Science.gov

Sample records for 1-independent eukaryotic mismatch

  1. Dnmt1-independent CG methylation contributes to nucleosome positioning in diverse eukaryotes.

    PubMed

    Huff, Jason T; Zilberman, Daniel

    2014-03-13

    Dnmt1 epigenetically propagates symmetrical CG methylation in many eukaryotes. Their genomes are typically depleted of CG dinucleotides because of imperfect repair of deaminated methylcytosines. Here, we extensively survey diverse species lacking Dnmt1 and show that, surprisingly, symmetrical CG methylation is nonetheless frequently present and catalyzed by a different DNA methyltransferase family, Dnmt5. Numerous Dnmt5-containing organisms that diverged more than a billion years ago exhibit clustered methylation, specifically in nucleosome linkers. Clustered methylation occurs at unprecedented densities and directly disfavors nucleosomes, contributing to nucleosome positioning between clusters. Dense methylation is enabled by a regime of genomic sequence evolution that enriches CG dinucleotides and drives the highest CG frequencies known. Species with linker methylation have small, transcriptionally active nuclei that approach the physical limits of chromatin compaction. These features constitute a previously unappreciated genome architecture, in which dense methylation influences nucleosome positions, likely facilitating nuclear processes under extreme spatial constraints.

  2. The Eukaryotic Mismatch Recognition Complexes Track with the Replisome during DNA Synthesis

    PubMed Central

    Haye, Joanna E.; Gammie, Alison E.

    2015-01-01

    During replication, mismatch repair proteins recognize and repair mispaired bases that escape the proofreading activity of DNA polymerase. In this work, we tested the model that the eukaryotic mismatch recognition complex tracks with the advancing replisome. Using yeast, we examined the dynamics during replication of the leading strand polymerase Polε using Pol2 and the eukaryotic mismatch recognition complex using Msh2, the invariant protein involved in mismatch recognition. Specifically, we synchronized cells and processed samples using chromatin immunoprecipitation combined with custom DNA tiling arrays (ChIP-chip). The Polε signal was not detectable in G1, but was observed at active origins and replicating DNA throughout S-phase. The Polε signal provided the resolution to track origin firing timing and efficiencies as well as replisome progression rates. By detecting Polε and Msh2 dynamics within the same strain, we established that the mismatch recognition complex binds origins and spreads to adjacent regions with the replisome. In mismatch repair defective PCNA mutants, we observed that Msh2 binds to regions of replicating DNA, but the distribution and dynamics are altered, suggesting that PCNA is not the sole determinant for the mismatch recognition complex association with replicating regions, but may influence the dynamics of movement. Using biochemical and genomic methods, we provide evidence that both MutS complexes are in the vicinity of the replisome to efficiently repair the entire spectrum of mutations during replication. Our data supports the model that the proximity of MutSα/β to the replisome for the efficient repair of the newly synthesized strand before chromatin reassembles. PMID:26684201

  3. Regulation of mismatch repair by histone code and posttranslational modifications in eukaryotic cells.

    PubMed

    Li, Feng; Ortega, Janice; Gu, Liya; Li, Guo-Min

    2016-02-01

    DNA mismatch repair (MMR) protects genome integrity by correcting DNA replication-associated mispairs, modulating DNA damage-induced cell cycle checkpoints and regulating homeologous recombination. Loss of MMR function leads to cancer development. This review describes progress in understanding how MMR is carried out in the context of chromatin and how chromatin organization/compaction, epigenetic mechanisms and posttranslational modifications of MMR proteins influence and regulate MMR in eukaryotic cells.

  4. Microsatellites in the Eukaryotic DNA Mismatch Repair Genes as Modulators of Evolutionary Mutation Rate

    NASA Technical Reports Server (NTRS)

    Chang, Dong Kyung; Metzgar, David; Wills, Christopher; Boland, C. Richard

    2003-01-01

    All "minor" components of the human DNA mismatch repair (MMR) system-MSH3, MSH6, PMS2, and the recently discovered MLH3-contain mononucleotide microsatellites in their coding sequences. This intriguing finding contrasts with the situation found in the major components of the DNA MMR system-MSH2 and MLH1-and, in fact, most human genes. Although eukaryotic genomes are rich in microsatellites, non-triplet microsatellites are rare in coding regions. The recurring presence of exonal mononucleotide repeat sequences within a single family of human genes would therefore be considered exceptional.

  5. Differential mismatch recognition specificities of eukaryotic MutS homologs, MutSα and MutSβ.

    PubMed

    Sharma, Monika; Predeus, Alexander V; Kovacs, Nicholas; Feig, Michael

    2014-06-01

    In eukaryotes, the recognition of the DNA postreplication errors and initiation of the mismatch repair is carried out by two MutS homologs: MutSα and MutSβ. MutSα recognizes base mismatches and 1 to 2 unpaired nucleotides whereas MutSβ recognizes longer insertion-deletion loops (IDLs) with 1 to 15 unpaired nucleotides as well as certain mismatches. Results from molecular dynamics simulations of native MutSβ:IDL-containing DNA and MutSα:mismatch DNA complexes as well as complexes with swapped DNA substrates provide mechanistic insight into how the differential substrate specificities are achieved by MutSα and MutSβ, respectively. Our simulations results suggest more extensive interactions between MutSβ and IDL-DNA and between MutSα and mismatch-containing DNA that suggest corresponding differences in stability. Furthermore, our simulations suggest more expanded mechanistic details involving a different degree of bending when DNA is bound to either MutSα or MutSβ and a more likely opening of the clamp domains when noncognate substrates are bound. The simulation results also provide detailed information on key residues in MutSβ and MutSα that are likely involved in recognizing IDL-DNA and mismatch-containing DNA, respectively.

  6. SPATIAL MISMATCH OR RACIAL MISMATCH?*

    PubMed Central

    Hellerstein, Judith K.; Neumark, David; McInerney, Melissa

    2008-01-01

    We contrast the spatial mismatch hypothesis with what we term the racial mismatch hypothesis – that the problem is not a lack of jobs, per se, where blacks live, but a lack of jobs where blacks live into which blacks are hired. We first report new evidence on the spatial mismatch hypothesis, using data from Census Long-Form respondents. We construct direct measures of the presence of jobs in detailed geographic areas, and find that these job density measures are related to employment of black male residents in ways that would be predicted by the spatial mismatch hypothesis – in particular that spatial mismatch is primarily an issue for low-skilled black male workers. We then look at mismatch along not only spatial lines but racial lines as well, by estimating the effects of job density measures that are disaggregated by race. We find that it is primarily black job density that influences black male employment, whereas white job density has little if any influence on their employment. The evidence implies that space alone plays a relatively minor role in low black male employment rates. PMID:19727422

  7. Eukaryotic origins.

    PubMed

    Lake, James A

    2015-09-26

    The origin of the eukaryotes is a fundamental scientific question that for over 30 years has generated a spirited debate between the competing Archaea (or three domains) tree and the eocyte tree. As eukaryotes ourselves, humans have a personal interest in our origins. Eukaryotes contain their defining organelle, the nucleus, after which they are named. They have a complex evolutionary history, over time acquiring multiple organelles, including mitochondria, chloroplasts, smooth and rough endoplasmic reticula, and other organelles all of which may hint at their origins. It is the evolutionary history of the nucleus and their other organelles that have intrigued molecular evolutionists, myself included, for the past 30 years and which continues to hold our interest as increasingly compelling evidence favours the eocyte tree. As with any orthodoxy, it takes time to embrace new concepts and techniques.

  8. Eukaryotic origins

    PubMed Central

    Lake, James A.

    2015-01-01

    The origin of the eukaryotes is a fundamental scientific question that for over 30 years has generated a spirited debate between the competing Archaea (or three domains) tree and the eocyte tree. As eukaryotes ourselves, humans have a personal interest in our origins. Eukaryotes contain their defining organelle, the nucleus, after which they are named. They have a complex evolutionary history, over time acquiring multiple organelles, including mitochondria, chloroplasts, smooth and rough endoplasmic reticula, and other organelles all of which may hint at their origins. It is the evolutionary history of the nucleus and their other organelles that have intrigued molecular evolutionists, myself included, for the past 30 years and which continues to hold our interest as increasingly compelling evidence favours the eocyte tree. As with any orthodoxy, it takes time to embrace new concepts and techniques. PMID:26323753

  9. DNA Mismatch Repair

    PubMed Central

    MARINUS, M. G.

    2014-01-01

    DNA mismatch repair functions to correct replication errors in newly synthesized DNA and to prevent recombination between related, but not identical (homeologous), DNA sequences. The mechanism of mismatch repair is best understood in Escherichia coli and is the main focus of this review. The early genetic studies of mismatch repair are described as a basis for the subsequent biochemical characterization of the system. The effects of mismatch repair on homologous and homeologous recombination are described. The relationship of mismatch repair to cell toxicity induced by various drugs is included. The VSP (Very Short Patch) repair system is described in detail. PMID:26442827

  10. Artificial mismatch hybridization

    DOEpatents

    Guo, Zhen; Smith, Lloyd M.

    1998-01-01

    An improved nucleic acid hybridization process is provided which employs a modified oligonucleotide and improves the ability to discriminate a control nucleic acid target from a variant nucleic acid target containing a sequence variation. The modified probe contains at least one artificial mismatch relative to the control nucleic acid target in addition to any mismatch(es) arising from the sequence variation. The invention has direct and advantageous application to numerous existing hybridization methods, including, applications that employ, for example, the Polymerase Chain Reaction, allele-specific nucleic acid sequencing methods, and diagnostic hybridization methods.

  11. Mitotic crossovers between diverged sequences are regulated by mismatch repair proteins in Saccaromyces cerevisiae.

    PubMed Central

    Datta, A; Adjiri, A; New, L; Crouse, G F; Jinks Robertson, S

    1996-01-01

    Mismatch repair systems correct replication- and recombination-associated mispaired bases and influence the stability of simple repeats. These systems thus serve multiple roles in maintaining genetic stability in eukaryotes, and human mismatch repair defects have been associated with hereditary predisposition to cancer. In prokaryotes, mismatch repair systems also have been shown to limit recombination between diverged (homologous) sequences. We have developed a unique intron-based assay system to examine the effects of yeast mismatch repair genes (PMS1, MSH2, and MSH3) on crossovers between homologous sequences. We find that the apparent antirecombination effects of mismatch repair proteins in mitosis are related to the degree of substrate divergence. Defects in mismatch repair can elevate homologous recombination between 91% homologous substrates as much as 100-fold while having only modest effects on recombination between 77% homologous substrates. These observations have implications for genome stability and general mechanisms of recombination in eukaryotes. PMID:8622653

  12. Generation of DNA nanocircles containing mismatched bases.

    PubMed

    Xiao, Yu; Jung, Caroline; Marx, Andreas D; Winkler, Ines; Wyman, Claire; Lebbink, Joyce H G; Friedhoff, Peter; Cristovao, Michele

    2011-10-01

    The DNA mismatch repair (MMR) system recognizes and repairs errors that escaped the proofreading function of DNA polymerases. To study molecular details of the MMR mechanism, in vitro biochemical assays require specific DNA substrates carrying mismatches and strand discrimination signals. Current approaches used to generate MMR substrates are time-consuming and/or not very flexible with respect to sequence context. Here we report an approach to generate small circular DNA containing a mismatch (nanocircles). Our method is based on the nicking of PCR products resulting in single-stranded 3' overhangs, which form DNA circles after annealing and ligation. Depending on the DNA template, one can generate mismatched circles containing a single hemimethylated GATC site (for use with the bacterial system) and/or nicking sites to generate DNA circles nicked in the top or bottom strand (for assays with the bacterial or eukaryotic MMR system). The size of the circles varied (323 to 1100 bp), their sequence was determined by the template DNA, and purification of the circles was achieved by ExoI/ExoIII digestion and/or gel extraction. The quality of the nanocircles was assessed by scanning-force microscopy and their suitability for in vitro repair initiation was examined using recombinant Escherichia coli MMR proteins.

  13. A Jobs Mismatch. Commentary

    ERIC Educational Resources Information Center

    Marina, Brenda L. H.

    2011-01-01

    In the article "A Jobs Mismatch", Jaschik has compiled the findings of a new report that was released by the Georgetown University Center on Education and the Workforce. The Georgetown University report claims that there is a severe shortage of college graduates in America, and that this shortage has the United States on a "collision course with…

  14. Acidocalcisomes of eukaryotes.

    PubMed

    Docampo, Roberto; Huang, Guozhong

    2016-08-01

    Acidocalcisomes are organelles rich in polyphosphate and cations and acidified by proton pumps. Although they have also been described in prokaryotes they have been better characterized in unicellular and multicellular eukaryotes. Eukaryotic acidocalcisomes belong to the group of lysosome-related organelles. They have a variety of functions, from the storage of cations and phosphorus to calcium signaling, autophagy, osmoregulation, blood coagulation, and inflammation. Acidocalcisomes of several unicellular eukaryotes possess a variety of transporters, channels and pumps implying a large energetic requirement for their maintenance and suggesting other important functions waiting to be discovered. PMID:27125677

  15. The tree of eukaryotes.

    PubMed

    Keeling, Patrick J; Burger, Gertraud; Durnford, Dion G; Lang, B Franz; Lee, Robert W; Pearlman, Ronald E; Roger, Andrew J; Gray, Michael W

    2005-12-01

    Recent advances in resolving the tree of eukaryotes are converging on a model composed of a few large hypothetical 'supergroups', each comprising a diversity of primarily microbial eukaryotes (protists, or protozoa and algae). The process of resolving the tree involves the synthesis of many kinds of data, including single-gene trees, multigene analyses, and other kinds of molecular and structural characters. Here, we review the recent progress in assembling the tree of eukaryotes, describing the major evidence for each supergroup, and where gaps in our knowledge remain. We also consider other factors emerging from phylogenetic analyses and comparative genomics, in particular lateral gene transfer, and whether such factors confound our understanding of the eukaryotic tree.

  16. Structural disorder in eukaryotes.

    PubMed

    Pancsa, Rita; Tompa, Peter

    2012-01-01

    Based on early bioinformatic studies on a handful of species, the frequency of structural disorder of proteins is generally thought to be much higher in eukaryotes than in prokaryotes. To refine this view, we present here a comparative prediction study and analysis of 194 fully described eukaryotic proteomes and 87 reference prokaryotes for structural disorder. We found that structural disorder does distinguish eukaryotes from prokaryotes, but its frequency spans a very wide range in the two superkingdoms that largely overlap. The number of disordered binding regions and different Pfam domain types also contribute to distinguish eukaryotes from prokaryotes. Unexpectedly, the highest levels--and highest variability--of predicted disorder is found in protists, i.e. single-celled eukaryotes, often surpassing more complex eukaryote organisms, plants and animals. This trend contrasts with that of the number of domain types, which increases rather monotonously toward more complex organisms. The level of structural disorder appears to be strongly correlated with lifestyle, because some obligate intracellular parasites and endosymbionts have the lowest levels, whereas host-changing parasites have the highest level of predicted disorder. We conclude that protists have been the evolutionary hot-bed of experimentation with structural disorder, in a period when structural disorder was actively invented and the major functional classes of disordered proteins established.

  17. Size mismatch in liver transplantation.

    PubMed

    Fukazawa, Kyota; Nishida, Seigo

    2016-08-01

    Size mismatch is an unique and inevitable but critical issue in live donor liver transplantation. Unmatched metabolic demand of recipient as well as physiologic mismatch aggravates the damage to liver graft, inevitably leading to graft failure on recipient. Also, an excessive resection of liver graft for better recipient outcome in live donor liver transplant may jeopardize the healthy donor well-being and even put donor life in danger. There is a fine balance between resected graft volume required to meet the recipient's metabolic demand and residual graft volume required for donor safety. The obvious clinical necessity of finding that balance has prompted a clinical need and promoted the improvement of knowledge and development of management strategies for size-mismatched transplants. The development of the size-matching methodology has significantly improved graft outcome and recipient survival in live donor liver transplants. On the other hand, the effect of size mismatch in cadaveric transplants has never been observed as being so pronounced. The importance of matching of the donor recipient size has been unrecognized in cadaveric liver transplant. In this review, we attempt to summarize the current most updated knowledge on the subject, particularly addressing the definition and complications of size-mismatched cadaveric liver transplant, as well as management strategies. PMID:27474079

  18. Organelle fission in eukaryotes.

    PubMed

    Osteryoung, K W

    2001-12-01

    The cellular machineries that power chloroplast and mitochondrial division in eukaryotes carry out the topologically challenging job of constricting and severing these double-membraned organelles. Consistent with their endosymbiotic origins, mitochondria in protists and chloroplasts in photosynthetic eukaryotes have evolved organelle-targeted forms of FtsZ, the prokaryotic ancestor of tubulin, as key components of their fission complexes. In fungi, animals and plants, mitochondria no longer utilize FtsZ for division, but several mitochondrial division proteins that localize to the outer membrane and intermembrane space, including two related to the filament-forming dynamins, have been identified in yeast and animals. Although the reactions that mediate organelle division are not yet understood, recent progress in uncovering the constituents of the organelle division machineries promises rapid advancement in our understanding of the biochemical mechanisms underlying the distinct but related processes of chloroplast and mitochondrial division in eukaryotes.

  19. Molecular phylogeny of eukaryotes.

    PubMed

    Schlegel, M

    1994-09-01

    Comparisons of ribosomal RNAs and various protein coding genes have contributed to a new view of eukaryote phylogeny. Analyses of paralogous protein coding genes suggest that archaebacteria and eukaryotes are sistergroups. Sequence diversity of small subunit rRNAs in protists by far exceeds that of any multicellular or prokaryote taxon. Remarkably, a group of taxa that lack mitochondria first branches off in the small subunit rRNA tree. The later radiations are formed by a series of clades that were once thought to be more ancestral. Furthermore, tracing of the evolutionary origin of secondary endobiontic events is now possible with sequence comparisons.

  20. Eukaryotic Cell Panorama

    ERIC Educational Resources Information Center

    Goodsell, David S.

    2011-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. This report describes the scientific results that support an illustration of a eukaryotic cell, enlarged by one million times to show the distribution and arrangement of macromolecules. The panoramic cross section includes eight panels that extend…

  1. Prokaryote and eukaryote evolvability.

    PubMed

    Poole, Anthony M; Phillips, Matthew J; Penny, David

    2003-05-01

    The concept of evolvability covers a broad spectrum of, often contradictory, ideas. At one end of the spectrum it is equivalent to the statement that evolution is possible, at the other end are untestable post hoc explanations, such as the suggestion that current evolutionary theory cannot explain the evolution of evolvability. We examine similarities and differences in eukaryote and prokaryote evolvability, and look for explanations that are compatible with a wide range of observations. Differences in genome organisation between eukaryotes and prokaryotes meets this criterion. The single origin of replication in prokaryote chromosomes (versus multiple origins in eukaryotes) accounts for many differences because the time to replicate a prokaryote genome limits its size (and the accumulation of junk DNA). Both prokaryotes and eukaryotes appear to switch from genetic stability to genetic change in response to stress. We examine a range of stress responses, and discuss how these impact on evolvability, particularly in unicellular organisms versus complex multicellular ones. Evolvability is also limited by environmental interactions (including competition) and we describe a model that places limits on potential evolvability. Examples are given of its application to predator competition and limits to lateral gene transfer. We suggest that unicellular organisms evolve largely through a process of metabolic change, resulting in biochemical diversity. Multicellular organisms evolve largely through morphological changes, not through extensive changes to cellular biochemistry. PMID:12689728

  2. Operons in eukaryotes.

    PubMed

    Blumenthal, Thomas

    2004-11-01

    It was thought that polycistronic transcription is a characteristic of bacteria and archaea, where many of the genes are clustered in operons composed of two to more than ten genes. By contrast, the genes of eukaryotes are generally considered to be monocistronic, each with its own promoter at the 5' end and a transcription terminator at the 3' end; however, it has recently become clear that not all eukaryotic genes are transcribed monocistronically. Numerous instances of polycistronic transcription in eukaryotes, from protists to chordates, have been reported. These can be divided into two broad types. Dicistronic transcription units specify a messenger RNA (mRNA) encoding two separate genes that is transported to the cytoplasm and translated in that form. Presumably, internal ribosome entry sites (IRES), or some form of translational re-initiation following the stop codon, are responsible for allowing translation of the downstream gene. In the other type, the initial transcript is processed by 3' end cleavage and trans-splicing to create monocistronic mRNAs that are transported to the cytoplasm and translated. Like bacterial operons, eukaryotic operons often result in co-expression of functionally related proteins.

  3. Lateral gene transfer in eukaryotes.

    PubMed

    Andersson, J O

    2005-06-01

    Lateral gene transfer -- the transfer of genetic material between species -- has been acknowledged as a major mechanism in prokaryotic genome evolution for some time. Recently accumulating data indicate that the process also occurs in the evolution of eukaryotic genomes. However, there are large rate variations between groups of eukaryotes; animals and fungi seem to be largely unaffected, with a few exceptions, while lateral gene transfer frequently occurs in protists with phagotrophic lifestyles, possibly with rates comparable to prokaryotic organisms. Gene transfers often facilitate the acquisition of functions encoded in prokaryotic genomes by eukaryotic organisms, which may enable them to colonize new environments. Transfers between eukaryotes also occur, mainly into larger phagotrophic eukaryotes that ingest eukaryotic cells, but also between plant lineages. These findings have implications for eukaryotic genomic research in general, and studies of the origin and phylogeny of eukaryotes in particular.

  4. Educational Mismatch and Self-Employment

    ERIC Educational Resources Information Center

    Bender, Keith A.; Roche, Kristen

    2013-01-01

    Previous research on educational mismatch concentrates on estimating its labor market consequences but with a focus on wage and salary workers. This paper examines the far less studied influence of mismatch on the self-employed. Using a sample of workers in science and engineering fields, results show larger earnings penalties for mismatch among…

  5. Mismatch Invisible Underemployment and Male Competency.

    ERIC Educational Resources Information Center

    Jones, Gloria J.

    Mismatch invisible underemployment is defined as a condition in which a person with a given level of education receives less than he/she should in terms of income and prestige. To examine the relationship between mismatch invisible underemployment and male competency and to determine the degree to which mismatch invisible underemployment affects a…

  6. Caveolin-1 expression in ovarian carcinoma is MDR1 independent.

    PubMed

    Davidson, Ben; Goldberg, Iris; Givant-Horwitz, Vered; Nesland, Jahn M; Berner, Aasmund; Bryne, Magne; Risberg, Bjørn; Kopolovic, Juri; Kristensen, Gunnar B; Tropé, Claes G; van de Putte, Gregg; Reich, Reuven

    2002-02-01

    We studied the role of caveolin-1 in tumor progression and prognosis in serous ovarian carcinoma and the association between caveolin-1 and MDR1 expression. The study involved immunohistochemical analysis for caveolin-1 and P-glycoprotein (P-gp) expression in 75 effusions and 90 solid lesions from ovarian and primary peritoneal carcinoma; in situ hybridization for MDR1 messenger RNA (mRNA) expression in 62 effusions and all 90 tumors; and reverse transcription-polymerase chain reaction (RT-PCR) for caveolin-1 mRNA expression in 23 effusions. Immunohistochemical analysis localized caveolin-1 to the cell membrane in 43 effusions and 24 tumors. P-gp membrane expression was detected in 14 effusions and 11 tumors; MDR1 mRNA, in 20 effusions and 30 tumors. Caveolin-1 mRNA was expressed in 19 effusions. Caveolin-1 protein expression showed no association with that of P-gp protein or MDR1 mRNA. The expression of all markers was similar in carcinoma cells in pleural and peritoneal effusions. Caveolin-1 is a novel diagnostic marker for effusions; expression is moderately elevated in tumor cells in effusions, possibly owing to altered signal transduction and metabolism in cancer cells at this site. Expression seems MDR1 independent. PMID:11863219

  7. Structural Properties of Mismatched Alloys

    NASA Astrophysics Data System (ADS)

    Mousseau, Normand

    The problem of understanding the local structure of disordered alloys has been around for a long time. In this thesis, I look more specifically at the effect of size-mismatch disorder in binary alloys under many forms: metallic and semiconductor alloys, bulk and surfaces, two and three dimensional systems. I have studied the limitations of a central-force model (CFM) and an embedded-atom potential (EAM) in describing the local structure of binary metallic alloys composed of Ag, Au, Cu, Ni, Pd, or Pt. Although an analytical model developed using the CFM explains qualitatively well the experimental and numerical results, in many cases, it is important to add electronic density effects through a more sophisticated potential like EAM in order to agree quantitatively with experiment. I have also looked at amorphous and crystalline silicon-germanium alloys. It turns out that the effect of size-mismatch is the same on a crystalline and an amorphous lattice. In the latter case, it can be seen as a perturbation of the much larger disorder due to the amorphisation process. However, the analytical predictions differ, for both the crystalline and amorphous alloys, from the experimental results. If one is to believe the data, there is only one possible explanation for this inconsistency: large amounts of hydrogen are present in the samples used for the measurements. Since the data analysis of EXAFS results is not always straightforward, I have proposed some experiments that could shed light on this problem. One of these experiments would be to look at the (111) surface of a Si-Ge alloy with a scanning tunneling microscope. I also present in this thesis the theoretical predictions for the height distribution at the surface as well as some more general structural information about the relaxation in the network as one goes away from the surface. Finally, I have studied the effect of size -mismatch in a purely two dimensional lattice, looking for mismatch-driven phase transitions

  8. The structural impact of DNA mismatches

    PubMed Central

    Rossetti, Giulia; Dans, Pablo D.; Gomez-Pinto, Irene; Ivani, Ivan; Gonzalez, Carlos; Orozco, Modesto

    2015-01-01

    The structure and dynamics of all the transversion and transition mismatches in three different DNA environments have been characterized by molecular dynamics simulations and NMR spectroscopy. We found that the presence of mismatches produced significant local structural alterations, especially in the case of purine transversions. Mismatched pairs often show promiscuous hydrogen bonding patterns, which interchange among each other in the nanosecond time scale. This therefore defines flexible base pairs, where breathing is frequent, and where distortions in helical parameters are strong, resulting in significant alterations in groove dimension. Even if the DNA structure is plastic enough to absorb the structural impact of the mismatch, local structural changes can be propagated far from the mismatch site, following the expected through-backbone and a previously unknown through-space mechanism. The structural changes related to the presence of mismatches help to understand the different susceptibility of mismatches to the action of repairing proteins. PMID:25820425

  9. The structural impact of DNA mismatches.

    PubMed

    Rossetti, Giulia; Dans, Pablo D; Gomez-Pinto, Irene; Ivani, Ivan; Gonzalez, Carlos; Orozco, Modesto

    2015-04-30

    The structure and dynamics of all the transversion and transition mismatches in three different DNA environments have been characterized by molecular dynamics simulations and NMR spectroscopy. We found that the presence of mismatches produced significant local structural alterations, especially in the case of purine transversions. Mismatched pairs often show promiscuous hydrogen bonding patterns, which interchange among each other in the nanosecond time scale. This therefore defines flexible base pairs, where breathing is frequent, and where distortions in helical parameters are strong, resulting in significant alterations in groove dimension. Even if the DNA structure is plastic enough to absorb the structural impact of the mismatch, local structural changes can be propagated far from the mismatch site, following the expected through-backbone and a previously unknown through-space mechanism. The structural changes related to the presence of mismatches help to understand the different susceptibility of mismatches to the action of repairing proteins. PMID:25820425

  10. Endosymbiotic theories for eukaryote origin.

    PubMed

    Martin, William F; Garg, Sriram; Zimorski, Verena

    2015-09-26

    For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe.

  11. Endosymbiotic theories for eukaryote origin

    PubMed Central

    Martin, William F.; Garg, Sriram; Zimorski, Verena

    2015-01-01

    For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe. PMID:26323761

  12. The Diversity of Eukaryotes.

    PubMed

    Patterson

    1999-10-01

    The discipline of evolutionary protistology has emerged in the past 30 yr. There is as yet no agreed view of how protists are interrelated or how they should be classified. The foundations of a stable taxonomic superstructure for the protists and other eukaryotes lie in cataloging the diversity of the major monophyletic lineages of these organisms. The use of common patterns of cell organization (ultrastructural identity) seems to provide us with the most robust hypotheses of such lineages. These lineages are placed in 71 groups without identifiable sister taxa. These groups are here referred to as "major building blocks." For the first time, the compositions, ultrastructural identities, synapomorphies (where available), and subgroups of the major building blocks are summarized. More than 200 further lineages without clear identities are listed. This catalog includes all known major elements of the comprehensive evolutionary tree of protists and eukaryotes. Different approaches among protistologists to issues of nomenclature, ranking, and definitions of these groups are discussed, with particular reference to two groups-the stramenopiles and the Archezoa. The concept of "extended in-group" is introduced to refer to in-groups and the most proximate sister group and to assist in identifying the hierarchical location of taxa.

  13. Imagery mismatch negativity in musicians.

    PubMed

    Herholz, Sibylle C; Lappe, Claudia; Knief, Arne; Pantev, Christo

    2009-07-01

    The present study investigated musical imagery in musicians and nonmusicians by means of magnetoencephalography (MEG). We used a new paradigm in which subjects had to continue familiar melodies in their mind and then judged if a further presented tone was a correct continuation of the melody. Incorrect tones elicited an imagery mismatch negativity (iMMN) in musicians but not in nonmusicians. This finding suggests that the MMN component can be based on an imagined instead of a sensory memory trace and that imagery of music is modulated by musical expertise. PMID:19673775

  14. Elastic mismatch enhances cell motility

    NASA Astrophysics Data System (ADS)

    Bresler, Yony; Palmieri, Benoit; Grant, Martin

    In recent years, the study of physics phenomena in cancer has drawn considerable attention. In cancer metastasis, a soft cancer cell leaves the tumor, and must pass through the endothelium before reaching the bloodstream. Using a phase-field model we have shown that the elasticity mismatch between cells alone is sufficient to enhance the motility of thesofter cancer cell by means of bursty migration, in agreement with experiment. We will present further characterization of these behaviour, as well as new possible applications for this model.

  15. DNA Triplet Repeat Expansion and Mismatch Repair

    PubMed Central

    Iyer, Ravi R.; Pluciennik, Anna; Napierala, Marek; Wells, Robert D.

    2016-01-01

    DNA mismatch repair is a conserved antimutagenic pathway that maintains genomic stability through rectification of DNA replication errors and attenuation of chromosomal rearrangements. Paradoxically, mutagenic action of mismatch repair has been implicated as a cause of triplet repeat expansions that cause neurological diseases such as Huntington disease and myotonic dystrophy. This mutagenic process requires the mismatch recognition factor MutSβ and the MutLα (and/or possibly MutLγ) endonuclease, and is thought to be triggered by the transient formation of unusual DNA structures within the expanded triplet repeat element. This review summarizes the current knowledge of DNA mismatch repair involvement in triplet repeat expansion, which encompasses in vitro biochemical findings, cellular studies, and various in vivo transgenic animal model experiments. We present current mechanistic hypotheses regarding mismatch repair protein function in mediating triplet repeat expansions and discuss potential therapeutic approaches targeting the mismatch repair pathway. PMID:25580529

  16. Dynamic mismatch between bonded dissimilar materials

    NASA Astrophysics Data System (ADS)

    Li, Chou H.

    1993-06-01

    In the bonding of dissimilar materials, the coefficient of thermal expansion (CTE) relates to only the static or thermal equilibrium case, and does not represent most actual conditions (i.e., the service and processing temperatures are usually changing rather than fixed). This article outlines an approach that computes the effective, or dynamic, CTE mismatch. This dynamic mismatch varies with the bonded material shapes and sizes, surface characteristics, and heating or cooling conditions and times and may be several times greater than the corresponding static CTE mismatch. Unrelieved, the computed transient or dynamic thermal-strain mismatch may exceed the yield point of the metal, while the transient or dynamic mismatch stress often exceeds the flexural or compressive strength of the ceramic. Understanding transient mismatch phenomena has led to new, unmatched metal-ceramic joints that withstand repeated, rapid thermal shocks and subsequent severe mechanical shocks. The final forced fractures occur outside the bonded regions, indicating defect-free joints.

  17. Dynamic mismatch between bonded dissimilar materials

    NASA Astrophysics Data System (ADS)

    Li, Chou H.

    1993-06-01

    In the bonding of dissimilar materials, the coefficient of thermal expansion (CTE) relates to only the static or thermal equilibrium case, and does not represent most actual conditions (i.e., the service and processing temperatures are usually changing rather than fixed). This article outlines an approach that computes the effective, or dynamic, CTE mismatch. This dynamic mismatch varies with the bonded material shapes and sizes, surface characteristics, and heating or cooling conditions and times and may be several times greater than the corresponding static CTE mismatch. Unrelieved, the computed transient or dynamic thermal-strain mismatch may exceed the yield point of the metal, while the transient or dynamic mismatch stress often exceeds the flexural or compressive strength of the ceramic. Understanding transient mismatch phenomena has led to new, unmatched metal-ceramic joints that withstand repeated, rapid thermal shocks and subsequent severe mechanical shocks. The final forced fractures occur outside the bonded regions, indicating defect free joints.

  18. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2010-09-14

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  19. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2009-10-27

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  20. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2009-11-17

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  1. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G

    2015-02-03

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  2. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2012-02-14

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  3. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2009-12-01

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  4. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2013-01-22

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  5. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2012-05-08

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  6. Endosymbiosis and Eukaryotic Cell Evolution.

    PubMed

    Archibald, John M

    2015-10-01

    Understanding the evolution of eukaryotic cellular complexity is one of the grand challenges of modern biology. It has now been firmly established that mitochondria and plastids, the classical membrane-bound organelles of eukaryotic cells, evolved from bacteria by endosymbiosis. In the case of mitochondria, evidence points very clearly to an endosymbiont of α-proteobacterial ancestry. The precise nature of the host cell that partnered with this endosymbiont is, however, very much an open question. And while the host for the cyanobacterial progenitor of the plastid was undoubtedly a fully-fledged eukaryote, how - and how often - plastids moved from one eukaryote to another during algal diversification is vigorously debated. In this article I frame modern views on endosymbiotic theory in a historical context, highlighting the transformative role DNA sequencing played in solving early problems in eukaryotic cell evolution, and posing key unanswered questions emerging from the age of comparative genomics.

  7. Mismatch Negativity: Translating the Potential

    PubMed Central

    Todd, Juanita; Harms, Lauren; Schall, Ulrich; Michie, Patricia T.

    2013-01-01

    The mismatch negativity (MMN) component of the auditory event-related potential has become a valuable tool in cognitive neuroscience. Its reduced size in persons with schizophrenia is of unknown origin but theories proposed include links to problems in experience-dependent plasticity reliant on N-methyl-d-aspartate glutamate receptors. In this review we address the utility of this tool in revealing the nature and time course of problems in perceptual inference in this illness together with its potential for use in translational research testing animal models of schizophrenia-related phenotypes. Specifically, we review the reasons for interest in MMN in schizophrenia, issues pertaining to the measurement of MMN, its use as a vulnerability index for the development of schizophrenia, the pharmacological sensitivity of MMN and the progress in developing animal models of MMN. Within this process we highlight the challenges posed by knowledge gaps pertaining to the tool and the pharmacology of the underlying system. PMID:24391602

  8. Dual daughter strand incision is processive and increases the efficiency of DNA mismatch repair.

    PubMed

    Hermans, Nicolaas; Laffeber, Charlie; Cristovão, Michele; Artola-Borán, Mariela; Mardenborough, Yannicka; Ikpa, Pauline; Jaddoe, Aruna; Winterwerp, Herrie H K; Wyman, Claire; Jiricny, Josef; Kanaar, Roland; Friedhoff, Peter; Lebbink, Joyce H G

    2016-08-19

    DNA mismatch repair (MMR) is an evolutionarily-conserved process responsible for the repair of replication errors. In Escherichia coli, MMR is initiated by MutS and MutL, which activate MutH to incise transiently-hemimethylated GATC sites. MMR efficiency depends on the distribution of these GATC sites. To understand which molecular events determine repair efficiency, we quantitatively studied the effect of strand incision on unwinding and excision activity. The distance between mismatch and GATC site did not influence the strand incision rate, and an increase in the number of sites enhanced incision only to a minor extent. Two GATC sites were incised by the same activated MMR complex in a processive manner, with MutS, the closed form of MutL and MutH displaying different roles. Unwinding and strand excision were more efficient on a substrate with two nicks flanking the mismatch, as compared to substrates containing a single nick or two nicks on the same side of the mismatch. Introduction of multiple nicks by the human MutLα endonuclease also contributed to increased repair efficiency. Our data support a general model of prokaryotic and eukaryotic MMR in which, despite mechanistic differences, mismatch-activated complexes facilitate efficient repair by creating multiple daughter strand nicks.

  9. Synchronization of Eukaryotic Flagella

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.

    2012-11-01

    From unicellular organisms as small as a few microns to the largest vertebrates on earth we find groups of beating flagella or cilia that exhibit striking spatio-temporal organization. This may take the form of precise frequency and phase locking as frequently found in the swimming of green algae, or beating with long-wavelength phase modulations known as metachronal waves, seen in ciliates and in our respiratory systems. The remarkable similarity in the underlying molecular structure of flagella across the whole eukaryotic world leads naturally to the hypothesis that a similarly universal mechanism might be responsible for synchronization. Although this mechanism is poorly understood, one appealing hypothesis is that it results from hydrodynamic interactions between flagella. In this talk I will describe a synthesis of recent experimental and theoretical studies of this issue that have provided the strongest evidence to date for the hydrodynamic origin of flagellar synchronization. At the unicellular level this includes studies of the beating of the two flagella of the wild type unicellular alga Chlamydomonas reinhardtii in their native state and under conditions of regrowth following autotomy, and of the flagellar dominance mutant ptx1, which displays unusual anti-phase synchronization. Analysis of the related multicellular organism Volvox carteri shows it to be an ideal model organism for the study of metachronal waves. Supported by BBSRC, EPSRC, ERC, and The Wellcome Trust.

  10. Osmium complexation of mismatched DNA: effect of the bases adjacent to mismatched 5-methylcytosine.

    PubMed

    Nomura, Akiko; Tainaka, Kazuki; Okamoto, Akimitsu

    2009-03-18

    The efficiency of osmium complex formation at 5-methylcytosine in mismatched DNA duplexes is a key point for the design of sequence-specific detection of DNA methylation. Osmium complexation was not observed in fully matched duplexes, whereas the complexation site and efficiency in mismatched duplexes changed depending on the type of 5'-neighboring base of the 5-methylcytosine forming a mismatched base pair. In particular, when the base adjacent to the 5' side of the mismatched base pair was thymine, a unique "side reaction" was observed. However, the nature of the mismatched base pairs in the reaction site did not influence the selectivity of osmium complex formation with methylated DNA.

  11. Metamer mismatching in practice versus theory.

    PubMed

    Zhang, Xiandou; Funt, Brian; Mirzaei, Hamidreza

    2016-03-01

    Metamer mismatching (the phenomenon that two objects matching in color under one illuminant may not match under a different illuminant) potentially has important consequences for color perception. Logvinenko et al. [PLoS ONE10, e0135029 (2015)] show that in theory the extent of metamer mismatching can be very significant. This paper examines metamer mismatching in practice by computing the volumes of the empirical metamer mismatch bodies and comparing them to the volumes of the theoretical mismatch bodies. A set of more than 25 million unique reflectance spectra is assembled using datasets from several sources. For a given color signal (e.g., CIE XYZ) recorded under a given first illuminant, its empirical metamer mismatch body for a change to a second illuminant is computed as follows: the reflectances having the same color signal when lit by the first illuminant (i.e., reflect metameric light) are computationally relit by the second illuminant, and the convex hull of the resulting color signals then defines the empirical metamer mismatch body. The volume of these bodies is shown to vary systematically with Munsell value and chroma. The empirical mismatch bodies are compared to the theoretical mismatch bodies computed using the algorithm of Logvinenko et al. [IEEE Trans. Image Process.23, 34 (2014)]. There are three key findings: (1) the empirical bodies are found to be substantially smaller than the theoretical ones; (2) the sizes of both the empirical and theoretical bodies show a systematic variation with Munsell value and chroma; and (3) applied to the problem of color-signal prediction, the centroid of the empirical metamer mismatch body is shown to be a better predictor of what a given color signal might become under a specified illuminant than state-of-the-art methods. PMID:26974929

  12. Origins of Eukaryotic Sexual Reproduction

    PubMed Central

    2014-01-01

    Sexual reproduction is a nearly universal feature of eukaryotic organisms. Given its ubiquity and shared core features, sex is thought to have arisen once in the last common ancestor to all eukaryotes. Using the perspectives of molecular genetics and cell biology, we consider documented and hypothetical scenarios for the instantiation and evolution of meiosis, fertilization, sex determination, uniparental inheritance of organelle genomes, and speciation. PMID:24591519

  13. Mechanism of mismatch recognition revealed by human MutS[beta] bound to unpaired DNA loops

    SciTech Connect

    Gupta, Shikha; Gellert, Martin; Yang, Wei

    2012-04-17

    DNA mismatch repair corrects replication errors, thus reducing mutation rates and microsatellite instability. Genetic defects in this pathway cause Lynch syndrome and various cancers in humans. Binding of a mispaired or unpaired base by bacterial MutS and eukaryotic MutS{alpha} is well characterized. We report here crystal structures of human MutS{beta} in complex with DNA containing insertion-deletion loops (IDL) of two, three, four or six unpaired nucleotides. In contrast to eukaryotic MutS{alpha} and bacterial MutS, which bind the base of a mismatched nucleotide, MutS{beta} binds three phosphates in an IDL. DNA is severely bent at the IDL; unpaired bases are flipped out into the major groove and partially exposed to solvent. A normal downstream base pair can become unpaired; a single unpaired base can thereby be converted to an IDL of two nucleotides and recognized by MutS{beta}. The C-terminal dimerization domains form an integral part of the MutS structure and coordinate asymmetrical ATP hydrolysis by Msh2 and Msh3 with mismatch binding to signal for repair.

  14. Proteasome inhibition rescues clinically significant unstable variants of the mismatch repair protein Msh2

    PubMed Central

    Arlow, Tim; Scott, Kristan; Wagenseller, Aubrey; Gammie, Alison

    2013-01-01

    MSH2 is required for DNA mismatch repair recognition in eukaryotes. Deleterious mutations in human MSH2 account for approximately half of the alleles associated with a common hereditary cancer syndrome. Previously, we characterized clinically identified MSH2 missense mutations, using yeast as a model system, and found that the most common cause of defective DNA mismatch repair was low levels of the variant Msh2 proteins. Here, we show that increased protein turnover is responsible for the reduced cellular levels. Increasing gene dosage of more than half of the missense alleles fully restored function. A titration experiment revealed that raising the expression level of one variant to less than wild-type levels restored mismatch repair, suggesting that overexpression is not always required to regain function. We found that the ubiquitin-mediated proteasome degradation pathway is the major mechanism for increased turnover of the Msh2 variants and identified the primary ubiquitin ligase as San1. Deletion of San1 restored protein levels for all but one variant, but did not elevate wild-type Msh2 levels. The unstable variants interacted with San1, whereas wild-type Msh2 did not. Additionally, san1Δ suppressed the mismatch repair defect of unstable variants. Of medical significance, the clinically approved drug Bortezomib partially restored protein levels and mismatch repair function for low-level variants and reversed the resistance to cisplatin, a common chemotherapeutic. Our results provide the foundation for an innovative therapeutic regime for certain mismatch-repair-defective cancers that are refractory to conventional chemotherapies. PMID:23248292

  15. The new phylogeny of eukaryotes.

    PubMed

    Philippe, H; Germot, A; Moreira, D

    2000-12-01

    Molecular phylogeny has been regarded as the ultimate tool for the reconstruction of relationships among eukaryotes-especially the different protist groups-given the difficulty in interpreting morphological data from an evolutionary point of view. In fact, the use of ribosomal RNA as a marker has provided the first well resolved eukaryotic phylogenies, leading to several important evolutionary hypotheses. The most significant is that several early-emerging, amitochondriate lineages, are living relics from the early times of eukaryotic evolution. The use of alternative protein markers and the recognition of several molecular phylogeny reconstruction artefacts, however, have strongly challenged these ideas. The putative early emerging lineages have been demonstrated as late-emerging ones, artefactually misplaced to the base of the tree. The present state of eukaryotic evolution is best described by a multifurcation, in agreement with the 'big bang' hypothesis that assumes a rapid diversification of the major eukaryotic phyla. For further resolution, the analysis of genomic data through improved phylogenetic methods will be required.

  16. Phosphorylation of PCNA by EGFR inhibits mismatch repair and promotes misincorporation during DNA synthesis.

    PubMed

    Ortega, Janice; Li, Jessie Y; Lee, Sanghee; Tong, Dan; Gu, Liya; Li, Guo-Min

    2015-05-01

    Proliferating cell nuclear antigen (PCNA) plays essential roles in eukaryotic cells during DNA replication, DNA mismatch repair (MMR), and other events at the replication fork. Earlier studies show that PCNA is regulated by posttranslational modifications, including phosphorylation of tyrosine 211 (Y211) by the epidermal growth factor receptor (EGFR). However, the functional significance of Y211-phosphorylated PCNA remains unknown. Here, we show that PCNA phosphorylation by EGFR alters its interaction with mismatch-recognition proteins MutSα and MutSβ and interferes with PCNA-dependent activation of MutLα endonuclease, thereby inhibiting MMR at the initiation step. Evidence is also provided that Y211-phosphorylated PCNA induces nucleotide misincorporation during DNA synthesis. These findings reveal a novel mechanism by which Y211-phosphorylated PCNA promotes cancer development and progression via facilitating error-prone DNA replication and suppressing the MMR function.

  17. Drug resistance in eukaryotic microorganisms.

    PubMed

    Fairlamb, Alan H; Gow, Neil A R; Matthews, Keith R; Waters, Andrew P

    2016-06-24

    Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies.

  18. Drug resistance in eukaryotic microorganisms.

    PubMed

    Fairlamb, Alan H; Gow, Neil A R; Matthews, Keith R; Waters, Andrew P

    2016-01-01

    Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies. PMID:27572976

  19. The revised classification of eukaryotes.

    PubMed

    Adl, Sina M; Simpson, Alastair G B; Lane, Christopher E; Lukeš, Julius; Bass, David; Bowser, Samuel S; Brown, Matthew W; Burki, Fabien; Dunthorn, Micah; Hampl, Vladimir; Heiss, Aaron; Hoppenrath, Mona; Lara, Enrique; Le Gall, Line; Lynn, Denis H; McManus, Hilary; Mitchell, Edward A D; Mozley-Stanridge, Sharon E; Parfrey, Laura W; Pawlowski, Jan; Rueckert, Sonja; Shadwick, Laura; Shadwick, Lora; Schoch, Conrad L; Smirnov, Alexey; Spiegel, Frederick W

    2012-09-01

    This revision of the classification of eukaryotes, which updates that of Adl et al. [J. Eukaryot. Microbiol. 52 (2005) 399], retains an emphasis on the protists and incorporates changes since 2005 that have resolved nodes and branches in phylogenetic trees. Whereas the previous revision was successful in re-introducing name stability to the classification, this revision provides a classification for lineages that were then still unresolved. The supergroups have withstood phylogenetic hypothesis testing with some modifications, but despite some progress, problematic nodes at the base of the eukaryotic tree still remain to be statistically resolved. Looking forward, subsequent transformations to our understanding of the diversity of life will be from the discovery of novel lineages in previously under-sampled areas and from environmental genomic information.

  20. Synaptic view of eukaryotic cell

    NASA Astrophysics Data System (ADS)

    Baluška, František; Mancuso, Stefano

    2014-10-01

    Synapses are stable adhesive domains between two neighbouring cells of the multicellular organisms which serve for cell-cell communication as well as for information processing and storing. The synaptic concept was developed over more than 100 years specifically for neuronal cell-cell communication. In the last ten years, this concept was adapted to embrace other cell-cell communication phenomena. Here, we focus on the recently emerged phagocytic synapse and propose new endosymbiotic synapses and "intracellular organellar synapses". All these synapses of eukaryotic cells are in a good position to explain the high capacity of eukaryotic cells for integration of diverse signalling inputs into coherent cellular behaviour.

  1. Interplay between mismatch repair and chromatin assembly

    PubMed Central

    Schöpf, Barbara; Bregenhorn, Stephanie; Quivy, Jean-Pierre; Kadyrov, Farid A.; Almouzni, Genevieve; Jiricny, Josef

    2012-01-01

    Single strand nicks and gaps in DNA have been reported to increase the efficiency of nucleosome loading mediated by chromatin assembly factor 1 (CAF-1). However, on mismatch-containing substrates, these strand discontinuities are utilized by the mismatch repair (MMR) system as loading sites for exonuclease 1, at which degradation of the error-containing strand commences. Because packaging of DNA into chromatin might inhibit MMR, we were interested to learn whether chromatin assembly is differentially regulated on heteroduplex and homoduplex substrates. We now show that the presence of a mismatch in a nicked plasmid substrate delays nucleosome loading in human cell extracts. Our data also suggest that, once the mismatch is removed, repair of the single-stranded gap is accompanied by efficient nucleosome loading. We postulated that the balance between MMR and chromatin assembly might be governed by proliferating cell nuclear antigen (PCNA), the processivity factor of replicative DNA polymerases, which is loaded at DNA termini and which interacts with the MSH6 subunit of the mismatch recognition factor MutSα, as well as with CAF-1. We now show that this regulation might be more complex; MutSα and CAF-1 interact not only with PCNA, but also with each other. In vivo this interaction increases during S-phase and may be controlled by the phosphorylation status of the p150 subunit of CAF-1. PMID:22232658

  2. Changing ideas about eukaryotic origins.

    PubMed

    Williams, Tom A; Embley, T Martin

    2015-09-26

    The origin of eukaryotic cells is one of the most fascinating challenges in biology, and has inspired decades of controversy and debate. Recent work has led to major upheavals in our understanding of eukaryotic origins and has catalysed new debates about the roles of endosymbiosis and gene flow across the tree of life. Improved methods of phylogenetic analysis support scenarios in which the host cell for the mitochondrial endosymbiont was a member of the Archaea, and new technologies for sampling the genomes of environmental prokaryotes have allowed investigators to home in on closer relatives of founding symbiotic partners. The inference and interpretation of phylogenetic trees from genomic data remains at the centre of many of these debates, and there is increasing recognition that trees built using inadequate methods can prove misleading, whether describing the relationship of eukaryotes to other cells or the root of the universal tree. New statistical approaches show promise for addressing these questions but they come with their own computational challenges. The papers in this theme issue discuss recent progress on the origin of eukaryotic cells and genomes, highlight some of the ongoing debates, and suggest possible routes to future progress.

  3. Changing ideas about eukaryotic origins

    PubMed Central

    Williams, Tom A.; Embley, T. Martin

    2015-01-01

    The origin of eukaryotic cells is one of the most fascinating challenges in biology, and has inspired decades of controversy and debate. Recent work has led to major upheavals in our understanding of eukaryotic origins and has catalysed new debates about the roles of endosymbiosis and gene flow across the tree of life. Improved methods of phylogenetic analysis support scenarios in which the host cell for the mitochondrial endosymbiont was a member of the Archaea, and new technologies for sampling the genomes of environmental prokaryotes have allowed investigators to home in on closer relatives of founding symbiotic partners. The inference and interpretation of phylogenetic trees from genomic data remains at the centre of many of these debates, and there is increasing recognition that trees built using inadequate methods can prove misleading, whether describing the relationship of eukaryotes to other cells or the root of the universal tree. New statistical approaches show promise for addressing these questions but they come with their own computational challenges. The papers in this theme issue discuss recent progress on the origin of eukaryotic cells and genomes, highlight some of the ongoing debates, and suggest possible routes to future progress. PMID:26323752

  4. Eukaryotic organisms in Proterozoic oceans.

    PubMed

    Knoll, A H; Javaux, E J; Hewitt, D; Cohen, P

    2006-06-29

    The geological record of protists begins well before the Ediacaran and Cambrian diversification of animals, but the antiquity of that history, its reliability as a chronicle of evolution and the causal inferences that can be drawn from it remain subjects of debate. Well-preserved protists are known from a relatively small number of Proterozoic formations, but taphonomic considerations suggest that they capture at least broad aspects of early eukaryotic evolution. A modest diversity of problematic, possibly stem group protists occurs in ca 1800-1300 Myr old rocks. 1300-720 Myr fossils document the divergence of major eukaryotic clades, but only with the Ediacaran-Cambrian radiation of animals did diversity increase within most clades with fossilizable members. While taxonomic placement of many Proterozoic eukaryotes may be arguable, the presence of characters used for that placement is not. Focus on character evolution permits inferences about the innovations in cell biology and development that underpin the taxonomic and morphological diversification of eukaryotic organisms.

  5. The early eukaryotic fossil record.

    PubMed

    Javaux, Emmanuelle J

    2007-01-01

    The Precambrian era records the evolution of the domain Eucarya. Although the taxonomy of fossils is often impossible to resolve beyond the level of domain, their morphology and chemistry indicate the evolution of major biological innovations. The late Archean record for eukaryotes is limited to trace amounts of biomarkers. Morphological evidence appears in late Paleoproterozoic and early Mesoproterozoic (1800-1300 Ma) rocks. The moderate diversity of preservable eukaryotic organisms includes cell walls without surface ornament (but with complex ultrastructure), with regularly distributed surface ornamentation, and with irregularly or regularly arranged processes. Collectively, these fossils suggest that eukaryotes with flexible membranes and cytoskeletons existed in mid-Proterozoic oceans. The late Mesoproterozoic-early Neoproterozoic (1300-750 Ma) is a time of diversification and evolution when direct evidence for important biological innovations occurs in the fossil record such as multicellularity, sex, photosynthesis, biomineralization, predation, and heterotrophy. Members of extant clades can be recognized and include bangiophyte red algae, xanthophyte algae, cladophorale green algae, euglyphid, lobose, and filose amoebae and possible fungi. In the late Neoproterozoic, besides more diversification of ornamented fossils, florideophyte red algae and brown algae diversify, and animals take the stage. The record of biological innovations documented by the fossils shows that eukaryotes had evolved most cytological and molecular complexities very early in the Proterozoic but environmental conditions delayed their diversification within clades until oxygen level and predation pressure increased significantly. PMID:17977455

  6. Eukaryotic organisms in Proterozoic oceans

    PubMed Central

    Knoll, A.H; Javaux, E.J; Hewitt, D; Cohen, P

    2006-01-01

    The geological record of protists begins well before the Ediacaran and Cambrian diversification of animals, but the antiquity of that history, its reliability as a chronicle of evolution and the causal inferences that can be drawn from it remain subjects of debate. Well-preserved protists are known from a relatively small number of Proterozoic formations, but taphonomic considerations suggest that they capture at least broad aspects of early eukaryotic evolution. A modest diversity of problematic, possibly stem group protists occurs in ca 1800–1300 Myr old rocks. 1300–720 Myr fossils document the divergence of major eukaryotic clades, but only with the Ediacaran–Cambrian radiation of animals did diversity increase within most clades with fossilizable members. While taxonomic placement of many Proterozoic eukaryotes may be arguable, the presence of characters used for that placement is not. Focus on character evolution permits inferences about the innovations in cell biology and development that underpin the taxonomic and morphological diversification of eukaryotic organisms. PMID:16754612

  7. Wavelength mismatch effect in electromagnetically induced absorption

    NASA Astrophysics Data System (ADS)

    Bharti, Vineet; Wasan, Ajay; Natarajan, Vasant

    2016-07-01

    We present a theoretical investigation of the phenomenon of electromagnetically induced absorption (EIA) in a 4-level system consisting of vee and ladder subsystems. The four levels are coupled using one weak probe field, and two strong control fields. We consider an experimental realization using energy levels of Rb. This necessitates dealing with different conditions of wavelength mismatch-near-perfect match where all three wavelengths are approximately equal; partial mismatch where the wavelength of one control field is less than the other fields; and complete mismatch where all three wavelengths are unequal. We present probe absorption profiles with Doppler averaging at room temperature to account for experiments in a room temperature Rb vapor cell. Our analysis shows that EIA resonances can be studied using Rydberg states excited with diode lasers.

  8. Flux-mediated diffuse mismatch model

    NASA Astrophysics Data System (ADS)

    Loh, G. C.; Tay, B. K.; Teo, E. H. T.

    2010-09-01

    The diffuse mismatch model (DMM) is modified to account for the effect of thermal flux on phonon transmission at interfaces. This new model, the flux-mediated diffuse mismatch model (FMDMM) takes a slightly different approach in its formulation, and does not employ the principle of detailed balance. Two competing processes—an increase in the flux coefficient, and a decrease in the rest of the transmission term, may result in either a rise or fall in thermal boundary resistance when thermal flux is increased. This might partially explain the large disparities between experimental, theoretical, and simulated results of thermal boundary resistance.

  9. Evolution: Steps on the road to eukaryotes

    NASA Astrophysics Data System (ADS)

    Embley, T. Martin; Williams, Tom A.

    2015-05-01

    A new archaeal phylum represents the closest known relatives of eukaryotes, the group encompassing all organisms that have nucleated cells. The discovery holds promise for a better understanding of eukaryotic origins. See Article p.173

  10. Hydrogenosomes: eukaryotic adaptations to anaerobic environments.

    PubMed

    Hackstein, J H; Akhmanova, A; Boxma, B; Harhangi, H R; Voncken, F G

    1999-11-01

    Like mitochondria, hydrogenosomes compartmentalize crucial steps of eukaryotic energy metabolism; however, this compartmentalization differs substantially between mitochondriate aerobes and hydrogenosome-containing anaerobes. Because hydrogenosomes have arisen independently in different lineages of eukaryotic microorganisms, comparative analysis of the various types of hydrogenosomes can provide insights into the functional and evolutionary aspects of compartmentalized energy metabolism in unicellular eukaryotes.

  11. The revised classification of eukaryotes

    PubMed Central

    Adl, Sina M.; Simpson, Alastair. G.; Lane, Christopher E.; Lukeš, Julius; Bass, David; Bowser, Samuel S.; Brown, Matt; Burki, Fabien; Dunthorn, Micah; Hampl, Vladimir; Heiss, Aaron; Hoppenrath, Mona; Lara, Enrique; leGall, Line; Lynn, Denis H.; McManus, Hilary; Mitchell, Edward A. D.; Mozley-Stanridge, Sharon E.; Parfrey, Laura Wegener; Pawlowski, Jan; Rueckert, Sonja; Shadwick, Lora; Schoch, Conrad; Smirnov, Alexey; Spiegel, Frederick W.

    2012-01-01

    This revision of the classification of eukaryotes, which updates that of Adl et al. (2005), retains an emphasis on the protists and incorporates changes since 2005 that have resolved nodes and branches in phylogenetic trees. Whereas the previous revision was successful in re-introducing name stability to the classification, this revision provides a classification for lineages that were then still unresolved. The supergroups have withstood phylogenetic hypothesis testing with some modifications, but despite some progress, problematic nodes at the base of the eukaryotic tree still remain to be statistically resolved. Looking forward, subsequent transformations to our understanding of the diversity of life will be from the discovery of novel lineages in previously under-sampled areas and from environmental genomic information. PMID:23020233

  12. Replicating Damaged DNA in Eukaryotes

    PubMed Central

    Chatterjee, Nimrat; Siede, Wolfram

    2013-01-01

    DNA damage is one of many possible perturbations that challenge the mechanisms that preserve genetic stability during the copying of the eukaryotic genome in S phase. This short review provides, in the first part, a general introduction to the topic and an overview of checkpoint responses. In the second part, the mechanisms of error-free tolerance in response to fork-arresting DNA damage will be discussed in some detail. PMID:24296172

  13. Replicating damaged DNA in eukaryotes.

    PubMed

    Chatterjee, Nimrat; Siede, Wolfram

    2013-12-01

    DNA damage is one of many possible perturbations that challenge the mechanisms that preserve genetic stability during the copying of the eukaryotic genome in S phase. This short review provides, in the first part, a general introduction to the topic and an overview of checkpoint responses. In the second part, the mechanisms of error-free tolerance in response to fork-arresting DNA damage will be discussed in some detail.

  14. Microsecond dynamics of mismatch repair proteins

    NASA Astrophysics Data System (ADS)

    Salsbury, Freddie; Thompson, William

    We will present the results of long-time simulations (250ns-1microsecond) of the mismatch repair protein complexes Mutsalpha bound to various substrates, both normal and damaged. We do so to demonstrate the importance of long-range fluctuations and generalized allostery in such systems and how long-scale GPU-enabled simulations can enabled such analysis.

  15. Educational Mismatch and the Careers of Scientists

    ERIC Educational Resources Information Center

    Bender, Keith A.; Heywood, John S.

    2011-01-01

    Previous research confirms that many employees work in jobs not well matched to their skills and education, resulting in lower pay and job satisfaction. While this literature typically uses cross-sectional data, we examine the evolution of mismatch and its consequences over a career, by using a panel data set of scientists in the USA. The results…

  16. Defensins: antifungal lessons from eukaryotes

    PubMed Central

    Silva, Patrícia M.; Gonçalves, Sónia; Santos, Nuno C.

    2014-01-01

    Over the last years, antimicrobial peptides (AMPs) have been the focus of intense research toward the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantae, and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components) are presented. Additionally, recent works on antifungal defensins structure, activity, and cytotoxicity are also reviewed. PMID:24688483

  17. Neurophysiological correlates of mismatch in lexical access

    PubMed Central

    Friedrich, Claudia K

    2005-01-01

    Background In the present study neurophysiological correlates related to mismatching information in lexical access were investigated with a fragment priming paradigm. Event-related brain potentials were recorded for written words following spoken word onsets that either matched (e.g., kan – Kante [Engl. edge]), partially mismatched (e.g., kan – Konto [Engl. account]), or were unrelated (e.g., kan – Zunge [Engl. tongue]). Previous psycholinguistic research postulated the activation of multiple words in the listeners' mental lexicon which compete for recognition. Accordingly, matching words were assumed to be strongly activated competitors, which inhibit less strongly activated partially mismatching words. Results ERPs for matching and unrelated control words differed between 300 and 400 ms. Difference waves (unrelated control words – matching words) replicate a left-hemispheric P350 effect in this time window. Although smaller than for matching words, a P350 effect and behavioural facilitation was also found for partially mismatching words. Minimum norm solutions point to a left hemispheric centro-temporal source of the P350 effect in both conditions. The P350 is interpreted as a neurophysiological index for the activation of matching words in the listeners' mental lexicon. In contrast to the P350 and the behavioural responses, a brain potential ranging between 350 and 500 ms (N400) was found to be equally reduced for matching and partially mismatching words as compared to unrelated control words. This latter effect might be related to strategic mechanisms in the priming situation. Conclusion A left-hemispheric neuronal network engaged in lexical access appears to be gradually activated by matching and partially mismatching words. Results suggest that neural processing of matching words does not inhibit processing of partially mismatching words during early stages of lexical identification. Furthermore, the present results indicate that neurophysiological

  18. Changing perspectives on the origin of eukaryotes.

    PubMed

    Katz, L A

    1998-12-01

    From the initial application of molecular techniques to the study of microbial organisms, three domains of life emerged, with eukaryotes and archaea as sister taxa. However, recent analyses of an expanding molecular data set reveal that the eukaryotic genome is chimeric with respect to archaea and bacteria. Moreover, there is now evidence that the primitive eukaryotic group `Archezoa' once harbored mitochondia. These discoveries have challenged the traditional stepwise model of the evolution of eukaryotes, in which the nucleus and microtubules evolve before the acquisition of mitochondria, and consequently compel a revision of existing models of the origin of eukaryotic cells. PMID:21238406

  19. Osmium complex binding to mismatched methylcytosine: effect of adjacent bases.

    PubMed

    Nomura, Akiko; Tainaka, Kazuki; Okamoto, Akimitsu

    2009-01-01

    We investigated the efficiency of osmium complex formation at 5-methylcytosine in mismatched DNA duplexes. Osmium complexation was not observed in fully matched duplexes, whereas the complexation site and efficiency in mismatched duplexes depended on the 5'-neighboring base of the 5-methylcytosine. In particular, when the base adjacent to the 5' side of the mismatched base pair was thymine, a unique side reaction was observed. However, the mismatched base pairs did not influence the selectivity of osmium complexation with methylated DNA.

  20. Acoustic evidence for phonologically mismatched speech errors.

    PubMed

    Gormley, Andrea

    2015-04-01

    Speech errors are generally said to accommodate to their new phonological context. This accommodation has been validated by several transcription studies. The transcription methodology is not the best choice for detecting errors at this level, however, as this type of error can be difficult to perceive. This paper presents an acoustic analysis of speech errors that uncovers non-accommodated or mismatch errors. A mismatch error is a sub-phonemic error that results in an incorrect surface phonology. This type of error could arise during the processing of phonological rules or they could be made at the motor level of implementation. The results of this work have important implications for both experimental and theoretical research. For experimentalists, it validates the tools used for error induction and the acoustic determination of errors free of the perceptual bias. For theorists, this methodology can be used to test the nature of the processes proposed in language production.

  1. Trophic mismatch requires seasonal heterogeneity of warming.

    PubMed

    Straile, Dietmar; Kerimoglu, Onur; Peeters, Frank

    2015-10-01

    Climate warming has been shown to advance the phenology of species. Asynchronous changes in phenology between interacting species may disrupt feeding interactions (phenological mismatch), which could have tremendous consequences for ecosystem functioning. Long-term field observations have suggested asynchronous shifts in phenology with warming, whereas experimental studies have not been conclusive. Using proxy-based modeling of three trophic levels (algae, herbivores, and fish), we .show that asynchronous changes in phenology only occur if warming is seasonally heterogeneous, but not if warming is constant throughout the year. If warming is seasonally heterogeneous, the degree and even direction of asynchrony depends on the specific seasonality of the warming. Conclusions about phenological mismatches in food web interactions may therefore produce controversial results if the analyses do not distinguish between seasonally constant and seasonal specific warming. Furthermore, our results suggest that predicting asynchrony between interacting species requires reliable warming predictions that resolve sub-seasonal time scales. PMID:26649399

  2. Space Charge Waves in Mismatched Beams

    SciTech Connect

    Poole, B R; Blackfield, D T; Chen, Y; Harris, J R; O'Shea, P G

    2009-04-17

    Mismatch oscillations resulting from the propagation of space charge waves in intense beams may lead to halo generation, beam loss, and modification of longitudinal beam properties. These oscillations have amplitudes and frequencies different from that of the main beam and are particularly important in machines such as the University of Maryland Electron Ring (UMER), in which the beam dynamics scales to parameters associated with heavy ion fusion drivers. To study these effects, we use the particle in cell code LSP [1] to simulate space charge wave dynamics in an intense electron beam propagating in a smooth focusing channel with 2-D cylindrical symmetry. We examine the evolution of linear and nonlinear density perturbations for both matched and mismatched beams. Comparisons between LSP simulations and numerical models are presented.

  3. A Genome Scale Screen for Mutants with Delayed Exit from Mitosis: Ire1-Independent Induction of Autophagy Integrates ER Homeostasis into Mitotic Lifespan

    PubMed Central

    Ghavidel, Ata; Baxi, Kunal; Ignatchenko, Vladimir; Prusinkiewicz, Martin; Arnason, Terra G.; Kislinger, Thomas; Carvalho, Carlos E.; Harkness, Troy A. A.

    2015-01-01

    Proliferating eukaryotic cells undergo a finite number of cell divisions before irreversibly exiting mitosis. Yet pathways that normally limit the number of cell divisions remain poorly characterized. Here we describe a screen of a collection of 3762 single gene mutants in the yeast Saccharomyces cerevisiae, accounting for 2/3 of annotated yeast ORFs, to search for mutants that undergo an atypically high number of cell divisions. Many of the potential longevity genes map to cellular processes not previously implicated in mitotic senescence, suggesting that regulatory mechanisms governing mitotic exit may be broader than currently anticipated. We focused on an ER-Golgi gene cluster isolated in this screen to determine how these ubiquitous organelles integrate into mitotic longevity. We report that a chronic increase in ER protein load signals an expansion in the assembly of autophagosomes in an Ire1-independent manner, accelerates trafficking of high molecular weight protein aggregates from the cytoplasm to the vacuoles, and leads to a profound enhancement of daughter cell production. We demonstrate that this catabolic network is evolutionarily conserved, as it also extends reproductive lifespan in the nematode Caenorhabditis elegans. Our data provide evidence that catabolism of protein aggregates, a natural byproduct of high protein synthesis and turn over in dividing cells, is among the drivers of mitotic longevity in eukaryotes. PMID:26247883

  4. Footprint mismatch in lumbar total disc arthroplasty

    PubMed Central

    Michaela, Gstoettner; Denise, Heider; Liebensteiner, Michael

    2008-01-01

    Lumbar disc arthroplasty has become a popular modality for the treatment of degenerative disc disease. The dimensions of the implants are based on early published geometrical measurements of vertebrae; the majority of these were cadaver studies. The fit of the prosthesis in the intervertebral space is of utmost importance. An undersized implant may lead to subsidence, loosening and biomechanical failure due to an incorrect center of rotation. The aim of the present study was to measure the dimensions of lumbar vertebrae based on CT scans and assess the accuracy of match in currently available lumbar disc prostheses. A total of 240 endplates of 120 vertebrae were included in the study. The sagittal and mediolateral diameter of the upper and lower endplates were measured using a digital measuring system. For the levels L4/L5 and L5/S1, an inappropriate size match was noted in 98.8% (Prodisc L) and 97.6% (Charite) with regard to the anteroposterior diameter. Mismatch in the anterior mediolateral diameter was noted in 79.3% (Prodisc L) and 51.2% (Charite) while mismatch in the posterior mediolateral diameter was observed in 91.5% (Prodisc L) and 78% (Charite) of the endplates. Surgeons and manufacturers should be aware of the size mismatch of currently available lumbar disc prostheses, which may endanger the safety and efficacy of the procedure. Larger footprints of currently available total disc arthroplasties are required. PMID:18791748

  5. Infrequent identity mismatches are frequently undetected

    PubMed Central

    Goldinger, Stephen D.

    2014-01-01

    The ability to quickly and accurately match faces to photographs bears critically on many domains, from controlling purchase of age-restricted goods to law enforcement and airport security. Despite its pervasiveness and importance, research has shown that face matching is surprisingly error prone. The majority of face-matching research is conducted under idealized conditions (e.g., using photographs of individuals taken on the same day) and with equal proportions of match and mismatch trials, a rate that is likely not observed in everyday face matching. In four experiments, we presented observers with photographs of faces taken an average of 1.5 years apart and tested whether face-matching performance is affected by the prevalence of identity mismatches, comparing conditions of low (10 %) and high (50 %) mismatch prevalence. Like the low-prevalence effect in visual search, we observed inflated miss rates under low-prevalence conditions. This effect persisted when participants were allowed to correct their initial responses (Experiment 2), when they had to verify every decision with a certainty judgment (Experiment 3) and when they were permitted “second looks” at face pairs (Experiment 4). These results suggest that, under realistic viewing conditions, the low-prevalence effect in face matching is a large, persistent source of errors. PMID:24500751

  6. Signal processing in eukaryotic chemotaxis

    NASA Astrophysics Data System (ADS)

    Segota, Igor; Rachakonda, Archana; Franck, Carl

    2013-03-01

    Unlike inanimate condensed matter, living cells depend upon the detection of chemical signals for their existence. First, we experimentally determined the chemotaxis response of eukaryotic Dictyostelium cells to static folic acid gradients and show that they can respond to gradients as shallow as 0.2% across the cell body. Second, using Shannon's information theory, we showed that the information cells receive about the gradient exceeds the theoretically predicted information at the receptor-ligand binding step, resulting in the violation of the data processing inequality. Finally, we analyzed how eukaryotic cells can affect the gradient signals by secreting enzymes that degrade the signal. We analyzed this effect with a focus on a well described Dictyostelium cAMP chemotaxis system where cAMP signals are affected by an extracellular cAMP phosphodiesterase (PDE) and its inhibitor (PDI). Using a reaction-diffusion model of this set of interactions in the extracellular space, we show that cells can effectively sense much steeper chemical gradients than naively expected (up to a factor of 12). We also found that the rough estimates of experimental PDE and PDI secretion rates are close to the optimal values for gradient sensing as predicted by our model.

  7. Extrachromosomal elements in lower eukaryotes:

    SciTech Connect

    Wickner, R.B.; Hinnebusch, A.; Lambowitz, A.M.; Gunsalus, I.C.; Hollaender, A.

    1986-01-01

    While most genes are chromosomal, the nonchromosomal genes have played a disproportionate role in molecular biology, in part because of their easy accessibility and in part because they represent the most mobile portion of a cell's genome. Fungi, yeasts, protozoa, slime molds, algae, and other single-celled nucleated species, have recently gained dramatic popularity with the development of transformation methods for Saccharomyces, Neurospora, Schizosaccharomyces, Dictyostelium, and others of this group. The realization that Saccharomyces has oncogenes, RNA tumor viruses, intervening sequences, and all the mitotic, mitochondrial, and other structures typical of so-called ''higher'' eukaryotic organisms has confirmed the use of such organisms as model systems. Their use in biotechnology also shows great promise. The study in lower eukaryotes of mitochondria and chloroplasts has yielded many insights into similar structures in higher organisms as well as many unexpected finds, such as mechanisms of intron excision and the biology of introns, RNA catalysis, variation of the genetic code, and mechanisms of protein import across membranes.

  8. The relative ages of eukaryotes and akaryotes.

    PubMed

    Penny, David; Collins, Lesley J; Daly, Toni K; Cox, Simon J

    2014-12-01

    The Last Eukaryote Common Ancestor (LECA) appears to have the genetics required for meiosis, mitosis, nucleus and nuclear substructures, an exon/intron gene structure, spliceosomes, many centres of DNA replication, etc. (and including mitochondria). Most of these features are not generally explained by models for the origin of the Eukaryotic cell based on the fusion of an Archeon and a Bacterium. We find that the term 'prokaryote' is ambiguous and the non-phylogenetic term akaryote should be used in its place because we do not yet know the direction of evolution between eukaryotes and akaryotes. We use the term 'protoeukaryote' for the hypothetical stem group ancestral eukaryote that took up a bacterium as an endosymbiont that formed the mitochondrion. It is easier to make detailed models with a eukaryote to an akaryote transition, rather than vice versa. So we really are at a phylogenetic impasse in not being confident about the direction of change between eukaryotes and akaryotes.

  9. Open Questions on the Origin of Eukaryotes.

    PubMed

    López-García, Purificación; Moreira, David

    2015-11-01

    Despite recent progress, the origin of the eukaryotic cell remains enigmatic. It is now known that the last eukaryotic common ancestor was complex and that endosymbiosis played a crucial role in eukaryogenesis at least via the acquisition of the alphaproteobacterial ancestor of mitochondria. However, the nature of the mitochondrial host is controversial, although the recent discovery of an archaeal lineage phylogenetically close to eukaryotes reinforces models proposing archaea-derived hosts. We argue that, in addition to improved phylogenomic analyses with more comprehensive taxon sampling to pinpoint the closest prokaryotic relatives of eukaryotes, determining plausible mechanisms and selective forces at the origin of key eukaryotic features, such as the nucleus or the bacterial-like eukaryotic membrane system, is essential to constrain existing models.

  10. A Eukaryote without a Mitochondrial Organelle.

    PubMed

    Karnkowska, Anna; Vacek, Vojtěch; Zubáčová, Zuzana; Treitli, Sebastian C; Petrželková, Romana; Eme, Laura; Novák, Lukáš; Žárský, Vojtěch; Barlow, Lael D; Herman, Emily K; Soukal, Petr; Hroudová, Miluše; Doležal, Pavel; Stairs, Courtney W; Roger, Andrew J; Eliáš, Marek; Dacks, Joel B; Vlček, Čestmír; Hampl, Vladimír

    2016-05-23

    The presence of mitochondria and related organelles in every studied eukaryote supports the view that mitochondria are essential cellular components. Here, we report the genome sequence of a microbial eukaryote, the oxymonad Monocercomonoides sp., which revealed that this organism lacks all hallmark mitochondrial proteins. Crucially, the mitochondrial iron-sulfur cluster assembly pathway, thought to be conserved in virtually all eukaryotic cells, has been replaced by a cytosolic sulfur mobilization system (SUF) acquired by lateral gene transfer from bacteria. In the context of eukaryotic phylogeny, our data suggest that Monocercomonoides is not primitively amitochondrial but has lost the mitochondrion secondarily. This is the first example of a eukaryote lacking any form of a mitochondrion, demonstrating that this organelle is not absolutely essential for the viability of a eukaryotic cell.

  11. A Eukaryote without a Mitochondrial Organelle.

    PubMed

    Karnkowska, Anna; Vacek, Vojtěch; Zubáčová, Zuzana; Treitli, Sebastian C; Petrželková, Romana; Eme, Laura; Novák, Lukáš; Žárský, Vojtěch; Barlow, Lael D; Herman, Emily K; Soukal, Petr; Hroudová, Miluše; Doležal, Pavel; Stairs, Courtney W; Roger, Andrew J; Eliáš, Marek; Dacks, Joel B; Vlček, Čestmír; Hampl, Vladimír

    2016-05-23

    The presence of mitochondria and related organelles in every studied eukaryote supports the view that mitochondria are essential cellular components. Here, we report the genome sequence of a microbial eukaryote, the oxymonad Monocercomonoides sp., which revealed that this organism lacks all hallmark mitochondrial proteins. Crucially, the mitochondrial iron-sulfur cluster assembly pathway, thought to be conserved in virtually all eukaryotic cells, has been replaced by a cytosolic sulfur mobilization system (SUF) acquired by lateral gene transfer from bacteria. In the context of eukaryotic phylogeny, our data suggest that Monocercomonoides is not primitively amitochondrial but has lost the mitochondrion secondarily. This is the first example of a eukaryote lacking any form of a mitochondrion, demonstrating that this organelle is not absolutely essential for the viability of a eukaryotic cell. PMID:27185558

  12. Open questions on the origin of eukaryotes

    PubMed Central

    López-García, Purificación; Moreira, David

    2015-01-01

    Despite recent progress, the origin of the eukaryotic cell remains enigmatic. It is now known that the last eukaryotic common ancestor was complex and that endosymbiosis played a crucial role in eukaryogenesis at least via the acquisition of the alphaproteobacterial ancestor of mitochondria. However, the nature of the mitochondrial host is controversial, although the recent discovery of an archaeal lineage phylogenetically close to eukaryotes reinforces models proposing archaea-derived hosts. We argue that, in addition to improved phylogenomic analyses with more comprehensive taxon sampling to pinpoint the closest prokaryotic relatives of eukaryotes, determining plausible mechanisms and selective forces at the origin of key eukaryotic features, such as the nucleus or the bacterial-like eukaryotic membrane system, is essential to constrain existing models. PMID:26455774

  13. Eukaryotic tRNA paradox.

    PubMed

    Mitra, Sanga; Samadder, Arpa; Das, Pijush; Das, Smarajit; Chakrabarti, Jayprokas

    2015-01-01

    tRNAs are widely believed to segregate into two classes, I and II. Computational analysis of eukaryotic tRNA entries in Genomic tRNA Database, however, leads to new, albeit paradoxical, presence of more than a thousand class-I tRNAs with uncharacteristic long variable arms (V-arms), like in class-II. Out of 62,202 tRNAs from 69 eukaryotes, as many as 1431 class-I tRNAs have these novel extended V-arms, and we refer to them as paradoxical tRNAs (pxtRNAs). A great majority of these 1431 pxtRNA genes are located in intergenic regions, about 18% embedded in introns of genes or ESTs, and just one in 3'UTR. A check on the conservations of 2D and 3D base pairs for each position of these pxtRNAs reveals a few variations, but they seem to have almost all the known features (already known identity and conserved elements of tRNA). Analyses of the A-Box and B-Box of these pxtRNA genes in eukaryotes display salient deviations from the previously annotated conserved features of the standard promoters, whereas the transcription termination signals are just canonical and non-canonical runs of thymidine, similar to the ones in standard tRNA genes. There is just one such pxtRNA(ProAGG) gene in the entire human genome, and the availability of data allows epigenetic analysis of this human pxtRNA(ProAGG) in three different cell lines, H1 hESC, K562, and NHEK, to assess the level of its expression. Histone acetylation and methylation of this lone pxtRNA(ProAGG) gene in human differ from that of the nine standard human tRNA(ProAGG) genes. The V-arm nucleotide sequences and their secondary structures in pxtRNA differ from that of class-II tRNA. Considering these differences, hypotheses of alternative splicing, non-canonical intron and gene transfer are examined to partially improve the Cove scores of these pxtRNAs and to critically question their antecedence and novelty. PMID:25692737

  14. Eukaryotic picoplankton in surface oceans.

    PubMed

    Massana, Ramon

    2011-01-01

    The eukaryotic picoplankton is a heterogeneous collection of small protists 1 to 3 ?m in size populating surface oceans at abundances of 10(2) to 10(4) cells ml(-1). Pigmented cells are important primary producers that are at the base of food webs. Colorless cells are mostly bacterivores and play key roles in channeling bacteria to higher trophic levels as well as in nutrient recycling. Mixotrophy and parasitism are relevant but less investigated trophic paths. Molecular surveys of picoeukaryotes have unveiled a large phylogenetic diversity and new lineages, and it is critical to understand the ecological and evolutionary significance of this large and novel diversity. A main goal is to assess how individuals are organized in taxonomic units and how they participate in ecological processes. Picoeukaryotes are convincingly integral members of marine ecosystems in terms of cell abundance, biomass, activity, and diversity and they play crucial roles in food webs and biogeochemical cycles.

  15. Visual mismatch negativity: a predictive coding view

    PubMed Central

    Stefanics, Gábor; Kremláček, Jan; Czigler, István

    2014-01-01

    An increasing number of studies investigate the visual mismatch negativity (vMMN) or use the vMMN as a tool to probe various aspects of human cognition. This paper reviews the theoretical underpinnings of vMMN in the light of methodological considerations and provides recommendations for measuring and interpreting the vMMN. The following key issues are discussed from the experimentalist's point of view in a predictive coding framework: (1) experimental protocols and procedures to control “refractoriness” effects; (2) methods to control attention; (3) vMMN and veridical perception. PMID:25278859

  16. Temperature-dependent spectral mismatch corrections

    DOE PAGES

    Osterwald, Carl R.; Campanelli, Mark; Moriarty, Tom; Emery, Keith A.; Williams, Rafell

    2015-11-01

    This study develops the mathematical foundation for a translation of solar cell short-circuit current from one thermal and spectral irradiance operating condition to another without the use of ill-defined and error-prone temperature coefficients typically employed in solar cell metrology. Using the partial derivative of quantum efficiency with respect to temperature, the conventional isothermal expression for spectral mismatch corrections is modified to account for changes of current due to temperature; this modification completely eliminates the need for short-circuit-current temperature coefficients. An example calculation is provided to demonstrate use of the new translation.

  17. Kinetics of largely lattice-mismatch epitaxy

    SciTech Connect

    Chen, Yong |

    1997-12-31

    The kinetics of island nucleation, growth, and dislocation formation in largely lattice-mismatch heteroepitaxy are analyzed theoretically. It is shown that 2D platelets tend to transform to 3D islands as they exceed a certain critical size. During island growth, the increase of the strain concentration at the island edge makes it increasingly difficult for adatoms to reach the island, which leads to the formation of homogeneously sized islands. The high strain concentration at the island edge is eventually relieved by growing-in dislocations.

  18. HIP-assisted CTE mismatch tooling

    SciTech Connect

    Zick, D.H.

    1996-12-31

    A novel tooling technique is described which allows diffusion bonding of components with excellent dimensional control. The technique makes use of the difference in coefficients of thermal expansion (CTE) between the tooling and the bonded components. Unlike traditional CTE mismatch tooling, the new technique allows low tensile strength, low cost materials such as graphite or ceramics to be used as the major tooling structure. Hot isostatic pressing (HIP) is employed to clamp together the tooling through a surrounding metallic capsule. An example will be presented of how the technique was used to bond numerous patterned stainless steel plates into a block containing intricate interconnected passages.

  19. Biology wars: the eukaryotes strike back.

    PubMed

    Dunning Hotopp, Julie C; Estes, Anne M

    2014-12-10

    It is increasingly clear that eukaryotes have acquired bacterial DNA and function through horizontal gene transfer (HGT). In this issue of Cell Host & Microbe, Chou et al. (2014) and Metcalf et al. (2014) report multiple HGTs of bacterial tae and lysozyme genes, respectively, to diverse eukaryotic and archaeal hosts that may complement their response to bacteria.

  20. Ancestral relationships of the major eukaryotic lineages.

    PubMed

    Sogin, M L; Morrison, H G; Hinkle, G; Silberman, J D

    1996-03-01

    Molecular systematics has revolutionized our understanding of microbial evolution. Phylogenetic frameworks relating all organisms in this biosphere can be inferred from comparisons of slowly evolving molecules such as the small and large subunit ribosomal RNAs. Unlike today's text book standard, the "Five Kingdoms" (plants, animals, fungi, protists and bacteria), molecular studies define three primary lines of descent (Eukaryotes, Eubacteria, and Archaebacteria). Within the Eukaryotes, the "higher" kingdoms (Fungi, Plantae, and Animalia) are joined by at least two novel complex evolutionary assemblages, the "Alveolates" (ciliates, dinoflagellates and apicomplexans) and the "Stramenopiles" (diatoms, oomycetes, labyrinthulids, brown algae and chrysophytes). The separation of these eukaryotic groups (described as the eukaryotic "crown") occurred approximately 10(9) years ago and was preceded by a succession of earlier diverging protist lineages, some as ancient as the separation of the prokaryotic domains. The molecular phylogenies suggest that multiple endosymbiotic events introduced plastids into discrete eukaryotic lineages.

  1. Repair of mismatched basepairs in mammalian DNA

    SciTech Connect

    Taylor, J.H.; Hare, J.T.

    1991-08-01

    We have concentrated on three specific areas of our research plan. Our greatest emphasis is on the role of single strand nicks in influencing template strand selection in mismatch repair. We have found, that the ability of a nick in one strand to influence which strand is repaired is not a simple function of distance from the mismatched site but rather that an hot spot where a nick is more likely to have an influence can exist. The second line was production of single-genotype heteroduplexes in order to examine independently the repair of T/G and A/C mispairs within the same sequence context as in our mixed mispair preparations. We have shown preparations of supercoiled heteroduplex can be prepared that were exclusively T/G or exclusively A/C at the mispair site. The third effort has been to understand the difference in repair bias of different cell lines or different transfection conditions as it may relate to different repair systems in the cell. We have identified some of the sources of variation, including cell cycle position. We hope to continue this work to more precisely identify the phase of the cell cycle.

  2. Reconstructing Early Events in Eukaryotic Evolution.

    PubMed

    Roger

    1999-10-01

    Resolving the order of events that occurred during the transition from prokaryotic to eukaryotic cells remains one of the greatest problems in cell evolution. One view, the Archezoa hypothesis, proposes that the endosymbiotic origin of mitochondria occurred relatively late in eukaryotic evolution and that several mitochondrion-lacking protist groups diverged before the establishment of the organelle. Phylogenies based on small subunit ribosomal RNA and several protein-coding genes supported this proposal, placing amitochondriate protists such as diplomonads, parabasalids, and Microsporidia as the earliest diverging eukaryotic lineages. However, trees of other molecules, such as tubulins, heat shock protein 70, TATA box-binding protein, and the largest subunit of RNA polymerase II, indicate that Microsporidia are not deeply branching eukaryotes but instead are close relatives of the Fungi. Furthermore, recent discoveries of mitochondrion-derived genes in the nuclear genomes of entamoebae, Microsporidia, parabasalids, and diplomonads suggest that these organisms likely descend from mitochondrion-bearing ancestors. Although several protist lineages formally remain as candidates for Archezoa, most evidence suggests that the mitochondrial endosymbiosis took place prior to the divergence of all extant eukaryotes. In addition, discoveries of proteobacterial-like nuclear genes coding for cytoplasmic proteins indicate that the mitochondrial symbiont may have contributed more to the eukaryotic lineage than previously thought. As genome sequence data from parabasalids and diplomonads accumulate, it is becoming clear that the last common ancestor of these protist taxa and other extant eukaryotic groups already possessed many of the complex features found in most eukaryotes but lacking in prokaryotes. However, our confidence in the deeply branching position of diplomonads and parabasalids among eukaryotes is weakened by conflicting phylogenies and potential sources of artifact

  3. Circular RNAs in Eukaryotic Cells.

    PubMed

    Chen, Liang; Huang, Chuan; Wang, Xiaolin; Shan, Ge

    2015-10-01

    Circular RNAs (circRNAs) are now recognized as large species of transcripts in eukaryotic cells. From model organisms such as C. elegans, Drosophila, mice to human beings, thousands of circRNAs formed from back-splicing of exons have been identified. The known complexity of transcriptome has been greatly expanded upon the discovery of these RNAs. Studies about the biogenesis and physiological functions have yielded substantial knowledge for the circRNAs, and they are now more likely to be viewed as regulatory elements coded by the genome rather than unavoidable noise of gene expression. Certain human diseases may also relate to circRNAs. These circRNAs show diversifications in features such as sequence composition and cellular localization, and thus we propose that they may be divided into subtypes such as cytoplasmic circRNAs, nuclear circRNAs, and exon-intron circRNAs (EIciRNAs). Here we summarize and discuss knowns and unknowns for these RNAs, and we need to keep in mind that the whole field is still at the beginning of exciting explorations.

  4. Redox compartmentalization in eukaryotic cells

    PubMed Central

    Go, Young-Mi; Jones, Dean P.

    2008-01-01

    Diverse functions of eukaryotic cells are optimized by organization of compatible chemistries into distinct compartments defined by the structures of lipid-containing membranes, multiprotein complexes and oligomeric structures of saccharides and nucleic acids. This structural and chemical organization is coordinated, in part, through cysteine residues of proteins which undergo reversible oxidation-reduction and serve as chemical/structural transducing elements. The central thiol/disulfide redox couples, thioredoxin-1, thioredoxin-2, GSH/GSSG and cysteine/cystine (Cys/CySS), are not in equilibrium with each other and are maintained at distinct, non-equilibrium potentials in mitochondria, nuclei, the secretory pathway and the extracellular space. Mitochondria contain the most reducing compartment, have the highest rates of electron transfer and are highly sensitive to oxidation. Nuclei also have more reduced redox potentials but are relatively resistant to oxidation. The secretory pathway contains oxidative systems which introduce disulfides into proteins for export. The cytoplasm contains few metabolic oxidases and this maintains an environment for redox signaling dependent upon NADPH oxidases and NO synthases. Extracellular compartments are maintained at stable oxidizing potentials. Controlled changes in cytoplasmic GSH/GSSG redox potential are associated with functional state, varying with proliferation, differentiation and apoptosis. Variation in extracellular Cys/CySS redox potential is also associated with proliferation, cell adhesion and apoptosis. Thus, cellular redox biology is inseparable from redox compartmentalization. Further elucidation of the redox control networks within compartments will improve the mechanistic understanding of cell functions and their disruption in disease. PMID:18267127

  5. A lamin in lower eukaryotes?

    PubMed Central

    Batsios, Petros; Peter, Tatjana; Baumann, Otto; Stick, Reimer; Meyer, Irene; Gräf, Ralph

    2012-01-01

    Lamins are the major components of the nuclear lamina and serve not only as a mechanical support, but are also involved in chromatin organization, epigenetic regulation, transcription and mitotic events. Despite these universal tasks, lamins have so far been found only in metazoans. Yet, recently we have identified Dictyostelium NE81 as the first lamin-like protein in a lower eukaryote. Based on the current knowledge, we draw a model for nuclear envelope organization in Dictyostelium in this Extra View and we review the experimental data that justified this classification. Furthermore we provide unpublished data underscoring the requirement of posttranslational CaaX-box processing for proper protein localization at the nuclear envelope. Sequence comparison of NE81 sequences from four Dictyostelia with bona fide lamins illustrates the evolutional relationship between these proteins. Under certain conditions these usually unicellular social amoebae congregate to form a multicellular body. We propose that the evolution of the lamin-like NE81 went along with the invention of multicellularity. PMID:22572958

  6. Mechanochemical coupling in eukaryotic flagella.

    PubMed

    Omoto, C K

    1989-03-21

    Quantitative analyses of ATP hydrolysis coupled to movement of eukaryotic flagella is important for understanding the relationship between ATP hydrolysis and movement. The difference in ATPase activity between intact motile axonemes (that is the cytoskeletal core of flagella) and homogenized or immotile axonemes has been assumed to be coupled to movement. However, recent findings on rates of steps in the dynein ATPase cycle and the effect of interaction with microtubules on those steps call for reassessment of movement-coupled ATPase. From these studies, it is clear that dynein ATPase activity is not as tightly coupled to interaction with microtubules as myosin ATPase activity is coupled to interaction with actin. The method by which axonemal movement is inhibited will critically affect the interpretation of difference in ATPase activity. If the homogenization or similar methods uncouple dynein, the difference in ATPase activity is not a useful measurement. Greater understanding of the relationship between dynein kinetics and axonemal movement may be obtained by use of conditions and substrates with known effects at specific steps in the dynein mechanochemical cycle and quantitating their effects on movement.

  7. Regulation of Eukaryotic Flagellar Motility

    NASA Astrophysics Data System (ADS)

    Mitchell, David R.

    2005-03-01

    The central apparatus is essential for normal eukaryotic flagellar bend propagation as evidenced by the paralysis associated with mutations that prevent central pair (CP) assembly. Interactions between doublet-associated radial spokes and CP projections are thought to modulate spoke-regulated protein kinases and phosphatases on outer doublets, and these enzymes in turn modulate dynein activity. To better understand CP control mechanisms, we determined the three-dimensional structure of the Chlamydomonas reinhardtii CP complex and analyzed CP orientation during formation and propagation of flagellar bending waves. We show that a single CP microtubule, C1, is near the outermost doublet in curved regions of the flagellum, and this orientation is maintained by twists between successive principal and reverse bends. The Chlamydomonas CP is inherently twisted; twists are not induced by bend formation, and do not depend on forces or signals transmitted through spoke-central pair interactions. We hypothesize that CP orientation passively responds to bend formation, and that bend propagation drives rotation of the CP and maintains a constant CP orientation in bends, which in turn permits signal transduction between specific CP projections and specific doublet-associated dyneins through radial spokes. The central pair kinesin, Klp1, although essential for normal motility, is therefore not the motor that drives CP rotation. The CP also acts as a scaffold for enzymes that maintain normal intraflagellar ATP concentration.

  8. The eukaryotic fossil record in deep time

    NASA Astrophysics Data System (ADS)

    Butterfield, N.

    2011-12-01

    Eukaryotic organisms are defining constituents of the Phanerozoic biosphere, but they also extend well back into the Proterozoic record, primarily in the form of microscopic body fossils. Criteria for identifying pre-Ediacaran eukaryotes include large cell size, morphologically complex cell walls and/or the recognition of diagnostically eukaryotic cell division patterns. The oldest unambiguous eukaryote currently on record is an acanthomorphic acritarch (Tappania) from the Palaeoproterozoic Semri Group of central India. Older candidate eukaryotes are difficult to distinguish from giant bacteria, prokaryotic colonies or diagenetic artefacts. In younger Meso- and Neoproterozoic strata, the challenge is to recognize particular grades and clades of eukaryotes, and to document their macro-evolutionary expression. Distinctive unicellular forms include mid-Neoproterozoic testate amoebae and phosphate biomineralizing 'scale-microfossils' comparable to an extant green alga. There is also a significant record of seaweeds, possible fungi and problematica from this interval, documenting multiple independent experiments in eukaryotic multicellularity. Taxonomically resolved forms include a bangiacean red alga and probable vaucheriacean chromalveolate algae from the late Mesoproterozoic, and populations of hydrodictyacean and siphonocladalean green algae of mid Neoproterozoic age. Despite this phylogenetic breadth, however, or arguments from molecular clocks, there is no convincing evidence for pre-Ediacaran metazoans or metaphytes. The conspicuously incomplete nature of the Proterozoic record makes it difficult to resolve larger-scale ecological and evolutionary patterns. Even so, both body fossils and biomarker data point to a pre-Ediacaran biosphere dominated overwhelming by prokaryotes. Contemporaneous eukaryotes appear to be limited to conspicuously shallow water environments, and exhibit fundamentally lower levels of morphological diversity and evolutionary turnover than

  9. Endogenous Synthesis of Coenzyme Q in Eukaryotes

    PubMed Central

    Tran, UyenPhuong C.; Clarke, Catherine F.

    2007-01-01

    Coenzyme Q (Q) functions in the mitochondrial respiratory chain and serves as a lipophilic antioxidant. There is increasing interest in the use of Q as a nutritional supplement. Although the physiological significance of Q is extensively investigated in eukaryotes, ranging from yeast to human, the eukaryotic Q biosynthesis pathway is best characterized in the budding yeast Saccharomyces cerevisiae. At least ten genes (COQ1-COQ10) have been shown to be required for Q biosynthesis and function in respiration. This review highlights recent knowledge about the endogenous synthesis of Q in eukaryotes, with emphasis on S. cerevisiae as a model system. PMID:17482885

  10. Band anticrossing in highly mismatched semiconductor alloys

    SciTech Connect

    Walukiewicz, W.

    2002-07-26

    The basic theoretical aspects of the band anticrossing effects in highly electronegativity-mismatched semiconductor alloys are reviewed. The many-impurity Anderson model treated in the coherent potential approximation is applied to the semiconductor alloys, in which metallic anion atoms are partially substituted by atoms of a highly electronegative element. Analytical solutions for the Green's function describe dispersion relations and state broadening effects for the restructured conduction band. The solutions are identical to those obtained from the physically intuitive and widely used two-level band anticrossing model. It is shown that the model explains key experimental observations including the unusual composition and pressure dependence of the interband optical transitions and the large enhancement of the electron effective mass.

  11. A neurocomputational model of the mismatch negativity.

    PubMed

    Lieder, Falk; Stephan, Klaas E; Daunizeau, Jean; Garrido, Marta I; Friston, Karl J

    2013-01-01

    The mismatch negativity (MMN) is an event related potential evoked by violations of regularity. Here, we present a model of the underlying neuronal dynamics based upon the idea that auditory cortex continuously updates a generative model to predict its sensory inputs. The MMN is then modelled as the superposition of the electric fields evoked by neuronal activity reporting prediction errors. The process by which auditory cortex generates predictions and resolves prediction errors was simulated using generalised (Bayesian) filtering--a biologically plausible scheme for probabilistic inference on the hidden states of hierarchical dynamical models. The resulting scheme generates realistic MMN waveforms, explains the qualitative effects of deviant probability and magnitude on the MMN - in terms of latency and amplitude--and makes quantitative predictions about the interactions between deviant probability and magnitude. This work advances a formal understanding of the MMN and--more generally--illustrates the potential for developing computationally informed dynamic causal models of empirical electromagnetic responses. PMID:24244118

  12. Mismatch Oscillations in High Current Accelerators

    SciTech Connect

    Anderson, O.A.

    2005-05-03

    When planning the design of high-current FODO transport for accelerators, it is useful to have simple, accurate tools for calculating quantities such as the phase advances {sigma}{sub 0} and !given the lattice and beam parameters. Along with the KV beam model, the smooth approximation is often used. It is simple but not very accurate in many cases. Although Struckmeier and Reiser [1] showed that the stable oscillation frequencies of mismatched beams could be obtained accurately, they actually used a hybrid approach where {sigma}{sub 0} and {sigma} were already known precisely. When starting instead with basic quantities such as quadrupole dimensions, field strength, beam line charge density and emittance, the smooth approximation gives substantial errors. Here we derive a simple modification of the smooth approximation formula that improves the accuracy of the predicted frequencies by a factor of five at {sigma}{sub 0} = 83{sup o}.

  13. A multivariate CAR model for mismatched lattices.

    PubMed

    Porter, Aaron T; Oleson, Jacob J

    2014-10-01

    In this paper, we develop a multivariate Gaussian conditional autoregressive model for use on mismatched lattices. Most current multivariate CAR models are designed for each multivariate outcome to utilize the same lattice structure. In many applications, a change of basis will allow different lattices to be utilized, but this is not always the case, because a change of basis is not always desirable or even possible. Our multivariate CAR model allows each outcome to have a different neighborhood structure which can utilize different lattices for each structure. The model is applied in two real data analysis. The first is a Bayesian learning example in mapping the 2006 Iowa Mumps epidemic, which demonstrates the importance of utilizing multiple channels of infection flow in mapping infectious diseases. The second is a multivariate analysis of poverty levels and educational attainment in the American Community Survey. PMID:25457598

  14. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell.

    PubMed

    Martijn, Joran; Ettema, Thijs J G

    2013-02-01

    The evolutionary origin of the eukaryotic cell represents an enigmatic, yet largely incomplete, puzzle. Several mutually incompatible scenarios have been proposed to explain how the eukaryotic domain of life could have emerged. To date, convincing evidence for these scenarios in the form of intermediate stages of the proposed eukaryogenesis trajectories is lacking, presenting the emergence of the complex features of the eukaryotic cell as an evolutionary deus ex machina. However, recent advances in the field of phylogenomics have started to lend support for a model that places a cellular fusion event at the basis of the origin of eukaryotes (symbiogenesis), involving the merger of an as yet unknown archaeal lineage that most probably belongs to the recently proposed 'TACK superphylum' (comprising Thaumarchaeota, Aigarchaeota, Crenarchaeota and Korarchaeota) with an alphaproteobacterium (the protomitochondrion). Interestingly, an increasing number of so-called ESPs (eukaryotic signature proteins) is being discovered in recently sequenced archaeal genomes, indicating that the archaeal ancestor of the eukaryotic cell might have been more eukaryotic in nature than presumed previously, and might, for example, have comprised primitive phagocytotic capabilities. In the present paper, we review the evolutionary transition from archaeon to eukaryote, and propose a new model for the emergence of the eukaryotic cell, the 'PhAT (phagocytosing archaeon theory)', which explains the emergence of the cellular and genomic features of eukaryotes in the light of a transiently complex phagocytosing archaeon.

  15. Vehicle mismatch: injury patterns and severity.

    PubMed

    Acierno, S; Kaufman, R; Rivara, F P; Grossman, D C; Mock, C

    2004-09-01

    Light truck vehicles (LTV) are becoming more popular on US highways. This creates greater opportunity for collisions with passenger vehicles (PV). The mismatch in weight, stiffness, and height between LTV and PV has been surmised to result in increased fatalities among PV occupants when their vehicles collide with LTV. We reviewed cases of vehicle mismatch collisions in the Seattle Crash Injury Research and Engineering Network (CIREN) database to establish patterns and source of injury. Of the first 200 Seattle CIREN cases reviewed, 32 collisions with 41 occupant cases were found to involve LTV versus PV. The cases were reviewed by type of collision and vehicle of injured occupant: side impact of PV with LTV, front impact of PV with LTV, and front impact of LTV with PV. For each type of crash, injury patterns and mechanisms were identified. For side impact to PV, head and upper thorax injuries were frequently encountered due to LTV bumper frame contact above the PV side door reinforcement. For frontal impact to PV, severe multiple extremity fractures along with some head and chest injuries were caused by intrusion of the instrument panel and steering column due to bumper frame override of the LTV. Underriding of the PV when colliding with the LTV resulted in severe lower extremity fractures of the LTV occupant due to intrusion of the toe pan into the vehicle compartment of the LTV. The injuries and the sources identified in this case series support the need for re-designing both LTV and PV to improve vehicle compatibility. Revising Federal Motor Vehicle Safety Standard 214 to reinforce the entire door, consider adding side airbags, and re-engineering LTV bumpers and/or frame heights and PV front ends are possible ways to reduce these injuries and deaths by making the vehicles more compatible. PMID:15203353

  16. Prokaryotic and eukaryotic unicellular chronomics

    PubMed Central

    Halberg, F.; Cornélissen, G.; Faraone, P.; Poeggeler, B.; Hardeland, R.; Katinas, G.; Schwartzkopff, O.; Otsuka, K.; Bakken, E. E.

    2008-01-01

    An impeccable time series, published in 1930, consisting of hourly observations on colony advance in a fluid culture of E. coli, was analyzed by a periodogram and power spectrum in 1961. While the original senior author had emphasized specifically periodicity with no estimate of period length, he welcomed further analyses. After consulting his technician, he knew of no environmental periodicity related to human schedules other than an hourly photography. A periodogram analysis in 1961 showed a 20.75-h period. It was emphasized that “… the circadian period disclosed is not of exactly 24-h length.” Confirmations notwithstanding, a committee ruled out microbial circadian rhythms based on grounds that could have led to a different conclusion, namely first, the inability of some committee members to see (presumably by eyeballing) the rhythms in their own data, and second, what hardly follows, that there were “too many analyses” in the published papers. Our point in dealing with microbes and humans is that analyses are indispensable for quantification and for discovering a biologically novel spectrum of cyclicities, matching physical ones. The scope of circadian organization estimated in 1961 has become broader, including about 7-day, about half-yearly, about-yearly and ex-yearly and decadal periodisms, among others. Microbial circadians have become a field of their own with eyeballing, yet time-microscopy can quantify characteristics with their uncertainties and can assess broad chronomes (time structures) with features beyond circadians. As yet only suggestive differences between eukaryotes and prokaryotes further broaden the perspective and may lead to life’s sites of origin and to new temporal aspects of life’ s development as a chronomic tree by eventual rhythm dating in ontogeny and phylogeny. PMID:16275493

  17. [Molecular karyotyping of eukaryotic microorganisms].

    PubMed

    Nasonova, E S

    2012-01-01

    In many fungi and protists small size and weak morphological differentiation of chromosomes embarrass the study of karyotypes using microscopical tools. Molecular karyotyping based on the fractionation of intact chromosomal DNAs by pulsed field gel electrophoresis (PFGE) provides an alternative approach to the analysis of chromosomal sets in such organisms. To assign the bands observed in PFGE gel to the individual chromosomes the following methods of chromosome identification are applied: densitometric analysis of the bands; Southern hybridization with chromosome- and telomere-specific probes, which often is combined with comparative karyotyping of a series of strains with pronounced size polymorphism of chromosomes; comparison of the patterns of restriction fragments of chromosomal DNAs fractioned by KARD 2-D PFGE; comparison with the strains with well-studied interchromosomal rearrangements. Besides estimation of the number and the size of chromosomes, molecular karyotyping allows assessment of haploid genome size and ploidy level, study of genome dynamics, identification of chromosomal rearrangements and associated chromosomal polymorphism. The analysis of karyotype and dynamics of the genomes is important for the study of intra- and interspecial variability, investigation of the chromosome evolution in closely related species and elaboration of the models of speciation. The comparison of molecular karyotypes among isolates of different origin is of great practical importance for clinical diagnostics and for agricultural microbiology. In this review we discuss: 1) the methods of karyotyping and their application to the analysis of chromosomal sets in eukaryotic microorganisms; 2) the specificity of the methods used for extraction and fractionation of intact chromosomal DNAs; 3) the reasons for difficulties in interpretation of molecular karyotypes and the ways of their overcoming; 4) fields of application of molecular karyotyping; 5) the definition of

  18. The Eukaryotic Replisome Goes Under the Microscope.

    PubMed

    O'Donnell, Mike; Li, Huilin

    2016-03-21

    The machinery at the eukaryotic replication fork has seen many new structural advances using electron microscopy and crystallography. Recent structures of eukaryotic replisome components include the Mcm2-7 complex, the CMG helicase, DNA polymerases, a Ctf4 trimer hub and the first look at a core replisome of 20 different proteins containing the helicase, primase, leading polymerase and a lagging strand polymerase. The eukaryotic core replisome shows an unanticipated architecture, with one polymerase sitting above the helicase and the other below. Additionally, structures of Mcm2 bound to an H3/H4 tetramer suggest a direct role of the replisome in handling nucleosomes, which are important to DNA organization and gene regulation. This review provides a summary of some of the many recent advances in the structure of the eukaryotic replisome.

  19. Crystal structure of the eukaryotic ribosome.

    PubMed

    Ben-Shem, Adam; Jenner, Lasse; Yusupova, Gulnara; Yusupov, Marat

    2010-11-26

    Crystal structures of prokaryotic ribosomes have described in detail the universally conserved core of the translation mechanism. However, many facets of the translation process in eukaryotes are not shared with prokaryotes. The crystal structure of the yeast 80S ribosome determined at 4.15 angstrom resolution reveals the higher complexity of eukaryotic ribosomes, which are 40% larger than their bacterial counterparts. Our model shows how eukaryote-specific elements considerably expand the network of interactions within the ribosome and provides insights into eukaryote-specific features of protein synthesis. Our crystals capture the ribosome in the ratcheted state, which is essential for translocation of mRNA and transfer RNA (tRNA), and in which the small ribosomal subunit has rotated with respect to the large subunit. We describe the conformational changes in both ribosomal subunits that are involved in ratcheting and their implications in coordination between the two associated subunits and in mRNA and tRNA translocation.

  20. Eukaryotic diversity in historical soil samples.

    PubMed

    Moon-van der Staay, Seung Yeo; Tzeneva, Vesela A; van der Staay, Georg W M; de Vos, Willem M; Smidt, Hauke; Hackstein, Johannes H P

    2006-09-01

    The eukaryotic biodiversity in historical air-dried samples of Dutch agricultural soil has been assessed by random sequencing of an 18S rRNA gene library and by denaturing gradient gel electrophoresis. Representatives of nearly all taxa of eukaryotic soil microbes could be identified, demonstrating that it is possible to study eukaryotic microbiota in samples from soil archives that have been stored for more than 30 years at room temperature. In a pilot study, 41 sequences were retrieved that could be assigned to fungi and a variety of aerobic and anaerobic protists such as cercozoans, ciliates, xanthophytes (stramenopiles), heteroloboseans, and amoebozoans. A PCR-denaturing gradient gel electrophoresis analysis of samples collected between 1950 and 1975 revealed significant changes in the composition of the eukaryotic microbiota.

  1. Paleobiological Perspectives on Early Eukaryotic Evolution

    PubMed Central

    Knoll, Andrew H.

    2014-01-01

    Eukaryotic organisms radiated in Proterozoic oceans with oxygenated surface waters, but, commonly, anoxia at depth. Exceptionally preserved fossils of red algae favor crown group emergence more than 1200 million years ago, but older (up to 1600–1800 million years) microfossils could record stem group eukaryotes. Major eukaryotic diversification ∼800 million years ago is documented by the increase in the taxonomic richness of complex, organic-walled microfossils, including simple coenocytic and multicellular forms, as well as widespread tests comparable to those of extant testate amoebae and simple foraminiferans and diverse scales comparable to organic and siliceous scales formed today by protists in several clades. Mid-Neoproterozoic establishment or expansion of eukaryophagy provides a possible mechanism for accelerating eukaryotic diversification long after the origin of the domain. Protists continued to diversify along with animals in the more pervasively oxygenated oceans of the Phanerozoic Eon. PMID:24384569

  2. The Eukaryotic Replisome Goes Under the Microscope

    PubMed Central

    O’Donnell, Mike; Li, Huilin

    2016-01-01

    The machinery at the eukaryotic replication fork has seen many new structural advances using electron microscopy and crystallography. Recent structures of eukaryotic replisome components include the Mcm2-7 complex, the CMG helicase, DNA polymerases, a Ctf4 trimer hub and the first look at a core replisome of 20 different proteins containing the helicase, primase, leading polymerase and a lagging strand polymerase. The eukaryotic core replisome shows an unanticipated architecture, with one polymerase sitting above the helicase and the other below. Additionally, structures of Mcm2 bound to an H3/H4 tetramer suggest a direct role of the replisome in handling nucleosomes, which are important to DNA organization and gene regulation. This review provides a summary of some of the many recent advances in the structure of the eukaryotic replisome. PMID:27003891

  3. Paleobiological perspectives on early eukaryotic evolution.

    PubMed

    Knoll, Andrew H

    2014-01-01

    Eukaryotic organisms radiated in Proterozoic oceans with oxygenated surface waters, but, commonly, anoxia at depth. Exceptionally preserved fossils of red algae favor crown group emergence more than 1200 million years ago, but older (up to 1600-1800 million years) microfossils could record stem group eukaryotes. Major eukaryotic diversification ~800 million years ago is documented by the increase in the taxonomic richness of complex, organic-walled microfossils, including simple coenocytic and multicellular forms, as well as widespread tests comparable to those of extant testate amoebae and simple foraminiferans and diverse scales comparable to organic and siliceous scales formed today by protists in several clades. Mid-Neoproterozoic establishment or expansion of eukaryophagy provides a possible mechanism for accelerating eukaryotic diversification long after the origin of the domain. Protists continued to diversify along with animals in the more pervasively oxygenated oceans of the Phanerozoic Eon.

  4. Mismatch recognition-coupled stabilization of Msh2-Msh6 in an ATP-bound state at the initiation of DNA repair.

    PubMed

    Antony, Edwin; Hingorani, Manju M

    2003-07-01

    Mismatch repair proteins correct errors in DNA via an ATP-driven process. In eukaryotes, the Msh2-Msh6 complex recognizes base pair mismatches and small insertion/deletions in DNA and initiates repair. Both Msh2 and Msh6 proteins contain Walker ATP-binding motifs that are necessary for repair activity. To understand how these proteins couple ATP binding and hydrolysis to DNA binding/mismatch recognition, the ATPase activity of Saccharomyces cerevisiae Msh2-Msh6 was examined under pre-steady-state conditions. Acid-quench experiments revealed that in the absence of DNA, Msh2-Msh6 hydrolyzes ATP rapidly (burst rate = 3 s(-1) at 20 degrees C) and then undergoes a slow step in the pathway that limits catalytic turnover (k(cat) = 0.1 s(-1)). ATP is hydrolyzed similarly in the presence of fully matched duplex DNA; however, in the presence of a G:T mismatch or +T insertion-containing DNA, ATP hydrolysis is severely suppressed (rate = 0.1 s(-1)). Pulse-chase experiments revealed that Msh2-Msh6 binds ATP rapidly in the absence or in the presence of DNA (rate = 0.1 microM(-1) s(-1)), indicating that for the Msh2-Msh6.mismatched DNA complex, a step after ATP binding but before or at ATP hydrolysis is the rate-limiting step in the pathway. Thus, mismatch recognition is coupled to a dramatic increase in the residence time of ATP on Msh2-Msh6. This mismatch-induced, stable ATP-bound state of Msh2-Msh6 likely signals downstream events in the repair pathway. PMID:12820877

  5. Identification of a mismatch-specific endonuclease in hyperthermophilic Archaea.

    PubMed

    Ishino, Sonoko; Nishi, Yuki; Oda, Soichiro; Uemori, Takashi; Sagara, Takehiro; Takatsu, Nariaki; Yamagami, Takeshi; Shirai, Tsuyoshi; Ishino, Yoshizumi

    2016-04-20

    The common mismatch repair system processed by MutS and MutL and their homologs was identified in Bacteria and Eukarya. However, no evidence of a functional MutS/L homolog has been reported for archaeal organisms, and it is not known whether the mismatch repair system is conserved in Archaea. Here, we describe an endonuclease that cleaves double-stranded DNA containing a mismatched base pair, from the hyperthermophilic archaeon Pyrococcus furiosus The corresponding gene revealed that the activity originates from PF0012, and we named this enzyme Endonuclease MS (EndoMS) as the mismatch-specific Endonuclease. The sequence similarity suggested that EndoMS is the ortholog of NucS isolated from Pyrococcus abyssi, published previously. Biochemical characterizations of the EndoMS homolog from Thermococcus kodakarensis clearly showed that EndoMS specifically cleaves both strands of double-stranded DNA into 5'-protruding forms, with the mismatched base pair in the central position. EndoMS cleaves G/T, G/G, T/T, T/C and A/G mismatches, with a more preference for G/T, G/G and T/T, but has very little or no effect on C/C, A/C and A/A mismatches. The discovery of this endonuclease suggests the existence of a novel mismatch repair process, initiated by the double-strand break generated by the EndoMS endonuclease, in Archaea and some Bacteria. PMID:27001046

  6. Design and analysis of mismatch probes for long oligonucleotide microarrays

    SciTech Connect

    Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Zhou, Jizhong

    2008-08-15

    Nonspecific hybridization is currently a major concern with microarray technology. One of most effective approaches to estimating nonspecific hybridizations in oligonucleotide microarrays is the utilization of mismatch probes; however, this approach has not been used for longer oligonucleotide probes. Here, an oligonucleotide microarray was constructed to evaluate and optimize parameters for 50-mer mismatch probe design. A perfect match (PM) and 28 mismatch (MM) probes were designed for each of ten target genes selected from three microorganisms. The microarrays were hybridized with synthesized complementary oligonucleotide targets at different temperatures (e.g., 42, 45 and 50 C). In general, the probes with evenly distributed mismatches were more distinguishable than those with randomly distributed mismatches. MM probes with 3, 4 and 5 mismatched nucleotides were differentiated for 50-mer oligonucleotide probes hybridized at 50, 45 and 42 C, respectively. Based on the experimental data generated from this study, a modified positional dependent nearest neighbor (MPDNN) model was constructed to adjust the thermodynamic parameters of matched and mismatched dimer nucleotides in the microarray environment. The MM probes with four flexible positional mismatches were designed using the newly established MPDNN model and the experimental results demonstrated that the redesigned MM probes could yield more consistent hybridizations. Conclusions: This study provides guidance on the design of MM probes for long oligonucleotides (e.g., 50 mers). The novel MPDNN model has improved the consistency for long MM probes, and this modeling method can potentially be used for the prediction of oligonucleotide microarray hybridizations.

  7. Educational Mismatch of Graduates: A Multidimensional and Fuzzy Indicator

    ERIC Educational Resources Information Center

    Betti, Gianni; D'Agostino, Antonella; Neri, Laura

    2011-01-01

    In this paper we attempt to measure the educational mismatch, seen as a problem of overeducation, using a multidimensional and fuzzy methodology. Educational mismatch can be difficult to measure because many factors can converge to its definition and the traditional unidimensional indicators presented in literature can offer a restricted view of…

  8. Mechanisms in E. coli and Human Mismatch Repair (Nobel Lecture).

    PubMed

    Modrich, Paul

    2016-07-18

    DNA molecules are not completely stable, they are subject to chemical or photochemical damage and errors that occur during DNA replication resulting in mismatched base pairs. Through mechanistic studies Paul Modrich showed how replication errors are corrected by strand-directed mismatch repair in Escherichia coli and human cells.

  9. Metabolic Constraints on the Eukaryotic Transition

    NASA Astrophysics Data System (ADS)

    Wallace, Rodrick

    2009-04-01

    Mutualism, obligate mutualism, symbiosis, and the eukaryotic ‘fusion’ of Serial Endosymbiosis Theory represent progressively more rapid and less distorted real-time communication between biological structures instantiating information sources. Such progression in accurate information transmission requires, in turn, progressively greater channel capacity that, through the homology between information source uncertainty and free energy density, requires ever more energetic metabolism. The eukaryotic transition, according to this model, may have been entrained by an ecosystem resilience shift from anaerobic to aerobic metabolism.

  10. Transfer of DNA from Bacteria to Eukaryotes.

    PubMed

    Lacroix, Benoît; Citovsky, Vitaly

    2016-01-01

    Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen), Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium), or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs), the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer. PMID:27406565

  11. Transfer of DNA from Bacteria to Eukaryotes

    PubMed Central

    2016-01-01

    ABSTRACT Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen), Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium), or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs), the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer. PMID:27406565

  12. A periodic table of symmetric tandem mismatches in RNA.

    PubMed

    Wu, M; McDowell, J A; Turner, D H

    1995-03-14

    The stabilities and structures of a series of RNA octamers containing symmetric tandem mismatches were studied by UV melting and imino proton NMR. The free energy increments for tandem mismatch formation are found to depend upon both mismatch sequence and adjacent base pairs. The observed sequence dependence of tandem mismatch stability is UGGU > GUUG > GAAG > or = AGGA > UUUU > CAAC > or = CUUC approximately UCCU approximately CCCC approximately ACCA approximately AAAA, and the closing base pair dependence is 5'G3'C > 5'C3'G > 5'U3'A approximately 5'A3'U. These results differ from expectations based on models used in RNA folding algorithms and from the sequence dependence observed for folding of RNA hairpins. Imino proton NMR results indicate the sequence dependence is partially due to hydrogen bonding within mismatches.

  13. Repetitive DNA in eukaryotic genomes.

    PubMed

    Biscotti, Maria Assunta; Olmo, Ettore; Heslop-Harrison, J S Pat

    2015-09-01

    Repetitive DNA--sequence motifs repeated hundreds or thousands of times in the genome--makes up the major proportion of all the nuclear DNA in most eukaryotic genomes. However, the significance of repetitive DNA in the genome is not completely understood, and it has been considered to have both structural and functional roles, or perhaps even no essential role. High-throughput DNA sequencing reveals huge numbers of repetitive sequences. Most bioinformatic studies focus on low-copy DNA including genes, and hence, the analyses collapse repeats in assemblies presenting only one or a few copies, often masking out and ignoring them in both DNA and RNA read data. Chromosomal studies are proving vital to examine the distribution and evolution of sequences because of the challenges of analysis of sequence data. Many questions are open about the origin, evolutionary mode and functions that repetitive sequences might have in the genome. Some, the satellite DNAs, are present in long arrays of similar motifs at a small number of sites, while others, particularly the transposable elements (DNA transposons and retrotranposons), are dispersed over regions of the genome; in both cases, sequence motifs may be located at relatively specific chromosome domains such as centromeres or subtelomeric regions. Here, we overview a range of works involving detailed characterization of the nature of all types of repetitive sequences, in particular their organization, abundance, chromosome localization, variation in sequence within and between chromosomes, and, importantly, the investigation of their transcription or expression activity. Comparison of the nature and locations of sequences between more, and less, related species is providing extensive information about their evolution and amplification. Some repetitive sequences are extremely well conserved between species, while others are among the most variable, defining differences between even closely relative species. These data suggest

  14. Another JA/COI1-independent role of OPDA detected in tomato embryo development.

    PubMed

    Wasternack, Claus; Goetz, Stephan; Hellwege, Anja; Forner, Susanne; Strnad, Miroslav; Hause, Bettina

    2012-10-01

    Jasmonates (JAs) are ubiquitously occurring signaling compounds in plants formed in response to biotic and abiotic stress as well as in development. (+)-7-iso-jasmonoyl isoleucine, the bioactive JA, is involved in most JA-dependent processes mediated by the F-box protein COI1 in a proteasome-dependent manner. However, there is an increasing number of examples, where the precursor of JA biosynthesis, cis-(+)-12-oxophytodienoic acid (OPDA) is active in a JA/COI1-independent manner. Here, we discuss those OPDA-dependent processes, thereby giving emphasis on tomato embryo development. Recent data on seed coat-generated OPDA and its role in embryo development is discussed based on biochemical and genetic evidences. PMID:22895103

  15. Novel inducers of BECN1-independent autophagy: cis-unsaturated fatty acids

    PubMed Central

    Niso-Santano, Mireia; Bravo-San Pedro, José Manuel; Maiuri, Maria Chiara; Tavernarakis, Nektarios; Cecconi, Francesco; Madeo, Frank; Codogno, Patrice; Galluzzi, Lorenzo; Kroemer, Guido

    2015-01-01

    The induction of autophagy usually requires the activation of PIK3C3/VPS34 (phosphatidylinositol 3-kinase, catalytic subunit type 3) within a multiprotein complex that contains BECN1 (Beclin 1, autophagy related). PIK3C3 catalyzes the conversion of phosphatidylinositol into phosphatidylinositol 3-phosphate (PtdIns3P). PtdIns3P associates with growing phagophores, which recruit components of the autophagic machinery, including the lipidated form of MAP1LC3B/LC3 (microtubule-associated protein 1 light chain 3 β). Depletion of BECN1, PIK3C3 or some of their interactors suppresses the formation of MAP1LC3B+ phagophores or autophagosomes elicited by most physiological stimuli, including saturated fatty acids. We observed that cis-unsaturated fatty acids stimulate the generation of cytosolic puncta containing lipidated MAP1LC3B as well as the autophagic turnover of long-lived proteins in the absence of PtdIns3P accumulation. In line with this notion, cis-unsaturated fatty acids require neither BECN1 nor PIK3C3 to stimulate the autophagic flux. Such a BECN1-independent autophagic response is phylogenetically conserved, manifesting in yeast, nematodes, mice and human cells. Importantly, MAP1LC3B+ puncta elicited by cis-unsaturated fatty acids colocalize with Golgi apparatus markers. Moreover, the structural and functional collapse of the Golgi apparatus induced by brefeldin A inhibits cis-unsaturated fatty acid-triggered autophagy. It is tempting to speculate that the well-established health-promoting effects of cis-unsaturated fatty acids are linked to their unusual capacity to stimulate noncanonical, BECN1-independent autophagic responses. PMID:25714112

  16. LNA modification of single-stranded DNA oligonucleotides allows subtle gene modification in mismatch-repair-proficient cells

    PubMed Central

    van Ravesteyn, Thomas W.; Dekker, Marleen; Fish, Alexander; Sixma, Titia K.; Wolters, Astrid; Dekker, Rob J.; te Riele, Hein P. J.

    2016-01-01

    Synthetic single-stranded DNA oligonucleotides (ssODNs) can be used to generate subtle genetic modifications in eukaryotic and prokaryotic cells without the requirement for prior generation of DNA double-stranded breaks. However, DNA mismatch repair (MMR) suppresses the efficiency of gene modification by >100-fold. Here we present a commercially available ssODN design that evades MMR and enables subtle gene modification in MMR-proficient cells. The presence of locked nucleic acids (LNAs) in the ssODNs at mismatching bases, or also at directly adjacent bases, allowed 1-, 2-, or 3-bp substitutions in MMR-proficient mouse embryonic stem cells as effectively as in MMR-deficient cells. Additionally, in MMR-proficient Escherichia coli, LNA modification of the ssODNs enabled effective single-base-pair substitution. In vitro, LNA modification of mismatches precluded binding of purified E. coli MMR protein MutS. These findings make ssODN-directed gene modification particularly well suited for applications that require the evaluation of a large number of sequence variants with an easy selectable phenotype. PMID:26951689

  17. Systematic analysis of CRISPR-Cas9 mismatch tolerance reveals low levels of off-target activity.

    PubMed

    Anderson, Emily M; Haupt, Amanda; Schiel, John A; Chou, Eldon; Machado, Hidevaldo B; Strezoska, Žaklina; Lenger, Steve; McClelland, Shawn; Birmingham, Amanda; Vermeulen, Annaleen; Smith, Anja van Brabant

    2015-10-10

    The discovery that the bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) acquired immune system can be utilized to create double-strand breaks (DSBs) in eukaryotic genomes has resulted in the ability to create genomic changes more easily than with other genome engineering techniques. While there is significant potential for the CRISPR-Cas9 system to advance basic and applied research, several unknowns remain, including the specificity of the RNA-directed DNA cleavage by the small targeting RNA, the CRISPR RNA (crRNA). Here we describe a novel synthetic RNA approach that allows for high-throughput gene editing experiments. This was used with a functional assay for protein disruption to perform high-throughput analysis of crRNA activity and specificity. We performed a comprehensive test of target cleavage using crRNAs that contain one and two nucleotide mismatches to the DNA target in the 20mer targeting region of the crRNA, allowing for the evaluation of hundreds of potential mismatched target sites without the requirement for the off-target sequences and their adjacent PAMs to be present in the genome. Our results demonstrate that while many crRNAs are functional, less than 5% of crRNAs with two mismatches to their target are effective in gene editing; this suggests an overall high level of functionality but low level of off-targeting.

  18. The contrasting structures of mismatched DNA sequences containing looped-out bases (bulges) and multiple mismatches (bubbles).

    PubMed

    Bhattacharyya, A; Lilley, D M

    1989-09-12

    We have studied the structure and reactivities of two kinds of mismatched DNA sequences--unopposed bases, or bulges, and multiple mismatched pairs of bases. These were generated in a constant sequence environment, in relatively long DNA fragments, using a technique based on heteroduplex formation between sequences cloned into single-stranded M13 phage. The mismatched sequences were studied from two points of view, viz 1. The mobility of the fragments on gel electrophoresis in polyacrylamide was studied in order to examine possible bending of the DNA due to the presence of the mismatch defect. Such bending would constitute a global effect on the conformation of the molecule. 2. Sequences in and around the mismatches were studied using enzyme and chemical probes of DNA structure. This would reveal more local structural effects of the mismatched sequences. We observed that the structures of the bulges and the multiple mismatches appear to be fundamentally different. The bulged sequences exhibited a large gel retardation, consistent with a significant bending of the DNA at the bulge, and whose magnitude depends on the number of mismatched bases. The larger bulges were sensitive to cleavage by single-strand specific nucleases, and modified by diethyl pyrocarbonate (adenines) or osmium tetroxide (thymines) in a non-uniform way, suggesting that the bulges have a precise structure that leads to exposure of some, but not all, of the bases. In contrast the multiple mismatches ('bubbles') cause very much less bending of the DNA fragment in which they occur, and uniform patterns of chemical reactivity along the length of the mismatched sequences, suggesting a less well defined, and possibly flexible, structure. The precise structure of the bulges suggests that such features may be especially significant for recognition by proteins.

  19. Ribonuclease H: the enzymes in Eukaryotes

    PubMed Central

    Cerritelli, Susana M.; Crouch, Robert J.

    2009-01-01

    Summary Ribonucleases H are enzymes that cleave the RNA of RNA/DNA hybrids that form during replication and repair and which could lead to DNA instability if they were not processed. There are two main types of RNases H, and at least one of them is present in most organisms. Eukaryotic RNases H are larger and more complex than their prokaryotic counterparts. Eukaryotic RNase H1 has acquired a Hybrid Binding Domain that confers processivity and affinity for the substrate, while eukaryotic RNase H2 is composed of three different proteins: the catalytic subunit (2A), similar to the monomeric prokaryotic RNase HII, and two other subunits (2B and 2C) that have no prokaryotic counterparts and as yet unknown functions, but that are necessary for catalysis. In this review, we discuss some of the most recent findings on eukaryotic RNases H1 and H2, focusing on the structural data on complexes between human RNase H1 and RNA/DNA hybrids that had provided great detail of how the Hybrid Binding- and RNase H-domains recognize and cleave the RNA strand of the hybrid substrates. We also describe the progress made in understanding the in vivo function of eukaryotic RNases H. While prokayotes and some single-cell eukaryotes do not require RNases H for viability, in higher eukaryotes RNases H are essential. Rnaseh1 null mice arrest development around E8.5 because RNase H1 is necessary during embryogenesis for mitochondrial DNA replication. Mutations in any of the three subunits of human RNase H2 cause Aicardi-Goutiéres Syndrome (AGS), a human neurological disorder with devastating consequences. PMID:19228196

  20. Mammalian cells defective in DNA mismatch correction

    SciTech Connect

    Branch, P.; Aquilina, G.; Hess, P.

    1994-12-31

    Mammalian cells counteract the cytotoxicity of methylating agents, including some used in antitumor chemotherapy, by removing the methylated base, O{sup 6}-methylguanine (O{sup 6}-meG) from their DNA. This removal is normally effected by a specific DNA repair enzyme (O{sup 6}-meG-DNA methyltransferase) that is expressed constitutively. In addition, an alternative type of resistance to methylating agents can be acquired after exposure of cells to the drug. This acquired resistance is highly specific for O{sup 6}-meG and is unusual in that alkylation of DNA is normal and there is no increase in the rate of repair of O{sup 6}-meG or any other damaged base. Instead, the cell is able to tolerate the presence of the usually cytotoxic O{sup 6}-meG and to replicate its DNA normally. The ambiguity of base pairing by O{sup 6}-meG and the observation that tolerant cells are also cross-resistant to the structurally similar 6-thioguanine in DNA has led to the suggestion that the cytotoxicity of O{sup 6}-meG (and 6-thioguanine) arises from ineffective attempts at DNA mismatch correction. This model postulates that tolerance arises as a consequence of loss of this important pathway.

  1. Evolution of proteasome regulators in eukaryotes.

    PubMed

    Fort, Philippe; Kajava, Andrey V; Delsuc, Fredéric; Coux, Olivier

    2015-05-01

    All living organisms require protein degradation to terminate biological processes and remove damaged proteins. One such machine is the 20S proteasome, a specialized barrel-shaped and compartmentalized multicatalytic protease. The activity of the 20S proteasome generally requires the binding of regulators/proteasome activators (PAs), which control the entrance of substrates. These include the PA700 (19S complex), which assembles with the 20S and forms the 26S proteasome and allows the efficient degradation of proteins usually labeled by ubiquitin tags, PA200 and PA28, which are involved in proteolysis through ubiquitin-independent mechanisms and PI31, which was initially identified as a 20S inhibitor in vitro. Unlike 20S proteasome, shown to be present in all Eukaryotes and Archaea, the evolutionary history of PAs remained fragmentary. Here, we made a comprehensive survey and phylogenetic analyses of the four types of regulators in 17 clades covering most of the eukaryotic supergroups. We found remarkable conservation of each PA700 subunit in all eukaryotes, indicating that the current complex PA700 structure was already set up in the last eukaryotic common ancestor (LECA). Also present in LECA, PA200, PA28, and PI31 showed a more contrasted evolutionary picture, because many lineages have subsequently lost one or two of them. The paramount conservation of PA700 composition in all eukaryotes and the dynamic evolution of PA200, PA28, and PI31 are discussed in the light of current knowledge on their physiological roles.

  2. Evolution of Proteasome Regulators in Eukaryotes

    PubMed Central

    Fort, Philippe; Kajava, Andrey V.; Delsuc, Fredéric; Coux, Olivier

    2015-01-01

    All living organisms require protein degradation to terminate biological processes and remove damaged proteins. One such machine is the 20S proteasome, a specialized barrel-shaped and compartmentalized multicatalytic protease. The activity of the 20S proteasome generally requires the binding of regulators/proteasome activators (PAs), which control the entrance of substrates. These include the PA700 (19S complex), which assembles with the 20S and forms the 26S proteasome and allows the efficient degradation of proteins usually labeled by ubiquitin tags, PA200 and PA28, which are involved in proteolysis through ubiquitin-independent mechanisms and PI31, which was initially identified as a 20S inhibitor in vitro. Unlike 20S proteasome, shown to be present in all Eukaryotes and Archaea, the evolutionary history of PAs remained fragmentary. Here, we made a comprehensive survey and phylogenetic analyses of the four types of regulators in 17 clades covering most of the eukaryotic supergroups. We found remarkable conservation of each PA700 subunit in all eukaryotes, indicating that the current complex PA700 structure was already set up in the last eukaryotic common ancestor (LECA). Also present in LECA, PA200, PA28, and PI31 showed a more contrasted evolutionary picture, because many lineages have subsequently lost one or two of them. The paramount conservation of PA700 composition in all eukaryotes and the dynamic evolution of PA200, PA28, and PI31 are discussed in the light of current knowledge on their physiological roles. PMID:25943340

  3. Comparative genomics and evolution of eukaryotic phospholipidbiosynthesis

    SciTech Connect

    Lykidis, Athanasios

    2006-12-01

    Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.

  4. Atypical mitochondrial inheritance patterns in eukaryotes.

    PubMed

    Breton, Sophie; Stewart, Donald T

    2015-10-01

    Mitochondrial DNA (mtDNA) is predominantly maternally inherited in eukaryotes. Diverse molecular mechanisms underlying the phenomenon of strict maternal inheritance (SMI) of mtDNA have been described, but the evolutionary forces responsible for its predominance in eukaryotes remain to be elucidated. Exceptions to SMI have been reported in diverse eukaryotic taxa, leading to the prediction that several distinct molecular mechanisms controlling mtDNA transmission are present among the eukaryotes. We propose that these mechanisms will be better understood by studying the deviations from the predominating pattern of SMI. This minireview summarizes studies on eukaryote species with unusual or rare mitochondrial inheritance patterns, i.e., other than the predominant SMI pattern, such as maternal inheritance of stable heteroplasmy, paternal leakage of mtDNA, biparental and strictly paternal inheritance, and doubly uniparental inheritance of mtDNA. The potential genes and mechanisms involved in controlling mitochondrial inheritance in these organisms are discussed. The linkage between mitochondrial inheritance and sex determination is also discussed, given that the atypical systems of mtDNA inheritance examined in this minireview are frequently found in organisms with uncommon sexual systems such as gynodioecy, monoecy, or andromonoecy. The potential of deviations from SMI for facilitating a better understanding of a number of fundamental questions in biology, such as the evolution of mtDNA inheritance, the coevolution of nuclear and mitochondrial genomes, and, perhaps, the role of mitochondria in sex determination, is considerable.

  5. What was the real contribution of endosymbionts to the eukaryotic nucleus? Insights from photosynthetic eukaryotes.

    PubMed

    Moreira, David; Deschamps, Philippe

    2014-07-01

    Eukaryotic genomes are composed of genes of different evolutionary origins. This is especially true in the case of photosynthetic eukaryotes, which, in addition to typical eukaryotic genes and genes of mitochondrial origin, also contain genes coming from the primary plastids and, in the case of secondary photosynthetic eukaryotes, many genes provided by the nuclei of red or green algal endosymbionts. Phylogenomic analyses have been applied to detect those genes and, in some cases, have led to proposing the existence of cryptic, no longer visible endosymbionts. However, detecting them is a very difficult task because, most often, those genes were acquired a long time ago and their phylogenetic signal has been heavily erased. We revisit here two examples, the putative cryptic endosymbiosis of green algae in diatoms and chromerids and of Chlamydiae in the first photosynthetic eukaryotes. We show that the evidence sustaining them has been largely overestimated, and we insist on the necessity of careful, accurate phylogenetic analyses to obtain reliable results.

  6. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity.

    PubMed

    Parfrey, Laura Wegener; Walters, William A; Lauber, Christian L; Clemente, Jose C; Berg-Lyons, Donna; Teiling, Clotilde; Kodira, Chinnappa; Mohiuddin, Mohammed; Brunelle, Julie; Driscoll, Mark; Fierer, Noah; Gilbert, Jack A; Knight, Rob

    2014-01-01

    Eukaryotic microbes (protists) residing in the vertebrate gut influence host health and disease, but their diversity and distribution in healthy hosts is poorly understood. Protists found in the gut are typically considered parasites, but many are commensal and some are beneficial. Further, the hygiene hypothesis predicts that association with our co-evolved microbial symbionts may be important to overall health. It is therefore imperative that we understand the normal diversity of our eukaryotic gut microbiota to test for such effects and avoid eliminating commensal organisms. We assembled a dataset of healthy individuals from two populations, one with traditional, agrarian lifestyles and a second with modern, westernized lifestyles, and characterized the human eukaryotic microbiota via high-throughput sequencing. To place the human gut microbiota within a broader context our dataset also includes gut samples from diverse mammals and samples from other aquatic and terrestrial environments. We curated the SILVA ribosomal database to reflect current knowledge of eukaryotic taxonomy and employ it as a phylogenetic framework to compare eukaryotic diversity across environment. We show that adults from the non-western population harbor a diverse community of protists, and diversity in the human gut is comparable to that in other mammals. However, the eukaryotic microbiota of the western population appears depauperate. The distribution of symbionts found in mammals reflects both host phylogeny and diet. Eukaryotic microbiota in the gut are less diverse and more patchily distributed than bacteria. More broadly, we show that eukaryotic communities in the gut are less diverse than in aquatic and terrestrial habitats, and few taxa are shared across habitat types, and diversity patterns of eukaryotes are correlated with those observed for bacteria. These results outline the distribution and diversity of microbial eukaryotic communities in the mammalian gut and across

  7. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity

    PubMed Central

    Parfrey, Laura Wegener; Walters, William A.; Lauber, Christian L.; Clemente, Jose C.; Berg-Lyons, Donna; Teiling, Clotilde; Kodira, Chinnappa; Mohiuddin, Mohammed; Brunelle, Julie; Driscoll, Mark; Fierer, Noah; Gilbert, Jack A.; Knight, Rob

    2014-01-01

    Eukaryotic microbes (protists) residing in the vertebrate gut influence host health and disease, but their diversity and distribution in healthy hosts is poorly understood. Protists found in the gut are typically considered parasites, but many are commensal and some are beneficial. Further, the hygiene hypothesis predicts that association with our co-evolved microbial symbionts may be important to overall health. It is therefore imperative that we understand the normal diversity of our eukaryotic gut microbiota to test for such effects and avoid eliminating commensal organisms. We assembled a dataset of healthy individuals from two populations, one with traditional, agrarian lifestyles and a second with modern, westernized lifestyles, and characterized the human eukaryotic microbiota via high-throughput sequencing. To place the human gut microbiota within a broader context our dataset also includes gut samples from diverse mammals and samples from other aquatic and terrestrial environments. We curated the SILVA ribosomal database to reflect current knowledge of eukaryotic taxonomy and employ it as a phylogenetic framework to compare eukaryotic diversity across environment. We show that adults from the non-western population harbor a diverse community of protists, and diversity in the human gut is comparable to that in other mammals. However, the eukaryotic microbiota of the western population appears depauperate. The distribution of symbionts found in mammals reflects both host phylogeny and diet. Eukaryotic microbiota in the gut are less diverse and more patchily distributed than bacteria. More broadly, we show that eukaryotic communities in the gut are less diverse than in aquatic and terrestrial habitats, and few taxa are shared across habitat types, and diversity patterns of eukaryotes are correlated with those observed for bacteria. These results outline the distribution and diversity of microbial eukaryotic communities in the mammalian gut and across

  8. Structure and function of eukaryotic chromosomes

    SciTech Connect

    Hennig, W.

    1987-01-01

    Contents: Introduction; Polytene Chromosomel Giant Chromosomes in Ciliates; The sp-I Genes in the Balbiani Rings of Chironomus Salivary Glands; The White Locus of Drosophila Melanogaster; The Genetic and Molecular Organization of the Dense Cluster of Functionally Related Vital Genes in the DOPA Decarboxylase Region of the Drosophila melanogaster Genome; Heat Shock Puffs and Response to Environmental Stress; The Y Chromosomal Lampbrush Loops of Drosophila; Contributions of Electron Microscopic Spreading Preparations (''Miller Spreads'') to the Analysis of Chromosome Structure; Replication of DNA in Eukaryotic Chromosomes; Gene Amplification in Dipteran Chromosomes; The Significance of Plant Transposable Elements in Biologically Relevant Processes; Arrangement of Chromosomes in Interphase Cell Nuclei; Heterochromatin and the Phenomenon of Chromosome Banding; Multiple Nonhistone Protein-DNA Complexes in Chromatin Regulate the Cell- and Stage-Specific Activity of an Eukaryotic Gene; Genetics of Sex Determination in Eukaryotes; Application of Basic Chromosome Research in Biotechnology and Medicine. This book presents an overview of various aspects of chromosome research.

  9. Force generation in a regrowing eukaryotic flagellum

    NASA Astrophysics Data System (ADS)

    Polin, Marco; Bruneau, Bastien; Johnson, Thomas; Goldstein, Raymond

    2012-02-01

    Flagella are whip-like organelles with a complex internal structure, the axoneme, highly conserved across eukaryotic species. The highly regulated activity of motor proteins arranged along the axoneme moves the flagellum in the surrounding fluid, generating forces that can be used for swimming or fluid propulsion. Although our understanding of the general mechanism behind flagellar motion is well established, the details of its implementation in a real axoneme is still poorly understood. Here we explore the inner working of the eukaryotic flagellum using a uniflagellated mutant of the unicellular green alga Chlamydomonas reinhardtii to investigate in detail the force and power generated by a moving flagellum during axonemal regrowth after deflagellation. These experiments will contribute to our understanding of the inner working of the eukaryotic flagellum.

  10. Osmosensing and osmoregulation in unicellular eukaryotes.

    PubMed

    Suescún-Bolívar, Luis Parmenio; Thomé, Patricia Elena

    2015-03-01

    Eukaryotic microorganisms possess mechanisms to detect osmotic variations in their surroundings, from specialized receptors and membrane transporters, to sophisticated systems such as two-component histidine kinases. Osmotic stimuli are transduced through conserved phosphorylation cascades that result in a rapid response to mitigate stress. This response allows for the maintenance of an optimal biochemical environment for cell functioning, as well as a suitable recovery in suboptimal environments that would otherwise endanger cell survival. The molecular basis of these responses has been largely studied in yeasts and bacteria. However, fewer studies have been published concerning the molecular basis of osmoregulation in other eukaryotic microorganisms such as protozoans and microalgae. Here, we review the main osmosensors reported in unicellular eukaryotic microorganisms (yeasts, microalgae and protozoa) and the pathways that maintain homeostasis in cells encountering hyperosmotic challenges.

  11. Reinitiation enhances reliable transcriptional responses in eukaryotes.

    PubMed

    Liu, Bo; Yuan, Zhanjiang; Aihara, Kazuyuki; Chen, Luonan

    2014-08-01

    Gene transcription is a noisy process carried out by the transcription machinery recruited to the promoter. Noise reduction is a fundamental requirement for reliable transcriptional responses which in turn are crucial for signal transduction. Compared with the relatively simple transcription initiation in prokaryotes, eukaryotic transcription is more complex partially owing to its additional reinitiation mechanism. By theoretical analysis, we showed that reinitiation reduces noise in eukaryotic transcription independent of the transcription level. Besides, a higher reinitiation rate enables a stable scaffold complex an advantage in noise reduction. Finally, we showed that the coupling between scaffold formation and transcription can further reduce transcription noise independent of the transcription level. Furthermore, compared with the reinitiation mechanism, the noise reduction effect of the coupling can be of more significance in the case that the transcription level is low and the intrinsic noise dominates. Our results uncover a mechanistic route which eukaryotes may use to facilitate a more reliable response in the noisy transcription process. PMID:24850905

  12. Mitochondrion-related organelles in eukaryotic protists.

    PubMed

    Shiflett, April M; Johnson, Patricia J

    2010-01-01

    The discovery of mitochondrion-type genes in organisms thought to lack mitochondria led to the demonstration that hydrogenosomes share a common ancestry with mitochondria, as well as the discovery of mitosomes in multiple eukaryotic lineages. No examples of examined eukaryotes lacking a mitochondrion-related organelle exist, implying that the endosymbiont that gave rise to the mitochondrion was present in the first eukaryote. These organelles, known as hydrogenosomes, mitosomes, or mitochondrion-like organelles, are typically reduced, both structurally and biochemically, relative to classical mitochondria. However, despite their diversification and adaptation to different niches, all appear to play a role in Fe-S cluster assembly, as observed for mitochondria. Although evidence supports the use of common protein targeting mechanisms in the biogenesis of these diverse organelles, divergent features are also apparent. This review examines the metabolism and biogenesis of these organelles in divergent unicellular microbes, with a focus on parasitic protists.

  13. Morbillivirus nucleoprotein possesses a novel nuclear localization signal and a CRM1-independent nuclear export signal

    SciTech Connect

    Sato, Hiroki; Masuda, Munemitsu; Miura, Ryuichi; Yoneda, Misako; Kai, Chieko . E-mail: ckai@ims.u-tokyo.ac.jp

    2006-08-15

    Morbilliviruses, which belong to the Mononegavirales, replicate its RNA genome in the cytoplasm of the host cell. However, they also form characteristic intranuclear inclusion bodies, consisting of nucleoprotein (N), in infected cells. To analyze the mechanisms of nucleocytoplasmic transport of N protein, we characterized the nuclear localization (NLS) and nuclear export (NES) signals of canine distemper virus (CDV) N protein by deletion mutation and alanine substitution of the protein. The NLS has a novel leucine/isoleucine-rich motif (TGILISIL) at positions 70-77, whereas the NES is composed of a leucine-rich motif (LLRSLTLF) at positions 4-11. The NLS and NES of the N proteins of other morbilliviruses, that is, measles virus (MV) and rinderpest virus (RPV), were also analyzed. The NLS of CDV-N protein is conserved at the same position in MV-N protein, whereas the NES of MV-N protein is located in the C-terminal region. The NES of RPV-N protein is also located at the same position as CDV-N protein, whereas the NLS motif is present not only at the same locus as CDV-N protein but also at other sites. Interestingly, the nuclear export of all these N proteins appears to proceed via a CRM1-independent pathway.

  14. Uniquely designed nuclear structures of lower eukaryotes.

    PubMed

    Iwamoto, Masaaki; Hiraoka, Yasushi; Haraguchi, Tokuko

    2016-06-01

    The nuclear structures of lower eukaryotes, specifically protists, often vary from those of yeasts and metazoans. Several studies have demonstrated the unique and fascinating features of these nuclear structures, such as a histone-independent condensed chromatin in dinoflagellates and two structurally distinct nuclear pore complexes in ciliates. Despite their unique molecular/structural features, functions required for formation of their cognate molecules/structures are highly conserved. This provides important information about the structure-function relationship of the nuclear structures. In this review, we highlight characteristic nuclear structures found in lower eukaryotes, and discuss their attractiveness as potential biological systems for studying nuclear structures.

  15. Recombinant vector and eukaryotic host transformed thereby

    SciTech Connect

    Sugden, W.M.

    1987-08-11

    A recombinant plasmid is described comprising: a segment from a first plasmid which is not a lymphotrophic herpes virus segment and which facilitates the replication of the recombinant plasmid in a prokaryotic host; a segment from a lymphotrophic herpes virus which is linked to the first plasmid segment such that is a capable of assisting in maintaining the recombinant plasmid as a plasmid if the recombinant plasmid is inserted into a eukaryotic host that has been transformed by the lymphotrophic herpes virus; and a foreign eukaryotic gene component linked as part of the recombinant plasmid.

  16. Reproduction, symbiosis, and the eukaryotic cell.

    PubMed

    Godfrey-Smith, Peter

    2015-08-18

    This paper develops a conceptual framework for addressing questions about reproduction, individuality, and the units of selection in symbiotic associations, with special attention to the origin of the eukaryotic cell. Three kinds of reproduction are distinguished, and a possible evolutionary sequence giving rise to a mitochondrion-containing eukaryotic cell from an endosymbiotic partnership is analyzed as a series of transitions between each of the three forms of reproduction. The sequence of changes seen in this "egalitarian" evolutionary transition is compared with those that apply in "fraternal" transitions, such as the evolution of multicellularity in animals.

  17. Heterodyne detection with mismatch correction base on array detector

    NASA Astrophysics Data System (ADS)

    Hongzhou, Dong; Guoqiang, Li; Ruofu, Yang; Chunping, Yang; Mingwu, Ao

    2016-07-01

    Based on an array detector, a new heterodyne detection system, which can correct the mismatches of amplitude and phase between signal and local oscillation (LO) beams, is presented in this paper. In the light of the fact that, for a heterodyne signal, there is a certain phase difference between the adjacent two samples of analog-to-digital converter (ADC), we propose to correct the spatial phase mismatch by use of the time-domain phase difference. The corrections can be realized by shifting the output sequences acquired from the detector elements in the array, and the steps of the shifting depend on the quantity of spatial phase mismatch. Numerical calculations of heterodyne efficiency are conducted to confirm the excellent performance of our system. Being different from previous works, our system needs not extra optical devices, so it provides probably an effective means to ease the problem resulted from the mismatches.

  18. Hemangioma of the tongue demonstrating a perfusion blood pool mismatch

    SciTech Connect

    Front, D.; Groshar, D.; Israel, O.; Robinson, E.

    1986-02-01

    Perfusion blood pool mismatch using Tc-99m labeled red blood cells (RBCs) in a hemangioma of the tongue is described. The method is useful in the evaluation of size of the residual blood pool after irradiation of the tumor.

  19. Elastic-plastic fracture mechanics of strength-mismatching

    SciTech Connect

    Parks, D.M.; Ganti, S.; McClintock, F.A.

    1996-12-31

    Approximate solutions to stress-fields are provided for a strength-mismatched interface crack in small-scale yielding (SSY) for non-hardening and low hardening materials. Variations of local deformation intensities, characterized by a J-type contour integral, are proposed. The softer material experiences a higher deformation intensity level, J{sub S}, while the harder material sees a much lower deformation intensity level, J{sub H}, compared to that obtained from the applied J near the respective homogeneous crack-tips. For a low hardening material, the stress fields are obtained by scaling from an elastic/perfectly-plastic problem, based on an effective mismatch, M{sub eff}, which is a function of mismatch, M, and the hardening exponent, n. Triaxial stress build-up is discussed quantitatively in terms of M. The influence of strength-mismatch on cleavage fracture is discussed using Weibull statistics.

  20. Polarizing keys prevent mismatch of connector plugs and receptacles

    NASA Technical Reports Server (NTRS)

    Chiapuzio, A.

    1966-01-01

    Keying prevents mismatching of plugs and receptacles in connector patching of instrumentation involving several thousand leads. Each receptacle and plug contains three polarizing keys that must mate in a complementary mode before the connector pins and sockets will engage.

  1. Heterodyne detection with mismatch correction based on array detector

    NASA Astrophysics Data System (ADS)

    Dong, Hongzhou; Li, Guoqiang; Yang, Ruofu; Yang, Chunping; Ao, Mingwu

    2016-07-01

    Based on an array detector, a new heterodyne detection system, which can correct the mismatches of amplitude and phase between signal and local oscillation (LO) beams, is presented in this paper. In the light of the fact that, for a heterodyne signal, there is a certain phase difference between the adjacent two samples of analog-to-digital converter (ADC), we propose to correct the spatial phase mismatch by use of the time-domain phase difference. The corrections can be realized by shifting the output sequences acquired from the detector elements in the array, and the steps of the shifting depend on the quantity of spatial phase mismatch. Numerical calculations of heterodyne efficiency are conducted to confirm the excellent performance of our system. Being different from previous works, our system needs not extra optical devices, so it provides probably an effective means to ease the problem resulted from the mismatches.

  2. Interaction between Mismatch Repair and Genetic Recombination in Saccharomyces Cerevisiae

    PubMed Central

    Alani, E.; Reenan, RAG.; Kolodner, R. D.

    1994-01-01

    The yeast Saccharomyces cerevisiae encodes a set of genes that show strong amino acid sequence similarity to MutS and MutL, proteins required for mismatch repair in Escherichia coli. We examined the role of MSH2 and PMS1, yeast homologs of mutS and mutL, respectively, in the repair of base pair mismatches formed during meiotic recombination. By using specifically marked HIS4 and ARG4 alleles, we showed that msh2 mutants displayed a severe defect in the repair of all base pair mismatches as well as 1-, 2- and 4-bp insertion/deletion mispairs. The msh2 and pms1 phenotypes were indistinguishable, suggesting that the wild-type gene products act in the same repair pathway. A comparison of gene conversion events in wild-type and msh2 mutants indicated that mismatch repair plays an important role in genetic recombination. (1) Tetrad analysis at five different loci revealed that, in msh2 mutants, the majority of aberrant segregants displayed a sectored phenotype, consistent with a failure to repair mismatches created during heteroduplex formation. In wild type, base pair mismatches were almost exclusively repaired toward conversion rather than restoration. (2) In msh2 strains 10-19% of the aberrant tetrads were Ab4:4. (3) Polarity gradients at HIS4 and ARG4 were nearly abolished in msh2 mutants. The frequency of gene conversion at the 3' end of these genes was increased and was nearly the frequency observed at the 5' end. (4) Co-conversion studies were consistent with mismatch repair acting to regulate heteroduplex DNA tract length. We favor a model proposing that recombination events occur through the formation and resolution of heteroduplex intermediates and that mismatch repair proteins specifically interact with recombination enzymes to regulate the length of symmetric heteroduplex DNA. PMID:8056309

  3. The origin of the eukaryotic cell

    NASA Technical Reports Server (NTRS)

    Hartman, H.

    1984-01-01

    The endosymbiotic hypothesis for the origin of the eukaryotic cell has been applied to the origin of the mitochondria and chloroplasts. However as has been pointed out by Mereschowsky in 1905, it should also be applied to the nucleus as well. If the nucleus, mitochondria and chloroplasts are endosymbionts, then it is likely that the organism that did the engulfing was not a DNA-based organism. In fact, it is useful to postulate that this organism was a primitive RNA-based organism. This hypothesis would explain the preponderance of RNA viruses found in eukaryotic cells. The centriole and basal body do not have a double membrane or DNA. Like all MTOCs (microtubule organising centres), they have a structural or morphic RNA implicated in their formation. This would argue for their origin in the early RNA-based organism rather than in an endosymbiotic event involving bacteria. Finally, the eukaryotic cell uses RNA in ways quite unlike bacteria, thus pointing to a greater emphasis of RNA in both control and structure in the cell. The origin of the eukaryotic cell may tell us why it rather than its prokaryotic relative evolved into the metazoans who are reading this paper.

  4. Modelling the Eukaryotic Chromosome: A Stepped Approach.

    ERIC Educational Resources Information Center

    Nicholl, Linda A. A.; Nicholl, Desmond S. T.

    1987-01-01

    Describes how a series of models can be constructed to illustrate the structure of eukaryotic chromosomes, emphasizing the structure of DNA. Suggests that by adapting a different scale for each series of models, a complete picture of the complex nature of the chromosome can be built up. (TW)

  5. Construction of bacteria-eukaryote synthetic mutualism.

    PubMed

    Kubo, Isao; Hosoda, Kazufumi; Suzuki, Shingo; Yamamoto, Kayo; Kihara, Kumiko; Mori, Kotaro; Yomo, Tetsuya

    2013-08-01

    Mutualism is ubiquitous in nature but is known to be intrinsically vulnerable with regard to both population dynamics and evolution. Synthetic ecology has indicated that it is feasible for organisms to establish novel mutualism merely through encountering each other by showing that it is feasible to construct synthetic mutualism between organisms. However, bacteria-eukaryote mutualism, which is ecologically important, has not yet been constructed. In this study, we synthetically constructed mutualism between a bacterium and a eukaryote by using two model organisms. We mixed a bacterium, Escherichia coli (a genetically engineered glutamine auxotroph), and an amoeba, Dictyostelium discoideum, in 14 sets of conditions in which each species could not grow in monoculture but potentially could grow in coculture. Under a single condition in which the bacterium and amoeba mutually compensated for the lack of required nutrients (lipoic acid and glutamine, respectively), both species grew continuously through several subcultures, essentially establishing mutualism. Our results shed light on the establishment of bacteria-eukaryote mutualism and indicate that a bacterium and eukaryote pair in nature also has a non-negligible possibility of establishing novel mutualism if the organisms are potentially mutualistic. PMID:23711432

  6. Eukaryote DIRS1-like retrotransposons: an overview

    PubMed Central

    2011-01-01

    Background DIRS1-like elements compose one superfamily of tyrosine recombinase-encoding retrotransposons. They have been previously reported in only a few diverse eukaryote species, describing a patchy distribution, and little is known about their origin and dynamics. Recently, we have shown that these retrotransposons are common among decapods, which calls into question the distribution of DIRS1-like retrotransposons among eukaryotes. Results To determine the distribution of DIRS1-like retrotransposons, we developed a new computational tool, ReDoSt, which allows us to identify well-conserved DIRS1-like elements. By screening 274 completely sequenced genomes, we identified more than 4000 DIRS1-like copies distributed among 30 diverse species which can be clustered into roughly 300 families. While the diversity in most species appears restricted to a low copy number, a few bursts of transposition are strongly suggested in certain species, such as Danio rerio and Saccoglossus kowalevskii. Conclusion In this study, we report 14 new species and 8 new higher taxa that were not previously known to harbor DIRS1-like retrotransposons. Now reported in 61 species, these elements appear widely distributed among eukaryotes, even if they remain undetected in streptophytes and mammals. Especially in unikonts, a broad range of taxa from Cnidaria to Sauropsida harbors such elements. Both the distribution and the similarities between the DIRS1-like element phylogeny and conventional phylogenies of the host species suggest that DIRS1-like retrotransposons emerged early during the radiation of eukaryotes. PMID:22185659

  7. Eukaryotic transposable elements as mutagenic agents

    SciTech Connect

    Lambert, M.E. . Banbury Center); McDonald, J.F. ); Weinstein, I.B. )

    1988-01-01

    This book contains the proceedings on eukaryotic transposable elements as mutagenic agents. Topics covered include: overview of prokaryotic transposable elements, mutational effects of transposable element insertions, inducers/regulators of transposable element expression and transposition, genomic stress and environmental effects, and inducers/regulators of retroviral element expression.

  8. Marine subsurface eukaryotes: the fungal majority.

    PubMed

    Edgcomb, Virginia P; Beaudoin, David; Gast, Rebecca; Biddle, Jennifer F; Teske, Andreas

    2011-01-01

    Studies on the microbial communities of deep subsurface sediments have indicated the presence of Bacteria and Archaea throughout the sediment column. Microbial eukaryotes could also be present in deep-sea subsurface sediments; either bacterivorous protists or eukaryotes capable of assimilating buried organic carbon. DNA- and RNA-based clone library analyses are used here to examine the microbial eukaryotic diversity and identify the potentially active members in deep-sea sediment cores of the Peru Margin and the Peru Trench. We compared surface communities with those much deeper in the same cores, and compared cores from different sites. Fungal sequences were most often recovered from both DNA- and RNA-based clone libraries, with variable overall abundances of different sequence types and different dominant clone types in the RNA-based and the DNA-based libraries. Surficial sediment communities were different from each other and from the deep subsurface samples. Some fungal sequences represented potentially novel organisms as well as ones with a cosmopolitan distribution in terrestrial, fresh and salt water environments. Our results indicate that fungi are the most consistently detected eukaryotes in the marine sedimentary subsurface; further, some species may be specifically adapted to the deep subsurface and may play important roles in the utilization and recycling of nutrients.

  9. Eukaryotic-Like Virus Budding in Archaea

    PubMed Central

    Quemin, Emmanuelle R. J.; Chlanda, Petr; Sachse, Martin; Forterre, Patrick

    2016-01-01

    ABSTRACT Similar to many eukaryotic viruses (and unlike bacteriophages), viruses infecting archaea are often encased in lipid-containing envelopes. However, the mechanisms of their morphogenesis and egress remain unexplored. Here, we used dual-axis electron tomography (ET) to characterize the morphogenesis of Sulfolobus spindle-shaped virus 1 (SSV1), the prototype of the family Fuselloviridae and representative of the most abundant archaea-specific group of viruses. Our results show that SSV1 assembly and egress are concomitant and occur at the cellular cytoplasmic membrane via a process highly reminiscent of the budding of enveloped viruses that infect eukaryotes. The viral nucleoprotein complexes are extruded in the form of previously unknown rod-shaped intermediate structures which have an envelope continuous with the host membrane. Further maturation into characteristic spindle-shaped virions takes place while virions remain attached to the cell surface. Our data also revealed the formation of constricted ring-like structures which resemble the budding necks observed prior to the ESCRT machinery-mediated membrane scission during egress of various enveloped viruses of eukaryotes. Collectively, we provide evidence that archaeal spindle-shaped viruses contain a lipid envelope acquired upon budding of the viral nucleoprotein complex through the host cytoplasmic membrane. The proposed model bears a clear resemblance to the egress strategy employed by enveloped eukaryotic viruses and raises important questions as to how the archaeal single-layered membrane composed of tetraether lipids can undergo scission. PMID:27624130

  10. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    PubMed

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.

  11. Circular code motifs in genomes of eukaryotes.

    PubMed

    El Soufi, Karim; Michel, Christian J

    2016-11-01

    A set X of 20 trinucleotides was identified in genes of bacteria, eukaryotes, plasmids and viruses, which has in average the highest occurrence in reading frame compared to its two shifted frames (Michel, 2015; Arquès and Michel, 1996). This set X has an interesting mathematical property as X is a circular code (Arquès and Michel, 1996). Thus, the motifs from this circular code X, called X motifs, have the property to always retrieve, synchronize and maintain the reading frame in genes. In this paper, we develop several statistical analyzes of X motifs in 138 available complete genomes of eukaryotes in which genes as well as non-gene regions are examined. Large X motifs (with lengths of at least 15 consecutive trinucleotides of X and compositions of at least 10 different trinucleotides of X among 20) have the highest occurrence in genomes of eukaryotes compared to its 23 large bijective motifs, its two large permuted motifs and large random motifs. The largest X motifs identified in eukaryotic genomes are presented, e.g. an X motif in a non-gene region of the genome Solanum pennellii with a length of 155 trinucleotides (465 nucleotides) and an expectation E=10(-71). In the human genome, the largest X motif occurs in a non-gene region of the chromosome 13 with a length of 36 trinucleotides and an expectation E=10(-11). X motifs in non-gene regions of genomes could be evolutionary relics of primitive genes using the circular code for translation. However, the proportion of X motifs (with lengths of at least 10 consecutive trinucleotides of X and compositions of at least 5 different trinucleotides of X among 20) in genes/non-genes of the 138 complete eukaryotic genomes is about 8. Thus, the X motifs occur preferentially in genes, as expected from the previous works of 20 years.

  12. Eukaryotic diversity at pH extremes.

    PubMed

    Amaral-Zettler, Linda A

    2012-01-01

    Extremely acidic (pH < 3) and extremely alkaline (pH > 9) environments support a diversity of single-cell and to a lesser extent, multicellular eukaryotic life. This study compared alpha and beta diversity in eukaryotic communities from seven diverse aquatic environments with pH values ranging from 2 to 11 using massively-parallel pyrotag sequencing targeting the V9 hypervariable region of the 18S ribosomal RNA (rRNA) gene. A total of 946 operational taxonomic units (OTUs) were recovered at a 6% cut-off level (94% similarity) across the sampled environments. Hierarchical clustering of the samples segregated the communities into acidic and alkaline groups. Similarity percentage (SIMPER) analysis followed by indicator OTU analysis (IOA) and non-metric multidimensional scaling (NMDS) were used to determine which characteristic groups of eukaryotic taxa typify acidic or alkaline extremes and the extent to which pH explains eukaryotic community structure in these environments. Spain's Rio Tinto yielded the fewest observed OTUs while Nebraska Sandhills alkaline lakes yielded the most. Distinct OTUs, including metazoan OTUs, numerically dominated pH extreme sites. Indicator OTUs included the diatom Pinnularia and unidentified opisthokonts (Fungi and Filasterea) in the extremely acidic environments, and the ciliate Frontonia across the extremely alkaline sites. Inferred from NMDS, pH explained only a modest fraction of the variation across the datasets, indicating that other factors influence the underlying community structure in these environments. The findings from this study suggest that the ability for eukaryotes to adapt to pH extremes over a broad range of values may be rare, but further study of taxa that can broadly adapt across diverse acidic and alkaline environments, respectively present good models for understanding adaptation and should be targeted for future investigations.

  13. Eukaryotic diversity at pH extremes

    PubMed Central

    Amaral-Zettler, Linda A.

    2013-01-01

    Extremely acidic (pH < 3) and extremely alkaline (pH > 9) environments support a diversity of single-cell and to a lesser extent, multicellular eukaryotic life. This study compared alpha and beta diversity in eukaryotic communities from seven diverse aquatic environments with pH values ranging from 2 to 11 using massively-parallel pyrotag sequencing targeting the V9 hypervariable region of the 18S ribosomal RNA (rRNA) gene. A total of 946 operational taxonomic units (OTUs) were recovered at a 6% cut-off level (94% similarity) across the sampled environments. Hierarchical clustering of the samples segregated the communities into acidic and alkaline groups. Similarity percentage (SIMPER) analysis followed by indicator OTU analysis (IOA) and non-metric multidimensional scaling (NMDS) were used to determine which characteristic groups of eukaryotic taxa typify acidic or alkaline extremes and the extent to which pH explains eukaryotic community structure in these environments. Spain's Rio Tinto yielded the fewest observed OTUs while Nebraska Sandhills alkaline lakes yielded the most. Distinct OTUs, including metazoan OTUs, numerically dominated pH extreme sites. Indicator OTUs included the diatom Pinnularia and unidentified opisthokonts (Fungi and Filasterea) in the extremely acidic environments, and the ciliate Frontonia across the extremely alkaline sites. Inferred from NMDS, pH explained only a modest fraction of the variation across the datasets, indicating that other factors influence the underlying community structure in these environments. The findings from this study suggest that the ability for eukaryotes to adapt to pH extremes over a broad range of values may be rare, but further study of taxa that can broadly adapt across diverse acidic and alkaline environments, respectively present good models for understanding adaptation and should be targeted for future investigations. PMID:23335919

  14. DNA repair mechanisms in eukaryotes: Special focus in Entamoeba histolytica and related protozoan parasites.

    PubMed

    López-Camarillo, César; Lopez-Casamichana, Mavil; Weber, Christian; Guillen, Nancy; Orozco, Esther; Marchat, Laurence A

    2009-12-01

    Eukaryotic cell viability highly relies on genome stability and DNA integrity maintenance. The cellular response to DNA damage mainly consists of six biological conserved pathways known as homologous recombination repair (HRR), non-homologous end-joining (NHEJ), base excision repair (BER), mismatch repair (MMR), nucleotide excision repair (NER), and methyltransferase repair that operate in a concerted way to minimize genetic information loss due to a DNA lesion. Particularly, protozoan parasites survival depends on DNA repair mechanisms that constantly supervise chromosomes to correct damaged nucleotides generated by cytotoxic agents, host immune pressure or cellular processes. Here we reviewed the current knowledge about DNA repair mechanisms in the most relevant human protozoan pathogens. Additionally, we described the recent advances to understand DNA repair mechanisms in Entamoeba histolytica with special emphasis in the use of genomic approaches based on bioinformatic analysis of parasite genome sequence and microarrays technology.

  15. Chimeric Proteins to Detect DNA Damage and Mismatches

    SciTech Connect

    McCutchen-Maloney, S; Malfatti, M; Robbins, K M

    2002-01-14

    The goal of this project was to develop chimeric proteins composed of a DNA mismatch or damage binding protein and a nuclease, as well as methods to detect DNA mismatches and damage. We accomplished this through protein engineering based on using polymerase chain reactions (PCRs) to create chimeras with novel functions for damage and mismatch detection. This project addressed fundamental questions relating to disease susceptibility and radiation-induced damage in cells. It also supported and enhanced LLNL's competency in the emerging field of proteomics. In nature, DNA is constantly being subjected to damaging agents such as exposure to ultraviolet (UV) radiation and various environmental and dietary carcinogens. If DNA damage is not repaired however, mutations in DNA result that can eventually manifest in cancer and other diseases. In addition to damage-induced DNA mutations, single nucleotide polymorphisms (SNPs), which are variations in the genetic sequence between individuals, may predispose some to disease. As a result of the Human Genome Project, the integrity of a person's DNA can now be monitored. Therefore, methods to detect DNA damage, mutations, and SNPs are useful not only in basic research but also in the health and biotechnology industries. Current methods of detection often use radioactive labeling and rely on expensive instrumentation that is not readily available in many research settings. Our methods to detect DNA damage and mismatches employ simple gel electrophoresis and flow cytometry, thereby alleviating the need for radioactive labeling and expensive equipment. In FY2001, we explored SNP detection by developing methods based on the ability of the chimeric proteins to detect mismatches. Using multiplex assays with flow cytometry and fluorescent beads to which the DNA substrates where attached, we showed that several of the chimeras possess greater affinity for damaged and mismatched DNA than for native DNA. This affinity was demonstrated in

  16. Mismatch-mediated error prone repair at the immunoglobulin genes.

    PubMed

    Chahwan, Richard; Edelmann, Winfried; Scharff, Matthew D; Roa, Sergio

    2011-12-01

    The generation of effective antibodies depends upon somatic hypermutation (SHM) and class-switch recombination (CSR) of antibody genes by activation induced cytidine deaminase (AID) and the subsequent recruitment of error prone base excision and mismatch repair. While AID initiates and is required for SHM, more than half of the base changes that accumulate in V regions are not due to the direct deamination of dC to dU by AID, but rather arise through the recruitment of the mismatch repair complex (MMR) to the U:G mismatch created by AID and the subsequent perversion of mismatch repair from a high fidelity process to one that is very error prone. In addition, the generation of double-strand breaks (DSBs) is essential during CSR, and the resolution of AID-generated mismatches by MMR to promote such DSBs is critical for the efficiency of the process. While a great deal has been learned about how AID and MMR cause hypermutations and DSBs, it is still unclear how the error prone aspect of these processes is largely restricted to antibody genes. The use of knockout models and mice expressing mismatch repair proteins with separation-of-function point mutations have been decisive in gaining a better understanding of the roles of each of the major MMR proteins and providing further insight into how mutation and repair are coordinated. Here, we review the cascade of MMR factors and repair signals that are diverted from their canonical error free role and hijacked by B cells to promote genetic diversification of the Ig locus. This error prone process involves AID as the inducer of enzymatically-mediated DNA mismatches, and a plethora of downstream MMR factors acting as sensors, adaptors and effectors of a complex and tightly regulated process from much of which is not yet well understood.

  17. [The origin of the eukaryotic cell. III. Principles of the morphofunctional organization of the eukaryotic cell].

    PubMed

    Seravin, L N

    1986-08-01

    The eukaryotic plasmalemma, eukaryotic cytoplasm with its usual cytomembranes, and eukaryotic nucleus are obligatory components of the eukaryotic cell. All other structural elements (organelles) are only derivates of the aforesaid cell components and they may be absent sometimes. There are protozoans having simultaneously no flagelles, mitochondria and chloroplasts (all the representatives of phylum Microspora, amoeba Pelomyxa palustris, and others). The following five general principles play the main role in the morphofunctional organization of the cell. The principle of hierarchy of block organization of living systems. Complex morphofunctional blocks (organelles) specific for the eukaryotic cell are formed. The compartmentalization principle. The main cell organelles (nuclei, flagellae, mitochondria, chloroplasts, etc.) undergo a relative morphological isolation from each other and other cell organelles by means of the total or partial surrounding by membranes; this may ensure the originality of their evolution and function. The principle of poly- and oligomerization of morphofunctional blocks. It permits the cell to enlarge its sizes and to raise the level of integration. The principle of heterochrony, including three subprinciples: conservatism of useful signs; a strong acceleration of evolutionary development of the separate blocks; simplification of the structure, reduction or total disappearance of some blocks. It explains a preservation of prokaryotic signs in the eukaryotic cell or in its organelles. The principle of independent origin of similar morphofunctional blocks in the process of evolution of living systems. The parallelism of the signs in unrelated groups of cells (or protists) arises due to this principle.

  18. Single base mismatch detection by microsecond voltage pulses.

    PubMed

    Fixe, F; Chu, V; Prazeres, D M F; Conde, J P

    2005-12-15

    A single square voltage pulse applied to metal electrodes underneath a silicon dioxide film upon which DNA probes are immobilized allows the discrimination of DNA targets with a single base mismatch during hybridization. Pulse duration, magnitude and slew rate of the voltage pulse are all key factors controlling the rates of electric field assisted hybridization. Although pulses with 1 V, lasting less than 1 ms and with a rise/fall times of 4.5 ns led to maximum hybridization of fully complementary strands, lack of stringency did not allow the discrimination of single base mismatches. However, by choosing pulse conditions that are slightly off the optimum, the selectivity for discriminating single base mismatches could be improved up to a factor approximately 5 when the mismatch was in the middle of the strand and up to approximately 1.5 when the mismatch was on the 5'-end and. These results demonstrate that hybridization with the appropriate electric field pulse provides a new, site-specific, approach to the discrimination of single nucleotide polymorphisms in the sub-millisecond time scale, for addressable DNA microarrays. PMID:16257657

  19. Ribosomal RNA sequence suggest microsporidia are extremely ancient eukaryotes

    NASA Technical Reports Server (NTRS)

    Vossbrinck, C. R.; Maddox, J. V.; Friedman, S.; Debrunner-Vossbrinck, B. A.; Woese, C. R.

    1987-01-01

    A comparative sequence analysis of the 18S small subunit ribosomal RNA (rRNA) of the microsporidium Vairimorpha necatrix is presented. The results show that this rRNA sequence is more unlike those of other eukaryotes than any known eukaryote rRNA sequence. It is concluded that the lineage leading to microsporidia branched very early from that leading to other eukaryotes.

  20. Endosymbiotic origin and differential loss of eukaryotic genes.

    PubMed

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Sousa, Filipa L; Lockhart, Peter J; Bryant, David; Hazkani-Covo, Einat; McInerney, James O; Landan, Giddy; Martin, William F

    2015-08-27

    Chloroplasts arose from cyanobacteria, mitochondria arose from proteobacteria. Both organelles have conserved their prokaryotic biochemistry, but their genomes are reduced, and most organelle proteins are encoded in the nucleus. Endosymbiotic theory posits that bacterial genes in eukaryotic genomes entered the eukaryotic lineage via organelle ancestors. It predicts episodic influx of prokaryotic genes into the eukaryotic lineage, with acquisition corresponding to endosymbiotic events. Eukaryotic genome sequences, however, increasingly implicate lateral gene transfer, both from prokaryotes to eukaryotes and among eukaryotes, as a source of gene content variation in eukaryotic genomes, which predicts continuous, lineage-specific acquisition of prokaryotic genes in divergent eukaryotic groups. Here we discriminate between these two alternatives by clustering and phylogenetic analysis of eukaryotic gene families having prokaryotic homologues. Our results indicate (1) that gene transfer from bacteria to eukaryotes is episodic, as revealed by gene distributions, and coincides with major evolutionary transitions at the origin of chloroplasts and mitochondria; (2) that gene inheritance in eukaryotes is vertical, as revealed by extensive topological comparison, sparse gene distributions stemming from differential loss; and (3) that continuous, lineage-specific lateral gene transfer, although it sometimes occurs, does not contribute to long-term gene content evolution in eukaryotic genomes.

  1. Eukaryotic evolution: getting to the root of the problem.

    PubMed

    Simpson, Alastair G B; Roger, Andrew J

    2002-10-15

    Comparative analyses of multiple genes suggest most known eukaryotes can be classified into half a dozen 'super-groups'. A new investigation of the distribution of a fused gene pair amongst these 'super-groups' has greatly narrowed the possible positions of the root of the eukaryote tree, clarifying the broad outlines of early eukaryote evolution.

  2. Eukaryotic algal phytochromes span the visible spectrum.

    PubMed

    Rockwell, Nathan C; Duanmu, Deqiang; Martin, Shelley S; Bachy, Charles; Price, Dana C; Bhattacharya, Debashish; Worden, Alexandra Z; Lagarias, J Clark

    2014-03-11

    Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red-absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes.

  3. A Eukaryotic Sensor for Membrane Lipid Saturation.

    PubMed

    Covino, Roberto; Ballweg, Stephanie; Stordeur, Claudius; Michaelis, Jonas B; Puth, Kristina; Wernig, Florian; Bahrami, Amir; Ernst, Andreas M; Hummer, Gerhard; Ernst, Robert

    2016-07-01

    Maintaining a fluid bilayer is essential for cell signaling and survival. Lipid saturation is a key factor determining lipid packing and membrane fluidity, and it must be tightly controlled to guarantee organelle function and identity. A dedicated eukaryotic mechanism of lipid saturation sensing, however, remains elusive. Here we show that Mga2, a transcription factor conserved among fungi, acts as a lipid-packing sensor in the ER membrane to control the production of unsaturated fatty acids. Systematic mutagenesis, molecular dynamics simulations, and electron paramagnetic resonance spectroscopy identify a pivotal role of the oligomeric transmembrane helix (TMH) of Mga2 for intra-membrane sensing, and they show that the lipid environment controls the proteolytic activation of Mga2 by stabilizing alternative rotational orientations of the TMH region. This work establishes a eukaryotic strategy of lipid saturation sensing that differs significantly from the analogous bacterial mechanism relying on hydrophobic thickness. PMID:27320200

  4. Structural insights into eukaryotic aquaporin regulation.

    PubMed

    Törnroth-Horsefield, Susanna; Hedfalk, Kristina; Fischer, Gerhard; Lindkvist-Petersson, Karin; Neutze, Richard

    2010-06-18

    Aquaporin-mediated water transport across cellular membranes is an ancient, ubiquitous mechanism within cell biology. This family of integral membrane proteins includes both water selective pores (aquaporins) and transport facilitators of other small molecules such as glycerol and urea (aquaglyceroporins). Eukaryotic aquaporins are frequently regulated post-translationally by gating, whereby the rate of flux through the channel is controlled, or by trafficking, whereby aquaporins are shuttled from intracellular storage sites to the plasma membrane. A number of high-resolution X-ray structures of eukaryotic aquaporins have recently been reported and the new structural insights into gating and trafficking that emerged from these studies are described. Basic structural themes reoccur, illustrating how the problem of regulation in diverse biological contexts builds upon a limited set of possible solutions. PMID:20416297

  5. Gene Positioning Effects on Expression in Eukaryotes.

    PubMed

    Nguyen, Huy Q; Bosco, Giovanni

    2015-01-01

    The packaging and organization of the genome within the eukaryotic interphase nucleus directly influence how the genes are expressed. An underappreciated aspect of genome structure is that it is highly dynamic and that the physical positioning of a gene can impart control over its transcriptional status. In this review, we assess the current knowledge of how gene positioning at different levels of genome organization can directly influence gene expression during interphase. The levels of organization discussed include chromatin looping, topologically associated domains, chromosome territories, and nuclear compartments. We discuss specific studies demonstrating that gene positioning is a dynamic and highly regulated feature of the eukaryotic genome that allows for the essential spatiotemporal regulation of genes.

  6. Symbiosis and the origin of eukaryotic motility

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Hinkle, G.

    1991-01-01

    Ongoing work to test the hypothesis of the origin of eukaryotic cell organelles by microbial symbioses is discussed. Because of the widespread acceptance of the serial endosymbiotic theory (SET) of the origin of plastids and mitochondria, the idea of the symbiotic origin of the centrioles and axonemes for spirochete bacteria motility symbiosis was tested. Intracellular microtubular systems are purported to derive from symbiotic associations between ancestral eukaryotic cells and motile bacteria. Four lines of approach to this problem are being pursued: (1) cloning the gene of a tubulin-like protein discovered in Spirocheata bajacaliforniesis; (2) seeking axoneme proteins in spirochets by antibody cross-reaction; (3) attempting to cultivate larger, free-living spirochetes; and (4) studying in detail spirochetes (e.g., Cristispira) symbiotic with marine animals. Other aspects of the investigation are presented.

  7. Towards New Antifolates Targeting Eukaryotic Opportunistic Infections

    SciTech Connect

    Liu, J.; Bolstad, D; Bolstad, E; Wright, D; Anderson, A

    2009-01-01

    Trimethoprim, an antifolate commonly prescribed in combination with sulfamethoxazole, potently inhibits several prokaryotic species of dihydrofolate reductase (DHFR). However, several eukaryotic pathogenic organisms are resistant to trimethoprim, preventing its effective use as a therapeutic for those infections. We have been building a program to reengineer trimethoprim to more potently and selectively inhibit eukaryotic species of DHFR as a viable strategy for new drug discovery targeting several opportunistic pathogens. We have developed a series of compounds that exhibit potent and selective inhibition of DHFR from the parasitic protozoa Cryptosporidium and Toxoplasma as well as the fungus Candida glabrata. A comparison of the structures of DHFR from the fungal species Candida glabrata and Pneumocystis suggests that the compounds may also potently inhibit Pneumocystis DHFR.

  8. The architecture of a eukaryotic replisome

    SciTech Connect

    Sun, Jingchuan; Yuan, Zuanning; Shi, Yi; Georgescu, Roxana E.; Chait, Brian T.; Li, Huilin; O'Donnell, Michael E.

    2015-11-02

    At the eukaryotic DNA replication fork, it is widely believed that the Cdc45–Mcm2–7–GINS (CMG) helicase is positioned in front to unwind DNA and that DNA polymerases trail behind the helicase. Here we used single-particle EM to directly image a Saccharomyces cerevisiae replisome. Contrary to expectations, the leading strand Pol ε is positioned ahead of CMG helicase, whereas Ctf4 and the lagging-strand polymerase (Pol) α–primase are behind the helicase. This unexpected architecture indicates that the leading-strand DNA travels a long distance before reaching Pol ε, first threading through the Mcm2–7 ring and then making a U-turn at the bottom and reaching Pol ε at the top of CMG. Lastly, our work reveals an unexpected configuration of the eukaryotic replisome, suggests possible reasons for this architecture and provides a basis for further structural and biochemical replisome studies.

  9. Deadenylation and its regulation in eukaryotic cells.

    PubMed

    Zhang, Xiaokan; Kleiman, Frida E; Devany, Emral

    2014-01-01

    Messenger RNA deadenylation is a process that allows rapid regulation of gene expression in response to different cellular conditions. The change of the mRNA poly(A) tail length by the activation of deadenylation might regulate gene expression by affecting mRNA stability, mRNA transport, or translation initiation. Activation of deadenylation processes are highly regulated and associated with different cellular conditions such as cancer, development, mRNA surveillance, DNA damage response, and cell differentiation. In the last few years, new technologies for studying deadenylation have been developed. Here we overview concepts related to deadenylation and its regulation in eukaryotic cells. We also describe some of the most commonly used protocols to study deadenylation in eukaryotic cells.

  10. The Architecture of a Eukaryotic Replisome

    PubMed Central

    Sun, Jingchuan; Shi, Yi; Georgescu, Roxana E.; Yuan, Zuanning; Chait, Brian T.; Li, Huilin; O’Donnell, Michael E.

    2015-01-01

    At the eukaryotic DNA replication fork, it is widely believed that the Cdc45-Mcm2-7-GINS (CMG) helicase leads the way in front to unwind DNA, and that DNA polymerases (Pol) trail behind the helicase. Here we use single particle electron microscopy to directly image a replisome. Contrary to expectations, the leading strand Pol ε is positioned ahead of CMG helicase, while Ctf4 and the lagging strand Pol α-primase (Pol α) are behind the helicase. This unexpected architecture indicates that the leading strand DNA travels a long distance before reaching Pol ε, it first threads through the Mcm2-7 ring, then makes a U-turn at the bottom to reach Pol ε at the top of CMG. Our work reveals an unexpected configuration of the eukaryotic replisome, suggests possible reasons for this architecture, and provides a basis for further structural and biochemical replisome studies. PMID:26524492

  11. The evolution of modern eukaryotic phytoplankton.

    PubMed

    Falkowski, Paul G; Katz, Miriam E; Knoll, Andrew H; Quigg, Antonietta; Raven, John A; Schofield, Oscar; Taylor, F J R

    2004-07-16

    The community structure and ecological function of contemporary marine ecosystems are critically dependent on eukaryotic phytoplankton. Although numerically inferior to cyanobacteria, these organisms are responsible for the majority of the flux of organic matter to higher trophic levels and the ocean interior. Photosynthetic eukaryotes evolved more than 1.5 billion years ago in the Proterozoic oceans. However, it was not until the Mesozoic Era (251 to 65 million years ago) that the three principal phytoplankton clades that would come to dominate the modern seas rose to ecological prominence. In contrast to their pioneering predecessors, the dinoflagellates, coccolithophores, and diatoms all contain plastids derived from an ancestral red alga by secondary symbiosis. Here we examine the geological, geochemical, and biological processes that contributed to the rise of these three, distantly related, phytoplankton groups.

  12. Immunodetection of Murine Lymphotoxins in Eukaryotic Cells.

    PubMed

    Boitchenko, Veronika E.; Korobko, Vyacheslav G.; Prassolov, Vladimir S.; Kravchenko, Vladimir V.; Kuimov, Alexander N.; Turetskaya, Regina L.; Kuprash, Dmitry V.; Nedospasov, Sergei A.

    2000-10-01

    Lymphotoxins alpha and beta (LTalpha and LTbeta) are members of tumor necrosis factor superfamily. LT heterotrimers exist on the surface of lymphocytes and signal through LTbeta receptor while soluble LTalpha homotrimer can signal through TNF receptors p55 and p75. LT-, as well as TNF-mediated signaling are important for the organogenesis and maintenance of microarchitecture of secondary lymphoid organs in mice and has been implicated in the mechanism of certain inflammatory syndromes in humans. In this study we describe the generation of eukaryotic expression plasmids encoding murine LTalpha and LTbeta genes and a prokaryotic expression construct for murine LTalpha. Using recombinant proteins expressed by these vectors as tools for antisera selection, we produced and characterized several polyclonal antibodies capable of detecting LT proteins in eukaryotic cells.

  13. The voyage of the microbial eukaryote.

    PubMed

    Worden, Alexandra Z; Allen, Andrew E

    2010-10-01

    Although genome data from unicellular marine eukaryotes is sparse, sequences from several supergroups have initiated an era of genome-enabled research aimed at understanding gene function, evolution, and adaptation in non-traditional model protists. Trends in genomic content within and between different lineages are emerging, including phylogenetically anomalous patterns, sometimes resulting from horizontal gene transfer. Some such genes have nutrient uptake and metabolism roles suggesting that bacterial and eukaryotic microbes have similar cellular-mineral-environmental constraints. Many 'accessory genome' components are of unknown function, but low gene copy numbers combined with small genomes make protists ideal for systems biology. Cultured and uncultured protists are providing insights to ecology, ancestral features and the role of cooption in development of complex traits. Various protists harbor features important in sexuality and multicellularity once believed to have originated in metazoans or other multicellular taxa.

  14. The Iron Metallome in Eukaryotic Organisms

    PubMed Central

    Dlouhy, Adrienne C.; Outten, Caryn E.

    2013-01-01

    This chapter is focused on the iron metallome in eukaryotes at the cellular and subcellular level, including properties, utilization in metalloproteins, trafficking, storage, and regulation of these processes. Studies in the model eukaryote Saccharomyces cerevisiae and mammalian cells will be highlighted. The discussion of iron properties will center on the speciation and localization of intracellular iron as well as the cellular and molecular mechanisms for coping with both low iron bioavailability and iron toxicity. The section on iron metalloproteins will emphasize heme, iron-sulfur cluster, and non-heme iron centers, particularly their cellular roles and mechanisms of assembly. The section on iron uptake, trafficking, and storage will compare methods used by yeast and mammalian cells to import iron, how this iron is brought into various organelles, and types of iron storage proteins. Regulation of these processes will be compared between yeast and mammalian cells at the transcriptional, post-transcriptional, and post-translational levels. PMID:23595675

  15. Mismatches in genetic markers in a large family study.

    PubMed Central

    Ashton, G C

    1980-01-01

    The Hawaii Family Study of Cognition provided an opportunity to investigate the frequency and implications of non-agreement, or mismatches, between observed and expected genetic marker phenotypes of husbands, wives, and children. Mismatch data from 68 families in which one or both spouses were known not to be a biological parent were used to determine the rate of undeclared nonparentage in 1,748 families in which conventional relationships were claimed. Two independent approaches gave consistent estimates, suggesting that approximately 2.3% of the 2,839 tested children from these families were probably the result of infidelity, concealed adoption, or another event. About two-thirds of the mismatches detected were probably due to properties of the techniques employed. PMID:6930820

  16. High fitness costs of climate change-induced camouflage mismatch.

    PubMed

    Zimova, Marketa; Mills, L Scott; Nowak, J Joshua

    2016-03-01

    Anthropogenic climate change has created myriad stressors that threaten to cause local extinctions if wild populations fail to adapt to novel conditions. We studied individual and population-level fitness costs of a climate change-induced stressor: camouflage mismatch in seasonally colour molting species confronting decreasing snow cover duration. Based on field measurements of radiocollared snowshoe hares, we found strong selection on coat colour molt phenology, such that animals mismatched with the colour of their background experienced weekly survival decreases up to 7%. In the absence of adaptive response, we show that these mortality costs would result in strong population-level declines by the end of the century. However, natural selection acting on wide individual variation in molt phenology might enable evolutionary adaptation to camouflage mismatch. We conclude that evolutionary rescue will be critical for hares and other colour molting species to keep up with climate change.

  17. Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains

    NASA Astrophysics Data System (ADS)

    Milovanovic, Dragomir; Honigmann, Alf; Koike, Seiichi; Göttfert, Fabian; Pähler, Gesa; Junius, Meike; Müllar, Stefan; Diederichsen, Ulf; Janshoff, Andreas; Grubmüller, Helmut; Risselada, Herre J.; Eggeling, Christian; Hell, Stefan W.; van den Bogaart, Geert; Jahn, Reinhard

    2015-01-01

    The clustering of proteins and lipids in distinct microdomains is emerging as an important principle for the spatial patterning of biological membranes. Such domain formation can be the result of hydrophobic and ionic interactions with membrane lipids as well as of specific protein-protein interactions. Here using plasma membrane-resident SNARE proteins as model, we show that hydrophobic mismatch between the length of transmembrane domains (TMDs) and the thickness of the lipid membrane suffices to induce clustering of proteins. Even when the TMDs differ in length by only a single residue, hydrophobic mismatch can segregate structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phosphoinositides and homo and heterotypic protein interactions. Our findings demonstrate that hydrophobic mismatch contributes to the structural organization of membranes.

  18. Bilayer thickness mismatch controls domain size in biomimetic membranes

    NASA Astrophysics Data System (ADS)

    Heberle, Frederick A.; Petruzielo, Robin S.; Pan, Jianjun; Drazba, Paul; Kučerka, Norbert; Standaert, Robert F.; Feigenson, Gerald W.; Katsara, John

    2013-03-01

    In order to promote functionality, cells may alter the spatial organization of membrane lipids and proteins, including separation of liquid phases into distinct domains. In model membranes, domain size and morphology depend strongly on composition and temperature, but the physicochemical mechanisms controlling them are poorly understood. Theoretical work suggests a role for interfacial energy at domain boundaries, which may be driven in part by thickness mismatch between a domain and its surrounding bilayer. However, no direct evidence linking thickness mismatch to domain size in free-standing bilayers has been reported. We describe the use of Small Angle Neutron Scattering (SANS) to detect domains in simplified lipid-only models that mimic the composition of plasma membrane. We find that domain size is controlled by the degree of acyl chain unsaturation of low-melting temperature lipids, and that this size transition is correlated to changes in the thickness mismatch between coexisting liquid phases.

  19. Forecasting photovoltaic array power production subject to mismatch losses

    SciTech Connect

    Picault, D.; Raison, B.; Bacha, S.; de la Casa, J.; Aguilera, J.

    2010-07-15

    The development of photovoltaic (PV) energy throughout the world this last decade has brought to light the presence of module mismatch losses in most PV applications. Such power losses, mainly occasioned by partial shading of arrays and differences in PV modules, can be reduced by changing module interconnections of a solar array. This paper presents a novel method to forecast existing PV array production in diverse environmental conditions. In this approach, field measurement data is used to identify module parameters once and for all. The proposed method simulates PV arrays with adaptable module interconnection schemes in order to reduce mismatch losses. The model has been validated by experimental results taken on a 2.2 kW{sub p} plant, with three different interconnection schemes, which show reliable power production forecast precision in both partially shaded and normal operating conditions. Field measurements show interest in using alternative plant configurations in PV systems for decreasing module mismatch losses. (author)

  20. Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains

    PubMed Central

    Milovanovic, Dragomir; Honigmann, Alf; Koike, Seiichi; Göttfert, Fabian; Pähler, Gesa; Junius, Meike; Müllar, Stefan; Diederichsen, Ulf; Janshoff, Andreas; Grubmüller, Helmut; Risselada, Herre J.; Eggeling, Christian; Hell, Stefan W.; van den Bogaart, Geert; Jahn, Reinhard

    2015-01-01

    The clustering of proteins and lipids in distinct microdomains is emerging as an important principle for the spatial patterning of biological membranes. Such domain formation can be the result of hydrophobic and ionic interactions with membrane lipids as well as of specific protein–protein interactions. Here using plasma membrane-resident SNARE proteins as model, we show that hydrophobic mismatch between the length of transmembrane domains (TMDs) and the thickness of the lipid membrane suffices to induce clustering of proteins. Even when the TMDs differ in length by only a single residue, hydrophobic mismatch can segregate structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phosphoinositides and homo and heterotypic protein interactions. Our findings demonstrate that hydrophobic mismatch contributes to the structural organization of membranes. PMID:25635869

  1. Arsenic and antimony transporters in eukaryotes.

    PubMed

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.

  2. Single-cell transcriptomics for microbial eukaryotes.

    PubMed

    Kolisko, Martin; Boscaro, Vittorio; Burki, Fabien; Lynn, Denis H; Keeling, Patrick J

    2014-11-17

    One of the greatest hindrances to a comprehensive understanding of microbial genomics, cell biology, ecology, and evolution is that most microbial life is not in culture. Solutions to this problem have mainly focused on whole-community surveys like metagenomics, but these analyses inevitably loose information and present particular challenges for eukaryotes, which are relatively rare and possess large, gene-sparse genomes. Single-cell analyses present an alternative solution that allows for specific species to be targeted, while retaining information on cellular identity, morphology, and partitioning of activities within microbial communities. Single-cell transcriptomics, pioneered in medical research, offers particular potential advantages for uncultivated eukaryotes, but the efficiency and biases have not been tested. Here we describe a simple and reproducible method for single-cell transcriptomics using manually isolated cells from five model ciliate species; we examine impacts of amplification bias and contamination, and compare the efficacy of gene discovery to traditional culture-based transcriptomics. Gene discovery using single-cell transcriptomes was found to be comparable to mass-culture methods, suggesting single-cell transcriptomics is an efficient entry point into genomic data from the vast majority of eukaryotic biodiversity.

  3. Structure of a eukaryotic thiaminase I

    PubMed Central

    Kreinbring, Cheryl A.; Remillard, Stephen P.; Hubbard, Paul; Brodkin, Heather R.; Leeper, Finian J.; Hawksley, Dan; Lai, Elaine Y.; Fulton, Chandler; Petsko, Gregory A.; Ringe, Dagmar

    2014-01-01

    Thiaminases, enzymes that cleave vitamin B1, are sporadically distributed among prokaryotes and eukaryotes. Thiaminase I enzymes catalyze the elimination of the thiazole ring moiety from thiamin through substitution of the methylene group with a nitrogenous base or sulfhydryl compound. In eukaryotic organisms, these enzymes are reported to have much higher molecular weights than their bacterial counterparts. A thiaminase I of the single-celled amoeboflagellate Naegleria gruberi is the only eukaryotic thiaminase I to have been cloned, sequenced, and expressed. Here, we present the crystal structure of N. gruberi thiaminase I to a resolution of 2.8 Å, solved by isomorphous replacement and pseudo–two-wavelength multiwavelength anomalous diffraction and refined to an R factor of 0.231 (Rfree, 0.265). This structure was used to solve the structure of the enzyme in complex with 3-deazathiamin, a noncleavable thiamin analog and enzyme inhibitor (2.7 Å; R, 0.233; Rfree, 0.267). These structures define the mode of thiamin binding to this class of thiaminases and indicate the involvement of Asp272 as the catalytic base. This enzyme is able to use thiamin as a substrate and is active with amines such as aniline and veratrylamine as well as sulfhydryl compounds such as l-cysteine and β-mercaptoethanol as cosubstrates. Despite significant differences in polypeptide sequence and length, we have shown that the N. gruberi thiaminase I is homologous in structure and activity to a previously characterized bacterial thiaminase I. PMID:24351929

  4. Structure of a eukaryotic thiaminase I.

    PubMed

    Kreinbring, Cheryl A; Remillard, Stephen P; Hubbard, Paul; Brodkin, Heather R; Leeper, Finian J; Hawksley, Dan; Lai, Elaine Y; Fulton, Chandler; Petsko, Gregory A; Ringe, Dagmar

    2014-01-01

    Thiaminases, enzymes that cleave vitamin B1, are sporadically distributed among prokaryotes and eukaryotes. Thiaminase I enzymes catalyze the elimination of the thiazole ring moiety from thiamin through substitution of the methylene group with a nitrogenous base or sulfhydryl compound. In eukaryotic organisms, these enzymes are reported to have much higher molecular weights than their bacterial counterparts. A thiaminase I of the single-celled amoeboflagellate Naegleria gruberi is the only eukaryotic thiaminase I to have been cloned, sequenced, and expressed. Here, we present the crystal structure of N. gruberi thiaminase I to a resolution of 2.8 Å, solved by isomorphous replacement and pseudo-two-wavelength multiwavelength anomalous diffraction and refined to an R factor of 0.231 (Rfree, 0.265). This structure was used to solve the structure of the enzyme in complex with 3-deazathiamin, a noncleavable thiamin analog and enzyme inhibitor (2.7 Å; R, 0.233; Rfree, 0.267). These structures define the mode of thiamin binding to this class of thiaminases and indicate the involvement of Asp272 as the catalytic base. This enzyme is able to use thiamin as a substrate and is active with amines such as aniline and veratrylamine as well as sulfhydryl compounds such as l-cysteine and β-mercaptoethanol as cosubstrates. Despite significant differences in polypeptide sequence and length, we have shown that the N. gruberi thiaminase I is homologous in structure and activity to a previously characterized bacterial thiaminase I.

  5. Arsenic and Antimony Transporters in Eukaryotes

    PubMed Central

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters. PMID:22489166

  6. Representing GC variation along eukaryotic chromosomes.

    PubMed

    Paces, Jan; Zíka, Radek; Paces, Václav; Pavlícek, Adam; Clay, Oliver; Bernardi, Giorgio

    2004-05-26

    Genome sequencing now permits direct visual representation, at any scale, of GC heterogeneity along the chromosomes of several higher eukaryotes. Plots can be easily obtained from the chromosomal sequences, yet sequence releases of mammalian or plant chromosomes still tend to use small scales or window sizes that obscure important large-scale compositional features. To faithfully reveal, at one glance, the compositional variation at a given scale, we have devised a simple scheme that combines line plots with color-coded shading of the regions underneath the plots. The scheme can be applied to different eukaryotic genomes to facilitate their comparison, as illustrated here for a sample of chromosomes chosen from seven selected species. As a complement to a previously published compact view of isochores in the human genome sequence, we include here an analogous map for the recently sequenced mouse genome, and discuss the contribution of repetitive DNA to the GC variation along the plots. Supplementary information, including a database of color-coded GC profiles for all recently sequenced eukaryotes and the program draw_chromosomes_gc.pl used to obtain them, are available at.

  7. Evolutionary origins of metabolic compartmentalization in eukaryotes

    PubMed Central

    Martin, William

    2010-01-01

    Many genes in eukaryotes are acquisitions from the free-living antecedents of chloroplasts and mitochondria. But there is no evolutionary ‘homing device’ that automatically directs the protein product of a transferred gene back to the organelle of its provenance. Instead, the products of genes acquired from endosymbionts can explore all targeting possibilities within the cell. They often replace pre-existing host genes, or even whole pathways. But the transfer of an enzymatic pathway from one compartment to another poses severe problems: over evolutionary time, the enzymes of the pathway acquire their targeting signals for the new compartment individually, not in unison. Until the whole pathway is established in the new compartment, newly routed individual enzymes are useless, and their genes will be lost through mutation. Here it is suggested that pathways attain novel compartmentation variants via a ‘minor mistargeting’ mechanism. If protein targeting in eukaryotic cells possesses enough imperfection such that small amounts of entire pathways continuously enter novel compartments, selectable units of biochemical function would exist in new compartments, and the genes could become selected. Dual-targeting of proteins is indeed very common within eukaryotic cells, suggesting that targeting variation required for this minor mistargeting mechanism to operate exists in nature. PMID:20124349

  8. Earth's earliest non-marine eukaryotes.

    PubMed

    Strother, Paul K; Battison, Leila; Brasier, Martin D; Wellman, Charles H

    2011-05-26

    The existence of a terrestrial Precambrian (more than 542 Myr ago) biota has been largely inferred from indirect chemical and geological evidence associated with palaeosols, the weathering of clay minerals and microbially induced sedimentary structures in siliciclastic sediments. Direct evidence of fossils within rocks of non-marine origin in the Precambrian is exceedingly rare. The most widely cited example comprises a single report of morphologically simple mineralized tubes and spheres interpreted as cyanobacteria, obtained from 1,200-Myr-old palaeokarst in Arizona. Organic-walled microfossils were first described from the non-marine Torridonian (1.2-1.0 Gyr ago) sequence of northwest Scotland in 1907. Subsequent studies found few distinctive taxa-a century later, the Torridonian microflora is still being characterized as primarily nondescript "leiospheres". We have comprehensively sampled grey shales and phosphatic nodules throughout the Torridonian sequence. Here we report the recovery of large populations of diverse organic-walled microfossils extracted by acid maceration, complemented by studies using thin sections of phosphatic nodules that yield exceptionally detailed three-dimensional preservation. These assemblages contain multicellular structures, complex-walled cysts, asymmetric organic structures, and dorsiventral, compressed organic thalli, some approaching one millimetre in diameter. They offer direct evidence of eukaryotes living in freshwater aquatic and subaerially exposed habitats during the Proterozoic era. The apparent dominance of eukaryotes in non-marine settings by 1 Gyr ago indicates that eukaryotic evolution on land may have commenced far earlier than previously thought.

  9. Neighboring extremal optimal control design including model mismatch errors

    SciTech Connect

    Kim, T.J.; Hull, D.G.

    1994-11-01

    The mismatch control technique that is used to simplify model equations of motion in order to determine analytic optimal control laws is extended using neighboring extremal theory. The first variation optimal control equations are linearized about the extremal path to account for perturbations in the initial state and the final constraint manifold. A numerical example demonstrates that the tuning procedure inherent in the mismatch control method increases the performance of the controls to the level of a numerically-determined piecewise-linear controller.

  10. MutSα maintains the mismatch repair capability by inhibiting PCNA unloading

    PubMed Central

    Kawasoe, Yoshitaka; Tsurimoto, Toshiki; Nakagawa, Takuro; Masukata, Hisao; Takahashi, Tatsuro S

    2016-01-01

    Eukaryotic mismatch repair (MMR) utilizes single-strand breaks as signals to target the strand to be repaired. DNA-bound PCNA is also presumed to direct MMR. The MMR capability must be limited to a post-replicative temporal window during which the signals are available. However, both identity of the signal(s) involved in the retention of this temporal window and the mechanism that maintains the MMR capability after DNA synthesis remain unclear. Using Xenopus egg extracts, we discovered a mechanism that ensures long-term retention of the MMR capability. We show that DNA-bound PCNA induces strand-specific MMR in the absence of strand discontinuities. Strikingly, MutSα inhibited PCNA unloading through its PCNA-interacting motif, thereby extending significantly the temporal window permissive to strand-specific MMR. Our data identify DNA-bound PCNA as the signal that enables strand discrimination after the disappearance of strand discontinuities, and uncover a novel role of MutSα in the retention of the post-replicative MMR capability. DOI: http://dx.doi.org/10.7554/eLife.15155.001 PMID:27402201

  11. Differences in genome-wide repeat sequence instability conferred by proofreading and mismatch repair defects

    PubMed Central

    Lujan, Scott A.; Clark, Alan B.; Kunkel, Thomas A.

    2015-01-01

    Mutation rates are used to calibrate molecular clocks and to link genetic variants with human disease. However, mutation rates are not uniform across each eukaryotic genome. Rates for insertion/deletion (indel) mutations have been found to vary widely when examined in vitro and at specific loci in vivo. Here, we report the genome-wide rates of formation and repair of indels made during replication of yeast nuclear DNA. Using over 6000 indels accumulated in four mismatch repair (MMR) defective strains, and statistical corrections for false negatives, we find that indel rates increase by 100 000-fold with increasing homonucleotide run length, representing the greatest effect on replication fidelity of any known genomic parameter. Nonetheless, long genomic homopolymer runs are overrepresented relative to random chance, implying positive selection. Proofreading defects in the replicative polymerases selectively increase indel rates in short repetitive tracts, likely reflecting the distance over which Pols δ and ϵ interact with duplex DNA upstream of the polymerase active site. In contrast, MMR defects hugely increase indel mutagenesis in long repetitive sequences. Because repetitive sequences are not uniformly distributed among genomic functional elements, the quantitatively different consequences on genome-wide repeat sequence instability conferred by defects in proofreading and MMR have important biological implications. PMID:25824945

  12. [The origin of the eukaryotic cell. IV. The general hypothesis of the autogenous origin of eukaryotes].

    PubMed

    Seravin, L N

    1986-09-01

    The general hypothesis of autogenous (non-symbiotic) origin of the eukaryotic cell summarises some hypotheses explaining possible ways of the origin of main components and organelles of such a cell (the primary unicellular protist). Six hypothesises are suggested. Arising of the eukaryotic surface membrane of protist (cell) as a result of modification of its lipidoacidic composition, when most of synblocks and ensembles of eukaryotic enzymes sink into the cytoplasm (due to membrane vesiculation). Establishment of eukaryotic cytoplasm on the basis of successive formation of two locomotory-supporting apparates: the primary one (microtrabecular system), and the second one (cytoskeleton). Arising of the nucleus from a polyheteronomous nucleoid of proeukaryotes. A combinatorical hypothesis of mitosis formation. Polyheteronucleoid hypothesis of the origin of the mitochondria and chloroplasts. Arising of the flagellum from the contractile tentacle-like organelle, whose axoneme is made of single microtubules. A close interrelation and interaction in the process of evolution is noted between surface membranes, the cytoplasm and the nucleus. In accord a principles of block-construction and heterochrony (see: Seravin, 1986r), the author explains the preservation of prokaryotic signs of organization in some components (and organelles) of eukaryotic cell (and protists).

  13. Purification, crystallization and preliminary X-ray diffraction analysis of the human mismatch repair protein MutS[beta

    SciTech Connect

    Tseng, Quincy; Orans, Jillian; Hast, Michael A.; Iyer, Ravi R.; Changela, Anita; Modrich, Paul L.; Beese, Lorena S.

    2012-03-16

    MutS{beta} is a eukaryotic mismatch repair protein that preferentially targets extrahelical unpaired nucleotides and shares partial functional redundancy with MutS{alpha} (MSH2-MSH6). Although mismatch recognition by MutS{alpha} has been shown to involve a conserved Phe-X-Glu motif, little is known about the lesion-binding mechanism of MutS{beta}. Combined MSH3/MSH6 deficiency triggers a strong predisposition to cancer in mice and defects in msh2 and msh6 account for roughly half of hereditary nonpolyposis colorectal cancer mutations. These three MutS homologs are also believed to play a role in trinucleotide repeat instability, which is a hallmark of many neurodegenerative disorders. The baculovirus overexpression and purification of recombinant human MutS{beta} and three truncation mutants are presented here. Binding assays with heteroduplex DNA were carried out for biochemical characterization. Crystallization and preliminary X-ray diffraction analysis of the protein bound to a heteroduplex DNA substrate are also reported.

  14. Mismatch Repair in Schizosaccharomyces Pombe Requires the Mutl Homologous Gene Pms1: Molecular Cloning and Functional Analysis

    PubMed Central

    Schar, P.; Baur, M.; Schneider, C.; Kohli, J.

    1997-01-01

    Homologues of the bacterial mutS and mutL genes involved in DNA mismatch repair have been found in organisms from bacteria to humans. Here, we describe the structure and function of a newly identified Schizosaccharomyces pombe gene that encodes a predicted amino acid sequence of 794 residues with a high degree of homology to MutL related proteins. On the basis of its closer relationship to the eukaryotic ``PMS'' genes than to the ``MLH'' genes, we have designated the S. pombe homologue pms1. Disruption of the pms1 gene causes a significant increase of spontaneous mutagenesis as documented by reversion rate measurements. Tetrad analyses of crosses homozygous for the pms1 mutation reveal a reduction of spore viability from >92% to 80% associated with a low proportion (~50%) of meioses producing four viable spores and a significant, allele-dependent increase of the level of post-meiotic segregation of genetic marker allele pairs. The mutant phenotypes are consistent with a general function of pms1 in correction of mismatched base pairs arising as a consequence of DNA polymerase errors during DNA synthesis, or of hybrid DNA formation between homologous but not perfectly complementary DNA strands during meiotic recombination. PMID:9258673

  15. Horizontal gene transfer in eukaryotes: the weak-link model.

    PubMed

    Huang, Jinling

    2013-10-01

    The significance of horizontal gene transfer (HGT) in eukaryotic evolution remains controversial. Although many eukaryotic genes are of bacterial origin, they are often interpreted as being derived from mitochondria or plastids. Because of their fixed gene pool and gene loss, however, mitochondria and plastids alone cannot adequately explain the presence of all, or even the majority, of bacterial genes in eukaryotes. Available data indicate that no insurmountable barrier to HGT exists, even in complex multicellular eukaryotes. In addition, the discovery of both recent and ancient HGT events in all major eukaryotic groups suggests that HGT has been a regular occurrence throughout the history of eukaryotic evolution. A model of HGT is proposed that suggests both unicellular and early developmental stages as likely entry points for foreign genes into multicellular eukaryotes.

  16. An epigenetic toolkit allows for diverse genome architectures in eukaryotes.

    PubMed

    Maurer-Alcalá, Xyrus X; Katz, Laura A

    2015-12-01

    Genome architecture varies considerably among eukaryotes in terms of both size and structure (e.g. distribution of sequences within the genome, elimination of DNA during formation of somatic nuclei). The diversity in eukaryotic genome architectures and the dynamic processes are only possible due to the well-developed epigenetic toolkit, which probably existed in the Last Eukaryotic Common Ancestor (LECA). This toolkit may have arisen as a means of navigating the genomic conflict that arose from the expansion of transposable elements within the ancestral eukaryotic genome. This toolkit has been coopted to support the dynamic nature of genomes in lineages across the eukaryotic tree of life. Here we highlight how the changes in genome architecture in diverse eukaryotes are regulated by epigenetic processes, such as DNA elimination, genome rearrangements, and adaptive changes to genome architecture. The ability to epigenetically modify and regulate genomes has contributed greatly to the diversity of eukaryotes observed today.

  17. Complex archaea that bridge the gap between prokaryotes and eukaryotes.

    PubMed

    Spang, Anja; Saw, Jimmy H; Jørgensen, Steffen L; Zaremba-Niedzwiedzka, Katarzyna; Martijn, Joran; Lind, Anders E; van Eijk, Roel; Schleper, Christa; Guy, Lionel; Ettema, Thijs J G

    2015-05-14

    The origin of the eukaryotic cell remains one of the most contentious puzzles in modern biology. Recent studies have provided support for the emergence of the eukaryotic host cell from within the archaeal domain of life, but the identity and nature of the putative archaeal ancestor remain a subject of debate. Here we describe the discovery of 'Lokiarchaeota', a novel candidate archaeal phylum, which forms a monophyletic group with eukaryotes in phylogenomic analyses, and whose genomes encode an expanded repertoire of eukaryotic signature proteins that are suggestive of sophisticated membrane remodelling capabilities. Our results provide strong support for hypotheses in which the eukaryotic host evolved from a bona fide archaeon, and demonstrate that many components that underpin eukaryote-specific features were already present in that ancestor. This provided the host with a rich genomic 'starter-kit' to support the increase in the cellular and genomic complexity that is characteristic of eukaryotes.

  18. Complex archaea that bridge the gap between prokaryotes and eukaryotes

    PubMed Central

    Martijn, Joran; Lind, Anders E.; van Eijk, Roel; Schleper, Christa; Guy, Lionel; Ettema, Thijs J. G.

    2015-01-01

    The origin of the eukaryotic cell remains one of the most contentious puzzles in modern biology. Recent studies have provided support for the emergence of the eukaryotic host cell from within the archaeal domain of life, but the identity and nature of the putative archaeal ancestor remain a subject of debate. Here we describe the discovery of ‘Lokiarchaeota’, a novel candidate archaeal phylum, which forms a monophyletic group with eukaryotes in phylogenomic analyses, and whose genomes encode an expanded repertoire of eukaryotic signature proteins that are suggestive of sophisticated membrane remodelling capabilities. Our results provide strong support for hypotheses in which the eukaryotic host evolved from a bona fide archaeon, and demonstrate that many components that underpin eukaryote-specific features were already present in that ancestor. This provided the host with a rich genomic ‘starter-kit’ to support the increase in the cellular and genomic complexity that is characteristic of eukaryotes. PMID:25945739

  19. Complex archaea that bridge the gap between prokaryotes and eukaryotes.

    PubMed

    Spang, Anja; Saw, Jimmy H; Jørgensen, Steffen L; Zaremba-Niedzwiedzka, Katarzyna; Martijn, Joran; Lind, Anders E; van Eijk, Roel; Schleper, Christa; Guy, Lionel; Ettema, Thijs J G

    2015-05-14

    The origin of the eukaryotic cell remains one of the most contentious puzzles in modern biology. Recent studies have provided support for the emergence of the eukaryotic host cell from within the archaeal domain of life, but the identity and nature of the putative archaeal ancestor remain a subject of debate. Here we describe the discovery of 'Lokiarchaeota', a novel candidate archaeal phylum, which forms a monophyletic group with eukaryotes in phylogenomic analyses, and whose genomes encode an expanded repertoire of eukaryotic signature proteins that are suggestive of sophisticated membrane remodelling capabilities. Our results provide strong support for hypotheses in which the eukaryotic host evolved from a bona fide archaeon, and demonstrate that many components that underpin eukaryote-specific features were already present in that ancestor. This provided the host with a rich genomic 'starter-kit' to support the increase in the cellular and genomic complexity that is characteristic of eukaryotes. PMID:25945739

  20. The Tangled Web: Gene Genealogies and the Origin of Eukaryotes.

    PubMed

    Katz

    1999-10-01

    Accessing data from the genomes of organisms (individual genes) and analyzing these data using sophisticated alignment and phylogenetic methods led to the expectation that we would be able to paint a clear picture of the evolution of eukaryotes. Previous analyses based on morphology and ultrastructure failed to pinpoint both the sister taxon to eukaryotes and the branching order of eukaryotic lineages. However, the expectation that molecular data would provide resolution has not been met since a growing number of gene genealogies present conflicting hypotheses for the origin and diversification of eukaryotes. Instead of reconstructing a simple bifurcating tree of life, these gene genealogies have generated a complex picture of eukaryotic genomes whereby ancient lateral transfers (of individual genes or perhaps even entire genomes) has tangled the evolutionary history of eukaryotes. Resolution of these conflicting genealogies comes in recognizing that eukaryotes are chimeric, containing genetic information from multiple ancestral lineages.

  1. Distinct structural alterations in PCNA block DNA mismatch repair†

    PubMed Central

    Dieckman, Lynne M.; Boehm, Elizabeth M.; Hingorani, Manju M.; Washington, M. Todd

    2013-01-01

    During DNA replication, mismatches and small loops in the DNA resulting from insertions or deletions are repaired by the mismatch repair (MMR) machinery. Proliferating cell nuclear antigen (PCNA) plays an important role in both mismatch-recognition and resynthesis stages of MMR. Previously, two mutant forms of PCNA were identified that cause defects in MMR with little, if any, other defects. The C22Y mutant PCNA protein completely blocks MutSα-dependent MMR, and the C81R mutant PCNA protein partially blocks both MutSα-dependent and MutSβ-dependent MMR. In order to understand the structural and mechanistic basis by which these two amino acid substitutions in PCNA proteins block MMR, we solved the X-ray crystal structures of both mutant proteins and carried out further biochemical studies. We found that these amino acid substitutions lead to subtle, distinct structural changes in PCNA. The C22Y substitution alters the positions of the α-helices lining the central hole of the PCNA ring, whereas the C81R substitution creates a distortion in an extended loop near the PCNA subunit interface. We conclude that the structural integrity of the α-helices lining the central hole and this loop are both necessary to form productive complexes with MutS α and mismatch-containing DNA. PMID:23869605

  2. Mismatch of Vocational Graduates: What Penalty on French Labour Market?

    ERIC Educational Resources Information Center

    Beduwe, Catherine; Giret, Jean-Francois

    2011-01-01

    This study explores individual effects of educational mismatch on wages, job satisfaction and on-the-job-search on French labour market. We distinguish between horizontal matches (job matches with field of studies) and vertical matches (job matches the level of qualification) on the one hand and skills matches (worker's assessment) on the other…

  3. Minority Students and Research Universities: How to Overcome the "Mismatch"

    ERIC Educational Resources Information Center

    Tapia, Richard A.

    2009-01-01

    A controversial theory much in the news lately claims that affirmative action is often unfair to the very students it is intended to help. Called the "mismatch" theory, it suggests that underrepresented minority students are more likely to leave science, math, and engineering when, because of affirmative action, they attend colleges for which they…

  4. Job Sprawl, Spatial Mismatch, and Black Employment Disadvantage

    ERIC Educational Resources Information Center

    Stoll, Michael A.

    2006-01-01

    This paper examines the relationship between job sprawl and the spatial mismatch between blacks and jobs. Using data from a variety of sources, including the 1990 and 2000 U.S. Census and U.S. Department of Commerce's ZIP Code Business Patterns, I control extensively for metropolitan area characteristics and other factors. In addition, I use…

  5. Skills Mismatch among University Graduates in the Nigeria Labor Market

    ERIC Educational Resources Information Center

    Pitan, Oluyomi S.; Adedeji, S. O.

    2012-01-01

    University graduates in Nigeria have been reported to be poorly prepared for work in recent years. This has implications on the relevance of university education, the employability and productivity of university graduates. One of the reasons suggested for this condition by previous studies was skill mismatch--a situation where there is a disparity…

  6. Discriminating DNA mismatches by electrochemical and gravimetric techniques.

    PubMed

    Mazouz, Zouhour; Fourati, Najla; Zerrouki, Chouki; Ommezine, Asma; Rebhi, Lamia; Yaakoubi, Nourdin; Kalfat, Rafik; Othmane, Ali

    2013-10-15

    A silicon nitride functionalized electrode and a 104 MHz lithium tantalate (LiTaO₃) surface acoustic wave (SAW) sensor have been used to investigate target-probe recognition processes. Electrochemical and gravimetric measurements have been considered to monitor hybridization of single base mismatch (SBM) in synthetic oligonucleotides and single-nucleotide polymorphisms ApoE in real clinical genotypes. Obvious discrimination of SBM in nucleotides has been shown by both gravimetric and electrochemical techniques, without labeling nor amplification. Investigations on mismatches nature and position have also been considered. For guanine-adenine (GA), guanine-thymine (GT) and guanine-guanine (GG) mismatches, the sensors responses present a dependence upon positions. Considering the capacitance variations and hybridization rates, results showed that gravimetric transduction is more sensitive than electrochemical one. Moreover, the highest value of GT hybridization rate (in the middle position) was found in accordance with the nearest-neighbor model, where the considered configuration appears as the most thermodynamically stable. For the real samples, where the electrochemical transduction, by combining capacitance and flat-band potential measurements, were found more sensitive, the results show that the realized sensor permits an unambiguous discrimination of recognition between fully complementary, non-complementary and single base mismatched targets, and even between the combination of differently matched strands.

  7. Educational Mismatch and Spatial Flexibility in Italian Local Labour Markets

    ERIC Educational Resources Information Center

    Croce, Giuseppe; Ghignoni, Emanuela

    2015-01-01

    According to recent literature, this paper highlights the relevance of spatial mobility as an explanatory factor of the individual risk of job-education mismatch. To investigate this causal link, we use individual information about daily home-to-work commuting time and choices to relocate in a different local area to get a job. Our model takes…

  8. Absolute gain measurement of microstrip antennas under mismatched conditions

    NASA Technical Reports Server (NTRS)

    Lee, R. Q.; Baddour, M. F.

    1988-01-01

    The gain of a single microstrip patch and a two-layer parasitic array is measured using the image method under mismatched conditions. This method produces accurate results, even in the case of low-gain microstrip antennas. The advantages of this method over the gain comparison technique are discussed.

  9. Hydrolytic function of Exo1 in mammalian mismatch repair

    PubMed Central

    Shao, Hongbing; Baitinger, Celia; Soderblom, Erik J.; Burdett, Vickers; Modrich, Paul

    2014-01-01

    Genetic and biochemical studies have previously implicated exonuclease 1 (Exo1) in yeast and mammalian mismatch repair, with results suggesting that function of the protein in the reaction depends on both its hydrolytic activity and its ability to interact with other components of the repair system. However, recent analysis of an Exo1-E109K knockin mouse has concluded that Exo1 function in mammalian mismatch repair is restricted to a structural role, a conclusion based on a prior report that N-terminal His-tagged Exo1-E109K is hydrolytically defective. Because Glu-109 is distant from the nuclease hydrolytic center, we have compared the activity of untagged full-length Exo1-E109K with that of wild type Exo1 and the hydrolytically defective active site mutant Exo1-D173A. We show that the activity of Exo1-E109K is comparable to that of wild type enzyme in a conventional exonuclease assay and that in contrast to a D173A active site mutant, Exo1-E109K is fully functional in mismatch-provoked excision and repair. We conclude that the catalytic function of Exo1 is required for its participation in mismatch repair. We also consider the other phenotypes of the Exo1-E109K mouse in the context of Exo1 hydrolytic function. PMID:24829455

  10. Modeling of channel mismatch in time-interleaved SAR ADC

    NASA Astrophysics Data System (ADS)

    Dengquan, Li; Liang, Zhang; Zhangming, Zhu; Yintang, Yang

    2015-09-01

    In a time-interleaved analog-to-digital converter (TI ADC), several individual ADCs operate in parallel to achieve a higher sampling rate. Low power consumption as well as good linearity can be obtained by applying successive approximation register (SAR) converters as sub-channel ADCs. In spite of the advantages, this structure suffers from three mismatches, which are offset mismatch, gain mismatch, and time skew. This paper focuses on a TI SAR ADC with a number of channels. The mismatch effects in the frequency domain are analyzed and the derived close form formulas are verified based on Matlab. In addition, we clarify that the standard deviation of DNL and INL of an M-channel TI ADC is reduced by a factor of \\sqrt M compared to a single channel ADC. The formulas can be used to derive the corresponding requirements when designing a TI ADC. Our analysis process is able to inform the study of calibration algorithms. Project supported by the National Natural Science Foundation of China (Nos. 61234002, 61322405, 61306044, 61376033) and the National High-Tech Program of China (No. 2013AA014103).

  11. DNA mismatch repair: Dr. Jekyll and Mr. Hyde?

    PubMed

    Hsieh, Peggy

    2012-09-14

    In this issue, Peña-Diaz et al. (2012) describe a pathway for somatic mutation in nonlymphoid cells termed noncanonical DNA mismatch repair, whereby the error-prone translesion polymerase Pol-η substitutes for high-fidelity replicative polymerases to resynthesize excised regions opposite DNA damage. PMID:22980456

  12. Avalanching mutations in biallelic mismatch repair deficiency syndrome.

    PubMed

    Waterfall, Joshua J; Meltzer, Paul S

    2015-03-01

    Tumors from pediatric patients generally contain relatively few somatic mutations. A new study reports a striking exception in individuals in whom biallelic germline deficiency for mismatch repair is compounded by somatic loss of function in DNA proofreading polymerases, resulting in 'ultra-hypermutated' malignant brain tumors. PMID:25711864

  13. Avalanching mutations in biallelic mismatch repair deficiency syndrome.

    PubMed

    Waterfall, Joshua J; Meltzer, Paul S

    2015-03-01

    Tumors from pediatric patients generally contain relatively few somatic mutations. A new study reports a striking exception in individuals in whom biallelic germline deficiency for mismatch repair is compounded by somatic loss of function in DNA proofreading polymerases, resulting in 'ultra-hypermutated' malignant brain tumors.

  14. Prokaryotes Versus Eukaryotes: Who is Hosting Whom?

    PubMed Central

    Tellez, Guillermo

    2014-01-01

    Microorganisms represent the largest component of biodiversity in our world. For millions of years, prokaryotic microorganisms have functioned as a major selective force shaping eukaryotic evolution. Microbes that live inside and on animals outnumber the animals’ actual somatic and germ cells by an estimated 10-fold. Collectively, the intestinal microbiome represents a “forgotten organ,” functioning as an organ inside another that can execute many physiological responsibilities. The nature of primitive eukaryotes was drastically changed due to the association with symbiotic prokaryotes facilitating mutual coevolution of host and microbe. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. From termites and honey bees to ruminants and mammals, depending on novel biochemistries provided by the prokaryotic microbiome, the association helps to metabolize several nutrients that the host cannot digest and converting these into useful end products (such as short-chain fatty acids), a process, which has huge impact on the biology and homeostasis of metazoans. More importantly, in a direct and/or indirect way, the intestinal microbiota influences the assembly of gut-associated lymphoid tissue, helps to educate immune system, affects the integrity of the intestinal mucosal barrier, modulates proliferation and differentiation of its epithelial lineages, regulates angiogenesis, and modifies the activity of enteric as well as the central nervous system. Despite these important effects, the mechanisms by which the gut microbial community influences the host’s biology remain almost entirely unknown. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification between prokaryotes and eukaryotes, which encourage us to postulate: who is hosting whom? PMID

  15. Earth's earliest non-marine eukaryotes.

    PubMed

    Strother, Paul K; Battison, Leila; Brasier, Martin D; Wellman, Charles H

    2011-05-26

    The existence of a terrestrial Precambrian (more than 542 Myr ago) biota has been largely inferred from indirect chemical and geological evidence associated with palaeosols, the weathering of clay minerals and microbially induced sedimentary structures in siliciclastic sediments. Direct evidence of fossils within rocks of non-marine origin in the Precambrian is exceedingly rare. The most widely cited example comprises a single report of morphologically simple mineralized tubes and spheres interpreted as cyanobacteria, obtained from 1,200-Myr-old palaeokarst in Arizona. Organic-walled microfossils were first described from the non-marine Torridonian (1.2-1.0 Gyr ago) sequence of northwest Scotland in 1907. Subsequent studies found few distinctive taxa-a century later, the Torridonian microflora is still being characterized as primarily nondescript "leiospheres". We have comprehensively sampled grey shales and phosphatic nodules throughout the Torridonian sequence. Here we report the recovery of large populations of diverse organic-walled microfossils extracted by acid maceration, complemented by studies using thin sections of phosphatic nodules that yield exceptionally detailed three-dimensional preservation. These assemblages contain multicellular structures, complex-walled cysts, asymmetric organic structures, and dorsiventral, compressed organic thalli, some approaching one millimetre in diameter. They offer direct evidence of eukaryotes living in freshwater aquatic and subaerially exposed habitats during the Proterozoic era. The apparent dominance of eukaryotes in non-marine settings by 1 Gyr ago indicates that eukaryotic evolution on land may have commenced far earlier than previously thought. PMID:21490597

  16. Mitochondrial uncoupling proteins in unicellular eukaryotes.

    PubMed

    Jarmuszkiewicz, Wieslawa; Woyda-Ploszczyca, Andrzej; Antos-Krzeminska, Nina; Sluse, Francis E

    2010-01-01

    Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier protein family that are present in the mitochondrial inner membrane and mediate free fatty acid (FFA)-activated, purine nucleotide (PN)-inhibited proton conductance. Since 1999, the presence of UCPs has been demonstrated in some non-photosynthesising unicellular eukaryotes, including amoeboid and parasite protists, as well as in non-fermentative yeast and filamentous fungi. In the mitochondria of these organisms, UCP activity is revealed upon FFA-induced, PN-inhibited stimulation of resting respiration and a decrease in membrane potential, which are accompanied by a decrease in membranous ubiquinone (Q) reduction level. UCPs in unicellular eukaryotes are able to divert energy from oxidative phosphorylation and thus compete for a proton electrochemical gradient with ATP synthase. Our recent work indicates that membranous Q is a metabolic sensor that might utilise its redox state to release the PN inhibition of UCP-mediated mitochondrial uncoupling under conditions of phosphorylation and resting respiration. The action of reduced Q (QH2) could allow higher or complete activation of UCP. As this regulatory feature was demonstrated for microorganism UCPs (A. castellanii UCP), plant and mammalian UCP1 analogues, and UCP1 in brown adipose tissue, the process could involve all UCPs. Here, we discuss the functional connection and physiological role of UCP and alternative oxidase, two main energy-dissipating systems in the plant-type mitochondrial respiratory chain of unicellular eukaryotes, including the control of cellular energy balance as well as preventive action against the production of reactive oxygen species.

  17. Synchronization of eukaryotic cells by periodic forcing.

    PubMed

    Battogtokh, Dorjsuren; Aihara, Kazuyuki; Tyson, John J

    2006-04-14

    We study a cell population described by a minimal mathematical model of the eukaryotic cell cycle subject to periodic forcing that simultaneously perturbs the dynamics of the cell cycle engine and cell growth, and we show that the population can be synchronized in a mode-locked regime. By simplifying the model to two variables, for the phase of cell cycle progression and the mass of the cell, we calculate the Lyapunov exponents to obtain the parameter window for synchronization. We also discuss the effects of intrinsic mitotic fluctuations, asymmetric division, and weak mutual coupling on the pace of synchronization. PMID:16712125

  18. Glycan variation and evolution in the eukaryotes.

    PubMed

    Corfield, Anthony P; Berry, Monica

    2015-07-01

    In this review, we document the evolution of common glycan structures in the eukaryotes, and illustrate the considerable variety of oligosaccharides existing in these organisms. We focus on the families of N- and O-glycans, glycosphingolipids, glycosaminoglycans, glycosylphosphatidylinositol (GPI) anchors, sialic acids (Sias), and cytoplasmic and nuclear glycans. We also outline similar and divergent aspects of the glycans during evolution within the groups, which include inter- and intraspecies differences, molecular mimicry, viral glycosylation adaptations, glycosyltransferase specificity relating to function, and the natural dynamism powering these events. Finally, we present an overview of the patterns of glycosylation found within the groups comprising the Eukaryota, namely the Deuterostomia, Fungi, Viridiplantae, Nematoda, and Arthropoda.

  19. Expression of eukaryotic polypeptides in chloroplasts

    DOEpatents

    Mayfield, Stephen P.

    2013-06-04

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  20. Polyamines in Eukaryotes, Bacteria, and Archaea.

    PubMed

    Michael, Anthony J

    2016-07-15

    Polyamines are primordial polycations found in most cells and perform different functions in different organisms. Although polyamines are mainly known for their essential roles in cell growth and proliferation, their functions range from a critical role in cellular translation in eukaryotes and archaea, to bacterial biofilm formation and specialized roles in natural product biosynthesis. At first glance, the diversity of polyamine structures in different organisms appears chaotic; however, biosynthetic flexibility and evolutionary and ecological processes largely explain this heterogeneity. In this review, I discuss the biosynthetic, evolutionary, and physiological processes that constrain or expand polyamine structural and functional diversity.

  1. An Inordinate Fondness for Eukaryotic Diversity

    PubMed Central

    Harmon, Luke J.

    2012-01-01

    Why do some groups of organisms, like beetles, have so many species, and others, like the tuataras, so few? This classic question in evolutionary biology has a deep history and has been studied using both fossils and phylogenetic trees. Phylogeny-based studies have focused on tree balance, which compares the number of species across clades of the same age in the tree. These studies have suggested that rates of speciation and extinction vary tremendously across the tree of life. In this issue, Rabosky et al. report the most ambitious study to date on the differences in species diversity across clades in the tree of life. The authors bring together a tremendously large dataset of multicellular eukaryotes, including all living species of plants, animals, and fungi; they divide these organisms into 1,397 clades, accounting for more than 1.2 million species in total. Rabosky et al. find tremendous variation in diversity across the tree of life. There are old clades with few species, young clades with many species, and everything in between. They also note a peculiar aspect of their data: it is difficult or impossible to predict how many species will be found in a particular clade knowing how long a clade has been diversifying from a common ancestor. This pattern suggests complex dynamics of speciation and extinction in the history of eukaryotes. Rabosky et al.'s paper represents the latest development in our efforts to understand the Earth's biodiversity at the broadest scales. PMID:22952431

  2. Extremophilic Eukaryote Life in Hawaiian Fumaroles

    NASA Astrophysics Data System (ADS)

    Ackerman, C.; Anderson, S.; Anderson, C.

    2008-12-01

    Extremophilic microorganisms exist in all three domains of life (Eukarya, Archaea, Bacteria), but are less known in eukaryotes. Fumaroles provide heat and moisture characteristic of an environment suitable for these organisms. On the Island of Hawaii, fumaroles are scattered across the southeastern portion of the island as a result of the volcanic activity from Kilauea Crater and Pu'u' O'o vent with all forming within geochemically similar basalt substrates. We used metagenomics to detect 18S rDNA from eukaryotic extremophilic microorganisms indicating their presence in Hawaiian fumaroles. To determine the effects of environmental gradients (temperature and pH) on microbial diversity within and among fumaroles, 11 samples from 3 fumaroles were collected over a three-day period in February of 2007. Temperatures of the different fumaroles range from 31.0oC to 62.7oC, with pH values that vary from 2.55 to 6.93 allowing for 8 different microenvironments. Fifty sequences per sample were analyzed with eighteen different organisms identified, the majority belonging to the family Cercozoa. The most diverse fumarole consisted of 8 different genera residing in a temperature of 34.1oC and a pH of 3.0. Unclassified mosses were identified in the fumarole with the highest temperature and Phaeoceros (hornworts) were identified at the most acidic fumarole. Both of these groups have been previously identified in geothermal areas.

  3. The architecture of a eukaryotic replisome

    DOE PAGES

    Sun, Jingchuan; Yuan, Zuanning; Shi, Yi; Georgescu, Roxana E.; Chait, Brian T.; Li, Huilin; O'Donnell, Michael E.

    2015-11-02

    At the eukaryotic DNA replication fork, it is widely believed that the Cdc45–Mcm2–7–GINS (CMG) helicase is positioned in front to unwind DNA and that DNA polymerases trail behind the helicase. Here we used single-particle EM to directly image a Saccharomyces cerevisiae replisome. Contrary to expectations, the leading strand Pol ε is positioned ahead of CMG helicase, whereas Ctf4 and the lagging-strand polymerase (Pol) α–primase are behind the helicase. This unexpected architecture indicates that the leading-strand DNA travels a long distance before reaching Pol ε, first threading through the Mcm2–7 ring and then making a U-turn at the bottom and reachingmore » Pol ε at the top of CMG. Lastly, our work reveals an unexpected configuration of the eukaryotic replisome, suggests possible reasons for this architecture and provides a basis for further structural and biochemical replisome studies.« less

  4. The scanning mechanism of eukaryotic translation initiation.

    PubMed

    Hinnebusch, Alan G

    2014-01-01

    In eukaryotes, the translation initiation codon is generally identified by the scanning mechanism, wherein every triplet in the messenger RNA leader is inspected for complementarity to the anticodon of methionyl initiator transfer RNA (Met-tRNAi). Binding of Met-tRNAi to the small (40S) ribosomal subunit, in a ternary complex (TC) with eIF2-GTP, is stimulated by eukaryotic initiation factor 1 (eIF1), eIF1A, eIF3, and eIF5, and the resulting preinitiation complex (PIC) joins the 5' end of mRNA preactivated by eIF4F and poly(A)-binding protein. RNA helicases remove secondary structures that impede ribosome attachment and subsequent scanning. Hydrolysis of eIF2-bound GTP is stimulated by eIF5 in the scanning PIC, but completion of the reaction is impeded at non-AUG triplets. Although eIF1 and eIF1A promote scanning, eIF1 and possibly the C-terminal tail of eIF1A must be displaced from the P decoding site to permit base-pairing between Met-tRNAi and the AUG codon, as well as to allow subsequent phosphate release from eIF2-GDP. A second GTPase, eIF5B, catalyzes the joining of the 60S subunit to produce an 80S initiation complex that is competent for elongation.

  5. RNA Export through the NPC in Eukaryotes

    PubMed Central

    Okamura, Masumi; Inose, Haruko; Masuda, Seiji

    2015-01-01

    In eukaryotic cells, RNAs are transcribed in the nucleus and exported to the cytoplasm through the nuclear pore complex. The RNA molecules that are exported from the nucleus into the cytoplasm include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), micro RNAs (miRNAs), and viral mRNAs. Each RNA is transported by a specific nuclear export receptor. It is believed that most of the mRNAs are exported by Nxf1 (Mex67 in yeast), whereas rRNAs, snRNAs, and a certain subset of mRNAs are exported in a Crm1/Xpo1-dependent manner. tRNAs and miRNAs are exported by Xpot and Xpo5. However, multiple export receptors are involved in the export of some RNAs, such as 60S ribosomal subunit. In addition to these export receptors, some adapter proteins are required to export RNAs. The RNA export system of eukaryotic cells is also used by several types of RNA virus that depend on the machineries of the host cell in the nucleus for replication of their genome, therefore this review describes the RNA export system of two representative viruses. We also discuss the NPC anchoring-dependent mRNA export factors that directly recruit specific genes to the NPC. PMID:25802992

  6. Viruses and viruslike particles of eukaryotic algae.

    PubMed Central

    Van Etten, J L; Lane, L C; Meints, R H

    1991-01-01

    Until recently there was little interest or information on viruses and viruslike particles of eukaryotic algae. However, this situation is changing. In the past decade many large double-stranded DNA-containing viruses that infect two culturable, unicellular, eukaryotic green algae have been discovered. These viruses can be produced in large quantities, assayed by plaque formation, and analyzed by standard bacteriophage techniques. The viruses are structurally similar to animal iridoviruses, their genomes are similar to but larger (greater than 300 kbp) than that of poxviruses, and their infection process resembles that of bacteriophages. Some of the viruses have DNAs with low levels of methylated bases, whereas others have DNAs with high concentrations of 5-methylcytosine and N6-methyladenine. Virus-encoded DNA methyltransferases are associated with the methylation and are accompanied by virus-encoded DNA site-specific (restriction) endonucleases. Some of these enzymes have sequence specificities identical to those of known bacterial enzymes, and others have previously unrecognized specificities. A separate rod-shaped RNA-containing algal virus has structural and nucleotide sequence affinities to higher plant viruses. Quite recently, viruses have been associated with rapid changes in marine algal populations. In the next decade we envision the discovery of new algal viruses, clarification of their role in various ecosystems, discovery of commercially useful genes in these viruses, and exploitation of algal virus genetic elements in plant and algal biotechnology. Images PMID:1779928

  7. Protein acetylation in archaea, bacteria, and eukaryotes.

    PubMed

    Soppa, Jörg

    2010-09-16

    Proteins can be acetylated at the alpha-amino group of the N-terminal amino acid (methionine or the penultimate amino acid after methionine removal) or at the epsilon-amino group of internal lysines. In eukaryotes the majority of proteins are N-terminally acetylated, while this is extremely rare in bacteria. A variety of studies about N-terminal acetylation in archaea have been reported recently, and it was revealed that a considerable fraction of proteins is N-terminally acetylated in haloarchaea and Sulfolobus, while this does not seem to apply for methanogenic archaea. Many eukaryotic proteins are modified by differential internal acetylation, which is important for a variety of processes. Until very recently, only two bacterial proteins were known to be acetylation targets, but now 125 acetylation sites are known for E. coli. Knowledge about internal acetylation in archaea is extremely limited; only two target proteins are known, only one of which--Alba--was used to study differential acetylation. However, indications accumulate that the degree of internal acetylation of archaeal proteins might be underestimated, and differential acetylation has been shown to be essential for the viability of haloarchaea. Focused proteomic approaches are needed to get an overview of the extent of internal protein acetylation in archaea.

  8. Eukaryotic replication origins: Strength in flexibility

    PubMed Central

    Kumar, Charanya; Remus, Dirk

    2016-01-01

    ABSTRACT The eukaryotic replicative DNA helicase, Mcm2-7, is loaded in inactive form as a double hexameric complex around double-stranded DNA. To ensure that replication origins fire no more than once per S phase, activation of the Mcm2-7 helicase is temporally separated from Mcm2-7 loading in the cell cycle. This 2-step mechanism requires that inactive Mcm2-7 complexes be maintained for variable periods of time in a topologically bound state on chromatin, which may create a steric obstacle to other DNA transactions. We have recently found in the budding yeast, Saccharomyces cerevisiae, that Mcm2-7 double hexamers can respond to collisions with transcription complexes by sliding along the DNA template. Importantly, Mcm2-7 double hexamers remain functional after displacement along DNA and support replication initiation from sites distal to the origin. These results reveal a novel mechanism to specify eukaryotic replication origin sites and to maintain replication origin competence without the need for Mcm2-7 reloading. PMID:27416360

  9. Self-synthesizing DNA transposons in eukaryotes.

    PubMed

    Kapitonov, Vladimir V; Jurka, Jerzy

    2006-03-21

    Eukaryotes contain numerous transposable or mobile elements capable of parasite-like proliferation in the host genome. All known transposable elements in eukaryotes belong to two types: retrotransposons and DNA transposons. Here we report a previously uncharacterized class of DNA transposons called Polintons that populate genomes of protists, fungi, and animals, including entamoeba, soybean rust, hydra, sea anemone, nematodes, fruit flies, beetle, sea urchin, sea squirt, fish, lizard, frog, and chicken. Polintons from all these species are characterized by a unique set of proteins necessary for their transposition, including a protein-primed DNA polymerase B, retroviral integrase, cysteine protease, and ATPase. In addition, Polintons are characterized by 6-bp target site duplications, terminal-inverted repeats that are several hundred nucleotides long, and 5'-AG and TC-3' termini. Analogously to known transposable elements, Polintons exist as autonomous and nonautonomous elements. Our data suggest that Polintons have evolved from a linear plasmid that acquired a retroviral integrase at least 1 billion years ago. According to the model of Polinton transposition proposed here, a Polinton DNA molecule excised from the genome serves as a template for extrachromosomal synthesis of its double-stranded DNA copy by the Polinton-encoded DNA polymerase and is inserted back into genome by its integrase.

  10. Compositional differences within and between eukaryotic genomes.

    PubMed

    Karlin, S; Mrázek, J

    1997-09-16

    Eukaryotic genome similarity relationships are inferred using sequence information derived from large aggregates of genomic sequences. Comparisons within and between species sample sequences are based on the profile of dinucleotide relative abundance values (The profile is rho*XY = f*XY/f*Xf*Y for all XY, where f*X denotes the frequency of the nucleotide X and f*XY denotes the frequency of the dinucleotide XY, both computed from the sequence concatenated with its inverted complement). Previous studies with respect to prokaryotes and this study document that profiles of different DNA sequence samples (sample size >/=50 kb) from the same organism are generally much more similar to each other than they are to profiles from other organisms, and that closely related organisms generally have more similar profiles than do distantly related organisms. On this basis we refer to the collection (rho*XY) as the genome signature. This paper identifies rho*XY extremes and compares genome signature differences for a diverse range of eukaryotic species. Interpretations on the mechanisms maintaining these profile differences center on genome-wide replication, repair, DNA structures, and context-dependent mutational biases. It is also observed that mitochondrial genome signature differences between species parallel the corresponding nuclear genome signature differences despite large differences between corresponding mitochondrial and nuclear signatures. The genome signature differences also have implications for contrasts between rodents and other mammals, and between monocot and dicot plants, as well as providing evidence for similarities among fungi and the diversity of protists.

  11. Translational control of intron splicing in eukaryotes.

    PubMed

    Jaillon, Olivier; Bouhouche, Khaled; Gout, Jean-François; Aury, Jean-Marc; Noel, Benjamin; Saudemont, Baptiste; Nowacki, Mariusz; Serrano, Vincent; Porcel, Betina M; Ségurens, Béatrice; Le Mouël, Anne; Lepère, Gersende; Schächter, Vincent; Bétermier, Mireille; Cohen, Jean; Wincker, Patrick; Sperling, Linda; Duret, Laurent; Meyer, Eric

    2008-01-17

    Most eukaryotic genes are interrupted by non-coding introns that must be accurately removed from pre-messenger RNAs to produce translatable mRNAs. Splicing is guided locally by short conserved sequences, but genes typically contain many potential splice sites, and the mechanisms specifying the correct sites remain poorly understood. In most organisms, short introns recognized by the intron definition mechanism cannot be efficiently predicted solely on the basis of sequence motifs. In multicellular eukaryotes, long introns are recognized through exon definition and most genes produce multiple mRNA variants through alternative splicing. The nonsense-mediated mRNA decay (NMD) pathway may further shape the observed sets of variants by selectively degrading those containing premature termination codons, which are frequently produced in mammals. Here we show that the tiny introns of the ciliate Paramecium tetraurelia are under strong selective pressure to cause premature termination of mRNA translation in the event of intron retention, and that the same bias is observed among the short introns of plants, fungi and animals. By knocking down the two P. tetraurelia genes encoding UPF1, a protein that is crucial in NMD, we show that the intrinsic efficiency of splicing varies widely among introns and that NMD activity can significantly reduce the fraction of unspliced mRNAs. The results suggest that, independently of alternative splicing, species with large intron numbers universally rely on NMD to compensate for suboptimal splicing efficiency and accuracy.

  12. Eukaryotic and Prokaryotic Cytoskeletons: Structure and Mechanics

    NASA Astrophysics Data System (ADS)

    Gopinathan, Ajay

    2013-03-01

    The eukaryotic cytoskeleton is an assembly of filamentous proteins and a host of associated proteins that collectively serve functional needs ranging from spatial organization and transport to the production and transmission of forces. These systems can exhibit a wide variety of non-equilibrium, self-assembled phases depending on context and function. While much recent progress has been made in understanding the self-organization, rheology and nonlinear mechanical properties of such active systems, in this talk, we will concentrate on some emerging aspects of cytoskeletal physics that are promising. One such aspect is the influence of cytoskeletal network topology and its dynamics on both active and passive intracellular transport. Another aspect we will highlight is the interplay between chirality of filaments, their elasticity and their interactions with the membrane that can lead to novel conformational states with functional implications. Finally we will consider homologs of cytoskeletal proteins in bacteria, which are involved in templating cell growth, segregating genetic material and force production, which we will discuss with particular reference to contractile forces during cell division. These prokaryotic structures function in remarkably similar yet fascinatingly different ways from their eukaryotic counterparts and can enrich our understanding of cytoskeletal functioning as a whole.

  13. The archaeal legacy of eukaryotes: a phylogenomic perspective.

    PubMed

    Guy, Lionel; Saw, Jimmy H; Ettema, Thijs J G

    2014-07-03

    The origin of the eukaryotic cell can be regarded as one of the hallmarks in the history of life on our planet. The apparent genomic chimerism in eukaryotic genomes is currently best explained by invoking a cellular fusion at the root of the eukaryotes that involves one archaeal and one or more bacterial components. Here, we use a phylogenomics approach to reevaluate the evolutionary affiliation between Archaea and eukaryotes, and provide further support for scenarios in which the nuclear lineage in eukaryotes emerged from within the archaeal radiation, displaying a strong phylogenetic affiliation with, or even within, the archaeal TACK superphylum. Further taxonomic sampling of archaeal genomes in this superphylum will certainly provide a better resolution in the events that have been instrumental for the emergence of the eukaryotic lineage.

  14. The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility

    SciTech Connect

    Fritz-Laylin, Lillian K.; Prochnik, Simon E.; Ginger, Michael L.; Dacks, Joel; Carpenter, Meredith L.; Field, Mark C.; Kuo, Alan; Paredez, Alex; Chapman, Jarrod; Pham, Jonathan; Shu, Shengqiang; Neupane, Rochak; Cipriano, Michael; Mancuso, Joel; Tu, Hank; Salamov, Asaf; Lindquist, Erika; Shapiro, Harris; Lucas, Susan; Grigoriev, Igor V.; Cande, W. Zacheus; Fulton, Chandler; Rokhsar, Daniel S.; Dawson, Scott C.

    2010-03-01

    Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.

  15. The others: our biased perspective of eukaryotic genomes.

    PubMed

    del Campo, Javier; Sieracki, Michael E; Molestina, Robert; Keeling, Patrick; Massana, Ramon; Ruiz-Trillo, Iñaki

    2014-05-01

    Understanding the origin and evolution of the eukaryotic cell and the full diversity of eukaryotes is relevant to many biological disciplines. However, our current understanding of eukaryotic genomes is extremely biased, leading to a skewed view of eukaryotic biology. We argue that a phylogeny-driven initiative to cover the full eukaryotic diversity is needed to overcome this bias. We encourage the community: (i) to sequence a representative of the neglected groups available at public culture collections, (ii) to increase our culturing efforts, and (iii) to embrace single cell genomics to access organisms refractory to propagation in culture. We hope that the community will welcome this proposal, explore the approaches suggested, and join efforts to sequence the full diversity of eukaryotes.

  16. The genome of Naegleria gruberi illuminates early eukaryotic versatility.

    PubMed

    Fritz-Laylin, Lillian K; Prochnik, Simon E; Ginger, Michael L; Dacks, Joel B; Carpenter, Meredith L; Field, Mark C; Kuo, Alan; Paredez, Alex; Chapman, Jarrod; Pham, Jonathan; Shu, Shengqiang; Neupane, Rochak; Cipriano, Michael; Mancuso, Joel; Tu, Hank; Salamov, Asaf; Lindquist, Erika; Shapiro, Harris; Lucas, Susan; Grigoriev, Igor V; Cande, W Zacheus; Fulton, Chandler; Rokhsar, Daniel S; Dawson, Scott C

    2010-03-01

    Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.

  17. The Archaeal Legacy of Eukaryotes: A Phylogenomic Perspective

    PubMed Central

    Guy, Lionel; Saw, Jimmy H.; Ettema, Thijs J.G.

    2014-01-01

    The origin of the eukaryotic cell can be regarded as one of the hallmarks in the history of life on our planet. The apparent genomic chimerism in eukaryotic genomes is currently best explained by invoking a cellular fusion at the root of the eukaryotes that involves one archaeal and one or more bacterial components. Here, we use a phylogenomics approach to reevaluate the evolutionary affiliation between Archaea and eukaryotes, and provide further support for scenarios in which the nuclear lineage in eukaryotes emerged from within the archaeal radiation, displaying a strong phylogenetic affiliation with, or even within, the archaeal TACK superphylum. Further taxonomic sampling of archaeal genomes in this superphylum will certainly provide a better resolution in the events that have been instrumental for the emergence of the eukaryotic lineage. PMID:24993577

  18. Formal Education, Mismatch and Wages after Transition: Assessing the Impact of Unobserved Heterogeneity Using Matching Estimators

    ERIC Educational Resources Information Center

    Lamo, Ana; Messina, Julian

    2010-01-01

    This paper studies the incidence and consequences of the mismatch between formal education and the educational requirements of jobs in Estonia during the years 1997-2003. We find large wage penalties associated with the phenomenon of educational mismatch. Moreover, the incidence and wage penalty of mismatches increase with age. This suggests that…

  19. Evolution of microtubule organizing centers across the tree of eukaryotes.

    PubMed

    Yubuki, Naoji; Leander, Brian S

    2013-07-01

    The architecture of eukaryotic cells is underpinned by complex arrrays of microtubules that stem from an organizing center, referred to as the MTOC. With few exceptions, MTOCs consist of two basal bodies that anchor flagellar axonemes and different configurations of microtubular roots. Variations in the structure of this cytoskeletal system, also referred to as the 'flagellar apparatus', reflect phylogenetic relationships and provide compelling evidence for inferring the overall tree of eukaryotes. However, reconstructions and subsequent comparisons of the flagellar apparatus are challenging, because these studies require sophisticated microscopy, spatial reasoning and detailed terminology. In an attempt to understand the unifying features of MTOCs and broad patterns of cytoskeletal homology across the tree of eukaryotes, we present a comprehensive overview of the eukaryotic flagellar apparatus within a modern molecular phylogenetic context. Specifically, we used the known cytoskeletal diversity within major groups of eukaryotes to infer the unifying features (ancestral states) for the flagellar apparatus in the Plantae, Opisthokonta, Amoebozoa, Stramenopiles, Alveolata, Rhizaria, Excavata, Cryptophyta, Haptophyta, Apusozoa, Breviata and Collodictyonidae. We then mapped these data onto the tree of eukaryotes in order to trace broad patterns of trait changes during the evolutionary history of the flagellar apparatus. This synthesis suggests that: (i) the most recent ancestor of all eukaryotes already had a complex flagellar apparatus, (ii) homologous traits associated with the flagellar apparatus have a punctate distribution across the tree of eukaryotes, and (iii) streamlining (trait losses) of the ancestral flagellar apparatus occurred several times independently in eukaryotes.

  20. A Computational Model for Biomechanical Effects of Arterial Compliance Mismatch.

    PubMed

    He, Fan; Hua, Lu; Gao, Li-Jian

    2015-01-01

    Background. Compliance mismatch is a negative factor and it needs to be considered in arterial bypass grafting. Objective. A computational model was employed to investigate the effects of arterial compliance mismatch on blood flow, wall stress, and deformation. Methods. The unsteady blood flow was assumed to be laminar, Newtonian, viscous, and incompressible. The vessel wall was assumed to be linear elastic, isotropic, and incompressible. The fluid-wall interaction scheme was constructed using the finite element method. Results. The results show that there are identical wall shear stress waveforms, wall stress, and strain waveforms at different locations. The comparison of the results demonstrates that wall shear stresses and wall strains are higher while wall stresses are lower at the more compliant section. The differences promote the probability of intimal thickening at some locations. Conclusions. The model is effective and gives satisfactory results. It could be extended to all kinds of arteries with complicated geometrical and material factors. PMID:27019580

  1. Enhanced densification of metal powders by transformation-mismatch plasticity

    SciTech Connect

    Schuh, C.; Noel, P.; Dunand, D.C.

    2000-05-11

    The densification of titanium powders is investigated in uniaxial die pressing experiments carried out isothermally at 980 C (in the {beta}-field of titanium) and during thermal cycling between 860 and 980 C (about the {alpha}/{beta} phase transformation of titanium). Thermal cycling is found to enhance densification kinetics through the emergence of transformation-mismatch plasticity (the mechanism responsible for transformation superplasticity) as a densification mechanism. The isothermal hot-pressing data compare favorably with existing models of powder densification, and these models are successfully adapted to the case of transformation-mismatch plasticity during thermal cycling. Similar conclusions are reached for the densification of titanium powders containing 1, 5, or 10 vol.% ZrO{sub 2} particles. However, the addition of ZrO{sub 2} hinders densification by dissolving in the titanium matrix during the hot-pressing procedure.

  2. Phenotypic Mismatches Reveal Escape from Arms-Race Coevolution

    PubMed Central

    Hanifin, Charles T; Brodie, Edmund D; Brodie, Edmund D

    2008-01-01

    Because coevolution takes place across a broad scale of time and space, it is virtually impossible to understand its dynamics and trajectories by studying a single pair of interacting populations at one time. Comparing populations across a range of an interaction, especially for long-lived species, can provide insight into these features of coevolution by sampling across a diverse set of conditions and histories. We used measures of prey traits (tetrodotoxin toxicity in newts) and predator traits (tetrodotoxin resistance of snakes) to assess the degree of phenotypic mismatch across the range of their coevolutionary interaction. Geographic patterns of phenotypic exaggeration were similar in prey and predators, with most phenotypically elevated localities occurring along the central Oregon coast and central California. Contrary to expectations, however, these areas of elevated traits did not coincide with the most intense coevolutionary selection. Measures of functional trait mismatch revealed that over one-third of sampled localities were so mismatched that reciprocal selection could not occur given current trait distributions. Estimates of current locality-specific interaction selection gradients confirmed this interpretation. In every case of mismatch, predators were “ahead” of prey in the arms race; the converse escape of prey was never observed. The emergent pattern suggests a dynamic in which interacting species experience reciprocal selection that drives arms-race escalation of both prey and predator phenotypes at a subset of localities across the interaction. This coadaptation proceeds until the evolution of extreme phenotypes by predators, through genes of large effect, allows snakes to, at least temporarily, escape the arms race. PMID:18336073

  3. Phenotypic mismatches reveal escape from arms-race coevolution.

    PubMed

    Hanifin, Charles T; Brodie, Edmund D; Brodie, Edmund D

    2008-03-11

    Because coevolution takes place across a broad scale of time and space, it is virtually impossible to understand its dynamics and trajectories by studying a single pair of interacting populations at one time. Comparing populations across a range of an interaction, especially for long-lived species, can provide insight into these features of coevolution by sampling across a diverse set of conditions and histories. We used measures of prey traits (tetrodotoxin toxicity in newts) and predator traits (tetrodotoxin resistance of snakes) to assess the degree of phenotypic mismatch across the range of their coevolutionary interaction. Geographic patterns of phenotypic exaggeration were similar in prey and predators, with most phenotypically elevated localities occurring along the central Oregon coast and central California. Contrary to expectations, however, these areas of elevated traits did not coincide with the most intense coevolutionary selection. Measures of functional trait mismatch revealed that over one-third of sampled localities were so mismatched that reciprocal selection could not occur given current trait distributions. Estimates of current locality-specific interaction selection gradients confirmed this interpretation. In every case of mismatch, predators were "ahead" of prey in the arms race; the converse escape of prey was never observed. The emergent pattern suggests a dynamic in which interacting species experience reciprocal selection that drives arms-race escalation of both prey and predator phenotypes at a subset of localities across the interaction. This coadaptation proceeds until the evolution of extreme phenotypes by predators, through genes of large effect, allows snakes to, at least temporarily, escape the arms race.

  4. An Evolutionary Network of Genes Present in the Eukaryote Common Ancestor Polls Genomes on Eukaryotic and Mitochondrial Origin

    PubMed Central

    Thiergart, Thorsten; Landan, Giddy; Schenk, Marc; Dagan, Tal; Martin, William F.

    2012-01-01

    To test the predictions of competing and mutually exclusive hypotheses for the origin of eukaryotes, we identified from a sample of 27 sequenced eukaryotic and 994 sequenced prokaryotic genomes 571 genes that were present in the eukaryote common ancestor and that have homologues among eubacterial and archaebacterial genomes. Maximum-likelihood trees identified the prokaryotic genomes that most frequently contained genes branching as the sister to the eukaryotic nuclear homologues. Among the archaebacteria, euryarchaeote genomes most frequently harbored the sister to the eukaryotic nuclear gene, whereas among eubacteria, the α-proteobacteria were most frequently represented within the sister group. Only 3 genes out of 571 gave a 3-domain tree. Homologues from α-proteobacterial genomes that branched as the sister to nuclear genes were found more frequently in genomes of facultatively anaerobic members of the rhiozobiales and rhodospirilliales than in obligate intracellular ricketttsial parasites. Following α-proteobacteria, the most frequent eubacterial sister lineages were γ-proteobacteria, δ-proteobacteria, and firmicutes, which were also the prokaryote genomes least frequently found as monophyletic groups in our trees. Although all 22 higher prokaryotic taxa sampled (crenarchaeotes, γ-proteobacteria, spirochaetes, chlamydias, etc.) harbor genes that branch as the sister to homologues present in the eukaryotic common ancestor, that is not evidence of 22 different prokaryotic cells participating at eukaryote origins because prokaryotic “lineages” have laterally acquired genes for more than 1.5 billion years since eukaryote origins. The data underscore the archaebacterial (host) nature of the eukaryotic informational genes and the eubacterial (mitochondrial) nature of eukaryotic energy metabolism. The network linking genes of the eukaryote ancestor to contemporary homologues distributed across prokaryotic genomes elucidates eukaryote gene origins in a

  5. Haloviruses of archaea, bacteria, and eukaryotes.

    PubMed

    Atanasova, Nina S; Oksanen, Hanna M; Bamford, Dennis H

    2015-06-01

    Hypersaline environments up to near saturation are rich reservoirs of extremophilic viruses. One milliliter of salt water may contain up to 10(9) viruses which can also be trapped inside salt crystals. To date, most of the ∼100 known halovirus isolates infect extremely halophilic archaea, although a few bacterial and eukaryotic viruses have also been described. These isolates comprise tailed and tailless icosahedral, pleomorphic, and lemon-shaped viruses which have been classified according to features such as host range, genome type, and replication. Recent studies have revealed that viruses can be grouped into a few structure-based viral lineages derived from a common ancestor based on conserved virion architectural principles and the major capsid protein fold.

  6. (Viruses of eukaryotic green algae): Performance report

    SciTech Connect

    Not Available

    1987-01-01

    The primary objective of this research was to develop the Chlorella-PBCV-1 virus system so that it can be used as a model system for studying gene expression in a photosynthetic eukaryote. Discoveries include the finding that morphologically similar, plaque forming, dsDNA containing viruses are common in nature and can be isolated readily from fresh water; the finding that all of these Chlorella viruses contain methylated bases which range in concentration from 0.1% to 47.5% mVdC and 0 to 37% mWdA and the discovery that infection with at least some of these viruses induces the appearance of DNA modification/restriction systems. 18 refs.

  7. Arsenic transport in prokaryotes and eukaryotic microbes.

    PubMed

    Rosen, Barry P; Tamás, Markus J

    2010-01-01

    Aquaporins (AQPs) and aquaglyceroporins facilitate transport of a broad spectrum of substrates such as water, glycerol and other small uncharged solutes. More recently, AQPs ave also been shown to facilitate diffusion of metalloids such as arsenic (As) and antimony (Sb). At neutral pH, the trivalent forms of these metalloids are structurally similar to glycerol and hence they can enter cells through AQPs. As- and Sb-containing compounds are toxic to cells, yet both metalloids are used as chemotherapeutic agents for treating acute promyelocytic leukemia and diseases caused by protozoan parasites. In this chapter, we will review the role of AQPs and other proteins in metalloid transport in prokaryotes and eukaryotic microbes.

  8. Mapping the Landscape of a Eukaryotic Degronome.

    PubMed

    Geffen, Yifat; Appleboim, Alon; Gardner, Richard G; Friedman, Nir; Sadeh, Ronen; Ravid, Tommer

    2016-09-15

    The ubiquitin-proteasome system (UPS) for protein degradation has been under intensive study, and yet, we have only partial understanding of mechanisms by which proteins are selected to be targeted for proteolysis. One of the obstacles in studying these recognition pathways is the limited repertoire of known degradation signals (degrons). To better understand what determines the susceptibility of intracellular proteins to degradation by the UPS, we developed an unbiased method for large-scale identification of eukaryotic degrons. Using a reporter-based high-throughput competition assay, followed by deep sequencing, we measured a degradation potency index for thousands of native polypeptides in a single experiment. We further used this method to identify protein quality control (PQC)-specific and compartment-specific degrons. Our method provides an unprecedented insight into the yeast degronome, and it can readily be modified to study protein degradation signals and pathways in other organisms and in various settings. PMID:27618491

  9. Proteomic analysis of a eukaryotic cilium.

    PubMed

    Pazour, Gregory J; Agrin, Nathan; Leszyk, John; Witman, George B

    2005-07-01

    Cilia and flagella are widespread cell organelles that have been highly conserved throughout evolution and play important roles in motility, sensory perception, and the life cycles of eukaryotes ranging from protists to humans. Despite the ubiquity and importance of these organelles, their composition is not well known. Here we use mass spectrometry to identify proteins in purified flagella from the green alga Chlamydomonas reinhardtii. 360 proteins were identified with high confidence, and 292 more with moderate confidence. 97 out of 101 previously known flagellar proteins were found, indicating that this is a very complete dataset. The flagellar proteome is rich in motor and signal transduction components, and contains numerous proteins with homologues associated with diseases such as cystic kidney disease, male sterility, and hydrocephalus in humans and model vertebrates. The flagellum also contains many proteins that are conserved in humans but have not been previously characterized in any organism. The results indicate that flagella are far more complex than previously estimated.

  10. Eukaryotic DNA methylation as an evolutionary device.

    PubMed

    Colot, V; Rossignol, J L

    1999-05-01

    DNA methylation is catalyzed by a family of conserved DNA methyltransferases and is widespread among protists, plants, fungi and animals. It is however absent in some species and its genomic distribution varies among organisms. Sequence comparisons suggest that known and putative eukaryotic DNA methyltransferases fall into at least five structurally distinct subfamilies. Furthermore, it is now clear that DNA methylation can be involved in several functions, some of which may coexist within the same organism. It can inhibit transcription initiation, arrest transcript elongation, act as an imprinting signal, and suppress homologous recombination. On the basis of these observations, we argue that DNA methylation has been conserved during evolution because it provides unique possibilities for setting up functions of various types.

  11. [Structure and function of the eukaryotic ribosome].

    PubMed

    Bakowska-Zywicka, Kamilla; Twardowski, Tomasz

    2008-01-01

    The protein biosynthesis is a complicated process and not fully understood yet. According to smaller size and less complicated structure, understanding of prokaryotic 70S ribosomes is much more advanced. Eucaryotic 80S ribosomes are more complex and generate more difficulties in research. The morphology of 80S ribosome has been pretty well resolved and we know a lot about mechanism of functioning. Determination of the interactions between the ribosomes and the factors taking part in protein biosynthesis is still a great challenge. Dynamic changes of these interactions during particular steps of elongation cycle are quite difficult to understand. Conformational changes of the ribosome are of great functional and regulatory importance during protein biosynthesis. They are essential for the whole gene expression process. Only further research of the structure and function of the ribosome will lead us to knowledge about specificity of the mechanism of their action. In this article we present current opinions concerning structure and function of the eukaryotic ribosomes.

  12. Metabolic and Nontranscriptional Circadian Clocks: Eukaryotes

    PubMed Central

    Reddy, Akhilesh B.; Rey, Guillaume

    2016-01-01

    Circadian clocks are cellular timekeeping mechanisms that coordinate behavior and physiology around the 24-h day in most living organisms. Misalignment of an organism’s clock with its environment is associated with long-term adverse fitness consequences, as exemplified by the link between circadian disruption and various age-related diseases in humans. Current eukaryotic models of the circadian oscillator rely on transcription/translation feedback loop mechanisms, supplemented with accessory cytosolic loops that connect them to cellular physiology. However, there is mounting evidence questioning the absolute necessity of transcription-based oscillators for circadian rhythmicity, supported by the recent discovery of oxidation-reduction cycles of peroxiredoxin proteins, which persist even in the absence of transcription. A more fundamental mechanism based on metabolic cycles could thus underlie circadian transcriptional and cytosolic rhythms, thereby promoting circadian oscillations to integral properties of cellular metabolism. PMID:24606143

  13. Semiblind Hyperspectral Unmixing in the Presence of Spectral Library Mismatches

    NASA Astrophysics Data System (ADS)

    Fu, Xiao; Ma, Wing-Kin; Bioucas-Dias, Jose M.; Chan, Tsung-Han

    2016-09-01

    The dictionary-aided sparse regression (SR) approach has recently emerged as a promising alternative to hyperspectral unmixing (HU) in remote sensing. By using an available spectral library as a dictionary, the SR approach identifies the underlying materials in a given hyperspectral image by selecting a small subset of spectral samples in the dictionary to represent the whole image. A drawback with the current SR developments is that an actual spectral signature in the scene is often assumed to have zero mismatch with its corresponding dictionary sample, and such an assumption is considered too ideal in practice. In this paper, we tackle the spectral signature mismatch problem by proposing a dictionary-adjusted nonconvex sparsity-encouraging regression (DANSER) framework. The main idea is to incorporate dictionary correcting variables in an SR formulation. A simple and low per-iteration complexity algorithm is tailor-designed for practical realization of DANSER. Using the same dictionary correcting idea, we also propose a robust subspace solution for dictionary pruning. Extensive simulations and real-data experiments show that the proposed method is effective in mitigating the undesirable spectral signature mismatch effects.

  14. Review: Clinical aspects of hereditary DNA Mismatch repair gene mutations.

    PubMed

    Sijmons, Rolf H; Hofstra, Robert M W

    2016-02-01

    Inherited mutations of the DNA Mismatch repair genes MLH1, MSH2, MSH6 and PMS2 can result in two hereditary tumor syndromes: the adult-onset autosomal dominant Lynch syndrome, previously referred to as Hereditary Non-Polyposis Colorectal Cancer (HNPCC) and the childhood-onset autosomal recessive Constitutional Mismatch Repair Deficiency syndrome. Both conditions are important to recognize clinically as their identification has direct consequences for clinical management and allows targeted preventive actions in mutation carriers. Lynch syndrome is one of the more common adult-onset hereditary tumor syndromes, with thousands of patients reported to date. Its tumor spectrum is well established and includes colorectal cancer, endometrial cancer and a range of other cancer types. However, surveillance for cancers other than colorectal cancer is still of uncertain value. Prophylactic surgery, especially for the uterus and its adnexa is an option in female mutation carriers. Chemoprevention of colorectal cancer with aspirin is actively being investigated in this syndrome and shows promising results. In contrast, the Constitutional Mismatch Repair Deficiency syndrome is rare, features a wide spectrum of childhood onset cancers, many of which are brain tumors with high mortality rates. Future studies are very much needed to improve the care for patients with this severe disorder. PMID:26746812

  15. Current status of the Scandiatransplant acceptable mismatch program.

    PubMed

    Weinreich, I D; Pedersen, F; Grunnet, N

    2013-04-01

    This article describes the Scandiatransplant Acceptable Mismatch Program (STAMP), which was set into action in 2009. The aim of STAMP is to define human leukocyte antigens (HLA) toward which the potential kidney recipient has not developed antibodies, as "acceptable mismatches" in the Scandiatransplant database. In many cases this may improve the probability for a highly immunized recipient to receive a suitable kidney graft from a deceased donor. Using data extracted from the Scandiatransplant database on the outcomes of the program after the first 3 years, 31/115 recipients included in the program have undergone transplantation. From 2008 to 2011 the mean waiting time for highly immunized patients has decreased from 42 to 37 months. Continuous evaluation and follow-up of the program is essential to improve the procedures and outcomes. Calculation of transplantability based on a given set of acceptable mismatches was added to the program in 2011, based on the historical deceased donor pool providing the possibility of a specific patient to receive a kidney through STAMP. It is still a challenge for the tissue typing laboratories to determine which detected HLA antibodies are clinical relevant. We concluded that STAMP has had the intended effects, however adjustments and improvements is an ongoing process. As an improvment of the program HLA-C was added to the STAMP search algorithm in September 2012.

  16. Infra-red parametric generation: Phase mismatch condition

    SciTech Connect

    Ghosh, S.; Dubey, Swati; Jain, Kamal

    2015-07-31

    An analytical investigation is made for the Infrared parametric generation in doped semiconductor plasma under phase mismatch condition. Theoretical formulations are undertaken to determine induced polarization and threshold pump field for the onset of parametric generation in semiconductor plasma medium. The origin of this nonlinear interaction lies in the second order optical susceptibility arising due to the induced nonlinear current density in piezoelectric medium. Numerical estimations are made for n- type InSb at 77 K duly irradiated by a pulsed 10.6µm CO{sub 2} laser. It is very difficult to attain exact phase matching in experimental frame so we have considered a tolerable small phase mismatch in order to attain a new result. Its effect on the Infrared parametric generation in compound semiconductor is examined through induced polarization. Transmitted intensity is determined to have an idea about conversion efficiency of the said process. Phase mismatch tends to raise the required pump field to stimulate the parametric generation. Transmitted intensity is found to decrease with coherence length lc and increase carrier concentration n{sub 0}, which is favorable for improved conversion efficiency.

  17. Towards automatic identification of mismatched image pairs through loop constraints

    NASA Astrophysics Data System (ADS)

    Elibol, Armagan; Kim, Jinwhan; Gracias, Nuno; Garcia, Rafael

    2013-12-01

    Obtaining image sequences has become easier and easier thanks to the rapid progress on optical sensors and robotic platforms. Processing of image sequences (e.g., mapping, 3D reconstruction, Simultaneous Localisation and Mapping (SLAM)) usually requires 2D image registration. Recently, image registration is accomplished by detecting salient points in two images and nextmatching their descriptors. To eliminate outliers and to compute a planar transformation (homography) between the coordinate frames of images, robust methods (such as Random Sample Consensus (RANSAC) and Least Median of Squares (LMedS)) are employed. However, image registration pipeline can sometimes provide sufficient number of inliers within the error bounds even when images do not overlap. Such mismatches occur especially when the scene has repetitive texture and shows structural similarity. In this study, we present a method to identify the mismatches using closed-loop (cycle) constraints. The method exploits the fact that images forming a cycle should have identity mapping when all the homographies between images in the cycle multiplied. Cycles appear when the camera revisits an area that was imaged before, which is a common practice especially for mapping purposes. Our proposal extracts several cycles to obtain error statistics for each matched image pair. Then, it searches for image pairs that have extreme error histogram comparing to the other pairs. We present experimental results with artificially added mismatched image pairs on real underwater image sequences.

  18. Soil eukaryotic functional diversity, a metatranscriptomic approach.

    PubMed

    Bailly, Julie; Fraissinet-Tachet, Laurence; Verner, Marie-Christine; Debaud, Jean-Claude; Lemaire, Marc; Wésolowski-Louvel, Micheline; Marmeisse, Roland

    2007-11-01

    To appreciate the functional diversity of communities of soil eukaryotic micro-organisms we evaluated an experimental approach based on the construction and screening of a cDNA library using polyadenylated mRNA extracted from a forest soil. Such a library contains genes that are expressed by each of the different organisms forming the community and represents its metatranscriptome. The diversity of the organisms that contributed to this library was evaluated by sequencing a portion of the 18S rDNA gene amplified from either soil DNA or reverse-transcribed RNA. More than 70% of the sequences were from fungi and unicellular eukaryotes (protists) while the other most represented group was the metazoa. Calculation of richness estimators suggested that more than 180 species could be present in the soil samples studied. Sequencing of 119 cDNA identified genes with no homologues in databases (32%) and genes coding proteins involved in different biochemical and cellular processes. Surprisingly, the taxonomic distribution of the cDNA and of the 18S rDNA genes did not coincide, with a marked under-representation of the protists among the cDNA. Specific genes from such an environmental cDNA library could be isolated by expression in a heterologous microbial host, Saccharomyces cerevisiae. This is illustrated by the functional complementation of a histidine auxotrophic yeast mutant by two cDNA originating possibly from an ascomycete and a basidiomycete fungal species. Study of the metatranscriptome has the potential to uncover adaptations of whole microbial communities to local environmental conditions. It also gives access to an abundant source of genes of biotechnological interest.

  19. IPT1-independent sphingolipid biosynthesis and yeast inhibition by syringomycin E and plant defensin DmAMP1.

    PubMed

    Im, Yang Ju; Idkowiak-Baldys, Jolanta; Thevissen, Karin; Cammue, Bruno P A; Takemoto, Jon Y

    2003-06-27

    Both bacterial cyclic lipodepsipeptide syringomycin E and plant defensin DmAMP1 were shown previously to require expression of the yeast gene IPT1 for fungicidal action against Saccharomyces cerevisiae. IPT1 encodes a sphingolipid biosynthetic pathway glycotransferase that produces the terminal sphingolipid mannosyldiinositolphosphoceramide. However, when grown in half-strength potato dextrose medium, an ipt1 deletion mutant of S. cerevisiae was observed to be sensitive to syringomycin E and DmAMP1 and to produce small amounts of mannosyldiinositolphosphoceramide. These results show that the terminal sphingolipid but not IPT1 expression is required for fungicidal activity, and they suggest an IPT1-independent route for mannosyldiinositolphosphoceramide biosynthesis. PMID:12829286

  20. Insertion and Deletion Mismatches Distant from the Target Position Improve Gene Correction with a Tailed Duplex.

    PubMed

    Kamiya, Hiroyuki; Nishigaki, Natsuki; Ikeda, Akihiro; Yukawa, Seiya; Morita, Yukiko; Nakatsu, Yoshimichi; Tsuzuki, Teruhisa; Harashima, Hideyoshi

    2016-07-01

    A 5'-tailed duplex (TD) DNA corrects a base-substitution mutation. In this study, the effects of insertion and deletion (indel) mismatches distant from the target position on the gene correction were examined. Three target plasmid DNAs with and without indel mismatches ∼330 bases distant from the correction target position were prepared, and introduced into HeLa cells together with the TD. The indel mismatches improved the gene correction efficiency and specificity without sequence conversions at the indel mismatch site. These results suggested that the gene correction efficiency and specificity are increased when an appropriate second mismatch is introduced into the TD fragment. PMID:27253876

  1. Lateral transfer of eukaryotic ribosomal RNA genes: an emerging concern for molecular ecology of microbial eukaryotes.

    PubMed

    Yabuki, Akinori; Toyofuku, Takashi; Takishita, Kiyotaka

    2014-07-01

    Ribosomal RNA (rRNA) genes are widely utilized in depicting organismal diversity and distribution in a wide range of environments. Although a few cases of lateral transfer of rRNA genes between closely related prokaryotes have been reported, it remains to be reported from eukaryotes. Here, we report the first case of lateral transfer of eukaryotic rRNA genes. Two distinct sequences of the 18S rRNA gene were detected from a clonal culture of the stramenopile, Ciliophrys infusionum. One was clearly derived from Ciliophrys, but the other gene originated from a perkinsid alveolate. Genome-walking analyses revealed that this alveolate-type rRNA gene is immediately adjacent to two protein-coding genes (ubc12 and usp39), and the origin of both genes was shown to be a stramenopile (that is, Ciliophrys) in our phylogenetic analyses. These findings indicate that the alveolate-type rRNA gene is encoded on the Ciliophrys genome and that eukaryotic rRNA genes can be transferred laterally.

  2. Energy Taxis toward Host-Derived Nitrate Supports a Salmonella Pathogenicity Island 1-Independent Mechanism of Invasion

    PubMed Central

    Rivera-Chávez, Fabian; Lopez, Christopher A.; Zhang, Lillian F.; García-Pastor, Lucía; Chávez-Arroyo, Alfredo; Lokken, Kristen L.; Tsolis, Renée M.

    2016-01-01

    ABSTRACT Salmonella enterica serovar Typhimurium can cross the epithelial barrier using either the invasion-associated type III secretion system (T3SS-1) or a T3SS-1-independent mechanism that remains poorly characterized. Here we show that flagellum-mediated motility supported a T3SS-1-independent pathway for entering ileal Peyer’s patches in the mouse model. Flagellum-dependent invasion of Peyer’s patches required energy taxis toward nitrate, which was mediated by the methyl-accepting chemotaxis protein (MCP) Tsr. Generation of nitrate in the intestinal lumen required inducible nitric oxide synthase (iNOS), which was synthesized constitutively in the mucosa of the terminal ileum but not in the jejunum, duodenum, or cecum. Tsr-mediated invasion of ileal Peyer’s patches was abrogated in mice deficient for Nos2, the gene encoding iNOS. We conclude that Tsr-mediated energy taxis enables S. Typhimurium to migrate toward the intestinal epithelium by sensing host-derived nitrate, thereby contributing to invasion of Peyer’s patches. PMID:27435462

  3. Eukaryotic association module in phage WO genomes from Wolbachia

    PubMed Central

    Bordenstein, Sarah R.; Bordenstein, Seth R.

    2016-01-01

    Viruses are trifurcated into eukaryotic, archaeal and bacterial categories. This domain-specific ecology underscores why eukaryotic viruses typically co-opt eukaryotic genes and bacteriophages commonly harbour bacterial genes. However, the presence of bacteriophages in obligate intracellular bacteria of eukaryotes may promote DNA transfers between eukaryotes and bacteriophages. Here we report a metagenomic analysis of purified bacteriophage WO particles of Wolbachia and uncover a eukaryotic association module in the complete WO genome. It harbours predicted domains, such as the black widow latrotoxin C-terminal domain, that are uninterrupted in bacteriophage genomes, enriched with eukaryotic protease cleavage sites and combined with additional domains to forge one of the largest bacteriophage genes to date (14,256 bp). To the best of our knowledge, these eukaryotic-like domains have never before been reported in packaged bacteriophages and their phylogeny, distribution and sequence diversity imply lateral transfers between bacteriophage/prophage and animal genomes. Finally, the WO genome sequences and identification of attachment sites will potentially advance genetic manipulation of Wolbachia. PMID:27727237

  4. Molecular paleontology and complexity in the last eukaryotic common ancestor.

    PubMed

    Koumandou, V Lila; Wickstead, Bill; Ginger, Michael L; van der Giezen, Mark; Dacks, Joel B; Field, Mark C

    2013-01-01

    Eukaryogenesis, the origin of the eukaryotic cell, represents one of the fundamental evolutionary transitions in the history of life on earth. This event, which is estimated to have occurred over one billion years ago, remains rather poorly understood. While some well-validated examples of fossil microbial eukaryotes for this time frame have been described, these can provide only basic morphology and the molecular machinery present in these organisms has remained unknown. Complete and partial genomic information has begun to fill this gap, and is being used to trace proteins and cellular traits to their roots and to provide unprecedented levels of resolution of structures, metabolic pathways and capabilities of organisms at these earliest points within the eukaryotic lineage. This is essentially allowing a molecular paleontology. What has emerged from these studies is spectacular cellular complexity prior to expansion of the eukaryotic lineages. Multiple reconstructed cellular systems indicate a very sophisticated biology, which by implication arose following the initial eukaryogenesis event but prior to eukaryotic radiation and provides a challenge in terms of explaining how these early eukaryotes arose and in understanding how they lived. Here, we provide brief overviews of several cellular systems and the major emerging conclusions, together with predictions for subsequent directions in evolution leading to extant taxa. We also consider what these reconstructions suggest about the life styles and capabilities of these earliest eukaryotes and the period of evolution between the radiation of eukaryotes and the eukaryogenesis event itself.

  5. Molecular paleontology and complexity in the last eukaryotic common ancestor

    PubMed Central

    Koumandou, V. Lila; Wickstead, Bill; Ginger, Michael L.; van der Giezen, Mark; Dacks, Joel B.

    2013-01-01

    Eukaryogenesis, the origin of the eukaryotic cell, represents one of the fundamental evolutionary transitions in the history of life on earth. This event, which is estimated to have occurred over one billion years ago, remains rather poorly understood. While some well-validated examples of fossil microbial eukaryotes for this time frame have been described, these can provide only basic morphology and the molecular machinery present in these organisms has remained unknown. Complete and partial genomic information has begun to fill this gap, and is being used to trace proteins and cellular traits to their roots and to provide unprecedented levels of resolution of structures, metabolic pathways and capabilities of organisms at these earliest points within the eukaryotic lineage. This is essentially allowing a molecular paleontology. What has emerged from these studies is spectacular cellular complexity prior to expansion of the eukaryotic lineages. Multiple reconstructed cellular systems indicate a very sophisticated biology, which by implication arose following the initial eukaryogenesis event but prior to eukaryotic radiation and provides a challenge in terms of explaining how these early eukaryotes arose and in understanding how they lived. Here, we provide brief overviews of several cellular systems and the major emerging conclusions, together with predictions for subsequent directions in evolution leading to extant taxa. We also consider what these reconstructions suggest about the life styles and capabilities of these earliest eukaryotes and the period of evolution between the radiation of eukaryotes and the eukaryogenesis event itself. PMID:23895660

  6. Unveiling new microbial eukaryotes in the surface ocean.

    PubMed

    Massana, Ramon; Pedrós-Alió, Carlos

    2008-06-01

    A decade after molecular techniques were used to discover novel bacteria and archaea in the oceans, the same approach has revealed a wealth of new marine eukaryotic microbes. The approach has been particularly successful with the smallest eukaryotes, where morphological and culture approaches frequently fail. Analysis of samples from the surface ocean, the most accessible and supposedly well-known oceanic region, reveals novel eukaryotic diversity at all different levels: from the highest taxonomic rank to the lowest microdiverse clusters. Moreover, marine eukaryotic assemblages show a large diversity with members belonging to many different lineages. The implication of this large and novel eukaryotic diversity for biodiversity surveys and ecosystem functioning opens new avenues for future research. PMID:18556239

  7. Expression strategies for structural studies of eukaryotic membrane proteins.

    PubMed

    Lyons, Joseph A; Shahsavar, Azadeh; Paulsen, Peter Aasted; Pedersen, Bjørn Panyella; Nissen, Poul

    2016-06-01

    Integral membrane proteins in eukaryotes are central to various cellular processes and key targets in structural biology, biotechnology and drug development. However, the number of available structures for eukaryotic membrane protein belies their physiological importance. Recently, the number of available eukaryotic membrane protein structures has been steadily increasing due to the development of novel strategies in construct design, expression and structure determination. Here, we examine the major expression systems exploited for eukaryotic membrane proteins. Additionally we strive to tabulate and describe the recent expression strategies in eukaryotic membrane protein structural biology. We find that a majority of targets have been expressed in advanced host systems and modified from their wild-type form with distinct focus on conformation and thermostabilisation. However, strategies for native protein purification should also be considered where possible, particularly in light of the recent advances in single particle cryo electron microscopy.

  8. Expression strategies for structural studies of eukaryotic membrane proteins.

    PubMed

    Lyons, Joseph A; Shahsavar, Azadeh; Paulsen, Peter Aasted; Pedersen, Bjørn Panyella; Nissen, Poul

    2016-06-01

    Integral membrane proteins in eukaryotes are central to various cellular processes and key targets in structural biology, biotechnology and drug development. However, the number of available structures for eukaryotic membrane protein belies their physiological importance. Recently, the number of available eukaryotic membrane protein structures has been steadily increasing due to the development of novel strategies in construct design, expression and structure determination. Here, we examine the major expression systems exploited for eukaryotic membrane proteins. Additionally we strive to tabulate and describe the recent expression strategies in eukaryotic membrane protein structural biology. We find that a majority of targets have been expressed in advanced host systems and modified from their wild-type form with distinct focus on conformation and thermostabilisation. However, strategies for native protein purification should also be considered where possible, particularly in light of the recent advances in single particle cryo electron microscopy. PMID:27362979

  9. Symbiosis as a general principle in eukaryotic evolution.

    PubMed

    Douglas, Angela E

    2014-02-01

    Eukaryotes have evolved and diversified in the context of persistent colonization by non-pathogenic microorganisms. Various resident microorganisms provide a metabolic capability absent from the host, resulting in increased ecological amplitude and often evolutionary diversification of the host. Some microorganisms confer primary metabolic pathways, such as photosynthesis and cellulose degradation, and others expand the repertoire of secondary metabolism, including the synthesis of toxins that confer protection against natural enemies. A further route by which microorganisms affect host fitness arises from their modulation of the eukaryotic-signaling networks that regulate growth, development, behavior, and other functions. These effects are not necessarily based on interactions beneficial to the host, but can be a consequence of either eukaryotic utilization of microbial products as cues or host-microbial conflict. By these routes, eukaryote-microbial interactions play an integral role in the function and evolutionary diversification of eukaryotes.

  10. Energetics and genetics across the prokaryote-eukaryote divide

    PubMed Central

    2011-01-01

    Background All complex life on Earth is eukaryotic. All eukaryotic cells share a common ancestor that arose just once in four billion years of evolution. Prokaryotes show no tendency to evolve greater morphological complexity, despite their metabolic virtuosity. Here I argue that the eukaryotic cell originated in a unique prokaryotic endosymbiosis, a singular event that transformed the selection pressures acting on both host and endosymbiont. Results The reductive evolution and specialisation of endosymbionts to mitochondria resulted in an extreme genomic asymmetry, in which the residual mitochondrial genomes enabled the expansion of bioenergetic membranes over several orders of magnitude, overcoming the energetic constraints on prokaryotic genome size, and permitting the host cell genome to expand (in principle) over 200,000-fold. This energetic transformation was permissive, not prescriptive; I suggest that the actual increase in early eukaryotic genome size was driven by a heavy early bombardment of genes and introns from the endosymbiont to the host cell, producing a high mutation rate. Unlike prokaryotes, with lower mutation rates and heavy selection pressure to lose genes, early eukaryotes without genome-size limitations could mask mutations by cell fusion and genome duplication, as in allopolyploidy, giving rise to a proto-sexual cell cycle. The side effect was that a large number of shared eukaryotic basal traits accumulated in the same population, a sexual eukaryotic common ancestor, radically different to any known prokaryote. Conclusions The combination of massive bioenergetic expansion, release from genome-size constraints, and high mutation rate favoured a protosexual cell cycle and the accumulation of eukaryotic traits. These factors explain the unique origin of eukaryotes, the absence of true evolutionary intermediates, and the evolution of sex in eukaryotes but not prokaryotes. Reviewers This article was reviewed by: Eugene Koonin, William Martin

  11. Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase.

    PubMed

    Zhao, Jianhua; Benlekbir, Samir; Rubinstein, John L

    2015-05-14

    Eukaryotic vacuolar H(+)-ATPases (V-ATPases) are rotary enzymes that use energy from hydrolysis of ATP to ADP to pump protons across membranes and control the pH of many intracellular compartments. ATP hydrolysis in the soluble catalytic region of the enzyme is coupled to proton translocation through the membrane-bound region by rotation of a central rotor subcomplex, with peripheral stalks preventing the entire membrane-bound region from turning with the rotor. The eukaryotic V-ATPase is the most complex rotary ATPase: it has three peripheral stalks, a hetero-oligomeric proton-conducting proteolipid ring, several subunits not found in other rotary ATPases, and is regulated by reversible dissociation of its catalytic and proton-conducting regions. Studies of ATP synthases, V-ATPases, and bacterial/archaeal V/A-ATPases have suggested that flexibility is necessary for the catalytic mechanism of rotary ATPases, but the structures of different rotational states have never been observed experimentally. Here we use electron cryomicroscopy to obtain structures for three rotational states of the V-ATPase from the yeast Saccharomyces cerevisiae. The resulting series of structures shows ten proteolipid subunits in the c-ring, setting the ATP:H(+) ratio for proton pumping by the V-ATPase at 3:10, and reveals long and highly tilted transmembrane α-helices in the a-subunit that interact with the c-ring. The three different maps reveal the conformational changes that occur to couple rotation in the symmetry-mismatched soluble catalytic region to the membrane-bound proton-translocating region. Almost all of the subunits of the enzyme undergo conformational changes during the transitions between these three rotational states. The structures of these states provide direct evidence that deformation during rotation enables the smooth transmission of power through rotary ATPases. PMID:25971514

  12. A unique horizontal gene transfer event has provided the octocoral mitochondrial genome with an active mismatch repair gene that has potential for an unusual self-contained function

    PubMed Central

    2011-01-01

    Background The mitochondrial genome of the Octocorallia has several characteristics atypical for metazoans, including a novel gene suggested to function in DNA repair. This mtMutS gene is favored for octocoral molecular systematics, due to its high information content. Several hypotheses concerning the origins of mtMutS have been proposed, and remain equivocal, although current weight of support is for a horizontal gene transfer from either an epsilonproteobacterium or a large DNA virus. Here we present new and compelling evidence on the evolutionary origin of mtMutS, and provide the very first data on its activity, functional capacity and stability within the octocoral mitochondrial genome. Results The mtMutS gene has the expected conserved amino acids, protein domains and predicted tertiary protein structure. Phylogenetic analysis indicates that mtMutS is not a member of the MSH family and therefore not of eukaryotic origin. MtMutS clusters closely with representatives of the MutS7 lineage; further support for this relationship derives from the sharing of a C-terminal endonuclease domain that confers a self-contained mismatch repair function. Gene expression analyses confirm that mtMutS is actively transcribed in octocorals. Rates of mitochondrial gene evolution in mtMutS-containing octocorals are lower than in their hexacoral sister-group, which lacks the gene, although paradoxically the mtMutS gene itself has higher rates of mutation than other octocoral mitochondrial genes. Conclusions The octocoral mtMutS gene is active and codes for a protein with all the necessary components for DNA mismatch repair. A lower rate of mitochondrial evolution, and the presence of a nicking endonuclease domain, both indirectly support a theory of self-sufficient DNA mismatch repair within the octocoral mitochondrion. The ancestral affinity of mtMutS to non-eukaryotic MutS7 provides compelling support for an origin by horizontal gene transfer. The immediate vector of transmission

  13. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    SciTech Connect

    Koonin, Eugene V.; Dolja, Valerian V.; Krupovic, Mart

    2015-05-15

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources

  14. Climate change can cause spatial mismatch of trophically interacting species.

    PubMed

    Schweiger, Oliver; Settele, Josef; Kudrna, Otakar; Klotz, Stefan; Kühn, Ingolf

    2008-12-01

    Climate change is one of the most influential drivers of biodiversity. Species-specific differences in the reaction to climate change can become particularly important when interacting species are considered. Current studies have evidenced temporal mismatching of interacting species at single points in space, and recently two investigations showed that species interactions are relevant for their future ranges. However, so far we are not aware that the ranges of interacting species may become substantially spatially mismatched. We developed separate ecological-niche models for a monophagous butterfly (Boloria titania) and its larval host plant (Polygonum bistorta) based on monthly interpolated climate data, land-cover classes, and soil data at a 10'-grid resolution. We show that all of three chosen global-change scenarios, which cover a broad range of potential developments in demography, socio-economics, and technology during the 21st century from moderate to intermediate to maximum change, will result in a pronounced spatial mismatch between future niche spaces of these species. The butterfly may expand considerably its future range (by 124-258%) if the host plant has unlimited dispersal, but it could lose 52-75% of its current range if the host plant is not able to fill its projected ecological niche space, and 79-88% if the butterfly also is assumed to be highly dispersal limited. These findings strongly suggest that climate change has the potential to disrupt trophic interactions because co-occurring species do not necessarily react in a similar manner to global change, having important consequences at ecological and evolutionary time scales.

  15. Mathematical modelling of eukaryotic DNA replication.

    PubMed

    Hyrien, Olivier; Goldar, Arach

    2010-01-01

    Eukaryotic DNA replication is a complex process. Replication starts at thousand origins that are activated at different times in S phase and terminates when converging replication forks meet. Potential origins are much more abundant than actually fire within a given S phase. The choice of replication origins and their time of activation is never exactly the same in any two cells. Individual origins show different efficiencies and different firing time probability distributions, conferring stochasticity to the DNA replication process. High-throughput microarray and sequencing techniques are providing increasingly huge datasets on the population-averaged spatiotemporal patterns of DNA replication in several organisms. On the other hand, single-molecule replication mapping techniques such as DNA combing provide unique information about cell-to-cell variability in DNA replication patterns. Mathematical modelling is required to fully comprehend the complexity of the chromosome replication process and to correctly interpret these data. Mathematical analysis and computer simulations have been recently used to model and interpret genome-wide replication data in the yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe, in Xenopus egg extracts and in mammalian cells. These works reveal how stochasticity in origin usage confers robustness and reliability to the DNA replication process. PMID:20205354

  16. Eukaryotic versus prokaryotic marine picoplankton ecology.

    PubMed

    Massana, Ramon; Logares, Ramiro

    2013-05-01

    Marine microorganisms contribute markedly to global biomass and ecosystem function. They include a diverse collection of organisms differing in cell size and in evolutionary history. In particular, microbes within the picoplankton are similar in size but belong to two drastically different cellular plans, the prokaryotes and the eukaryotes. Compared with larger organisms, prokaryotes and picoeukaryotes share ecological features, such as high specific activity, large and constant abundances, and high dispersal potential. Still, there are some aspects where their different cell organization influences their ecological performance. First, prokaryotes have a huge metabolic versatility and are involved in all biogeochemical cycles, whereas picoeukaryotes are metabolically less flexible but can exploit diverse predatory life strategies due to their phagocytic capacity. Second, sexual reproduction is absent in prokaryotes but may be present in picoeukaryotes, thus determining different evolutionary diversification dynamics and making species limits clearer in picoeukaryotes. Finally, it is plausible that picoeukaryotes are less flexible to enter a reversible state of low metabolic activity, thus picoeukaryote assemblages may have fewer rare species and may be less resilient to environmental change. In summary, lumping together pico-sized microbes may be convenient for some ecological studies, but it is also important to keep in mind their differences.

  17. The cellular slime mold: eukaryotic model microorganism.

    PubMed

    Urushihara, Hideko

    2009-04-01

    Cellular slime molds are eukaryotic microorganisms in the soil. They feed on bacteria as solitary amoebae but conditionally construct multicellular forms in which cell differentiation takes place. Therefore, they are attractive for the study of fundamental biological phenomena such as phagocytosis, cell division, chemotactic movements, intercellular communication, cell differentiation, and morphogenesis. The most widely used species, Dictyostelium discoideum, is highly amenable to experimental manipulation and can be used with most recent molecular biological techniques. Its genome and cDNA analyses have been completed and well-annotated data are publicly available. A larger number of orthologues of human disease-related genes were found in D. discoideum than in yeast. Moreover, some pathogenic bacteria infect Dictyostelium amoebae. Thus, this microorganism can also offer a good experimental system for biomedical research. The resources of cellular slime molds, standard strains, mutants, and genes are maintained and distributed upon request by the core center of the National BioResource Project (NBRP-nenkin) to support Dictyostelium community users as well as new users interested in new platforms for research and/or phylogenic consideration.

  18. Ring fission of anthracene by a eukaryote.

    PubMed Central

    Hammel, K E; Green, B; Gai, W Z

    1991-01-01

    Ligninolytic fungi are unique among eukaryotes in their ability to degrade polycyclic aromatic hydrocarbons (PAHs), but the mechanism for this process is unknown. Although certain PAHs are oxidized in vitro by the fungal lignin peroxidases (LiPs) that catalyze ligninolysis, it has never been shown that LiPs initiate PAH degradation in vivo. To address these problems, the metabolism of anthracene (AC) and its in vitro oxidation product, 9,10-anthraquinone (AQ), was examined by chromatographic and isotope dilution techniques in Phanerochaete chrysosporium. The fungal oxidation of AC to AQ was rapid, and both AC and AQ were significantly mineralized. Both compounds were cleaved by the fungus to give the same ring-fission metabolite, phthalic acid, and phthalate production from AQ was shown to occur only under ligninolytic culture conditions. These results show that the major pathway for AC degradation in Phanerochaete proceeds AC----AQ----phthalate + CO2 and that it is probably mediated by LiPs and other enzymes of ligninolytic metabolism. Images PMID:1961727

  19. Biosynthesis of coenzyme Q in eukaryotes.

    PubMed

    Kawamukai, Makoto

    2015-01-01

    Coenzyme Q (CoQ) is a component of the electron transport chain that participates in aerobic cellular respiration to produce ATP. In addition, CoQ acts as an electron acceptor in several enzymatic reactions involving oxidation-reduction. Biosynthesis of CoQ has been investigated mainly in Escherichia coli and Saccharomyces cerevisiae, and the findings have been extended to various higher organisms, including plants and humans. Analyses in yeast have contributed greatly to current understanding of human diseases related to CoQ biosynthesis. To date, human genetic disorders related to mutations in eight COQ biosynthetic genes have been reported. In addition, the crystal structures of a number of proteins involved in CoQ synthesis have been solved, including those of IspB, UbiA, UbiD, UbiX, UbiI, Alr8543 (Coq4 homolog), Coq5, ADCK3, and COQ9. Over the last decade, knowledge of CoQ biosynthesis has accumulated, and striking advances in related human genetic disorders and the crystal structure of proteins required for CoQ synthesis have been made. This review focuses on the biosynthesis of CoQ in eukaryotes, with some comparisons to the process in prokaryotes.

  20. Genomic impact of eukaryotic transposable elements

    PubMed Central

    2012-01-01

    The third international conference on the genomic impact of eukaryotic transposable elements (TEs) was held 24 to 28 February 2012 at the Asilomar Conference Center, Pacific Grove, CA, USA. Sponsored in part by the National Institutes of Health grant 5 P41 LM006252, the goal of the conference was to bring together researchers from around the world who study the impact and mechanisms of TEs using multiple computational and experimental approaches. The meeting drew close to 170 attendees and included invited floor presentations on the biology of TEs and their genomic impact, as well as numerous talks contributed by young scientists. The workshop talks were devoted to computational analysis of TEs with additional time for discussion of unresolved issues. Also, there was ample opportunity for poster presentations and informal evening discussions. The success of the meeting reflects the important role of Repbase in comparative genomic studies, and emphasizes the need for close interactions between experimental and computational biologists in the years to come. PMID:23171443

  1. Kinesin-related proteins in eukaryotic flagella.

    PubMed

    Fox, L A; Sawin, K E; Sale, W S

    1994-06-01

    To identify kinesin-related proteins that are important for ciliary and eukaryotic flagellar functions, we used affinity-purified, polyclonal antibodies to synthetic peptides corresponding to conserved sequences in the motor domain of kinesin (Sawin et al. (1992) J. Cell Sci. 101, 303-313). Using immunoblot analysis, two antibodies to distinct sequences (LNLVDLAGSE, 'LAGSE' and, HIPYRESKLT, 'HIPYR') reveal a family of proteins in flagella and axonemes isolated from Chlamydomonas. Similar analysis of axonemes from mutant Chlamydomonas strains or fractionated axonemes indicates that none of the immunoreactive proteins are associated with dynein arm or spoke structures. In contrast, one protein, approximately 110 kDa, is reduced in axonemes from mutant strains defective in the central pair apparatus. Immunoreactive proteins with masses of 96 and 97 kDa (the '97 kDa' proteins) are selectively solubilized from isolated axonemes in 10 mM ATP. The 97 kDa proteins co-sediment in sucrose gradients at about 9 S and bind to axonemes or purified microtubules in a nucleotide-dependent fashion characteristic of kinesin. These results reveal that flagella contain kinesin-related proteins, which may be involved in axonemal central pair function and flagellar motility, or directed transport involved in morphogenesis or mating responses in Chlamydomonas.

  2. Oscillations of Eukaryotic Cilia and Flagella

    NASA Astrophysics Data System (ADS)

    Gopinath, Arvind; Mahadevan, Lakshminarayanan

    2006-11-01

    The undulating beat of eukaryotic flagella and cilia produces forces that move cells and cause locomotion. The timing mechanisms that generate these periodic undulations are still mysterious and the question of how these oscillations arise is still a subject of much research - both experimental and theoretical. Recent experimental results on paralyzed and reconstituted flagella offer new insight into the dynamical mechanisms that could result in sustained waveform generation. Motivated by these recent experimental results we propose a model that mimics the flagellar structure as motor driven elastic, inextensible filaments. We hypothesize that the oscillations arise due to motor (dynein) driven, constrained, relative sliding of parts of the flagella. The dynamical equations describing the evolution of the populations of attached and detached motors is actively coupled to the local configuration as well as local sliding velocities via strain and configuration dependent kinetic reaction rates. At the same time, the filament configuration is actively coupled to the motor densities via the dependence of the active internal torque densities on the motor populations as well as their internal state. Appropriate ensemble averaged force-velocity relationships for the motors completes the set of equations. Numerical solutions reveal onset of dynamical instabilities via Hopf-bifurcations with oscillatory waveforms emerging from a trivial base state corresponding to a straight, non-moving flagellum.

  3. An investigation into eukaryotic pseudouridine synthases.

    PubMed

    King, Ross D; Lu, Chuan

    2014-08-01

    A common post-transcriptional modification of RNA is the conversion of uridine to its isomer pseudouridine. We investigated the biological significance of eukaryotic pseudouridine synthases using the yeast Saccharomyces cerevisiae. We conducted a comprehensive statistical analysis on growth data from automated perturbation (gene deletion) experiments, and used bi-logistic curve analysis to characterise the yeast phenotypes. The deletant strains displayed different alteration in growth properties, including in some cases enhanced growth and/or biphasic growth curves not seen in wild-type strains under matched conditions. These results demonstrate that disrupting pseudouridine synthases can have a significant qualitative effect on growth. We further investigated the significance of post-transcriptional pseudouridine modification through investigation of the scientific literature. We found that (1) In Toxoplasma gondii, a pseudouridine synthase gene is critical in cellular differentiation between the two asexual forms: Tachyzoites and bradyzoites; (2) Mutation of pseudouridine synthase genes has also been implicated in human diseases (mitochondrial myopathy and sideroblastic anemia (MLASA); dyskeratosis congenita). Taken together, these results are consistent with pseudouridine synthases having a Gene Ontology function of "biological regulation".

  4. Evolutionary mismatch, neural reward circuits, and pathological gambling.

    PubMed

    Spinella, Marcello

    2003-04-01

    Evolutionary mismatch theory has been applied to disorders of self-regulation such as maladaptive eating patterns and drug abuse. Modern gambling represents a refinement of the elements of risk and chance, which draw upon the faculties of judgment and novelty-seeking. A set of neuroanatomical structures, including prefrontal-subcortical systems and associated limbic structures, have been implicated in the processing of reward and punishment, including gambling-related situations. Neurobiological systems guiding choice and behavior have evolved to maximize chances for survival under hunter-gatherer conditions, and modern gambling represents an abrupt departure from these circumstances, sometimes resulting in pathological gambling.

  5. Gene-environment mismatch in decompression sickness and air embolism.

    PubMed

    Alcock, Joe; Brainard, Andrew H

    2010-08-01

    Decompression sickness causes injury and death in SCUBA divers when air bubbles obstruct the flow of blood. Platelets aggregate in response to gas and promote inflammation. Inflammation in decompression sickness may have its origin in the innate immune system's response to pathogens. Bubbles are often found in tissues during gas-forming infections and in infection-prone states. In these diseases, intravascular gas offers a signal of infection to immune cells. Platelet activation by gas may often accompany a beneficial immune response to pathogens. Pathologic bubble-platelet interaction in decompression illness may be an example of gene-environment mismatch.

  6. Optimal control design that accounts for model mismatch errors

    SciTech Connect

    Kim, T.J.; Hull, D.G.

    1995-02-01

    A new technique is presented in this paper that reduces the complexity of state differential equations while accounting for modeling assumptions. The mismatch controls are defined as the differences between the model equations and the true state equations. The performance index of the optimal control problem is formulated with a set of tuning parameters that are user-selected to tune the control solution in order to achieve the best results. Computer simulations demonstrate that the tuned control law outperforms the untuned controller and produces results that are comparable to a numerically-determined, piecewise-linear optimal controller.

  7. Single-mismatch detection using gold-quenched fluorescent oligonucleotides.

    PubMed

    Dubertret, B; Calame, M; Libchaber, A J

    2001-04-01

    Here we describe a hybrid material composed of a single-stranded DNA (ssDNA) molecule, a 1.4 nm diameter gold nanoparticle, and a fluorophore that is highly quenched by the nanoparticle through a distance-dependent process. The fluorescence of this hybrid molecule increases by a factor of as much as several thousand as it binds to a complementary ssDNA. We show that this composite molecule is a different type of molecular beacon with a sensitivity enhanced up to 100-fold. In competitive hybridization assays, the ability to detect single mismatch is eightfold greater with this probe than with other molecular beacons.

  8. HLA-C expression levels define permissible mismatches in hematopoietic cell transplantation

    PubMed Central

    Gooley, Theodore A.; Malkki, Mari; Bacigalupo, Andrea P.; Cesbron, Anne; Du Toit, Ernette; Ehninger, Gerhard; Egeland, Torstein; Fischer, Gottfried F.; Gervais, Thibaut; Haagenson, Michael D.; Horowitz, Mary M.; Hsu, Katharine; Jindra, Pavel; Madrigal, Alejandro; Oudshoorn, Machteld; Ringdén, Olle; Schroeder, Marlis L.; Spellman, Stephen R.; Tiercy, Jean-Marie; Velardi, Andrea; Witt, Campbell S.; O’Huigin, Colm; Apps, Richard; Carrington, Mary

    2014-01-01

    Life-threatening graft-versus-host disease (GVHD) limits the use of HLA-C-mismatched unrelated donors in transplantation. Clinicians lack criteria for donor selection when HLA-C-mismatched donors are a patient’s only option for cure. We examined the role for HLA-C expression levels to identify permissible HLA-C mismatches. The median fluorescence intensity, a proxy of HLA-C expression, was assigned to each HLA-C allotype in 1975 patients and their HLA-C-mismatched unrelated transplant donors. The association of outcome with the level of expression of patients’ and donors’ HLA-C allotypes was evaluated in multivariable models. Increasing expression level of the patient’s mismatched HLA-C allotype was associated with increased risks of grades III to IV acute GVHD, nonrelapse mortality, and mortality. Increasing expression level among HLA-C mismatches with residue 116 or residue 77/80 mismatching was associated with increased nonrelapse mortality. The immunogenicity of HLA-C mismatches in unrelated donor transplantation is influenced by the expression level of the patient’s mismatched HLA-C allotype. HLA-C expression levels provide new information on mismatches that should be avoided and extend understanding of HLA-C-mediated immune responses in human disease. PMID:25323824

  9. Mismatch negativity, social cognition, and functional outcomes in patients after traumatic brain injury

    PubMed Central

    Sun, Hui-yan; Li, Qiang; Chen, Xi-ping; Tao, Lu-yang

    2015-01-01

    Mismatch negativity is generated automatically, and is an early monitoring indicator of neuronal integrity impairment and functional abnormality in patients with brain injury, leading to decline of cognitive function. Antipsychotic medication cannot affect mismatch negativity. The present study aimed to explore the relationships of mismatch negativity with neurocognition, daily life and social functional outcomes in patients after brain injury. Twelve patients with traumatic brain injury and 12 healthy controls were recruited in this study. We examined neurocognition with the Wechsler Adult Intelligence Scale-Revised China, and daily and social functional outcomes with the Activity of Daily Living Scale and Social Disability Screening Schedule, respectively. Mismatch negativity was analyzed from electroencephalogram recording. The results showed that mismatch negativity amplitudes decreased in patients with traumatic brain injury compared with healthy controls. Mismatch negativity amplitude was negatively correlated with measurements of neurocognition and positively correlated with functional outcomes in patients after traumatic brain injury. Further, the most significant positive correlations were found between mismatch negativity in the fronto-central region and measures of functional outcomes. The most significant positive correlations were also found between mismatch negativity at the FCz electrode and daily living function. Mismatch negativity amplitudes were extremely positively associated with Social Disability Screening Schedule scores at the Fz electrode in brain injury patients. These experimental findings suggest that mismatch negativity might efficiently reflect functional outcomes in patients after traumatic brain injury. PMID:26170824

  10. DNA bending propensity in the presence of base mismatches: implications for DNA repair.

    PubMed

    Sharma, Monika; Predeus, Alexander V; Mukherjee, Shayantani; Feig, Michael

    2013-05-23

    DNA bending is believed to facilitate the initial recognition of the mismatched base for repair. The repair efficiencies are dependent on both the mismatch type and neighboring nucleotide sequence. We have studied bending of several DNA duplexes containing canonical matches: A:T and G:C; various mismatches: A:A, A:C, G:A, G:G, G:T, C:C, C:T, and T:T; and a bis-abasic site: X:X. Free-energy profiles were generated for DNA bending using umbrella sampling. The highest energetic cost associated with DNA bending is observed for canonical matches while bending free energies are lower in the presence of mismatches, with the lowest value for the abasic site. In all of the sequences, DNA duplexes bend toward the major groove with widening of the minor groove. For homoduplexes, DNA bending is observed to occur via smooth deformations, whereas for heteroduplexes, kinks are observed at the mismatch site during strong bending. In general, pyrimidine:pyrimidine mismatches are the most destabilizing, while purine:purine mismatches lead to intermediate destabilization, and purine:pyrimidine mismatches are the least destabilizing. The ease of bending is partially correlated with the binding affinity of MutS to the mismatch pairs and subsequent repair efficiencies, indicating that intrinsic DNA bending propensities are a key factor of mismatch recognition.

  11. Mismatch negativity, social cognition, and functional outcomes in patients after traumatic brain injury.

    PubMed

    Sun, Hui-Yan; Li, Qiang; Chen, Xi-Ping; Tao, Lu-Yang

    2015-04-01

    Mismatch negativity is generated automatically, and is an early monitoring indicator of neuronal integrity impairment and functional abnormality in patients with brain injury, leading to decline of cognitive function. Antipsychotic medication cannot affect mismatch negativity. The present study aimed to explore the relationships of mismatch negativity with neurocognition, daily life and social functional outcomes in patients after brain injury. Twelve patients with traumatic brain injury and 12 healthy controls were recruited in this study. We examined neurocognition with the Wechsler Adult Intelligence Scale-Revised China, and daily and social functional outcomes with the Activity of Daily Living Scale and Social Disability Screening Schedule, respectively. Mismatch negativity was analyzed from electroencephalogram recording. The results showed that mismatch negativity amplitudes decreased in patients with traumatic brain injury compared with healthy controls. Mismatch negativity amplitude was negatively correlated with measurements of neurocognition and positively correlated with functional outcomes in patients after traumatic brain injury. Further, the most significant positive correlations were found between mismatch negativity in the fronto-central region and measures of functional outcomes. The most significant positive correlations were also found between mismatch negativity at the FCz electrode and daily living function. Mismatch negativity amplitudes were extremely positively associated with Social Disability Screening Schedule scores at the Fz electrode in brain injury patients. These experimental findings suggest that mismatch negativity might efficiently reflect functional outcomes in patients after traumatic brain injury. PMID:26170824

  12. Archaeal ancestors of eukaryotes: not so elusive any more.

    PubMed

    Koonin, Eugene V

    2015-01-01

    The origin of eukaryotes is one of the hardest problems in evolutionary biology and sometimes raises the ominous specter of irreducible complexity. Reconstruction of the gene repertoire of the last eukaryotic common ancestor (LECA) has revealed a highly complex organism with a variety of advanced features but no detectable evolutionary intermediates to explain their origin. Recently, however, genome analysis of diverse archaea led to the discovery of apparent ancestral versions of several signature eukaryotic systems, such as the actin cytoskeleton and the ubiquitin network, that are scattered among archaea. These findings inspired the hypothesis that the archaeal ancestor of eukaryotes was an unusually complex form with an elaborate intracellular organization. The latest striking discovery made by deep metagenomic sequencing vindicates this hypothesis by showing that in phylogenetic trees eukaryotes fall within a newly identified archaeal group, the Lokiarchaeota, which combine several eukaryotic signatures previously identified in different archaea. The discovery of complex archaea that are the closest living relatives of eukaryotes is most compatible with the symbiogenetic scenario for eukaryogenesis.

  13. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    PubMed

    Wijffels, René H; Kruse, Olaf; Hellingwerf, Klaas J

    2013-06-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms for the production of small molecules that can be secreted such as ethanol, butanol, fatty acids and other organic acids. Eukaryotic microalgae are interesting for products for which cellular storage is important such as proteins, lipids, starch and alkanes. For the development of new and promising lines of production, strains of both cyanobacteria and eukaryotic microalgae have to be improved. Transformation systems have been much better developed in cyanobacteria. However, several products would be preferably produced with eukaryotic microalgae. In the case of cyanobacteria a synthetic-systems biology approach has a great potential to exploit cyanobacteria as cell factories. For eukaryotic microalgae transformation systems need to be further developed. A promising strategy is transformation of heterologous (prokaryotic and eukaryotic) genes in established eukaryotic hosts such as Chlamydomonas reinhardtii. Experimental outdoor pilots under containment for the production of genetically modified cyanobacteria and microalgae are in progress. For full scale production risks of release of genetically modified organisms need to be assessed.

  14. Implications of the new eukaryotic systematics for parasitologists.

    PubMed

    Dacks, Joel B; Walker, Giselle; Field, Mark C

    2008-06-01

    An accurate understanding of evolutionary relationships is central in biology. For parasitologists, understanding the relationships among eukaryotic organisms allows the prediction of virulence mechanisms, reconstruction of metabolic pathways, identification of potential drug targets, elucidation of parasite-specific cellular processes and understanding of interactions with the host or vector. Here we consider the impact of major recent revisions of eukaryotic systematics and taxonomy on parasitology. The previous, ladder-like model placed some protists as early diverging, with the remaining eukaryotes "progressing" towards a "crown radiation" of animals, plants, Fungi and some additional protistan lineages. This model has been robustly disproven. The new model is based on vastly increased amounts of molecular sequence data, integration with morphological information and the rigorous application of phylogenetic methods to those data. It now divides eukaryotes into six major supergroups; the relationships between those groups and the order of branching remain unknown. This new eukaryotic phylogeny emphasizes that organisms including Giardia, Trypanosoma and Trichomonas are not primitive, but instead highly evolved and specialised for their specific environments. The wealth of newly available comparative genomic data has also allowed the reconstruction of ancient suites of characteristics and mapping of character evolution in diverse parasites. For example, the last common eukaryotic ancestor was apparently complex, suggesting that lineage-specific adaptations and secondary losses have been important in the evolution of protistan parasites. Referring to the best evidence-based models for eukaryotic evolution will allow parasitologists to make more accurate and reliable inferences about pathogens that cause significant morbidity and mortality.

  15. Origins and evolution of viruses of eukaryotes: The ultimate modularity.

    PubMed

    Koonin, Eugene V; Dolja, Valerian V; Krupovic, Mart

    2015-05-01

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order "Megavirales" that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources along

  16. Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes

    PubMed Central

    Müller, Miklós; Mentel, Marek; van Hellemond, Jaap J.; Henze, Katrin; Woehle, Christian; Gould, Sven B.; Yu, Re-Young; van der Giezen, Mark

    2012-01-01

    Summary: Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified. PMID:22688819

  17. HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus

    PubMed Central

    Guerrero, Santiago; Batisse, Julien; Libre, Camille; Bernacchi, Serena; Marquet, Roland; Paillart, Jean-Christophe

    2015-01-01

    Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1) uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication. PMID:25606970

  18. Widespread 3′-end uridylation in eukaryotic RNA viruses

    PubMed Central

    Huo, Yayun; Shen, Jianguo; Wu, Huanian; Zhang, Chao; Guo, Lihua; Yang, Jinguang; Li, Weimin

    2016-01-01

    RNA 3′ uridylation occurs pervasively in eukaryotes, but is poorly characterized in viruses. In this study, we demonstrate that a broad array of RNA viruses, including mycoviruses, plant viruses and animal viruses, possess a novel population of RNA species bearing nontemplated oligo(U) or (U)-rich tails, suggesting widespread 3′ uridylation in eukaryotic viruses. Given the biological relevance of 3′ uridylation to eukaryotic RNA degradation, we propose a conserved but as-yet-unknown mechanism in virus-host interaction. PMID:27151171

  19. How Natural a Kind Is “Eukaryote?”

    PubMed Central

    Doolittle, W. Ford

    2014-01-01

    Systematics balances uneasily between realism and nominalism, uncommitted as to whether biological taxa are discoveries or inventions. If the former, they might be taken as natural kinds. I briefly review some philosophers’ concepts of natural kinds and then argue that several of these apply well enough to “eukaryote.” Although there are some sticky issues around genomic chimerism and when eukaryotes first appeared, if we allow for degrees in the naturalness of kinds, existing eukaryotes rank highly, higher than prokaryotes. Most biologists feel this intuitively: All I attempt to do here is provide some conceptual justification. PMID:24890508

  20. Sequencing our way towards understanding global eukaryotic biodiversity

    PubMed Central

    Bik, Holly M.; Porazinska, Dorota L.; Creer, Simon; Caporaso, J. Gregory; Knight, Rob; Thomas, W. Kelley

    2011-01-01

    Microscopic eukaryotes are abundant, diverse, and fill critical ecological roles across every ecosystem on earth, yet there is a well-recognized gap in our understanding of their global biodiversity. Fundamental advances in DNA sequencing and bioinformatics now allow accurate en masse biodiversity assessments of microscopic eukaryotes from environmental samples. Despite a promising outlook, the field of eukaryotic marker gene surveys faces significant challenges: how to generate data that is most useful to the community, especially in the face of evolving sequencing technology and bioinformatics pipelines, and how to incorporate an expanding number of target genes. PMID:22244672

  1. Effects of detector efficiency mismatch on security of quantum cryptosystems

    SciTech Connect

    Makarov, Vadim; Anisimov, Andrey; Skaar, Johannes

    2006-08-15

    We suggest a type of attack on quantum cryptosystems that exploits variations in detector efficiency as a function of a control parameter accessible to an eavesdropper. With gated single-photon detectors, this control parameter can be the timing of the incoming pulse. When the eavesdropper sends short pulses using the appropriate timing so that the two gated detectors in Bob's setup have different efficiencies, the security of quantum key distribution can be compromised. Specifically, we show for the Bennett-Brassard 1984 (BB84) protocol that if the efficiency mismatch between 0 and 1 detectors for some value of the control parameter gets large enough (roughly 15:1 or larger), Eve can construct a successful faked-states attack causing a quantum bit error rate lower than 11%. We also derive a general security bound as a function of the detector sensitivity mismatch for the BB84 protocol. Experimental data for two different detectors are presented, and protection measures against this attack are discussed.

  2. Sorin Solo stentless valve: extended adaptability for sinotubular junction mismatch.

    PubMed

    Weltert, Luca; De Paulis, Ruggero; Maselli, Daniele; Scaffa, Raffaele

    2008-08-01

    Stentless valve continence is affected by the implantation technique, annular symmetry and dilatation of the sinotubular junction. We tested in vitro how the Sorin Solo stentless pericardial valve adapts to a slightly dilated sinotubular junction. Stentless Sorin Solo aortic valves (25 mm) were sutured into a 32-mm Valsalva graft suspending the commissures into the expandable region of the graft. The neo-aortic root was pressurized and sinotubular junction size progressively decreased by wrapping the neocommissural ridge with Dacron rings. Direct endoscopic view and ultrasound imaging were used to observe geometry and morphology of leaflets, regurgitation, height and level of leaflets coaptation. Fresh porcine valves of the same annular size were used as controls. Solo valves had mild regurgitation at baseline, became continent at 32 mm sinotubular junction size and remained continent at any size of reduction, with optimal coaptation height and level. Porcine valves had severe regurgitation at baseline, became continent at 30 mm and showed mild insufficiency and reduction of the coaptation level at a sinotubular junction of 28 mm. The Solo valve prevents residual valve regurgitation for a wider range of sinotubular junction mismatch when compared with natural porcine valves. This extended tolerance to sinotubular junction mismatch suggests a safe use of stentless valves even in suboptimal geometry roots.

  3. Visualization of mismatch repair complexes using fluorescence microscopy.

    PubMed

    Schmidt, Tobias T; Hombauer, Hans

    2016-02-01

    DNA mismatch repair (MMR) is a surveillance mechanism present in most living organisms, which repairs errors introduced by DNA polymerases. Importantly, loss of MMR function due to inactivating mutations and/or epigenetic silencing results in the accumulation of mutations and as consequence increased cancer susceptibility, as observed in Lynch syndrome patients. During the past decades important progress has been made in the MMR field resulting in the identification and characterization of essential MMR components, culminating in the in vitro reconstitution of 5' and 3' nick-directed MMR. However, several mechanistic aspects of the MMR reaction remain not fully understood, therefore alternative approaches and further investigations are needed. Recently, the use of imaging techniques and, more specifically, visualization of MMR components in living cells, has broadened our mechanistic understanding of the repair reaction providing more detailed information about the spatio-temporal organization of MMR in vivo. In this review we would like to comment on mechanistic aspects of the MMR reaction in light of these and other recent findings. Moreover, we will discuss the current limitations and provide future perspectives regarding imaging of mismatch repair components in diverse organisms. PMID:26725956

  4. The grain size of auditory mismatch response in speech perception

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Kuhl, Patricia; Imada, Toshiaki; Imada, Toshiaki; Kotani, Makoto

    2005-09-01

    This phonetic study examined neural encoding of within-and cross- category information as a function of language experience. Behavioral and magnetoencephalography (MEG) measures for synthetic /ba-wa/ and /ra-la/ stimuli were obtained from ten American and ten Japanese subjects. The MEG experiments employed the oddball paradigm in two conditions. One condition used single exemplars to represent the phonetic categories, and the other introduced within-category variations for both the standard and deviant stimuli. Behavioral results showed three major findings: (a) a robust phonetic boundary effect was observed only in the native listeners; (b) all listeners were able to detect within-category differences on an acoustic basis; and (c) both within- and cross- category discriminations were strongly influenced by language experience. Consistent with behavioral findings, American listeners had larger mismatch field (MMF) responses for /ra-la/ in both conditions but not for /ba-wa/ in either. Moreover, American listeners showed a significant MMF reduction in encoding within-category variations for /ba-wa/ but not for /ra-la/, and Japanese listeners had MMF reductions for both. These results strongly suggest that the grain size of auditory mismatch response is determined not only by experience-dependent phonetic knowledge, but also by the specific characteristics of speech stimuli. [Work supported by NIH.

  5. Dynamic control of strand excision during human DNA mismatch repair.

    PubMed

    Jeon, Yongmoon; Kim, Daehyung; Martín-López, Juana V; Lee, Ryanggeun; Oh, Jungsic; Hanne, Jeungphill; Fishel, Richard; Lee, Jong-Bong

    2016-03-22

    Mismatch repair (MMR) is activated by evolutionarily conserved MutS homologs (MSH) and MutL homologs (MLH/PMS). MSH recognizes mismatched nucleotides and form extremely stable sliding clamps that may be bound by MLH/PMS to ultimately authorize strand-specific excision starting at a distant 3'- or 5'-DNA scission. The mechanical processes associated with a complete MMR reaction remain enigmatic. The purified human (Homo sapien or Hs) 5'-MMR excision reaction requires the HsMSH2-HsMSH6 heterodimer, the 5' → 3' exonuclease HsEXOI, and the single-stranded binding heterotrimer HsRPA. The HsMLH1-HsPMS2 heterodimer substantially influences 5'-MMR excision in cell extracts but is not required in the purified system. Using real-time single-molecule imaging, we show that HsRPA or Escherichia coli EcSSB restricts HsEXOI excision activity on nicked or gapped DNA. HsMSH2-HsMSH6 activates HsEXOI by overcoming HsRPA/EcSSB inhibition and exploits multiple dynamic sliding clamps to increase tract length. Conversely, HsMLH1-HsPMS2 regulates tract length by controlling the number of excision complexes, providing a link to 5' MMR.

  6. Predictable patterns of trait mismatches between interacting plants and insects

    PubMed Central

    2010-01-01

    Background There are few predictions about the directionality or extent of morphological trait (mis)matches between interacting organisms. We review and analyse studies on morphological trait complementarity (e.g. floral tube length versus insect mouthpart length) at the population and species level. Results Plants have consistently more exaggerated morphological traits than insects at high trait magnitudes and in some cases less exaggerated traits than insects at smaller trait magnitudes. This result held at the population level, as well as for phylogenetically adjusted analyses at the species-level and for both pollination and host-parasite interactions, perhaps suggesting a general pattern. Across communities, the degree of trait mismatch between one specialist plant and its more generalized pollinator was related to the level of pollinator specialization at each site; the observed pattern supports the "life-dinner principle" of selection acting more strongly on species with more at stake in the interaction. Similarly, plant mating system also affected the degree of trait correspondence because selfing reduces the reliance on pollinators and is analogous to pollination generalization. Conclusions Our analyses suggest that there are predictable "winners" and "losers" of evolutionary arms races and the results of this study highlight the fact that breeding system and the degree of specialization can influence the outcome. PMID:20604973

  7. Hydrophobic mismatch in gramicidin A prime /lecithin systems

    SciTech Connect

    Watnick, P.I.; Chan, S.I. ); Dea, P. )

    1990-07-03

    Gramicidin A{prime} (GA{prime}) has been added to three lipid systems of varying hydrophobic thickness: dimyristoyllecithin (DML), dipalmitoyllecithin (DPL), and distearoyllecithin (DSL). The similarity in length between the hydrophobic portion of GA{prime} and the hydrocarbon chains of the lipid bilayers has been studied by using {sup 31}P and {sup 2}H NMR. Hydrophobic mismatch has been found to be most severe in the DML bilayer system and minimal in the case of DSL. In addition, the effects of hydrophobic mismatch on the cooperative properties of the bilayer have been obtained from {sup 2}H NMR relaxation measurements. The results indicate that incorporation of the peptide into the bilayer disrupts the cooperative director fluctuations characteristic of pure multilamellar lipid dispersions. Finally, the GA{prime}/lecithin ratio at which the well-known transformation from bilayer to reverse hexagonal (H{sub II}) phase occurs is shown to depend on the acyl chain length of the phospholipid. A rationale is proposed for this chain length dependence.

  8. Mismatch repair proficiency is not required for radioenhancement by gemcitabine

    SciTech Connect

    Bree, Chris van . E-mail: c.vanbree@amc.uva.nl; Rodermond, Hans M.; Vos, Judith de; Haveman, Jaap; Franken, Nicolaas

    2005-08-01

    Purpose: Mismatch repair (MMR) proficiency has been reported to either increase or decrease radioenhancement by 24-h incubations with gemcitabine. This study aimed to establish the importance of MMR for radioenhancement by gemcitabine after short-exposure, high-dose treatment and long-exposure, low-dose treatment. Methods and Materials: Survival of MMR-deficient HCT116 and MMR-proficient HCT116 + 3 cells was analyzed by clonogenic assays. Mild, equitoxic gemcitabine treatments (4 h, 0.1 {mu}M vs. 24 h, 6 nM) were combined with {gamma}-irradiation to determine the radioenhancement with or without recovery. Gemcitabine metabolism and cell-cycle effects were evaluated by high-performance liquid chromatography analysis and bivariate flow cytometry. Results: Radioenhancement after 4 h of 0.1 {mu}M of gemcitabine was similar in both cell lines, but the radioenhancement after 24 h of 6 nM of gemcitabine was reduced in MMR-proficient cells. No significant differences between both cell lines were observed in the gemcitabine metabolism or cell-cycle effects after these treatments. Gemcitabine radioenhancement after recovery was also lower in MMR-proficient cells than in MMR-deficient cells. Conclusion: Mismatch repair proficiency decreases radioenhancement by long incubations of gemcitabine but does not affect radioenhancement by short exposures to a clinically relevant gemcitabine dose. Our data suggest that MMR contributes to the recovery from gemcitabine treatment.

  9. DNA Damage and Repair in Eukaryotic Cells

    PubMed Central

    Painter, R. B.

    1974-01-01

    Damage in DNA after irradiation can be classified into five kinds: base damage, single-strand breaks, double-strand breaks, DNA–DNA cross-linking, and DNA-protein cross-linking. Of these, repair of base damage is the best understood. In eukaryotes, at least three repair systems are known that can deal with base damage: photoreactivation, excision repair, and post-replication repair. Photoreactivation is specific for UV-induced damage and occurs widely throughout the biosphere, although it seems to be absent from placental mammals. Excision repair is present in prokaryotes and in animals but does not seem to be present in plants. Post-replication repair is poorly understood. Recent reports indicate that growing points in mammalian DNA simply skip past UV-induced lesions, leaving gaps in newly made DNA that are subsequently filled in by de novo synthesis. Evidence that this concept is oversimplified or incorrect is presented.—Single-strand breaks are induced by ionizing radiation but most cells can rapidly repair most or all of them, even after supralethal doses. The chemistry of the fragments formed when breaks are induced by ionizing radiation is complex and poorly understood. Therefore, the intermediate steps in the repair of single-strand breaks are unknown. Double-strand breaks and the two kinds of cross-linking have been studied very little and almost nothing is known about their mechanisms for repair.—The role of mammalian DNA repair in mutations is not known. Although there is evidence that defective repair can lead to cancer and/or premature aging in humans, the relationship between the molecular defects and the diseased state remains obscure. PMID:4442699

  10. Evolution of prokaryote and eukaryote lines inferred from sequence evidence

    NASA Technical Reports Server (NTRS)

    Hunt, L. T.; George, D. G.; Yeh, L.-S.; Dayhoff, M. O.

    1984-01-01

    This paper describes the evolution of prokaryotes and early eukaryotes, including their symbiotic relationships, as inferred from phylogenetic trees of bacterial ferredoxin, 5S ribosomal RNA, ribulose-1,5-biphosphate carboxylase large chain, and mitochondrial cytochrome oxidase polypeptide II.

  11. Symbiosis as a General Principle in Eukaryotic Evolution

    PubMed Central

    Douglas, Angela E.

    2014-01-01

    Eukaryotes have evolved and diversified in the context of persistent colonization by non-pathogenic microorganisms. Various resident microorganisms provide a metabolic capability absent from the host, resulting in increased ecological amplitude and often evolutionary diversification of the host. Some microorganisms confer primary metabolic pathways, such as photosynthesis and cellulose degradation, and others expand the repertoire of secondary metabolism, including the synthesis of toxins that confer protection against natural enemies. A further route by which microorganisms affect host fitness arises from their modulation of the eukaryotic-signaling networks that regulate growth, development, behavior, and other functions. These effects are not necessarily based on interactions beneficial to the host, but can be a consequence of either eukaryotic utilization of microbial products as cues or host–microbial conflict. By these routes, eukaryote–microbial interactions play an integral role in the function and evolutionary diversification of eukaryotes. PMID:24492707

  12. Eukaryotic origins: How and when was the mitochondrion acquired?

    PubMed

    Poole, Anthony M; Gribaldo, Simonetta

    2014-12-01

    Comparative genomics has revealed that the last eukaryotic common ancestor possessed the hallmark cellular architecture of modern eukaryotes. However, the remarkable success of such analyses has created a dilemma. If key eukaryotic features are ancestral to this group, then establishing the relative timing of their origins becomes difficult. In discussions of eukaryote origins, special significance has been placed on the timing of mitochondrial acquisition. In one view, mitochondrial acquisition was the trigger for eukaryogenesis. Others argue that development of phagocytosis was a prerequisite to acquisition. Results from comparative genomics and molecular phylogeny are often invoked to support one or the other scenario. We show here that the associations between specific cell biological models of eukaryogenesis and evolutionary genomic data are not as strong as many suppose. Disentangling these eliminates many of the arguments that polarize current debate.

  13. The structure and function of the eukaryotic ribosome.

    PubMed

    Wilson, Daniel N; Doudna Cate, Jamie H

    2012-05-01

    Structures of the bacterial ribosome have provided a framework for understanding universal mechanisms of protein synthesis. However, the eukaryotic ribosome is much larger than it is in bacteria, and its activity is fundamentally different in many key ways. Recent cryo-electron microscopy reconstructions and X-ray crystal structures of eukaryotic ribosomes and ribosomal subunits now provide an unprecedented opportunity to explore mechanisms of eukaryotic translation and its regulation in atomic detail. This review describes the X-ray crystal structures of the Tetrahymena thermophila 40S and 60S subunits and the Saccharomyces cerevisiae 80S ribosome, as well as cryo-electron microscopy reconstructions of translating yeast and plant 80S ribosomes. Mechanistic questions about translation in eukaryotes that will require additional structural insights to be resolved are also presented.

  14. A Workflow for Studying Specialized Metabolism in Nonmodel Eukaryotic Organisms.

    PubMed

    Torrens-Spence, M P; Fallon, T R; Weng, J K

    2016-01-01

    Eukaryotes contain a diverse tapestry of specialized metabolites, many of which are of significant pharmaceutical and industrial importance to humans. Nevertheless, exploration of specialized metabolic pathways underlying specific chemical traits in nonmodel eukaryotic organisms has been technically challenging and historically lagged behind that of the bacterial systems. Recent advances in genomics, metabolomics, phylogenomics, and synthetic biology now enable a new workflow for interrogating unknown specialized metabolic systems in nonmodel eukaryotic hosts with greater efficiency and mechanistic depth. This chapter delineates such workflow by providing a collection of state-of-the-art approaches and tools, ranging from multiomics-guided candidate gene identification to in vitro and in vivo functional and structural characterization of specialized metabolic enzymes. As already demonstrated by several recent studies, this new workflow opens up a gateway into the largely untapped world of natural product biochemistry in eukaryotes. PMID:27480683

  15. Secretive ciliates and putative asexuality in microbial eukaryotes.

    PubMed

    Dunthorn, Micah; Katz, Laura A

    2010-05-01

    Facultative sexuality is assumed to have occurred in the ancestor of all extant eukaryotes, but the distribution and maintenance of sex among microbial eukaryotes is still under debate. In this paper, we address the purported asexuality in colpodean ciliates as an exemplary lineage. Colpodeans are a primarily terrestrial clade thought to have arisen up to 900 MYA and contain one known derived sexual species. We conclude that the putative asexuality of this lineage is an observational artifact. We suggest that the same might hold for other microbial eukaryotes, and that many are secretively sexual as well. Theoretical work from the distantly related plants and animals suggests that both the evolutionary success of ancient asexuals and the reversal of the loss of sex are highly unlikely, further suggesting that colpodeans are secretively sexual. However, it remains to be seen to what extent sexual theories and predictions derived from macro-organismic lineages apply also to microbial eukaryotes.

  16. Evaluating genome-scale approaches to eukaryotic DNA replication

    PubMed Central

    Gilbert, David M.

    2010-01-01

    Mechanisms regulating where and when eukaryotic DNA replication initiates remain a mystery. Recently, genome-scale methods have been brought to bear on this problem. The identification of replication origins and their associated proteins in yeasts is a well-integrated investigative tool, but corresponding data sets from multicellular organisms are scarce. By contrast, standardized protocols for evaluating replication timing have generated informative data sets for most eukaryotic systems. Here, I summarize the genome-scale methods that are most frequently used to analyse replication in eukaryotes, the kinds of questions each method can address and the technical hurdles that must be overcome to gain a complete understanding of the nature of eukaryotic replication origins. PMID:20811343

  17. Structural and functional hierarchy of eukaryotic cilia and flagella.

    PubMed

    Omoto, C K

    1995-01-01

    There are now a variety of methods to investigate the morphofunctional aspects of eukaryotic cilia and cilia. These methods are useful for investigating the basic mechanism of eukaryotic axonemal mechanochemical function and understanding the function and interaction of its components. It is clear that the complex structure of eukaryotic axoneme requires the combination of all these techniques to unravel its mystery. The compositionally simple in vitro microtubule assays are crucial in investigating the functions of different dyneins within an axoneme. However, because such assays do not include other components of the axoneme and the important mechanical feedback present in a beating axoneme, reactivation of the entire structure will continue to play a basic role in the morphofunctional study of eukaryotic axonemes.

  18. The Eukaryotic Tree of Life from a Global Phylogenomic Perspective

    PubMed Central

    Burki, Fabien

    2014-01-01

    Molecular phylogenetics has revolutionized our knowledge of the eukaryotic tree of life. With the advent of genomics, a new discipline of phylogenetics has emerged: phylogenomics. This method uses large alignments of tens to hundreds of genes to reconstruct evolutionary histories. This approach has led to the resolution of ancient and contentious relationships, notably between the building blocks of the tree (the supergroups), and allowed to place in the tree enigmatic yet important protist lineages for understanding eukaryote evolution. Here, I discuss the pros and cons of phylogenomics and review the eukaryotic supergroups in light of earlier work that laid the foundation for the current view of the tree, including the position of the root. I conclude by presenting a picture of eukaryote evolution, summarizing the most recent progress in assembling the global tree. PMID:24789819

  19. Mitochondrial genome evolution and the origin of eukaryotes.

    PubMed

    Lang, B F; Gray, M W; Burger, G

    1999-01-01

    Recent results from ancestral (minimally derived) protists testify to the tremendous diversity of the mitochondrial genome in various eukaryotic lineages, but also reinforce the view that mitochondria, descendants of an endosymbiotic alpha-Proteobacterium, arose only once in evolution. The serial endosymbiosis theory, currently the most popular hypothesis to explain the origin of mitochondria, postulates the capture of an alpha-proteobacterial endosymbiont by a nucleus-containing eukaryotic host resembling extant amitochondriate protists. New sequence data have challenged this scenario, instead raising the possibility that the origin of the mitochondrion was coincident with, and contributed substantially to, the origin of the nuclear genome of the eukaryotic cell. Defining more precisely the alpha-proteobacterial ancestry of the mitochondrial genome, and the contribution of the endosymbiotic event to the nuclear genome, will be essential for a full understanding of the origin and evolution of the eukaryotic cell as a whole.

  20. Eukaryote polyphosphate kinases: is the 'Kornberg' complex ubiquitous?

    PubMed

    Hooley, Paul; Whitehead, Michael P; Brown, Michael R W

    2008-12-01

    Polyphosphate (poly P) is a polymer of up to several hundred phosphate residues and is important to a variety of cell processes. The main poly P synthetic enzyme in many bacteria is poly P kinase 1 (PPK1), which until recently had been detected among eukaryotes in some protists only. There is now evidence for the presence in several other eukaryotes of PPK1 homologues and also a second bacteria-type enzyme, PPK2. The latest genome databases reveal that the 'Kornberg' enzyme complex of three actin-related proteins, termed DdPPK2 in Dictyostelium discoideum, might also be ubiquitous in eukaryotes. Owing to the intimate association of poly P synthesis with the formation of structural fibres, this ubiquity indicates a central role for this molecule in the evolution of eukaryotic cells.

  1. Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes.

    PubMed

    Vossbrinck, C R; Maddox, J V; Friedman, S; Debrunner-Vossbrinck, B A; Woese, C R

    The microsporidia are a group of unusual, obligately parasitic protists that infect a great variety of other eukaryotes, including vertebrates, arthropods, molluscs, annelids, nematodes, cnidaria and even various ciliates, myxosporidia and gregarines. They possess a number of unusual cytological and molecular characteristics. Their nuclear division is considered to be primitive, they have no mitochondria, their ribosomes and ribosomal RNAs are reported to be of prokaryotic size and their large ribosomal subunit contains no 5.8S rRNA. The uniqueness of the microsporidia may reflect their phylogenetic position, because comparative sequence analysis shows that the small subunit rRNA of the microsporidium Vairimorpha necatrix is more unlike those of other eukaryotes than any known eukaryote 18S rRNA sequence. We conclude that the lineage leading to microsporidia branched very early from that leading to other eukaryotes.

  2. Structural diversity of eukaryotic small subunit ribosomal RNAs. Evolutionary implications.

    PubMed

    Sogin, M L; Gunderson, J H

    1987-01-01

    The phylogenetic diversity of the eukaryotic kingdom was assessed by comparing the structural and evolutionary diversity of 18-20S ribosomal RNA genes. The coding regions for cytoplasmic small subunit ribosomal RNA genes vary in length from 1753 to 2305 nucleotides, and they appear to be evolutionary mosaics in which highly and partially conserved sequences are interspersed among regions that display very high rates of genetic drift. Structural similarities between these gene sequences were used to establish a phylogenetic framework for the eukaryotes. The extent of sequence variation within the eukaryotes exceeds that displayed within the eubacterial or archaebacterial lines of descent. The kinetoplastids and euglenoids represent the earliest branchings among the eukaryotes. These branchings preceded the divergence of lineages leading to the slime molds and apicomplexans and far antedate a radiative period that gave rise to the plants, animals, fungi, and other protists.

  3. Kinetics and binding of the thymine-DNA mismatch glycosylase, Mig-Mth, with mismatch-containing DNA substrates.

    PubMed

    Begley, Thomas J; Haas, Brian J; Morales, Juan C; Kool, Eric T; Cunningham, Richard P

    2003-01-01

    We have examined the removal of thymine residues from T-G mismatches in DNA by the thymine-DNA mismatch glycosylase from Methanobacterium thermoautrophicum (Mig-Mth), within the context of the base excision repair (BER) pathway, to investigate why this glycosylase has such low activity in vitro. Using single-turnover kinetics and steady-state kinetics, we calculated the catalytic and product dissociation rate constants for Mig-Mth, and determined that Mig-Mth is inhibited by product apyrimidinic (AP) sites in DNA. Electrophoretic mobility shift assays (EMSA) provide evidence that the specificity of product binding is dependent upon the base opposite the AP site. The binding of Mig-Mth to DNA containing the non-cleavable substrate analogue difluorotoluene (F) was also analyzed to determine the effect of the opposite base on Mig-Mth binding specificity for substrate-like duplex DNA. The results of these experiments support the idea that opposite strand interactions play roles in determining substrate specificity. Endonuclease IV, which cleaves AP sites in the next step of the BER pathway, was used to analyze the effect of product removal on the overall rate of thymine hydrolysis by Mig-Mth. Our results support the hypothesis that endonuclease IV increases the apparent activity of Mig-Mth significantly under steady-state conditions by preventing reassociation of enzyme to product. PMID:12509271

  4. Decentralized Adaptive Control of Systems with Uncertain Interconnections, Plant-Model Mismatch and Actuator Failures

    NASA Technical Reports Server (NTRS)

    Patre, Parag; Joshi, Suresh M.

    2011-01-01

    Decentralized adaptive control is considered for systems consisting of multiple interconnected subsystems. It is assumed that each subsystem s parameters are uncertain and the interconnection parameters are not known. In addition, mismatch can exist between each subsystem and its reference model. A strictly decentralized adaptive control scheme is developed, wherein each subsystem has access only to its own state but has the knowledge of all reference model states. The mismatch is estimated online for each subsystem and the mismatch estimates are used to adaptively modify the corresponding reference models. The adaptive control scheme is extended to the case with actuator failures in addition to mismatch.

  5. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes.

    PubMed

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F

    2015-08-18

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners--the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)--and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic--and plant and algal--lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller's ratchet--the origin of eukaryotic recombination, or sex--might have required surprisingly little evolutionary innovation.

  6. Massive expansion of the calpain gene family in unicellular eukaryotes

    PubMed Central

    2012-01-01

    Background Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists). Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Results Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. Conclusions The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes. PMID:23020305

  7. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes.

    PubMed

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F

    2015-08-18

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners--the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)--and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic--and plant and algal--lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller's ratchet--the origin of eukaryotic recombination, or sex--might have required surprisingly little evolutionary innovation. PMID:25733873

  8. Transferred interbacterial antagonism genes augment eukaryotic innate immune function.

    PubMed

    Chou, Seemay; Daugherty, Matthew D; Peterson, S Brook; Biboy, Jacob; Yang, Youyun; Jutras, Brandon L; Fritz-Laylin, Lillian K; Ferrin, Michael A; Harding, Brittany N; Jacobs-Wagner, Christine; Yang, X Frank; Vollmer, Waldemar; Malik, Harmit S; Mougous, Joseph D

    2015-02-01

    Horizontal gene transfer allows organisms to rapidly acquire adaptive traits. Although documented instances of horizontal gene transfer from bacteria to eukaryotes remain rare, bacteria represent a rich source of new functions potentially available for co-option. One benefit that genes of bacterial origin could provide to eukaryotes is the capacity to produce antibacterials, which have evolved in prokaryotes as the result of eons of interbacterial competition. The type VI secretion amidase effector (Tae) proteins are potent bacteriocidal enzymes that degrade the cell wall when delivered into competing bacterial cells by the type VI secretion system. Here we show that tae genes have been transferred to eukaryotes on at least six occasions, and that the resulting domesticated amidase effector (dae) genes have been preserved for hundreds of millions of years through purifying selection. We show that the dae genes acquired eukaryotic secretion signals, are expressed within recipient organisms, and encode active antibacterial toxins that possess substrate specificity matching extant Tae proteins of the same lineage. Finally, we show that a dae gene in the deer tick Ixodes scapularis limits proliferation of Borrelia burgdorferi, the aetiologic agent of Lyme disease. Our work demonstrates that a family of horizontally acquired toxins honed to mediate interbacterial antagonism confers previously undescribed antibacterial capacity to eukaryotes. We speculate that the selective pressure imposed by competition between bacteria has produced a reservoir of genes encoding diverse antimicrobial functions that are tailored for co-option by eukaryotic innate immune systems. PMID:25470067

  9. An Evolutionary Framework for Understanding the Origin of Eukaryotes.

    PubMed

    Blackstone, Neil W

    2016-04-27

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real-the endosymbiosis that led to the mitochondrion is often described as "non-Darwinian" because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious-all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.

  10. [Genetic diversity of eukaryotic picoplankton of eight lakes in Nanjing].

    PubMed

    Zhao, Bi-ying; Chen, Mei-jun; Sun, Ying; Chen, Fei-zhou; Yang, Jia-xin

    2010-05-01

    The method of terminal restriction fragment length polymorphism (T-RFLP) was used to study the genetic diversity of eukaryotic picoplankton (0.2-5.0 microm) in the pelagic and littoral zones in 8 lakes with different trophic status in Nanjing. The objectives of this study were to confirm the difference of the genetic diversity of eukaryotic picoplankton among lakes and the main factors affecting this difference. T-RFLP indicated that there were various fingerprints among lakes and zones. The average terminal restriction fragments (T-RFs) in the littoral and pelagic zones were 16.4 and 15.9, respectively. The littoral zone in Lake Nan and the pelagic zone in Lake Mochou had 30 T-RFs and 27 T-RFs, respectively. The T-RFs were the least abundant (10) in the pelagic zone in Lake Baijia with relatively low trophic status. The genetic diversity of eukaryotic picoplankton was higher in the littoral zone than that in the pelagic zone except Lake Pipa and Mochou. The cluster analysis indicated that the similarities of the littoral zones and the pelagic zones were very high except Lake Baijia, Qian and Nan. The canonical correspondence analysis between the genetic diversity of eukaryotic picoplankton and environmental factors revealed the concentration of chlorophyll a had the most important impact on the eukaryotic picoplankton communities (p = 0.004). The results indicated that the genetic diversity of eukaryotic picoplankton is affected by the trophic status and has the difference in the pelagic and littoral zones.

  11. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean.

    PubMed

    de Vargas, Colomban; Audic, Stéphane; Henry, Nicolas; Decelle, Johan; Mahé, Frédéric; Logares, Ramiro; Lara, Enrique; Berney, Cédric; Le Bescot, Noan; Probert, Ian; Carmichael, Margaux; Poulain, Julie; Romac, Sarah; Colin, Sébastien; Aury, Jean-Marc; Bittner, Lucie; Chaffron, Samuel; Dunthorn, Micah; Engelen, Stefan; Flegontova, Olga; Guidi, Lionel; Horák, Aleš; Jaillon, Olivier; Lima-Mendez, Gipsi; Lukeš, Julius; Malviya, Shruti; Morard, Raphael; Mulot, Matthieu; Scalco, Eleonora; Siano, Raffaele; Vincent, Flora; Zingone, Adriana; Dimier, Céline; Picheral, Marc; Searson, Sarah; Kandels-Lewis, Stefanie; Acinas, Silvia G; Bork, Peer; Bowler, Chris; Gorsky, Gabriel; Grimsley, Nigel; Hingamp, Pascal; Iudicone, Daniele; Not, Fabrice; Ogata, Hiroyuki; Pesant, Stephane; Raes, Jeroen; Sieracki, Michael E; Speich, Sabrina; Stemmann, Lars; Sunagawa, Shinichi; Weissenbach, Jean; Wincker, Patrick; Karsenti, Eric

    2015-05-22

    Marine plankton support global biological and geochemical processes. Surveys of their biodiversity have hitherto been geographically restricted and have not accounted for the full range of plankton size. We assessed eukaryotic diversity from 334 size-fractionated photic-zone plankton communities collected across tropical and temperate oceans during the circumglobal Tara Oceans expedition. We analyzed 18S ribosomal DNA sequences across the intermediate plankton-size spectrum from the smallest unicellular eukaryotes (protists, >0.8 micrometers) to small animals of a few millimeters. Eukaryotic ribosomal diversity saturated at ~150,000 operational taxonomic units, about one-third of which could not be assigned to known eukaryotic groups. Diversity emerged at all taxonomic levels, both within the groups comprising the ~11,200 cataloged morphospecies of eukaryotic plankton and among twice as many other deep-branching lineages of unappreciated importance in plankton ecology studies. Most eukaryotic plankton biodiversity belonged to heterotrophic protistan groups, particularly those known to be parasites or symbiotic hosts. PMID:25999516

  12. Single Cell Genomics and Transcriptomics for Unicellular Eukaryotes

    SciTech Connect

    Ciobanu, Doina; Clum, Alicia; Singh, Vasanth; Salamov, Asaf; Han, James; Copeland, Alex; Grigoriev, Igor; James, Timothy; Singer, Steven; Woyke, Tanja; Malmstrom, Rex; Cheng, Jan-Fang

    2014-03-14

    Despite their small size, unicellular eukaryotes have complex genomes with a high degree of plasticity that allow them to adapt quickly to environmental changes. Unicellular eukaryotes live with prokaryotes and higher eukaryotes, frequently in symbiotic or parasitic niches. To this day their contribution to the dynamics of the environmental communities remains to be understood. Unfortunately, the vast majority of eukaryotic microorganisms are either uncultured or unculturable, making genome sequencing impossible using traditional approaches. We have developed an approach to isolate unicellular eukaryotes of interest from environmental samples, and to sequence and analyze their genomes and transcriptomes. We have tested our methods with six species: an uncharacterized protist from cellulose-enriched compost identified as Platyophrya, a close relative of P. vorax; the fungus Metschnikowia bicuspidate, a parasite of water flea Daphnia; the mycoparasitic fungi Piptocephalis cylindrospora, a parasite of Cokeromyces and Mucor; Caulochytrium protosteloides, a parasite of Sordaria; Rozella allomycis, a parasite of the water mold Allomyces; and the microalgae Chlamydomonas reinhardtii. Here, we present the four components of our approach: pre-sequencing methods, sequence analysis for single cell genome assembly, sequence analysis of single cell transcriptomes, and genome annotation. This technology has the potential to uncover the complexity of single cell eukaryotes and their role in the environmental samples.

  13. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean.

    PubMed

    de Vargas, Colomban; Audic, Stéphane; Henry, Nicolas; Decelle, Johan; Mahé, Frédéric; Logares, Ramiro; Lara, Enrique; Berney, Cédric; Le Bescot, Noan; Probert, Ian; Carmichael, Margaux; Poulain, Julie; Romac, Sarah; Colin, Sébastien; Aury, Jean-Marc; Bittner, Lucie; Chaffron, Samuel; Dunthorn, Micah; Engelen, Stefan; Flegontova, Olga; Guidi, Lionel; Horák, Aleš; Jaillon, Olivier; Lima-Mendez, Gipsi; Lukeš, Julius; Malviya, Shruti; Morard, Raphael; Mulot, Matthieu; Scalco, Eleonora; Siano, Raffaele; Vincent, Flora; Zingone, Adriana; Dimier, Céline; Picheral, Marc; Searson, Sarah; Kandels-Lewis, Stefanie; Acinas, Silvia G; Bork, Peer; Bowler, Chris; Gorsky, Gabriel; Grimsley, Nigel; Hingamp, Pascal; Iudicone, Daniele; Not, Fabrice; Ogata, Hiroyuki; Pesant, Stephane; Raes, Jeroen; Sieracki, Michael E; Speich, Sabrina; Stemmann, Lars; Sunagawa, Shinichi; Weissenbach, Jean; Wincker, Patrick; Karsenti, Eric

    2015-05-22

    Marine plankton support global biological and geochemical processes. Surveys of their biodiversity have hitherto been geographically restricted and have not accounted for the full range of plankton size. We assessed eukaryotic diversity from 334 size-fractionated photic-zone plankton communities collected across tropical and temperate oceans during the circumglobal Tara Oceans expedition. We analyzed 18S ribosomal DNA sequences across the intermediate plankton-size spectrum from the smallest unicellular eukaryotes (protists, >0.8 micrometers) to small animals of a few millimeters. Eukaryotic ribosomal diversity saturated at ~150,000 operational taxonomic units, about one-third of which could not be assigned to known eukaryotic groups. Diversity emerged at all taxonomic levels, both within the groups comprising the ~11,200 cataloged morphospecies of eukaryotic plankton and among twice as many other deep-branching lineages of unappreciated importance in plankton ecology studies. Most eukaryotic plankton biodiversity belonged to heterotrophic protistan groups, particularly those known to be parasites or symbiotic hosts.

  14. Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity

    PubMed Central

    Albu, Mihai; Cote, Atina; Montenegro-Montero, Alejandro; Drewe, Philipp; Najafabadi, Hamed S.; Lambert, Samuel A.; Mann, Ishminder; Cook, Kate; Zheng, Hong; Goity, Alejandra; van Bakel, Harm; Lozano, Jean-Claude; Galli, Mary; Lewsey, Mathew; Huang, Eryong; Mukherjee, Tuhin; Chen, Xiaoting; Reece-Hoyes, John S.; Govindarajan, Sridhar; Shaulsky, Gad; Walhout, Albertha J.M.; Bouget, François-Yves; Ratsch, Gunnar; Larrondo, Luis F.; Ecker, Joseph R.; Hughes, Timothy R.

    2014-01-01

    SUMMARY Transcription factor (TF) DNA sequence preferences direct their regulatory activity, but are currently known for only ~1% of all eukaryotic TFs. Broadly sampling DNA-binding domain (DBD) types from multiple eukaryotic clades, we determined DNA sequence preferences for >1,000 TFs encompassing 54 different DBD classes from 131 diverse eukaryotes. We find that closely related DBDs almost always have very similar DNA sequence preferences, enabling inference of motifs for ~34% of the ~170,000 known or predicted eukaryotic TFs. Sequences matching both measured and inferred motifs are enriched in ChIP-seq peaks and upstream of transcription start sites in diverse eukaryotic lineages. SNPs defining expression quantitative trait loci in Arabidopsis promoters are also enriched for predicted TF binding sites. Importantly, our motif “library” (http://cisbp.ccbr.utoronto.ca) can be used to identify specific TFs whose binding may be altered by human disease risk alleles. These data present a powerful resource for mapping transcriptional networks across eukaryotes. PMID:25215497

  15. A statistical anomaly indicates symbiotic origins of eukaryotic membranes.

    PubMed

    Bansal, Suneyna; Mittal, Aditya

    2015-04-01

    Compositional analyses of nucleic acids and proteins have shed light on possible origins of living cells. In this work, rigorous compositional analyses of ∼5000 plasma membrane lipid constituents of 273 species in the three life domains (archaea, eubacteria, and eukaryotes) revealed a remarkable statistical paradox, indicating symbiotic origins of eukaryotic cells involving eubacteria. For lipids common to plasma membranes of the three domains, the number of carbon atoms in eubacteria was found to be similar to that in eukaryotes. However, mutually exclusive subsets of same data show exactly the opposite-the number of carbon atoms in lipids of eukaryotes was higher than in eubacteria. This statistical paradox, called Simpson's paradox, was absent for lipids in archaea and for lipids not common to plasma membranes of the three domains. This indicates the presence of interaction(s) and/or association(s) in lipids forming plasma membranes of eubacteria and eukaryotes but not for those in archaea. Further inspection of membrane lipid structures affecting physicochemical properties of plasma membranes provides the first evidence (to our knowledge) on the symbiotic origins of eukaryotic cells based on the "third front" (i.e., lipids) in addition to the growing compositional data from nucleic acids and proteins.

  16. Evaluating Support for the Current Classification of Eukaryotic Diversity

    PubMed Central

    Parfrey, Laura Wegener; Barbero, Erika; Lasser, Elyse; Dunthorn, Micah; Bhattacharya, Debashish; Patterson, David J; Katz, Laura A

    2006-01-01

    Perspectives on the classification of eukaryotic diversity have changed rapidly in recent years, as the four eukaryotic groups within the five-kingdom classification—plants, animals, fungi, and protists—have been transformed through numerous permutations into the current system of six “supergroups.” The intent of the supergroup classification system is to unite microbial and macroscopic eukaryotes based on phylogenetic inference. This supergroup approach is increasing in popularity in the literature and is appearing in introductory biology textbooks. We evaluate the stability and support for the current six-supergroup classification of eukaryotes based on molecular genealogies. We assess three aspects of each supergroup: (1) the stability of its taxonomy, (2) the support for monophyly (single evolutionary origin) in molecular analyses targeting a supergroup, and (3) the support for monophyly when a supergroup is included as an out-group in phylogenetic studies targeting other taxa. Our analysis demonstrates that supergroup taxonomies are unstable and that support for groups varies tremendously, indicating that the current classification scheme of eukaryotes is likely premature. We highlight several trends contributing to the instability and discuss the requirements for establishing robust clades within the eukaryotic tree of life. PMID:17194223

  17. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    PubMed Central

    Blackstone, Neil W.

    2016-01-01

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes. PMID:27128953

  18. Evaluating support for the current classification of eukaryotic diversity.

    PubMed

    Parfrey, Laura Wegener; Barbero, Erika; Lasser, Elyse; Dunthorn, Micah; Bhattacharya, Debashish; Patterson, David J; Katz, Laura A

    2006-12-01

    Perspectives on the classification of eukaryotic diversity have changed rapidly in recent years, as the four eukaryotic groups within the five-kingdom classification--plants, animals, fungi, and protists--have been transformed through numerous permutations into the current system of six "supergroups." The intent of the supergroup classification system is to unite microbial and macroscopic eukaryotes based on phylogenetic inference. This supergroup approach is increasing in popularity in the literature and is appearing in introductory biology textbooks. We evaluate the stability and support for the current six-supergroup classification of eukaryotes based on molecular genealogies. We assess three aspects of each supergroup: (1) the stability of its taxonomy, (2) the support for monophyly (single evolutionary origin) in molecular analyses targeting a supergroup, and (3) the support for monophyly when a supergroup is included as an out-group in phylogenetic studies targeting other taxa. Our analysis demonstrates that supergroup taxonomies are unstable and that support for groups varies tremendously, indicating that the current classification scheme of eukaryotes is likely premature. We highlight several trends contributing to the instability and discuss the requirements for establishing robust clades within the eukaryotic tree of life.

  19. Homeodomain proteins belong to the ancestral molecular toolkit of eukaryotes.

    PubMed

    Derelle, Romain; Lopez, Philippe; Le Guyader, Hervé; Manuel, Michaël

    2007-01-01

    Multicellular organization arose several times by convergence during the evolution of eukaryotes (e.g., in terrestrial plants, several lineages of "algae," fungi, and metazoans). To reconstruct the evolutionary transitions between unicellularity and multicellularity, we need a proper understanding of the origin and diversification of regulatory molecules governing the construction of a multicellular organism in these various lineages. Homeodomain (HD) proteins offer a paradigm for studying such issues, because in multicellular eukaryotes, like animals, fungi and plants, these transcription factors are extensively used in fundamental developmental processes and are highly diversified. A number of large eukaryote lineages are exclusively unicellular, however, and it remains unclear to what extent this condition reflects their primitive lack of "good building blocks" such as the HD proteins. Taking advantage from the recent burst of sequence data from a wide variety of eukaryote taxa, we show here that HD-containing transcription factors were already existing and diversified (in at least two main classes) in the last common eukaryote ancestor. Although the family was retained and independently expanded in the multicellular taxa, it was lost in several lineages of unicellular parasites or intracellular symbionts. Our findings are consistent with the idea that the common ancestor of eukaryotes was complex in molecular terms, and already possessed many of the regulatory molecules, which later favored the multiple convergent acquisition of multicellularity.

  20. ERO1-independent production of H2O2 within the endoplasmic reticulum fuels Prdx4-mediated oxidative protein folding

    PubMed Central

    Konno, Tasuku; Pinho Melo, Eduardo; Lopes, Carlos; Mehmeti, Ilir; Lenzen, Sigurd

    2015-01-01

    The endoplasmic reticulum (ER)–localized peroxiredoxin 4 (PRDX4) supports disulfide bond formation in eukaryotic cells lacking endoplasmic reticulum oxidase 1 (ERO1). The source of peroxide that fuels PRDX4-mediated disulfide bond formation has remained a mystery, because ERO1 is believed to be a major producer of hydrogen peroxide (H2O2) in the ER lumen. We report on a simple kinetic technique to track H2O2 equilibration between cellular compartments, suggesting that the ER is relatively isolated from cytosolic or mitochondrial H2O2 pools. Furthermore, expression of an ER-adapted catalase to degrade lumenal H2O2 attenuated PRDX4-mediated disulfide bond formation in cells lacking ERO1, whereas depletion of H2O2 in the cytosol or mitochondria had no similar effect. ER catalase did not effect the slow residual disulfide bond formation in cells lacking both ERO1 and PRDX4. These observations point to exploitation of a hitherto unrecognized lumenal source of H2O2 by PRDX4 and a parallel slow H2O2-independent pathway for disulfide formation. PMID:26504166

  1. Isolation of TRPV1 independent mechanisms of spontaneous and asynchronous glutamate release at primary afferent to NTS synapses.

    PubMed

    Fenwick, Axel J; Wu, Shaw-Wen; Peters, James H

    2014-01-01

    Cranial visceral afferents contained within the solitary tract (ST) contact second-order neurons in the nucleus of the solitary tract (NTS) and release the excitatory amino acid glutamate via three distinct exocytosis pathways; synchronous, asynchronous, and spontaneous release. The presence of TRPV1 in the central terminals of a majority of ST afferents conveys activity-dependent asynchronous glutamate release and provides a temperature sensitive calcium conductance which largely determines the rate of spontaneous vesicle fusion. TRPV1 is present in unmyelinated C-fiber afferents and these facilitated forms of glutamate release may underlie the relative strength of C-fibers in activating autonomic reflex pathways. However, pharmacological blockade of TRPV1 signaling eliminates only ~50% of the asynchronous profile and attenuates the temperature sensitivity of spontaneous release indicating additional thermosensitive calcium influx pathways may exist which mediate these forms of vesicle release. In the present study we isolate the contribution of TRPV1 independent forms of glutamate release at ST-NTS synapses. We found ST afferent innervation at NTS neurons and synchronous vesicle release from TRPV1 KO mice was not different to control animals; however, only half of TRPV1 KO ST afferents completely lacked asynchronous glutamate release. Further, temperature driven spontaneous rates of vesicle release were not different from 33 to 37°C between control and TRPV1 KO afferents. These findings suggest additional temperature dependent mechanisms controlling asynchronous and thermosensitive spontaneous release at physiological temperatures, possibly mediated by additional thermosensitive TRP channels in primary afferent terminals.

  2. Astemizole-Histamine induces Beclin-1-independent autophagy by targeting p53-dependent crosstalk between autophagy and apoptosis.

    PubMed

    Jakhar, Rekha; Paul, Souren; Bhardwaj, Monika; Kang, Sun Chul

    2016-03-01

    Apoptosis and autophagy are genetically regulated, evolutionarily conserved processes that can jointly seal cancer cell fates, and numerous death stimuli are capable of activating either pathway. Although crosstalk between apoptosis and autophagy is quite complex and sometimes contradictory, it remains a key factor determining the outcomes of death-related pathologies such as cancer. In the present study, exposure of MCF-7 breast cancer cells to HIS and the H1 receptor antagonist AST both alone and together with HIS (AST-HIS) led to generation of intracellular ROS, which induced massive cellular vacuolization through dilation of the ER and mitochondria. Consequently, apoptosis by Bax translocation, cytochrome c release, and caspase activation were triggered. In addition, AST-HIS caused ER stress-induced autophagy in MCF-7 cells, as evidenced by an increased LC3-II/LC3-I ratio, with surprisingly no changes in Beclin-1 expression. Non-canonical autophagy was induced via p53 phosphorylation, which increased p53-p62 interactions to enhance Beclin-1-independent autophagy as evidenced by immunocytochemistry and immunoprecipitation. In the absence of Beclin-1, enhanced autophagy further activated apoptosis through caspase induction. In conclusion, these findings indicate that AST-HIS-induced apoptosis and autophagy can be regulated by ROS-mediated signaling pathways. PMID:26739061

  3. The IL-1-dependent sterile inflammatory response has a substantial caspase-1-independent component that requires cathepsin C

    PubMed Central

    Kono, Hajime; Orlowski, Gregory M.; Patel, Zubin; Rock, Kenneth L.

    2012-01-01

    The sterile inflammatory response to cell death and irritant crystals is medically important because it causes disease. Although these stimuli are structurally distinct, they cause inflammation through a common pathway that requires the cytokine IL-1. In vitro, the inflammasome, and in particular its generation of active caspase-1, is absolutely required to produce bioactive IL-1β. However, here we report that caspase-1 is not required in vivo for much of the IL-1β-dependent sterile inflammatory response. Furthermore, we find that cathepsin C, which controls the activity of a number of leukocyte serine proteases capable of processing IL-1β, plays a major role in this caspase-1-independent pathway. Mice that are deficient in cathepsin C have reduced inflammatory responses to dying cells and silica crystals. In the absence of cathepsin C, caspase-1 becomes rate-limiting such that mice doubly-deficient in both of these proteases make little IL-1β in vivo and have markedly attenuated inflammatory responses to the sterile stimuli. In contrast, these mutant mice generate normal inflammation in response to exogenous IL-1β, indicating that cathepsin C and caspase-1 function upstream of IL-1β, and in their absence, all components of the pathway downstream of mature IL-1β are intact. PMID:22914048

  4. Unconscious learning of auditory discrimination using mismatch negativity (MMN) neurofeedback.

    PubMed

    Chang, Ming; Iizuka, Hiroyuki; Naruse, Yasushi; Ando, Hideyuki; Maeda, Taro

    2014-10-24

    Neurofeedback is a strong direct training method for brain function, wherein brain activity patterns are measured and displayed as feedback, and trainees try to stabilize the feedback signal onto certain desirable states to regulate their own mental states. Here, we introduce a novel neurofeedback method, using the mismatch negativity (MMN) responses elicited by similar sounds that cannot be consciously discriminated. Through neurofeedback training, without participants' attention to the auditory stimuli or awareness of what was to be learned, we found that the participants could unconsciously achieve a significant improvement in the auditory discrimination of the applied stimuli. Our method has great potential to provide effortless auditory perceptual training. Based on this method, participants do not need to make an effort to discriminate auditory stimuli, and can choose tasks of interest without boredom due to training. In particular, it could be used to train people to recognize speech sounds that do not exist in their native language and thereby facilitate foreign language learning.

  5. Is it time to move mismatch negativity into the clinic?

    PubMed

    Schall, Ulrich

    2016-04-01

    Since its inception in the 1970s, the mismatch negativity (MMN) event-related potential has improved our understanding of pre-attentive detection of rule violations, which is a fundamental cognitive process considered by some a form of "primitive intelligence". The body of research to date ranges from animal studies (i.e. when investigating the neural mechanisms and pharmacological properties of MMN generation) to researching the psychophysiological nature of human consciousness. MMN therefore offers the possibility to detect abnormal functioning in the neural system involved in MMN generation, such as it occurs in some neurodevelopmental disorders or patients in vegetative state. While the clinical research data holds considerable promise for translation into clinical practice, standardization and normative data of an optimized (i.e. disorder-specific) MMN recording algorithm is needed in order for MMN to become a valuable clinical investigation tool.

  6. DNA mismatch repair gene mutations in human cancer.

    PubMed Central

    Peltomäki, P

    1997-01-01

    A new pathogenetic mechanism leading to cancer has been delineated in the past 3 years when human homologues of DNA mismatch repair (MMR) genes have been identified and shown to be involved in various types of cancer. Germline mutations of MMR genes cause susceptibility to a hereditary form of colon cancer, hereditary nonpolyposis colon cancer (HNPCC), which represents one of the most common syndromes associated with cancer predisposition in man. Tumors from HNPCC patients are hypermutable and show length variation at short tandem repeat sequences, a phenomenon referred to as microsatellite instability or replication errors. A similar abnormality is found in a proportion of sporadic tumors of the colorectum as well as a variety of other organs; acquired mutations in MMR genes or other endogenous or exogenous causes may underlie these cases. Genetic and biochemical characterization of the functions of normal and mutated MMR genes elucidates mechanisms of cancer development and provides tools for diagnostic applications. PMID:9255561

  7. HLA-Mismatched Renal Transplantation without Maintenance Immunosuppression

    PubMed Central

    Kawai, Tatsuo; Cosimi, A. Benedict; Spitzer, Thomas R.; Tolkoff-Rubin, Nina; Suthanthiran, Manikkam; Saidman, Susan L.; Shaffer, Juanita; Preffer, Frederic I.; Ding, Ruchuang; Sharma, Vijay; Fishman, Jay A.; Dey, Bimalangshu; Ko, Dicken S.C.; Hertl, Martin; Goes, Nelson B.; Wong, Waichi; Williams, Winfred W.; Colvin, Robert B.; Sykes, Megan; Sachs, David H.

    2010-01-01

    Summary Five patients with end-stage renal disease received combined bone marrow and kidney transplants from HLA single-haplotype mismatched living related donors, with the use of a nonmyeloablative preparative regimen. Transient chimerism and reversible capillary leak syndrome developed in all recipients. Irreversible humoral rejection occurred in one patient. In the other four recipients, it was possible to discontinue all immunosuppressive therapy 9 to 14 months after the transplantation, and renal function has remained stable for 2.0 to 5.3 years since transplantation. The T cells from these four recipients, tested in vitro, showed donor-specific unresponsiveness and in specimens from allograft biopsies, obtained after withdrawal of immunosuppressive therapy, there were high levels of P3 (FOXP3) messenger RNA (mRNA) but not granzyme B mRNA. PMID:18216355

  8. Deterministic coherence resonance in coupled chaotic oscillators with frequency mismatch.

    PubMed

    Pisarchik, A N; Jaimes-Reátegui, R

    2015-11-01

    A small mismatch between natural frequencies of unidirectionally coupled chaotic oscillators can induce coherence resonance in the slave oscillator for a certain coupling strength. This surprising phenomenon resembles "stabilization of chaos by chaos," i.e., the chaotic driving applied to the chaotic system makes its dynamics more regular when the natural frequency of the slave oscillator is a little different than the natural frequency of the master oscillator. The coherence is characterized with the dominant component in the power spectrum of the slave oscillator, normalized standard deviations of both the peak amplitude and the interpeak interval, and Lyapunov exponents. The enhanced coherence is associated with increasing negative both the third and the fourth Lyapunov exponents, while the first and second exponents are always positive and zero, respectively.

  9. Concentrative meditation enhances preattentive processing: a mismatch negativity study.

    PubMed

    Srinivasan, Narayanan; Baijal, Shruti

    2007-10-29

    The mismatch negativity (MMN) paradigm that is an indicator of preattentive processing was used to study the effects of concentrative meditation. Sudarshan Kriya Yoga meditation is a yogic exercise practiced in an ordered sequence beginning with breathing exercises, and ending with concentrative (Sahaj Samadhi) meditation. Auditory MMN waveforms were recorded at the beginning and after each of these practices for meditators, and equivalently after relaxation sessions for the nonmeditators. Overall meditators were found to have larger MMN amplitudes than nonmeditators. The meditators also exhibited significantly increased MMN amplitudes immediately after meditation suggesting transient state changes owing to meditation. The results indicate that concentrative meditation practice enhances preattentive perceptual processes, enabling better change detection in auditory sensory memory.

  10. DNA mismatch repair: molecular mechanisms and biological function.

    PubMed

    Schofield, Mark J; Hsieh, Peggy

    2003-01-01

    DNA mismatch repair (MMR) guards the integrity of the genome in virtually all cells. It contributes about 1000-fold to the overall fidelity of replication and targets mispaired bases that arise through replication errors, during homologous recombination, and as a result of DNA damage. Cells deficient in MMR have a mutator phenotype in which the rate of spontaneous mutation is greatly elevated, and they frequently exhibit microsatellite instability at mono- and dinucleotide repeats. The importance of MMR in mutation avoidance is highlighted by the finding that defects in MMR predispose individuals to hereditary nonpolyposis colorectal cancer. In addition to its role in postreplication repair, the MMR machinery serves to police homologous recombination events and acts as a barrier to genetic exchange between species. PMID:14527292

  11. Three perspectives on the mismatch between measures of material poverty.

    PubMed

    Hick, Rod

    2015-03-01

    The two most prominent measures of material poverty within contemporary European poverty analysis are low income and material deprivation. However, it is by now well-known that these measures identify substantially different people as being poor. In this research note, I seek to demonstrate that there are at least three ways to understand the mismatch between low income and material deprivation, relating to three different forms of identification: identifying poor households, identifying groups at risk of poverty and identifying trends in material poverty over time. Drawing on data from the British Household Panel Survey, I show that while low income and material deprivation identify very different households as being poor, and display distinct trends over time, in many cases they identify the same groups at being at risk of material poverty.

  12. Reducing measurement scale mismatch to improve surface energy flux estimation

    NASA Astrophysics Data System (ADS)

    Iwema, Joost; Rosolem, Rafael; Rahman, Mostaquimur; Blyth, Eleanor; Wagener, Thorsten

    2016-04-01

    Soil moisture importantly controls land surface processes such as energy and water partitioning. A good understanding of these controls is needed especially when recognizing the challenges in providing accurate hyper-resolution hydrometeorological simulations at sub-kilometre scales. Soil moisture controlling factors can, however, differ at distinct scales. In addition, some parameters in land surface models are still often prescribed based on observations obtained at another scale not necessarily employed by such models (e.g., soil properties obtained from lab samples used in regional simulations). To minimize such effects, parameters can be constrained with local data from Eddy-Covariance (EC) towers (i.e., latent and sensible heat fluxes) and Point Scale (PS) soil moisture observations (e.g., TDR). However, measurement scales represented by EC and PS still differ substantially. Here we use the fact that Cosmic-Ray Neutron Sensors (CRNS) estimate soil moisture at horizontal footprint similar to that of EC fluxes to help answer the following question: Does reduced observation scale mismatch yield better soil moisture - surface fluxes representation in land surface models? To answer this question we analysed soil moisture and surface fluxes measurements from twelve COSMOS-Ameriflux sites in the USA characterized by distinct climate, soils and vegetation types. We calibrated model parameters of the Joint UK Land Environment Simulator (JULES) against PS and CRNS soil moisture data, respectively. We analysed the improvement in soil moisture estimation compared to uncalibrated model simulations and then evaluated the degree of improvement in surface fluxes before and after calibration experiments. Preliminary results suggest that a more accurate representation of soil moisture dynamics is achieved when calibrating against observed soil moisture and further improvement obtained with CRNS relative to PS. However, our results also suggest that a more accurate

  13. Visual Mismatch Negativity Reveals Automatic Detection of Sequential Regularity Violation

    PubMed Central

    Stefanics, Gábor; Kimura, Motohiro; Czigler, István

    2011-01-01

    Sequential regularities are abstract rules based on repeating sequences of environmental events, which are useful to make predictions about future events. Here, we tested whether the visual system is capable to detect sequential regularity in unattended stimulus sequences. The visual mismatch negativity (vMMN) component of the event-related potentials is sensitive to the violation of complex regularities (e.g., object-related characteristics, temporal patterns). We used the vMMN component as an index of violation of conditional (if, then) regularities. In the first experiment, to investigate emergence of vMMN and other change-related activity to the violation of conditional rules, red and green disk patterns were delivered in pairs. The majority of pairs comprised of disk patterns with identical colors, whereas in deviant pairs the colors were different. The probabilities of the two colors were equal. The second member of the deviant pairs elicited a vMMN with longer latency and more extended spatial distribution to deviants with lower probability (10 vs. 30%). In the second (control) experiment the emergence of vMMN to violation of a simple, feature-related rule was studied using oddball sequences of stimulus pairs where deviant colors were presented with 20% probabilities. Deviant colored patterns elicited a vMMN, and this component was larger for the second member of the pair, i.e., after a shorter inter-stimulus interval. This result corresponds to the SOA/(v)MMN relationship, expected on the basis of a memory-mismatch process. Our results show that the system underlying vMMN is sensitive to abstract, conditional rules. Representation of such rules implicates expectation of a subsequent event, therefore vMMN can be considered as a correlate of violated predictions about the characteristics of environmental events. PMID:21629766

  14. Nucleotide metabolic mismatches in mammalian hearts: implications for transplantation

    PubMed Central

    Yacoub, MH; Smolenski, RT

    2013-01-01

    Introduction Human donor organ shortages have led surgeons and scientists to explore the use of animals as alternative organ sources. Acute thrombovascular rejection (AVR) is the main hurdle in xenotransplantation. Disparities in nucleotide metabolism in the vessels of different species may contribute significantly to the microvascular component of AVR. Methods We evaluated the extent of nucleotide metabolism mismatch in selected organs and endothelial cells of different mammals with particular focus on the changes in activity of ecto-5’-nucleotidase (E5’N) elicited by exposure of porcine hearts or endothelial cells to human blood (ex vivo) or human plasma (in vitro). Results E5’N activity in the rat heart was significantly higher than in other species. We noted a significant difference (p<0.001) in E5’N activity between human and pig endothelial cell lines. Initial pig aortic endothelial E5’N activity decreased in vitro after a three-hour exposure to human and porcine plasma while remaining constant in controls. Ex vivo perfusion with fresh human blood for four hours resulted in a significant decrease of E5’N activity in both wild type and transgenic pig hearts overexpressing human decay accelerating factor (p<0.001). Conclusions This study provides evidence that mismatches in basal mammalian metabolic pathways and humoral immunity interact in a xenogeneic environment. Understanding the role of nucleotide metabolism and signalling in xenotransplantation may identify new targets for genetic modifications and may lead to the development of new therapies extending graft survival. PMID:23317713

  15. Widespread presence of "bacterial-like" PPP phosphatases in eukaryotes

    PubMed Central

    Andreeva, Alexandra V; Kutuzov, Mikhail A

    2004-01-01

    Background In eukaryotes, PPP (protein phosphatase P) family is one of the two known protein phosphatase families specific for Ser and Thr. The role of PPP phosphatases in multiple signaling pathways in eukaryotic cell has been extensively studied. Unlike eukaryotic PPP phosphatases, bacterial members of the family have broad substrate specificity or may even be Tyr-specific. Moreover, one group of bacterial PPPs are diadenosine tetraphosphatases, indicating that bacterial PPP phosphatases may not necessarily function as protein phosphatases. Results We describe the presence in eukaryotes of three groups of expressed genes encoding "non-conventional" phosphatases of the PPP family. These enzymes are more closely related to bacterial PPP phosphatases than to the known eukaryotic members of the family. One group, found exclusively in land plants, is most closely related to PPP phosphatases from some α-Proteobacteria, including Rhizobiales, Rhodobacterales and Rhodospirillaceae. This group is therefore termed Rhizobiales / Rhodobacterales / Rhodospirillaceae-like phosphatases, or Rhilphs. Phosphatases of the other group are found in Viridiplantae, Rhodophyta, Trypanosomatidae, Plasmodium and some fungi. They are structurally related to phosphatases from psychrophilic bacteria Shewanella and Colwellia, and are termed Shewanella-like phosphatases, or Shelphs. Phosphatases of the third group are distantly related to ApaH, bacterial diadenosine tetraphosphatases, and are termed ApaH-like phosphatases, or Alphs. Patchy distribution of Alphs in animals, plants, fungi, diatoms and kinetoplasts suggests that these phosphatases were present in the common ancestor of eukaryotes but were independently lost in many lineages. Rhilphs, Shelphs and Alphs form PPP clades, as divergent from "conventional" eukaryotic PPP phosphatases as they are from each other and from major bacterial clades. In addition, comparison of primary structures revealed a previously unrecognised (I

  16. Identification of a permissible HLA mismatch in hematopoietic stem cell transplantation

    PubMed Central

    Fernandez-Viña, Marcelo A.; Wang, Tao; Lee, Stephanie J.; Haagenson, Michael; Aljurf, Mahmoud; Askar, Medhat; Battiwalla, Minoo; Baxter-Lowe, Lee-Ann; Gajewski, James; Jakubowski, Ann A.; Marino, Susana; Oudshoorn, Machteld; Marsh, Steven G. E.; Petersdorf, Effie W.; Schultz, Kirk; Turner, E. Victoria; Waller, Edmund K.; Woolfrey, Ann; Umejiego, John; Spellman, Stephen R.; Setterholm, Michelle

    2014-01-01

    In subjects mismatched in the HLA alleles C*03:03/C*03:04 no allogeneic cytotoxic T-lymphocyte responses are detected in vitro. Hematopoietic stem cell transplantation (HSCT) with unrelated donors (UDs) showed no association between the HLA-C allele mismatches (CAMMs) and adverse outcomes; antigen mismatches at this and mismatches other HLA loci are deleterious. The absence of effect of the CAMM may have resulted from the predominance of the mismatch C*03:03/C*03:04. Patients with hematologic malignancies receiving UD HSCT matched in 8/8 and 7/8 HLA alleles were examined. Transplants mismatched in HLA-C antigens or mismatched in HLA-A, -B, or -DRB1 presented significant differences (P < .0001) in mortality (hazard ratio [HR] = 1.37, 1.30), disease-free survival (HR = 1.33, 1.27), treatment-related mortality (HR = 1.54, 1.54), and grade 3-4 acute graft-versus-host disease (HR = 1.49, 1.77) compared with the 8/8 group; transplants mismatched in other CAMMs had similar outcomes with HR ranging from 1.34 to 172 for these endpoints. The C*03:03/C*03:04 mismatched and the 8/8 matched groups had identical outcomes (HR ranging from 0.96-1.05). The previous finding that CAMMs do not associate with adverse outcomes is explained by the predominance (69%) of the mismatch C*03:03/03:04 in this group that is better tolerated than other HLA mismatches. PMID:24408320

  17. Single-base-pair discrimination of terminal mismatches by using oligonucleotide microarrays and neural network analyses

    NASA Technical Reports Server (NTRS)

    Urakawa, Hidetoshi; Noble, Peter A.; El Fantroussi, Said; Kelly, John J.; Stahl, David A.

    2002-01-01

    The effects of single-base-pair near-terminal and terminal mismatches on the dissociation temperature (T(d)) and signal intensity of short DNA duplexes were determined by using oligonucleotide microarrays and neural network (NN) analyses. Two perfect-match probes and 29 probes having a single-base-pair mismatch at positions 1 to 5 from the 5' terminus of the probe were designed to target one of two short sequences representing 16S rRNA. Nonequilibrium dissociation rates (i.e., melting profiles) of all probe-target duplexes were determined simultaneously. Analysis of variance revealed that position of the mismatch, type of mismatch, and formamide concentration significantly affected the T(d) and signal intensity. Increasing the concentration of formamide in the washing buffer decreased the T(d) and signal intensity, and it decreased the variability of the signal. Although T(d)s of probe-target duplexes with mismatches in the first or second position were not significantly different from one another, duplexes with mismatches in the third to fifth positions had significantly lower T(d)s than those with mismatches in the first or second position. The trained NNs predicted the T(d) with high accuracies (R(2) = 0.93). However, the NNs predicted the signal intensity only moderately accurately (R(2) = 0.67), presumably due to increased noise in the signal intensity at low formamide concentrations. Sensitivity analysis revealed that the concentration of formamide explained most (75%) of the variability in T(d)s, followed by position of the mismatch (19%) and type of mismatch (6%). The results suggest that position of the mismatch at or near the 5' terminus plays a greater role in determining the T(d) and signal intensity of duplexes than the type of mismatch.

  18. Evolutionary Advantage Conferred by an Eukaryote-to-Eukaryote Gene Transfer Event in Wine Yeasts

    PubMed Central

    Marsit, Souhir; Mena, Adriana; Bigey, Frédéric; Sauvage, François-Xavier; Couloux, Arnaud; Guy, Julie; Legras, Jean-Luc; Barrio, Eladio; Dequin, Sylvie; Galeote, Virginie

    2015-01-01

    Although an increasing number of horizontal gene transfers have been reported in eukaryotes, experimental evidence for their adaptive value is lacking. Here, we report the recent transfer of a 158-kb genomic region between Torulaspora microellipsoides and Saccharomyces cerevisiae wine yeasts or closely related strains. This genomic region has undergone several rearrangements in S. cerevisiae strains, including gene loss and gene conversion between two tandemly duplicated FOT genes encoding oligopeptide transporters. We show that FOT genes confer a strong competitive advantage during grape must fermentation by increasing the number and diversity of oligopeptides that yeast can utilize as a source of nitrogen, thereby improving biomass formation, fermentation efficiency, and cell viability. Thus, the acquisition of FOT genes has favored yeast adaptation to the nitrogen-limited wine fermentation environment. This finding indicates that anthropic environments offer substantial ecological opportunity for evolutionary diversification through gene exchange between distant yeast species. PMID:25750179

  19. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes

    PubMed Central

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F.

    2015-01-01

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners—the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)—and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic—and plant and algal—lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller’s ratchet—the origin of eukaryotic recombination, or sex—might have required surprisingly little evolutionary innovation. PMID:25733873

  20. Investigation of Inconsistent ENDF/B-VII.1 Independent and Cumulative Fission Product Yields with Proposed Revisions

    SciTech Connect

    Pigni, M.T. Francis, M.W.; Gauld, I.C.

    2015-01-15

    A recent implementation of ENDF/B-VII.1 independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear schemes in the decay sub-library that are not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that do not agree with the cumulative fission yields in the library as well as with experimental measurements. To address these issues, a comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron-induced fission for {sup 235,238}U and {sup 239,241}Pu in order to provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to compare the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. Another important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library for stable and long-lived fission products. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.

  1. Isolation of TRPV1 independent mechanisms of spontaneous and asynchronous glutamate release at primary afferent to NTS synapses

    PubMed Central

    Fenwick, Axel J.; Wu, Shaw-wen; Peters, James H.

    2014-01-01

    Cranial visceral afferents contained within the solitary tract (ST) contact second-order neurons in the nucleus of the solitary tract (NTS) and release the excitatory amino acid glutamate via three distinct exocytosis pathways; synchronous, asynchronous, and spontaneous release. The presence of TRPV1 in the central terminals of a majority of ST afferents conveys activity-dependent asynchronous glutamate release and provides a temperature sensitive calcium conductance which largely determines the rate of spontaneous vesicle fusion. TRPV1 is present in unmyelinated C-fiber afferents and these facilitated forms of glutamate release may underlie the relative strength of C-fibers in activating autonomic reflex pathways. However, pharmacological blockade of TRPV1 signaling eliminates only ~50% of the asynchronous profile and attenuates the temperature sensitivity of spontaneous release indicating additional thermosensitive calcium influx pathways may exist which mediate these forms of vesicle release. In the present study we isolate the contribution of TRPV1 independent forms of glutamate release at ST-NTS synapses. We found ST afferent innervation at NTS neurons and synchronous vesicle release from TRPV1 KO mice was not different to control animals; however, only half of TRPV1 KO ST afferents completely lacked asynchronous glutamate release. Further, temperature driven spontaneous rates of vesicle release were not different from 33 to 37°C between control and TRPV1 KO afferents. These findings suggest additional temperature dependent mechanisms controlling asynchronous and thermosensitive spontaneous release at physiological temperatures, possibly mediated by additional thermosensitive TRP channels in primary afferent terminals. PMID:24550768

  2. Detection of base pair mismatches in duplex DNA and RNA oligonucleotides using electrospray mass spectrometry

    NASA Astrophysics Data System (ADS)

    Griffey, Richard H.; Greig, Michael J.

    1997-05-01

    The identify and location of base pair mismatches in non- covalent DNA:RNA duplexes are established using MS and MS-MS on a quadruple ion trap with electrospray ionization (ESI). MS-MS experiments on a 14mer duplex (D) with a single C:A base pair mismatch using lower activation energy results in selective cleavage of the mismatched A nucleobase, even in the presence of the wild-type duplex. The location of the mismatch base pair can be discerned via presence of the wild-type duplex. The location of the mismatch base pair can be discerned via selection of the (D-5H)5- ion and fragmentation of the backbone at that location in a n additional MS-MS experiment. Selective fragmentation is observed for C in a C-C mismatched base pair, which is very difficult to detect using chemical cleavage or E. coli mismatch binding protein. In an RNA:DNA duplex with a single base pair mismatch, the DNA base is removed without fragmentation of the RNA strand, greatly simplifying the interpretation of the resulting MS spectrum. A method is presented for detecting two DNA strands, for example a point mutation which generates an oncogenic phenotype, and the wild-type message. The results suggest that ESI-MS-MS may provide a rapid and selective method to identify and locate genetic mutations without the need for chemical degradation or protein binding followed by gel electrophoresis.

  3. Educational Mismatch between Graduates' Possessed Skills and Market Demands in Pakistan

    ERIC Educational Resources Information Center

    Uzair-ul-Hassan, Muhammad; Noreen, Zahida

    2013-01-01

    Educational mismatch in skills that graduates possess and market requires creates barriers for organizations as well as for job seekers. The study was conducted to find out the educational mismatch between graduates possessed skills and market demands. Convenient sampling was carried out and data were collected from 200 graduates of economics…

  4. Novel DNA mismatch repair activity involving YB-1 in human mitochondria

    PubMed Central

    de Souza-Pinto, Nadja C.; Mason, Penelope A.; Hashiguchi, Kazunari; Weissman, Lior; Tian, Jingyan; Guay, David; Lebel, Michel; Stevnsner, Tinna V.; Rasmussen, Lene Juel; Bohr, Vilhelm A.

    2009-01-01

    Maintenance of the mitochondrial genome (mtDNA) is essential for proper cellular function. The accumulation of damage and mutations in the mtDNA leads to diseases, cancer, and aging. Mammalian mitochondria have proficient base excision repair, but the existence of other DNA repair pathways is still unclear. Deficiencies in DNA mismatch repair (MMR), which corrects base mismatches and small loops, are associated with DNA microsatellite instability, accumulation of mutations, and cancer. MMR proteins have been identified in yeast and coral mitochondria; however, MMR proteins and function have not yet been detected in human mitochondria. Here we show that human mitochondria have a robust mismatch-repair activity, which is distinct from nuclear MMR. Key nuclear MMR factors were not detected in mitochondria, and similar mismatch-binding activity was observed in mitochondrial extracts from cells lacking MSH2, suggesting distinctive pathways for nuclear and mitochondrial MMR. We identified the repair factor YB-1 as a key candidate for a mitochondrial mismatch-binding protein. This protein localizes to mitochondria in human cells, and contributes significantly to the mismatch-binding and mismatch-repair activity detected in HeLa mitochondrial extracts, which are significantly decreased when the intracellular levels of YB-1 are diminished. Moreover, YB-1 depletion in cells increases mitochondrial DNA mutagenesis. Our results show that human mitochondria contain a functional MMR repair pathway in which YB-1 participates, likely in the mismatch binding and recognition steps. PMID:19272840

  5. Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange.

    PubMed

    Borgogno, María V; Monti, Mariela R; Zhao, Weixing; Sung, Patrick; Argaraña, Carlos E; Pezza, Roberto J

    2016-03-01

    Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3' end of the initiating DNA strand have a small effect, whereas most mismatches near the 5' end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity.

  6. Fast Kids, Slow Kids, Lazy Kids: Framing the Mismatch Problem in Mathematics Teachers' Conversations

    ERIC Educational Resources Information Center

    Horn, Ilana Seidel

    2007-01-01

    This article examines the social nature of teachers' conceptions by showing how teachers frame the "mismatch" of students' perceived abilities and the intended school curriculum through conversational category systems. This study compares the conversations of 2 groups of high school mathematics teachers addressing the Mismatch Problem when…

  7. Mock communities highlight the diversity of host-associated eukaryotes.

    PubMed

    Wegener Parfrey, Laura

    2015-09-01

    Host-associated microbes are ubiquitous. Every multicellular eukaryote, and even many unicellular eukaryotes (protists), hosts a diverse community of microbes. High-throughput sequencing (HTS) tools have illuminated the vast diversity of host-associated microbes and shown that they have widespread influence on host biology, ecology and evolution (McFall-Ngai et al. ). Bacteria receive most of the attention, but protists are also important components of microbial communities associated with humans (Parfrey et al. ) and other hosts. As HTS tools are increasingly used to study eukaryotes, the presence of numerous and diverse host-associated eukaryotes is emerging as a common theme across ecosystems. Indeed, HTS studies demonstrate that host-associated lineages account for between 2 and 12% of overall eukaryotic sequences detected in soil, marine and freshwater data sets, with much higher relative abundances observed in some samples (Ramirez et al. ; Simon et al. ; de Vargas et al. ). Previous studies in soil detected large numbers of predominantly parasitic lineages such as Apicomplexa, but did not delve into their origin [e.g. (Ramirez et al. )]. In this issue of Molecular Ecology, Geisen et al. () use mock communities to show that many of the eukaryotic organisms detected by environmental sequencing in soils are potentially associated with animal hosts rather than free-living. By isolating the host-associated fraction of soil microbial communities, Geisen and colleagues help explain the surprisingly high diversity of parasitic eukaryotic lineages often detected in soil/terrestrial studies using high-throughput sequencing (HTS) and reinforce the ubiquity of these host-associated microbes. It is clear that we can no longer assume that organisms detected in bulk environmental sequencing are free-living, but instead need to design studies that specifically enumerate the diversity and function of host-associated eukaryotes. Doing so will allow the field to

  8. Mock communities highlight the diversity of host-associated eukaryotes.

    PubMed

    Wegener Parfrey, Laura

    2015-09-01

    Host-associated microbes are ubiquitous. Every multicellular eukaryote, and even many unicellular eukaryotes (protists), hosts a diverse community of microbes. High-throughput sequencing (HTS) tools have illuminated the vast diversity of host-associated microbes and shown that they have widespread influence on host biology, ecology and evolution (McFall-Ngai et al. ). Bacteria receive most of the attention, but protists are also important components of microbial communities associated with humans (Parfrey et al. ) and other hosts. As HTS tools are increasingly used to study eukaryotes, the presence of numerous and diverse host-associated eukaryotes is emerging as a common theme across ecosystems. Indeed, HTS studies demonstrate that host-associated lineages account for between 2 and 12% of overall eukaryotic sequences detected in soil, marine and freshwater data sets, with much higher relative abundances observed in some samples (Ramirez et al. ; Simon et al. ; de Vargas et al. ). Previous studies in soil detected large numbers of predominantly parasitic lineages such as Apicomplexa, but did not delve into their origin [e.g. (Ramirez et al. )]. In this issue of Molecular Ecology, Geisen et al. () use mock communities to show that many of the eukaryotic organisms detected by environmental sequencing in soils are potentially associated with animal hosts rather than free-living. By isolating the host-associated fraction of soil microbial communities, Geisen and colleagues help explain the surprisingly high diversity of parasitic eukaryotic lineages often detected in soil/terrestrial studies using high-throughput sequencing (HTS) and reinforce the ubiquity of these host-associated microbes. It is clear that we can no longer assume that organisms detected in bulk environmental sequencing are free-living, but instead need to design studies that specifically enumerate the diversity and function of host-associated eukaryotes. Doing so will allow the field to

  9. Electrochemical Investigation of Interaction between a Bifunctional Probe and GG Mismatch Duplex.

    PubMed

    Li, Jiao; He, Hanping; Peng, Xiaoqian; Huang, Min; Zhang, Xiuhua; Wang, Shengfu

    2015-01-01

    A bifunctional probe (FecNC), containing a recognition part and an electrochemical active center, was applied to electrochemical detection of GG mismatch duplexes. The preparation of gold electrodes modified by mismatch and complementatry duplexes was characterized by electrochemical impedance spectroscopy (EIS) and optimized for better detection in terms of self-assembly time, hybridization time, and incubation time. The interaction between FecNC and DNA duplexes modified on the surface of a gold electrode was explored by square wave voltammetry (SWV) and EIS. The results showed that the DNA duplexes with GG mismatch on the surface of a gold electrode was easily detected by the largest electrochemical signal of the bifunctional probe because of its selective binding to GG mismatches. The bifunctional probe could offer a simple, effective electrochemical detection of GG mismatches, and theoretical bases for development of electrochemical biosensors. Further, the method would be favorable for diagnosis of genetic diseases. PMID:26165289

  10. Electrochemical Investigation of Interaction between a Bifunctional Probe and GG Mismatch Duplex.

    PubMed

    Li, Jiao; He, Hanping; Peng, Xiaoqian; Huang, Min; Zhang, Xiuhua; Wang, Shengfu

    2015-01-01

    A bifunctional probe (FecNC), containing a recognition part and an electrochemical active center, was applied to electrochemical detection of GG mismatch duplexes. The preparation of gold electrodes modified by mismatch and complementatry duplexes was characterized by electrochemical impedance spectroscopy (EIS) and optimized for better detection in terms of self-assembly time, hybridization time, and incubation time. The interaction between FecNC and DNA duplexes modified on the surface of a gold electrode was explored by square wave voltammetry (SWV) and EIS. The results showed that the DNA duplexes with GG mismatch on the surface of a gold electrode was easily detected by the largest electrochemical signal of the bifunctional probe because of its selective binding to GG mismatches. The bifunctional probe could offer a simple, effective electrochemical detection of GG mismatches, and theoretical bases for development of electrochemical biosensors. Further, the method would be favorable for diagnosis of genetic diseases.

  11. Bifunctional rhodium intercalator conjugates as mismatch-directing DNA alkylating agents.

    PubMed

    Schatzschneider, Ulrich; Barton, Jacqueline K

    2004-07-21

    A conjugate of a DNA mismatch-specific rhodium intercalator, containing the bulky chrysenediimine ligand, and an aniline mustard has been prepared, and targeting of mismatches in DNA by this conjugate has been examined. The preferential alkylation of mismatched over fully matched DNA is found by a mobility shift assay at concentrations where untethered organic mustards show little reaction. The binding site of the Rh intercalator was determined by DNA photocleavage, and the position of covalent modification was established on the basis of the enhanced depurination associated with N-alkylation. The site-selective alkylation at mismatched DNA renders these conjugates useful tools for the covalent tagging of DNA base pair mismatches and new chemotherapeutic design.

  12. Evolution of early eukaryotic cells: genomes, proteomes, and compartments.

    PubMed

    Bogorad, Lawrence

    2008-01-01

    Eukaryotes arose from an endosymbiotic association of an alpha-proteobacterium-like organism (the ancestor of mitochondria) with a host cell (lacking mitochondria or plastids). Plants arose by the addition of a cyanobacterium-like endosymbiont (the ancestor of plastids) to the two-member association. Each member of the association brought a unique internal environment and a unique genome. Analyses of recently acquired genomic sequences with newly developed algorithms have revealed (a) that the number of endosymbiont genes that remain in eukaryotic cells-principally in the nucleus-is surprisingly large, (b) that protein products of a large number of genes (or their descendents) that entered the association in the genome of the host are now directed to an organelle derived from an endosymbiont, and (c) that protein products of genes traceable to endosymbiont genomes are directed to the nucleo-cytoplasmic compartment. Consideration of these remarkable findings has led to the present suggestion that contemporary eukaryotic cells evolved through continual chance relocation and testing of genes as well as combinations of gene products and biochemical processes in each unique cell compartment derived from a member of the eukaryotic association. Most of these events occurred during about 300 million years, or so, before contemporary forms of eukaryotic cells appear in the fossil record; they continue today. PMID:17912611

  13. The Sec translocon mediated protein transport in prokaryotes and eukaryotes.

    PubMed

    Denks, Kärt; Vogt, Andreas; Sachelaru, Ilie; Petriman, Narcis-Adrian; Kudva, Renuka; Koch, Hans-Georg

    2014-01-01

    Protein transport via the Sec translocon represents an evolutionary conserved mechanism for delivering cytosolically-synthesized proteins to extra-cytosolic compartments. The Sec translocon has a three-subunit core, termed Sec61 in Eukaryotes and SecYEG in Bacteria. It is located in the endoplasmic reticulum of Eukaryotes and in the cytoplasmic membrane of Bacteria where it constitutes a channel that can be activated by multiple partner proteins. These partner proteins determine the mechanism of polypeptide movement across the channel. During SRP-dependent co-translational targeting, the ribosome threads the nascent protein directly into the Sec channel. This pathway is in Bacteria mainly dedicated for membrane proteins but in Eukaryotes also employed by secretory proteins. The alternative pathway, leading to post-translational translocation across the Sec translocon engages an ATP-dependent pushing mechanism by the motor protein SecA in Bacteria and a ratcheting mechanism by the lumenal chaperone BiP in Eukaryotes. Protein transport and biogenesis is also assisted by additional proteins at the lateral gate of SecY/Sec61α and in the lumen of the endoplasmic reticulum or in the periplasm of bacterial cells. The modular assembly enables the Sec complex to transport a vast array of substrates. In this review we summarize recent biochemical and structural information on the prokaryotic and eukaryotic Sec translocons and we describe the remarkably complex interaction network of the Sec complexes.

  14. Nitrate Storage and Dissimilatory Nitrate Reduction by Eukaryotic Microbes.

    PubMed

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils; Stief, Peter

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described. A first compilation of intracellular nitrate inventories in various marine sediments is presented, indicating that intracellular nitrate pools vastly exceed porewater nitrate pools. The relative contribution by foraminifers to total sedimentary denitrification is estimated for different marine settings, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations. PMID:26734001

  15. Evolutionary Ancestry of Eukaryotic Protein Kinases and Choline Kinases.

    PubMed

    Lai, Shenshen; Safaei, Javad; Pelech, Steven

    2016-03-01

    The reversible phosphorylation of proteins catalyzed by protein kinases in eukaryotes supports an important role for eukaryotic protein kinases (ePKs) in the emergence of nucleated cells in the third superkingdom of life. Choline kinases (ChKs) could also be critical in the early evolution of eukaryotes, because of their function in the biosynthesis of phosphatidylcholine, which is unique to eukaryotic membranes. However, the genomic origins of ePKs and ChKs are unclear. The high degeneracy of protein sequences and broad expansion of ePK families have made this fundamental question difficult to answer. In this study, we identified two class-I aminoacyl-tRNA synthetases with high similarities to consensus amino acid sequences of human protein-serine/threonine kinases. Comparisons of primary and tertiary structures supported that ePKs and ChKs evolved from a common ancestor related to glutaminyl aminoacyl-tRNA synthetases, which may have been one of the key factors in the successful of emergence of ancient eukaryotic cells from bacterial colonies.

  16. Archaeal "dark matter" and the origin of eukaryotes.

    PubMed

    Williams, Tom A; Embley, T Martin

    2014-03-01

    Current hypotheses about the history of cellular life are mainly based on analyses of cultivated organisms, but these represent only a small fraction of extant biodiversity. The sequencing of new environmental lineages therefore provides an opportunity to test, revise, or reject existing ideas about the tree of life and the origin of eukaryotes. According to the textbook three domains hypothesis, the eukaryotes emerge as the sister group to a monophyletic Archaea. However, recent analyses incorporating better phylogenetic models and an improved sampling of the archaeal domain have generally supported the competing eocyte hypothesis, in which core genes of eukaryotic cells originated from within the Archaea, with important implications for eukaryogenesis. Given this trend, it was surprising that a recent analysis incorporating new genomes from uncultivated Archaea recovered a strongly supported three domains tree. Here, we show that this result was due in part to the use of a poorly fitting phylogenetic model and also to the inclusion by an automated pipeline of genes of putative bacterial origin rather than nucleocytosolic versions for some of the eukaryotes analyzed. When these issues were resolved, analyses including the new archaeal lineages placed core eukaryotic genes within the Archaea. These results are consistent with a number of recent studies in which improved archaeal sampling and better phylogenetic models agree in supporting the eocyte tree over the three domains hypothesis.

  17. Censusing marine eukaryotic diversity in the twenty-first century.

    PubMed

    Leray, Matthieu; Knowlton, Nancy

    2016-09-01

    The ocean constitutes one of the vastest and richest biomes on our planet. Most recent estimations, all based on indirect approaches, suggest that there are millions of marine eukaryotic species. Moreover, a large majority of these are small (less than 1 mm), cryptic and still unknown to science. However, this knowledge gap, caused by the lack of diagnostic morphological features in small organisms and the limited sampling of the global ocean, is currently being filled, thanks to new DNA-based approaches. The molecular technique of PCR amplification of homologous gene regions combined with high-throughput sequencing, routinely used to census unculturable prokaryotes, is now also being used to characterize whole communities of marine eukaryotes. Here, we review how this methodological advancement has helped to better quantify the magnitude and patterns of marine eukaryotic diversity, with an emphasis on taxonomic groups previously largely overlooked. We then discuss obstacles remaining to achieve a global understanding of marine eukaryotic diversity. In particular, we argue that 18S variable regions do not provide sufficient taxonomic resolution to census marine life, and suggest combining broad eukaryotic surveys targeting the 18S rRNA region with more taxon-focused analyses of hypervariable regions to improve our understanding of the diversity of species, the functional units of marine ecosystems.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481783

  18. Censusing marine eukaryotic diversity in the twenty-first century.

    PubMed

    Leray, Matthieu; Knowlton, Nancy

    2016-09-01

    The ocean constitutes one of the vastest and richest biomes on our planet. Most recent estimations, all based on indirect approaches, suggest that there are millions of marine eukaryotic species. Moreover, a large majority of these are small (less than 1 mm), cryptic and still unknown to science. However, this knowledge gap, caused by the lack of diagnostic morphological features in small organisms and the limited sampling of the global ocean, is currently being filled, thanks to new DNA-based approaches. The molecular technique of PCR amplification of homologous gene regions combined with high-throughput sequencing, routinely used to census unculturable prokaryotes, is now also being used to characterize whole communities of marine eukaryotes. Here, we review how this methodological advancement has helped to better quantify the magnitude and patterns of marine eukaryotic diversity, with an emphasis on taxonomic groups previously largely overlooked. We then discuss obstacles remaining to achieve a global understanding of marine eukaryotic diversity. In particular, we argue that 18S variable regions do not provide sufficient taxonomic resolution to census marine life, and suggest combining broad eukaryotic surveys targeting the 18S rRNA region with more taxon-focused analyses of hypervariable regions to improve our understanding of the diversity of species, the functional units of marine ecosystems.This article is part of the themed issue 'From DNA barcodes to biomes'.

  19. A search for extraterrestrial eukaryotes: physical and paleontological aspects.

    PubMed

    Chela-Flores, J

    1998-10-01

    Physical and biochemical aspects of a proposed search for extraterrestrial eukaryotes (SETE) are considered. Such a program should approach the distinction between a primitive eukaryote and an archaebacteria. The emphasis on gene silencing suggests a possible assay suitable for a robotic investigation of eukaryoticity, so as to be able to decide whether the first steps towards eukaryogenesis have been taken in an extraterrestrial planet, or satellite. The experiment would consist of searching for cellular division and the systematic related delay in replication of heterochromatic chromosome segments. It should be noticed that the direct search for a membrane-bounded set of chromosomes does not necessarily determine eukaryotic identity, as there are prokaryotes that have membrane-bounded nucleoids. A closer look at the protein fraction of chromatin (mainly histones) does not help either, as there are some eukaryotes that may lack histones; there are also some bacteria as well as archaebacteria with histone-like proteins in their nucleoids. Comments on the recent suggestion of possible environments for a SETE program are discussed: the deep crust of Mars, and the Jovian satellite Europa, provided the existence of an ocean under its ice-covered surface is confirmed by the current Galileo mission. PMID:9742730

  20. A search for extraterrestrial eukaryotes: physical and paleontological aspects.

    PubMed

    Chela-Flores, J

    1998-10-01

    Physical and biochemical aspects of a proposed search for extraterrestrial eukaryotes (SETE) are considered. Such a program should approach the distinction between a primitive eukaryote and an archaebacteria. The emphasis on gene silencing suggests a possible assay suitable for a robotic investigation of eukaryoticity, so as to be able to decide whether the first steps towards eukaryogenesis have been taken in an extraterrestrial planet, or satellite. The experiment would consist of searching for cellular division and the systematic related delay in replication of heterochromatic chromosome segments. It should be noticed that the direct search for a membrane-bounded set of chromosomes does not necessarily determine eukaryotic identity, as there are prokaryotes that have membrane-bounded nucleoids. A closer look at the protein fraction of chromatin (mainly histones) does not help either, as there are some eukaryotes that may lack histones; there are also some bacteria as well as archaebacteria with histone-like proteins in their nucleoids. Comments on the recent suggestion of possible environments for a SETE program are discussed: the deep crust of Mars, and the Jovian satellite Europa, provided the existence of an ocean under its ice-covered surface is confirmed by the current Galileo mission.

  1. Nitrate Storage and Dissimilatory Nitrate Reduction by Eukaryotic Microbes.

    PubMed

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils; Stief, Peter

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described. A first compilation of intracellular nitrate inventories in various marine sediments is presented, indicating that intracellular nitrate pools vastly exceed porewater nitrate pools. The relative contribution by foraminifers to total sedimentary denitrification is estimated for different marine settings, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations.

  2. Nitrate Storage and Dissimilatory Nitrate Reduction by Eukaryotic Microbes

    PubMed Central

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils; Stief, Peter

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described. A first compilation of intracellular nitrate inventories in various marine sediments is presented, indicating that intracellular nitrate pools vastly exceed porewater nitrate pools. The relative contribution by foraminifers to total sedimentary denitrification is estimated for different marine settings, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations. PMID:26734001

  3. An ancestral bacterial division system is widespread in eukaryotic mitochondria.

    PubMed

    Leger, Michelle M; Petrů, Markéta; Žárský, Vojtěch; Eme, Laura; Vlček, Čestmír; Harding, Tommy; Lang, B Franz; Eliáš, Marek; Doležal, Pavel; Roger, Andrew J

    2015-08-18

    Bacterial division initiates at the site of a contractile Z-ring composed of polymerized FtsZ. The location of the Z-ring in the cell is controlled by a system of three mutually antagonistic proteins, MinC, MinD, and MinE. Plastid division is also known to be dependent on homologs of these proteins, derived from the ancestral cyanobacterial endosymbiont that gave rise to plastids. In contrast, the mitochondria of model systems such as Saccharomyces cerevisiae, mammals, and Arabidopsis thaliana seem to have replaced the ancestral α-proteobacterial Min-based division machinery with host-derived dynamin-related proteins that form outer contractile rings. Here, we show that the mitochondrial division system of these model organisms is the exception, rather than the rule, for eukaryotes. We describe endosymbiont-derived, bacterial-like division systems comprising FtsZ and Min proteins in diverse less-studied eukaryote protistan lineages, including jakobid and heterolobosean excavates, a malawimonad, stramenopiles, amoebozoans, a breviate, and an apusomonad. For two of these taxa, the amoebozoan Dictyostelium purpureum and the jakobid Andalucia incarcerata, we confirm a mitochondrial localization of these proteins by their heterologous expression in Saccharomyces cerevisiae. The discovery of a proteobacterial-like division system in mitochondria of diverse eukaryotic lineages suggests that it was the ancestral feature of all eukaryotic mitochondria and has been supplanted by a host-derived system multiple times in distinct eukaryote lineages.

  4. Censusing marine eukaryotic diversity in the twenty-first century

    PubMed Central

    Knowlton, Nancy

    2016-01-01

    The ocean constitutes one of the vastest and richest biomes on our planet. Most recent estimations, all based on indirect approaches, suggest that there are millions of marine eukaryotic species. Moreover, a large majority of these are small (less than 1 mm), cryptic and still unknown to science. However, this knowledge gap, caused by the lack of diagnostic morphological features in small organisms and the limited sampling of the global ocean, is currently being filled, thanks to new DNA-based approaches. The molecular technique of PCR amplification of homologous gene regions combined with high-throughput sequencing, routinely used to census unculturable prokaryotes, is now also being used to characterize whole communities of marine eukaryotes. Here, we review how this methodological advancement has helped to better quantify the magnitude and patterns of marine eukaryotic diversity, with an emphasis on taxonomic groups previously largely overlooked. We then discuss obstacles remaining to achieve a global understanding of marine eukaryotic diversity. In particular, we argue that 18S variable regions do not provide sufficient taxonomic resolution to census marine life, and suggest combining broad eukaryotic surveys targeting the 18S rRNA region with more taxon-focused analyses of hypervariable regions to improve our understanding of the diversity of species, the functional units of marine ecosystems. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481783

  5. Kinome profiling using peptide arrays in eukaryotic cells.

    PubMed

    Parikh, Kaushal; Peppelenbosch, Maikel P; Ritsema, Tita

    2009-01-01

    Over the last 10 years array and mass spectrometry technologies have enabled the determination of the transcriptome and proteome of biological and in particular eukaryotic systems. This information will likely be of significant value to our elucidation of the molecular mechanisms that govern eukaryotic physiology. However, an equally, if not more important goal, is to define those proteins that participate in signalling pathways that ultimately control cell fate. Enzymes that phosphorylate tyrosine, serine, and threonine residues on other proteins play a major role in signalling cascades that determine cell-cycle entry, and survival and differentiation fate in the tissues across the eukaryotic kingdoms. Knowing which signalling pathways are being used in these cells is of critical importance. Traditional genetic and biochemical approaches can certainly provide answers here, but for technical and practical reasons there is typically pursued one gene or pathway at a time. Thus, a more comprehensive approach is needed in order to reveal signalling pathways active in nucleated cells. Towards this end, kinome analysis techniques using peptide arrays have begun to be applied with substantial success in a variety of organisms from all major branches of eukaryotic life, generating descriptions of cellular signalling without a priori assumptions as to possibly effected pathways. The general procedure and analysis methods are very similar disregarding whether the primary source of the material is animal, plant, or fungal of nature and will be described in this chapter. These studies will help us better understand what signalling pathways are critical to controlling eukaryotic cell function.

  6. A single eubacterial origin of eukaryotic pyruvate: ferredoxin oxidoreductase genes: implications for the evolution of anaerobic eukaryotes.

    PubMed

    Horner, D S; Hirt, R P; Embley, T M

    1999-09-01

    The iron sulfur protein pyruvate: ferredoxin oxidoreductase (PFO) is central to energy metabolism in amitochondriate eukaryotes, including those with hydrogenosomes. Thus, revealing the evolutionary history of PFO is critical to understanding the origin(s) of eukaryote anaerobic energy metabolism. We determined a complete PFO sequence for Spironucleus barkhanus, a large fragment of a PFO sequence from Clostridium pasteurianum, and a fragment of a new PFO from Giardia lamblia. Phylogenetic analyses of eubacterial and eukaryotic PFO genes suggest a complex history for PFO, including possible gene duplications and horizontal transfers among eubacteria. Our analyses favor a common origin for eukaryotic cytosolic and hydrogenosomal PFOs from a single eubacterial source, rather than from separate horizontal transfers as previously suggested. However, with the present sampling of genes and species, we were unable to infer a specific eubacterial sister group for eukaryotic PFO. Thus, we find no direct support for the published hypothesis that the donor of eukaryote PFO was the common alpha-proteobacterial ancestor of mitochondria and hydrogenosomes. We also report that several fungi and protists encode proteins with PFO domains that are likely monophyletic with PFOs from anaerobic protists. In Saccharomyces cerevisiae, PFO domains combine with fragments of other redox proteins to form fusion proteins which participate in methionine biosynthesis. Our results are consistent with the view that PFO, an enzyme previously considered to be specific to energy metabolism in amitochondriate protists, was present in the common ancestor of contemporary eukaryotes and was retained, wholly or in part, during the evolution of oxygen-dependent and mitochondrion-bearing lineages.

  7. Sequence evidence for common ancestry of eukaryotic endomembrane coatomers.

    PubMed

    Promponas, Vasilis J; Katsani, Katerina R; Blencowe, Benjamin J; Ouzounis, Christos A

    2016-03-02

    Eukaryotic cells are defined by compartments through which the trafficking of macromolecules is mediated by large complexes, such as the nuclear pore, transport vesicles and intraflagellar transport. The assembly and maintenance of these complexes is facilitated by endomembrane coatomers, long suspected to be divergently related on the basis of structural and more recently phylogenomic analysis. By performing supervised walks in sequence space across coatomer superfamilies, we uncover subtle sequence patterns that have remained elusive to date, ultimately unifying eukaryotic coatomers by divergent evolution. The conserved residues shared by 3,502 endomembrane coatomer components are mapped onto the solenoid superhelix of nucleoporin and COPII protein structures, thus determining the invariant elements of coatomer architecture. This ancient structural motif can be considered as a universal signature connecting eukaryotic coatomers involved in multiple cellular processes across cell physiology and human disease.

  8. Sequence evidence for common ancestry of eukaryotic endomembrane coatomers.

    PubMed

    Promponas, Vasilis J; Katsani, Katerina R; Blencowe, Benjamin J; Ouzounis, Christos A

    2016-01-01

    Eukaryotic cells are defined by compartments through which the trafficking of macromolecules is mediated by large complexes, such as the nuclear pore, transport vesicles and intraflagellar transport. The assembly and maintenance of these complexes is facilitated by endomembrane coatomers, long suspected to be divergently related on the basis of structural and more recently phylogenomic analysis. By performing supervised walks in sequence space across coatomer superfamilies, we uncover subtle sequence patterns that have remained elusive to date, ultimately unifying eukaryotic coatomers by divergent evolution. The conserved residues shared by 3,502 endomembrane coatomer components are mapped onto the solenoid superhelix of nucleoporin and COPII protein structures, thus determining the invariant elements of coatomer architecture. This ancient structural motif can be considered as a universal signature connecting eukaryotic coatomers involved in multiple cellular processes across cell physiology and human disease. PMID:26931514

  9. Unraveling Adaptation in Eukaryotic Pathways: Lessons from Protocells

    PubMed Central

    De Palo, Giovanna; Endres, Robert G.

    2013-01-01

    Eukaryotic adaptation pathways operate within wide-ranging environmental conditions without stimulus saturation. Despite numerous differences in the adaptation mechanisms employed by bacteria and eukaryotes, all require energy consumption. Here, we present two minimal models showing that expenditure of energy by the cell is not essential for adaptation. Both models share important features with large eukaryotic cells: they employ small diffusible molecules and involve receptor subunits resembling highly conserved G-protein cascades. Analyzing the drawbacks of these models helps us understand the benefits of energy consumption, in terms of adjustability of response and adaptation times as well as separation of cell-external sensing and cell-internal signaling. Our work thus sheds new light on the evolution of adaptation mechanisms in complex systems. PMID:24204235

  10. Diversity and reductive evolution of mitochondria among microbial eukaryotes

    PubMed Central

    Hjort, Karin; Goldberg, Alina V.; Tsaousis, Anastasios D.; Hirt, Robert P.; Embley, T. Martin

    2010-01-01

    All extant eukaryotes are now considered to possess mitochondria in one form or another. Many parasites or anaerobic protists have highly reduced versions of mitochondria, which have generally lost their genome and the capacity to generate ATP through oxidative phosphorylation. These organelles have been called hydrogenosomes, when they make hydrogen, or remnant mitochondria or mitosomes when their functions were cryptic. More recently, organelles with features blurring the distinction between mitochondria, hydrogenosomes and mitosomes have been identified. These organelles have retained a mitochondrial genome and include the mitochondrial-like organelle of Blastocystis and the hydrogenosome of the anaerobic ciliate Nyctotherus. Studying eukaryotic diversity from the perspective of their mitochondrial variants has yielded important insights into eukaryote molecular cell biology and evolution. These investigations are contributing to understanding the essential functions of mitochondria, defined in the broadest sense, and the limits to which reductive evolution can proceed while maintaining a viable organelle. PMID:20124340

  11. Sequence evidence for common ancestry of eukaryotic endomembrane coatomers

    PubMed Central

    Promponas, Vasilis J.; Katsani, Katerina R.; Blencowe, Benjamin J.; Ouzounis, Christos A.

    2016-01-01

    Eukaryotic cells are defined by compartments through which the trafficking of macromolecules is mediated by large complexes, such as the nuclear pore, transport vesicles and intraflagellar transport. The assembly and maintenance of these complexes is facilitated by endomembrane coatomers, long suspected to be divergently related on the basis of structural and more recently phylogenomic analysis. By performing supervised walks in sequence space across coatomer superfamilies, we uncover subtle sequence patterns that have remained elusive to date, ultimately unifying eukaryotic coatomers by divergent evolution. The conserved residues shared by 3,502 endomembrane coatomer components are mapped onto the solenoid superhelix of nucleoporin and COPII protein structures, thus determining the invariant elements of coatomer architecture. This ancient structural motif can be considered as a universal signature connecting eukaryotic coatomers involved in multiple cellular processes across cell physiology and human disease. PMID:26931514

  12. Diversity and reductive evolution of mitochondria among microbial eukaryotes.

    PubMed

    Hjort, Karin; Goldberg, Alina V; Tsaousis, Anastasios D; Hirt, Robert P; Embley, T Martin

    2010-03-12

    All extant eukaryotes are now considered to possess mitochondria in one form or another. Many parasites or anaerobic protists have highly reduced versions of mitochondria, which have generally lost their genome and the capacity to generate ATP through oxidative phosphorylation. These organelles have been called hydrogenosomes, when they make hydrogen, or remnant mitochondria or mitosomes when their functions were cryptic. More recently, organelles with features blurring the distinction between mitochondria, hydrogenosomes and mitosomes have been identified. These organelles have retained a mitochondrial genome and include the mitochondrial-like organelle of Blastocystis and the hydrogenosome of the anaerobic ciliate Nyctotherus. Studying eukaryotic diversity from the perspective of their mitochondrial variants has yielded important insights into eukaryote molecular cell biology and evolution. These investigations are contributing to understanding the essential functions of mitochondria, defined in the broadest sense, and the limits to which reductive evolution can proceed while maintaining a viable organelle.

  13. Aggregative multicellularity evolved independently in the eukaryotic supergroup Rhizaria.

    PubMed

    Brown, Matthew W; Kolisko, Martin; Silberman, Jeffrey D; Roger, Andrew J

    2012-06-19

    Multicellular forms of life have evolved many times, independently giving rise to a diversity of organisms such as animals, plants, and fungi that together comprise the visible biosphere. Yet multicellular life is far more widespread among eukaryotes than just these three lineages. A particularly common form of multicellularity is a social aggregative fruiting lifestyle whereby individual cells associate to form a "fungus-like" sorocarp. This complex developmental process that requires the interaction of thousands of cells working in concert was made famous by the "cellular slime mold"Dictyostelium discoideum, which became an important model organism. Although sorocarpic protistan lineages have been identified in five of the major eukaryote groups, the ubiquitous and globally distributed species Guttulinopsis vulgaris has eluded proper classification. Here we demonstrate, by phylogenomic analyses of a 159-protein data set, that G. vulgaris is a member of Rhizaria and is thus the first member of this eukaryote supergroup known to be capable of aggregative multicellularity. PMID:22608512

  14. New symbiotic hypothesis on the origin of eukaryotic flagella

    NASA Astrophysics Data System (ADS)

    Li, Jing Yan; Wu, Chuan Fen

    2005-07-01

    The origin of eukaryotic flagella has long been a mystery. Here we review the possibility that flagella sprouted evolutionarily from the eukaryotic cell proper seems very unlikely because it is hard to imagine what function and benefit in natural selection the flagella would have provided to the cells when they first emerged as simple buds. Lynn Margulis’ 1970 spirochete hypothesis, though popular still, has never been confirmed. Moreover, the absence of tubulin and axonemal dynein in the spirochetes and the incapability of the bacterial and eukaryotic membranes’ making a continuum now suggest that the hypothesis is outdated. Tubulin genes were recently identified in a new bacteria division, verrucomicrobia, and microtubules have also been found in one of these species, epixenosomes, the defensive ectosymbionts. On the basis of these data, we propose a new symbiotic hypothesis: that the mid-ancestor of eukaryotic cells obtained epixenosomelike verrucomicrobia as defensive ectosymbionts and the ectosymbionts later became endosymbiotic. They still, however, protruded from the surface of their host to play their role. Later, many genes were lost or incorporated into the host genome. Finally, the genome, the bacterial membrane, and the endosymbiotic vesicle membrane were totally lost, and fingerlike protrusions with microtubules formed. As the cells grew larger, the defensive function of the protrusions eventually weakened and then vanished. Some of the protrusions took on a new role in cell movement, which led them to evolve into flagella. The key step in this process was that the dynein obtained from the host evolved into axonemal dyneins, attaching onto the microtubules and forming motile axonemes. Our hypothesis is unproven, but it offers a possible explanation that is consistent with current scientific thought. We hope that our ideas will stimulate additional studies on the origin of eukaryotic flagella and on investigations of verrucomicrobia. Whether such

  15. New symbiotic hypothesis on the origin of eukaryotic flagella.

    PubMed

    Li, Jing Yan; Wu, Chuan Fen

    2005-07-01

    The origin of eukaryotic flagella has long been a mystery. Here we review the possibility that flagella sprouted evolutionarily from the eukaryotic cell proper seems very unlikely because it is hard to imagine what function and benefit in natural selection the flagella would have provided to the cells when they first emerged as simple buds. Lynn Margulis' 1970 spirochete hypothesis, though popular still, has never been confirmed. Moreover, the absence of tubulin and axonemal dynein in the spirochetes and the incapability of the bacterial and eukaryotic membranes' making a continuum now suggest that the hypothesis is outdated. Tubulin genes were recently identified in a new bacteria division, verrucomicrobia, and microtubules have also been found in one of these species, epixenosomes, the defensive ectosymbionts. On the basis of these data, we propose a new symbiotic hypothesis: that the mid-ancestor of eukaryotic cells obtained epixenosomelike verrucomicrobia as defensive ectosymbionts and the ectosymbionts later became endosymbiotic. They still, however, protruded from the surface of their host to play their role. Later, many genes were lost or incorporated into the host genome. Finally, the genome, the bacterial membrane, and the endosymbiotic vesicle membrane were totally lost, and fingerlike protrusions with microtubules formed. As the cells grew larger, the defensive function of the protrusions eventually weakened and then vanished. Some of the protrusions took on a new role in cell movement, which led them to evolve into flagella. The key step in this process was that the dynein obtained from the host evolved into axonemal dyneins, attaching onto the microtubules and forming motile axonemes. Our hypothesis is unproven, but it offers a possible explanation that is consistent with current scientific thought. We hope that our ideas will stimulate additional studies on the origin of eukaryotic flagella and on investigations of verrucomicrobia. Whether such

  16. PECAS: prokaryotic and eukaryotic classical analysis of secretome.

    PubMed

    Cortazar, Ana R; Oguiza, José A; Aransay, Ana M; Lavín, José L

    2015-12-01

    Full sets of proteins that are transported to the extracellular space, called secretomes, have been studied for a variety of organisms to understand their potential role in crucial metabolic pathways and complex health conditions. However, there is a lack of tools for integrative classical analysis of secretomes that consider all the data sources available nowadays. Thus, PECAS (Prokaryotic and Eukaryotic Classical Analysis of Secretome) has been developed to provide a well-established prediction pipeline on secreted proteins for prokaryote and eukaryote species. PMID:26233761

  17. Eukaryotic ribosomes that lack a 5.8S RNA

    NASA Technical Reports Server (NTRS)

    Vossbrinck, C. R.; Woese, C. R.

    1986-01-01

    The 5.8S ribosomal RNA is believed to be a universal eukaryotic characteristic. It has no (size) counterpart among the prokaryotes, although its sequence is homologous with the first 150 or so nucleotides of the prokaryotic large subunit (23S) ribosomal RNA. An exception to this rule is reported here. The microsporidian Vairimorpha necatrix is a eukaryote that has no 5.8S rRNA. As in the prokaryotes, it has a single large subunit rRNA, whose 5-prime region corresponds to the 5.8S rRNA.

  18. The early evolution of eukaryotes - A geological perspective

    NASA Technical Reports Server (NTRS)

    Knoll, Andrew H.

    1992-01-01

    This paper examines the goodness of fit between patterns of biological and environmental history implied by molecular phylogenies of eukaryotic organisms and the geological records of early eukaryote evolution. It was found that Precambrian geological records show evidence that episodic increases in biological diversity roughly coincided with episodic environmental changes and by sharp increases in atmospheric oxygen concentrations which significantly changed the earth surface environments. Although the goodness of fit among physical and biological changes is gratifyingly high, the records of these changes do not always coincide in time. The additional information in these fields that is needed for complete integration of geological and phylogenic records is suggested.

  19. Genetics of eukaryotic RNA polymerases I, II, and III.

    PubMed Central

    Archambault, J; Friesen, J D

    1993-01-01

    The transcription of nucleus-encoded genes in eukaryotes is performed by three distinct RNA polymerases termed I, II, and III, each of which is a complex enzyme composed of more than 10 subunits. The isolation of genes encoding subunits of eukaryotic RNA polymerases from a wide spectrum of organisms has confirmed previous biochemical and immunological data indicating that all three enzymes are closely related in structures that have been conserved in evolution. Each RNA polymerase is an enzyme complex composed of two large subunits that are homologous to the two largest subunits of prokaryotic RNA polymerases and are associated with smaller polypeptides, some of which are common to two or to all three eukaryotic enzymes. This remarkable conservation of structure most probably underlies a conservation of function and emphasizes the likelihood that information gained from the study of RNA polymerases from one organism will be applicable to others. The recent isolation of many mutations affecting the structure and/or function of eukaryotic and prokaryotic RNA polymerases now makes it feasible to begin integrating genetic and biochemical information from various species in order to develop a picture of these enzymes. The picture of eukaryotic RNA polymerases depicted in this article emphasizes the role(s) of different polypeptide regions in interaction with other subunits, cofactors, substrates, inhibitors, or accessory transcription factors, as well as the requirement for these interactions in transcription initiation, elongation, pausing, termination, and/or enzyme assembly. Most mutations described here have been isolated in eukaryotic organisms that have well-developed experimental genetic systems as well as amenable biochemistry, such as Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans. When relevant, mutations affecting regions of Escherichia coli RNA polymerase that are conserved among eukaryotes and prokaryotes are also presented

  20. DNA N6-Methyladenine: a new epigenetic mark in eukaryotes?

    PubMed Central

    Luo, Guan-Zheng; Blanco, Mario Andres; Greer, Eric Lieberman; He, Chuan; Shi, Yang

    2016-01-01

    DNA N6-adenine methylation (6mA) in prokaryotes functions primarily in the host defense system. The prevalence and significance of this modification in eukaryotes has been unclear until recently. Here we discuss recent publications documenting the presence of 6mA in Chlamydomonas reinhardtii, Drosophila melanogaster and Caenorhabditis elegans, consider possible roles for this DNA modification in regulating transcription, transposable elements and trans-generational epigenetic inheritance, and propose 6mA as a new epigenetic mark in eukaryotes. PMID:26507168

  1. Helitrons on a roll: eukaryotic rolling-circle transposons.

    PubMed

    Kapitonov, Vladimir V; Jurka, Jerzy

    2007-10-01

    Rolling-circle eukaryotic transposons, known as Helitron transposons, were first discovered in plants (Arabidopsis thaliana and Oryza sativa) and in the nematode Caenorhabditis elegans. To date, Helitrons have been identified in a diverse range of species, from protists to mammals. They represent a major class of eukaryotic transposons and are fundamentally different from classical transposons in terms of their structure and mechanism of transposition. Helitrons seem to have a major role in the evolution of host genomes. They frequently capture diverse host genes, some of which can evolve into novel host genes or become essential for helitron transposition.

  2. Silence of the strands: RNA interference in eukaryotic pathogens.

    PubMed

    Cottrell, Tricia R; Doering, Tamara L

    2003-01-01

    Double-stranded (ds) RNA interference (RNAi) is a recent technological advance that enables researchers to reduce gene expression at the post-transcriptional level. This form of RNA silencing is initiated by dsRNA, expressed in or introduced into a cell of interest, which triggers homology-dependent degradation of the corresponding mRNA. This versatile technique has remarkable promise as a tool for the study of eukaryotic pathogens. Protozoan parasites and pathogenic fungi often resist manipulation using standard molecular genetic approaches. Researchers studying these organisms need flexible molecular tools, particularly to exploit newly sequenced genomes; this review offers a practical guide to establishing RNAi in pathogenic eukaryotes.

  3. Anterior insula coordinates hierarchical processing of tactile mismatch responses.

    PubMed

    Allen, Micah; Fardo, Francesca; Dietz, Martin J; Hillebrandt, Hauke; Friston, Karl J; Rees, Geraint; Roepstorff, Andreas

    2016-02-15

    The body underlies our sense of self, emotion, and agency. Signals arising from the skin convey warmth, social touch, and the physical characteristics of external stimuli. Surprising or unexpected tactile sensations can herald events of motivational salience, including imminent threats (e.g., an insect bite) and hedonic rewards (e.g., a caressing touch). Awareness of such events is thought to depend upon the hierarchical integration of body-related mismatch responses by the anterior insula. To investigate this possibility, we measured brain activity using functional magnetic resonance imaging, while healthy participants performed a roving tactile oddball task. Mass-univariate analysis demonstrated robust activations in limbic, somatosensory, and prefrontal cortical areas previously implicated in tactile deviancy, body awareness, and cognitive control. Dynamic Causal Modelling revealed that unexpected stimuli increased the strength of forward connections along a caudal to rostral hierarchy-projecting from thalamic and somatosensory regions towards insula, cingulate and prefrontal cortices. Within this ascending flow of sensory information, the AIC was the only region to show increased backwards connectivity to the somatosensory cortex, augmenting a reciprocal exchange of neuronal signals. Further, participants who rated stimulus changes as easier to detect showed stronger modulation of descending PFC to AIC connections by deviance. These results suggest that the AIC coordinates hierarchical processing of tactile prediction error. They are interpreted in support of an embodied predictive coding model where AIC mediated body awareness is involved in anchoring a global neuronal workspace. PMID:26584870

  4. Anterior insula coordinates hierarchical processing of tactile mismatch responses.

    PubMed

    Allen, Micah; Fardo, Francesca; Dietz, Martin J; Hillebrandt, Hauke; Friston, Karl J; Rees, Geraint; Roepstorff, Andreas

    2016-02-15

    The body underlies our sense of self, emotion, and agency. Signals arising from the skin convey warmth, social touch, and the physical characteristics of external stimuli. Surprising or unexpected tactile sensations can herald events of motivational salience, including imminent threats (e.g., an insect bite) and hedonic rewards (e.g., a caressing touch). Awareness of such events is thought to depend upon the hierarchical integration of body-related mismatch responses by the anterior insula. To investigate this possibility, we measured brain activity using functional magnetic resonance imaging, while healthy participants performed a roving tactile oddball task. Mass-univariate analysis demonstrated robust activations in limbic, somatosensory, and prefrontal cortical areas previously implicated in tactile deviancy, body awareness, and cognitive control. Dynamic Causal Modelling revealed that unexpected stimuli increased the strength of forward connections along a caudal to rostral hierarchy-projecting from thalamic and somatosensory regions towards insula, cingulate and prefrontal cortices. Within this ascending flow of sensory information, the AIC was the only region to show increased backwards connectivity to the somatosensory cortex, augmenting a reciprocal exchange of neuronal signals. Further, participants who rated stimulus changes as easier to detect showed stronger modulation of descending PFC to AIC connections by deviance. These results suggest that the AIC coordinates hierarchical processing of tactile prediction error. They are interpreted in support of an embodied predictive coding model where AIC mediated body awareness is involved in anchoring a global neuronal workspace.

  5. Deficient mismatch repair: Read all about it (Review).

    PubMed

    Richman, Susan

    2015-10-01

    Defects in the DNA mismatch repair (MMR) proteins, result in a phenotype called microsatellite instability (MSI), occurring in up to 15% of sporadic colorectal cancers. Approximately one quarter of colon cancers with deficient MMR (dMMR) develop as a result of an inherited predisposition syndrome, Lynch syndrome (formerly known as HNPCC). It is essential to identify patients who potentially have Lynch syndrome, as not only they, but also family members, may require screening and monitoring. Diagnostic criteria have been developed, based primarily on Western populations, and several methodologies are available to identify dMMR tumours, including immunohistochemistry and microsatellite testing. These criteria have provided evidence supporting the introduction of reflex testing. Yet, it is becoming increasingly clear that tests have a limited sensitivity and specificity and may yet be superseded by next generation sequencing. In this review, the limitations of diagnostic criteria are discussed, and current and emerging screening technologies explained. There is now useful evidence supporting the prognostic and predictive value of dMMR status in colorectal tumours, but much less is known about their value in extracolonic tumours, that may also feature in Lynch syndrome. This review assesses current literature relating to dMMR in endometrial, ovarian, gastric and melanoma cancers, which it would seem, may benefit from large-scale clinical trials in order to further close the gap in knowledge between colorectal and extracolonic tumours. PMID:26315971

  6. Rubberband Effect in Temporal Control of Mismatch Negativity.

    PubMed

    Wang, Lingyan; Lin, Xiaoxiong; Zhou, Bin; Pöppel, Ernst; Bao, Yan

    2016-01-01

    Mismatch negativity (MMN) is a difference event-related potential (ERP) wave reflecting the brain's automatic reaction to deviant sensory stimuli, and it has been proven to be a useful tool in research on cognitive functions or clinical disorders. In most MMN studies, amplitude, peak latency, or the integral of the responses, in rare cases also the slopes of the responses, have been employed as parameters of the ERP responses for quantitative analyses. However, little is known about correlations between these parameters. To better understand the relations between different ERP parameters, we extracted and correlated several different parameters characterizing the MMN waves. We found an unexpected correlation which gives new insight into the temporal control of MMN: response amplitudes are positively correlated with downside slopes, whereas barely correlated with upside slopes. This result suggests an efficient feedback mechanism for the MMN to return to the baseline within a predefined time window, contradicting an exponential decay function as one might expect. As a metaphor we suggest a rubberband effect for the MMN responses, i.e., the larger the distance of the response from neural equilibrium, the stronger the return force to equilibrium. PMID:27642285

  7. A frontal attention mechanism in the visual mismatch negativity.

    PubMed

    Hedge, Craig; Stothart, George; Todd Jones, Jenna; Rojas Frías, Priscila; Magee, Kristopher Lundy; Brooks, Jonathan C W

    2015-10-15

    Automatic detection of environmental change is a core component of attention. The mismatch negativity (MMN), an electrophysiological marker of this mechanism, has been studied prominently in the auditory domain, with cortical generators identified in temporal and frontal regions. Here, we combined electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to assess whether the underlying frontal regions associated with auditory change detection also play a role in visual change detection. Twenty healthy young adults completed a visual MMN task in separate EEG and fMRI sessions. Region of interest analyses were conducted on left and right middle frontal (MFG) and inferior frontal (IFG) gyri, i.e., the frontal areas identified as potential auditory MMN generators. A significant increase in activation was observed in the left IFG and MFG in response to blocks containing deviant stimuli. These findings suggest that a frontal mechanism is involved in the detection of change in the visual MMN. Our results support the notion that frontal mechanisms underlie attention switching, as measured via MMN, across multiple modalities. PMID:26183650

  8. Rubberband Effect in Temporal Control of Mismatch Negativity

    PubMed Central

    Wang, Lingyan; Lin, Xiaoxiong; Zhou, Bin; Pöppel, Ernst; Bao, Yan

    2016-01-01

    Mismatch negativity (MMN) is a difference event-related potential (ERP) wave reflecting the brain’s automatic reaction to deviant sensory stimuli, and it has been proven to be a useful tool in research on cognitive functions or clinical disorders. In most MMN studies, amplitude, peak latency, or the integral of the responses, in rare cases also the slopes of the responses, have been employed as parameters of the ERP responses for quantitative analyses. However, little is known about correlations between these parameters. To better understand the relations between different ERP parameters, we extracted and correlated several different parameters characterizing the MMN waves. We found an unexpected correlation which gives new insight into the temporal control of MMN: response amplitudes are positively correlated with downside slopes, whereas barely correlated with upside slopes. This result suggests an efficient feedback mechanism for the MMN to return to the baseline within a predefined time window, contradicting an exponential decay function as one might expect. As a metaphor we suggest a rubberband effect for the MMN responses, i.e., the larger the distance of the response from neural equilibrium, the stronger the return force to equilibrium.

  9. Deficient mismatch repair: Read all about it (Review)

    PubMed Central

    RICHMAN, SUSAN

    2015-01-01

    Defects in the DNA mismatch repair (MMR) proteins, result in a phenotype called microsatellite instability (MSI), occurring in up to 15% of sporadic colorectal cancers. Approximately one quarter of colon cancers with deficient MMR (dMMR) develop as a result of an inherited predisposition syndrome, Lynch syndrome (formerly known as HNPCC). It is essential to identify patients who potentially have Lynch syndrome, as not only they, but also family members, may require screening and monitoring. Diagnostic criteria have been developed, based primarily on Western populations, and several methodologies are available to identify dMMR tumours, including immunohistochemistry and microsatellite testing. These criteria have provided evidence supporting the introduction of reflex testing. Yet, it is becoming increasingly clear that tests have a limited sensitivity and specificity and may yet be superseded by next generation sequencing. In this review, the limitations of diagnostic criteria are discussed, and current and emerging screening technologies explained. There is now useful evidence supporting the prognostic and predictive value of dMMR status in colorectal tumours, but much less is known about their value in extracolonic tumours, that may also feature in Lynch syndrome. This review assesses current literature relating to dMMR in endometrial, ovarian, gastric and melanoma cancers, which it would seem, may benefit from large-scale clinical trials in order to further close the gap in knowledge between colorectal and extracolonic tumours. PMID:26315971

  10. A frontal attention mechanism in the visual mismatch negativity

    PubMed Central

    Hedge, Craig; Stothart, George; Todd Jones, Jenna; Rojas Frías, Priscila; Magee, Kristopher Lundy; Brooks, Jonathan C.W.

    2015-01-01

    Automatic detection of environmental change is a core component of attention. The mismatch negativity (MMN), an electrophysiological marker of this mechanism, has been studied prominently in the auditory domain, with cortical generators identified in temporal and frontal regions. Here, we combined electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to assess whether the underlying frontal regions associated with auditory change detection also play a role in visual change detection. Twenty healthy young adults completed a visual MMN task in separate EEG and fMRI sessions. Region of interest analyses were conducted on left and right middle frontal (MFG) and inferior frontal (IFG) gyri, i.e., the frontal areas identified as potential auditory MMN generators. A significant increase in activation was observed in the left IFG and MFG in response to blocks containing deviant stimuli. These findings suggest that a frontal mechanism is involved in the detection of change in the visual MMN. Our results support the notion that frontal mechanisms underlie attention switching, as measured via MMN, across multiple modalities. PMID:26183650

  11. Rubberband Effect in Temporal Control of Mismatch Negativity

    PubMed Central

    Wang, Lingyan; Lin, Xiaoxiong; Zhou, Bin; Pöppel, Ernst; Bao, Yan

    2016-01-01

    Mismatch negativity (MMN) is a difference event-related potential (ERP) wave reflecting the brain’s automatic reaction to deviant sensory stimuli, and it has been proven to be a useful tool in research on cognitive functions or clinical disorders. In most MMN studies, amplitude, peak latency, or the integral of the responses, in rare cases also the slopes of the responses, have been employed as parameters of the ERP responses for quantitative analyses. However, little is known about correlations between these parameters. To better understand the relations between different ERP parameters, we extracted and correlated several different parameters characterizing the MMN waves. We found an unexpected correlation which gives new insight into the temporal control of MMN: response amplitudes are positively correlated with downside slopes, whereas barely correlated with upside slopes. This result suggests an efficient feedback mechanism for the MMN to return to the baseline within a predefined time window, contradicting an exponential decay function as one might expect. As a metaphor we suggest a rubberband effect for the MMN responses, i.e., the larger the distance of the response from neural equilibrium, the stronger the return force to equilibrium. PMID:27642285

  12. Anterior insula coordinates hierarchical processing of tactile mismatch responses

    PubMed Central

    Allen, Micah; Fardo, Francesca; Dietz, Martin J.; Hillebrandt, Hauke; Friston, Karl J.; Rees, Geraint; Roepstorff, Andreas

    2016-01-01

    The body underlies our sense of self, emotion, and agency. Signals arising from the skin convey warmth, social touch, and the physical characteristics of external stimuli. Surprising or unexpected tactile sensations can herald events of motivational salience, including imminent threats (e.g., an insect bite) and hedonic rewards (e.g., a caressing touch). Awareness of such events is thought to depend upon the hierarchical integration of body-related mismatch responses by the anterior insula. To investigate this possibility, we measured brain activity using functional magnetic resonance imaging, while healthy participants performed a roving tactile oddball task. Mass-univariate analysis demonstrated robust activations in limbic, somatosensory, and prefrontal cortical areas previously implicated in tactile deviancy, body awareness, and cognitive control. Dynamic Causal Modelling revealed that unexpected stimuli increased the strength of forward connections along a caudal to rostral hierarchy—projecting from thalamic and somatosensory regions towards insula, cingulate and prefrontal cortices. Within this ascending flow of sensory information, the AIC was the only region to show increased backwards connectivity to the somatosensory cortex, augmenting a reciprocal exchange of neuronal signals. Further, participants who rated stimulus changes as easier to detect showed stronger modulation of descending PFC to AIC connections by deviance. These results suggest that the AIC coordinates hierarchical processing of tactile prediction error. They are interpreted in support of an embodied predictive coding model where AIC mediated body awareness is involved in anchoring a global neuronal workspace. PMID:26584870

  13. Snowshoe hares display limited phenotypic plasticity to mismatch in seasonal camouflage

    USGS Publications Warehouse

    Zimova, Marketa; Mills, L. Scott; Lukacs, Paul M.; Mitchell, Michael S.

    2014-01-01

    As duration of snow cover decreases owing to climate change, species undergoing seasonal colour moults can become colour mismatched with their background. The immediate adaptive solution to this mismatch is phenotypic plasticity, either in phenology of seasonal colour moults or in behaviours that reduce mismatch or its consequences. We observed nearly 200 snowshoe hares across a wide range of snow conditions and two study sites in Montana, USA, and found minimal plasticity in response to mismatch between coat colour and background. We found that moult phenology varied between study sites, likely due to differences in photoperiod and climate, but was largely fixed within study sites with only minimal plasticity to snow conditions during the spring white-to-brown moult. We also found no evidence that hares modify their behaviour in response to colour mismatch. Hiding and fleeing behaviours and resting spot preference of hares were more affected by variables related to season, site and concealment by vegetation, than by colour mismatch. We conclude that plasticity in moult phenology and behaviours in snowshoe hares is insufficient for adaptation to camouflage mismatch, suggesting that any future adaptation to climate change will require natural selection on moult phenology or behaviour.

  14. When some is not every: dissociating scalar implicature generation and mismatch.

    PubMed

    Shetreet, Einat; Chierchia, Gennaro; Gaab, Nadine

    2014-04-01

    Making inferences beyond the literal meaning of sentences occurs with certain scalar expressions via scalar implicatures. For example, adults usually interpret some as some but not all. On the basis of behavioral research, it has been suggested that processing implicatures is cognitively costly. However, many studies have used cases where sentences with some did not match the context in which they were presented. Our study aimed to examine whether the processing cost is linked to implicature generation, to the mismatch between the implicature and the context, or to both processes. To do so, we explored the neural patterns of implicature generation and implicature mismatch using fMRI. Thirteen participants performed a sentence-picture matching task (where pictures determined the context) with mismatched implicatures, successful implicatures or no implicature conditions. Several brain regions were identified when comparing cases of implicature mismatch and cases without implicatures. One of these regions, left-IFG, was jointly activated for mismatched and successful implicatures, as observed in a conjunction analysis. By contrast, left-MFG and medial-frontal-gyrus, were identified when comparing cases of implicature mismatch with cases of successful implicatures. Thus, the left IFG can be interpreted as being linked to implicature generation, whereas the other two areas seem to participate in the processing of the mismatch between the implicature and its context. Our results indicate that scalar implicatures induce processing cost in different ways. This should be considered in future research.

  15. Snowshoe hares display limited phenotypic plasticity to mismatch in seasonal camouflage

    PubMed Central

    Zimova, Marketa; Mills, L. Scott; Lukacs, Paul M.; Mitchell, Michael S.

    2014-01-01

    As duration of snow cover decreases owing to climate change, species undergoing seasonal colour moults can become colour mismatched with their background. The immediate adaptive solution to this mismatch is phenotypic plasticity, either in phenology of seasonal colour moults or in behaviours that reduce mismatch or its consequences. We observed nearly 200 snowshoe hares across a wide range of snow conditions and two study sites in Montana, USA, and found minimal plasticity in response to mismatch between coat colour and background. We found that moult phenology varied between study sites, likely due to differences in photoperiod and climate, but was largely fixed within study sites with only minimal plasticity to snow conditions during the spring white-to-brown moult. We also found no evidence that hares modify their behaviour in response to colour mismatch. Hiding and fleeing behaviours and resting spot preference of hares were more affected by variables related to season, site and concealment by vegetation, than by colour mismatch. We conclude that plasticity in moult phenology and behaviours in snowshoe hares is insufficient for adaptation to camouflage mismatch, suggesting that any future adaptation to climate change will require natural selection on moult phenology or behaviour. PMID:24619446

  16. Social, Spatial, and Skill Mismatch among Immigrants and Native-Born Workers in Los Angeles. Working Paper.

    ERIC Educational Resources Information Center

    Pastor, Manuel, Jr.; Marcelli, Enrico A.

    Racially different economic outcomes stem from multiple causes, including various "mismatches" between minority employees and available jobs. A skill mismatch occurs when individuals' education and job skills do not qualify them for existing jobs. A spatial mismatch means that people live far from the work for which they qualify. A social mismatch…

  17. Influence of sequence mismatches on the specificity of recombinase polymerase amplification technology.

    PubMed

    Daher, Rana K; Stewart, Gale; Boissinot, Maurice; Boudreau, Dominique K; Bergeron, Michel G

    2015-04-01

    Recombinase polymerase amplification (RPA) technology relies on three major proteins, recombinase proteins, single-strand binding proteins, and polymerases, to specifically amplify nucleic acid sequences in an isothermal format. The performance of RPA with respect to sequence mismatches of closely-related non-target molecules is not well documented and the influence of the number and distribution of mismatches in DNA sequences on RPA amplification reaction is not well understood. We investigated the specificity of RPA by testing closely-related species bearing naturally occurring mismatches for the tuf gene sequence of Pseudomonas aeruginosa and/or Mycobacterium tuberculosis and for the cfb gene sequence of Streptococcus agalactiae. In addition, the impact of the number and distribution of mismatches on RPA efficiency was assessed by synthetically generating 14 types of mismatched forward primers for detecting five bacterial species of high diagnostic relevance such as Clostridium difficile, Staphylococcus aureus, S. agalactiae, P. aeruginosa, and M. tuberculosis as well as Bacillus atropheus subsp. globigii for which we use the spores as internal control in diagnostic assays. A total of 87 mismatched primers were tested in this study. We observed that target specific RPA primers with mismatches (n > 1) at their 3'extrimity hampered RPA reaction. In addition, 3 mismatches covering both extremities and the center of the primer sequence negatively affected RPA yield. We demonstrated that the specificity of RPA was multifactorial. Therefore its application in clinical settings must be selected and validated a priori. We recommend that the selection of a target gene must consider the presence of closely-related non-target genes. It is advisable to choose target regions with a high number of mismatches (≥36%, relative to the size of amplicon) with respect to closely-related species and the best case scenario would be by choosing a unique target gene.

  18. [Correlation between Sensory Gating P50, Mismatch Negativity, and Reaction Time].

    PubMed

    Aleksandrov, A A; Dmitrieva, E S; Stankevich, L N

    2015-01-01

    This paper is about the correlation pre-attentive processes, such as P50 sensory gating (SG P50) and mismatch negativity (MMN) with each other and with sensorimotor reaction time (RT). SG P50 data were obtained in the standard paired-click paradigm, MMN was measured in the passive odd-ball paradigm sensorimotor reaction time was studied in an active odd-ball paradigm. Was obtained positive correlation sensory gating P50 with amplitude mismatch negativity, amplitude mismatch negativity with sensorimotor reaction time, sensory gating P50 with sensorimotor reaction time.

  19. Custom-Made Quorum Sensing for a Eukaryote.

    PubMed

    May, Robin C

    2016-06-01

    Quorum-sensing systems, common in prokaryotes, enable bacteria to coordinately regulate behavior with population density. Reporting recently in Cell Host & Microbe, Homer et al. (2016) characterize an elegant eukaryotic quorum-sensing pathway in the human pathogenic fungus Cryptococcus neoformans. PMID:27270036

  20. On the expansion of ribosomal proteins and RNAs in eukaryotes.

    PubMed

    Parker, Michael S; Sah, Renu; Balasubramaniam, Ambikaipakan; Sallee, Floyd R; Park, Edwards A; Parker, Steven L

    2014-07-01

    While the ribosome constitution is similar in all biota, there is a considerable increase in size of both ribosomal proteins (RPs) and RNAs in eukaryotes as compared to archaea and bacteria. This is pronounced in the large (60S) ribosomal subunit (LSU). In addition to enlargement (apparently maximized already in lower eukarya), the RP changes include increases in fraction, segregation and clustering of basic residues, and decrease in hydrophobicity. The acidic fraction is lower in eukaryote as compared to prokaryote RPs. In all eukaryote groups tested, the LSU RPs have significantly higher content of basic residues and homobasic segments than the SSU RPs. The vertebrate LSU RPs have much higher sequestration of basic residues than those of bacteria, archaea and even of the lower eukarya. The basic clusters are highly aligned in the vertebrate, but less in the lower eukarya, and only within families in archaea and bacteria. Increase in the basicity of RPs, besides helping transport to the nucleus, should promote stability of the assembled ribosome as well as the association with translocons and other intracellular matrix proteins. The size and GC nucleotide bias of the expansion segments of large LSU rRNAs also culminate in the vertebrate, and should support ribosome association with the endoplasmic reticulum and other intracellular networks. However, the expansion and nucleotide bias of eukaryote LSU rRNAs do not clearly correlate with changes in ionic parameters of LSU ribosomal proteins.

  1. Tracking Eukaryotic Production and Burial Through Time with Zinc Isotopes

    NASA Astrophysics Data System (ADS)

    Tang, T. Y. S.; Planavsky, N.; Owens, J. D.; Love, G. D.; Lyons, T.; Peterson, L. C.; Knoll, A. H.; Dupont, C. L.; Reinhard, C.; Zumberge, A.

    2015-12-01

    Zinc is an important, often co-limiting nutrient for eukaryotes in the oceans today. Given the importance of Zn in the modern oceans, we developed a Zn isotope approach to track the extent of Zn limitation and eukaryotic production through Earth's history. Specifically, we use the isotopic systematics of the pyrite (δ66Znpyr), rock extracts (bitumen) and kerogen pyrolysate (δ66Znorg) within euxinic black shales. We show that δ66Znpyr of euxinic core-top muds from the Cariaco basin capture the global deep seawater signature, validating its use as a seawater proxy. Additionally, we propose that Δ66Znpyr-org can be used to track surface water zinc bioavailability. Detailed studies of short-lived oceanic anoxic events such as Cretaceous OAE2, which punctuate an otherwise dominantly oxic Phanerozoic world, exhibit dramatic shifts in seawater δ66Zn and organic bound zinc. Such perturbations are consistent with the demise of eukaryotes under a nitrogen stressed regime, in which cyanobacteria carry the competitive advantage. Contradictory to previous models, however, our data suggest that zinc remained largely bioavailable throughout these anoxic intervals despite significant drawdown of the global reservoir. The framework developed from studies of the modern, Cenozoic, and Mesozoic can be used to track the Precambrian evolution of the marine Zn cycle and the rise of eukaryotic algae to ecological dominance.

  2. A guide to in silico vaccine discovery for eukaryotic pathogens.

    PubMed

    Goodswen, Stephen J; Kennedy, Paul J; Ellis, John T

    2013-11-01

    In this article, a framework for an in silico pipeline is presented as a guide to high-throughput vaccine candidate discovery for eukaryotic pathogens, such as helminths and protozoa. Eukaryotic pathogens are mostly parasitic and cause some of the most damaging and difficult to treat diseases in humans and livestock. Consequently, these parasitic pathogens have a significant impact on economy and human health. The pipeline is based on the principle of reverse vaccinology and is constructed from freely available bioinformatics programs. There are several successful applications of reverse vaccinology to the discovery of subunit vaccines against prokaryotic pathogens but not yet against eukaryotic pathogens. The overriding aim of the pipeline, which focuses on eukaryotic pathogens, is to generate through computational processes of elimination and evidence gathering a ranked list of proteins based on a scoring system. These proteins are either surface components of the target pathogen or are secreted by the pathogen and are of a type known to be antigenic. No perfect predictive method is yet available; therefore, the highest-scoring proteins from the list require laboratory validation.

  3. Structure and Mechanism of a Eukaryotic FMN Adenylyltransferase

    SciTech Connect

    Huerta, Carlos; Borek, Dominika; Machius, Mischa; Grishin, Nick V.; Zhang, Hong

    2009-12-01

    Flavin mononucleotide adenylyltransferase (FMNAT) catalyzes the formation of the essential flavocoenzyme flavin adenine dinucleotide (FAD) and plays an important role in flavocoenzyme homeostasis regulation. By sequence comparison, bacterial and eukaryotic FMNAT enzymes belong to two different protein superfamilies and apparently utilize different sets of active-site residues to accomplish the same chemistry. Here we report the first structural characterization of a eukaryotic FMNAT from the pathogenic yeast Candida glabrata. Four crystal structures of C. glabrata FMNAT in different complexed forms were determined at 1.20-1.95 A resolutions, capturing the enzyme active-site states prior to and after catalysis. These structures reveal a novel flavin-binding mode and a unique enzyme-bound FAD conformation. Comparison of the bacterial and eukaryotic FMNATs provides a structural basis for understanding the convergent evolution of the same FMNAT activity from different protein ancestors. Structure-based investigation of the kinetic properties of FMNAT should offer insights into the regulatory mechanisms of FAD homeostasis by FMNAT in eukaryotic organisms.

  4. Potent, Reversible, and Specific Chemical Inhibitors of Eukaryotic Ribosome Biogenesis.

    PubMed

    Kawashima, Shigehiro A; Chen, Zhen; Aoi, Yuki; Patgiri, Anupam; Kobayashi, Yuki; Nurse, Paul; Kapoor, Tarun M

    2016-10-01

    All cellular proteins are synthesized by ribosomes, whose biogenesis in eukaryotes is a complex multi-step process completed within minutes. Several chemical inhibitors of ribosome function are available and used as tools or drugs. By contrast, we lack potent validated chemical probes to analyze the dynamics of eukaryotic ribosome assembly. Here, we combine chemical and genetic approaches to discover ribozinoindoles (or Rbins), potent and reversible triazinoindole-based inhibitors of eukaryotic ribosome biogenesis. Analyses of Rbin sensitivity and resistance conferring mutations in fission yeast, along with biochemical assays with recombinant proteins, provide evidence that Rbins' physiological target is Midasin, an essential ∼540-kDa AAA+ (ATPases associated with diverse cellular activities) protein. Using Rbins to acutely inhibit or activate Midasin function, in parallel experiments with inhibitor-sensitive or inhibitor-resistant cells, we uncover Midasin's role in assembling Nsa1 particles, nucleolar precursors of the 60S subunit. Together, our findings demonstrate that Rbins are powerful probes for eukaryotic ribosome assembly.

  5. Handling tRNA introns, archaeal way and eukaryotic way

    PubMed Central

    Yoshihisa, Tohru

    2014-01-01

    Introns are found in various tRNA genes in all the three kingdoms of life. Especially, archaeal and eukaryotic genomes are good sources of tRNA introns that are removed by proteinaceous splicing machinery. Most intron-containing tRNA genes both in archaea and eukaryotes possess an intron at a so-called canonical position, one nucleotide 3′ to their anticodon, while recent bioinformatics have revealed unusual types of tRNA introns and their derivatives especially in archaeal genomes. Gain and loss of tRNA introns during various stages of evolution are obvious both in archaea and eukaryotes from analyses of comparative genomics. The splicing of tRNA molecules has been studied extensively from biochemical and cell biological points of view, and such analyses of eukaryotic systems provided interesting findings in the past years. Here, I summarize recent progresses in the analyses of tRNA introns and the splicing process, and try to clarify new and old questions to be solved in the next stages. PMID:25071838

  6. The repatterning of eukaryotic genomes by random genetic drift.

    PubMed

    Lynch, Michael; Bobay, Louis-Marie; Catania, Francesco; Gout, Jean-François; Rho, Mina

    2011-01-01

    Recent observations on rates of mutation, recombination, and random genetic drift highlight the dramatic ways in which fundamental evolutionary processes vary across the divide between unicellular microbes and multicellular eukaryotes. Moreover, population-genetic theory suggests that the range of variation in these parameters is sufficient to explain the evolutionary diversification of many aspects of genome size and gene structure found among phylogenetic lineages. Most notably, large eukaryotic organisms that experience elevated magnitudes of random genetic drift are susceptible to the passive accumulation of mutationally hazardous DNA that would otherwise be eliminated by efficient selection. Substantial evidence also suggests that variation in the population-genetic environment influences patterns of protein evolution, with the emergence of certain kinds of amino-acid substitutions and protein-protein complexes only being possible in populations with relatively small effective sizes. These observations imply that the ultimate origins of many of the major genomic and proteomic disparities between prokaryotes and eukaryotes and among eukaryotic lineages have been molded as much by intrinsic variation in the genetic and cellular features of species as by external ecological forces.

  7. Soil metatranscriptomics for mining eukaryotic heavy metal resistance genes.

    PubMed

    Lehembre, Frédéric; Doillon, Didier; David, Elise; Perrotto, Sandrine; Baude, Jessica; Foulon, Julie; Harfouche, Lamia; Vallon, Laurent; Poulain, Julie; Da Silva, Corinne; Wincker, Patrick; Oger-Desfeux, Christine; Richaud, Pierre; Colpaert, Jan V; Chalot, Michel; Fraissinet-Tachet, Laurence; Blaudez, Damien; Marmeisse, Roland

    2013-10-01

    Heavy metals are pollutants which affect all organisms. Since a small number of eukaryotes have been investigated with respect to metal resistance, we hypothesize that many genes that control this phenomenon remain to be identified. This was tested by screening soil eukaryotic metatranscriptomes which encompass RNA from organisms belonging to the main eukaryotic phyla. Soil-extracted polyadenylated mRNAs were converted into cDNAs and 35 of them were selected for their ability to rescue the metal (Cd or Zn) sensitive phenotype of yeast mutants. Few of the genes belonged to families known to confer metal resistance when overexpressed in yeast. Several of them were homologous to genes that had not been studied in the context of metal resistance. For instance, the BOLA ones, which conferred cross metal (Zn, Co, Cd, Mn) resistance may act by interfering with Fe homeostasis. Other genes, such as those encoding 110- to 130-amino-acid-long, cysteine-rich polypeptides, had no homologues in databases. This study confirms that functional metatranscriptomics represents a powerful approach to address basic biological processes in eukaryotes. The selected genes can be used to probe new pathways involved in metal homeostasis and to manipulate the resistance level of selected organisms.

  8. Targeting UDP-Galactopyranose Mutases from Eukaryotic Human Pathogens

    PubMed Central

    Kizjakina, Karina; Tanner, John J; Sobrado, Pablo

    2013-01-01

    UDP-Galactopyranose mutase (UGM) is a unique flavin-dependent enzyme that catalyzes the conversion of UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf). The product of this reaction is the precursor to Galf, a major component of the cell wall and of cell surface glycoproteins and glycolipids in many eukaryotic and prokaryotic human pathogens. The function of UGM is important in the virulence of fungi, parasites, and bacteria. Its role in virulence and its absence in humans suggest that UGM is an ideal drug target. Significant structural and mechanistic information has been accumulated on the prokaryotic UGMs; however, in the past few years the research interest has shifted to UGMs from eukaryotic human pathogens such as fungi and protozoan parasites. It has become clear that UGMs from prokaryotic and eukaryotic organisms have different structural and mechanistic features. The amino acid sequence identity between these two classes of enzymes is low, resulting in differences in oligomeric states, substrate binding, active site flexibility, and interaction with redox partners. However, the unique role of the flavin cofactor in catalysis is conserved among this enzyme family. In this review, recent findings on eukaryotic UGMs are discussed and presented in comparison with prokaryotic UGMs. PMID:23116395

  9. Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea).

    PubMed

    Stoeck, Thorsten; Taylor, Gordon T; Epstein, Slava S

    2003-09-01

    Present knowledge of microbial diversity is decidedly incomplete (S. J. Giovannoni and M. S. Rappé, p. 47-84, in D. Kirchman, ed., Microbial Ecology of the Oceans, 2000; E. Stackebrandt and T. M. Embley, p. 57-75, in R. R. Colwell and D. J. Grimes, ed., Nonculturable Microorganisms in the Environment, 2000). Protistan phylogenies are particularly deficient and undoubtedly exclude clades of principal ecological and evolutionary importance (S. L. Baldauf, Science 300:1703-1706, 2003). The rRNA approach has been extraordinarily successful in expanding the global prokaryotic record (S. J. Giovannoni and M. S. Rappé, p. 47-84, in D. Kirchman, ed., Microbial Ecology of the Oceans, 2000; E. Stackebrandt and T. M. Embley, p. 57-75, in R. R. Colwell and D. J. Grimes, ed., Nonculturable Microorganisms in the Environment, 2000) but has rarely been used in protistan discovery. Here we report the first application of the 18S rRNA approach to a permanently anoxic environment, the Cariaco Basin off the Venezuelan coast. On the basis of rRNA sequences, we uncovered a substantial number of novel protistan lineages. These included new clades of the highest taxonomic level unrelated to any known eukaryote as well as deep branches within established protistan groups. Three novel lineages branch at the base of the eukaryotic evolutionary tree preceding, contemporary with, or immediately following the earliest eukaryotic branches. These newly discovered protists may retain traits reminiscent of an early eukaryotic ancestor(s).

  10. Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment.

    PubMed

    Edgcomb, Virginia P; Kysela, David T; Teske, Andreas; de Vera Gomez, Alvin; Sogin, Mitchell L

    2002-05-28

    Molecular microbial ecology studies have revealed remarkable prokaryotic diversity in extreme hydrothermal marine environments. There are no comparable reports of culture-independent surveys of eukaryotic life in warm, anoxic marine sediments. By using sequence comparisons of PCR-amplified small subunit ribosomal RNAs, we characterized eukaryotic diversity in hydrothermal vent environments of Guaymas Basin in the Gulf of California. Many sequences from these anoxic sediments and the overlaying seawater represent previously uncharacterized protists, including early branching eukaryotic lineages or extended diversity within described taxa. At least two mechanisms, with overlapping consequences, account for the eukaryotic community structure of this environment. The adaptation to anoxic environments is evidenced by specific affinity of environmental sequences to aerotolerant anaerobic species in molecular trees. This pattern is superimposed against a background of widely distributed aerophilic and aerotolerant protists, some of which may migrate into and survive in the sediment whereas others (e.g., phototrophs) are simply deposited by sedimentary processes. In contrast, bacterial populations in these sediments are primarily characteristic of anoxic, reduced, hydrocarbon-rich sedimentary habitats.

  11. Cosmopolitan metapopulations of free-living microbial eukaryotes.

    PubMed

    Finlay, Bland J; Fenchel, Tom

    2004-06-01

    Metapopulations of macroscopic organisms tend to be geographically restricted, but free-living protists and other microbial eukaryotes present a different picture. Here we show that most organisms smaller than 1 mm occur worldwide wherever their required habitats are realised. This is a consequence of ubiquitous dispersal driven by huge population sizes, and the consequently low probability of local extinction. Organisms larger than 10 mm are much less abundant, and rarely cosmopolitan. The supporting data, together with the discovery that the 1-10 mm size range accommodates a transition from cosmopolitan to regionally-restricted distribution, were derived from extensive inventories of eukaryotic species in a freshwater pond (1278 species), and a shallow marine bay (785 species). All accessible records were examined to establish the extent of global coverage by these species. Some groups of microbial eukaryotes are severely undersampled (e.g. naked amoebae; marine meiofauna in the southern hemisphere) but this fails to weaken evidence that metapopulations of microbial eukaryotes are cosmopolitan.

  12. Self-splicing group I introns in eukaryotic viruses.

    PubMed

    Yamada, T; Tamura, K; Aimi, T; Songsri, P

    1994-07-11

    We report the occurrence of self-splicing group I introns in viruses that infect the eukaryotic green alga Chlorella. The introns contained all the conserved features of primary sequence and secondary structure previously described for the group IB introns. The Chlorella viral introns (approximately 400 nt) self-spliced in vitro, yielding the typical group I intron splicing intermediates and products. Contrasting to eukaryotic nuclear group I introns, all of which are located in the rRNA genes, these introns were inserted in genes encoding proteins. In one case, the exons encoded a protein showing significant homology to the eukaryotic transcription factor SII (TFIIS), which may be important for viral gene expression. In another case, the gene for the open reading frame (ORF) of a 14.2 kDa polypeptide with unknown functions contained the intron. Scattered distribution of these introns among the viral species and their structural similarity to the group I introns of algae and protists indicated horizontal intron transmission. These eukaryotic viral introns offer an opportunity to understand how group I introns reach organisms of different phylogenetic kingdoms.

  13. Evolutionary position of breviate amoebae and the primary eukaryote divergence.

    PubMed

    Minge, Marianne A; Silberman, Jeffrey D; Orr, Russell J S; Cavalier-Smith, Thomas; Shalchian-Tabrizi, Kamran; Burki, Fabien; Skjaeveland, Asmund; Jakobsen, Kjetill S

    2009-02-22

    Integration of ultrastructural and molecular sequence data has revealed six supergroups of eukaryote organisms (excavates, Rhizaria, chromalveolates, Plantae, Amoebozoa and opisthokonts), and the root of the eukaryote evolutionary tree is suggested to lie between unikonts (Amoebozoa, opisthokonts) and bikonts (the other supergroups). However, some smaller lineages remain of uncertain affinity. One of these unassigned taxa is the anaerobic, free-living, amoeboid flagellate Breviata anathema, which is of key significance as it is unclear whether it is a unikont (i.e. possibly the deepest branching amoebozoan) or a bikont. To establish its evolutionary position, we sequenced thousands of Breviata genes and calculated trees using 78 protein sequences. Our trees and specific substitutions in the 18S RNA sequence indicate that Breviata is related to other Amoebozoa, thereby significantly increasing the cellular diversity of this phylum and establishing Breviata as a deep-branching unikont. We discuss the implications of these results for the ancestral state of Amoebozoa and eukaryotes generally, demonstrating that phylogenomics of phylogenetically 'nomadic' species can elucidate key questions in eukaryote evolution. Furthermore, mitochondrial genes among the Breviata ESTs demonstrate that Breviata probably contains a modified anaerobic mitochondrion. With these findings, remnants of mitochondria have been detected in all putatively deep-branching amitochondriate organisms.

  14. Protein Subcellular Relocalization Increases the Retention of Eukaryotic Duplicate Genes

    PubMed Central

    Byun, S. Ashley; Singh, Sarabdeep

    2013-01-01

    Gene duplication is widely accepted as a key evolutionary process, leading to new genes and novel protein functions. By providing the raw genetic material necessary for functional expansion, the mechanisms that involve the retention and functional diversification of duplicate genes are one of the central topics in evolutionary and comparative genomics. One proposed source of retention and functional diversification is protein subcellular relocalization (PSR). PSR postulates that changes in the subcellular location of eukaryotic duplicate proteins can positively modify function and therefore be beneficial to the organism. As such, PSR would promote retention of those relocalized duplicates and result in significantly lower death rates compared with death rates of nonrelocalized duplicate pairs. We surveyed both relocalized and nonrelocalized duplicate proteins from the available genomes and proteomes of 59 eukaryotic species and compared their relative death rates over a Ks range between 0 and 1. Using the Cox proportional hazard model, we observed that the death rates of relocalized duplicate pairs were significantly lower than the death rates of the duplicates without relocalization in most eukaryotic species examined in this study. These observations suggest that PSR significantly increases retention of duplicate genes and that it plays an important, but currently underappreciated, role in the evolution of eukaryotic genomes. PMID:24265504

  15. Cytokinesis in Prokaryotes and Eukaryotes: Common Principles and Different Solutions

    PubMed Central

    Nanninga, Nanne

    2001-01-01

    Cytokinesis requires duplication of cellular structures followed by bipolarization of the predivisional cell. As a common principle, this applies to prokaryotes as well as eukaryotes. With respect to eukaryotes, the discussion has focused mainly on Saccharomyces cerevisiae and on Schizosaccharomyces pombe. Escherichia coli and to a lesser extent Bacillus subtilis have been used as prokaryotic examples. To establish a bipolar cell, duplication of a eukaryotic origin of DNA replication as well as its genome is not sufficient. Duplication of the microtubule-organizing center is required as a prelude to mitosis, and it is here that the dynamic cytoskeleton with all its associated proteins comes to the fore. In prokaryotes, a cytoskeleton that pervades the cytoplasm appears to be absent. DNA replication and the concomitant DNA segregation seem to occur without help from extensive cytosolic supramacromolecular assemblies but with help from the elongating cellular envelope. Prokaryotic cytokinesis proceeds through a contracting ring, which has a roughly 100-fold-smaller circumference than its eukaryotic counterpart. Although the ring contains proteins that can be considered as predecessors of actin, tubulin, and microtubule-associated proteins, its macromolecular composition is essentially different. PMID:11381104

  16. Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment

    PubMed Central

    Edgcomb, Virginia P.; Kysela, David T.; Teske, Andreas; de Vera Gomez, Alvin; Sogin, Mitchell L.

    2002-01-01

    Molecular microbial ecology studies have revealed remarkable prokaryotic diversity in extreme hydrothermal marine environments. There are no comparable reports of culture-independent surveys of eukaryotic life in warm, anoxic marine sediments. By using sequence comparisons of PCR-amplified small subunit ribosomal RNAs, we characterized eukaryotic diversity in hydrothermal vent environments of Guaymas Basin in the Gulf of California. Many sequences from these anoxic sediments and the overlaying seawater represent previously uncharacterized protists, including early branching eukaryotic lineages or extended diversity within described taxa. At least two mechanisms, with overlapping consequences, account for the eukaryotic community structure of this environment. The adaptation to anoxic environments is evidenced by specific affinity of environmental sequences to aerotolerant anaerobic species in molecular trees. This pattern is superimposed against a background of widely distributed aerophilic and aerotolerant protists, some of which may migrate into and survive in the sediment whereas others (e.g., phototrophs) are simply deposited by sedimentary processes. In contrast, bacterial populations in these sediments are primarily characteristic of anoxic, reduced, hydrocarbon-rich sedimentary habitats. PMID:12032339

  17. Cosmopolitan metapopulations of free-living microbial eukaryotes.

    PubMed

    Finlay, Bland J; Fenchel, Tom

    2004-06-01

    Metapopulations of macroscopic organisms tend to be geographically restricted, but free-living protists and other microbial eukaryotes present a different picture. Here we show that most organisms smaller than 1 mm occur worldwide wherever their required habitats are realised. This is a consequence of ubiquitous dispersal driven by huge population sizes, and the consequently low probability of local extinction. Organisms larger than 10 mm are much less abundant, and rarely cosmopolitan. The supporting data, together with the discovery that the 1-10 mm size range accommodates a transition from cosmopolitan to regionally-restricted distribution, were derived from extensive inventories of eukaryotic species in a freshwater pond (1278 species), and a shallow marine bay (785 species). All accessible records were examined to establish the extent of global coverage by these species. Some groups of microbial eukaryotes are severely undersampled (e.g. naked amoebae; marine meiofauna in the southern hemisphere) but this fails to weaken evidence that metapopulations of microbial eukaryotes are cosmopolitan. PMID:15305798

  18. Uniting sex and eukaryote origins in an emerging oxygenic world

    PubMed Central

    2010-01-01

    Background Theories about eukaryote origins (eukaryogenesis) need to provide unified explanations for the emergence of diverse complex features that define this lineage. Models that propose a prokaryote-to-eukaryote transition are gridlocked between the opposing "phagocytosis first" and "mitochondria as seed" paradigms, neither of which fully explain the origins of eukaryote cell complexity. Sex (outcrossing with meiosis) is an example of an elaborate trait not yet satisfactorily addressed in theories about eukaryogenesis. The ancestral nature of meiosis and its dependence on eukaryote cell biology suggest that the emergence of sex and eukaryogenesis were simultaneous and synergic and may be explained by a common selective pressure. Presentation of the hypothesis We propose that a local rise in oxygen levels, due to cyanobacterial photosynthesis in ancient Archean microenvironments, was highly toxic to the surrounding biota. This selective pressure drove the transformation of an archaeal (archaebacterial) lineage into the first eukaryotes. Key is that oxygen might have acted in synergy with environmental stresses such as ultraviolet (UV) radiation and/or desiccation that resulted in the accumulation of reactive oxygen species (ROS). The emergence of eukaryote features such as the endomembrane system and acquisition of the mitochondrion are posited as strategies to cope with a metabolic crisis in the cell plasma membrane and the accumulation of ROS, respectively. Selective pressure for efficient repair of ROS/UV-damaged DNA drove the evolution of sex, which required cell-cell fusions, cytoskeleton-mediated chromosome movement, and emergence of the nuclear envelope. Our model implies that evolution of sex and eukaryogenesis were inseparable processes. Testing the hypothesis Several types of data can be used to test our hypothesis. These include paleontological predictions, simulation of ancient oxygenic microenvironments, and cell biological experiments with Archaea

  19. Band anticrossing effects in highly mismatched semiconductor alloys

    SciTech Connect

    Wu, Junqiao

    2002-09-09

    The first five chapters of this thesis focus on studies of band anticrossing (BAC) effects in highly electronegativity- mismatched semiconductor alloys. The concept of bandgap bowing has been used to describe the deviation of the alloy bandgap from a linear interpolation. Bowing parameters as large as 2.5 eV (for ZnSTe) and close to zero (for AlGaAs and ZnSSe) have been observed experimentally. Recent advances in thin film deposition techniques have allowed the growth of semiconductor alloys composed of significantly different constituents with ever- improving crystalline quality (e.g., GaAs{sub 1-x}N{sub x} and GaP{sub 1-x}N{sub x} with x {approx}< 0.05). These alloys exhibit many novel and interesting properties including, in particular, a giant bandgap bowing (bowing parameters > 14 eV). A band anticrossing model has been developed to explain these properties. The model shows that the predominant bowing mechanism in these systems is driven by the anticrossing interaction between the localized level associated with the minority component and the band states of the host. In this thesis I discuss my studies of the BAC effects in these highly mismatched semiconductors. It will be shown that the results of the physically intuitive BAC model can be derived from the Hamiltonian of the many-impurity Anderson model. The band restructuring caused by the BAC interaction is responsible for a series of experimental observations such as a large bandgap reduction, an enhancement of the electron effective mass, and a decrease in the pressure coefficient of the fundamental gap energy. Results of further experimental investigations of the optical properties of quantum wells based on these materials will be also presented. It will be shown that the BAC interaction occurs not only between localized states and conduction band states at the Brillouin zone center, but also exists over all of k-space. Finally, taking ZnSTe and ZnSeTe as examples, I show that BAC also occurs between

  20. Band Anticrossing in Highly Mismatched Compound Semiconductor Alloys

    NASA Technical Reports Server (NTRS)

    Yu, Kin Man; Wu, J.; Walukiewicz, W.; Ager, J. W.; Haller, E. E.; Miotkowski, I.; Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    Compound semiconductor alloys in which metallic anions are partially replaced with more electronegative isoelectronic atoms have recently attracted significant attention. Group IIIN(sub x)V(sub 1-x) alloys with a small amount of the electronegative N substituting more metallic column V elements has been the most extensively studied class of such Highly Mismatched Alloys (HMAs). We have shown that many of the unusual properties of the IIIN(sub x)V(sub 1-x) alloys can be well explained by the Band Anticrossing (BAC) model that describes the electronic structure in terms of an interaction between highly localized levels of substitutional N and the extended states of the host semiconductor matrix. Most recently the BAC model has been also used to explain similar modifications of the electronic band structure observed in Te-rich ZnS(sub x)Te(sub 1-x) and ZnSe(sub y)Te(sub 1-y) alloys. To date studies of HMAs have been limited to materials with relatively small concentrations of highly electronegative atoms. Here we report investigations of the electronic structure of ZnSe(sub y)Te(sub 1-y) alloys in the entire composition range, y between 0 and 1. The samples used in this study are bulk ZnSe(sub y)Te(sub 1-y) crystals grown by either a modified Bridgman method or by physical vapor transport. Photomodulated reflection (PR) spectroscopy was used to measure the composition dependence of optical transitions from the valence band edge and from the spin-orbit split off band to the conduction band. The pressure dependence of the band gap was measured using optical absorption in a diamond anvil cell. We find that the energy of the spin-orbit split off valence band edge does not depend on composition and is located at about 3 eV below the conduction band edge of ZnSe. On the Te-rich side the pressure and the composition dependence of the optical transitions are well explained by the BAC model which describes the downward shift of the conduction band edge in terms of the

  1. Band Anticrossing in Highly Mismatched Compound Semiconductor Alloys

    NASA Technical Reports Server (NTRS)

    Yu, Kin Man; Wu, J.; Walukiewicz, W.; Ager, J. W.; Haller, E. E.; Miotkowski, I.; Ramdas, A.; Su, Ching-Hua; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Compound semiconductor alloys in which metallic anions are partially replaced with more electronegative isoelectronic atoms have recently attracted significant attention. Group IIIN(x)V(1-x), alloys with a small amount of the electronegative N substituting more metallic column V elements has been the most extensively studied class of such Highly Mismatched Alloys (HMAs). We have shown that many of the unusual properties of the IIIN(x),V(1-x) alloys can be well explained by the Band Anticrossing (BAC) model that describes the electronic structure in terms of an interaction between highly localized levels of substitutional N and the extended states of the host semiconductor matrix. Most recently the BAC model has been also used to explain similar modifications of the electronic band structure observed in Te-rich ZnS(x)Te(l-x) and ZnSe(Y)Te(1-y) alloys. To date studies of HMAs have been limited to materials with relatively small concentrations of highly electronegative atoms. Here we report investigations of the electronic structure of ZnSe(y)Te(1-y) alloys in the entire composition range, 0 less than or equal to y less than or equal to 1. The samples used in this study are bulk ZnSe(y)Te(1-y) crystals grown by either a modified Bridgman method or by physical vapor transport. Photomodulated reflection (PR) spectroscopy was used to measure the composition dependence of optical transitions from the valence band edge and from the spin-orbit split off band to the conduction band. The pressure dependence of the band gap was measured using optical absorption in a diamond anvil cell. We find that the energy of the spin-orbit split off valence band edge does not depend on composition and is located at about 3 eV below the conduction band edge of ZnSe. On the Te-rich side the pressure and the composition dependence of the optical transitions are well explained by the BAC model which describes the downward shift of the conduction band edge in terms of the interaction between

  2. Comparative reactivity of mismatched and unpaired bases in relation to their type and surroundings. Chemical cleavage of DNA mismatches in mutation detection analysis.

    PubMed

    Yakubovskaya, Marianna G; Belyakova, Anna A; Gasanova, Viktoria K; Belitsky, Gennady A; Dolinnaya, Nina G

    2010-07-01

    Systematic study of chemical reactivity of non-Watson-Crick base pairs depending on their type and microenvironment was performed on a model system that represents two sets of synthetic DNA duplexes with all types of mismatched and unmatched bases flanked by T.A or G.C pairs. Using comparative cleavage pattern analysis, we identified the main and additional target bases and performed quantitative study of the time course and efficacy of DNA modification caused by potassium permanganate or hydroxylamine. Potassium permanganate in combination with tetraethylammonium chloride was shown to induce DNA cleavage at all mismatched or bulged T residues, as well as at thymines of neighboring canonical pairs. Other mispaired (bulged) bases and thymine residues located on the second position from the mismatch site were not the targets for KMnO(4) attack. In contrast, hydroxylamine cleaved only heteroduplexes containing mismatched or unmatched C residues, and did not modify adjacent cytosines. However when G.C pairs flank bulged C residue, neighboring cytosines are also attacked by hydroxylamine due to defect migration. Chemical reactivity of target bases was shown to correlate strongly with the local disturbance of DNA double helix at mismatch or bulge site. With our model system, we were able to prove the absence of false-negative and false-positive results. Portion of heteroduplex reliably revealed in a mixture with corresponding homoduplex consists of 5% for bulge bases and "open" non-canonical pairs, and 10% for wobble base pairs giving minimal violations in DNA structure. This study provides a complete understanding of the principles of mutation detection methodology based on chemical cleavage of mismatches and clarifies the advantages and limitations of this approach in various biological and conformational studies of DNA.

  3. Processing of unattended facial emotions: a visual mismatch negativity study.

    PubMed

    Stefanics, Gábor; Csukly, Gábor; Komlósi, Sarolta; Czobor, Pál; Czigler, István

    2012-02-01

    Facial emotions express our internal states and are fundamental in social interactions. Here we explore whether the repetition of unattended facial emotions builds up a predictive representation of frequently encountered emotions in the visual system. Participants (n=24) were presented peripherally with facial stimuli expressing emotions while they performed a visual detection task presented in the center of the visual field. Facial stimuli consisted of four faces of different identity, but expressed the same emotion (happy or fearful). Facial stimuli were presented in blocks of oddball sequence (standard emotion: p=0.9, deviant emotion: p=0.1). Event-related potentials (ERPs) to the same emotions were compared when the emotions were deviant and standard, respectively. We found visual mismatch negativity (vMMN) responses to unattended deviant emotions in the 170-360 ms post-stimulus range over bilateral occipito-temporal sites. Our results demonstrate that information about the emotional content of unattended faces presented at the periphery of the visual field is rapidly processed and stored in a predictive memory representation by the visual system. We also found evidence that differential processing of deviant fearful faces starts already at 70-120 ms after stimulus onset. This finding shows a 'negativity bias' under unattended conditions. Differential processing of fearful deviants were more pronounced in the right hemisphere in the 195-275 ms and 360-390 ms intervals, whereas processing of happy deviants evoked larger differential response in the left hemisphere in the 360-390 ms range, indicating differential hemispheric specialization for automatic processing of positive and negative affect. PMID:22037000

  4. Mismatch Negativity Latency and Cognitive Function in Schizophrenia

    PubMed Central

    Kärgel, Christian; Sartory, Gudrun; Kariofillis, Daniela; Wiltfang, Jens; Müller, Bernhard W.

    2014-01-01

    Background The Mismatch Negativity (MMN) is an event-related potential (ERP) sensitive to early auditory deviance detection and has been shown to be reduced in schizophrenia patients. Moreover, MMN amplitude reduction to duration deviant tones was found to be related to functional outcomes particularly, to neuropsychological (working memory and verbal domains) and psychosocial measures. While MMN amplitude is thought to be correlated with deficits of early sensory processing, the functional significance of MMN latency remains unclear so far. The present study focused on the investigation of MMN in relation to neuropsychological function in schizophrenia. Method Forty schizophrenia patients and 16 healthy controls underwent a passive oddball paradigm (2400 binaural tones; 88% standards [1 kHz, 80 db, 80 ms], 11% frequency deviants [1.2 kHz], 11% duration deviants [40 ms]) and a neuropsychological test-battery. Patients were assessed with regard to clinical symptoms. Results Compared to healthy controls schizophrenia patients showed diminished MMN amplitude and shorter MMN latency to both deviants as well as an impaired neuropsychological test performance. Severity of positive symptoms was related to decreased MMN amplitude to duration deviants. Furthermore, enhanced verbal memory performance was associated with prolonged MMN latency to frequency deviants in patients. Conclusion The present study corroborates previous results of a diminished MMN amplitude and its association with positive symptoms in schizophrenia patients. Both, the findings of a shorter latency to duration and frequency deviants and the relationship of the latter with verbal memory in patients, emphasize the relevance of the temporal aspect of early auditory discrimination processing in schizophrenia. PMID:24740391

  5. Disease-associated repeat instability and mismatch repair.

    PubMed

    Schmidt, Monika H M; Pearson, Christopher E

    2016-02-01

    Expanded tandem repeat sequences in DNA are associated with at least 40 human genetic neurological, neurodegenerative, and neuromuscular diseases. Repeat expansion can occur during parent-to-offspring transmission, and arise at variable rates in specific tissues throughout the life of an affected individual. Since the ongoing somatic repeat expansions can affect disease age-of-onset, severity, and progression, targeting somatic expansion holds potential as a therapeutic target. Thus, understanding the factors that regulate this mutation is crucial. DNA repair, in particular mismatch repair (MMR), is the major driving force of disease-associated repeat expansions. In contrast to its anti-mutagenic roles, mammalian MMR curiously drives the expansion mutations of disease-associated (CAG)·(CTG) repeats. Recent advances have broadened our knowledge of both the MMR proteins involved in disease repeat expansions, including: MSH2, MSH3, MSH6, MLH1, PMS2, and MLH3, as well as the types of repeats affected by MMR, now including: (CAG)·(CTG), (CGG)·(CCG), and (GAA)·(TTC) repeats. Mutagenic slipped-DNA structures have been detected in patient tissues, and the size of the slip-out and their junction conformation can determine the involvement of MMR. Furthermore, the formation of other unusual DNA and R-loop structures is proposed to play a key role in MMR-mediated instability. A complex correlation is emerging between tissues showing varying amounts of repeat instability and MMR expression levels. Notably, naturally occurring polymorphic variants of DNA repair genes can have dramatic effects upon the levels of repeat instability, which may explain the variation in disease age-of-onset, progression and severity. An increasing grasp of these factors holds prognostic and therapeutic potential.

  6. Interictal lack of habituation of mismatch negativity in migraine.

    PubMed

    de Tommaso, M; Guido, M; Libro, G; Losito, L; Difruscolo, O; Sardaro, M; Puca, F M

    2004-08-01

    The aim was to study mismatch negativity features and habituation during the interictal phase of migraine. In migraine patients, a strong negative correlation has been found between the initial amplitude of long latency auditory-evoked potentials and their amplitude increase during subsequent averaging. We studied 12 outpatients with a diagnosis of migraine without aura recorded in a headache-free interval and 10 gender- and age-matched healthy volunteers not suffering from any recurrent headache. The experiment consisted of two sequential blocks of 2000 stimulations, during which 1800 (90%) recordings for standard tones and 200 (10%) for target tones were selected for averaging. The latency of the N1 component was significantly increased in migraine patients in respect of controls in both the first and second repetitions; the MMN latency was increased in the second repetition. In the control group the MMN amplitude decreased on average by 3.2 +/- 1.4 microV in the second trial, whereas in migraine patients it showed a slight increase of 0.21 +/- 0.11 microV in the second repetition. The MMN latency relieved in the second trial was significantly correlated with the duration of illness in the migraine patients (Spearman correlation coefficient: 0.69; P < 0.05). The increases in N1 latency and MMN latency and amplitude, the latter correlated with duration of illness, seemed to be due to a reduced anticipatory effect of stimulus repetition in migraine patients. This suggests that such hypo-activity of automatic cortical processes, subtending the discrimination of acoustic stimuli, may be a basic abnormality in migraine, developing in the course of the disease. PMID:15265055

  7. Interictal lack of habituation of mismatch negativity in migraine.

    PubMed

    de Tommaso, M; Guido, M; Libro, G; Losito, L; Difruscolo, O; Sardaro, M; Puca, F M

    2004-08-01

    The aim was to study mismatch negativity features and habituation during the interictal phase of migraine. In migraine patients, a strong negative correlation has been found between the initial amplitude of long latency auditory-evoked potentials and their amplitude increase during subsequent averaging. We studied 12 outpatients with a diagnosis of migraine without aura recorded in a headache-free interval and 10 gender- and age-matched healthy volunteers not suffering from any recurrent headache. The experiment consisted of two sequential blocks of 2000 stimulations, during which 1800 (90%) recordings for standard tones and 200 (10%) for target tones were selected for averaging. The latency of the N1 component was significantly increased in migraine patients in respect of controls in both the first and second repetitions; the MMN latency was increased in the second repetition. In the control group the MMN amplitude decreased on average by 3.2 +/- 1.4 microV in the second trial, whereas in migraine patients it showed a slight increase of 0.21 +/- 0.11 microV in the second repetition. The MMN latency relieved in the second trial was significantly correlated with the duration of illness in the migraine patients (Spearman correlation coefficient: 0.69; P < 0.05). The increases in N1 latency and MMN latency and amplitude, the latter correlated with duration of illness, seemed to be due to a reduced anticipatory effect of stimulus repetition in migraine patients. This suggests that such hypo-activity of automatic cortical processes, subtending the discrimination of acoustic stimuli, may be a basic abnormality in migraine, developing in the course of the disease.

  8. Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria.

    PubMed

    Gnad, Florian; Forner, Francesca; Zielinska, Dorota F; Birney, Ewan; Gunawardena, Jeremy; Mann, Matthias

    2010-12-01

    High accuracy mass spectrometry has proven to be a powerful technology for the large scale identification of serine/threonine/tyrosine phosphorylation in the living cell. However, despite many described phosphoproteomes, there has been no comparative study of the extent of phosphorylation and its evolutionary conservation in all domains of life. Here we analyze the results of phosphoproteomics studies performed with the same technology in a diverse set of organisms. For the most ancient organisms, the prokaryotes, only a few hundred proteins have been found to be phosphorylated. Applying the same technology to eukaryotic species resulted in the detection of thousands of phosphorylation events. Evolutionary analysis shows that prokaryotic phosphoproteins are preferentially conserved in all living organisms, whereas-site specific phosphorylation is not. Eukaryotic phosphosites are generally more conserved than their non-phosphorylated counterparts (with similar structural constraints) throughout the eukaryotic domain. Yeast and Caenorhabditis elegans are two exceptions, indicating that the majority of phosphorylation events evolved after the divergence of higher eukaryotes from yeast and reflecting the unusually large number of nematode-specific kinases. Mitochondria present an interesting intermediate link between the prokaryotic and eukaryotic domains. Applying the same technology to this organelle yielded 174 phosphorylation sites mapped to 74 proteins. Thus, the mitochondrial phosphoproteome is similarly sparse as the prokaryotic phosphoproteomes. As expected from the endosymbiotic theory, phosphorylated as well as non-phosphorylated mitochondrial proteins are significantly conserved in prokaryotes. However, mitochondrial phosphorylation sites are not conserved throughout prokaryotes, consistent with the notion that serine/threonine phosphorylation in prokaryotes occurred relatively recently in evolution. Thus, the phosphoproteome reflects major events in the

  9. Eukaryotic microorganisms in cold environments: examples from Pyrenean glaciers.

    PubMed

    García-Descalzo, Laura; García-López, Eva; Postigo, Marina; Baquero, Fernando; Alcazar, Alberto; Cid, Cristina

    2013-01-01

    Little is known about the viability of eukaryotic microorganisms preserved in icy regions. Here we report on the diversity of microbial eukaryotes in ice samples derived from four Pyrenean glaciers. The species composition of eukaryotic communities in these glaciers is unknown mostly because of the presence of a multi-year ice cap, and it is not clear whether they harbor the same populations. The recent deglaciation of these areas is allowing an easy access to glacial layers that correspond to the "Little Ice Age" although some isolated deposits are attributed to previous glacial cycles. In this study, we use molecular 18S rRNA-based approaches to characterize some of the microbial eukaryotic populations associated with Pyrenean glaciers. Firstly, we performed a chemical and microscopical characterization of ice samples. Secondly, molecular analyses revealed interesting protist genetic diversity in glaciers. In order to understand the microbial composition of the ice samples the eukaryotic communities resident in the glacial samples were examined by amplifying community DNA and constructing clone libraries with 18S rRNA primers. After removal of potential chimeric sequences and dereplication of identical sequences, phylogenetic analysis demonstrated that several different protists could be identified. Protist diversity was more phylum rich in Aneto and Monte Perdido glaciers. The dominant taxonomic groups across all samples (>1% of all sequences) were Viridiplantae and Rhizaria. Significant variations in relative abundances of protist phyla between higher and lower glaciers were observed. At the genus level, significant differences were also recorded for the dominant genera Chloromonas, Raphidonema, Heteromita, Koliella, and Bodomorpha. In addition, protist community structure showed significant differences between glaciers. The relative abundances of protist groups at different taxonomic levels correlated with the altitude and area of glaciers and with pH of ice

  10. Eukaryotic microorganisms in cold environments: examples from Pyrenean glaciers

    PubMed Central

    García-Descalzo, Laura; García-López, Eva; Postigo, Marina; Baquero, Fernando; Alcazar, Alberto; Cid, Cristina

    2013-01-01

    Little is known about the viability of eukaryotic microorganisms preserved in icy regions. Here we report on the diversity of microbial eukaryotes in ice samples derived from four Pyrenean glaciers. The species composition of eukaryotic communities in these glaciers is unknown mostly because of the presence of a multi-year ice cap, and it is not clear whether they harbor the same populations. The recent deglaciation of these areas is allowing an easy access to glacial layers that correspond to the “Little Ice Age” although some isolated deposits are attributed to previous glacial cycles. In this study, we use molecular 18S rRNA-based approaches to characterize some of the microbial eukaryotic populations associated with Pyrenean glaciers. Firstly, we performed a chemical and microscopical characterization of ice samples. Secondly, molecular analyses revealed interesting protist genetic diversity in glaciers. In order to understand the microbial composition of the ice samples the eukaryotic communities resident in the glacial samples were examined by amplifying community DNA and constructing clone libraries with 18S rRNA primers. After removal of potential chimeric sequences and dereplication of identical sequences, phylogenetic analysis demonstrated that several different protists could be identified. Protist diversity was more phylum rich in Aneto and Monte Perdido glaciers. The dominant taxonomic groups across all samples (>1% of all sequences) were Viridiplantae and Rhizaria. Significant variations in relative abundances of protist phyla between higher and lower glaciers were observed. At the genus level, significant differences were also recorded for the dominant genera Chloromonas, Raphidonema, Heteromita, Koliella, and Bodomorpha. In addition, protist community structure showed significant differences between glaciers. The relative abundances of protist groups at different taxonomic levels correlated with the altitude and area of glaciers and with pH of

  11. Eukaryotic microorganisms in cold environments: examples from Pyrenean glaciers.

    PubMed

    García-Descalzo, Laura; García-López, Eva; Postigo, Marina; Baquero, Fernando; Alcazar, Alberto; Cid, Cristina

    2013-01-01

    Little is known about the viability of eukaryotic microorganisms preserved in icy regions. Here we report on the diversity of microbial eukaryotes in ice samples derived from four Pyrenean glaciers. The species composition of eukaryotic communities in these glaciers is unknown mostly because of the presence of a multi-year ice cap, and it is not clear whether they harbor the same populations. The recent deglaciation of these areas is allowing an easy access to glacial layers that correspond to the "Little Ice Age" although some isolated deposits are attributed to previous glacial cycles. In this study, we use molecular 18S rRNA-based approaches to characterize some of the microbial eukaryotic populations associated with Pyrenean glaciers. Firstly, we performed a chemical and microscopical characterization of ice samples. Secondly, molecular analyses revealed interesting protist genetic diversity in glaciers. In order to understand the microbial composition of the ice samples the eukaryotic communities resident in the glacial samples were examined by amplifying community DNA and constructing clone libraries with 18S rRNA primers. After removal of potential chimeric sequences and dereplication of identical sequences, phylogenetic analysis demonstrated that several different protists could be identified. Protist diversity was more phylum rich in Aneto and Monte Perdido glaciers. The dominant taxonomic groups across all samples (>1% of all sequences) were Viridiplantae and Rhizaria. Significant variations in relative abundances of protist phyla between higher and lower glaciers were observed. At the genus level, significant differences were also recorded for the dominant genera Chloromonas, Raphidonema, Heteromita, Koliella, and Bodomorpha. In addition, protist community structure showed significant differences between glaciers. The relative abundances of protist groups at different taxonomic levels correlated with the altitude and area of glaciers and with pH of ice

  12. Eukaryotic Richness in the Abyss: Insights from Pyrotag Sequencing

    PubMed Central

    Pawlowski, Jan; Christen, Richard; Lecroq, Béatrice; Bachar, Dipankar; Shahbazkia, Hamid Reza; Amaral-Zettler, Linda; Guillou, Laure

    2011-01-01

    Background The deep sea floor is considered one of the most diverse ecosystems on Earth. Recent environmental DNA surveys based on clone libraries of rRNA genes confirm this observation and reveal a high diversity of eukaryotes present in deep-sea sediment samples. However, environmental clone-library surveys yield only a modest number of sequences with which to evaluate the diversity of abyssal eukaryotes. Methodology/Principal Findings Here, we examined the richness of eukaryotic DNA in deep Arctic and Southern Ocean samples using massively parallel sequencing of the 18S ribosomal RNA (rRNA) V9 hypervariable region. In very small volumes of sediments, ranging from 0.35 to 0.7 g, we recovered up to 7,499 unique sequences per sample. By clustering sequences having up to 3 differences, we observed from 942 to 1756 Operational Taxonomic Units (OTUs) per sample. Taxonomic analyses of these OTUs showed that DNA of all major groups of eukaryotes is represented at the deep-sea floor. The dinoflagellates, cercozoans, ciliates, and euglenozoans predominate, contributing to 17%, 16%, 10%, and 8% of all assigned OTUs, respectively. Interestingly, many sequences represent photosynthetic taxa or are similar to those reported from the environmental surveys of surface waters. Moreover, each sample contained from 31 to 71 different metazoan OTUs despite the small sample volume collected. This indicates that a significant faction of the eukaryotic DNA sequences likely do not belong to living organisms, but represent either free, extracellular DNA or remains and resting stages of planktonic species. Conclusions/Significance In view of our study, the deep-sea floor appears as a global DNA repository, which preserves genetic information about organisms living in the sediment, as well as in the water column above it. This information can be used for future monitoring of past and present environmental changes. PMID:21483744

  13. Eukaryotic life in biofilms formed in a uranium mine.

    PubMed

    Zirnstein, Isabel; Arnold, Thuro; Krawczyk-Bärsch, Evelyn; Jenk, Ulf; Bernhard, Gert; Röske, Isolde

    2012-06-01

    The underground uranium mine Königstein (Saxony, Germany), currently in the process of remediation, represents an underground acid mine drainage (AMD) environment, that is, low pH conditions and high concentrations of heavy metals including uranium, in which eye-catching biofilm formations were observed. During active uranium mining from 1984 to 1990, technical leaching with sulphuric acid was applied underground on-site resulting in a change of the underground mine environment and initiated the formation of AMD and also the growth of AMD-related copious biofilms. Biofilms grow underground in the mine galleries in a depth of 250 m (50 m above sea level) either as stalactite-like slime communities or as acid streamers in the drainage channels. The eukaryotic diversity of these biofilms was analyzed by microscopic investigations and by molecular methods, that is, 18S rDNA PCR, cloning, and sequencing. The biofilm communities of the Königstein environment showed a low eukaryotic biodiversity and consisted of a variety of groups belonging to nine major taxa: ciliates, flagellates, amoebae, heterolobosea, fungi, apicomplexa, stramenopiles, rotifers and arthropoda, and a large number of uncultured eukaryotes, denoted as acidotolerant eukaryotic cluster (AEC). In Königstein, the flagellates Bodo saltans, the stramenopiles Diplophrys archeri, and the phylum of rotifers, class Bdelloidea, were detected for the first time in an AMD environment characterized by high concentrations of uranium. This study shows that not only bacteria and archaea may live in radioactive contaminated environments, but also species of eukaryotes, clearly indicating their potential influence on carbon cycling and metal immobilization within AMD-affected environment.

  14. Eukaryotic life in biofilms formed in a uranium mine

    PubMed Central

    Zirnstein, Isabel; Arnold, Thuro; Krawczyk-Bärsch, Evelyn; Jenk, Ulf; Bernhard, Gert; Röske, Isolde

    2012-01-01

    The underground uranium mine Königstein (Saxony, Germany), currently in the process of remediation, represents an underground acid mine drainage (AMD) environment, that is, low pH conditions and high concentrations of heavy metals including uranium, in which eye-catching biofilm formations were observed. During active uranium mining from 1984 to 1990, technical leaching with sulphuric acid was applied underground on-site resulting in a change of the underground mine environment and initiated the formation of AMD and also the growth of AMD-related copious biofilms. Biofilms grow underground in the mine galleries in a depth of 250 m (50 m above sea level) either as stalactite-like slime communities or as acid streamers in the drainage channels. The eukaryotic diversity of these biofilms was analyzed by microscopic investigations and by molecular methods, that is, 18S rDNA PCR, cloning, and sequencing. The biofilm communities of the Königstein environment showed a low eukaryotic biodiversity and consisted of a variety of groups belonging to nine major taxa: ciliates, flagellates, amoebae, heterolobosea, fungi, apicomplexa, stramenopiles, rotifers and arthropoda, and a large number of uncultured eukaryotes, denoted as acidotolerant eukaryotic cluster (AEC). In Königstein, the flagellates Bodo saltans, the stramenopiles Diplophrys archeri, and the phylum of rotifers, class Bdelloidea, were detected for the first time in an AMD environment characterized by high concentrations of uranium. This study shows that not only bacteria and archaea may live in radioactive contaminated environments, but also species of eukaryotes, clearly indicating their potential influence on carbon cycling and metal immobilization within AMD-affected environment. PMID:22950016

  15. An RNA-centered view of eukaryotic cells.

    PubMed

    Tannenbaum, Emmanuel

    2006-06-01

    Emerging evidence suggests that the introns and intergenic sequences of the genomes of higher eukaryotes (the "junk" DNA) codes for a vast, RNA-based, genetic regulatory network. It is believed that this network is responsible for the variety and complexity of terrestrial life. We conjecture that this regulatory network is more properly viewed as an RNA "community", composed of a rich and largely unexplored biochemical web of RNA interactions. Viewed as an RNA-community, we hypothesize that the RNA regulatory network of higher eukaryotes can re-wire itself, and employ various and evolvable mutational strategies in response to external pressures. Thus, we argue that much evolutionary change is due to intracellular, RNA-mediated learning processes. Successful strategies and pathways are then recorded (hard-wired) into the DNA genome via reverse transcriptase. We present evidence, which is consistent with this viewpoint, and make specific theorems, which could be used to test the utility of our framework. If essentially correct, the RNA-community view of eukaryotic cells could reconcile measured point mutation and gene duplication rates with actual rates of evolutionary change. Futhermore, the RNA-community view of eukaryotic cells suggests that agent-based modeling techniques, used in mathematical economics, game theory, and neuroscience, will likely be as useful in understanding the functioning of eukaryotic cells as the pathway-based approaches of systems biology. We conclude this paper by arguing that a sufficient amount of biological knowledge has been accumulated to initiate a systematic program of experimental and computational studies of the origins and macroevolution of terrestrial life.

  16. Enhancement of thermal stability in microwave applicators by mismatching and detuning

    SciTech Connect

    Nelson, E.M.

    1996-07-01

    Many microwave applicator systems experiencing thermal runaway can be stabilized by mismatching and/or detuning the system. The stability of the systems is discussed qualitatively and a conservative guide for adjusting microwave applicators for enhanced stability is described.

  17. A Direct Adaptive Control Approach in the Presence of Model Mismatch

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.; Tao, Gang; Khong, Thuan

    2009-01-01

    This paper considers the problem of direct model reference adaptive control when the plant-model matching conditions are violated due to abnormal changes in the plant or incorrect knowledge of the plant's mathematical structure. The approach consists of direct adaptation of state feedback gains for state tracking, and simultaneous estimation of the plant-model mismatch. Because of the mismatch, the plant can no longer track the state of the original reference model, but may be able to track a new reference model that still provides satisfactory performance. The reference model is updated if the estimated plant-model mismatch exceeds a bound that is determined via robust stability and/or performance criteria. The resulting controller is a hybrid direct-indirect adaptive controller that offers asymptotic state tracking in the presence of plant-model mismatch as well as parameter deviations.

  18. Effect of Lattice Mismatch on HgCdTe LPE Film Surface Morphology

    NASA Astrophysics Data System (ADS)

    Sun, Quanzhi; Wei, Yanfeng; Zhang, Juan; Sun, Ruiyun

    2016-09-01

    A new type of crystal defect, which we call a rough structure, is reported in this work. The rough structure appears in large lattice mismatch regions whereas a normal surface appears in the regions where there is a small lattice mismatch on the same substrate. Experiments proved that under normal liquid-phase epitaxy growth conditions, the appearance of a rough structure is related to the lattice mismatch between the substrate and the film. Statistical data indicated that for Hg1- x Cd x Te films with different Cd compositions x, a rough structure appeared on the film surface when the lattice mismatch was outside the range of 0.02-0.11%. The rough structure may result from the misfit dislocations resulting from strain relaxation. When there was a small surface crystal orientation deviation from (111), dense growth ripples appeared instead of the rough structure. A super-flat surface sometimes appeared inside the rough structure regions.

  19. A spectral method for halo particle definition in intense mismatched beams

    SciTech Connect

    Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.

    2011-04-15

    An advanced spectral analysis of a mismatched charged particle beam propagating through a periodic focusing transport lattice is utilized in particle-in-cell (PIC) simulations. It is found that the betatron frequency distribution function of a mismatched space-charge-dominated beam has a bump-on-tail structure attributed to the beam halo particles. Based on this observation, a new spectral method for halo particle definition is proposed that provides the opportunity to carry out a quantitative analysis of halo particle production by a beam mismatch. In addition, it is shown that the spectral analysis of the mismatch relaxation process provides important insights into the emittance growth attributed to the halo formation and the core relaxation processes. Finally, the spectral method is applied to the problem of space-charge transport limits.

  20. Infection risk decreases with increasing mismatch in host and pathogen environmental tolerances.

    PubMed

    Nowakowski, A Justin; Whitfield, Steven M; Eskew, Evan A; Thompson, Michelle E; Rose, Jonathan P; Caraballo, Benjamin L; Kerby, Jacob L; Donnelly, Maureen A; Todd, Brian D

    2016-09-01

    The fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused the greatest known wildlife pandemic, infecting over 500 amphibian species. It remains unclear why some host species decline from disease-related mortality whereas others persist. We introduce a conceptual model that predicts that infection risk in ectotherms will decrease as the difference between host and pathogen environmental tolerances (i.e. tolerance mismatch) increases. We test this prediction using both local-scale data from Costa Rica and global analyses of over 11 000 Bd infection assays. We find that infection prevalence decreases with increasing thermal tolerance mismatch and with increasing host tolerance of habitat modification. The relationship between environmental tolerance mismatches and Bd infection prevalence is generalisable across multiple amphibian families and spatial scales, and the magnitude of the tolerance mismatch effect depends on environmental context. These findings may help explain patterns of amphibian declines driven by a global wildlife pandemic. PMID:27339786

  1. New Spectral Method for Halo Particle Definition in Intense Mis-matched Beams

    SciTech Connect

    Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.

    2011-04-27

    An advanced spectral analysis of a mis-matched charged particle beam propagating through a periodic focusing transport lattice is utilized in particle-in-cell (PIC) simulations. It is found that the betatron frequency distribution function of a mismatched space-charge-dominated beam has a bump-on-tail structure attributed to the beam halo particles. Based on this observation, a new spectral method for halo particle definition is proposed that provides the opportunity to carry out a quantitative analysis of halo particle production by a beam mismatch. In addition, it is shown that the spectral analysis of the mismatch relaxation process provides important insights into the emittance growth attributed to the halo formation and the core relaxation processes. Finally, the spectral method is applied to the problem of space-charge transport limits.

  2. Channel mismatch estimation in time-interleaved ADCs based on input dependent estimating model

    NASA Astrophysics Data System (ADS)

    Liu, Sujuan; Wang, Junshan; Qi, Peipei; Chen, Jianxin

    2012-04-01

    Time-interleaved Analog-to-Digital Converter (TIADC) is an efficient way to achieve higher sampling rates for medium-to-high resolution applications. However, the performance of a TIADC suffers from mismatch errors among the sub-channels. This paper presents a method to estimate the channel mismatch errors using the sub-channels' output data. The proposed method introduces an input dependent estimating model (IDEM) based on an equivalent transfer function including the mismatch errors to calculate the standard deviation of the mismatch errors. The spurious-free dynamic range (SFDR) is then evaluated by applying multi-tone sinusoids signal to input. The simulated results show that the method in this work can get about 45dB SFDR enhancement.

  3. Mismatch detection in DNA monolayers by atomic force microscopy and electrochemical impedance spectroscopy

    PubMed Central

    Ambrosetti, Elena; Scoles, Giacinto; Casalis, Loredana

    2016-01-01

    Summary Background: DNA hybridization is at the basis of most current technologies for genotyping and sequencing, due to the unique properties of DNA base-pairing that guarantee a high grade of selectivity. Nonetheless the presence of single base mismatches or not perfectly matched sequences can affect the response of the devices and the major challenge is, nowadays, to distinguish a mismatch of a single base and, at the same time, unequivocally differentiate devices read-out of fully and partially matching sequences. Results: We present here two platforms based on different sensing strategies, to detect mismatched and/or perfectly matched complementary DNA strands hybridization into ssDNA oligonucleotide monolayers. The first platform exploits atomic force microscopy-based nanolithography to create ssDNA nano-arrays on gold surfaces. AFM topography measurements then monitor the variation of height of the nanostructures upon biorecognition and then follow annealing at different temperatures. This strategy allowed us to clearly detect the presence of mismatches. The second strategy exploits the change in capacitance at the interface between an ssDNA-functionalized gold electrode and the solution due to the hybridization process in a miniaturized electrochemical cell. Through electrochemical impedance spectroscopy measurements on extended ssDNA self-assembled monolayers we followed in real-time the variation of capacitance, being able to distinguish, through the difference in hybridization kinetics, not only the presence of single, double or triple mismatches in the complementary sequence, but also the position of the mismatched base pair with respect to the electrode surface. Conclusion: We demonstrate here two platforms based on different sensing strategies as sensitive and selective tools to discriminate mismatches. Our assays are ready for parallelization and can be used in the detection and quantification of single nucleotide mismatches in microRNAs or in

  4. Nonpermissive HLA-DPB1 mismatch increases mortality after myeloablative unrelated allogeneic hematopoietic cell transplantation

    PubMed Central

    Lee, Stephanie J.; Ahn, Kwang Woo; Spellman, Stephen; Wang, Hai-Lin; Aljurf, Mahmoud; Askar, Medhat; Dehn, Jason; Fernandez Viña, Marcelo; Gratwohl, Alois; Gupta, Vikas; Hanna, Rabi; Horowitz, Mary M.; Hurley, Carolyn K.; Inamoto, Yoshihiro; Kassim, Adetola A.; Nishihori, Taiga; Mueller, Carlheinz; Oudshoorn, Machteld; Petersdorf, Effie W.; Prasad, Vinod; Robinson, James; Saber, Wael; Schultz, Kirk R.; Shaw, Bronwen; Storek, Jan; Wood, William A.; Woolfrey, Ann E.; Anasetti, Claudio

    2014-01-01

    We examined current outcomes of unrelated donor allogeneic hematopoietic cell transplantation (HCT) to determine the clinical implications of donor-recipient HLA matching. Adult and pediatric patients who had first undergone myeloablative-unrelated bone marrow or peripheral blood HCT for acute myelogenous leukemia, acute lymphoblastic leukemia, chronic myelogenous leukemia, and myelodysplastic syndrome between 1999 and 2011 were included. All had high-resolution typing for HLA-A, -B, -C, and -DRB1. Of the total (n = 8003), cases were 8/8 (n = 5449), 7/8 (n = 2071), or 6/8 (n = 483) matched. HLA mismatch (6-7/8) conferred significantly increased risk for grades II to IV and III to IV acute graft vs host disease (GVHD), chronic GVHD, transplant-related mortality (TRM), and overall mortality compared with HLA-matched cases (8/8). Type (allele/antigen) and locus (HLA-A, -B, -C, and -DRB1) of mismatch were not associated with overall mortality. Among 8/8 matched cases, HLA-DPB1 and -DQB1 mismatch resulted in increased acute GVHD, and HLA-DPB1 mismatch had decreased relapse. Nonpermissive HLA-DPB1 allele mismatch was associated with higher TRM compared with permissive HLA-DPB1 mismatch or HLA-DPB1 match and increased overall mortality compared with permissive HLA-DPB1 mismatch in 8/8 (and 10/10) matched cases. Full matching at HLA-A, -B, -C, and -DRB1 is required for optimal unrelated donor HCT survival, and avoidance of nonpermissive HLA-DPB1 mismatches in otherwise HLA-matched pairs is indicated. PMID:25161269

  5. Single-molecule motions and interactions in live cells reveal target search dynamics in mismatch repair

    PubMed Central

    Liao, Yi; Schroeder, Jeremy W.; Gao, Burke; Simmons, Lyle A.; Biteen, Julie S.

    2015-01-01

    MutS is responsible for initiating the correction of DNA replication errors. To understand how MutS searches for and identifies rare base-pair mismatches, we characterized the dynamic movement of MutS and the replisome in real time using superresolution microscopy and single-molecule tracking in living cells. We report that MutS dynamics are heterogeneous in cells, with one MutS population exploring the nucleoid rapidly, while another MutS population moves to and transiently dwells at the replisome region, even in the absence of appreciable mismatch formation. Analysis of MutS motion shows that the speed of MutS is correlated with its separation distance from the replisome and that MutS motion slows when it enters the replisome region. We also show that mismatch detection increases MutS speed, supporting the model for MutS sliding clamp formation after mismatch recognition. Using variants of MutS and the replication processivity clamp to impair mismatch repair, we find that MutS dynamically moves to and from the replisome before mismatch binding to scan for errors. Furthermore, a block to DNA synthesis shows that MutS is only capable of binding mismatches near the replisome. It is well-established that MutS engages in an ATPase cycle, which is necessary for signaling downstream events. We show that a variant of MutS with a nucleotide binding defect is no longer capable of dynamic movement to and from the replisome, showing that proper nucleotide binding is critical for MutS to localize to the replisome in vivo. Our results provide mechanistic insight into the trafficking and movement of MutS in live cells as it searches for mismatches. PMID:26575623

  6. Patient - implant dimension mismatch in total knee arthroplasty: Is it worth worrying? An Indian scenario

    PubMed Central

    Thilak, Jai; George, Melvin J

    2016-01-01

    Background: The correct sizing of the components in both anteroposterior and mediolateral (ML) dimensions is crucial for the success of a total knee arthroplasty (TKA). The size of the implants selected is based on the intraoperative measurements. The currently used TKA implants available to us are based on morphometric measurements obtained from a Western/Caucasian population. Hence, the risk of component ML mismatch is more common in Asian sub-population, as they are of a smaller built and stature. This study aims to look into the following aspects agnitude of the ML mismatch between the femoral component and the patient's anatomical dimension, evaluation of gender variations in distal femur dimensions, and gender-wise and implant-wise correlation of ML mismatch. Materials and Methods: Intraoperatively, the distal femoral dimensions were measured using sterile calipers after removing the osteophytes and compared with the ML dimension of the implant used. ML mismatch length thus obtained is correlated with the various parameters. Results: Males showed larger distal femoral dimensions when compared to females. Males had larger ML mismatch. None of the implants used perfectly matched the patient's anatomical dimensions. Patients with larger mismatch had lower scorings at 2 years postoperative followup. Conclusion: Implant manufacturers need to design more options of femoral implants for a better fit in our subset of patients. The exact magnitude of mismatch which can cause functional implications need to be made out. The mismatch being one of the important factors for the success of the surgery, we should focus more on this aspect. PMID:27746494

  7. Eukaryotes dominate new production in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Fawcett, S. E.; Lomas, M. W.; Ward, B. B.; Casey, J. R.; Sigman, D. M.

    2010-12-01

    The vast subtropical ocean gyres are considered unproductive “deserts” due to the extremely low concentrations of essential nutrients in their sunlit surface waters. Because of intense upper ocean stratification, phytoplankton growth in the subtropical gyres is limited by the slow supply of nitrate from below, and is assumed to be supported predominantly by “regenerated” nitrogen (N): ammonium and other reduced N sources recycled in surface waters. The phytoplankton assemblage of the subtropical Sargasso Sea is dominated by the prokaryotic cyanobacteria, Prochlorococcus and Synechococcus, which occur in very high cell numbers compared to the rarer, and usually larger, eukaryotic algae. Coupling flow cytometry and a new high-sensitivity method for N isotope analysis, we measure the 15N/14N of major phytoplankton taxa and other biologically distinct particle populations collected from the surface waters of the Sargasso Sea during the stratified summer period. We find that the cyanobacteria and eukaryotic phytoplankton show distinct N isotope signatures, indicating that they utilize different sources of N for growth. Prochlorococcus and Synechococcus have a uniformly low 15N/14N, consistent with the expectation that these phytoplankton rely on regenerated N. However, the 15N/14N of eukaryotic phytoplankton is higher and more variable, with a mean 15N/14N comparable to the new nitrate supply from below, indicating that eukaryotes dominate the consumption of this nitrate and rely on it for more than half of their N requirement. Using our measured 15N/14N values for the various sorted autotrophic populations, we calculate eukaryote-specific summer f-ratios of 0.6-0.67 and total community summer f-ratios of 0.15-0.23. These values are higher than those based on comparison of primary production and sediment-trap derived organic carbon (C) export, and agree well with annual f-ratio estimates implied by geochemical tracers. The high 15N/14N of eukaryotic biomass can

  8. Silicified tests of Cryogenian eukaryotes from the Tayshir Formation, Mongolia

    NASA Astrophysics Data System (ADS)

    Matys, E. D.; Bosak, T.; Lahr, D.; Macdonald, F. A.

    2011-12-01

    Interactions between tectonic, geochemical, climatic and biological processes between ~ 710 and 635 million years ago (Ma) are poorly understood, not least because of the virtual lack of body fossils during this time. We recently discovered eukaryotic tests in stratigraphically unambiguous ~715-635 Ma carbonate strata, a heretofore hidden fossil record of microbial eukaryotes from this time. Here we report silicified eukaryotic tests from the 715-635 million year old grainstone facies of the limestone strata of the Tayshir Formation, Mongolia. The silicified structures are present in the residue after the acid dissolution of the limestone. All structures are hollow, with 3-10 μm thick walls that contain SiO2 and carbonaceous material and form four major stable morphological categories. Most structures within individual morphological categories also contain uniformly sized holes or slits in the recurring location. The hollowness, the constant thickness of the walls, the presence of organic material in the walls, uniformly sized and localized holes indicating former apertures and other recurring morphological characters indicate that these structures are fossilized eukaryotic tests. The tests are morphologically simple and can be grouped into four major categories: lobose triangular, ovate, tear-shaped, reniform, and other. Triangular lobose tests are abundant (N>40), with an up to 433 μm long base and up to 350 μm wide in the perpendicular direction, with openings at one of the lobes. Ovate tests (N>30) are up to 311 μm long, up to 288 μm wide and have centrally located apertures that may preserve former collars or lobes. Tear-shaped, dorso-ventrally asymmetric tests are less frequent (N=15), up to 428 μm long and up to 236 μm wide, with subterminal rounded apertures. Reniform tests are up to 542 μm long, up to 333 μm wide, with openings at one or both ends. Other morphologies are represented by at most 3 individuals. The fossil tests cannot be

  9. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa.

    PubMed

    Cavalier-Smith, T

    2002-03-01

    Eukaryotes and archaebacteria form the clade neomura and are sisters, as shown decisively by genes fragmented only in archaebacteria and by many sequence trees. This sisterhood refutes all theories that eukaryotes originated by merging an archaebacterium and an alpha-proteobacterium, which also fail to account for numerous features shared specifically by eukaryotes and actinobacteria. I revise the phagotrophy theory of eukaryote origins by arguing that the essentially autogenous origins of most eukaryotic cell properties (phagotrophy, endomembrane system including peroxisomes, cytoskeleton, nucleus, mitosis and sex) partially overlapped and were synergistic with the symbiogenetic origin of mitochondria from an alpha-proteobacterium. These radical innovations occurred in a derivative of the neomuran common ancestor, which itself had evolved immediately prior to the divergence of eukaryotes and archaebacteria by drastic alterations to its eubacterial ancestor, an actinobacterial posibacterium able to make sterols, by replacing murein peptidoglycan by N-linked glycoproteins and a multitude of other shared neomuran novelties. The conversion of the rigid neomuran wall into a flexible surface coat and the associated origin of phagotrophy were instrumental in the evolution of the endomembrane system, cytoskeleton, nuclear organization and division and sexual life-cycles. Cilia evolved not by symbiogenesis but by autogenous specialization of the cytoskeleton. I argue that the ancestral eukaryote was uniciliate with a single centriole (unikont) and a simple centrosomal cone of microtubules, as in the aerobic amoebozoan zooflagellate Phalansterium. I infer the root of the eukaryote tree at the divergence between opisthokonts (animals, Choanozoa, fungi) with a single posterior cilium and all other eukaryotes, designated 'anterokonts' because of the ancestral presence of an anterior cilium. Anterokonts comprise the Amoebozoa, which may be ancestrally unikont, and a vast

  10. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa.

    PubMed

    Cavalier-Smith, T

    2002-03-01

    Eukaryotes and archaebacteria form the clade neomura and are sisters, as shown decisively by genes fragmented only in archaebacteria and by many sequence trees. This sisterhood refutes all theories that eukaryotes originated by merging an archaebacterium and an alpha-proteobacterium, which also fail to account for numerous features shared specifically by eukaryotes and actinobacteria. I revise the phagotrophy theory of eukaryote origins by arguing that the essentially autogenous origins of most eukaryotic cell properties (phagotrophy, endomembrane system including peroxisomes, cytoskeleton, nucleus, mitosis and sex) partially overlapped and were synergistic with the symbiogenetic origin of mitochondria from an alpha-proteobacterium. These radical innovations occurred in a derivative of the neomuran common ancestor, which itself had evolved immediately prior to the divergence of eukaryotes and archaebacteria by drastic alterations to its eubacterial ancestor, an actinobacterial posibacterium able to make sterols, by replacing murein peptidoglycan by N-linked glycoproteins and a multitude of other shared neomuran novelties. The conversion of the rigid neomuran wall into a flexible surface coat and the associated origin of phagotrophy were instrumental in the evolution of the endomembrane system, cytoskeleton, nuclear organization and division and sexual life-cycles. Cilia evolved not by symbiogenesis but by autogenous specialization of the cytoskeleton. I argue that the ancestral eukaryote was uniciliate with a single centriole (unikont) and a simple centrosomal cone of microtubules, as in the aerobic amoebozoan zooflagellate Phalansterium. I infer the root of the eukaryote tree at the divergence between opisthokonts (animals, Choanozoa, fungi) with a single posterior cilium and all other eukaryotes, designated 'anterokonts' because of the ancestral presence of an anterior cilium. Anterokonts comprise the Amoebozoa, which may be ancestrally unikont, and a vast

  11. Detecting mismatches of bird migration stopover and tree phenology in response to changing climate.

    PubMed

    Kellermann, Jherime L; van Riper, Charles

    2015-08-01

    Migratory birds exploit seasonal variation in resources across latitudes, timing migration to coincide with the phenology of food at stopover sites. Differential responses to climate in phenology across trophic levels can result in phenological mismatch; however, detecting mismatch is sensitive to methodology. We examined patterns of migrant abundance and tree flowering, phenological mismatch, and the influence of climate during spring migration from 2009 to 2011 across five habitat types of the Madrean Sky Islands in southeastern Arizona, USA. We used two metrics to assess phenological mismatch: synchrony and overlap. We also examined whether phenological overlap declined with increasing difference in mean event date of phenophases. Migrant abundance and tree flowering generally increased with minimum spring temperature but depended on annual climate by habitat interactions. Migrant abundance was lowest and flowering was highest under cold, snowy conditions in high elevation montane conifer habitat while bird abundance was greatest and flowering was lowest in low elevation riparian habitat under the driest conditions. Phenological synchrony and overlap were unique and complementary metrics and should both be used when assessing mismatch. Overlap declined due to asynchronous phenologies but also due to reduced migrant abundance or flowering when synchrony was actually maintained. Overlap declined with increasing difference in event date and this trend was strongest in riparian areas. Montane habitat specialists may be at greatest risk of mismatch while riparian habitat could provide refugia during dry years for phenotypically plastic species. Interannual climate patterns that we observed match climate change projections for the arid southwest, altering stopover habitat condition.

  12. Phenological mismatch and ontogenetic diet shifts interactively affect offspring condition in a passerine.

    PubMed

    Samplonius, Jelmer M; Kappers, Elena F; Brands, Stef; Both, Christiaan

    2016-09-01

    Climate change may cause phenological asynchrony between trophic levels, which can lead to mismatched reproduction in animals. Although indirect effects of mismatch on fitness are well described, direct effects on parental prey choice are not. Moreover, direct effects of prey variation on offspring condition throughout their early development are understudied. Here, we used camera trap data collected over 2 years to study the effects of trophic mismatch and nestling age on prey choice in pied flycatchers (Ficedula hypoleuca). Furthermore, we studied the effect of mismatch and variation in nestling diet on offspring condition. Both experimentally induced and natural mismatches with the caterpillar peak negatively affected absolute and relative numbers of caterpillars and offspring condition (mass, tarsus and wing length) and positively affected absolute and relative numbers of flying insects in the nestling diet. Feeding more flying insects was negatively correlated with nestling day 12 mass. Both descriptive and experimental data showed preferential feeding of spiders when nestlings were <7 days old. Receiving more spiders during this phase was positively correlated with tarsus growth. These results highlight the need for a more inclusive framework to study phenological mismatch in nature. The general focus on only one prey type, the rarity of studies that measure environmental abundance of prey, and the lack of timing experiments in dietary studies currently hamper understanding of the actual trophic interactions that affect fitness under climate change. PMID:27263989

  13. Detecting mismatches of bird migration stopover and tree phenology in response to changing climate

    USGS Publications Warehouse

    Kellermann, Jherime L.; Van Riper, Charles

    2015-01-01

    Migratory birds exploit seasonal variation in resources across latitudes, timing migration to coincide with the phenology of food at stopover sites. Differential responses to climate in phenology across trophic levels can result in phenological mismatch; however, detecting mismatch is sensitive to methodology. We examined patterns of migrant abundance and tree flowering, phenological mismatch, and the influence of climate during spring migration from 2009 to 2011 across five habitat types of the Madrean Sky Islands in southeastern Arizona, USA. We used two metrics to assess phenological mismatch: synchrony and overlap. We also examined whether phenological overlap declined with increasing difference in mean event date of phenophases. Migrant abundance and tree flowering generally increased with minimum spring temperature but depended on annual climate by habitat interactions. Migrant abundance was lowest and flowering was highest under cold, snowy conditions in high elevation montane conifer habitat while bird abundance was greatest and flowering was lowest in low elevation riparian habitat under the driest conditions. Phenological synchrony and overlap were unique and complementary metrics and should both be used when assessing mismatch. Overlap declined due to asynchronous phenologies but also due to reduced migrant abundance or flowering when synchrony was actually maintained. Overlap declined with increasing difference in event date and this trend was strongest in riparian areas. Montane habitat specialists may be at greatest risk of mismatch while riparian habitat could provide refugia during dry years for phenotypically plastic species. Interannual climate patterns that we observed match climate change projections for the arid southwest, altering stopover habitat condition.

  14. Differential immunogenicity of HLA mismatches: HLA-A2 versus HLA-A28.

    PubMed

    Dankers, Marlies K A; Roelen, Dave L; Van Der Meer-Prins, Ellen M W; De Lange, Peter; Korfage, Nelleke; Smits, Jacqueline M A; Persijn, Guido G; Welsh, Ken I; Doxiadis, Ilias I N; Claas, Frans H J

    2003-02-15

    The immunogenicity of human leukocyte antigen (HLA)-A2 versus HLA-A28 was analyzed by antibody production, cytotoxic T-lymphocyte (CTL) induction, and graft survival. We observed that an HLA-A2 mismatched child in HLA-A28 women leads to HLA-A2 specific antibodies in 32% of the women (n=31), whereas in the case of an HLA-A28 child and HLA-A2 women (n=30), no HLA-A28 specific antibodies were found ( P<0.002). Also, the CTL precursor frequencies were significantly lower against HLA-A28 compared with CTLp frequencies against HLA-A2 ( P=0.012). Finally, the kidney graft survival was slightly better in HLA-A2 positive recipients transplanted with HLA-A28 mismatches. We can conclude that single HLA-A28 mismatches are less immunogenic in HLA-A2 individuals compared with single HLA-A2 mismatches in HLA-A28 individuals, which is probably because the mismatched epitopes on the HLA-A2 molecule are unique epitopes, whereas the mismatched epitopes on HLA-A28 are shared by other HLA-A and HLA-B molecules. PMID:12589169

  15. Screening for mutations by enzyme mismatch cleavage with T4 endonuclease VII.

    PubMed Central

    Youil, R; Kemper, B W; Cotton, R G

    1995-01-01

    Each of four possible sets of mismatches (G.A/C.T, C.C/G.G, A.A/T.T, and C.A/G.T) containing the 8 possible single-base-pair mismatches derived from isolated mutations were examined to test the ability of T4 endonuclease VII to consistently detect mismatches in heteroduplexes. At least two examples of each set of mismatches were studied for cleavage in the complementary pairs of heteroduplexes formed between normal and mutant DNA. Four deletion mutations were also included in this study. The various PCR-derived products used in the formation of heteroduplexes ranged from 133 to 1502 bp. At least one example of each set showed cleavage of at least one strand containing a mismatch. Cleavage of at least one strand of the pairs of heteroduplexes occurred in 17 of the 18 known single-base-pair mutations tested, with an A.A/T.T set not being cleaved in any mismatched strand. We propose that this method may be effective in detecting and positioning almost all mutational changes when DNA is screened for mutations. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7816853

  16. Ion channel stability of Gramicidin A in lipid bilayers: effect of hydrophobic mismatch.

    PubMed

    Basu, Ipsita; Chattopadhyay, Amitabha; Mukhopadhyay, Chaitali

    2014-01-01

    Hydrophobic mismatch which is defined as the difference between the lipid hydrophobic thickness and the peptide hydrophobic length is known to be responsible in altering the lipid/protein dynamics. Gramicidin A (gA), a 15 residue β helical peptide which is well recognized to form ion conducting channels in lipid bilayer, may change its structure and function in a hydrophobic mismatched condition. We have performed molecular dynamics simulations of gA dimer in phospholipid bilayers to investigate whether or not the conversion from channel to non-channel form of gA dimer would occur under extreme negative hydrophobic mismatch. By varying the length of lipid bilayers from DLPC (1, 2-Dilauroyl-sn-glycero-3-phosphocholine) to DAPC (1, 2-Diarachidoyl-sn-glycero-3-phosphocholine), a broad range of mismatch was considered from nearly matching to extremely negative. Our simulations revealed that though the ion-channel conformation is retained by gA under a lesser mismatched situation, in extremely negative mismatched situation, in addition to bilayer thinning, the conformation of gA is changed and converted to a non-channel one. Our results demonstrate that although the channel conformation of Gramicidin A is the most stable structure, it is possible for gA to change its conformation from channel to non-channel depending upon the local environment of host bilayers.

  17. MEK1-independent activation of MAPK and MEK1-dependent activation of p70 S6 kinase by stem cell factor (SCF) in ovarian cancer cells

    SciTech Connect

    Liu, Lian; Zhang, Xin; Du, Chao; Zhang, Xiaoning; Hou, Nan; Zhao, Di; Sun, Jianzhi; Li, Li; Wang, Xiuwen; Ma, Chunhong

    2009-05-01

    We discovered a stem cell factor (SCF)-triggered, MEK1-independent, and PI3K-dependent MAPK activation pathway in the Kit-expressing ovarian cancer cell line HEY. When we knocked down MEK1 with RNA interference (RNAi) to study the function of MEK1 on the proliferation and survival of ovarian cancer cells, we found that impaired cell growth still occurred after MEK1 expression had been suppressed, although MAPK activation remained intact. This suggests that there is MEK1-independent activation of MAPK in the SCF-induced ovarian cancer cell growth process, and that MEK1 still plays a crucial role in maintaining the malignant properties of ovarian cancer cells even when it fails to activate MAPK as expected.

  18. Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells

    PubMed Central

    Popa, Crina M.; Tabuchi, Mitsuaki; Valls, Marc

    2016-01-01

    Pathogenic bacteria manipulate their hosts by delivering a number of virulence proteins -called effectors- directly into the plant or animal cells. Recent findings have shown that such effectors can suffer covalent modifications inside the eukaryotic cells. Here, we summarize the recent reports where effector modifications by the eukaryotic machinery have been described. We restrict our focus on proteins secreted by the type III or type IV systems, excluding other bacterial toxins. We describe the known examples of effectors whose enzymatic activity is triggered by interaction with plant and animal cell factors, including GTPases, E2-Ubiquitin conjugates, cyclophilin and thioredoxins. We focus on the structural interactions with these factors and their influence on effector function. We also review the described examples of host-mediated post-translational effector modifications which are required for proper subcellular location and function. These host-specific covalent modifications include phosphorylation, ubiquitination, SUMOylation, and lipidations such as prenylation, fatty acylation and phospholipid binding. PMID:27489796

  19. Widespread occurrence of norspermidine and norspermine in eukaryotic algae.

    PubMed

    Hamana, K; Matsuzaki, S

    1982-04-01

    Seven phyla of eukaryotic algae were analyzed to determine their contents of diamines and polyamines. The algae examined included Rhodophyta, Pyrrophyta, Chrysophyta, Phaeophyta, Euglenophyta, Chlorophyta, and Charophyta. Both putrescine and spermidine were detected in all the algae studied, while appreciable amounts of spermine were detected only in a few species of algae. 1,3-Diaminopropane, norspermidine, and norspermine, which are chemical analogs of putrescine, spermidine, and spermine, respectively, were widely distributed in various species of algae. There was no parallelism between the distribution patterns of putrescine derivatives and those of 1,3-diaminopropane derivatives. Cadaverine and agmatine were detected in multicellular marine algae. Homospermidine was detected sporadically in some algae. The biological and phylogenetical significance of polyamines in these lower eukaryotes is discussed.

  20. Expression of Eukaryotic Membrane Proteins in Pichia pastoris.

    PubMed

    Hartmann, Lucie; Kugler, Valérie; Wagner, Renaud

    2016-01-01

    A key point when it comes to heterologous expression of eukaryotic membrane proteins (EMPs) is the choice of the best-suited expression platform. The yeast Pichia pastoris has proven to be a very versatile system showing promising results in a growing number of cases. Indeed, its particular methylotrophic characteristics combined to the very simple handling of a eukaryotic microorganism that possesses the majority of mammalian-like machineries make it a very competitive expression system for various complex proteins, in amounts compatible with functional and structural studies. This chapter describes a set of robust methodologies routinely used for the successful expression of a variety of EMPs, going from yeast transformation with the recombinant plasmid to the analysis of the quality and quantity of the proteins produced. PMID:27485335