 0.42 (U14C glucose). 3. Glucose transit time was 443-449 min, glucose mass 233-261 mumol . kg-1, and glucose recycling 37%. 4. Oxygen consumption (MO2) amounted to 94 +/- 6.2 mumol . min-1 . kg-1. 5. The comparison with other fish species, mammals and birds, taking into account body size, temperature, diet, exercise, in poikilotherms and homeotherms leads to the calculation of a glucose turnover index (RGI = RG x 6 x 100 x MO2(-1)). 6. Value of this, generally lower in ectotherm teleosts (2-9), than in endotherms: mammals, birds and thunidae (22-60), confirms the minor quantitative importance of glucose in the metabolism of most fish.

  1. The glucose/glucose-6-phosphate cycle in the periportal and perivenous zone of rat liver.

    PubMed

    Jungermann, K; Heilbronn, R; Katz, N; Sasse, D

    1982-04-01

    Periportal and perivenous hepatocytes contain different activities (V) of antagonistic key enzymes such as glucokinase and glucose-6-phosphatase. In order to get an insight into the metabolism of the periportal and perivenous area the flux rates (v) of the glucose/glucose-6-phosphate cycle were calculated on the basis of the Michaelis-Menten equation using the measured zonal concentrations of glucose and glucose 6-phosphate, the zonal activities of glucokinase and glucose-6-phosphatase previously reported and the half-saturating substrate concentrations (Km) of the two enzymes found in the literature. The concentrations of glucose were obtained as a first approximation by measuring the concentrations in portal (= periportal) and hepatovenous (= perivenous) blood; those of glucose 6-phosphate were calculated from the levels determined in microdissected periportal and perivenous liver tissue. The calculations showed (a) that the overall cycling rates agreed remarkably well with those reported for intact animals and (b) that during a normal feeding rhythm the periportal zone should catalyze net glucose output and the perivenous zone should mediate net glucose uptake, as proposed by the model of 'metabolic zonation'.

  2. Optimal glucose management in the perioperative period.

    PubMed

    Evans, Charity H; Lee, Jane; Ruhlman, Melissa K

    2015-04-01

    Hyperglycemia is a common finding in surgical patients during the perioperative period. Factors contributing to poor glycemic control include counterregulatory hormones, hepatic insulin resistance, decreased insulin-stimulated glucose uptake, use of dextrose-containing intravenous fluids, and enteral and parenteral nutrition. Hyperglycemia in the perioperative period is associated with increased morbidity, decreased survival, and increased resource utilization. Optimal glucose management in the perioperative period contributes to reduced morbidity and mortality. To readily identify hyperglycemia, blood glucose monitoring should be instituted for all hospitalized patients. PMID:25814110

  3. Glucose and fructose metabolism in Zymomonas anaerobia

    PubMed Central

    McGill, D. J.; Dawes, E. A.

    1971-01-01

    Isotopic and enzymic evidence indicates that Zymomonas anaerobia ferments glucose via the Entner–Doudoroff pathway. The molar growth yields with glucose (5.89) and fructose (5.0) are lower than those for the related organism Zymomonas mobilis and the observed linear growth suggests that energetically uncoupled growth occurs. A survey of enzymes of carbohydrate metabolism revealed the presence of weak phosphofructokinase and fructose 1,6-diphosphate aldolase activities but phosphoketolase, transketolase and transaldolase were not detected. Fermentation balances for glucose and fructose are reported; acetaldehyde accumulated in both fermentations, to a greater extent with fructose which also yielded glycerol and dihydroxyacetone as minor products. PMID:4259336

  4. Continuous glucose monitoring in small animals.

    PubMed

    Surman, Sean; Fleeman, Linda

    2013-03-01

    The use of continuous glucose monitoring systems in veterinary patients is summarized and discussed. The current clinical uses in veterinary medicine, including monitoring of hospitalized/sick diabetic patients, long-term monitoring of stable diabetic patients, anesthetized patients, and other patients with altered blood glucose homeostasis are presented. The most important advantage of these systems over intermittent blood glucose measurements is that they facilitate detection of brief periods of hypoglycemia and provide information overnight. The accuracy and advantages/disadvantages compared with traditional monitoring are addressed. The technology involved in the currently available monitoring systems is also discussed. PMID:23522178

  5. Glucose Homeostatic Law: Insulin Clearance Predicts the Progression of Glucose Intolerance in Humans

    PubMed Central

    Uda, Shinsuke; Kubota, Hiroyuki; Iwaki, Toshinao; Fukuzawa, Hiroki; Komori, Yasunori; Fujii, Masashi; Toyoshima, Yu; Sakaguchi, Kazuhiko; Ogawa, Wataru; Kuroda, Shinya

    2015-01-01

    Homeostatic control of blood glucose is regulated by a complex feedback loop between glucose and insulin, of which failure leads to diabetes mellitus. However, physiological and pathological nature of the feedback loop is not fully understood. We made a mathematical model of the feedback loop between glucose and insulin using time course of blood glucose and insulin during consecutive hyperglycemic and hyperinsulinemic-euglycemic clamps in 113 subjects with variety of glucose tolerance including normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM). We analyzed the correlation of the parameters in the model with the progression of glucose intolerance and the conserved relationship between parameters. The model parameters of insulin sensitivity and insulin secretion significantly declined from NGT to IGT, and from IGT to T2DM, respectively, consistent with previous clinical observations. Importantly, insulin clearance, an insulin degradation rate, significantly declined from NGT, IGT to T2DM along the progression of glucose intolerance in the mathematical model. Insulin clearance was positively correlated with a product of insulin sensitivity and secretion assessed by the clamp analysis or determined with the mathematical model. Insulin clearance was correlated negatively with postprandial glucose at 2h after oral glucose tolerance test. We also inferred a square-law between the rate constant of insulin clearance and a product of rate constants of insulin sensitivity and secretion in the model, which is also conserved among NGT, IGT and T2DM subjects. Insulin clearance shows a conserved relationship with the capacity of glucose disposal among the NGT, IGT and T2DM subjects. The decrease of insulin clearance predicts the progression of glucose intolerance. PMID:26623647

  6. Postprandial glucose and insulin profiles following a glucose-loaded meal in cats and dogs.

    PubMed

    Hewson-Hughes, Adrian K; Gilham, Matthew S; Upton, Sarah; Colyer, Alison; Butterwick, Richard; Miller, Andrew T

    2011-10-01

    Data from intravenous (i.v.) glucose tolerance tests suggest that glucose clearance from the blood is slower in cats than in dogs. Since different physiological pathways are activated following oral administration compared with i.v. administration, we investigated the profiles of plasma glucose and insulin in cats and dogs following ingestion of a test meal with or without glucose. Adult male and female cats and dogs were fed either a high-protein (HP) test meal (15 g/kg body weight; ten cats and eleven dogs) or a HP + glucose test meal (13 g/kg body-weight HP diet + 2 g/kg body-weight D-glucose; seven cats and thirteen dogs) following a 24 h fast. Marked differences in plasma glucose and insulin profiles were observed in cats and dogs following ingestion of the glucose-loaded meal. In cats, mean plasma glucose concentration reached a peak at 120 min (10.2, 95 % CI 9.7, 10.8 mmol/l) and returned to baseline by 240 min, but no statistically significant change in plasma insulin concentration was observed. In dogs, mean plasma glucose concentration reached a peak at 60 min (6.3, 95 % CI 5.9, 6.7 mmol/l) and returned to baseline by 90 min, while plasma insulin concentration was significantly higher than pre-meal values from 30 to 120 min following the glucose-loaded meal. These results indicate that cats are not as efficient as dogs at rapidly decreasing high blood glucose levels and are consistent with a known metabolic adaptation of cats, namely a lack of glucokinase, which is important for both insulin secretion and glucose uptake from the blood. PMID:22005400

  7. A glucose-centric perspective of hyperglycemia.

    PubMed

    Ramasarma, T; Rafi, M

    2016-02-01

    Digestion of food in the intestines converts the compacted storage carbohydrates, starch and glycogen, to glucose. After each meal, a flux of glucose (> 200 g) passes through the blood pool (4-6 g) in a short period of 2 h, keeping its concentration ideally in the range of 80-120 mg/100 mL. Tissue-specific glucose transporters (GLUTs) aid in the distribution of glucose to all tissues. The balance glucose after meeting the immediate energy needs is converted into glycogen and stored in liver (up to 100 g) and skeletal muscle (up to 300 g) for later use. High blood glucose gives the signal for increased release of insulin from pancreas. Insulin binds to insulin receptor on the plasma membrane and activates its autophosphorylation. This initiates the post-insulin-receptor signal cascade that accelerates synthesis of glycogen and triglyceride. Parallel control by phos-dephos and redox regulation of proteins exists for some of these steps. A major action of insulin is to inhibit gluconeogensis in the liver decreasing glucose output into blood. Cases with failed control of blood glucose have alarmingly increased since 1960 coinciding with changed life-styles and large scale food processing. Many of these turned out to be resistant to insulin, usually accompanied by dysfunctional glycogen storage. Glucose has an extended stay in blood at 8 mM and above and then indiscriminately adds on to surface protein-amino groups. Fructose in common sugar is 10-fold more active. This random glycation process interferes with the functions of many proteins (e.g., hemoglobin, eye lens proteins) and causes progressive damage to heart, kidneys, eyes and nerves. Some compounds are known to act as insulin mimics. Vanadium-peroxide complexes act at post-receptor level but are toxic. The fungus-derived 2,5-dihydroxybenzoquinone derivative is the first one known to act on the insulin receptor. The safe herbal products in use for centuries for glucose control have multiple active principles and

  8. Genetics Home Reference: glucose-galactose malabsorption

    MedlinePlus

    ... mutations in SGLT1 cause glucose-galactose malabsorption by trafficking defects. Biochim Biophys Acta. 1999 Feb 24;1453( ... Accessibility FOIA Viewers & Players U.S. Department of Health & Human Services National Institutes of Health National Library of ...

  9. The innovator will prevail in glucose monitoring.

    PubMed

    Green, M J

    2006-05-01

    As well as the expanding diabetes market for glucose-monitoring devices, there are other applications for these products and opportunities for companies with the will to innovate. One area that is explored here is the intensive care unit.

  10. A glucose-centric perspective of hyperglycemia.

    PubMed

    Ramasarma, T; Rafi, M

    2016-02-01

    Digestion of food in the intestines converts the compacted storage carbohydrates, starch and glycogen, to glucose. After each meal, a flux of glucose (> 200 g) passes through the blood pool (4-6 g) in a short period of 2 h, keeping its concentration ideally in the range of 80-120 mg/100 mL. Tissue-specific glucose transporters (GLUTs) aid in the distribution of glucose to all tissues. The balance glucose after meeting the immediate energy needs is converted into glycogen and stored in liver (up to 100 g) and skeletal muscle (up to 300 g) for later use. High blood glucose gives the signal for increased release of insulin from pancreas. Insulin binds to insulin receptor on the plasma membrane and activates its autophosphorylation. This initiates the post-insulin-receptor signal cascade that accelerates synthesis of glycogen and triglyceride. Parallel control by phos-dephos and redox regulation of proteins exists for some of these steps. A major action of insulin is to inhibit gluconeogensis in the liver decreasing glucose output into blood. Cases with failed control of blood glucose have alarmingly increased since 1960 coinciding with changed life-styles and large scale food processing. Many of these turned out to be resistant to insulin, usually accompanied by dysfunctional glycogen storage. Glucose has an extended stay in blood at 8 mM and above and then indiscriminately adds on to surface protein-amino groups. Fructose in common sugar is 10-fold more active. This random glycation process interferes with the functions of many proteins (e.g., hemoglobin, eye lens proteins) and causes progressive damage to heart, kidneys, eyes and nerves. Some compounds are known to act as insulin mimics. Vanadium-peroxide complexes act at post-receptor level but are toxic. The fungus-derived 2,5-dihydroxybenzoquinone derivative is the first one known to act on the insulin receptor. The safe herbal products in use for centuries for glucose control have multiple active principles and

  11. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells

    SciTech Connect

    Durand, Fabien; Stines-Chaumeil, Claire; Flexer, Victoria; Andre, Isabelle; Mano, Nicolas

    2010-11-26

    Research highlights: {yields} A new mutant of PQQ-GDH designed for glucose biosensors application. {yields} First mutant of PQQ-GDH with higher activity for D-glucose than the Wild type. {yields} Position N428 is a key point to increase the enzyme activity. {yields} Molecular modeling shows that the N428 C mutant displays a better interaction for PQQ than the WT. -- Abstract: We report for the first time a soluble PQQ-glucose dehydrogenase that is twice more active than the wild type for glucose oxidation and was obtained by combining site directed mutagenesis, modelling and steady-state kinetics. The observed enhancement is attributed to a better interaction between the cofactor and the enzyme leading to a better electron transfer. Electrochemical experiments also demonstrate the superiority of the new mutant for glucose oxidation and make it a promising enzyme for the development of high-performance glucose biosensors and biofuel cells.

  12. Recent Advances in Continuous Glucose Monitoring: Biocompatibility of Glucose Sensors for Implantation in Subcutis

    PubMed Central

    Kvist, Peter H.; Jensen, Henrik E.

    2007-01-01

    Tight glycemic control slows or prevents the development of short- and long-term complications of diabetes mellitus. Continuous glucose measurements provide improved glycemic control and potentially prevent these diabetic complications. Glucose sensors, especially implantable devices, offer an alternative to classical self-monitored blood glucose levels and have shown promising glucose-sensing properties. However, the ultimate goal of implementing the glucose sensor as the glucose-sensing part of a closed loop system (artificial pancreas) is still years ahead because of malfunctions of the implanted sensor. The malfunction is partly a consequence of the subcutaneous inflammatory reaction caused by the implanted sensor. In order to improve sensor measurements and thereby close the loop, it is crucial to understand what happens at the tissue-sensor interface. PMID:19885143

  13. Pyrolysis of D-Glucose to Acrolein

    NASA Astrophysics Data System (ADS)

    Shen, Chong; Zhang, Igor Ying; Fu, Gang; Xu, Xin

    2011-06-01

    Despite of its great importance, the detailed molecular mechanism for carbohydrate pyrolysis remains poorly understood. We perform a density functional study with a newly developed XYG3 functional on the processes for D-glucose pyrolysis to acrolein. The most feasible reaction pathway starts from an isomerization from D-glucose to D-fructose, which then undergoes a cyclic Grob fragmentation, followed by a concerted electrocyclic dehydration to yield acrolein. This mechanism can account for the known experimental results.

  14. Acid hydrolysis of cellulose to yield glucose

    DOEpatents

    Tsao, George T.; Ladisch, Michael R.; Bose, Arindam

    1979-01-01

    A process to yield glucose from cellulose through acid hydrolysis. Cellulose is recovered from cellulosic materials, preferably by pretreating the cellulosic materials by dissolving the cellulosic materials in Cadoxen or a chelating metal caustic swelling solvent and then precipitating the cellulose therefrom. Hydrolysis is accomplished using an acid, preferably dilute sulfuric acid, and the glucose is yielded substantially without side products. Lignin may be removed either before or after hydrolysis.

  15. Effects of fasting on plasma glucose and prolonged tracer measurement of hepatic glucose output in NIDDM

    SciTech Connect

    Glauber, H.; Wallace, P.; Brechtel, G.

    1987-10-01

    We studied the measurement of hepatic glucose output (HGO) with prolonged (3-/sup 3/H)glucose infusion in 14 patients with non-insulin-dependent diabetes mellitus (NIDDM). Over the course of 10.5 h, plasma glucose concentration fell with fasting by one-third, from 234 +/- 21 to 152 +/- 12 mg/dl, and HGO fell from 2.35 +/- 0.18 to 1.36 +/- 0.07 mg . kg-1 . min-1 (P less than .001). In the basal state, HGO and glucose were significantly correlated (r = 0.68, P = .03), and in individual patients, HGO and glucose were closely correlated as both fell with fasting (mean r = 0.79, P less than .01). Plasma (3-/sup 3/H)glucose radioactivity approached a steady state only 5-6 h after initiation of the primed continuous infusion, and a 20% overestimate of HGO was demonstrated by not allowing sufficient time for tracer labeling of the glucose pool. Assumption of steady-state instead of non-steady-state kinetics in using Steele's equations to calculate glucose turnover resulted in a 9-24% overestimate of HGO. Stimulation of glycogenolysis by glucagon injection demonstrated no incorporation of (3-/sup 3/H)glucose in hepatic glycogen during the prolonged tracer infusion. In a separate study, plasma glucose was maintained at fasting levels (207 +/- 17 mg/dl) for 8 h with the glucose-clamp technique. Total glucose turnover rates remained constant during this prolonged tracer infusion. However, HGO fell to 30% of the basal value simply by maintaining fasting hyperglycemia in the presence of basal insulin levels.

  16. Okara ameliorates glucose tolerance in GK rats.

    PubMed

    Hosokawa, Masaya; Katsukawa, Michiko; Tanaka, Hiroshi; Fukuda, Hitomi; Okuno, Sonomi; Tsuda, Kinsuke; Iritani, Nobuko

    2016-05-01

    Okara, a food by-product from the production of tofu and soy milk, is rich in three beneficial components: insoluble dietary fiber, β-conglycinin, and isoflavones. Although isoflavones and β-conglycinin have recently been shown to improve glucose tolerance, the effects of okara have not yet been elucidated. Therefore, we herein investigated the effects of okara on glucose tolerance in Goto-Kakizaki (GK) rats, a representative animal model of Japanese type 2 diabetes. Male GK rats were fed a 10% lard diet with or without 5% dry okara powder for 2 weeks and an oral glucose tolerance test was performed. Rats were then fed each diet for another week and sacrificed. The expression of genes that are the master regulators of glucose metabolism in adipose tissue was subsequently examined. No significant differences were observed in body weight gain or food intake between the two groups of GK rats. In the oral glucose tolerance test, increases in plasma glucose levels were suppressed by the okara diet. The mRNA expression levels of PPARγ, adiponectin, and GLUT4, which up-regulate the effects of insulin, were increased in epididymal adipose tissue by the okara diet. These results suggest that okara provides a useful means for treating type 2 diabetes. PMID:27257347

  17. Bitter taste receptors influence glucose homeostasis.

    PubMed

    Dotson, Cedrick D; Zhang, Lan; Xu, Hong; Shin, Yu-Kyong; Vigues, Stephan; Ott, Sandra H; Elson, Amanda E T; Choi, Hyun Jin; Shaw, Hillary; Egan, Josephine M; Mitchell, Braxton D; Li, Xiaodong; Steinle, Nanette I; Munger, Steven D

    2008-01-01

    TAS1R- and TAS2R-type taste receptors are expressed in the gustatory system, where they detect sweet- and bitter-tasting stimuli, respectively. These receptors are also expressed in subsets of cells within the mammalian gastrointestinal tract, where they mediate nutrient assimilation and endocrine responses. For example, sweeteners stimulate taste receptors on the surface of gut enteroendocrine L cells to elicit an increase in intracellular Ca(2+) and secretion of the incretin hormone glucagon-like peptide-1 (GLP-1), an important modulator of insulin biosynthesis and secretion. Because of the importance of taste receptors in the regulation of food intake and the alimentary responses to chemostimuli, we hypothesized that differences in taste receptor efficacy may impact glucose homeostasis. To address this issue, we initiated a candidate gene study within the Amish Family Diabetes Study and assessed the association of taste receptor variants with indicators of glucose dysregulation, including a diagnosis of type 2 diabetes mellitus and high levels of blood glucose and insulin during an oral glucose tolerance test. We report that a TAS2R haplotype is associated with altered glucose and insulin homeostasis. We also found that one SNP within this haplotype disrupts normal responses of a single receptor, TAS2R9, to its cognate ligands ofloxacin, procainamide and pirenzapine. Together, these findings suggest that a functionally compromised TAS2R receptor negatively impacts glucose homeostasis, providing an important link between alimentary chemosensation and metabolic disease. PMID:19092995

  18. Zinc dosing and glucose tolerance in humans

    SciTech Connect

    Greenley, S.; Taylor, M.

    1986-03-05

    Animal data suggest the existence of a physiologic relationship between glucoregulatory hormones and zinc metabolism. In order to investigate this proposed relationship in humans, they examined the effect of moderately elevated plasma zinc levels on blood glucose clearance. Eight women (24-37 yrs) served as subjects for the study. Fasted volunteers were tested under two experimental conditions (a) ingestion of 50 g D-glucose (b) ingestion of 25 mg zinc followed 60 min later by ingestion of 50 g D-glucose. Five ml venous blood was drawn into trace-metal-free, fluoride-containing vacutainer tubes prior to and 15, 30, 45, 60, 90, and 120 min after glucose ingestion. Plasma was analyzed for glucose and zinc; glycemic responses were quantified by computing areas under the curves and times to peak concentration. Their human data indicate varied glycemic responses to the acute elevation of plasma zinc: 4 subjects showed little apparent effect; 3 subjects marginally increased either the area under the curve or time to peak and 1 subject (classified as suspect diabetic in the non-zinc condition) showed marked improvement in glycemic response following zinc ingestion. Their preliminary results suggest that blood glucose clearance may be affected in some individuals by the acute elevation of plasma zinc.

  19. Noninvasive Continuous Monitoring of Tear Glucose Using Glucose-Sensing Contact Lenses.

    PubMed

    Ascaso, Francisco J; Huerva, Valentín

    2016-04-01

    : The incidence of diabetes mellitus is dramatically increasing in the developed countries. Tight control of blood glucose concentration is crucial to diabetic patients to prevent microvascular complications. Self-monitoring of blood glucose is widely used for controlling blood glucose levels and usually performed by an invasive test using a portable glucometer. Many technologies have been developed over the past decades with the purpose of obtaining a continuous physiological glycemic monitoring. A contact lens is the ideal vehicle for continuous tear glucose monitoring of glucose concentration in tear film. There are several research groups that are working in the development of contact lenses with embedded biosensors for continuously and noninvasively monitoring tear glucose levels. Although numerous aspects must be improved, contact lens technology is one step closer to helping diabetic subjects better manage their condition, and these contact lenses will be able to measure the level of glucose in the wearer's tears and communicate the information to a mobile phone or computer. This article reviews studies on ocular glucose and its monitoring methods as well as the attempts to continuously monitor the concentration of tear glucose by using contact lens-based sensors. PMID:26390345

  20. Glucose as substrate and signal in priming: Results from experiments with non-metabolizable glucose analogues

    NASA Astrophysics Data System (ADS)

    Mason-Jones, Kyle; Kuzyakov, Yakov

    2016-04-01

    Priming of soil organic matter remains the subject of intense research, but a mechanistic explanation of the phenomenon remains to be demonstrated. This is largely due to the multiple effects of easily available carbon on the soil microbial community, and the challenge of separating these influences from one another. Several glucose analogues can be taken up by microbial glucose transporters and have similar regulatory effects on metabolism. These substances are, however, not easily catabolized by the common glycolytic pathway, limiting their energy value. Therefore, they can be used to distinguish between the action of glucose as a metabolic signal, and its influence as an energy source. We incubated an agricultural Haplic Luvisol under controlled conditions for 24 days after addition of: 1) glucose, 2) 3-O-methyl-glucose, 3) α-methylglucoside or 4) 2-deoxyglucose, at three concentration levels, along with a control treatment of water addition. CO2 efflux from soil was monitored by trapping evolved CO2 in NaOH and back-titration with HCl. On the first day after amendment, CO2 efflux from soil increased strongly for glucose and much less for the analogues, relative to the control. Only glucose caused a peak in efflux within the first two days. Peak mineralization of 2-deoxyglucose and α-methylglucoside was delayed until the third day, while CO2 from 3-O-methyl-glucose increased gradually, with a peak delayed by approximately a week. For glucose, the immediate increase in respiration was strongly dependent on the amount of glucose added, but this was not the case for the analogues, indicating that the catabolic potential for these substances was saturated. This is consistent with only a small part of the microbial community being capable of utilizing these carbon sources. In a subsequent experiment, 14C-labelled glucose or 14C-labelled 3-O-methyl-glucose were added to the same soil, enabling quantification of the priming effect. For 3-O-methyl-glucose, priming was

  1. Sodium coupled glucose co-transporters contribute to hypothalamic glucose-sensing

    PubMed Central

    O'Malley, Dervla; Reimann, Frank; Simpson, Anna K; Gribble, Fiona M

    2007-01-01

    Specialised neurons within the hypothalamus have the ability to sense and respond to changes in ambient glucose concentrations. We investigated the mechanisms underlying glucose-triggered activity in glucose-excited (GE) neurons, using primary cultures of rat hypothalamic neurons monitored by fluorescence calcium imaging. 35% (738/2139) of neurons were excited by increasing glucose from 3 to 15mM, but only 9% (6/64) of these GE neurons were activated by tolbutamide, suggesting the involvement of a KATP channel-independent mechanism. α-Methylglucopyranoside (αMDG, 12mM), a non-metabolisable substrate of sodium glucose co-transporters (SGLTs), mimicked the effect of high glucose in 67% of GE neurons, and both glucose and αMDG-triggered excitation were blocked by Na+ removal or by the SGLT inhibitor, phloridzin (100nM). In the presence of 0.5mM glucose and tolbutamide, responses could also be triggered by 3.5mM αMDG, supporting a role for an SGLT-associated mechanism at low as well as high substrate concentrations. By RT-PCR, we detected SGLT1, SGLT3a, SGLT3b in both cultured neurons and adult rat hypothalamus. Our findings suggest a novel role for SGLTs in glucose-sensing by hypothalamic GE neurons. PMID:17130483

  2. Noninvasive Continuous Monitoring of Tear Glucose Using Glucose-Sensing Contact Lenses.

    PubMed

    Ascaso, Francisco J; Huerva, Valentín

    2016-04-01

    : The incidence of diabetes mellitus is dramatically increasing in the developed countries. Tight control of blood glucose concentration is crucial to diabetic patients to prevent microvascular complications. Self-monitoring of blood glucose is widely used for controlling blood glucose levels and usually performed by an invasive test using a portable glucometer. Many technologies have been developed over the past decades with the purpose of obtaining a continuous physiological glycemic monitoring. A contact lens is the ideal vehicle for continuous tear glucose monitoring of glucose concentration in tear film. There are several research groups that are working in the development of contact lenses with embedded biosensors for continuously and noninvasively monitoring tear glucose levels. Although numerous aspects must be improved, contact lens technology is one step closer to helping diabetic subjects better manage their condition, and these contact lenses will be able to measure the level of glucose in the wearer's tears and communicate the information to a mobile phone or computer. This article reviews studies on ocular glucose and its monitoring methods as well as the attempts to continuously monitor the concentration of tear glucose by using contact lens-based sensors.

  3. Estriol blunts postprandial blood glucose rise in male rats through regulating intestinal glucose transporters.

    PubMed

    Yamabe, Noriko; Kang, Ki Sung; Lee, Woojung; Kim, Su-Nam; Zhu, Bao Ting

    2015-03-01

    Despite increased total food intake in healthy, late-stage pregnant women, their peak postprandial blood sugar levels are normally much lower than the levels seen in healthy nonpregnant women. In this study, we sought to determine whether estriol (E3), an endogenous estrogen predominantly produced during human pregnancy, contributes to the regulation of the postprandial blood glucose level in healthy normal rats. In vivo studies using rats showed that E3 blunted the speed and magnitude of the blood glucose rise following oral glucose administration, but it did not appear to affect the total amount of glucose absorbed. E3 also did not affect insulin secretion, but it significantly reduced the rate of intestinal glucose transport compared with vehicle-treated animals. Consistent with this finding, expression of the sodium-dependent glucose transporter 1 and 2 was significantly downregulated by E3 treatment in the brush-border membrane and basolateral membrane, respectively, of enterocytes. Most of the observed in vivo effects were noticeably stronger with E3 than with 17β-estradiol. Using differentiated human Caco-2 enterocyte monolayer culture as an in vitro model, we confirmed that E3 at physiologically relevant concentrations could directly inhibit glucose uptake via suppression of glucose transporter 2 expression, whereas 17β-estradiol did not have a similar effect. Collectively, these data showed that E3 can blunt the postprandial glycemic surge in rats through modulating the level of intestinal glucose transporters.

  4. Factors Affecting Accuracy and Time Requirements of a Glucose Oxidase-Peroxidase Assay for Determination of Glucose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate and rapid assays for glucose are desirable for analysis of glucose and starch in food and feedstuffs. An established colorimetric glucose oxidase-peroxidase method for glucose was modified to reduce analysis time, and evaluated for factors that affected accuracy. Time required to perform t...

  5. Studies on Electrical behavior of Glucose using Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Juansah, Jajang; Yulianti, Wina

    2016-01-01

    In this work we report the electrical characteristics of glucose at different frequencies. We show the correlation between electrical properties (impedance, reactance, resistance and conductance) of glucose and glucose concentration. Electrical property measurements on glucose solution were performed in order to formulate the correlation. The measurements were conducted for frequencies between 50 Hz and 1 MHz. From the measurements, we developed a single-pole Cole-Cole graph as a function of glucose concentration.

  6. Determination of Glucose Concentration in Yeast Culture Medium

    NASA Astrophysics Data System (ADS)

    Hara, Seiichi; Kishimoto, Tomokazu; Muraji, Masafumi; Tsujimoto, Hiroaki; Azuma, Masayuki; Ooshima, Hiroshi

    The present paper describes a sensor for measuring the glucose concentration of yeast culture medium. The sensor determines glucose concentration by measuring the yield of hydrogen peroxide produced by glucose oxidase, which is monitored as luminescence using photomultiplier. The present sensor is able to measure low glucose concentration in media in which yeast cells keep respiration state. We herein describe the system and the characteristics of the glucose sensor.

  7. Hydroxycitric acid delays intestinal glucose absorption in rats.

    PubMed

    Wielinga, Peter Y; Wachters-Hagedoorn, Renate E; Bouter, Brenda; van Dijk, Theo H; Stellaard, Frans; Nieuwenhuizen, Arie G; Verkade, Henkjan J; Scheurink, Anton J W

    2005-06-01

    In this study, we investigated in rats if hydroxycitric acid (HCA) reduces the postprandial glucose response by affecting gastric emptying or intestinal glucose absorption. We compared the effect of regulator HCA (310 mg/kg) and vehicle (control) on the glucose response after an intragastric or intraduodenal glucose load to investigate the role of altered gastric emptying. Steele's one-compartment model was used to investigate the effect of HCA on systemic glucose appearance after an intraduodenal glucose load, using [U-(13)C]-labeled glucose and d-[6,6-(2)H(2)]-labeled glucose. Because an effect on postabsorptive glucose clearance could not be excluded, the effect of HCA on the appearance of enterally administered glucose in small intestinal tissue, liver, and portal and systemic circulation was determined by [U-(14)C]glucose infusion. Data show that HCA treatment delays the intestinal absorption of enterally administered glucose at the level of the small intestinal mucosa in rats. HCA strongly attenuated postprandial blood glucose levels after both intragastric (P < 0.01) and intraduodenal (P < 0.001) glucose administration, excluding a major effect of HCA on gastric emptying. HCA delayed the systemic appearance of exogenous glucose but did not affect the total fraction of glucose absorbed over the study period of 150 min. HCA treatment decreased concentrations of [U-(14)C]glucose in small intestinal tissue at 15 min after [U-(14)C]glucose administration (P < 0.05), in accordance with the concept that HCA delays the enteral absorption of glucose. These data support a possible role for HCA as food supplement in lowering postprandial glucose profiles. PMID:15604199

  8. 21 CFR 168.121 - Dried glucose sirup.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Dried glucose sirup. 168.121 Section 168.121 Food... Table Sirups § 168.121 Dried glucose sirup. (a) Dried glucose sirup is glucose sirup from which the... equivalent), expressed as D-glucose, is not less than 88.0 percent m/m, calculated on a dry basis; or (2)...

  9. 21 CFR 168.121 - Dried glucose sirup.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Dried glucose sirup. 168.121 Section 168.121 Food... Table Sirups § 168.121 Dried glucose sirup. (a) Dried glucose sirup is glucose sirup from which the... equivalent), expressed as D-glucose, is not less than 88.0 percent m/m, calculated on a dry basis; or (2)...

  10. 21 CFR 168.121 - Dried glucose sirup.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Dried glucose sirup. 168.121 Section 168.121 Food... Table Sirups § 168.121 Dried glucose sirup. (a) Dried glucose sirup is glucose sirup from which the... equivalent), expressed as D-glucose, is not less than 88.0 percent m/m, calculated on a dry basis; or (2)...

  11. 21 CFR 168.121 - Dried glucose sirup.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Dried glucose sirup. 168.121 Section 168.121 Food... Table Sirups § 168.121 Dried glucose sirup. (a) Dried glucose sirup is glucose sirup from which the... equivalent), expressed as D-glucose, is not less than 88.0 percent m/m, calculated on a dry basis; or (2)...

  12. 21 CFR 168.121 - Dried glucose sirup.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Dried glucose sirup. 168.121 Section 168.121 Food... Table Sirups § 168.121 Dried glucose sirup. (a) Dried glucose sirup is glucose sirup from which the... equivalent), expressed as D-glucose, is not less than 88.0 percent m/m, calculated on a dry basis; or (2)...

  13. Hepatic glucose output in humans measured with labeled glucose to reduce negative errors

    SciTech Connect

    Levy, J.C.; Brown, G.; Matthews, D.R.; Turner, R.C. )

    1989-10-01

    Steele and others have suggested that minimizing changes in glucose specific activity when estimating hepatic glucose output (HGO) during glucose infusions could reduce non-steady-state errors. This approach was assessed in nondiabetic and type II diabetic subjects during constant low dose (27 mumol.kg ideal body wt (IBW)-1.min-1) glucose infusion followed by a 12 mmol/l hyperglycemic clamp. Eight subjects had paired tests with and without labeled infusions. Labeled infusion was used to compare HGO in 11 nondiabetic and 15 diabetic subjects. Whereas unlabeled infusions produced negative values for endogenous glucose output, labeled infusions largely eliminated this error and reduced the dependence of the Steele model on the pool fraction in the paired tests. By use of labeled infusions, 11 nondiabetic subjects suppressed HGO from 10.2 +/- 0.6 (SE) fasting to 0.8 +/- 0.9 mumol.kg IBW-1.min-1 after 90 min of glucose infusion and to -1.9 +/- 0.5 mumol.kg IBW-1.min-1 after 90 min of a 12 mmol/l glucose clamp, but 15 diabetic subjects suppressed only partially from 13.0 +/- 0.9 fasting to 5.7 +/- 1.2 at the end of the glucose infusion and 5.6 +/- 1.0 mumol.kg IBW-1.min-1 in the clamp (P = 0.02, 0.002, and less than 0.001, respectively).

  14. Effects of iriflophenone 3-C-β-glucoside on fasting blood glucose level and glucose uptake

    PubMed Central

    Pranakhon, Ratree; Aromdee, Chantana; Pannangpetch, Patchareewan

    2015-01-01

    Background: One of the biological activities of agar wood (Aquilaria sinensis Lour., Thymelaeaceae), is anti-hyperglycemic activity. The methanolic extract (ME) was proven to possess the fasting blood glucose activity in rat and glucose uptake transportation by rat adipocytes. Objective: To determine the decreasing fasting blood glucose level of constituents affordable for in vivo test. If the test was positive, the mechanism which is positive to the ME, glucose transportation, will be performed. Materials and Methods: The ME was separated by column chromatography and identified by spectroscopic methods. Mice was used as an animal model (in vivo), and rat adipocytes were used for the glucose transportation activity (in vitro). Result: Iriflophenone 3-C-β-glucoside (IPG) was the main constituent, 3.17%, and tested for the activities. Insulin and the ME were used as positive controls. The ME, IPG and insulin lowered blood glucose levels by 40.3, 46.4 and 41.5%, respectively, and enhanced glucose uptake by 152, 153, and 183%, respectively. Conclusion: These findings suggest that IPG is active in lowering fasting blood glucose with potency comparable to that of insulin. PMID:25709215

  15. A MEMS affinity glucose sensor using a biocompatible glucose-responsive polymer.

    PubMed

    Huang, Xian; Li, Siqi; Schultz, Jerome S; Wang, Qian; Lin, Qiao

    2009-07-16

    We present a MEMS affinity sensor that can potentially allow long-term continuous monitoring of glucose in subcutaneous tissue for diabetes management. The sensing principle is based on detection of viscosity changes due to affinity binding between glucose and poly(acrylamide-ran-3-acrylamidophenylboronic acid) (PAA-ran-PAAPBA), a biocompatible, glucose-specific polymer. The device uses a magnetically driven vibrating microcantilever as a sensing element, which is fabricated from Parylene and situated in a microchamber. A solution of PAA-ran-PAAPBA fills the microchamber, which is separated from the surroundings by a semi-permeable membrane. Glucose permeates through the membrane and binds reversibly to the phenylboronic acid moiety of the polymer. This results in a viscosity change of the sensing solution, which is obtained by measuring the damped cantilever vibration using an optical lever setup, allowing determination of the glucose concentration. Experimental results demonstrate that the device is capable of detecting glucose at physiologically relevant concentrations from 27 mg/dL to 324 mg/dL. The glucose response time constant of the sensor is approximately 3 min, which can be further improved with device design optimization. Excellent reversibility and stability are observed in sensor responses, as highly desired for long-term, stable continuous glucose monitoring. PMID:24511207

  16. Characterization of the intravenous glucose tolerance test and the combined glucose-insulin test in donkeys.

    PubMed

    Mendoza, F J; Aguilera-Aguilera, R; Gonzalez-De Cara, C A; Toribio, R E; Estepa, J C; Perez-Ecija, A

    2015-12-01

    Glucose-insulin dynamic challenges such as the intravenous glucose tolerance test (IVGTT) and combined glucose-insulin test (CGIT) have not been described in donkeys. The objectives of this study were (1) to characterize the IVGTT and CGIT in healthy adult donkeys, and (2) to establish normal glucose-insulin proxies. Sixteen donkeys were used and body morphometric variables obtained each. For the IVGTT, glucose (300 mg/kg) was given IV. For the CGIT, glucose (150 mg/kg) followed by recombinant insulin (0.1 IU/kg) were administered IV. Blood samples for glucose and insulin determinations were collected over 300 min. In the IVGTT the positive phase lasted 160.9 ± 13.3 min, glucose concentration peaked at 323.1 ± 9.2 mg/dL and declined at a rate of 1.28 ± 0.15 mg/dL/min. The glucose area under the curve (AUC) was 21.4 ± 1.9 × 10(3) mg/dL/min and the insulin AUC was 7.2 ± 0.9 × 10(3) µIU/mL/min. The positive phase of the CGIT curve lasted 44 ± 3 min, with a glucose clearance rate of 2.01 ± 0.18 mg/dL/min. The negative phase lasted 255.9 ± 3 min, decreasing glucose concentration at rate of -0.63 ± 0.06 mg/dL/min, and reaching a nadir (33.1 ± 3.6 mg/dL) at 118.3 ± 6.3 min. The glucose and insulin AUC values were 15.2 ± 0.9 × 10(3) mg/dL/min and 13.2 ± 0.9 × 10(3) µIU/mL/min. This is the first study characterizing CGIT and IVGTT, and glucose-insulin proxies in healthy adult donkeys. Distinct glucose dynamics, when compared with horses, support the use of species-specific protocols to assess endocrine function.

  17. Comparison of /sup 3/H-galactose and /sup 3/H-glucose as precursors of hepatic glycogen in control-fed rats

    SciTech Connect

    Michaels, J.E.; Garfield, S.A.; Hung, J.T.; Cardell, R.R. Jr.

    1989-05-01

    Labeling of hepatic glycogen derived from 3H-galactose and 3H-glucose was compared shortly after intravenous injection in control-fed rats. The rats were allowed to accumulate 5-8% glycogen prior to receiving label. Fifteen minutes to 2 hours after labeling, liver was excised and processed for routine light (LM) and electron microscopic (EM) radioautography (RAG) or biochemical analysis. After injection of 3H-galactose, LM-RAGs revealed that the percentage of heavily labeled hepatocytes increased from 37% after 15 minutes to 68% after 1 hour but showed no further increase after 2 hours. alpha-Amylase treatment removed most glycogen and incorporated label; thus few silver grains were observed, indicating little incorporation of label except into glycogen. EM-RAGs demonstrated that most label occurred where glycogen was located. Biochemical analysis showed initially a high blood level of label that rapidly plateaued at a reduced level by 5 minutes. Concomitantly, glycogen labeling determined by liquid scintillation counting reflected the increases observed in the RAGs. After injection of 3H-glucose, LM-RAGs revealed that only 12% of the hepatocytes were heavily labeled at 1 hour and 20% at 2 hours. In tissue treated with alpha-amylase, glycogen was depleted and label was close to background level at each interval observed. EM-RAGs showed most grains associated with glycogen deposits. Biochemically, blood levels of label persisted at a high level for 30 minutes and tissue levels increased slowly over the 2-hour period. This study shows that incorporation from 3H-galactose was more rapid than incorporation of 3H-glucose; however, label derived from both carbohydrates appeared to be incorporated mainly into glycogen.

  18. Nanomaterial-mediated Biosensors for Monitoring Glucose

    PubMed Central

    Taguchi, Masashige; Ptitsyn, Andre; McLamore, Eric S.

    2014-01-01

    Real-time monitoring of physiological glucose transport is crucial for gaining new understanding of diabetes. Many techniques and equipment currently exist for measuring glucose, but these techniques are limited by complexity of the measurement, requirement of bulky equipment, and low temporal/spatial resolution. The development of various types of biosensors (eg, electrochemical, optical sensors) for laboratory and/or clinical applications will provide new insights into the cause(s) and possible treatments of diabetes. State-of-the-art biosensors are improved by incorporating catalytic nanomaterials such as carbon nanotubes, graphene, electrospun nanofibers, and quantum dots. These nanomaterials greatly enhance biosensor performance, namely sensitivity, response time, and limit of detection. A wide range of new biosensors that incorporate nanomaterials such as lab-on-chip and nanosensor devices are currently being developed for in vivo and in vitro glucose sensing. These real-time monitoring tools represent a powerful diagnostic and monitoring tool for measuring glucose in diabetes research and point of care diagnostics. However, concerns over the possible toxicity of some nanomaterials limit the application of these devices for in vivo sensing. This review provides a general overview of the state of the art in nanomaterial-mediated biosensors for in vivo and in vitro glucose sensing, and discusses some of the challenges associated with nanomaterial toxicity. PMID:24876594

  19. Hypothalamic NUCKS regulates peripheral glucose homoeostasis.

    PubMed

    Qiu, Beiying; Shi, Xiaohe; Zhou, Qiling; Chen, Hui Shan; Lim, Joy; Han, Weiping; Tergaonkar, Vinay

    2015-08-01

    Nuclear ubiquitous casein and cyclin-dependent kinase substrate (NUCKS) is highly expressed in the brain and peripheral metabolic organs, and regulates transcription of a number of genes involved in insulin signalling. Whole-body depletion of NUCKS (NKO) in mice leads to obesity, glucose intolerance and insulin resistance. However, a tissue-specific contribution of NUCKS to the observed phenotypes remains unknown. Considering the pivotal roles of insulin signalling in the brain, especially in the hypothalamus, we examined the functions of hypothalamic NUCKS in the regulation of peripheral glucose metabolism. Insulin signalling in the hypothalamus was impaired in the NKO mice when insulin was delivered through intracerebroventricular injection. To validate the hypothalamic specificity, we crossed transgenic mice expressing Cre-recombinase under the Nkx2.1 promoter with floxed NUCKS mice to generate mice with hypothalamus-specific deletion of NUCKS (HNKO). We fed the HNKO and littermate control mice with a normal chow diet (NCD) and a high-fat diet (HFD), and assessed glucose tolerance, insulin tolerance and metabolic parameters. HNKO mice showed mild glucose intolerance under an NCD, but exacerbated obesity and insulin resistance phenotypes under an HFD. In addition, NUCKS regulated levels of insulin receptor in the brain. Unlike HNKO mice, mice with immune-cell-specific deletion of NUCKS (VNKO) did not develop obesity or insulin-resistant phenotypes under an HFD. These studies indicate that hypothalamic NUCKS plays an essential role in regulating glucose homoeostasis and insulin signalling in vivo.

  20. Adiponectin Lowers Glucose Production by Increasing SOGA

    PubMed Central

    Cowerd, Rachael B.; Asmar, Melissa M.; Alderman, J. McKee; Alderman, Elizabeth A.; Garland, Alaina L.; Busby, Walker H.; Bodnar, Wanda M.; Rusyn, Ivan; Medoff, Benjamin D.; Tisch, Roland; Mayer-Davis, Elizabeth; Swenberg, James A.; Zeisel, Steven H.; Combs, Terry P.

    2010-01-01

    Adiponectin is a hormone that lowers glucose production by increasing liver insulin sensitivity. Insulin blocks the generation of biochemical intermediates for glucose production by inhibiting autophagy. However, autophagy is stimulated by an essential mediator of adiponectin action, AMPK. This deadlock led to our hypothesis that adiponectin inhibits autophagy through a novel mediator. Mass spectrometry revealed a novel protein that we call suppressor of glucose by autophagy (SOGA) in adiponectin-treated hepatoma cells. Adiponectin increased SOGA in hepatocytes, and siRNA knockdown of SOGA blocked adiponectin inhibition of glucose production. Furthermore, knockdown of SOGA increased late autophagosome and lysosome staining and the secretion of valine, an amino acid that cannot be synthesized or metabolized by liver cells, suggesting that SOGA inhibits autophagy. SOGA decreased in response to AICAR, an activator of AMPK, and LY294002, an inhibitor of the insulin signaling intermediate, PI3K. AICAR reduction of SOGA was blocked by adiponectin; however, adiponectin did not increase SOGA during PI3K inhibition, suggesting that adiponectin increases SOGA through the insulin signaling pathway. SOGA contains an internal signal peptide that enables the secretion of a circulating fragment of SOGA, providing a surrogate marker for intracellular SOGA levels. Circulating SOGA increased in parallel with adiponectin and insulin activity in both humans and mice. These results suggest that adiponectin-mediated increases in SOGA contribute to the inhibition of glucose production. PMID:20813965

  1. Multispectral polarimetric system for glucose monitoring

    NASA Astrophysics Data System (ADS)

    Cote, Gerard L.; Gorde, Harshal; Janda, Joseph; Cameron, Brent D.

    1998-05-01

    In this preliminary investigation, a two wavelength optical polarimetric system was used to show the potential of the approach to be used as an in vivo noninvasive glucose monitor. The dual wavelength method is shown as a means of overcoming two of them ore important problems with this approach for glucose monitoring, namely, motion artifact and the presence of other optically chiral components. The use of polarized light is based on the fact that the polarization vector of the light rotates when it interacts with an optically active material such as glucose. The amount of rotation of the light polarization is directly proportional to the optically active molecular concentration and to the sample path length. The end application of this system would be to estimate blood glucose concentrations indirectly by measuring the amount of rotation of the light beam's polarization state due to glucose variations within the aqueous humor of the anterior chamber of the eye. The system was evaluated in vitro in the presence of motion artifact and in combination with albumin, another interfering optical rotatory chemical component. It was shown that the dual wavelength approach has potential for overcoming these problems.

  2. MicroRNA 33 Regulates Glucose Metabolism

    PubMed Central

    Ramírez, Cristina M.; Goedeke, Leigh; Rotllan, Noemi; Yoon, Je-Hyun; Cirera-Salinas, Daniel; Mattison, Julie A.; Suárez, Yajaira; de Cabo, Rafael; Gorospe, Myriam

    2013-01-01

    Metabolic diseases are characterized by the failure of regulatory genes or proteins to effectively orchestrate specific pathways involved in the control of many biological processes. In addition to the classical regulators, recent discoveries have shown the remarkable role of small noncoding RNAs (microRNAs [miRNAs]) in the posttranscriptional regulation of gene expression. In this regard, we have recently demonstrated that miR-33a and miR33b, intronic miRNAs located within the sterol regulatory element-binding protein (SREBP) genes, regulate lipid metabolism in concert with their host genes. Here, we show that miR-33b also cooperates with SREBP1 in regulating glucose metabolism by targeting phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC), key regulatory enzymes of hepatic gluconeogenesis. Overexpression of miR-33b in human hepatic cells inhibits PCK1 and G6PC expression, leading to a significant reduction of glucose production. Importantly, hepatic SREBP1c/miR-33b levels correlate inversely with the expression of PCK1 and G6PC upon glucose infusion in rhesus monkeys. Taken together, these results suggest that miR-33b works in concert with its host gene to ensure a fine-tuned regulation of lipid and glucose homeostasis, highlighting the clinical potential of miR-33a/b as novel therapeutic targets for a range of metabolic diseases. PMID:23716591

  3. Blood glucose concentration in pediatric outpatient surgery.

    PubMed

    Somboonviboon, W; Kijmahatrakul, W

    1996-04-01

    Blood glucose concentration was measured in 84 pediatric patients who were scheduled for outpatient surgery at Chulalongkorn Hospital. They were allocated into 3 groups according to their ages, group 1:less than 1 year of age, group 2:1 to 5 years of age and group 3:over 5 years. The fasting times were approximately 8-12 hours. All patients received standard general anesthesia under mask. No glucose solution was given during operation. Preoperative mean blood glucose were 91.09 +/- 17.34, 89.55 +/- 18.69 and 82.14 +/- 16.14 mg/dl in group 1, 2 and 3 while the postoperative mean glucose values were 129.07 +/- 37.90, 115.62 +/- 29.63 and 111.53 +/- 23.07 mg/dl respectively. The difference between pre- and post-operative values were statistically significant difference (P < 0.01). None of the children had hypoglycemia even when fasting longer than expected. Increased postoperative glucose values may be due to stress response from surgery and anesthesia. We would suggest that the parents give the fluid to their children according to our instructions in order to prevent dehydration and hypoglycemia especially in small infants.

  4. FOXN3 Regulates Hepatic Glucose Utilization.

    PubMed

    Karanth, Santhosh; Zinkhan, Erin K; Hill, Jonathon T; Yost, H Joseph; Schlegel, Amnon

    2016-06-21

    A SNP (rs8004664) in the first intron of the FOXN3 gene is associated with human fasting blood glucose. We find that carriers of the risk allele have higher hepatic expression of the transcriptional repressor FOXN3. Rat Foxn3 protein and zebrafish foxn3 transcripts are downregulated during fasting, a process recapitulated in human HepG2 hepatoma cells. Transgenic overexpression of zebrafish foxn3 or human FOXN3 increases zebrafish hepatic gluconeogenic gene expression, whole-larval free glucose, and adult fasting blood glucose and also decreases expression of glycolytic genes. Hepatic FOXN3 overexpression suppresses expression of mycb, whose ortholog MYC is known to directly stimulate expression of glucose-utilization enzymes. Carriers of the rs8004664 risk allele have decreased MYC transcript abundance. Human FOXN3 binds DNA sequences in the human MYC and zebrafish mycb loci. We conclude that the rs8004664 risk allele drives excessive expression of FOXN3 during fasting and that FOXN3 regulates fasting blood glucose. PMID:27292639

  5. Diabetes and Altered Glucose Metabolism with Aging

    PubMed Central

    Kalyani, Rita Rastogi; Egan, Josephine M.

    2013-01-01

    I. Synopsis Diabetes and impaired glucose tolerance affect a substantial proportion of older adults. While the aging process can be associated with alterations in glucose metabolism, including both relative insulin resistance and islet cell dysfunction, abnormal glucose metabolism is not a necessary component of aging. Instead, older adults with diabetes and altered glucose status likely represent a vulnerable subset of the population at high-risk for complications and adverse geriatric syndromes such as accelerated muscle loss, functional disability, frailty, and early mortality. Goals for treatment of diabetes in the elderly include control of hyperglycemia, prevention and treatment of diabetic complications, avoidance of hypoglycemia and preservation of quality of life. Given the heterogeneity of the elderly population with regards to the presence of comorbidities, life expectancy, and functional status, an individualized approach to diabetes management is often appropriate. A growing area of research seeks to explore associations of dysglycemia and insulin resistance with the development of adverse outcomes in the elderly and may ultimately inform guidelines on the use of future glucose-lowering therapies in this population. PMID:23702405

  6. FOXN3 regulates hepatic glucose utilization

    PubMed Central

    Karanth, Santhosh; Zinkhan, Erin K.; Hill, Jonathon T.; Yost, H. Joseph; Schlegel, Amnon

    2016-01-01

    SUMMARY A SNP (rs8004664) in the first intron of the FOXN3 gene is associated with human fasting blood glucose. We find that carriers of the risk allele have higher hepatic expression of the transcriptional repressor FOXN3. Rat Foxn3 protein and zebrafish foxn3 transcripts are downregulated during fasting, a process recapitulated in human HepG2 hepatoma cells. Transgenic overexpression of zebrafish foxn3 or human FOXN3 increases zebrafish hepatic gluconeogenic gene expression, whole-larval free glucose, and adult fasting blood glucose, and also decreases expression of glycolytic genes. Hepatic FOXN3 overexpression suppresses expression of mycb, whose ortholog MYC is known to directly stimulate expression of glucose-utilization enzymes. Carriers of the rs8004664 risk allele have decreased MYC transcript abundance. Human FOXN3 binds DNA sequences in the human FOXN3 and zebrafish mycb loci. We conclude that the rs8004664 risk allele drives excessive expression of FOXN3 during fasting and that FOXN3 regulates fasting blood glucose. PMID:27292639

  7. Glucose-lowering effects of intestinal bile acid sequestration through enhancement of splanchnic glucose utilization.

    PubMed

    Prawitt, Janne; Caron, Sandrine; Staels, Bart

    2014-05-01

    Intestinal bile acid (BA) sequestration efficiently lowers plasma glucose concentrations in type 2 diabetes (T2D) patients. Because BAs act as signaling molecules via receptors, including the G protein-coupled receptor TGR5 and the nuclear receptor FXR (farnesoid X receptor), to regulate glucose homeostasis, BA sequestration, which interrupts the entero-hepatic circulation of BAs, constitutes a plausible action mechanism of BA sequestrants. An increase of intestinal L-cell glucagon-like peptide-1 (GLP-1) secretion upon TGR5 activation is the most commonly proposed mechanism, but recent studies also argue for a direct entero-hepatic action to enhance glucose utilization. We discuss here recent findings on the mechanisms of sequestrant-mediated glucose lowering via an increase of splanchnic glucose utilization through entero-hepatic FXR signaling.

  8. Glucose nanosensors based on redox polymer/glucose oxidase modified carbon fiber nanoelectrodes.

    PubMed

    Fei, Junjie; Wu, Kangbing; Wang, Fang; Hu, Shengshui

    2005-02-28

    This paper describes glucose nanosensors based on the co-electrodeposition of a poly(vinylimidazole) complex of [Os(bpy)(2)Cl](+/2+) and glucose oxidase (GOD) on a low-noise carbon fiber nanoelectrodes (CFNE). The SEM image shows that the osmium redox polymer/enzyme composite film is uniform. The film modified CFNE exhibits the classical features of a kinetically fast redox couple bound to the electrode surface. A strong and stable electrocatalytic current is observed in the presence of glucose. Under the optimal experimental conditions, the nanosensor offers a highly sensitive and rapid response to glucose at an operating potential of 0.22V. A wide linear dynamic rang of 0.01-15mM range was achieved with a detection limit of 0.004mM. Compared with the conventional gold electrode, the nanosensor possessed higher sensitivity and longer stability. Successful attempts were made in real time monitoring rabbit blood glucose levels.

  9. Facilitated diffusion of 6-deoxy-D-glucose in bakers' yeast: evidence against phosphorylation-associated transport of glucose.

    PubMed Central

    Romano, A H

    1982-01-01

    6-Deoxy-D-glucose, a structural homomorph of D-glucose which lacks a hydroxyl group at carbon 6 and thus cannot be phosphorylated, is transported by Saccharomyces cerevisiae via a facilitated diffusion system with affinity equivalent to that shown with D-glucose. This finding supports the facilitated diffusion mechanism for glucose transport and contradicts theories of transport-associated phosphorylation which hold that sugar phosphorylation is necessary for high-affinity operation of the glucose carrier. PMID:6754704

  10. Stable and flexible system for glucose homeostasis

    NASA Astrophysics Data System (ADS)

    Hong, Hyunsuk; Jo, Junghyo; Sin, Sang-Jin

    2013-09-01

    Pancreatic islets, controlling glucose homeostasis, consist of α, β, and δ cells. It has been observed that α and β cells generate out-of-phase synchronization in the release of glucagon and insulin, counter-regulatory hormones for increasing and decreasing glucose levels, while β and δ cells produce in-phase synchronization in the release of the insulin and somatostatin. Pieces of interactions between the islet cells have been observed for a long time, although their physiological role as a whole has not been explored yet. We model the synchronized hormone pulses of islets with coupled phase oscillators that incorporate the observed cellular interactions. The integrated model shows that the interaction from β to δ cells, of which sign is a subject of controversy, should be positive to reproduce the in-phase synchronization between β and δ cells. The model also suggests that δ cells help the islet system flexibly respond to changes of glucose environment.

  11. The glucose metabolite methylglyoxal inhibits expression of the glucose transporter genes by inactivating the cell surface glucose sensors Rgt2 and Snf3 in yeast.

    PubMed

    Roy, Adhiraj; Hashmi, Salman; Li, Zerui; Dement, Angela D; Cho, Kyu Hong; Kim, Jeong-Ho

    2016-03-01

    Methylglyoxal (MG) is a cytotoxic by-product of glycolysis. MG has inhibitory effect on the growth of cells ranging from microorganisms to higher eukaryotes, but its molecular targets are largely unknown. The yeast cell-surface glucose sensors Rgt2 and Snf3 function as glucose receptors that sense extracellular glucose and generate a signal for induction of expression of genes encoding glucose transporters (HXTs). Here we provide evidence that these glucose sensors are primary targets of MG in yeast. MG inhibits the growth of glucose-fermenting yeast cells by inducing endocytosis and degradation of the glucose sensors. However, the glucose sensors with mutations at their putative ubiquitin-acceptor lysine residues are resistant to MG-induced degradation. These results suggest that the glucose sensors are inactivated through ubiquitin-mediated endocytosis and degraded in the presence of MG. In addition, the inhibitory effect of MG on the glucose sensors is greatly enhanced in cells lacking Glo1, a key component of the MG detoxification system. Thus the stability of these glucose sensors seems to be critically regulated by intracellular MG levels. Taken together, these findings suggest that MG attenuates glycolysis by promoting degradation of the cell-surface glucose sensors and thus identify MG as a potential glycolytic inhibitor.

  12. Electropolymerized Conducting Polymers as Glucose Sensors

    NASA Astrophysics Data System (ADS)

    Sadik, Omowunmi A.; Brenda, Sharin; Joasil, Patrick; Lord, John

    1999-07-01

    Conducting polymers are of considerable interest. Their electrochemical synthesis requires only inexpensive starting materials and low-cost equipment. This paper presents a laboratory-based experiment for possible inclusion in the undergraduate instrumental analysis laboratory curriculum. The objectives are to perform cyclic voltammetry on electropolymerized conducting polymers, to observe the effects of various parameters on the voltammogram obtained, and to perform quantitative analysis of glucose. In a typical experiment, glucose oxidase enzyme (GOx) was immobilized at an electrode surface by the electropolymerization of pyrrole from an aqueous solution containing the enzyme. The chemical activity of the immobilized GOx was evaluated by indirectly monitoring glucose oxidation using the electropolymerized PPy-modified electrode. The amount of glucose present was then determined by observing the rate at which hydrogen peroxide was produced. The magnitude of the current was linearly proportional to the concentration of glucose over the range 1 x 10-3 to 5 x 10-5M. The limit of detection was estimated at 3 times the background noise, 8 x 10-5 M glucose. The Michaelis-Menten parameters, Km and Vmax, were calculated to be approximately 1.5 x 10-3 M and 10-9 m/s, respectively, comparable with values cited in literature. This experiment illustrates the fundamental electrochemical and biosensor concepts. It reinforces the underlying principles of dynamic electrochemistry and illustrates the potential of using conducting polymers for analytical applications. The simple low-cost procedure employed should be attractive for undergraduate research projects, particularly in departments with modest means.

  13. Age as independent determinant of glucose tolerance.

    PubMed

    Shimokata, H; Muller, D C; Fleg, J L; Sorkin, J; Ziemba, A W; Andres, R

    1991-01-01

    It has been proposed that the decline in glucose tolerance with age is not a primary aging effect but is secondary to a combination of other age-associated characteristics, i.e., disease, medication, obesity, central and upper-body fat deposition, and inactivity. To test this hypothesis, we first eliminated from analysis the Baltimore Longitudinal Study of Aging participants with identifiable diseases or medications known to influence glucose tolerance. Seven hundred forty-three men and women, aged 17-92 yr, remained for analysis. As indices of fatness, body mass index and percent body fat were determined. As indices of body fat distribution, waist-hip ratio and subscapular triceps skin-fold ratio were calculated. As indices of fitness, physical activity level, determined by detailed questionnaire, and maximum 02 consumption were calculated. We tested whether the effect of age on glucose tolerance remains when data were adjusted for fatness, fitness, and fat distribution; 2-h glucose values were 6.61, 6.78, and 7.83 mM for young (17-39 yr), middle-aged (40-59 yr), and old (60-92 yr) men and 6.22, 6.22, and 7.28 mM for the three groups of women, respectively. The differences between the young and middle-aged groups were not significant, but the old groups had significantly higher values than young or middle-aged groups. Fatness, fitness, and fat distribution can account for the decline in glucose tolerance from the young adult to the middle-aged years. However, age remains a significant determinant of the further decline in glucose tolerance of healthy old subjects.

  14. Limitations of Continuous Glucose Monitor Usage.

    PubMed

    Anhalt, Henry

    2016-03-01

    Much progress has been made in diabetes treatments since the first dose of insulin was administered in 1921. However, a truly transformational moment in diabetes care occurred when urine testing gave way to capillary blood home glucose monitoring. As improvements were made to these devices, continuous glucose monitoring (CGM) was introduced. The advantages of experiential learnings gleaned from seeing continuous real-time data have been borne out in numerous peer-reviewed journals. Limitations to use of CGM include patient's level of numeracy and literacy, development of alarm fatigue, interfering substances leading to erroneous readings, high rates of discontinuation, and poor reimbursement. PMID:26983025

  15. Osteopontin upregulates the expression of glucose transporters in osteosarcoma cells.

    PubMed

    Hsieh, I-Shan; Yang, Rong-Sen; Fu, Wen-Mei

    2014-01-01

    Osteosarcoma is the most common primary malignancy of bone. Even after the traditional standard surgical therapy, metastasis still occurs in a high percentage of patients. Glucose is an important source of metabolic energy for tumor proliferation and survival. Tumors usually overexpress glucose transporters, especially hypoxia-responsive glucose transporter 1 and glucose transporter 3. Osteopontin, hypoxia-responsive glucose transporter 1, and glucose transporter 3 are overexpressed in many types of tumors and have been linked to tumorigenesis and metastasis. In this study, we investigated the regulation of glucose transporters by osteopontin in osteosarcoma. We observed that both glucose transporters and osteopontin were upregulated in hypoxic human osteosarcoma cells. Endogenously released osteopontin regulated the expression of glucose transporter 1 and glucose transporter 3 in osteosarcoma and enhanced glucose uptake into cells via the αvβ3 integrin. Knockdown of osteopontin induced cell death in 20% of osteosarcoma cells. Phloretin, a glucose transporter inhibitor, also caused cell death by treatment alone. The phloretin-induced cell death was significantly enhanced in osteopontin knockdown osteosarcoma cells. Combination of a low dose of phloretin and chemotherapeutic drugs, such as daunomycin, 5-Fu, etoposide, and methotrexate, exhibited synergistic cytotoxic effects in three osteosarcoma cell lines. Inhibition of glucose transporters markedly potentiated the apoptotic sensitivity of chemotherapeutic drugs in osteosarcoma. These results indicate that the combination of a low dose of a glucose transporter inhibitor with cytotoxic drugs may be beneficial for treating osteosarcoma patients. PMID:25310823

  16. Measurement of glucose homeostasis in vivo: glucose and insulin tolerance tests.

    PubMed

    Beguinot, Francesco; Nigro, Cecilia

    2012-01-01

    The feasibility of investigating glucose tolerance and insulin action and secretion in vivo in mouse models has provided major insights into both type 2 diabetes pathogenesis and the identification of novel strategies to treat this common disorder. When initial studies provide evidence for altered levels of insulin and/or glucose in the animal blood, a number of well-characterized tests can be adopted to estimate glucose homeostasis and insulin action and secretion in vivo. These tests include model assessments, glucose and insulin sensitivity studies, and glucose clamps. None of them can be considered appropriate under all circumstances and there is significant variation in their complexity, technical ease, and invasiveness. Thus, while the euglycaemic hyperinsulinemic clamp represents the gold standard for measuring in vivo insulin action, less labor-intensive as well as invasive techinques are usually considered as the initial approach to evaluate glucose homeostasis. This section focuses on glucose and insulin tolerance tests. The clamp technique is described in Chapter 15.

  17. Na+/D-glucose cotransporter based bilayer lipid membrane sensor for D-glucose.

    PubMed

    Sugao, N; Sugawara, M; Minami, H; Uto, M; Umezawa, Y

    1993-02-15

    A new type of amperometric blosensor for glucose was fabricated using a Na+/D-glucose cotransporter as the signal-transducing sensory element that exploits the D-glucose-triggered Na+ ion current through bilayer lipid membranes (BLMs). The planar BLM was formed by the folding method across a small aperture of a thin Teflon film. The Na+/D-glucose cotransporter, isolated and purified from small intestinal brush border membrane of guinea pigs, was embedded into BLMs through proteoliposomes. The number of the protein molecules thus incorporated in the present sensing membrane was estimated to be ca. 10(7). The sensor response was measured as an ionic current through the BLM arising from cotransported Na+ ion flux under a constant applied potential and was only induced by D-glucose above 10(-9) M, but not by the other monosaccharides except for D-galactose. The effect of applied potentials, Na+ and K+ ion concentrations, and the addition of a competitive inhibitor, phlorizin, were scrutinized to characterize the sensor output. The results were briefly discussed in terms of the potential use of the Na+/D-glucose cotransporter as a sensory element for D-glucose.

  18. A glucose-sensing contact lens: a new approach to noninvasive continuous physiological glucose monitoring

    NASA Astrophysics Data System (ADS)

    Badugu, Ramachandram; Lakowicz, Joseph R.; Geddes, Chris D.

    2004-06-01

    We have developed a new technology for the non-invasive continuous monitoring of tear glucose using a daily use, disposable contact lens, embedded with sugar-sensing boronic acid containing fluorophores. Our findings show that our approach may be suitable for the continuous monitoring of tear glucose levels in the range 50 - 500 μM, which track blood glucose levels that are typically ~ 5-10 fold higher. We initially tested the sensing concept with well-established, previously published, boronic acid probes and the results could conclude the used probes, with higher pKa values, are almost insensitive toward glucose within the contact lens, attributed to the low pH and polarity inside the lens. Subsequently, we have developed a range of probes based on the quinolinium backbone, having considerably lower pKa values, which enables them to be suitable to sense the physiological glucose in the acidic pH contact lens. Herein we describe the results based on our findings towards the development of glucose sensing contact lens and therefore an approach to non-invasive continuous monitoring of tear glucose using a contact lens.

  19. Detection of Trace Glucose on the Surface of a Semipermeable Membrane Using a Fluorescently Labeled Glucose-Binding Protein: A Promising Approach to Noninvasive Glucose Monitoring

    PubMed Central

    Ge, Xudong; Rao, Govind; Kostov, Yordan; Kanjananimmanont, Sunsanee; Viscardi, Rose M.; Woo, Hyung; Tolosa, Leah

    2013-01-01

    Background Our motivation for this study was to develop a noninvasive glucose sensor for low birth weight neonates. We hypothesized that the underdeveloped skin of neonates will allow for the diffusion of glucose to the surface where it can be sampled noninvasively. On further study, we found that measurable amounts of glucose can also be collected on the skin of adults. Method Cellulose acetate dialysis membrane was used as surrogate for preterm neonatal skin. Glucose on the surface was collected by saline-moistened swabs and analyzed with glucose-binding protein (GBP). The saline-moistened swab was also tested in the neonatal intensive care unit. Saline was directly applied on adult skin and collected for analysis with two methods: GBP and high-performance anion-exchange chromatography (HPAEC). Results The amount of glucose on the membrane surface was found (1) to accumulate with time but gradually level off, (2) to be proportional to the swab dwell time, and (3) the concentration of the glucose solution on the opposite side of the membrane. The swab, however, failed to absorb glucose on neonatal skin. On direct application of saline onto adult skin, we were able to measure by HPAEC and GBP the amount of glucose collected on the surface. Blood glucose appears to track transdermal glucose levels. Conclusions We were able to measure trace amounts of glucose on the skin surface that appear to follow blood glucose levels. The present results show modest correlation with blood glucose. Nonetheless, this method may present a noninvasive alternative to tracking glucose trends. PMID:23439155

  20. Antipsychotics inhibit glucose transport: Determination of olanzapine binding site in Staphylococcus epidermidis glucose/H(+) symporter.

    PubMed

    Babkin, Petr; George Thompson, Alayna M; Iancu, Cristina V; Walters, D Eric; Choe, Jun-Yong

    2015-01-01

    The antipsychotic drug olanzapine is widely prescribed to treat schizophrenia and other psychotic disorders. However, it often causes unwanted side effects, including diabetes, due to disruption of insulin-dependant glucose metabolism through a mechanism yet to be elucidated. To determine if olanzapine can affect the first step in glucose metabolism - glucose transport inside cells - we investigated the effect of this drug on the transport activity of a model glucose transporter. The glucose transporter from Staphylococcus epidermidis (GlcPSe) is specific for glucose, inhibited by various human glucose transporter (GLUT) inhibitors, has high sequence and structure homology to GLUTs, and is readily amenable to transport assay, mutagenesis, and computational modeling. We found that olanzapine inhibits glucose transport of GlcPSe with an IC50 0.9 ± 0.1 mM. Computational docking of olanzapine to the GlcPSe structure revealed potential binding sites that were further examined through mutagenesis and transport assay to identify residues important for olanzapine inhibition. These investigations suggest that olanzapine binds in a polar region of the cytosolic part of the transporter, and interacts with residues R129, strictly conserved in all GLUTs, and N136, conserved in only a few GLUTs, including the insulin-responsive GLUT4. We propose that olanzapine inhibits GlcPSe by impeding the alternating opening and closing of the substrate cavity necessary for glucose transport. It accomplishes this by disrupting a key salt bridge formed by conserved residues R129 and E362, that stabilizes the outward-facing conformation of the transporter.

  1. Antipsychotics inhibit glucose transport: Determination of olanzapine binding site in Staphylococcus epidermidis glucose/H+ symporter

    PubMed Central

    Babkin, Petr; George Thompson, Alayna M.; Iancu, Cristina V.; Walters, D. Eric; Choe, Jun-yong

    2015-01-01

    The antipsychotic drug olanzapine is widely prescribed to treat schizophrenia and other psychotic disorders. However, it often causes unwanted side effects, including diabetes, due to disruption of insulin-dependant glucose metabolism through a mechanism yet to be elucidated. To determine if olanzapine can affect the first step in glucose metabolism – glucose transport inside cells – we investigated the effect of this drug on the transport activity of a model glucose transporter. The glucose transporter from Staphylococcus epidermidis (GlcPSe) is specific for glucose, inhibited by various human glucose transporter (GLUT) inhibitors, has high sequence and structure homology to GLUTs, and is readily amenable to transport assay, mutagenesis, and computational modeling. We found that olanzapine inhibits glucose transport of GlcPSe with an IC50 0.9 ± 0.1 mM. Computational docking of olanzapine to the GlcPSe structure revealed potential binding sites that were further examined through mutagenesis and transport assay to identify residues important for olanzapine inhibition. These investigations suggest that olanzapine binds in a polar region of the cytosolic part of the transporter, and interacts with residues R129, strictly conserved in all GLUTs, and N136, conserved in only a few GLUTs, including the insulin-responsive GLUT4. We propose that olanzapine inhibits GlcPSe by impeding the alternating opening and closing of the substrate cavity necessary for glucose transport. It accomplishes this by disrupting a key salt bridge formed by conserved residues R129 and E362, that stabilizes the outward-facing conformation of the transporter. PMID:25941630

  2. Attenuation of Diabetic Conditions by Sida rhombifolia in Moderately Diabetic Rats and Inability to Produce Similar Effects in Severely Diabetic in Rats

    PubMed Central

    Chaturvedi, Padmaja; Kwape, Tebogo Elvis

    2015-01-01

    Objectives: This study was done out to evaluate the effects of Sida rhombifolia methanol extract (SRM) on diabetes in moderately diabetic (MD) and severely diabetic (SD) Sprague-Dawley rats. Methods: SRM was prepared by soaking the powdered plant material in 70% methanol and rota evaporating the methanol from the extract. Effective hypoglycemic doses were established by performing oral glucose tolerance tests (OGTTs) in normal rats. Hourly effects of SRM on glucose were observed in the MD and the SD rats. Rats were grouped, five rats to a group, into normal control 1 (NC1), MD control 1 (MDC1), MD experimental 1 (MDE1), SD control 1 (SDC1), and SD experimental 1 (SDE1) groups. All rats in the control groups were administered 1 mL of distilled water (DW). The rats in the MDE1 and the SDE1 groups were administered SRM orally at 200 and 300 mg/kg body weight (BW), respectively, dissolved in 1 mL of DW. Blood was collected initially and at intervals of 1 hour for 6 hours to measure blood glucose. A similar experimental design was followed for the 30-day long-term trial. Finally, rats were sacrificed, and blood was collected to measure blood glucose, lipid profiles, thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH). Results: OGTTs indicated that two doses (200 and 300 mg/kg BW) were effective hypoglycemic doses in normal rats. Both doses reduced glucose levels after 1 hour in the MDE1 and the SDE1 groups. A long-term trial of SRM in the MD group showed a reduced glucose level, a normal lipid profile, and normal GSH and TBARS levels. In SD rats, SRM had no statistically significant effects on these parameters. Normal weight was achieved in the MD rats, but the SD rats showed reduced BW. Conclusion: The study demonstrates that SRM has potential to alleviate the conditions of moderate diabetic, but not severe diabetes. PMID:26998385

  3. Enzymatic production of hydrogen from glucose

    SciTech Connect

    Woodward, J.; Mattingly, S.M.

    1995-06-01

    The objective of this research is to optimize conditions for the enzymatic production of hydrogen gas from biomass-derived glucose. This new project is funded at 0.5 PY level of effort for FY 1995. The rationale for the work is that cellulose is, potentially, a vast source of hydrogen and that enzymes offer a specific and efficient method for its extraction with minimal environmental impact. This work is related to the overall hydrogen program goal of technology development and validation. The approach is based on knowledge that glucose is oxidized by the NADP{sup +} requiring enzyme glucose dehydrogenase (GDH) and that the resulting NADPH can donate its electrons to hydrogenase (H{sub 2}ase) which catalyzes the evolution of H{sub 2}. Thus hydrogen production from glucose was achieved using calf liver GDH and Pyrococcus furiosus H{sub 2}ase yielding 17% of theoretical maximum expected. The cofactor NADP{sup +} for this reaction was regenerated and recycled. Current and future work includes understanding the rate limiting steps of this process and the stabilization/immobilization of the enzymes for long term hydrogen production. Cooperative interactions with the Universities of Georgia and Bath for obtaining thermally stable enzymes are underway.

  4. Ketosis proportionately spares glucose utilization in brain.

    PubMed

    Zhang, Yifan; Kuang, Youzhi; Xu, Kui; Harris, Donald; Lee, Zhenghong; LaManna, Joseph; Puchowicz, Michelle A

    2013-08-01

    The brain is dependent on glucose as a primary energy substrate, but is capable of utilizing ketones such as β-hydroxybutyrate and acetoacetate, as occurs with fasting, starvation, or chronic feeding of a ketogenic diet. The relationship between changes in cerebral metabolic rates of glucose (CMRglc) and degree or duration of ketosis remains uncertain. To investigate if CMRglc decreases with chronic ketosis, 2-[(18)F]fluoro-2-deoxy-D-glucose in combination with positron emission tomography, was applied in anesthetized young adult rats fed 3 weeks of either standard or ketogenic diets. Cerebral metabolic rates of glucose (μmol/min per 100 g) was determined in the cerebral cortex and cerebellum using Gjedde-Patlak analysis. The average CMRglc significantly decreased in the cerebral cortex (23.0±4.9 versus 32.9±4.7) and cerebellum (29.3±8.6 versus 41.2±6.4) with increased plasma ketone bodies in the ketotic rats compared with standard diet group. The reduction of CMRglc in both brain regions correlates linearly by ∼9% for each 1 mmol/L increase of total plasma ketone bodies (0.3 to 6.3 mmol/L). Together with our meta-analysis, these data revealed that the degree and duration of ketosis has a major role in determining the corresponding change in CMRglc with ketosis.

  5. Regulation of Glucose Homeostasis by GLP-1

    PubMed Central

    Nadkarni, Prashant; Chepurny, Oleg G.; Holz, George G.

    2014-01-01

    Glucagon-like peptide-1(7–36)amide (GLP-1) is a secreted peptide that acts as a key determinant of blood glucose homeostasis by virtue of its abilities to slow gastric emptying, to enhance pancreatic insulin secretion, and to suppress pancreatic glucagon secretion. GLP-1 is secreted from L cells of the gastrointestinal mucosa in response to a meal, and the blood glucose-lowering action of GLP-1 is terminated due to its enzymatic degradation by dipeptidyl-peptidase-IV (DPP-IV). Released GLP-1 activates enteric and autonomic reflexes while also circulating as an incretin hormone to control endocrine pancreas function. The GLP-1 receptor (GLP-1R) is a G protein-coupled receptor that is activated directly or indirectly by blood glucose-lowering agents currently in use for the treatment of type 2 diabetes mellitus (T2DM). These therapeutic agents include GLP-1R agonists (exenatide, liraglutide, lixisenatide, albiglutide, dulaglutide, and langlenatide) and DPP-IV inhibitors (sitagliptin, vildagliptin, saxagliptin, linagliptin, and alogliptin). Investigational agents for use in the treatment of T2DM include GPR119 and GPR40 receptor agonists that stimulate the release of GLP-1 from L cells. Summarized here is the role of GLP-1 to control blood glucose homeo-stasis, with special emphasis on the advantages and limitations of GLP-1-based therapeutics. PMID:24373234

  6. Enzymatic production of hydrogen from glucose

    NASA Astrophysics Data System (ADS)

    Woodward, J.; Mattingly, S. M.

    The objective of this research is to optimize conditions for the enzymatic production of hydrogen gas from biomass-derived glucose. This new project is funded at 0.5 PY level of effort for FY 1995. The rationale for the work is that cellulose is, potentially, a vast source of hydrogen and that enzymes offer a specific and efficient method for its extraction with minimal environmental impact. This work is related to the overall hydrogen program goal of technology development and validation. The approach is based on knowledge that glucose is oxidized by the NADP(sup +) requiring enzyme glucose dehydrogenase (GDH) and that the resulting NADPH can donate its electrons to hydrogenase (H2ase) which catalyzes the evolution of H2. Thus hydrogen production from glucose was achieved using calf liver GDH and Pyrococcus furiosus H2ase yielding 17% of theoretical maximum expected. The cofactor NADP(sup +) for this reaction was regenerated and recycled. Current and future work includes understanding the rate limiting steps of this process and the stabilization/immobilization of the enzymes for long term hydrogen production. Cooperative interactions with the Universities of Georgia and Bath for obtaining thermally sta

  7. A new horizon for glucose monitoring.

    PubMed

    Dovč, Klemen; Bratina, Nataša; Battelino, Tadej

    2015-01-01

    Regular self-monitoring of blood glucose is crucial for proper insulin dosing and gives a reliable foundation for reasonable glycaemic control. According to recent data, recommended values for glycated haemoglobin A1c as set by the professional associations remain out of the reach for a large proportion of the paediatric population. In the last decades, the treatment of type 1 diabetes has changed significantly as new devices gain a role in routine clinical care. Real-time glucose levels can be monitored with continuous glucose monitoring (CGM), which provides a broad spectrum of information on glucose trends on a moment-to-moment basis. This information can be useful for patients' decision making and clinicians' understanding of patients' conduct. However, several barriers, including the current price, impede a broader use of CGM in most regions of the world. This review summarizes data from randomized, controlled trials that included a paediatric population, and it provides some evidence-based visions for the possible broader utilization of CGM, also for incorporation into insulin delivery devices that enable a closed-loop insulin delivery. PMID:25660230

  8. Clean conversion of cellulose into fermentable glucose.

    PubMed

    Sun, Yong; Zhuang, Junping; Lin, Lu; Ouyang, Pingkai

    2009-01-01

    We studied the process of conversion of microcrystalline-cellulose into fermentable glucose in the formic acid reaction system using cross polarization/magic angle spinning (13)C-nuclear magnetic resonance, X-ray diffraction and Fourier transform infrared spectroscopy. The results indicated that formic acid as an active agent was able to effectively penetrate into the interior space of the cellulose molecules, thus collapsing the rigid crystalline structure and allowing hydrolysis to occur easily in the amorphous zone as well as in the crystalline zone. The microcrystalline-cellulose was hydrolyzed using formic acid and 4% hydrochloric acid under mild conditions. The effects of hydrochloric acid concentration, the ratio of solid to liquid, temperature (55-75 degrees C) and retention time (0-9 h), and the concentration of glucose were analyzed. The hydrolysis velocities of microcrystalline-cellulose were 6.14 x 10(-3) h(-1) at 55 degrees C, 2.94 x 10(-2) h(-1) at 65 degrees C, and 6.84x10(-2) h(-1) at 75 degrees C. The degradation velocities of glucose were 0.01 h(-1) at 55 degrees C, 0.14 h(-1) at 65 degrees C, 0.34 h(-1) at 75 degrees C. The activation energy of microcrystalline-cellulose hydrolysis was 105.61 kJ/mol, and the activation energy of glucose degradation was 131.37 kJ/mol.

  9. Metabolic pathways for glucose in astrocytes.

    PubMed

    Wiesinger, H; Hamprecht, B; Dringen, R

    1997-09-01

    Cultured astroglial cells are able to utilize the monosaccharides glucose, mannose, or fructose as well as the sugar alcohol sorbitol as energy fuel. Astroglial uptake of the aldoses is carrier-mediated, whereas a non-saturable transport mechanism is operating for fructose and sorbitol. The first metabolic step for all sugars, including fructose being generated by enzymatic oxidation of sorbitol, is phosphorylation by hexokinase. Besides glucose only mannose may serve as substrate for build-up of astroglial glycogen. Whereas glycogen synthase appears to be present in astrocytes as well as neurons, the exclusive localization of glycogen phosphorylase in astrocytes and ependymal cells of central nervous tissue correlates well with the occurrence of glycogen in these cells. The identification of lactic acid rather than glucose as degradation product of astroglial glycogen appears to render the presence of glucose-6-phosphatase in cultured astrocytes an enigma. The colocalization of pyruvate carboxylase, phosphenolpyruvate carboxykinase and fructose-1,6-bisphosphatase points to astrocytes as being the gluconeogenic cell type of the CNS. PMID:9298844

  10. Design of nanostructured-based glucose biosensors

    NASA Astrophysics Data System (ADS)

    Komirisetty, Archana; Williams, Frances; Pradhan, Aswini; Konda, Rajini B.; Dondapati, Hareesh; Samantaray, Diptirani

    2012-04-01

    This paper presents the design of glucose sensors that will be integrated with advanced nano-materials, bio-coatings and electronics to create novel devices that are highly sensitive, inexpensive, accurate, and reliable. In the work presented, a glucose biosensor and its fabrication process flow have been designed. The device is based on electrochemical sensing using a working electrode with bio-functionalized zinc oxide (ZnO) nano-rods. Among all metal oxide nanostructures, ZnO nano-materials play a significant role as a sensing element in biosensors due to their properties such as high isoelectric point (IEP), fast electron transfer, non-toxicity, biocompatibility, and chemical stability which are very crucial parameters to achieve high sensitivity. Amperometric enzyme electrodes based on glucose oxidase (GOx) are used due to their stability and high selectivity to glucose. The device also consists of silicon dioxide and titanium layers as well as platinum working and counter electrodes and a silver/silver chloride reference electrode. Currently, the biosensors are being fabricated using the process flow developed. Once completed, the sensors will be bio-functionalized and tested to characterize their performance, including their sensitivity and stability.

  11. Glucose metabolism in pregnant sheep when placental growth is restricted

    SciTech Connect

    Owens, J.A.; Falconer, J.; Robinson, J.S. )

    1989-08-01

    The effect of restricting placental growth on glucose metabolism in pregnant sheep in late gestation was determined by primed constant infusions of D-(U-{sup 14}C)- and D-(2-{sup 3}H)glucose and antipyrine into fetuses of six control sheep and six sheep from which endometrial caruncles had been removed before pregnancy (caruncle sheep). In the latter, placental and fetal weights were reduced, as was the concentration of glucose in fetal arterial blood. Fetal glucose turnover in caruncle sheep was only 52-59% of that in controls, largely because of lower umbilical loss of glucose back to the placenta (38-39% of control) and lower fetal glucose utilization (61-74% of control). However, fetal glucose utilization on a weight-specific basis was similar in control and caruncle sheep. Significant endogenous glucose production occurred in control and caruncle fetal sheep. Maternal glucose production and partition of glucose between the gravid uterus and other maternal tissues were similar in control and caruncle sheep. In conclusion, when placental and fetal growth are restricted, fetal glucose utilization is maintained by reduced loss of glucose back to the placenta and mother and by maintaining endogenous glucose production.

  12. Insulin Signaling in the Control of Glucose and Lipid Homeostasis.

    PubMed

    Saltiel, Alan R

    2016-01-01

    A continuous supply of glucose is necessary to ensure proper function and survival of all organs. Plasma glucose levels are thus maintained in a narrow range around 5 mM, which is considered the physiological set point. Glucose homeostasis is controlled primarily by the liver, fat, and skeletal muscle. Following a meal, most glucose disposals occur in the skeletal muscle, whereas fasting plasma glucose levels are determined primarily by glucose output from the liver. The balance between the utilization and production of glucose is primarily maintained at equilibrium by two opposing hormones, insulin and glucagon. In response to an elevation in plasma glucose and amino acids (after consumption of a meal), insulin is released from the beta cells of the islets of Langerhans in the pancreas. When plasma glucose falls (during fasting or exercise), glucagon is secreted by α cells, which surround the beta cells in the pancreas. Both cell types are extremely sensitive to glucose concentrations, can regulate hormone synthesis, and are released in response to small changes in plasma glucose levels. At the same time, insulin serves as the major physiological anabolic agent, promoting the synthesis and storage of glucose, lipids, and proteins and inhibiting their degradation and release back into the circulation. This chapter will focus mainly on signal transduction mechanisms by which insulin exerts its plethora of effects in liver, muscle, and fat cells, focusing on those pathways that are crucial in the control of glucose and lipid homeostasis.

  13. Experience-dependent escalation of glucose drinking and the development of glucose preference over fructose - association with glucose entry into the brain.

    PubMed

    Wakabayashi, Ken T; Spekterman, Laurence; Kiyatkin, Eugene A

    2016-06-01

    Glucose, a primary metabolic substrate for cellular activity, must be delivered to the brain for normal neural functions. Glucose is also a unique reinforcer; in addition to its rewarding sensory properties and metabolic effects, which all natural sugars have, glucose crosses the blood-brain barrier and acts on glucoreceptors expressed on multiple brain cells. To clarify the role of this direct glucose action in the brain, we compared the neural and behavioural effects of glucose with those induced by fructose, a sweeter yet metabolically equivalent sugar. First, by using enzyme-based biosensors in freely moving rats, we confirmed that glucose rapidly increased in the nucleus accumbens in a dose-dependent manner after its intravenous delivery. In contrast, fructose induced a minimal response only after a large-dose injection. Second, we showed that naive rats during unrestricted access consumed larger volumes of glucose than fructose solution; the difference appeared with a definite latency during the initial exposure and strongly increased during subsequent tests. When rats with equal sugar experience were presented with either glucose or fructose in alternating order, the consumption of both substances was initially equal, but only the consumption of glucose increased during subsequent sessions. Finally, rats with equal glucose-fructose experience developed a strong preference for glucose over fructose during a two-bottle choice procedure; the effect appeared with a definite latency during the initial test and greatly amplified during subsequent tests. Our results suggest that direct entry of glucose in the brain and its subsequent effects on brain cells could be critical for the experience-dependent escalation of glucose consumption and the development of glucose preference over fructose.

  14. Glucose Fermentation Pathway of Thermoanaerobium brockii

    PubMed Central

    Lamed, R.; Zeikus, J. G.

    1980-01-01

    Thermoanaerobium brockii was shown to catabolize glucose via the Embden-Meyerhof-Parnas pathway into ethanol, acetic acid, H2-CO2, and lactic acid. Radioactive tracer studies, employing specifically labeled [14C]glucose, demonstrated significant fermentation of 14CO2 from C-3 and C-4 of the substrate exclusively. All extracts contained sufficient levels of activity (expressed in micromoles per minute per milligram of protein at 40°C) to assign a catabolic role for the following enzymes: glucokinase, 0.40; fructose-1,6-diphosphate aldolase, 0.23; glyceraldehyde-3-phosphate dehydrogenase, 1.73; pyruvate kinase, 0.36; lactate dehydrogenase (fructose-1,6-diphosphate activated), 0.55; pyruvate dehydrogenase (coenzyme A acetylating), 0.53; hydrogenase, 3.3; phosphotransacetylase, 0.55; acetaldehyde dehydrogenase (coenzyme A acetylating), 0.15; ethanol dehydrogenase, 1.57; and acetate kinase, 1.50. All pyridine nucleotide-linked oxidoreductases examined were specific for nicotinamide adenine dinucleotide, except ethanol dehydrogenase which displayed both nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-linked activities. Fermentation product balances and cell growth yields supported the glucose catabolic pathway described. Representative balanced end product yields (in moles per mole of glucose fermented) were: ethanol, 0.94; l-lactate, 0.84; acetate, 0.20; CO2, 1.31; and H2, 0.50. Growth yields of 16.4 g of cells per mole of glucose were demonstrated. Both growth and end product yields varied significantly in accordance with the specific medium composition and incubation time. PMID:6767705

  15. Fabrication of Amperometric Glucose Sensor Using Glucose Oxidase-Cellulose Nanofiber Aqueous Solution.

    PubMed

    Yasuzawa, Mikito; Omura, Yuya; Hiura, Kentaro; Li, Jiang; Fuchiwaki, Yusuke; Tanaka, Masato

    2015-01-01

    Cellulose nanofiber aqueous solution, which remained virtually transparent for more than one week, was prepared by using the clear upper layer of diluted cellulose nanofiber solution produced by wet jet milling. Glucose oxidase (GOx) was easily dissolved in this solution and GOx-immobilized electrode was easily fabricated by simple repetitious drops of GOx-cellulose solution on the surface of a platinum-iridium electrode. Glucose sensor properties of the obtained electrodes were examined in phosphate buffer solution of pH 7.4 at 40°C. The obtained electrode provided a glucose sensor response with significantly high response speed and good linear relationship between glucose concentration and response current. After an initial decrease of response sensitivity for a few days, relatively constant sensitivity was obtained for about 20 days. Nevertheless, the influence of electroactive compounds such as ascorbic acid, uric acid and acetoaminophen were not negletable. PMID:26561252

  16. Role for the pineal and melatonin in glucose homeostasis: pinealectomy increases night-time glucose concentrations.

    PubMed

    la Fleur, S E; Kalsbeek, A; Wortel, J; van der Vliet, J; Buijs, R M

    2001-12-01

    The effects of melatonin on glucose metabolism are far from understood. In rats, the biological clock generates a 24-h rhythm in plasma glucose concentrations, with declining concentrations in the dark period. We hypothesized that, in the rat, melatonin enhances the dark signal of the biological clock, decreasing glucose concentrations in the dark period. We measured 24-h rhythms of plasma concentrations of glucose and insulin in pinealectomized rats fed ad libitum and subjected to a scheduled feeding regimen with six meals equally distributed over the light/dark cycle and compared them with previous data of intact rats. Pinealectomy dampened the amplitude of the 24-h rhythm in plasma glucose concentrations in rats fed ad libitum, and abolished it completely in rats subjected to the scheduled feeding regimen, while plasma insulin concentrations did not change under both conditions. Pinealectomy abolished the nocturnal decline in plasma glucose concentrations irrespective of whether rats were fed ad libitum or subjected to the scheduled feeding regimen. Melatonin replacement restored 24-h mean plasma glucose concentrations in pinealectomized rats that were subjected to the scheduled feeding regimen but, interestingly, it did not restore the 24-h rhythm. Melatonin treatment also resulted in higher meal-induced insulin responses, probably mediated via an increased sensitivity of the beta-cells. Taken together, our data demonstrate that the pineal hormone, melatonin, influences both glucose metabolism and insulin secretion from the pancreatic beta-cell. The present study also demonstrates that removal of the pineal gland cannot be compensated by mimicking plasma melatonin concentrations only.

  17. Proximal small intestinal mucosal injury. Maintenance of glucose and glucose polymer absorption, attenuation of disaccharide absorption.

    PubMed

    Palacios, M; Madariaga, H; Heitlinger, L; Lee, P C; Lebenthal, E

    1989-03-01

    The effect of chronic intragastric infusion of hypertonic mannitol on small intestinal mucosal structure and function was studied in adult rats. Animals were gavage-fed 20% mannitol (1300 mosm) at a dose of 5 ml/100 g body weight daily for seven days. Control animals were gavage-fed tap water on the same schedule. On day 8, the animals were anesthetized, the duodenum cannulated, and a test sugar (glucose, glucose polymer, lactose, sucrose, or maltose) was infused at a dose of 0.5 g/kg body weight in 2.5 ml distilled water over less than 1 min. Portal vein glucose was measured at 30-min intervals from 0 to 120 min. Mannitol treatment resulted in histologic and biochemical alterations (reduced lactase, sucrase, maltase) limited to the proximal small intestine compared to the control group. The absorption of glucose and glucose polymers was similar in mannitol-treated and control animals. In contrast, digestion and absorption of lactose, sucrose, and maltose was significantly diminished in mannitol-treated animals when compared to controls. No changes in permeability to polyethylene glycol 4000 or Na+-coupled glucose transport were observed in mannitol-treated animals compared to controls. These data suggest that when the intestinal mucosa is exposed to hyperosmolar loads that the digestive capacity for disaccharides is suppressed more than its glucose absorptive capacities. Furthermore, glucose oligomers may be more readily digested and absorbed than disaccharides, in this setting, due, in part, to the proximal injury and less pronounced proximal-distal gradient for glucoamylase than other brush-border carbohydrases.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Increased airway glucose increases airway bacterial load in hyperglycaemia.

    PubMed

    Gill, Simren K; Hui, Kailyn; Farne, Hugo; Garnett, James P; Baines, Deborah L; Moore, Luke S P; Holmes, Alison H; Filloux, Alain; Tregoning, John S

    2016-01-01

    Diabetes is associated with increased frequency of hospitalization due to bacterial lung infection. We hypothesize that increased airway glucose caused by hyperglycaemia leads to increased bacterial loads. In critical care patients, we observed that respiratory tract bacterial colonisation is significantly more likely when blood glucose is high. We engineered mutants in genes affecting glucose uptake and metabolism (oprB, gltK, gtrS and glk) in Pseudomonas aeruginosa, strain PAO1. These mutants displayed attenuated growth in minimal medium supplemented with glucose as the sole carbon source. The effect of glucose on growth in vivo was tested using streptozocin-induced, hyperglycaemic mice, which have significantly greater airway glucose. Bacterial burden in hyperglycaemic animals was greater than control animals when infected with wild type but not mutant PAO1. Metformin pre-treatment of hyperglycaemic animals reduced both airway glucose and bacterial load. These data support airway glucose as a critical determinant of increased bacterial load during diabetes. PMID:27273266

  19. Increased airway glucose increases airway bacterial load in hyperglycaemia

    PubMed Central

    Gill, Simren K.; Hui, Kailyn; Farne, Hugo; Garnett, James P.; Baines, Deborah L.; Moore, Luke S.P.; Holmes, Alison H.; Filloux, Alain; Tregoning, John S.

    2016-01-01

    Diabetes is associated with increased frequency of hospitalization due to bacterial lung infection. We hypothesize that increased airway glucose caused by hyperglycaemia leads to increased bacterial loads. In critical care patients, we observed that respiratory tract bacterial colonisation is significantly more likely when blood glucose is high. We engineered mutants in genes affecting glucose uptake and metabolism (oprB, gltK, gtrS and glk) in Pseudomonas aeruginosa, strain PAO1. These mutants displayed attenuated growth in minimal medium supplemented with glucose as the sole carbon source. The effect of glucose on growth in vivo was tested using streptozocin-induced, hyperglycaemic mice, which have significantly greater airway glucose. Bacterial burden in hyperglycaemic animals was greater than control animals when infected with wild type but not mutant PAO1. Metformin pre-treatment of hyperglycaemic animals reduced both airway glucose and bacterial load. These data support airway glucose as a critical determinant of increased bacterial load during diabetes. PMID:27273266

  20. Dual-wavelength optical fluidic glucose sensor using time series analysis of d(+)-glucose measurement

    NASA Astrophysics Data System (ADS)

    Tang, Jing-Yau; Chen, Nan-Yueh; Chen, Ming-Kun; Wang, Min-Haw; Jang, Ling-Sheng

    2016-10-01

    This paper presents a rising-edge time-series analysis (TSA) method that can be applied to a dual-wavelength optical fluidic glucose sensor (DWOFGS). In the experiment, the concentration of glucose in phosphate buffered saline (PBS) was determined by measuring the absorbance of the solution as determined by variation in the rising edge of the photodiode (PD) voltage response waveform. The DWOFGS principle is based on near-infrared (NIR) absorption spectroscopy at selected dual wavelengths (1450 and 1650 nm) in the first overtone band. The DWOFGS comprises two light-emitting diodes (LEDs) and two PD detectors. No additional fibers or lenses are required in our device. The output light level of the LEDs is adjusted to a light intensity suitable to the glucose absorption rate in an electronic circuit. Four light absorbance paths enable detection of d(+)-glucose concentrations from 0 to 20 wt % in steps of 5 wt %. The glucose light absorbance process was calculated based on the rising edge of the PD waveform under a low-intensity light source using TSA. The TSA method can be used to obtain the glucose level in PBS and reduce measurement background noise. The application of the rising-edge TSA method improves sensor sensitivity, increases the accuracy of the data analysis, and lowers measurement equipment costs.

  1. Potential-step coulometry of D-glucose using a novel FAD-dependent glucose dehydrogenase.

    PubMed

    Tsujimura, Seiya; Kojima, Shinki; Ikeda, Tokuji; Kano, Kenji

    2006-10-01

    This paper describes the construction and characterization of a batch-type coulometric system for the detection of D-glucose using a novel FAD-dependent glucose dehydrogenase. In order to overcome the problem of interferents, such as ascorbate and urate, a potential-step method was proposed to separate the electrolysis reactions of interferents and D-glucose by selecting a mediator possessing an appropriate formal potential. The rapid oxidative consumption of the interferents proceeded in the first step, whereas the mediator and glucose remained reduced. In the second step, the mediator was immediately oxidized, and subsequent bioelectrocatalytic oxidation of D-glucose occurred with the aid of aldose 1-epimerase. In this study, potassium octacyanomolybdate (IV) with a formal potential of 0.6 V vs. Ag|AgCl was chosen as a mediator, and the first and second electrolysis potentials were set at 0.4 V and 0.8 V, respectively, by considering the heterogeneous electron-transfer kinetics and the potential window. The background-corrected response in charge corresponded to 99+/-2 % efficiency in terms of the amount of D-glucose.

  2. Glucose oxidase-mediated gelation: a simple test to detect glucose in food products.

    PubMed

    Liu, Yi; Javvaji, Vishal; Raghavan, Srinivasa R; Bentley, William E; Payne, Gregory F

    2012-09-12

    This paper reports a simple, rapid, and sugar-selective method to induce gelation from glucose-containing samples. This method employs glucose oxidase (GOx) to selectively "recognize" and oxidize glucose to generate gluconic acid, which acts to solubilize calcium carbonate and release calcium ions. The release of calcium ions triggers gelation of the calcium-responsive polysaccharide alginate to form a calcium-alginate hydrogel. Rheological measurements confirm that gel formation is triggered by glucose but not fructose or sucrose (consistent with GOx's selectivity). Vial inversion tests demonstrate that gel formation can be readily observed without the need for instrumentation. Proof-of-concept studies demonstrate that this gel-forming method can detect glucose in food/beverage products sweetened with glucose or high-fructose corn syrups. These results indicate that the enzyme-induced gelation of alginate may provide a simple means to test for sweeteners using components that are safe for use on-site or in the home. PMID:22906038

  3. Sodium-Glucose Cotransporter Inhibitors: Effects on Renal and Intestinal Glucose Transport: From Bench to Bedside.

    PubMed

    Mudaliar, Sunder; Polidori, David; Zambrowicz, Brian; Henry, Robert R

    2015-12-01

    Type 2 diabetes is a chronic disease with disabling micro- and macrovascular complications that lead to excessive morbidity and premature mortality. It affects hundreds of millions of people and imposes an undue economic burden on populations across the world. Although insulin resistance and insulin secretory defects play a major role in the pathogenesis of hyperglycemia, several other metabolic defects contribute to the initiation/worsening of the diabetic state. Prominent among these is increased renal glucose reabsorption, which is maladaptive in patients with diabetes. Instead of an increase in renal glucose excretion, which could ameliorate hyperglycemia, there is an increase in renal glucose reabsorption, which helps sustain hyperglycemia in patients with diabetes. The sodium-glucose cotransporter (SGLT) 2 inhibitors are novel antidiabetes agents that inhibit renal glucose reabsorption and promote glucosuria, thereby leading to reductions in plasma glucose concentrations. In this article, we review the long journey from the discovery of the glucosuric agent phlorizin in the bark of the apple tree through the animal and human studies that led to the development of the current generation of SGLT2 inhibitors. PMID:26604280

  4. Noninvasive technique for measurement of glucose content in body

    NASA Astrophysics Data System (ADS)

    Agapiou, George; Theofanous, N. G.

    1998-07-01

    This work is focused on the measurement of glucose in various diluted solutions and aims to be implemented in testing the glucose content in the anterior chamber of the eye by means of an electro-optic modulation method. By using solutions containing only glucose concentrations, a calibration curve displaying the dependence of the glucose concentration on a DC field, applied to a modulator, was obtained.

  5. Glucose-sensing and -signalling mechanisms in yeast.

    PubMed

    Rolland, Filip; Winderickx, Joris; Thevelein, Johan M

    2002-05-01

    Glucose has dramatic effects on the regulation of carbon metabolism and on many other properties of yeast cells. Several sensing and signalling pathways are involved. For many years attention has focussed on the main glucose-repression pathway which is responsible for the downregulation of respiration, gluconeogenesis and the transport and catabolic capacity of alternative sugars during growth on glucose. The hexokinase 2- dependent glucose-sensing mechanism of this pathway is not well understood but the downstream part of the pathway has been elucidated in great detail. Two putative glucose sensors, the Snf3 and Rgt2 non-transporting glucose carrier homologs, control the expression of many functional glucose carriers. Recently, several new components of this glucose-induction pathway have been identified. The Ras-cAMP pathway controls a wide variety of cellular properties in correlation with cellular proliferation. Glucose is a potent activator of cAMP synthesis. In this case glucose sensing is carried out by two systems, a G-protein-coupled receptor system and a still elusive glucose-phosphorylation-dependent system. The understanding of glucose sensing and signalling in yeast has made dramatic advances in recent years and has become a strong paradigm for the elucidation of nutrient-sensing mechanisms in other eukaryotic organisms.

  6. Glucose polymers in diarrhoea--risk of hypernatraemia.

    PubMed

    Lindfors, A; Lundberg, B; Stenhammar, L

    1992-01-01

    An infant girl with congenital heart disease was fed glucose polymers as dietary supplements. During an attack of gastroenteritis with severe diarrhoea she developed hypernatraemic dehydration, probably due to the high osmotic load of the glucose polymers. This case illustrates the importance of giving adequate amounts of free water to a child on glucose polymers, especially during excessive fluid loss.

  7. 21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Insoluble glucose isomerase enzyme preparations... Substances Affirmed as GRAS § 184.1372 Insoluble glucose isomerase enzyme preparations. (a) Insoluble glucose isomerase enzyme preparations are used in the production of high fructose corn syrup described in §...

  8. Critical Care Glucose Point-of-Care Testing.

    PubMed

    Narla, S N; Jones, M; Hermayer, K L; Zhu, Y

    2016-01-01

    Maintaining blood glucose concentration within an acceptable range is a goal for patients with diabetes mellitus. Point-of-care glucose meters initially designed for home self-monitoring in patients with diabetes have been widely used in the hospital settings because of ease of use and quick reporting of blood glucose information. They are not only utilized for the general inpatient population but also for critically ill patients. Many factors affect the accuracy of point-of-care glucose testing, particularly in critical care settings. Inaccurate blood glucose information can result in unsafe insulin delivery which causes poor glucose control and can be fatal. Healthcare professionals should be aware of the limitations of point-of-care glucose testing. This chapter will first introduce glucose regulation in diabetes mellitus, hyperglycemia/hypoglycemia in the intensive care unit, importance of glucose control in critical care patients, and pathophysiological variables of critically ill patients that affect the accuracy of point-of-care glucose testing. Then, we will discuss currently available point-of-care glucose meters and preanalytical, analytical, and postanalytical sources of variation and error in point-of-care glucose testing. PMID:27645817

  9. Enzymatic Glucose Sensor Compensation for Variations in Ambient Oxygen Concentration

    PubMed Central

    Collier, Bradley B.; McShane, Michael J.

    2014-01-01

    Due to the increasing prevalence of diabetes, research toward painless glucose sensing continues. Oxygen sensitive phosphors with glucose oxidase (GOx) can be used to determine glucose levels indirectly by monitoring oxygen consumption. This is an attractive combination because of its speed and specificity. Packaging these molecules together in “smart materials” for implantation will enable non-invasive glucose monitoring. As glucose levels increase, oxygen levels decrease; consequently, the luminescence intensity and lifetime of the phosphor increase. Although the response of the sensor is dependent on glucose concentration, the ambient oxygen concentration also plays a key role. This could lead to inaccurate glucose readings and increase the risk of hyper- or hypoglycemia. To mitigate this risk, the dependence of hydrogel glucose sensor response on oxygen levels was investigated and compensation methods explored. Sensors were calibrated at different oxygen concentrations using a single generic logistic equation, such that trends in oxygen-dependence were determined as varying parameters in the equation. Each parameter was found to be a function of oxygen concentration, such that the correct glucose calibration equation can be calculated if the oxygen level is known. Accuracy of compensation will be determined by developing an overall calibration, using both glucose and oxygen sensors in parallel, correcting for oxygen fluctuations in real time by intentionally varying oxygen, and calculating the error in actual and predicted glucose levels. While this method was developed for compensation of enzymatic glucose sensors, in principle it can also be implemented with other kinds of sensors utilizing oxidases. PMID:26257458

  10. Glucose cycling in islets from healthy and diabetic rats

    SciTech Connect

    Khan, A.; Chandramouli, V.; Ostenson, C.G.; Loew, H.L.; Landau, B.R.; Efendic, S. )

    1990-04-01

    Pancreatic islets from healthy (control) and neonatally streptozocin-induced diabetic (STZ-D) rats, a model for non-insulin-dependent diabetes mellitus, were incubated with {sup 3}H{sub 2}O and 5.5 or 16.7 mM glucose. At 5.5 mM glucose, no detectable ({sup 3}H)glucose was formed. At 16.7 mM, 2.2 patom.islet-1.h-1 of {sup 3}H was incorporated into glucose by the control islets and 5.4 patom.islet-1.h-1 by STZ-D islets. About 75% of the {sup 3}H was bound to carbon-2 of the glucose. Glucose utilization was 35.3 pmol.islet-1.h-1 by the control and 19.0 pmol.islet-1.h-1 by the STZ-D islets. Therefore, 4.5% of the glucose-6-phosphate formed by the control islets and 15.7% by the STZ-D islets was dephosphorylated. This presumably occurred in the beta-cells of the islets catalyzed by glucose-6-phosphatase. An increased glucose cycling, i.e., glucose----glucose-6-phosphate----glucose, in islets of STZ-D rats may contribute to the decreased insulin secretion found in these animals.

  11. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  12. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  13. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  14. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  15. The microsomal glucose-6-phosphatase enzyme of pancreatic islets.

    PubMed Central

    Waddell, I D; Burchell, A

    1988-01-01

    Microsomal fractions isolated from pancreatic islet cells were shown to contain high specific glucose-6-phosphatase activity. The islet-cell glucose-6-phosphatase enzyme has the same Mr (36,500), similar immunological properties and kinetic characteristics to the hepatic microsomal glucose-6-phosphatase enzyme. Images Fig. 1. Fig. 2. PMID:2849415

  16. Screening and Diagnosis of Gestational Diabetes Mellitus, Where Do We Stand.

    PubMed

    Rani, P Reddi; Begum, Jasmina

    2016-04-01

    Gestational Diabetes Mellitus (GDM) is defined as any glucose intolerance with the onset or first recognition during pregnancy. This definition helps for diagnosis of unrecognized pre-existing Diabetes also. Hyperglycemia in pregnancy is associated with adverse maternal and prenatal outcome. It is important to screen, diagnose and treat Hyperglycemia in pregnancy to prevent an adverse outcome. There is no international consensus regarding timing of screening method and the optimal cut-off points for diagnosis and intervention of GDM. DIPSI recommends non-fasting Oral Glucose Tolerance Test (OGTT) with 75g of glucose with a cut-off of ≥ 140 mg/dl after 2-hours, whereas WHO (1999) recommends a fasting OGTT after 75g glucose with a cut-off plasma glucose of ≥ 140 mg/dl after 2-hour. The recommendations by ADA/IADPSG for screening women at risk of diabetes is as follows, for first and subsequent trimester at 24-28 weeks a criteria of diagnosis of GDM is made by 75 g OGTT and fasting 5.1mmol/l, 1 hour 10.0mmol/l, 2 hour 8.5mmol/l by universal glucose tolerance testing. Critics of these criteria state that it causes over diagnosis of GDM and unnecessary interventions, the controversy however continues. The ACOG still prefer a 2 step procedure, GCT with 50g glucose non-fasting if value > 7.8mmol/l followed by 3-hour OGTT for confirmation of diagnosis. In conclusion based on Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study as mild degree of dysglycemia are associated with adverse outcome and high prevalence of Type II DM to have international consensus It recommends IADPSG criteria, though controversy exists. The IADPSG criteria is the only outcome based criteria, it has the ability to diagnose and treat GDM earlier, thereby reducing the fetal and maternal complications associated with GDM. This one step method has an advantage of simplicity in execution, more patient friendly, accurate in diagnosis and close to international consensus. Keeping in the mind the

  17. A role for glucose in hypothermic hamsters

    NASA Technical Reports Server (NTRS)

    Resch, G. E.; Musacchia, X. J.

    1976-01-01

    Hypothermic hamsters at a rectal temperature of 7 C showed a fivefold increase in survival times from 20 to 100.5 hr when infused with glucose which maintained a blood level at about 45 mg/100 ml. A potential role for osmotic effects of the infusion was tested and eliminated. There was no improvement in survival of 3-O-methylglucose or dextran 40-infused animals. The fact that death eventually occurs even in the glucose-infused animal after about 4 days and that oxygen consumption undergoes a slow decrement in that period suggests that hypothermic survival is not wholly substrate limited. Radioactive tracer showed that localization of the C-14 was greatest in brain tissue and diaphragm, intermediate in heart and kidney, and lowest in skeletal muscle and liver. The significance of the label at sites important to respiration and circulation was presented.

  18. Analgesic Effect of Oral Glucose in Neonates.

    PubMed

    Jatana, S K; Dalal, S S; Wilson, C G

    2003-04-01

    The International Association for the Study of Pain, has defined pain as "an unpleasant sensory and emotional experience connected with actual or potential tissue damage or described in terms of such damage". It was thought that the newborn baby does not experience pain because of incompletely developed nervous system. However, it has been shown that neurological system known to be associated with pain transmission and modulation, is intact and functional. A study was conducted in our center to study the analgesic effect of administration of oral glucose in various concentrations, in neonates undergoing heel punctures, for collection of blood for investigations. This was compared with the analgesic effects of breast milk (which contains lactose). 125 full term normal neonates with no history of birth asphyxia or underlying neurological abnormality, requiring heel punctures for collection of blood for various investigations were selected for the study. They were matched for gestational age, birth weight and sex distribution and divided into 5 groups of 25 each. One group comprised control subjects and was administered sterile water. 3 groups were administered 1 ml of varying strengths of glucose solutions i.e. 10%, 25% and 50% respectively. The last group was given 1 ml of expressed breast milk (EBM). Prior to heel pricks, state of arousal, baseline heart rate (HR) and transcutaneous oxygen saturation (SpO2) were recorded by pulse oximeter in each neonate. Autolet, a mechanical device for capillary sampling, was used for heel pricks to give equal strength of painful stimulus in each procedure. Audio tape recorder was used to record the cry. The oral solution was administered slowly over 30 seconds by means of a syringe placed in the mouth. Heel puncture was done after 2 minutes, taking all aseptic precautions. HR and SpO2 were monitored using pulse oximeter. Pain response was assessed, by recording duration of crying, change in HR, change in SpO2 and facial action

  19. Facilitative glucose transporters in livestock species.

    PubMed

    Hocquette, J F; Abe, H

    2000-01-01

    The study of facilitative glucose transporters (GLUT) requires carefully done immunological experiments and sensitive molecular biology approaches to identify the various mechanisms which control GLUT expression at the RNA and protein levels. The cloning of species-specific GLUT cDNAs showed that GLUT4 and GLUT1 diverge less among species than other GLUT isoforms. The key role of GLUT in glucose homeostasis has been demonstrated in livestock species. In vitro studies have suggested specific roles of GLUT1 and GLUT3 in avian cells. In vivo studies have demonstrated a regulation of GLUTs (especially of GLUT4) by nutritional and hormonal factors in pigs and cattle, in lactating cows and goats and throughout the foetal life in the placenta and tissues of lambs and calves. All these results suggest that any changes in GLUT expression and activity (such as GLUT4 in muscles) could modify nutrient partitioning and tissue metabolism, and hence, the qualities of animal products (milk, meat).

  20. A fine pointed glucose oxidase immobilized electrode for low-invasive amperometric glucose monitoring.

    PubMed

    Li, Jiang; Koinkar, Pankaj; Fuchiwaki, Yusuke; Yasuzawa, Mikito

    2016-12-15

    A low invasive type glucose sensor, which has a sensing region at the tip of a fine pointed electrode, was developed for continuous glucose monitoring. Platinum-iridium alloy electrode with a surface area of 0.045mm(2) was settled at the middle of pointed PEEK (Polyetheretherketone) tubing and was employed as sensing electrode. Electrodeposition of glucose oxidase in the presence of surfactant, Triton X-100, was performed for high-density enzyme immobilization followed by the electropolymerization of o-phenylenediamine for the formation of functional entrapping and permselective polymer membrane. Ag/AgCl film was coated on the surface of PEEK tubing as reference electrode. Amperometric responses of the prepared sensors to glucose were measured at a potential of 0.60V (vs. Ag/AgCl). The prepared electrode showed the sensitivity of 2.55μA/cm(2) mM with high linearity of 0.9986, within the glucose concentration range up to 21mM. The detection limit (S/N=3) was determined to be 0.11mM. The glucose sensor properties were evaluated in phosphate buffer solution and in vivo monitoring by the implantation of the sensors in rabbit, while conventional needle type sensors as a reference were used. The results showed that change in output current of the proposed sensor fluctuated similar with one in output current of the conventional needle type sensors, which was also in similar accordance with actual blood sugar level measured by commercially glucose meter. One-point calibration method was used to calibrate the sensor output current. PMID:27336616

  1. Evaluation of MOSFET-type glucose sensor using platinum electrode with glucose oxidase

    NASA Astrophysics Data System (ADS)

    Ooe, Katsutoshi; Hamamoto, Yasutaro; Hirano, Yoshiaki

    2005-02-01

    As the population ages, health management will be one of the important issues. The development of a safe medical machine based on MEMS technologies for the human body will be the primary research project in the future. We have developed the glucose sensor, as one of the medical based devices, for use in the Health Monitoring System (HMS). HMS is the device that continuously monitors human health conditions. For example, blood is the monitoring target of HMS. The glucose sensor specifically detects the glucose levels of the blood and monitors the glucose concentration as the blood sugar level. This glucose sensor has a "separated Au electrode", which immobilizes GOx. In our previous work, GOx was immobilized onto Au electrode by the SAMs (Self-Assembled Monolayer) method, and the sensor, using this working electrode, detected the glucose concentration of an aqueous glucose solution. In this report, we used a Pt electrode, which immobilized GOx, as a working electrode. Au electrode, which was used previously, was dissolved by the application of current in the presence of chloride ions. Based on the above-mentioned fact, a new working electrode, which immobilized GOx, was produced using Pt, which did not possess such characteristics. These Pt working electrodes were produced using the covalent binding method and the cross-link method, and both the electrodes displayed a good sensing property. In addition, the electrode using glutaraldehyde (GA) and bovine serum albumin (BSA) as crosslinking agents was produced, and it displayed better characteristics as compared with those displayed by the electrode that used only GA. Based on the above-mentioned techniques, the improvement in performance of the sensor was confirmed.

  2. Mechanism for underestimation of isotopically determined glucose disposal

    SciTech Connect

    Yki-Jaervinen, H.C.; Consoli, A.; Nurjhan, N.; Young, A.A.; Gerich, J.E.

    1989-06-01

    Use of (3H)glucose and a one-compartment model to determine glucose kinetics frequently underestimates the rate of glucose production (Ra). To assess to what extent an isotope effect, a tracer contaminant, or inadequacy of the model was responsible, we measured glucose Ra and forearm clearance of tracer and unlabeled glucose at various concentrations of plasma insulin (approximately 50, approximately 160, and approximately 1800 microU/ml) and plasma glucose (approximately 90, approximately 160, approximately 250, and approximately 400 mg/dl) under steady-state and non-steady-state conditions. Under isotopic steady-state conditions, the clearances of tracer and unlabeled glucose across the forearm were identical, and exogenous glucose infusion rates did not differ significantly from the isotopically determined glucose Ra (10.0 +/- 1.3 vs. 10.5 +/- 1.0 mg.kg-1 fat-free mass.min-1, respectively). However, under isotopic non-steady-state conditions, the isotopically determined Ra was significantly lower than the glucose infusion rate (11.5 +/- 1.3 vs. 13.7 +/- 1.5 mg.kg-1 fat-free mass.min-1, respectively, P less than .001), and the underestimation was related to the deviation from the isotopic steady state. When (3H)glucose specific activity of plasma samples from experiments with the greatest underestimation of Ra was determined by high-performance liquid chromatography, less than 7% of the underestimation could be accounted for by a contaminant. These results indicate that inadequacy of the one-compartment model is responsible for underestimation of glucose Ra under non-steady-state conditions and that there is no detectable isotopic effect or appreciable contaminant of (3-3H)glucose. We conclude that under isotopic steady-state conditions, (3-3H)glucose is a reliable tracer for glucose kinetic studies in humans.

  3. Effect of Disinfectants on Glucose Monitors

    PubMed Central

    Mahoney, John J; Lim, Christine G

    2012-01-01

    Background Monitoring blood glucose levels is an integral part of routine diabetes management. To minimize the risk of transmission of bloodborne pathogens during monitoring, the Centers for Disease Control and Prevention (CDC) recommends that glucose meters be disinfected after each use whenever they are used to test multiple patients. The objective of this study is to assess the compatibility of some common disinfectants with certain blood glucose meter systems. Methods We tested six disinfectants for adverse impact on meter performance or the exterior meter surfaces. The disinfectants tested were 0.525% sodium hypochlorite, 20% 2-propanol and 10% ethanol, 17.2% isopropanol, 55% isopropanol, 70% isopropanol, and hydrogen peroxide. To assess meter performance, we tested OneTouch® Ultra® blood glucose monitoring systems with control solution before and after application of either water or disinfectant. To assess the effect on exterior meter surfaces, we performed a soaking test to simulate long-term exposure to disinfectant. Results Paired t-test results showed that the control solution data associated with disinfectant and with water application were not significantly different for each meter type. However, most of the meter types were adversely affected by hydrogen peroxide and/or by the higher concentrations of alcohol-based disinfectants. Conclusions Although none of the six disinfectants affected meter performance, hydrogen peroxide and isopropanol >20% adversely affected the exterior surfaces of the tested meters. When complying with CDC instructions for meter disinfection, users should use caution and choose disinfectants that have been validated by the meter manufacturer. PMID:22401326

  4. A glucose biofuel cell implanted in rats.

    PubMed

    Cinquin, Philippe; Gondran, Chantal; Giroud, Fabien; Mazabrard, Simon; Pellissier, Aymeric; Boucher, François; Alcaraz, Jean-Pierre; Gorgy, Karine; Lenouvel, François; Mathé, Stéphane; Porcu, Paolo; Cosnier, Serge

    2010-05-04

    Powering future generations of implanted medical devices will require cumbersome transcutaneous energy transfer or harvesting energy from the human body. No functional solution that harvests power from the body is currently available, despite attempts to use the Seebeck thermoelectric effect, vibrations or body movements. Glucose fuel cells appear more promising, since they produce electrical energy from glucose and dioxygen, two substrates present in physiological fluids. The most powerful ones, Glucose BioFuel Cells (GBFCs), are based on enzymes electrically wired by redox mediators. However, GBFCs cannot be implanted in animals, mainly because the enzymes they rely on either require low pH or are inhibited by chloride or urate anions, present in the Extra Cellular Fluid (ECF). Here we present the first functional implantable GBFC, working in the retroperitoneal space of freely moving rats. The breakthrough relies on the design of a new family of GBFCs, characterized by an innovative and simple mechanical confinement of various enzymes and redox mediators: enzymes are no longer covalently bound to the surface of the electron collectors, which enables use of a wide variety of enzymes and redox mediators, augments the quantity of active enzymes, and simplifies GBFC construction. Our most efficient GBFC was based on composite graphite discs containing glucose oxidase and ubiquinone at the anode, polyphenol oxidase (PPO) and quinone at the cathode. PPO reduces dioxygen into water, at pH 7 and in the presence of chloride ions and urates at physiological concentrations. This GBFC, with electrodes of 0.133 mL, produced a peak specific power of 24.4 microW mL(-1), which is better than pacemakers' requirements and paves the way for the development of a new generation of implantable artificial organs, covering a wide range of medical applications.

  5. Mitogen-stimulated and rapamycin-sensitive glucose transporter 12 targeting and functional glucose transport in renal epithelial cells.

    PubMed

    Wilson-O'Brien, Amy L; Dehaan, Carrie L; Rogers, Suzanne

    2008-03-01

    We hypothesized that glucose transporter 12 (GLUT12) is involved in regulation of glucose flux in distal renal tubules in response to elevated glucose. We used the Madin-Darby canine kidney polarized epithelial cell model and neutralizing antibodies to analyze GLUT12 targeting and directional GLUT12-mediated glucose transport. At physiological glucose concentrations, GLUT12 was localized to a perinuclear position. High glucose and serum treatment resulted in GLUT12 localization to the apical membrane. This mitogen-stimulated targeting of GLUT12 was inhibited by rapamycin, the specific inhibitor of mammalian target of rapamycin (mTOR). The functional role of GLUT12 was also examined. We constructed a GLUT12 cDNA containing a c-Myc epitope tag in the fifth exofacial loop. Assays of glucose transport at the apical membrane were performed using Transwell filters. By comparing transport assays in the presence of neutralizing anti-c-Myc monoclonal antibody, we specifically measured GLUT12-mediated glucose transport at the apical surface. GLUT12-mediated glucose transport was mitogen dependent and rapamycin sensitive. Our results implicate mTOR signaling in a novel pathway of glucose transporter protein targeting and glucose transport. Activity of the mTOR pathway has been associated with diabetic kidney disease. Our results provide evidence for a link between GLUT12 protein trafficking, glucose transport and signaling molecules central to the control of metabolic disease processes. PMID:18039784

  6. Nonnutritive sweeteners, energy balance and glucose homeostasis

    PubMed Central

    Pepino, M. Yanina; Bourne, Christina

    2012-01-01

    Purpose of review To review recent work on potential mechanisms underlying a paradoxical positive association between the consumption of nonnutritive sweeteners (NNS) and weight gain. Recent findings Several potential mechanism, not mutually exclusive, are hypothesized. First, by dissociating sweetness from calories, NNS could interfere with physiological responses that control homeostasis. Second, by changing the intestinal environment, NNS could affect the microbiota and in turn trigger inflammatory processes that are associated with metabolic disorders. Third, by interacting with novel sweet-taste receptors discovered in the gut, NNS could affect glucose absorptive capacity and glucose homeostasis. This last is the mechanism that has received the most attention recently. Some animal studies, but not all, found that NNS activate gut sweet taste-pathways that control incretin release and up-regulate glucose transporters. Human studies found that, at least for healthy fasted subjects, the sole interaction of NNS with sweet-taste gut receptors is insufficient to elicit incretin responses. The reasons for discrepancy between different studies is unknown but could be related to the species of mammal tested and the dose of NNS used. Summary Whether NNS are metabolically inactive, as previously assumed, is unclear. Further research on the potential effects of NNS on human metabolism is warranted. PMID:21505330

  7. Recent advances in noninvasive glucose monitoring

    PubMed Central

    So, Chi-Fuk; Choi, Kup-Sze; Wong, Thomas KS; Chung, Joanne WY

    2012-01-01

    The race for the next generation of painless and reliable glucose monitoring for diabetes mellitus is on. As technology advances, both diagnostic techniques and equipment improve. This review describes the main technologies currently being explored for noninvasive glucose monitoring. The principle of each technology is mentioned; its advantages and limitations are then discussed. The general description and the corresponding results for each device are illustrated, as well as the current status of the device and the manufacturer; internet references for the devices are listed where appropriate. Ten technologies and eleven potential devices are included in this review. Near infrared spectroscopy has become a promising technology, among others, for blood glucose monitoring. Although some reviews have been published already, the rapid development of technologies and information makes constant updating mandatory. While advances have been made, the reliability and the calibration of noninvasive instruments could still be improved, and more studies carried out under different physiological conditions of metabolism, bodily fluid circulation, and blood components are needed. PMID:23166457

  8. Ultra-Sensitivity Glucose Sensor Based on Field Emitters

    PubMed Central

    2009-01-01

    A new glucose sensor based on field emitter of ZnO nanorod arrays (ZNA) was fabricated. This new type of ZNA field emitter-based sensor shows high sensitivity with experimental limit of detection of 1 nM glucose solution and a detection range from 1 nM to 50 μM in air at room temperature, which is lower than that of glucose sensors based on surface plasmon resonance spectroscopy, fluorescence signal transmission, and electrochemical signal transduction. The new glucose sensor provides a key technique for promising consuming application in biological system for detecting low levels of glucose on single cells or bacterial cultures. PMID:20596378

  9. Optical glucose monitoring using vertical cavity surface emitting lasers (VCSELs)

    NASA Astrophysics Data System (ADS)

    Talebi Fard, Sahba; Hofmann, Werner; Talebi Fard, Pouria; Kwok, Ezra; Amann, Markus-Christian; Chrostowski, Lukas

    2009-08-01

    Diabetes Mellitus is a common chronic disease that has become a public health issue. Continuous glucose monitoring improves patient health by stabilizing the glucose levels. Optical methods are one of the painless and promising methods that can be used for blood glucose predictions. However, having accuracies lower than what is acceptable clinically has been a major concern. Using lasers along with multivariate techniques such as Partial Least Square (PLS) can improve glucose predictions. This research involves investigations for developing a novel optical system for accurate glucose predictions, which leads to the development of a small, low power, implantable optical sensor for diabetes patients.

  10. Metabolism of tritiated D-glucose in rat erythrocytes

    SciTech Connect

    Manuel y Keenoy, B.; Malaisse-Lagae, F.; Malaisse, W.J. )

    1991-09-01

    The metabolism of D-(U-14C)glucose, D-(1-14C)glucose, D-(6-14C)glucose, D-(1-3H)glucose, D-(2-3H)glucose, D-(3-3H)glucose, D-(3,4-3H)glucose, D-(5-3H)glucose, and D-(6-3H)glucose was examined in rat erythrocytes. There was a fair agreement between the rate of 3HOH production from either D-(3-3H)glucose and D-(5-3H)glucose, the decrease in the 2,3-diphosphoglycerate pool, its fractional turnover rate, the production of 14C-labeled lactate from D-(U-14C)glucose, and the total lactate output. The generation of both 3HOH and tritiated acidic metabolites from D-(3,4-3H)glucose indicated incomplete detritiation of the C4 during interconversion of fructose-1,6-bisphosphate and triose phosphates. Erythrocytes unexpectedly generated 3HOH from D-(6-3H)glucose, a phenomenon possibly attributable to the detritiation of (3-3H)pyruvate in the reaction catalyzed by glutamate pyruvate transaminase. The production of 3HOH from D-(2-3H)glucose was lower than that from D-(5-3H)glucose, suggesting enzyme-to-enzyme tunneling of glycolytic intermediates in the hexokinase/phosphoglucoisomerase/phosphofructokinase sequence. The production of 3HOH from D-(1-3H)glucose largely exceeded that of 14CO2 from D-(1-14C)glucose, a situation tentatively ascribed to the generation of 3HOH in the phosphomannoisomerase reaction. It is further speculated that the adjustment in specific radioactivity of D-(1-3H)glucose-6-phosphate cannot simultaneously match the vastly different degrees of isotopic discrimination in velocity at the levels of the reactions catalyzed by either glucose-6-phosphate dehydrogenase or phosphoglucoisomerase. The interpretation of the present findings thus raises a number of questions, which are proposed as a scope for further investigations.

  11. Microwave dielectric resonator biosensor for aqueous glucose solution

    NASA Astrophysics Data System (ADS)

    Kim, Jongchul; Babajanyan, Arsen; Hovsepyan, Artur; Lee, Kiejin; Friedman, Barry

    2008-08-01

    We report a near-field microwave biosensor based on a dielectric resonator to detect glucose concentration. A microwave biosensor with a high Q dielectric resonator allows observation of the small variation of the glucose concentration by measuring the shift of the resonance frequency and the microwave reflection coefficient S11. We observed the concentration of glucose with a detectable resolution up to 5mg/ml at an operating frequency of about f =1.68GHz. The change in the glucose concentration is directly related to the change in the reflection coefficient due to the electromagnetic interaction between the dielectric resonator and the glucose solution.

  12. Glucose enhances indolic glucosinolate biosynthesis without reducing primary sulfur assimilation

    PubMed Central

    Miao, Huiying; Cai, Congxi; Wei, Jia; Huang, Jirong; Chang, Jiaqi; Qian, Hongmei; Zhang, Xin; Zhao, Yanting; Sun, Bo; Wang, Bingliang; Wang, Qiaomei

    2016-01-01

    The effect of glucose as a signaling molecule on induction of aliphatic glucosinolate biosynthesis was reported in our former study. Here, we further investigated the regulatory mechanism of indolic glucosinolate biosynthesis by glucose in Arabidopsis. Glucose exerted a positive influence on indolic glucosinolate biosynthesis, which was demonstrated by induced accumulation of indolic glucosinolates and enhanced expression of related genes upon glucose treatment. Genetic analysis revealed that MYB34 and MYB51 were crucial in maintaining the basal indolic glucosinolate accumulation, with MYB34 being pivotal in response to glucose signaling. The increased accumulation of indolic glucosinolates and mRNA levels of MYB34, MYB51, and MYB122 caused by glucose were inhibited in the gin2-1 mutant, suggesting an important role of HXK1 in glucose-mediated induction of indolic glucosinolate biosynthesis. In contrast to what was known on the function of ABI5 in glucose-mediated aliphatic glucosinolate biosynthesis, ABI5 was not required for glucose-induced indolic glucosinolate accumulation. In addition, our results also indicated that glucose-induced glucosinolate accumulation was due to enhanced sulfur assimilation instead of directed sulfur partitioning into glucosinolate biosynthesis. Thus, our data provide new insights into molecular mechanisms underlying glucose-regulated glucosinolate biosynthesis. PMID:27549907

  13. Glucose enhances indolic glucosinolate biosynthesis without reducing primary sulfur assimilation.

    PubMed

    Miao, Huiying; Cai, Congxi; Wei, Jia; Huang, Jirong; Chang, Jiaqi; Qian, Hongmei; Zhang, Xin; Zhao, Yanting; Sun, Bo; Wang, Bingliang; Wang, Qiaomei

    2016-01-01

    The effect of glucose as a signaling molecule on induction of aliphatic glucosinolate biosynthesis was reported in our former study. Here, we further investigated the regulatory mechanism of indolic glucosinolate biosynthesis by glucose in Arabidopsis. Glucose exerted a positive influence on indolic glucosinolate biosynthesis, which was demonstrated by induced accumulation of indolic glucosinolates and enhanced expression of related genes upon glucose treatment. Genetic analysis revealed that MYB34 and MYB51 were crucial in maintaining the basal indolic glucosinolate accumulation, with MYB34 being pivotal in response to glucose signaling. The increased accumulation of indolic glucosinolates and mRNA levels of MYB34, MYB51, and MYB122 caused by glucose were inhibited in the gin2-1 mutant, suggesting an important role of HXK1 in glucose-mediated induction of indolic glucosinolate biosynthesis. In contrast to what was known on the function of ABI5 in glucose-mediated aliphatic glucosinolate biosynthesis, ABI5 was not required for glucose-induced indolic glucosinolate accumulation. In addition, our results also indicated that glucose-induced glucosinolate accumulation was due to enhanced sulfur assimilation instead of directed sulfur partitioning into glucosinolate biosynthesis. Thus, our data provide new insights into molecular mechanisms underlying glucose-regulated glucosinolate biosynthesis. PMID:27549907

  14. Hepatic ATGL knockdown uncouples glucose intolerance from liver TAG accumulation.

    PubMed

    Ong, Kuok Teong; Mashek, Mara T; Bu, So Young; Mashek, Douglas G

    2013-01-01

    Adipose triglyceride lipase (ATGL) is the predominant triacylglycerol (TAG) hydrolase in mammals; however, the tissue-specific effects of ATGL outside of adipose tissue have not been well characterized. Hence, we tested the contribution of hepatic ATGL on mediating glucose tolerance and insulin action. Glucose or insulin tolerance tests and insulin signaling were performed in C57BL/6 mice administered control (nongene specific shRNA) or Atgl shRNA adenoviruses. Glucose and lipid metabolism assays were conducted in primary hepatocytes isolated from mice transduced with control or Atgl shRNA adenoviruses. Knocking down hepatic ATGL completely abrogated the increase in serum insulin following either 1 or 12 wk of feeding a high-fat (HF) diet despite higher hepatic TAG content. Glucose tolerance tests demonstrated that ATGL knockdown normalized glucose tolerance in HF-diet-fed mice. The observed improvements in glucose tolerance were present despite unaltered hepatic insulin signaling and increased liver TAG. Mice with suppressed hepatic ATGL had reduced hepatic glucose production in vivo, and hepatocytes isolated from Atgl shRNA-treated mice displayed a 26% decrease in glucose production and a 38% increase in glucose oxidation compared to control cells. Taken together, these data suggest that hepatic ATGL knockdown enhances glucose tolerance by increasing hepatic glucose utilization and uncouples impairments in insulin action from hepatic TAG accumulation.

  15. Molecular and industrial aspects of glucose isomerase.

    PubMed Central

    Bhosale, S H; Rao, M B; Deshpande, V V

    1996-01-01

    Glucose isomerase (GI) (D-xylose ketol-isomerase; EC. 5.3.1.5) catalyzes the reversible isomerization of D-glucose and D-xylose to D-fructose and D-xylulose, respectively. The enzyme has the largest market in the food industry because of its application in the production of high-fructose corn syrup (HFCS). HFCS, an equilibrium mixture of glucose and fructose, is 1.3 times sweeter than sucrose and serves as a sweetener for use by diabetics. Interconversion of xylose to xylulose by GI serves a nutritional requirement in saprophytic bacteria and has a potential application in the bioconversion of hemicellulose to ethanol. The enzyme is widely distributed in prokaryotes. Intensive research efforts are directed toward improving its suitability for industrial application. Development of microbial strains capable of utilizing xylan-containing raw materials for growth or screening for constitutive mutants of GI is expected to lead to discontinuation of the use of xylose as an inducer for the production of the enzyme. Elimination of Co2+ from the fermentation medium is desirable for avoiding health problems arising from human consumption of HFCS. Immobilization of GI provides an efficient means for its easy recovery and reuse and lowers the cost of its use. X-ray crystallographic and genetic engineering studies support a hydride shift mechanism for the action of GI. Cloning of GI in homologous as well as heterologous hosts has been carried out, with the prime aim of overproducing the enzyme and deciphering the genetic organization of individual genes (xylA, xylB, and xylR) in the xyl operon of different microorganisms. The organization of xylA and xylB seems to be highly conserved in all bacteria. The two genes are transcribed from the same strand in Escherichia coli and Bacillus and Lactobacillus species, whereas they are transcribed divergently on different strands in Streptomyces species. A comparison of the xylA sequences from several bacterial sources revealed the

  16. A glucose biosensor based on glucose oxidase immobilized on three-dimensional porous carbon electrodes.

    PubMed

    Chen, Jingyi; Zhu, Rong; Huang, Jia; Zhang, Man; Liu, Hongyu; Sun, Min; Wang, Li; Song, Yonghai

    2015-08-21

    A novel glucose biosensor was developed by immobilizing glucose oxidase (GOD) on a three-dimensional (3D) porous kenaf stem-derived carbon (3D-KSC) which was firstly proposed as a novel supporting material to load biomolecules for electrochemical biosensing. Here, an integrated 3D-KSC electrode was prepared by using a whole piece of 3D-KSC to load the GOD molecules for glucose biosensing. The morphologies of integrated 3D-KSC and 3D-KSC/GOD electrodes were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM results revealed a 3D honeycomb macroporous structure of the integrated 3D-KSC electrode. The TEM results showed some microporosities and defects in the 3D-KSC electrode. The electrochemical behaviors and electrocatalytic performance of the integrated 3D-KSC/GOD electrode were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The effects of pH and scan rates on the electrochemical response of the biosensor have been studied in detail. The glucose biosensor showed a wide linear range from 0.1 mM to 14.0 mM with a high sensitivity of 1.73 μA mM(-1) and a low detection limit of 50.75 μM. Furthermore, the glucose biosensor exhibited high selectivity, good repeatability and reproducibility, and good stability.

  17. Gastric bypass alters both glucose-dependent and glucose-independent regulation of islet hormone secretion

    PubMed Central

    Salehi, Marzieh; Woods, Stephen C.; D’Alessio, David A.

    2015-01-01

    Aims Roux-en-Y gastric bypass surgery (GB) is characterized by accentuated, but short-lived postprandial elevations of blood glucose and insulin. This profile has been attributed to effects of relative hyperglycemia to directly stimulate β-cells and an augmented incretin effect. We hypothesized additional glucose-independent stimulation of insulin secretion in GB subjects. Methods Fifteen subjects with prior GB, and six matched obese non-surgical controls, and seven lean individuals were recruited. Islet hormones were measured before and after meal ingestion during hyperinsulinemic hypoglycemic clamps to minimize the direct effects of glycemia and glucose-dependent gastrointestinal hormones on insulin secretion. Results The GB subjects had less suppression of fasting β-cell secretion during the insulin clamp compared to controls. In addition, meal-induced insulin secretion increased in the GB subjects but not controls during fixed sub-basal glycemia. In contrast the glucagon responses to hypoglycemia and meal ingestion were lower in the GB subjects than controls. Conclusions Among subjects with GB the response of insulin and glucagon secretion to decreasing blood glucose is blunted, but meal-induced insulin secretion is stimulated even at fixed systemic sub-basal glycemia. These findings indicate that following GB islet hormone secretion is altered as a result of factors beyond circulatory glucose levels. PMID:26316298

  18. Testing the Glucose Hypothesis among Capuchin Monkeys: Does Glucose Boost Self-Control?

    PubMed Central

    Parrish, Audrey E.; Emerson, Ishara D.; Rossettie, Mattea S.; Beran, Michael J.

    2016-01-01

    The ego-depletion hypothesis states that self-control diminishes over time and with exertion. Accordingly, the glucose hypothesis attributes this depletion of self-control resources to decreases in blood glucose levels. Research has led to mixed findings among humans and nonhuman animals, with limited evidence for such a link between glucose and self-control among closely-related nonhuman primate species, but some evidence from more distantly related species (e.g., honeybees and dogs). We tested this hypothesis in capuchin monkeys by manipulating the sugar content of a calorie-matched breakfast meal following a nocturnal fast, and then presenting each monkey with the accumulation self-control task. Monkeys were presented with food items one-by-one until the subject retrieved and ate the accumulating items, which required continual inhibition of food retrieval in the face of an increasingly desirable reward. Results indicated no relationship between self-control performance on the accumulation task and glucose ingestion levels following a fast. These results do not provide support for the glucose hypothesis of self-control among capuchin monkeys within the presented paradigm. Further research assessing self-control and its physiological correlates among closely- and distantly-related species is warranted to shed light on the mechanisms underlying self-control behavior. PMID:27527225

  19. Amperometric Glucose Biosensor Based on Self-Assembling Glucose Oxidase on Carbon Nanotubes

    SciTech Connect

    Liu, Guodong; Lin, Yuehe

    2006-01-01

    A flow injection amperometric glucose biosensor based on electrostatic self-assembling glucose oxidase (GOx) on a carbon nanotube (CNT)-modified glassy carbon transducer is described. GOx is immobilized on the negatively charged CNT surface by alternatively assembling a cationic polydiallyldimethylammonium chloride (PDDA) layer and a GOx layer. The unique sandwich-like layer structure (PDDA/GOx/PDDA/CNT) formed by self-assembling provides a favorable microenvironment to keep the bioactivity of GOx and to prevent enzyme molecule leakage. The direct electrochemistry behavior of GOx and electrocatalysis of H2O2 on the fabricated PDDA/GOx/PDDA/CNT electrode demonstrated that such a biosensor fabrication method preserves the activity of enzyme molecules and the mechanical and electrocatalytic properties of carbon nanotubes, enabling sensitive determination of glucose. Flow injection amperometric detection of glucose is carried out at -100 mV (vs Ag/AgCl) in 0.05 M phosphate buffer solution (pH 7.4) with wide linear response range of 15 uM- 6 mM and a detection limit of 7 uM. The PDDA/GOx/PDDA/CNT/GC biosensor showed excellent properties for the sensitive determination of glucose with good reproducibility, remarkable stability, and free of interference from other co-existing electroactive species. The present methods can be applied to assemble other enzyme molecules and biological molecules, such as antibody, antigen, and DNA, to the CNT surface for wide biosensor and bioassay applications.

  20. Improvement in glucose biosensing response of electrochemically grown polypyrrole nanotubes by incorporating crosslinked glucose oxidase.

    PubMed

    Palod, Pragya Agar; Singh, Vipul

    2015-10-01

    In this paper a novel enzymatic glucose biosensor has been reported in which platinum coated alumina membranes (Anodisc™s) have been employed as templates for the growth of polypyrrole (PPy) nanotube arrays using electrochemical polymerization. The PPy nanotube arrays were grown on Anodisc™s of pore diameter 100 nm using potentiostatic electropolymerization. In order to optimize the polymerization time, immobilization of glucose oxidase (GOx) was first performed using physical adsorption followed by measuring its biosensing response which was examined amperometrically for increasing concentrations of glucose. In order to further improve the sensing performance of the biosensor fabricated for optimum polymerization duration, enzyme immobilization was carried out using cross-linking with glutaraldehyde and bovine serum albumin (BSA). Approximately six fold enhancement in the sensitivity was observed in the fabricated electrodes. The biosensors also showed a wide range of linear operation (0.2-13 mM), limit of detection of 50 μM glucose concentration, excellent selectivity for glucose, notable reliability for real sample detection and substantially improved shelf life. PMID:26117773

  1. A glucose biosensor based on glucose oxidase immobilized on three-dimensional porous carbon electrodes.

    PubMed

    Chen, Jingyi; Zhu, Rong; Huang, Jia; Zhang, Man; Liu, Hongyu; Sun, Min; Wang, Li; Song, Yonghai

    2015-08-21

    A novel glucose biosensor was developed by immobilizing glucose oxidase (GOD) on a three-dimensional (3D) porous kenaf stem-derived carbon (3D-KSC) which was firstly proposed as a novel supporting material to load biomolecules for electrochemical biosensing. Here, an integrated 3D-KSC electrode was prepared by using a whole piece of 3D-KSC to load the GOD molecules for glucose biosensing. The morphologies of integrated 3D-KSC and 3D-KSC/GOD electrodes were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM results revealed a 3D honeycomb macroporous structure of the integrated 3D-KSC electrode. The TEM results showed some microporosities and defects in the 3D-KSC electrode. The electrochemical behaviors and electrocatalytic performance of the integrated 3D-KSC/GOD electrode were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The effects of pH and scan rates on the electrochemical response of the biosensor have been studied in detail. The glucose biosensor showed a wide linear range from 0.1 mM to 14.0 mM with a high sensitivity of 1.73 μA mM(-1) and a low detection limit of 50.75 μM. Furthermore, the glucose biosensor exhibited high selectivity, good repeatability and reproducibility, and good stability. PMID:26114193

  2. Development of an Amperometric-Based Glucose Biosensor to Measure the Glucose Content of Fruit

    PubMed Central

    Ang, Lee Fung; Por, Lip Yee; Yam, Mun Fei

    2015-01-01

    An amperometric enzyme-electrode was introduced where glucose oxidase (GOD) was immobilized on chitosan membrane via crosslinking, and then fastened on a platinum working electrode. The immobilized enzyme showed relatively high retention activity. The activity of the immobilized enzyme was influenced by its loading, being suppressed when more than 0.6 mg enzyme was used in the immobilization. The biosensor showing the highest response to glucose utilized 0.21 ml/cm2 thick chitosan membrane. The optimum experimental conditions for the biosensors in analysing glucose dissolved in 0.1 M phosphate buffer (pH 6.0) were found to be 35°C and 0.6 V applied potential. The introduced biosensor reached a steady-state current at 60 s. The apparent Michaelis-Menten constant (KMapp) of the biosensor was 14.2350 mM, and its detection limit was 0.05 mM at s/n > 3, determined experimentally. The RSD of repeatability and reproducibility of the biosensor were 2.30% and 3.70%, respectively. The biosensor was showed good stability; it retained ~36% of initial activity after two months of investigation. The performance of the biosensors was evaluated by determining the glucose content in fruit homogenates. Their accuracy was compared to that of a commercial glucose assay kit. There was no significance different between two methods, indicating the introduced biosensor is reliable. PMID:25789757

  3. Serratia marcescens Quinoprotein Glucose Dehydrogenase Activity Mediates Medium Acidification and Inhibition of Prodigiosin Production by Glucose

    PubMed Central

    Fender, James E.; Bender, Cody M.; Stella, Nicholas A.; Lahr, Roni M.; Kalivoda, Eric J.

    2012-01-01

    Serratia marcescens is a model organism for the study of secondary metabolites. The biologically active pigment prodigiosin (2-methyl-3-pentyl-6-methoxyprodiginine), like many other secondary metabolites, is inhibited by growth in glucose-rich medium. Whereas previous studies indicated that this inhibitory effect was pH dependent and did not require cyclic AMP (cAMP), there is no information on the genes involved in mediating this phenomenon. Here we used transposon mutagenesis to identify genes involved in the inhibition of prodigiosin by glucose. Multiple genetic loci involved in quinoprotein glucose dehydrogenase (GDH) activity were found to be required for glucose inhibition of prodigiosin production, including pyrroloquinoline quinone and ubiquinone biosynthetic genes. Upon assessing whether the enzymatic products of GDH activity were involved in the inhibitory effect, we observed that d-glucono-1,5-lactone and d-gluconic acid, but not d-gluconate, were able to inhibit prodigiosin production. These data support a model in which the oxidation of d-glucose by quinoprotein GDH initiates a reduction in pH that inhibits prodigiosin production through transcriptional control of the prodigiosin biosynthetic operon, providing new insight into the genetic pathways that control prodigiosin production. Strains generated in this report may be useful in large-scale production of secondary metabolites. PMID:22752173

  4. Amperometric glucose biosensor utilizing FAD-dependent glucose dehydrogenase immobilized on nanocomposite electrode.

    PubMed

    Monošík, Rastislav; Streďanský, Miroslav; Lušpai, Karol; Magdolen, Peter; Šturdík, Ernest

    2012-04-01

    Amperometric glucose biosensors utilizing commercially available FAD-dependent glucose dehydrogenases from two strains of Aspergillus species are described. Enzymes were immobilized on nanocomposite electrode consisting of multi-walled carbon nanotubes by entrapment between chitosan layers. Unlike the common glucose oxidase based biosensor, the presented biosensors appeared to be O(2)-independent. The optimal amount of enzymes, working potential and pH value of working media of the glucose biosensors were determined. The biosensor utilizing enzyme isolated from Aspergillus sp. showed linearity over the range from 50 to 960 μM and from 70 to 620 μM for enzyme from Aspergillus oryzae. The detection limits were 4.45 μM and 4.15 μM, respectively. The time of response was found to be 60 s. The biosensors showed excellent operational stability - no loss of sensitivity after 100 consecutive measurements and after the storage for 4 weeks at 4 °C in phosphate buffer solution. When biosensors were held in a dessicator at room temperature without use, they kept the same response ability at least after 6 months. Finally, the results obtained from measurements of beverages and wine samples were compared with those obtained with the enzymatic-spectrophotometric and standard HPLC methods, respectively. Good correlation between results in case of analysis of real samples and good analytical performance of presented glucose biosensor allows to use presented concept for mass production and commercial use. PMID:22418262

  5. Improvement in glucose biosensing response of electrochemically grown polypyrrole nanotubes by incorporating crosslinked glucose oxidase.

    PubMed

    Palod, Pragya Agar; Singh, Vipul

    2015-10-01

    In this paper a novel enzymatic glucose biosensor has been reported in which platinum coated alumina membranes (Anodisc™s) have been employed as templates for the growth of polypyrrole (PPy) nanotube arrays using electrochemical polymerization. The PPy nanotube arrays were grown on Anodisc™s of pore diameter 100 nm using potentiostatic electropolymerization. In order to optimize the polymerization time, immobilization of glucose oxidase (GOx) was first performed using physical adsorption followed by measuring its biosensing response which was examined amperometrically for increasing concentrations of glucose. In order to further improve the sensing performance of the biosensor fabricated for optimum polymerization duration, enzyme immobilization was carried out using cross-linking with glutaraldehyde and bovine serum albumin (BSA). Approximately six fold enhancement in the sensitivity was observed in the fabricated electrodes. The biosensors also showed a wide range of linear operation (0.2-13 mM), limit of detection of 50 μM glucose concentration, excellent selectivity for glucose, notable reliability for real sample detection and substantially improved shelf life.

  6. A UDP-glucose:glycoprotein glucose-1-phosphotransferase in embryonic chicken neural retina

    SciTech Connect

    Koro, L.A.; Marchase, R.B.

    1982-12-01

    A subclass of cell-surface glycoproteins from embryonic chicken neural retina contains a high mannose-type oligosaccharide that terminates with glucose linked via a phosphodiester bond to penultimate mannose. This unusual oligosaccharide seems responsible for the glycoprotein attachments to the cell-surface baseplate ligatin. Using beta-/sup 32/P-UDP-/sup 3/H-glucose, we demonstrate in retinal homogenates the existence of a UDP-glucose:glycoprotein glucose-1-phosphotransferase (GlcPTase) that catalyzes the synthesis of such a linkage. Characterization of the doubly labeled product resulting from activity of the transferase reveals a family of endoglycosidase H-sensitive oligosaccharides displaying a cation-exchange profile similar to that of oligosaccharides derived from ligatin-associated proteins synthesized in vivo. Further analysis confirms that the incorporation of label is due to a terminal /sup 3/H-glucose joined via a /sup 32/P-phosphodiester linkage to carbon 6 of a penultimate mannose. We propose that GlcPTase may be a controlling enzyme for the targeting of certain newly synthesized proteins to the cell surface.

  7. Development of an amperometric-based glucose biosensor to measure the glucose content of fruit.

    PubMed

    Ang, Lee Fung; Por, Lip Yee; Yam, Mun Fei

    2015-01-01

    An amperometric enzyme-electrode was introduced where glucose oxidase (GOD) was immobilized on chitosan membrane via crosslinking, and then fastened on a platinum working electrode. The immobilized enzyme showed relatively high retention activity. The activity of the immobilized enzyme was influenced by its loading, being suppressed when more than 0.6 mg enzyme was used in the immobilization. The biosensor showing the highest response to glucose utilized 0.21 ml/cm2 thick chitosan membrane. The optimum experimental conditions for the biosensors in analysing glucose dissolved in 0.1 M phosphate buffer (pH 6.0) were found to be 35°C and 0.6 V applied potential. The introduced biosensor reached a steady-state current at 60 s. The apparent Michaelis-Menten constant ([Formula: see text]) of the biosensor was 14.2350 mM, and its detection limit was 0.05 mM at s/n > 3, determined experimentally. The RSD of repeatability and reproducibility of the biosensor were 2.30% and 3.70%, respectively. The biosensor was showed good stability; it retained ~36% of initial activity after two months of investigation. The performance of the biosensors was evaluated by determining the glucose content in fruit homogenates. Their accuracy was compared to that of a commercial glucose assay kit. There was no significance different between two methods, indicating the introduced biosensor is reliable. PMID:25789757

  8. Proposed structure of putative glucose channel in GLUT1 facilitative glucose transporter.

    PubMed

    Zeng, H; Parthasarathy, R; Rampal, A L; Jung, C Y

    1996-01-01

    A family of structurally related intrinsic membrane proteins (facilitative glucose transporters) catalyzes the movement of glucose across the plasma membrane of animal cells. Evidence indicates that these proteins show a common structural motif where approximately 50% of the mass is embedded in lipid bilayer (transmembrane domain) in 12 alpha-helices (transmembrane helices; TMHs) and accommodates a water-filled channel for substrate passage (glucose channel) whose tertiary structure is currently unknown. Using recent advances in protein structure prediction algorithms we proposed here two three-dimensional structural models for the transmembrane glucose channel of GLUT1 glucose transporter. Our models emphasize the physical dimension and water accessibility of the channel, loop lengths between TMHs, the macrodipole orientation in four-helix bundle motif, and helix packing energy. Our models predict that five TMHs, either TMHs 3, 4, 7, 8, 11 (Model 1) or TMHs 2, 5, 11, 8, 7 (Model 2), line the channel, and the remaining TMHs surround these channel-lining TMHs. We discuss how our models are compatible with the experimental data obtained with this protein, and how they can be used in designing new biochemical and molecular biological experiments in elucidation of the structural basis of this important protein function.

  9. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle

    SciTech Connect

    Ploug, T.; Stallknecht, B.M.; Pedersen, O.; Kahn, B.B.; Ohkuwa, T.; Vinten, J.; Galbo, H. )

    1990-12-01

    The effect of 10 wk endurance swim training on 3-O-methylglucose (3-MG) uptake (at 40 mM 3-MG) in skeletal muscle was studied in the perfused rat hindquarter. Training resulted in an increase of approximately 33% for maximum insulin-stimulated 3-MG transport in fast-twitch red fibers and an increase of approximately 33% for contraction-stimulated transport in slow-twitch red fibers compared with nonexercised sedentary muscle. A fully additive effect of insulin and contractions was observed both in trained and untrained muscle. Compared with transport in control rats subjected to an almost exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold by training in fast-twitch red muscle fibers. In parallel to this, Western blot demonstrated a approximately 47% increase in GLUT-1 protein and a approximately 31% increase in GLUT-4 protein. This indicates that the increases in maximum velocity for 3-MG transport in trained muscle is due to an increased number of glucose transporters.

  10. Serratia marcescens quinoprotein glucose dehydrogenase activity mediates medium acidification and inhibition of prodigiosin production by glucose.

    PubMed

    Fender, James E; Bender, Cody M; Stella, Nicholas A; Lahr, Roni M; Kalivoda, Eric J; Shanks, Robert M Q

    2012-09-01

    Serratia marcescens is a model organism for the study of secondary metabolites. The biologically active pigment prodigiosin (2-methyl-3-pentyl-6-methoxyprodiginine), like many other secondary metabolites, is inhibited by growth in glucose-rich medium. Whereas previous studies indicated that this inhibitory effect was pH dependent and did not require cyclic AMP (cAMP), there is no information on the genes involved in mediating this phenomenon. Here we used transposon mutagenesis to identify genes involved in the inhibition of prodigiosin by glucose. Multiple genetic loci involved in quinoprotein glucose dehydrogenase (GDH) activity were found to be required for glucose inhibition of prodigiosin production, including pyrroloquinoline quinone and ubiquinone biosynthetic genes. Upon assessing whether the enzymatic products of GDH activity were involved in the inhibitory effect, we observed that d-glucono-1,5-lactone and d-gluconic acid, but not d-gluconate, were able to inhibit prodigiosin production. These data support a model in which the oxidation of d-glucose by quinoprotein GDH initiates a reduction in pH that inhibits prodigiosin production through transcriptional control of the prodigiosin biosynthetic operon, providing new insight into the genetic pathways that control prodigiosin production. Strains generated in this report may be useful in large-scale production of secondary metabolites.

  11. Flurbiprofen Ameliorates Glucose Deprivation-Induced Leptin Resistance

    PubMed Central

    Hosoi, Toru; Suyama, Yuka; Kayano, Takaaki; Ozawa, Koichiro

    2016-01-01

    Leptin resistance is one of the mechanisms involved in the pathophysiology of obesity. The present study showed that glucose deprivation inhibited leptin-induced phosphorylation of signal transducer and activator of transcription 3 (STAT3) and signal transducer and activator of transcription 5 (STAT5) in neuronal cells. Flurbiprofen reversed glucose deprivation-mediated attenuation of STAT3, but not STAT5 activation, in leptin-treated cells. Glucose deprivation increased C/EBP-homologous protein and glucose regulated protein 78 induction, indicating the activation of unfolded protein responses (UPR). Flurbiprofen did not affect the glucose deprivation-induced activation of UPR, but did attenuate the glucose deprivation-mediated induction of AMP-activated protein kinase phosphorylation. Flurbiprofen may ameliorate glucose deprivation-induced leptin resistance in neuronal cells. PMID:27746736

  12. Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles

    SciTech Connect

    Lin, Yuehe ); Lu, Fang; Tu, Yi; Ren, Zhifeng

    2004-02-12

    This paper describes the development of glucose biosensors based on carbon nanotube (CNT) nanoelectrode ensembles (NEEs) for the selective detection of glucose. Glucose oxidase was covalently immobilized on CNT NEEs via carbodiimide chemistry by forming amide linkages between their amine residues and carboxylic acid groups on the CNT tips. The catalytic reduction of hydrogen peroxide liberated from the enzymatic reaction of glucose oxidase upon the glucose and oxygen on CNT NEEs leads to the selective detection of glucose. The biosensor effectively performs selective electrochemical analysis of glucose in the presence of common interferents (e.g. acetaminophen, uric and ascorbic acids), avoiding the generation of an overlapping signal from such interferents. Such an operation eliminates the need for permselective membrane barriers or artificial electron mediators, thus greatly simplifying the sensor design and fabrication.

  13. Evolution of glucose utilization: Glucokinase and glucokinase regulator protein

    PubMed Central

    Irwin, David M.; Tan, Huanran

    2014-01-01

    Glucose is an essential nutrient that must be distributed throughout the body to provide energy to sustain physiological functions. Glucose is delivered to distant tissues via be blood stream, and complex systems have evolved to maintain the levels of glucose within a narrow physiological range. Phosphorylation of glucose, by glucokinase, is an essential component of glucose homeostasis, both from the regulatory and metabolic point-of-view. Here we review the evolution of glucose utilization from the perspective of glucokinase. We discuss the origin of glucokinase, its evolution within the hexokinase gene family, and the evolution of its interacting regulatory partner, glucokinase regulatory protein (GCKR). Evolution of the structure and sequence of both glucokinase and GCKR have been necessary to optimize glucokinase in its role in glucose metabolism. PMID:24075984

  14. Role of Adrenergic Receptors in Glucose, Fructose and Galactose-Induced Increases in Intestinal Glucose Uptake in Dogs.

    PubMed

    Salman, T M; Alada, A R A; Oyebola, D D O

    2014-12-29

    The study investigated the role of adrenergic receptors in glucose, fructose-, and galactose- induced increases in intestinal glucose uptake. Experiments were carried out on fasted male anaesthetized Nigerian local dogs divided into seven groups (with five dogs per group). Group I dogs were administered normal saline and served as control. Dogs in groups II, III and IV were intravenously infused with glucose (1.1 mg/kg/min), fructose (1.1 mg/kg/min) and galactose (1.1 mg/kg/min) respectively. Another three groups, V, VI and VII were pretreated with prazosin (0.2mg/kg), propranolol (0.5mg/kg) or a combination of prazosin (0.2mg/kg) and propranolol (0.5mg/kg) followed by glucose infusion, frutose infusion or galactose infusion respectively. Through a midline laparatomy, the upper jejunum was cannulated for blood flow measurement and blood samples were obtained for measurement of glucose content of the arterial blood and venous blood from the upper jejunal segment. Glucose uptake was calculated as the product of jejunal blood flow and the difference between arterial and venous glucose levels (A-V glucose). The results showed that pretreatment of the animal with prazosin had no effect on glucose and galactose induced increases in glucose uptake. However, pretreatment with propranolol completely abolished glucose, fructose and galactose-induced increases in intestinal glucose uptake. Prazosin also significantly reduced galactose-induced increase in intestinal glucose uptake. The results suggest that the increases in intestinal glucose uptake induced by glucose and fructose are mediated mostly by beta adrenergic receptors while that of galactose is mediated by both alpha and beta adrenergic receptors.

  15. Comparison of glucose oxidases from Penicillium adametzii, Penicillium Funiculosum and Aspergillus Niger in the design of amperometric glucose biosensors.

    PubMed

    Ramanavicius, Arunas; Voronovic, Jaroslav; Semashko, Tatiana; Mikhailova, Raisa; Kausaite-Minkstimiene, Asta; Ramanaviciene, Almira

    2014-01-01

    The properties of amperometric glucose biosensors based on three different glucose oxidases and various redox mediators were evaluated. Glucose oxidases (GOx) from Penicillium adametzii, Penicillium funiculosum and Aspergillus niger and artificial redox mediators, such as ferrocene, ferrocenecarboxaldehyde, α-methylferrocene methanol and ferrocenecarboxylic acid, were used for modifying the graphite rod electrode and amperometrical reagent-less glucose detection. The obtained results were compared using N-methylphenazonium methyl sulphate in the solution. Taking into account the experimental kinetic parameters and the stability of the tested enzymatic electrodes, GOx from Penicillium funiculosum proved to be more suitable for glucose biosensor design in comparison with other evaluated enzymes. PMID:25492463

  16. Mild type II diabetes markedly increases glucose cycling in the postabsorptive state and during glucose infusion irrespective of obesity.

    PubMed Central

    Efendic, S; Karlander, S; Vranic, M

    1988-01-01

    Glucose cycling (GC; G in equilibrium G6P) equals 14% of glucose production in postabsorptive man. Our aim was to determine glucose cycling in six lean and six overweight mild type II diabetics (fasting glycemia: 139 +/- 10 and 152 +/- 7 mg/dl), in postabsorptive state (PA) and during glucose infusion (2 mg/kg per min). 14 control subjects were weight and age matched. GC is a function of the enzyme that catalyzes the reaction opposite the net flux and is the difference between hepatic total glucose output (HTGO) (2-[3H]glucose) and hepatic glucose production (HGP) (6-[3H]-glucose). Postabsorptively, GC is a function of glucokinase. With glucose infusion the flux is reversed (net glucose uptake), and GC is a function of glucose 6-phosphatase. In PA, GC was increased by 100% in lean (from 0.25 +/- 0.07 to 0.43 +/- .08 mg/kg per min) and obese (from 0.22 +/- 0.05 to 0.50 +/- 0.07) diabetics. HGP and HTGO increased in lean and obese diabetics by 41 and 33%. Glucose infusion suppressed apparent phosphatase activity and gluconeogenesis much less in diabetics than controls, resulting in marked enhancement (400%) in HTGO and HGP, GC remained increased by 100%. Although the absolute responses of C-peptide and insulin were comparable to those of control subjects, they were inappropriate for hyperglycemia. Peripheral insulin resistance relates to decreased metabolic glucose clearance (MCR) and inadequate increase of uptake during glucose infusion. We conclude that increases in HGP and HTGO and a decrease of MCR are characteristic features of mild type II diabetes and are more pronounced during glucose infusion. There is also an increase in hepatic GC, a stopgap that controls changes from glucose production to uptake. Postabsorptively, this limits the increase of HGP and glycemia. In contrast, during glucose infusion, increased GC decreases hepatic glucose uptake and thus contributes to hyperglycemia. Obesity per se did not affect GC. An increase in glucose cycling and

  17. Nanostructured glucose-oxidase immobilized SnO2 thin films for glucose sensing

    NASA Astrophysics Data System (ADS)

    Dhobale, S.; Joshee, P.; Deore, G.; Laware, S. L.; Kale, S. N.

    2011-02-01

    Polycrystalline rutile films of SnO2 (˜1500 Å) were deposited on Al2O3. Film imaging showed regular ellipsoidal nanostructured growth. Different concentrations (1000-3000 U) of glucose oxidase (GOx) were immobilized on SnO2 surface. Upon interaction with various glucose concentrations (65-300 mg/dl), films showed pronounced change in their sheet resistance with recovery and repeatability. Nanostructured SnO2 surfaces probably enhance adsorption of oxygen moieties. These convert to their ions by extracting electron/s from the conduction band of SnO2, which further interacts with H+, formed during the GOx-glucose interaction. This releases the trapped electron to the conduction band of SnO2, justifying its role as a catalyst.

  18. Electrochemical Glucose Biosensor Based on Glucose Oxidase Displayed on Yeast Surface.

    PubMed

    Wang, Hongwei; Lang, Qiaolin; Liang, Bo; Liu, Aihua

    2015-01-01

    The conventional enzyme-based biosensor requires chemical or physical immobilization of purified enzymes on electrode surface, which often results in loss of enzyme activity and/or fractions immobilized over time. It is also costly. A major advantage of yeast surface display is that it enables the direct utilization of whole cell catalysts with eukaryote-produced proteins being displayed on the cell surface, providing an economic alternative to traditional production of purified enzymes. Herein, we describe the details of the display of glucose oxidase (GOx) on yeast cell surface and its application in the development of electrochemical glucose sensor. In order to achieve a direct electrochemistry of GOx, the entire cell catalyst (yeast-GOx) was immobilized together with multiwalled carbon nanotubes on the electrode, which allowed sensitive and selective glucose detection. PMID:26060079

  19. A comparison of fasting plasma glucose and glucose challenge test for screening of gestational diabetes mellitus.

    PubMed

    Poomalar, G K; Rangaswamy, V

    2013-07-01

    Glucose challenge test (GCT) has been used as an effective screening test for gestational diabetes mellitus (GDM), though it has its own limitations. Hence, we assessed the effectiveness of fasting plasma glucose (FPG) as a simpler alternative procedure. A prospective study was done in 500 pregnant women with gestational age between 22 and 37 weeks. FPG, GCT and GTT were performed in all patients using the glucose oxidase/peroxidase method. The overall sensitivity and specificity of GCT were 75.0% and 92.0%, respectively and the corresponding values for FPG were 88.8% and 95.2%. The positive predictive value and negative predictive value were 42.2% and 97.9% for GCT and 59.2% and 99.1% for FPG, respectively. We conclude that FPG can be used as an effective screening tool for gestational diabetes mellitus.

  20. Recommendations for standardizing glucose reporting and analysis to optimize clinical decision making in diabetes: the ambulatory glucose profile.

    PubMed

    Bergenstal, Richard M; Ahmann, Andrew J; Bailey, Timothy; Beck, Roy W; Bissen, Joan; Buckingham, Bruce; Deeb, Larry; Dolin, Robert H; Garg, Satish K; Goland, Robin; Hirsch, Irl B; Klonoff, David C; Kruger, Davida F; Matfin, Glenn; Mazze, Roger S; Olson, Beth A; Parkin, Christopher; Peters, Anne; Powers, Margaret A; Rodriguez, Henry; Southerland, Phil; Strock, Ellie S; Tamborlane, William; Wesley, David M

    2013-01-01

    Underutilization of glucose data and lack of easy and standardized glucose data collection, analysis, visualization, and guided clinical decision making are key contributors to poor glycemic control among individuals with type 1 diabetes mellitus. An expert panel of diabetes specialists, facilitated by the International Diabetes Center and sponsored by the Helmsley Charitable Trust, met in 2012 to discuss recommendations for standardizing the analysis and presentation of glucose monitoring data, with the initial focus on data derived from continuous glucose monitoring systems. The panel members were introduced to a universal software report, the Ambulatory Glucose Profile, and asked to provide feedback on its content and functionality, both as a research tool and in clinical settings. This article provides a summary of the topics and issues discussed during the meeting and presents recommendations from the expert panel regarding the need to standardize glucose profile summary metrics and the value of a uniform glucose report to aid clinicians, researchers, and patients.

  1. Recommendations for Standardizing Glucose Reporting and Analysis to Optimize Clinical Decision Making in Diabetes: The Ambulatory Glucose Profile

    PubMed Central

    Bergenstal, Richard M.; Ahmann, Andrew J.; Bailey, Timothy; Beck, Roy W.; Bissen, Joan; Buckingham, Bruce; Deeb, Larry; Dolin, Robert H.; Garg, Satish K.; Goland, Robin; Hirsch, Irl B.; Klonoff, David C.; Kruger, Davida F.; Matfin, Glenn; Mazze, Roger S.; Olson, Beth A.; Parkin, Christopher; Peters, Anne; Powers, Margaret A.; Rodriguez, Henry; Southerland, Phil; Strock, Ellie S.; Tamborlane, William; Wesley, David M.

    2013-01-01

    Underutilization of glucose data and lack of easy and standardized glucose data collection, analysis, visualization, and guided clinical decision making are key contributors to poor glycemic control among individuals with type 1 diabetes mellitus. An expert panel of diabetes specialists, facilitated by the International Diabetes Center and sponsored by the Helmsley Charitable Trust, met in 2012 to discuss recommendations for standardizing the analysis and presentation of glucose monitoring data, with the initial focus on data derived from continuous glucose monitoring systems. The panel members were introduced to a universal software report, the Ambulatory Glucose Profile, and asked to provide feedback on its content and functionality, both as a research tool and in clinical settings. This article provides a summary of the topics and issues discussed during the meeting and presents recommendations from the expert panel regarding the need to standardize glucose profile summary metrics and the value of a uniform glucose report to aid clinicians, researchers, and patients. PMID:23567014

  2. Single-Walled Carbon Nanotube-Based Near-Infrared Optical Glucose Sensors toward In Vivo Continuous Glucose Monitoring

    PubMed Central

    Yum, Kyungsuk; McNicholas, Thomas P.; Mu, Bin; Strano, Michael S.

    2013-01-01

    This article reviews research efforts on developing single-walled carbon nanotube (SWNT)-based near-infrared (NIR) optical glucose sensors toward long-term in vivo continuous glucose monitoring (CGM). We first discuss the unique optical properties of SWNTs and compare SWNTs with traditional organic and nanoparticle fluorophores regarding in vivo glucose-sensing applications. We then present our development of SWNT-based glucose sensors that use glucose-binding proteins and boronic acids as a high-affinity molecular receptor for glucose and transduce binding events on the receptors to modulate SWNT fluorescence. Finally, we discuss opportunities and challenges in translating the emerging technology of SWNT-based NIR optical glucose sensors into in vivo CGM for practical clinical use. PMID:23439162

  3. GnRH increases glucose transporter-1 expression and stimulates glucose uptake in the gonadotroph.

    PubMed

    Harris, Valerie M; Bendre, Sachin V; Gonzalez De Los Santos, Francina; Fite, Alemu; El-Yaman El-Dandachli, Ahmad; Kurenbekova, Lyazat; Abou-Samra, Abdul B; Buggs-Saxton, Colleen

    2012-02-01

    GnRH is the main regulator of the hypothalamic-pituitary-gonadal (H-P-G) axis. GnRH stimulates the pituitary gonadotroph to synthesize and secrete gonadotrophins (LH and FSH), and this effect of GnRH is dependent on the availability of glucose and other nutrients. Little is known about whether GnRH regulates glucose metabolism in the gonadotroph. This study examined the regulation of glucose transporters (Gluts) by GnRH in the LβT2 gonadotroph cell line. Using real-time PCR analysis, the expression of Glut1, -2, -4, and -8 was detected, but Glut1 mRNA expression level was more abundant than the mRNA expression levels of Glut2, -4, and -8. After the treatment of LβT2 cells with GnRH, Glut1 mRNA expression was markedly induced, but there was no GnRH-induction of Glut2, -4, or -8 mRNA expression in LβT2 cells. The effect of GnRH on Glut1 mRNA expression is partly mediated by ERK activation. GnRH increased GLUT1 protein and stimulated GLUT1 translocation to the cell surface of LβT2 cells. Glucose uptake assays were performed in LβT2 cells and showed that GnRH stimulates glucose uptake in the gonadotroph. Finally, exogenous treatment of mice with GnRH increased the expression of Glut1 but not the expression of Glut2, -4, or -8 in the pituitary. Therefore, regulation of glucose metabolism by GnRH via changes in Gluts expression and subcellular location in the pituitary gonadotroph reveals a novel response of the gonadotroph to GnRH.

  4. CGM Versus FGM; or, Continuous Glucose Monitoring Is Not Flash Glucose Monitoring.

    PubMed

    Heinemann, Lutz; Freckmann, Guido

    2015-09-01

    It remains to be seen as to what share of the market FGM will achieve if the manufacturer can supply any amount desired.Will a significant portion of the glucose monitoring market then be taken over by FGM? The availability of FGM as anew option for glucose monitoring can basically be evaluated positively and it does indeed clearly show the benefit of“more information” on the glucose trend. The relatively low price for glucose monitoring using FGM and the unusual market introduction (not first via the National Association of Statutory Health Insurance Funds, as was the case with CGM) have given increased attention to the use of more glucose information. It will likely take a certain amount of time before other providers are able to bring different FGM systems to the market.The option of coupling a CGM system with an insulin pump offers the perspective of an automated insulin application,that is, a closed-loop system. Such systems are currently being tested under everyday conditions, although it is not possible to predict when they will actually reach the market.There are, however, such couplings where algorithms are responsible for shutting off insulin delivery when the glucose concentration reaches a defined level or if it will be reached in the foreseeable future. This significantly helps prevent hypoglycemia. These options are only available with CGM. The aim of this commentary is to present the differences between CGM and FGM, including the advantages and disadvantages of both approaches. We see significant benefits in both options based on the different positioning of the approaches and the different user groups. PMID:26330484

  5. Mechanisms of impaired fasting glucose and glucose intolerance induced by an approximate 50% pancreatectomy.

    PubMed

    Matveyenko, Aleksey V; Veldhuis, Johannes D; Butler, Peter C

    2006-08-01

    Impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) often coexist and as such represent a potent risk factor for subsequent development of type 2 diabetes. beta-Cell mass is approximately 50% deficient in IFG and approximately 65% deficient in type 2 diabetes. To establish the effect of a approximately 50% deficit in beta-cell mass on carbohydrate metabolism, we performed a approximately 50% partial pancreatectomy versus sham surgery in 14 dogs. Insulin secretion was quantified from insulin concentrations measured in the portal vein at 1-min sampling intervals under basal conditions, after a 30-g oral glucose, and during a hyperglycemic clamp. Insulin sensitivity was measured by a hyperinsulinemic-euglycemic clamp combined with isotope dilution. Partial pancreatectomy resulted in IFG and IGT. After partial pancreatectomy both basal and glucose-stimulated insulin secretion were decreased through the mechanism of a selective approximately 50 and approximately 80% deficit in insulin pulse mass, respectively (P < 0.05). These defects in insulin secretion were partially offset by decreased hepatic insulin clearance (P < 0.05). Partial pancreatectomy also caused a approximately 40% decrease in insulin-stimulated glucose disposal (P < 0.05), insulin sensitivity after partial pancreatectomy being related to insulin pulse amplitude (r = 0.9, P < 0.01). We conclude that a approximately 50% deficit in beta-cell mass can recapitulate the alterations in glucose-mediated insulin secretion and insulin action in humans with IFG and IGT. These data support a mechanistic role of a deficit in beta-cell mass in the evolution of IFG/IGT and subsequently type 2 diabetes. PMID:16873700

  6. Characterization of transmembrane movement of glucose and glucose analogs in Streptococcus mutants Ingbritt.

    PubMed Central

    Dashper, S G; Reynolds, E C

    1990-01-01

    The transmembrane movement of radiolabeled, nonmetabolizable glucose analogs in Streptococcus mutants Ingbritt was studied under conditions of differing transmembrane electrochemical potentials (delta psi) and pH gradients (delta pH). The delta pH and delta psi were determined from the transmembrane equilibration of radiolabeled benzoate and tetraphenylphosphonium ions, respectively. Growth conditions of S. mutants Ingbritt were chosen so that the cells had a low apparent phosphoenolpyruvate (PEP)-dependent glucose:phosphotransferase activity. Cells energized under different conditions produced transmembrane proton potentials ranging from -49 to -103 mV but did not accumulate 6-deoxyglucose intracellularly. An artificial transmembrane proton potential was generated in deenergized cells by creating a delta psi with a valinomycin-induced K+ diffusion potential and a delta pH by rapid acidification of the medium. Artificial transmembrane proton potentials up to -83 mV, although producing proton influx, could not accumulate 6-deoxyglucose in deenergized cells or 2-deoxyglucose or thiomethylgalactoside in deenergized, PEP-depleted cells. The transmembrane diffusion of glucose in PEP-depleted, KF-treated cells did not exhibit saturation kinetics or competitive inhibition by 6-deoxyglucose or 2-deoxyglucose, indicating that diffusion was not facilitated by a membrane carrier. As proton-linked membrane carriers have been shown to facilitate diffusion in the absence of a transmembrane proton potential, the results therefore are not consistent with a proton-linked glucose carrier in S. mutans Ingbritt. This together with the lack of proton-linked transport of the glucose analogs suggests that glucose transmembrane movement in S. mutans Ingbritt is not linked to the transmembrane proton potential. PMID:2298698

  7. Glucose metabolism and thermogenesis during glucose and insulin infusion in severely underweight patients.

    PubMed

    Gallen, I W; Macdonald, I A; Allison, S P

    1992-01-01

    This study investigates the effects of gross loss of body weight on glucose disposal (GD), storage (GS), oxidation (GO), and the thermogenic response (TR) during hyperinsulinemic euglycemic glucose infusion in 9 underweight but nourished patients (UP) and in 3 of the patients after weight gain (WGP). In UP, baseline metabolic rate (MR) was 4.1 +/- 0.2 kJ/min and respiratory exchange ratio (RER) 0.97 +/- 0.02. During the final 30 minutes of hyperinsulinemia MR rose by 0.32 +/- 0.07 kJ/min (p less than .01) and RER rose to 1.09 +/- 0.03 (p less than .01). GD was 61 +/- 3 mumol/kg per minute, GO 35 +/- 1 mumol/kg per minute, and GS 26 +/- 4 mumol/kg per minute. The energy cost of glucose storage as glycogen was 0.15 kJ/min, and as lipid was 0.2 kJ/min. In WGP baseline MR was 4.5 +/- 0.4 kJ/min and RER was 0.91 +/- 0.03. During hyperinsulinemia MR rose by 0.63 +/- 0.2 kJ/min, RER rose to 0.93 +/- 0.02, GD was 53 +/- 4 mumol/kg per minute, GO was 30 +/- 3 mumol/kg per minute, and GS was 23 +/- 1 mumol/kg per minute. The energy cost for this glucose storage was 0.22 kJ/min. Therefore, during hyperinsulinemia in UP, GD, and TR are similar, but GO is greater and GS is less than previously reported in healthy subjects. However, this TR is entirely accounted for by the energy cost of glucose storage with no evidence of facultative thermogenesis. In WGP, all responses were similar to those in healthy subjects, and the TR was in excess of that required of the energy cost of glucose storage.

  8. CGM Versus FGM; or, Continuous Glucose Monitoring Is Not Flash Glucose Monitoring.

    PubMed

    Heinemann, Lutz; Freckmann, Guido

    2015-09-01

    It remains to be seen as to what share of the market FGM will achieve if the manufacturer can supply any amount desired.Will a significant portion of the glucose monitoring market then be taken over by FGM? The availability of FGM as anew option for glucose monitoring can basically be evaluated positively and it does indeed clearly show the benefit of“more information” on the glucose trend. The relatively low price for glucose monitoring using FGM and the unusual market introduction (not first via the National Association of Statutory Health Insurance Funds, as was the case with CGM) have given increased attention to the use of more glucose information. It will likely take a certain amount of time before other providers are able to bring different FGM systems to the market.The option of coupling a CGM system with an insulin pump offers the perspective of an automated insulin application,that is, a closed-loop system. Such systems are currently being tested under everyday conditions, although it is not possible to predict when they will actually reach the market.There are, however, such couplings where algorithms are responsible for shutting off insulin delivery when the glucose concentration reaches a defined level or if it will be reached in the foreseeable future. This significantly helps prevent hypoglycemia. These options are only available with CGM. The aim of this commentary is to present the differences between CGM and FGM, including the advantages and disadvantages of both approaches. We see significant benefits in both options based on the different positioning of the approaches and the different user groups.

  9. Chlorogenic acid differentially affects postprandial glucose and glucose-dependent insulinotropic polypeptide response in rats.

    PubMed

    Tunnicliffe, Jasmine M; Eller, Lindsay K; Reimer, Raylene A; Hittel, Dustin S; Shearer, Jane

    2011-10-01

    Regular coffee consumption significantly lowers the risk of type 2 diabetes (T2D). Coffee contains thousands of compounds; however, the specific component(s) responsible for this reduced risk is unknown. Chlorogenic acids (CGA) found in brewed coffee inhibit intestinal glucose uptake in vitro. The objective of this study was to elucidate the mechanisms by which CGA acts to mediate blood glucose response in vivo. Conscious, unrestrained, male Sprague-Dawley rats were chronically catheterized and gavage-fed a standardized meal (59% carbohydrate, 25% fat, 12% protein), administered with or without CGA (120 mg·kg(-1)), in a randomized crossover design separated by a 3-day washout period. Acetaminophen was co-administered to assess the effects of CGA on gastric emptying. The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) were measured. GLP-1 response in the presence of glucose and CGA was further examined, using the human colon cell line NCI-H716. Total area under the curve (AUC) for blood glucose was significantly attenuated in rats fed CGA (p < 0.05). Despite this, no differences in plasma insulin or nonesterified fatty acids were observed, and gastric emptying was not altered. Plasma GIP response was blunted in rats fed CGA, with a lower peak concentration and AUC up to 180 min postprandially (p < 0.05). There were no changes in GLP-1 secretion in either the in vivo or in vitro study. In conclusion, CGA treatment resulted in beneficial effects on blood glucose response, with alterations seen in GIP concentrations. Given the widespread consumption and availability of coffee, CGA may be a viable prevention tool for T2D. PMID:21977912

  10. Dynamics of the reaction glucose-catalase-glucose oxidase-hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Číp, M.; Schreiberová, L.; Schreiber, I.

    2011-12-01

    Glucose-catalase-glucose oxidase-hydrogen peroxide reaction is one of the few known enzymatic systems studied in vitro in the field of nonlinear chemical dynamics. This reaction belongs to the family of oscillatory enzymatic reactions, which form a natural basis of oscillations in biological systems. A parametric study of dependence on mixing, temperature and initial concentrations of components in a batch stirred reactor was carried out. A newly proposed mathematical model of the reaction conforms to the obtained experimental data. Results of our experiments and simulations hint at further directions of research of non-linear dynamics in this reaction.

  11. Pro-Aging Effects of Glucose Signaling through a G Protein-Coupled Glucose Receptor in Fission Yeast

    PubMed Central

    Roux, Antoine E.; Leroux, Alexandre; Alaamery, Manal A.; Hoffman, Charles S.; Chartrand, Pascal; Ferbeyre, Gerardo; Rokeach, Luis A.

    2009-01-01

    Glucose is the preferred carbon and energy source in prokaryotes, unicellular eukaryotes, and metazoans. However, excess of glucose has been associated with several diseases, including diabetes and the less understood process of aging. On the contrary, limiting glucose (i.e., calorie restriction) slows aging and age-related diseases in most species. Understanding the mechanism by which glucose limits life span is therefore important for any attempt to control aging and age-related diseases. Here, we use the yeast Schizosaccharomyces pombe as a model to study the regulation of chronological life span by glucose. Growth of S. pombe at a reduced concentration of glucose increased life span and oxidative stress resistance as reported before for many other organisms. Surprisingly, loss of the Git3 glucose receptor, a G protein-coupled receptor, also increased life span in conditions where glucose consumption was not affected. These results suggest a role for glucose-signaling pathways in life span regulation. In agreement, constitutive activation of the Gα subunit acting downstream of Git3 accelerated aging in S. pombe and inhibited the effects of calorie restriction. A similar pro-aging effect of glucose was documented in mutants of hexokinase, which cannot metabolize glucose and, therefore, are exposed to constitutive glucose signaling. The pro-aging effect of glucose signaling on life span correlated with an increase in reactive oxygen species and a decrease in oxidative stress resistance and respiration rate. Likewise, the anti-aging effect of both calorie restriction and the Δgit3 mutation was accompanied by increased respiration and lower reactive oxygen species production. Altogether, our data suggest an important role for glucose signaling through the Git3/PKA pathway to regulate S. pombe life span. PMID:19266076

  12. Analysis of Intracellular Glucose at Single Cells Using Electrochemiluminescence Imaging.

    PubMed

    Xu, Jingjing; Huang, Peiyuan; Qin, Yu; Jiang, Dechen; Chen, Hong-Yuan

    2016-05-01

    Here, luminol electrochemiluminescence was first applied to analyze intracellular molecules, such as glucose, at single cells. The individual cells were retained in cell-sized microwells on a gold coated indium tin oxide (ITO) slide, which were treated with luminol, triton X-100, and glucose oxidase simultaneously. The broken cellular membrane in the presence of triton X-100 released intracellular glucose into the microwell and reacted with glucose oxidase to generate hydrogen peroxide, which induced luminol luminescence under positive potential. To achieve fast analysis, the luminescences from 64 individual cells on one ITO slide were imaged in 60 s using a charge-coupled device (CCD). More luminescence was observed at all the microwells after the introduction of triton X-100 and glucose oxidase suggested that intracellular glucose was detected at single cells. The starvation of cells to decrease intracellular glucose produced less luminescence, which confirmed that our luminescence intensity was correlated with the concentration of intracellular glucose. Large deviations in glucose concentration at observed single cells revealed high cellular heterogeneity in intracellular glucose for the first time. This developed electrochemiluminescence assay will be potentially applied for fast analysis of more intracellular molecules in single cells to elucidate cellular heterogeneity. PMID:27094779

  13. Glucose uptake in Oesophagostomum dentatum and the effect of oxfendazole.

    PubMed

    Petersen, M B; Friis, C

    1998-12-31

    The uptake of 14C-glucose by adult Oesophagostomum dentatum was characterised. The uptake was a non-linear function of external glucose concentration. The maximum velocity of uptake (Vmax) was 0.964 nmol/100 mg dry weight (dw)/5 min, and the transport constant (Kt) was 10.02 microM. When phlorizin, phloretin and 3-O-methylglucose were tested for their effects on the uptake of 14C-glucose, phloretin and 3-O-methylglucose produced significant inhibitions, indicating that the uptake was mediated and occurred by facilitated diffusion. Exposure of the worms to oxfendazole prior to incubation with 14C-glucose did not affect the uptake of glucose. In another experiment worms were incubated with unlabelled glucose and the external glucose concentration was measured enzymatically. During a 7 h incubation period, the quantity of glucose remaining in the incubation medium of oxfendazole exposed worms was significantly greater than in the control group. It was concluded that oxfendazole did not influence the process of 14C-glucose uptake, but might induce changes in the parasite leading to a reduced ability to deplete the incubation medium of glucose.

  14. Sleep restriction acutely impairs glucose tolerance in rats.

    PubMed

    Jha, Pawan K; Foppen, Ewout; Kalsbeek, Andries; Challet, Etienne

    2016-06-01

    Chronic sleep curtailment in humans has been related to impairment of glucose metabolism. To better understand the underlying mechanisms, the purpose of the present study was to investigate the effect of acute sleep deprivation on glucose tolerance in rats. A group of rats was challenged by 4-h sleep deprivation in the early rest period, leading to prolonged (16 h) wakefulness. Another group of rats was allowed to sleep during the first 4 h of the light period and sleep deprived in the next 4 h. During treatment, food was withdrawn to avoid a postmeal rise in plasma glucose. An intravenous glucose tolerance test (IVGTT) was performed immediately after the sleep deprivation period. Sleep deprivation at both times of the day similarly impaired glucose tolerance and reduced the early-phase insulin responses to a glucose challenge. Basal concentrations of plasma glucose, insulin, and corticosterone remained unchanged after sleep deprivation. Throughout IVGTTs, plasma corticosterone concentrations were not different between the control and sleep-deprived group. Together, these results demonstrate that independent of time of day and sleep pressure, short sleep deprivation during the resting phase favors glucose intolerance in rats by attenuating the first-phase insulin response to a glucose load. In conclusion, this study highlights the acute adverse effects of only a short sleep restriction on glucose homeostasis. PMID:27354542

  15. Atorvastatin delays the glucose clearance rate in hypercholesterolemic rabbits.

    PubMed

    Cheng, Daxin; Wang, Yanli; Gao, Shoucui; Wang, Xiaojing; Sun, Wentao; Bai, Liang; Cheng, Gong; Chu, Yonglie; Zhao, Sihai; Liu, Enqi

    2015-05-01

    The administration of statin might increase the risk of new-onset diabetes in hypercholesterolemic patients based on the recent clinical evidence. However, the causal relationship must be clarified and confirmed in animal experiments. Therefore, we mimicked hypercholesterolemia by feeding rabbits a high-cholesterol diet (HCD) and performed 16 weeks of atorvastatin administration to investigate the effect of statin on glucose metabolism. The intravenous glucose tolerance test showed that plasma glucose levels in the statin-treated rabbits were consistently higher and that there was a slower rate of glucose clearance from the blood than in HCD rabbits. The incremental area under the curve for glucose in the statin-treated rabbits was also significantly larger than in the HCD rabbits. However, there was no significant difference between the two groups in the intravenous insulin tolerance test. The glucose-lowering ability of exogenous insulin was not impaired by statin treatment in hypercholesterolemic rabbits. The administration of a single dose of statin did not affect glucose metabolism in normal rabbits. The statin also significantly increased the levels of high-density lipoprotein cholesterol, alanine aminotransferase and aspartate transaminase and decreased plasma levels of total cholesterol, triglycerides and low-density lipoprotein cholesterol in the hypercholesterolemic rabbits, whereas it did not affect plasma levels of glucose and insulin. The current results showed that atorvastatin treatment resulted in a significant delay of glucose clearance in hypercholesterolemic rabbits, and this rabbit model could be suitable for studying the effects of statin on glucose metabolism.

  16. Effect of anesthesia on glucose production and utilization in rats

    SciTech Connect

    Penicaud, L.; Ferre, P.; Kande, J.; Leturque, A.; Issad, T.; Girard, J.

    1987-03-01

    This study was undertaken to determine the effects of pentobarbital anesthesia (50 mg/kg ip) on glucose kinetics and individual tissue glucose utilization in vivo, in chronically catheterized rats. Glucose turnover studies were carried out using (3-/sup 3/H) glucose as tracer. A transient hyperglycemia and an increased glucose production were observed 3 min after induction of anesthesia. However, 40 min after induction of anesthesia, glycemia returned to the level observed in awake animals, whereas glucose turnover was decreased by 30% as compared with unanesthetized rats. These results are discussed with regard to the variations observed in plasma insulin, glucagon, and catecholamine levels. Glucose utilization by individual tissues was studied by the 2-(1-/sup 3/H) deoxyglucose technique. A four- to fivefold decrease in glucose utilization was observed in postural muscles (soleus and adductor longus), while in other nonpostural muscles (epitrochlearis, tibialis anterior, extensor digitorum longus, and diaphragm) and other tissues (white and brown adipose tissues) anesthesia did not modify the rate of glucose utilization. A decrease in glucose utilization was also observed in the brain.

  17. Characterization of mammalian glucose transport proteins using photoaffinity labeling techniques

    SciTech Connect

    Wadzinski, B.E.

    1989-01-01

    A carrier-free radioiodinated phenylazide derivative of forskolin, 3-iodo-4-azidophenethylamido-7-O-succinyl-deacetyl-forskolin (({sup 125}I)IAPS-forskolin), has been shown to be a highly selective photoaffinity probe for the human erythrocyte glucose transported and the glucose transport proteins found in several mammalian tissues and cultured cells where the glucose transport protein is present at a low concentration. The photoincorporation of ({sup 125}I)IAPS-forskolin into these glucose transporters was blocked by D- (but not L-) glucose, cytochalasin B, and forskolin. In addition to labeling the mammalian glucose transport proteins, ({sup 125}I)IAPS-forskolin also labeled the L-arabinose transporter from E. coli. In muscle and adipose tissues, glucose transport is markedly increased in response to insulin. ({sup 125}I)IAPS-forskolin was shown to selectivity tag the glucose transporter in membranes derived from these cells. In addition, the covalent derivatization of the transport protein in subcellular fractions of the adipocyte has provided a means to study the hormonal regulation of glucose transport. ({sup 125}I)IAPS-forskolin has also been used to label the purified human erythrocyte glucose transporter. The site of insertion has therefore been localized by analysis of the radiolabeled peptides which were produced following chemical and proteolytic digestion of the labeled transport protein.

  18. Toward an Injectable Continuous Osmotic Glucose Sensor

    PubMed Central

    Johannessen, Erik; Krushinitskaya, Olga; Sokolov, Andrey; Philipp, Häfliger; Hoogerwerf, Arno; Hinderling, Christian; Kautio, Kari; Lenkkeri, Jaakko; Strömmer, Esko; Kondratyev, Vasily; Tønnessen, Tor Inge; Mollnes, Tom Eirik; Jakobsen, Henrik; Zimmer, Even; Akselsen, Bengt

    2010-01-01

    Background The growing pandemic of diabetes mellitus places a stringent social and economic burden on the society. A tight glycemic control circumvents the detrimental effects, but the prerogative is the development of new more effective tools capable of longterm tracking of blood glucose (BG) in vivo. Such discontinuous sensor technologies will benefit from an unprecedented marked potential as well as reducing the current life expectancy gap of eight years as part of a therapeutic regime. Method A sensor technology based on osmotic pressure incorporates a reversible competitive affinity assay performing glucose-specific recognition. An absolute change in particles generates a pressure that is proportional to the glucose concentration. An integrated pressure transducer and components developed from the silicon micro- and nanofabrication industry translate this pressure into BG data. Results An in vitro model based on a 3.6 × 8.7 mm large pill-shaped implant is equipped with a nanoporous membrane holding 4–6 nm large pores. The affinity assay offers a dynamic range of 36–720 mg/dl with a resolution of ±16 mg/dl. An integrated 1 × 1 mm2 large control chip samples the sensor signals for data processing and transmission back to the reader at a total power consumption of 76 µW. Conclusions Current studies have demonstrated the design, layout, and performance of a prototype osmotic sensor in vitro using an affinity assay solution for up to four weeks. The small physical size conforms to an injectable device, forming the basis of a conceptual monitor that offers a tight glycemic control of BG. PMID:20663452

  19. Self-monitoring of tear glucose: the development of a tear based glucose sensor as an alternative to self-monitoring of blood glucose.

    PubMed

    La Belle, Jeffrey T; Adams, Anngela; Lin, Chi-En; Engelschall, Erica; Pratt, Breanna; Cook, Curtiss B

    2016-07-28

    Tear glucose sensing for diabetes management has long been sought as an alternative to more invasive self-monitoring of blood glucose (SMBG). However, tear glucose sensors were known to have limitations, including correlation issues with blood glucose due to low sample volume, low concentration of glucose in the tear fluid, and evaporation of the tear sample. An engineering design approach to solve these problems led to the development of an integrated device capable of collecting the tear sample from the ocular surface with little to no stress on the eye, with an extremely low limit of detection, broad dynamic range, and rapid detection and analysis of sample. Here we present the development of a prototypical self-monitoring of tear glucose (SMTG) sensor, summarizing bench studies on the enzymes and their specificity, the development of the fluid capture device and its manufacture and performance and results of system testing in an animal study where safety, lag time and tear glucose to blood glucose correlation were assessed. PMID:27327531

  20. Dysglycemia and Glucose Control During Sepsis.

    PubMed

    Plummer, Mark P; Deane, Adam M

    2016-06-01

    Sepsis predisposes to disordered metabolism and dysglycemia; the latter is a broad term that includes hyperglycemia, hypoglycemia, and glycemic variability. Dysglycemia is a marker of illness severity. Large randomized controlled trials have provided considerable insight into the optimal blood glucose targets for critically ill patients with sepsis. However, it may be that the pathophysiologic consequences of dysglycemia are dynamic throughout the course of a septic insult and also altered by premorbid glycemia. This review highlights the relevance of hyperglycemia, hypoglycemia, and glycemic variability in patients with sepsis with an emphasis on a rational approach to management. PMID:27229647

  1. Cerebral glucose metabolism in Parkinson's disease.

    PubMed

    Martin, W R; Beckman, J H; Calne, D B; Adam, M J; Harrop, R; Rogers, J G; Ruth, T J; Sayre, C I; Pate, B D

    1984-02-01

    Local cerebral glucose utilization was measured in patients with predominantly unilateral Parkinson's disease using 18F-2-fluoro-deoxyglucose and positron emission tomography. Preliminary results indicate the presence of asymmetric metabolic rates in the inferior basal ganglia. The structure comprising the largest portion of basal ganglia at this level is globus pallidus. These findings are consistent with metabolic studies on animals with unilateral nigrostriatal lesions in which pallidal hypermetabolism on the lesioned side has been demonstrated. Increased pallidal activity is likely secondary to a loss of inhibitory dopaminergic input to the striatum from substantia nigra.

  2. SY 10-1 RENAL GLUCOSE HANDLING AND SGLT2.

    PubMed

    Poudel, Resham

    2016-09-01

    The kidneys maintain glucose homeostasis through its utilization, gluconeogenesis, and reabsorption. Glucose is freely filtered and reabsorbed in order to retain energy essential between meals. The amount of glucose reabsorbed by the kidneys is equivalent to the amount entering the filtration system. With a daily glomerular filtration rate of 180 L, approximately 180 g (180 L/day × 100 mg/dL) of glucose must be reabsorbed each day to maintain an average fasting plasma glucose concentration of 5.6 mmol/L (100 mg/dL). The reabsorption increases with increase in plasma glucose concentration up to approximately 11 mmol/L (198 mg/dL). At this threshold level, the system becomes saturated and the maximal resabsorption rate-the glucose transport maximum (Tm G ) is reached. No more glucose can be absorbed, and the kidneys begin excreting it in the urine-the beginning of glycosuria. Reabsorption of glucose occurs mainly in the proximal tubule and is mediated by 2 different transport proteins, Sodium Glucose Cotransporter (SGLT)1 and SGLT2. SGLT1, which are found in the straight section of the proximal tubule (S3), are responsible for approximately 10% of glucose reabsorption. The other 90% of filtered glucose is reabsorbed through by SGLT2, which are located in the convoluted section on the proximal tubule (S1). The SGLT2 are located on the luminal side of the early proximal tubule S1 segment. Absorption of sodium across the cell membrane creates an energy gradient that in turn allows glucose to be absorbed. On the other side of the cell, sodium is reabsorbed through sodium-potassium ATPase pump into the bloodstream. The concentration gradient within the cell, resulting from this exchange drives glucose reabsorption into the bloodstream via the Glucose transporter (GLUT) 2. The role of kidneys in glucose regulation has been well recognized in the recent years, and inhibition of glucose reabsorption by SGLT2 inhibitors has evolved as a promising target for

  3. Construction of near-infrared photonic crystal glucose-sensing materials for ratiometric sensing of glucose in tears.

    PubMed

    Hu, Yumei; Jiang, Xiaomei; Zhang, Laiying; Fan, Jiao; Wu, Weitai

    2013-10-15

    Noninvasive monitoring of glucose in tears is highly desirable in tight glucose control. The polymerized crystalline colloidal array (PCCA) that can be incorporated into contact lens represents one of the most promising materials for noninvasive monitoring of glucose in tears. However, low sensitivity and slow time response of the PCCA reported in previous arts has limited its clinical utility. This paper presents a new PCCA, denoted as NIR-PCCA, comprising a CCA of glucose-responsive sub-micrometered poly(styrene-co-acrylamide-co-3-acrylamidophenylboronic acid) microgels embedded within a slightly positive charged hydrogel matrix of poly(acrylamide-co-2-(dimethylamino)ethyl acrylate). This newly designed NIR-PCCA can reflect near-infrared (NIR) light, whose intensity (at 1722 nm) would decrease evidently with increasing glucose concentration over the physiologically relevant range in tears. The lowest glucose concentration reliably detectable was as low as ca. 6.1 μg/dL. The characteristic response time τ(sensing) was 22.1±0.2s when adding glucose to 7.5 mg/dL, and the higher the glucose concentration is, the faster the time response. Such a rationally designed NIR-PCCA is well suited for ratiometric NIR sensing of tear glucose under physiological conditions, thereby likely to bring this promising glucose-sensing material to the forefront of analytical devices for diabetes.

  4. Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes.

    PubMed

    Devasenathipathy, Rajkumar; Mani, Veerappan; Chen, Shen-Ming; Huang, Sheng-Tung; Huang, Tsung-Tao; Lin, Chun-Mao; Hwa, Kuo-Yuan; Chen, Ting-Yo; Chen, Bo-Jun

    2015-10-01

    Biopolymer pectin stabilized gold nanoparticles were prepared at graphene and multiwalled carbon nanotubes (GR-MWNTs/AuNPs) and employed for the determination of glucose. The formation of GR-MWNTs/AuNPs was confirmed by scanning electron microscopy, X-ray diffraction, UV-vis and FTIR spectroscopy methods. Glucose oxidase (GOx) was successfully immobilized on GR-MWNTs/AuNPs film and direct electron transfer of GOx was investigated. GOx exhibits highly enhanced redox peaks with formal potential of -0.40 V (vs. Ag/AgCl). The amount of electroactive GOx and electron transfer rate constant were found to be 10.5 × 10(-10) mol cm(-2) and 3.36 s(-1), respectively, which were significantly larger than the previous reports. The fabricated amperometric glucose biosensor sensitively detects glucose and showed two linear ranges: (1) 10 μM - 2 mM with LOD of 4.1 μM, (2) 2 mM - 5.2 mM with LOD of 0.95 mM. The comparison of the biosensor performance with reported sensors reveals the significant improvement in overall sensor performance. Moreover, the biosensor exhibited appreciable stability, repeatability, reproducibility and practicality. The other advantages of the fabricated biosensor are simple and green fabrication approach, roughed and stable electrode surface, fast in sensing and highly reproducible.

  5. Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes.