Science.gov

Sample records for 1-km spatial resolution

  1. Estimation of terrestrial carbon fluxes with 1km by 1km spatial-resolution using satellite- driven model

    NASA Astrophysics Data System (ADS)

    Sasai, T.; Nasahara, K.; Ito, A.; Saigusa, N.; Hirata, R.; Takagi, K.; Oikawa, T.

    2008-12-01

    Terrestrial carbon cycle is strongly affected by some local natural phenomena and human-induced activities, which bring change to the carbon exchanges via vegetation and soil microbe activities. In order to accurately understand a realistic spatial pattern in carbon exchanges including such an effect of local-scale events, we need to calculate carbon fluxes and storages with as detailed spatial resolution as possible. In response to this, we attempt to estimate terrestrial carbon fluxes with 1km by 1km spatial resolution using satellite-driven model. Study area of the model estimation is the Further East Asia region, which lies at 30-50 north latitude and 125-150 east longitude. The model is the Biosphere model integrating Eco-physiological And Mechanistic approaches using Satellite data (BEAMS) [Sasai et al., 2005, 2007]. Being aim at simulating terrestrial carbon exchanges under more realistic land surface condition, we applied as many as possible of satellite-observation products such as the standard MODIS, TRMM, and SRTM high-level land products as model inputs. In the model validation, we compared between model estimations and eddy covariance measurements at four flux sites. As a result, a correlation coefficient of the terrestrial carbon fluxes between estimations and measurements were high values, leading up that the model estimations are virtually reasonable. In model analysis, BEAMS was operated with 1km by 1km spatial resolution from 2001 to 2006. Spatial distributions in the annual mean NPP and NEP showed that high values were distributed over the hilly and plateau regions, and they were gradually decreasing towards the urban and high mountain areas, meaning that we could reflect an impact of the local-scale events in the carbon flux estimations. In future, we would extend study area to the East Asia region, and the carbon exchange map with 1km by 1km spatial- resolution is distributed on the website.

  2. Mapping growing stock at 1-km spatial resolution for Spanish forest areas from ground forest inventory data and GLAS canopy height

    NASA Astrophysics Data System (ADS)

    Sánchez-Ruiz, S.; Chiesi, M.; Maselli, F.; Gilabert, M. A.

    2016-10-01

    National forest inventories provide measurements of forest variables (e.g. growing stock) that can be used for the estimation of above ground biomass (AGB). Mapping growing stock brings knowledge about spatial distribution and temporal dynamics of ABG, which is necessary for carbon cycle analysis. Several studies have been conducted on the integration of ground and optical remote sensing data to map forest biomass over Europe. Nevertheless, more direct information on forest biomass could be obtained by LiDAR techniques, which directly assess vertical forest structure by measuring the distance between the sensor and the scattering elements located inside the canopy volume. Thus, global 1-km maps of forest canopy height have been recently obtained from the Geoscience Laser Altimeter System (GLAS). The current study aims to produce a forest growing stock map in Spain. Five different forest type areas were identified in three provinces along a North - South gradient accounting for different ecosystems and climatic conditions. Growing stock ground data from the Third Spanish National Forest Inventory were assigned to each forest type and aggregated to 1-km spatial resolution. GLAS-derived canopy height was extracted for the locations of selected ground data. A relationship between inventory growing stock and satellite canopy height was found for each class. The obtained relationships were then extended all over Spain. The accuracy of the resulting growing stock map was assessed at province level against the Third Spanish National Forest Inventory growing stock estimations (R = 0.85, RMSE = 21 m3 ha-1).

  3. Towards Mapping the Ocean Surface Topography at 1 km Resolution

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Rodriquez, Ernesto

    2006-01-01

    We propose to apply the technique of synthetic aperture radar interferometry to the measurement of ocean surface topography at spatial resolution approaching 1 km. The measurement will have wide ranging applications in oceanography, hydrology, and marine geophysics. The oceanographic and related societal applications are briefly discussed in the paper. To meet the requirements for oceanographic applications, the instrument must be flown in an orbit with proper sampling of ocean tides.

  4. Towards a 1km resolution global flood risk model

    NASA Astrophysics Data System (ADS)

    Bates, Paul; Neal, Jeff; Sampson, Chris; Smith, Andy

    2014-05-01

    Recent advances in computationally efficient numerical algorithms and new High Performance Computing architectures now make high (1-2km) resolution global hydrodynamic models a realistic proposition. However in many areas of the world the data sets and tools necessary to undertake such modelling do not currently exist. In particular, five major problems need to be resolved: (1) the best globally available terrain data (SRTM) was generated from X-band interferometric radar data which does not penetrate vegetation canopies and which has significant problems in determining ground elevations in urban areas; (2) a global river bathymetry data set does not currently exist; (3) most river channels globally are less than the smallest currently resolvable grid scale (1km) and therefore require a sub-grid treatment; (4) a means to estimate the magnitude of the T year flood at any point along the global river network does not currently exist; and (5) a large proportion of flood losses are generated by off-floodplain surface water flows which are not well represented in current hydrodynamic modelling systems. In this paper we propose solutions to each of these five issues as part of a concerted effort to develop a 1km (or better) resolution global flood hazard model. We describe the new numerical algorithms, computer architectures and computational resources used, and demonstrate solutions to the five previously intractable problems identified above. We conduct a validation study of the modelling against satellite imagery of major flooding on the Mississippi-Missouri confluence plain in the central USA before outlining a proof-of-concept regional study for SE Asia as a step towards a global scale model. For SE Asia we simulate flood hazard for ten different flood return periods over the entire Thailand, Cambodia, Vietnam, Malaysia and Laos region at 1km resolution and show that the modelling produces coherent, consistent and sensible simulations of extent and water depth.

  5. A high resolution (1 km) groundwater model for Indonesia

    NASA Astrophysics Data System (ADS)

    Sutanudjaja, Edwin; Verkaik, Jarno; de Graaf, Inge; van Beek, Rens; Erkens, Gilles; Bierkens, Marc

    2015-04-01

    Groundwater is important in many parts of Indonesia. It serves as a primary source of drinking water and industrial activities. During times of drought, it sustains water flows in streams, rivers, lakes and wetlands, and thus support ecosystem habitat and biodiversity as well as preventing hazardous forest fire. Besides its importance, groundwater is known as a vulnerable resource as unsustainable groundwater exploitation and management occurs in many areas of the country. Therefore, in order to ensure sustainable management of groundwater resources, monitoring and predicting groundwater changes in Indonesia are imperative. However, large extent groundwater models to assess these changes on a regional scale are almost non-existent and are hampered by the strong topographical and lithological transitions that characterize Indonesia. In this study, we built an 1 km resolution groundwater model for the entire Indonesian archipelago (total inland area: about 2 million km2). We adopted the approaches of Sutanudjaja et al. (2011, 2014a) and de Graaf et al. (2014) in order to make a MODFLOW (Harbaugh et al., 2000) groundwater model by using only global datasets. Aquifer schematization and properties of the groundwater model were developed from available global lithological maps (e.g. Dürr et al., 2005; Gleeson et al., 2011; Hartmann & Moorsdorf, 2012; Gleeson et al., 2014). We forced the groundwater model with the recent output of global hydrological model PCR-GLOBWB version 2.0 (Sutanudjaja et al., 2014b; van Beek et al., 2011), specifically the long term average of groundwater recharge and average surface water levels derived from channel discharge. Simulation results were promising. The MODFLOW model converged with realistic aquifer properties (i.e. transmissivities) and produced reasonable groundwater head spatial distribution reflecting the positions of major groundwater bodies and surface water bodies in the country. In Vienna, we aim to show and demonstrate these

  6. Development of a high-resolution (1 km × 1 km, 1 h) emission model for Spain: The High-Elective Resolution Modelling Emission System (HERMES)

    NASA Astrophysics Data System (ADS)

    Baldasano, José María; Güereca, Leonor Patricia; López, Eugeni; Gassó, Santiago; Jimenez-Guerrero, Pedro

    This work presents the results of the development and application of the High-Elective Resolution Modelling Emission System (HERMES). HERMES generates the emissions for Spain needed for the application of high-resolution chemistry transport models, taking the year 2004 as reference with a temporal resolution of 1 h and a spatial resolution of 1 km 2 considering both anthropogenic (power generation, industrial activities, on-road traffic, ports, airports, solvent use, domestic and commercial fossil fuel use) and biogenic sources (vegetation), using a bottom-up approach, up-to-date information and state-of-the-art methodologies for emission estimation. HERMES is capable of calculating emissions by sector-specific sources or by individual installations and stacks. The annual addition of hourly sectorial emissions leads to an estimation of total annual emissions as follows: NO x, 795 kt; NMVOCs, 1025 kt; CO, 1236 kt; SO 2, 1142 kt and TSP, 180 kt; which are distributed principally in the greater areas of the main cities, highways and large point sources. NO x, SO 2 and PM 2.5 highly correlate with the power generation by coal use, achieving higher emission levels during summertime due to the increase of electricity demand by cooling systems. NMVOCs show high correlation with temperature and solar radiation (mainly as a consequence of the important weight of biogenic emissions) causing the maximum emissions during the daylight hours of summer months. CO emissions are mostly influenced by the on-road traffic; consequently the higher emissions are attained in summer because of the increase of daily average traffic during holidays. The most significant total emission sources are on-road traffic (38%), combustion in power generation plants (33%), biogenic sources (12%) and combustion in manufacturing industries (9%). The inventory generated with HERMES emission model has been successfully integrated within the Spanish Ministry of the Environment's air quality forecasting

  7. A Global Database of Land Surface Parameters at 1-km Resolution in Meteorological and Climate Models.

    NASA Astrophysics Data System (ADS)

    Masson, Valéry; Champeaux, Jean-Louis; Chauvin, Fabrice; Meriguet, Christelle; Lacaze, Roselyne

    2003-05-01

    Ecoclimap, a new complete surface parameter global dataset at a 1-km resolution, is presented. It is intended to be used to initialize the soil-vegetation-atmosphere transfer schemes (SVATs) in meteorological and climate models (at all horizontal scales). The database supports the `tile' approach, which is utilized by an increasing number of SVATs. Two hundred and fifteen ecosystems representing areas of homogeneous vegetation are derived by combining existing land cover maps and climate maps, in addition to using Advanced Very High Resolution Radiometer (AVHRR) satellite data. Then, all surface parameters are derived for each of these ecosystems using lookup tables with the annual cycle of the leaf area index (LAI) being constrained by the AVHRR information. The resulting LAI is validated against a large amount of in situ ground observations, and it is also compared to LAI derived from the International Satellite Land Surface Climatology Project (ISLSCP-2) database and the Polarization and Directionality of the Earth's Reflectance (POLDER) satellite. The comparison shows that this new LAI both reproduces values coherent at large scales with other datasets, and includes the high spatial variations owing to the input land cover data at a 1-km resolution. In terms of climate modeling studies, the use of this new database is shown to improve the surface climatology of the ARPEGE climate model.

  8. SMOS disaggregated soil moisture product at 1 km resolution: processor overview and first validation results

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The SMOS (Soil Moisture and Ocean Salinity) mission provides surface soil moisture (SM) maps at a mean resolution of ~50 km. However, agricultural applications (irrigation, crop monitoring) and some hydrological applications (floods and modeling of small basins) require higher resolution SM...

  9. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  10. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution.

    PubMed

    Domisch, Sami; Amatulli, Giuseppe; Jetz, Walter

    2015-12-08

    The lack of freshwater-specific environmental information at sufficiently fine spatial grain hampers broad-scale analyses in aquatic biology, biogeography, conservation, and ecology. Here we present a near-global, spatially continuous, and freshwater-specific set of environmental variables in a standardized 1 km grid. We delineate the sub-catchment for each grid cell along the HydroSHEDS river network and summarize the upstream climate, topography, land cover, surface geology and soil to each grid cell using various metrics (average, minimum, maximum, range, sum, inverse distance-weighted average and sum). All variables were subsequently averaged across single lakes and reservoirs of the Global lakes and Wetlands Database that are connected to the river network. Monthly climate variables were summarized into 19 long-term climatic variables following the 'bioclim' framework. This new set of variables provides a basis for spatial ecological and biodiversity analyses in freshwater ecosystems at near global extent, yet fine spatial grain. To facilitate the generation of freshwater variables for custom study areas and spatial grains, we provide the 'r.stream.watersheds' and 'r.stream.variables' add-ons for the GRASS GIS software.

  11. High-resolution polar climate parameters derived from 1-km AVHRR data

    SciTech Connect

    Hutchinson, T.A.; Scambos, T.A.

    1997-11-01

    This paper describes the development of a time-series of composites of albedo, surface temperature, and sea ice motion. The composites will be generated from high-resolution (Local Area Coverage and High Resolution Picture Transmission) Advanced Very High Resolution Radiometer (AVHRR). Composites of albedo and surface (skin) temperature will be derived from AVHRR data within three hours of two selected local times (0400 and 1400 for the northern hemisphere, and 0200 and 1600 for the southern hemisphere) for each day. These products will be gridded at 1.25 km cell size in an equal-area projection compatible with recent gridded products from Special Sensor Microwave/Imager data and planned products from the TIROS Operational Verticle Sounder and other AVHRR data sets. Sea ice motion will be calculated once per day by comparing clear-sky image data of sea ice over a three-day period, and reported on a 1.25 km grid. A brief discussion of a reconnaissance survey of the output geophysical parameters for the Northern Hemisphere between August and October 1993 is also presented. 9 refs., 5 figs., 2 tabs.

  12. Near-Cloud Aerosol Properties from the 1 Km Resolution MODIS Ocean Product

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander

    2014-01-01

    This study examines aerosol properties in the vicinity of clouds by analyzing high-resolution atmospheric correction parameters provided in the MODIS (Moderate Resolution Imaging Spectroradiometer) ocean color product. The study analyzes data from a 2 week long period of September in 10 years, covering a large area in the northeast Atlantic Ocean. The results indicate that on the one hand, the Quality Assessment (QA) flags of the ocean color product successfully eliminate cloud-related uncertainties in ocean parameters such as chlorophyll content, but on the other hand, using the flags introduces a sampling bias in atmospheric products such as aerosol optical thickness (AOT) and Angstrom exponent. Therefore, researchers need to select QA flags by balancing the risks of increased retrieval uncertainties and sampling biases. Using an optimal set of QA flags, the results reveal substantial increases in optical thickness near clouds-on average the increase is 50% for the roughly half of pixels within 5 km from clouds and is accompanied by a roughly matching increase in particle size. Theoretical simulations show that the 50% increase in 550nm AOT changes instantaneous direct aerosol radiative forcing by up to 8W/m2 and that the radiative impact is significantly larger if observed near-cloud changes are attributed to aerosol particles as opposed to undetected cloud particles. These results underline that accounting for near-cloud areas and understanding the causes of near-cloud particle changes are critical for accurate calculations of direct aerosol radiative forcing.

  13. Near-cloud aerosol properties from the 1 km resolution MODIS ocean product

    NASA Astrophysics Data System (ADS)

    Várnai, Tamás.; Marshak, Alexander

    2014-02-01

    This study examines aerosol properties in the vicinity of clouds by analyzing high-resolution atmospheric correction parameters provided in the MODIS (Moderate Resolution Imaging Spectroradiometer) ocean color product. The study analyzes data from a 2 week long period of September in 10 years, covering a large area in the northeast Atlantic Ocean. The results indicate that on the one hand, the Quality Assessment (QA) flags of the ocean color product successfully eliminate cloud-related uncertainties in ocean parameters such as chlorophyll content, but on the other hand, using the flags introduces a sampling bias in atmospheric products such as aerosol optical thickness (AOT) and Angstrom exponent. Therefore, researchers need to select QA flags by balancing the risks of increased retrieval uncertainties and sampling biases. Using an optimal set of QA flags, the results reveal substantial increases in optical thickness near clouds—on average the increase is 50% for the roughly half of pixels within 5 km from clouds and is accompanied by a roughly matching increase in particle size. Theoretical simulations show that the 50% increase in 550 nm AOT changes instantaneous direct aerosol radiative forcing by up to 8 W/m2 and that the radiative impact is significantly larger if observed near-cloud changes are attributed to aerosol particles as opposed to undetected cloud particles. These results underline that accounting for near-cloud areas and understanding the causes of near-cloud particle changes are critical for accurate calculations of direct aerosol radiative forcing.

  14. A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958-2015)

    NASA Astrophysics Data System (ADS)

    Noël, Brice; van de Berg, Willem Jan; Machguth, Horst; Lhermitte, Stef; Howat, Ian; Fettweis, Xavier; van den Broeke, Michiel R.

    2016-10-01

    This study presents a data set of daily, 1 km resolution Greenland ice sheet (GrIS) surface mass balance (SMB) covering the period 1958-2015. Applying corrections for elevation, bare ice albedo and accumulation bias, the high-resolution product is statistically downscaled from the native daily output of the polar regional climate model RACMO2.3 at 11 km. The data set includes all individual SMB components projected to a down-sampled version of the Greenland Ice Mapping Project (GIMP) digital elevation model and ice mask. The 1 km mask better resolves narrow ablation zones, valley glaciers, fjords and disconnected ice caps. Relative to the 11 km product, the more detailed representation of isolated glaciated areas leads to increased precipitation over the southeastern GrIS. In addition, the downscaled product shows a significant increase in runoff owing to better resolved low-lying marginal glaciated regions. The combined corrections for elevation and bare ice albedo markedly improve model agreement with a newly compiled data set of ablation measurements.

  15. A global coupled Eulerian-Lagrangian model and 1 1 km CO2 surface flux dataset for high-resolution atmospheric CO2 transport simulations

    SciTech Connect

    Ganshin, A; Oda, T; Saito, M; Maksyutov, S; Valsala, V; Andres, Robert Joseph; Fischer, R; Lowry, D; Lukyanov, A; Matsueda, H; Nisbet, E; Rigby, M; Sawa, Y; Toumi, R; Tsuboi, K; Varlagin, A; Zhuravlev, R

    2012-01-01

    Abstract. We designed a method to simulate atmospheric CO2 concentrations at several continuous observation sites around the globe using surface fluxes at a very high spatial resolution. The simulations presented in this study were performed using the Global Eulerian-Lagrangian Coupled Atmospheric model (GELCA), comprising a Lagrangian particle dispersion model coupled to a global atmospheric tracer transport model with prescribed global surface CO2 flux maps at a 1 1 km resolution. The surface fluxes used in the simulations were prepared by assembling the individual components of terrestrial, oceanic and fossil fuel CO2 fluxes. This experimental setup (i.e. a transport model running at a medium resolution, coupled to a high-resolution Lagrangian particle dispersion model together with global surface fluxes at a very high resolution), which was designed to represent high-frequency variations in atmospheric CO2 concentration, has not been reported at a global scale previously. Two sensitivity experiments were performed: (a) using the global transport model without coupling to the Lagrangian dispersion model, and (b) using the coupled model with a reduced resolution of surface fluxes, in order to evaluate the performance of Eulerian-Lagrangian coupling and the role of high-resolution fluxes in simulating high-frequency variations in atmospheric CO2 concentrations. A correlation analysis between observed and simulated atmospheric CO2 concentrations at selected locations revealed that the inclusion of both Eulerian-Lagrangian coupling and highresolution fluxes improves the high-frequency simulations of the model. The results highlight the potential of a coupled Eulerian-Lagrangian model in simulating high-frequency atmospheric CO2 concentrations at many locations worldwide. The model performs well in representing observations of atmospheric CO2 concentrations at high spatial and temporal resolutions, especially for coastal sites and sites located close to sources of

  16. Variability in Soil Properties at Different Spatial Scales (1 m to 1 km) in a Deciduous Forest Ecosystem

    SciTech Connect

    Garten Jr, Charles T; Kang, S.; Brice, Deanne Jane; Schadt, Christopher Warren; Zhou, Jizhong

    2007-01-01

    The purpose of this research was to test the hypothesis that variability in 11 soil properties, related to soil texture and soil C and N, would increase from small (1 m) to large (1 km) spatial scales in a temperate, mixed-hardwood forest ecosystem in east Tennessee, USA. The results were somewhat surprising and indicated that a fundamental assumption in geospatial analysis, namely that variability increases with increasing spatial scale, did not apply for at least five of the 11 soil properties measured over a 0.5-km2 area. Composite mineral soil samples (15 cm deep) were collected at 1, 5, 10, 50, 250, and 500 m distances from a center point along transects in a north, south, east, and westerly direction. A null hypothesis of equal variance at different spatial scales was rejected (P{le}0.05) for mineral soil C concentration, silt content, and the C-to-N ratios in particulate organic matter (POM), mineral-associated organic matter (MOM), and whole surface soil. Results from different tests of spatial variation, based on coefficients of variation or a Mantel test, led to similar conclusions about measurement variability and geographic distance for eight of the 11 variables examined. Measurements of mineral soil C and N concentrations, C concentrations in MOM, extractable soil NH{sub 4}-N, and clay contents were just as variable at smaller scales (1-10 m) as they were at larger scales (50-500 m). On the other hand, measurement variation in mineral soil C-to-N ratios, MOM C-to-N ratios, and the fraction of soil C in POM clearly increased from smaller to larger spatial scales. With the exception of extractable soil NH4-N, measured soil properties in the forest ecosystem could be estimated (with 95% confidence) to within 15% of their true mean with a relatively modest number of sampling points (n{le}25). For some variables, scaling up variation from smaller to larger spatial domains within the ecosystem could be relatively easy because small-scale variation may be

  17. CEH-GEAR: 1 km resolution daily and monthly areal rainfall estimates for the UK for hydrological use

    NASA Astrophysics Data System (ADS)

    Keller, V. D. J.; Tanguy, M.; Prosdocimi, I.; Terry, J. A.; Hitt, O.; Cole, S. J.; Fry, M.; Morris, D. G.; Dixon, H.

    2015-01-01

    The Centre for Ecology & Hydrology - Gridded Estimates of Areal Rainfall (CEH-GEAR) dataset was developed to provide reliable 1 km gridded estimates of daily and monthly rainfall for Great Britain (GB) and Northern Ireland (NI) (together with approximately 3500 km2 of catchment in the Republic of Ireland) from 1890 onwards. The dataset was primarily required to support hydrological modelling. The rainfall estimates are derived from the Met Office collated historical weather observations for the UK which include a national database of raingauge observations. The natural neighbour interpolation methodology, including a normalisation step based on average annual rainfall, was used to generate the daily and monthly rainfall grids. To derive the monthly estimates, rainfall totals from monthly and daily (when complete month available) read raingauges were used in order to obtain maximum information from the raingauge network. The daily grids were adjusted so that the monthly grids are fully consistent with the daily grids. The CEH-GEAR dataset was developed according to the guidance provided by the British Standards Institution. The CEH-GEAR dataset contains 1 km grids of daily and monthly rainfall estimates for GB and NI for the period 1890-2012. For each day and month, CEH-GEAR includes a secondary grid of distance to the nearest operational raingauge. This may be used as an indicator of the quality of the estimates. When this distance is greater than 100 km, the estimates are not calculated due to high uncertainty. CEH-GEAR is available free of charge for commercial and non-commercial use subject to licensing terms and conditions. doi:10.5285/5dc179dc-f692-49ba-9326-a6893a503f6e

  18. CEH-GEAR: 1 km resolution daily and monthly areal rainfall estimates for the UK for hydrological and other applications

    NASA Astrophysics Data System (ADS)

    Keller, V. D. J.; Tanguy, M.; Prosdocimi, I.; Terry, J. A.; Hitt, O.; Cole, S. J.; Fry, M.; Morris, D. G.; Dixon, H.

    2015-06-01

    The Centre for Ecology & Hydrology - Gridded Estimates of Areal Rainfall (CEH-GEAR) data set was developed to provide reliable 1 km gridded estimates of daily and monthly rainfall for Great Britain (GB) and Northern Ireland (NI) (together with approximately 3500 km2 of catchment in the Republic of Ireland) from 1890 onwards. The data set was primarily required to support hydrological modelling. The rainfall estimates are derived from the Met Office collated historical weather observations for the UK which include a national database of rain gauge observations. The natural neighbour interpolation methodology, including a normalisation step based on average annual rainfall (AAR), was used to generate the daily and monthly rainfall grids. To derive the monthly estimates, rainfall totals from monthly and daily (when complete month available) rain gauges were used in order to obtain maximum information from the rain gauge network. The daily grids were adjusted so that the monthly grids are fully consistent with the daily grids. The CEH-GEAR data set was developed according to the guidance provided by the British Standards Institution. The CEH-GEAR data set contains 1 km grids of daily and monthly rainfall estimates for GB and NI for the period 1890-2012. For each day and month, CEH-GEAR includes a secondary grid of distance to the nearest operational rain gauge. This may be used as an indicator of the quality of the estimates. When this distance is greater than 100 km, the estimates are not calculated due to high uncertainty. CEH-GEAR is available from doi:10.5285/5dc179dc-f692-49ba-9326-a6893a503f6e and is free of charge for commercial and non-commercial use subject to licensing terms and conditions.

  19. WegenerNet climate station network region Feldbach/Austria: From local measurements to weather and climate data products at 1 km-scale resolution

    NASA Astrophysics Data System (ADS)

    Kabas, T.; Leuprecht, A.; Bichler, C.; Kirchengast, G.

    2010-12-01

    South-eastern Austria is characteristic for experiencing a rich variety of weather and climate patterns. For this reason, the county of Feldbach was selected by the Wegener Center as a focus area for a pioneering observation experiment at very high resolution: The WegenerNet climate station network (in brief WegenerNet) comprises 151 meteorological stations within an area of about 20 km × 15 km (~ 1.4 km × 1.4 km station grid). All stations measure the main parameters temperature, humidity and precipitation with 5 minute sampling. Selected further stations include measurements of wind speed and direction completed by soil parameters as well as air pressure and net radiation. The collected data is integrated in an automatic processing system including data transfer, quality control, product generation, and visualization. Each station is equipped with an internet-attached data logger and the measurements are transferred as binary files via GPRS to the WegenerNet server in 1 hour intervals. The incoming raw data files of measured parameters as well as several operating values of the data logger are stored in a relational database (PostgreSQL). Next, the raw data pass the Quality Control System (QCS) in which the data are checked for its technical and physical plausibility (e.g., sensor specifications, temporal and spatial variability). In consideration of the data quality (quality flag), the Data Product Generator (DPG) results in weather and climate data products on various temporal scales (from 5 min to annual) for single stations and regular grids. Gridded data are derived by vertical scaling and squared inverse distance interpolation (1 km × 1 km and 0.01° × 0.01° grids). Both subsystems (QCS and DPG) are realized by the programming language Python. For application purposes the resulting data products are available via the bi-lingual (dt, en) WegenerNet data portal (www.wegenernet.org). At this time, the main interface is still online in a system in which

  20. Characteristics of the Alaskan 1-Km Advanced Very High Resolution Radiometer data sets used for analysis of vegetation biophysical properties

    USGS Publications Warehouse

    Markon, Carl J.

    1999-01-01

    In this study, data characteristics for composited, multitemporal Advanced Very High Resolution Radiometer data sets for Alaska were assessed for a 7- year period from 1991 to 1997. This involved consideration of the satellite sensors used, data processing performed, and data set compilation, along with an analysis of acquisition date, solar zenith angle, satellite viewing angle, presence of clouds, and registration accuracy for each year. Each year?s worth of data are available on CD-ROM in byte format. All data sets have an initial start date of April 1, but had varying ending dates (mid-September to late October) because of satellite sensor malfunction or the presence of clouds or snow; no data set extended beyond October 31. Satellite scan angles were summarized in seven categories: data obtained at nadir, data within 30, 40, and 55 degrees of nadir, data greater than 55 degrees off nadir, and proportions of the data representing east or west look angles. Minimum, maximum, and average solar zenith angles were provided for each period. Estimates of cloud cover for each period were based on three tests: reflectance gross cloud test, channel 3 minus channel 4, and channel 4 minus channel 5. Registration accuracy was estimated using a gray-level autocorrelation technique. Results of this investigation indicate that the composited data available on CD-ROM should be useful for a number of different regional assessments of Earth cover properties. However, caution is advised when using these data because (1) loss in precision from the conversion to a byte format, (2) low sun angles and high viewing angles in the September and October data, and (3) registration inaccuracies of 2 to 8 pixels.

  1. Measurements of the Spatial Variability of Mean Wind Profiles Using Multiple Doppler Lidars over Distances less than 1 Km

    NASA Astrophysics Data System (ADS)

    Banta, R. M.; Choukulkar, A.; Brewer, A.; Lundquist, J. K.; Iungo, V.; Pichugina, Y. L.; Quelet, P. T.; Wolfe, D. E.; Oncley, S.; Sandberg, S.; Weickmann, A. M.; Delgado, R.; McCaffrey, K.

    2015-12-01

    Small differences in wind speed can translate to large differences in wind energy (WE) revenues, so WE decision making requires accurate measurements of wind profiles through the turbine rotor layer of the lower atmosphere. Advances in understanding and modeling of boundary-layer processes, also needed by WE, requires such measurements through an even deeper layer—at least the lowest few hundreds of meters. An important use for such accurate measured wind-profile data is in the initiation and verification of NWP models. This prospect raises several fundamental questions, such as, what does the modeled profile represent, how was the measured profile determined, and what if the profile had been measured from a different site within the grid cell? To address these questions, two experiments were conducted at the Boulder Atmospheric Observatory (BAO) in modestly complex terrain downwind of the mountains. The Lidar Uncertainty Measurement Experiment (LUMEX) in June-July 2014 featured 5 Doppler lidars (2 scanning), and XPIA in April-May 2015, 11 Doppler lidars, including 5 scanning systems. Two broad goals of these projects were to assess differences in scanning and other data acquisition procedures on the measurements, addressed in (Pichugina et al.) at this conference, and to evaluate the effects of varying spatial separations on differences in the measured winds, addressed in the present paper. Sonic anemometers every 50 m on the 300-m BAO tower were used as a reference for the wind calculations, as well as another profile location. Lidar scan data indicated terrain-related regions of stronger flow within the scan volume of more than 1 m/s that were at least semi-recurrent. This variability produced significant differences in mean rotor-level winds by 2 identical profiling lidars separated by 500 m. During XPIA, four of the scanning Doppler lidars performed intersecting elevation scans (vertical-slice or "RHI") to create 'virtual towers' at various separation

  2. Spatial decorrelation stretch of annual (2003-2014) Daymet precipitation summaries on a 1-km grid for California, Nevada, Arizona, and Utah.

    PubMed

    Ch Miliaresis, George

    2016-06-01

    A method is presented for elevation (H) and spatial position (X, Y) decorrelation stretch of annual precipitation summaries on a 1-km grid for SW USA for the period 2003 to 2014. Multiple linear regression analysis of the first and second principal component (PC) quantifies the variance in the multi-temporal precipitation imagery that is explained by X, Y, and elevation (h). The multi-temporal dataset is reconstructed from the PC1 and PC2 residual images and the later PCs by taking into account the variance that is not related to X, Y, and h. Clustering of the reconstructed precipitation dataset allowed the definition of positive (for example, in Sierra Nevada, Salt Lake City) and negative (for example, in San Joaquin Valley, Nevada, Colorado Plateau) precipitation anomalies. The temporal and spatial patterns defined from the spatially standardized multi-temporal precipitation imagery provide a tool of comparison for regions in different geographic environments according to the deviation from the precipitation amount that they are expected to receive as function of X, Y, and h. Such a standardization allows the definition of less or more sensitive to climatic change regions and gives an insight in the spatial impact of atmospheric circulation that causes the annual precipitation.

  3. Particle detector spatial resolution

    DOEpatents

    Perez-Mendez, V.

    1992-12-15

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs.

  4. Lake surface water temperatures of European Alpine lakes (1989-2013) based on the Advanced Very High Resolution Radiometer (AVHRR) 1 km data set

    NASA Astrophysics Data System (ADS)

    Riffler, M.; Lieberherr, G.; Wunderle, S.

    2015-02-01

    Lake water temperature (LWT) is an important driver of lake ecosystems and it has been identified as an indicator of climate change. Consequently, the Global Climate Observing System (GCOS) lists LWT as an essential climate variable. Although for some European lakes long in situ time series of LWT do exist, many lakes are not observed or only on a non-regular basis making these observations insufficient for climate monitoring. Satellite data can provide the information needed. However, only few satellite sensors offer the possibility to analyse time series which cover 25 years or more. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown as a heritage instrument for almost 35 years. It will be carried on for at least ten more years, offering a unique opportunity for satellite-based climate studies. Herein we present a satellite-based lake surface water temperature (LSWT) data set for European water bodies in or near the Alps based on the extensive AVHRR 1 km data record (1989-2013) of the Remote Sensing Research Group at the University of Bern. It has been compiled out of AVHRR/2 (NOAA-07, -09, -11, -14) and AVHRR/3 (NOAA-16, -17, -18, -19 and MetOp-A) data. The high accuracy needed for climate related studies requires careful pre-processing and consideration of the atmospheric state. The LSWT retrieval is based on a simulation-based scheme making use of the Radiative Transfer for TOVS (RTTOV) Version 10 together with ERA-interim reanalysis data from the European Centre for Medium-range Weather Forecasts. The resulting LSWTs were extensively compared with in situ measurements from lakes with various sizes between 14 and 580 km2 and the resulting biases and RMSEs were found to be within the range of -0.5 to 0.6 K and 1.0 to 1.6 K, respectively. The upper limits of the reported errors could be rather attributed to uncertainties in the data comparison between in situ and satellite observations than inaccuracies of the satellite

  5. How Attention Affects Spatial Resolution

    PubMed Central

    Carrasco, Marisa; Barbot, Antoine

    2015-01-01

    We summarize and discuss a series of psychophysical studies on the effects of spatial covert attention on spatial resolution, our ability to discriminate fine patterns. Heightened resolution is beneficial in most, but not all, visual tasks. We show how endogenous attention (voluntary, goal driven) and exogenous attention (involuntary, stimulus driven) affect performance on a variety of tasks mediated by spatial resolution, such as visual search, crowding, acuity, and texture segmentation. Exogenous attention is an automatic mechanism that increases resolution regardless of whether it helps or hinders performance. In contrast, endogenous attention flexibly adjusts resolution to optimize performance according to task demands. We illustrate how psychophysical studies can reveal the underlying mechanisms of these effects and allow us to draw linking hypotheses with known neurophysiological effects of attention. PMID:25948640

  6. Spatial Resolution Requirements for MODIS-N. [Polar Platform Moderate Resolution Imaging Spectrometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.; Justice, C. O.; Markham, B. L.; Briggs, S. A.

    1988-01-01

    An empirical investigation of the required spatial resolution for MODIS-N is outlined. It is based on 5 LANDSAT multispectral scanner system images of the normalized difference vegetation index degraded to resolutions between 250 m and 4000 m. Pairs of images from different dates were registered and difference images were generated. Fourier analysis indicates that resolutions finer than 1 km are highly desirable for change detection. A sensor with a resolution of 500 m is recommended as providing the best compromise between detail of changes detected and the size of the resultant data volume, but other options are also suggested.

  7. Using remote sensing products to classify landscape. A multi-spatial resolution approach

    NASA Astrophysics Data System (ADS)

    García-Llamas, Paula; Calvo, Leonor; Álvarez-Martínez, José Manuel; Suárez-Seoane, Susana

    2016-08-01

    The European Landscape Convention encourages the inventory and characterization of landscapes for environmental management and planning actions. Among the range of data sources available for landscape classification, remote sensing has substantial applicability, although difficulties might arise when available data are not at the spatial resolution of operational interest. We evaluated the applicability of two remote sensing products informing on land cover (the categorical CORINE map at 30 m resolution and the continuous NDVI spectral index at 1 km resolution) in landscape classification across a range of spatial resolutions (30 m, 90 m, 180 m, 1 km), using the Cantabrian Mountains (NW Spain) as study case. Separate landscape classifications (using topography, urban influence and land cover as inputs) were accomplished, one per each land cover dataset and spatial resolution. Classification accuracy was estimated through confusion matrixes and uncertainty in terms of both membership probability and confusion indices. Regarding landscape classifications based on CORINE, both typology and number of landscape classes varied across spatial resolutions. Classification accuracy increased from 30 m (the original resolution of CORINE) to 90m, decreasing towards coarser resolutions. Uncertainty followed the opposite pattern. In the case of landscape classifications based on NDVI, the identified landscape patterns were geographically structured and showed little sensitivity to changes across spatial resolutions. Only the change from 1 km (the original resolution of NDVI) to 180 m improved classification accuracy. The value of confusion indices increased with resolution. We highlight the need for greater effort in selecting data sources at the suitable spatial resolution, matching regional peculiarities and minimizing error and uncertainty.

  8. Comparison of alternative spatial resolutions in the application of a spatially distributed biogeochemical model over complex terrain

    USGS Publications Warehouse

    Turner, D.P.; Dodson, R.; Marks, D.

    1996-01-01

    Spatially distributed biogeochemical models may be applied over grids at a range of spatial resolutions, however, evaluation of potential errors and loss of information at relatively coarse resolutions is rare. In this study, a georeferenced database at the 1-km spatial resolution was developed to initialize and drive a process-based model (Forest-BGC) of water and carbon balance over a gridded 54976 km2 area covering two river basins in mountainous western Oregon. Corresponding data sets were also prepared at 10-km and 50-km spatial resolutions using commonly employed aggregation schemes. Estimates were made at each grid cell for climate variables including daily solar radiation, air temperature, humidity, and precipitation. The topographic structure, water holding capacity, vegetation type and leaf area index were likewise estimated for initial conditions. The daily time series for the climatic drivers was developed from interpolations of meteorological station data for the water year 1990 (1 October 1989-30 September 1990). Model outputs at the 1-km resolution showed good agreement with observed patterns in runoff and productivity. The ranges for model inputs at the 10-km and 50-km resolutions tended to contract because of the smoothed topography. Estimates for mean evapotranspiration and runoff were relatively insensitive to changing the spatial resolution of the grid whereas estimates of mean annual net primary production varied by 11%. The designation of a vegetation type and leaf area at the 50-km resolution often subsumed significant heterogeneity in vegetation, and this factor accounted for much of the difference in the mean values for the carbon flux variables. Although area wide means for model outputs were generally similar across resolutions, difference maps often revealed large areas of disagreement. Relatively high spatial resolution analyses of biogeochemical cycling are desirable from several perspectives and may be particularly important in the

  9. SPATIAL AND SPECTRAL RESOLUTION IN GEOBOTANY.

    USGS Publications Warehouse

    Milton, Nancy M.; Mouat, D.A.

    1984-01-01

    Remotely sensed data are now available from a wide variety of instruments, each data set having a particular spectral and spatial resolution. The changes in vegetation associated with changes in lithology or the presence of mineral deposits can also occur at different scales. The task of geobotanical remote sensing is to choose or adapt the remotely sensed data to the appropriate geobotanical technique to solve the geological problem of interest. Examples are given of a number of applications of data sets of different spectral and spatial resolution. The relative importance of spectral and spatial resolution is discussed.

  10. Fundamental Limits of Spatial Resolution in PET

    PubMed Central

    Moses, William W.

    2010-01-01

    The fundamental limits of spatial resolution in positron emission tomography (PET) have been understood for many years. The physical size of the detector element usually plays the dominant role in determining resolution, but the combined contributions from acollinearity, positron range, penetration into the detector ring, and decoding errors in the detector modules often combine to be of similar size. In addition, the sampling geometry and statistical noise further degrade the effective resolution. This paper describes quantitatively describes these effects, discusses potential methods for reducing the magnitude of these effects, and computes the ultimately achievable spatial resolution for clinical and pre-clinical PET cameras. PMID:21804677

  11. IGBP-DIS global 1 km land cover data set, DISCover: First results

    USGS Publications Warehouse

    Loveland, T.R.; Belward, A.S.

    1997-01-01

    The International Geosphere-Biosphere Programme Data and Information System (IGBP-DIS) is co-ordinating the development of global land data sets from Advanced Very High Resolution Radiometer (AVHRR) data. The first is a 1 km spatial resolution land cover product `DISCover', based on monthly Normalized Difference Vegetation Index composites from 1992 and 1993. DISCover is a 17 class land cover dataset based on the science requirements of IGBP elements. Mapping uses unsupervised classification with post-classification refinement using ancillary data. Draft Africa, North America and South America products are now available for peer review.

  12. High Spatial Resolution Thermal Satellite Technologies

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2003-01-01

    This document in the form of viewslides, reviews various low-cost alternatives to high spatial resolution thermal satellite technologies. There exists no follow-on to Landsat 7 or ASTER high spatial resolution thermal systems. This document reviews the results of the investigation in to the use of new technologies to create a low-cost useful alternative. Three suggested technologies are examined. 1. Conventional microbolometer pushbroom modes offers potential for low cost Landsat Data Continuity Mission (LDCM) thermal or ASTER capability with at least 60-120 ground sampling distance (GSD). 2. Backscanning could produce MultiSpectral Thermal Imager performance without cooled detectors. 3. Cooled detector could produce hyperspectral thermal class system or extremely high spatial resolution class instrument.

  13. SoilGrids1km — Global Soil Information Based on Automated Mapping

    PubMed Central

    Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the Soil

  14. Spatial resolution considerations for urban hydrological modelling

    NASA Astrophysics Data System (ADS)

    Krebs, G.; Kokkonen, T.; Valtanen, M.; Setälä, H.; Koivusalo, H.

    2014-05-01

    Hydrological model simulations can be applied to evaluate the performance of low impact development (LID) tools in urban areas. However, the assessment for large-scale urban areas remains a challenge due to the required high spatial resolution and limited availability of field measurements for model calibration. This study proposes a methodology to parameterize a hydrological model (SWMM) with sufficiently high spatial resolution and direct accessibility of model parameters for LID performance simulation applicable to a large-scale ungauged urban area. Based on calibrated high-resolution models for three small-scale study catchments (6-12 ha), we evaluated how constraints implied by large-scale urban modelling, such as data limitations, affect the model results. The high-resolution surface representation, resulting in subcatchments of uniform surface types, reduced the number of calibration parameters. Calibration conducted independently for all catchments yielded similar parameter values for same surface types in each study catchment. These results suggest the applicability of the parameter values calibrated for high resolution models to be regionalized to larger, ungauged urban areas. The accessibility of surface specific model parameters for LID simulation is then also retained. Conducted perturbations in spatial resolution through sewer network truncation showed that while the runoff volume was mostly unaffected by resolution perturbations, lower resolutions resulted in over-simulation of peak flows due to excessively rapid catchment response to storm events. Our results suggest that a hydrological model where parameter values are adopted from high-resolution models and that is developed based on a minimum conduit diameter of 300 mm provides good simulation performance and is applicable to large-scale urban areas with reasonable effort.

  15. Using multi-satellite data fusion to estimate daily high spatial resolution evapotranspiration over a forested site in North Carolina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atmosphere-Land Exchange Inverse model and associated disaggregation scheme (ALEXI/DisALEXI). Satellite-based ET retrievals from both the Moderate Resolution Imaging Spectoradiometer (MODIS; 1km, daily) and Landsat (30m, bi-weekly) are fused with The Spatial and Temporal Adaptive Reflective Fusion ...

  16. Cumulus cloud field morphology and spatial patterns derived from high spatial resolution Landsat imagery

    NASA Technical Reports Server (NTRS)

    Sengupta, S. K.; Welch, R. M.; Navar, M. S.; Berendes, T. A.; Chen, D. W.

    1990-01-01

    Using high-spatial-resolution Landsat MSS imagery, the cumulus cloud morphology, cloud nearest-neighbor distributions, and cloud clumping scales were investigated. It is shown that the cloud-size distribution can be represented by a mixture of two power laws; clouds of diameters less than 1 km have power-law slope range of 1.4-2.3, while larger clouds have slopes from 2.1 to 4.75. The break in power-law slope occurs at the cloud size that makes the largest contribution to cloud cover. Results suggest that larger clouds grow at the expense of smaller clouds. It was also found that the cloud inhomogeneities have significant impact on radiative fluxes.

  17. Increasing spatial resolution of CHIRPS rainfall datasets for Cyprus with artificial neural networks

    NASA Astrophysics Data System (ADS)

    Tymvios, Filippos; Michaelides, Silas; Retalis, Adrianos; Katsanos, Dimitrios; Lelieveld, Jos

    2016-08-01

    The use of high resolution rainfall datasets is an alternative way of studying climatological regions where conventional rain measurements are sparse or not available. Starting in 1981 to near-present, the CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) dataset incorporates a 5km×5km resolution satellite imagery with in-situ station data to create gridded rainfall time series for trend analysis, severe events and seasonal drought monitoring. The aim of this work is to further increase the resolution of the rainfall dataset for Cyprus to 1km×1km, by correlating the CHIRPS dataset with elevation information, the NDVI index (Normalized Difference Vegetation Index) from satellite images at 1km×1km and precipitation measurements from the official raingauge network of the Cyprus' Department of Meteorology, utilizing Artificial Neural Networks. The Artificial Neural Networks' architecture that was implemented is the Multi-Layer Perceptron (MLP) trained with the back propagation method, which is widely used in environmental studies. Seven different network architectures were tested, all with two hidden layers. The number of neurons ranged from 3 to10 in the first hidden layer and from 5 to 25 in the second hidden layer. The dataset was separated into a randomly selected training set, a validation set and a testing set; the latter is independently used for the final assessment of the models' performance. Using the Artificial Neural Network approach, a new map of the spatial analysis of rainfall is constructed which exhibits a considerable increase in its spatial resolution. A statistical assessment of the new spatial analysis was made using the rainfall ground measurements from the raingauge network. The assessment indicates that the methodology is promising for several applications.

  18. Effects of Spatial Resolution on Image Registration

    PubMed Central

    Zhao, Can; Carass, Aaron; Jog, Amod; Prince, Jerry L.

    2016-01-01

    This paper presents a theoretical analysis of the effect of spatial resolution on image registration. Based on the assumption of additive Gaussian noise on the images, the mean and variance of the distribution of the sum of squared differences (SSD) were estimated. Using these estimates, we evaluate a distance between the SSD distributions of aligned images and non-aligned images. The experimental results show that by matching the resolutions of the moving and fixed images one can get a better image registration result. The results agree with our theoretical analysis of SSD, but also suggest that it may be valid for mutual information as well. PMID:27773960

  19. Effect of positron range on spatial resolution.

    PubMed

    Phelps, M E; Hoffman, E J; Huang, S C; Ter-Pogossian, M M

    1975-07-01

    The effect of beta+ range on spatial resolution of imaging systems employing the detection of 511-keV annihilation radiation was determined by measuring the variation in the line-spread functions (LSFs) of positron-emitting radionuclides of 64Cu, 11C, and 15O as compared with the 514-keV gamma-ray emitter 85Sr. These radionuclides have maximum beta+ energies of 0.656, 0.960, and 1.72 MeV, respectively. The LSFs were measured in a tissue-equivalent phantom with high-resolution (approximately 2.4 mm FWHM) and low-resolution (approximately 8.8 mm FWHM) straightbore collimators coupled to a NaI(Tl) detector. Theoretical LSFs for the beta+ ranges were also calculated and convolved with the 85Sr LSF to yield the predicted LSFs for 11C and 15O. The high-resolution study showed a 0% and 2.3% increase in the full-width half-maximum (FWHM) and full-width tenth-maximum (FWO.1M) for the low-energy beta+ of 64Cu and a 37% (FWHM) and 52% (FWO.1M) increase for the high energy beta+ of 15O as compared with 85Sr. However, when the system resolution was decreased to 8.8 mm FWHM, the 64Cu showed no change at FWHM or FWO.1M and the 15O showed a 2.3% (FWHM) and 7.8% (FWO.1M) relative to 85Sr. The predicted LSFs were in good agreement with the experimental. These data indicate that the effect of beta+ range on spatial resolution is minimal unless the beta+ energy is larger than or equal to 1.5 MeV and the system resolution is on the order of a few millimeters.

  20. Differential pulse-width pair BOTDA for high spatial resolution sensing.

    PubMed

    Li, Wenhai; Bao, Xiaoyi; Li, Yun; Chen, Liang

    2008-12-22

    A differential pulse-width pair Brillouin optical time domain analysis (DPP-BOTDA) for centimeter spatial resolution sensing using meter equivalent pulses is proposed. This scheme uses the time domain waveform subtraction at the same scanned Brillouin frequency obtained from pulse lights with different pulse-widths (e.g. 50ns and 49ns) to form the differential Brillouin gain spectrum (BGS) at each fiber location. The spatial resolution is defined by the average of the rise and fall time equivalent fiber length for a small stress section rather than the pulse-width difference equivalent length. The spatial resolution of 0.18m for the 50/49ns pulse pair and 0.15m for 20/19ns pulse pair over 1km sensing length with Brillouin frequency shift accuracy of 2.6MHz are demonstrated.

  1. Study of satellite retrieved aerosol optical depth spatial resolution effect on particulate matter concentration prediction

    NASA Astrophysics Data System (ADS)

    Strandgren, J.; Mei, L.; Vountas, M.; Burrows, J. P.; Lyapustin, A.; Wang, Y.

    2014-10-01

    The Aerosol Optical Depth (AOD) spatial resolution effect is investigated for the linear correlation between satellite retrieved AOD and ground level particulate matter concentrations (PM2.5). The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for the Moderate Resolution Imaging Spectroradiometer (MODIS) for obtaining AOD with a high spatial resolution of 1 km and provides a good dataset for the study of the AOD spatial resolution effect on the particulate matter concentration prediction. 946 Environmental Protection Agency (EPA) ground monitoring stations across the contiguous US have been used to investigate the linear correlation between AOD and PM2.5 using AOD at different spatial resolutions (1, 3 and 10 km) and for different spatial scales (urban scale, meso-scale and continental scale). The main conclusions are: (1) for both urban, meso- and continental scale the correlation between PM2.5 and AOD increased significantly with increasing spatial resolution of the AOD, (2) the correlation between AOD and PM2.5 decreased significantly as the scale of study region increased for the eastern part of the US while vice versa for the western part of the US, (3) the correlation between PM2.5 and AOD is much more stable and better over the eastern part of the US compared to western part due to the surface characteristics and atmospheric conditions like the fine mode fraction.

  2. Estimation of Global 1km-grid Terrestrial Carbon Exchange Part II: Evaluations and Applications

    NASA Astrophysics Data System (ADS)

    Murakami, K.; Sasai, T.; Kato, S.; Niwa, Y.; Saito, M.; Takagi, H.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.; Yokota, T.

    2015-12-01

    Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. Many studies have been trying to reveal distribution of carbon exchanges between terrestrial ecosystems and atmosphere for understanding global carbon cycle dynamics by using terrestrial biosphere models, satellite data, inventory data, and so on. However, most studies remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community and to evaluate the carbon stocks by forest ecosystems in each countries. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. We show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. The methodology for these estimations are shown in the 2015 AGU FM poster "Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling". In this study, we evaluated the carbon exchanges in various regions with other approaches. We used the satellite-driven biosphere model (BEAMS) as our estimations, GOSAT L4A CO2 flux data, NEP retrieved by NICAM and CarbonTracer2013 flux data, for period from Jun 2001 to Dec 2012. The temporal patterns for this period were indicated similar trends between BEAMS, GOSAT, NICAM, and CT2013 in many sub-continental regions. Then, we estimated the terrestrial carbon exchanges in each countries, and could indicated the temporal patterns of the exchanges in large carbon stock regions.Global terrestrial carbon cycle largely depends on a spatial pattern of land cover type, which is heterogeneously-distributed over regional and global scales. Many

  3. An evaluation of the spatial resolution of soil moisture information

    NASA Technical Reports Server (NTRS)

    Hardy, K. R.; Cohen, S. H.; Rogers, L. K.; Burke, H. H. K.; Leupold, R. C.; Smallwood, M. D.

    1981-01-01

    Rainfall-amount patterns in the central regions of the U.S. were assessed. The spatial scales of surface features and their corresponding microwave responses in the mid western U.S. were investigated. The usefulness for U.S. government agencies of soil moisture information at scales of 10 km and 1 km. was ascertained. From an investigation of 494 storms, it was found that the rainfall resulting from the passage of most types of storms produces patterns which can be resolved on a 10 km scale. The land features causing the greatest problem in the sensing of soil moisture over large agricultural areas with a radiometer are bodies of water. Over the mid-western portions of the U.S., water occupies less than 2% of the total area, the consequently, the water bodies will not have a significant impact on the mapping of soil moisture. Over most of the areas, measurements at a 10-km resolution would adequately define the distribution of soil moisture. Crop yield models and hydrological models would give improved results if soil moisture information at scales of 10 km was available.

  4. Classification of High Spatial Resolution, Hyperspectral ...

    EPA Pesticide Factsheets

    EPA announced the availability of the final report,Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result of a collaborative effort among an interdisciplinary team of scientists with the U.S. Environmental Protection Agency's (U.S. EPA's) Office of Research and Development in Cincinnati, Ohio. A primary goal of this project is to enhance the use of geography and spatial analytic tools in risk assessment, and to improve the scientific basis for risk management decisions affecting drinking water and water quality. The land use/land cover classification is derived from 82 flight lines of Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery acquired from July 24 through August 9, 2002 via fixed-wing aircraft.

  5. High Spatial Resolution Commercial Satellite Imaging Product Characterization

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Pagnutti, Mary; Blonski, Slawomir; Ross, Kenton W.; Stnaley, Thomas

    2005-01-01

    NASA Stennis Space Center's Remote Sensing group has been characterizing privately owned high spatial resolution multispectral imaging systems, such as IKONOS, QuickBird, and OrbView-3. Natural and man made targets were used for spatial resolution, radiometric, and geopositional characterizations. Higher spatial resolution also presents significant adjacency effects for accurate reliable radiometry.

  6. Spatial resolution in plantar pressure measurement revisited.

    PubMed

    Pataky, Todd C

    2012-08-09

    Plantar pressures are typically measured using sensors of finite area, so the accuracy with which one can measure true maximum pressure is dependent on sensor size. Measurement accuracy has been modeled previously for one patient's metatarsals (Lord, 1997), but has not been modeled either for general subjects or for other parts of the foot. The purposes of this study were (i) to determine whether Lord's (1997) model is also valid for heel and hallux pressures, and (ii) to examine how sensor size relates to measurement accuracy in the context of four factors common to many measurement settings: pressure pulse size, foot positioning, pressure change quantification, and gross pressure redistribution. Lord's (1997) model was first generalized and was then validated using 10 healthy walking subjects, with relatively low RMSE values on the order of 20 kPa. Next, postural data were used to show that gross pressure redistributions can be accurately quantified (p<0.002), even with rather gross sensor sizes of 30 mm. Finally, numerical analyses revealed that the relation between sensor size and measurement accuracy is highly complex, with deep dependency on the measurement context. In particular, the critical sensor widths required to achieve 90% accuracy ranged from 1.7 mm to 17.4 mm amongst the presently investigated scenarios. Since measurement accuracy varies so extensively with so many factors, the current results cannot yield specific recommendations regarding spatial resolution. It is concluded simply that no particular spatial resolution can yield a constant measurement accuracy across common plantar pressure measurement tasks.

  7. Mapping the global land surface using 1 km AVHRR data

    USGS Publications Warehouse

    Lauer, D.T.; Eidenshink, J.C.

    1998-01-01

    The scientific requirements for mapping the global land surface using 1 km advanced very high resolution radiometer (AVHRR) data have been set forth by the U.S. Global Change Research Program; the International Geosphere Biosphere Programme (IGBP); The United Nations; the National Oceanic and Atmospheric Administration (NOAA); the Committee on Earth Observations Satellites; and the National Aeronautics and Space Administration (NASA) mission to planet Earth (MTPE) program. Mapping the global land surface using 1 km AVHRR data is an international effort to acquire, archive, process, and distribute 1 km AVHRR data to meet the needs of the international science community. A network of AVHRR receiving stations, along with data recorded by NOAA, has been acquiring daily global land coverage since April 1, 1992. A data set of over 70,000 AVHRR images is archived and distributed by the United States Geological Survey (USGS) EROS Data Center, and the European Space Agency. Under the guidance of the IGBP, processing standards have been developed for calibration, atmospheric correction, geometric registration, and the production of global 10-day maximum normalized difference vegetation index (NDVI) composites. The major uses of the composites are for the study of surface vegetation condition, mapping land cover, and deriving biophysical characteristics of terrestrial ecosystems. A time-series of 54 10-day global vegetation index composites for the period of April 1, 1992 through September 1993 has been produced. The production of a time-series of 33 10-day global vegetation index composites using NOAA-14 data for the period of February 1, 1995 through December 31, 1995 is underway. The data products are available from the USGS, in cooperation with NASA's MTPE program and other international organizations.

  8. A new global 1-km dataset of percentage tree cover derived from remote sensing

    USGS Publications Warehouse

    DeFries, R.S.; Hansen, M.C.; Townshend, J.R.G.; Janetos, A.C.; Loveland, T.R.

    2000-01-01

    Accurate assessment of the spatial extent of forest cover is a crucial requirement for quantifying the sources and sinks of carbon from the terrestrial biosphere. In the more immediate context of the United Nations Framework Convention on Climate Change, implementation of the Kyoto Protocol calls for estimates of carbon stocks for a baseline year as well as for subsequent years. Data sources from country level statistics and other ground-based information are based on varying definitions of 'forest' and are consequently problematic for obtaining spatially and temporally consistent carbon stock estimates. By combining two datasets previously derived from the Advanced Very High Resolution Radiometer (AVHRR) at 1 km spatial resolution, we have generated a prototype global map depicting percentage tree cover and associated proportions of trees with different leaf longevity (evergreen and deciduous) and leaf type (broadleaf and needleleaf). The product is intended for use in terrestrial carbon cycle models, in conjunction with other spatial datasets such as climate and soil type, to obtain more consistent and reliable estimates of carbon stocks. The percentage tree cover dataset is available through the Global Land Cover Facility at the University of Maryland at http://glcf.umiacs.umd.edu.

  9. Positron Emission Tomography with improved spatial resolution

    SciTech Connect

    Drukier, A.K.

    1990-04-01

    Applied Research Corporation (ARC) proposed the development of a new class of solid state detectors called Superconducting Granular Detectors (SGD). These new detectors permit considerable improvements in medical imaging, e.g. Positron Emission Tomography (PET). The biggest impact of this technique will be in imaging of the brain. It should permit better clinical diagnosis of such important diseases as Altzheimer's or schizophrenia. More specifically, we will develop an improved PET-imager; a spatial resolution 2 mm may be achievable with SGD. A time-of-flight capability(t {approx} 100 psec) will permit better contrast and facilitate 3D imaging. In the following, we describe the results of the first 9 months of the development.

  10. High Spatial Resolution Spectroscopy of Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Harris, Timothy D.; Gershoni, David; Pfeiffer, Loren N.

    1996-03-01

    Several recent reports employing high spatial resolution have revealed the dominance of exciton localization in the low temperature luminescence of semiconductor quantum structures.^[1-3] Understanding this localization is of critical importance for the reliable studies of low dimensional structures such as quantum wells, quantum wires and quantum dots. We report on low temperature and high spatial resolution photoluminescence and photoluminescence excitation studies of cleaved edge overgrown (CEO) single quantum wires. These samples permit the direct and unambiguous comparison between the optical properties of a (100) oriented quantum well, a (110) oriented quantum well, and the quantum wire which is formed at their intersection. Using low temperature near field optical spectroscopy, and a novel diffraction limited far field apparatus, we determine the carrier diffusion length dependence on pump wavelength and sample temperature in both the 2d systems and the genuinely 1D wire system. We also measure the absorption strength of the 1D system and find it to be a factor of 3 stronger than the absorption of the associated 2D systems.^[2] Using low temperature near field optical spectroscopy, and a novel diffraction limited far field apparatus, we also determine the carrier diffusion length dependence on pump wavelength and sample temperature. ^[1] H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, Science 264, 1740 (1994). ^[2] T. D. Harris, D. Gershoni, R. D. Grober, L. Pfeiffer, K. West, and N. Chand, Appl. Phys. Lett, in press (1996) ^[3] D. Gammon, E. S. Snow, and D. S. Katzer, Appl. Phys. Lett. 67, 2391 (1995)

  11. Effects of spatial resolution ratio in image fusion

    USGS Publications Warehouse

    Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.

    2008-01-01

    In image fusion, the spatial resolution ratio can be defined as the ratio between the spatial resolution of the high-resolution panchromatic image and that of the low-resolution multispectral image. This paper attempts to assess the effects of the spatial resolution ratio of the input images on the quality of the fused image. Experimental results indicate that a spatial resolution ratio of 1:10 or higher is desired for optimal multisensor image fusion provided the input panchromatic image is not downsampled to a coarser resolution. Due to the synthetic pixels generated from resampling, the quality of the fused image decreases as the spatial resolution ratio decreases (e.g. from 1:10 to 1:30). However, even with a spatial resolution ratio as small as 1:30, the quality of the fused image is still better than the original multispectral image alone for feature interpretation. In cases where the spatial resolution ratio is too small (e.g. 1:30), to obtain better spectral integrity of the fused image, one may downsample the input high-resolution panchromatic image to a slightly lower resolution before fusing it with the multispectral image.

  12. High spatial resolution probes for neurobiology applications

    NASA Astrophysics Data System (ADS)

    Gunning, D. E.; Kenney, C. J.; Litke, A. M.; Mathieson, K.

    2009-06-01

    Position-sensitive biological neural networks, such as the brain and the retina, require position-sensitive detection methods to identify, map and study their behavior. Traditionally, planar microelectrodes have been employed to record the cell's electrical activity with device limitations arising from the electrode's 2-D nature. Described here is the development and characterization of an array of electrically conductive micro-needles aimed at addressing the limitations of planar electrodes. The capability of this array to penetrate neural tissue improves the electrode-cell electrical interface and allows more complicated 3-D networks of neurons, such as those found in brain slices, to be studied. State-of-the-art semiconductor fabrication techniques were used to etch and passivate conformally the metal coat and fill high aspect ratio holes in silicon. These are subsequently transformed into needles with conductive tips. This process has enabled the fabrication of arrays of unprecedented dimensions: 61 hexagonally close-packed electrodes, ˜200 μm tall with 60 μm spacing. Electroplating the tungsten tips with platinum ensure suitable impedance values (˜600 kΩ at 1 kHz) for the recording of neuronal signals. Without compromising spatial resolution of the neuronal recordings, this array adds a new and exciting dimension to the study of biological neural networks.

  13. Automated Verification of Spatial Resolution in Remotely Sensed Imagery

    NASA Technical Reports Server (NTRS)

    Davis, Bruce; Ryan, Robert; Holekamp, Kara; Vaughn, Ronald

    2011-01-01

    Image spatial resolution characteristics can vary widely among sources. In the case of aerial-based imaging systems, the image spatial resolution characteristics can even vary between acquisitions. In these systems, aircraft altitude, speed, and sensor look angle all affect image spatial resolution. Image spatial resolution needs to be verified with estimators that include the ground sample distance (GSD), the modulation transfer function (MTF), and the relative edge response (RER), all of which are key components of image quality, along with signal-to-noise ratio (SNR) and dynamic range. Knowledge of spatial resolution parameters is important to determine if features of interest are distinguishable in imagery or associated products, and to develop image restoration algorithms. An automated Spatial Resolution Verification Tool (SRVT) was developed to rapidly determine the spatial resolution characteristics of remotely sensed aerial and satellite imagery. Most current methods for assessing spatial resolution characteristics of imagery rely on pre-deployed engineered targets and are performed only at selected times within preselected scenes. The SRVT addresses these insufficiencies by finding uniform, high-contrast edges from urban scenes and then using these edges to determine standard estimators of spatial resolution, such as the MTF and the RER. The SRVT was developed using the MATLAB programming language and environment. This automated software algorithm assesses every image in an acquired data set, using edges found within each image, and in many cases eliminating the need for dedicated edge targets. The SRVT automatically identifies high-contrast, uniform edges and calculates the MTF and RER of each image, and when possible, within sections of an image, so that the variation of spatial resolution characteristics across the image can be analyzed. The automated algorithm is capable of quickly verifying the spatial resolution quality of all images within a data

  14. Annual evapotranspiration retrieved from satellite vegetation indices for the eastern Mediterranean at 250 m spatial resolution

    NASA Astrophysics Data System (ADS)

    Helman, D.; Givati, A.; Lensky, I. M.

    2015-11-01

    We present a model to retrieve actual evapotranspiration (ET) from satellites' vegetation indices (Parameterization of Vegetation Indices for ET estimation model, or PaVI-E) for the eastern Mediterranean (EM) at a spatial resolution of 250 m. The model is based on the empirical relationship between satellites' vegetation indices (normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) from MODIS) and total annual ET (ETAnnual) estimated at 16 FLUXNET sites, representing a wide range of plant functional types and ETAnnual. Empirical relationships were first examined separately for (a) annual vegetation systems (i.e. croplands and grasslands) and (b) systems with combined annual and perennial vegetation (i.e. woodlands, forests, savannah and shrublands). Vegetation indices explained most of the variance in ETAnnual in those systems (71 % for annuals, and 88 % for combined annual and perennial systems), while adding land surface temperature data in a multiple-variable regression and a modified version of the Temperature and Greenness model did not result in better correlations (p > 0.1). After establishing empirical relationships, PaVI-E was used to retrieve ETAnnual for the EM from 2000 to 2014. Models' estimates were highly correlated (R = 0.92, p < 0.01) with ETAnnual calculated from water catchment balances along rainfall gradient of the EM. They were also comparable to the coarser-resolution ET products of the Land Surface Analysis Satellite Applications Facility (LSA-SAF MSG ETa, 3.1 km) and MODIS (MOD16, 1 km) at 148 EM basins with R of 0.75 and 0.77 and relative biases of 5.2 and -5.2 %, respectively (p < 0.001 for both). In the absence of high-resolution (< 1 km) ET models for the EM the proposed model is expected to contribute to the hydrological study of this region, assisting in water resource management, which is one of the most valuable resources of this region.

  15. Study of the spatial resolution for binary readout detectors

    NASA Astrophysics Data System (ADS)

    Yonamine, R.; Maerschalk, T.; Lentdecker, G. De

    2016-07-01

    Often the binary readout is proposed for high granularity detectors to reduce the generated data volume to be readout at the price of a somewhat reduced spatial resolution compared to an analogue readout. We have been studying single hit resolutions obtained with a binary readout using simulations as well as analytical approaches. In this note we show that the detector geometry could be optimized to offer an equivalent spatial resolution than with an analogue readout.

  16. A downscaled 1 km dataset of daily Greenland ice sheet surface mass balance components (1958-2014)

    NASA Astrophysics Data System (ADS)

    Noel, B.; Van De Berg, W. J.; Fettweis, X.; Machguth, H.; Howat, I. M.; van den Broeke, M. R.

    2015-12-01

    The current spatial resolution in regional climate models (RCMs), typically around 5 to 20 km, remains too coarse to accurately reproduce the spatial variability in surface mass balance (SMB) components over the narrow ablation zones, marginal outlet glaciers and neighbouring ice caps of the Greenland ice sheet (GrIS). In these topographically rough terrains, the SMB components are highly dependent on local variations in topography. However, the relatively low-resolution elevation and ice mask prescribed in RCMs contribute to significantly underestimate melt and runoff in these regions due to unresolved valley glaciers and fjords. Therefore, near-km resolution topography is essential to better capture SMB variability in these spatially restricted regions. We present a 1 km resolution dataset of daily GrIS SMB covering the period 1958-2014, which is statistically downscaled from data of the polar regional climate model RACMO2.3 at 11 km, using an elevation dependence. The dataset includes all individual SMB components projected on the elevation and ice mask from the GIMP DEM, down-sampled to 1 km. Daily runoff and sublimation are interpolated to the 1 km topography using a local regression to elevation valid for each day specifically; daily precipitation is bi-linearly downscaled without elevation corrections. The daily SMB dataset is then reconstructed by summing downscaled precipitation, sublimation and runoff. High-resolution elevation and ice mask allow for properly resolving the narrow ablation zones and valley glaciers at the GrIS margins, leading to significant increase in runoff estimate. In these regions, and especially over narrow glaciers tongues, the downscaled products improve on the original RACMO2.3 outputs by better representing local SMB patterns through a gradual ablation increase towards the GrIS margins. We discuss the impact of downscaling on the SMB components in a case study for a spatially restricted region, where large elevation

  17. Mapping Land Cover Types in Amazon Basin Using 1km JERS-1 Mosaic

    NASA Technical Reports Server (NTRS)

    Saatchi, Sassan S.; Nelson, Bruce; Podest, Erika; Holt, John

    2000-01-01

    In this paper, the 100 meter JERS-1 Amazon mosaic image was used in a new classifier to generate a I km resolution land cover map. The inputs to the classifier were 1 km resolution mean backscatter and seven first order texture measures derived from the 100 m data by using a 10 x 10 independent sampling window. The classification approach included two interdependent stages: 1) a supervised maximum a posteriori Bayesian approach to classify the mean backscatter image into 5 general land cover categories of forest, savannah, inundated, white sand, and anthropogenic vegetation classes, and 2) a texture measure decision rule approach to further discriminate subcategory classes based on taxonomic information and biomass levels. Fourteen classes were successfully separated at 1 km scale. The results were verified by examining the accuracy of the approach by comparison with the IBGE and the AVHRR 1 km resolution land cover maps.

  18. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 2.

    NASA Astrophysics Data System (ADS)

    Devarakonda, R.

    2014-12-01

    Daymet: Daily Surface Weather Data and Climatological Summaries provides gridded estimates of daily weather parameters for North America, including daily continuous surfaces of minimum and maximum temperature, precipitation occurrence and amount, humidity, shortwave radiation, snow water equivalent, and day length. The current data product (Version 2) covers the period January 1, 1980 to December 31, 2013 [1]. Data are available on a daily time step at a 1-km x 1-km spatial resolution in Lambert Conformal Conic projection with a spatial extent that covers the North America as meteorological station density allows. Daymet data can be downloaded from 1) the ORNL Distributed Active Archive Center (DAAC) search and order tools (http://daac.ornl.gov/cgi-bin/cart/add2cart.pl?add=1219) or directly from the DAAC FTP site (http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1219) and 2) the Single Pixel Tool (http://daymet.ornl.gov/singlepixel.html) and THREDDS (Thematic Real-time Environmental Data Services) Data Server (TDS) (http://daymet.ornl.gov/thredds_mosaics.html). The Single Pixel Data Extraction Tool [2] allows users to enter a single geographic point by latitude and longitude in decimal degrees. A routine is executed that translates the (lon, lat) coordinates into projected Daymet (x,y) coordinates. These coordinates are used to access the Daymet database of daily-interpolated surface weather variables. The Single Pixel Data Extraction Tool also provides the option to download multiple coordinates programmatically. The ORNL DAAC's TDS provides customized visualization and access to Daymet time series of North American mosaics. Users can subset and download Daymet data via a variety of community standards, including OPeNDAP, NetCDF Subset service, and Open Geospatial Consortium (OGC) Web Map/Coverage Service. References: [1] Thornton, P. E., Thornton, M. M., Mayer, B. W., Wilhelmi, N., Wei, Y., Devarakonda, R., & Cook, R. (2012). "Daymet: Daily surface weather on a 1

  19. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 2.

    SciTech Connect

    Thornton, Peter E; Thornton, Michele M; Mayer, Benjamin W; Wilhelmi, Nate; Wei, Yaxing; Devarakonda, Ranjeet; Cook, Robert B

    2014-01-01

    More information: http://daymet.ornl.gov Presenter: Ranjeet Devarakonda Environmental Sciences Division Oak Ridge National Laboratory (ORNL) Daymet: Daily Surface Weather Data and Climatological Summaries provides gridded estimates of daily weather parameters for North America, including daily continuous surfaces of minimum and maximum temperature, precipitation occurrence and amount, humidity, shortwave radiation, snow water equivalent, and day length. The current data product (Version 2) covers the period January 1, 1980 to December 31, 2013 [1]. The prior product (Version 1) only covered from 1980-2008. Data are available on a daily time step at a 1-km x 1-km spatial resolution in Lambert Conformal Conic projection with a spatial extent that covers the conterminous United States, Mexico, and Southern Canada as meteorological station density allows. Daymet data can be downloaded from 1) the ORNL Distributed Active Archive Center (DAAC) search and order tools (http://daac.ornl.gov/cgi-bin/cart/add2cart.pl?add=1219) or directly from the DAAC FTP site (http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1219) and 2) the Single Pixel Tool [2] and THREDDS (Thematic Real-time Environmental Data Services) Data Server [3]. The Single Pixel Data Extraction Tool allows users to enter a single geographic point by latitude and longitude in decimal degrees. A routine is executed that translates the (lon, lat) coordinates into projected Daymet (x,y) coordinates. These coordinates are used to access the Daymet database of daily-interpolated surface weather variables. Daily data from the nearest 1 km x 1 km Daymet grid cell are extracted from the database and formatted as a table with one column for each Daymet variable and one row for each day. All daily data for selected years are returned as a single (long) table, formatted for display in the browser window. At the top of this table is a link to the same data in a simple comma-separated text format, suitable for import into a

  20. Scanning SQUID susceptometers with sub-micron spatial resolution

    NASA Astrophysics Data System (ADS)

    Kirtley, John R.; Paulius, Lisa; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Spanton, Eric M.; Schiessl, Daniel; Jermain, Colin L.; Gibbons, Jonathan; Fung, Y.-K.-K.; Huber, Martin E.; Ralph, Daniel C.; Ketchen, Mark B.; Gibson, Gerald W.; Moler, Kathryn A.

    2016-09-01

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ0/Hz1/2. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  1. ROLE OF SPATIAL RESOLUTION AND SPECTRAL CONTENT IN CHANGE DETECTION.

    USGS Publications Warehouse

    Milazzo, Valerie A.

    1984-01-01

    Summary form only given, as follows. Advancements in remote sensing technology have brought improvements and sophistication to modern remote sensor systems, especially those aboard earth resources satellites. These improvements have considerbly expanded the capabilities of the newer sensor systems, particularly the capability to achieve greatly increased spatial and spectral resolution levels. The debate still lingers, however, over whether future systems should maximize spatial resolution or spectral information, or both. As yet, the high costs and large volumes of data associated with even modest incremental improvements in spatial and spectral content have precluded the design of a single system that attempts to fully optimize both. Thus, the user is faced with having to choose between those systems providing high spatial resolutions but limited spectral information and those which offer a broad range of spectral data but hold spatial resolution to a less than optimum level. In this study, the contribution of both spatial resolution and spectral content to land cover change detection is examined. Ten-meter SPOT simulation imagery is compared with multispectral images acquired by the Thematic Mapper sensor system for use in the visual interpretation and mapping of changes. Several image processing and enhancement techniques are utilized to maximize the spatial and spectral data content offered by each system. Results indicate that when using visual image interpretation techniques to detect change, higher spatial resolutions are generally preferred over increased spectral content.

  2. Solar system events at high spatial resolution

    SciTech Connect

    Baines, K H; Gavel, D T; Getz, A M; Gibbartd, S G; MacIntosh, B; Max, C E; McKay, C P; Young, E F; de Pater, I

    1999-02-19

    Until relatively recent advances in technology, astronomical observations from the ground were limited in image resolution by the blurring effects of earth's atmosphere. The blur extent, ranging typically from 0.5 to 2 seconds of arc at the best astronomical sights, precluded ground-based observations of the details of the solar system's moons, asteroids, and outermost planets. With the maturing of a high resolution image processing technique called speckle imaging the resolution limitation of the atmosphere can now be largely overcome. Over the past three years they have used speckle imaging to observe Titan, a moon of Saturn with an atmospheric density comparable to Earth's, Io, the volcanically active innermost moon of Jupiter, and Neptune, a gas giant outer planet which has continually changing planet-encircling storms. These observations were made at the world's largest telescope, the Keck telescope in Hawaii and represent the highest resolution infrared images of these objects ever taken.

  3. Retrieving Aerosol in a Cloudy Environment: Aerosol Availability as a Function of Spatial and Temporal Resolution

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Mattoo, Shana; Levy, Robert C.; Heidinger, Andrew; Pierce, R. Bradley; Chin, Mian

    2011-01-01

    The challenge of using satellite observations to retrieve aerosol properties in a cloudy environment is to prevent contamination of the aerosol signal from clouds, while maintaining sufficient aerosol product yield to satisfy specific applications. We investigate aerosol retrieval availability at different instrument pixel resolutions, using the standard MODIS aerosol cloud mask applied to MODIS data and a new GOES-R cloud mask applied to GOES data for a domain covering North America and surrounding oceans. Aerosol availability is not the same as the cloud free fraction and takes into account the technqiues used in the MODIS algorithm to avoid clouds, reduce noise and maintain sufficient numbers of aerosol retrievals. The inherent spatial resolution of each instrument, 0.5x0.5 km for MODIS and 1x1 km for GOES, is systematically degraded to 1x1 km, 2x2 km, 4x4 km and 8x8 km resolutions and then analyzed as to how that degradation would affect the availability of an aerosol retrieval, assuming an aerosol product resolution at 8x8 km. The results show that as pixel size increases, availability decreases until at 8x8 km 70% to 85% of the retrievals available at 0.5 km have been lost. The diurnal pattern of aerosol retrieval availability examined for one day in the summer suggests that coarse resolution sensors (i.e., 4x4 km or 8x8 km) may be able to retrieve aerosol early in the morning that would otherwise be missed at the time of current polar orbiting satellites, but not the diurnal aerosol properties due to cloud cover developed during the day. In contrast finer resolution sensors (i.e., 1x1 km or 2x2 km) have much better opportunity to retrieve aerosols in the partly cloudy scenes and better chance of returning the diurnal aerosol properties. Large differences in the results of the two cloud masks designed for MODIS aerosol and GOES cloud products strongly reinforce that cloud masks must be developed with specific purposes in mind and that a generic cloud mask

  4. Processing techniques for global land 1-km AVHRR data

    USGS Publications Warehouse

    Eidenshink, Jeffery C.; Steinwand, Daniel R.; Wivell, Charles E.; Hollaren, Douglas M.; Meyer, David

    1993-01-01

    The U.S. Geological Survey's (USGS) Earth Resources Observation Systems (EROS) Data Center (EDC) in cooperation with several international science organizations has developed techniques for processing daily Advanced Very High Resolution Radiometer (AVHRR) 1-km data of the entire global land surface. These techniques include orbital stitching, geometric rectification, radiometric calibration, and atmospheric correction. An orbital stitching algorithm was developed to combine consecutive observations acquired along an orbit by ground receiving stations into contiguous half-orbital segments. The geometric rectification process uses an AVHRR satellite model that contains modules for forward mapping, forward terrain correction, and inverse mapping with terrain correction. The correction is accomplished by using the hydrologic features coastlines and lakes from the Digital Chart of the World. These features are rasterized into the satellite projection and are matched to the AVHRR imagery using binary edge correlation techniques. The resulting coefficients are related to six attitude correction parameters: roll, roll rate, pitch, pitch rate, yaw, and altitude. The image can then be precision corrected to a variety of map projections and user-selected image frames. Because the AVHRR lacks onboard calibration for the optical wavelengths, a series of time-variant calibration coefficients derived from vicarious calibration methods and are used to model the degradation profile of the instruments. Reducing atmospheric effects on AVHRR data is important. A method has been develop that will remove the effects of molecular scattering and absorption from clear sky observations, using climatological measurements of ozone. Other methods to remove the effects of water vapor and aerosols are being investigated.

  5. Analysis of DOA estimation spatial resolution using MUSIC algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Yue; Wang, Hongyuan; Luo, Bin

    2005-11-01

    This paper presents a performance analysis of the spatial resolution of the direction of arrival (DOA) estimates attained by the multiple signal classification (MUSIC) algorithm for uncorrelated sources. The confidence interval of estimation angle which is much more intuitionistic will be considered as the new evaluation standard for the spatial resolution. Then, based on the statistic method, the qualitative analysis reveals the factors influencing the performance of the MUSIC algorithm. At last, quantitative simulations prove the theoretical analysis result exactly.

  6. High spatial resolution passive microwave sounding systems

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Rosenkranz, P. W.; Bonanni, P. G.; Gasiewski, A. W.

    1986-01-01

    Two extensive series of flights aboard the ER-2 aircraft were conducted with the MIT 118 GHz imaging spectrometer together with a 53.6 GHz nadir channel and a TV camera record of the mission. Other microwave sensors, including a 183 GHz imaging spectrometer were flown simultaneously by other research groups. Work also continued on evaluating the impact of high-resolution passive microwave soundings upon numerical weather prediction models.

  7. Forest cover of insular Southeast Asia mapped from recent satellite images of coarse spatial resolution.

    PubMed

    Stibig, Hans-Jürgen; Malingreau, Jean-Paul

    2003-11-01

    The study provides an example of mapping tropical forest cover from SPOT-Vegetation satellite images of coarse spatial resolution (1 km) for the subregion of insular Southeast Asia. A satellite image mosaic has been generated from satellite images acquired for the period 1998 to 2000. Forest cover has been mapped by unsupervised digital classification. The mapping result has then been compared to selected forest maps from the subregion, demonstrating the potential to provide basic information on forest area extent and distribution, but also on massive forest cover change in the subregional context. Forest area estimates derived from the map for the subregion have been found comparable to those compiled by FAO. The results indicate that many of the remaining tropical forests in Southeast Asia, rich in timber resources and biodiversity, may be lost in the near future if deforestation continues at present or previous rates.

  8. Improving Nano-MRI Spatial Resolution with Phase Multiplexing

    NASA Astrophysics Data System (ADS)

    Moores, Brad; Eichler, Alex; Degen, Christian

    2015-03-01

    Magnetic resonance force microscopy (MRFM) is a scanning probe technique that allows measuring nuclear spin densities with resolution better than 10nm. Detecting such small volumes of spins (less than (10nm)3 corresponds to approximately 20,000 spins) requires long averaging of signals from statistically polarized nuclei. For instance, previous work demonstrated that imaging a single isotope (1H) of a Tobacco Mosaic Virus required averaging for 2 weeks, and therefore the chemical contrast abilities of MRFM had to be forfeited to enable higher spatial resolution. In order to reconcile the chemical selectivity of MRFM along with the proven high spatial resolution, we have developed a phase multiplexing technique capable of simultaneously acquiring spin signals from multiple isotopes and from up to six spatial locations. We have demonstrated this method using a nanowire test sample, and have achieved one-dimensional imaging resolution of less than 5 nm and subnanometer positional accuracy.

  9. A Very High Spatial Resolution Detector for Small Animal PET

    SciTech Connect

    Kanai Shah, M.S.

    2007-03-06

    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated.

  10. Full Spatial Resolution Infrared Sounding Application in the Preconvection Environment

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, G.; Lin, T.

    2013-12-01

    Advanced infrared (IR) sounders such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) provide atmospheric temperature and moisture profiles with high vertical resolution and high accuracy in preconvection environments. The derived atmospheric stability indices such as convective available potential energy (CAPE) and lifted index (LI) from advanced IR soundings can provide critical information 1 ; 6 h before the development of severe convective storms. Three convective storms are selected for the evaluation of applying AIRS full spatial resolution soundings and the derived products on providing warning information in the preconvection environments. In the first case, the AIRS full spatial resolution soundings revealed local extremely high atmospheric instability 3 h ahead of the convection on the leading edge of a frontal system, while the second case demonstrates that the extremely high atmospheric instability is associated with the local development of severe thunderstorm in the following hours. The third case is a local severe storm that occurred on 7-8 August 2010 in Zhou Qu, China, which caused more than 1400 deaths and left another 300 or more people missing. The AIRS full spatial resolution LI product shows the atmospheric instability 3.5 h before the storm genesis. The CAPE and LI from AIRS full spatial resolution and operational AIRS/AMSU soundings along with Geostationary Operational Environmental Satellite (GOES) Sounder derived product image (DPI) products were analyzed and compared. Case studies show that full spatial resolution AIRS retrievals provide more useful warning information in the preconvection environments for determining favorable locations for convective initiation (CI) than do the coarser spatial resolution operational soundings and lower spectral resolution GOES Sounder retrievals. The retrieved soundings are also tested in a regional data assimilation WRF 3D-var system to evaluate the

  11. Improved spatial resolution in PET scanners using sampling techniques

    PubMed Central

    Surti, Suleman; Scheuermann, Ryan; Werner, Matthew E.; Karp, Joel S.

    2009-01-01

    Increased focus towards improved detector spatial resolution in PET has led to the use of smaller crystals in some form of light sharing detector design. In this work we evaluate two sampling techniques that can be applied during calibrations for pixelated detector designs in order to improve the reconstructed spatial resolution. The inter-crystal positioning technique utilizes sub-sampling in the crystal flood map to better sample the Compton scatter events in the detector. The Compton scatter rejection technique, on the other hand, rejects those events that are located further from individual crystal centers in the flood map. We performed Monte Carlo simulations followed by measurements on two whole-body scanners for point source data. The simulations and measurements were performed for scanners using scintillators with Zeff ranging from 46.9 to 63 for LaBr3 and LYSO, respectively. Our results show that near the center of the scanner, inter-crystal positioning technique leads to a gain of about 0.5-mm in reconstructed spatial resolution (FWHM) for both scanner designs. In a small animal LYSO scanner the resolution improves from 1.9-mm to 1.6-mm with the inter-crystal technique. The Compton scatter rejection technique shows higher gains in spatial resolution but at the cost of reduction in scanner sensitivity. The inter-crystal positioning technique represents a modest acquisition software modification for an improvement in spatial resolution, but at a cost of potentially longer data correction and reconstruction times. The Compton scatter rejection technique, while also requiring a modest acquisition software change with no increased data correction and reconstruction times, will be useful in applications where the scanner sensitivity is very high and larger improvements in spatial resolution are desirable. PMID:19779586

  12. High spatial resolution measurements of ram accelerator gas dynamic phenomena

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Data obtained by using a special highly instrumented section of tube has allowed the recording of gas dynamic phenomena with a spatial resolution on the order of one tenth the projectile length. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) are presented and reveal the 3D character of the flowfield induced by projectile fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, 3D CFD code.

  13. Duality between noise and spatial resolution in linear systems.

    PubMed

    Gureyev, Timur E; Nesterets, Yakov I; de Hoog, Frank; Schmalz, Gerd; Mayo, Sheridan C; Mohammadi, Sara; Tromba, Giuliana

    2014-04-21

    It is shown that in a broad class of linear systems, including general linear shift-invariant systems, the spatial resolution and the noise satisfy a duality relationship, resembling the uncertainty principle in quantum mechanics. The product of the spatial resolution and the standard deviation of output noise in such systems represents a type of phase-space volume that is invariant with respect to linear scaling of the point-spread function, and it cannot be made smaller than a certain positive absolute lower limit. A corresponding intrinsic "quality" characteristic is introduced and then evaluated for the cases of some popular imaging systems, including computed tomography, generic image convolution and phase-contrast imaging. It is shown that in the latter case the spatial resolution and the noise can sometimes be decoupled, potentially leading to a substantial increase in the imaging quality.

  14. Temporal and spatial resolution of HF ocean radars

    NASA Astrophysics Data System (ADS)

    Heron, Malcom L.; Atwater, Daniel P.

    2013-03-01

    The spatial and temporal resolutions of the two main types of HF radar are compared, with reference to the phasedarray and the crossed-loop direction-finding systems which make up the Australian Coastal Ocean radar Network. Both genres use a swept frequency "chirp" modulation to define the range of a pixel being observed but the method for determining the azimuth direction of the pixel is a strong point of differentiation. The phased-array systems produce independent maps of surface currents in about 1/7 of the time for the crossed-loop systems because of contrasting noise performance of the antennas. The use of beam-forming analysis in the phased-arrays is shown to give spatial resolutions, for vector currents, of about 10 km close to the shore, and 25 km at ranges of 150 km. The corresponding vector current spatial resolutions for the crossed-loop systems are 40 km and 60 km respectively.

  15. Modeling Spatial Dependencies in High-Resolution Overhead Imagery

    SciTech Connect

    Cheriyadat, Anil M; Bright, Eddie A; Vatsavai, Raju

    2011-01-01

    Human settlement regions with different physical and socio-economic attributes exhibit unique spatial characteristics that are often illustrated in high-resolution overhead imageries. For example- size, shape and spatial arrangements of man-made structures are key attributes that vary with respect to the socioeconomic profile of the neighborhood. Successfully modeling these attributes is crucial in developing advanced image understanding systems for interpreting complex aerial scenes. In this paper we present three different approaches to model the spatial context in the overhead imagery. First, we show that the frequency domain of the image can be used to model the spatial context [1]. The shape of the spectral energy contours characterize the scene context and can be exploited as global features. Secondly, we explore a discriminative framework based on the Conditional Random Fields (CRF) [2] to model the spatial context in the overhead imagery. The features derived from the edge orientation distribution calculated for a neighborhood and the associated class labels are used as input features to model the spatial context. Our third approach is based on grouping spatially connected pixels based on the low-level edge primitives to form support-regions [3]. The statistical parameters generated from the support-region feature distributions characterize different geospatial neighborhoods. We apply our approaches on high-resolution overhead imageries. We show that proposed approaches characterize the spatial context in overhead imageries.

  16. Solar Flares at High Spatial and Temporal Resolution

    DTIC Science & Technology

    2012-11-01

    AFRL-AFOSR-UK-TR-2012-0055 Solar Flares at High Spatial and Temporal Resolution Professor Mihalis Mathioudakis Queen’s...2012 2. REPORT TYPE Final Report 3. DATES COVERED (From – To) 20 July 2009 – 19 July 2012 4. TITLE AND SUBTITLE Solar Flares at High Spatial and...Distribution A: Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Solar flares vary in

  17. Spatially adaptive regularized iterative high-resolution image reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Lim, Won Bae; Park, Min K.; Kang, Moon Gi

    2000-12-01

    High resolution images are often required in applications such as remote sensing, frame freeze in video, military and medical imaging. Digital image sensor arrays, which are used for image acquisition in many imaging systems, are not dense enough to prevent aliasing, so the acquired images will be degraded by aliasing effects. To prevent aliasing without loss of resolution, a dense detector array is required. But it may be very costly or unavailable, thus, many imaging systems are designed to allow some level of aliasing during image acquisition. The purpose of our work is to reconstruct an unaliased high resolution image from the acquired aliased image sequence. In this paper, we propose a spatially adaptive regularized iterative high resolution image reconstruction algorithm for blurred, noisy and down-sampled image sequences. The proposed approach is based on a Constrained Least Squares (CLS) high resolution reconstruction algorithm, with spatially adaptive regularization operators and parameters. These regularization terms are shown to improve the reconstructed image quality by forcing smoothness, while preserving edges in the reconstructed high resolution image. Accurate sub-pixel motion registration is the key of the success of the high resolution image reconstruction algorithm. However, sub-pixel motion registration may have some level of registration error. Therefore, a reconstruction algorithm which is robust against the registration error is required. The registration algorithm uses a gradient based sub-pixel motion estimator which provides shift information for each of the recorded frames. The proposed algorithm is based on a technique of high resolution image reconstruction, and it solves spatially adaptive regularized constrained least square minimization functionals. In this paper, we show that the reconstruction algorithm gives dramatic improvements in the resolution of the reconstructed image and is effective in handling the aliased information. The

  18. Spatial resolution requirements for automated cartographic road extraction

    USGS Publications Warehouse

    Benjamin, S.; Gaydos, L.

    1990-01-01

    Ground resolution requirements for detection and extraction of road locations in a digitized large-scale photographic database were investigated. A color infrared photograph of Sunnyvale, California was scanned, registered to a map grid, and spatially degraded to 1- to 5-metre resolution pixels. Road locations in each data set were extracted using a combination of image processing and CAD programs. These locations were compared to a photointerpretation of road locations to determine a preferred pixel size for the extraction method. Based on road pixel omission error computations, a 3-metre pixel resolution appears to be the best choice for this extraction method. -Authors

  19. Quantifying mangrove chlorophyll from high spatial resolution imagery

    NASA Astrophysics Data System (ADS)

    Heenkenda, Muditha K.; Joyce, Karen E.; Maier, Stefan W.; de Bruin, Sytze

    2015-10-01

    Lower than expected chlorophyll concentration of a plant can directly limit photosynthetic activity, and resultant primary production. Low chlorophyll concentration may also indicate plant physiological stress. Compared to other terrestrial vegetation, mangrove chlorophyll variations are poorly understood. This study quantifies the spatial distribution of mangrove canopy chlorophyll variation using remotely sensed data and field samples over the Rapid Creek mangrove forest in Darwin, Australia. Mangrove leaf samples were collected and analyzed for chlorophyll content in the laboratory. Once the leaf area index (LAI) of sampled trees was estimated using the digital cover photography method, the canopy chlorophyll contents were calculated. Then, the nonlinear random forests regression algorithm was used to describe the relationship between canopy chlorophyll content and remotely sensed data (WorldView-2 satellite image bands and their spectral transformations), and to estimate the spatial distribution of canopy chlorophyll variation. The imagery was evaluated at full 2 m spatial resolution, as well as at decreased resampled resolutions of 5 m and 10 m. The root mean squared errors with validation samples were 0.82, 0.64 and 0.65 g/m2 for maps at 2 m, 5 m and 10 m spatial resolution respectively. The correlation coefficient was analyzed for the relationship between measured and predicted chlorophyll values. The highest correlation: 0.71 was observed at 5 m spatial resolution (R2 = 0.5). We therefore concluded that estimating mangrove chlorophyll content from remotely sensed data is possible using red, red-edge, NIR1 and NIR2 bands and their spectral transformations as predictors at 5 m spatial resolution.

  20. Research Relative to High Spatial Resolution Passive Microwave Sounding Systems

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Rosenkranz, P. W.

    1984-01-01

    Methods to obtain high resolution passive microwave weather observations, and understanding of their probable impact on numerical weather prediction accuracy were investigated. The development of synthetic aperture concepts for geosynchronous passive microwave sounders were studied. The effects of clouds, precipitation, surface phenomena, and atmospheric thermal fine structure on a scale of several kilometers were examined. High resolution passive microwave sounders (e.g., AMSU) with an increased number of channels will produce initialization data for numerical weather prediction (NWP) models with both increased spatial resolution and coverage. The development of statistical models for error growth in high resolution primitive equation NWP models which permit the consequences of various observing system alternatives, including sensors and assimilation times and procedures is discussed. A high resolution three dimensional primitive equation NWP model to determine parameters in an error growth model similar to that formulated by Lorenz, but with more degrees of freedom is utilized.

  1. Spatial Resolution Characterization for AWiFS Multispectral Images

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Ryan, Robert E.; Pagnutti, Mary; Stanley, Thomas

    2007-01-01

    This viewgraph presentation describes the spatial resolution of the AWiFS multispectral images characterized by an estimation of the Modulation Transfer Function (MTF) at Nyquist frequency. The contents include: 1) MTF Analysis; 2) Target Analysis; 3) "Pulse Target"; 4) "Pulse" Method; 5) Target Images; 6) Bridge Profiles; 7) MTF Calculation; 8) MTF Results; and 9) Results Summary.

  2. Improved Spatial Resolution for Reflection Mode Infrared Microscopy

    SciTech Connect

    Bechtel, Hans A.; Martin, Michael C.; May, T.E.; Lerch, Philippe

    2009-10-09

    Standard commercial infrared microscopes operating in reflection mode use a mirror to direct the reflected light from the sample to the detector. This mirror blocks about half of the incident light, however, and thus degrades the spatial resolution by reducing the umerical aperture of the objective. Here, we replace the mirror with a 50% beamsplitter to allow full illumination of the objective and retain a way to direct the reflected light to the detector. The improved spatial resolution is demonstrated using two different microscopes apable of diffraction-limited resolution: the first microscope is coupled to a synchrotron source and utilizes a single point detector, whereas the second microscope has a standard blackbody source and uses a focal planetarray (FPA) detector.

  3. Evolution of spatial resolution in breast CT at UC Davis

    SciTech Connect

    Gazi, Peymon M.; Yang, Kai; Burkett, George W.; Aminololama-Shakeri, Shadi; Anthony Seibert, J.; Boone, John M.

    2015-04-15

    Purpose: Dedicated breast computed tomography (bCT) technology for the purpose of breast cancer screening has been a focus of research at UC Davis since the late 1990s. Previous studies have shown that improvement in spatial resolution characteristics of this modality correlates with greater microcalcification detection, a factor considered a potential limitation of bCT. The aim of this study is to improve spatial resolution as characterized by the modulation transfer function (MTF) via changes in the scanner hardware components and operational schema. Methods: Four prototypes of pendant-geometry, cone-beam breast CT scanners were designed and developed spanning three generations of design evolution. To improve the system MTF in each bCT generation, modifications were made to the imaging components (x-ray tube and flat-panel detector), system geometry (source-to-isocenter and detector distance), and image acquisition parameters (technique factors, number of projections, system synchronization scheme, and gantry rotational speed). Results: Characterization of different generations of bCT systems shows these modifications resulted in a 188% improvement of the limiting MTF properties from the first to second generation and an additional 110% from the second to third. The intrinsic resolution degradation in the azimuthal direction observed in the first generation was corrected by changing the acquisition from continuous to pulsed x-ray acquisition. Utilizing a high resolution detector in the third generation, along with modifications made in system geometry and scan protocol, resulted in a 125% improvement in limiting resolution. An additional 39% improvement was obtained by changing the detector binning mode from 2 × 2 to 1 × 1. Conclusions: These results underscore the advancement in spatial resolution characteristics of breast CT technology. The combined use of a pulsed x-ray system, higher resolution flat-panel detector and changing the scanner geometry and image

  4. Parameter Transferability Across Spatial and Temporal Resolutions in Hydrological Modelling

    NASA Astrophysics Data System (ADS)

    Melsen, L. A.; Teuling, R.; Torfs, P. J.; Zappa, M.; Mizukami, N.; Clark, M. P.; Uijlenhoet, R.

    2015-12-01

    Improvements in computational power and data availability provided new opportunities for hydrological modeling. The increased complexity of hydrological models, however, also leads to time consuming optimization procedures. Moreover, observations are still required to calibrate the model. Both to decrease calculation time of the optimization and to be able to apply the model in poorly gauged basins, many studies have focused on transferability of parameters. We adopted a probabilistic approach to systematically investigate parameter transferability across both temporal and spatial resolution. A Variable Infiltration Capacity model for the Thur basin (1703km2, Switzerland) was set-up and run at four different spatial resolutions (1x1, 5x5, 10x10km, lumped) and three different temporal resolutions (hourly, daily, monthly). Three objective functions were used to evaluate the model: Kling-Gupta Efficiency (KGE(Q)), Nash-Sutcliffe Efficiency (NSE(Q)) and NSE(logQ). We used a Hierarchical Latin Hypercube Sample (Vorechovsky, 2014) to efficiently sample the most sensitive parameters. The model was run 3150 times and the best 1% of the runs was selected as behavioral. The overlap in selected behavioral sets for different spatial and temporal resolutions was used as indicators for parameter transferability. There was a large overlap in selected sets for the different spatial resolutions, implying that parameters were to a large extent transferable across spatial resolutions. The temporal resolution, however, had a larger impact on the parameters; it significantly affected the parameter distributions for at least four out of seven parameters. The parameter values for the monthly time step were found to be substantially different from those for daily and hourly time steps. This suggests that the output from models which are calibrated on a monthly time step, cannot be interpreted or analysed on an hourly or daily time step. It was also shown that the selected objective

  5. An evaluation of the global 1-km AVHRR land dataset

    USGS Publications Warehouse

    Teillet, P.M.; El Saleous, N.; Hansen, M.C.; Eidenshink, Jeffery C.; Justice, C.O.; Townshend, J.R.G.

    2000-01-01

    This paper summarizes the steps taken in the generation of the global 1-km AVHRR land dataset, and it documents an evaluation of the data product with respect to the original specifications and its usefulness in research and applications to date. The evaluation addresses data characterization, processing, compositing and handling issues. Examples of the main scientific outputs are presented and options for improved processing are outlined and prioritized. The dataset has made a significant contribution, and a strong recommendation is made for its reprocessing and continuation to produce a long-term record for global change research.

  6. Spatial Structure of a Braided River: Metric Resolution Hydrodynamic Modeling Reveals What SWOT Might See

    NASA Astrophysics Data System (ADS)

    Schubert, J.; Sanders, B. F.; Andreadis, K.

    2013-12-01

    The Surface Water and Ocean Topography (SWOT) mission, currently under study by NASA (National Aeronautics and Space Administration) and CNES (Centre National d'Etudes Spatiales), is designed to provide global spatial measurements of surface water properties at resolutions better than 10 m and with centimetric accuracy. The data produced by SWOT will include irregularly spaced point clouds of the water surface height, with point spacings from roughly 2-50 m depending on a point's location within SWOT's swath. This could offer unprecedented insight into the spatial structure of rivers. Features that may be resolved include backwater profiles behind dams, drawdown profiles, uniform flow sections, critical flow sections, and even riffle-pool flow structures. In the event that SWOT scans a river during a major flood, it becomes possible to delineate the limits of the flood as well as the spatial structure of the water surface elevation, yielding insight into the dynamic interaction of channels and flood plains. The Platte River in Nebraska, USA, is a braided river with a width and slope of approximately 100 m and 100 cm/km, respectively. A 1 m resolution Digital Terrain Model (DTM) of the river basin, based on airborne lidar collected during low-flow conditions, was used to parameterize a two-dimensional, variable resolution, unstructured grid, hydrodynamic model that uses 3 m resolution triangles in low flow channels and 10 m resolution triangles in the floodplain. Use of a fine resolution mesh guarantees that local variability in topography is resolved, and after applying the hydrodynamic model, the effects of topographic variability are expressed as variability in the water surface height, depth-averaged velocity and flow depth. Flow is modeled over a reach length of 10 km for multi-day durations to capture both frequent (diurnal variations associated with regulated flow) and infrequent (extreme flooding) flow phenomena. Model outputs reveal a number of interesting

  7. Spatial resolution of a hard x-ray CCD detector

    SciTech Connect

    Seely, John F.; Pereira, Nino R.; Weber, Bruce V.; Schumer, Joseph W.; Apruzese, John P.; Hudson, Lawrence T.; Szabo, Csilla I.; Boyer, Craig N.; Skirlo, Scott

    2010-08-10

    The spatial resolution of an x-ray CCD detector was determined from the widths of the tungsten x-ray lines in the spectrum formed by a crystal spectrometer in the 58 to 70 keV energy range. The detector had 20{mu}m pixel, 1700 by 1200 pixel format, and a CsI x-ray conversion scintillator. The spectral lines from a megavolt x-ray generator were focused on the spectrometer's Rowland circle by a curved transmission crystal. The line shapes were Lorentzian with an average width after removal of the natural and instrumental line widths of 95{mu}m (4.75 pixels). A high spatial frequency background, primarily resulting from scattered gamma rays, was removed from the spectral image by Fourier analysis. The spectral lines, having low spatial frequency in the direction perpendicular to the dispersion, were enhanced by partially removing the Lorentzian line shape and by fitting Lorentzian curves to broad unresolved spectral features. This demonstrates the ability to improve the spectral resolution of hard x-ray spectra that are recorded by a CCD detector with well-characterized intrinsic spatial resolution.

  8. High-spatial-resolution nanoparticle x-ray fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Larsson, Jakob C.; Vâgberg, William; Vogt, Carmen; Lundström, Ulf; Larsson, Daniel H.; Hertz, Hans M.

    2016-03-01

    X-ray fluorescence tomography (XFCT) has potential for high-resolution 3D molecular x-ray bio-imaging. In this technique the fluorescence signal from targeted nanoparticles (NPs) is measured, providing information about the spatial distribution and concentration of the NPs inside the object. However, present laboratory XFCT systems typically have limited spatial resolution (>1 mm) and suffer from long scan times and high radiation dose even at high NP concentrations, mainly due to low efficiency and poor signal-to-noise ratio. We have developed a laboratory XFCT system with high spatial resolution (sub-100 μm), low NP concentration and vastly decreased scan times and dose, opening up the possibilities for in-vivo small-animal imaging research. The system consists of a high-brightness liquid-metal-jet microfocus x-ray source, x-ray focusing optics and an energy-resolving photon-counting detector. By using the source's characteristic 24 keV line-emission together with carefully matched molybdenum nanoparticles the Compton background is greatly reduced, increasing the SNR. Each measurement provides information about the spatial distribution and concentration of the Mo nanoparticles. A filtered back-projection method is used to produce the final XFCT image.

  9. Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images

    SciTech Connect

    Tsekenis, S. A.; McCann, H.; Tait, N.

    2015-03-15

    We present a novel framework and experimental method for the quantification of spatial resolution of a tomography system. The framework adopts the “black box” view of an imaging system, considering only its input and output. The tomography system is locally stimulated with a step input, viz., a sharp edge. The output, viz., the reconstructed images, is analysed by Fourier decomposition of their spatial frequency components, and the local limiting spatial resolution is determined using a cut-off threshold. At no point is an observer involved in the process. The framework also includes a means of translating the quantification region in the imaging space, thus creating a spatially resolved map of objectively quantified spatial resolution. As a case-study, the framework is experimentally applied using a gaseous propane phantom measured by a well-established chemical species tomography system. A spatial resolution map consisting of 28 regions is produced. In isolated regions, the indicated performance is 4-times better than that suggested in the literature and varies by 57% across the imaging space. A mechanism based on adjacent but non-interacting beams is hypothesised to explain the observed behaviour. The mechanism suggests that, as also independently concluded by other methods, a geometrically regular beam array maintains maximum objectivity in reconstructions. We believe that the proposed framework, methodology, and findings will be of value in the design and performance evaluation of tomographic imaging arrays and systems.

  10. A Climate Record of Enhanced Spatial Resolution Radiometer Data (Invited)

    NASA Astrophysics Data System (ADS)

    Paget, A. C.; Long, D. G.; Brodzik, M.

    2013-12-01

    Satellite radiometers, such SMMR, SSM/I, SSMIS, and AMSR, provide a multi-decadal time series of observations of the globe to support studies of climate change. Unfortunately, spatial resolution and sampling characteristics differ between sensors, which complicate compiling a single climate record. Resolution concerns can be ameliorated by reconstructing radiometer brightness temperature measurement (Tb) data onto daily-averaged compatible grids. We consider and contrast two widely used methods for image reconstruction: a radiometer version of the scatterometer image reconstruction (SIR) algorithm and Backus-Gilbert (BG). Both require detailed information about the spatial response function (antenna gain pattern) and the sampling geometry. We discuss considerations for an optimum gridding scheme based on the EASE-Grid 2.0 map projection. The EASE-Grid 2.0 simplifies the application of the Tb images in derived products since the reconstruction for each radiometer channel is implement on the same grid. This has the effect of optimally interpolating low-resolution measurements to locations of the highest resolution measurements. By employing reconstruction techniques rather than 'drop in the bucket' (dib) gridding, the effective resolution of the images is spatially enhanced compared to dib images, at the expense of additional computation required for the reconstruction processing. We evaluate the sensitivity of the radiometric accuracy of the resulting Tb images to uncertainties in the antenna gain pattern as well as variations in local-time-of-day. We briefly consider a number of applications of reconstructed Tb images. As part of the NASA-MEASUREs project 'An improved, enhanced-resolution, gridded passive microwave ESDR for monitoring cryospheric and hydrologic time series' we are processing all available satellite radiometer data to generate a consistently calibrated and processed time series of gridded images spanning from the 1970's to the present.

  11. Improvement of the spatial resolution of MODIS coastal waters thermal mapping

    NASA Astrophysics Data System (ADS)

    Teggi, S.; Despini, F.; Ghermandi, G.; Serafini, M.

    2011-11-01

    Thermal mapping is an highly relevant tool for the assessment of the quality of coastal waters. Remote sensing is an useful technique for monitoring large surfaces in near real time, nevertheless, spatial resolution represents an important limiting factor. In this work it the spatial improvement, from 1km to 250m, of MODIS thermal imagery on coastal water obtained with the SWTI (SharpeningWater Thermal Imagery) is shown. This algorithm is applied, for the first time, to MODIS images acquired on the lagoon of Venice and on the delta of the Po River. The performances of SWTI are evaluated taking as a reference a couple of ASTER images acquired simultaneously to the MODIS images and on the same areas. Moreover, the water temperatures obtained with a simple bilinear interpolation of the MODIS images is also considered. Several statistical parameters, as bias and root mean square difference, are used to quantify the the difference between ASTER and MODIS/SWTI water temperatures along coastlines. In all the the cases these differences are lower than 1K.

  12. Improving PET spatial resolution and detectability for prostate cancer imaging

    NASA Astrophysics Data System (ADS)

    Bal, H.; Guerin, L.; Casey, M. E.; Conti, M.; Eriksson, L.; Michel, C.; Fanti, S.; Pettinato, C.; Adler, S.; Choyke, P.

    2014-08-01

    Prostate cancer, one of the most common forms of cancer among men, can benefit from recent improvements in positron emission tomography (PET) technology. In particular, better spatial resolution, lower noise and higher detectability of small lesions could be greatly beneficial for early diagnosis and could provide a strong support for guiding biopsy and surgery. In this article, the impact of improved PET instrumentation with superior spatial resolution and high sensitivity are discussed, together with the latest development in PET technology: resolution recovery and time-of-flight reconstruction. Using simulated cancer lesions, inserted in clinical PET images obtained with conventional protocols, we show that visual identification of the lesions and detectability via numerical observers can already be improved using state of the art PET reconstruction methods. This was achieved using both resolution recovery and time-of-flight reconstruction, and a high resolution image with 2 mm pixel size. Channelized Hotelling numerical observers showed an increase in the area under the LROC curve from 0.52 to 0.58. In addition, a relationship between the simulated input activity and the area under the LROC curve showed that the minimum detectable activity was reduced by more than 23%.

  13. Subcell resolution in simplex stochastic collocation for spatial discontinuities

    NASA Astrophysics Data System (ADS)

    Witteveen, Jeroen A. S.; Iaccarino, Gianluca

    2013-10-01

    Subcell resolution has been used in the Finite Volume Method (FVM) to obtain accurate approximations of discontinuities in the physical space. Stochastic methods are usually based on local adaptivity for resolving discontinuities in the stochastic dimensions. However, the adaptive refinement in the probability space is ineffective in the non-intrusive uncertainty quantification framework, if the stochastic discontinuity is caused by a discontinuity in the physical space with a random location. The dependence of the discontinuity location in the probability space on the spatial coordinates then results in a staircase approximation of the statistics, which leads to first-order error convergence and an underprediction of the maximum standard deviation. To avoid these problems, we introduce subcell resolution into the Simplex Stochastic Collocation (SSC) method for obtaining a truly discontinuous representation of random spatial discontinuities in the interior of the cells discretizing the probability space. The presented SSC-SR method is based on resolving the discontinuity location in the probability space explicitly as function of the spatial coordinates and extending the stochastic response surface approximations up to the predicted discontinuity location. The applications to a linear advection problem, the inviscid Burgers' equation, a shock tube problem, and the transonic flow over the RAE 2822 airfoil show that SSC-SR resolves random spatial discontinuities with multiple stochastic and spatial dimensions accurately using a minimal number of samples.

  14. BOREAS AFM-12 1-km AVHRR Seasonal Land Cover Classification

    NASA Technical Reports Server (NTRS)

    Steyaert, Lou; Hall, Forrest G.; Newcomer, Jeffrey A. (Editor); Knapp, David E. (Editor); Loveland, Thomas R.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-12 team's efforts focused on regional scale Surface Vegetation and Atmosphere (SVAT) modeling to improve parameterization of the heterogeneous BOREAS landscape for use in larger scale Global Circulation Models (GCMs). This regional land cover data set was developed as part of a multitemporal one-kilometer Advanced Very High Resolution Radiometer (AVHRR) land cover analysis approach that was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. This land cover classification was derived by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly Normalized Difference Vegetation Index (NDVI) image composites (April-September 1992). This regional data set was developed for use by BOREAS investigators, especially those involved in simulation modeling, remote sensing algorithm development, and aircraft flux studies. Based on regional field data verification, this multitemporal one-kilometer AVHRR land cover mapping approach was effective in characterizing the biome-level land cover structure, embedded spatially heterogeneous landscape patterns, and other types of key land cover information of interest to BOREAS modelers.The land cover mosaics in this classification include: (1) wet conifer mosaic (low, medium, and high tree stand density), (2) mixed coniferous-deciduous forest (80% coniferous, codominant, and 80% deciduous), (3) recent visible bum, vegetation regeneration, or rock outcrops-bare ground-sparsely vegetated slow regeneration bum (four classes), (4) open water and grassland marshes, and (5) general agricultural land use/ grasslands (three classes). This land cover mapping approach did not detect small subpixel-scale landscape

  15. Ameliorating the spatial resolution of Hyperion hyperspectral data

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos G.; Tsombos, Panagiotis I.; Skianis, George A.; Vaiopoulos, Dimitrios A.

    2009-09-01

    In this study seven fusion techniques and more especially the Ehlers, Gram-Schmidt, High Pass Filter, Local Mean Matching (LMM), Local Mean and Variance Matching (LMVM), Pansharp and PCA, were used for the fusion of Hyperion hyperspectral data with ALI panchromatic data. Both sensors are onboard on EO-1 satellite and the data are collected simultaneously. The panchromatic data has a spatial resolution of 10m while the hyperspectral data has a spatial resolution of 30m. All the fusion techniques are designed for use with classical multispectral data. Thus, it is quite interesting to investigate the assessment of the common used fusion algorithms with the hyperspectral data. The area of study is the broader area of North Western Athens near to Thrakomakedones village.

  16. HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA

    SciTech Connect

    Brooks, David H.; Ugarte-Urra, Ignacio; Warren, Harry P.; Winebarger, Amy R.

    2013-08-01

    Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

  17. Imaging metals in biology: balancing sensitivity, selectivity and spatial resolution.

    PubMed

    Hare, Dominic J; New, Elizabeth J; de Jonge, Martin D; McColl, Gawain

    2015-10-07

    Metal biochemistry drives a diverse range of cellular processes associated with development, health and disease. Determining metal distribution, concentration and flux defines our understanding of these fundamental processes. A comprehensive analysis of biological systems requires a balance of analytical techniques that inform on metal quantity (sensitivity), chemical state (selectivity) and location (spatial resolution) with a high degree of certainty. A number of approaches are available for imaging metals from whole tissues down to subcellular organelles, as well as mapping metal turnover, protein association and redox state within these structures. Technological advances in micro- and nano-scale imaging are striving to achieve multi-dimensional and in vivo measures of metals while maintaining the native biochemical environment and physiological state. This Tutorial Review discusses state-of-the-art imaging technology as a guide to obtaining novel insight into the biology of metals, with sensitivity, selectivity and spatial resolution in focus.

  18. Sub-pixel spatial resolution wavefront phase imaging

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip (Inventor); Mooney, James T. (Inventor)

    2012-01-01

    A phase imaging method for an optical wavefront acquires a plurality of phase images of the optical wavefront using a phase imager. Each phase image is unique and is shifted with respect to another of the phase images by a known/controlled amount that is less than the size of the phase imager's pixels. The phase images are then combined to generate a single high-spatial resolution phase image of the optical wavefront.

  19. Spatial and spectral resolution necessary for remotely sensed vegetation studies

    NASA Technical Reports Server (NTRS)

    Rock, B. N.

    1982-01-01

    An outline is presented of the required spatial and spectral resolution needed for accurate vegetation discrimination and mapping studies as well as for determination of state of health (i.e., detection of stress symptoms) of actively growing vegetation. Good success was achieved in vegetation discrimination and mapping of a heterogeneous forest cover in the ridge and valley portion of the Appalachians using multispectral data acquired with a spatial resolution of 15 m (IFOV). A sensor system delivering 10 to 15 m spatial resolution is needed for both vegetation mapping and detection of stress symptoms. Based on the vegetation discrimination and mapping exercises conducted at the Lost River site, accurate products (vegetation maps) are produced using broad-band spectral data ranging from the .500 to 2.500 micron portion of the spectrum. In order of decreasing utility for vegetation discrimination, the four most valuable TM simulator VNIR bands are: 6 (1.55 to 1.75 microns), 3 (0.63 to 0.69 microns), 5 (1.00 to 1.30 microns) and 4 (0.76 to 0.90 microns).

  20. Spatial resolution requirements for urban land cover mapping from space

    NASA Technical Reports Server (NTRS)

    Todd, William J.; Wrigley, Robert C.

    1986-01-01

    Very low resolution (VLR) satellite data (Advanced Very High Resolution Radiometer, DMSP Operational Linescan System), low resolution (LR) data (Landsat MSS), medium resolution (MR) data (Landsat TM), and high resolution (HR) satellite data (Spot HRV, Large Format Camera) were evaluated and compared for interpretability at differing spatial resolutions. VLR data (500 m - 1.0 km) is useful for Level 1 (urban/rural distinction) mapping at 1:1,000,000 scale. Feature tone/color is utilized to distinguish generalized urban land cover using LR data (80 m) for 1:250,000 scale mapping. Advancing to MR data (30 m) and 1:100,000 scale mapping, confidence in land cover mapping is greatly increased, owing to the element of texture/pattern which is now evident in the imagery. Shape and shadow contribute to detailed Level II/III urban land use mapping possible if the interpreter can use HR (10-15 m) satellite data; mapping scales can be 1:25,000 - 1:50,000.

  1. Science with High Spatial Resolution Far-Infrared Data

    NASA Technical Reports Server (NTRS)

    Terebey, Susan (Editor); Mazzarella, Joseph M. (Editor)

    1994-01-01

    The goal of this workshop was to discuss new science and techniques relevant to high spatial resolution processing of far-infrared data, with particular focus on high resolution processing of IRAS data. Users of the maximum correlation method, maximum entropy, and other resolution enhancement algorithms applicable to far-infrared data gathered at the Infrared Processing and Analysis Center (IPAC) for two days in June 1993 to compare techniques and discuss new results. During a special session on the third day, interested astronomers were introduced to IRAS HIRES processing, which is IPAC's implementation of the maximum correlation method to the IRAS data. Topics discussed during the workshop included: (1) image reconstruction; (2) random noise; (3) imagery; (4) interacting galaxies; (5) spiral galaxies; (6) galactic dust and elliptical galaxies; (7) star formation in Seyfert galaxies; (8) wavelet analysis; and (9) supernova remnants.

  2. Ameliorating the spatial resolution of GeoEye data

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos G.; Vaiopoulos, A. D.; Tsombos, P. I.

    2010-10-01

    GeoEye-1 is the first commercial satellite that collects images at nadir with 0.41m panchromatic and 1.65m multispectral resolution (panchromatic imagery sold to commercial customers is resampled to 0.5m resolution). In this study nine fusion techniques and more especially the Ehlers, Gram-Schmidt, High Pass Filter, Local Mean Matching (LMM), Local Mean and Variance Matching (LMVM), Modified IHS (ModIHS), Pansharp, PCA and Wavelet were used for the fusion of Geoeye panchromatic and multispectral data. The panchromatic data have a spatial resolution of 0.5m while the multispectral data have a spatial resolution of 2.0m. The optical result, the statistical parameters and different quality indexes such as ERGAS, Q and entropy were examined and the results are presented. The broader area of Agrinio city in Western Greece was selected for this comparison. It has a complex geomorphology. At the west the area is flat and the elevation ranges between 5 and 20 meters. At the east there are many hills and the elevation rises to more than 450 meters. The area combines at the same time the characteristics of an urban and a rural area thus it is suitable for a comparison of different fusion algorithms.

  3. Photoacoustic lymphatic imaging with high spatial-temporal resolution

    NASA Astrophysics Data System (ADS)

    Martel, Catherine; Yao, Junjie; Huang, Chih-Hsien; Zou, Jun; Randolph, Gwendalyn J.; Wang, Lihong V.

    2014-11-01

    Despite its critical function in coordinating the egress of inflammatory and immune cells out of tissues and maintaining fluid balance, the causative role of lymphatic network dysfunction in pathological settings is still understudied. Engineered-animal models and better noninvasive high spatial-temporal resolution imaging techniques in both preclinical and clinical studies will help to improve our understanding of different lymphatic-related pathologic disorders. Our aim was to take advantage of our newly optimized noninvasive wide-field fast-scanning photoacoustic (PA) microcopy system to coordinately image the lymphatic vasculature and its flow dynamics, while maintaining high resolution and detection sensitivity. Here, by combining the optical-resolution PA microscopy with a fast-scanning water-immersible microelectromechanical system scanning mirror, we have imaged the lymph dynamics over a large field-of-view, with high spatial resolution and advanced detection sensitivity. Depending on the application, lymphatic vessels (LV) were spectrally or temporally differentiated from blood vessels. Validation experiments were performed on phantoms and in vivo to identify the LV. Lymphatic flow dynamics in nonpathological and pathological conditions were also visualized. These results indicate that our newly developed PA microscopy is a promising tool for lymphatic-related biological research.

  4. Spatial resolution effects of CARS in turbulent premixed combustion thermometry

    SciTech Connect

    Shepherd, I.G. . Applied Science Div.); Porter, F.M.; Greenhalgh, D.A. )

    1990-10-01

    Coherent Anti-Stokes Raman Scattering CARS nitrogen thermometry has proved to be a successful technique to obtain point temperature measurements with high temporal resolution in hot reactive gases. It has significant advantages over other probe methods, such as thermocouples, where access, physical and/or chemical perturbation and a lack of sufficient temperature range may create problems. The longitudinal or axial resolution of a CARS measurement, in the preferred BOXCARS geometry, is determined by the zone of perfect overlap of the intersecting laser beams (typically 1-5 mm). The length squared dependence of the CARS signal, however, can limit the spatial resolution if usable signal-to-noise rations are to be obtained. This can be a particular problem when probing systems where steep temperature gradients exist. In this numerical study of a premixed turbulent flame zone the effect of spatial resolution on CARS temperature probability density functions (pdfs) and mean temperature profile measurements is assessed, and possible means to overcome this problem are presented.

  5. Land cover mapping, fire regeneration, and scaling studies in the Canadian boreal forest with 1 km AVHRR and Landsat TM data

    USGS Publications Warehouse

    Steyaert, L.T.; Hall, F.G.; Loveland, T.R.

    1997-01-01

    A multitemporal 1 km advanced very high resolution radiometer (AVHRR) land cover analysis approach was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. The land cover classification was developed by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly normalized difference vegetation index (NDVI) image composites (April-September 1992). Quantitative areal proportions of the major boreal forest components were determined for a 821 km ?? 619 km region, ranging from the southern grasslands-boreal forest ecotone to the northern boreal transitional forest. The boreal wetlands (mostly lowland black spruce, tamarack, mosses, fens, and bogs) occupied approximately 33% of the region, while lakes accounted for another 13%. Upland mixed coniferous-deciduous forests represented 23% of the ecosystem. A SW-NE productivity gradient across the region is manifested by three levels of tree stand density for both the boreal wetland conifer and the mixed forest classes, which are generally aligned with isopleths of regional growing degree days. Approximately 30% of the region was directly affected by fire disturbance within the preceding 30-35 years, especially in the Canadian Shield Zone where large fire-regeneration patterns contribute to the heterogeneous boreal landscape. Intercomparisons with land cover classifications derived from 30-m Landsat Thematic Mapper (TM) data provided important insights into the relative accuracy of the 1 km AVHRR land cover classification. Primarily due to the multitemporal NDVI image compositing process, the 1 km AVHRR land cover classes have an effective spatial resolution in the 3-4 km range; therefore fens, bogs, small water bodies, and small patches of dry jack pine cannot be resolved within

  6. Spatial Classification of Orchards and Vineyards with High Spatial Resolution Panchromatic Imagery

    SciTech Connect

    Warner, Timothy; Steinmaus, Karen L.

    2005-02-01

    New high resolution single spectral band imagery offers the capability to conduct image classifications based on spatial patterns in imagery. A classification algorithm based on autocorrelation patterns was developed to automatically extract orchards and vineyards from satellite imagery. The algorithm was tested on IKONOS imagery over Granger, WA, which resulted in a classification accuracy of 95%.

  7. High spatial resolution measurements in a single stage ram accelerator

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented in this paper. The ram accelerator is a ramjet-in-tube device which operates in a manner similar to that of a conventional ramjet. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Utilization of special highly instrumented sections of tube has allowed the recording of gas dynamic phenomena with high resolution. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) in a single stage gas mixture are presented and reveal the three-dimensional character of the flow field induced by projectile fins and the canting of the fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, three-dimensional CFD code. The knowledge gained from these experiments and simulations is useful in understanding the underlying nature of ram accelerator propulsive regimes, as well as assisting in the validation of three-dimensional CFD coded which model unsteady, chemically reactive flows.

  8. Spatial-temperature high resolution map for early cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Gavriloaia, Gheorghe V.; Hurduc, Anca; Ghimigean, Ana-Maria; Fumarel, Radu

    2009-02-01

    Heat is one of the most important parameters of living beings. Skin temperature is not the same on the entire body and so, a thermal signature can be got. Infrared map on serial imaging can constitute an early sign of an abnormality. Thermography detects changes in tissue that appear before and accompany many diseases including cancer. As this map has a better resolution an early cancer diagnosis can be done. The temperature of neoplasic tissue is different up to 1.5 °C than that of the healthy tissue as a result of the specific metabolic rate. The infrared camera images show very quickly the heat transferred by radiation. A lot of factors disturb the temperature conversion to pixel intensity. A sensitive temperature sensor with a 10 Mpixels video camera, showing its spatial position, and a computer fusion program were used for the map with high spatial-temperature resolution. A couple of minutes are necessary to get a high resolution map. The asymmetry and borders were the main parameters analyzed. The right cancer diagnosis was for about 78.4% of patients with thyroid cancer, and more than 89.6% from patients with breast cancer. In the near future, the medical prognosis will be improved by fractal analysis.

  9. High resolution spatial map imaging of a gaseous target

    NASA Astrophysics Data System (ADS)

    Stei, Martin; von Vangerow, Johannes; Otto, Rico; Kelkar, Aditya H.; Carrascosa, Eduardo; Best, Thorsten; Wester, Roland

    2013-06-01

    Electrostatic ion imaging with the velocity map imaging mode is a widely used method in atomic and molecular physics and physical chemistry. In contrast, the spatial map imaging (SMI) mode has received very little attention, despite the fact that it has been proposed earlier [A. T. J. B. Eppink and D. H. Parker, Rev. Sci. Instrum. 68, 3477 (1997)], 10.1063/1.1148310. Here, we present a detailed parametric characterization of SMI both by simulation and experiment. One-, two- and three-dimensional imaging modes are described. The influence of different parameters on the imaging process is described by means of a Taylor expansion. To experimentally quantify elements of the Taylor expansion and to infer the spatial resolution of our spectrometer, photoionization of toluene with a focused laser beam has been carried out. A spatial resolution of better than 4 μm out of a focal volume of several mm in diameter has been achieved. Our results will be useful for applications of SMI to the characterization of laser beams, the overlap control of multiple particle or light beams, and the determination of absolute collision cross sections.

  10. Proceedings of the 2004 High Spatial Resolution Commercial Imagery Workshop

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: NASA Applied Sciences Program; USGS Land Remote Sensing: Overview; QuickBird System Status and Product Overview; ORBIMAGE Overview; IKONOS 2004 Calibration and Validation Status; OrbView-3 Spatial Characterization; On-Orbit Modulation Transfer Function (MTF) Measurement of QuickBird; Spatial Resolution Characterization for QuickBird Image Products 2003-2004 Season; Image Quality Evaluation of QuickBird Super Resolution and Revisit of IKONOS: Civil and Commercial Application Project (CCAP); On-Orbit System MTF Measurement; QuickBird Post Launch Geopositional Characterization Update; OrbView-3 Geometric Calibration and Geopositional Accuracy; Geopositional Statistical Methods; QuickBird and OrbView-3 Geopositional Accuracy Assessment; Initial On-Orbit Spatial Resolution Characterization of OrbView-3 Panchromatic Images; Laboratory Measurement of Bidirectional Reflectance of Radiometric Tarps; Stennis Space Center Verification and Validation Capabilities; Joint Agency Commercial Imagery Evaluation (JACIE) Team; Adjacency Effects in High Resolution Imagery; Effect of Pulse Width vs. GSD on MTF Estimation; Camera and Sensor Calibration at the USGS; QuickBird Geometric Verification; Comparison of MODTRAN to Heritage-based Results in Vicarious Calibration at University of Arizona; Using Remotely Sensed Imagery to Determine Impervious Surface in Sioux Falls, South Dakota; Estimating Sub-Pixel Proportions of Sagebrush with a Regression Tree; How Do YOU Use the National Land Cover Dataset?; The National Map Hazards Data Distribution System; Recording a Troubled World; What Does This-Have to Do with This?; When Can a Picture Save a Thousand Homes?; InSAR Studies of Alaska Volcanoes; Earth Observing-1 (EO-1) Data Products; Improving Access to the USGS Aerial Film Collections: High Resolution Scanners; Improving Access to the USGS Aerial Film Collections: Phoenix Digitizing System Product Distribution; System and Product Characterization: Issues Approach

  11. Regional spatially adaptive total variation super-resolution with spatial information filtering and clustering.

    PubMed

    Yuan, Qiangqiang; Zhang, Liangpei; Shen, Huanfeng

    2013-06-01

    Total variation is used as a popular and effective image prior model in the regularization-based image processing fields. However, as the total variation model favors a piecewise constant solution, the processing result under high noise intensity in the flat regions of the image is often poor, and some pseudoedges are produced. In this paper, we develop a regional spatially adaptive total variation model. Initially, the spatial information is extracted based on each pixel, and then two filtering processes are added to suppress the effect of pseudoedges. In addition, the spatial information weight is constructed and classified with k-means clustering, and the regularization strength in each region is controlled by the clustering center value. The experimental results, on both simulated and real datasets, show that the proposed approach can effectively reduce the pseudoedges of the total variation regularization in the flat regions, and maintain the partial smoothness of the high-resolution image. More importantly, compared with the traditional pixel-based spatial information adaptive approach, the proposed region-based spatial information adaptive total variation model can better avoid the effect of noise on the spatial information extraction, and maintains robustness with changes in the noise intensity in the super-resolution process.

  12. High spatial resolution soft-x-ray microscopy

    SciTech Connect

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T.

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy to use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.

  13. EBSD spatial resolution for detecting sigma phase in steels.

    PubMed

    Bordín, S Fernandez; Limandri, S; Ranalli, J M; Castellano, G

    2016-12-01

    The spatial resolution of the electron backscatter diffraction signal is explored by Monte Carlo simulation for the sigma phase in steel at a typical instrumental set-up. In order to estimate the active volume corresponding to the diffracted electrons, the fraction of the backscattered electrons contributing to the diffraction signal was inferred by extrapolating the Kikuchi pattern contrast measured by other authors, as a function of the diffracted electron energy. In the resulting estimation, the contribution of the intrinsic incident beam size and the software capability to deconvolve patterns were included. A strong influence of the beam size on the lateral resolution was observed, resulting in 20nm for the aperture considered. For longitudinal and depth directions the resolutions obtained were 75nm and 16nm, respectively. The reliability of this last result is discussed in terms of the survey of the last large-angle deflection undergone by the backscattered electrons involved in the diffraction process. Bearing in mind the mean transversal resolution found, it was possible to detect small area grains of sigma phase by EBSD measurements, for a stabilized austenitic AISI 347 stainless steel under heat treatments, simulating post welding (40h at 600°C) and aging (284h at 484°C) effects-as usually occurring in nuclear reactor pressure vessels.

  14. Metadevice for intensity modulation with sub-wavelength spatial resolution

    PubMed Central

    Cencillo-Abad, Pablo; Zheludev, Nikolay I.; Plum, Eric

    2016-01-01

    Effectively continuous control over propagation of a beam of light requires light modulation with pixelation that is smaller than the optical wavelength. Here we propose a spatial intensity modulator with sub-wavelength resolution in one dimension. The metadevice combines recent advances in reconfigurable nanomembrane metamaterials and coherent all-optical control of metasurfaces. It uses nanomechanical actuation of metasurface absorber strips placed near a mirror in order to control their interaction with light from perfect absorption to negligible loss, promising a path towards dynamic diffraction and focusing of light as well as holography without unwanted diffraction artefacts. PMID:27857221

  15. Enhancing Medium Spatial Resolution Forest Cover Change Monitoring with a MODIS-Based Disturbance Index

    NASA Astrophysics Data System (ADS)

    Kim, D.; Huang, C.; Sexton, J. O.; Channan, S.; Song, D.; Song, X.; Townshend, J. R.

    2012-12-01

    1. INTRODUCTION Since the opening of the United States Geological Survey's (USGS) Landsat data archive, demands and possibility to document land surface change using Landsat data in large area is increasing. Especially, a global scale monitoring of forest change is required to serve as a baseline for any efforts to cut the carbon emission from deforestation. Several algorithms are being developed for the monitoring of forest change in large area using medium spatial resolution data. Due to its large data volume and difficulties in collecting retrospective ground reference data, automated approaches such as Training Data Automation - Support Vector Machine (TDA-SVM) are developed. To enhance the quality of the results from such methods, this study proposes a method to augment training data using the disturbance information from MODIS and Land Surface Temperature time series. 2. METHOD TDA-SVM is an algorithm to automate whole procedure of forest cover change monitoring using Landsat data. The TDA procedure automatically generates training data from a pair of satellite image. Derived training data is used to produce forest cover change maps. However, current TDA-SVM makes commission errors in some cases. These errors are due to the lack of training samples at the spectral boundary between classes. To add more training samples at spectral boundary, Disturbance Index (DI) is used. This approach is based on strong correlation between vegetation amount and surface temperature. First, Landsat pixels at a spectral boundary between classes are identified by TDA. Second, Disturbance Indices for each 1 km MODIS pixels are calculated to identify the area of which DI is lower than the natural variance. Boundary pixels aggregated into 1km are compared to the DI of spatially corresponding MODIS pixel. Finally, selected boundary pixels of which corresponding DI is lower than natural variability are updated as persistent non-forest. These updated pixels are added as additional

  16. Fourier domain design of microgrid imaging polarimeters with improved spatial resolution

    NASA Astrophysics Data System (ADS)

    Hirakawa, Keigo; LeMaster, Daniel A.

    2014-05-01

    Microgrid polarimetric imagers sacrifice spatial resolution for sensitivity to states of linear polarization. We have recently shown that a 2 × 4 microgrid analyzer pattern sacrifices less spatial resolution than the conventional 2× 2 case without compromising polarization sensitivity. In this paper, we discuss the design strategy that uncovered the spatial resolution benefits of the 2 × 4 array.

  17. Estimation of Land Surface Temperature from 1-km AVHRR data

    NASA Astrophysics Data System (ADS)

    Frey, Corinne

    2016-04-01

    In order to re-process DLRs 1km AVHRR data archive to different geophysical and descriptive parameters of the land surface and the atmosphere, a series of scientific data processors are being developed in the framework of the TIMELINE project. The archive of DLR ranges back to the 80ies. One of the data processors is SurfTemp, which processes L2 LST and emissivity datasets from AVHRR L1b data. The development of the data processor included the selection of statistical procedures suitable for time series processing, including four mono-window and six split window algorithms. For almost all of these algorithms, new constants were generated, which better account for different atmospheric and geometric acquisition situations. The selection of optimal algorithms for SurfTemp is based on a round robin approach, in which the selected mono-window and split window algorithms are tested on the basis of a large number of TOA radiance/LST pairs, which were generated using a radiative transfer model and the SeeBorV5 profile database. The original LSTs are thereby compared to the LSTs derived from the TOA radiances using the mono- and split window algorithms. The algorithm comparison includes measures of precision, as well as the sensitivity of a method to the accuracy of its input data. The results of the round robin are presented, as well as the implementation of selected algorithms into SurfTemp. Further, first cross-validation results between the AVHRR LST and MODIS LST are shown.

  18. A method of spatial mapping and reclassification for high-spatial-resolution remote sensing image classification.

    PubMed

    Wang, Guizhou; Liu, Jianbo; He, Guojin

    2013-01-01

    This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine). Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy.

  19. Mapping seagrass coverage and spatial patterns with high spatial resolution IKONOS imagery

    NASA Astrophysics Data System (ADS)

    Pu, Ruiliang; Bell, Susan

    2017-02-01

    Seagrass habitats in subtidal coastal waters provide a variety of ecosystem functions and services and there is an increasing need to acquire information on spatial and temporal dynamics of this resource. Here, we explored the capability of IKONOS (IKO) data of high resolution (4 m) for mapping seagrass cover [submerged aquatic vegetation (%SAV) cover] along the mid-western coast of Florida, USA. We also compared seagrass maps produced with IKO data with that obtained using the Landsat TM sensor with lower resolution (30 m). Both IKO and TM data, collected in October 2009, were preprocessed to calculate water depth invariant bands to normalize the effect of varying depth on bottom spectra recorded by the two satellite sensors and further the textural information was extracted from IKO data. Our results demonstrate that the high resolution IKO sensor produced a higher accuracy than the TM sensor in a three-class % SAV cover classification. Of note is that the OA of %SAV cover mapping at our study area created with IKO data was 5-20% higher than that from other studies published. We also examined the spatial distribution of seagrass over a spatial range of 4-240 m using the Ripley's K function [L(d)] and IKO data that represented four different grain sizes [4 m (one IKO pixel), 8 m (2 × 2 IKO pixels), 12 m (3 × 3 IKO pixels), and 16 m (4 × 4 IKO pixels)] from moderate-dense seagrass cover along a set of six transects. The Ripley's K metric repeatedly indicated that seagrass cover representing 4 m × 4 m pixels displayed a dispersed (or slightly dispersed) pattern over distances of <4-8 m, and a random or slightly clustered pattern of cover over 9-240 m. The spatial pattern of seagrass cover created with the three additional grain sizes (i.e., 2 × 24 m IKO pixels, 3 × 34 m IKO pixels, and 4 × 4 m IKO pixels) show a dispersed (or slightly dispersed) pattern across 4-32 m and a random or slightly clustered pattern across 33-240 m. Given the first report on using

  20. Spatial Resolution Characterization for AWiFS Multispectral Images

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Ryan, Robert E.; Pagnutti, Mary; Stanley, Thomas

    2006-01-01

    Within the framework of the Joint Agency Commercial Imagery Evaluation program, the National Aeronautics and Space Administration, the National Geospatial-Intelligence Agency, and the U.S. Geological Survey cooperate in the characterization of high-to-moderate-resolution commercial imagery of mutual interest. One of the systems involved in this effort is the Advanced Wide Field Sensor (AWiFS) onboard the Indian Remote Sensing (IRS) Reourcesat-1 satellite, IRS-P6. Spatial resolution of the AWiFS multispectral images was characterized by estimating the value of the system Modulation Transfer Function (MTF) at the Nyquist spatial frequency. The Nyquist frequency is defined as half the sampling frequency, and the sampling frequency is equal to the inverse of the ground sample distance. The MTF was calculated as a ratio of the Fourier transform of a profile across an AWiFS image of the Lake Pontchartrain Causeway Bridge and the Fourier transform of a profile across an idealized model of the bridge for each spectral band evaluated. The mean MTF value for the AWiFS imagery evaluated was estimated to be 0.1.

  1. Efficiency and spatial resolution of the CASCADE thermal neutron detector

    NASA Astrophysics Data System (ADS)

    Köhli, M.; Allmendinger, F.; Häußler, W.; Schröder, T.; Klein, M.; Meven, M.; Schmidt, U.

    2016-08-01

    We report on the CASCADE project - a detection system, which has been designed for the purposes of neutron Spin Echo spectroscopy and which is continuously further developed and adapted to various applications. It features 2D spatially resolved detection of thermal neutrons at high rates. The CASCADE detector is composed of a stack of solid 10B coated Gas Electron Multiplier foils, which serve both as a neutron converter and as an amplifier for the primary ionization deposited in the standard counting gas environment. This multi-layer setup efficiently increases the detection efficiency and by extracting the signal of the charge traversing the stack the conversion layer can be identified allowing a precise determination of the time-of-flight. The spatial resolution is found by optical contrast determination to be σ =(1.39 ± 0.05) mm and by divergence corrected aperture measurements σ =(1.454 ± 0.007) mm , which is in agreement with the simulated detector model. Furthermore this enabled to investigate and describe the non-Gaussian resolution function. At the HEiDi diffractometer the absolute detection efficiency has been studied. At 0.6 Å for the 6 layer detector, which is currently part of the RESEDA spectrometer, an efficiency of 7.8% has been measured, which by means of Monte Carlo simulations translates to (21.0±1.5)% for thermal neutrons at 1.8 Å and (46.9±3.3)% at 5.4 Å.

  2. Spatial and temporal resolution of fluid flows: LDRD final report

    SciTech Connect

    Tieszen, S.R.; O`Hern, T.J.; Schefer, R.W.; Perea, L.D.

    1998-02-01

    This report describes a Laboratory Directed Research and Development (LDRD) activity to develop a diagnostic technique for simultaneous temporal and spatial resolution of fluid flows. The goal is to obtain two orders of magnitude resolution in two spatial dimensions and time simultaneously. The approach used in this study is to scale up Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) to acquire meter-size images at up to 200 frames/sec. Experiments were conducted in buoyant, fully turbulent, non-reacting and reacting plumes with a base diameter of one meter. The PIV results were successful in the ambient gas for all flows, and in the plume for non-reacting helium and reacting methane, but not reacting hydrogen. No PIV was obtained in the hot combustion product region as the seed particles chosen vaporized. Weak signals prevented PLIF in the helium. However, in reacting methane flows, PLIF images speculated to be from Poly-Aromatic-Hydrocarbons were obtained which mark the flame sheets. The results were unexpected and very insightful. A natural fluorescence from the seed particle vapor was also noted in the hydrogen tests.

  3. Contrast and spatial resolution in MREIT using low amplitude current.

    PubMed

    Birgul, Ozlem; Hamamura, Mark J; Muftuler, L Tugan; Nalcioglu, Orhan

    2006-10-07

    Magnetic resonance-electrical impedance tomography employs low amplitude currents injected or induced inside an object. The additional magnetic field due to these currents results in a phase in the MR images. In this study, a modified fast spin-echo sequence was used to measure this magnetic field, which is obtained by scaling the MR phase image. A finite element method with first order triangular elements was used for the solution of the forward problem. An iterated sensitivity matrix-based algorithm was developed for the inverse problem. The resulting ill-conditioned matrix equation was regularized using the Tikhonov method and solved using a conjugate gradient solver. The spatial and contrast resolution of the technique was tested using agarose gel phantoms. A circular phantom with 7 cm diameter and 1 cm thickness is used in the phantom experiments. The amplitude of the injected current was 1 mA. 3, 5 and 8 mm diameter insulators and high conductor objects are used for the spatial resolution study and an average full-width half-maximum value of 4.7 mm is achieved for the 3 mm insulator case. For the contrast analysis, the conductivity of a 15 mm object is varied between 44% and 500% with respect to the background and results are compared to the ideal reconstruction.

  4. Using a high spatial resolution tactile sensor for intention detection.

    PubMed

    Castellini, Claudio; Koiva, Risto

    2013-06-01

    Intention detection is the interpretation of biological signals with the aim of automatically, reliably and naturally understanding what a human subject desires to do. Although intention detection is not restricted to disabled people, such methods can be crucial in improving a patient's life, e.g., aiding control of a robotic wheelchair or of a self-powered prosthesis. Traditionally, intention detection is done using, e.g., gaze tracking, surface electromyography and electroencephalography. In this paper we present exciting initial results of an experiment aimed at intention detection using a high-spatial-resolution, high-dynamic-range tactile sensor. The tactile image of the ventral side of the forearm of 9 able-bodied participants was recorded during a variable-force task stimulated at the fingertip. Both the forces at the fingertip and at the forearm were synchronously recorded. We show that a standard dimensionality reduction technique (Principal Component Analysis) plus a Support Vector Machine attain almost perfect detection accuracy of the direction and the intensity of the intended force. This paves the way for high spatial resolution tactile sensors to be used as a means for intention detection.

  5. High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES)

    NASA Astrophysics Data System (ADS)

    Hulley, Glynn C.; Duren, Riley M.; Hopkins, Francesca M.; Hook, Simon J.; Vance, Nick; Guillevic, Pierre; Johnson, William R.; Eng, Bjorn T.; Mihaly, Jonathan M.; Jovanovic, Veljko M.; Chazanoff, Seth L.; Staniszewski, Zak K.; Kuai, Le; Worden, John; Frankenberg, Christian; Rivera, Gerardo; Aubrey, Andrew D.; Miller, Charles E.; Malakar, Nabin K.; Sánchez Tomás, Juan M.; Holmes, Kendall T.

    2016-06-01

    Currently large uncertainties exist associated with the attribution and quantification of fugitive emissions of criteria pollutants and greenhouse gases such as methane across large regions and key economic sectors. In this study, data from the airborne Hyperspectral Thermal Emission Spectrometer (HyTES) have been used to develop robust and reliable techniques for the detection and wide-area mapping of emission plumes of methane and other atmospheric trace gas species over challenging and diverse environmental conditions with high spatial resolution that permits direct attribution to sources. HyTES is a pushbroom imaging spectrometer with high spectral resolution (256 bands from 7.5 to 12 µm), wide swath (1-2 km), and high spatial resolution (˜ 2 m at 1 km altitude) that incorporates new thermal infrared (TIR) remote sensing technologies. In this study we introduce a hybrid clutter matched filter (CMF) and plume dilation algorithm applied to HyTES observations to efficiently detect and characterize the spatial structures of individual plumes of CH4, H2S, NH3, NO2, and SO2 emitters. The sensitivity and field of regard of HyTES allows rapid and frequent airborne surveys of large areas including facilities not readily accessible from the surface. The HyTES CMF algorithm produces plume intensity images of methane and other gases from strong emission sources. The combination of high spatial resolution and multi-species imaging capability provides source attribution in complex environments. The CMF-based detection of strong emission sources over large areas is a fast and powerful tool needed to focus on more computationally intensive retrieval algorithms to quantify emissions with error estimates, and is useful for expediting mitigation efforts and addressing critical science questions.

  6. Progress toward accurate high spatial resolution actinide analysis by EPMA

    NASA Astrophysics Data System (ADS)

    Jercinovic, M. J.; Allaz, J. M.; Williams, M. L.

    2010-12-01

    High precision, high spatial resolution EPMA of actinides is a significant issue for geochronology, resource geochemistry, and studies involving the nuclear fuel cycle. Particular interest focuses on understanding of the behavior of Th and U in the growth and breakdown reactions relevant to actinide-bearing phases (monazite, zircon, thorite, allanite, etc.), and geochemical fractionation processes involving Th and U in fluid interactions. Unfortunately, the measurement of minor and trace concentrations of U in the presence of major concentrations of Th and/or REEs is particularly problematic, especially in complexly zoned phases with large compositional variation on the micro or nanoscale - spatial resolutions now accessible with modern instruments. Sub-micron, high precision compositional analysis of minor components is feasible in very high Z phases where scattering is limited at lower kV (15kV or less) and where the beam diameter can be kept below 400nm at high current (e.g. 200-500nA). High collection efficiency spectrometers and high performance electron optics in EPMA now allow the use of lower overvoltage through an exceptional range in beam current, facilitating higher spatial resolution quantitative analysis. The U LIII edge at 17.2 kV precludes L-series analysis at low kV (high spatial resolution), requiring careful measurements of the actinide M series. Also, U-La detection (wavelength = 0.9A) requires the use of LiF (220) or (420), not generally available on most instruments. Strong peak overlaps of Th on U make highly accurate interference correction mandatory, with problems compounded by the ThMIV and ThMV absorption edges affecting peak, background, and interference calibration measurements (especially the interference of the Th M line family on UMb). Complex REE bearing phases such as monazite, zircon, and allanite have particularly complex interference issues due to multiple peak and background overlaps from elements present in the activation

  7. COMPLEX ORGANIC MOLECULES AT HIGH SPATIAL RESOLUTION TOWARD ORION-KL. I. SPATIAL SCALES

    SciTech Connect

    Widicus Weaver, Susanna L.; Friedel, Douglas N. E-mail: friedel@astro.illinois.edu

    2012-08-01

    Here we present high spatial resolution (<1'') observations of molecular emission in Orion-KL conducted using the Combined Array for Research in Millimeter-wave Astronomy. This work was motivated by recent millimeter continuum imaging studies of this region conducted at a similarly high spatial resolution, which revealed that the bulk of the emission arises from numerous compact sources, rather than the larger-scale extended structures typically associated with the Orion Hot Core and Compact Ridge. Given that the spatial extent of molecular emission greatly affects the determination of molecular abundances, it is important to determine the true spatial scale for complex molecules in this region. Additionally, it has recently been suggested that the relative spatial distributions of complex molecules in a source might give insight into the chemical mechanisms that drive complex chemistry in star-forming regions. In order to begin to address these issues, this study seeks to determine the spatial distributions of ethyl cyanide [C{sub 2}H{sub 5}CN], dimethyl ether [(CH{sub 3}){sub 2}O], methyl formate [HCOOCH{sub 3}], formic acid [HCOOH], acetone [(CH{sub 3}){sub 2}CO], SiO, methanol [CH{sub 3}OH], and methyl cyanide [CH{sub 3}CN] in Orion-KL at {lambda} = 3 mm. We find that for all observed molecules, the molecular emission arises from multiple components of the cloud that include a range of spatial scales and physical conditions. Here, we present the results of these observations and discuss the implications for studies of complex molecules in star-forming regions.

  8. High Spatial Resolution Fe XII Observations of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Testa, Paola; De Pontieu, Bart; Hansteen, Viggo

    2016-08-01

    We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal Fe xii 1349.4 Å emission at unprecedented high spatial resolution (˜0.33″). We find that by using appropriate observational strategies (i.e., long exposures, lossless compression), Fe xii emission can be studied with IRIS at high spatial and spectral resolution, at least for high-density plasma (e.g., post-flare loops and active region moss). We find that upper transition region (TR; moss) Fe xii emission shows very small average Doppler redshifts ({v}{{D}} ˜ 3 km s-1) as well as modest non-thermal velocities (with an average of ˜24 km s-1 and the peak of the distribution at ˜15 km s-1). The observed distribution of Doppler shifts appears to be compatible with advanced three-dimensional radiative MHD simulations in which impulsive heating is concentrated at the TR footpoints of a hot corona. While the non-thermal broadening of Fe xii 1349.4 Å peaks at similar values as lower resolution simultaneous Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) measurements of Fe xii 195 Å, IRIS observations show a previously undetected tail of increased non-thermal broadening that might be suggestive of the presence of subarcsecond heating events. We find that IRIS and EIS non-thermal line broadening measurements are affected by instrumental effects that can only be removed through careful analysis. Our results also reveal an unexplained discrepancy between observed 195.1/1349.4 Å Fe xii intensity ratios and those predicted by the CHIANTI atomic database.

  9. Land cover mapping, fire regeneration, and scaling studies in the Canadian boreal forest with 1 km AVHRR and Landsat TM data

    NASA Astrophysics Data System (ADS)

    Steyaert, L. T.; Hall, F. G.; Loveland, T. R.

    1997-12-01

    A multitemporal 1 km advanced very high resolution radiometer (AVHRR) land cover analysis approach was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. The land cover classification was developed by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly normalized difference vegetation index (NDVI) image composites (April-September 1992). Quantitative areal proportions of the major boreal forest components were determined for a 821 km × 619 km region, ranging from the southern grasslands-boreal forest ecotone to the northern boreal transitional forest. The boreal wetlands (mostly lowland black spruce, tamarack, mosses, fens, and bogs) occupied approximately 33% of the region, while lakes accounted for another 13%. Upland mixed coniferous-deciduous forests represented 23% of the ecosystem. A SW-NE productivity gradient across the region is manifested by three levels of tree stand density for both the boreal wetland conifer and the mixed forest classes, which are generally aligned with isopleths of regional growing degree days. Approximately 30% of the region was directly affected by fire disturbance within the preceding 30-35 years, especially in the Canadian Shield Zone where large fire-regeneration patterns contribute to the heterogeneous boreal landscape. Intercomparisons with land cover classifications derived from 30-m Landsat Thematic Mapper (TM) data provided important insights into the relative accuracy of the 1 km AVHRR land cover classification. Primarily due to the multitemporal NDVI image compositing process, the 1 km AVHRR land cover classes have an effective spatial resolution in the 3-4 km range; therefore fens, bogs, small water bodies, and small patches of dry jack pine cannot be resolved within

  10. Mapping Spatial Variability in Health and Wealth Indicators in Accra, Ghana Using High Spatial Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Engstrom, R.; Ashcroft, E.

    2014-12-01

    There has been a tremendous amount of research conducted that examines disparities in health and wealth of persons between urban and rural areas however, relatively little research has been undertaken to examine variations within urban areas. A major limitation to elucidating differences with urban areas is the lack of social and demographic data at a sufficiently high spatial resolution to determine these differences. Generally the only available data that contain this information are census data which are collected at most every ten years and are often difficult to obtain at a high enough spatial resolution to allow for examining in depth variability in health and wealth indicators at high spatial resolutions, especially in developing countries. High spatial resolution satellite imagery may be able to provide timely and synoptic information that is related to health and wealth variability within a city. In this study we use two dates of Quickbird imagery (2003 and 2010) classified into the vegetation-impervious surface-soil (VIS) model introduced by Ridd (1995). For 2003 we only have partial coverage of the city, while for 2010 we have a mosaic, which covers the entire city of Accra, Ghana. Variations in the VIS values represent the physical variations within the city and these are compared to variations in economic, and/or sociodemographic data derived from the 2000 Ghanaian census at two spatial resolutions, the enumeration area (approximately US Census Tract) and the neighborhood for the city. Results indicate a significant correlation between both vegetation and impervious surface to type of cooking fuel used in the household, population density, housing density, availability of sewers, cooking space usage, and other variables. The correlations are generally stronger at the neighborhood level and the relationships are stable through time and space. Overall, the results indicate that information derived from high resolution satellite data is related to

  11. High resolution autofocus for spatial temporal biomedical research

    NASA Astrophysics Data System (ADS)

    Li, Sihong; Cui, Xiaodong; Huang, Wei

    2013-11-01

    Maintaining focus has been a critical but challenging issue in optical microscopy, particularly for microscopic imaging systems currently used in biomedical research. During live cell imaging, environmental temperature fluctuations and other factors contribute to the unavoidable focus drift. For single molecular imaging and super resolution, focus drift can be significant even over short durations. The current commercial and experimental solutions are either optically complicated, expensive, or with limited axial resolution. Here, we present a simple autofocus solution based on low cost solid state laser and imaging sensor. By improving the optical train design and using real-time data analysis, improvement in axial resolution by approximately two orders of magnitudes over the focal depth of microscope objectives can be achieved. This solution has been tested for prolonged live cell imaging for fast ramping up in environmental chamber temperature and large daily swing in room temperature. In addition, this system can be used to spatial-temporally measure the surface for three-dimensional cell culture and tissue engineering, with flexibility that exceeds commercially available systems.

  12. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data

    USGS Publications Warehouse

    Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W.

    2000-01-01

    Researchers from the U.S. Geological Survey, University of Nebraska-Lincoln and the European Commission's Joint Research Centre, Ispra, Italy produced a 1 km resolution global land cover characteristics database for use in a wide range of continental-to global-scale environmental studies. This database provides a unique view of the broad patterns of the biogeographical and ecoclimatic diversity of the global land surface, and presents a detailed interpretation of the extent of human development. The project was carried out as an International Geosphere-Biosphere Programme, Data and Information Systems (IGBP-DIS) initiative. The IGBP DISCover global land cover product is an integral component of the global land cover database. DISCover includes 17 general land cover classes defined to meet the needs of IGBP core science projects. A formal accuracy assessment of the DISCover data layer will be completed in 1998. The 1 km global land cover database was developed through a continent-by-continent unsupervised classification of 1 km monthly Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) composites covering 1992-1993. Extensive post-classification stratification was necessary to resolve spectral/temporal confusion between disparate land cover types. The complete global database consists of 961 seasonal land cover regions that capture patterns of land cover, seasonality and relative primary productivity. The seasonal land cover regions were aggregated to produce seven separate land cover data sets used for global environmental modelling and assessment. The data sets include IGBP DISCover, U.S. Geological Survey Anderson System, Simple Biosphere Model, Simple Biosphere Model 2, Biosphere-Atmosphere Transfer Scheme, Olson Ecosystems and Running Global Remote Sensing Land Cover. The database also includes all digital sources that were used in the classification. The complete database can be sourced from the website: http://edcwww.cr.usgs.gov/landdaac/glcc/glcc.html.

  13. A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products

    USGS Publications Warehouse

    Hansen, M.C.; Reed, B.

    2000-01-01

    Two global 1 km land cover data sets derived from 1992-1993 Advanced Very High Resolution Radiometer (AVHRR) data are currently available, the International Geosphere-Biosphere Programme Data and Information System (IGBP-DIS) DISCover and the University of Maryland (UMd) 1 km land cover maps. This paper makes a preliminary comparison of the methodologies and results of the two products. The DISCover methodology employed an unsupervised clustering classification scheme on a per-continent basis using 12 monthly maximum NDVI composites as inputs. The UMd approach employed a supervised classification tree method in which temporal metrics derived from all AVHRR bands and the NDVI were used to predict class membership across the entire globe. The DISCover map uses the IGBP classification scheme, while the UMd map employs a modified IGBP scheme minus the classes of permanent wetlands, cropland/natural vegetation mosaic and ice and snow. Global area totals of aggregated vegetation types are very similar and have a per-pixel agreement of 74%. For tall versus short/no vegetation, the per-pixel agreement is 84%. For broad vegetation types, core areas map similarly, while transition zones around core areas differ significantly. This results in high regional variability between the maps. Individual class agreement between the two 1 km maps is 49%. Comparison of the maps at a nominal 0.5 resolution with two global ground-based maps shows an improvement of thematic concurrency of 46% when viewing average class agreement. The absence of the cropland mosaic class creates a difficulty in comparing the maps, due to its significant extent in the DISCover map. The DISCover map, in general, has more forest, while the UMd map has considerably more area in the intermediate tree cover classes of woody savanna/ woodland and savanna/wooded grassland.

  14. Daily air temperature interpolated at high spatial resolution over a large mountainous region

    USGS Publications Warehouse

    Dodson, R.; Marks, D.

    1997-01-01

    Two methods are investigated for interpolating daily minimum and maximum air temperatures (Tmin and Tmax) at a 1 km spatial resolution over a large mountainous region (830 000 km2) in the U.S. Pacific Northwest. The methods were selected because of their ability to (1) account for the effect of elevation on temperature and (2) efficiently handle large volumes of data. The first method, the neutral stability algorithm (NSA), used the hydrostatic and potential temperature equations to convert measured temperatures and elevations to sea-level potential temperatures. The potential temperatures were spatially interpolated using an inverse-squared-distance algorithm and then mapped to the elevation surface of a digital elevation model (DEM). The second method, linear lapse rate adjustment (LLRA), involved the same basic procedure as the NSA, but used a constant linear lapse rate instead of the potential temperature equation. Cross-validation analyses were performed using the NSA and LLRA methods to interpolate Tmin and Tmax each day for the 1990 water year, and the methods were evaluated based on mean annual interpolation error (IE). The NSA method showed considerable bias for sites associated with vertical extrapolation. A correction based on climate station/grid cell elevation differences was developed and found to successfully remove the bias. The LLRA method was tested using 3 lapse rates, none of which produced a serious extrapolation bias. The bias-adjusted NSA and the 3 LLRA methods produced almost identical levels of accuracy (mean absolute errors between 1.2 and 1.3??C), and produced very similar temperature surfaces based on image difference statistics. In terms of accuracy, speed, and ease of implementation, LLRA was chosen as the best of the methods tested.

  15. Spectral sensitivity, spatial resolution and temporal resolution and their implications for conspecific signalling in cleaner shrimp.

    PubMed

    Caves, Eleanor M; Frank, Tamara M; Johnsen, Sönke

    2016-02-01

    Cleaner shrimp (Decapoda) regularly interact with conspecifics and client reef fish, both of which appear colourful and finely patterned to human observers. However, whether cleaner shrimp can perceive the colour patterns of conspecifics and clients is unknown, because cleaner shrimp visual capabilities are unstudied. We quantified spectral sensitivity and temporal resolution using electroretinography (ERG), and spatial resolution using both morphological (inter-ommatidial angle) and behavioural (optomotor) methods in three cleaner shrimp species: Lysmata amboinensis, Ancylomenes pedersoni and Urocaridella antonbruunii. In all three species, we found strong evidence for only a single spectral sensitivity peak of (mean ± s.e.m.) 518 ± 5, 518 ± 2 and 533 ± 3 nm, respectively. Temporal resolution in dark-adapted eyes was 39 ± 1.3, 36 ± 0.6 and 34 ± 1.3 Hz. Spatial resolution was 9.9 ± 0.3, 8.3 ± 0.1 and 11 ± 0.5 deg, respectively, which is low compared with other compound eyes of similar size. Assuming monochromacy, we present approximations of cleaner shrimp perception of both conspecifics and clients, and show that cleaner shrimp visual capabilities are sufficient to detect the outlines of large stimuli, but not to detect the colour patterns of conspecifics or clients, even over short distances. Thus, conspecific viewers have probably not played a role in the evolution of cleaner shrimp appearance; rather, further studies should investigate whether cleaner shrimp colour patterns have evolved to be viewed by client reef fish, many of which possess tri- and tetra-chromatic colour vision and relatively high spatial acuity.

  16. Assessment of the Effects of Spatial Resolutions on Daily Water Flux Simulations

    SciTech Connect

    Liang, Xu; Guo, Jianzhong; Leung, Lai R.

    2004-10-01

    Impacts of spatially distributed precipitation and soil heterogeneity on modeling water fluxes at different spatial resolutions are investigated using the Three-layer Variable Infiltration Capacity (VIC-3L) land surface model at the Blue River watershed in Oklahoma. In this study, hourly grid-based NEXRAD (Next Generation Radar) Stage III radar precipitation data approximately at 4 x 4 km2 resolution are used to compute daily precipitation at spatial resolutions of 1/32, 1/16, 1/8, 1/4, 1/2 and 1 degree based on an area weighted average method. Soil parameters at the corresponding six spatial resolutions are derived from the State Soil Geographic (STATSGO) soil data. The forcing data of daily maximum and minimum temperature, wind speed, and vegetation parameters are disaggregated/aggregated directly to finer/coarser spatial resolutions based on the University of Washington (UW) data, which are gridded at 1/8 degree spatial resolution. Our study suggests that a critical spatial resolution for the VIC-3L model may exist for the study watershed. For spatial resolutions finer than the critical resolution, one does not necessarily obtain better model performance in terms of runoff, evapotranspiration, and total zone soil moisture with increasing spatial resolution if the VIC-3L model parameters are calibrated at each spatial resolution. Also, model parameters calibrated at a coarse resolution can be applied to finer resolutions to obtain generally comparable results. However, model parameters calibrated at finer resolutions cannot result in comparable results when applied to resolutions coarser than the identified critical resolution. In addition, while soil moisture of the total zone is more sensitive to the spatial distributions of soil properties, runoff and evaporation are more sensitive to the spatial distribution of daily precipitation at the watershed being studied.

  17. [Resolution of spatial constraints during replication of peripheral chromatin].

    PubMed

    Zhironkina, O A; Kurchashova, S Yu; Bratseva, A L; Cherepanynets, V D; Strelkova, O S; Belmont, A S; Kireev, I I

    2014-01-01

    Tight association of peripheral chromatin with nuclear lamina unavoidably creates topological constraints during replication. Additional complications are associated with high stability of lamina meshwork, which may hinder an access of replication factors to the sites of DNA synthesis in highly condensed template with limited mobility. In the current work we studied structural organization and dynamics of lamina as a function of replicative status of associated peripheral heterochromatin. The studies of molecular mobility of laminas at various stages of S-phase in vivo and using super-resolution microscopy showed no correlation between lamina dynamics and replicative status of attached heterochromatin. These data support the hypothesis that lamina-chromatin interactions during S-phase are regulated at the level of adapter proteins. Ultrastructural studies have demonstrated that temporal break of lamina-chromatin connections during replication does not cause noticeable spatial separation of replicating domains from nuclear periphery.

  18. Tactile Feedback Display with Spatial and Temporal Resolutions

    NASA Astrophysics Data System (ADS)

    Vishniakou, Siarhei; Lewis, Brian W.; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-08-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.

  19. Tactile feedback display with spatial and temporal resolutions.

    PubMed

    Vishniakou, Siarhei; Lewis, Brian W; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-01-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.

  20. The Role of a High-Resolution Spatial Sensor in an Educational Setting.

    ERIC Educational Resources Information Center

    Kay, Leslie; And Others

    1984-01-01

    A pilot study involving 16 visually handicapped children (6-14 years old) suggested that a new high-resolution acoustic sensory aid may be useful as a training aid for developing spatial perception. Tasks in spatial location, spatial orientation, and spatial transfer were executed using the spatial sensor in a classroom program. (Author/CL)

  1. Assessment of the Suitability of a Global Hydrodynamic Model in Simulating a Regional-scale Extreme Flood at Finer Spatial Resolutions

    NASA Astrophysics Data System (ADS)

    Mateo, C. M. R.; Yamazaki, D.; Kim, H.; Champathong, A.; Oki, T.

    2015-12-01

    Global river models (GRMs) are elemental for large-scale predictions and impact analyses. However, they have limited capability in providing accurate flood information at fine resolution for practical purposes. Hyperresolution (~1km resolution) modelling is believed to improve the representation of topographical constraints, which consequently result to better predictions of surface water flows and flood inundation at regional to global scales. While numerous studies have shown that finer resolutions improve the predictions of catchment-scale floods using local-scale hydrodynamic models, the impact of finer spatial resolution on predictions of large-scale floods using GRMs is rarely examined. In this study, we assessed the suitability of a state-of-the-art hydrodynamic GRM, CaMa-Flood, in the hyperresolution simulation of a regional-scale flood. The impacts of finer spatial resolution and representation of sub-grid processes on simulating the 2011 immense flooding in Chao Phraya River Basin, Thailand was investigated. River maps ranging from 30-arcsecond (~1km) to 5-arcminute (~10km) spatial resolutions were generated from 90m resolution HydroSHEDS maps and SRTM3 DEM. Simulations were executed in each spatial resolution with the new multi-directional downstream connectivity (MDC) scheme in CaMa-Flood turned on and off. While the predictive capability of the model slightly improved with finer spatial resolution when MDC scheme is turned on, it significantly declined when MDC scheme is turned off; bias increased by 35% and NSE-coefficient decreased by 60%. These findings indicate that GRMs which assume single-downstream-grid flows are not suitable for hyperresolution modelling because of their limited capability to realistically represent floodplain connectivity. When simulating large-scale floods, MDC scheme is necessary for the following functions: provide additional storage for ovehrbank flows, enhance connectivity between floodplains which allow more realistic

  2. VLBI observations of single stars, spatial resolution and astrometry

    NASA Astrophysics Data System (ADS)

    Pestalozzi, M.; Benz, A. O.; Conway, J. E.; Gudel, M.; Smith, K.

    VLBI studies can both spatially resolve single dMe stars and measure their positions at submilliarcsecond accuracy. The spatial resolution gives the brightness temperature and allows us to draw co nclusions about the nature of the emitting processes. In particular it is possib le to distinguish between thermal or non-thermal emission. The position accuracy gives better knowledge about the astrometric properties (like proper motion and parallax) especially for nearby stars. In this contribution recent results of c ontinuum VLBI observations towards two dMe stars (YZ CMi and AD Leo) at 8.4 GHz are presented. For YZ CMi an estimate of the size of the coronal emission is giv en (0.98 mas in diameter or 0.7 ±0.3 Rstar above the photosphere where Rstar refers to the photospheric radius). For AD Leo an upper limit is gi ven, i.e. the emitting region is shown to be < 0.8 Rstar. The position o f YZ CMi is found to differ by 32 mas form the Hipparcos catalogue, a discrepanc y mostly due to large errors in the listed proper motion (Pestalozzi et al. 2000 ).

  3. Development of an Objective High Spatial Resolution Soil Moisture Index

    NASA Astrophysics Data System (ADS)

    Zavodsky, B.; Case, J.; White, K.; Bell, J. R.

    2015-12-01

    Drought detection, analysis, and mitigation has become a key challenge for a diverse set of decision makers, including but not limited to operational weather forecasters, climatologists, agricultural interests, and water resource management. One tool that is heavily used is the United States Drought Monitor (USDM), which is derived from a complex blend of objective data and subjective analysis on a state-by-state basis using a variety of modeled and observed precipitation, soil moisture, hydrologic, and vegetation and crop health data. The NASA Short-term Prediction Research and Transition (SPoRT) Center currently runs a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework. The LIS-Noah is run at 3-km resolution for local numerical weather prediction (NWP) and situational awareness applications at select NOAA/National Weather Service (NWS) forecast offices over the Continental U.S. (CONUS). To enhance the practicality of the LIS-Noah output for drought monitoring and assessing flood potential, a 30+-year soil moisture climatology has been developed in an attempt to place near real-time soil moisture values in historical context at county- and/or watershed-scale resolutions. This LIS-Noah soil moisture climatology and accompanying anomalies is intended to complement the current suite of operational products, such as the North American Land Data Assimilation System phase 2 (NLDAS-2), which are generated on a coarser-resolution grid that may not capture localized, yet important soil moisture features. Daily soil moisture histograms are used to identify the real-time soil moisture percentiles at each grid point according to the county or watershed in which the grid point resides. Spatial plots are then produced that map the percentiles as proxies to the different USDM categories. This presentation will highlight recent developments of this gridded, objective soil moisture index, comparison to subjective

  4. Optoelectronic image scanning with high spatial resolution and reconstruction fidelity

    NASA Astrophysics Data System (ADS)

    Craubner, Siegfried I.

    2002-02-01

    In imaging systems the detector arrays deliver at the output time-discrete signals, where the spatial frequencies of the object scene are mapped into the electrical signal frequencies. Since the spatial frequency spectrum cannot be bandlimited by the front optics, the usual detector arrays perform a spatial undersampling and as a consequence aliasing occurs. A means to partially suppress the backfolded alias band is bandwidth limitation in the reconstruction low-pass, at the price of resolution loss. By utilizing a bilinear detector array in a pushbroom-type scanner, undersampling and aliasing can be overcome. For modeling the perception, the theory of discrete systems and multirate digital filter banks is applied, where aliasing cancellation and perfect reconstruction play an important role. The discrete transfer function of a bilinear array can be imbedded into the scheme of a second-order filter bank. The detector arrays already build the analysis bank and the overall filter bank is completed with the synthesis bank, for which stabilized inverse filters are proposed, to compensate for the low-pass characteristics and to approximate perfect reconstruction. The synthesis filter branch can be realized in a so-called `direct form,' or the `polyphase form,' where the latter is an expenditure-optimal solution, which gives advantages when implemented in a signal processor. This paper attempts to introduce well-established concepts of the theory of multirate filter banks into the analysis of scanning imagers, which is applicable in a much broader sense than for the problems addressed here. To the author's knowledge this is also a novelty.

  5. Forest Classification Accuracy as Influenced by Multispectral Scanner Spatial Resolution. [Sam Houston National Forest, Texas

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Sadowski, F. E.; Sarno, J. E.

    1976-01-01

    The author has identified the following significant results. A supervised classification within two separate ground areas of the Sam Houston National Forest was carried out for two sq meters spatial resolution MSS data. Data were progressively coarsened to simulate five additional cases of spatial resolution ranging up to 64 sq meters. Similar processing and analysis of all spatial resolutions enabled evaluations of the effect of spatial resolution on classification accuracy for various levels of detail and the effects on area proportion estimation for very general forest features. For very coarse resolutions, a subset of spectral channels which simulated the proposed thematic mapper channels was used to study classification accuracy.

  6. Device for high spatial resolution chemical analysis of a sample and method of high spatial resolution chemical analysis

    DOEpatents

    Van Berkel, Gary J.

    2015-10-06

    A system and method for analyzing a chemical composition of a specimen are described. The system can include at least one pin; a sampling device configured to contact a liquid with a specimen on the at least one pin to form a testing solution; and a stepper mechanism configured to move the at least one pin and the sampling device relative to one another. The system can also include an analytical instrument for determining a chemical composition of the specimen from the testing solution. In particular, the systems and methods described herein enable chemical analysis of specimens, such as tissue, to be evaluated in a manner that the spatial-resolution is limited by the size of the pins used to obtain tissue samples, not the size of the sampling device used to solubilize the samples coupled to the pins.

  7. Required spatial resolution of hydrological models to evaluate urban flood resilience measures

    NASA Astrophysics Data System (ADS)

    Gires, A.; Giangola-Murzyn, A.; Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.

    2012-04-01

    During a flood in urban area, several non-linear processes (rainfall, surface runoff, sewer flow, and sub-surface flow) interact. Fully distributed hydrological models are a useful tool to better understand these complex interactions between natural processes and man built environment. Developing an efficient model is a first step to improve the understanding of flood resilience in urban area. Given that the previously mentioned underlying physical phenomenon exhibit different relevant scales, determining the required spatial resolution of such model is tricky but necessary issue. For instance such model should be able to properly represent large scale effects of local scale flood resilience measures such as stop logs. The model should also be as simple as possible without being simplistic. In this paper we test two types of model. First we use an operational semi-distributed model over a 3400 ha peri-urban area located in Seine-Saint-Denis (North-East of Paris). In this model, the area is divided into sub-catchments of average size 17 ha that are considered as homogenous, and only the sewer discharge is modelled. The rainfall data, whose resolution is 1 km is space and 5 min in time, comes from the C-band radar of Trappes, located in the West of Paris, and operated by Météo-France. It was shown that the spatial resolution of both the model and the rainfall field did not enable to fully grasp the small scale rainfall variability. To achieve this, first an ensemble of realistic rainfall fields downscaled to a resolution of 100 m is generated with the help of multifractal space-time cascades whose characteristic exponents are estimated on the available radar data. Second the corresponding ensemble of sewer hydrographs is simulated by inputting each rainfall realization to the model. It appears that the probability distribution of the simulated peak flow exhibits a power-law behaviour. This indicates that there is a great uncertainty associated with small scale

  8. Analysis of spatial inhomogeneities in cumulus clouds using high spatial resolution Landsat data

    NASA Technical Reports Server (NTRS)

    Parker, Lindsay; Welch, R. M.; Musil, D. J.

    1986-01-01

    Aircraft observations and high resolution Landsat MSS digital data are used to determine the sizes of spatial inhomogeneities ('holes') in cumulus clouds. The majority of holes are found near cloud edges, but the larger holes tend to be found in cloud interiors. Aircraft measurements show these cloud spatial inhomogeneities in the range of 100 to 500 m, while Landsat data show them in the range of 100 m to 3 km. The number of holes per cloud decreases exponentially with increasing hole diameter. Small clouds not only have smaller holes, but also fewer holes than large clouds. Large clouds have large holes in them, as well as large numbers of the smaller holes. The total cloud area occupied by holes increases with increasing cloud size.

  9. The 1 km AVHRR global land data set: first stages in implementation

    USGS Publications Warehouse

    Eidenshink, J.C.; Faundeen, J.L.

    1994-01-01

    The global land 1 km data set project represents an international effort to acquire, archive, process, and distribute 1 km AVHRR data of the entire global land surface in order to meet the needs of the international science community. A network of 26 high resolution picture transmission (HRPT) stations, along with data recorded by the National Oceanic and Atmospheric Administration (NOAA), has been acquiring daily global land coverage since 1 April 1992. A data set of over 30000 AVHRR images has been archived and made available for distribution by the United States Geological Survey, EROS Data Center and the European Space Agency. Under the guidance of the International Geosphere Biosphere programme, processing standards for the AVHRR data have been developed for calibration, atmospheric correction, geometric registration, and the production of global 10-day maximum normalized difference vegetation index (NDVI) composites. The major uses of the composites are related to the study of surface vegetation cover. A prototype 10-day composite was produced for the period of 21–30 June 1992. Production of an 18-month time series of 10-day composites is underway.

  10. Global anthropogenic heat flux database with high spatial resolution

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Varquez, A. C. G.; Kanda, M.

    2017-02-01

    This study developed a top-down method for estimating global anthropogenic heat emission (AHE), with a high spatial resolution of 30 arc-seconds and temporal resolution of 1 h. Annual average AHE was derived from human metabolic heating and primary energy consumption, which was further divided into three components based on consumer sector. The first and second components were heat loss and heat emissions from industrial sectors equally distributed throughout the country and populated areas, respectively. The third component comprised the sum of emissions from commercial, residential, and transportation sectors (CRT). Bulk AHE from the CRT was proportionally distributed using a global population dataset, with a radiance-calibrated nighttime lights adjustment. An empirical function to estimate monthly fluctuations of AHE based on gridded monthly temperatures was derived from various Japanese and American city measurements. Finally, an AHE database with a global coverage was constructed for the year 2013. Comparisons between our proposed AHE and other existing datasets revealed that the problem of overestimation of AHE intensity in previous top-down models was mitigated by the separation of energy consumption sectors; furthermore, the problem of AHE underestimation at central urban areas was solved by the nighttime lights adjustment. A strong agreement in the monthly profiles of AHE between our database and other bottom-up datasets further proved the validity of the current methodology. Investigations of AHE for the 29 largest urban agglomerations globally highlighted that the share of heat emissions from CRT sectors to the total AHE at the city level was 40-95%; whereas that of metabolic heating varied with the city's level of development by a range of 2-60%. A negative correlation between gross domestic product (GDP) and the share of metabolic heating to a city's total AHE was found. Globally, peak AHE values were found to occur between December and February, while

  11. Methods of photoelectrode characterization with high spatial and temporal resolution

    DOE PAGES

    Esposito, Daniel V.; Baxter, Jason B.; John, Jimmy; ...

    2015-06-19

    Here, materials and photoelectrode architectures that are highly efficient, extremely stable, and made from low cost materials are required for commercially viable photoelectrochemical (PEC) water-splitting technology. A key challenge is the heterogeneous nature of real-world materials, which often possess spatial variation in their crystal structure, morphology, and/or composition at the nano-, micro-, or macro-scale. Different structures and compositions can have vastly different properties and can therefore strongly influence the overall performance of the photoelectrode through complex structure–property relationships. A complete understanding of photoelectrode materials would also involve elucidation of processes such as carrier collection and electrochemical charge transfer that occurmore » at very fast time scales. We present herein an overview of a broad suite of experimental and computational tools that can be used to define the structure–property relationships of photoelectrode materials at small dimensions and on fast time scales. A major focus is on in situ scanning-probe measurement (SPM) techniques that possess the ability to measure differences in optical, electronic, catalytic, and physical properties with nano- or micro-scale spatial resolution. In situ ultrafast spectroscopic techniques, used to probe carrier dynamics involved with processes such as carrier generation, recombination, and interfacial charge transport, are also discussed. Complementing all of these experimental techniques are computational atomistic modeling tools, which can be invaluable for interpreting experimental results, aiding in materials discovery, and interrogating PEC processes at length and time scales not currently accessible by experiment. In addition to reviewing the basic capabilities of these experimental and computational techniques, we highlight key opportunities and limitations of applying these tools for the development of PEC materials.« less

  12. Methods of photoelectrode characterization with high spatial and temporal resolution

    SciTech Connect

    Esposito, Daniel V.; Baxter, Jason B.; John, Jimmy; Lewis, Nathan S.; Moffat, Thomas P.; Ogitsu, Tadashi; O'Neil, Glen D.; Pham, Tuan Anh; Talin, A. Alec; Velazquez, Jesus M.; Wood, Brandon C.

    2015-06-19

    Here, materials and photoelectrode architectures that are highly efficient, extremely stable, and made from low cost materials are required for commercially viable photoelectrochemical (PEC) water-splitting technology. A key challenge is the heterogeneous nature of real-world materials, which often possess spatial variation in their crystal structure, morphology, and/or composition at the nano-, micro-, or macro-scale. Different structures and compositions can have vastly different properties and can therefore strongly influence the overall performance of the photoelectrode through complex structure–property relationships. A complete understanding of photoelectrode materials would also involve elucidation of processes such as carrier collection and electrochemical charge transfer that occur at very fast time scales. We present herein an overview of a broad suite of experimental and computational tools that can be used to define the structure–property relationships of photoelectrode materials at small dimensions and on fast time scales. A major focus is on in situ scanning-probe measurement (SPM) techniques that possess the ability to measure differences in optical, electronic, catalytic, and physical properties with nano- or micro-scale spatial resolution. In situ ultrafast spectroscopic techniques, used to probe carrier dynamics involved with processes such as carrier generation, recombination, and interfacial charge transport, are also discussed. Complementing all of these experimental techniques are computational atomistic modeling tools, which can be invaluable for interpreting experimental results, aiding in materials discovery, and interrogating PEC processes at length and time scales not currently accessible by experiment. In addition to reviewing the basic capabilities of these experimental and computational techniques, we highlight key opportunities and limitations of applying these tools for the development of PEC materials.

  13. Spatially Regularized Compressed Sensing for High Angular Resolution Diffusion Imaging

    PubMed Central

    Rathi, Yogesh; Dolui, Sudipto

    2013-01-01

    Despite the relative recency of its inception, the theory of compressive sampling (aka compressed sensing) (CS) has already revolutionized multiple areas of applied sciences, a particularly important instance of which is medical imaging. Specifically, the theory has provided a different perspective on the important problem of optimal sampling in magnetic resonance imaging (MRI), with an ever-increasing body of works reporting stable and accurate reconstruction of MRI scans from the number of spectral measurements which would have been deemed unacceptably small as recently as five years ago. In this paper, the theory of CS is employed to palliate the problem of long acquisition times, which is known to be a major impediment to the clinical application of high angular resolution diffusion imaging (HARDI). Specifically, we demonstrate that a substantial reduction in data acquisition times is possible through minimization of the number of diffusion encoding gradients required for reliable reconstruction of HARDI scans. The success of such a minimization is primarily due to the availability of spherical ridgelet transformation, which excels in sparsifying HARDI signals. What makes the resulting reconstruction procedure even more accurate is a combination of the sparsity constraints in the diffusion domain with additional constraints imposed on the estimated diffusion field in the spatial domain. Accordingly, the present paper describes an original way to combine the diffusion-and spatial-domain constraints to achieve a maximal reduction in the number of diffusion measurements, while sacrificing little in terms of reconstruction accuracy. Finally, details are provided on an efficient numerical scheme which can be used to solve the aforementioned reconstruction problem by means of standard and readily available estimation tools. The paper is concluded with experimental results which support the practical value of the proposed reconstruction methodology. PMID:21536524

  14. Development of a large-area Multigap RPC with adequate spatial resolution for muon tomography

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, Y.; Wang, X.; Zeng, M.; Xie, B.; Han, D.; Lyu, P.; Wang, F.; Li, Y.

    2016-11-01

    We study the performance of a large-area 2-D Multigap Resistive Plate Chamber (MRPC) designed for muon tomography with high spatial resolution. An efficiency up to 98% and a spatial resolution of around 270 μ m are obtained in cosmic ray and X-ray tests. The performance of the MRPC is also investigated for two working gases: standard gas and pure Freon. The result shows that the MRPC working in pure Freon can provide higher efficiency and better spatial resolution.

  15. Exploiting MISR products at the full spatial resolution (275m) to document changes in land properties in and around the Kruger National Park, South Africa

    NASA Astrophysics Data System (ADS)

    Verstraete, M. M.; Hunt, L. A.; Pinty, B.; Clerici, M.; Scholes, R. J.

    2009-12-01

    The MISR instrument on NASA's Terra platform has been acquiring data globally and continuously for almost 10 years. A wide range of atmospheric and land products are operationally generated at the LaRC ASDC, at spatial resolutions of 1.1 km or coarser. Yet, the intrinsic spatial resolution of that sensor is 275m and 12 out of the 36 spectro-directional data channels are transmitted to the ground segment at that resolution. Recent algorithmic developments have permitted us to reconstruct reasonable estimates of the other 24 channels and to account for atmospheric effects at the full original spatial resolution. Spectro-directional reflectances have been processed to characterize the anisotropy of observed land surfaces and then optimally estimate various geophysical properties of the environment such as the fluxes of radiation in and out of plant canopies, the albedo, FAPAR, etc. These detailed products allow us to investigate ecological and environmental changes in much greater spatial and thematic detail than was previously possible. The paper outlines the various methodological steps implemented and exhibits concrete results for a region of moderate size (280 by 380 km) in South Africa. Practical downstream applications of this approach include monitoring desertification and biomass burning, documenting urbanization or characterizing the phenology of vegetation.

  16. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    USGS Publications Warehouse

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  17. Spatial and temporal variability in Moderate Resolution Imaging Spectroradiometer-derived surface albedo over global arid regions

    NASA Astrophysics Data System (ADS)

    Tsvetsinskaya, Elena A.; Schaaf, Crystal B.; Gao, Feng; Strahler, Alan H.; Dickinson, Robert E.

    2006-10-01

    We derive spectral and broadband surface albedo for global arid regions from data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra spacecraft, at 1 km spatial resolution for 2001. MODIS data show considerable spatial variability both across various arid regions of the globe (from the bright deserts of northern Africa and the Arabian peninsula to substantially less reflective American and Asian deserts) and within regions (variability related to soil and rock types). For example, over arid northern Africa and the Arabian peninsula, albedo in the visible broadband varies by a factor of over 2, from the brightest sand sheets to the darkest luvisols. Few, if any, global and regional land-atmosphere models capture this observed spatial variability in surface albedo over arid regions. We suggest a scheme that relates soil groups (based on the United Nations Food and Agriculture Organization (FAO) soil classification) to MODIS-derived surface albedo statistics. This approach allows for an efficient representation in climate and weather forecasting models of the observed spatial and temporal variability in surface albedo over global deserts. Observed variability in albedo was reduced to a small (1-13, depending on the region) number of soil-related classes (end-members) that could be used in climate models. We also addressed the temporal evolution of albedo during 2001 over global deserts. Regions/soils of stable albedo with very low temporal variability were identified. For other regions/soils, temporal signals in albedo were related to ephemeral inundation with water or variations in sample size.

  18. Monte Carlo code for high spatial resolution ocean color simulations.

    PubMed

    D'Alimonte, Davide; Zibordi, Giuseppe; Kajiyama, Tamito; Cunha, José C

    2010-09-10

    A Monte Carlo code for ocean color simulations has been developed to model in-water radiometric fields of downward and upward irradiance (E(d) and E(u)), and upwelling radiance (L(u)) in a two-dimensional domain with a high spatial resolution. The efficiency of the code has been optimized by applying state-of-the-art computing solutions, while the accuracy of simulation results has been quantified through benchmark with the widely used Hydrolight code for various values of seawater inherent optical properties and different illumination conditions. Considering a seawater single scattering albedo of 0.9, as well as surface waves of 5 m width and 0.5 m height, the study has shown that the number of photons required to quantify uncertainties induced by wave focusing effects on E(d), E(u), and L(u) data products is of the order of 10(6), 10(9), and 10(10), respectively. On this basis, the effects of sea-surface geometries on radiometric quantities have been investigated for different surface gravity waves. Data products from simulated radiometric profiles have finally been analyzed as a function of the deployment speed and sampling frequency of current free-fall systems in view of providing recommendations to improve measurement protocols.

  19. Improving the Rapid Refresh and High Resolution Rapid Refresh physics to better perform across a wide range of spatial scales

    NASA Astrophysics Data System (ADS)

    Olson, Joseph; Grell, Georg

    2014-05-01

    Model development at NOAA/GSD spans a wide range of spatial scales: global scale (Flow-following finite-volume Icosohedral Model, FIM; 10-250 km grid spacing), continental scale (RAP; 13 km grid spacing), CONUS scale (HRRR; 3 km grid spacing), and regional modeling (experimental nesting at 1 km grid spacing over complex terrain). As the model resolution changes, the proportion of resolved vs unresolved physical processes changes; therefore, physical parameterizations need to adapt to different model resolutions to more accurately handle the unresolved processes. The Limited Area Model (LAM) component of the Grey Zone Experiment was designed to assess the change in behavior of numerical weather prediction models between 16 and 1 km by simulating a cold-air outbreak over the North Atlantic and North Sea. The RAP and HRRR model physics were tested in this case study in order to examine the change in behavior of the model physics at 16, 8, 4, 2, and 1 km grid spacings with and without the use a convective parameterization. The primary purpose of these tests is to better understand the change in behavior of the boundary layer and convective schemes across the grey zone, such that further targeted modifications can then help improve general performance at various scales. The RAP currently employs a modified form of the Mellor-Yamada-Nakanishi-Niino (MYNN) PBL scheme, which is an improved TKE-based scheme tuned to match large-eddy simulations. Modifications have been performed to better match observations at 13 km (RAP) grid spacing but more multi-scale testing is required before modifications are introduced to make it scale-aware. A scale-aware convective parameterization, the Grell-Freitas scheme (both deep- and shallow-cumulus scheme), has been developed to better handle the transition in behavior of the sub-grid scale convective processes through the grey zone. This study examines the change in behavior of both schemes across the grey zone. Their transitional behavior

  20. High spatial resolution mid-infrared studies of planetary systems

    NASA Astrophysics Data System (ADS)

    Skemer, Andrew

    I present the results of six papers related the formation and evolution of planets and planetary systems, all of which are based on high-resolution, ground-based, mid-infrared observations. The first three chapters are studies of T Tauri binaries. T Tauri stars are young, low mass stars, whose disks form the building blocks of extrasolar planets. The first chapter is a study of the 0.68"/0.12" triple system, T Tauri. Our spatially resolved N-band photometry reveals silicate absorption towards one component, T Tau Sa, indicating the presence of an edge-on disk, which is in contrast to the other components. The second chapter is an adaptive optics fed N-band spectroscopy study of the 0.88" binary, UY Aur. We find that the dust grains around UY Aur A are ISM-like, while the mineralogy of the dust around UY Aur B is more uncertain, due to self-extinction. The third chapter presents a survey of spatially resolved silicate spectroscopy for nine T Tauri binaries. We find with 90%-95% confidence that the silicate features of the binaries are more similar than those of randomly paired single stars. This implies that a shared binary property, such as age or composition, is an important parameter in dust grain evolution. The fourth chapter is a study of the planetary system, 2MASS 1207. We explore the source of 2MASS 1207 b's under-luminosity, which has typically been explained as the result of an edge-on disk of large, grey-extincting dust grains. We find that the edge-on disk theory is incompatible with several lines of evidence, and suggest that 2MASS 1207 b's appearance can be explained by a thick cloudy atmosphere, which might be typical among young, planetary systems. The fifth chapter is a study of the white dwarf, Sirius B, which in the context of this thesis is being studied as a post-planetary system. Our N-band imaging demonstrates that Sirius B does not have an infrared excess, in contrast to previous results. The sixth chapter is a study of mid

  1. Assessing the effect of spatial resolution of regional climate downscaling on the productivity and distribution of three widespread tree species over France

    NASA Astrophysics Data System (ADS)

    Martin-StPaul, Nicolas K.; Stephanon, Marc; Francois, Christophe; Soudani, Kamel; Dufrêne, Eric; Drobinski, Phillipe; Cheaib, Alissar; Ruffault, Julien; Rambal, Serge; Mouillot, Florent; Leadley, Paul

    2013-04-01

    The recent increases in temperature and water deficit as a result of climate changes have already impaired forest functioning and might trigger tree dieback worldwide in the near future. The assessment of future forest conditions relies on mechanistic models that predict changes in trees and forest functioning as a function of meteorological drivers. Currently, global and regional models (GCM and RCM) are the main providers of climate forcing in impact studies. One large uncertainty when forecasting the forest functioning is associated with the coarse spatial resolution of climate scenarii. In this study we assessed how the spatial resolution in climate forcing provided by the RCM WRF impacted the simulated productivity and distribution of three species (Fagus sylvatica, Quercus ilex) over France. We ran the forest model CASTANEA over France (that simulates fluxes of carbon and water and forest growth) using the output of WRF at different spatial scales (50 km, 20km, 8km and 1km) as forcing climate entries. The productivity simulated by CASTANEA was used as a surrogate of beech persistence for the reference period of WRF (1988-2008). Because climate variables simulated by WRF exhibited large bias compared to surface observations, WRF was first corrected using a reference dataset (SAFRAN database) upscaled at the WRF resolution (50km and 20 km). Additionally, on 2 specific limited areas (the Languedoc Roussillon and the Bourgogne region) we used a statistical downscaling of the WRF forcing entries in order to increase the spatial resolution up to 1km. Our results showed that simulations at finer resolution had relatively little impact on the mean and variance of beech productivity over France compared to coarser resolutions. However, at the finest resolutions, we observed strong local gradients with important variations in the mean and the variance of forest productivity (up to 60%). These results are particularly noticeable in regions characterized by complex

  2. Trade-off between angular and spatial resolutions in in vivo fiber tractography.

    PubMed

    Vos, Sjoerd B; Aksoy, Murat; Han, Zhaoying; Holdsworth, Samantha J; Maclaren, Julian; Viergever, Max A; Leemans, Alexander; Bammer, Roland

    2016-04-01

    Tractography is becoming an increasingly popular method to reconstruct white matter connections in vivo. The diffusion MRI data that tractography is based on requires a high angular resolution to resolve crossing fibers whereas high spatial resolution is required to distinguish kissing from crossing fibers. However, scan time increases with increasing spatial and angular resolutions, which can become infeasible in clinical settings. Here we investigated the trade-off between spatial and angular resolutions to determine which of these factors is most worth investing scan time in. We created a unique diffusion MRI dataset with 1.0 mm isotropic resolution and a high angular resolution (100 directions) using an advanced 3D diffusion-weighted multi-slab EPI acquisition. This dataset was reconstructed to create subsets of lower angular (75, 50, and 25 directions) and lower spatial (1.5, 2.0, and 2.5 mm) resolution. Using all subsets, we investigated the effects of angular and spatial resolutions in three fiber bundles-the corticospinal tract, arcuate fasciculus and corpus callosum-by analyzing the volumetric bundle overlap and anatomical correspondence between tracts. Our results indicate that the subsets of 25 and 50 directions provided inferior tract reconstructions compared with the datasets with 75 and 100 directions. Datasets with spatial resolutions of 1.0, 1.5, and 2.0 mm were comparable, while the lowest resolution (2.5 mm) datasets had discernible inferior quality. In conclusion, we found that angular resolution appeared to be more influential than spatial resolution in improving tractography results. Spatial resolutions higher than 2.0 mm only appear to benefit multi-fiber tractography methods if this is not at the cost of decreased angular resolution.

  3. Breast density estimation from high spectral and spatial resolution MRI.

    PubMed

    Li, Hui; Weiss, William A; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M; Karczmar, Gregory S; Giger, Maryellen L

    2016-10-01

    A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists' breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 ([Formula: see text]) was obtained between left and right breast density estimations. An interclass correlation coefficient of 0.99 ([Formula: see text]) indicated high reliability for the inter-user variability of the HiSS-based breast density estimations. A moderate correlation coefficient of 0.55 ([Formula: see text]) was observed between HiSS-based breast density estimations and radiologists' BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy.

  4. Error Estimation in an Optimal Interpolation Scheme for High Spatial and Temporal Resolution SST Analyses

    NASA Technical Reports Server (NTRS)

    Rigney, Matt; Jedlovec, Gary; LaFontaine, Frank; Shafer, Jaclyn

    2010-01-01

    Heat and moisture exchange between ocean surface and atmosphere plays an integral role in short-term, regional NWP. Current SST products lack both spatial and temporal resolution to accurately capture small-scale features that affect heat and moisture flux. NASA satellite is used to produce high spatial and temporal resolution SST analysis using an OI technique.

  5. Improvement of spatial resolution in the longitudinal direction for isotropic imaging in helical CT

    NASA Astrophysics Data System (ADS)

    Tsukagoshi, Shinsuke; Ota, Takamasa; Fujii, Misako; Kazama, Masahiro; Okumura, Miwa; Johkoh, Takeshi

    2007-02-01

    Experiments were conducted to confirm the isotropic spatial resolution of multislice CT with a 0.5 mm slice thickness. Isotropic spatial resolution means that the spatial resolution in the transaxial plane (X-Y plane) and that in the longitudinal direction (Z direction) are equivalent. To obtain point spread function (PSF) values in the X-Y-Z directions, three-dimensional voxel data were obtained by helical scanning of a bead phantom. The modulation transfer function (MTF) values were then obtained by three-dimensional Fourier transform of the PSF. Evaluation of the spatial resolution in the X-Y-Z directions by the MTF values showed that the spatial resolution in the Z direction does not depend on the reconstruction kernel used. It was also found that the spatial resolution in the Z direction, as compared with that in the X-Y plane, is superior with the standard kernel for the abdomen and is inferior with the high-definition kernel for the ears/bones. By performing sharpening filter processing in the Z direction with a high-definition kernel, comparable spatial resolution could be obtained in the X-Y-Z directions. It was confirmed that adjusting the spatial resolution in the Z direction with the reconstruction kernel used is an effective method for isotropic imaging.

  6. Spatial resolution in CBCT machines for dental/maxillofacial applications-what do we know today?

    PubMed

    Brüllmann, D; Schulze, R K W

    2015-01-01

    Spatial resolution is one of the most important parameters objectively defining image quality, particularly in dental imaging, where fine details often have to be depicted. Here, we review the current status on assessment parameters for spatial resolution and on published data regarding spatial resolution in CBCT images. The current concepts of visual [line-pair (lp) measurements] and automated [modulation transfer function (MTF)] assessment of spatial resolution in CBCT images are summarized and reviewed. Published measurement data on spatial resolution in CBCT are evaluated and analysed. Effective (i.e. actual) spatial resolution available in CBCT images is being influenced by the two-dimensional detector, the three-dimensional reconstruction process, patient movement during the scan and various other parameters. In the literature, the values range between 0.6 and 2.8 lp mm(-1) (visual assessment; median, 1.7 lp mm(-1)) vs MTF (range, 0.5-2.3 cycles per mm; median, 2.1 lp mm(-1)). Spatial resolution of CBCT images is approximately one order of magnitude lower than that of intraoral radiographs. Considering movement, scatter effects and other influences in real-world scans of living patients, a realistic spatial resolution of just above 1 lp mm(-1) could be expected.

  7. High-resolution full-field spatial coherence gated optical tomography using monochromatic light source

    NASA Astrophysics Data System (ADS)

    Srivastava, Vishal; Nandy, Sreyankar; Singh Mehta, Dalip

    2013-09-01

    We demonstrate dispersion free, high-resolution full-field spatial coherence gated optical tomography using spatially incoherent monochromatic light source. Spatial coherence properties of light source were synthesized by means of combining a static diffuser and vibrating multi mode fiber bundle. Due to low spatial coherence of light source, the axial resolution of the system was achieved similar to that of conventional optical coherence tomography which utilizes low temporal coherence. Experimental results of fringe visibility versus optical path difference are presented for varying numerical apertures objective lenses. High resolution optically sectioned images of multilayer onion skin, and red blood cells are presented.

  8. Selecting a spatial resolution for estimation of per-field green leaf area index

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.; Williamson, H. Dawn

    1988-01-01

    For any application of multispectral scanner (MSS) data, a user is faced with a number of choices concerning the characteristics of the data; one of these is their spatial resolution. A pilot study was undertaken to determine the spatial resolution that would be optimal for the per-field estimation of green leaf area index (GLAI) in grassland. By reference to empirically-derived data from three areas of grassland, the suitable spatial resolution was hypothesized to lie in the lower portion of a 2-18 m range. To estimate per-field GLAI, airborne MSS data were collected at spatial resolutions of 2 m, 5 m and 10 m. The highest accuracies of per-field GLAI estimation were achieved using MSS data with spatial resolutions of 2 m and 5 m.

  9. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS

    SciTech Connect

    Krishnan, Venkat; Cole, Wesley

    2016-11-14

    Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERC region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.

  10. Achieving High Spatial Resolution Surface Plasmon Resonance Microscopy with Image Reconstruction.

    PubMed

    Yu, Hui; Shan, Xiaonan; Wang, Shaopeng; Tao, Nongjian

    2017-03-07

    Surface plasmon resonance microscopy (SPRM) is a powerful platform for biomedical imaging and molecular binding kinetics analysis. However, the spatial resolution of SPRM along the plasmon propagation direction (longitudinal) is determined by the decaying length of the plasmonic wave, which can be as large as tens of microns. Different methods have been proposed to improve the spatial resolution, but each at the expense of decreased sensitivity or temporal resolution. Here we present a method to achieve high spatial resolution SPRM based on deconvolution of complex field. The method does not require additional optical setup and improves the spatial resolution in the longitudinal direction. We applied the method to image nanoparticles and achieved close-to-diffraction limit resolution in both longitudinal and transverse directions.

  11. An effect of spatial resolution of remotely sensed data for vegetation analysis over an arid zone

    NASA Astrophysics Data System (ADS)

    Oguro, Y.; Tsuchiya, K.; Setoguchi, R.

    1997-05-01

    One of the recent trends in the development of an optical sensor of earth observation satellite is a great importance of spatial resolution and the order of 1 - 2 meter resolution sensor is under development. To cope with this trend analyses are made on the effect of extremely fine spatial resolution of land cover classification accuracy utilizing spatial resolution of 20 cm and 1 meter aerial multi-sensor data of an arid reddish land where desertification is taking place in small spatial scale. Applied methods are supervised classification with combination of multi-level slice(pallarelpiped classification) and the Mahalanobis distance. The result of analysis indicates that the difference is within several percentage for 3 categories of bare land, vegetation and shadow. It was also found that small dried sparse grass land which can be recognized in 20 cm resolution image is difficult to extract in 1 meter resolution image.

  12. Selecting the spatial resolution of satellite sensors required for global monitoring of land transformations

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.; Justice, C. O.

    1988-01-01

    The paper provides preliminary evidence for the spatial resolutions required to monitor land transformations at broad scales. This is obtained from simulations of imagery at various spatial resolutions between 125 and 4000 m derived from Landsat MSS imagery. Consideration is given to the various types of spatial images detectable by remotely-sensed systems, as well as to the difficulties associated in disentangling permanent land transformations from shorter term changes such as phenological and interannual changes.

  13. Use of UAS remote sensing data to estimate crop ET at high spatial resolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimation of the spatial distribution of evapotranspiration (ET) based on remotely sensed imagery has become useful for managing water in irrigated agricultural at various spatial scales. However, data acquired by conventional satellites (Landsat, ASTER, etc.) lack the spatial resolution to capture...

  14. Spatially adaptive block-based super-resolution.

    PubMed

    Su, Heng; Tang, Liang; Wu, Ying; Tretter, Daniel; Zhou, Jie

    2012-03-01

    Super-resolution technology provides an effective way to increase image resolution by incorporating additional information from successive input images or training samples. Various super-resolution algorithms have been proposed based on different assumptions, and their relative performances can differ in regions of different characteristics within a single image. Based on this observation, an adaptive algorithm is proposed in this paper to integrate a higher level image classification task and a lower level super-resolution process, in which we incorporate reconstruction-based super-resolution algorithms, single-image enhancement, and image/video classification into a single comprehensive framework. The target high-resolution image plane is divided into adaptive-sized blocks, and different suitable super-resolution algorithms are automatically selected for the blocks. Then, a deblocking process is applied to reduce block edge artifacts. A new benchmark is also utilized to measure the performance of super-resolution algorithms. Experimental results with real-life videos indicate encouraging improvements with our method.

  15. Sub-pixel spatial resolution micro-roughness measurements with interlaced stitching

    NASA Astrophysics Data System (ADS)

    Mooney, James T.; Stahl, H. Philip

    2005-08-01

    In this paper we describe a method to increase the spatial resolution of surface micro-roughness measurements. As the surface specifications for precision optics become more demanding, the metrology instruments must cover a broad spatial frequency range. Generally, multiple instruments are used to cover the full range of the specifications. For example, an interferometer (Fizeau, Michelson, etc.) would be used to test low spatial frequency surface errors, an interferometric microscope (such as a white light interferomenter) would be used for higher spatial frequency errors, and an AFM would be used for even higher spatial frequency errors. For some precision optics, three or more instruments would be necessary. However, an increase in the resolvable spatial frequency bandwidth of a metrology instrument could reduce the number of instruments necessary to characterize the optical surface over the spatial frequency bands defined by the optical specifications. A solution to increase the resolvable spatial frequency bandwidth of micro-roughness measurements will be presented. This will be accomplished by implementing an interferometric microscope and a process called "sub-pixel spatial resolution interferometry" (SSRI) with interlaced stitching. In this process, multiple interferometric measurements are made as the optic under test (or the CCD array) is laterally shifted at sub-pixel increments. The measurements are then combined to construct a measurement with higher spatial resolution. Initial results obtained implementing a similar process used to increase the spatial resolution of measurements made with a commercially available Fizeau interferometer will be presented.

  16. Sub-pixel Spatial Resolution Micro-roughness Measurements with Interlaced Stitching

    NASA Technical Reports Server (NTRS)

    Mooney, James T.; Stahl, H. Philip

    2005-01-01

    In this paper we describe a method to increase the spatial resolution of surface micro-roughness measurements. As the surface specifications for precision optics become more demanding, the metrology instruments must cover a broad spatial frequency range. Generally, multiple instruments are used to cover the full range of the specifications. For example, a Fizeau interferometer would be used to test low spatial frequency surface errors, a white light interferometer would be used for mid spatial frequency errors, and an AFM would be used for high spatial frequency errors. For some precision optics, three instruments would be necessary. However, in many applications, an increase in the spatial resolution of a metrology instrument could negate the need for multiple instruments. A solution to increase the spatial resolution of micro-roughness measurements obtained using white light interferometry with "interlaced stitching" will be presented. In "interlaced stitching", multiple interferometric measurements are made as the optic under test (or the CCD array) is laterally shifted at sub-pixel increments. The measurements are then combined to construct a measurement with higher spatial resolution. Initial results obtained while implementing a similar process used to increase the spatial resolution of measurements made with a commercially available Fizeau interferometer will be presented.

  17. Spatial resolution and information transfer in scanning transmission electron microscopy.

    PubMed

    Peng, Yiping; Oxley, Mark P; Lupini, Andrew R; Chisholm, Matthew F; Pennycook, Stephen J

    2008-02-01

    The relation between image resolution and information transfer is explored. It is shown that the existence of higher frequency transfer in the image is just a necessary but not sufficient condition for the achievement of higher resolution. Adopting a two-point resolution criterion, we suggest that a 10% contrast level between two features in an image should be used as a practical definition of resolution. In the context of scanning transmission electron microscopy, it is shown that the channeling effect does not have a direct connection with image resolution because sharp channeling peaks do not move with the scanning probe. Through a quantitative comparison between experimental image and simulation, a Fourier-space approach is proposed to estimate defocus and sample thickness. The effective atom size in Z-contrast imaging depends on the annular detector's inner angle. Therefore, an optimum angle exists for the highest resolution as a trade-off between reduced atom size and reduced signal with limited information transfer due to noise.

  18. High spatial resolution magnetic resonance imaging of cystic adventitial disease of the popliteal artery.

    PubMed

    Maged, Ismaeel M; Turba, Ulku C; Housseini, Ahmed M; Kern, John A; Kron, Irving L; Hagspiel, Klaus D

    2010-02-01

    High spatial resolution magnetic resonance imaging (MRI) of patients with cystic adventitial disease can demonstrate connections between cysts in the adventitia and the adjacent joint, which is important for successful treatment. The inability to identify these during surgery can lead to a recurrence; thus, high spatial resolution MRI has the potential to affect therapy. This article presents the high spatial resolution MRI findings of cystic adventitial disease in a series of three consecutive patients and discusses the relevance of these findings to the etiology and therapy.

  19. Spatial Resolution and Refractive Index Contrast of Resonant Photonic Crystal Surfaces for Biosensing

    PubMed Central

    Triggs, G. J.; Fischer, M.; Stellinga, D.; Scullion, M. G.; Evans, G. J. O.; Krauss, T. F.

    2015-01-01

    By depositing a resolution test pattern on top of a Si3N4 photonic crystal resonant surface, we have measured the dependence of spatial resolution on refractive index contrast Δn. Our experimental results and finite-difference time-domain (FDTD) simulations at different refractive index contrasts show that the spatial resolution of our device reduces with reduced contrast, which is an important consideration in biosensing, where the contrast may be of order 10−2. We also compare 1-D and 2-D gratings, taking into account different incidence polarizations, leading to a better understanding of the excitation and propagation of the resonant modes in these structures, as well as how this contributes to the spatial resolution. At Δn = 0.077, we observe resolutions of 2 and 6 μm parallel to and perpendicular to the grooves of a 1-D grating, respectively, and show that for polarized illumination of a 2-D grating, resolution remains asymmetrical. Illumination of a 2-D grating at 45° results in symmetric resolution. At very low index contrast, the resolution worsens dramatically, particularly for Δn < 0.01, where we observe a resolution exceeding 10 μm for our device. In addition, we measure a reduction in the resonance linewidth as the index contrast becomes lower, corresponding to a longer resonant mode propagation length in the structure and contributing to the change in spatial resolution. PMID:26356353

  20. Satellite monitoring at high spatial resolution of water bodies used for irrigation purposes

    NASA Astrophysics Data System (ADS)

    Baup, F.; Flanquart, S.; Marais-Sicre, C.; Fieuzal, R.

    2012-04-01

    have a surface inferior to 10 ha (0.1 km2). Temporal analyses, over the year 2010, show that only five lakes offer a strong surface dynamic (from 21% to 125% of evolution). The weak signal observed over all the other lakes are due to the banks of lakes (steep slope). The long term analyses, from 2003 to middle of 2011, show alternation of wet and dry years due to rainfalls variations. Annual cycle are also well marked showing filling and emptying phases respectively occurring in spring and at the end of summer. Filling phase is both attributed to runoff contributions over the watershed and to pumping effects. Irrigation and evaporation are the main factors during emptying phases. Two examples of water storages estimates are presented over one specific watershed. To conclude, high spatial resolution images appear suitable for mapping water bodies at fine scale. Limitations come from the form of the edge of the lake (steep or slight slope) and only 3% of lakes can be monitored over the studied area. In the following, interferometric approaches will be evaluated to estimate the height of water bodies, improving the estimate of water storage.

  1. Exploring the spatial resolution of position-sensitive microchannel plate detectors

    NASA Astrophysics Data System (ADS)

    Wiggins, Blake; Siwal, Davinder; Desouza, Romualdo

    2016-03-01

    High amplification and excellent timing make microchannel plate (MCP) detectors excellent devices for detection of photons, electrons, and ions. In addition to providing sub-nanosecond time resolution MCP detectors can also provide spatial resolution, thus making them useful in imaging applications. Use of a resistive anode (RA) is a routinely used approach to make an MCP position-sensitive. The spatial resolution of the RA associated with detection of a single incident electron was determined. Factors impacting the spatial resolution obtained with the RA will be discussed and the achieved spatial resolution of 64 μm (FWHM) will be presented. Recently, a novel approach has been developed to provide position-sensitivity for an MCP detector. In this approach, namely the induced signal approach, the position of the incident particle is determined by sensing the electron cloud emanating from a MCP stack. By utilizing the zero-crossing point of the inherently bipolar signals, a spatial resolution of 466 μm (FWHM) has been achieved. Work to improve the spatial resolution of the induced signal approach further will be presented. Supported by the US DOE NNSA under Award No. DE-NA0002012.

  2. Zoom lens design for a novel imaging spectrometer that controls spatial and spectral resolution individually.

    PubMed

    Choi, Jin; Kim, T H; Kong, H J; Lee, Jong Ung

    2006-05-20

    A novel imaging spectrometer can individually control spatial and spectral resolution by using zoom lenses as the foreoptics of the system and a focusing lens. By varying the focal length we can use the focusing lens to change the spatial and spectral dimensions; with the foreoptics, however, we can change only the spatial dimension. Therefore the spectral resolution and the spectral range are affected by the zoom ratio of the focusing lens, whereas the spatial resolution and the field of view are affected by the multiplication of the zoom ratios of the foreoptics and the focusing lens. By properly combining two zoom ratios, we can control the spectral resolution with a fixed spatial resolution or the spatial resolution with a fixed spectral resolution. For an imaging spectrometer with this novel zooming function, we used the lens module method and third-order aberration theory to design an initial four-group zoom system with an external entrance pupil for the focusing lens. Furthermore, using the optical design software CODE V, we obtained an optimized zoom lens with a focal-length range of 50 to 150 mm. Finally, the zoom system with its transmission grating in the Littrow configuration performs satisfactorily as the focusing lens of an imaging spectrometer in the wavelength range 450-900 nm.

  3. Additional studies of forest classification accuracy as influenced by multispectral scanner spatial resolution

    NASA Technical Reports Server (NTRS)

    Sadowski, F. E.; Sarno, J. E.

    1976-01-01

    First, an analysis of forest feature signatures was used to help explain the large variation in classification accuracy that can occur among individual forest features for any one case of spatial resolution and the inconsistent changes in classification accuracy that were demonstrated among features as spatial resolution was degraded. Second, the classification rejection threshold was varied in an effort to reduce the large proportion of unclassified resolution elements that previously appeared in the processing of coarse resolution data when a constant rejection threshold was used for all cases of spatial resolution. For the signature analysis, two-channel ellipse plots showing the feature signature distributions for several cases of spatial resolution indicated that the capability of signatures to correctly identify their respective features is dependent on the amount of statistical overlap among signatures. Reductions in signature variance that occur in data of degraded spatial resolution may not necessarily decrease the amount of statistical overlap among signatures having large variance and small mean separations. Features classified by such signatures may thus continue to have similar amounts of misclassified elements in coarser resolution data, and thus, not necessarily improve in classification accuracy.

  4. TDDA technology for high spatial resolution SWIR InGaAs imaging

    NASA Astrophysics Data System (ADS)

    Jia, Jianxin; Wang, Yueming; Zhuang, Xiaoqiong; Yao, Yi; Wang, Shengwei; Zhao, Ding; Shu, Rong; Wang, Jianyu

    2016-11-01

    With the development of remote sensing technology, shortwave infrared (SWIR) imaging technology has got more and more attention because of its ability through the fog and high spatial resolution. High spatial resolution SWIR imaging often requires high frame frequency. If the frame frequency is too high, it could cause the shortage of the image's signal to noise ratio (SNR), seriously affecting image quality. In order to solve the contradiction between high spatial resolution and sensitivity, time delay and digital accumulation (TDDA) technology is proposed in this paper to improve system's SNR and image quality. A prototype of SWIR imaging system based on a large format area InGaAs detector is designed, which demonstrates TDDA technology. The experiment results indicate that TDDA technology can increase system's SNR of the square root of accumulative stage and improve image's uniformity. The results in this paper are helpful for the improvement and application of high spatial resolution SWIR imaging technology.

  5. Multiwavelength fiber lasers based on spatial mode beating for high resolution linear and angular displacement sensing

    NASA Astrophysics Data System (ADS)

    Chen, Nan-Kuang; Chang, Yung-Hsiang; Cheng, Wood-Hi; Guo, Tuan; Guan, Bai-Ou

    2014-05-01

    We demonstrate multiwavelength fiber lasers by incorporating the micro Michelson interferometer with spatial mode beating phenomenon, which comes from the interferences among cladding modes, into ring cavity for high resolution linear and angular displacement sensing.

  6. Definition of the Spatial Resolution of X-Ray Microanalysis in Thin Foils

    NASA Technical Reports Server (NTRS)

    Williams, D. B.; Michael, J. R.; Goldstein, J. I.; Romig, A. D., Jr.

    1992-01-01

    The spatial resolution of X-ray microanalysis in thin foils is defined in terms of the incident electron beam diameter and the average beam broadening. The beam diameter is defined as the full width tenth maximum of a Gaussian intensity distribution. The spatial resolution is calculated by a convolution of the beam diameter and the average beam broadening. This definition of the spatial resolution can be related simply to experimental measurements of composition profiles across interphase interfaces. Monte Carlo calculations using a high-speed parallel supercomputer show good agreement with this definition of the spatial resolution and calculations based on this definition. The agreement is good over a range of specimen thicknesses and atomic number, but is poor when excessive beam tailing distorts the assumed Gaussian electron intensity distributions. Beam tailing occurs in low-Z materials because of fast secondary electrons and in high-Z materials because of plural scattering.

  7. Action-video-game experience alters the spatial resolution of vision.

    PubMed

    Green, C S; Bavelier, D

    2007-01-01

    Playing action video games enhances several different aspects of visual processing; however, the mechanisms underlying this improvement remain unclear. Here we show that playing action video games can alter fundamental characteristics of the visual system, such as the spatial resolution of visual processing across the visual field. To determine the spatial resolution of visual processing, we measured the smallest distance a distractor could be from a target without compromising target identification. This approach exploits the fact that visual processing is hindered as distractors are brought close to the target, a phenomenon known as crowding. Compared with nonplayers, action-video-game players could tolerate smaller target-distractor distances. Thus, the spatial resolution of visual processing is enhanced in this population. Critically, similar effects were observed in non-video-game players who were trained on an action video game; this result verifies a causative relationship between video-game play and augmented spatial resolution.

  8. Imaging at high spatial resolution: Soft x-ray microscopy to 15nm

    SciTech Connect

    Attwood, D.; Chao, W.; Anderson, E.; Liddle, J.A.; Harteneck, B.; Fischer, P.; Schneider, G.; Le Gros, M.; Larabell, C.

    2006-04-05

    Soft x-ray microscopy has now achieved 15 nm spatial resolution with new zone plates and bending magnet radiation. Combined with elemental sensitivity and flexible sample environment (applied magnetic or electric fields, wet samples, windows, overcoatings) this emerges as a valuable tool for nanoscience and nanotechnology, complimenting common electron and scanning tip microscopies. In this presentation we describe recent advances in spatial resolution, expectations for the near future, and applications to magnetic materials, bio-tomography, etc.

  9. Atmospheric Correction Prototype Algorithm for High Spatial Resolution Multispectral Earth Observing Imaging Systems

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary

    2006-01-01

    This viewgraph presentation reviews the creation of a prototype algorithm for atmospheric correction using high spatial resolution earth observing imaging systems. The objective of the work was to evaluate accuracy of a prototype algorithm that uses satellite-derived atmospheric products to generate scene reflectance maps for high spatial resolution (HSR) systems. This presentation focused on preliminary results of only the satellite-based atmospheric correction algorithm.

  10. Impact of spatial resolution of ocean models in depicting climate change patterns of the North Sea.

    NASA Astrophysics Data System (ADS)

    Narayan, Nikesh; Klein, Birgit; Mathis, Moritz; Klein, Holger; Mikolajewicz, Uwe

    2016-04-01

    The impact of enhanced spatial resolution of models in simulating large scale climate change has been of interest for the modeling community for quite some time. It has been noticed in previous studies that the pattern of Sea Surface Temperature anomalies are better captured by higher resolution models. Significant changes in simulating sea-ice loss associated with global warming was also noticed when the spatial resolution of climate models were enhanced. Spatial resolution is a particular important issue in climate change scenarios of shelf seas such as the North Sea. The North Sea is strongly influenced by its water mass exchanges with North Atlantic to the west and north and Baltic Sea to east. Furthermore, local forcing and changes in advected water masses significantly affect the thermodynamics and stratification patterns in the North Sea, making it a challenging area to study. Under the newly started RACE2 project we are looking at global simulations of Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5 at lower and higher resolutions, performed using the Max Planck Institute Earth System Model (MPIESM). The model resolution is non uniform and achieves the highest resolution over the European Seas by shifting the model poles over Chicago and Central Europe. In the high resolution run, the grid reaches up to a spatial resolution of up to 4 km in part of the German Bight and close to 20 km in the Northern part of North Sea. The placement of model poles at specific locations enables the global model to obtain higher resolution at regional scales (North Sea), without the inherent complications of open boundary conditions. High and low resolution simulations will be compared to determine differences in spatial and temporal pattern of temperature anomalies, fresh water intrusion from the Baltic Sea to North Sea etc. Also taken into consideration will be the changes in simulating local sea level change and response to basin scale oscillations like NAO.

  11. Spatial Covariance Reconstructive (SCORE) Super-Resolution Fluorescence Microscopy

    PubMed Central

    Deng, Yi; Sun, Mingzhai; Lin, Pei-Hui; Ma, Jianjie; Shaevitz, Joshua W.

    2014-01-01

    Super-resolution fluorescence microscopy has become a powerful tool to resolve structural information that is not accessible to traditional diffraction-limited imaging techniques such as confocal microscopy. Stochastic optical reconstruction microscopy (STORM) and photoactivation localization microscopy (PALM) are promising super-resolution techniques due to their relative ease of implementation and instrumentation on standard microscopes. However, the application of STORM is critically limited by its long sampling time. Several recent works have been focused on improving the STORM imaging speed by making use of the information from emitters with overlapping point spread functions (PSF). In this work, we present a fast and efficient algorithm that takes into account the blinking statistics of independent fluorescence emitters. We achieve sub-diffraction lateral resolution of 100 nm from 5 to 7 seconds of imaging. Our method is insensitive to background and can be applied to different types of fluorescence sources, including but not limited to the organic dyes and quantum dots that we demonstrate in this work. PMID:24788039

  12. Super Resolution from Hyperview Image Stack by Spatial Multiplexing

    NASA Astrophysics Data System (ADS)

    Grasnick, Armin

    2016-09-01

    An image stack for a hyperview representation could contain millions of different perspective views with extreme image similarity. The recording of all views from a computational 3d model implicates a lateral displacement of the virtual camera. Because of the huge number of views, the offset in between two adjoining camera positions can be very minor. If such a virtual setup reproduces a real hyperview screen setup, the offset can be below the wavelength of the visible light. But even with such small changes, there is an intrinsic probability for a measurable difference in between two neighbour images. Such image dissimilarity can be proofed successfully also in very basic 3d scenes. By using a quantity of juxtapositional images from the hyperview image stack, the resolution of the rendered images can be considerably improved, which is commonly known as super resolution. The utilisation of super resolution images in hyperview could cut the necessity of full frame computing and will reduce the effective render time.

  13. Spatial covariance reconstructive (SCORE) super-resolution fluorescence microscopy.

    PubMed

    Deng, Yi; Sun, Mingzhai; Lin, Pei-Hui; Ma, Jianjie; Shaevitz, Joshua W

    2014-01-01

    Super-resolution fluorescence microscopy has become a powerful tool to resolve structural information that is not accessible to traditional diffraction-limited imaging techniques such as confocal microscopy. Stochastic optical reconstruction microscopy (STORM) and photoactivation localization microscopy (PALM) are promising super-resolution techniques due to their relative ease of implementation and instrumentation on standard microscopes. However, the application of STORM is critically limited by its long sampling time. Several recent works have been focused on improving the STORM imaging speed by making use of the information from emitters with overlapping point spread functions (PSF). In this work, we present a fast and efficient algorithm that takes into account the blinking statistics of independent fluorescence emitters. We achieve sub-diffraction lateral resolution of 100 nm from 5 to 7 seconds of imaging. Our method is insensitive to background and can be applied to different types of fluorescence sources, including but not limited to the organic dyes and quantum dots that we demonstrate in this work.

  14. Spatial resolution limits for the isotropic-3D PET detector X’tal cube

    NASA Astrophysics Data System (ADS)

    Yoshida, Eiji; Tashima, Hideaki; Hirano, Yoshiyuki; Inadama, Naoko; Nishikido, Fumihiko; Murayama, Hideo; Yamaya, Taiga

    2013-11-01

    Positron emission tomography (PET) has become a popular imaging method in metabolism, neuroscience, and molecular imaging. For dedicated human brain and small animal PET scanners, high spatial resolution is needed to visualize small objects. To improve the spatial resolution, we are developing the X’tal cube, which is our new PET detector to achieve isotropic 3D positioning detectability. We have shown that the X’tal cube can achieve 1 mm3 uniform crystal identification performance with the Anger-type calculation even at the block edges. We plan to develop the X’tal cube with even smaller 3D grids for sub-millimeter crystal identification. In this work, we investigate spatial resolution of a PET scanner based on the X’tal cube using Monte Carlo simulations for predicting resolution performance in smaller 3D grids. For spatial resolution evaluation, a point source emitting 511 keV photons was simulated by GATE for all physical processes involved in emission and interaction of positrons. We simulated two types of animal PET scanners. The first PET scanner had a detector ring 14.6 cm in diameter composed of 18 detectors. The second PET scanner had a detector ring 7.8 cm in diameter composed of 12 detectors. After the GATE simulations, we converted the interacting 3D position information to digitalized positions for realistic segmented crystals. We simulated several X’tal cubes with cubic crystals from (0.5 mm)3 to (2 mm)3 in size. Also, for evaluating the effect of DOI resolution, we simulated several X’tal cubes with crystal thickness from (0.5 mm)3 to (9 mm)3. We showed that sub-millimeter spatial resolution was possible using cubic crystals smaller than (1.0 mm)3 even with the assumed physical processes. Also, the weighted average spatial resolutions of both PET scanners with (0.5 mm)3 cubic crystals were 0.53 mm (14.6 cm ring diameter) and 0.48 mm (7.8 cm ring diameter). For the 7.8 cm ring diameter, spatial resolution with 0.5×0.5×1.0 mm3 crystals

  15. Spatial resolution is dependent on image content for SPECT with iterative reconstruction incorporating distance dependent resolution (DDR) correction.

    PubMed

    Badger, Daniel; Barnden, Leighton

    2014-09-01

    The aim of this study is to determine the dependence of single photon emission computed tomography (SPECT) spatial resolution on the content of images for iterative reconstruction with distance dependent resolution (DDR) correction. An experiment was performed using a perturbation technique to measure change in resolution of line sources in simple and complex images with iterative reconstruction with increasing iteration. Projections of the line sources were reconstructed alone and again after the addition of projections of a uniform flood or a complex phantom. An alternative experiment used images of a realistic brain phantom and evaluated an effective spatial resolution by matching the images to the digital version of the phantom convolved with 3D Gaussian kernels. The experiments were performed using ordered subset expectation maximisation iterative reconstruction with and without the use of DDR correction. The results show a significant difference in reconstructed resolution between images of line sources depending on the content of the added image. The full width at half maximum of images of a line source reconstructed using DDR correction increased by 20-30 % when the added image was complex. Without DDR this difference was much smaller and disappeared with increasing iteration. Reported SPECT resolution should be taken as indicative only with regard to clinical imaging if the measurement is made using a point or line source alone and an iterative reconstruction algorithm is used.

  16. Spatial Resolution, Grayscale, and Error Diffusion Trade-offs: Impact on Display System Design

    NASA Technical Reports Server (NTRS)

    Gille, Jennifer L. (Principal Investigator)

    1996-01-01

    We examine technology trade-offs related to grayscale resolution, spatial resolution, and error diffusion for tessellated display systems. We present new empirical results from our psychophysical study of these trade-offs and compare them to the predictions of a model of human vision.

  17. Projected Future Vegetation Changes for the Northwest United States and Southwest Canada at a Fine Spatial Resolution Using a Dynamic Global Vegetation Model.

    PubMed

    Shafer, Sarah L; Bartlein, Patrick J; Gray, Elizabeth M; Pelltier, Richard T

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0-58.0°N latitude by 136.6-103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070-2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.

  18. Projected Future Vegetation Changes for the Northwest United States and Southwest Canada at a Fine Spatial Resolution Using a Dynamic Global Vegetation Model

    PubMed Central

    Shafer, Sarah L.; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas. PMID:26488750

  19. Projected future vegetation changes for the northwest United States and southwest Canada at a fine spatial resolution using a dynamic global vegetation model.

    USGS Publications Warehouse

    Shafer, Sarah; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.

  20. A comprehensive biomass burning emission inventory with high spatial and temporal resolution in China

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Xing, Xiaofan; Lang, Jianlei; Chen, Dongsheng; Cheng, Shuiyuan; Wei, Lin; Wei, Xiao; Liu, Chao

    2017-02-01

    Biomass burning injects many different gases and aerosols into the atmosphere that could have a harmful effect on air quality, climate, and human health. In this study, a comprehensive biomass burning emission inventory including domestic and in-field straw burning, firewood burning, livestock excrement burning, and forest and grassland fires is presented, which was developed for mainland China in 2012 based on county-level activity data, satellite data, and updated source-specific emission factors (EFs). The emission inventory within a 1 × 1 km2 grid was generated using geographical information system (GIS) technology according to source-based spatial surrogates. A range of key information related to emission estimation (e.g. province-specific proportion of domestic and in-field straw burning, detailed firewood burning quantities, uneven temporal distribution coefficient) was obtained from field investigation, systematic combing of the latest research, and regression analysis of statistical data. The established emission inventory includes the major precursors of complex pollution, greenhouse gases, and heavy metal released from biomass burning. The results show that the emissions of SO2, NOx, PM10, PM2.5, NMVOC, NH3, CO, EC, OC, CO2, CH4, and Hg in 2012 are 336.8 Gg, 990.7 Gg, 3728.3 Gg, 3526.7 Gg, 3474.2 Gg, 401.2 Gg, 34 380.4 Gg, 369.7 Gg, 1189.5 Gg, 675 299.0 Gg, 2092.4 Gg, and 4.12 Mg, respectively. Domestic straw burning, in-field straw burning, and firewood burning are identified as the dominant biomass burning sources. The largest contributing source is different for various pollutants. Domestic straw burning is the largest source of biomass burning emissions for all the pollutants considered, except for NH3, EC (firewood), and NOx (in-field straw). Corn, rice, and wheat represent the major crop straws. The combined emission of these three straw types accounts for 80 % of the total straw-burned emissions for each specific pollutant mentioned in this study

  1. A 16-year time series of 1 km AVHRR satellite data of the conterminous United States and Alaska

    USGS Publications Warehouse

    Eidenshink, Jeff

    2006-01-01

    The U.S. Geological Survey (USGS) has developed a 16-year time series of vegetation condition information for the conterminous United States and Alaska using 1 km Advanced Very High Resolution Radiometer (AVHRR) data. The AVHRR data have been processed using consistent methods that account for radiometric variability due to calibration uncertainty, the effects of the atmosphere on surface radiometric measurements obtained from wide field-of-view observations, and the geometric registration accuracy. The conterminous United States and Alaska data sets have an atmospheric correction for water vapor, ozone, and Rayleigh scattering and include a cloud mask derived using the Clouds from AVHRR (CLAVR) algorithm. In comparison with other AVHRR time series data sets, the conterminous United States and Alaska data are processed using similar techniques. The primary difference is that the conterminous United States and Alaska data are at 1 km resolution, while others are at 8 km resolution. The time series consists of weekly and biweekly maximum normalized difference vegetation index (NDVI) composites.

  2. Spatial resolution estimation of LANDSAT-4 TM and MSS data

    NASA Technical Reports Server (NTRS)

    Mcgillem, C. D.; Anuta, P. E.; Yu, K. B.

    1983-01-01

    In order to verify that the LANDSAT-4 sensors are operating within specifications, it is useful to estimate the system parameters by analysis of the measured data. One parameter of particular interest is the sensor point-spread function (PSF) which determines the resolution of the system. A method of estimating the PSF is described that utilizes data obtained during scanning of ground elements having identifiable geometric and radiometric structure. These data are then processed in such a manner as to recover either the PSF itself or to estimate the parameters of an assumed functional representation of the PSF.

  3. Local Optical Spectroscopies for Subnanometer Spatial Resolution Chemical Imaging

    SciTech Connect

    Weiss, Paul

    2014-01-20

    The evanescently coupled photon scanning tunneling microscopes (STMs) have special requirements in terms of stability and optical access. We have made substantial improvements to the stability, resolution, and noise floor of our custom-built visible-photon STM, and will translate these advances to our infrared instrument. Double vibration isolation of the STM base with a damping system achieved increased rigidity, giving high tunneling junction stability for long-duration and high-power illumination. Light frequency modulation with an optical chopper and phase-sensitive detection now enhance the signal-to-noise ratio of the tunneling junction during irradiation.

  4. Note: Spatial resolution of Fuji BAS-TR and BAS-SR imaging plates

    SciTech Connect

    Fiksel, G.; Marshall, F. J.; Mileham, C.; Stoeckl, C.

    2012-08-15

    The spatial resolution of two types of imaging plates, Fuji BAS-TR and Fuji BAS-SR, has been measured using a knife-edge x-ray source of 8-keV Cu K{sub {alpha}} radiation. The values for the spatial resolution, defined as the distance between 10% and 90% levels of the edge spread function, are 94 {mu}m and 109 {mu}m, respectively. The resolution values are important for quantitative analysis of x-ray and particle imaging and spectroscopic diagnostics.

  5. Spatializing vineyard hydric status within heterogeneous Mediterranean watershed from high spatial resolution optical remote sensing.

    NASA Astrophysics Data System (ADS)

    Galleguillos, M.; Jacob, F.; Prevot, L.; Lagacherie, P.

    2009-04-01

    Land surface evapotranspiration is one of key hydrological inputs that determine hydric status within Mediterranean vineyards. Its knowledge in a spatially distributed manner is of interest for the monitoring of vine activity throughout the cultural cycle, and for the acquainting of hydrological modeling as upper boundary conditions. Due to vineyard landscape structures, mostly including small fields, the use of remote sensing has not been extensively investigated, apart from airborne observations. Spaceborne ASTER data, collected over the optical domain at high spatial resolution, are of strong interest for the mapping of vineyard hydric status in relation with surface and soil properties, provided vine thermal and hydric status are strongly linked. The objective of this study is to assess the performances of two spatialized approaches devoted to the mapping of instantaneous surface energy fluxes from optical remote sensing. Amongst the candidate methods to be foreseen for the mapping of vineyard water status from remote sensing, we consider two single layer methods characterized by their simplicities and feasibilities, in terms of implementation and input requirements. The first method is the Simplified Surface Energy Balance Index (S-SEBI, proposed by Roerink et al., 2000) and the second is the Water Deficit Index (WDI, designed by Moran et al., 1994). They differ by the way they use the spatial information captured over the solar and thermal domains, for the differentiating based retrieving of water status and evapotranspiration. First, the spatial information can be characterized through the temperature - vegetation index triangle that is controlled by soil moisture (WDI), or through the temperature - albedo diagram that is controlled by radiative and evaporative processes (S-SEBI). Second, evaporative extremes can be determined according to theoretical considerations and related formalisms (WDI), or assigned according to variabilities captured through thermal

  6. Multiscale assessment of spatial precipitation variability over complex mountain terrain using a high-resolution spatiotemporal wavelet reconstruction method

    NASA Astrophysics Data System (ADS)

    Yarleque, Christian; Vuille, Mathias; Hardy, Douglas R.; Posadas, Adolfo; Quiroz, Roberto

    2016-10-01

    Studying precipitation variability in the Peruvian Andes is a challenge given the high topographic variability and the scarcity of weather stations. Yet previous research has shown that a near-linear relationship exists between precipitation and vegetation in the semiarid central Andes. We exploit this relationship by developing a new, spatially highly resolved spatiotemporal precipitation reconstruction method, using daily precipitation time series from in situ weather stations, and dekadal (10 calendar days) normalized difference vegetation index (NDVI) fields. The two data sets are combined through a wavelet decomposition method. A 4° × 4° region around Quelccaya ice cap (QIC), the world's largest tropical ice cap located in the central Peruvian Andes, was selected as study area, due to its importance for climatic, glaciologic, and paleoclimatic research. The reconstructed end product, a 1 km2 gridded precipitation data set at dekadal temporal resolution, was validated against independent rain gauge data and compared with the Tropical Rainfall Measuring Mission (TRMM) 3B42 version 7 product. This validation showed a better overall performance of our own reconstruction than the TRMM data. Additionally, a comparison of our precipitation product with snowfall measurements at the QIC summit (5670 m) shows a regionally coherent signal at the dekadal scale, suggesting that the precipitation falling at QIC is driven by regional- rather than local-scale convective activity. We anticipate that this methodology and the type of data generated in this study will be useful for hydrological and glaciological studies, as well as for validation of high-resolution downscaling products in mountain regions.

  7. Virtual electrode design for increasing spatial resolution in retinal prosthesis.

    PubMed

    Loizos, Kyle; Cela, Carlos; Marc, Robert; Lazzi, Gianluca

    2016-06-01

    Retinal prostheses systems are currently used to restore partial vision to patients blinded by degenerative diseases by electrically stimulating surviving retinal cells. To obtain likely maximum resolution, electrode size is minimised, allowing for a large quantity on an array and localised stimulation regions. Besides the small size leading to fabrication difficulties and higher electrochemical charge density, there are challenges associated with the number of drivers needed for a large electrode count as well as the strategies to deliver sufficient power to these drivers wirelessly. In hopes to increase electrode resolution while avoiding these issues, the authors propose a new 'virtual electrode' design to increase locations of likely stimulation. Passive metallisation strategically placed between disk electrodes, combined with alternating surrounding stimuli, channel current into a location between electrodes, producing a virtual stimulation site. A computational study was conducted to optimise the passive metal element geometry, quantify the expected current density output, and simulate retinal ganglion cell activity due to virtual electrode stimulation. Results show that this procedure leads to array geometry that focuses injected current and achieves retinal ganglion cell stimulation in a region beneath the 'virtual electrode,' creating an alternate stimulation site without additional drivers.

  8. Estimation of Orbital Neutron Detector Spatial Resolution by Systematic Shifting of Differential Topographic Masks

    NASA Technical Reports Server (NTRS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Livengood, T.; Starr, R. D.; Evans, L. G.; Mazarico, E.; Smith, D. E.

    2012-01-01

    We present a method and preliminary results related to determining the spatial resolution of orbital neutron detectors using epithermal maps and differential topographic masks. Our technique is similar to coded aperture imaging methods for optimizing photonic signals in telescopes [I]. In that approach photon masks with known spatial patterns in a telescope aperature are used to systematically restrict incoming photons which minimizes interference and enhances photon signal to noise. Three orbital neutron detector systems with different stated spatial resolutions are evaluated. The differing spatial resolutions arise due different orbital altitudes and the use of neutron collimation techniques. 1) The uncollimated Lunar Prospector Neutron Spectrometer (LPNS) system has spatial resolution of 45km FWHM from approx. 30km altitude mission phase [2]. The Lunar Rennaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) with two detectors at 50km altitude evaluated here: 2) the collimated 10km FWHM spatial resolution detector CSETN and 3) LEND's collimated Sensor for Epithermal Neutrons (SETN). Thus providing two orbital altitudes to study factors of: uncollimated vs collimated and two average altitudes for their effect on fields-of-view.

  9. Hyperspectral Imagery Super-Resolution by Compressive Sensing Inspired Dictionary Learning and Spatial-Spectral Regularization

    PubMed Central

    Huang, Wei; Xiao, Liang; Liu, Hongyi; Wei, Zhihui

    2015-01-01

    Due to the instrumental and imaging optics limitations, it is difficult to acquire high spatial resolution hyperspectral imagery (HSI). Super-resolution (SR) imagery aims at inferring high quality images of a given scene from degraded versions of the same scene. This paper proposes a novel hyperspectral imagery super-resolution (HSI-SR) method via dictionary learning and spatial-spectral regularization. The main contributions of this paper are twofold. First, inspired by the compressive sensing (CS) framework, for learning the high resolution dictionary, we encourage stronger sparsity on image patches and promote smaller coherence between the learned dictionary and sensing matrix. Thus, a sparsity and incoherence restricted dictionary learning method is proposed to achieve higher efficiency sparse representation. Second, a variational regularization model combing a spatial sparsity regularization term and a new local spectral similarity preserving term is proposed to integrate the spectral and spatial-contextual information of the HSI. Experimental results show that the proposed method can effectively recover spatial information and better preserve spectral information. The high spatial resolution HSI reconstructed by the proposed method outperforms reconstructed results by other well-known methods in terms of both objective measurements and visual evaluation. PMID:25608212

  10. Full field spatially-variant image-based resolution modelling reconstruction for the HRRT.

    PubMed

    Angelis, Georgios I; Kotasidis, Fotis A; Matthews, Julian C; Markiewicz, Pawel J; Lionheart, William R; Reader, Andrew J

    2015-03-01

    Accurate characterisation of the scanner's point spread function across the entire field of view (FOV) is crucial in order to account for spatially dependent factors that degrade the resolution of the reconstructed images. The HRRT users' community resolution modelling reconstruction software includes a shift-invariant resolution kernel, which leads to transaxially non-uniform resolution in the reconstructed images. Unlike previous work to date in this field, this work is the first to model the spatially variant resolution across the entire FOV of the HRRT, which is the highest resolution human brain PET scanner in the world. In this paper we developed a spatially variant image-based resolution modelling reconstruction dedicated to the HRRT, using an experimentally measured shift-variant resolution kernel. Previously, the system response was measured and characterised in detail across the entire FOV of the HRRT, using a printed point source array. The newly developed resolution modelling reconstruction was applied on measured phantom, as well as clinical data and was compared against the HRRT users' community resolution modelling reconstruction, which is currently in use. Results demonstrated improvements both in contrast and resolution recovery, particularly for regions close to the edges of the FOV, with almost uniform resolution recovery across the entire transverse FOV. In addition, because the newly measured resolution kernel is slightly broader with wider tails, compared to the deliberately conservative kernel employed in the HRRT users' community software, the reconstructed images appear to have not only improved contrast recovery (up to 20% for small regions), but also better noise characteristics.

  11. High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing.

    PubMed

    Sperber, Tom; Eyal, Avishay; Tur, Moshe; Thévenaz, Luc

    2010-04-12

    A novel BOTDA technique for distributed sensing of the Brillouin frequency in optical fibers with cm-order spatial resolution is proposed. The technique is based upon a simple modulation scheme, requiring only a single long pump pulse for acoustic excitation, and no subsequent interrogating pulse. Instead, the desired spatial mapping of the Brillouin response is extracted by taking the derivative of the probe signal. As a result, the spatial resolution is limited by the fall-time of the pump modulation, and the phenomena of secondary "echo" signals, typically appearing in BOTDA sensing methods based upon pre-excitation, is mitigated. Experimental demonstration of the detection of a Brillouin frequency variation significantly smaller than the natural Brillouin linewidth, with a 2cm spatial resolution, is presented.

  12. Uncertainty Analysis in the Creation of a Fine-Resolution Leaf Area Index (LAI) Reference Map for Validation of Moderate Resolution LAI Products

    EPA Science Inventory

    The validation process for a moderate resolution leaf area index (LAI) product (i.e., MODIS) involves the creation of a high spatial resolution LAI reference map (Lai-RM), which when scaled to the moderate LAI resolution (i.e., >1 km) allows for comparison and analysis with this ...

  13. SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) for low dose x-ray imaging: Spatial resolution

    SciTech Connect

    Li Dan; Zhao Wei

    2008-07-15

    An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve the low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 {mu}m. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 {mu}mx50 {mu}m pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 {mu}m. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.

  14. Super-resolution reconstruction to increase the spatial resolution of diffusion weighted images from orthogonal anisotropic acquisitions

    PubMed Central

    Scherrer, Benoit; Gholipour, Ali; Warfield, Simon K.

    2012-01-01

    Diffusion-weighted imaging (DWI) enables non-invasive investigation and characterization of the white matter but suffers from a relatively poor spatial resolution. Increasing the spatial resolution in DWI is challenging with a single-shot EPI acquisition due to the decreased signal-to-noise ratio and T2* relaxation effect amplified with increased echo time. In this work we propose a super-resolution reconstruction (SRR) technique based on the acquisition of multiple anisotropic orthogonal DWI scans. DWI scans acquired in different planes are not typically closely aligned due to the geometric distortion introduced by magnetic susceptibility differences in each phase-encoding direction. We compensate each scan for geometric distortion by acquisition of a dual echo gradient echo field map, providing an estimate of the field inhomogeneity. We address the problem of patient motion by aligning the volumes in both space and q-space. The SRR is formulated as a maximum a posteriori problem. It relies on a volume acquisition model which describes how the acquired scans are observations of an unknown high-resolution image which we aim to recover. Our model enables the introduction of image priors that exploit spatial homogeneity and enables regularized solutions. We detail our SRR optimization procedure and report experiments including numerical simulations, synthetic SRR and real world SRR. In particular, we demonstrate that combining distortion compensation and SRR provides better results than acquisition of a single isotropic scan for the same acquisition duration time. Importantly, SRR enables DWI with resolution beyond the scanner hardware limitations. This work provides the first evidence that SRR, which employs conventional single shot EPI techniques, enables resolution enhancement in DWI, and may dramatically impact the role of DWI in both neuroscience and clinical applications. PMID:22770597

  15. SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) for low dose x-ray imaging: spatial resolution.

    PubMed

    Li, Dan; Zhao, Wei

    2008-07-01

    An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve the low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 microm. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 microm x 50 microm pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 microm. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.

  16. Impact of spatial resolution of the precipitation data on hydrological Forecast

    NASA Astrophysics Data System (ADS)

    Davis, M.; Bardossy, A.; Sudheer, K.

    2013-05-01

    Flooding is a devastating problem for many countries all over the world. Real time forecasting is a necessary non-structural measure to fight against the damage. Adequate quantitative forecasting of the flood is necessary to provide enough precaution for the affected population. Time lead in the forecast is also a matter of concern considering its significance in the preparedness. The time-lead of forecast depends on the computational time along with the various other issues. The computation time depends on the whether the model is data intensive or process intensive. Considering the use of spatially distributed models in the forecast, the main dynamic data involved in the rainfall runoff models are the precipitation measurement. The data intensity of that depends on the spatial and temporal resolution of the precipitation data. The spatial resolution of the precipitation has the significance in the spatially distributed hydrological models. Neither should the resolution be so less that the quantitative prediction is disturbed nor too much to affect the time lead considerably. Finer spatial resolution of precipitation data may not even yield better forecast (A.Bardossy and T.Das, 2008). So the current study focuses on the impact of spatial and temporal resolution of the hydrological forecast. The spatially distributed model of HBV and HYMOD is being used for the analysis. Spatial resolutions from 1, 4, 9 and 25 square kilometers and a temporal resolution of daily to hourly time-series is also being analysed for their respective effects on prediction. The data from rain gauges are interpolated using the External Drift Kriging Method (EDK). The calibrations of the models are carried out using the Robust Parameter Estimation (ROPE) algorithm (S.K Singh and A. Bardossy, 2010). The framework is illustrated on the Upper Neckar catchment with 13 sub-catchments located in South West Germany. Preliminary results are encouraging. The optimum spatial resolution can be

  17. Advanced Extraction of Spatial Information from High Resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Pour, T.; Burian, J.; Miřijovský, J.

    2016-06-01

    In this paper authors processed five satellite image of five different Middle-European cities taken by five different sensors. The aim of the paper was to find methods and approaches leading to evaluation and spatial data extraction from areas of interest. For this reason, data were firstly pre-processed using image fusion, mosaicking and segmentation processes. Results going into the next step were two polygon layers; first one representing single objects and the second one representing city blocks. In the second step, polygon layers were classified and exported into Esri shapefile format. Classification was partly hierarchical expert based and partly based on the tool SEaTH used for separability distinction and thresholding. Final results along with visual previews were attached to the original thesis. Results are evaluated visually and statistically in the last part of the paper. In the discussion author described difficulties of working with data of large size, taken by different sensors and different also thematically.

  18. Practical Considerations for High Spatial and Temporal Resolution Dynamic Transmission Electron Microscopy

    SciTech Connect

    Armstrong, M; Boyden, K; Browning, N D; Campbell, G H; Colvin, J D; DeHope, B; Frank, A M; Gibson, D J; Hartemann, F; Kim, J S; King, W E; LaGrange, T B; Pyke, B J; Reed, B W; Shuttlesworth, R M; Stuart, B C; Torralva, B R

    2006-05-01

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5 x 10{sup 7} electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution <10{sup -6} s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed.

  19. Impact of rainfall spatial distribution and resolution on flash floods response

    NASA Astrophysics Data System (ADS)

    Zoccatelli, Davide; Marra, Francesco; Nikolopoulos, Efthymios

    2013-04-01

    Uncertainty in flash flood forecasting critically depends on the space-time monitoring resolution of the flood-triggering rainfall. Hence, it is important to better understand at what space-time scales rainfall has to be monitored, given certain catchment and storm characteristics, and what are the effects of space-time aggregations on model simulations and forecasts. This work exploits the concept of spatial moments of catchment rainfall to quantify the dependence between rainfall spatial distribution, rainfall resolution, catchment morphology, and runoff response. The spatial moments of catchment rainfall describe rainfall organization in terms of concentration and dispersion along the flow distance coordinate. Assuming that rainfall distribution at equal flow distance is averaged by runoff propagation, these statistics provide a useful metric to examine how the catchment filters out rainfall spatial variability into runoff response. The effect of a variation in spatial rainfall resolution on spatial moments of catchment rainfall should therefore explain, at least partially, the pattern of runoff model sensitivity to spatial rainfall resolution. Since these statistics can capture the interactions between rainfall distribution and basin morphology, they can also be useful to compare its influence across scales and events. High resolution radar observations and a distributed hydrological model have been used to apply these statistics in five extreme flash floods occurred in various European regions in the period 2002-2007. This application allowed to verify the assumptions and to quantify how effective are these statistics in describing the role of spatial rainfall organization and of spatial resolution for flash flood modeling. The size of the study catchments ranges between 36 to 982 km2. The timing error introduced by neglecting the rainfall spatial variability, that ranges between -30% to 72% of the corresponding catchment response time, is well explained by

  20. Spatial resolution of subsurface anthropogenic heat fluxes in cities

    NASA Astrophysics Data System (ADS)

    Benz, Susanne; Bayer, Peter; Menberg, Kathrin; Blum, Philipp

    2015-04-01

    Urban heat islands in the subsurface contain large quantities of energy in the form of elevated groundwater temperatures caused by anthropogenic heat fluxes (AHFS) into the subsurface. Hence, the objective of this study is to exemplarily quantify these AHFS and the generated thermal powers in two German cities, Karlsruhe and Cologne. A two-dimensional (2D) statistical analytical model of the vertical subsurface anthropogenic heat fluxes across the unsaturated zone was developed. The model consists of a so-called Local Monte Carlo approach that introduces a spatial representation of the following sources of AHFS: (1) elevated ground surface temperatures, (2) basements, (3) sewage systems, (4) sewage leakage, (5) subway tunnels, and (6) district heating networks. The results show that district heating networks induce the largest local AHFS with values larger than 60 W/m2 and one order of magnitude higher than the other evaluated heat sources. Only sewage pipes and basements reaching into the groundwater cause equally high heat fluxes, with maximal values of 40.37 W/m2 and 13.60 W/m2, respectively. While dominating locally, the district heating network is rather insignificant for the citywide energy budget in both urban subsurfaces. Heat from buildings (1.51 ± 1.36 PJ/a in Karlsruhe; 0.31 ± 0.14 PJ/a in Cologne) and elevated GST (0.34 ± 0.10 PJ/a in Karlsruhe; 0.42 ± 0.13 PJ/a in Cologne) are dominant contributors to the anthropogenic thermal power of the urban aquifer. In Karlsruhe, buildings are the source of 70% of the annual heat transported into the groundwater, which is mainly caused by basements reaching into the groundwater. A variance analysis confirms these findings: basement depth is the most influential factor to citywide thermal power in the studied cities with high groundwater levels. The spatial distribution of fluxes, however, is mostly influenced by the prevailing thermal gradient across the unsaturated zone. A relatively cold groundwater

  1. Ultrashort microwave-induced thermoacoustic imaging: a breakthrough in excitation efficiency and spatial resolution.

    PubMed

    Lou, Cunguang; Yang, Sihua; Ji, Zhong; Chen, Qun; Xing, Da

    2012-11-21

    With theoretical prediction and experimental validation, we propose a novel approach to significantly enhance the conversion efficiency of thermoacoustic (TA) imaging by using an ultrashort microwave pulse. The implementation of the ultrashort microwave pulse leads to orders of magnitude enhancement in excitation efficiency and spatial resolution, compared to that from existing TA imaging techniques. This allows high-resolution (~ 100 micron resolution) TA imaging to be acquired noninvasively. The present work represents a major breakthrough in the conversion efficiency of the TA effect and the resolution of TA imaging, which can potentially be used for clinical imaging.

  2. Effect of spatial resolution of radar-based inundation maps on the calibration of a spatial inundation model

    NASA Astrophysics Data System (ADS)

    Gobeyn, Sacha; Vernieuwe, Hilde; De Baets, Bernard; Bates, Paul; Verhoest Niko E., C.

    2013-04-01

    With advances in both flood mapping with satellite radar and computational science, the use of real-time spatial flood data holds the potential to support decision making during flood events. With recent improvements in satellite radar technology, current and future radar images are/will be delivered with higher spatial resolution. It is expected that these higher resolutions should improve the accuracy of the calibration and the prediction through data assimilation as more detailed information is available. However, these finer resolution data will result in an increased computational cost. Still, radar data of coarser resolution will remain available, and the question may then arise whether the calibration of a 2D-hydraulic model is significantly influenced by the resolution of the remotely-sensed inundation map. In order to answer this question, the raster-based inundation model, LISFLOOD-FP (Bates et al., 2000) is calibrated using a high resolution synthetic aperture radar image (ERS-2 SAR) of a flood event of the river Dee, Wales, in December 2006. Different radar resolutions are simulated through coarsening this image to different resolutions and retrieving the flood extent maps for the different resolutions. These flood maps are then used for calibrating the hydraulic model using the generalized likelihood uncertainty estimation (GLUE) framework presented by Aronica et al. (2002) as well as alternative calibration methods (e.g. Particle Swarm Optimization, PSO) to assess the possible impact of spatial resolution of the observed flood extent on the floodplain and channel Manning coefficient. Furthermore, the sensitivity of the calibration surface to error sources in radar measurement is evaluated by applying different magnitudes of noise to the radar image. References Aronica, G., Bates, P. D. and Horritt, M. S. (2002). Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE. Hydrological Processes, 16

  3. High-spatial-resolution passive microwave sounding systems

    NASA Technical Reports Server (NTRS)

    Staelin, David H.; Barrett, J. W.; Bonanni, Pierino Gianni; Chiarchiaro, W. J., II; Rosenkranz, P. W.

    1991-01-01

    During this period the emphasis was on the following: (1) further design, construction, and testing of the improved 54-GHz portion of the 54-118 GHz microwave temperature sounder (MTS) aircraft radiometer system in preparation for ER-2 observations in July 1991; and (2) final analysis and documentation of procedures for detecting and analyzing thermal waves in our 118-GHz MTS imagery. In addition, we have new unpublished measurements of dry-air attenuation at frequencies of 54 to 66 GHz and over a temperature range of 280K to 326K; these measurements should enable us to improve further our atmospheric transmittance models. It was further noted that the proposed SSMIS conical-scanning microwave spectrometer on the military DMSP Block 5D-3 spacecraft designed to measure stratospheric and mesospheric temperature profiles will be observing the Zeeman-split oxygen lines with sufficient spectral resolution that the changing Doppler shifts with view angle will substantially degrade the potential system performance unless remedied; this was briefly studied and documented.

  4. The Importance of High Spatial and Appropriate Spectral Resolution Spectroscopy

    NASA Technical Reports Server (NTRS)

    Gull, Theodore

    2007-01-01

    Many diverse astronomical sources are resolved with diffraction-limited large telescopes. Application of appropriate dispersion spectroscopy unveils much information on the physics of these objects ranging from gamma ray bursters in host galaxies, star-formation regions and central engines in nearby galaxies, structures in galactic nebulae, resolved binaries with mass exchange, extended winds of massive stars, protoplanetary systems, and comets, asteroids and planets within our own solar system. Active optics and interferometers coupled with spectrographs can provide near-diffraction-limited spectroscopy from the ground but only longward of one micron. Below one micron, and certainly below 6000A, we must turn to space-based large telescopes equipped with spectrographs capable of providing spatially diffraction-limited spectroscopy of astronomical sources. Examples will be presented from the HST/STIS, ground-based and other instruments on science that has been accomplished. Suggestions will be made of what might be possible, and limitations thereof, with future large monolithic, multiple mirror or interferometric telescopes equipped with spectrographs that would be matched to the diffraction limit of the telescope.

  5. Spatial resolution of a spherical x-ray crystal spectrometer at various magnifications

    NASA Astrophysics Data System (ADS)

    Gao, Lan; Hill, K. W.; Bitter, M.; Efthimion, P. C.; Delgado-Aparicio, L.; Pablant, N. A.; Baronova, E. O.; Pereira, N. R.

    2016-11-01

    A high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystal (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications (M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.

  6. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS

    SciTech Connect

    Krishnan, Venkat; Cole, Wesley

    2016-07-18

    This poster is based on the paper of the same name, presented at the IEEE Power & Energy Society General Meeting, July18, 2016. Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions - native resolution (134 BAs), state-level, and NERC region level - and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.

  7. The effect of spatial resolution upon cloud optical property retrievals. I - Optical thickness

    NASA Technical Reports Server (NTRS)

    Feind, Rand E.; Christopher, Sundar A.; Welch, Ronald M.

    1992-01-01

    High spectral and spatial resolution Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery is used to study the effects of spatial resolution upon fair weather cumulus cloud optical thickness retrievals. As a preprocessing step, a variation of the Gao and Goetz three-band ratio technique is used to discriminate clouds from the background. The combination of the elimination of cloud shadow pixels and using the first derivative of the histogram allows for accurate cloud edge discrimination. The data are progressively degraded from 20 m to 960 m spatial resolution. The results show that retrieved cloud area increases with decreasing spatial resolution. The results also show that there is a monotonic decrease in retrieved cloud optical thickness with decreasing spatial resolution. It is also demonstrated that the use of a single, monospectral reflectance threshold is inadequate for identifying cloud pixels in fair weather cumulus scenes and presumably in any inhomogeneous cloud field. Cloud edges have a distribution of reflectance thresholds. The incorrect identification of cloud edges significantly impacts the accurate retrieval of cloud optical thickness values.

  8. Impact of spatial resolution on correlation between segmentation evaluation metrics and forest classification accuracy

    NASA Astrophysics Data System (ADS)

    Švab Lenarčič, Andreja; Ritlop, Klemen; Äńurić, Nataša.; Čotar, Klemen; Oštir, Krištof

    2015-10-01

    Slovenia is one of the most forested countries in Europe. Its forest management authorities need information about the forest extent and state, as their responsibility lies in forest observation and preservation. Together with appropriate geographic information system mapping methods the remotely sensed data represent essential tool for an effective and sustainable forest management. Despite the large data availability, suitable mapping methods still present big challenge in terms of their speed which is often affected by the huge amount of data. The speed of the classification method could be maximised, if each of the steps in object-based classification was automated. However, automation is hard to achieve, since segmentation requires choosing optimum parameter values for optimal classification results. This paper focuses on the analysis of segmentation and classification performance and their correlation in a range of segmentation parameter values applied in the segmentation step. In order to find out which spatial resolution is still suitable for forest classification, forest classification accuracies obtained by using four images with different spatial resolutions were compared. Results of this study indicate that all high or very high spatial resolutions are suitable for optimal forest segmentation and classification, as long as appropriate scale and merge parameters combinations are used in the object-based classification. If computation interval includes all segmentation parameter combinations, all segmentation-classification correlations are spatial resolution independent and are generally high. If computation interval includes over- or optimal-segmentation parameter combinations, most segmentation-classification correlations are spatial resolution dependent.

  9. A Comparison of Spatial and Spectral Image Resolution for Mapping Invasive Plants in Coastal California

    NASA Astrophysics Data System (ADS)

    Underwood, Emma C.; Ustin, Susan L.; Ramirez, Carlos M.

    2007-01-01

    We explored the potential of detecting three target invasive species: iceplant ( Carpobrotus edulis), jubata grass ( Cortaderia jubata), and blue gum ( Eucalyptus globulus) at Vandenberg Air Force Base, California. We compared the accuracy of mapping six communities (intact coastal scrub, iceplant invaded coastal scrub, iceplant invaded chaparral, jubata grass invaded chaparral, blue gum invaded chaparral, and intact chaparral) using four images with different combinations of spatial and spectral resolution: hyperspectral AVIRIS imagery (174 wavebands, 4 m spatial resolution), spatially degraded AVIRIS (174 bands, 30 m), spectrally degraded AVIRIS (6 bands, 4 m), and both spatially and spectrally degraded AVIRIS (6 bands, 30 m, i.e., simulated Landsat ETM data). Overall success rates for classifying the six classes was 75% (kappa 0.7) using full resolution AVIRIS, 58% (kappa 0.5) for the spatially degraded AVIRIS, 42% (kappa 0.3) for the spectrally degraded AVIRIS, and 37% (kappa 0.3) for the spatially and spectrally degraded AVIRIS. A true Landsat ETM image was also classified to illustrate that the results from the simulated ETM data were representative, which provided an accuracy of 50% (kappa 0.4). Mapping accuracies using different resolution images are evaluated in the context of community heterogeneity (species richness, diversity, and percent species cover). Findings illustrate that higher mapping accuracies are achieved with images possessing high spectral resolution, thus capturing information across the visible and reflected infrared solar spectrum. Understanding the tradeoffs in spectral and spatial resolution can assist land managers in deciding the most appropriate imagery with respect to target invasives and community characteristics.

  10. A comparison of spatial and spectral image resolution for mapping invasive plants in coastal california.

    PubMed

    Underwood, Emma C; Ustin, Susan L; Ramirez, Carlos M

    2007-01-01

    We explored the potential of detecting three target invasive species: iceplant (Carpobrotus edulis), jubata grass (Cortaderia jubata), and blue gum (Eucalyptus globulus) at Vandenberg Air Force Base, California. We compared the accuracy of mapping six communities (intact coastal scrub, iceplant invaded coastal scrub, iceplant invaded chaparral, jubata grass invaded chaparral, blue gum invaded chaparral, and intact chaparral) using four images with different combinations of spatial and spectral resolution: hyperspectral AVIRIS imagery (174 wavebands, 4 m spatial resolution), spatially degraded AVIRIS (174 bands, 30 m), spectrally degraded AVIRIS (6 bands, 4 m), and both spatially and spectrally degraded AVIRIS (6 bands, 30 m, i.e., simulated Landsat ETM data). Overall success rates for classifying the six classes was 75% (kappa 0.7) using full resolution AVIRIS, 58% (kappa 0.5) for the spatially degraded AVIRIS, 42% (kappa 0.3) for the spectrally degraded AVIRIS, and 37% (kappa 0.3) for the spatially and spectrally degraded AVIRIS. A true Landsat ETM image was also classified to illustrate that the results from the simulated ETM data were representative, which provided an accuracy of 50% (kappa 0.4). Mapping accuracies using different resolution images are evaluated in the context of community heterogeneity (species richness, diversity, and percent species cover). Findings illustrate that higher mapping accuracies are achieved with images possessing high spectral resolution, thus capturing information across the visible and reflected infrared solar spectrum. Understanding the tradeoffs in spectral and spatial resolution can assist land managers in deciding the most appropriate imagery with respect to target invasives and community characteristics.

  11. Study of spatial resolution of coordinate detectors based on Gas Electron Multipliers

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, V. N.; Maltsev, T. V.; Shekhtman, L. I.

    2017-02-01

    Spatial resolution of GEM-based tracking detectors is determined in the simulation and measured in the experiments. The simulation includes GEANT4 implemented transport of high energy electrons with careful accounting of atomic relaxation processes including emission of fluorescent photons and Auger electrons and custom post-processing with accounting of diffusion, gas amplification fluctuations, distribution of signals on readout electrodes, electronics noise and particular algorithm of final coordinate calculation (center of gravity). The simulation demonstrates that the minimum of spatial resolution of about 10 μm can be achieved with a gas mixture of Ar -CO2 (75-25 %) at a strips pitch from 250 μm to 300 μm. At a larger pitch the resolution quickly degrades reaching 80-100 μm at a pitch of 460-500 μm. Spatial resolution of low-material triple-GEM detectors for the DEUTERON facility at the VEPP-3 storage ring is measured at the extracted beam facility of the VEPP-4 M collider. One-coordinate resolution of the DEUTERON detector is measured with electron beam of 500 MeV, 1 GeV and 3.5 GeV energies. The determined value of spatial resolution varies in the range from approximately 35 μm to 50 μm for orthogonal tracks in the experiments.

  12. Effects of configural processing on the perceptual spatial resolution for face features.

    PubMed

    Namdar, Gal; Avidan, Galia; Ganel, Tzvi

    2015-11-01

    Configural processing governs human perception across various domains, including face perception. An established marker of configural face perception is the face inversion effect, in which performance is typically better for upright compared to inverted faces. In two experiments, we tested whether configural processing could influence basic visual abilities such as perceptual spatial resolution (i.e., the ability to detect spatial visual changes). Face-related perceptual spatial resolution was assessed by measuring the just noticeable difference (JND) to subtle positional changes between specific features in upright and inverted faces. The results revealed robust inversion effect for spatial sensitivity to configural-based changes, such as the distance between the mouth and the nose, or the distance between the eyes and the nose. Critically, spatial resolution for face features within the region of the eyes (e.g., the interocular distance between the eyes) was not affected by inversion, suggesting that the eye region operates as a separate 'gestalt' unit which is relatively immune to manipulations that would normally hamper configural processing. Together these findings suggest that face orientation modulates fundamental psychophysical abilities including spatial resolution. Furthermore, they indicate that classic psychophysical methods can be used as a valid measure of configural face processing.

  13. High-spatial-resolution passive microwave sounding systems

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Rosenkranz, P. W.

    1994-01-01

    The principal contributions of this combined theoretical and experimental effort were to advance and demonstrate new and more accurate techniques for sounding atmospheric temperature, humidity, and precipitation profiles at millimeter wavelengths, and to improve the scientific basis for such soundings. Some of these techniques are being incorporated in both research and operational systems. Specific results include: (1) development of the MIT Microwave Temperature Sounder (MTS), a 118-GHz eight-channel imaging spectrometer plus a switched-frequency spectrometer near 53 GHz, for use on the NASA ER-2 high-altitude aircraft, (2) conduct of ER-2 MTS missions in multiple seasons and locations in combination with other instruments, mapping with unprecedented approximately 2-km lateral resolution atmospheric temperature and precipitation profiles, atmospheric transmittances (at both zenith and nadir), frontal systems, and hurricanes, (3) ground based 118-GHz 3-D spectral images of wavelike structure within clouds passing overhead, (4) development and analysis of approaches to ground- and space-based 5-mm wavelength sounding of the upper stratosphere and mesosphere, which supported the planning of improvements to operational weather satellites, (5) development of improved multidimensional and adaptive retrieval methods for atmospheric temperature and humidity profiles, (6) development of combined nonlinear and statistical retrieval techniques for 183-GHz humidity profile retrievals, (7) development of nonlinear statistical retrieval techniques for precipitation cell-top altitudes, and (8) numerical analyses of the impact of remote sensing data on the accuracy of numerical weather predictions; a 68-km gridded model was used to study the spectral properties of error growth.

  14. The variation of intrinsic spatial resolution across the UFOV of scintillation cameras.

    PubMed

    Papanastassiou, Emmanouil K; Psarrakos, Kyriakos; Sioundas, Anastasios; Ballas, Apostolos; Koufogiannis, Dimitrios; Hatziioannou, Konstantinos

    2006-12-01

    The aim of the present study was to investigate in detail the variation of the intrinsic spatial resolution across the useful field of view (UFOV) of gamma-cameras and to explore whether this variation could lead to observable effects in clinical images. Two gamma-cameras were used, without their collimators, to acquire 560 (99m)Tc point source images at different points across their UFOVs, in order to measure the intrinsic spatial resolution at each point. Possible clinical effects of the resolution variation were examined on images of a thyroid phantom using a LEHR collimator, acquired at different locations on the UFOV and at various distances from the collimator. The gamma-camera intrinsic resolution varied significantly across the UFOV, being generally lower at the central region and deteriorating at the edges. Pronounced local maxima and minima were found at points corresponding to the centers of the photomultiplier tubes (PMTs) and halfway in between. Maximum differences of more than 50% were observed between the points presenting the best and worst intrinsic resolution. Differences between neighboring points reached 17%. The effects of resolution variation were clearly observable on the thyroid phantom images. It was concluded that an appropriate correction algorithm might be necessary in order to correct for the variation of the intrinsic spatial resolution across the UFOV of gamma-cameras.

  15. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    NASA Astrophysics Data System (ADS)

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth; Huang, Xiaojing; Wagner, Ulrich; Rau, Christoph; Yusuf, Mohammed; Robinson, Ian; Kalbfleisch, Sebastian; Li, Li; Bouet, Nathalie; Zhou, Juan; Conley, Ray; Chu, Yong S.

    2016-02-01

    We developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray’s superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioning it.

  16. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    PubMed Central

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth; Huang, Xiaojing; Wagner, Ulrich; Rau, Christoph; Yusuf, Mohammed; Robinson, Ian; Kalbfleisch, Sebastian; Li, Li; Bouet, Nathalie; Zhou, Juan; Conley, Ray; Chu, Yong S.

    2016-01-01

    We developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray’s superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioning it. PMID:26846188

  17. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    DOE PAGES

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.; ...

    2016-02-05

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less

  18. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    SciTech Connect

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.; Huang, Xiaojing; Wagner, Ulrich; Rau, Christoph; Yusuf, Mohammed; Robinson, Ian K.; Kalbfleisch, Sebastian; Li, Li; Bouet, Nathalie; Zhou, Juan; Conley, Ray; Chu, Yong S.

    2016-02-05

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioning it.

  19. Direct Imaging of Single Cells and Tissue at Subcellular Spatial Resolution Using Transmission Geometry MALDI MS

    PubMed Central

    Zavalin, Andre; Todd, Erik M.; Rawhouser, Patrick D.; Yang, Junhai; Norris, Jeremy L.; Caprioli, Richard M.

    2012-01-01

    The need of cellular and sub-cellular spatial resolution in LDI / MALDI Imaging Mass Spectrometry (IMS) necessitates micron and sub-micron laser spot sizes at biologically relevant sensitivities, introducing significant challenges for MS technology. To this end we have developed a transmission geometry vacuum ion source that allows the laser beam to irradiate the back side of the sample. This arrangement obviates the mechanical / ion optic complications in the source by completely separating the optical lens and ion optic structures. We have experimentally demonstrated the viability of transmission geometry MALDI MS for imaging biological tissues and cells with sub-cellular spatial resolution. Furthermore, we demonstrate that in conjunction with new sample preparation protocols, the sensitivity of this instrument is sufficient to obtain molecular images at sub-micron spatial resolution. PMID:23147833

  20. Sensitivity of ecosystem models to the spatial resolution of the NCAR Community Climate Model CCM2

    NASA Astrophysics Data System (ADS)

    Ciret, C.; Henderson-Sellers, A.

    This study evaluates the sensitivity of ecosystem models to changes in the horizontal resolution of version 2 of the National Centre for Atmospheric Research Community Climate Model (CCM2). A previous study has shown that the distributions of natural ecosystems predicted by vegetation models using coarse resolution present-day climate simulations are poorly simulated. It is usually assumed that increasing the spatial resolution of general circulation models (GCMs) will improve the simulation of climate, and hence will increase our level of confidence in the use of GCM output for impacts studies. The principal goals of this study is to investigate this hypothesis and to identify which biomes are more affected by the changes in spatial resolution of the forcing climate. The ecosystem models used are the BIOME-1 model and a version of the Holdridge scheme. The climate simulations come from a set of experiments in which CCM2 was run with increasing horizontal resolutions. The biome distributions predicted using CCM2 climates are compared against biome distributions predicted using observed climate datasets. Results show that increasing the resolution of CCM2 produces a significant improvement of the global-scale vegetation prediction, indicating that a higher level of confidence can be vested in the global-scale prediction of natural ecosystems using medium and high resolution GCMs. However, not all biomes are equally affected by the increased spatial resolution, and although certain biome distributions are improved (e.g. hot desert, tropical seasonal forest), others remain globally poorly predicted even at high resolution (e.g. grasses and xerophytic woods). In addition, these results show that some climatic biases are enhanced with increasing resolution (e.g. in mountain ranges), resulting in the inadequate prediction of biomes.

  1. Performance and characterization of the prototype nm-scale spatial resolution scanning multilayer Laue lenses microscope

    NASA Astrophysics Data System (ADS)

    Nazaretski, E.; Kim, Jungdae; Yan, H.; Lauer, K.; Eom, D.; Shu, D.; Maser, J.; Pešić, Z.; Wagner, U.; Rau, C.; Chu, Y. S.

    2013-03-01

    Synchrotron based x-ray microscopy established itself as a prominent tool for noninvasive investigations in many areas of science and technology. Many facilities around the world routinely achieve sub-micrometer resolution with a few instruments capable of imaging with the spatial resolution better than 100 nm. With an ongoing effort to push the 2D/3D resolution down to 10 nm in the hard x-ray regime both fabrication of the nano-focusing optics and stability of a microscope become extremely challenging. In this work we present our approach to overcome technical challenges on the path towards high spatial resolution hard x-ray microscopy and demonstrate the performance of a scanning fluorescence microscope equipped with the multilayer Laue lenses focusing optics.

  2. Fundamental x-ray interaction limits in diagnostic imaging detectors: Spatial resolution

    SciTech Connect

    Hajdok, G.; Battista, J. J.; Cunningham, I. A.

    2008-07-15

    The practice of diagnostic x-ray imaging has been transformed with the emergence of digital detector technology. Although digital systems offer many practical advantages over conventional film-based systems, their spatial resolution performance can be a limitation. The authors present a Monte Carlo study to determine fundamental resolution limits caused by x-ray interactions in four converter materials: Amorphous silicon (a-Si), amorphous selenium, cesium iodide, and lead iodide. The ''x-ray interaction'' modulation transfer function (MTF) was determined for each material and compared in terms of the 50% MTF spatial frequency and Wagner's effective aperture for incident photon energies between 10 and 150 keV and various converter thicknesses. Several conclusions can be drawn from their Monte Carlo study. (i) In low-Z (a-Si) converters, reabsorption of Compton scatter x rays limits spatial resolution with a sharp MTF drop at very low spatial frequencies (<0.3 cycles/mm), especially above 60 keV; while in high-Z materials, reabsorption of characteristic x rays plays a dominant role, resulting in a mid-frequency (1-5 cycles/mm) MTF drop. (ii) Coherent scatter plays a minor role in the x-ray interaction MTF. (iii) The spread of energy due to secondary electron (e.g., photoelectrons) transport is significant only at very high spatial frequencies. (iv) Unlike the spread of optical light in phosphors, the spread of absorbed energy from x-ray interactions does not significantly degrade spatial resolution as converter thickness is increased. (v) The effective aperture results reported here represent fundamental spatial resolution limits of the materials tested and serve as target benchmarks for the design and development of future digital x-ray detectors.

  3. Fundamental x-ray interaction limits in diagnostic imaging detectors: spatial resolution.

    PubMed

    Hajdok, G; Battista, J J; Cunningham, I A

    2008-07-01

    The practice of diagnostic x-ray imaging has been transformed with the emergence of digital detector technology. Although digital systems offer many practical advantages over conventional film-based systems, their spatial resolution performance can be a limitation. The authors present a Monte Carlo study to determine fundamental resolution limits caused by x-ray interactions in four converter materials: Amorphous silicon (a-Si), amorphous selenium, cesium iodide, and lead iodide. The "x-ray interaction" modulation transfer function (MTF) was determined for each material and compared in terms of the 50% MTF spatial frequency and Wagner's effective aperture for incident photon energies between 10 and 150 keV and various converter thicknesses. Several conclusions can be drawn from their Monte Carlo study. (i) In low-Z (a-Si) converters, reabsorption of Compton scatter x rays limits spatial resolution with a sharp MTF drop at very low spatial frequencies (< 0.3 cycles/mm), especially above 60 keV; while in high-Z materials, reabsorption of characteristic x rays plays a dominant role, resulting in a mid-frequency (1-5 cycles/mm) MTF drop. (ii) Coherent scatter plays a minor role in the x-ray interaction MTF. (iii) The spread of energy due to secondary electron (e.g., photoelectrons) transport is significant only at very high spatial frequencies. (iv) Unlike the spread of optical light in phosphors, the spread of absorbed energy from x-ray interactions does not significantly degrade spatial resolution as converter thickness is increased. (v) The effective aperture results reported here represent fundamental spatial resolution limits of the materials tested and serve as target benchmarks for the design and development of future digital x-ray detectors.

  4. One kilometer (1 km) electric solar wind sail tether produced automatically.

    PubMed

    Seppänen, Henri; Rauhala, Timo; Kiprich, Sergiy; Ukkonen, Jukka; Simonsson, Martin; Kurppa, Risto; Janhunen, Pekka; Hæggström, Edward

    2013-09-01

    We produced a 1 km continuous piece of multifilament electric solar wind sail tether of μm-diameter aluminum wires using a custom made automatic tether factory. The tether comprising 90,704 bonds between 25 and 50 μm diameter wires is reeled onto a metal reel. The total mass of 1 km tether is 10 g. We reached a production rate of 70 m/24 h and a quality level of 1‰ loose bonds and 2‰ rebonded ones. We thus demonstrated that production of long electric solar wind sail tethers is possible and practical.

  5. Large-scale proton radiography with micrometer spatial resolution using femtosecond petawatt laser system

    SciTech Connect

    Wang, W. P.; Shen, B. F. Zhang, H.; Lu, X. M.; Wang, C.; Liu, Y. Q.; Yu, L. H.; Chu, Y. X.; Li, Y. Y.; Xu, T. J.; Zhang, H.; Zhai, S. H.; Leng, Y. X.; Liang, X. Y.; Li, R. X.; Xu, Z. Z.

    2015-10-15

    An image of dragonfly with many details is obtained by the fundamental property of the high-energy proton source on a femtosecond petawatt laser system. Equal imaging of the dragonfly and high spatial resolution on the micrometer scale are simultaneously obtained. The head, wing, leg, tail, and even the internal tissue structures are clearly mapped in detail by the proton beam. Experiments show that image blurring caused by multiple Coulomb scattering can be reduced to a certain extent and the spatial resolution can be increased by attaching the dragonfly to the RCFs, which is consistent with theoretical assumptions.

  6. Iterative algorithm for reconstructing rotationally asymmetric surface deviation with pixel-level spatial resolution

    NASA Astrophysics Data System (ADS)

    Quan, Haiyang; Wu, Fan; Hou, Xi

    2015-10-01

    New method for reconstructing rotationally asymmetric surface deviation with pixel-level spatial resolution is proposed. It is based on basic iterative scheme and accelerates the Gauss-Seidel method by introducing an acceleration parameter. This modified Successive Over-relaxation (SOR) is effective for solving the rotationally asymmetric components with pixel-level spatial resolution, without the usage of a fitting procedure. Compared to the Jacobi and Gauss-Seidel method, the modified SOR method with an optimal relaxation factor converges much faster and saves more computational costs and memory space without reducing accuracy. It has been proved by real experimental results.

  7. [Spatial resolution standardization of payload on board of remote sensing satellite based on application requirements].

    PubMed

    Wei, Xiang-qin; Gu, Xing-fa; Yu, Tao; Meng, Qing-yan; Li, Bin; Guo, Hong

    2012-03-01

    Remote sensing application requirements are the starting point for design of payload on board earth observation satellite. The generalization, standardization and serialization of payload are the future development trend for payload design. In the present paper, based on the analysis of remote sensing application requirements, the spatial resolution standardization of satellite remote sensing payload, which is the main concerned indicator, was investigated. The design standards of national payload spatial resolution of earth observation satellite are presented, which are important to the promotion of satellite payload production and saving in design cost.

  8. Electron-Beam Mapping of Vibrational Modes with Nanometer Spatial Resolution.

    PubMed

    Dwyer, C; Aoki, T; Rez, P; Chang, S L Y; Lovejoy, T C; Krivanek, O L

    2016-12-16

    We demonstrate that a focused beam of high-energy electrons can be used to map the vibrational modes of a material with a spatial resolution of the order of one nanometer. Our demonstration is performed on boron nitride, a polar dielectric which gives rise to both localized and delocalized electron-vibrational scattering, either of which can be selected in our off-axial experimental geometry. Our experimental results are well supported by our calculations, and should reconcile current controversy regarding the spatial resolution achievable in vibrational mapping with focused electron beams.

  9. Electron-Beam Mapping of Vibrational Modes with Nanometer Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Dwyer, C.; Aoki, T.; Rez, P.; Chang, S. L. Y.; Lovejoy, T. C.; Krivanek, O. L.

    2016-12-01

    We demonstrate that a focused beam of high-energy electrons can be used to map the vibrational modes of a material with a spatial resolution of the order of one nanometer. Our demonstration is performed on boron nitride, a polar dielectric which gives rise to both localized and delocalized electron-vibrational scattering, either of which can be selected in our off-axial experimental geometry. Our experimental results are well supported by our calculations, and should reconcile current controversy regarding the spatial resolution achievable in vibrational mapping with focused electron beams.

  10. Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis

    NASA Astrophysics Data System (ADS)

    Zorba, Vassilia; Mao, Xianglei; Russo, Richard E.

    2011-02-01

    Femtosecond laser induced breakdown spectroscopy (LIBS) was used to identify the spatial resolution limitations and assess the minimal detectable mass restrictions in laser-ablation based chemical analysis. The atomic emission of sodium (Na) and potassium (K) dopants in transparent dielectric Mica matrices was studied, to find that both these elements could be detected from 450 nm diameter ablation craters, full-width-at-half-maximum (FWHM). Under optimal conditions, mass as low as 220 ag was measured, demonstrating the feasibility of using laser-ablation based chemical analysis to achieve high spatial resolution elemental analysis in real-time and at atmospheric pressure conditions.

  11. Simulations of the temporal and spatial resolution for a compact time-resolved electron diffractometer

    NASA Astrophysics Data System (ADS)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.

    2016-02-01

    A novel compact electron gun for use in time-resolved gas electron diffraction experiments has recently been designed and commissioned. In this paper we present and discuss the extensive simulations that were performed to underpin the design in terms of the spatial and temporal qualities of the pulsed electron beam created by the ionisation of a gold photocathode using a femtosecond laser. The response of the electron pulses to a solenoid lens used to focus the electron beam has also been studied. The simulated results show that focussing the electron beam affects the overall spatial and temporal resolution of the experiment in a variety of ways, and that factors that improve the resolution of one parameter can often have a negative effect on the other. A balance must, therefore, be achieved between spatial and temporal resolution. The optimal experimental time resolution for the apparatus is predicted to be 416 fs for studies of gas-phase species, while the predicted spatial resolution of better than 2 nm-1 compares well with traditional time-averaged electron diffraction set-ups.

  12. Detection efficiency, spatial and timing resolution of thermal and cold neutron counting MCP detectors

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; McPhate, J. B.; Vallerga, J. V.; Siegmund, O. H. W.; Hull, J. S.; Feller, W. B.; Lehmann, E.

    2009-06-01

    Neutron counting detectors with boron or gadolinium doped microchannel plates (MCPs) have very high detection efficiency, spatial and temporal resolution, and have a very low readout noise. In this paper we present the results of both theoretical predictions and experimental evaluations of detection efficiency and spatial resolution measured at cold and thermal neutron beamlines. The quantum detection efficiency of a detector (not fully optimized) was measured to be 43% and 16% for the cold and thermal beamlines, respectively. The experiments also demonstrate that the spatial resolution can be better than 15 μm—highest achievable with the particular MCP pore dimension used in the experiment, although more electronics development is required in order to increase the counting rate capabilities of those <15 μm resolution devices. The timing accuracy of neutron detection is on the scale of few μs and is limited by the neutron absorption depth in the detector. The good agreement between the predicted and measured performance allows the optimization of the detector parameters in order to achieve the highest spatial resolution and detection efficiency in future devices.

  13. Arranging optical fibres for the spatial resolution improvement of topographical images

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tsuyoshi; Maki, Atsushi; Kadoya, Takuma; Tanikawa, Yukari; Yamada, Yukio; Okada, Eiji; Koizumi, Hideaki

    2002-09-01

    Optical topography is a method for visualization of cortical activity. Ways of improving the spatial resolution of the topographical image with three arrangements of optical fibres are discussed. A distribution of sensitivity is obtained from the phantom experiment, and used to reconstruct topographical images of an activation area of the brain with the fibres in each arrangement. The correlations between the activated area and the corresponding topographical images are obtained, and the effective arrangement of the optical fibres for improved resolution is discussed.

  14. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision and hobbyist unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Dandois, J. P.; Ellis, E. C.

    2013-12-01

    area and vertical differences in canopy color revealed the early green up of the dominant canopy species, Liriodendron tulipifera, strong evidence that Ecosynth time series measurements capture vegetation structural and spectral dynamics at the spatial scale of individual trees. Observing canopy phenology in 3D at high temporal resolutions represents a breakthrough in forest ecology. Inexpensive user-deployed technologies for multispectral 3D scanning of vegetation at landscape scales (< 1 km2) heralds a new era of participatory remote sensing by field ecologists, community foresters and the interested public.

  15. Spatial perception of sound fields recorded by spherical microphone arrays with varying spatial resolution.

    PubMed

    Avni, Amir; Ahrens, Jens; Geier, Matthias; Spors, Sascha; Wierstorf, Hagen; Rafaely, Boaz

    2013-05-01

    The area of sound field synthesis has significantly advanced in the past decade, facilitated by the development of high-quality sound-field capturing and re-synthesis systems. Spherical microphone arrays are among the most recently developed systems for sound field capturing, enabling processing and analysis of three-dimensional sound fields in the spherical harmonics domain. In spite of these developments, a clear relation between sound fields recorded by spherical microphone arrays and their perception with a re-synthesis system has not yet been established, although some relation to scalar measures of spatial perception was recently presented. This paper presents an experimental study of spatial sound perception with the use of a spherical microphone array for sound recording and headphone-based binaural sound synthesis. Sound field analysis and processing is performed in the spherical harmonics domain with the use of head-related transfer functions and simulated enclosed sound fields. The effect of several factors, such as spherical harmonics order, frequency bandwidth, and spatial sampling, are investigated by applying the repertory grid technique to the results of the experiment, forming a clearer relation between sound-field capture with a spherical microphone array and its perception using binaural synthesis regarding space, frequency, and additional artifacts. The experimental study clearly shows that a source will be perceived more spatially sharp and more externalized when represented by a binaural stimuli reconstructed with a higher spherical harmonics order. This effect is apparent from low spherical harmonics orders. Spatial aliasing, as a result of sound field capturing with a finite number of microphones, introduces unpleasant artifacts which increased with the degree of aliasing error.

  16. The Role of Shallow Convection in Tropical Climate via Impacts of the Model Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Bui, H. X.; Chou, C.

    2014-12-01

    We examine the role of shallow convection in tropical climate, using different spatial resolutions as sensitivity studies. After examining the vertical structure and spatial distribution of tropical convection, we found that a coarser resolution produces less partition of shallow convection, while a finer resolution tends to produce greater one in convective regions. We further examine the influence of shallow convection strength on precipitation by comparing the western and eastern Pacific ITCZ. In the western Pacific ITCZ, where is dominated by deep convection, the variation of precipitation among the spatial-resolution experiments is mainly due to the contribution of thermodynamic processes. The warmer climate found in coarser resolutions enhances precipitation frequency and intensity, and then the corresponding precipitation amount. In the eastern Pacific ITCZ, which has more shallow convection, shallow convection becomes the dominant factor to determine the variation of precipitation. More partition of shallow convection found in finer resolutions tends to enhance precipitation frequency and intensity, and the total precipitation amount. This provides potential evidence that shallow convection first affects the occurrence and intensity of precipitation, and then the total amount of precipitation in the region.

  17. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales.

    PubMed

    Duan, Zheng; Liu, Junzhi; Tuo, Ye; Chiogna, Gabriele; Disse, Markus

    2016-12-15

    This study provides a comprehensive evaluation of eight high spatial resolution gridded precipitation products in Adige Basin located in Italy within 45-47.1°N. The Adige Basin is characterized by a complex topography, and independent ground data are available from a network of 101 rain gauges during 2000-2010. The eight products include the Version 7 TRMM (Tropical Rainfall Measuring Mission) Multi-satellite Precipitation Analysis 3B42 product, three products from CMORPH (the Climate Prediction Center MORPHing technique), i.e., CMORPH_RAW, CMORPH_CRT and CMORPH_BLD, PCDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record), PGF (Global Meteorological Forcing Dataset for land surface modelling developed by Princeton University), CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) and GSMaP_MVK (Global Satellite Mapping of Precipitation project Moving Vector with Kalman-filter product). All eight products are evaluated against interpolated rain gauge data at the common 0.25° spatial resolution, and additional evaluations at native finer spatial resolution are conducted for CHIRPS (0.05°) and GSMaP_MVK (0.10°). Evaluation is performed at multiple temporal (daily, monthly and annual) and spatial scales (grid and watershed). Evaluation results show that in terms of overall statistical metrics the CHIRPS, TRMM and CMORPH_BLD comparably rank as the top three best performing products, while the PGF performs worst. All eight products underestimate and overestimate the occurrence frequency of daily precipitation for some intensity ranges. All products tend to show higher error in the winter months (December-February) when precipitation is low. Very slight difference can be observed in the evaluation metrics and aspects between at the aggregated 0.25° spatial resolution and at the native finer resolutions (0.05°) for CHIRPS and (0.10°) for GSMaP_MVK products. This study has implications

  18. On the sensitivity of urban hydrodynamic modelling to rainfall spatial and temporal resolution

    NASA Astrophysics Data System (ADS)

    Bruni, G.; Reinoso, R.; van de Giesen, N. C.; Clemens, F. H. L. R.; ten Veldhuis, J. A. E.

    2015-02-01

    Cities are increasingly vulnerable to floods generated by intense rainfall, because of urbanisation of flood-prone areas and ongoing urban densification. Accurate information of convective storm characteristics at high spatial and temporal resolution is a crucial input for urban hydrological models to be able to simulate fast runoff processes and enhance flood prediction in cities. In this paper, a detailed study of the sensitivity of urban hydrodynamic response to high resolution radar rainfall was conducted. Rainfall rates derived from X-band dual polarimetric weather radar were used as input into a detailed hydrodynamic sewer model for an urban catchment in the city of Rotterdam, the Netherlands. The aim was to characterise how the effect of space and time aggregation on rainfall structure affects hydrodynamic modelling of urban catchments, for resolutions ranging from 100 to 2000 m and from 1 to 10 min. Dimensionless parameters were derived to compare results between different storm conditions and to describe the effect of rainfall spatial resolution in relation to storm characteristics and hydrodynamic model properties: rainfall sampling number (rainfall resolution vs. storm size), catchment sampling number (rainfall resolution vs. catchment size), runoff and sewer sampling number (rainfall resolution vs. runoff and sewer model resolution respectively). Results show that for rainfall resolution lower than half the catchment size, rainfall volumes mean and standard deviations decrease as a result of smoothing of rainfall gradients. Moreover, deviations in maximum water depths, from 10 to 30% depending on the storm, occurred for rainfall resolution close to storm size, as a result of rainfall aggregation. Model results also showed that modelled runoff peaks are more sensitive to rainfall resolution than maximum in-sewer water depths as flow routing has a damping effect on in-sewer water level variations. Temporal resolution aggregation of rainfall inputs led to

  19. The Sun at high spatial resolution: The physics of small spatial structures in a magnetized medium

    NASA Technical Reports Server (NTRS)

    Rosner, R. T.

    1986-01-01

    An attempt is made to provide a perspective on the problem of spatial structuring on scales smaller than can presently be directly and regularly observed from the ground or with which current space-based instrumentation can be anticipated. There is abundant evidence from both observations and theory that such spatial structuring of the solar outer atmosphere is ubiquitous not only on the observed scales, but also on spatial scales down to (at least) the subarcsecond range. This is not to say that the results to be obtained from observations on these small scales can be anticipated: quite the opposite. What is clear instead is that many of the classic problems of coronal and chromospheric activity - involving the basic dissipative nature of magnetized plasmas - will be seen from a novel perspective at these scales, and that there are reasons for believing that dynamical processes of importance to activity on presently-resolved scales will themselves begin to be resolved on the sub-arcsecond level. Since the Sun is the only astrophysical laboratory for which there is any hope of studying these processes in any detail, this observatioinal opportunity is an exciting prospect for any student of magnetic activity in astrophysics.

  20. Numerical analysis of single pulse and differential pulse-width pair BOTDA systems in the high spatial resolution regime.

    PubMed

    Minardo, Aldo; Bernini, Romeo; Zeni, Luigi

    2011-09-26

    A numerical analysis of conventional and differential pulse-width pair Brillouin optical time domain analysis systems is reported. The tests are focused on determining the performance of these systems especially in terms of spatial resolution, as a function of the pulse characteristics. A new definition of spatial resolution is given, based on analysis of the shape of the Brillouin gain spectrum. The influence of the rise/fall time of the pulse light to the spatial resolution is also studied.

  1. Noise Removal with Maintained Spatial Resolution in Raman Images of Cells Exposed to Submicron Polystyrene Particles

    PubMed Central

    Ahlinder, Linnea; Wiklund Lindström, Susanne; Lejon, Christian; Geladi, Paul; Österlund, Lars

    2016-01-01

    The biodistribution of 300 nm polystyrene particles in A549 lung epithelial cells has been studied with confocal Raman spectroscopy. This is a label-free method in which particles and cells can be imaged without using dyes or fluorescent labels. The main drawback with Raman imaging is the comparatively low spatial resolution, which is aggravated in heterogeneous systems such as biological samples, which in addition often require long measurement times because of their weak Raman signal. Long measurement times may however induce laser-induced damage. In this study we use a super-resolution algorithm with Tikhonov regularization, intended to improve the image quality without demanding an increased number of collected pixels. Images of cells exposed to polystyrene particles have been acquired with two different step lengths, i.e., the distance between pixels, and compared to each other and to corresponding images treated with the super-resolution algorithm. It is shown that the resolution after application of super-resolution algorithms is not significantly improved compared to the theoretical limit for optical microscopy. However, to reduce noise and artefacts in the hyperspectral Raman images while maintaining the spatial resolution, we show that it is advantageous to use short mapping step lengths and super-resolution algorithms with appropriate regularization. The proposed methodology should be generally applicable for Raman imaging of biological samples and other photo-sensitive samples.

  2. Resolution and Brightness Characteristics of Short-Lag Spatial Coherence (SLSC) Images

    PubMed Central

    Lediju Bell, Muyinatu A.; Dahl, Jeremy J.; Trahey, Gregg E.

    2016-01-01

    We previously described a novel beamforming method that images the spatial correlation of an echo wave field with demonstrated applications to clutter reduction in high-noise environments. In this paper, several characteristics of the resolution and brightness of short-lag spatial coherence (SLSC) images formed by this method are compared with B-mode images formed by conventional delay-and-sum beamforming methods. Point target widths were measured to estimate resolution, the autocorrelation of image texture was measured to estimate texture size, and the contrast (i.e., brightness ratio) of clinically relevant targets was assessed. SLSC images demonstrate improved resolution and contrast with increasing values of channel noise and clutter, whereas B-mode resolution was degraded in the presence of high noise (i.e., > −12 dB channel noise-to-signal ratios) and high clutter magnitudes (i.e., > −21 dB relative to point target magnitude). Lateral resolution in SLSC images was improved with increasing lag value, whereas axial resolution was degraded with increasing correlation kernel length. The texture size of SLSC images was smaller than that of matched B-mode images. Results demonstrate that the resolution and contrast of coherence-based images depend on a range of parameters, but are generally superior to those of matched B-mode images under challenging imaging conditions. PMID:26168173

  3. Fast Vascular Ultrasound Imaging with Enhanced Spatial Resolution and Background Rejection.

    PubMed

    Bar-Zion, Avinoam; Tremblay-Darveau, Charles; Solomon, Oren; Adam, Dan; Eldar, Yonina

    2016-08-15

    Ultrasound super-localization microscopy techniques presented in the last few years enable non-invasive imaging of vascular structures at the capillary level by tracking the flow of ultrasound contrast agents (gas microbubbles). However, these techniques are currently limited by low temporal resolution and long acquisition times. Super-resolution optical fluctuation imaging (SOFI) is a fluorescence microscopy technique enabling sub-diffraction limit imaging with high temporal resolution by calculating high order statistics of the fluctuating optical signal. The aim of this work is to achieve fast acoustic imaging with enhanced resolution by applying the tools used in SOFI to contrast-enhance ultrasound (CEUS) plane-wave scans. The proposed method was tested using numerical simulations and evaluated using two in-vivo rabbit models: scans of healthy kidneys and VX-2 tumor xenografts. Improved spatial resolution was observed with a reduction of up to 50% in the full width half max of the point spread function. In addition, substantial reduction in the background level was achieved compared to standard mean amplitude persistence images, revealing small vascular structures within tumors. The scan duration of the proposed method is less than a second while current superlocalization techniques require acquisition duration of several minutes. As a result, the proposed technique may be used to obtain scans with enhanced spatial resolution and high temporal resolution, facilitating flow-dynamics monitoring. Our method can also be applied during a breath-hold, reducing the sensitivity to motion artifacts.

  4. Fast Vascular Ultrasound Imaging With Enhanced Spatial Resolution and Background Rejection.

    PubMed

    Bar-Zion, Avinoam; Tremblay-Darveau, Charles; Solomon, Oren; Adam, Dan; Eldar, Yonina C

    2017-01-01

    Ultrasound super-localization microscopy techniques presented in the last few years enable non-invasive imaging of vascular structures at the capillary level by tracking the flow of ultrasound contrast agents (gas microbubbles). However, these techniques are currently limited by low temporal resolution and long acquisition times. Super-resolution optical fluctuation imaging (SOFI) is a fluorescence microscopy technique enabling sub-diffraction limit imaging with high temporal resolution by calculating high order statistics of the fluctuating optical signal. The aim of this work is to achieve fast acoustic imaging with enhanced resolution by applying the tools used in SOFI to contrast-enhance ultrasound (CEUS) plane-wave scans. The proposed method was tested using numerical simulations and evaluated using two in-vivo rabbit models: scans of healthy kidneys and VX-2 tumor xenografts. Improved spatial resolution was observed with a reduction of up to 50% in the full width half max of the point spread function. In addition, substantial reduction in the background level was achieved compared to standard mean amplitude persistence images, revealing small vascular structures within tumors. The scan duration of the proposed method is less than a second while current super-localization techniques require acquisition duration of several minutes. As a result, the proposed technique may be used to obtain scans with enhanced spatial resolution and high temporal resolution, facilitating flow-dynamics monitoring. Our method can also be applied during a breath-hold, reducing the sensitivity to motion artifacts.

  5. 10 Yr Spatial and Temporal Trends of PM2.5 Concentrations in the Southeastern US Estimated Using High-resolution Satellite Data

    NASA Technical Reports Server (NTRS)

    Hu, X.; Waller, L. A.; Lyapustin, A.; Wang, Y.; Liu, Y.

    2013-01-01

    Long-term PM2.5 exposure has been reported to be associated with various adverse health outcomes. However, most ground monitors are located in urban areas, leading to a potentially biased representation of the true regional PM2.5 levels. To facilitate epidemiological studies, accurate estimates of spatiotemporally continuous distribution of PM2.5 concentrations are essential. Satellite-retrieved aerosol optical depth (AOD) has been widely used for PM2.5 concentration estimation due to its comprehensive spatial coverage. Nevertheless, an inherent disadvantage of current AOD products is their coarse spatial resolutions. For instance, the spatial resolutions of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging SpectroRadiometer (MISR) are 10 km and 17.6 km, respectively. In this paper, a new AOD product with 1 km spatial resolution retrieved by the multi-angle implementation of atmospheric correction (MAIAC) algorithm was used. A two-stage model was developed to account for both spatial and temporal variability in the PM2.5-AOD relationship by incorporating the MAIAC AOD, meteorological fields, and land use variables as predictors. Our study area is in the southeastern US, centered at the Atlanta Metro area, and data from 2001 to 2010 were collected from various sources. The model was fitted for each year individually, and we obtained model fitting R2 ranging from 0.71 to 0.85, MPE from 1.73 to 2.50 g m3, and RMSPE from 2.75 to 4.10 g m3. In addition, we found cross validation R2 ranging from 0.62 to 0.78, MPE from 2.00 to 3.01 g m3, and RMSPE from 3.12 to 5.00 g m3, indicating a good agreement between the estimated and observed values. Spatial trends show that high PM2.5 levels occurred in urban areas and along major highways, while low concentrations appeared in rural or mountainous areas. A time series analysis was conducted to examine temporal trends of PM2.5 concentrations in the study area from 2001 to 2010. The results showed

  6. Spatial Distribution of Attentional Modulation at Columnar Resolution in Macaque Area V4

    PubMed Central

    Tanigawa, Hisashi; Chen, Gang; Roe, Anna W.

    2016-01-01

    Attention to a location in a visual scene affects neuronal responses in visual cortical areas in a retinotopically specific manner. Optical imaging studies have revealed that cortical responses consist of two components of different sizes: the stimulus-nonspecific global signal and the stimulus-specific mapping signal (domain activity). It remains unclear whether either or both of these components are modulated by spatial attention. In this study, to determine the spatial distribution of attentional modulation at columnar resolution, we performed cerebral blood volume (CBV)-based optical imaging in area V4 of monkeys performing a color change detection task in which spatial attention was manipulated. We found that spatial attention enhanced global signals of the hemodynamic responses, but did not affect stimulus-selective domain activities. These results indicate the involvement of global signals in neural processing of spatial attention. We propose that global signals reflect the neural substrate of the normalization pool in normalization models of attention. PMID:28018181

  7. Improving the quantification at high spatial resolution using a field emission electron microprobe

    NASA Astrophysics Data System (ADS)

    Pinard, P. T.; Richter, S.

    2014-03-01

    The capabilities of field emitter electron microprobes to perform quantitative measurements at high spatial resolution are discussed. Using Fe-Cr-C particles in a bearing steel (SAE 52100) as example, a generic procedure was established to find the optimal analytical conditions (beam energy, beam current and acquisition time). The influence of these parameters on the accuracy, precision and spatial resolution was evaluated using experimental measurements and Monte Carlo simulations. A quantification procedure was developed for soft X-ray lines, taking into account the overlap of high order X-ray lines and background anomalies. The accuracy of Ka- and La-lines was verified using reference materials. A relationship between experimental and simulated X-ray intensities was determined to evaluate the measurement precision. The spatial resolution of each X-ray line was calculated from the simulated lateral and depth X-ray intensity distribution using simulations integrating experimentally measured beam diameters. The optimal analytical conditions for the studied sample were found to be 5 keV, 10 nA and 10 s acquisition time. Further specialized techniques to improve the spatial resolution are presented: focused ion beam preparation of thin lamella and wedge, and Monte Carlo based reconstruction. The feasibility of the latter to quantify features smaller than the X-ray emission volume was demonstrated.

  8. High spatial resolution X-ray and gamma ray imaging system using diffraction crystals

    DOEpatents

    Smither, Robert K.

    2011-05-17

    A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

  9. Spatial resolution of tip-enhanced Raman spectroscopy - DFT assessment of the chemical effect

    NASA Astrophysics Data System (ADS)

    Latorre, Federico; Kupfer, Stephan; Bocklitz, Thomas; Kinzel, Daniel; Trautmann, Steffen; Gräfe, Stefanie; Deckert, Volker

    2016-05-01

    Experimental evidence of extremely high spatial resolution of tip-enhanced Raman scattering (TERS) has been recently demonstrated. Here, we present a full quantum chemical description (at the density functional level of theory) of the non-resonant chemical effects on the Raman spectrum of an adenine molecule mapped by a tip, modeled as a single silver atom or a small silver cluster. We show pronounced changes in the Raman pattern and its intensities depending on the conformation of the nanoparticle-substrate system, concluding that the spatial resolution of the chemical contribution of TERS can be in the sub-nm range.Experimental evidence of extremely high spatial resolution of tip-enhanced Raman scattering (TERS) has been recently demonstrated. Here, we present a full quantum chemical description (at the density functional level of theory) of the non-resonant chemical effects on the Raman spectrum of an adenine molecule mapped by a tip, modeled as a single silver atom or a small silver cluster. We show pronounced changes in the Raman pattern and its intensities depending on the conformation of the nanoparticle-substrate system, concluding that the spatial resolution of the chemical contribution of TERS can be in the sub-nm range. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00093b

  10. Scaling field data to calibrate and validate moderate spatial resolution remote sensing models

    USGS Publications Warehouse

    Baccini, A.; Friedl, M.A.; Woodcock, C.E.; Zhu, Z.

    2007-01-01

    Validation and calibration are essential components of nearly all remote sensing-based studies. In both cases, ground measurements are collected and then related to the remote sensing observations or model results. In many situations, and particularly in studies that use moderate resolution remote sensing, a mismatch exists between the sensor's field of view and the scale at which in situ measurements are collected. The use of in situ measurements for model calibration and validation, therefore, requires a robust and defensible method to spatially aggregate ground measurements to the scale at which the remotely sensed data are acquired. This paper examines this challenge and specifically considers two different approaches for aggregating field measurements to match the spatial resolution of moderate spatial resolution remote sensing data: (a) landscape stratification; and (b) averaging of fine spatial resolution maps. The results show that an empirically estimated stratification based on a regression tree method provides a statistically defensible and operational basis for performing this type of procedure. 

  11. A system for optically controlling neural circuits with very high spatial and temporal resolution

    PubMed Central

    Pandarinath, Chethan; Carlson, Eric T.; Nirenberg, Sheila

    2015-01-01

    Optogenetics offers a powerful new approach for controlling neural circuits. It has a vast array of applications in both basic and clinical science. For basic science, it opens the door to unraveling circuit operations, since one can perturb specific circuit components with high spatial (single cell) and high temporal (millisecond) resolution. For clinical applications, it allows new kinds of selective treatments, because it provides a method to inactivate or activate specific components in a malfunctioning circuit and bring it back into a normal operating range [1–3]. To harness the power of optogenetics, though, one needs stimulating tools that work with the same high spatial and temporal resolution as the molecules themselves, the channelrhodopsins. To date, most stimulating tools require a tradeoff between spatial and temporal precision and are prohibitively expensive to integrate into a stimulating/recording setup in a laboratory or a device in a clinical setting [4, 5]. Here we describe a Digital Light Processing (DLP)-based system capable of extremely high temporal resolution (sub-millisecond), without sacrificing spatial resolution. Furthermore, it is constructed using off-the-shelf components, making it feasible for a broad range of biology and bioengineering labs. Using transgenic mice that express channelrhodopsin-2 (ChR2), we demonstrate the system’s capability for stimulating channelrhodopsin-expressing neurons in tissue with single cell and sub-millisecond precision. PMID:25699292

  12. Real space soft x-ray imaging at 10 nm spatial resolution

    SciTech Connect

    Chao, Weilun; Fischer, Peter; Tyliszczak, T.; Rekawa, Senajith; Anderson, Erik; Naulleau, Patrick

    2011-04-24

    Using Fresnel zone plates made with our robust nanofabrication processes, we have successfully achieved 10 nm spatial resolution with soft x-ray microscopy. The result, obtained with both a conventional full-field and scanning soft x-ray microscope, marks a significant step forward in extending the microscopy to truly nanoscale studies.

  13. Spatial and temporal resolution effects on urban catchments with different imperviousness degrees

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; ten Veldhuis, Marie-Claire; van de Giesen, Nick C.

    2015-04-01

    One of the main problems in urban hydrological analysis is to measure the rainfall at urban scale with high resolution and use these measurements to model urban runoff processes to predict flows and reduce flood risk. With the aim of building a semi-distribute hydrological sewer model for an urban catchment, high resolution rainfall data are required as input. In this study, the sensitivity of hydrological response to high resolution precipitation data for hydrodynamic models at urban scale is evaluated with different combinations of spatial and temporal resolutions. The aim is to study sensitivity in relation to catchment characteristics, especially drainage area size, imperviousness degree and hydraulic properties such as special structures (weirs, pumping stations). Rainfall data of nine storms are considered with 4 different spatial resolutions (3000m, 1000m, 500m and 100m) combined with 4 different temporal resolutions (10min, 5min, 3min and 1min). The dual polarimetric X-band weather radar, located in the Cabauw Experimental Site for Atmospheric Research (CESAR) provided the high resolution rainfall data of these rainfall events, used to improve the sewer model. The effects of spatial-temporal rainfall input resolution on response is studied in three Districts of Rotterdam (NL): Kralingen, Spaanse Polder and Centrum district. These catchments have different average drainage area size (from 2km2 to 7km2), and different general characteristics. Centrum district and Kralingen are, indeed, more various and include residential and commercial areas, big green areas and a small industrial area, while Spaanse Polder is a industrial area, densely urbanized, and presents a high percentage of imperviousness.

  14. Multi-storm, multi-catchment investigation of rainfall spatial resolution requirements for urban hydrological applications

    NASA Astrophysics Data System (ADS)

    Ochoa Rodriguez, Susana; ten Veldhuis, Marie-Claire; Bruni, Guendalina; Gires, Auguste; van Assel, Johan; Wang, Lipen; Reinoso-Rodinel, Ricardo; Ichiba, Abdellah; Kroll, Stefan; Schertzer, Daniel; Onof, Christian; Willems, Patrick

    2014-05-01

    Rainfall estimates of the highest possible resolution are required for urban hydrological applications, given the small size and fast response which characterise urban catchments. While significant progress has been made over the last few decades in high resolution measurement of rainfall at urban scales and in the modelling of urban runoff processes, a number of questions as to the actual resolution requirements for input data and models remain to be answered. With the aim of answering some of these questions, this work investigates the impact of rainfall estimates of different spatial resolutions and structures on the hydraulic outputs of models of several urban catchments with different characteristics. For this purpose multiple storm events, including convective and stratiform ones, measured by a polarimetric X-band radar located in Cabauw (NL) were selected for analysis. The original radar estimates, at 100 m and 1 min resolutions, were aggregated to coarser spatial resolutions of up to 1000 m. These estimates were then applied to the high-resolution semi distributed hydraulic models of four urban catchments of similar size (approx. 7 km2), but different morphological and land use characteristics; these are: the Herent catchment (Belgium), the Cranbrook catchment (UK), the Morée Sausset catchment (France) and the Kralingen District of Rotterdam (The Netherlands). When doing so, methodologies for standardising rainfall inputs and making results comparable were implemented. Moreover, the results were analysed considering different points at each catchment, while also taking into account the particular storm and catchment characteristics. The results obtained for the storms used in this study show that flat and less compact catchments (e.g. polder areas) may be more sensitive to the spatial resolution of rainfall estimates, as compared to catchments with higher slopes and compactness, which in general show little sensitivity to changes in spatial resolution

  15. High spatial resolution brain functional MRI using submillimeter balanced steady-state free precession acquisition

    SciTech Connect

    Wu, Pei-Hsin; Chung, Hsiao-Wen; Tsai, Ping-Huei; Wu, Ming-Long; Chuang, Tzu-Chao; Shih, Yi-Yu; Huang, Teng-Yi

    2013-12-15

    Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm{sup 3} achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm{sup 3} voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations were given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm{sup 3} to 0.43 × 0.43 × 2 mm{sup 3} has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain.

  16. High-Spatial-Resolution Thermal Infrared Satellite Images for Lake Studies

    NASA Astrophysics Data System (ADS)

    Steissberg, T. E.; Hook, S. J.; Schladow, G.

    2006-12-01

    Thermal infrared (TIR) satellite images can be used to study transport processes in lakes, such as wind-driven upwelling and surface circulation, providing a measure of spatial variability and horizontal distribution of water temperature that conventional field-based measurements cannot provide. High-spatial-resolution TIR images provide a detailed view of fine-scale processes, such as surface jets, that cannot be clearly resolved in moderate-resolution images, and they enable the accurate measurement of surface transport and circulation patterns. The surface temperature maps derived from high-resolution thermal infrared ASTER and Landsat ETM+ images, in conjunction with moderate-resolution TIR images acquired by MODIS, enabled the characterization of wind-driven upwelling and the measurement of surface currents and circulation at Lake Tahoe, California-Nevada, USA. The images, paired with in situ surface temperature and meteorological data, have shown that wind-driven partial upwelling events occur at least twice monthly throughout the spring and summer stratified period, transporting water from intermediate depths to the surface. These are important events that contribute to the patchiness and heterogeneity that characterize natural aquatic systems. The high spatial resolution of ASTER and ETM+ and the small time separation between their subsequent overpasses allow the surface currents and general circulation in lakes and coastal environments to be accurately quantified using the maximum cross-correlation method. The surface currents and circulation at Lake Tahoe were measured using a pair of cross-platform high-resolution TIR images acquired 38 minutes apart by ETM+ and ASTER. Mean currents of 5--10 cm/s were measured, with maximum currents approaching 35 cm/s. The eastward transport of a surface jet extending from an upwelling front was clearly apparent, with 15--30 cm/s currents. The vector field delineated three gyres, consistent with surface drifter

  17. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem

    DOE PAGES

    Meng, Ran; Wu, Jin; Schwager, Kathy L.; ...

    2017-01-21

    As a primary disturbance agent, fire significantly influences local processes and services of forest ecosystems. Although a variety of remote sensing based approaches have been developed and applied to Landsat mission imagery to infer burn severity at 30 m spatial resolution, forest burn severity have still been seldom assessed at fine spatial scales (≤ 5 m) from very-high-resolution (VHR) data. Here we assessed a 432 ha forest fire that occurred in April 2012 on Long Island, New York, within the Pine Barrens region, a unique but imperiled fire-dependent ecosystem in the northeastern United States. The mapping of forest burn severitymore » was explored here at fine spatial scales, for the first time using remotely sensed spectral indices and a set of Multiple Endmember Spectral Mixture Analysis (MESMA) fraction images from bi-temporal — pre- and post-fire event — WorldView-2 (WV-2) imagery at 2 m spatial resolution. We first evaluated our approach using 1 m by 1 m validation points at the sub-crown scale per severity class (i.e. unburned, low, moderate, and high severity) from the post-fire 0.10 m color aerial ortho-photos; then, we validated the burn severity mapping of geo-referenced dominant tree crowns (crown scale) and 15 m by 15 m fixed-area plots (inter-crown scale) with the post-fire 0.10 m aerial ortho-photos and measured crown information of twenty forest inventory plots. Our approach can accurately assess forest burn severity at the sub-crown (overall accuracy is 84% with a Kappa value of 0.77), crown (overall accuracy is 82% with a Kappa value of 0.76), and inter-crown scales (89% of the variation in estimated burn severity ratings (i.e. Geo-Composite Burn Index (CBI)). Lastly, this work highlights that forest burn severity mapping from VHR data can capture heterogeneous fire patterns at fine spatial scales over the large spatial extents. This is important since most ecological processes associated with fire effects vary at the < 30 m scale and

  18. Evaluation of charge -sharing effects on the spatial resolution of the PICASSO detector

    NASA Astrophysics Data System (ADS)

    Rigon, L.; Arfelli, F.; Bergamaschi, A.; Chen, R. C.; Dreossi, D.; Longo, R.; Menk, R.-H.; Schmitt, B.; Vallazza, E.; Castelli, E.

    2010-05-01

    A double -layer "edge-on" silicon microstrip detector has been designed and realized in the frame of the PICASSO (Phase Imaging for Clinical Application with Silicon detector and Synchrotron radiatiOn) project at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline of Elettra (Trieste, Italy). The detector meets the requirements for synchrotron radiation mammography with patients inregarding: (a) size, since it covers the full beam width (210 mm); (b) spatial resolution, determined by the 0.05 mm strip pitch; (c) single-photon counting capabilities, because it is able to handle more than 10 6 photons/(pixel×s); (d) contrast resolution, thanks to a threshold trim DAC that equalizes the channel sensitivity; (e) efficiency, due to the high absorption in the 15-20 mm sensor depth. Experimental measurements evidence charge sharing, though not compromising the spatial resolution.

  19. Spatial and frequency-based super-resolution of ultrasound images.

    PubMed

    Wu, Mon-Ju; Karls, Joseph; Duenwald-Kuehl, Sarah; Vanderby, Ray; Sethares, William

    2014-07-01

    Modern ultrasound systems can output video images containing more spatial and temporal information than still images. Super-resolution techniques can exploit additional information but face two challenges: image registration and complex motion. In addition, information from multiple available frequencies is unexploited. Herein, we utilised these information sources to create better ultrasound images and videos, extending existing technologies for image capture. Spatial and frequency-based super-resolution processing using multiple motion estimation and frequency combination was applied to ultrasound videos of deforming models. Processed images are larger, have greater clarity and detail, and less variability in intensity between frames. Significantly, strain measurements are more accurate and precise than those from raw videos, and have a higher contrast ratio between 'tumour' and 'surrounding tissue' in a phantom model. We attribute improvements to reduced noise and increased resolution in processed images. Our methods can significantly improve quantitative and qualitative assessments of ultrasound images when compared assessments of standard images.

  20. Photoelectron range limitations to the spatial resolution for x-rays in gas proportional chambers

    SciTech Connect

    Smith, G.C.; Fischer, J.; Radeka, V.

    1983-11-01

    Measurements have been made, for x-ray energies from a few keV to 18 keV, of the limiting spatial resolution caused by the finite range of the photoelectron, or electrons, created when an x-ray is absorbed in the gas of a proportional chamber. In hydrocarbon gases such as methane and ethane, where the photoelectron receives the bulk of the x-ray energy, the limiting spatial resolution is found to vary as a power law of x-ray energy. In argon and xenon, at an x-ray energy approximately twice that of the A/sub K/ edge and the Xe/sub L/ edge respectively, the measured limiting resolution is better than expected from an equivalent power law behavior.

  1. High-resolution measurements of the spatial and temporal scalar structure of a turbulent plume

    NASA Astrophysics Data System (ADS)

    Crimaldi, J. P.; Koseff, J. R.

    Two techniques are described for measuring the scalar structure of turbulent flows. A planar laser-induced fluorescence technique is used to make highly resolved measurements of scalar spatial structure, and a single-point laser-induced fluorescence probe is used to make highly resolved measurements of scalar temporal structure. The techniques are used to measure the spatial and temporal structure of an odor plume released from a low-momentum, bed-level source in a turbulent boundary layer. For the experimental setup used in this study, a spatial resolution of 150μm and a temporal resolution of 1,000Hz are obtained. The results show a wide range of turbulent structures in rich detail; the nature of the structure varies significantly in different regions of the plume.

  2. Cyclical thinning of black phosphorus with high spatial resolution for heterostructure devices.

    PubMed

    Robbins, Matthew C; Namgung, Seon; Oh, Sang-Hyun; Koester, Steven J

    2017-03-13

    A high-spatial resolution, cyclical thinning method for realizing black phosphorus (BP) heterostructures is reported. This process utilizes a cyclic technique involving BP surface oxidation and vacuum annealing to create BP flakes as thin as 1.6 nm. The process also utilizes a spatially patternable mask created by evaporating Al that oxidizes to form Al2O3 which stabilizes the unetched BP regions and enables the formation of lateral heterostructures with spatial resolution as small as 150 nm. This thinning/patterning technique has also been used to create the first ever lateral heterostructure BP MOSFET in which half of a BP flake was thinned in order to increase its band gap. This heterostructure MOSFET showed an on-to-off current ratio improvement of 1000× compared to homojunction MOSFETs.

  3. Fusing Multi-Source Urban Maps Under Consideration of Spatial Resolution and Environmental Characteristics

    NASA Astrophysics Data System (ADS)

    Salentinig, Andreas; Gamba, Paolo

    2016-08-01

    In this work a decision level fusion algorithm incorporating multispectral- and SAR- based urban maps from different spatial resolutions is presented. A variety of urban maps from SAR as well optical EO data with spatial resolutions ranging between 12 and 75 meters are combined in order to produce accurate urban area extractions of the Chinese 'Megacities' of Beijing and Guangzhou. The influence of spatial posting of the data, climate region and season at image acquisition has been evaluated and reflected in optimized weights of the input data in the fusion process. Therefore, the weights are determined based on the assumption that the usability and reliability of EO data products depends on the intended scale of analysis as well as on the fact that their sensor-specific advantages and limitations are strongly connected to the environmental characteristics of the area under investigation. Results show that improved built-up area extractions can be achieved with the proposed method.

  4. Spatial Resolution Characterization for QuickBird Image Products 2003-2004 Season

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir

    2006-01-01

    This presentation focuses on spatial resolution characterization for QuickBird panochromatic images in 2003-2004 and presents data measurements and analysis of SSC edge target deployment and edge response extraction and modeling. The results of the characterization are shown as values of the Modulation Transfer Function (MTF) at the Nyquist spatial frequency and as the Relative Edge Response (RER) components. The results show that RER is much less sensitive to accuracy of the curve fitting than the value of MTF at Nyquist frequency. Therefore, the RER/edge response slope is a more robust estimator of the digital image spatial resolution than the MTF. For the QuickBird panochromatic images, the RER is consistently equal to 0.5 for images processed with the Cubic Convolution resampling and to 0.8 for the MTF resampling.

  5. On the sensitivity of urban hydrodynamic modelling to rainfall spatial and temporal resolution

    NASA Astrophysics Data System (ADS)

    Bruni, G.; Reinoso, R.; van de Giesen, N. C.; Clemens, F. H. L. R.; ten Veldhuis, J. A. E.

    2014-06-01

    Cities are increasingly vulnerable to floods generated by intense rainfall, because of their high degree of imperviousness, implementation of infrastructures, and changes in precipitation patterns due to climate change. Accurate information of convective storm characteristics at high spatial and temporal resolution is a crucial input for urban hydrological models to be able to simulate fast runoff processes and enhance flood prediction. In this paper, a detailed study of the sensitivity of urban hydrological response to high resolution radar rainfall was conducted. Rainfall rates derived from X-band dual polarimetric weather radar for four rainstorms were used as input into a detailed hydrodynamic sewer model for an urban catchment in Rotterdam, the Netherlands. Dimensionless parameters were derived to compare results between different storm conditions and to describe the effect of rainfall spatial resolution in relation to storm and hydrodynamic model properties: rainfall sampling number (rainfall resolution vs. storm size), catchment sampling number (rainfall resolution vs. catchment size), runoff and sewer sampling number (rainfall resolution vs. runoff and sewer model resolution respectively). Results show catchment smearing effect for rainfall resolution approaching half the catchment size, i.e. for catchments sampling numbers greater than 0.5 averaged rainfall volumes decrease about 20%. Moreover, deviations in maximum water depths, form 10 to 30% depending on the storm, occur for rainfall resolution close to storm size, describing storm smearing effect due to rainfall coarsening. Model results also show the sensitivity of modelled runoff peaks and maximum water depths to the resolution of the runoff areas and sewer density respectively. Sensitivity to temporal resolution of rainfall input seems low compared to spatial resolution, for the storms analysed in this study. Findings are in agreement with previous studies on natural catchments, thus the sampling

  6. Estimating Carbon Storage and Sequestration by Urban Trees at Multiple Spatial Resolutions

    NASA Astrophysics Data System (ADS)

    Wu, J.; Tran, A.; Liao, A.

    2010-12-01

    Urban forests are an important component of urban-suburban environments. Urban trees provide not only a full range of social and psychological benefits to city dwellers, but also valuable ecosystem services to communities, such as removing atmospheric carbon dioxide, improving air quality, and reducing storm water runoff. There is an urgent need for developing strategic conservation plans for environmentally sustainable urban-suburban development based on the scientific understanding of the extent and function of urban forests. However, several challenges remain to accurately quantify various environmental benefits provided by urban trees, among which is to deal with the effect of changing spatial resolution and/or scale. In this study, we intended to examine the uncertainties of carbon storage and sequestration associated with the tree canopy coverage of different spatial resolutions. Multi-source satellite imagery data were acquired for the City of Fullerton, located in Orange County of California. The tree canopy coverage of the study area was classified at three spatial resolutions, ranging from 30 m (Landsat-5 Thematic Mapper), 15 m (Advanced Spaceborne Thermal Emission and Reflection Radiometer), to 2.5 m (QuickBird). We calculated the amount of carbon stored in the trees represented on the individual tree coverage maps and the annual carbon taken up by the trees with a model (i.e., CITYgreen) developed by the U.S. Forest Service. The results indicate that urban trees account for significant proportions of land cover in the study area even with the low spatial resolution data. The estimated carbon fixation benefits vary greatly depending on the details of land use and land cover classification. The extrapolation of estimation from the fine-resolution stand-level to the low-resolution landscape-scale will likely not preserve reasonable accuracy.

  7. Spatially adaptive probabilistic computation of a sub-kilometre resolution lightning climatology for New Zealand

    NASA Astrophysics Data System (ADS)

    Etherington, Thomas R.; Perry, George L. W.

    2017-01-01

    Lightning is a key component of the Earth's atmosphere and climate systems, and there is a potential positive feedback between a warming climate and increased lightning activity. In the biosphere, lightning is important as the main natural ignition source for wildfires and because of its contribution to the nitrogen cycle. Therefore, it is important to develop lightning climatologies to characterise and monitor lightning activity. While traditional methods for constructing lightning climatologies are suitable for examining lightning's influence on atmospheric processes, they are less well suited for examining questions about biosphere-lightning interactions. For example, examining the interaction between lightning and wildfires requires linking atmospheric processes to finer scale terrestrial processes and patterns. Most wildfires ignited by lightning are less than one hectare in size, and so require lightning climatologies at a comparable spatial resolution. However, such high resolution lightning climatologies cannot be derived using the traditional cell-count methodology. Here we present a novel geocomputational approach for analysing lightning data at high spatial resolutions. Our approach is based on probabilistic computational methods and is capable of producing a sub-kilometre lightning climatology that honours the spatial accuracy of the strike locations and is adaptive to underlying spatial patterns. We demonstrate our methods by applying them to the mid-latitude oceanic landmass of New Zealand, an area with geographic conditions that are under-represented in existing lightning climatologies. Our resulting lightning climatology has unparalleled spatial resolution, and the spatial and temporal patterns we observe in it are consistent with other continental and tropical lightning climatologies. To encourage further use and development of our probabilistic approach, we provide Python scripts that demonstrate the method alongside our resulting New Zealand

  8. Improving the spatial resolution of magnetic resonance inverse imaging via the blipped-CAIPI acquisition scheme.

    PubMed

    Chang, Wei-Tang; Setsompop, Kawin; Ahveninen, Jyrki; Belliveau, John W; Witzel, Thomas; Lin, Fa-Hsuan

    2014-05-01

    Using simultaneous acquisition from multiple channels of a radio-frequency (RF) coil array, magnetic resonance inverse imaging (InI) achieves functional MRI acquisitions at a rate of 100ms per whole-brain volume. InI accelerates the scan by leaving out partition encoding steps and reconstructs images by solving under-determined inverse problems using RF coil sensitivity information. Hence, the correlated spatial information available in the coil array causes spatial blurring in the InI reconstruction. Here, we propose a method that employs gradient blips in the partition encoding direction during the acquisition to provide extra spatial encoding in order to better differentiate signals from different partitions. According to our simulations, this blipped-InI (bInI) method can increase the average spatial resolution by 15.1% (1.3mm) across the whole brain and from 32.6% (4.2mm) in subcortical regions, as compared to the InI method. In a visual fMRI experiment, we demonstrate that, compared to InI, the spatial distribution of bInI BOLD response is more consistent with that of a conventional echo-planar imaging (EPI) at the level of individual subjects. With the improved spatial resolution, especially in subcortical regions, bInI can be a useful fMRI tool for obtaining high spatiotemporal information for clinical and cognitive neuroscience studies.

  9. Spatial Resolution Versus Data Acquisition Efficiency in Mapping an Inhomogeneous System with Species Diffusion

    SciTech Connect

    Chen, Fengxiang; Zhang, Yong; Gfroerer, T. H.; Finger, A. N.; Mark W. Wanlass

    2015-06-02

    Traditionally, spatially-resolved photoluminescence (PL) has been performed using a point-by-point scan mode with both excitation and detection occurring at the same spatial location. But with the availability of high quality detector arrays like CCDs, an imaging mode has become popular for performing spatially-resolved PL. By illuminating the entire area of interest and collecting the data simultaneously from all spatial locations, the measurement efficiency can be greatly improved. However, this new approach has proceeded under the implicit assumption of comparable spatial resolution. We show here that when carrier diffusion is present, the spatial resolution can actually differ substantially between the two modes, with the less efficient scan mode being far superior. We apply both techniques in investigation of defects in a GaAs epilayer – where isolated singlet and doublet dislocations can be identified. A superposition principle is developed for solving the diffusion equation to extract the intrinsic carrier diffusion length, which can be applied to a system with arbitrarily distributed defects. The understanding derived from this work is significant for a broad range of problems in physics and beyond (for instance biology) – whenever the dynamics of generation, diffusion, and annihilation of species can be probed with either measurement mode.

  10. Spatial resolution versus data acquisition efficiency in mapping an inhomogeneous system with species diffusion.

    PubMed

    Chen, Fengxiang; Zhang, Yong; Gfroerer, T H; Finger, A N; Wanlass, M W

    2015-06-02

    Traditionally, spatially-resolved photoluminescence (PL) has been performed using a point-by-point scan mode with both excitation and detection occurring at the same spatial location. But with the availability of high quality detector arrays like CCDs, an imaging mode has become popular for performing spatially-resolved PL. By illuminating the entire area of interest and collecting the data simultaneously from all spatial locations, the measurement efficiency can be greatly improved. However, this new approach has proceeded under the implicit assumption of comparable spatial resolution. We show here that when carrier diffusion is present, the spatial resolution can actually differ substantially between the two modes, with the less efficient scan mode being far superior. We apply both techniques in investigation of defects in a GaAs epilayer - where isolated singlet and doublet dislocations can be identified. A superposition principle is developed for solving the diffusion equation to extract the intrinsic carrier diffusion length, which can be applied to a system with arbitrarily distributed defects. The understanding derived from this work is significant for a broad range of problems in physics and beyond (for instance biology) - whenever the dynamics of generation, diffusion, and annihilation of species can be probed with either measurement mode.

  11. Spatial Resolution Versus Data Acquisition Efficiency in Mapping an Inhomogeneous System with Species Diffusion

    DOE PAGES

    Chen, Fengxiang; Zhang, Yong; Gfroerer, T. H.; ...

    2015-06-02

    Traditionally, spatially-resolved photoluminescence (PL) has been performed using a point-by-point scan mode with both excitation and detection occurring at the same spatial location. But with the availability of high quality detector arrays like CCDs, an imaging mode has become popular for performing spatially-resolved PL. By illuminating the entire area of interest and collecting the data simultaneously from all spatial locations, the measurement efficiency can be greatly improved. However, this new approach has proceeded under the implicit assumption of comparable spatial resolution. We show here that when carrier diffusion is present, the spatial resolution can actually differ substantially between the twomore » modes, with the less efficient scan mode being far superior. We apply both techniques in investigation of defects in a GaAs epilayer – where isolated singlet and doublet dislocations can be identified. A superposition principle is developed for solving the diffusion equation to extract the intrinsic carrier diffusion length, which can be applied to a system with arbitrarily distributed defects. The understanding derived from this work is significant for a broad range of problems in physics and beyond (for instance biology) – whenever the dynamics of generation, diffusion, and annihilation of species can be probed with either measurement mode.« less

  12. Improving the spatial resolution of Magnetic Resonance Inverse Imaging via the blipped-CAIPI acquisition scheme

    PubMed Central

    Chang, Wei-Tang; Setsompop, Kawin; Ahveninen, Jyrki; Belliveau, John W.; Witzel, Thomas; Lin, Fa-Hsuan

    2014-01-01

    Using simultaneous acquisition from multiple channels of a radio-frequency (RF) coil array, magnetic resonance inverse imaging (InI) achieves functional MRI acquisitions at a rate of 100 ms per whole-brain volume. InI accelerates the scan by leaving out partition encoding steps and reconstructs images by solving under-determined inverse problems using RF coil sensitivity information. Hence, the correlated spatial information available in the coil array causes spatial blurring in the InI reconstruction. Here, we propose a method that employs gradient blips in the partition encoding direction during the acquisition to provide extra spatial encoding in order to better differentiate signals from different partitions. According to our simulations, this blipped-InI (bInI) method can increase the average spatial resolution by 15.1% (1.3 mm) across the whole brain and from 32.6% (4.2 mm) in subcortical regions, as compared to the InI method. In a visual fMRI experiment, we demonstrate that, compared to InI, the spatial distribution of bInI BOLD response is more consistent with that of a conventional echo-planar imaging (EPI) at the level of individual subjects. With the improved spatial resolution, especially in subcortical regions, bInI can be a useful fMRI tool for obtaining high spatiotemporal information for clinical and cognitive neuroscience studies. PMID:24374076

  13. Assessing land cover performance in Senegal, West Africa using 1-km integrated NDVI and local variance analysis

    USGS Publications Warehouse

    Budde, M.E.; Tappan, G.; Rowland, J.; Lewis, J.; Tieszen, L.L.

    2004-01-01

    The researchers calculated seasonal integrated normalized difference vegetation index (NDVI) for each of 7 years using a time-series of 1-km data from the Advanced Very High Resolution Radiometer (AVHRR) (1992-93, 1995) and SPOT Vegetation (1998-2001) sensors. We used a local variance technique to identify each pixel as normal or either positively or negatively anomalous when compared to its surroundings. We then summarized the number of years that a given pixel was identified as an anomaly. The resulting anomaly maps were analysed using Landsat TM imagery and extensive ground knowledge to assess the results. This technique identified anomalies that can be linked to numerous anthropogenic impacts including agricultural and urban expansion, maintenance of protected areas and increased fallow. Local variance analysis is a reliable method for assessing vegetation degradation resulting from human pressures or increased land productivity from natural resource management practices. ?? 2004 Published by Elsevier Ltd.

  14. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak

    SciTech Connect

    Truong, D. D.; Austin, M. E.

    2014-11-01

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of Te(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83-130 GHz. Heterodyning divides this frequency range into three 2-18 GHz intermediate frequency (IF) bands. The frequency spacing of the radiometer’s channels results in a spatial resolution of ~1-3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6-0.8 cm) resolution Te measurements. The high resolution subsystem branches off from the regular channels’ IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2-4 GHz range. We achieved a higher spatial resolution through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters’ center frequencies (250 MHz). This configuration allows for full coverage of the 83-130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a “zoomed-in” analysis of a ~2-4 cm radial region. These high resolution channels will be most useful in the low-field side edge region where modest Te values (1-2 keV) result in a minimum of relativistic broadening. Some expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial Te measurements, which demonstrate that the desired resolution is achieved, is presented.

  15. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak

    DOE PAGES

    Truong, D. D.; Austin, M. E.

    2014-11-01

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of Te(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83-130 GHz. Heterodyning divides this frequency range into three 2-18 GHz intermediate frequency (IF) bands. The frequency spacing of the radiometer’s channels results in a spatial resolution of ~1-3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6-0.8 cm) resolution Te measurements. The high resolution subsystem branches off from the regular channels’ IF bands andmore » consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2-4 GHz range. We achieved a higher spatial resolution through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters’ center frequencies (250 MHz). This configuration allows for full coverage of the 83-130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a “zoomed-in” analysis of a ~2-4 cm radial region. These high resolution channels will be most useful in the low-field side edge region where modest Te values (1-2 keV) result in a minimum of relativistic broadening. Some expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial Te measurements, which demonstrate that the desired resolution is achieved, is presented.« less

  16. High-spatial-resolution microwave and related observations as diagnostics of coronal loops

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    1986-01-01

    High spatial resolution microwave observations of coronal loops, together with theoretical models for the loop emission, can provide detailed information about the temperature, density, and magnetic field within the loop, as well as the environment around the loop. The capability for studying magnetic fields is particularly important, since there is no comparable method for obtaining direct information about coronal magnetic fields. Knowledge of the magnetic field strength and structure in coronal loops is important for understanding both coronal heating and flares. With arc-second-resolution microwave observations from the Very Large Array (VLA), supplemental high-spectral-resolution microwave data from a facility such as the Owens Valley frequency-agile interferometer, and the ability to obtain second-of-arc resolution EUV aor soft X ray images, the capability already exists for obtaining much more detailed information about coronal plasma and magnetic structures than is presently available. This capability is discussed.

  17. Enhancing spatial resolution of infrared imagery using overlap of sequence images

    NASA Astrophysics Data System (ADS)

    Cao, Jiahao; Li, Chunlai; Jin, Jian; Ji, Hongzhen; Zhang, Xudong; Wang, Jianyu

    2016-05-01

    The high-resolution thermal infrared image, by which the information of a scene can be described in details, is extensively used in many fields including computer vision process, medicine, and remote sensing, etc. This paper introduces a super-resolution reconstruction algorithm in combination of phase related motion estimating algorithm and iterative back-projecting algorithm. Continuous frames of the thermal infrared image aerially shot are extracted, the subpixel displacement of each frame of image relative to the reference image is estimated with the phase related motion estimating algorithm, and then the subpixel displacement data acquired is combined with the iterative back-projecting algorithm to actualize the super-resolution reconstruction of thermal infrared image aerially shot. The thermal infrared images were aerially shot above Zhoushan. The experimental result has proven the image spatial resolution can be effectively improved by this algorithm.

  18. Investigation of LANDSAT follow-on thematic mapper spatial, radiometric and spectral resolution

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Morgenstern, J. P.; Kent, E. R.; Erickson, J. D.

    1976-01-01

    The author has identified the following significant results. Fine resolution M7 multispectral scanner data collected during the Corn Blight Watch Experiment in 1971 served as the basis for this study. Different locations and times of year were studied. Definite improvement using 30-40 meter spatial resolution over present LANDSAT 1 resolution and over 50-60 meter resolution was observed, using crop area mensuration as the measure. Simulation studies carried out to extrapolate the empirical results to a range of field size distributions confirmed this effect, showing the improvement to be most pronounced for field sizes of 1-4 hectares. Radiometric sensitivity study showed significant degradation of crop classification accuracy immediately upon relaxation from the nominally specified values of 0.5% noise equivalent reflectance. This was especially the case for data which were spectrally similar such as that collected early in the growing season and also when attempting to accomplish crop stress detection.

  19. Improving the spatial resolution of air-quality modelling at a European scale - development and evaluation of the Air Quality Re-gridder Model (AQR v1.1)

    NASA Astrophysics Data System (ADS)

    Theobald, Mark R.; Simpson, David; Vieno, Massimo

    2016-12-01

    Currently, atmospheric chemistry and transport models (ACTMs) used to assess impacts of air quality, applied at a European scale, lack the spatial resolution necessary to simulate fine-scale spatial variability. This spatial variability is especially important for assessing the impacts to human health or ecosystems of short-lived pollutants, such as nitrogen dioxide (NO2) or ammonia (NH3). In order to simulate this spatial variability, the Air Quality Re-gridder (AQR) model has been developed to estimate the spatial distributions (at a spatial resolution of 1 × 1 km2) of annual mean atmospheric concentrations within the grid squares of an ACTM (in this case with a spatial resolution of 50 × 50 km2). This is done as a post-processing step by combining the coarse-resolution ACTM concentrations with high-spatial-resolution emission data and simple parameterisations of atmospheric dispersion. The AQR model was tested for two European sub-domains (the Netherlands and central Scotland) and evaluated using NO2 and NH3 concentration data from monitoring networks within each domain. A statistical comparison of the performance of the two models shows that AQR gives a substantial improvement on the predictions of the ACTM, reducing both mean model error (from 61 to 41 % for NO2 and from 42 to 27 % for NH3) and increasing the spatial correlation (r) with the measured concentrations (from 0.0 to 0.39 for NO2 and from 0.74 to 0.84 for NH3). This improvement was greatest for monitoring locations close to pollutant sources. Although the model ideally requires high-spatial-resolution emission data, which are not available for the whole of Europe, the use of a Europe-wide emission dataset with a lower spatial resolution also gave an improvement on the ACTM predictions for the two test domains. The AQR model provides an easy-to-use and robust method to estimate sub-grid variability that can potentially be extended to different timescales and pollutants.

  20. Long-distance super-resolution imaging assisted by enhanced spatial Fourier transform.

    PubMed

    Tang, Heng-He; Liu, Pu-Kun

    2015-09-07

    A new gradient-index (GRIN) lens that can realize enhanced spatial Fourier transform (FT) over optically long distances is demonstrated. By using an anisotropic GRIN metamaterial with hyperbolic dispersion, evanescent wave in free space can be transformed into propagating wave in the metamaterial and then focused outside due to negative-refraction. Both the results based on the ray tracing and the finite element simulation show that the spatial frequency bandwidth of the spatial FT can be extended to 2.7k(0) (k(0) is the wave vector in free space). Furthermore, assisted by the enhanced spatial FT, a new long-distance (in the optical far-field region) super-resolution imaging scheme is also proposed and the super resolved capability of λ/5 (λ is the wavelength in free space) is verified. The work may provide technical support for designing new-type high-speed microscopes with long working distances.

  1. Compressed sensing for super-resolution spatial and temporal laser detection and ranging

    NASA Astrophysics Data System (ADS)

    Laurenzis, Martin; Schertzer, Stephane; Christnacher, Frank

    2016-10-01

    In the past decades, laser aided electro-optical sensing has reached high maturity and several commercial systems are available at the market for various but specific applications. These systems can be used for detection i.e. imaging as well as ranging. They cover laser scanning devices like LiDAR and staring full frame imaging systems like laser gated viewing or LADAR. The sensing capabilities of these systems is limited by physical parameter (like FPA array size, temporal band width, scanning rate, sampling rate) and is adapted to specific applications. Change of system parameter like an increase of spatial resolution implies the setup of a new sensing device with high development cost or the purchase and installation of a complete new sensor unit. Computational imaging approaches can help to setup sensor devices with flexible or adaptable sensing capabilities. Especially, compressed sensing is an emerging computational method which is a promising candidate to realize super-resolution sensing with the possibility to adapt its performance to various sensing tasks. It is possible to increase sensing capabilities with compressed sensing to gain either higher spatial and/or temporal resolution. Then, the sensing capabilities depend no longer only on the physical performance of the device but also on the computational effort and can be adapted to the application. In this paper, we demonstrate and discuss laser aided imaging using CS for super-resolution tempo-spatial imaging and ranging.

  2. Effect of microscope parameter and specimen thickness of spatial resolution of transmission electron backscatter diffraction.

    PubMed

    Wang, Y Z; Kong, M G; Liu, Z W; Lin, C C; Zeng, Y

    2016-10-01

    The spatial resolution of transmission electron backscatter diffraction (t-EBSD) with a standard conventional EBSD detector was evaluated quantitatively based on the calculation of the correlation coefficient of transmission patterns which were acquired across a twin boundary in the sample of austenitic steel. The results showed that the resolution of t-EBSD improved from tens of nanometres to below 10 nm with increasing accelerating voltage and thinning of specimen thickness. High voltage could enhance the penetration depth and reduce the scattering angle. And the thinning of specimen thickness would result in decreasing of the scattering events according to the theory of thermal diffuse scattering (TDS). In addition, the transmission patterns were found to be weak and noisy if the specimen was too thin, because of the decreasing intensity detected by the screen. Consequently, in this work, the best spatial resolution of 7 nm was achieved at 30 kV and 41 nm thickness. Moreover, the specimen thickness range was also discussed using Monte-Carlo simulation. This approach was helpful to account for the differences of measured spatial resolutions, by t-EBSD, of lamellas with different thickness.

  3. High Spatial Resolution Auger Spectroscopy and Nucleation and Growth Studies of SILVER/SILICON(100)

    NASA Astrophysics Data System (ADS)

    Luo, Frank C. H.

    1990-01-01

    The ability to analyse the composition of a sample at high spatial resolution using Auger Electron Spectroscopy is very desirable for both industrial and academic research. The spatial resolution of the traditional Auger instrument is typically limited by the incident beam size to the range of 0.1-1 mum. This dissertation reports the efforts of construction, testing and utilizing a new Auger spectrometer with a nanometer incident probe in a scanning transmission electron microscopy (STEM). In order to use the 100 keV electron beam of the STEM for the Auger experiment, a low energy electron beam deflection system was designed and constructed. The testing of such deflection system and the spectrometer, both in a test chamber with different hardware configuration and in the microscope, was very extensive. Both Auger spectra and images can be obtained in the microscope with excellent energy resolution in a relatively short time. Quantitative analysis of the data showed a spatial resolution of less than 10 nm was achieved with a good collection efficiency. More quantitative work was carried on the Silver/Silicon(100) system as the application of the Auger instrument. Nucleation and growth phenomena of Ag on Si at both room and elevated temperatures was studied with the microscope operating both in Auger and scanning electron microscopy (SEM) mode. Suggestions for the further improvement of the Auger instrument and the Ag/Si(100) case study are made.

  4. Low-Cost Ultra-High Spatial and Temporal Resolution Mapping of Intertidal Rock Platforms

    NASA Astrophysics Data System (ADS)

    Bryson, M.; Johnson-Roberson, M.; Murphy, R.

    2012-07-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time which could compliment field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at relatively course, sub-meter resolutions or with limited temporal resolutions and relatively high costs for small-scale environmental science and ecology studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric pipeline that was developed for constructing highresolution, 3D, photo-realistic terrain models of intertidal rocky shores. The processing pipeline uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine colour and topographic information at sub-centimeter resolutions over an area of approximately 100m, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rock platform at Cape Banks, Sydney, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.

  5. Spatial resolution effect on the simulated results of watershed scale models

    NASA Astrophysics Data System (ADS)

    Epelde, Ane; Antiguedad, Iñaki; Brito, David; Jauch, Eduardo; Neves, Ramiro; Sauvage, Sabine; Sánchez-Pérez, José Miguel

    2016-04-01

    Numerical models are useful tools for water resources planning, development and management. Currently, their use is being spread and more complex modeling systems are being employed for these purposes. The adding of complexity allows the simulation of water quality related processes. Nevertheless, this implies a considerable increase on the computational requirements, which usually is compensated on the models by a decrease on their spatial resolution. The spatial resolution of the models is known to affect the simulation of hydrological processes and therefore, also the nutrient exportation and cycling processes. However, the implication of the spatial resolution on the simulated results is rarely assessed. In this study, we examine the effect of the change in the grid size on the integrated and distributed results of the Alegria River watershed model (Basque Country, Northern Spain). Variables such as discharge, water table level, relative water content of soils, nitrogen exportation and denitrification are analyzed in order to quantify the uncertainty involved in the spatial discretization of the watershed scale models. This is an aspect that needs to be carefully considered when numerical models are employed in watershed management studies or quality programs.

  6. A comparison of two downscaling procedures to increase the spatial resolution of mapping actual evapotranspiration

    NASA Astrophysics Data System (ADS)

    Mahour, Milad; Tolpekin, Valentyn; Stein, Alfred; Sharifi, Ali

    2017-04-01

    This research addressed the effects of downscaling cokriging Land Surface Temperature (LST) on estimation of Actual Evapotranspiration (AET) from remote sensing images. Two procedures were followed. We first applied downscaling cokriging to a coarse resolution LST product of MODIS at 1000 m. With its outcome, daily AET of a medium spatial resolution (250 m) was obtained using the Surface Energy Balance System (SEBS). Second, we downscaled a coarse AET map to medium spatial resolution (250 m). For both procedures, the 250 m resolution MODIS NDVI product was used as a co-variable. Validation was carried out using Landsat 8 images, from which LST was derived from the thermal bands. The two procedures were applied to an agricultural area with a traditional irrigation network in Iran. We obtained an average LST value of 305.8 K as compared to a downscaled LST value of 307.0 K. Reference AET estimated with SEBS using Landsat 8 data was equal to 5.756 mm day-1, as compared with a downscaled AET value of 5.571 mm day-1. The RMSE between reference AET and downscaled AET was equal to 1.26 mm day-1 (r = 0.49) and between reference and downscaled LST to 3.67 K (r = 0.48). The study showed that AET values obtained with the two downscaling procedures were similar to each other, but that AET showed a higher spatial variability if obtained with downscaled LST. We concluded that LST had a large effect on producing AET maps from Remote Sensing (RS) images, and that downscaling cokriging was helpful to provide daily AET maps at medium spatial resolution.

  7. In-Flight Edge Response Measurements for High Spatial Resolution Remote Sensing Systems

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Pagnutti, Mary; Ryan, Robert; Zanoni, Vicki

    2001-01-01

    In-flight measurement of spatial resolution were conducted as part of the ASA Scientific Data Purchase (SDP) Validation and Verification (V&V) process. Characterization included remote sensing systems with ground sample distance (GSD) of 1 meter or less, such as the panchromatic imager on-board the ICONOS satellite and the airborne ADAR System 5500 multispectral instrument. Final image products were used to evaluate the effect of both the image acquisition system (e.g., optics, electronics, motion, jitter, atmosphere) and image post-processing (e.g., resampling, modulation trasfer function (MTF) compensator). Spatial resolution was characterized by full width at half maximum (FWHM) of an edge response-derived line spread function. This was found to be a more robust measure of spatial resolution than the value of NTF at Nyquist frequency The edge responses were analysed using the tilted-edge technique that ovecomes the spatial sampling limitations of the digital imaging systems. As an enhancement to existing algorithms, the slope of the edge response and the orientation of the edge target were determined by a single computational process. Adjacent black and white square panels, either painted on a flat surface or deployed as traps, formed the ground-based edge targets used in the tests. Orientation of the deployable tarps was optimized beforehand, based on simulations of the imaging system. Numerous edge target images were analyzed for each of the tested sensors. The effect of such factors as acquisition geometry, temporal variability, MTF compensation, and GSD on spatial resolution were investigated.

  8. Ultra-High Spatial Resolution, Multi-Energy CT using Photon Counting Detector Technology

    PubMed Central

    Leng, S.; Gutjahr, R.; Ferrero, A.; Kappler, S.; Henning, A.; Halaweish, A.; Zhou, W.; Montoya, J.; McCollough, C.

    2017-01-01

    Two ultra-high-resolution (UHR) imaging modes, each with two energy thresholds, were implemented on a research, whole-body photon-counting-detector (PCD) CT scanner, referred to as sharp and UHR, respectively. The UHR mode has a pixel size of 0.25 mm at iso-center for both energy thresholds, with a collimation of 32 × 0.25 mm. The sharp mode has a 0.25 mm pixel for the low-energy threshold and 0.5 mm for the high-energy threshold, with a collimation of 48 × 0.25 mm. Kidney stones with mixed mineral composition and lung nodules with different shapes were scanned using both modes, and with the standard imaging mode, referred to as macro mode (0.5 mm pixel and 32 × 0.5 mm collimation). Evaluation and comparison of the three modes focused on the ability to accurately delineate anatomic structures using the high-spatial resolution capability and the ability to quantify stone composition using the multi-energy capability. The low-energy threshold images of the sharp and UHR modes showed better shape and texture information due to the achieved higher spatial resolution, although noise was also higher. No noticeable benefit was shown in multi-energy analysis using UHR compared to standard resolution (macro mode) when standard doses were used. This was due to excessive noise in the higher resolution images. However, UHR scans at higher dose showed improvement in multi-energy analysis over macro mode with regular dose. To fully take advantage of the higher spatial resolution in multi-energy analysis, either increased radiation dose, or application of noise reduction techniques, is needed. PMID:28392615

  9. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak

    SciTech Connect

    Truong, D. D.; Austin, M. E.

    2014-11-15

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of T{sub e}(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83–130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1–3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6–0.8 cm) resolution T{sub e} measurements. The high resolution subsystem branches off from the regular channels’ IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2–4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters’ center frequencies (250 MHz). This configuration allows for full coverage of the 83–130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a “zoomed-in” analysis of a ∼2–4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial T{sub e} measurements, which demonstrate that the desired resolution is achieved, are presented.

  10. Ultra-High Spatial Resolution, Multi-Energy CT using Photon Counting Detector Technology.

    PubMed

    Leng, S; Gutjahr, R; Ferrero, A; Kappler, S; Henning, A; Halaweish, A; Zhou, W; Montoya, J; McCollough, C

    2017-02-11

    Two ultra-high-resolution (UHR) imaging modes, each with two energy thresholds, were implemented on a research, whole-body photon-counting-detector (PCD) CT scanner, referred to as sharp and UHR, respectively. The UHR mode has a pixel size of 0.25 mm at iso-center for both energy thresholds, with a collimation of 32 × 0.25 mm. The sharp mode has a 0.25 mm pixel for the low-energy threshold and 0.5 mm for the high-energy threshold, with a collimation of 48 × 0.25 mm. Kidney stones with mixed mineral composition and lung nodules with different shapes were scanned using both modes, and with the standard imaging mode, referred to as macro mode (0.5 mm pixel and 32 × 0.5 mm collimation). Evaluation and comparison of the three modes focused on the ability to accurately delineate anatomic structures using the high-spatial resolution capability and the ability to quantify stone composition using the multi-energy capability. The low-energy threshold images of the sharp and UHR modes showed better shape and texture information due to the achieved higher spatial resolution, although noise was also higher. No noticeable benefit was shown in multi-energy analysis using UHR compared to standard resolution (macro mode) when standard doses were used. This was due to excessive noise in the higher resolution images. However, UHR scans at higher dose showed improvement in multi-energy analysis over macro mode with regular dose. To fully take advantage of the higher spatial resolution in multi-energy analysis, either increased radiation dose, or application of noise reduction techniques, is needed.

  11. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction.

    PubMed

    Liang, Yicheng; Peng, Hao

    2015-02-07

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity.

  12. Investigation of the Intrinsic Spatial Resolution of an Intensified EMCCD Scintillation Camera

    PubMed Central

    Meng, L. J.; Fu, G.

    2016-01-01

    In this paper, we present an experimental and Monte Carlo investigation of the intrinsic spatial resolution that can be achieved with the intensified electron-multiplying charge-coupled device (I-EMCCD) gamma camera [1]–[4]. This detector has a very low readout noise, an ultra-high spatial resolution and a large active area of ~ 80 mm diameter, which is well-suited for small animal imaging applications. The intrinsic detector resolutions achieved with different scintillators and under different experimental conditions were compared. In this study, the simple centroiding method was compared with two model-fitting approaches for finding the locations of gamma ray interactions. The results from Monte Carlo simulation have demonstrated that with an appropriate detector configuration, it is possible to achieve an intrinsic resolution of ~ 30 µm FWHM for detecting 27–35 keV gamma rays. The I-EMCCD scintillation camera offers a promising candidate for future ultra-high resolution SPECT imaging applications. PMID:27660372

  13. High cognitive reserve is associated with a reduced age-related deficit in spatial conflict resolution

    PubMed Central

    Puccioni, Olga; Vallesi, Antonino

    2012-01-01

    Several studies support the existence of a specific age-related difficulty in suppressing potentially distracting information. The aim of the present study is to investigate whether spatial conflict resolution is selectively affected by aging. The way aging affects individuals could be modulated by many factors determined by the socieconomic status: we investigated whether factors such as cognitive reserve (CR) and years of education may play a compensatory role against age-related deficits in the spatial domain. A spatial Stroop task with no feature repetitions was administered to a sample of 17 non-demented older adults (69–79 years-old) and 18 younger controls (18–34 years-old) matched for gender and years of education. The two age groups were also administered with measures of intelligence and CR. The overall spatial Stroop effect did not differ according to age, neither for speed nor for accuracy. The two age groups equally showed sequential effects for congruent trials: reduced response times (RTs) if another congruent trial preceded them, and accuracy at ceiling. For incongruent trials, older adults, but not younger controls, were influenced by congruency of trialn−1, since RTs increased with preceding congruent trials. Interestingly, such an age-related modulation negatively correlated with CR. These findings suggest that spatial conflict resolution in aging is predominantly affected by general slowing, rather than by a more specific deficit. However, a high level of CR seems to play a compensatory role for both factors. PMID:23248595

  14. Minimum detection limit and spatial resolution of thin-sample field-emission electron probe microanalysis.

    PubMed

    Kubo, Yugo; Hamada, Kotaro; Urano, Akira

    2013-12-01

    The minimum detection limit and spatial resolution for a thinned semiconductor sample were determined by electron probe microanalysis (EPMA) using a Schottky field emission (FE) electron gun and wavelength dispersive X-ray spectrometry. Comparison of the FE-EPMA results with those obtained using energy dispersive X-ray spectrometry in conjunction with scanning transmission electron microscopy, confirmed that FE-EPMA is largely superior in terms of detection sensitivity. Thin-sample FE-EPMA is demonstrated as a very effective method for high resolution, high sensitivity analysis in a laboratory environment because a high probe current and high signal-to-noise ratio can be achieved.

  15. A versatile fluorescence lifetime imaging system for scanning large areas with high time and spatial resolution

    NASA Astrophysics Data System (ADS)

    Bernardo, César; Belsley, Michael; de Matos Gomes, Etelvina; Gonçalves, Hugo; Isakov, Dmitry; Liebold, Falk; Pereira, Eduardo; Pires, Vladimiro; Samantilleke, Anura; Vasilevskiy, Mikhail; Schellenberg, Peter

    2014-08-01

    We present a flexible fluorescence lifetime imaging device which can be employed to scan large sample areas with a spatial resolution adjustable from many micrometers down to sub-micrometers and a temporal resolution of 20 picoseconds. Several different applications of the system will be presented including protein microarrays analysis, the scanning of historical samples, evaluation of solar cell surfaces and nanocrystalline organic crystals embedded in electrospun polymeric nanofibers. Energy transfer processes within semiconductor quantum dot superstructures as well as between dye probes and graphene layers were also investigated.

  16. A new method for spatial resolution enhancement of hyperspectral images using sparse coding and linear spectral unmixing

    NASA Astrophysics Data System (ADS)

    Hashemi, Nezhad Z.; Karami, A.

    2015-10-01

    Hyperspectral images (HSI) have high spectral and low spatial resolutions. However, multispectral images (MSI) usually have low spectral and high spatial resolutions. In various applications HSI with high spectral and spatial resolutions are required. In this paper, a new method for spatial resolution enhancement of HSI using high resolution MSI based on sparse coding and linear spectral unmixing (SCLSU) is introduced. In the proposed method (SCLSU), high spectral resolution features of HSI and high spatial resolution features of MSI are fused. In this case, the sparse representation of some high resolution MSI and linear spectral unmixing (LSU) model of HSI and MSI is simultaneously used in order to construct high resolution HSI (HRHSI). The fusion process of HSI and MSI is formulated as an ill-posed inverse problem. It is solved by the Split Augmented Lagrangian Shrinkage Algorithm (SALSA) and an orthogonal matching pursuit (OMP) algorithm. Finally, the proposed algorithm is applied to the Hyperion and ALI datasets. Compared with the other state-of-the-art algorithms such as Coupled Nonnegative Matrix Factorization (CNMF) and local spectral unmixing, the SCLSU has significantly increased the spatial resolution and in addition the spectral content of HSI is well maintained.

  17. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS: Preprint

    SciTech Connect

    Krishnan, Venkat; Cole, Wesley

    2016-07-01

    Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERC region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.

  18. An evaluation of acoustic seabed classification techniques for marine biotope monitoring over broad-scales (>1 km 2) and meso-scales (10 m 2-1 km 2)

    NASA Astrophysics Data System (ADS)

    van Rein, H.; Brown, C. J.; Quinn, R.; Breen, J.; Schoeman, D.

    2011-07-01

    Acoustic seabed classification is a useful tool for monitoring marine benthic habitats over broad-scales (>1 km 2) and meso-scales (10 m 2-1 km 2). Its utility in this context was evaluated using two approaches: by describing natural changes in the temporal distribution of marine biotopes across the broad-scale (4 km 2), and by attempting to detect specific experimentally-induced changes to kelp-dominated biotopes across the meso-scale (100 m 2). For the first approach, acoustic backscatter mosaics were constructed using sidescan sonar and multibeam echosounder data collected from Church Bay (Rathlin Island, Northern Ireland) in 1999, 2008 and 2009. The mosaics were manually segmented into acoustic facies, which were ground-truthed using a drop-video camera. Biotopes were classified from the video by multivariate exploratory analysis and cross-tabulated with the acoustic facies, showing a positive correlation. These results were integrated with bathymetric data to map the distribution of seven unique biotopes in Church Bay. Kappa analysis showed the biotope distribution was highly similar between the biotope maps, possibly due to the stability of bedforms shaped by the tidal regime around Rathlin Island. The greatest biotope change in this approach was represented by seasonal and annual changes in the growth of the seagrass, Zostera marina. In the second approach, sidescan sonar data were collected before and after the removal of 100 m 2 of kelp from three sites. Comparison of the data revealed no differences between the high-resolution backscatter imagery. It is concluded that acoustic seabed classification can be used to monitor change over broad- and meso-scales but not necessarily for all biotopes; its success depends on the type of acoustic system employed and the biological characteristics of the target biotope.

  19. Atmospheric Moisture Budget and Spatial Resolution Dependence of Precipitation Extremes in Aquaplanet Simulations

    SciTech Connect

    Yang, Qing; Leung, Lai-Yung R.; Rauscher, Sara; Ringler, Todd; Taylor, Mark

    2014-05-01

    data aggregation effect in omega, thermodynamic changes become relatively significant in offsetting the effect of dynamics leading to reduce differences between the simulated and aggregated results. Compared to MPAS, the simulated stronger vertical motion with HOMME also results in larger resolution dependency. Compared to the simulation at fine resolution, the vertical motion during extremes is insufficiently resolved/parameterized at the coarser resolution even after accounting for the natural reduction in variability with coarser resolution, and this is more distinct in the simulation with HOMME. To reduce uncertainties in simulated precipitation extremes, future development in cloud parameterizations must address their sensitivity to spatial resolution as well as dynamical cores.

  20. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    SciTech Connect

    Foxley, Sean Karczmar, Gregory S.; Domowicz, Miriam; Schwartz, Nancy

    2015-03-15

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T{sub 2}{sup *}-weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T{sub 2}{sup *} and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm{sup 3} and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T{sub 2}{sup *}-weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in

  1. Prioritizing spatial accuracy in high-resolution fMRI data using multivariate feature weight mapping

    PubMed Central

    Buschmann, Tilo; Lohmann, Gabriele; Margulies, Daniel S.; Trampel, Robert; Turner, Robert

    2014-01-01

    Although ultra-high-field fMRI at field strengths of 7T or above provides substantial gains in BOLD contrast-to-noise ratio, when very high-resolution fMRI is required such gains are inevitably reduced. The improvement in sensitivity provided by multivariate analysis techniques, as compared with univariate methods, then becomes especially welcome. Information mapping approaches are commonly used, such as the searchlight technique, which take into account the spatially distributed patterns of activation in order to predict stimulus conditions. However, the popular searchlight decoding technique, in particular, has been found to be prone to spatial inaccuracies. For instance, the spatial extent of informative areas is generally exaggerated, and their spatial configuration is distorted. We propose the combination of a non-parametric and permutation-based statistical framework with linear classifiers. We term this new combined method Feature Weight Mapping (FWM). The main goal of the proposed method is to map the specific contribution of each voxel to the classification decision while including a correction for the multiple comparisons problem. Next, we compare this new method to the searchlight approach using a simulation and ultra-high-field 7T experimental data. We found that the searchlight method led to spatial inaccuracies that are especially noticeable in high-resolution fMRI data. In contrast, FWM was more spatially precise, revealing both informative anatomical structures as well as the direction by which voxels contribute to the classification. By maximizing the spatial accuracy of ultra-high-field fMRI results, global multivariate methods provide a substantial improvement for characterizing structure-function relationships. PMID:24795548

  2. Using high-resolution soil moisture modelling to assess the uncertainty of microwave remotely sensed soil moisture products at the correct spatial and temporal support

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Karssenberg, D.; Bierkens, M. F. P.; Van Dam, J. C.; De Jong, S. M.

    2012-04-01

    Soil moisture is a key variable in the hydrological cycle and important in hydrological modelling. When assimilating soil moisture into flood forecasting models, the improvement of forecasting skills depends on the ability to accurately estimate the spatial and temporal patterns of soil moisture content throughout the river basin. Space-borne remote sensing may provide this information with a high temporal and spatial resolution and with a global coverage. Currently three microwave soil moisture products are available: AMSR-E, ASCAT and SMOS. The quality of these satellite-based products is often assessed by comparing them with in-situ observations of soil moisture. This comparison is however hampered by the difference in spatial and temporal support (i.e., resolution, scale), because the spatial resolution of microwave satellites is rather low compared to in-situ field measurements. Thus, the aim of this study is to derive a method to assess the uncertainty of microwave satellite soil moisture products at the correct spatial support. To overcome the difference in support size between in-situ soil moisture observations and remote sensed soil moisture, we used a stochastic, distributed unsaturated zone model (SWAP, van Dam (2000)) that is upscaled to the support of different satellite products. A detailed assessment of the SWAP model uncertainty is included to ensure that the uncertainty in satellite soil moisture is not overestimated due to an underestimation of the model uncertainty. We simulated unsaturated water flow up to a depth of 1.5m with a vertical resolution of 1 to 10 cm and on a horizontal grid of 1 km2 for the period Jan 2010 - Jun 2011. The SWAP model was first calibrated and validated on in-situ data of the REMEDHUS soil moisture network (Spain). Next, to evaluate the satellite products, the model was run for areas in the proximity of 79 meteorological stations in Spain, where model results were aggregated to the correct support of the satellite

  3. Measurement Sets and Sites Commonly Used for High Spatial Resolution Image Product Characterization

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary

    2006-01-01

    Scientists within NASA's Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site has enabled the in-flight characterization of satellite high spatial resolution remote sensing system products form Space Imaging IKONOS, Digital Globe QuickBird, and ORBIMAGE OrbView, as well as advanced multispectral airborne digital camera products. SSC utilizes engineered geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment and their Instrument Validation Laboratory to characterize high spatial resolution remote sensing data products. This presentation describes the SSC characterization capabilities and techniques in the visible through near infrared spectrum and examples of calibration results.

  4. Laser beam filtration for high spatial resolution MALDI imaging mass spectrometry.

    PubMed

    Zavalin, Andre; Yang, Junhai; Caprioli, Richard

    2013-07-01

    We describe an easy and inexpensive way to provide a highly defined Gaussian shaped laser spot on target of 5 μm diameter for imaging mass spectrometry using a commercial MALDI TOF instrument that is designed to produce a 20 μm diameter laser beam on target at its lowest setting. A 25 μm pinhole filter on a swivel arm was installed in the laser beam optics outside the vacuum ion source chamber so it is easily flipped into or out of the beam as desired by the operator. The resulting ion images at 5 μm spatial resolution are sharp since the satellite secondary laser beam maxima have been removed by the filter. Ion images are shown to demonstrate the performance and are compared with the method of oversampling to achieve higher spatial resolution when only a larger laser beam spot on target is available.

  5. Are long stimulus pulse durations the answer to improving spatial resolution in retinal prostheses?

    PubMed Central

    Petoe, Matthew A.

    2016-01-01

    Retinal prostheses can provide artificial vision to patients with degenerate retinae by electrically stimulating the remaining inner retinal neurons. The evoked perception is generally adequate for light localization, but of limited spatial resolution owing to the indiscriminate activation of multiple retinal cell types, leading to distortions in the perceived image. Here we present a perspective on a recent work by Weitz and colleagues who demonstrate a focal confinement of retinal ganglion cell (RGC) activation when using extended pulse durations in the stimulation waveform. Using real-time calcium imaging, they provide evidence that long pulse durations selectively stimulate inner retinal neurons, whilst avoiding unwanted axonal activations. The application of this stimulation technique may provide enhanced spatial resolution for retinal prosthesis users. These experiments provide a robust analysis of the effects of increasing pulse duration and introduce the potential for alternative stimulation paradigms in retinal prostheses. PMID:27942525

  6. Laser Beam Filtration for High Spatial Resolution MALDI Imaging Mass Spectrometry

    PubMed Central

    Zavalin, Andre; Yang, Junhai; Caprioli, Richard

    2013-01-01

    We describe an easy and inexpensive way to provide a highly defined Gaussian shaped laser spot on target of 5 μm diameter for Imaging Mass Spectrometry using a commercial MALDI TOF instrument that is designed to produce a 20 μm diameter laser beam on target at its lowest setting. A 25 μm pinhole filter on a swivel arm was installed in the laser beam optics outside the vacuum ion source chamber so it is easily flipped into or out of the beam as desired by the operator. The resulting ion images at 5 μm spatial resolution are sharp since the satellite secondary laser beam maxima have been removed by the filter. Ion images are shown to demonstrate the performance and are compared to the method of oversampling to achieve higher spatial resolution when only a larger laser beam spot on target is available. PMID:23661425

  7. Matrix Sublimation/Recrystallization for Imaging Proteins by Mass Spectrometry at High Spatial Resolution

    PubMed Central

    Yang, Junhai; Caprioli, Richard M.

    2011-01-01

    We have employed matrix deposition by sublimation for protein image analysis on tissue sections using a hydration/recrystallization process that produces high quality MALDI mass spectra and high spatial resolution ion images. We systematically investigated different washing protocols, the effect of tissue section thickness, the amount of sublimated matrix per unit area and different recrystallization conditions. The results show that an organic solvent rinse followed by ethanol/water rinses substantially increased sensitivity for the detection of proteins. Both the thickness of tissue section and amount of sinapinic acid sublimated per unit area have optimal ranges for maximal protein signal intensity. Ion images of mouse and rat brain sections at 50, 20 and 10 µm spatial resolution are presented and are correlated with H&E stained optical images. For targeted analysis, histology directed imaging can be performed using this protocol where MS analysis and H&E staining are performed on the same section. PMID:21639088

  8. Spatial resolution of imaging plate with flash X-rays and its utilization for radiography

    SciTech Connect

    Shaikh, A. M.; Romesh, C.; Kolage, T. S.; Sharma, Archana

    2015-06-24

    A flash X-ray source developed using pulsed electron accelerator with electron energy range of 400keV to 1030keV and a field emission cathode is characterized using X-ray imaging plates. Spatial resolution of the imaging system is measured using edge spread function fitted to data obtained from radiograph of Pb step wedge. A spatial resolution of 150±6 µm is obtained. The X-ray beam size is controlled by the anode-cathode configuration. Optimum source size of ∼13±2 mm diameter covering an area with intensity of ∼27000 PSL/mm{sup 2} is obtained on the imaging plate kept at a distance of ∼200 mm from the tip of the anode. It is used for recording radiographs of objects like satellite cable cutter, aero-engine turbine blade and variety of pyro-devices used in aerospace industry.

  9. Experimental Estimation of CLASP Spatial and Spectral Resolutions: Results of the Instrument's Optical Alignment

    NASA Technical Reports Server (NTRS)

    Giono, G.; Katsukawa, Y.; Ishikawa, R.; Narukage, N.; Bando, T.; Kano, R.; Suematsu, Y.; Winebarger, A.; Kobayashi, K.; Auchere, F.

    2015-01-01

    The Chromospheric Lyman-Alpha SpectroPolarimeter is a sounding rocket experiment design to measure for the first time the polarization signal of the Lyman-Alpha line (121.6nm), emitted in the solar upper-chromosphere and transition region. This instrument aims to detect the Hanle effect's signature hidden in the Ly-alpha polarization, as a tool to probe the chromospheric magnetic field. Hence, an unprecedented polarization accuracy is needed ((is) less than 10 (exp -3). Nevertheless, spatial and spectral resolutions are also crucial to observe chhromospheric feature such as spicules, and to have precise measurement of the Ly-alpha line core and wings. Hence, this poster will present how the telescope and the spectrograph were separately aligned, and their combined spatial and spectral resolutions.

  10. Impulse Response Estimation for Spatial Resolution Enhancement in Ultrasonic NDE Imaging

    SciTech Connect

    Clark, G A

    2004-06-25

    This report describes a signal processing algorithm and MATLAB software for improving spatial resolution in ultrasonic nondestructive evaluation (NDE) imaging of materials. Given a measured reflection signal and an associated reference signal, the algorithm produces an optimal least-squares estimate of the impulse response of the material under test. This estimated impulse response, when used in place of the raw reflection signal, enhances the spatial resolution of the ultrasonic measurements by removing distortion caused by the limited-bandwidth transducers and the materials under test. The theory behind the processing algorithms is briefly presented, while the reader is referred to the bibliography for details. The main focus of the report is to describe how to use the MATLAB software. Two processing examples using actual ultrasonic measurements are provided for tutorial purposes.

  11. High Spatial Resolution STXM at 6.2 keV Photon Energy

    SciTech Connect

    Vila-Comamala, Joan; Kewish, Cameron M.; Thibault, Pierre; Guzenko, Vitaliy; Gorelick, Sergey; Menzel, Andreas; Bunk, Oliver; David, Christian; Dierolf, Martin; Pfeiffer, Franz; Pilvi, Tero; Faerm, Elina; Ritala, Mikko

    2010-04-06

    We report on a zone-doubling technique that bypasses the electron-beam lithography limitations for the production of X-ray diffractive optics and enables the fabrication of Fresnel zone plates with smaller outermost zone widths than other well-established approaches. We have applied this method to manufacture hard X-ray Fresnel zone plates with outermost zone widths of 25 and 20 nm. These lenses have been tested in scanning transmission X-ray microscopy (STXM) at energies up to 6.2 keV, producing images of test structures that demonstrate a spatial resolution of 25 nm. High spatial resolution STXM images of several biological specimens have been acquired in transmission, dark-field and differential phase contrast modes.

  12. Theoretical study of the effect of slow light on BOTDA spatial resolution.

    PubMed

    Ravet, Fabien; Chen, Liang; Bao, Xiaoyi; Zou, Lufan; Kalosha, V P

    2006-10-30

    Due to the resonant nature of Brillouin scattering, delay occurs while pulse is propagating in an optical fiber. This effect influences the location accuracy of distributed Brillouin sensors. The maximum delay in sensing fibers depends on length, position, pump and Stokes powers. Considering pump depletion, we have obtained integral solutions for the coupled amplitude equations under steady state conditions and then calculated the group delay. The results show that moderate pump depletion (which is the optimized sensor working range) mitigates significantly the delay, and the maximum delay induced at resonance is only a fraction of Brillouin Optical Time Domain (BOTDA) spatial resolution, which means that the use of pulse width to define the spatial resolution is valid when Brillouin slow light is considered. We have shown that uniform strain and temperature distribution in a fiber gives the maximum delay induced uncertainty.

  13. High spatial resolution BOTDA using simultaneously launched gain and loss pump pulses

    NASA Astrophysics Data System (ADS)

    Motil, A.; Danon, O.; Peled, Y.; Tur, M.

    2013-05-01

    We report a 10cm spatial resolution in a Brillouin-based distributed sensing system using two simultaneously launched gain and loss pump pulses, having slightly different durations. Post-recording subtraction of the probe signal, excited by the shorter pulse, from the corresponding one, obtained from the longer pump pulse, is no longer required, since it is done automatically by the overlapping parts of the gain and loss pump pulses. Using a 30ns gain pump pulse and a 29ns loss pump pulse we were able to improve upon previously published results, achieving a distributed strain measurement along a standard single mode optical fiber with a spatial resolution of ~10cm. This technique does not broaden the involved Brillouin gain spectra so that the strain/temperature sensitivity is not compromised.

  14. Distinguishing and quantification of the human visual pathways using high spatial resolution diffusion tensor tractography

    PubMed Central

    Kamali, Arash; Hasan, Khader M.; Adapa, Pavani; Razmandi, Azadeh; Keser, Zafer; Lincoln, John; Kramer, Larry A.

    2014-01-01

    Quantification of the living human visual system using MRI methods has been challenging, but several applications demand a reliable and time-efficient data acquisition protocol. In this study, we demonstrate the utility of high spatial resolution diffusion tensor fiber tractography (DTT) in reconstructing and quantifying the human visual pathways. Five healthy males, age range 24–37 years, were studied after approval of the Institutional Review Board (IRB) at The University of Texas Health Science Center at Houston. We acquired diffusion tensor imaging (DTI) data with 1-mm slice thickness on a 3.0 Tesla clinical MRI scanner and analyzed the data using DTT with the fiber assignment by continuous tractography (FACT) algorithm. By utilizing the high spatial resolution DTI protocol with FACT algorithm, we were able to reconstruct and quantify bilateral optic pathways including the optic chiasm, optic tract, optic radiations free of contamination from neighboring white matter tracts. PMID:24856625

  15. The sensitivity of landscape evolution models to spatial and temporal rainfall resolution

    NASA Astrophysics Data System (ADS)

    Coulthard, Tom J.; Skinner, Christopher J.

    2016-09-01

    Climate is one of the main drivers for landscape evolution models (LEMs), yet its representation is often basic with values averaged over long time periods and frequently lumped to the same value for the whole basin. Clearly, this hides the heterogeneity of precipitation - but what impact does this averaging have on erosion and deposition, topography, and the final shape of LEM landscapes? This paper presents results from the first systematic investigation into how the spatial and temporal resolution of precipitation affects LEM simulations of sediment yields and patterns of erosion and deposition. This is carried out by assessing the sensitivity of the CAESAR-Lisflood LEM to different spatial and temporal precipitation resolutions - as well as how this interacts with different-size drainage basins over short and long timescales. A range of simulations were carried out, varying rainfall from 0.25 h × 5 km to 24 h × Lump resolution over three different-sized basins for 30-year durations. Results showed that there was a sensitivity to temporal and spatial resolution, with the finest leading to > 100 % increases in basin sediment yields. To look at how these interactions manifested over longer timescales, several simulations were carried out to model a 1000-year period. These showed a systematic bias towards greater erosion in uplands and deposition in valley floors with the finest spatial- and temporal-resolution data. Further tests showed that this effect was due solely to the data resolution, not orographic factors. Additional research indicated that these differences in sediment yield could be accounted for by adding a compensation factor to the model sediment transport law. However, this resulted in notable differences in the topographies generated, especially in third-order and higher streams. The implications of these findings are that uncalibrated past and present LEMs using lumped and time-averaged climate inputs may be under-predicting basin sediment

  16. Radiometric Calibration Assessment of Commercial High Spatial Resolution Multispectral Image Products

    NASA Technical Reports Server (NTRS)

    Thome, Kurt; Leisso, Nathan; Buchanan, John

    2007-01-01

    This paper describes the results of commercial high spatial resolution sensors. The topics include: 1) Reflectance-based approach; 2) U of A test sites; 3) Test Site Selection; 4) Resort Living; 5) Aerosol parameters; 6) Surface reflectance retrieval; 7) Accuracy/precision; 8) Data sets; 9) June 23, 2005 for Ikonos; 10) QuickBird Results; 11) Ikonos results; 12) Orbview results; 13) Ikonos redux; and 14) Overall results.

  17. Improving detector spatial resolution using pixelated scintillators with a barrier rib structure

    NASA Astrophysics Data System (ADS)

    Liu, Langechuan; Lu, Minghui; Cao, Wanqing; Peng, Luke; Chen, Arthur

    2016-03-01

    Indirect conversion flat panel detectors (FPDs) based on amorphous silicon (a-Si) technology are widely used in digital X-ray imaging. In such FPDs a scintillator layer is used for converting X-rays into visible light photons. However, the lateral spread of these photons inside the scintillator layer reduces spatial resolution of the FPD. In this study, FPDs incorporating pixelated scintillators with a barrier rib structure were developed to limit lateral spread of light photons thereby improving spatial resolution. For the pixelated scintillator, a two-dimensional barrier rib structure was first manufactured on a substrate layer, coated with reflective materials, and filled to the rim with the scintillating material of gadolinium oxysulfide (GOS). Several scintillator samples were fabricated, with pitch size varying from 160 to 280 μm and rib height from 200 to 280 μm. The samples were directly coupled to an a-Si flat panel photodiode array with a pitch of 200 μm to convert optical photons to electronic signals. With the pixelated scintillator, the detector modulation transfer function was shown to improve significantly (by 94% at 2 cycle/mm) compared to a detector using an unstructured GOS layer. However, the prototype does show lower sensitivity due to the decrease in scintillator fill factor. The preliminary results demonstrated the feasibility of using the barrier-rib structure to improve the spatial resolution of FPDs. Such an improvement would greatly benefit nondestructive testing applications where the spatial resolution is the most important parameter. Further investigation will focus on improving the detector sensitivity and exploring its medical applications.

  18. Quantitative metrics for assessment of chemical image quality and spatial resolution

    DOE PAGES

    Kertesz, Vilmos; Cahill, John F.; Van Berkel, Gary J.

    2016-02-28

    Rationale: Currently objective/quantitative descriptions of the quality and spatial resolution of mass spectrometry derived chemical images are not standardized. Development of these standardized metrics is required to objectively describe chemical imaging capabilities of existing and/or new mass spectrometry imaging technologies. Such metrics would allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison for these technologies if used together with standardized surfaces. Methods: We developed two image metrics, viz., chemical image contrast (ChemIC) based on signal-to-noise related statistical measures on chemical image pixels and corrected resolving power factor (cRPF) constructed from statistical analysis of mass-to-charge chronograms across features of interest inmore » an image. These metrics, quantifying chemical image quality and spatial resolution, respectively, were used to evaluate chemical images of a model photoresist patterned surface collected using a laser ablation/liquid vortex capture mass spectrometry imaging system under different instrument operational parameters. Results: The calculated ChemIC and cRPF metrics determined in an unbiased fashion the relative ranking of chemical image quality obtained with the laser ablation/liquid vortex capture mass spectrometry imaging system. These rankings were used to show that both chemical image contrast and spatial resolution deteriorated with increasing surface scan speed, increased lane spacing and decreasing size of surface features. Conclusions: ChemIC and cRPF, respectively, were developed and successfully applied for the objective description of chemical image quality and spatial resolution of chemical images collected from model surfaces using a laser ablation/liquid vortex capture mass spectrometry imaging system.« less

  19. Quantitative metrics for assessment of chemical image quality and spatial resolution

    SciTech Connect

    Kertesz, Vilmos; Cahill, John F.; Van Berkel, Gary J.

    2016-02-28

    Rationale: Currently objective/quantitative descriptions of the quality and spatial resolution of mass spectrometry derived chemical images are not standardized. Development of these standardized metrics is required to objectively describe chemical imaging capabilities of existing and/or new mass spectrometry imaging technologies. Such metrics would allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison for these technologies if used together with standardized surfaces. Methods: We developed two image metrics, viz., chemical image contrast (ChemIC) based on signal-to-noise related statistical measures on chemical image pixels and corrected resolving power factor (cRPF) constructed from statistical analysis of mass-to-charge chronograms across features of interest in an image. These metrics, quantifying chemical image quality and spatial resolution, respectively, were used to evaluate chemical images of a model photoresist patterned surface collected using a laser ablation/liquid vortex capture mass spectrometry imaging system under different instrument operational parameters. Results: The calculated ChemIC and cRPF metrics determined in an unbiased fashion the relative ranking of chemical image quality obtained with the laser ablation/liquid vortex capture mass spectrometry imaging system. These rankings were used to show that both chemical image contrast and spatial resolution deteriorated with increasing surface scan speed, increased lane spacing and decreasing size of surface features. Conclusions: ChemIC and cRPF, respectively, were developed and successfully applied for the objective description of chemical image quality and spatial resolution of chemical images collected from model surfaces using a laser ablation/liquid vortex capture mass spectrometry imaging system.

  20. Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range.

    PubMed

    Soto, Marcelo A; Bolognini, Gabriele; Di Pasquale, Fabrizio; Thévenaz, Luc

    2010-01-15

    In this Letter, we propose the use of optical pulse coding techniques for long-range distributed sensors based on Brillouin optical time-domain analysis (BOTDA). Compared to conventional BOTDA sensors, optical coding provides a significant sensing-range enhancement, allowing for temperature and strain measurements with 1 m spatial resolution over 50 km of standard single-mode fiber, with an accuracy of 2.2 degrees C/44 muepsilon, respectively.

  1. Quantifying the Effect of 3D Spatial Resolution on the Accuracy of Microstructural Distributions (PREPRINT)

    DTIC Science & Technology

    2012-08-01

    Michael D. Uchic and Michael Groeber Metals Branch Structural Materials Division Megna Shah UES, Inc. Gregory Loughnane, Raghavan Srinivasan...AUTHOR(S) Michael D. Uchic and Michael Groeber (AFRL/RXCM) Megna Shah (UES, Inc.) Gregory Loughnane, Raghavan Srinivasan, and Ramana Grandhi (Wright...effect of 3D spatial resolution on the accuracy of microstructural distributions Gregory Loughnane 1 , Michael Groeber 2 , Michael Uchic 2 , Matthew

  2. Influence of Elevation Data Resolution on Spatial Prediction of Colluvial Soils in a Luvisol Region

    PubMed Central

    Penížek, Vít; Zádorová, Tereza; Kodešová, Radka; Vaněk, Aleš

    2016-01-01

    The development of a soil cover is a dynamic process. Soil cover can be altered within a few decades, which requires updating of the legacy soil maps. Soil erosion is one of the most important processes quickly altering soil cover on agriculture land. Colluvial soils develop in concave parts of the landscape as a consequence of sedimentation of eroded material. Colluvial soils are recognised as important soil units because they are a vast sink of soil organic carbon. Terrain derivatives became an important tool in digital soil mapping and are among the most popular auxiliary data used for quantitative spatial prediction. Prediction success rates are often directly dependent on raster resolution. In our study, we tested how raster resolution (1, 2, 3, 5, 10, 20 and 30 meters) influences spatial prediction of colluvial soils. Terrain derivatives (altitude, slope, plane curvature, topographic position index, LS factor and convergence index) were calculated for the given raster resolutions. Four models were applied (boosted tree, neural network, random forest and Classification/Regression Tree) to spatially predict the soil cover over a 77 ha large study plot. Models training and validation was based on 111 soil profiles surveyed on a regular sampling grid. Moreover, the predicted real extent and shape of the colluvial soil area was examined. In general, no clear trend in the accuracy prediction was found without the given raster resolution range. Higher maximum prediction accuracy for colluvial soil, compared to prediction accuracy of total soil cover of the study plot, can be explained by the choice of terrain derivatives that were best for Colluvial soils differentiation from other soil units. Regarding the character of the predicted Colluvial soils area, maps of 2 to 10 m resolution provided reasonable delineation of the colluvial soil as part of the cover over the study area. PMID:27846230

  3. Effect of Spatial Resolution for Characterizing Soil Properties from Imaging Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Kumar, P.; Greenberg, J. A.

    2015-12-01

    The feasibility of quantifying soil constituents over large areas using airborne hyperspectral data [0.35 - 2.5 μm] in an ensemble bootstrapping lasso algorithmic framework has been demonstrated previously [1]. However the effects of coarsening the spatial resolution of hyperspectral data on the quantification of soil constituents are unknown. We use Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data collected at 7.6m resolution over Birds Point New Madrid (BPNM) floodway for up-scaling and generating multiple coarser resolution datasets including the 60m Hyperspectral Infrared Imager (HyspIRI) like data. HyspIRI is a proposed visible shortwave/thermal infrared mission, which will provide global data over a spectral range of 0.35 - 2.5μm at a spatial resolution of 60m. Our results show that the lasso method, which is based on point scale observational data, is scalable. We found consistent good model performance (R2) values (0.79 < R2 < 0.82) and correct classifications as per USDA soil texture classes at multiple spatial resolutions. The results further demonstrate that the attributes of the pdf for different soil constituents across the landscape and the within-pixel variance are well preserved across scales. Our analysis provides a methodological framework with a sufficient set of metrics for assessing the performance of scaling up analysis from point scale observational data and may be relevant for other similar remote sensing studies. [1] Dutta, D.; Goodwell, A.E.; Kumar, P.; Garvey, J.E.; Darmody, R.G.; Berretta, D.P.; Greenberg, J.A., "On the Feasibility of Characterizing Soil Properties From AVIRIS Data," Geoscience and Remote Sensing, IEEE Transactions on, vol.53, no.9, pp.5133,5147, Sept. 2015. doi: 10.1109/TGRS.2015.2417547.

  4. Estimating gross primary productivity (GPP) of forests across southern England at high spatial and temporal resolution using the FLIGHT model

    NASA Astrophysics Data System (ADS)

    Pankaew, Prasan; Milton, Edward; Dawson, Terry; Dash, Jadu

    2013-04-01

    Forests and woodlands play an important role in CO2 flux and in the storage of carbon, therefore it is important to be able to estimate gross primary productivity (GPP) and its change over time. The MODIS GPP product (MOD17) provides near-global GPP, but at relatively coarse spatial resolution (1km pixel size) and only every eight days. In order to study the dynamics of GPP over shorter time periods and over smaller areas it is necessary to make ground measurements or use a plant canopy model. The most reliable ground-based GPP data are those from the FLUXNET network, which comprises over 500 sites worldwide, each of which measures GPP using the eddy covariance method. Each FLUXNET measurement corresponds to GPP from an area around the sampling tower, the size and shape of which varies with weather conditions, notably wind speed and direction. The FLIGHT forest light simulation model (North, 1996) is a Monte Carlo based model to estimate the GPP from forest canopies, which does not take into account the spatial complexity of the site or the wind conditions at the time. Forests in southern England are small and embedded in a matrix of other land cover types (agriculture, urban etc.), so GPP estimated from FLIGHT needs to be adjusted to match that measured from a FLUXNET tower. The aim of this paper is to develop and test a method to adjust FLIGHT GPP so that it matches FLUXNET GPP. The advantage of this is that GPP can then be estimated over many other forests which do not possess FLUXNET sites. The study was based on data from two mixed broadleaf forests in southern England (Wytham Woods and Alice Holt forest), both of which have FLUXNET sites located within them. The FLUXNET meteorological data were prepared for use in the FLIGHT model by converting broadband irradiance to photosynthetically active radiance (PAR) and estimating diffuse PAR, using methods developed in previous work by the authors. The standard FLIGHT model tended to overestimate GPP in the winter

  5. Generation of remotely sensed reference data using low altitude, high spatial resolution hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Williams, McKay D.; van Aardt, Jan; Kerekes, John P.

    2016-05-01

    Exploitation of imaging spectroscopy (hyperspectral) data using classification and spectral unmixing algorithms is a major research area in remote sensing, with reference data required to assess algorithm performance. However, we are limited by our inability to generate rapid, accurate, and consistent reference data, thus making quantitative algorithm analysis difficult. As a result, many investigators present either limited quantitative results, use synthetic imagery, or provide qualitative results using real imagery. Existing reference data typically classify large swaths of imagery pixel-by-pixel, per cover type. While this type of mapping provides a first order understanding of scene composition, it is not detailed enough to include complexities such as mixed pixels, intra-end-member variability, and scene anomalies. The creation of more detailed ground reference data based on field work, on the other hand, is complicated by the spatial scale of common hyperspectral data sets. This research presents a solution to this challenge via classification of low altitude, high spatial resolution (1m GSD) National Ecological Observatory Network (NEON) hyperspectral imagery, on a pixel-by-pixel basis, to produce sub-pixel reference data for high altitude, lower spatial resolution (15m GSD) AVIRIS imagery. This classification is performed using traditional classification techniques, augmented by (0.3m GSD) NEON RGB data. This paper provides a methodology for generating large scale, sub-pixel reference data for AVIRIS imagery using NEON imagery. It also addresses challenges related to the fusion of multiple remote sensing modalities (e.g., different sensors, sensor look angles, spatial registration, varying scene illumination, etc.). A new algorithm for spatial registration of hyperspectral imagery with disparate resolutions is presented. Several versions of reference data results are compared to each other and to direct spectral unmixing of AVIRIS data. Initial results are

  6. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution

    SciTech Connect

    Laroche, G.; Vallade, J.; Bazinette, R.; Hernandez, E.; Hernandez, G.; Massines, F.; Nijnatten, P. van

    2012-10-15

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm Multiplication-Sign 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45 Degree-Sign beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  7. Compact hybrid real-time hyperspectral imaging system with high effective spatial, spectral, and temporal resolution

    NASA Astrophysics Data System (ADS)

    Roth, Filip; Abbadi, Ahmad; Herman, Ondrej; Pavelek, Martin; Prenosil, Vaclav

    2016-10-01

    Medical endoscopes for image-guided surgery commonly use standard color image sensors, discarding any more detailed spectral information. Medical spectroscopy devices with various spectral working ranges are specialized to specific medical procedures and in general are not usable for image-guided surgery due to limitations in spatial or temporal resolution. In this paper, we present an initial demonstrator of hyperspectral endoscope, composed of two image sensors with complementing parameters. Using this hybrid approach, combining sensors with different spatial and spectral resolutions and spectral ranges, we obtain improved coverage of all the respective parameters. After digitally processing and merging the video streams, while maintaining the better features of both, we obtain an imaging system providing high effective spatial, spectral, and temporal resolution. The system is based on field programmable gate arrays. It provides real-time video output (60 Hz), which is usable for navigation during image-guided surgery. The flexible system architecture allows for an easy extension of the processing algorithms and enables minimal video signal latency. Physical dimensions and portability of the system are comparable to standard off-the-shelf medical endoscope cameras. The device can output both processed video and standard visible light video signals on one or more video outputs of the system. The resulting processed video signal obtained from the combined image sensor data greatly increases the amount of useful information available to the end user.

  8. A Simple Method for Improving the Spatial Resolution in Infrared Laser Ablation Mass Spectrometry Imaging

    NASA Astrophysics Data System (ADS)

    Hieta, Juha-Pekka; Vaikkinen, Anu; Auno, Samuli; Räikkönen, Heikki; Haapala, Markus; Scotti, Gianmario; Kopra, Jaakko; Piepponen, Petteri; Kauppila, Tiina J.

    2017-01-01

    In mass spectrometry imaging of tissues, the size of structures that can be distinguished is determined by the spatial resolution of the imaging technique. Here, the spatial resolution of IR laser ablation is markedly improved by increasing the distance between the laser and the focusing lens. As the distance between the laser and the lens is increased from 1 to 18 m, the ablation spot size decreases from 440 to 44 μm. This way, only the collimated center of the divergent laser beam is directed on the focusing lens, which results in better focusing of the beam. Part of the laser energy is lost at longer distance, but this is compensated by focusing of the radiation to a smaller area on the sample surface. The long distance can also be achieved by a set of mirrors, between which the radiation travels before it is directed to the focusing lens and the sample. This method for improving the spatial resolution can be utilized in mass spectrometry imaging of tissues by techniques that utilize IR laser ablation, such as laser ablation electrospray ionization, laser ablation atmospheric pressure photoionization, and matrix-assisted laser desorption electrospray ionization.

  9. Resolution of spatial and temporal visual attention in infants with fragile X syndrome.

    PubMed

    Farzin, Faraz; Rivera, Susan M; Whitney, David

    2011-11-01

    Fragile X syndrome is the most common cause of inherited intellectual impairment and the most common single-gene cause of autism. Individuals with fragile X syndrome present with a neurobehavioural phenotype that includes selective deficits in spatiotemporal visual perception associated with neural processing in frontal-parietal networks of the brain. The goal of the current study was to examine whether reduced resolution of spatial and/or temporal visual attention may underlie perceptual deficits related to fragile X syndrome. Eye tracking was used to psychophysically measure the limits of spatial and temporal attention in infants with fragile X syndrome and age-matched neurotypically developing infants. Results from these experiments revealed that infants with fragile X syndrome experience drastically reduced resolution of temporal attention in a genetic dose-sensitive manner, but have a spatial resolution of attention that is not impaired. Coarse temporal attention could have significant knock-on effects for the development of perceptual, cognitive and motor abilities in individuals with the disorder.

  10. High spatial resolution shortwave infrared imaging technology based on time delay and digital accumulation method

    NASA Astrophysics Data System (ADS)

    Jia, Jianxin; Wang, Yueming; Zhuang, Xiaoqiong; Yao, Yi; Wang, Shengwei; Zhao, Ding; Shu, Rong; Wang, Jianyu

    2017-03-01

    Shortwave infrared (SWIR) imaging technology attracts more and more attention by its fascinating ability of penetrating haze and smoke. For application of spaceborne remote sensing, spatial resolution of SWIR is lower compared with that of visible light (VIS) wavelength. It is difficult to balance between the spatial resolution and signal to noise ratio (SNR). Some conventional methods, such as enlarging aperture of telescope, image motion compensation, and analog time delay and integration (TDI) technology are used to gain SNR. These techniques bring in higher cost of satellite, complexity of system or other negative factors. In this paper, time delay and digital accumulation (TDDA) method is proposed to achieve higher spatial resolution. The method can enhance the SNR and non-uniformity of system theoretically. A prototype of SWIR imager consists of opto-mechanical, 1024 × 128 InGaAs detector, and electronics is designed and integrated to prove TDDA method. Both of measurements and experimental results indicate TDDA method can promote SNR of system approximated of the square root of accumulative stage. The results exhibit that non-uniformity of system is also improved by this approach to some extent. The experiment results are corresponded with the theoretical analysis. Based on the experiments results, it is proved firstly that the goal of 1 m ground sample distance (GSD) in orbit of 500 km is feasible with the TDDA stage of 30 for SWIR waveband (0.9-1.7 μm).

  11. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution.

    PubMed

    Laroche, G; Vallade, J; Bazinette, R; van Nijnatten, P; Hernandez, E; Hernandez, G; Massines, F

    2012-10-01

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm × 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45° beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  12. High-spatial-resolution mapping of catalytic reactions on single particles

    NASA Astrophysics Data System (ADS)

    Wu, Chung-Yeh; Wolf, William J.; Levartovsky, Yehonatan; Bechtel, Hans A.; Martin, Michael C.; Toste, F. Dean; Gross, Elad

    2017-01-01

    The critical role in surface reactions and heterogeneous catalysis of metal atoms with low coordination numbers, such as found at atomic steps and surface defects, is firmly established. But despite the growing availability of tools that enable detailed in situ characterization, so far it has not been possible to document this role directly. Surface properties can be mapped with high spatial resolution, and catalytic conversion can be tracked with a clear chemical signature; however, the combination of the two, which would enable high-spatial-resolution detection of reactions on catalytic surfaces, has rarely been achieved. Single-molecule fluorescence spectroscopy has been used to image and characterize single turnover sites at catalytic surfaces, but is restricted to reactions that generate highly fluorescing product molecules. Herein the chemical conversion of N-heterocyclic carbene molecules attached to catalytic particles is mapped using synchrotron-radiation-based infrared nanospectroscopy with a spatial resolution of 25 nanometres, which enabled particle regions that differ in reactivity to be distinguished. These observations demonstrate that, compared to the flat regions on top of the particles, the peripheries of the particles—which contain metal atoms with low coordination numbers—are more active in catalysing oxidation and reduction of chemically active groups in surface-anchored N-heterocyclic carbene molecules.

  13. fMRI at High Spatial Resolution: Implications for BOLD-Models

    PubMed Central

    Goense, Jozien; Bohraus, Yvette; Logothetis, Nikos K.

    2016-01-01

    As high-resolution functional magnetic resonance imaging (fMRI) and fMRI of cortical layers become more widely used, the question how well high-resolution fMRI signals reflect the underlying neural processing, and how to interpret laminar fMRI data becomes more and more relevant. High-resolution fMRI has shown laminar differences in cerebral blood flow (CBF), volume (CBV), and neurovascular coupling. Features and processes that were previously lumped into a single voxel become spatially distinct at high resolution. These features can be vascular compartments such as veins, arteries, and capillaries, or cortical layers and columns, which can have differences in metabolism. Mesoscopic models of the blood oxygenation level dependent (BOLD) response therefore need to be expanded, for instance, to incorporate laminar differences in the coupling between neural activity, metabolism and the hemodynamic response. Here we discuss biological and methodological factors that affect the modeling and interpretation of high-resolution fMRI data. We also illustrate with examples from neuropharmacology and the negative BOLD response how combining BOLD with CBF- and CBV-based fMRI methods can provide additional information about neurovascular coupling, and can aid modeling and interpretation of high-resolution fMRI. PMID:27445782

  14. Spatial resolution improvement for Lamb wave-based damage detection using frequency dependency compensation

    NASA Astrophysics Data System (ADS)

    Zeng, Liang; Lin, Jing; Bao, Jingjing; Joseph, Roshan Prakash; Huang, Liping

    2017-04-01

    In Lamb wave inspection systems, the transfer functions of the transmitter and receiver, and the attenuation as Lamb wave propagates through the structure, result in frequency dependency in the amplitude of Lamb modes. This frequency dependency in amplitude also influences the testing resolution and complicates the damage evaluation. With the goal of spatial resolution improving, a frequency dependency compensation method is proposed. In this method, an accurate estimation of the frequency-dependent amplitude is firstly obtained, then a refined inverse filter is designed and applied to the raw Lamb mode signals to compensate the frequency dependency. An experimental example is introduced to illustrate the process of the proposed method. Besides, its sensitivity to the propagation distance and Taylor expansion order is thoroughly investigated. Finally, the proposed method is employed for damage detection. Its effectiveness in testing resolution improvement and damage identification could be obviously demonstrated by the imaging result of the damage.

  15. Spatial resolution analysis for time-domain diffuse optical tomography based on a perturbation model

    NASA Astrophysics Data System (ADS)

    Konovalov, Alexander B.; Vlasov, Vitaly V.

    2014-01-01

    We estimate a limit to spatial resolution in time-domain diffuse optical tomography (DOT) based on a perturbation model by Lyubimov. In the context of structure reconstruction accuracy we consider and compare three approaches to the inverse DOT problem. The first reconstructs diffuse tomograms from straight lines; the second does it from curvilinear average trajectories of photons; and the third uses the total banana-like distributions of photon trajectories. For getting estimates to resolution, we derive analytical expressions for the point spread function and the modulation transfer function, and perform a numerical experiment to reconstruct rectangular scattering objects with circular absorbing inhomogeneities. It is shown that reconstruction with photon trajectory distributions instead of straight lines gives a gain of about order of magnitude in resolution and attains the accuracy of multistep nonlinear DOT algorithms.

  16. Theoretical limit of spatial resolution in diffuse optical tomography using a perturbation model

    NASA Astrophysics Data System (ADS)

    Konovalov, A. B.; Vlasov, V. V.

    2014-03-01

    We have assessed the limit of spatial resolution of timedomain diffuse optical tomography (DOT) based on a perturbation reconstruction model. From the viewpoint of the structure reconstruction accuracy, three different approaches to solving the inverse DOT problem are compared. The first approach involves reconstruction of diffuse tomograms from straight lines, the second - from average curvilinear trajectories of photons and the third - from total banana-shaped distributions of photon trajectories. In order to obtain estimates of resolution, we have derived analytical expressions for the point spread function and modulation transfer function, as well as have performed a numerical experiment on reconstruction of rectangular scattering objects with circular absorbing inhomogeneities. It is shown that in passing from reconstruction from straight lines to reconstruction using distributions of photon trajectories we can improve resolution by almost an order of magnitude and exceed the accuracy of reconstruction of multi-step algorithms used in DOT.

  17. A targeted contrast agent for magnetic resonance imaging of thrombus: implications of spatial resolution.

    PubMed

    Johansson, L O; Bjørnerud, A; Ahlström, H K; Ladd, D L; Fujii, D K

    2001-04-01

    A preparation of ultra-small superparamagnetic iron oxide (USPIO) particles coupled to an RGD peptide (RGD-USPIO) was investigated as an MR contrast agent, targeted to activated platelets, in both ex vivo and in vivo thrombus models. Thrombus visualization ex vivo was compared using RGD-USPIO and a non-targeted UPSIO. The influence of thrombus visualization on thrombus exposure time to RGD-USPIO (ex vivo) and on the spatial resolution of the MR image (ex vivo and in vivo) was assessed. RGD-USPIO resulted in better thrombus visualization than non-targeted USPIO ex vivo, and maximum enhancement was achieved after approximately one hour exposure time of the thrombus to RGD-USPIO. The ability to visualize the clots was highly dependent on the spatial resolution of the image. In vivo, an in-plane resolution of less than 0.2 x 0.2 mm(2) was required for good clot visualization after contrast enhancement. It is concluded that the achievable resolution and sensitivity is a potential limitation to the usefulness of active vascular targeting in MRI.

  18. Application of spatially resolved high resolution crystal spectrometry to inertial confinement fusion plasmas

    SciTech Connect

    Hill, K. W.; Bitter, M.; Delgado-Aparacio, L.; Pablant, N. A.; Beiersdorfer, P.; Schneider, M.; Widmann, K.; Sanchez del Rio, M.; Zhang, L.

    2012-10-15

    High resolution ({lambda}/{Delta}{lambda}{approx} 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-{mu}m {sup 55}Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10{sup -8}-10{sup -6} times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

  19. Beyond spicule dynamics: spicule and fibril spectroscopy at high spatial and temporal resolution

    NASA Astrophysics Data System (ADS)

    Mendes Domingos Pereira, T.; Rouppe van der Voort, L.

    2015-12-01

    Solar spicules are chromospheric fibrils observed at the solar limb. They are observed everywhere in the Sun, but their origin is not yet understood. Much of our understanding of spicules has been obtained through filtergram observations and/or focused on the dynamics of spicules. Spectroscopic studies have been usually limited by spatial extent/resolution, temporal resolution, or variable seeing. In this work we make use of a unique time series of imaging spectroscopy at high spatial and temporal resolution, obtained with the Swedish Solar Telescope under excellent seeing and coordinated with the IRIS mission. With these data we characterize the evolution of spectra along quiet Sun fibrils and spicules, and discuss what makes them visible in filtergrams and sets them apart from other chromospheric fibrils. With combined H-alpha and Ca II H high-resolution observations we also discuss how spicules appear in these two lines, a long standing issue that has been interpreted in conflicting ways. Finally, using the wide range of IRIS diagnostics we put together the spectral evolution of spicules through the chromosphere and transition region.

  20. High-resolution heteronuclear multi-dimensional NMR spectroscopy in magnetic fields with unknown spatial variations.

    PubMed

    Zhang, Zhiyong; Huang, Yuqing; Smith, Pieter E S; Wang, Kaiyu; Cai, Shuhui; Chen, Zhong

    2014-05-01

    Heteronuclear NMR spectroscopy is an extremely powerful tool for determining the structures of organic molecules and is of particular significance in the structural analysis of proteins. In order to leverage the method's potential for structural investigations, obtaining high-resolution NMR spectra is essential and this is generally accomplished by using very homogeneous magnetic fields. However, there are several situations where magnetic field distortions and thus line broadening is unavoidable, for example, the samples under investigation may be inherently heterogeneous, and the magnet's homogeneity may be poor. This line broadening can hinder resonance assignment or even render it impossible. We put forth a new class of pulse sequences for obtaining high-resolution heteronuclear spectra in magnetic fields with unknown spatial variations based on distant dipolar field modulations. This strategy's capabilities are demonstrated with the acquisition of high-resolution 2D gHSQC and gHMBC spectra. These sequences' performances are evaluated on the basis of their sensitivities and acquisition efficiencies. Moreover, we show that by encoding and decoding NMR observables spatially, as is done in ultrafast NMR, an extra dimension containing J-coupling information can be obtained without increasing the time necessary to acquire a heteronuclear correlation spectrum. Since the new sequences relax magnetic field homogeneity constraints imposed upon high-resolution NMR, they may be applied in portable NMR sensors and studies of heterogeneous chemical and biological materials.

  1. FREND neutron telescope for mapping the Martian water with fine spatial resolution

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Igor; Malakhov, Alexey; Mokrousov, Maxim; Golovin, Dmitry; Fedosov, Fedor; Kozyrev, Alexandr; Lisov, Denis; Litvak, Maxim; Nikiforov, Sergey; Sanin, Anton; Tret'yakov, Vlad; Vostrukhin, Andrey

    2016-04-01

    The concept of Fine Resolution Exploration Neutron Detector (FREND) is presented, as the Russian contributed instrument for the first element of ESA ExoMars mission, the TGO. FREND is the neutron collimated telescope, which is capable to measure the prompt neutron radiation of Mars from the 400 km orbit with the spatial resolution of about 40 km. The flux of epithermal neutrons is known to depend on the content of water in the shallow subsurface about 1 meter, so such measurements could allow to study the ground water distribution with fine spatial resolution over the entire martian surface from 70 degrees of the north latitude down to 70 degree of the south latitude. The resolution of tens of km is necessary to characterize the particular relief features on the surface by the content of water in the soil. Such mapping data should resolve the water distribution within the Gale crater, which is necessary to explain the paradoxic difefrence between the estimated contents of water in this crater, as about 5% by HEND on the Mars Odyssy and the ground data about 2 -3 % by DAN on the Curiosity. Also, the FREND mapping data of the ground water should be useful for the landing site selection of future Mars rovers, such as ExoMars or Mars 2020.

  2. Drought planning and management: using high spatial resolution as part of the solution.

    PubMed

    Duncan, Leslie Lyons; Perrone, Debra; Jacobi, John H; Hornberger, George M

    2015-03-03

    Water scarcity is intensified by drought, a phenomenon that impacts many sectors of society and affects virtually all climate zones. The Palmer drought indices are widely used by scientists and policy makers to understand drought and model its components. Despite the spatial heterogeneity and variability in variables required by the Palmer model, regional index values are most commonly used for real-time drought assessment. Local stakeholders charged with developing flexible and tailored water management policies have articulated the need for drought indices calculated at finer spatial resolutions than a regional scale. We use the Pacific Northwest United States (U.S.) as a study area to demonstrate the differences between drought indices calculated for U.S. climate divisions with those calculated at a 0.5° by 0.5° latitude/longitude resolution. Our results indicate that regional values of the two cumulative Palmer drought indices do not represent finer-resolution values well. For half of the study area, the pictures of drought (as determined by regional and finer-resolution values) are drastically different more than 30% of the time. Thus, quite often water managers do not have a clear understanding of the relative severity of drought in their area, which can have serious implications for drought mitigation and adaptation.

  3. Mapping urban and peri-urban agriculture using high spatial resolution satellite data

    NASA Astrophysics Data System (ADS)

    Forster, Dionys; Buehler, Yves; Kellenberger, Tobias W.

    2009-03-01

    In rapidly changing peri-urban environments where biophysical and socio-economic processes lead to spatial fragmentation of agricultural land, remote sensing offers an efficient tool to collect land cover/land use (LCLU) data for decision-making. Compared to traditional pixel-based approaches, remote sensing with object-based classification methods is reported to achieve improved classification results in complex heterogeneous landscapes. This study assessed the usefulness of object-oriented analysis of Quickbird high spatial resolution satellite data to classify urban and peri-urban agriculture in a limited peri-urban area of Hanoi, Vietnam. The results revealed that segmentation was essential in developing the object-oriented classification approach. Accurate segmentation of shape and size of an object enhanced classification with spectral, textural, morphological, and topological features. A qualitative, visual comparison of the classification results showed successful localisation and identification of most LCLU classes. Quantitative evaluation was conducted with a classification error matrix reaching an overall accuracy of 67% and a kappa coefficient of 0.61. In general, object-oriented classification of high spatial resolution satellite data proved the promising approach for LCLU analysis at village level. Capturing small-scale urban and peri-urban agricultural diversity offers a considerable potential for environmental monitoring. Challenges remain with the delineation of field boundaries and LCLU diversity on more spatially extensive datasets.

  4. THE INFLUENCE OF SPATIAL RESOLUTION ON NONLINEAR FORCE-FREE MODELING

    SciTech Connect

    DeRosa, M. L.; Schrijver, C. J.; Leka, K. D.; Barnes, G.; Amari, T.; Canou, A.; Thalmann, J. K.; Wiegelmann, T.; Malanushenko, A.; Sun, X.; Régnier, S.

    2015-10-01

    The nonlinear force-free field (NLFFF) model is often used to describe the solar coronal magnetic field, however a series of earlier studies revealed difficulties in the numerical solution of the model in application to photospheric boundary data. We investigate the sensitivity of the modeling to the spatial resolution of the boundary data, by applying multiple codes that numerically solve the NLFFF model to a sequence of vector magnetogram data at different resolutions, prepared from a single Hinode/Solar Optical Telescope Spectro-Polarimeter scan of NOAA Active Region 10978 on 2007 December 13. We analyze the resulting energies and relative magnetic helicities, employ a Helmholtz decomposition to characterize divergence errors, and quantify changes made by the codes to the vector magnetogram boundary data in order to be compatible with the force-free model. This study shows that NLFFF modeling results depend quantitatively on the spatial resolution of the input boundary data, and that using more highly resolved boundary data yields more self-consistent results. The free energies of the resulting solutions generally trend higher with increasing resolution, while relative magnetic helicity values vary significantly between resolutions for all methods. All methods require changing the horizontal components, and for some methods also the vertical components, of the vector magnetogram boundary field in excess of nominal uncertainties in the data. The solutions produced by the various methods are significantly different at each resolution level. We continue to recommend verifying agreement between the modeled field lines and corresponding coronal loop images before any NLFFF model is used in a scientific setting.

  5. Effect of Electric Field Gradient on Sub-nanometer Spatial Resolution of Tip-enhanced Raman Spectroscopy

    PubMed Central

    Meng, Lingyan; Yang, Zhilin; Chen, Jianing; Sun, Mengtao

    2015-01-01

    Tip-enhanced Raman spectroscopy (TERS) with sub-nanometer spatial resolution has been recently demonstrated experimentally. However, the physical mechanism underlying is still under discussion. Here we theoretically investigate the electric field gradient of a coupled tip-substrate system. Our calculations suggest that the ultra-high spatial resolution of TERS can be partially attributed to the electric field gradient effect owning to its tighter spatial confinement and sensitivity to the infrared (IR)-active of molecules. Particularly, in the case of TERS of flat-lying H2TBPP molecules,we find the electric field gradient enhancement is the dominating factor for the high spatial resolution, which qualitatively coincides with previous experimental report. Our theoretical study offers a new paradigm for understanding the mechanisms of the ultra-high spatial resolution demonstrated in tip-enhanced spectroscopy which is of importance but neglected. PMID:25784161

  6. Flexible hydrological modeling - Disaggregation from lumped catchment scale to higher spatial resolutions

    NASA Astrophysics Data System (ADS)

    Tran, Quoc Quan; Willems, Patrick; Pannemans, Bart; Blanckaert, Joris; Pereira, Fernando; Nossent, Jiri; Cauwenberghs, Kris; Vansteenkiste, Thomas

    2015-04-01

    Based on an international literature review on model structures of existing rainfall-runoff and hydrological models, a generalized model structure is proposed. It consists of different types of meteorological components, storage components, splitting components and routing components. They can be spatially organized in a lumped way, or on a grid, spatially interlinked by source-to-sink or grid-to-grid (cell-to-cell) routing. The grid size of the model can be chosen depending on the application. The user can select/change the spatial resolution depending on the needs and/or the evaluation of the accuracy of the model results, or use different spatial resolutions in parallel for different applications. Major research questions addressed during the study are: How can we assure consistent results of the model at any spatial detail? How can we avoid strong or sudden changes in model parameters and corresponding simulation results, when one moves from one level of spatial detail to another? How can we limit the problem of overparameterization/equifinality when we move from the lumped model to the spatially distributed model? The proposed approach is a step-wise one, where first the lumped conceptual model is calibrated using a systematic, data-based approach, followed by a disaggregation step where the lumped parameters are disaggregated based on spatial catchment characteristics (topography, land use, soil characteristics). In this way, disaggregation can be done down to any spatial scale, and consistently among scales. Only few additional calibration parameters are introduced to scale the absolute spatial differences in model parameters, but keeping the relative differences as obtained from the spatial catchment characteristics. After calibration of the spatial model, the accuracies of the lumped and spatial models were compared for peak, low and cumulative runoff total and sub-flows (at downstream and internal gauging stations). For the distributed models, additional

  7. Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography

    NASA Astrophysics Data System (ADS)

    Muller, Leah; Hamilton, Liberty S.; Edwards, Erik; Bouchard, Kristofer E.; Chang, Edward F.

    2016-10-01

    Objective. Electrocorticography (ECoG) has become an important tool in human neuroscience and has tremendous potential for emerging applications in neural interface technology. Electrode array design parameters are outstanding issues for both research and clinical applications, and these parameters depend critically on the nature of the neural signals to be recorded. Here, we investigate the functional spatial resolution of neural signals recorded at the human cortical surface. We empirically derive spatial spread functions to quantify the shared neural activity for each frequency band of the electrocorticogram. Approach. Five subjects with high-density (4 mm center-to-center spacing) ECoG grid implants participated in speech perception and production tasks while neural activity was recorded from the speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The cortical surface field potential was decomposed into traditional EEG frequency bands. Signal similarity between electrode pairs for each frequency band was quantified using a Pearson correlation coefficient. Main results. The correlation of neural activity between electrode pairs was inversely related to the distance between the electrodes; this relationship was used to quantify spatial falloff functions for cortical subdomains. As expected, lower frequencies remained correlated over larger distances than higher frequencies. However, both the envelope and phase of gamma and high gamma frequencies (30-150 Hz) are largely uncorrelated (<90%) at 4 mm, the smallest spacing of the high-density arrays. Thus, ECoG arrays smaller than 4 mm have significant promise for increasing signal resolution at high frequencies, whereas less additional gain is achieved for lower frequencies. Significance. Our findings quantitatively demonstrate the dependence of ECoG spatial resolution on the neural frequency of interest. We demonstrate that this relationship is consistent across patients and

  8. Why Is Non-thermal Line Broadening of Lower Transition Region Lines Independent of Spatial Resolution?

    NASA Astrophysics Data System (ADS)

    De Pontieu, B.; Mcintosh, S. W.; Martínez-Sykora, J.; Peter, H.; Pereira, T. M. D.

    2014-12-01

    Spectral observations of the solar transition region (TR) and corona typically show broadening of the spectral lines beyond what is expected from thermal and instrumental broadening. The remaining non-thermal broadening is significant (10-30 km/s), correlated with the intensity, and has been attributed to waves, macro and micro turbulence, nanoflares, etc... Here we study spectra of the low TR Si IV 1403 Angstrom line obtained at high spatial and spectral resolution with the Interface Region Imaging Spectrograph (IRIS). We find that the large improvement in spatial resolution (0.33 arcsec) of IRIS compared to previous spectrographs (2 arcsec) does not resolve the non-thermal line broadening which remains at pre-IRIS levels of 20 km/s. This surprising invariance to spatial resolution indicates that the physical processes behind the non-thermal line broadening either occur along the line-of-sight (LOS) and/or on spatial scales (perpendicular to the LOS) smaller than 250 km. Both effects appear to play a role. Comparison with IRIS chromospheric observations shows that, in regions where the LOS is more parallel to the field, magneto-acoustic shocks driven from below impact the low TR leading to strong non-thermal line broadening from line-of-sight integration across the shock at the time of impact. This scenario is confirmed by advanced MHD simulations. In regions where the LOS is perpendicular to the field, the prevalence of small-scale twist is likely to play a significant role in explaining the invariance and the correlation with intensity.

  9. A new vehicle emission inventory for China with high spatial and temporal resolution

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Huo, H.; Zhang, Q.; Yao, Z. L.; Wang, X. T.; Yang, X. F.; Liu, H.; He, K. B.

    2013-12-01

    This study is the first in a series of papers that aim to develop high-resolution emission databases for different anthropogenic sources in China. Here we focus on on-road transportation. Because of the increasing impact of on-road transportation on regional air quality, developing an accurate and high-resolution vehicle emission inventory is important for both the research community and air quality management. This work proposes a new inventory methodology to improve the spatial and temporal accuracy and resolution of vehicle emissions in China. We calculate, for the first time, the monthly vehicle emissions (CO, NMHC, NOx, and PM2.5) for 2008 in 2364 counties (an administrative unit one level lower than city) by developing a set of approaches to estimate vehicle stock and monthly emission factors at county-level, and technology distribution at provincial level. We then introduce allocation weights for the vehicle kilometers traveled to assign the county-level emissions onto 0.05° × 0.05° grids based on the China Digital Road-network Map (CDRM). The new methodology overcomes the common shortcomings of previous inventory methods, including neglecting the geographical differences between key parameters and using surrogates that are weakly related to vehicle activities to allocate vehicle emissions. The new method has great advantages over previous methods in depicting the spatial distribution characteristics of vehicle activities and emissions. This work provides a better understanding of the spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.

  10. Optical lens-shift design for increasing spatial resolution of 3D ToF cameras

    NASA Astrophysics Data System (ADS)

    Lietz, Henrik; Hassan, M. Muneeb; Eberhardt, Jörg

    2017-02-01

    Sensor resolution of 3D time-of-flight (ToF) outdoor-capable cameras is strongly limited because of its large pixel dimensions. Computational imaging permits enhancement of the optical system's resolving power without changing physical sensor properties. Super-resolution (SR) algorithms superimpose several sub-pixel-shifted low-resolution (LR) images to overcome the system's limited spatial sampling rate. In this paper, we propose a novel opto-mechanical system to implement sub-pixel shifts by moving an optical lens. This method is more flexible in terms of implementing SR techniques than current sensor-shift approaches. In addition, we describe a SR observation model that has been optimized for the use of LR 3D ToF cameras. A state-of-the-art iteratively reweighted minimization algorithm executes the SR process. It is proven that our method achieves nearly the same resolution increase as if the pixel area would be halved physically. Resolution enhancement is measured objectively for amplitude images of a static object scene.

  11. Applications of Full-Field X-ray Microscopy for High Spatial Resolution Magnetic Imaging

    NASA Astrophysics Data System (ADS)

    Denbeaux, Gregory; Chao, Weilun; Fischer, Peter; Kusinski, Greg; Le Gros, Mark; Pearson, Angelic; Schneider, Gerd

    2001-03-01

    The XM-1 soft x-ray microscope, located at the Advanced Light Source at Lawrence Berkeley National Laboratory has recently been established as a tool for high-resolution imaging of magnetic domains. It is a "conventional" full-field transmission microscope which is able to achieve a resolution of 25 nm by using high-precision zone plates. It uses off-axis bend magnet radiation to illuminate samples with elliptically polarized light. When the illumination energy is tuned to absorption edges of specific elements, it can be used as an element-specific probe of magnetism on a 25 nm scale with a contrast provided by magnetic circular dichroism. The illumination energy can be tuned between 250-850 eV. This allows imaging of specific elements including chromium, iron and cobalt. The spectral resolution has been shown to be E/DE = 500-700. This spectral resolution allows a high sensitivity so that magnetization has been imaged within layers as thin as 3 nm. Since this is a photon based magnetic microscopy, fields can be applied to the sample even during imaging without affect ng the spatial resolution. Recent magnetic imaging results will be shown.

  12. The ORCA West Coast Regional Project - Atmospheric Top-Down Modeling to constrain Regional Carbon Budgets at high Temporal and Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Goeckede, M.; Michalak, A. M.; Vickers, D.; Turner, D.; Law, B.

    2008-12-01

    The ORCA project aims at determining the regional carbon balance of Oregon, California and Washington, with a special focus on the effect of disturbance history and climate variability on carbon sources and sinks. ORCA provides a regional test of the overall NACP strategy by demonstrating bottom-up and top-down modeling approaches to derive carbon balances at subregional to regional scales. The ORCA top-down modeling component has been set up to capture flux variability on the regional scale at high temporal and spatial resolution. Atmospheric transport is simulated coupling the mesoscale model WRF (Weather Research and Forecast) with the STILT (Stochastic Time Inverted Lagrangian Transport) footprint model. This setup allows identifying sources and sinks that influence atmospheric observations with highly resolved mass transport fields and realistic turbulent mixing. High-precision atmospheric CO2 concentrations are monitored as continuous time series in hourly timesteps at 5 locations within the model domain, west to east from the Pacific Coast to the Great Basin, and include two flux sites for evaluation of computed fluxes. Terrestrial biosphere carbon fluxes are simulated at an effective spatial resolution of smaller than 1km and subdaily timesteps, considering effects of ecoregion, land cover type and disturbance regime on the carbon budgets. Flux computation assimilates high-resolution remote sensing products (e.g. LandSat, MODIS) and interpolated surface meteorology (DayMet, SOGS, PRISM). We present results on regional carbon budgets for the ORCA modeling domain that have been optimized using Bayesian inversion and the information provided by the network of high-precision CO2 observations. We address the influence of spatial and temporal resolution in the general modeling setup on the findings, and test the level of detail that can be resolved by top-down modeling on the regional scale, given the uncertainties introduced by various sources for model

  13. Perceptual quality measurement for scalable video at low spatial resolution in mobile environments

    NASA Astrophysics Data System (ADS)

    Sohn, Hosik; Yoo, Hana; Kim, Cheon Seog; De Neve, Wesley; Ro, Yong Man

    2009-02-01

    Environments for the delivery and consumption of multimedia are often very heterogeneous, due to the use of various terminals in varying network conditions. One example of such an environment is a wireless network providing connectivity to a plethora of mobile devices. H.264/AVC Scalable Video Coding (SVC) can be utilized to deal with diverse usage environments. However, in order to optimally tailor scalable video content along the temporal, spatial, or perceptual quality axes, a quality metric is needed that reliably models subjective quality. The major contribution of this paper is the development of a novel quality metric for scalable video bit streams having a low spatial resolution, targeting consumption in wireless video applications. The proposed quality metric allows modeling the temporal, spatial, and perceptual quality characteristics of SVC bit streams. This is realized by taking into account several properties of the compressed bit streams, such as the temporal and spatial variation of the video content, the frame rate, and PSNR values. An extensive number of subjective experiments have been conducted to construct and verify the reliability of our quality metric. The experimental results show that the proposed quality metric is able to efficiently reflect subjective quality. Moreover, the performance of the quality metric is uniformly high for video sequences with different temporal and spatial characteristics.

  14. Quantifying the erosion effect on current carbon budget of European agricultural soils at high spatial resolution.

    PubMed

    Lugato, Emanuele; Paustian, Keith; Panagos, Panos; Jones, Arwyn; Borrelli, Pasquale

    2016-05-01

    The idea of offsetting anthropogenic CO2 emissions by increasing global soil organic carbon (SOC), as recently proposed by French authorities ahead of COP21 in the 'four per mil' initiative, is notable. However, a high uncertainty still exits on land C balance components. In particular, the role of erosion in the global C cycle is not totally disentangled, leading to disagreement whether this process induces lands to be a source or sink of CO2. To investigate this issue, we coupled soil erosion into a biogeochemistry model, running at 1 km(2) resolution across the agricultural soils of the European Union (EU). Based on data-driven assumptions, the simulation took into account also soil deposition within grid cells and the potential C export to riverine systems, in a way to be conservative in a mass balance. We estimated that 143 of 187 Mha have C erosion rates <0.05 Mg C ha(-1) yr(-1), although some hot-spot areas showed eroded SOC >0.45 Mg C ha(-1) yr(-1). In comparison with a baseline without erosion, the model suggested an erosion-induced sink of atmospheric C consistent with previous empirical-based studies. Integrating all C fluxes for the EU agricultural soils, we estimated a net C loss or gain of -2.28 and +0.79 Tg yr(-1) of CO2 eq, respectively, depending on the value for the short-term enhancement of soil C mineralization due to soil disruption and displacement/transport with erosion. We concluded that erosion fluxes were in the same order of current carbon gains from improved management. Even if erosion could potentially induce a sink for atmospheric CO2, strong agricultural policies are needed to prevent or reduce soil erosion, in order to maintain soil health and productivity.

  15. Enhanced Spatial Resolution During Locomotion and Heightened Attention in Mouse Primary Visual Cortex

    PubMed Central

    Mineault, Patrick J.; Tring, Elaine; Trachtenberg, Joshua T.

    2016-01-01

    -frequency selectivity. This means that, during a state of locomotion and heightened attention, the population activity in primary visual cortex can support better spatial acuity, a phenomenon that parallels the improved spatial resolution observed in human subjects during the allocation of spatial attention. PMID:27307228

  16. The importance of high spatial resolution for the performance of atmospheric chemistry-transport models

    NASA Astrophysics Data System (ADS)

    Mantzius Hansen, Kaj

    2010-05-01

    We have investigated the importance of spatial resolution for the performance of the Danish Eulerian Hemispheric Model (DEHM), a state-of-the-art atmospheric chemistry-transport model covering the majority of the Northern Hemisphere with a horizontal grid resolution of 150 km X 150 km. DEHM has 29 vertical layers in terrain-following sigma-coordinates extending up to a height of 100 hPa. Two-way nesting options with a nesting factor of three can be applied with higher resolution over a limited area of the model. At present the model can be run without nests or with one, two or three nests, each with resolutions of 50 km X 50 km, 16.7 km X 16.7 km, and 5.6 km X 5.6 km, respectively. The model includes a comprehensive chemistry scheme with more than 100 reactions and 67 atmospheric constituents, of which 4 relate to primary particulates (PM2.5, PM10, TSP and sea salt), other species are SOx, NOx, NHx, VOCs, and secondary inorganic particulates. DEHM is driven by meteorological data from the numerical weather prediction model MM5v3. Three simulations were performed with DEHM: one simulation with only the mother domain, one simulation with one nest over Europe, and one simulation with an additional nest covering Denmark and surrounding countries. All three simulations cover the period from 1989 to 2006. The predicted concentrations were evaluated against measurements from the EMEP monitoring network. Only sites within the innermost nest were included in the evaluation and the evaluations of the three simulations were compared to test the influence of spatial resolution on the performance of the model.

  17. Projection of the change in future extremes over Japan using a cloud-resolving model: (2) Precipitation Extremes and the results of the NHM-1km experiments

    NASA Astrophysics Data System (ADS)

    Kanada, S.; Nakano, M.; Nakamura, M.; Hayashi, S.; Kato, T.; Kurihara, K.; Sasaki, H.; Uchiyama, T.; Aranami, K.; Honda, Y.; Kitoh, A.

    2008-12-01

    In order to study changes in the regional climate in the vicinity of Japan during the summer rainy season due to global warming, experiments by a semi-cloud resolving non-hydrostatic model with a horizontal resolution of 5km (NHM-5km) have been conducted from June to October by nesting within the results of the 10-year time-integrated experiments using a hydrostatic atmospheric general circulation model with a horizontal grid of 20 km (AGCM-20km: TL959L60) for the present and future up to the year 2100. A non-hydrostatic model developed by the Japan Meteorological Agency (JMA) (JMA-NHM; Saito et al. 2001, 2006) was adopted. Detailed descriptions of the NHM-5km are shown by the poster of Nakano et al. Our results show that rainy days over most of the Japanese Islands will decrease in June and July and increase in August and September in the future climate. Especially, remarkable increases in intense precipitations such as larger than 150 - 300 mm/day are projected from the present to future climate. The 90th percentiles of regional largest values among maximum daily precipitations (R-MDPs) grow 156 to 207 mm/day in the present and future climates, respectively. It is well-known that the horizontal distribution of precipitation, especially the heavy rainfall in the vicinity of Japan, much depends on the topography. Therefore, higher resolution experiments by a cloud-resolving model with a horizontal resolution of 1km (NHM-1km) are one-way nested within the results of NHM-5km. The basic frame and design of the NHM-1km is the same as those of the NHM-5km, but the topography is finer and no cumulus parameterization is used in the NHM-1km experiments. The NHM-1km, which treats the convection and cloud microphysics explicitly, can represent not only horizontal distributions of rainfall in detail but also the 3-dimensional structures of meso-beta-scale convective systems (MCSs). Because of the limitation of computation resources, only heavy rainfall events that rank in top

  18. HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEWTRON DETECTORS

    SciTech Connect

    FISHER,RK

    2002-10-01

    OAK B202 HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEWTRON DETECTORS. Bubble detectors, which can detect neutrons with a spatial resolution of 5 to 30 {micro}, are a promising approach to high-resolution imaging of NIF target plasmas. Gel bubble detectors were used in successful proof-of-principle imaging experiments on OMEGA. Until recently, bubble detectors appeared to be the only approach capable of achieving neutron images of NIF targets with the desired 5 {micro} spatial resolution in the target plane. In 2001, NIF reduced the required standoff distance from the target, so that diagnostic components can now be placed as close as 10 cm to the target plasma. This will allow neutron imaging with higher magnification and may make it possible to obtain 5 {micro}m resolution images on NIF using deuterated scintillators. Having accomplished all that they can hope to on OMEGA using gel detectors, they suggested that the 2002 NLUF shots be used to allow experimental tests of the spatial resolution of the CEA-built deuterated scintillators. The preliminary CEA data from the June 2002 run appears to show the spatial resolution using the deuterated scintillator detector array is improved over that obtained in earlier experiments using the proton-based scintillators. Gel detectors, which consist of {approx} 10 {micro}m diameter drops of bubble detector liquid suspended in an inactive support gel that occupies {approx} 99% of the detector volume, were chosen for the initial tests on OMEGA since they are easy to use. The bubbles could be photographed several hours after the neutron exposure. Imaging NIF target plasmas at neutron yields of 10{sup 15} will require a higher detection efficiency detector. Using a liquid bubble chamber detector should result in {approx} 1000 times higher neutron detection efficiency which is comparable to that possible using scintillation detectors. A pressure-cycled liquid bubble detector will require a light

  19. Nanoscale Spatial Organization of Prokaryotic Cells Studied by Super-Resolution Optical Microscopy

    NASA Astrophysics Data System (ADS)

    McEvoy, Andrea Lynn

    All cells spatially organize their interiors, and this arrangement is necessary for cell viability. Until recently, it was believed that only eukaryotic cells spatially segregate their components. However, it is becoming increasingly clear that bacteria also assemble their proteins into complex patterns. In eukaryotic cells, spatial organization arises from membrane bound organelles as well as motor transport proteins which can move cargos within the cell. To date, there are no known motor transport proteins in bacteria and most microbes lack membrane bound organelles, so it remains a mystery how bacterial spatial organization emerges. In hind-sight it is not surprising that bacteria also exhibit complex spatial organization considering much of what we have learned about the basic processes that take place in all cells, such as transcription and translation was first discovered in prokaryotic cells. Perhaps the fundamental principles that govern spatial organization in prokaryotic cells may be applicable in eukaryotic cells as well. In addition, bacteria are attractive model organism for spatial organization studies because they are genetically tractable, grow quickly and much biochemical and structural data is known about them. A powerful tool for observing spatial organization in cells is the fluorescence microscope. By specifically tagging a protein of interest with a fluorescent probe, it is possible to examine how proteins organize and dynamically assemble inside cells. A significant disadvantage of this technology is its spatial resolution (approximately 250 nm laterally and 500 nm axially). This limitation on resolution causes closely spaced proteins to look blurred making it difficult to observe the fine structure within the complexes. This resolution limit is especially problematic within small cells such as bacteria. With the recent invention of new optical microscopies, we now can surpass the existing limits of fluorescence imaging. In some cases, we can

  20. The 1km estimation of Vegetation carbon budgets in South Korea using a terrestrial ecosystem model

    NASA Astrophysics Data System (ADS)

    Yoo, S.; Ito, A.; Lee, W.; Son, Y.; Kwak, D.; Oh, S.; Song, Y.; Lee, S.; Choi, S.

    2012-12-01

    Terrestrial ecosystem can store atmospheric carbon dioxide (CO2), one of the major factors of global warming, in vegetation and soils through photosynthesis process. Human induced CO2 emission has been rapidly increased by industrialization. On the current situation, Terrestrial ecosystem could be regarded as one of the major sinks of CO2 for mitigating global warming. So it is very important to quantify carbon dynamics and budget for preparing adaptation measures to climate change. Terrestrial ecosystem models have been developed and used for investigating the terrestrial carbon dynamics and quantifying budget. In this study, we simulated biogeochemistry model, VISIT, in whole South Korea territory to quantify ecosystem carbon budgets. Before simulating this model, we modified model parameters such as maximum photosynthetic rate and phonological parameters with flux measurement data. And then, we prepared high resolution input variables for simulation from reliable national source. As a result, the model estimated the vegetation ecosystems in South Korea are a net carbon sink, with a value of 3.51 Tg C year-1 during the period 1999-2008. Compared with the anthropogenic emission of South Korea, vegetation ecosystems offset 3.3% of human emissions. Spatially, evident latitudinal and topographical gradients were found in all estimates over entire areas due to the environmental difference surrounding ecosystems. In addition, seasonal and inter-annual variability could be found in the estimates, especially biomass growth and carbon uptake, in consequence of the variation of annual weather conditions. However, to achieve a reliable estimate of a carbon budget, the result should be examined and validated carefully by the independent approaches. And also, to overcome the uncertainties in the simulation model, we need to develop a method for consideration of disturbances, such as land-use change, fertilizing, timber production, and air pollution. This modeling approach can

  1. Ultrahigh-spatial-resolution chemical and magnetic imaging by laser-based photoemission electron microscopy

    SciTech Connect

    Taniuchi, Toshiyuki Kotani, Yoshinori; Shin, Shik

    2015-02-15

    We report the first experiments carried out on a new chemical and magnetic imaging system, which combines the high spatial resolution of a photoemission electron microscope (PEEM) with a continuous-wave deep-ultraviolet laser. Threshold photoemission is sensitive to the chemical and magnetic structures of the surface of materials. The spatial resolution of PEEM is limited by space charging when using pulsed photon sources as well as aberrations in the electron optics. We show that the use of a continuous-wave laser enabled us to overcome such a limit by suppressing the space-charge effect, allowing us to obtain a resolution of approximately 2.6 nm. With this system, we demonstrated the imaging of surface reconstruction domains on Si(001) by linear dichroism with normal incidence of the laser beam. We also succeeded in magnetic imaging of thin films with the use of magnetic circular dichroism near the Fermi level. The unique features of the ultraviolet laser will give us fast switching of the incident angles and polarizations of the photon source, which will be useful for the characterization of antiferromagnetic materials as well as ferromagnetic materials.

  2. Increasing spatial resolution and comparison of MR imaging sequences for the inner ear

    NASA Astrophysics Data System (ADS)

    Snyder, Carl J.; Bolinger, Lizann; Rubinstein, Jay T.; Wang, Ge

    2002-04-01

    The size and location of the cochlea and cochlear nerve are needed to assess the feasibility of cochlea implantation, provide information for surgical planning, and aid in construction of cochlear models. Models of implant stimulation incorporating anatomical and physiological information are likely to provide a better understanding of the biophysics of information transferred with cochlear implants and aid in electrode design and arrangement on cochlear implants. Until recently MR did not provide the necessary image resolution and suffered from long acquisition times. The purpose of this study was to optimize both Fast Spin Echo (FSE) and Steady State Free Precession (FIESTA) imaging scan parameters for the inner ear and comparatively examine both for improved image quality and increased spatial resolution. Image quality was determined by two primary measurements, signal to noise ratio (SNR), and image sharpness. Optimized parameters for FSE were 120ms, 3000ms, 64, and 32.25kHz for the TE, TR, echo train length, and bandwidth, respectively. FIESTA parameters were optimized to 2.7, 5.5ms, 70 degree(s), and 62.5kHz, for TE, TR, flip angle, and bandwidth, respectively. While both had the same in-plane spatial resolution, 0.625mm, FIESTA data shows higher SNR per acquisition time and better edge sharpness.

  3. A Compact "Water Window" Microscope with 60 nm Spatial Resolution for Applications in Biology and Nanotechnology.

    PubMed

    Wachulak, Przemyslaw; Torrisi, Alfio; Nawaz, Muhammad F; Bartnik, Andrzej; Adjei, Daniel; Vondrová, Šárka; Turňová, Jana; Jančarek, Alexandr; Limpouch, Jiří; Vrbová, Miroslava; Fiedorowicz, Henryk

    2015-10-01

    Short illumination wavelength allows an extension of the diffraction limit toward nanometer scale; thus, improving spatial resolution in optical systems. Soft X-ray (SXR) radiation, from "water window" spectral range, λ=2.3-4.4 nm wavelength, which is particularly suitable for biological imaging due to natural optical contrast provides better spatial resolution than one obtained with visible light microscopes. The high contrast in the "water window" is obtained because of selective radiation absorption by carbon and water, which are constituents of the biological samples. The development of SXR microscopes permits the visualization of features on the nanometer scale, but often with a tradeoff, which can be seen between the exposure time and the size and complexity of the microscopes. Thus, herein, we present a desk-top system, which overcomes the already mentioned limitations and is capable of resolving 60 nm features with very short exposure time. Even though the system is in its initial stage of development, we present different applications of the system for biology and nanotechnology. Construction of the microscope with recently acquired images of various samples will be presented and discussed. Such a high resolution imaging system represents an interesting solution for biomedical, material science, and nanotechnology applications.

  4. Prospects for higher spatial resolution quantitative X-ray analysis using transition element L-lines

    NASA Astrophysics Data System (ADS)

    Statham, P.; Holland, J.

    2014-03-01

    Lowering electron beam kV reduces electron scattering and improves spatial resolution of X-ray analysis. However, a previous round robin analysis of steels at 5 - 6 kV using Lα-lines for the first row transition elements gave poor accuracies. Our experiments on SS63 steel using Lα-lines show similar biases in Cr and Ni that cannot be corrected with changes to self-absorption coefficients or carbon coating. The inaccuracy may be caused by different probabilities for emission and anomalous self-absorption for the La-line between specimen and pure element standard. Analysis using Ll(L3-M1)-lines gives more accurate results for SS63 plausibly because the M1-shell is not so vulnerable to the atomic environment as the unfilled M4,5-shell. However, Ll-intensities are very weak and WDS analysis may be impractical for some applications. EDS with large area SDD offers orders of magnitude faster analysis and achieves similar results to WDS analysis with Lα-lines but poorer energy resolution precludes the use of Ll-lines in most situations. EDS analysis of K-lines at low overvoltage is an alternative strategy for improving spatial resolution that could give higher accuracy. The trade-off between low kV versus low overvoltage is explored in terms of sensitivity for element detection for different elements.

  5. Effects of spatial resolution and spectral purity on transvenous coronary angiography images

    SciTech Connect

    Chapman, D.; Thomlinson, W.; Gumer, N.F.

    1994-11-01

    Measurements have been made on the National Synchrotron Light Source (NSLS) Coronary Angiography X17B2 beamline under ideal and real imaging conditions to investigate the optimal imaging conditions for spatial resolution and spectral purity. The spatial resolution tests were performed using two multielement Si(Li) detectors (600 element, 0.5mm, pixel-pixel spacing; 1200 element, 0.25mm pixel-pixel spacing. Images were taken of phantoms containing iodine contrast agent over a wide range of incident beam absorption conditions. Patient images were also obtained using the same viewing projection with both detectors. Harmonics present in the imaging beam can be reduced by operating the superconducting wiggler source at reduced field strength. At regions of high absorption in the patient, the harmonics present can contribute to the detected signal. Iodine phantom images were obtained at a wiggler field strength of 3 Tesla (E{sub c}=13.3keV) and 4 Tesla (E{sub c}= I 7.8keV) for comparison. As before, patient images were obtained using the same projection at both wiggler fields. Results of the detector resolution and wiggler eld measurements will be presented for the phantoms as well as the patient scans.

  6. The influence of spectral and spatial resolution in classification approaches: Landsat TM data vs. Hyperspectral data

    NASA Astrophysics Data System (ADS)

    Rodríguez-Galiano, Víctor; Garcia-Soldado, Maria José; Chica-Olmo, Mario

    The importance of accurate and timely information describing the nature and extent of land and natural resources is increasing especially in rapidly growing metropolitan areas. While metropolitan area decision makers are in constant need of current geospatial information on patterns and trends in land cover and land use, relatively little researchers has investigated the influence of the satellite data resolution for monitoring geo-enviromental information. In this research a suite of remote sensing and GIS techniques is applied in a land use mapping study. The main task is to asses the influence of the spatial and spectral resolution in the separability between classes and in the classificatiońs accuracy. This study has been focused in a very dynamical area with respect to land use, located in the province of Granada (SE of Spain). The classifications results of the Airborne Hyperspectral Scanner (AHS, Daedalus Enterprise Inc., WA, EEUU) at different spatial resolutions: 2, 4 and 6 m and Landsat 5 TM data have been compared.

  7. Evaluation of ERTS-1 image sensor spatial resolution in photographic form

    NASA Technical Reports Server (NTRS)

    Slater, P. N. (Principal Investigator); Schowengerdt, R. A.

    1973-01-01

    The author has identified the following significant results. A coherent optical system was used to display the spatial frequency content of the amplitude image of one area of the ground as obtained in the four wavelength bands of the multispectral scanner. This enabled a rapid comparison to be made between the four bands, from which it was clear that bands 5 and 7 were preferred to the others in terms of image definition, and thus mapping and acreage estimation, for the particular agricultural area imaged. With suitable scaling it was also possible to compare the modulation, as a function of spatial frequency, of MSS bands 4 and 5 with the green (BB) and red (DD) bands of the same area from the Apollo 9, SO65 experiment. A significant result is that the modulation in the MSS amplitude imagery is 65%-90% of that in the Apollo 9 amplitude imagery. In addition, the ratio of spatial frequencies for the ERTS-1 and Apollo imagery, at which the same modulation occurs, lies between 0.55 and 0.75 for the red band. This ratio is closely related to the ratio of resolutions for the two sensors. These values corroborate statements that the resolution of the MSS imagery is better than anticipated by pre-flight predictions.

  8. Evaluation of spatial resolution of satellite data on snow cover estimates

    NASA Astrophysics Data System (ADS)

    Porhemmat, J.; Saghafian, B.

    2003-04-01

    Snow cover area is one of the most important components in snowmelt runoff modelling. Snow cover extent and its variation can not be reasonably detected by ground survey. Therefore, remote sensing is an important alternative for snow cover extent estimates and its spatial and temporal variation. Despite having many satellites scanning earth surface, most do not meet the needs of producing time series of daily snow cover needed in hydrology and water resources planning. The satellites such as SPOT and Landsat with high spatial resolution (28.5 and 10-15 meters per pixel) pass over earth every 16 and 26 days, respectively. This means that if a pass was affected by cloudy condition, the time interval of receiving a suitable image could be more than one month. However, the pass made by NOAA is every 12 hours with a nominal resolution of 1100 meters per pixel. Thus the effect of spatial resolution of remotely sensed data on accuracy of snow cover area must be assessed. This research involves selection of a high-resolution and a low-resolution sensor, which are respectively Landsat TM (Thematic Mapper) and NOAA AVHRR (Advanced Very High Resolution Radiometers). Landsat can detect small parcels of snow, which may not be detected by NOAA AVHRR. Zagross high lands, upstream of Karun river basin in southwest of Iran, is a seasonally covered by snow and are selected for the study area. Two simultaneous passes of Landsat and NOAA are chosen for evaluation of snow cover. The dates of these passes are 13 April 1997 and 18 May 1998. The first one corresponds to the early stage of snowmelt period and the second one to the end stage of snowmelt period. The whole study area corresponds to a full scene of Landsat, which cover an area of about 34000 Km2. There were many scattered and separate snow parcels on both dates. Snow area was detected by two methods. First method was interpretation and digitizing snow line on monitor screen and the second one was supervised classification

  9. 1 GHz, 1 km fiber-optic link for satellite communication integrated terminals

    NASA Astrophysics Data System (ADS)

    Pan, J. J.

    In connection with the growth of satellite communications, demands concerning satellite ground terminals are continuously changing. A description is presented of an integrated terminal concept, using a cost-effective microstrip hybrid integrated circuit, GaAs MESFET, and fiber-optic technology, with complete elimination of waveguide transmission loss. The miniature low-noise front-end, consisting of a single-gate MESFET low-noise amplifier, a dual-gate MESFET active mixer, and an injection laser diode transmitter, is capable of being integrated inside the antenna feed. Through a fiber-optic cable, the downconverter signal is sent to the signal processing facility at a distance of 1 km from the antenna site. The considered link provides the advantages of wide bandwidth, elimination of ground loop and noise pick-up, transmission security, and high-voltage (lightning) isolation.

  10. High-spatial resolution multispectral and panchromatic satellite imagery for mapping perennial desert plants

    NASA Astrophysics Data System (ADS)

    Alsharrah, Saad A.; Bruce, David A.; Bouabid, Rachid; Somenahalli, Sekhar; Corcoran, Paul A.

    2015-10-01

    The use of remote sensing techniques to extract vegetation cover information for the assessment and monitoring of land degradation in arid environments has gained increased interest in recent years. However, such a task can be challenging, especially for medium-spatial resolution satellite sensors, due to soil background effects and the distribution and structure of perennial desert vegetation. In this study, we utilised Pleiades high-spatial resolution, multispectral (2m) and panchromatic (0.5m) imagery and focused on mapping small shrubs and low-lying trees using three classification techniques: 1) vegetation indices (VI) threshold analysis, 2) pre-built object-oriented image analysis (OBIA), and 3) a developed vegetation shadow model (VSM). We evaluated the success of each approach using a root of the sum of the squares (RSS) metric, which incorporated field data as control and three error metrics relating to commission, omission, and percent cover. Results showed that optimum VI performers returned good vegetation cover estimates at certain thresholds, but failed to accurately map the distribution of the desert plants. Using the pre-built IMAGINE Objective OBIA approach, we improved the vegetation distribution mapping accuracy, but this came at the cost of over classification, similar to results of lowering VI thresholds. We further introduced the VSM which takes into account shadow for further refining vegetation cover classification derived from VI. The results showed significant improvements in vegetation cover and distribution accuracy compared to the other techniques. We argue that the VSM approach using high-spatial resolution imagery provides a more accurate representation of desert landscape vegetation and should be considered in assessments of desertification.

  11. Implications of high-spatial-resolution thermal infrared (Termoskan) data for Mars landing site selection

    NASA Technical Reports Server (NTRS)

    Betts, Bruce H.

    1994-01-01

    Thermal infrared observations of Mars from spacecraft provide physical information about the upper thermal skin depth of the surface, which is on the order of a few centimeters in depth and thus very significant for lander site selection. The Termoskan instrument onboard the Soviet Phobos '88 spacecraft acquired the highest spatial-resolution thermal infrared data obtained for Mars, ranging in resolution from 300 m to 3 km per pixel. It simultaneously obtained broadband reflected solar flux data. Although the 6 deg N - 30 deg S Termoskan coverage only slightly overlaps the nominal Mars Pathfinder target range, the implications of Termoskan data for that overlap region and the extrapolations that can be made to other regions give important clues for optimal landing site selection.

  12. THERMAL EFFECTS ON MASS AND SPATIAL RESOLUTION DURING LASER PULSE ATOM PROBE TOMOGRAPHY OF CERIUM OXIDE

    SciTech Connect

    Rita Kirchhofer; Melissa C. Teague; Brian P. Gorman

    2013-05-01

    Cerium oxide (CeO2) is an ideal surrogate material for trans-uranic elements and fission products found in nuclear fuels due to similarities in their thermal properties; therefore, cerium oxide was used to determine the best run condition for atom probe tomography (APT). Laser pulse APT is a technique that allows for spatial resolution in the nm scale and isotopic/elemental chemical identification. A systematic study of the impact of laser pulse energy and specimen base temperature on the mass resolution, measurement of stoichiometry, multiples, and evaporation mechanisms are reported in this paper. It was demonstrated that using laser pulse APT stoichiometric field evaporation of cerium oxide was achieved at 1 pJ laser pulse energy and 20 K specimen base temperature.

  13. Current source imaging for high spatial resolution magnetocardiography in normal and abnormal rat cardiac muscles

    NASA Astrophysics Data System (ADS)

    Uchida, S.; Iramina, K.; Goto, K.; Ueno, S.

    2000-05-01

    The purpose of our study was to identify the current source produced by acute ischemia and infarction. We measured magnetocardiograms (MCG) and electrocardiograms (ECG) of five male rats using a high-resolution dc superconducting quantum interference device gradiometer in a magnetically shielded room after performing coronary artery occlusion. The spatial resolution of the detecting magnetic field of our system is higher than the typical system, thus permitting the measurement of magnetic fields in small animals. Distribution of the magnetic fields B(t) and distribution of |rot B(t)|, which corresponded to the distribution of the current source, were imaged by 12-channel MCGs. As a result, the distribution of current source changes in the affected area of the myocardium during the ST segment, and amplitude of the peak significantly increased after occlusion. Our system can be used to help clarify the mechanism of the ST shift related to severe heart disease.

  14. High spatial resolution observations of 137Cs in northern Britain and Ireland from airborne geophysical survey.

    PubMed

    Scheib, Cathy; Beamish, David

    2010-09-01

    This study reports the (137)Cs data derived from three regional and national scale High Resolution Airborne Resource and Environmental Surveys (HiRES) in northern Britain and Ireland. The detailed spatial resolution, combined with the large areas these surveys collectively cover, gives insight into large-scale deposition patterns and possible subsequent re-distribution of (137)Cs on a level that was previously not possible. The largest survey area considered covers the whole of Northern Ireland. All three data sets display some clustering of higher (137)Cs activities on high ground together with regional scale NNW-SSE and NW-SE banding features. We interpret these as representing a series of rainfall interceptions of the repeated passage of the Chernobyl plume. Our observations, obtained at 200 m flight line intervals, appear to provide significant detail in relation to existing knowledge of large scale along-wind deposition of (137)Cs.

  15. Continuous monitoring of snowpack displacement at high spatial and temporal resolution with terrestrial radar interferometry

    NASA Astrophysics Data System (ADS)

    Caduff, Rafael; Wiesmann, Andreas; Bühler, Yves; Pielmeier, Christine

    2015-02-01

    Terrestrial radar interferometry is used in geotechnical applications for monitoring hazardous Earth or rock movements. In this study, we use it to continuously monitor snowpack displacements. As test site, the Dorfberg slope at Davos, Switzerland, was measured continuously during March 2014. The line of sight displacement was retrieved at a spatial resolution of millimeter to centimeter and a temporal resolution of up to 1 min independent of visibility. The results reveal several temperature-driven diurnal acceleration and deceleration cycles. The initiation of a small full-depth glide avalanche was observed after 50 cm total differential displacement. The maximum measured displacement of another differential glide area reached 43 cm/h without resulting in a full-depth avalanche even after a total measured differential displacement of 4.5 m. In regard of the difficulty to predict full-depth glide avalanches on the regional scale, the presented method has big potential for operational snow glide monitoring on critical slopes.

  16. High-Resolution Cortical Dipole Imaging Using Spatial Inverse Filter Based on Filtering Property

    PubMed Central

    2016-01-01

    Cortical dipole imaging has been developed to visualize brain electrical activity in high spatial resolution. It is necessary to solve an inverse problem to estimate the cortical dipole distribution from the scalp potentials. In the present study, the accuracy of cortical dipole imaging was improved by focusing on filtering property of the spatial inverse filter. We proposed an inverse filter that optimizes filtering property using a sigmoid function. The ability of the proposed method was compared with the traditional inverse techniques, such as Tikhonov regularization, truncated singular value decomposition (TSVD), and truncated total least squares (TTLS), in a computer simulation. The proposed method was applied to human experimental data of visual evoked potentials. As a result, the estimation accuracy was improved and the localized dipole distribution was obtained with less noise. PMID:27688747

  17. High spatial and temporal resolution photon/electron counting detector for synchrotron radiation research

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Lebedev, G. V.; Siegmund, O. H. W.; Vallerga, J. V.; Hull, J. S.; McPhate, J. B.; Jozwiak, C.; Chen, Y.; Guo, J. H.; Shen, Z. X.; Hussain, Z.

    2007-10-01

    This paper reports on the development of a high resolution electron/photon/ion imaging system which detects events with a timing accuracy of <160 ps FWHM and a two-dimensional spatial accuracy of ˜50 μm FWHM. The event counting detector uses microchannel plates for signal amplification and can sustain counting rates exceeding 1.5 MHz for evenly distributed events (0.4 MHz with 10% dead time for randomly distributed events). The detector combined with a time-of-flight angular resolved photoelectron energy analyzer was tested at a synchrotron beamline. The results of these measurements illustrate the unique capabilities of the analytical system, allowing simultaneous imaging of photoelectrons in momentum space and measurement of the energy spectrum, as well as filtering the data in user defined temporal and/or spatial windows.

  18. Optical Trapping Enabled Parallel Delivery of Biological Stimuli with High Spatial and Temporal Resolution

    PubMed Central

    Burnham, Daniel R.; Schneider, Thomas; Chiu, Daniel T.

    2013-01-01

    We have developed a method that employs nanocapsules, optical trapping, and single-pulse laser photolysis for delivering bioactive molecules to cells with both high spatial and temporal resolutions. This method is particularly suitable for a cell-culture setting, in which a single nanocapsule can be optically trapped and positioned at a pre-defined location next to the cell, followed by single-pulse laser photolysis to release the contents of the nanocapsule onto the cell. To parallelize this method such that a large array of nanocapsules can be manipulated, positioned, and photolyzed simultaneously, we have turned to the use of spatial light modulators and holographic beam shaping techniques. This paper outlines the progress we have made so far and details the issues we had to address in order to achieve efficient parallel optical manipulations of nanocapsules and particles. PMID:24465114

  19. Evaluation of high spatial resolution imaging of magnetic stray fields for early damage detection

    NASA Astrophysics Data System (ADS)

    Stegemann, Robert; Cabeza, Sandra; Pelkner, Matthias; Lyamkin, Viktor; Sonntag, Nadja; Bruno, Giovanni; Skrotzki, Birgit; Kreutzbruck, Marc

    2017-02-01

    The paper discusses the evaluation of elastic and plastic strain states in two low-carbon steels of the same steel group with high spatial resolution GMR (giant magneto resistance) sensors. The residual stress distributions of tungsten inert gas welded plates were determined by means of neutron diffraction as a reference. The normal component of local residual magnetic stray fields arise in the vicinity of the positions of maximum stress. The experiments performed on flat tensile specimen indicate that the boundaries of plastic deformations are a source of stray fields. The spatial variations of magnetic stray fields for both the weld and the tensile samples are in the order of the earths magnetic field.

  20. High-Resolution Spatial Distribution and Estimation of Access to Improved Sanitation in Kenya

    PubMed Central

    Jia, Peng; Anderson, John D.; Leitner, Michael; Rheingans, Richard

    2016-01-01

    Background Access to sanitation facilities is imperative in reducing the risk of multiple adverse health outcomes. A distinct disparity in sanitation exists among different wealth levels in many low-income countries, which may hinder the progress across each of the Millennium Development Goals. Methods The surveyed households in 397 clusters from 2008–2009 Kenya Demographic and Health Surveys were divided into five wealth quintiles based on their national asset scores. A series of spatial analysis methods including excess risk, local spatial autocorrelation, and spatial interpolation were applied to observe disparities in coverage of improved sanitation among different wealth categories. The total number of the population with improved sanitation was estimated by interpolating, time-adjusting, and multiplying the surveyed coverage rates by high-resolution population grids. A comparison was then made with the annual estimates from United Nations Population Division and World Health Organization /United Nations Children's Fund Joint Monitoring Program for Water Supply and Sanitation. Results The Empirical Bayesian Kriging interpolation produced minimal root mean squared error for all clusters and five quintiles while predicting the raw and spatial coverage rates of improved sanitation. The coverage in southern regions was generally higher than in the north and east, and the coverage in the south decreased from Nairobi in all directions, while Nyanza and North Eastern Province had relatively poor coverage. The general clustering trend of high and low sanitation improvement among surveyed clusters was confirmed after spatial smoothing. Conclusions There exists an apparent disparity in sanitation among different wealth categories across Kenya and spatially smoothed coverage rates resulted in a closer estimation of the available statistics than raw coverage rates. Future intervention activities need to be tailored for both different wealth categories and nationally

  1. Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing

    NASA Astrophysics Data System (ADS)

    Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei

    2014-03-01

    We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.

  2. HIGH-RESOLUTION SPATIAL MODELING OF DAILY WEATHER ELEMENTS FOR A CATCHMENT IN THE OREGON CASCADE MOUNTAINS, UNITED STATES

    EPA Science Inventory

    High-quality, daily meteorological data at high spatial resolution are essential for a variety of hydrologic and ecological modeling applications that support environmental risk assessments and decision making. This paper describes the development, application, and assessment of ...

  3. High spatial resolution photographs of the sun in L alpha radiation.

    NASA Technical Reports Server (NTRS)

    Prinz, D. K.

    1973-01-01

    Photographs of the sun in predominantly L alpha radiation (centered at 1215.67 A) with 3-sec spatial resolution were taken from an Aerobee rocket shortly after fourth contact by the moon on the eclipse day of July 10, 1972. This preliminary reporting of the results describes the instrument and shows two of the photographs taken. The supergranulation is manifest, and active regions and filaments are well resolved over the entire disk. Densitometer traces across the disk are presented, giving the flux incident on the earth from active regions, cell boundaries, and filaments.

  4. Matrix recrystallization for MALDI-MS imaging of maize lipids at high-spatial resolution

    SciTech Connect

    Duenas, Maria Emilia; Carlucci, Laura; Lee, Young Jin

    2016-06-27

    Matrix recrystallization is optimized and applied to improve lipid ion signals in maize embryos and leaves. A systematic study was performed varying solvent and incubation time. During this study, unexpected side reactions were found when methanol was used as a recrystallization solvent, resulting in the formation of a methyl ester of phosphatidic acid. Furthermore, using an optimum recrystallization condition with isopropanol, there is no apparent delocalization demonstrated with a transmission electron microscopy (TEM) pattern and maize leaf images obtained at 10 μm spatial resolution.

  5. Radiometric Calibration Assessment of Commercial High Spatial Resolution Multispectral Image Products

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara; Aaron, David; Thome, Kurtis

    2006-01-01

    Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities can better understand their properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, satellite at-sensor radiance values were compared to those estimated by each independent team member to determine the sensor's radiometric accuracy. The combined results of this evaluation provide the user community with an independent assessment of these commercially available high spatial resolution sensors' absolute calibration values.

  6. Extraction Of Hydrological Parameters Using High Spatial Resolution Remote Sensing For KINEROS2 Model

    NASA Astrophysics Data System (ADS)

    Sadeh, Yuval; Blumberg, Dan G.; Cohen, Hai; Morin, Efrat; Maman, Shimrit

    2016-04-01

    Arid and semi-arid environments cover more than one-third of Earth's land surface; these environments are especially vulnerable to flash flood hazards due to the poor understanding of the phenomenon and the lack of meteorological, geomorphological, and hydrological data. For many years, catchment characteristics have been observed using point-based measurements such as rain gauges and soil sample analysis. Furthermore, flood modeling techniques are not always available in ungauged catchments or in regions where data are sparse. In comparison to point-based observations, using remote sensing technologies can provide continuous spatial hydrological parameters and variables. The advances in remote sensing technologies including weather radar-based quantitative precipitation estimation (QPE) and Earth observing satellites, provide new geo-spatial data using high spatial and temporal resolution for basin-scale geomorphological analysis and hydrological models. This study used high spatial resolution remote sensing to extract some of the main input parameters of Kinematic Runoff and Erosion Model (KINEROS2), for the arid medium size Rahaf watershed (76 km^2}), located in the Judean Desert, Israel. During the research a high resolution land cover map of Rahaf basin was created using WorldView-2 multispectral satellite imageries; surface roughness was estimated using SIR-C and COSMO-SkyMed Synthetic Aperture Radar (SAR) spaceborne sensors; and rainstorm characteristics were extracted from ground-based meteorological radar. Finally, all the remotely sensed extracted data were used as inputs for the KINEROS2 through Automated Geospatial Watershed Assessment (AGWA) tool. The model-simulated peak flow and volume were then compared to runoff measurements from the watershed's pouring point. This research demonstrates the ability of using remotely sensed extracted data as inputs for the KINEROS2 model. Using AGWA, each simulated storm was successfully calibrated, when the average

  7. Cumulus cloud base height estimation from high spatial resolution Landsat data - A Hough transform approach

    NASA Technical Reports Server (NTRS)

    Berendes, Todd; Sengupta, Sailes K.; Welch, Ron M.; Wielicki, Bruce A.; Navar, Murgesh

    1992-01-01

    A semiautomated methodology is developed for estimating cumulus cloud base heights on the basis of high spatial resolution Landsat MSS data, using various image-processing techniques to match cloud edges with their corresponding shadow edges. The cloud base height is then estimated by computing the separation distance between the corresponding generalized Hough transform reference points. The differences between the cloud base heights computed by these means and a manual verification technique are of the order of 100 m or less; accuracies of 50-70 m may soon be possible via EOS instruments.

  8. Properties of Be Star Disks at High Spatial Resolution Invited Review

    NASA Astrophysics Data System (ADS)

    Schaefer, G. H.

    2016-11-01

    This paper presents an observational overview of the properties of Be star disks. The presence of circumstellar gas around Be stars can be inferred from observations of the double-peaked emission line profiles, infrared excesses, and linear polarization. High spatial resolution interferometric observations have confirmed that the gas exists in a flattened disk. The geometry and angular size of the disks at different wavelengths can be used to probe the density structure. The combination of spectroscopy and interferometry can be used to study the kinematics of the rotating disks and investigate asymmetries that arise from one-armed density waves in the circumstellar material.

  9. Matrix Recrystallization for MALDI-MS Imaging of Maize Lipids at High-Spatial Resolution.

    PubMed

    Dueñas, Maria Emilia; Carlucci, Laura; Lee, Young Jin

    2016-09-01

    Matrix recrystallization is optimized and applied to improve lipid ion signals in maize embryos and leaves. A systematic study was performed varying solvent and incubation time. During this study, unexpected side reactions were found when methanol was used as a recrystallization solvent, resulting in the formation of a methyl ester of phosphatidic acid. Using an optimum recrystallization condition with isopropanol, there is no apparent delocalization demonstrated with a transmission electron microscopy (TEM) pattern and maize leaf images obtained at 10 μm spatial resolution. Graphical Abstract ᅟ.

  10. Matrix Recrystallization for MALDI-MS Imaging of Maize Lipids at High-Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Dueñas, Maria Emilia; Carlucci, Laura; Lee, Young Jin

    2016-09-01

    Matrix recrystallization is optimized and applied to improve lipid ion signals in maize embryos and leaves. A systematic study was performed varying solvent and incubation time. During this study, unexpected side reactions were found when methanol was used as a recrystallization solvent, resulting in the formation of a methyl ester of phosphatidic acid. Using an optimum recrystallization condition with isopropanol, there is no apparent delocalization demonstrated with a transmission electron microscopy (TEM) pattern and maize leaf images obtained at 10 μm spatial resolution.

  11. Implementation of a Gaussian Beam Laser and Aspheric Optics for High Spatial Resolution MALDI Imaging MS

    PubMed Central

    Zavalin, Andre; Yang, Junhai; Haase, Andreas; Holle, Armin; Caprioli, Richard

    2014-01-01

    We have investigated the use of a Gaussian beam laser for MALDI Imaging Mass Spectrometry to provide a precisely defined laser spot of 5 µm diameter on target using a commercial MALDI TOF instrument originally designed to produce a 20 µm diameter laser beam spot at its smallest setting. A Gaussian beam laser was installed in the instrument in combination with an aspheric focusing lens. This ion source produced sharp ion images at 5 µm spatial resolution with signals of high intensity as shown for images from thin tissue sections of mouse brain. PMID:24692046

  12. Soft X-ray microscope with nanometer spatial resolution and its applications

    NASA Astrophysics Data System (ADS)

    Wachulak, P. W.; Torrisi, A.; Bartnik, A.; Wegrzynski, L.; Fok, T.; Patron, Z.; Fiedorowicz, H.

    2016-12-01

    A compact size microscope based on nitrogen double stream gas puff target soft X-ray source, which emits radiation in water-window spectral range at the wavelength of λ = 2.88 nm is presented. The microscope employs ellipsoidal grazing incidence condenser mirror for sample illumination and silicon nitride Fresnel zone plate objective for object magnification and imaging. The microscope is capable of capturing water-window images of objects with 60 nm spatial resolution and exposure time as low as a few seconds. Details about the microscopy system as well as some examples of different applications from various fields of science, are presented and discussed.

  13. The beauty of resolution: The SN Ib factory NGC 2770 spatially resolved

    NASA Astrophysics Data System (ADS)

    Thöne, C. C.; Christensen, L.; Gorosabel, J.; de Ugarte Postigo, A.

    2015-02-01

    The late-type spiral NGC 2770 hosted 3 Type Ib supernovae (SNe) in or next to star-forming regions in its outer spiral arms. We study the properties of the SN sites and the galaxy at different spatial resolutions to infer propeties of the SN progenitors and the SF history of the galaxy. Several 3D techniques are used and, for the first time, we present images of metallicity, shocks and stellar population ages from OSIRIS/GTC imaging with tunable narrowband filters.

  14. A high spatial resolution Stokes polarimeter for motional Stark effect imaging

    SciTech Connect

    Thorman, Alex; Michael, Clive; Howard, John

    2013-06-15

    We describe an enhanced temporally switched interfero-polarimeter that has been successfully deployed for high spatial resolution motional Stark effect imaging on the KSTAR superconducting tokamak. The system utilizes dual switching ferroelectric liquid crystal waveplates to image the full Stokes vector of elliptically polarized and Doppler-shifted Stark-Zeeman Balmer-alpha emission from high energy neutral beams injected into the magnetized plasma. We describe the optical system and compare its performance against a Mueller matrix model that takes account of non-ideal performance of the switching ferro-electric liquid crystal waveplates and other polarizing components.

  15. Multi-resolution analysis of high density spatial and temporal cloud inhomogeneity fields from HOPE campaign

    NASA Astrophysics Data System (ADS)

    Lakshmi Madhavan, Bomidi; Deneke, Hartwig; Macke, Andreas

    2015-04-01

    Clouds are the most complex structures in both spatial and temporal scales of the Earth's atmosphere that effect the downward surface reaching fluxes and thus contribute to large uncertainty in the global radiation budget. Within the framework of High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE), a high density network of 99 pyranometer stations was set up around Jülich, Germany (~ 10 × 12 km2 area) during April to July 2013 to capture the small-scale variability in cloud induced radiation fields at the surface. In this study, we perform multi-resolution analysis of the downward solar irradiance variability at the surface from the pyranometer network to investigate the dependence of temporal and spatial averaging scales on the variance and spatial correlation for different cloud regimes. Preliminary results indicate that correlation is strongly scale-dependent where as the variance is dependent on the length of averaging period. Implications of our findings will be useful for quantifying the effect of spatial collocation while validating the satellite inferred solar irradiance estimates, and also to explore the link between cloud structure and radiation. We will present the details of our analysis and results.

  16. Recent advances in the determination of a high spatial resolution geopotential model using chronometric geodesy

    NASA Astrophysics Data System (ADS)

    Lion, Guillaume; Guerlin, Christine; Bize, Sébastien; Wolf, Peter; Delva, Pacôme; Panet, Isabelle

    2016-04-01

    Current methods to determine the geopotential are mainly based on indirect approaches using gravimetric, gradiometric and topographic data. Satellite missions (GRACE, GOCE) have contributed significantly to improve the knowledge of the Earth's gravity field with a spatial resolution of about 90 km, but it is not enough to access, for example, to the geoid variation in hilly regions. While airborne and ground-based gravimeters provide the high resolution, the problem of these technics is that the accuracy is hampered by the heterogeneous coverage of gravity data (ground and offshore). Recent technological advances in atomic clocks are opening new perspectives in the determination of the geopotential. To date, the best of them reach a stability of 1.6×10-18 (NIST, RIKEN + Univ. Tokyo) in just 7 hours of integration, an accuracy of 2.0×10-18 (JILA). Using the relation of the relativistic gravitational redshift, this corresponds to a determination of geopotential differences at the 0.1 m²/s² level (or 1 cm in geoid height). In this context, the present work aims at evaluating the contribution of optical atomic clocks for the determination of the geopotential at high spatial resolution. To do that, we have studied a test area surrounding the Massif Central in the middle of southern of France. This region, consists in low mountain ranges and plateaus, is interesting because, the gravitational field strength varies greatly from place to place at high resolution due to the relief. Here, we present the synthetic tests methodology: generation of synthetic gravity and potential data, then estimation of the potential from these data using the least-squares collocation and assessment of the clocks contribution. We shall see how the coverage of the data points (realistic or not) can affect the results, and discuss how to quantify the trade-off between the noise level and the number of data points used.

  17. COMPLEX ORGANIC MOLECULES AT HIGH SPATIAL RESOLUTION TOWARD ORION-KL. II. KINEMATICS

    SciTech Connect

    Friedel, D. N.; Widicus Weaver, S. L. E-mail: susanna.widicus.weaver@emory.edu

    2012-08-01

    It has recently been suggested that chemical processing can shape the spatial distributions of complex molecules in the Orion-KL region and leads to the nitrogen-oxygen 'chemical differentiation' seen in previous observations of this source. Orion-KL is a very dynamic region, and it is therefore also possible that physical conditions can shape the molecular distributions in this source. Only high spatial resolution observations can provide the information needed to disentangle these effects. Here, we present millimeter imaging studies of Orion-KL at various beam sizes using the Combined Array for Research in Millimeter-wave Astronomy. We compare molecular images with high spatial resolution images that trace the temperature, density, and kinematics of the source in order to investigate the effects of physical conditions on molecular distributions. These observations were conducted at {lambda} = 3 mm and included transitions of ethyl cyanide [C{sub 2}H{sub 5}CN], methyl formate [HCOOCH{sub 3}], formic acid [HCOOH], acetone [(CH{sub 3}){sub 2}CO], SiO, and methanol [CH{sub 3}OH]. We find differences in the molecular distributions as a function of each of the aforementioned physical factors. These results indicate that acetone may be produced by chemical processing and is robust to large changes in physical conditions, while formic acid is readily destroyed by gas-phase processing in warm and dense regions. We also find that while the spatial distributions of ethyl cyanide and methyl formate are not distinct as is suggested by the concept of 'chemical differentiation', local physical conditions shape the small-scale emission structure for these species.

  18. Use of UAS Remote Sensing Data (AggieAir) to Estimate Crop ET at High Spatial Resolution

    NASA Astrophysics Data System (ADS)

    ELarab, M.; Torres, A.; Nieto Solana, H.; Kustas, W. P.; Song, L.; Alfieri, J. G.; Prueger, J. H.; McKee, L.; Anderson, M. C.; Jensen, A.; McKee, M.; Alsina, M. M.

    2015-12-01

    Estimation of the spatial distribution of evapotranspiration (ET) based on remotely sensed imagery has become useful for managing water in irrigated agricultural at various spatial scales. Currently, data acquired by conventional satellites (Landsat, ASTER, etc.) lack the needed spatial resolution to capture variability of interest to support evapotranspiration estimates. In this study, an unmanned aerial system (UAS), called AggieAirTM, was used to acquire high-resolution imagery in the visual, near infrared (0.15m resolution) and thermal infrared spectra (0.6m resolution). AggieAir flew over two study sites in Utah and Central Valley of California. The imagery was used as input to a surface energy balance model based on the Mapping Evapotranspiration with Internalized Calibration (METRIC) modeling approach. The discussion will highlight the ET estimation methodologies and the implications of having high resolution ET maps.

  19. Delineation of river bed-surface patches by clustering high-resolution spatial grain size data

    NASA Astrophysics Data System (ADS)

    Nelson, Peter A.; Bellugi, Dino; Dietrich, William E.

    2014-01-01

    The beds of gravel-bed rivers commonly display distinct sorting patterns, which at length scales of ~ 0.1 - 1 channel widths appear to form an organization of patches or facies. This paper explores alternatives to traditional visual facies mapping by investigating methods of patch delineation in which clustering analysis is applied to a high-resolution grid of spatial grain-size distributions (GSDs) collected during a flume experiment. Specifically, we examine four clustering techniques: 1) partitional clustering of grain-size distributions with the k-means algorithm (assigning each GSD to a type of patch based solely on its distribution characteristics), 2) spatially-constrained agglomerative clustering ("growing" patches by merging adjacent GSDs, thus generating a hierarchical structure of patchiness), 3) spectral clustering using Normalized Cuts (using the spatial distance between GSDs and the distribution characteristics to generate a matrix describing the similarity between all GSDs, and using the eigenvalues of this matrix to divide the bed into patches), and 4) fuzzy clustering with the fuzzy c-means algorithm (assigning each GSD a membership probability to every patch type). For each clustering method, we calculate metrics describing how well-separated cluster-average GSDs are and how patches are arranged in space. We use these metrics to compute optimal clustering parameters, to compare the clustering methods against each other, and to compare clustering results with patches mapped visually during the flume experiment.All clustering methods produced better-separated patch GSDs than the visually-delineated patches. Although they do not produce crisp cluster assignment, fuzzy algorithms provide useful information that can characterize the uncertainty of a location on the bed belonging to any particular type of patch, and they can be used to characterize zones of transition from one patch to another. The extent to which spatial information influences

  20. Effects of decreasing resolution on spectral and spatial information content in an agricultural area. [Pottawatmie study site, Iowa and Nebraska

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The effects of decreasing spatial resolution from 6 1/4 miles square to 50 miles square are described. The effects of increases in cell size is studied on; the mean and variance of spectral data; spatial trends; and vegetative index numbers. Information content changes on cadastral, vegetal, soil, water and physiographic information are summarized.

  1. Improving urban land use and land cover classification from high-spatial-resolution hyperspectral imagery using contextual information

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we propose approaches to improve the pixel-based support vector machine (SVM) classification for urban land use and land cover (LULC) mapping from airborne hyperspectral imagery with high spatial resolution. Class spatial neighborhood relationship is used to correct the misclassified ...

  2. Large patch convolutional neural networks for the scene classification of high spatial resolution imagery

    NASA Astrophysics Data System (ADS)

    Zhong, Yanfei; Fei, Feng; Zhang, Liangpei

    2016-04-01

    The increase of the spatial resolution of remote-sensing sensors helps to capture the abundant details related to the semantics of surface objects. However, it is difficult for the popular object-oriented classification approaches to acquire higher level semantics from the high spatial resolution remote-sensing (HSR-RS) images, which is often referred to as the "semantic gap." Instead of designing sophisticated operators, convolutional neural networks (CNNs), a typical deep learning method, can automatically discover intrinsic feature descriptors from a large number of input images to bridge the semantic gap. Due to the small data volume of the available HSR-RS scene datasets, which is far away from that of the natural scene datasets, there have been few reports of CNN approaches for HSR-RS image scene classifications. We propose a practical CNN architecture for HSR-RS scene classification, named the large patch convolutional neural network (LPCNN). The large patch sampling is used to generate hundreds of possible scene patches for the feature learning, and a global average pooling layer is used to replace the fully connected network as the classifier, which can greatly reduce the total parameters. The experiments confirm that the proposed LPCNN can learn effective local features to form an effective representation for different land-use scenes, and can achieve a performance that is comparable to the state-of-the-art on public HSR-RS scene datasets.

  3. Image quality phantom and parameters for high spatial resolution small-animal SPECT

    NASA Astrophysics Data System (ADS)

    Visser, Eric P.; Harteveld, Anita A.; Meeuwis, Antoi P. W.; Disselhorst, Jonathan A.; Beekman, Freek J.; Oyen, Wim J. G.; Boerman, Otto C.

    2011-10-01

    At present, generally accepted standards to characterize small-animal single photon emission tomographs (SPECT) do not exist. Whereas for small-animal positron emission tomography (PET), the NEMA NU 4-2008 guidelines are available, such standards are still lacking for small-animal SPECT. More specifically, a dedicated image quality (IQ) phantom and corresponding IQ parameters are absent. The structures of the existing PET IQ phantom are too large to fully characterize the sub-millimeter spatial resolution of modern multi-pinhole SPECT scanners, and its diameter will not fit into all scanners when operating in high spatial resolution mode. We therefore designed and constructed an adapted IQ phantom with smaller internal structures and external diameter, and a facility to guarantee complete filling of the smallest rods. The associated IQ parameters were adapted from NEMA NU 4. An additional parameter, effective whole-body sensitivity, was defined since this was considered relevant in view of the variable size of the field of view and the use of multiple bed positions as encountered in modern small-animal SPECT scanners. The usefulness of the phantom was demonstrated for 99mTc in a USPECT-II scanner operated in whole-body scanning mode using a multi-pinhole mouse collimator with 0.6 mm pinhole diameter.

  4. The design of an animal PET: flexible geometry for achieving optimal spatial resolution or high sensitivity.

    PubMed

    Weber, S; Terstegge, A; Herzog, H; Reinartz, R; Reinhart, P; Rongen, F; Müller-Gärtner, H W; Halling, H

    1997-10-01

    We present the design of a positron emission tomograph (PET) with flexible geometry dedicated to in vivo studies of small animals (TierPET). The scanner uses two pairs of detectors. Each detector consists of 400 small individual yttrium aluminum perovskite (YAP) scintillator crystals of dimensions 2 x 2 x 15 mm3, optically isolated and glued together, which are coupled to position-sensitive photomultiplier tubes (PSPMT's). The detector modules can be moved in a radial direction so that the detector-to-detector spacing can be varied. Special hardware has been built for coincidence detection, position detection, and real-time data acquisition, which is performed by a PC. The single-event data are transferred to workstations where the radioactivity distribution is reconstructed. The dimensions of the crystals and the detector layout are the result of extensive simulations which are described in this report, taking into account sensitivity, spatial resolution and additional parameters like parallax error or scatter effects. For the three-dimensional (3-D) reconstruction a genuine 3-D expectation-maximization (EM)-algorithm which can include the characteristics of the detector system has been implemented. The reconstruction software is flexible and matches the different detector configurations. The main advantage of the proposed animal PET scanner is its high flexibility, allowing the realization of various detector-system configurations. By changing the detector-to-detector spacing, the system is capable of either providing good spatial resolution or high sensitivity for dynamic studies of pharmacokinetics.

  5. High spatial resolution two-dimensional position sensitive detector for the performance of coincidence experiments

    SciTech Connect

    Ceolin, D.; Chaplier, G.; Lemonnier, M.; Garcia, G.A.; Miron, C.; Nahon, L.; Simon, M.; Leclercq, N.; Morin, P.

    2005-04-01

    A position sensitive detector (PSD) adapted to the technical and mechanical specifications of our angle and energy resolved electron-ion(s) coincidence experiments is described in this article. The device, whose principle is very similar to the one detailed by J. H. D. Eland [Meas. Sci. Technol. 5, 1501 (1994)], is composed by a set of microchannel plates and a delay line anode. The originality comes from the addition in front of the encoding surface of a ceramic disk covered by a resistive surface. The capacitive coupling between the anode and the resistive plane has the double advantage of eliminating the spatial modulations due to the lattice of the anode and also of sensitizing a greater number of electrodes, increasing thus considerably the accuracy of the position measurements. The tests carried out with a time to digital conversion module of 250 ps resolution showed that a spatial resolution better than 50 {mu}m and a dead time of 160 ns can be achieved. Typical images obtained with the help of the EPICEA and DELICIOUS coincidence setups are also shown.

  6. Overview of LBTI: a multipurpose facility for high spatial resolution observations

    NASA Astrophysics Data System (ADS)

    Hinz, P. M.; Defrère, D.; Skemer, A.; Bailey, V.; Stone, J.; Spalding, E.; Vaz, A.; Pinna, E.; Puglisi, A.; Esposito, S.; Montoya, M.; Downey, E.; Leisenring, J.; Durney, O.; Hoffmann, W.; Hill, J.; Millan-Gabet, R.; Mennesson, B.; Danchi, W.; Morzinski, K.; Grenz, P.; Skrutskie, M.; Ertel, S.

    2016-08-01

    The Large Binocular Telescope Interferometer (LBTI) is a high spatial resolution instrument developed for coherent imaging and nulling interferometry using the 14.4 m baseline of the 2×8.4 m LBT. The unique telescope design, comprising of the dual apertures on a common elevation-azimuth mount, enables a broad use of observing modes. The full system is comprised of dual adaptive optics systems, a near-infrared phasing camera, a 1-5 μm camera (called LMIRCam), and an 8-13 μm camera (called NOMIC). The key program for LBTI is the Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS), a survey using nulling interferometry to constrain the typical brightness from exozodiacal dust around nearby stars. Additional observations focus on the detection and characterization of giant planets in the thermal infrared, high spatial resolution imaging of complex scenes such as Jupiter's moon, Io, planets forming in transition disks, and the structure of active Galactic Nuclei (AGN). Several instrumental upgrades are currently underway to improve and expand the capabilities of LBTI. These include: Improving the performance and limiting magnitude of the parallel adaptive optics systems; quadrupling the field of view of LMIRcam (increasing to 20"x20"); adding an integral field spectrometry mode; and implementing a new algorithm for path length correction that accounts for dispersion due to atmospheric water vapor. We present the current architecture and performance of LBTI, as well as an overview of the upgrades.

  7. Mediterranean Land Use and Land Cover Classification Assessment Using High Spatial Resolution Data

    NASA Astrophysics Data System (ADS)

    Elhag, Mohamed; Boteva, Silvena

    2016-10-01

    Landscape fragmentation is noticeably practiced in Mediterranean regions and imposes substantial complications in several satellite image classification methods. To some extent, high spatial resolution data were able to overcome such complications. For better classification performances in Land Use Land Cover (LULC) mapping, the current research adopts different classification methods comparison for LULC mapping using Sentinel-2 satellite as a source of high spatial resolution. Both of pixel-based and an object-based classification algorithms were assessed; the pixel-based approach employs Maximum Likelihood (ML), Artificial Neural Network (ANN) algorithms, Support Vector Machine (SVM), and, the object-based classification uses the Nearest Neighbour (NN) classifier. Stratified Masking Process (SMP) that integrates a ranking process within the classes based on spectral fluctuation of the sum of the training and testing sites was implemented. An analysis of the overall and individual accuracy of the classification results of all four methods reveals that the SVM classifier was the most efficient overall by distinguishing most of the classes with the highest accuracy. NN succeeded to deal with artificial surface classes in general while agriculture area classes, and forest and semi-natural area classes were segregated successfully with SVM. Furthermore, a comparative analysis indicates that the conventional classification method yielded better accuracy results than the SMP method overall with both classifiers used, ML and SVM.

  8. Exact two-dimensional zonal wavefront reconstruction with high spatial resolution in lateral shearing interferometry

    NASA Astrophysics Data System (ADS)

    Dai, Fengzhao; Li, Jie; Wang, Xiangzhao; Bu, Yang

    2016-05-01

    A novel zonal method is proposed for exact discrete reconstruction of a two-dimensional wavefront with high spatial resolution for lateral shearing interferometry. Four difference wavefronts measured in the x and y shear directions are required. Each of the two shear directions is measured twice with different shear amounts. The shear amounts of the second measurements of the x and y directions are Sx+1 pixels and Sy+1 pixels, where Sx pixels and Sy pixels are the shear amounts of the first measurements in the x and y directions, respectively. The shear amount in each direction can be chosen freely, provided that it is below a maximum value determined by the pupil shape and the number of samples N in that direction; thus, the choices are not limited by the more stringent condition required by previous methods, namely, that the shear amounts must be divisors of N. This method can exactly reconstruct any wavefront at evaluation points up to an arbitrary constant if the data is noiseless, and high spatial resolution can be achieved even with large shear amounts. The method is applicable not only to square pupils, but also to general pupil shapes if a sufficient number of Gerchberg iterations are employed. In this study, the validity and capability of the method were confirmed by numerical experiments. In addition, the experiments demonstrated that the method is stable with respect to noise in the difference wavefronts.

  9. Enhanced Sensitivity for High Spatial Resolution Lipid Analysis by Negative Ion Mode MALDI Imaging Mass Spectrometry

    PubMed Central

    Angel, Peggi M.; Spraggins, Jeffrey M.; Baldwin, H. Scott; Caprioli, Richard

    2012-01-01

    We have achieved enhanced lipid imaging to a ~10 μm spatial resolution using negative ion mode matrix assisted laser desorption ionization (MALDI) imaging mass spectrometry, sublimation of 2,5-dihydroxybenzoic acid as the MALDI matrix and a sample preparation protocol that uses aqueous washes. We report on the effect of treating tissue sections by washing with volatile buffers at different pHs prior to negative ion mode lipid imaging. The results show that washing with ammonium formate, pH 6.4, or ammonium acetate, pH 6.7, significantly increases signal intensity and number of analytes recorded from adult mouse brain tissue sections. Major lipid species measured were glycerophosphoinositols, glycerophosphates, glycerolphosphoglycerols, glycerophosphoethanolamines, glycerophospho-serines, sulfatides, and gangliosides. Ion images from adult mouse brain sections that compare washed and unwashed sections are presented and show up to fivefold increases in ion intensity for washed tissue. The sample preparation protocol has been found to be applicable across numerous organ types and significantly expands the number of lipid species detectable by imaging mass spectrometry at high spatial resolution. PMID:22243218

  10. The Galactic Centre at infrared wavelengths: towards the highest spatial resolution

    NASA Astrophysics Data System (ADS)

    Clénet, Yann; Rouan, Daniel; Léna, Pierre; Gendron, Eric; Lacombe, François

    2007-01-01

    We now know that our Galaxy harbors at its centre a supermassive 3.6×10M black hole. This result came after more than 2 decades of infrared studies of the Galactic Centre and important instrumental developments in infrared detectors and in high spatial resolution techniques. Adaptive optics, which allows diffraction-limited infrared observations and enhanced sensitivity, was actually the major breakthrough in this respect. We introduce in the first section of this article what was our knowledge of the Galactic Centre before the advent of adaptive optics. In the second section, after a reminder of the first adaptive optics observations of this region, we highlight the specificities of Galactic Centre adaptive optics observations. In the third and fourth sections, we present the major results obtained from adaptive optics observations of the Galactic Centre: the case of the supermassive black hole and the paradox of youth. In the fifth section, we introduce two main future facilities that will provide even higher spatial resolutions, Gravity—a second generation VLTI instrument—and Extremely Large Telescopes, and the improvements that we expect with these new instruments in our knowledge of the Galactic Centre region. We conclude in the last section. To cite this article: Y. Clénet et al., C. R. Physique 8 (2007).

  11. Ship detection in high spatial resolution remote sensing image based on improved sea-land segmentation

    NASA Astrophysics Data System (ADS)

    Li, Na; Zhang, Qiaochu; Zhao, Huijie; Dong, Chao; Meng, Lingjie

    2016-10-01

    A new method to detect ship target at sea based on improved segmentation algorithm is proposed in this paper, in which the improved segmentation algorithm is applied to precisely segment land and sea. Firstly, mean value is replaced instead of average variance value in Otsu method in order to improve the adaptability. Secondly, Mean Shift algorithm is performed to separate the original high spatial resolution remote sensing image into several homogeneous regions. At last, the final sea-land segmentation result can be located combined with the regions in preliminary sea-land segmentation result. The proposed segmentation algorithm performs well on the segment between water and land with affluent texture features and background noise, and produces a result that can be well used in shape and context analyses. Ships are detected with settled shape characteristics, including width, length and its compactness. Mean Shift algorithm can smooth the background noise, utilize the wave's texture features and helps highlight offshore ships. Mean shift algorithm is combined with improved Otsu threshold method in order to maximizes their advantages. Experimental results show that the improved sea-land segmentation algorithm on high spatial resolution remote sensing image with complex texture and background noise performs well in sea-land segmentation, not only enhances the accuracy of land and sea boarder, but also preserves detail characteristic of ships. Compared with traditional methods, this method can achieve accuracy over 90 percent. Experiments on Worldview images show the superior, robustness and precision of the proposed method.

  12. Investigating the spatial resolution characteristics of a monolithic scintillation detector for pet

    NASA Astrophysics Data System (ADS)

    Kaul, Madhuri

    A key component of a PET system is the detection of the coincident gamma rays associated with positron decay. For most applications, the modern commercial scanners are limited by sensitivity. Although essentially all current commercial PET systems use pixelated designs, there has been a resurgence of the use of continuous crystal designs, particularly for preclinical scanner designs. There has also been a move away from the traditional Anger logic style of position decoding toward implementation of statistical estimation algorithms to locate an event in two or three dimensions. Continuous crystals offer advantages of improved position sampling, reduced dead space, and the ability to calibrate light-spread to measure the depth-of-interaction (DOI) to reduce parallax errors. The aim of this thesis is to study the factors that affect the performance of continuous crystals in an attempt to achieve the best trade-off between light-output, stopping power, light-spread, and sampling, while maintaining high sensitivity and good spatial and energy resolution. The methodology includes a combination of Monte Carlo simulations and experiments with continuous LYSO crystals of various thicknesses, with particular focus on a 25-mm thick crystal, which is on par with the pixels used in clinical scanners. Non-invasive techniques involving the use of sandpaper, paints, and films are used to maximize the light extraction from the crystal, and to reduce the edge effects. The effect of DOI on the light spread is investigated and a DOI calibration technique is implemented, which allows for a 2-level depth separation of events. Lastly, a more invasive technique of cutting slots into the crystal surface is investigated to control the light spread within the crystal to improve the spatial resolution. Combining 8-mm deep slots with selective darkening of the crystal sides we improve the spatial resolution of the 25-mm thick LYSO crystal from 5.3 mm to 3.5 mm (FWHM) using Maximum Likelihood

  13. Experimental Estimation of CLASP Spatial Resolution: Results of the Instrument's Optical Alignment

    NASA Technical Reports Server (NTRS)

    Giono, Gabrial; Katsukawa, Yukio; Ishikawa, Ryoko; Narukage, Noriyuki; Bando, Takamasa; Kano, Ryohei; Suematsu, Yoshinori; Kobayashi, Ken; Winebarger, Amy; Auchere, Frederic

    2015-01-01

    The Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) is a sounding-rocket experiment currently being built at the National Astronomical Observatory of Japan. This instrument aims to probe for the first time the magnetic field strength and orientation in the solar upper-chromosphere and lower-transition region. CLASP will measure the polarization of the Lyman-Alpha line (121.6nm) with an unprecedented accuracy, and derive the magnetic field information through the Hanle effect. Although polarization accuracy and spectral resolution are crucial for the Hanle effect detection, spatial resolution is also important to get reliable context image via the slit-jaw camera. As spatial resolution is directly related with the alignment of optics, it is also a good way of ensuring the alignment of the instrument to meet the scientific requirement. This poster will detail the experiments carried out to align CLASP's optics (telescope and spectrograph), as both part of the instrument were aligned separately. The telescope was aligned in double-pass mode, and a laser interferometer (He-Ne) was used to measure the telescope's wavefront error (WFE). The secondary mirror tilt and position were adjusted to remove comas and defocus aberrations from the WFE. Effect of gravity on the WFE measurement was estimated and the final WFE derived in zero-g condition for CLASP telescope will be presented. In addition, an estimation of the spot shape and size derived from the final WFE will also be shown. The spectrograph was aligned with a custom procedure: because Ly-??light is absorbed by air, the spectrograph's off-axis parabolic mirrors were aligned in Visible Light (VL) using a custom-made VL grating instead of the flight Ly-? grating. Results of the alignment in Visible Light will be shown and the spot shape recorded with CCDs at various position along the slit will be displayed. Results from both alignment experiment will be compared to the design requirement, and will be combined in

  14. On the effects of spatial and spectral resolution on spatial-spectral target detection in SHARE 2012 and Bobcat 2013 hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Kaufman, Jason R.; Eismann, Michael T.; Ratliff, Bradley M.; Celenk, Mehmet

    2015-05-01

    Previous work with the Bobcat 2013 data set1 showed that spatial-spectral feature extraction on visible to near infrared (VNIR) hyperspectral imagery (HSI) led to better target detection and discrimination than spectral-only techniques; however, the aforementioned study could not consider the possible benefits of the shortwaveinfrared (SWIR) portion of the spectrum due to data limitations. In addition, the spatial resolution of the Bobcat 2013 imagery was fixed at 8cm without exploring lower spatial resolutions. In this work, we evaluate the tradeoffs in spatial and spectral resolution and spectral coverage between for a common set of targets in terms of their effects on spatial-spectral target detection performance. We show that for our spatial-spectral target detection scheme and data sets, the adaptive cosine estimator (ACE) applied to S-DAISY and pseudo Zernike moment (PZM) spatial-spectral features can distinguish between targets better than ACE applied only to the spectral imagery. In particular, S-DAISY operating on bands uniformly selected from the SWIR portion of ProSpecTIR-VS sensor imagery in conjunction with bands closely corresponding to the Airborne Real-time Cueing Hyperspectral Reconnaissance (ARCHER) sensor's VNIR bands (80 total) led to the best overall average performance in both target detection and discrimination.

  15. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.

    PubMed

    Fricker, Geoffrey A; Wolf, Jeffrey A; Saatchi, Sassan S; Gillespie, Thomas W

    2015-10-01

    There is an increasing interest in identifying theories, empirical data sets, and remote-sensing metrics that can quantify tropical forest alpha diversity at a landscape scale. Quantifying patterns of tree species richness in the field is time consuming, especially in regions with over 100 tree species/ha. We examine species richness in a 50-ha plot in Barro Colorado Island in Panama and test if biophysical measurements of canopy reflectance from high-resolution satellite imagery and detailed vertical forest structure and topography from light detection and ranging (lidar) are associated with species richness across four tree size classes (>1, 1-10, >10, and >20 cm dbh) and three spatial scales (1, 0.25, and 0.04 ha). We use the 2010 tree inventory, including 204,757 individuals belonging to 301 species of freestanding woody plants or 166 ± 1.5 species/ha (mean ± SE), to compare with remote-sensing data. All remote-sensing metrics became less correlated with species richness as spatial resolution decreased from 1.0 ha to 0.04 ha and tree size increased from 1 cm to 20 cm dbh. When all stems with dbh > 1 cm in 1-ha plots were compared to remote-sensing metrics, standard deviation in canopy reflectance explained 13% of the variance in species richness. The standard deviations of canopy height and the topographic wetness index (TWI) derived from lidar were the best metrics to explain the spatial variance in species richness (15% and 24%, respectively). Using multiple regression models, we made predictions of species richness across Barro Colorado Island (BCI) at the 1-ha spatial scale for different tree size classes. We predicted variation in tree species richness among all plants (adjusted r² = 0.35) and trees with dbh > 10 cm (adjusted r² = 0.25). However, the best model results were for understory trees and shrubs (dbh 1-10 cm) (adjusted r² = 0.52) that comprise the majority of species richness in tropical forests. Our results indicate that high-resolution

  16. A sensitivity analysis using different spatial resolution terrain models and flood inundation models

    NASA Astrophysics Data System (ADS)

    Papaioannou, George; Aronica, Giuseppe T.; Loukas, Athanasios; Vasiliades, Lampros

    2014-05-01

    The impact of terrain spatial resolution and accuracy on the hydraulic flood modeling can pervade the water depth and the flood extent accuracy. Another significant factor that can affect the hydraulic flood modeling outputs is the selection of the hydrodynamic models (1D,2D,1D/2D). Human mortality, ravaged infrastructures and other damages can be derived by extreme flash flood events that can be prevailed in lowlands at suburban and urban areas. These incidents make the necessity of a detailed description of the terrain and the use of advanced hydraulic models essential for the accurate spatial distribution of the flooded areas. In this study, a sensitivity analysis undertaken using different spatial resolution of Digital Elevation Models (DEMs) and several hydraulic modeling approaches (1D, 2D, 1D/2D) including their effect on the results of river flow modeling and mapping of floodplain. Three digital terrain models (DTMs) were generated from the different elevation variation sources: Terrestrial Laser Scanning (TLS) point cloud data, classic land surveying and digitization of elevation contours from 1:5000 scale topographic maps. HEC-RAS and MIKE 11 are the 1-dimensional hydraulic models that are used. MLFP-2D (Aronica et al., 1998) and MIKE 21 are the 2-dimensional hydraulic models. The last case consist of the integration of MIKE 11/MIKE 21 where 1D-MIKE 11 and 2D-MIKE 21 hydraulic models are coupled through the MIKE FLOOD platform. The validation process of water depths and flood extent is achieved through historical flood records. Observed flood inundation areas in terms of simulated maximum water depth and flood extent were used for the validity of each application result. The methodology has been applied in the suburban section of Xerias river at Volos-Greece. Each dataset has been used to create a flood inundation map for different cross-section configurations using different hydraulic models. The comparison of resulting flood inundation maps indicates

  17. The Need for High Spatial Resolution Multispectral Thermal Remote Sensing Data In Urban Heat Island Research

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.

    2006-01-01

    Although the study of the Urban Heat Island (UHI) effect dates back to the early 1800's when Luke Howard discovered London s heat island, it has only been with the advent of thermal remote sensing systems that the extent, characteristics, and impacts of the UHI have become to be understood. Analysis of the UHI effect is important because above all, this phenomenon can directly influence the health and welfare of urban residents. For example, in 1995, over 700 people died in Chicago due to heat-related causes. UHI s are characterized by increased temperature in comparison to rural areas and mortality rates during a heat wave increase exponentially with the maximum temperature, an effect that is exacerbated by the UHI. Aside from the direct impacts of the UHI on temperature, UHI s can produce secondary effects on local meteorology, including altering local wind patterns, increased development of clouds and fog, and increasing rates of precipitation either over, or downwind, of cities. Because of the extreme heterogeneity of the urban surface, in combination with the sprawl associated with urban growth, thermal infrared (TIR) remote sensing data have become of significant importance in understanding how land cover and land use characteristics affect the development and intensification of the UHI. TIR satellite data have been used extensively to analyze the surface temperature regimes of cities to help observe and measure the impacts of surface temperatures across the urban landscape. However, the spatial scales at which satellite TIR data are collected are for the most part, coarse, with the finest readily available TIR data collected by the Landsat ETM+ sensor at 60m spatial resolution. For many years, we have collected high spatial resolution (10m) data using an airborne multispectral TIR sensor over a number of cities across the United States. These high resolution data have been used to develop an understanding of how discrete surfaces across the urban environment

  18. The Need for High Spatial Resolution Multispectral Thermal Remote Sensing Data In Urban Heat Island Research

    NASA Astrophysics Data System (ADS)

    Quattrochi, D. A.; Luvall, J. C.

    2006-12-01

    Although the study of the Urban Heat Island (UHI) effect dates back to the early 1800's when Luke Howard discovered London's heat island, it has only been with the advent of thermal remote sensing systems that the extent, characteristics, and impacts of the UHI have become to be understood. Analysis of the UHI effect is important because above all, this phenomenon can directly influence the health and welfare of urban residents. For example, in 1995, over 700 people died in Chicago due to heat-related causes. UHI's are characterized by increased temperature in comparison to rural areas and mortality rates during a heat wave increase exponentially with the maximum temperature, an effect that is exacerbated by the UHI. Aside from the direct impacts of the UHI on temperature, UHI's can produce secondary effects on local meteorology, including altering local wind patterns, increased development of clouds and fog, and increasing rates of precipitation either over, or downwind, of cities. Because of the extreme heterogeneity of the urban surface, in combination with the sprawl associated with urban growth, thermal infrared (TIR) remote sensing data have become of significant importance in understanding how land cover and land use characteristics affect the development and intensification of the UHI. TIR satellite data have been used extensively to analyze the surface temperature regimes of cities to help observe and measure the impacts of surface temperatures across the urban landscape. However, the spatial scales at which satellite TIR data are collected are for the most part, coarse, with the finest readily available TIR data collected by the Landsat ETM+ sensor at 60m spatial resolution. For many years, we have collected high spatial resolution (10m) data using an airborne multispectral TIR sensor over a number of cities across the United States. These high resolution data have been used to develop an understanding of how discrete surfaces across the urban environment

  19. Effect of spatial resolution on remote sensing estimation of total evaporation in the uMngeni catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Shoko, Cletah; Clark, David; Mengistu, Michael; Dube, Timothy; Bulcock, Hartley

    2015-01-01

    This study evaluated the effect of two readily available multispectral sensors: the newly launched 30 m spatial resolution Landsat 8 and the long-serving 1000 m moderate resolution imaging spectroradiometer (MODIS) datasets in the spatial representation of total evaporation in the heterogeneous uMngeni catchment, South Africa, using the surface energy balance system model. The results showed that sensor spatial resolution plays a critical role in the accurate estimation of energy fluxes and total evaporation across a heterogeneous catchment. Landsat 8 estimates showed better spatial representation of the biophysical parameters and total evaporation for different land cover types, due to the relatively higher spatial resolution compared to the coarse spatial resolution MODIS sensor. Moreover, MODIS failed to capture the spatial variations of total evaporation estimates across the catchment. Analysis of variance (ANOVA) results showed that MODIS-based total evaporation estimates did not show any significant differences across different land cover types (one-way ANOVA; F1.924=1.412, p=0.186). However, Landsat 8 images yielded significantly different estimates between different land cover types (one-way ANOVA; F1.993=5.185, p<0.001). The validation results showed that Landsat 8 estimates were more comparable to eddy covariance (EC) measurements than the MODIS-based total evaporation estimates. EC measurement on May 23, 2013, was 3.8 mm/day, whereas the Landsat 8 estimate on the same day was 3.6 mm/day, with MODIS showing significantly lower estimates of 2.3 mm/day. The findings of this study underscore the importance of spatial resolution in estimating spatial variations of total evaporation at the catchment scale, thus, they provide critical information on the relevance of the readily available remote sensing products in water resources management in data-scarce environments.

  20. Statistical model based iterative reconstruction (MBIR) in clinical CT systems. Part II. Experimental assessment of spatial resolution performance

    SciTech Connect

    Li, Ke; Chen, Guang-Hong; Garrett, John; Ge, Yongshuai

    2014-07-15

    Purpose: Statistical model based iterative reconstruction (MBIR) methods have been introduced to clinical CT systems and are being used in some clinical diagnostic applications. The purpose of this paper is to experimentally assess the unique spatial resolution characteristics of this nonlinear reconstruction method and identify its potential impact on the detectabilities and the associated radiation dose levels for specific imaging tasks. Methods: The thoracic section of a pediatric phantom was repeatedly scanned 50 or 100 times using a 64-slice clinical CT scanner at four different dose levels [CTDI{sub vol} =4, 8, 12, 16 (mGy)]. Both filtered backprojection (FBP) and MBIR (Veo{sup ®}, GE Healthcare, Waukesha, WI) were used for image reconstruction and results were compared with one another. Eight test objects in the phantom with contrast levels ranging from 13 to 1710 HU were used to assess spatial resolution. The axial spatial resolution was quantified with the point spread function (PSF), while the z resolution was quantified with the slice sensitivity profile. Both were measured locally on the test objects and in the image domain. The dependence of spatial resolution on contrast and dose levels was studied. The study also features a systematic investigation of the potential trade-off between spatial resolution and locally defined noise and their joint impact on the overall image quality, which was quantified by the image domain-based channelized Hotelling observer (CHO) detectability index d′. Results: (1) The axial spatial resolution of MBIR depends on both radiation dose level and image contrast level, whereas it is supposedly independent of these two factors in FBP. The axial spatial resolution of MBIR always improved with an increasing radiation dose level and/or contrast level. (2) The axial spatial resolution of MBIR became equivalent to that of FBP at some transitional contrast level, above which MBIR demonstrated superior spatial resolution than

  1. Determination of a high spatial resolution geopotential model using atomic clock comparisons

    NASA Astrophysics Data System (ADS)

    Lion, G.; Panet, I.; Wolf, P.; Guerlin, C.; Bize, S.; Delva, P.

    2017-01-01

    Recent technological advances in optical atomic clocks are opening new perspectives for the direct determination of geopotential differences between any two points at a centimeter-level accuracy in geoid height. However, so far detailed quantitative estimates of the possible improvement in geoid determination when adding such clock measurements to existing data are lacking. We present a first step in that direction with the aim and hope of triggering further work and efforts in this emerging field of chronometric geodesy and geophysics. We specifically focus on evaluating the contribution of this new kind of direct measurements in determining the geopotential at high spatial resolution (≈ 10 km). We studied two test areas, both located in France and corresponding to a middle (Massif Central) and high (Alps) mountainous terrain. These regions are interesting because the gravitational field strength varies greatly from place to place at high spatial resolution due to the complex topography. Our method consists in first generating a synthetic high-resolution geopotential map, then drawing synthetic measurement data (gravimetry and clock data) from it, and finally reconstructing the geopotential map from that data using least squares collocation. The quality of the reconstructed map is then assessed by comparing it to the original one used to generate the data. We show that adding only a few clock data points (less than 1% of the gravimetry data) reduces the bias significantly and improves the standard deviation by a factor 3. The effect of the data coverage and data quality on the results is investigated, and the trade-off between the measurement noise level and the number of data points is discussed.

  2. Angular versus spatial resolution trade-offs for diffusion imaging under time constraints.

    PubMed

    Zhan, Liang; Jahanshad, Neda; Ennis, Daniel B; Jin, Yan; Bernstein, Matthew A; Borowski, Bret J; Jack, Clifford R; Toga, Arthur W; Leow, Alex D; Thompson, Paul M

    2013-10-01

    Diffusion weighted magnetic resonance imaging (DW-MRI) are now widely used to assess brain integrity in clinical populations. The growing interest in mapping brain connectivity has made it vital to consider what scanning parameters affect the accuracy, stability, and signal-to-noise of diffusion measures. Trade-offs between scan parameters can only be optimized if their effects on various commonly-derived measures are better understood. To explore angular versus spatial resolution trade-offs in standard tensor-derived measures, and in measures that use the full angular information in diffusion signal, we scanned eight subjects twice, 2 weeks apart, using three protocols that took the same amount of time (7 min). Scans with 3.0, 2.7, 2.5 mm isotropic voxels were collected using 48, 41, and 37 diffusion-sensitized gradients to equalize scan times. A specially designed DTI phantom was also scanned with the same protocols, and different b-values. We assessed how several diffusion measures including fractional anisotropy (FA), mean diffusivity (MD), and the full 3D orientation distribution function (ODF) depended on the spatial/angular resolution and the SNR. We also created maps of stability over time in the FA, MD, ODF, skeleton FA of 14 TBSS-derived ROIs, and an information uncertainty index derived from the tensor distribution function, which models the signal using a continuous mixture of tensors. In scans of the same duration, higher angular resolution and larger voxels boosted SNR and improved stability over time. The increased partial voluming in large voxels also led to bias in estimating FA, but this was partially addressed by using "beyond-tensor" models of diffusion.

  3. Spatial Scaling of Snow Observations and Microwave Emission Modeling During CLPX and Appropriate Satellite Sensor Resolution

    NASA Astrophysics Data System (ADS)

    Kim, E. J.; Tedesco, M.

    2005-12-01

    Accurate estimates of snow water equivalent and other properties play an important role in weather, natural hazard, and hydrological forecasting and climate modeling over a range of scales in space and time. Remote sensing-derived estimates have traditionally been of the 'snapshot' type, but techniques involving models with assimilation are also being explored. In both cases, forward emission models are useful to understand the observed passive microwave signatures and developing retrieval algorithms. However, mismatches between passive microwave sensor resolutions and the scales of processes controlling subpixel heterogeneity can affect the accuracy of the estimates. Improving the spatial resolution of new passive microwave satellite sensors is a major desire in order to (literally) resolve such subpixel heterogeneity, but limited spacecraft and mission resources impose severe constraints and tradeoffs. In order to maximize science return while mitigating risk for a satellite concept, it is essential to understand the scaling behavior of snow in terms of what the sensor sees (brightness temperature) as well as in terms of the actual variability of snow. NASA's Cold Land Processes Experiment-1 (CLPX-1: Colorado, 2002 and 2003) was designed to provide data to measure these scaling behaviors for varying snow conditions in areas with forested, alpine, and meadow/pasture land cover. We will use observations from CLPX-1 ground, airborne, and satellite passive microwave sensors to examine and evaluate the scaling behavior of observed and modeled brightness temperatures and observed and retrieved snow parameters across scales from meters to 10's of kilometers. The conclusions will provide direct examples of the appropriate spatial sampling scales of new sensors for snow remote sensing. The analyses will also illustrate the effects and spatial scales of the underlying phenomena (e.g., land cover) that control subpixel heterogeneity.

  4. Agro-hydrology and multi temporal high resolution remote sensing: toward an explicit spatial processes calibration

    NASA Astrophysics Data System (ADS)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-07-01

    The recent and forthcoming availability of high resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the perspective offered by improving the crop growth dynamic simulation using the distributed agro-hydrological model, Topography based Nitrogen transfer and Transformation (TNT2), using LAI map series derived from 105 Formosat-2 (F2) images during the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated with discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2006-2010 dataset (climate, land use, agricultural practices, discharge and nitrate fluxes at the outlet). A priori agricultural practices obtained from an extensive field survey such as seeding date, crop cultivar, and fertilizer amount were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics with a priori input parameters showed an temporal shift with observed LAI profiles irregularly distributed in space (between field crops) and time (between years). By re-setting seeding date at the crop field level, we proposed an optimization method to minimize efficiently this temporal shift and better fit the crop growth against the spatial observations as well as crop production. This optimization of simulated LAI has a negligible impact on water budget at the catchment scale (1 mm yr-1 in average) but a noticeable impact on in-stream nitrogen fluxes (around 12%) which is of interest considering nitrate stream contamination issues and TNT2 model objectives. This study demonstrates the contribution of forthcoming high spatial and temporal resolution products of Sentinel-2 satellite mission in improving agro-hydrological modeling by constraining the spatial representation of crop productivity.

  5. Spatial Scaling of Snow Observations and Microwave Emission Modeling During CLPX and Appropriate Satellite Sensor Resolution

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.; Tedesco, Marco

    2005-01-01

    Accurate estimates of snow water equivalent and other properties play an important role in weather, natural hazard, and hydrological forecasting and climate modeling over a range of scales in space and time. Remote sensing-derived estimates have traditionally been of the "snapshot" type, but techniques involving models with assimilation are also being explored. In both cases, forward emission models are useful to understand the observed passive microwave signatures and developing retrieval algorithms. However, mismatches between passive microwave sensor resolutions and the scales of processes controlling subpixel heterogeneity can affect the accuracy of the estimates. Improving the spatial resolution of new passive microwave satellite sensors is a major desire in order to (literally) resolve such subpixel heterogeneity, but limited spacecraft and mission resources impose severe constraints and tradeoffs. In order to maximize science return while mitigating risk for a satellite concept, it is essential to understand the scaling behavior of snow in terms of what the sensor sees (brightness temperature) as well as in terms of the actual variability of snow. NASA's Cold Land Processes Experiment-1 (CLPX-1: Colorado, 2002 and 2003) was designed to provide data to measure these scaling behaviors for varying snow conditions in areas with forested, alpine, and meadow/pasture land cover. We will use observations from CLPX-1 ground, airborne, and satellite passive microwave sensors to examine and evaluate the scaling behavior of observed and modeled brightness temperatures and observed and retrieved snow parameters across scales from meters to 10's of kilometers. The conclusions will provide direct examples of the appropriate spatial sampling scales of new sensors for snow remote sensing. The analyses will also illustrate the effects and spatial scales of the underlying phenomena (e.g., land cover) that control subpixel heterogeneity.

  6. Estimating babassu palm density using automatic palm tree detection with very high spatial resolution satellite images.

    PubMed

    Dos Santos, Alessio Moreira; Mitja, Danielle; Delaître, Eric; Demagistri, Laurent; de Souza Miranda, Izildinha; Libourel, Thérèse; Petit, Michel

    2017-05-15

    High spatial resolution images as well as image processing and object detection algorithms are recent technologies that aid the study of biodiversity and commercial plantations of forest species. This paper seeks to contribute knowledge regarding the use of these technologies by studying randomly dispersed native palm tree. Here, we analyze the automatic detection of large circular crown (LCC) palm tree using a high spatial resolution panchromatic GeoEye image (0.50 m) taken on the area of a community of small agricultural farms in the Brazilian Amazon. We also propose auxiliary methods to estimate the density of the LCC palm tree Attalea speciosa (babassu) based on the detection results. We used the "Compt-palm" algorithm based on the detection of palm tree shadows in open areas via mathematical morphology techniques and the spatial information was validated using field methods (i.e. structural census and georeferencing). The algorithm recognized individuals in life stages 5 and 6, and the extraction percentage, branching factor and quality percentage factors were used to evaluate its performance. A principal components analysis showed that the structure of the studied species differs from other species. Approximately 96% of the babassu individuals in stage 6 were detected. These individuals had significantly smaller stipes than the undetected ones. In turn, 60% of the stage 5 babassu individuals were detected, showing significantly a different total height and a different number of leaves from the undetected ones. Our calculations regarding resource availability indicate that 6870 ha contained 25,015 adult babassu palm tree, with an annual potential productivity of 27.4 t of almond oil. The detection of LCC palm tree and the implementation of auxiliary field methods to estimate babassu density is an important first step to monitor this industry resource that is extremely important to the Brazilian economy and thousands of families over a large scale.

  7. Probability of successful larval dispersal declines fivefold over 1 km in a coral reef fish

    PubMed Central

    Buston, Peter M.; Jones, Geoffrey P.; Planes, Serge; Thorrold, Simon R.

    2012-01-01

    A central question of marine ecology is, how far do larvae disperse? Coupled biophysical models predict that the probability of successful dispersal declines as a function of distance between populations. Estimates of genetic isolation-by-distance and self-recruitment provide indirect support for this prediction. Here, we conduct the first direct test of this prediction, using data from the well-studied system of clown anemonefish (Amphiprion percula) at Kimbe Island, in Papua New Guinea. Amphiprion percula live in small breeding groups that inhabit sea anemones. These groups can be thought of as populations within a metapopulation. We use the x- and y-coordinates of each anemone to determine the expected distribution of dispersal distances (the distribution of distances between each and every population in the metapopulation). We use parentage analyses to trace recruits back to parents and determine the observed distribution of dispersal distances. Then, we employ a logistic model to (i) compare the observed and expected dispersal distance distributions and (ii) determine the relationship between the probability of successful dispersal and the distance between populations. The observed and expected dispersal distance distributions are significantly different (p < 0.0001). Remarkably, the probability of successful dispersal between populations decreases fivefold over 1 km. This study provides a framework for quantitative investigations of larval dispersal that can be applied to other species. Further, the approach facilitates testing biological and physical hypotheses for the factors influencing larval dispersal in unison, which will advance our understanding of marine population connectivity. PMID:22158958

  8. Capture of Cometary Dust Grains in Impacts at 6.1 km s-1

    NASA Astrophysics Data System (ADS)

    Burchell, M. J.; Foster, N.; Kearsley, A.; Wozniakiewicz, P.

    2009-12-01

    The NASA Stardust mission to comet 81P/Wild 2 collected grains of cometary dust freshly ejected from the comet during a fly-by at a speed of 6.1 km s-1. These were captured on aluminum foils and in blocks of silica aerogel. The dust underwent a severe shock during capture. The nature of the shock process depends on the properties of the dust and the collecting media. On the aluminium, the shock process and impact damage is typical of that between high-density (or hard materials) at high velocity, resulting in craters lined with impactor residues. The peak shock pressures are estimated at 60-80 GPa. Two main crater types are seen, simple bowl shaped and multiple pit craters: these reflect the degree of consolidation of the original dust grain. Capture in the low density aerogel was via a more gradual slowing of the dust grains accompanied by a variety of effects on the grains (complete break up of weak grains vs. ablation of well consolidated grains). The relation between the structure of the dust grains and the resulting impact features in both collector materials is discussed.

  9. Estimation of Land Surface Temperature for a 1-km AVHRR Time Series

    NASA Astrophysics Data System (ADS)

    Frey, C. M.

    2015-12-01

    In order to re-process DLRs 1km AVHRR data archive to different geophysical and descriptive parameters of the land surface and the atmosphere, a series of scientific data processors are being developed in the framework of the TIMELINE project. The archive of DLR ranges back to the 80ies. One of the data processors is SurfTemp, which processes L2 LST and emissivity datasets from AVHRR L1b data. The development of the data processor included the selection of procedures suitable for time series processing, including mono-window and split window algorithms. The selection is based on a round robin approach, in which selected mono-window and split window algorithms are tested on the basis of TOA radiance/LST pairs, which were generated using a radiative transfer model. The algorithm comparison includes measures of precision, as well as the sensitivity of a method to the accuracy of its input data. The results of the round robin are presented, as well as the implementation of selected algorithms into SurfTemp. Further, first validation results are shown.

  10. Development of a high spatial resolution neutron imaging system and performance evaluation

    NASA Astrophysics Data System (ADS)

    Cao, Lei

    The combination of a scintillation screen and a charged coupled device (CCD) camera is a digitized neutron imaging technology that has been widely employed for research and industry application. The maximum of spatial resolution of scintillation screens is in the range of 100 mum and creates a bottleneck for the further improvement of the overall system resolution. In this investigation, a neutron sensitive micro-channel plate (MCP) detector with pore pitch of 11.4 mum is combined with a cooled CCD camera with a pixel size of 6.8 mum to provide a high spatial resolution neutron imaging system. The optical path includes a high reflection front surface mirror for keeping the camera out of neutron beam and a macro lens for achieving the maximum magnification that could be achieved. All components are assembled into an aluminum light tight box with heavy radiation shielding to protect the camera as well as to provide a dark working condition. Particularly, a remote controlled stepper motor is also integrated into the system to provide on-line focusing ability. The best focus is guaranteed through use of an algorithm instead of perceptual observation. An evaluation routine not previously utilized in the field of neutron radiography is developed in this study. Routines like this were never previously required due to the lower resolution of other systems. Use of the augulation technique to obtain presampled MTF addresses the problem of aliasing associated with digital sampling. The determined MTF agrees well with the visual inspection of imaging a testing target. Other detector/camera combinations may be integrated into the system and their performances are also compared. The best resolution achieved by the system at the TRIGA Mark II reactor at the University of Texas at Austin is 16.2 lp/mm, which is equivalent to a minimum resolvable spacing of 30 mum. The noise performance of the device is evaluated in terms of the noise power spectrum (NPS) and the detective quantum

  11. Fragmented Land Cover Types and Estimation of Area with Course Spatial Resolution Imagery

    NASA Technical Reports Server (NTRS)

    Hlavka, Chris; Dungan, Jennifer; Gore, William (Technical Monitor)

    1998-01-01

    Imagery of coarse resolution, such weather satellite imagery with 1 sq km pixels, is increasingly used to monitor dynamic and fragmented types of land surface types, such as scars from recent fires and ponds in wetlands. Accurate estimates of these land cover types at regional to global scales are required to assess the roles of fires and wetlands in global warming, yet difficult to compute when much of the area is accounted for by fragments about the same size as the pixels. In previous research, we found that size distribution of the fragments in several example scenes fit simple two-parameter models and related effects of coarse resolution to errors in area estimates based on pixel counts. We report on progress to develop accurate area estimates based on modelling the size distribution of the fragments, including analysis of size distributions on an expanded set of maps developed from digital imagery and a test of a procedure to correct for effects of coarse spatial resolution.

  12. High Spatial Resolution Europa Coverage by the Galileo Near Infrared Mapping Spectrometer (NIMS)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NIMS instrument on the Galileo spacecraft, which is being used to map the mineral and ice properties over the surfaces of the Jovian moons, produces global spectral images at modest spatial resolution and high resolution spectral images for small selected regions on the satellites. This map illustrates the high resolution coverage of Europa obtained by NIMS through the April 1997 G7 orbit.

    The areas covered are displayed on a Voyager-derived map. A good sampling of the dark trailing-side material (180 to 360 degrees) has been obtained, with less coverage of Europa's leadin