Science.gov

Sample records for 1-meter solar telescope

  1. Remote Observing with the Pomona College 1-meter telescope

    NASA Astrophysics Data System (ADS)

    Penprase, B.

    2005-12-01

    We summarize our operations during the past year with our 1-meter Pomona College telescope located in Wrightwood California at the Table Mountain site . New programs for observing GRB host galaxies, and monitoring open clusters for potential planetary transits are described. The remote observing makes use of the ACE control system, and we summarize the performance and operation of our telescope from its mountain site using campus internet links. During the year the telescope is used extensively in laboratory classes, and we describe some of the curricular impact the facility has had for our students.

  2. Las Cumbres Observatory Global Telescope 1-meter Telescope Project: Design, Deployment Plans, Status

    NASA Astrophysics Data System (ADS)

    Brown, Timothy M.; Burleson, B.; Crellin, M.; De Vera, J.; Dubberly, M.; Greene, R.; Falarski, M.; Haldeman, B.; Hausler, S.; Haynes, R.; Hjelstrom, A.; Hygelund, J.; Johnson, D.; Lobdill, R.; Martinez, J.; Mullins, D.; Pickles, A.; Posner, V.; Rosing, W.; Tufts, J.; Vander Horst, K.; Vanderhyden, B.; Walker, Z.

    2010-01-01

    Las Cumbres Observatory Global Telescope (LCOGT) is a privately-funded observatory dedicated to time-domain astronomy. Our main observing tool will be a homogeneous world-wide network of 12 x 1m optical telescopes, each equipped for both imaging and spectroscopy. Here we describe the LCOGT 1m telescope design, its development status, and our plans for deploying a dozen or so such telescopes in a worldwide network capable of continuous observing. We also describe the 80 cm Sedgwick telescope, which is now in regular operation as a research instrument, and which has served as a prototype for many of the 1m mechanical and control systems.

  3. Reverse and concurrent engineering applied of a high resolution equipment Berkut for 1-meter class telescopes

    NASA Astrophysics Data System (ADS)

    López, R.; Granados, R.; Farah, A.

    2014-07-01

    Several factors make observational astronomy difficult for astronomers; one of them is the atmosphere. The light that a star emits is refracted when it goes through the earth's atmosphere; the result of this is that the image of a punctual star is not what the physics would lead us to expect. At the Instituto de Astronomia of the Universidad Nacional Autonoma de México (IA-UNAM) an instrument has been developed called "Berkut", which uses a high resolution technique to improve these effects and obtain interesting and valuable scientific studies. In this paper we present the mechanical reengineering and acceptance test of Berkut. This instrument was design for taking images of high resolution. Essentially, it is composed by a set basic optics which is aligned and in focus with a 1- meter class telescope. It has its own electronic components for controlling remotely a filter wheel; that allows the exchange of the filters according to the requirements of the observer, a couple of objectives mounted in a translation stage, and a CCD camera for acquiring several images per second that are used in the speckle interferometry technique. A project like Berkut needs to be multidisciplinary; astronomy, engineering, optics, mechanics, electronics, and image processing are some of the areas of knowledge used. Berkut will be used in the telescope of the Observatorio Astronomico Nacional in Tonantzintla, located in the state of Puebla, Mexico, but it can be used in any telescope 1 meter class. It is pretended to build another Berkuts for being used simultaneously in different telescopes, so it is important to keep the costs as low as possible. With this instrument we pretend to confirm the Hipparcos catalogue of binary stars besides finding exoplanets.

  4. The European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Collados, M.; Bettonvil, F.; Cavaller, L.; Ermolli, I.; Gelly, B.; Pérez, A.; Socas-Navarro, H.; Soltau, D.; Volkmer, R.; EST Team

    The European Solar Telescope (EST) is a project to design, build and operate an European Solar 4-meter class telescope to be located in the Canary Islands, with the participation of institutions from fifteen European countries gathered around the consortium EAST (European Association for Solar Telescopes). The project main objective up to the present has been the development of the conceptual design study (DS) of a large aperture Solar Telescope. The study has demonstrated the scientific, technical and financial feasibility of EST. The DS has been possible thanks to the co-financing allocated specifically by the EU and the combined efforts of all the participant institutions. Different existing alternatives have been analysed for all telescope systems and subsystems, and decisions have been taken on the ones that are most compatible with the scientific goals and the technical strategies. The present status of some subsystems is reviewed in this paper.

  5. Established Designs For Advanced Ground Based Astronomical Telescopes In The 1-meter To 4-meter Domain

    NASA Astrophysics Data System (ADS)

    Hull, Anthony B.; Barentine, J.; Legters, S.

    2012-01-01

    The same technology and analytic approaches that led to cost-effective unmitigated successes for the spaceborne Kepler and WISE telescopes are now being applied to meter-class to 4-meter-class ground telescopes, providing affordable solutions to ground astronomy, with advanced features as needed for the application. The range of optical and mechanical performance standards and features that can be supplied for ground astronomy shall be described. Both classical RC designs, as well as unobscured designs are well represented in the IOS design library, allowing heritage designs for both night time and day time operations, the latter even in the proximity of the sun. In addition to discussing this library of mature features, we will also describe a process for working with astronomers early in the definition process to provide the best-value solution. Solutions can include remote operation and astronomical data acquisition and transmission.

  6. The European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Socas-Navarro, H.

    2012-12-01

    In this presentation I will describe the current status of the European Solar Telescope (EST) project. The EST design has a 4-m aperture to achieve both a large photon collection and very high spatial resolution. It includes a multi-conjugate adaptive system integrated in the light path for diffraction-limited imaging. The optical train is optimized to minimize instrumental polarization and to keep it nearly constant as the telescope tracks the sky. A suite of visible and infrared instruments are planned with a light distribution system that accomodates full interoperability and simultaneous usage. The science drivers emphasize combined observations at multiple heights in the atmosphere to build a connected view of solar magnetism from the photosphere to the corona.

  7. Modernization of the 1 meter Swope and 2.5 meter Du Pont telescopes at Las Campanas Observatory

    NASA Astrophysics Data System (ADS)

    Perez, Frank; Bagish, Alan; Bredthauer, Greg; Espoz, Juan; Jones, Patricio; Pinto, Patricio

    2012-09-01

    The Observatories of the Carnegie Institution for Science have operated the 1 and 2.5-meter telescopes since the early 1970s with only minor changes to the original control systems. We discuss the replacement of the original 4004 microprocessor- based telescope control system with modern high-speed servo controllers and motors, absolute main axis encoders, modern closed-loop controls and PC-based main operating software. We also discuss the original relay-based interlock systems that have been replaced with Programmable Logic Controllers (PLC) and have been interfaced into the new telescope control system. The modernization of both telescopes also includes many hardware upgrades to allow for remote observing and scripted automatic observations. These upgrades also include the modernization of shutter drives, windscreens and dome controls to improve the reliability and safety required for remote observing from an existing facility.

  8. Results from a portable Adaptive Optics system on the 1 meter telescope at the Naval Observatory Flagstaff Station

    NASA Astrophysics Data System (ADS)

    Restaino, Sergio R.; Gilbreath, G. Charmaine; Payne, Don M.; Baker, Jeffrey T.; Martinez, Ty; DiVittorio, Michael; Mozurkewich, David; Friedman, Jeffrey

    2003-02-01

    In this paper we present results using a compact, portable adaptive optics system. The system was developed as a joint venture between the Naval Research Laboratory, Air Force Research Laboratory, and two small, New Mexico based-businesses. The system has a footprint of 18x24x18 inches and weighs less than 100 lbs. Key hardware design characteristics enable portability, easy mounting, and stable alignment. The system also enables quick calibration procedures, stable performance, and automatic adaptability to various pupil configurations. The system was tested during an engineering run in late July 2002 at the Naval Observatory Flagstaff Station one-meter telescope. Weather prevented extensive testing and the seeing during the run was marginal but a sufficient opportunity was provided for proof-of-concept, initial characterization of closed loop performance, and to start addressing some of the most pressing engineering and scientific issues.

  9. Solar Rotating Fourier Telescope

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan

    1994-01-01

    Proposed telescope based on absorbing Fourier-transform grids images full Sun at unprecedented resolution. Overcomes limitations of both conventional optical and pinhole cameras. Arrays of grids and detectors configured for sensitivity to selected fourier components of x-ray images.

  10. Adaptive Optics for the 8 meter Chinese Giant Solar Telescope

    NASA Astrophysics Data System (ADS)

    Beckers, Jacques; Liu, Zhong; Deng, Yuanyong; Ji, Haisheng

    2013-12-01

    Solar ELTs enable diffraction limited imaging of the basic structure of the solar atmosphere. Magneto-hydrodynamic considerations limit their size to about 0.03 arcsec. To observe them in the near-infrared 8-meter class telescopes are needed. The Chinese Giant Solar Telescope, or CGST, is such a NIR solar ELT. It is a Ring Telescope with 8-meter outer diameter and a central clear aperture of about 6-meter diameter. At present various options for such a Gregorian type telescope are under study like a continuous ring made of segments or a multiple aperture ring made of 7 off-axis telescopes. The advantages of such a ring telescope is that its MTF covers all spatial frequencies out to those corresponding to its outer diameter, that its circular symmetry makes it polarization neutral, and that its large central hole helps thermal control and provides ample space for MCAO and Gregorian instrumentation. We present the current status of the design of the CGST. Our thinking is guided by the outstanding performance of the 1-meter vacuum solar telescope of the Yunnan Solar Observatory which like the CGST uses both AO and image reconstruction. Using it with a ring-shape aperture mask the imaging techniques for the CGST are being explored. The CGST will have Multi-Conjugate Adaptive Optics (MCAO). The peculiarities of Atmospheric Wavefront Tomography for Ring Telescopes are aided by the ample availability of guide stars on the Sun. IR MCAO-aided diffraction limited imaging offers the advantage of a large FOV, and high solar magnetic field sensitivity. Site testing is proceeding in western China, (e.g. northern Yunnan Province and Tibet). The CGST is a Chinese solar community project originated by the Yunnan Astronomical Observatory, the National Astronomical Observatories, the Purple Mountain Observatory, the Nanjing University, the Nanjing Institute of Astronomical Optics & Technology and the Beijing Normal University.

  11. India's National Large Solar Telescope

    NASA Astrophysics Data System (ADS)

    Hasan, S. S.

    2012-12-01

    India's 2-m National Large Solar Telescope (NLST) is aimed primarily at carrying out observations of the solar atmosphere with high spatial and spectral resolution. A comprehensive site characterization program, that commenced in 2007, has identified two superb sites in the Himalayan region at altitudes greater than 4000-m that have extremely low water vapor content and are unaffected by monsoons. With an innovative optical design, the NLST is an on-axis Gregorian telescope with a low number of optical elements to reduce the number of reflections and yield a high throughput with low polarization. In addition, it is equipped with a high-order adaptive optics to produce close to diffraction limited performance. To control atmospheric and thermal perturbations of the observations, the telescope will function with a fully open dome, to achieve its full potential atop a 25 m tower. Given its design, NLST can also operate at night, without compromising its solar performance. The post-focus instruments include broad-band and tunable Fabry-Pérot narrow-band imaging instruments; a high resolution spectropolarimeter and an Echelle spectrograph for night time astronomy. This project is led by the Indian Institute of Astrophysics and has national and international partners. Its geographical location will fill the longitudinal gap between Japan and Europe and is expected to be the largest solar telescope with an aperture larger than 1.5 m till the ATST and EST come into operation. An international consortium has been identified to build the NLST. The facility is expected to be commissioned by 2016.

  12. Software controls for the ATST Solar Telescope

    NASA Astrophysics Data System (ADS)

    Goodrich, Bret D.; Wampler, Stephen B.

    2004-09-01

    The Advanced Technology Solar Telescope (ATST) is intended to be the premier solar observatory for experimental solar physics. The ATST telescope control software is designed to operate similar to current nighttime telescopes, but will contain added functionality required for solar observations. These additions include the use of solar coordinate systems, non-sidereal track rates, solar rotation models, alternate guide signal sources, the control of thermal loads on the telescope, unusual observation and calibration motions, and serendipitous acquisition of transient objects. These requirements have resulted in a design for the ATST telescope control system (TCS) that is flexible and well-adapted for solar physics experiments. This report discusses both the classical design of the ATST TCS and the modifications required to observe in a solar physics environment. The control and servo loops required to operate both the pointing and wavefront correction systems are explained.

  13. Ice Middleware in the New Solar Telescope's Telescope Control System

    NASA Astrophysics Data System (ADS)

    Shumko, S.

    2009-09-01

    The Big Bear Solar Observatory (BBSO) is now in the process of assembling and aligning its 1.6 m New Solar Telescope (NST). There are many challenges controlling NST and one of them is establishing reliable and robust communications between different parts of the Telescope Control System (TCS). For our TCS we selected Ice (Internet communication engine) from ZeroC, Inc. In this paper we discuss advantages of the Ice middleware, details of implementation and problems we face implementing it.

  14. Planning the 8-meter Chinese Giant Solar Telescope

    NASA Astrophysics Data System (ADS)

    Beckers, Jacques M.; Liu, Z.; Deng, Y.; Ji, H.

    2013-07-01

    The Chinese Giant Solar Telescope (CGST) will be a diffraction limited solar telescope optimized for the near-infrared (NIR) spectral region (0.8 - 2.5 microns). Its diffraction limit will be reached by the incorporation of Multi-Conjugate Adaptive Optics (MCAO) enhanced by image restoration techniques to achieve uniform (u.v) plane coverage over the angular spatial frequency region allowed by its 8-meter aperture. Thus it will complement the imaging capabilities of 4-meter telescopes being planned elsewhere which are optimized for the visible (VIS) spectral region (300 - 1000 nm) In the NIR spectral regions the CGST will have access to unique spectral features which will improve the diagnostics of the solar atmosphere. These include the CaII lines near 860 nm , the HeI lines near 1083 nm, the 1074 nm FeXIII coronal lines, the large Zeeman-split FeI line at 1548 nm, and (v) the H- continuum absorption minimum at 1.6 micron. Especially in sunspot umbrae the simultaneous observation of continua and lines across the NIR spectral range will cover a substantial depth range in the solar atmosphere. Of course the mid- and far- infrared regions are also available for unequalled high-angular resolution solar observations, for example, in the Hydrogen Bracket lines, CO molecular bands, and the MgI emission line at 12.3 microns. The CGST is a so-called ring telescope in which the light is captured by a 1 meter wide segmented ring or by a ring of 7 smaller off-axis aperture telescopes. The open central area of the telescope is large. The advantages of such a ring configuration is that (a) it covers all the spatial frequencies out to those corresponding to its outer diameter, (b) its circular symmetry makes it polarization neutral, (c) its large central hole helps thermal control, and (d) it provides ample space for the MCAO system and instrumentation in the Gregorian focus. Even though optimized for the NIR, we expect to use the CGST also at visible wavelengths in the so

  15. Utrecht and the European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Bettonvil, F. C. M.; EST Team

    2013-01-01

    In 2008, in the quest towards large solar facilities, a pan-European project was started to study a 4-m European Solar Telescope (EST). As one of the major partners, Utrecht played a significant role in the design, in particular in relation to the intended open design, its enclosure, telescope mechanics as well its polarimetric properties. Mid-2011 the work did result in an innovative conceptual design for EST.

  16. NLST: the Indian National Large Solar Telescope

    NASA Astrophysics Data System (ADS)

    Hasan, S. S.; Soltau, D.; Kärcher, H.; Süss, M.; Berkefeld, T.

    2010-07-01

    India is planning a new solar telescope with an aperture of 2-m for carrying out high resolution studies of the Sun. Site characterization is underway at high altitude locations in the Himalayan mountains. A detailed concept design for NLST (National Large Solar Telescope) has been completed. The optical design of the telescope is optimized for high optical throughput and uses a minimum number of optical elements. A high order AO system is integrated part of the design that works with a modest Fried's parameter of 7-cm to give diffraction limited performance. The telescope will be equipped with a suite of post-focus instruments including a high resolution spectrograph and a polarimeter. NLST will also be used for carrying out stellar observations during the night. The mechanical design of the telescope, building, and the innovative dome is optimized to take advantage of the natural air flush which will help to keep the open telescope in temperature equilibrium. After its completion (planned for 2014), NLST will fill a gap in longitude between the major solar facilities in USA and Europe, and it will be for years the largest solar telescope in the world

  17. Introduction to the Chinese Giant Solar Telescope

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Deng, Y.; Ji, H.

    2012-12-01

    In order to detect the fine structures of solar magnetic field and dynamic field, an 8 meter solar telescope has been proposed by Chinese solar community. Due to the advantages of ring structure in polarization detection and thermal control, the current design of CGST (Chinese Giant Solar Telescope) is an 8 meter ring solar telescope. The spatial resolution of CGST is equivalent to an 8 meter diameter telescope, and the light-gathering power equivalent to a 5 meter full aperture telescope. The integrated simulation of optical system and imaging ability such as optical design, MCAO, active maintenance of primary mirror were carried out in this paper. Mechanical system was analyzed by finite element method too. The results of simulation and analysis showed that the current design could meet the demand of most science cases not only in infrared band but also in near infrared band and even in visible band. CGST was proposed by all solar observatories in Chinese Academy of Sciences and several overseas scientists. It is supported by CAS (Chinese Academy of Sciences) and NSFC (National Natural Science Foundation of China) as a long term astronomical project.

  18. Introduction to the Chinese Giant Solar Telescope

    NASA Astrophysics Data System (ADS)

    Liu, Zhong; Deng, Yuanyong; Jin, Zhenyu; Ji, Haisheng

    2012-09-01

    In order to detect the fine structures of solar magnetic field and dynamic field, an 8 meter solar telescope has been proposed by Chinese solar community. Due to the advantages of ring structure in polarization detection and thermal control, the current design of CGST (Chinese Giant Solar Telescope) is an 8 meter ring solar telescope. The spatial resolution of CGST is equivalent to an 8 meter diameter telescope, and the light-gathering power equivalent to a 5 meter full aperture telescope. The integrated simulation of optical system and imaging ability such as optical design, MCAO, active maintenance of primary mirror were carried out in this paper. Mechanical system was analyzed by finite element method too. The results of simulation and analysis showed that the current design could meet the demand of most science cases not only in infrared band but also in near infrared band and even in visible band. CGST was proposed by all solar observatories in Chinese Academy of Sciences and several overseas scientists. It is supported by CAS and NSFC (National Natural Science Foundation of China) as a long term astronomical project.

  19. Daniel K. Inouye Solar Telescope Science Operations

    NASA Astrophysics Data System (ADS)

    Tritschler, Alexandra; Rimmele, Thomas R.; Berukoff, Steven

    2016-05-01

    The Daniel K. Inouye Solar Telescope (DKIST) is a versatile high resolution ground-based solar telescope designed to explore the dynamic Sun and its magnetism throughout the solar atmosphere from the photosphere to the faint corona. The DKIST is currently under construction on Haleakala, Maui, Hawai'i, and expected to commence with science operations in 2019. In this contribution we provide an overview of the high-level science operations concepts from proposal preparation and submission to the flexible and dynamic planning and execution of observations.

  20. Science with the Solar Optical Telescope (SOT)

    NASA Technical Reports Server (NTRS)

    Jordan, S. D.

    1984-01-01

    Use of the Solar Optical Telescope (SOT) to study the energetics and dynamics of the solar atmosphere is described. Studies include the origin and evolution of the Sun's magnetic field, the structure of solar subsurface convection, the heating of the outer solar atmosphere, and sources of the solar wind in the lower lying regions of the outer atmosphere. To achieve the scientific goals of the SOT, it is necessary to observe features in the solar atmosphere on the scale of a typical photon mean-free-path in continuum radiation and also of the hydrodynamic or density scale-height. The 1.3 m telescope, of a Gregorian configuration, achieves close to 0.1 arcsec angular resolution on the Sun in visible and ultraviolet wavelengths.

  1. Solar optical telescope primary mirror controller

    NASA Technical Reports Server (NTRS)

    Brown, R. J.; Liu, D.

    1980-01-01

    The development of a technique to control the articulated primary mirror (APM) of the solar optical telescope (SOT) is discussed. Program results indicate that a single, all digital controller has sufficient capability to totally handle the computational requirements for control of the SOT APM.

  2. Advanced Technology Solar Telescope Construction: Progress Report

    NASA Astrophysics Data System (ADS)

    Rimmele, Thomas R.; McMullin, J.; Keil, S.; Goode, P.; Knoelker, M.; Kuhn, J.; Rosner, R.; ATST Team

    2012-05-01

    The 4m Advance Technology Solar Telescope (ATST) on Haleakala will be the most powerful solar telescope and the world’s leading ground-based resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun’s output. The ATST will provide high resolution and high sensitivity observations of the dynamic solar magnetic fields throughout the solar atmosphere, including the corona at infrared wavelengths. With its 4 m aperture, ATST will resolve magnetic features at their intrinsic scales. A high order adaptive optics system delivers a corrected beam to the initial set of five state-of-the-art, facility class instrumentation located in the coude laboratory facility. Photopheric and chromospheric magnetometry is part of the key mission of four of these instruments. Coronal magnetometry and spectroscopy will be performed by two of these instruments at infrared wavelengths. The ATST project has transitioned from design and development to its construction phase. Site construction is expected to begin in April 2012. The project has awarded design and fabrication contracts for major telescope subsystems. A robust instrument program has been established and all instruments have passed preliminary design reviews or critical design reviews. A brief overview of the science goals and observational requirements of the ATST will be given, followed by a summary of the project status of the telescope and discussion of the approach to integrating instruments into the facility. The National Science Foundation (NSF) through the National Solar Observatory (NSO) funds the ATST Project. The NSO is operated under a cooperative agreement between the Association of Universities for Research in Astronomy, Inc. (AURA) and NSF.

  3. National Large Solar Telescope of Russia

    NASA Astrophysics Data System (ADS)

    Demidov, Mikhail

    One of the most important task of the modern solar physics is multi-wavelength observations of the small-scale structure of solar atmosphere on different heights, including chromosphere and corona. To do this the large-aperture telescopes are necessary. At present time there several challenging projects of the large (and even giant) solar telescopes in the world are in the process of construction or designing , the most known ones among them are 4-meter class telescopes ATST in USA and EST in Europe. Since 2013 the development of the new Large Solar Telescope (LST) with 3 meter diameter of the main mirror is started in Russia as a part (sub-project) of National Heliogeophysical Complex (NHGC) of the Russian Academy of Sciences. It should be located at the Sayan solar observatory on the altitude more then 2000 m. To avoid numerous problems of the off-axis optical telescopes (despite of the obvious some advantages of the off-axis configuration) and to meet to available financial budget, the classical on-axis Gregorian scheme on the alt-azimuth mount has been chosen. The scientific equipment of the LST-3 will include several narrow-band tunable filter devices and spectrographs for different wavelength bands, including infrared. The units are installed either at the Nasmyth focus or/and on the rotating coude platform. To minimize the instrumental polarization the polarization analyzer is located near diagonal mirror after M2 mirror. High order adaptive optics is used to achieve the diffraction limited performances. It is expected that after some modification of the optical configuration the LST-3 will operate as an approximately 1-m mirror coronograph in the near infrared spectral lines. Possibilities for stellar observations during night time are provided as well.

  4. Solar Rejection Filter for Large Telescopes

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Lesh, James

    2009-01-01

    To reject solar radiation photons at the front aperture for large telescopes, a mosaic of large transmission mode filters is placed in front of the telescope or at the aperture of the dome. Filtering options for effective rejection of sunlight include a smaller filter down-path near the focus of the telescope, and a large-diameter filter located in the front of the main aperture. Two types of large filters are viable: reflectance mode and transmittance mode. In the case of reflectance mode, a dielectric coating on a suitable substrate (e.g. a low-thermal-expansion glass) is arranged to reflect only a single, narrow wavelength and to efficiently transmit all other wavelengths. These coatings are commonly referred to as notch filter. In this case, the large mirror located in front of the telescope aperture reflects the received (signal and background) light into the telescope. In the case of transmittance mode, a dielectric coating on a suitable substrate (glass, sapphire, clear plastic, membrane, and the like) is arranged to transmit only a single wavelength and to reject all other wavelengths (visible and near IR) of light. The substrate of the large filter will determine its mass. At first glance, a large optical filter with a diameter of up to 10 m, located in front of the main aperture, would require a significant thickness to avoid sagging. However, a segmented filter supported by a structurally rugged grid can support smaller filters. The obscuration introduced by the grid is minimal because the total area can be made insignificant. This configuration can be detrimental to a diffraction- limited telescope due to diffraction effects at the edges of each sub-panel. However, no discernable degradation would result for a 20 diffraction-limit telescope (a photon bucket). Even the small amount of sagging in each subpanel should have minimal effect in the performance of a non-diffraction limited telescope because the part has no appreciable optical power. If the

  5. Solar rejection for an orbiting telescope

    NASA Technical Reports Server (NTRS)

    Rehnberg, J. D.

    1975-01-01

    The present work discusses some of the constraints that the optical designer must deal with in optimizing spaceborne sensors that must look at or near the sun. Analytical techniques are described for predicting the effects of stray radiation from sources such as mirror scatter, baffle scatter, diffraction, and ghost images. In addition, the paper describes a sensor design that has been flown on the Apollo Telescope Mount (Skylab) to aid astronauts in locating solar flares. In addition to keeping stray radiation to a minimum, the design had to be nondegradable by the direct solar heat load.

  6. The Advanced Technology Solar Telescope enclosure

    NASA Astrophysics Data System (ADS)

    Phelps, L.; Barr, J.; Dalrymple, N.; Fraser, M.; Hubbard, R.; Wagner, J.; Warner, M.

    2006-06-01

    Telescope enclosure design is based on an increasingly standard set of criteria. Enclosures must provide failsafe protection in a harsh environment for an irreplaceable piece of equipment; must allow effective air flushing to minimize local seeing while still attenuating wind-induced vibration of the telescope; must reliably operate so that the dome is never the reason for observatory down time; must provide access to utilities, lifting devices and support facilities; and they must be affordable within the overall project budget. The enclosure for the Advanced Technology Solar Telescope (ATST) has to satisfy all these challenging requirements plus one more. To eliminate so-called external dome seeing, the exterior surfaces of the enclosure must be maintained at or just below ambient air temperature while being subjected to the full solar loading of an observing day. Further complicating the design of the ATST enclosure and support facilities are the environmental sensitivities and high construction costs at the selected site - the summit of Haleakala on the island of Maui, Hawaii. Previous development work has determined an appropriate enclosure shape to minimize solar exposure while allowing effective interior flushing, and has demonstrated the feasibility of controlling the exterior skin temperature with an active cooling system. This paper presents the evolution of the design since site selection and how the enclosure and associated thermal systems have been tailored to the particular climatic and terrain conditions of the site. Also discussed are load-reduction strategies that have been identified through thermal modeling, CFD modeling, and other analyses to refine and economize the thermal control systems.

  7. Wavelet Analysis of Space Solar Telescope Images

    NASA Astrophysics Data System (ADS)

    Zhu, Xi-An; Jin, Sheng-Zhen; Wang, Jing-Yu; Ning, Shu-Nian

    2003-12-01

    The scientific satellite SST (Space Solar Telescope) is an important research project strongly supported by the Chinese Academy of Sciences. Every day, SST acquires 50 GB of data (after processing) but only 10GB can be transmitted to the ground because of limited time of satellite passage and limited channel volume. Therefore, the data must be compressed before transmission. Wavelets analysis is a new technique developed over the last 10 years, with great potential of application. We start with a brief introduction to the essential principles of wavelet analysis, and then describe the main idea of embedded zerotree wavelet coding, used for compressing the SST images. The results show that this coding is adequate for the job.

  8. Short telescope design of 1.5-m aperture solar UV visible and IR telescope aboard Solar-C

    NASA Astrophysics Data System (ADS)

    Suematsu, Y.; Katsukawa, Y.; Shimizu, T.; Ichimoto, K.; Horiuchi, T.; Matsumoto, Y.; Takeyama, N.

    2011-10-01

    We present an optical and thermal design of one of major instrumental payload planned for SOLAR-C mission/Plan-B (high resolution spectroscopic option): the telescope assembly of Solar Ultra-violet Visible and near IR observing Telescope (SUVIT). To accommodate a launcher's nosecone size, a wide observing wavelength coverage from UV (down to 280 nm) through near IR (up to 1100 nm), and an 0.1 arcsec resolution in the field of 200 arcsec diameter, a short telescope design was made for a 1.5 m aperture solar Gregorian telescope with the compact design of three-mirror collimator unit.

  9. Daniel K. Inouye Solar Telescope system safety

    NASA Astrophysics Data System (ADS)

    Hubbard, Robert P.; Bulau, Scott E.; Shimko, Steve; Williams, Timothy R.

    2014-08-01

    System safety for the Daniel K. Inouye Solar Telescope (DKIST) is the joint responsibility of a Maui-based safety team and the Tucson-based systems engineering group. The DKIST project is committed to the philosophy of "Safety by Design". To that end the project has implemented an aggressive hazard analysis, risk assessment, and mitigation system. It was initially based on MIL-STD-882D, but has since been augmented in a way that lends itself to direct application to the design of our Global Interlock System (GIS). This was accomplished by adopting the American National Standard for Industrial Robots and Robot Systems (ANSI/RIA R15.06) for all identified hazards that involve potential injury to personnel. In this paper we describe the details of our augmented hazard analysis system and its use by the project. Since most of the major hardware for the DKIST (e.g., the enclosure, and telescope mount assembly) has been designed and is being constructed by external contractors, the DKIST project has required our contractors to perform a uniform hazard analysis of their designs using our methods. This paper also describes the review and follow-up process implemented by the project that is applied to both internal and external subsystem designs. Our own weekly hazard analysis team meetings have now largely turned to system-level hazards and hazards related to specific tasks that will be encountered during integration, test, and commissioning and maintenance operations. Finally we discuss a few lessons learned, describing things we might do differently if we were starting over today.

  10. Bringing Perfect Vision to the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Matijevich, Russ; Johansson, Erik; Johnson, Luke; Cavaco, Jeff; National Solar Observatory

    2016-01-01

    The world's largest ground-based solar telescope is one step closer to operation with the acceptance of the deformable mirror engineered by AOA Xinetics, a Northrop Grumman Corporation company. The Daniel K. Inouye Solar Telescope (DKIST), currently under construction in Haleakala, Hawaii, will offer unprecedented high-resolution images of the sun using the latest adaptive optics technology to provide its distortion-free imaging.Led by the National Solar Observatory (NSO) and the Association of Universities for Research in Astronomy (AURA), the Inouye Solar Telescope will help scientists better understand how magnetic fields affect the physical properties of the Sun, what roles they play in our solar system and how they affect Earth.Ground-based telescopes, whether observing the sun or the night sky must contend with atmospheric turbulence that acts as a flexible lens, constantly reshaping observed images. This turbulence makes research on solar activity difficult and drives the need for the latest adaptive optics technology.To provide DKIST with the distortion-free imaging it requires, AOA Xinetics designed a deformable mirror with 1,600 actuators, four times the normal actuator density. This deformable mirror (DM) is instrumental in removing all of the atmospheric blurriness that would otherwise limit the telescope's performance. The mirror also has an internal thermal management system to handle the intense solar energy coming from DKIST's telescope. This poster provides the history behind this incredible success story.

  11. 1.8-m solar telescope in China: Chinese Large Solar Telescope

    NASA Astrophysics Data System (ADS)

    Rao, Changhui; Gu, Naiting; Zhu, Lei; Huang, Jinlong; Li, Cheng; Cheng, Yuntao; Liu, Yangyi; Cao, Xuedong; Zhang, Ming; Zhang, Lanqiang; Liu, Hong; Wan, Yongjian; Xian, Hao; Ma, Wenli; Bao, Hua; Zhang, Xiaojun; Guan, Chunlin; Chen, Donghong; Li, Mei

    2015-04-01

    For better understanding and forecasting of solar activity, high resolution observations for the Sun are needed. Therefore, the Chinese Large Solar Telescope (CLST) with a 1.8-m aperture is being built. The CLST is a classic Gregorian configuration telescope with an open structure, alt-azimuth mount, retractable dome, and a large mechanical de-rotator. The optical system with an all reflective design has a field of view of larger than 3 arc-min. The 1.8-m primary mirror is a honeycomb sandwich fused silica lightweight mirror with an ultra lower expansion material and active cooling. The adaptive optics system will be developed to provide the capability for diffraction-limited observations at visible wavelengths. The CLST design and development phase began in 2011 and 2012, respectively. We plan for the CLST's start of commission to be in 2017. A multiwavelength tomographic imaging system, ranging from visible to near-infrared, is considered as the first light scientific instrument. The main system configuration and the corresponding postfocal instruments are described. Furthermore, the latest progress and current status of the CLST are also reported.

  12. A retrospective of the GREGOR solar telescope in scientific literature

    NASA Astrophysics Data System (ADS)

    Denker, C.; von der Lühe, O.; Feller, A.; Arlt, K.; Balthasar, H.; Bauer, S.-M.; Bello González, N.; Berkefeld, Th.; Caligari, P.; Collados, M.; Fischer, A.; Granzer, T.; Hahn, T.; Halbgewachs, C.; Heidecke, F.; Hofmann, A.; Kentischer, T.; Klva{ňa, M.; Kneer, F.; Lagg, A.; Nicklas, H.; Popow, E.; Puschmann, K. G.; Rendtel, J.; Schmidt, D.; Schmidt, W.; Sobotka, M.; Solanki, S. K.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Volkmer, R.; Waldmann, T.; Wiehr, E.; Wittmann, A. D.; Woche, M.

    2012-11-01

    In this review, we look back upon the literature, which had the GREGOR solar telescope project as its subject including science cases, telescope subsystems, and post-focus instruments. The articles date back to the year 2000, when the initial concepts for a new solar telescope on Tenerife were first presented at scientific meetings. This comprehensive bibliography contains literature until the year 2012, i.e., the final stages of commissioning and science verification. Taking stock of the various publications in peer-reviewed journals and conference proceedings also provides the ``historical'' context for the reference articles in this special issue of Astronomische Nachrichten/Astronomical Notes.

  13. Polarization Calibration of the Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Elmore, D. F.

    2014-10-01

    The Advanced Technology Solar Telescope (ATST) will be the World's largest solar polarimeter with a number of polarimetric instruments simultaneously sharing the ATST light beam. Polarization calibration requires determination of the polarization properties of the telescope optics that are shared by all instruments and the polarization response of each instrument. Hundreds of parameters are required to fully specify the telescope optics but by grouping successive optical elements separated at the Gregorian focus, the elevation rotation, and the Coudé - azimuth rotation and performing calibrations over the course of a day, it is possible to infer the polarization properties of each of the groups, and the instruments themselves with many fewer parameters.

  14. Photographic films for the Multi-Spectral Solar Telescope Array

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Walker, Arthur B. C., Jr.; Deforest, Craig E.; Allen, Maxwell J.; Lindblom, Joakim F.; Gilliam, Lou; November, Larry; Brown, Todd; Dewan, Clyde A.

    1992-01-01

    The rocketborne Multi-Spectral Solar Telescope Array (MSSTA) uses an array of Ritchey-Chretien, Cassegrain, and Herschelian telescopes to produce ultrahigh-resolution full-disk images of the sun within the soft X-ray, EUV, and FUV ranges. Such imaging of the solar disk and corona out to several solar radii placed great demands on the MSSTA's data storage capabilities; in addition, its photographic films required very low outgassing rates. Results are presented from calibration tests conducted on the MSSTA's emulsions, based on measurements at NIST's synchrotron facility.

  15. Multi-Application Solar Telescope: assembly, integration, and testing

    NASA Astrophysics Data System (ADS)

    Denis, Stefan; Coucke, Pierre; Gabriel, Eric; Delrez, Christophe; Venkatakrishnan, Parameshwaran

    2010-07-01

    The Multi-Application Solar Telescope (MAST) is a 50 cm diameter class telescope to be installed by AMOS on the Udaipur Solar Observatory's Island on the Lake Fatehsagar in India. Despite its limited size, the telescope is expected to be competitive with respect to worldwide large and costly projects thanks to its versatility regarding science goals and due to its demanding optomechanical and thermal specification. This paper describes the latest, on-going and forthcoming activities, including factory assembly, integration and testing, followed by on-site installation and commissioning activities. Emphasis is put on the highly demanding thermal control of the telescope, showing development and results for the specific techniques employed on this purpose. Other key features also depicted are the unusual tracking and alignment control solutions on such a specific science target like the Sun.

  16. Alignment displacements of the solar optical telescope primary mirror

    NASA Technical Reports Server (NTRS)

    Medenica, W. V.

    1978-01-01

    Solar optical telescope is a space shuttle payload which is at the present time (1978) being planned. The selected alignment method for the telescope's primary mirror is such that the six inclined legs supporting the mirror are at the same time motorized alignment actuators, changing their own length according to the alignment requirement and command. The alignment displacements were described, including circumvention of some apparent NASTRAN limitations.

  17. The James Webb Space Telescope: Solar System Science

    NASA Astrophysics Data System (ADS)

    Hines, Dean C.; Hammel, H. B.; Lunine, J. I.; Milam, S. N.; Kalirai, J. S.; Sonneborn, G.

    2013-01-01

    The James Webb Space Telescope (JWST) is poised to revolutionize many areas of astrophysical research including Solar System Science. Scheduled for launch in 2018, JWST is ~100 times more powerful than the Hubble and Spitzer observatories. It has greater sensitivity, higher spatial resolution in the infrared, and significantly higher spectral resolution in the mid infrared. Imaging and spectroscopy (both long-slit and integral-field) will be available across the entire 0.6 - 28.5 micron wavelength range. Herein, we discuss the capabilities of the four science instruments with a focus on Solar System Science, including instrument modes that enable observations over the huge range of brightness presented by objects within the Solar System. The telescope is being built by Northrop Grumman Aerospace Systems for NASA, ESA, and CSA. JWST development is led by NASA's Goddard Space Flight Center. The Space Telescope Science Institute (STScI) is the Science and Operations Center (S&OC) for JWST.

  18. Daniel K. Inouye Solar Telescope (DKIST) Critical Science Plan

    NASA Astrophysics Data System (ADS)

    Rast, Mark

    2015-08-01

    The Daniel K. Inouye Solar Telescope (DKIST), formerly the Advanced Technology Solar Telescope (ATST), is under construction on Haleakala, Maui HI, with expected instrument integration in 2018 and start of operations during the summer of 2019. In preparation, the National Solar Observatory (NSO) is working with the Science Working Group to formulate a critical science plan for early operations and is calling for community involvement in all stages of its development. The first step in this process is the definition of a set of critical science themes and, under each of these, use-cases that outline the scientific motivation along with the instrument suite and high level observing strategies to be employed. The use-cases will later be refined into observing proposals, which will guide the development of efficient operations tools and procedures and provide the framework for some of the first science observations to be made with the telescope. A web interface has been established to facilitate community engagement.

  19. Optical design of the new solar telescope GREGOR

    NASA Astrophysics Data System (ADS)

    Soltau, D.; Volkmer, R.; von der Lühe, O.; Berkefeld, Th.

    2012-11-01

    This article describes the considerations which led to the current optical design of the new 1.5 m solar telescope GREGOR. The result is Gregorian design with two real foci in the optical train. The telescope includes a relay optic with a pupil image used by a high order adaptive optics system (AO). The optical design is described in detail and performance characteristics are given. Finally we show some verification results which prove that - without atmospheric effects - the completed telescope reaches a diffraction limited performance.

  20. Mirror seeing control of large infrared solar telescope

    NASA Astrophysics Data System (ADS)

    Zhang, Haiying; Li, Xinnan; Meng, Xiaohui; Ni, Houkun

    2010-07-01

    To obtain high resolution infrared image, both low photon efficiency and long wavelength of infrared light requires enough large aperture telescope, but large aperture vacuum windows can hardly achieve high optical quality, so open structure becomes the only viable choice for large infrared solar telescope. In addition to the effects of atmospheric turbulence, open solar telescopes suffer from the heating of the optics by sunlight, especially primary mirror heating. These factors cause the image to shiver and become blurred, and increase infrared observing noise. Since blowing air across the front surface of the primary mirror doesn't have the necessary heat transfer coefficient to remove the absorbed heat load, it must be cooled down to maintained at a temperature between 0K and 2K below ambient air temperature to reduce the effects of turbulence. This paper will introduce some cooling methods and simulation results of primary mirror in large infrared solar telescope. On the other hand, mirror material with nice thermal conductivity can reduce the temperature difference between mirror surface and air, and mirror surface polishing at infrared wavelength can be comparatively easier than at visible wavelength, so it is possible to select low cost metal mirror as primary mirror of infrared solar telescope. To analyze the technical feasibility of metal mirror serving as primary mirror, this paper also give some polishing results of aluminum mirror with electroless nickel coating.

  1. NST: Thermal Modeling for a Large Aperture Solar Telescope

    NASA Astrophysics Data System (ADS)

    Coulter, Roy

    2011-05-01

    Late in the 1990s the Dutch Open Telescope demonstrated that internal seeing in open, large aperture solar telescopes can be controlled by flushing air across the primary mirror and other telescope structures exposed to sunlight. In that system natural wind provides a uniform air temperature throughout the imaging volume, while efficiently sweeping heated air away from the optics and mechanical structure. Big Bear Solar Observatory's New Solar Telescope (NST) was designed to realize that same performance in an enclosed system by using both natural wind through the dome and forced air circulation around the primary mirror to provide the uniform air temperatures required within the telescope volume. The NST is housed in a conventional, ventilated dome with a circular opening, in place of the standard dome slit, that allows sunlight to fall only on an aperture stop and the primary mirror. The primary mirror is housed deep inside a cylindrical cell with only minimal openings in the side at the level of the mirror. To date, the forced air and cooling systems designed for the NST primary mirror have not been implemented, yet the telescope regularly produces solar images indicative of the absence of mirror seeing. Computational Fluid Dynamics (CFD) analysis of the NST primary mirror system along with measurements of air flows within the dome, around the telescope structure, and internal to the mirror cell are used to explain the origin of this seemingly incongruent result. The CFD analysis is also extended to hypothetical systems of various scales. We will discuss the results of these investigations.

  2. The National Large Solar Telescope (NLST) of India

    NASA Astrophysics Data System (ADS)

    Hasan, S. S.

    2012-12-01

    The Indian National Large Solar Telescope (NLST) will be a state-of-the-art 2-m class telescope for carrying out high-resolution studies in the solar atmosphere. Recent numerical simulations suggest that crucial physical processes like vortex flow, dissipation of magnetic fields and the generation of MHD waves can occur efficiently over length scales of tens of kilometers. Current telescopes are unable to resolve solar feature to this level at visible wavelengths. NLST will not only achieve good spatial resolution, but will also have a high photon throughput in order to carry out spectropolarimetric observations to accurately measure vector magnetic fields in the solar atmosphere with a good signal to noise ratio. The main science goals of NLST include: a) Magnetic field generation and the solar cycle; b) Dynamics of magnetized regions; c) Helioseismology; d) Long term variability; e) Energetic phenomena and Activity; and f) Night time astronomy. The optical design of the telescope is optimized for high optical throughput and uses a minimum number of optical elements. A high order adaptive optics system is integrated as part of the design that works with a modest Fried's parameter of 7-cm to give diffraction limited performance. The telescope will be equipped with a suite of post-focus instruments including a high resolution spectrograph and a polarimeter. NLST will also be used for carrying out stellar observations during the night. The mechanical design of the telescope, building, and the innovative dome takes advantage of the natural air flush which will help to keep the open telescope in temperature equilibrium. Critical to the successful implementation of NLST is the selection of a site with optimum atmospheric properties, such as the number of sunshine hours and good "seeing" over long periods. A site characterization programme carried over several years has established the existence of suitable sites in the Ladakh region. After its completion, currently

  3. High resolution reconstruction of solar prominence images observed by the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Xiang, Yong-yuan; Liu, Zhong; Jin, Zhen-yu

    2016-11-01

    A high resolution image showing fine structures is crucial for understanding the nature of solar prominence. In this paper, high resolution imaging of solar prominence on the New Vacuum Solar Telescope (NVST) is introduced, using speckle masking. Each step of the data reduction especially the image alignment is discussed. Accurate alignment of all frames and the non-isoplanatic calibration of each image are the keys for a successful reconstruction. Reconstructed high resolution images from NVST also indicate that under normal seeing condition, it is feasible to carry out high resolution observations of solar prominence by a ground-based solar telescope, even in the absence of adaptive optics.

  4. G-133: A soft X ray solar telescope

    NASA Astrophysics Data System (ADS)

    Williams, Memorie K.; Campbell, Branton; Roming, Peter W. A.; Spute, Mark K.; Moody, J. Ward

    1992-10-01

    The GOLDHELOX Project, NASA payload number G-133, is a robotic soft x ray solar telescope designed and built by an organization of undergraduate students. The telescope is designed to observe the sun at a wavelength of 171 to 181 A. Since we require observations free from atmospheric interference, the telescope will be launched in a NASA Get-Away-Special (GAS) canister with a Motorized Door Assembly (MDA). In this paper we primarily discuss the most important elements of the telescope itself. We also elaborate on some of the technical difficulties associated with doing good science in space on a small budget (about $100,000) and mention ways in which controlling the instrument environment has reduced the complexity of the system and thus saved us money.

  5. G-133: A soft x ray solar telescope

    NASA Technical Reports Server (NTRS)

    Williams, Memorie K.; Campbell, Branton; Roming, Peter W. A.; Spute, Mark K.; Moody, J. Ward

    1992-01-01

    The GOLDHELOX Project, NASA payload number G-133, is a robotic soft x ray solar telescope designed and built by an organization of undergraduate students. The telescope is designed to observe the sun at a wavelength of 171 to 181 A. Since we require observations free from atmospheric interference, the telescope will be launched in a NASA Get-Away-Special (GAS) canister with a Motorized Door Assembly (MDA). In this paper we primarily discuss the most important elements of the telescope itself. We also elaborate on some of the technical difficulties associated with doing good science in space on a small budget (about $100,000) and mention ways in which controlling the instrument environment has reduced the complexity of the system and thus saved us money.

  6. Telescope beam-profile diagnostics and the solar limb

    NASA Technical Reports Server (NTRS)

    Lindsey, Charles A.; Roellig, Thomas L.

    1991-01-01

    The basic method is described for determining the solar limb brightness profile properly corrected for spurious limb darkening caused by the far wings of the resolving beams encountered in large far-infrared and radio telescopes. When the far wings of the beam can be independently measured this problem is usually amenable to standard deconvolution procedures. Under a broad range of well-defined cases, solutions to the deconvolution problem are unique to within the discrimination provided by the core of the beam profile. The theory is applied to solar limb scans made recently on the James Clerk Maxwell Telscope to show solar limb brightening in 850 micron radiation.

  7. Telescope beam-profile diagnostics and the solar limb

    SciTech Connect

    Lindsey, C.A.; Roellig, T.L. NASA, Ames Research Center, Moffett Field, CA )

    1991-07-01

    The basic method is described for determining the solar limb brightness profile properly corrected for spurious limb darkening caused by the far wings of the resolving beams encountered in large far-infrared and radio telescopes. When the far wings of the beam can be independently measured this problem is usually amenable to standard deconvolution procedures. Under a broad range of well-defined cases, solutions to the deconvolution problem are unique to within the discrimination provided by the core of the beam profile. The theory is applied to solar limb scans made recently on the James Clerk Maxwell Telscope to show solar limb brightening in 850 micron radiation. 16 refs.

  8. Design of multichannel image processing on the Space Solar Telescope

    NASA Astrophysics Data System (ADS)

    Zhang, Bin

    2000-07-01

    The multi-channel image processing system on the Space Solar Telescope (SST) is described in this paper. This system is main part of science data unit (SDU), which is designed for dealing with the science data from every payload on the SST. First every payload on the SST and its scientific objective are introduced. They are main optic telescope, four soft X- ray telescopes, an H-alpha and white light (full disc) telescope, a coronagraph, a wide band X-ray and Gamma-ray spectrometer, and a solar and interplanetary radio spectrometer. Then the structure of SDU is presented. In this part, we discuss the hardware and software structure of SDU, which is designed for multi-payload. The science data scream of every payload is summarized, too. Solar magnetic and velocity field processing that occupies more than 90% of the data processing of SDU is discussed, which includes polarizing unit, image receiver and image adding unit. Last the plan of image data compression and mass memory that is designed for science data storage are presented.

  9. Design progress of the solar UV-Vis-IR telescope (SUVIT) aboard SOLAR-C

    NASA Astrophysics Data System (ADS)

    Katsukawa, Y.; Ichimoto, K.; Suematsu, Y.; Hara, H.; Kano, R.; Shimizu, T.; Matsuzaki, K.

    2013-09-01

    We present a design progress of the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. SUVIT has an aperture diameter of ~1.4 m for achieving spectro-polarimetric observations with spatial and temporal resolution exceeding the Hinode Solar Optical Telescope (SOT). We have studied structural and thermal designs of the optical telescope as well as the optical interface between the telescope and the focal plane instruments. The focal plane instruments are installed into two packages, filtergraph and spectrograph packages. The spectropolarimeter is the instrument dedicated to accurate polarimetry in the three spectrum windows at 525 nm, 854 nm, and 1083 nm for observing magnetic fields at both the photospheric and chromospheric layers. We made optical design of the spectrograph accommodating the conventional slit spectrograph and the integral field unit (IFU) for two-dimensional coverage. We are running feasibility study of the IFU using fiber arrays consisting of rectangular cores.

  10. Articulated primary mirror /APM/ for the Solar Optical Telescope /SOT/

    NASA Technical Reports Server (NTRS)

    Gowrinathan, S.; Gottesman, J.

    1981-01-01

    Allowing the location of the primary vs secondary mirrors to be movable in space, the articulated primary mirror (APM) was designed as an inexpensive alternative, providing stable imagery, for the Solar Optical Telescope (SOT). Requirements of high resolution in the sub-arc-second region, and the ability to point the telescope through the Instrument Pointing System (IPS) were satisfied. Alignment sensors, contained within the subsystem, locate the points of coincidence of the foci of the primary and secondary optics (conic foci). These are utilized as inputs for subsystem actuators to correct via the digital controller algorithm.

  11. Solar System Science with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Hammel, Heidi B.; Norwood, J.; Chanover, N.; Hines, D. C.; Stansberry, J.; Lunine, J. I.; Tiscareno, M. S.; Milam, S. N.; Sonneborn, G.; Brown, M.

    2013-10-01

    The James Webb Space Telescope (JWST) will succeed the Hubble Space Telescope as NASA’s premier space-based platform for observational astronomy. This 6.5-meter telescope, which is optimized for observations in the near and mid infrared, will be equipped with four state-of-the-art imaging, spectroscopic, and coronagraphic instruments. These instruments, along with the telescope’s moving target capabilities, will enable the infrared study of solar system objects with unprecedented detail (see companion presentation by Sonneborn et al.). This poster features highlights for planetary science applications, extracted from a white paper in preparation. We present a number of hypothetical solar system observations as a means of demonstrating potential planetary science observing scenarios; the list of applications discussed here is far from comprehensive. The goal of this poster and the subsequent white paper is to stimulate discussion and encourage participation in JWST planning among members of the planetary science community, and to encourage feedback to the JWST Project on any desired observing capabilities, data products, and analysis procedures that would enhance the use of JWST for solar system studies. The upcoming white paper updates and supersedes the solar system white paper published by the JWST Project in 2010 (Lunine et al., 2010), and is based in part on JWST events held at the 2012 DPS, the 2013 LPSC meeting, and this DPS (JWST Town Hall, Thursday, 10 October 2013, 12-1 pm).

  12. Facility level thermal systems for the Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Phelps, LeEllen; Murga, Gaizka; Fraser, Mark; Climent, Tània

    2012-09-01

    The management and control of the local aero-thermal environment is critical for success of the Advanced Technology Solar Telescope (ATST). In addition to minimizing disturbances to local seeing, the facility thermal systems must meet stringent energy efficiency requirements to minimize impact on the surrounding environment and meet federal requirements along with operational budgetary constraints. This paper describes the major facility thermal equipment and systems to be implemented along with associated energy management features. The systems presented include the central plant, the climate control systems for the computer room and coudé laboratory, the carousel cooling system which actively controls the surface temperature of the rotating telescope enclosure, and the systems used for active and passive ventilation of the telescope chamber.

  13. FalconSAT-7: a membrane space solar telescope

    NASA Astrophysics Data System (ADS)

    Andersen, Geoff; Asmolova, Olha; McHarg, Matthew G.; Quiller, Trey; Maldonado, Carlos

    2016-07-01

    The US Air Force Academy of Physics has built FalconSAT-7, a membrane solar telescope to be deployed from a 3U CubeSat in LEO. The primary optic is a 0.2m photon sieve - a diffractive element consisting of billions of tiny circular dimples etched into a Kapton sheet. The membrane its support structure, secondary optics, two imaging cameras and associated control, recording electronics are packaged within half the CubeSat volume. Once in space the supporting pantograph structure is deployed, extending out and pulling the membrane flat under tension. The telescope will then be directed at the Sun to gather images at H-alpha for transmission to the ground. We will present details of the optical configuration, operation and performance of the flight telescope which has been made ready for launch in early 2017.

  14. Swedish Solar Telescope - Short summary of instrumentation and observation techniques

    NASA Astrophysics Data System (ADS)

    Scharmer, Goran; Lofdahl, Mats

    A short summary of the design concepts of the Swedish Solar Telescope at La Palma is given along with the most important parts of the instrumentation and observing techniques. The experience from using high-speed read-out CCDs for solar observations is also discussed. The advantages of this data acquisition system are that it allows real-time frame selection for achieving high spatial resolution, that several cameras can be slaved by one seeing monitor, and that bursts of digital images can be recorded for full spatial coverage of small parts of active regions.

  15. The Advanced Technology Solar Telescope: design and early construction

    NASA Astrophysics Data System (ADS)

    McMullin, Joseph P.; Rimmele, Thomas R.; Keil, Stephen L.; Warner, Mark; Barden, Samuel; Bulau, Scott; Craig, Simon; Goodrich, Bret; Hansen, Eric; Hegwer, Steve; Hubbard, Robert; McBride, William; Shimko, Steve; Wöger, Friedrich; Ditsler, Jennifer

    2012-09-01

    The National Solar Observatory’s (NSO) Advanced Technology Solar Telescope (ATST) is the first large U.S. solar telescope accessible to the worldwide solar physics community to be constructed in more than 30 years. The 4-meter diameter facility will operate over a broad wavelength range (0.35 to 28 μm ), employing adaptive optics systems to achieve diffraction limited imaging and resolve features approximately 20 km on the Sun; the key observational parameters (collecting area, spatial resolution, spectral coverage, polarization accuracy, low scattered light) enable resolution of the theoretically-predicted, fine-scale magnetic features and their dynamics which modulate the radiative output of the sun and drive the release of magnetic energy from the Sun’s atmosphere in the form of flares and coronal mass ejections. In 2010, the ATST received a significant fraction of its funding for construction. In the subsequent two years, the project has hired staff and opened an office on Maui. A number of large industrial contracts have been placed throughout the world to complete the detailed designs and begin constructing the major telescope subsystems. These contracts have included the site development, AandE designs, mirrors, polishing, optic support assemblies, telescope mount and coudé rotator structures, enclosure, thermal and mechanical systems, and high-level software and controls. In addition, design development work on the instrument suite has undergone significant progress; this has included the completion of preliminary design reviews (PDR) for all five facility instruments. Permitting required for physically starting construction on the mountaintop of Haleakalā, Maui has also progressed. This paper will review the ATST goals and specifications, describe each of the major subsystems under construction, and review the contracts and lessons learned during the contracting and early construction phases. Schedules for site construction, key factory testing of

  16. 1-Meter Digital Elevation Model specification

    USGS Publications Warehouse

    Arundel, Samantha T.; Archuleta, Christy-Ann M.; Phillips, Lori A.; Roche, Brittany L.; Constance, Eric W.

    2015-10-21

    In January 2015, the U.S. Geological Survey National Geospatial Technical Operations Center began producing the 1-Meter Digital Elevation Model data product. This new product was developed to provide high resolution bare-earth digital elevation models from light detection and ranging (lidar) elevation data and other elevation data collected over the conterminous United States (lower 48 States), Hawaii, and potentially Alaska and the U.S. territories. The 1-Meter Digital Elevation Model consists of hydroflattened, topographic bare-earth raster digital elevation models, with a 1-meter x 1-meter cell size, and is available in 10,000-meter x 10,000-meter square blocks with a 6-meter overlap. This report details the specifications required for the production of the 1-Meter Digital Elevation Model.

  17. 1-Meter Digital Elevation Model specification

    USGS Publications Warehouse

    Arundel, Samantha T.; Archuleta, Christy-Ann M.; Phillips, Lori A.; Roche, Brittany L.; Constance, Eric W.

    2015-01-01

    In January 2015, the U.S. Geological Survey National Geospatial Technical Operations Center began producing the 1-Meter Digital Elevation Model data product. This new product was developed to provide high resolution bare-earth digital elevation models from light detection and ranging (lidar) elevation data and other elevation data collected over the conterminous United States (lower 48 States), Hawaii, and potentially Alaska and the U.S. territories. The 1-Meter Digital Elevation Model consists of hydroflattened, topographic bare-earth raster digital elevation models, with a 1-meter x 1-meter cell size, and is available in 10,000-meter x 10,000-meter square blocks with a 6-meter overlap. This report details the specifications required for the production of the 1-Meter Digital Elevation Model.

  18. Design review of the Brazilian Experimental Solar Telescope

    NASA Astrophysics Data System (ADS)

    Dal Lago, A.; Vieira, L. E. A.; Albuquerque, B.; Castilho, B.; Guarnieri, F. L.; Cardoso, F. R.; Guerrero, G.; Rodríguez, J. M.; Santos, J.; Costa, J. E. R.; Palacios, J.; da Silva, L.; Alves, L. R.; Costa, L. L.; Sampaio, M.; Dias Silveira, M. V.; Domingues, M. O.; Rockenbach, M.; Aquino, M. C. O.; Soares, M. C. R.; Barbosa, M. J.; Mendes, O., Jr.; Jauer, P. R.; Branco, R.; Dallaqua, R.; Stekel, T. R. C.; Pinto, T. S. N.; Menconi, V. E.; Souza, V. M. C. E. S.; Gonzalez, W.; Rigozo, N.

    2015-12-01

    The Brazilian's National Institute for Space Research (INPE), in collaboration with the Engineering School of Lorena/University of São Paulo (EEL/USP), the Federal University of Minas Gerais (UFMG), and the Brazilian's National Laboratory for Astrophysics (LNA), is developing a solar vector magnetograph and visible-light imager to study solar processes through observations of the solar surface magnetic field. The Brazilian Experimental Solar Telescope is designed to obtain full disk magnetic field and line-of-sight velocity observations in the photosphere. Here we discuss the system requirements and the first design review of the instrument. The instrument is composed by a Ritchey-Chrétien telescope with a 500 mm aperture and 4000 mm focal length. LCD polarization modulators will be employed for the polarization analysis and a tuning Fabry-Perot filter for the wavelength scanning near the Fe II 630.25 nm line. Two large field-of-view, high-resolution 5.5 megapixel sCMOS cameras will be employed as sensors. Additionally, we describe the project management and system engineering approaches employed in this project. As the magnetic field anchored at the solar surface produces most of the structures and energetic events in the upper solar atmosphere and significantly influences the heliosphere, the development of this instrument plays an important role in advancing scientific knowledge in this field. In particular, the Brazilian's Space Weather program will benefit most from the development of this technology. We expect that this project will be the starting point to establish a strong research program on Solar Physics in Brazil. Our main aim is to progressively acquire the know-how to build state-of-art solar vector magnetograph and visible-light imagers for space-based platforms.

  19. Polarization optical components of the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Sueoka, Stacey Ritsuyo

    The Daniel K Inouye Solar Telescope (DKIST), when completed in 2019 will be the largest solar telescope built to date. DKIST will have a suite of first light polarimetric instrumentation requiring broadband polarization modulation and calibration optical elements. Compound crystalline retarders meet the design requirements for efficient modulators and achromatic calibration retarders. These retarders are the only possible large diameter optic that can survive the high flux, 5 arc minute field, and ultraviolet intense environment of a large aperture solar telescope at Gregorian focus. This dissertation presents work performed for the project. First, I measured birefringence of the candidate materials necessary to complete designs. Then, I modeled the polarization effects with three-dimensional ray-tracing codes as a function of angle of incidence and field of view. Through this analysis I learned that due to the incident converging F/13 beam on the calibration retarders, the previously assumed linear retarder model fails to account for effects above the project polarization specifications. I discuss modeling strategies such as Mueller matrix decompositions and simplifications of those strategies while still meeting fit error requirements. Finally, I present characterization techniques and how these were applied to prototype components.

  20. Large aperture solar optical telescope and instruments for the SOLAR-C mission

    NASA Astrophysics Data System (ADS)

    Suematsu, Y.; Katsukawa, Y.; Hara, H.; Kano, R.; Shimizu, T.; Ichimoto, K.

    2014-08-01

    A large aperture solar optical telescope and its instruments for the SOLAR-C mission are under study to provide the critical physical parameters in the lower solar atmosphere and to resolve the mechanism of magnetic dynamic events happening there and in the upper atmosphere as well. For the precise magnetic field measurements and high angular resolution in wide wavelength region, covering FOV of 3 arcmin x3 arcmin, an entrance aperture of 1.4 m Gregorian telescope is proposed. Filtergraphs are designed to realize high resolution imaging and pseudo 2D spectro-polarimetry in several magnetic sensitive lines of both photosphere and chromosphere. A full stokes polarimetry is carried out at three magnetic sensitive lines with a four-slit spectrograph of 2D image scanning mechanism. We present a progress in optical and structural design of SOLAR-C large aperture optical telescope and its observing instruments which fulfill science requirements.

  1. Daniel K. Inouye Solar Telescope: Overview and Status

    NASA Astrophysics Data System (ADS)

    Rimmele, Thomas; McMullin, Joseph; Warner, Mark; Craig, Simon; Woeger, Friedrich; Tritschler, Alexandra; Cassini, Roberto; Kuhn, Jeff; Lin, Haosheng; Schmidt, Wolfgang; Berukoff, Steve; Reardon, Kevin; Goode, Phil; Knoelker, Michael; Rosner, Robert; Mathioudakis, Mihalis; DKIST TEAM

    2015-08-01

    The 4m Daniel K. Inouye Solar Telescope (DKIST) currently under construction on Haleakala, Maui will be the world’s largest solar telescope. Designed to meet the needs of critical high resolution and high sensitivity spectral and polarimetric observations of the sun, this facility will perform key observations of our nearest star that matters most to humankind. DKIST’s superb resolution and sensitivity will enable astronomers to unravel many of the mysteries the Sun presents, including the origin of solar magnetism, the mechanisms of coronal heating and drivers of the solar wind, flares, coronal mass ejections and variability in solar output. The all-reflecting, off-axis design allows the facility to observe over a broad wavelength range and enables DKIST to operate as a coronagraph. In addition, the photon flux provided by its large aperture will be capable of routine and precise measurements of the currently elusive coronal magnetic fields. The state-of-the-art adaptive optics system provides diffraction limited imaging and the ability to resolve features approximately 20 km on the Sun. Five first light instruments, representing a broad community effort, will be available at the start of operations: Visible Broadband Imager (National Solar Observatory), Visible Spectro-Polarimeter (High Altitude Observatory), Visible Tunable Filter (Kiepenheuer Institute, Germany), Diffraction Limited NIR Spectro-Polarimeter (University of Hawaii) and the Cryogenic NIR Spectro-Polarimeter (University of Hawaii). High speed cameras for capturing highly dynamic processes in the solar atmosphere are being developed by a UK consortium. Site construction on Haleakala began in December 2012 and is progressing on schedule. Operations are scheduled to begin in 2019. We provide an overview of the facility, discuss the construction status, and present progress with DKIST operations planning.

  2. On the co-alignment of solar telescopes. A new approach to solar pointing

    NASA Astrophysics Data System (ADS)

    Staiger, J.

    2013-06-01

    Helioseismological measurements require long observing times and thus may be adversely affected by lateral image drifts as caused by pointing instabilities. At the Vacuum Tower Telescope VTT, Tenerife we have recorded drift values of up to 5" per hour under unstable thermal conditions (dome opening, strong day-to-day thermal gradients). Typically drifts of 0.5" - 1.0" per hour may be encountered under more favorable conditions. Past experience has shown that most high-resolution solar telescopes may be affected by this problem to some degree. This inherent shortcoming of solar pointing is caused by the fact that the guiding loop can be closed only within the guiding beam but not within the telescope's main beam. We have developed a new approach to this problem. We correlate continuum brightness patterns observed from within the telescope main beam with patterns originating from a full disk telescope. We show that brightness patterns of sufficient size are unique with respect to solar location at any instant of time and may serve as a location identifier. We make use of the fact that averaged location information of solar structures is invariant with respect to telescope resolution. We have carried out tests at the VTT together with SDO. We have used SDO as a full disk reference. We were able to reduce lateral image drifts by an order of magnitude.

  3. 1.6 m Off-Axis Solar Telescope at Big Bear Solar Observatory

    NASA Astrophysics Data System (ADS)

    Goode, P. R.; BBSO/NJIT Team; Mees Solar Obs./U. Hawaii Team

    2003-05-01

    New Jersey Institute of Technology (NJIT), in collaboration with the University of Hawaii (UH), is upgrading Big Bear Solar Observatory (BBSO) by replacing its principal, 65 cm aperture telescope with a modern, off-axis 1.6 m clear aperture instrument from a 1.7 m blank. The new telescope offers a significant incremental improvement in ground-based infrared and high angular resolution capabilities, and enhances our continuing program to understand photospheric magneto-convection and chromospheric dynamics. These are the drivers for what is broadly called space weather -- an important problem, which impacts human technologies and life on earth. This New Solar Telescope (NST) will use the existing BBSO pedestal, pier and observatory building, which will be modified to accept the larger open telescope structure. It will be operated together with our 10 inch (for larger field-of-view vector magnetograms, Ca II K and Hα observations) and Singer-Link (full disk Hα , Ca II K and white light) synoptic telescopes. The NST optical and software control design will be similar to the existing SOLARC (UH) and the planned Advanced Technology Solar Telescope (ATST) facility led by the National Solar Observatory (NSO) -- all three are off-axis designs. The highest resolution solar telescopes currently operating are in the sub-meter class, and have diffraction limits which allow them to resolve features larger than 100 km in size on the sun. They are often photon-starved in the study of dynamic events because of the competing need for diffraction limited spatial resolution, short exposure times to minimize seeing effects, and high spectral resolution to resolve line profiles. Thus, understanding many significant and dynamic solar phenomena remains tantalizingly close, but just beyond our grasp. Research supported in part by NASA grant NAG5-12782 and NSF grant ATM-0086999.

  4. An Airborne Infrared Telescope and Spectrograph for Solar Eclipse Observations

    NASA Astrophysics Data System (ADS)

    DeLuca, Edward E.; Cheimets, Peter; Golub, Leon

    2014-06-01

    The solar infrared spectrum offers great possibilities for direct spatially resolved measurements of the solar coronal magnetic fields, via imaging of the plasma that is constrained to follow the magnetic field direction and via spectro-polarimetry that permits measurement of the field strength in the corona. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections (CME) and provides the ultimate source of energy for space weather. The large scale structure of the coronal field, and the opening up of the field in a transition zone between the closed and open corona determines the speed and structure of the solar wind, providing the background environment through which CMEs propagate. At present our only direct measurements of the solar magnetic fields are in the photosphere and chromosphere. The ability to determine where and why the corona transitions from closed to open, combined with measurements of the field strength via infrared coronal spectro-polarimetry will give us a powerful new tool in our quest to develop the next generation of forecasting models.We describe a first step in achieving this goal: a proposal for a new IR telescope, image stabilization system, and spectrometer, for the NCAR HIPER GV aircraft. The telescope/spectrograph will operate in the 2-6micron wavelength region, during solar eclipses, starting with the trans-north American eclipse in August 2017. The HIAPER aircraft flying at ~35,000 ft will provide an excellent platform for IR observations. Our imaging and spectroscopy experiment will show the distribution and intensity of IR forbidden lines in the solar corona.

  5. Solar System Observations with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Hammel, Heidi B.; Lunine, J.; Sonneborn, G.; Rieke, G.; Rieke, M.; Stansberry, J.; Schaller, E.; Orton, G.; Isaacs, J.

    2010-10-01

    The James Webb Space Telescope is a large infrared space telescope currently scheduled for launch in 2014. Webb will reside in a elliptical orbit about the semi-stable second Lagrange point (L2). Its 6.5-meter primary mirror is designed to work primarily in the infrared, with some capability in the visible (i.e., from 0.6 to 27 microns). Webb has four science instruments: the Near InfraRed Camera (NIRCam), the Near InfraRed Spectrograph (NIRSpec), the Mid-InfraRed Instrument (MIRI), and the Fine Guidance Sensor Tunable Filter Camera (FGS-TFI). One of Webb's science themes is "Planetary Systems and the Origins of Life" which includes observations of Solar System objects; the telescope will be able to track moving targets with rates up to 0.030 arcseconds per second. Its combination of broad wavelength range, high sensitivity, and near-diffraction limited imaging around 2 microns make it a superb facility for a variety of Solar System programs. In this poster, we present an overview of Webb's scientific capabilities and their relevance to current topics in planetary science.

  6. Solar Multi-Conjugate Adaptive Optics at the Dunn Solar Telescope

    NASA Astrophysics Data System (ADS)

    Rimmele, T.; Hegwer, S.; Richards, K.; Woeger, F.

    Solar adaptive optics has become an indispensable tool at ground based solar telescopes. Driven by the quest for ever higher spatial resolution observations of the Sun solar adaptive optics are now operated routinely at major ground based solar telescopes. The current high-resolution solar telescopes, such as the Dunn Solar Telescope (DST), are in the one-meter class and utilize AO for >95 % of the observing time to achieve the diffraction limit at visible and NIR wavelengths. Solar AO [1,2] has revitalized ground-based solar astronomy at existing telescopes. The development of high-order solar AO that is capable of delivering high Strehl in the visible will be absolutely essential for next generation solar telescopes, such as the 4m aperture Advanced Technology Solar Telescope (ATST), which undoubtedly will revolutionize solar astronomy [3]. Solar observations are performed over an extended field of view. The limited size of the isoplanatic patch, over which conventional adaptive optics (AO) provides diffraction limited resolution is a severe limitation. Solar science would benefit greatly from AO correction over large field of views. A single sunspot typically has a size of about 30 arcsec; large active regions often cover a field of 2-3 arcmin. Figure 1 shows an image of solar granulation and embedded magnetic g-band bright points observed near the limb of the sun. The field of view is approximately 120"x 80". This diffraction limited image was recorded at the Dunn Solar Telescope with high order adaptive optics and post-processed using speckle interferometry. Post-processing is required to achieve the uniform, diffraction limited imaging over such an extended FOV. However, speckle interferometry as well as other post facto restoration methods typically rely on short exposure imaging, which in most cases can not be deployed when quantitative spectroscopy and polarimetry is performed, i.e., long exposures are required. Multi-conjugate adaptive optics (MCAO) is a

  7. Solar Patrol Polarization Telescopes at 45 and 90 GHz

    NASA Astrophysics Data System (ADS)

    Valio, A.; Kaufmann, P.; Gimenez de Castro, C. G.; Raulin, J.-P.; Fernandes, L. O.; Marun, A.

    2012-12-01

    The spectra of solar flares provide important information about the physics involved in the flaring process. Presently, however, there is a large frequency gap at radio frequencies between 20 and 200 GHz. Unfortunately, this gap hinders the determination of important flare parameters such as: (i) the frequency of the peak of the spectra, or turnover frequency, which yields the magnetic field intensity in the flaring source and electron density; (ii) the optically thin frequency slope, that is related to the accelerated electrons with a power-law energy distribution, allowing information about the acceleration mechanism; (iii) and other physical parameters such as source size and inhomogeneities that may also be estimated from spectra with complete spectral coverage. Recently a new spectral component at high frequencies was discovered with fluxes increasing above 200 GHz, distinct from the traditional microwave component, with peak frequencies at about 10 GHz. To elucidate the nature of both components and fully characterize the spectra of solar flares, we analyze new observations at the intermediate frequencies obtained by two antennas with receivers at 45 and 90 GHz, capable of measuring circular polarization. The telescope, installed at CASLEO Observatory (Argentina), is described in detail. We also analyze the observations of the flares it has already detected, including their spectra especially when data at 212 and 405 GHz from the Solar Submillimeter Telescope (SST), located at the same site, is available.

  8. Solar System Observing Capabilities With The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Sonneborn, George; Milam, S. N.; Hines, D. C.; Stansberry, J. A.; Hammel, H. B.; Lunine, J. I.

    2014-01-01

    The James Webb Space Telescope (JWST) will provide important new capabilities to study our Solar System. JWST is a large aperture, cryogenic, infrared-optimized space observatory under construction by NASA, ESA, and CSA for launch in 2018 into a L2 orbit. Imaging, spectroscopy, and coronography covers 0.6-29 microns. Integral-field spectroscopy is performed with apertures 3 to 7 arcsec square (spatial slices of 0.1 to 0.6 arcsec). JWST is designed to observe Solar System objects having apparent rates of motion up to 0.030 arcseconds/second. This tracking capability includes the planets, satellites, asteroids, Trans-Neptunian Objects, and comets beyond Earth’s orbit. JWST will observe in the solar elongation range of 85 to 135 degrees, and a roll range of +/-5 degrees about the telescope’s optical axis. During an observation of a moving target, the science target is held fixed in the desired science aperture by controlling the guide star to follow the inverse of the target’s trajectory. The pointing control software uses polynomial ephemerides for the target generated using data from JPL’s HORIZON system. The JWST guider field of view (2.2x2.2 arcmin) is located in the telescope focal plane several arcmin from the science apertures. The instrument apertures are fixed with respect to the telescope focal plane. For targets near the ecliptic, those apertures also have a nearly fixed orientation relative to the ecliptic. This results from the fact that the Observatory's sunshield and solar panels must always be between the telescope and the Sun. On-board scripts autonomously control the execution of the JWST science timeline. The event-driven scripts respond to actual slew and on-board command execution, making operations more efficient. Visits are scheduled with overlapping windows to provide execution flexibility and to avoid lost time. An observing plan covering about ten days will be uplinked weekly. Updates could be more frequent if necessary (for example

  9. Solar System Observing Capabilities With The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Sonneborn, George; Milam, S. N.; Hines, D. C.; Stansberry, J.; Hammel, H. B.; Lunine, J. I.

    2013-10-01

    The James Webb Space Telescope (JWST) will provide breakthrough capabilities to study our Solar System. JWST is a large aperture, cryogenic, infrared-optimized space observatory under construction by NASA, ESA, and CSA for launch in 2018 into a L2 orbit. Imaging, spectroscopy, and coronography covers 0.6-29 microns. JWST is designed to observe Solar System objects having apparent rates of motion up to 0.030 arcseconds/second. This capability includes the planets, satellites, asteroids, Trans-Neptunian Objects, and comets beyond Earth’s orbit. JWST can observe solar elongation of 85 to 135 degrees, and a roll range of +/-5 degrees about the telescope’s optical axis. During the observation of a moving target, the science target is held fixed in the desired science aperture by controlling the guide star to follow the inverse of the target’s trajectory. The pointing control software uses polynomial ephemerides for the target generated using JPL’s HORIZON system. The JWST guider field of view (2.2x2.2 arcmin) is located in the telescope focal plane several arcmin from the science apertures. The instrument apertures are fixed with respect to the telescope focal plane. For targets near the ecliptic, those apertures also have a nearly-fixed orientation relative to the ecliptic. This resultsfrom the fact that the Observatory's sun-shade and solar panels must always be between the telescope and the Sun. On-board scripts autonomously control the execution of the JWST science timeline. The event-driven scripts respond to actual slew and on-board command execution, making operations more efficient. Visits are scheduled with overlapping windows to provide execution flexibility and to avoid lost time. An observing plan covering about ten days will be uplinked weekly. Updates could be more frequent if necessary (for example, to accommodate a Target of Opportunity - TOO). The event-driven operations system supports time-critical observations and TOOs. The minimum response

  10. The 100 cm solar telescope primary mirror study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The manufacturing impact of primary mirror configuration on the performance of a 100 cm aperture solar telescope was studied. Three primary mirror configurations were considered: solid, standard lightweight, and mushroom. All of these are of low expansion material. Specifically, the study consisted of evaluating the mirrors with regard to: manufacturing metrology, manufacturing risk factors and ultimate quality assessment. As a result of this evaluation, a performance comparison of the configurations was made, and a recommendation of mirror configuration is the final output. These evaluations, comparisons and recommendations are discussed in detail. Other investigations were completed and are documented in the appendices.

  11. Goldhelox: a soft x-ray solar telescope.

    PubMed

    Durfee, D S; Moody, J W; Brady, K D; Brown, C; Campbell, B; Durfee, M K; Early, D; Hansen, E; Madsen, D W; Morey, D B; Roming, P W; Savage, M B; Eastman, P F; Jensen, V

    1995-01-01

    The Goldhelox Project is the construction and use of a near-normal incidence soft x-ray robotic solar telescope by undergraduate students at Brigham Young University. Once it is completed and tested, it will be deployed from a Get-Away-Special (GAS) canister in the bay of a space shuttle. It will image the sun at a wavelength of 171-181Å with a time resolution of 1 sec and a spatial resolution of 2.5 arcsec. The observational bandpass was chosen to image x-rays from highly ionized coronal Fe lines. The data will be an aid in better understanding the beginning phases of solar flares and how flaring relates to the physics of the corona-chromosphere transition region. Goldhelox is tentatively scheduled to fly on a space shuttle sometime in 1995 or 1996. This paper outlines the project goals, basic instrument design, and the unique aspects of making this an undergraduate endeavor. PMID:21307474

  12. 1.8-M solar telescope in China: the CLST

    NASA Astrophysics Data System (ADS)

    Rao, Changhui; Gu, Naiting; Zhu, Lei; Liu, Yangyi; Huang, Jinlong; Li, Cheng; Cheng, Yuntao; Cao, Xuedong; Zhang, Ming; Zhang, Lanqiang; Liu, Hong; Wan, Yongjian; Xian, Hao; Ma, Wenli; Bao, Hua; Zhang, Xiaojun; Guan, Chunlin; Chen, Donghong; Li, Mei

    2014-07-01

    For better understanding and forecasting of the solar activity and the corresponding impacts human technologies and life on earth, the high resolution observations for Sun are needed. The Chinese Large Solar Telescope (CLST) with 1.8 m aperture is being built. The CLST is a classic Gregorian configuration telescope with open structure, alt-azimuth mount, retractable dome, and a large mechanical de-rotator. The optical system with all reflective design has the field of view of larger than 3 arc-minute. The 1.8 m primary mirror is a honeycomb sandwiches fused silica lightweight mirror with ULE material and active cooling. The adaptive optics system will be developed to provide the capability for diffraction limited observations at visible wavelengths. The CLST design and development phase began in 2011 and 2012 respectively. We plan for the CLST's starting of commission in 2017. A multi-wavelength tomographic imaging system with seven wavelengths range from visible to near-infrared wavelength is considered as the first light scientific instruments. In this paper the main system configuration and the corresponding post focal instruments are described. Furthermore, the latest progress and current status of the CLST are also reported.

  13. The Multi-Spectral Solar Telescope Array (MSSTA)

    NASA Technical Reports Server (NTRS)

    Walker, A. B. C., Jr.; Barbee, Troy W., Jr.; Hoover, Richard B.

    1997-01-01

    In 1987, our consortium pioneered the application of normal incidence multilayer X-ray optics to solar physics by obtaining the first high resolution narrow band, "thermally differentiated" images of the corona', using the emissions of the Fe IX/Fe X complex at ((lambda)lambda) approx. 171 A to 175 A, and He II Lyman (beta) at 256 A. Subsequently, we developed a rocket borne solar observatory, the Multi Spectral Solar Telescope Array (MSSTA) that pioneered multi-thermal imaging of the solar atmosphere, using high resolution narrow band X-ray, EUV and FUV optical systems. Analysis of MSSTA observations has resulted in four significant insights into the structure of the solar atmosphere: (1) the diameter of coronal loops is essentially constant along their length; (2) models of the thermal and density structure of polar plumes based on MSSTA observations have been shown to be consistent with the thesis that they are the source of high speed solar wind streams; (3) the magnetic structure of the footpoints of polar plumes is monopolar, and their thermal structure is consistent with the thesis that the chromosphere at their footpoints is heated by conduction from above; (4) coronal bright points are small loops, typically 3,500 - 20,000 km long (5 sec - 30 sec); their footpoints are located at the poles of bipolar magnetic structures that are are distinguished from other network elements by having a brighter Lyman a signature. Loop models derived for 26 bright points are consistent with the thesis that the chromosphere at their footpoints is heated by conduction from the corona.

  14. Large bearings with incorporated gears, high stiffness, and precision for the Swedish Solar Telescope (SST) on La Palma

    NASA Astrophysics Data System (ADS)

    Hammerschlag, Robert H.; Bettonvil, Felix C. M.; Jägers, Aswin P. L.; Scharmer, Göran B.

    2006-06-01

    The 1-meter Swedish Solar Telescope (SST) obtains images of the solar surface with an unprecedented resolution of 0.1 arcsec. It consists of a relatively slender tower with on top only the vacuum turret for reflecting downward the solar beam and no protective dome. This is a favourable situation to get good local seeing. Just in the case of some wind, seeing is best for daytime observations, therefore the precision bearings and drives of the elevation- and azimuth axis of the turret have to be stiff against wind. This requires line contact between the meshing teeth of the large gear wheel and the pinion. High preload forces to achieve line contact are not allowed because of appearing stick-slip effects. To reduce the risk on stick-slip a special design of the teeth for high stiffness combined with low friction and smooth transition from one tooth to the next was made. Furthermore, extreme precision in the fabrication was pursued such that relatively small contact forces give already line contact. This required a special order of the successive fabrication steps of the combination of bearing and gear teeth. An additional problem was the relatively thin section of the bearings required for a compact turret construction, needed for best local seeing and minimum wind load. Solutions for all these problems will be discussed. For the large gears the exceptional good DIN quality class 4 for the pitch precision and straightness plus direction of the teeth faces was achieved.

  15. Multiple-etalon systems for the Advanced Technology Solar Telescope

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Balasubramaniam, K. S.; Sigwarth, Michael

    2003-01-01

    Multiple etalon systems are discussed that meet the science requirements for a narrow-passband imaging system for the 4-meter National Solar Observatory (NSO)/Advance Technology Solar Telescope (ATST). A multiple etalon system can provide an imaging interferometer that works in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, an intermediate-band imager, and broadband high-resolution imager. Specific dual and triple etalon configurations are described that provide a spectrographic passband of 2.0-3.5 micron and reduce parasitic light levels to 10(exp -4) as required for precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like (Telecentric Etalon SOlar Spectrometer) triple etalon system provides a spectral purity of 10(exp -5). The triple designs have the advantage of reducing the finesse requirement on each etalon; allow the use of more stable blocking filters, and have very high spectral purity. A dual-etalon double-pass (Cavallini-like) system can provide a competing configuration. Such a dual-etalon design can provide high contrast. The selection of the final focal plane instrument will depend on a trade-off between an ideal instrument and practical reality. The trade study will include the number of etalons, their aperture sizes, complexities of the optical train, number of blocking filters, configuration of the electronic control system, computer interfaces, temperature controllers, etalon controllers, and their associated feedback electronics. The heritage of single and multiple etalon systems comes from their use in several observatories, including the Marshall Space Flight Center (MSFC) Solar Observatory, Sacramento Peak Observatory (NSO), and Kiepenheuer-Institut fur Sonnenphysik (KIS, Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will benefit from the experience gained at these

  16. Multiple Etalon Systems for the Advanced Technology Solar Telescope

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Balasubramaniam, K. S.; Sigwarth, Michael; Six, N. Frank (Technical Monitor)

    2002-01-01

    Multiple etalons systems are discussed that meet the 4-meter NSO/Advance Technology Solar Telescope (http://www.nso.edu/ATST/index.html) instrument and science requirements for a narrow bandpass imaging system. A multiple etalon system can provide an imaging interferometer working in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, and a wide-band and broad-band high-resolution imager. Specific dual and triple etalon configurations will be described that provides spectrographic passband of 2.0-3.5nm and reduces parasitic light levels to 1/10000 as required by precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like triple etalon system provides for spectral purity of 100 thousandths. The triple designs have the advantage of reducing the finesse requirement on each etalon, allowing much more stable blocking filters, and can have very high spectral purity. A dual-etalon double-pass Cavallini-like configuration can provide a competing configuration. This design can provide high contrast with only a double etalon. The selection of the final focal plan instrument will depend on a trade-off of the ideal instrument versus reality, the number of etalons, the aperture of etalons, the number of blocking filters the electronic control system and computer interfaces, the temperature control and controllers for the etalons and the electronics. The use of existing experience should provide significant cost savings. The heritage of use of etalons and multiple etalon systems in solar physics come from a number of observatories, which includes MSFC Solar Observatory (NASA), Sac Peak Observatory (NSO), and Kiepenheuer Institute for Solar Physics (Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will reply on the existing experience from these observatories.

  17. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  18. Surveying the Inner Solar System with an Infrared Space Telescope

    NASA Astrophysics Data System (ADS)

    Buie, Marc W.; Reitsema, Harold J.; Linfield, Roger P.

    2016-11-01

    We present an analysis of surveying the inner solar system for objects that may pose some threat to Earth. Most of the analysis is based on understanding the capability provided by Sentinel, a concept for an infrared space-based telescope placed in a heliocentric orbit near the distance of Venus. From this analysis, we show that (1) the size range being targeted can affect the survey design, (2) the orbit distribution of the target sample can affect the survey design, (3) minimum observational arc length during the survey is an important metric of survey performance, and (4) surveys must consider objects as small as D=15{--}30 m to meet the goal of identifying objects that have the potential to cause damage on Earth in the next 100 yr. Sentinel will be able to find 50% of all impactors larger than 40 m in a 6.5 yr survey. The Sentinel mission concept is shown to be as effective as any survey in finding objects bigger than D = 140 m but is more effective when applied to finding smaller objects on Earth-impacting orbits. Sentinel is also more effective at finding objects of interest for human exploration that benefit from lower propulsion requirements. To explore the interaction between space and ground search programs, we also study a case where Sentinel is combined with the Large Synoptic Survey Telescope (LSST) and show the benefit of placing a space-based observatory in an orbit that reduces the overlap in search regions with a ground-based telescope. In this case, Sentinel+LSST can find more than 70% of the impactors larger than 40 m assuming a 6.5 yr lifetime for Sentinel and 10 yr for LSST.

  19. First results from the CERN axion solar telescope.

    PubMed

    Zioutas, K; Andriamonje, S; Arsov, V; Aune, S; Autiero, D; Avignone, F T; Barth, K; Belov, A; Beltrán, B; Bräuninger, H; Carmona, J M; Cebrián, S; Chesi, E; Collar, J I; Creswick, R; Dafni, T; Davenport, M; Di Lella, L; Eleftheriadis, C; Englhauser, J; Fanourakis, G; Farach, H; Ferrer, E; Fischer, H; Franz, J; Friedrich, P; Geralis, T; Giomataris, I; Gninenko, S; Goloubev, N; Hasinoff, M D; Heinsius, F H; Hoffmann, D H H; Irastorza, I G; Jacoby, J; Kang, D; Königsmann, K; Kotthaus, R; Krcmar, M; Kousouris, K; Kuster, M; Lakić, B; Lasseur, C; Liolios, A; Ljubicić, A; Lutz, G; Luzón, G; Miller, D W; Morales, A; Morales, J; Mutterer, M; Nikolaidis, A; Ortiz, A; Papaevangelou, T; Placci, A; Raffelt, G; Ruz, J; Riege, H; Sarsa, M L; Savvidis, I; Serber, W; Serpico, P; Semertzidis, Y; Stewart, L; Vieira, J D; Villar, J; Walckiers, L; Zachariadou, K

    2005-04-01

    Hypothetical axionlike particles with a two-photon interaction would be produced in the sun by the Primakoff process. In a laboratory magnetic field ("axion helioscope"), they would be transformed into x-rays with energies of a few keV. Using a decommissioned Large Hadron Collider test magnet, the CERN Axion Solar Telescope ran for about 6 months during 2003. The first results from the analysis of these data are presented here. No signal above background was observed, implying an upper limit to the axion-photon coupling g(agamma)<1.16x10(-10) GeV-1 at 95% C.L. for m(a) less, similar 0.02 eV. This limit, assumption-free, is comparable to the limit from stellar energy-loss arguments and considerably more restrictive than any previous experiment over a broad range of axion masses.

  20. Optical control of the Advanced Technology Solar Telescope.

    PubMed

    Upton, Robert

    2006-08-10

    The Advanced Technology Solar Telescope (ATST) is an off-axis Gregorian astronomical telescope design. The ATST is expected to be subject to thermal and gravitational effects that result in misalignments of its mirrors and warping of its primary mirror. These effects require active, closed-loop correction to maintain its as-designed diffraction-limited optical performance. The simulation and modeling of the ATST with a closed-loop correction strategy are presented. The correction strategy is derived from the linear mathematical properties of two Jacobian, or influence, matrices that map the ATST rigid-body (RB) misalignments and primary mirror figure errors to wavefront sensor (WFS) measurements. The two Jacobian matrices also quantify the sensitivities of the ATST to RB and primary mirror figure perturbations. The modeled active correction strategy results in a decrease of the rms wavefront error averaged over the field of view (FOV) from 500 to 19 nm, subject to 10 nm rms WFS noise. This result is obtained utilizing nine WFSs distributed in the FOV with a 300 nm rms astigmatism figure error on the primary mirror. Correction of the ATST RB perturbations is demonstrated for an optimum subset of three WFSs with corrections improving the ATST rms wavefront error from 340 to 17.8 nm. In addition to the active correction of the ATST, an analytically robust sensitivity analysis that can be generally extended to a wider class of optical systems is presented. PMID:16926876

  1. Optical control of the Advanced Technology Solar Telescope.

    PubMed

    Upton, Robert

    2006-08-10

    The Advanced Technology Solar Telescope (ATST) is an off-axis Gregorian astronomical telescope design. The ATST is expected to be subject to thermal and gravitational effects that result in misalignments of its mirrors and warping of its primary mirror. These effects require active, closed-loop correction to maintain its as-designed diffraction-limited optical performance. The simulation and modeling of the ATST with a closed-loop correction strategy are presented. The correction strategy is derived from the linear mathematical properties of two Jacobian, or influence, matrices that map the ATST rigid-body (RB) misalignments and primary mirror figure errors to wavefront sensor (WFS) measurements. The two Jacobian matrices also quantify the sensitivities of the ATST to RB and primary mirror figure perturbations. The modeled active correction strategy results in a decrease of the rms wavefront error averaged over the field of view (FOV) from 500 to 19 nm, subject to 10 nm rms WFS noise. This result is obtained utilizing nine WFSs distributed in the FOV with a 300 nm rms astigmatism figure error on the primary mirror. Correction of the ATST RB perturbations is demonstrated for an optimum subset of three WFSs with corrections improving the ATST rms wavefront error from 340 to 17.8 nm. In addition to the active correction of the ATST, an analytically robust sensitivity analysis that can be generally extended to a wider class of optical systems is presented.

  2. HUBBLE SPACE TELESCOPE SPECTROPHOTOMETRY AND MODELS FOR SOLAR ANALOGS

    SciTech Connect

    Bohlin, R. C.

    2010-04-15

    Absolute flux distributions for seven solar analog stars are measured from 0.3 to 2.5 {mu}m by Hubble Space Telescope (HST) spectrophotometry. In order to predict the longer wavelength mid-IR fluxes that are required for James Webb Space Telescope calibration, the HST spectral energy distributions are fit with Castelli and Kurucz model atmospheres; and the results are compared with fits from the MARCS model grid. The rms residuals in 10 broadband bins are all <0.5% for the best fits from both model grids. However, the fits differ systematically: the MARCS fits are 40-100 K hotter in T {sub eff}, 0.25-0.80 higher in log g, 0.01-0.10 higher in log z, and 0.008-0.021 higher in the reddening E(B - V), probably because their specifications include different metal abundances. Despite these differences in the parameters of the fits, the predicted mid-IR fluxes differ by only {approx}1%; and the modeled flux distributions of these G stars have an estimated ensemble accuracy of 2% out to 30 {mu}m.

  3. A broad band imager for the European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Munari, Matteo; Scuderi, Salvatore; Cecconi, Massimo

    2012-09-01

    We report on the results of the conceptual design study of a broad band imager for the European Solar Telescope (EST), a joint project of several European research institutes to design and realize a 4-m class solar telescope. The EST broad band imager is an imaging instrument whose function is to obtain diffraction limited images over the full field of view of EST at multiple wavelengths and high frame rate. Its scientific objective is the study of fundamental astrophysical processes at their intrinsic scales in the Sun's atmosphere. The optical layout foresee two observational modes: a maximum field of view mode and a high resolution mode. The imager will have a 2'x2' corrected field of view in the first mode and an angular resolution better than 0.04" at 500nm in the latter mode. The imager will cover a wavelength range spanning from 390nm to 900nm through a number of filters with bandpasses between 0.05nm and 0.5nm. The selected optical layout is an all refractive design. To optimize optical performances and throughput there will be two arms working simultaneously: a blue arm (covering the 380nm - 500nm range) and a red arm (600nm - 900nm). The blue arm will have two channels while the red arm only one. Each channel will be divided in three subchannels: one will host narrow band filters for chromospheric observations, another one, in focus wide band filters used as reference for speckle reconstruction and photospheric observations, and the last one, out of focus wide band filters for phase diversity reconstruction of photospheric observations.

  4. Thin film multilayer filters for solar EUV telescopes.

    PubMed

    Chkhalo, N I; Drozdov, M N; Kluenkov, E B; Kuzin, S V; Lopatin, A Ya; Luchin, V I; Salashchenko, N N; Tsybin, N N; Zuev, S Yu

    2016-06-10

    Al, with a passband in the wavelength range of 17-60 nm, and Zr, with a passband in the wavelength range of 6.5-17 nm, thin films on a support grid or support membrane are frequently used as UV, visible, and near-IR blocking filters in solar observatories. Although they possess acceptable optical performance, these filters also have some shortcomings such as low mechanical strength and low resistance to oxidation. These shortcomings hinder meeting the requirements for filters of future telescopes. We propose multilayer thin film filters on the basis of Al, Zr, and other materials with improved characteristics. It was demonstrated that stretched multilayer films on a support grid with a mesh size up to 5 mm can withstand vibration loads occurring during spacecraft launch. A large mesh size is preferable for filters of high-resolution solar telescopes, since it allows image distortion caused by light diffraction on the support grid to be avoided. We have investigated the thermal stability of Al/Si and Zr/Si multilayers assuming their possible application as filters in the Intergelioprobe project, in which the observation of coronal plasma will take place close to the Sun. Zr/Si films show high thermal stability and may be used as blocking filters in the wavelength range of 12.5-17 nm. Al/Si films show lower thermal stability: a significant decrease in the film's transmission in the EUV spectral range and an increase in the visible spectrum have been observed. We suppose that the low thermal stability of Al/Si films restricts their application in the Intergelioprobe project. Thus, there is a lack of filters for the wavelength range of λ>17  nm. Be/Si and Cr/Si filters have been proposed for the wavelength range near 30.4 nm. Although these filters have lower transparency than Al/Si, they are superior in thermal stability. Multilayer Sc/Al filters with relatively high transmission at a wavelength of 58.4 nm (HeI line) and simultaneously sufficient rejection in the

  5. Thin film multilayer filters for solar EUV telescopes.

    PubMed

    Chkhalo, N I; Drozdov, M N; Kluenkov, E B; Kuzin, S V; Lopatin, A Ya; Luchin, V I; Salashchenko, N N; Tsybin, N N; Zuev, S Yu

    2016-06-10

    Al, with a passband in the wavelength range of 17-60 nm, and Zr, with a passband in the wavelength range of 6.5-17 nm, thin films on a support grid or support membrane are frequently used as UV, visible, and near-IR blocking filters in solar observatories. Although they possess acceptable optical performance, these filters also have some shortcomings such as low mechanical strength and low resistance to oxidation. These shortcomings hinder meeting the requirements for filters of future telescopes. We propose multilayer thin film filters on the basis of Al, Zr, and other materials with improved characteristics. It was demonstrated that stretched multilayer films on a support grid with a mesh size up to 5 mm can withstand vibration loads occurring during spacecraft launch. A large mesh size is preferable for filters of high-resolution solar telescopes, since it allows image distortion caused by light diffraction on the support grid to be avoided. We have investigated the thermal stability of Al/Si and Zr/Si multilayers assuming their possible application as filters in the Intergelioprobe project, in which the observation of coronal plasma will take place close to the Sun. Zr/Si films show high thermal stability and may be used as blocking filters in the wavelength range of 12.5-17 nm. Al/Si films show lower thermal stability: a significant decrease in the film's transmission in the EUV spectral range and an increase in the visible spectrum have been observed. We suppose that the low thermal stability of Al/Si films restricts their application in the Intergelioprobe project. Thus, there is a lack of filters for the wavelength range of λ>17  nm. Be/Si and Cr/Si filters have been proposed for the wavelength range near 30.4 nm. Although these filters have lower transparency than Al/Si, they are superior in thermal stability. Multilayer Sc/Al filters with relatively high transmission at a wavelength of 58.4 nm (HeI line) and simultaneously sufficient rejection in the

  6. The dynamic solar chromosphere: recent advances from high resolution telescopes

    NASA Astrophysics Data System (ADS)

    Tziotziou, Konstantinos; Tsiropoula, Georgia

    This review focuses on the solar chromosphere, a very inhomogeneous and dynamic layer that exhibits phenomena on a large range of spatial and temporal scales. High-resolution observa-tions from existing telescopes (DST, SST, DOT), as well as long-duration observations with Hinode's SOT employing lines such as the Ca II infrared lines, the Ca II HK and above all the Hα line reveal an incredibly rich, dynamic and highly structured environment, both in quiet and active regions. The fine-structure chromosphere, is mainly constituted by fibrilar features that connect various parts of active regions or span across network cell interiors. We discuss this highly dynamical solar chromosphere, especially below the magnetic canopy, which is gov-erned by flows reflecting both the complex geometry and dynamics of the magnetic field and the propagation and dissipation of waves in the different atmospheric layers. A comprehensive view of the fine-structure chromosphere requires deep understanding of the physical processes involved, investigation of the intricate link with structures/processes at lower photospheric lev-els and analysis of its impact on the mass and energy transport to higher atmospheric layers through flows resulting from different physical processes such as magnetic reconnection and waves. Furthermore, we assess the challenges facing theory and numerical modelling which require the inclusion of several physical ingredients, such as non-LTE and three-dimensional numerical simulations.

  7. Latest results and prospects of the CERN Axion Solar Telescope

    NASA Astrophysics Data System (ADS)

    Irastorza, I. G.; Aune, S.; Barth, K.; Belov, A.; Borghi, S.; Bräuninger, H.; Cantatore, G.; Carmona, J. M.; Cetin, S. A.; Collar, J. I.; Dafni, T.; Davenport, M.; Eleftheriadis, C.; Elias, N.; Ezer, C.; Fanourakis, G.; Ferrer-Ribas, E.; Friedrich, P.; Galán, J.; Gardikiotis, A.; Gazis, E. N.; Geralis, T.; Giomataris, I.; Gninenko, S.; Gómez, H.; Gruber, E.; Guthörl, T.; Hartmann, R.; Haug, F.; Hasinoff, M. D.; Hoffmann, D. H. H.; Iguaz, F. J.; Jacoby, J.; Jakovčić, K.; Karuza, M.; Königsmann, K.; Kotthaus, R.; Krčmar, M.; Kuster, M.; Lakić, B.; Laurent, J. M.; Liolios, A.; Ljubičić, A.; Lozza, V.; Lutz, G.; Luzón, G.; Morales, J.; Niinikoski, T.; Nordt, A.; Papaevangelou, T.; Pivovaroff, M. J.; Raffelt, G.; Rashba, T.; Riege, H.; Rodríguez, A.; Rosu, M.; Ruz, J.; Savvidis, I.; Silva, P. S.; Solanki, S. K.; Soufli, R.; Stewart, L.; Tomás, A.; Tsagri, M.; van Bibber, K.; Vafeiadis, T.; Villar, J.; Vogel, J. K.; Yildiz, S. C.; Zioutas, K.

    2011-08-01

    The CERN Axion Solar Telescope (CAST) experiment searches for axions from the Sun converted into few keV photons via the inverse Primakoff effect in the high magnetic field of a superconducting Large Hadron Collider (LHC) decommissioned test magnet. After results obtained with vacuum in the magnet pipes (phase I of the experiment) as well as with 4He the collaboration is now immersed in the data taking with 3He, to be finished in 2011. The status of the experiment will be presented, including a preliminary exclusion plot of the first 3He data. CAST is currently sensitive to realistic QCD axion models at the sub-eV scale, and with axion-photon couplings down to the ~ 2 × 10-10 GeV-1, compatible with solar life limits. Future plans include revisiting vaccuum and 4He configurations with improved sensitivity, as well as possible additional search for non-standard signals from chamaleons, paraphotons or other WISPs. For the longer term, we study the feasibility of an altogether improved version of the axion helioscope concept, with a jump in sensitivity of about one order of magnitude in gaγ beyond CAST.

  8. Vector Magnetograph Observations by the Solar Flare Telescope at Boao

    NASA Astrophysics Data System (ADS)

    Park, Y. D.; Moon, Y.-J.

    We report that the vector magnetograph(VMG) observations of the solar photosphere are being carried out by the Solar Flare Telescope(SOFT) in BOAO(Bohyunsan Optical Astronomical Observatory) of Korea Astronomy Observatory. The VMG uses a narrow band Lyot filter (FWHM = 0.125A) for observations of Stokes parameters(I,Q,U,V) to obtain longitudinal and transversal fields. The Stokes images are acquired by Sony XC -77 video CCD cameras which are digitized in 8-bit by an image processor, MVC 150/40 manufactured by ITI(Image Technology Incorporate). The digitized images are saved in 16 bit after integration (up to 256 frames) or in 8-bit multiple frames for analysis. Since the transmission wavelength of Lyot filter is very sensitive to environmental temperature (0.35A/deg), it requires a careful temperature control of the filter interior. For this, we have made a continuous effort to maintain the temperature stability within the accuracy of less than 0.05 deg. with NAIRC (Nanjing Astronomical Instrument Research Center) team. We have obtained clean line profiles of FeI 6302.5 from our VMG by scanning the individual profiles by changing the central wavelength of the Lyot filter. We present some of our observed VMG observations, which are compared with those made with similar vector magnetographs at other observatories.

  9. Focal plane instrument for the Solar UV-Vis-IR Telescope aboard SOLAR-C

    NASA Astrophysics Data System (ADS)

    Katsukawa, Yukio; Suematsu, Yoshinori; Shimizu, Toshifumi; Ichimoto, Kiyoshi; Takeyama, Norihide

    2011-10-01

    It is presented the conceptual design of a focal plane instrument for the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. A primary purpose of the telescope is to achieve precise as well as high resolution spectroscopic and polarimetric measurements of the solar chromosphere with a big aperture of 1.5 m, which is expected to make a significant progress in understanding basic MHD processes in the solar atmosphere. The focal plane instrument consists of two packages: A filtergraph package is to get not only monochromatic images but also Dopplergrams and magnetograms using a tunable narrow-band filter and interference filters. A spectrograph package is to perform accurate spectro-polarimetric observations for measuring chromospheric magnetic fields, and is employing a Littrow-type spectrograph. The most challenging aspect in the instrument design is wide wavelength coverage from 280 nm to 1.1 μm to observe multiple chromospheric lines, which is to be realized with a lens unit including fluoride glasses. A high-speed camera for correlation tracking of granular motion is also implemented in one of the packages for an image stabilization system, which is essential to achieve high spatial resolution and high polarimetric accuracy.

  10. Solar and Planetary Observations with a Lunar Radio Telescope

    NASA Astrophysics Data System (ADS)

    Kassim, N.; Weiler, K. W.; Lazio, J. W.; MacDowall, R. J.; Jones, D. L.; Bale, S. D.; Demaio, L.; Kasper, J. C.

    2006-05-01

    Ground-based radio telescopes cannot observe at frequencies below about 10 MHz (wavelengths longer than 30 m) because of ionospheric absorption. The Lunar Imaging Radio Array (LIRA) is a mission concept in which an array of radio telescopes is deployed on the Moon, as part of the Vision for Space Exploration, with the aim of extending radio observations to lower frequencies than are possible from the Earth. LIRA would provide the capability for dedicated monitoring of solar and planetary bursts as well as the search for magnetospheric emissions from extrasolar planets. The highest sensitivity observations can be accomplished by locating LIRA on the far side of the Moon. The array would be composed of 10-12 radial arms, each 1-2 km in length. Each arm would have several hundred dipole antennas and feedlines printed on a very thin sheet of kapton with a total mass of about 300 kg. This would provide a convenient way to deploy thousands of individual antennas and a centrally condensed distribution of array baselines. The lunar farside provides shielding from terrestrial natural and technological radio interference and freedom from the corrupting influence of Earth's ionosphere. This paper will describe the science case for LIRA as well as various options for array deployment and data transmission to Earth. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Basic research in radio astronomy at the NRL is supported by the Office of Naval Research.

  11. Solar System science with the Large Synoptic Survey Telescope

    NASA Astrophysics Data System (ADS)

    Jones, Lynne; Brown, Mike; Ivezić, Zeljko; Jurić, Mario; Malhotra, Renu; Trilling, David

    2015-11-01

    The Large Synoptic Survey Telescope (LSST; http://lsst.org) will be a large-aperture, wide-field, ground-based telescope that will survey half the sky every few nights in six optical bands from 320 to 1050 nm. It will explore a wide range of astrophysical questions, ranging from performing a census of the Solar System, to examining the nature of dark energy. It is currently in construction, slated for first light in 2019 and full operations by 2022.The LSST will survey over 20,000 square degrees with a rapid observational cadence, to typical limiting magnitudes of r~24.5 in each visit (9.6 square degree field of view). Automated software will link the individual detections into orbits; these orbits, as well as precisely calibrated astrometry (~50mas) and photometry (~0.01-0.02 mag) in multiple bandpasses will be available as LSST data products. The resulting data set will have tremendous potential for planetary astronomy; multi-color catalogs of hundreds of thousands of NEOs and Jupiter Trojans, millions of asteroids, tens of thousands of TNOs, as well as thousands of other objects such as comets and irregular satellites of the major planets.LSST catalogs will increase the sample size of objects with well-known orbits 10-100 times for small body populations throughout the Solar System, enabling a major increase in the completeness level of the inventory of most dynamical classes of small bodies and generating new insights into planetary formation and evolution. Precision multi-color photometry will allow determination of lightcurves and colors, as well as spin state and shape modeling through sparse lightcurve inversion. LSST is currently investigating survey strategies to optimize science return across a broad range of goals. To aid in this investigation, we are making a series of realistic simulated survey pointing histories available together with a Python software package to model and evaluate survey detections for a user-defined input population. Preliminary

  12. Multi-conjugate AO for the European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Montilla, I.; Béchet, C.; Le Louarn, M.; Tallon, M.; Sánchez-Capuchino, J.; Collados Vera, M.

    2012-07-01

    The European Solar Telescope (EST) will be a 4-meter diameter world-class facility, optimized for studies of the magnetic coupling between the deep photosphere and upper chromosphere. It will specialize in high spatial resolution observations and therefore it has been designed to incorporate an innovative built-in Multi-Conjugate Adaptive Optics system (MCAO). It combines a narrow field high order sensor that will provide the information to correct the ground layer and a wide field low order sensor for the high altitude mirrors used in the MCAO mode. One of the challenging particularities of solar AO is that it has to be able to correct the turbulence for a wide range of observing elevations, from zenith to almost horizon. Also, seeing is usually worse at day-time, and most science is done at visible wavelengths. Therefore, the system has to include a large number of high altitude deformable mirrors. In the case of the EST, an arrangement of 4 high altitude DMs is used. Controlling such a number of mirrors makes it necessary to use fast reconstruction algorithms to deal with such large amount of degrees of freedom. For this reason, we have studied the performance of the Fractal Iterative Method (FriM) and the Fourier Transform Reconstructor (FTR), to the EST MCAO case. Using OCTOPUS, the end-to-end simulator of the European Southern Observatory, we have performed several simulations with both algorithms, being able to reach the science requirement of a homogeneous Strehl higher that 50% all over the 1 arcmin field of view.

  13. Telescopes for solar research; from Scheiner's Helioscopium to De la Rue's Photoheliograph.

    NASA Astrophysics Data System (ADS)

    Abrahams, P.

    2002-12-01

    Early telescopes used for solar observation were usually standard instruments, equipped with a filter or used in projection mode. The occasional exceptions were telescopes designed or modified for viewing, drawing, or photographing the sun. Christoph Scheiner observed sunspots regularly & systematically for 15 years, beginning early in 1611. A simple projection telescope was replaced with his Helioscopium, which was probably the first equatorially mounted telescope. Robert Hooke published a booklet in 1676 titled `Helioscopes', filled with an array of highly ingenious telescope designs, some of which were designed for solar observation and some of which were constructed and used. Warren De la Rue designed a photographic solar telescope, built by Andrew Ross in 1857 for the use of the Royal Society to establish a continuous record of solar activity. This photoheliograph was responsible for several important discoveries. Improvements in solar instruments led to advances in knowledge of the sun, and the contributions of some early solar telescopes and their makers will be recognized in this paper.

  14. Functional safety for the Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Bulau, Scott; Williams, Timothy R.

    2012-09-01

    Since inception, the Advanced Technology Solar Telescope (ATST) has planned to implement a facility-wide functional safety system to protect personnel from harm and prevent damage to the facility or environment. The ATST will deploy an integrated safety-related control system (SRCS) to achieve functional safety throughout the facility rather than relying on individual facility subsystems to provide safety functions on an ad hoc basis. The Global Interlock System (GIS) is an independent, distributed, facility-wide, safety-related control system, comprised of commercial off-the-shelf (COTS) programmable controllers that monitor, evaluate, and control hazardous energy and conditions throughout the facility that arise during operation and maintenance. The GIS has been designed to utilize recent advances in technology for functional safety plus revised national and international standards that allow for a distributed architecture using programmable controllers over a local area network instead of traditional hard-wired safety functions, while providing an equivalent or even greater level of safety. Programmable controllers provide an ideal platform for controlling the often complex interrelationships between subsystems in a modern astronomical facility, such as the ATST. A large, complex hard-wired relay control system is no longer needed. This type of system also offers greater flexibility during development and integration in addition to providing for expanded capability into the future. The GIS features fault detection, self-diagnostics, and redundant communications that will lead to decreased maintenance time and increased availability of the facility.

  15. Solar System Observations with Spitzer Space Telescope: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    2005-01-01

    The programs of observations of Solar System bodies conducted in the first year of the operation of the Spitzer Space Telescope as part of the Guaranteed Observing Time allocations are described. Initial results include the determination of the albedos of a number of Kuiper Belt objects and Centaurs from observations of their flux densities at 24 and 70 microns, and the detection of emission bands in the spectra of several distant asteroids (Trojans) around 10 and 25 microns. The 10 Kuiper Belt objects observed to date have albedos in the range 0.08 - 0.15, significantly higher than the earlier estimated 0.04. An additional KBO [(55565) 2002 AW(sub l97)] has an albedo of 0.17 plus or minus 0.03. The emission bands in the asteroid spectra are indicative of silicates, but specific minerals have not yet been identified. The Centaur/comet 29P/Schwassmann-Wachmann 1 has a nucleus surface albedo of 0.025 plus or minus 0.01, and its dust production rate was calculated from the properties of the coma. Several other investigations are in progress as the incoming data are processed and analyzed.

  16. Conceptual design of the data handling system for the European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Ermolli, Ilaria; Cauzzi, Gianna; Collados, Manuel; Paletou, Frederic; Reardon, Kevin; Aboudarham, Jean; Cirami, Roberto; Cosentino, Rosario; Del Moro, Dario; Di Marcantonio, Paolo; Giorgi, Fabrizio; Lafon, Martine; Pietropaolo, Ermanno; Romano, Paolo

    2012-09-01

    We present an overview of the conceptual design of the data handling unit of the ECS, the Control System for the European Solar Telescope (EST). We will focus on describing the critical requirements for this unit resulting from the overall design of the telescope, together with its architecture and the results of the feasibility analysis carried out to date.

  17. 1.6 M Solar Telescope in Big Bear -- The NST

    NASA Astrophysics Data System (ADS)

    Goode, Philip R.; Denker, Carsten J.; Didkovsky, Leonid I.; Kuhn, J. R.; Wang, Haimin

    2003-06-01

    New Jersey Institute of Technology (NJIT), in collaboration with the University of Hawaii (UH), is upgrading Big Bear Solar Observatory (BBSO) by replacing its principal, 65 cm aperture telescope with a modern, off-axis 1.6 m clear aperture instrument from a 1.7 m blank. The new telescope offers a significant incremental improvement in ground-based infrared and high angular resolution capabilities, and enhances our continuing program to understand photospheric magneto-convection and chromospheric dynamics. These are the drivers for what is broadly called space weather -- an important problem, which impacts human technologies and life on earth. This New Solar Telescope (NST) will use the existing BBSO pedestal, pier and observatory building, which will be modified to accept the larger open telescope structure. It will be operated together with our 10 inch (for larger field-of-view vector magnetograms, Ca II K and Hα observations) and Singer-Link (full disk Hα, Ca II K and white light) synoptic telescopes. The NST optical and software control design will be similar to the existing SOLARC (UH) and the planned Advanced Technology Solar Telescope (ATST) facility led by the National Solar Observatory (NSO) -- all three are off-axis designs. The NST will be available to guest observers and will continue BBSO's open data policy. The polishing of the primary will be done in partnership with the University of Arizona Mirror Lab, where their proof-of-concept for figuring 8 m pieces of 20 m nighttime telescopes will be the NST's primary mirror. We plan for the NST's first light in late 2005. This new telescope will be the largest aperture solar telescope, and the largest aperture off-axis telescope, located in one of the best observing sites. It will enable new, cutting edge science. The scientific results will be extremely important to space weather and global climate change research.

  18. Study of a Solar X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1997-01-01

    the spatial resolution of the observing instrument, this effect will not be directly observable. For organizational purposes, we provide a listing of some scientific objectives for a Solar-B x-ray telescope, arranged in terms of identifiable features in the corona.

  19. First generation solar adaptive optics system for 1-m New Vacuum Solar Telescope at Fuxian Solar Observatory

    NASA Astrophysics Data System (ADS)

    Rao, Chang-Hui; Zhu, Lei; Rao, Xue-Jun; Zhang, Lan-Qiang; Bao, Hua; Ma, Xue-An; Gu, Nai-Ting; Guan, Chun-Lin; Chen, Dong-Hong; Wang, Cheng; Lin, Jun; Jin, Zen-Yu; Liu, Zhong

    2016-02-01

    The first generation solar adaptive optics (AO) system, which consists of a fine tracking loop with a tip-tilt mirror (TTM) and a correlation tracker, and a high-order correction loop with a 37-element deformable mirror (DM), a correlating Shack-Hartmann (SH) wavefront sensor (WFS) based on the absolute difference algorithm and a real time controller (RTC), has been developed and installed at the 1-m New Vacuum Solar Telescope (NVST) that is part of Fuxian Solar Observatory (FSO). Compared with the 37-element solar AO system developed for the 26-cm Solar Fine Structure Telescope, administered by Yunnan Astronomical Observatories, this AO system has two updates: one is the subaperture arrangement of the WFS changed from square to hexagon; the other is the high speed camera of the WFS and the corresponding real time controller. The WFS can be operated at a frame rate of 2100 Hz and the error correction bandwidth can exceed 100 Hz. After AO correction, the averaged residual image motion and the averaged RMS wavefront error are reduced to 0.06″ and 45 nm, respectively. The results of on-sky testing observations demonstrate better contrast and finer structures of the images taken with AO than those without AO.

  20. Narrow-band Imager for Multi-Application Solar Telescope (MAST) at Udaipur Solar Observatory

    NASA Astrophysics Data System (ADS)

    Raja Bayanna, A.; Mathew, Shibu K.; Venkatakrishnan, Parameswaran; Srivastava, Nandita

    2013-04-01

    Multi-Application Solar Telescope (MAST) is an off-axis Gregorian solar telescope of 50 cm clear aperture installed at the lake site of Udaipur solar observatory (USO). A narrow band imager is being developed for near simultaneous observations of the solar atmosphere at different heights. The heart of the system is two Fabry-Perot (FP) etalons working in tandem. The substrate of the etalons is made of Lithium Niobate electro-optic crystal. The filter is tuned by changing the refractive index of the crystal with the application of the voltage. It is important to know the voltage required per unit wavelength shift to tune the system for different wavelength regions for near simultaneous observations. A littrow spectrograph was set up to calibrate the FP etalons. The achieved spectral resolution with the spectrograph at 6173 Å is 35 mÅ. Calibration is carried-out for the Fe I 6173 Å, H-alpha 6563 Å and Ca K 8542 Å. Free spectral range (FSR) obtained for FP1 and FP2 in tandem for 6173 Å is 6.7Å and 150 mÅ respectively. Voltage range of the system allows us to scan the entire line profile of 6173 in the range of ±220 mÅ with a sampling of 20 mÅ. We also performed temperature tuning and voltage tuning of the system. Similar exercise is performed for other two wavelengths. Here we present the details of the calibration set-up and obtained parameters and first-light results of the system.

  1. Observation and Modeling of the Solar Transition Region. 1; Multi-Spectral Solar Telescope Array Observations

    NASA Technical Reports Server (NTRS)

    Oluseyi, Hakeem M.; Walker, A. B. C., II; Porter, Jason; Hoover, Richard B.; Barbee, Troy W., Jr.

    1999-01-01

    We report on observations of the solar atmosphere in several extreme-ultraviolet and far-ultraviolet bandpasses obtained by the Multi-Spectral Solar Telescope Array, a rocket-borne spectroheliograph, on flights in 1987, 1991, and 1994, spanning the last solar maximum. Quiet-Sun emission observed in the 171-175 Angstrom bandpass, which includes lines of O v, O VI, Fe IX, and Fe X, has been analyzed to test models of the temperatures and geometries of the structures responsible for this emission. Analyses of intensity variations above the solar limb reveal scale heights consistent with a quiet-Sun plasma temperature of 500,000 less than or equal to T (sub e) less than or equal to 800,000 K. The structures responsible for the quiet-Sun EUV emission are modeled as small quasi-static loops. We submit our models to several tests. We compare the emission our models would produce in the bandpass of our telescope to the emission we have observed. We find that the emission predicted by loop models with maximum temperatures between 700,000 and 900,000 K are consistent with our observations. We also compare the absolute flux predicted by our models in a typical upper transition region line to the flux measured by previous observers. Finally, we present a preliminary comparison of the predictions of our models with diagnostic spectral line ratios from previous observers. Intensity modulations in the quiet Sun are observed to occur on a scale comparable to the supergranular scale. We discuss the implications that a distribution of loops of the type we model here would have for heating the local network at the loops' footpoints.

  2. Optomechanical and thermal design of the Multi-Application Solar Telescope for USO

    NASA Astrophysics Data System (ADS)

    Denis, Stefan; Coucke, Pierre; Gabriel, Eric; Delrez, Christophe; Venkatakrishnan, Parameshwaran

    2008-07-01

    The Multi-Application Solar Telescope (MAST) is a 50 cm diameter class telescope to be installed on the Udaipur Solar Observatory's Island on the Lake Fatehsagar in Udaipur, India. It is dedicated to solar observation. The telescope is designed, manufactured, assembled and installed on-site by the belgian company AMOS SA for the Udaipur Solar Observatory (USO), an academic division of the Physical Research Laboratory (PRL) in India. Despite its limited size, the telescope is expected to be competitive with respect to worldwide large and costly projects thanks to its versatility regarding science goals and also thanks to its demanding optomechanical and thermal specification. This paper describes the optomechanical and thermal design of this telescope and presents solutions adopted by AMOS to meet the specific requirements. The optical configuration of the telescope is based on an afocal off-axis gregorian combination integrated on an Alt.-Az. mechanical mount, with a suite of flat folding mirrors to provide the required stationary collimated beam.

  3. Direct imaging of extra-solar planets with stationary occultations viewed by a space telescope

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.

    1978-01-01

    The use of a telescope in space to detect planets outside the solar system by means of imaging at optical wavelengths is discussed. If the 'black' limb of the moon is utilized as an occulting edge, a hypothetical Jupiter-Sun system could be detected at a distance as great as 10 pc, and a signal-to-noise ratio of 9 could be achieved in less than 20 min with a 2.4 m telescope in space. An orbit for the telescope is proposed; this orbit could achieve a stationary lunar occultation of any star for a period of nearly two hours.

  4. Instrument Design of the Large Aperture Solar UV Visible and IR Observing Telescope (SUVIT) for the SOLAR-C Mission

    NASA Astrophysics Data System (ADS)

    Suematsu, Y.; Katsukawa, Y.; Shimizu, T.; Ichimoto, K.; Takeyama, N.

    2012-12-01

    We present an instrumental design of one major solar observation payload planned for the SOLAR-C mission: the Solar Ultra-violet Visible and near IR observing Telescope (SUVIT). The SUVIT is designed to provide high-angular-resolution investigation of the lower solar atmosphere, from the photosphere to the uppermost chromosphere, with enhanced spectroscopic and spectro-polarimetric capability in wide wavelength regions from 280 nm (Mg II h&k lines) to 1100 nm (He I 1083 nm line) with 1.5 m class aperture and filtergraphic and spectrographic instruments.

  5. The Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors

    NASA Technical Reports Server (NTRS)

    Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B. C., Jr.; Allen, Max J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C.

    1992-01-01

    We have developed seven compact soft X-ray/EUV (XUV) multilayer coated and two compact FUV interference film coated Cassegrain and Ritchey-Chretien telescopes for a rocket borne observatory, the Multi-Spectral Solar Telescope Array. We report here on extensive measurements of the efficiency and spectral bandpass of the XUV telescopes carried out at the Stanford Synchrotron Radiation Laboratory.

  6. Solar Wind observations using the Mexican Array Radio Telescope (MEXART)

    NASA Astrophysics Data System (ADS)

    Romero-Hernandez, E.; Gonzalez-Esparza, A.; Villanueva, P.; Aguilar-Rodriguez, E.; Mejia-Ambriz, J. C.; Mexart

    2013-05-01

    The Mexican Array Radiotelescope (MEXART) is an instrument devoted to observations of radio sources to study large-scale structures in the solar wind employing the Interplanetary Scintillation (IPS) technique. We report recent IPS observations, from January to April of 2013, including an analysis of the scintillation index and the estimation of solar wind velocities for a set of radio sources. We track the first ICMEs registered by the MEXART. We are initiating a continuos operation for a complete monitoring of IPS radio sources that will complement solar wind studies based on in-situ observations.

  7. The Large Millimeter Telescope and Solar Like Stars

    NASA Astrophysics Data System (ADS)

    Chavez, M.; Hughes, D.; LMT Project Team

    2013-04-01

    This paper describes the current status of the Large Millimeter Telescope (LMT), the near-term plans for the telescope and the initial suite of instrumentation. It also briefly describes two astronomical branches in which the LMT will certainly have a major impact: the study of thermal emission of circumstellar material around main sequence stars and the analysis of the molecular contents of this material in relatively young stars. The LMT is a bi-national collaboration between Mexico and the USA, led by the Instituto Nacional de Astrofísica, Optica y Electrónica (INAOE) and the University of Massachusetts at Amherst, to construct, commission and operate a 50m-diameter millimeter-wave radio telescope. Construction of the telescope structure is complete at the 4600 m LMT site on the summit of Volcán Sierra Negra, an extinct volcano in the Mexican state of Puebla. First-light with the LMT was successfully conducted in June and July 2011 with observations at both 3 and 1.1 mm. The commissioning and future scientific operation of the LMT is divided into two major phases. As part of phase I, following the improvement in the alignment of the surface segments within the inner 32 meter diameter of the antenna, the project will begin the first shared risk scientific observations in the spring of 2013. In phase II, we will continue the installation and alignment of the remainder of the reflector surface, after which the final commissioning of the full 50m LMT will take place. The LMT antenna, outfitted with its initial complement of scientific instruments, will be a world-leading scientific research facility for millimeter-wave astronomy.

  8. Extracting Information from the Data Flood of New Solar Telescopes: Brainstorming

    NASA Astrophysics Data System (ADS)

    Asensio Ramos, A.

    2012-12-01

    Extracting magnetic and thermodynamic information from spectropolarimetric observations is a difficult and time consuming task. The amount of science-ready data that will be generated by the new family of large solar telescopes is so large that we will be forced to modify the present approach to inference. In this contribution, I propose several possible ways that might be useful for extracting the thermodynamic and magnetic properties of solar plasmas from such observations quickly.

  9. The Astrometric Imaging Telescope - A space-based observatory for extra-solar planet detection

    NASA Technical Reports Server (NTRS)

    Pravdo, Steven H.

    1991-01-01

    The paper describes the objectives, techniques, instrumentation, and mission of the planned Astrometric Imaging Telescope. This space-based observatory is designed to detect and characterize extra-solar planetary systems. Results will contribute to the understanding of the astrophysics of stellar and planetary formation and provide an impetus for the study of exobiology.

  10. SUNRISE: a balloon-borne telescope for high resolution solar observations in the visible and UV

    NASA Astrophysics Data System (ADS)

    Solanki, Sami K.; Gandorfer, Achim M.; Schuessler, Manfred; Curdt, W.; Lites, Bruce W.; Martinez-Pillet, Valentin; Schmidt, Wolfgang; Title, Alan M.

    2003-02-01

    Sunrise is a light-weight solar telescope with a 1 m aperture for spectro-polarimetric observations of the solar atmosphere. The telescope is planned to be operated during a series of long-duration balloon flights in order to obtain time series of spectra and images at the diffraction-limit and to study the UV spectral region down to ~200 nm, which is not accessible from the ground. The central aim of Sunrise is to understand the structure and dynamics of the magnetic field in the solar atmosphere. Through its interaction with the convective flow field, the magnetic field in the solar photosphere develops intense field concentrations on scales below 100 km, which are crucial for the dynamics and energetics of the whole solar atmosphere. In addition, Sunrise aims to provide information on the structure and dynamics of the solar chromosphere and on the physics of solar irradiance changes. Sunrise is a joint project of the Max-Planck-Institut fuer Aeronomie (MPAe), Katlenburg-Lindau, with the Kiepenheuer-Institut fuer Sonnenphysik (KIS), Freiburg, the High-Altitude Observatory (HAO), Boulder, the Lockheed-Martin Solar and Astrophysics Lab. (LMSAL), Palo Alto, and the Instituto de Astrofi sica de Canarias, La Laguna, Tenerife. In addition, there are close contacts with associated scientists from a variety of institutes.

  11. Solar Polar ORbit Telescope (SPORT): A Potential Heliophysics Mission of China

    NASA Astrophysics Data System (ADS)

    Liu, Ying

    We describe a spacecraft mission, named Solar Polar ORbit Telescope (SPORT), which is currently under a scientific and engineering background study in China. SPORT was originally proposed in 2004 by the National Space Science Center, Chinese Academy of Sciences. It will carry a suite of remote-sensing and in-situ instruments to observe coronal mass ejections (CMEs), solar high-latitude magnetism, and the fast solar wind from a polar orbit around the Sun. It is intended to be the first mission that carries remote-sensing instruments from a high-latitude orbit around the Sun and the first mission that could measure solar high-latitude magnetism. The first extended view of the polar region of the Sun and the ecliptic plane enabled by SPORT will provide a unique opportunity to study CME propagation through the inner heliosphere and solar high-latitude magnetism giving rise to eruptions and the fast solar wind.

  12. Solar observations with a low frequency radio telescope

    NASA Astrophysics Data System (ADS)

    Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.

    2012-01-01

    We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.

  13. New solar axion search using the CERN Axion Solar Telescope with 4He filling

    NASA Astrophysics Data System (ADS)

    Arik, M.; Aune, S.; Barth, K.; Belov, A.; Bräuninger, H.; Bremer, J.; Burwitz, V.; Cantatore, G.; Carmona, J. M.; Cetin, S. A.; Collar, J. I.; Da Riva, E.; Dafni, T.; Davenport, M.; Dermenev, A.; Eleftheriadis, C.; Elias, N.; Fanourakis, G.; Ferrer-Ribas, E.; Galán, J.; García, J. A.; Gardikiotis, A.; Garza, J. G.; Gazis, E. N.; Geralis, T.; Georgiopoulou, E.; Giomataris, I.; Gninenko, S.; Gómez Marzoa, M.; Hasinoff, M. D.; Hoffmann, D. H. H.; Iguaz, F. J.; Irastorza, I. G.; Jacoby, J.; Jakovčić, K.; Karuza, M.; Kavuk, M.; Krčmar, M.; Kuster, M.; Lakić, B.; Laurent, J. M.; Liolios, A.; Ljubičić, A.; Luzón, G.; Neff, S.; Niinikoski, T.; Nordt, A.; Ortega, I.; Papaevangelou, T.; Pivovaroff, M. J.; Raffelt, G.; Rodríguez, A.; Rosu, M.; Ruz, J.; Savvidis, I.; Shilon, I.; Solanki, S. K.; Stewart, L.; Tomás, A.; Vafeiadis, T.; Villar, J.; Vogel, J. K.; Yildiz, S. C.; Zioutas, K.; CAST Collaboration

    2015-07-01

    The CERN Axion Solar Telescope (CAST) searches for a →γ conversion in the 9 T magnetic field of a refurbished LHC test magnet that can be directed toward the Sun. Two parallel magnet bores can be filled with helium of adjustable pressure to match the x-ray refractive mass mγ to the axion search mass ma. After the vacuum phase (2003-2004), which is optimal for ma≲0.02 eV , we used 4He in 2005-2007 to cover the mass range of 0.02-0.39 eV and 3He in 2009-2011 to scan from 0.39 to 1.17 eV. After improving the detectors and shielding, we returned to 4He in 2012 to investigate a narrow ma range around 0.2 eV ("candidate setting" of our earlier search) and 0.39-0.42 eV, the upper axion mass range reachable with 4He, to "cross the axion line" for the KSVZ model. We have improved the limit on the axion-photon coupling to ga γ<1.47 ×10-10 GeV-1 (95% C.L.), depending on the pressure settings. Since 2013, we have returned to the vacuum and aim for a significant increase in sensitivity.

  14. EIT: Solar corona synoptic observations from SOHO with an Extreme-ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    Delaboudiniere, J. P.; Gabriel, A. H.; Artzner, G. E.; Michels, D. J.; Dere, K. P.; Howard, R. A.; Catura, R.; Stern, R.; Lemen, J.; Neupert, W.

    1988-01-01

    The Extreme-ultraviolet Imaging Telescope (EIT) of SOHO (solar and heliospheric observatory) will provide full disk images in emission lines formed at temperatures that map solar structures ranging from the chromospheric network to the hot magnetically confined plasma in the corona. Images in four narrow bandpasses will be obtained using normal incidence multilayered optics deposited on quadrants of a Ritchey-Chretien telescope. The EIT is capable of providing a uniform one arc second resolution over its entire 50 by 50 arc min field of view. Data from the EIT will be extremely valuable for identifying and interpreting the spatial and temperature fine structures of the solar atmosphere. Temporal analysis will provide information on the stability of these structures and identify dynamical processes. EIT images, issued daily, will provide the global corona context for aid in unifying the investigations and in forming the observing plans for SOHO coronal instruments.

  15. Science and Instrument Design of 1.5-m Aperture Solar Optical Telescope for the SOLAR-C Mission

    NASA Astrophysics Data System (ADS)

    Suematsu, Y.; Katsukawa, Y.; Ichimoto, K.; Shimizu, T.

    2012-12-01

    We present science cases and a design of one of major instruments for SOLAR-C mission; 1.5-m-class aperture solar ultra-violet visible and near IR observing Telescope (SUVIT). The SOLAR-C mission aims at fully understanding dynamism and magnetic nature of the solar atmosphere by observing small-scale plasma processes and structures. The SUVIT is designed to provide high-angular-resolution investigation of lower atmosphere from the photosphere to the uppermost chromosphere with enhanced spectroscopic and spectro-polarimetric capability covering a wide wavelength region from 280 nm (Mg II h&k) to 1100 nm (He I 1083 nm), using focal plane instruments: wide-band and narrow-band filtergraphs and a spectrograph for high-precision spectro-polarimetry in the solar photospheric and chromospheric lines. We will discuss about instrument design to realize the science cases.

  16. Quantitative evaluation on internal seeing induced by heat-stop of solar telescope.

    PubMed

    Liu, Yangyi; Gu, Naiting; Rao, Changhui

    2015-07-27

    heat-stop is one of the essential thermal control devices of solar telescope. The internal seeing induced by its temperature rise will degrade the imaging quality significantly. For quantitative evaluation on internal seeing, an integrated analysis method based on computational fluid dynamics and geometric optics is proposed in this paper. Firstly, the temperature field of the heat-affected zone induced by heat-stop temperature rise is obtained by the method of computational fluid dynamics calculation. Secondly, the temperature field is transformed to refractive index field by corresponding equations. Thirdly, the wavefront aberration induced by internal seeing is calculated by geometric optics based on optical integration in the refractive index field. This integrated method is applied in the heat-stop of the Chinese Large Solar Telescope to quantitatively evaluate its internal seeing. The analytical results show that the maximum acceptable temperature rise of heat-stop is up to 5 Kelvins above the ambient air at any telescope pointing directions under the condition that the root-mean-square of wavefront aberration induced by internal seeing is less than 25nm. Furthermore, it is found that the magnitude of wavefront aberration gradually increases with the increase of heat-stop temperature rise for a certain telescope pointing direction. Meanwhile, with the variation of telescope pointing varying from the horizontal to the vertical direction, the magnitude of wavefront aberration decreases at first and then increases for the same heat-stop temperature rise.

  17. EUV/FUV response characteristics of photographic films for the Multi-Spectral Solar Telescope Array

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Walker, Arthur B. C., Jr.; Deforest, Craig E.; Allen, Maxwell J.; Lindblom, Joakim F.

    1991-01-01

    The photographic film employed by NASA's Multi-Spectral Solar Telescope Array must have high-to-ultrahigh resolution; since the spacecraft bearing the telescope must be evacuated to prevent the failure of delicate EUV and soft X-ray filters due to acoustic vibration during launch, the films must also have very low outgassing rates. An account is presently given of the properties of important new emulsions selected for flight, together with response-characteristics data for the experimental XUV 100 film and an uncoated Spectroscopic 649 emulsion.

  18. Thermal effects in the Solar Disk Sextant telescope

    NASA Astrophysics Data System (ADS)

    Spagnesi, Chiara; Vannoni, Maurizio; Molesini, Giuseppe; Righini, Alberto

    2004-02-01

    The Solar Disk Sextant (SDS) is an instrument conceived to monitor the diameter of the Sun and its oscillations. A key component of the SDS is the Beam Splitting Wedge (BSW), whose function is to provide calibration to the geometry of the focal plane. The thermal behavior of the BSW is critical, as it affects the overall performance of the instrument. Modeling the elements of the BSW and the basic thermal processes is shown to account for experimental evidences of defocusing observed in early measurements with a balloon borne prototype. Basic requirements for accurate thermal stabilization on board of the final instrument are derived.

  19. A silicon surface barrier telescope for solar particles identification

    NASA Technical Reports Server (NTRS)

    Sequeiros, J.; Medina, J.

    1985-01-01

    From the results three conclusions can be made: (1) the detector system described and tested is capable of good charge resolution from He to Al although beyond Ne the statistic is very poor; (2) in the high gain mode, isotopic resolution has been achieved for Li-6/Li-7 Be-7/Be-9; (3) the much higher yield of He over He and of Be-9 over Be-10 in these types of nuclear reactions prevents obtaining experimental evidence of those isotopes, although it is believed that, at least He-3/He-4 can be resolved under other more favorable conditions (i.e., solar He-3-rich events).

  20. The New 30 THz Solar Telescope in São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Kudaka, A. S.; Cassiano, M. M.; Marcon, R.; Cabezas, D. P.; Fernandes, L. O. T.; Hidalgo Ramirez, R. F.; Kaufmann, P.; de Souza, R. V.

    2015-08-01

    It has been found that solar bursts exhibit one unexpected spectral component with fluxes increasing with frequency in the sub-THz range, which is distinct from the well-known microwave emission that peaks at a few to some tens of GHz. This component has been found to extend into the THz range of frequencies by recent 30 THz solar flare observations of impulsive bursts with flux intensities considerably higher than fluxes at sub-THz and microwaves frequencies. High-cadence solar observations at 30 THz (continuum) are therefore an important tool for the study of active regions and flaring events. We report the recent installation of a new 30 THz solar telescope in São Paulo, located at the top of one of the University's buildings. The instrument uses a Hale-type coelostat with two 20 cm diameter flat mirrors sending light to a 15 cm mirror Newtonian telescope. Radiation is directed to a microbolometer array camera that is kept at room temperature. Observations are usually obtained with 5 frames s^{-1} cadence. One 60 mm refractor has been added to observe H\\upalpha images simultaneously. We describe our new telescopes and the new observatory examples of the first results obtained.

  1. The CERN Axion Solar Telescope (CAST): Status and Prospects

    SciTech Connect

    Irastorza, I. G.; Andriamonje, S; Arik, E; Autiero, D; Avignone, F T.; Barth, K; Brauninger, H; Brodzinski, Ronald L. ); Carmona, J. M.; Cebrian, S; Cetin, S; Collar, J I.; Creswick, R; De Oliveira, R; Delbart, A; Di Lella, L; Eleftheriadis, Ch; Fanourakis, G; Farach, H A.; Fischer, H; Formenti, F; Geralis, Th.; Giomataris, I; Gninenko, S. N.; Goloubev, N; Hartman, R; Hasinoff, M; Hoffmann, D; Jacoby, J; Kang, D; Konigsmann, K; Kotthaus, R; Krcmar, M; Kuster, M; Lakic, B; Liolios, A; Ljubicic, A; Lutz, G; Luzon, G; Miley, Harr

    2003-02-10

    The CAST experiment is being mounted at CERN. It will make use of a decommissioned LHC test magnet to look for solar axions through its conversion into Photons inside the magnetic field. The magnet has a field of 9.6 Tesla and length of 10 m and is installed in a platform which allows to move it+ or - 8 degrees vertically and+ or - 10 to the 11th power horizontally. According to these numbers we expect a sensitivity in axion-photon coupling gaT"~ ,~< 5 10 -11 GeV -1 for ma~< 0.02 eV, and with a gas filled tube ga~~< 10 -l GeV -a for ma~< 1 eV.

  2. Detection of Solar Wind Disturbances: Mexican Array Radio Telescope IPS Observations at 140 MHz

    NASA Astrophysics Data System (ADS)

    Romero-Hernandez, E.; Gonzalez-Esparza, J. A.; Aguilar-Rodriguez, E.; Ontiveros-Hernandez, V.; Villanueva-Hernandez, P.

    2015-09-01

    The interplanetary scintillation (IPS) technique is a remote-sensing method for monitoring solar-wind perturbations. The Mexican Array Radio Telescope (MEXART) is a single-station instrument operating at 140 MHz, fully dedicated to performing solar-wind studies employing the IPS technique. We report MEXART solar-wind measurements (scintillation indices and solar-wind velocities) using data obtained during the 2013 and 2014 campaigns. These solar-wind measurements were calculated employing a new methodology based on the wavelet transform (WT) function. We report the variation of the scintillation indices versus the heliocentric distance for two IPS sources (3C48 and 3C147). We found different average conditions of the solar-wind density fluctuations in 2013 and 2014. We used the fittings of the radial dependence of the scintillation index to calculate g-indices. Based on the g-index value, we identified 17 events that could be associated with strong compression regions in the solar wind. We present the first ICME identifications in our data. We associated 14 IPS events with preceding CME counterparts by employing white-light observations from the Large Angle and Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO) spacecraft. We found that most of the IPS events, detected during the solar maximum of Cycle 24 were associated with complex CME events. For the IPS events associated with single CME counterparts, we found a deceleration tendency of the CMEs as they propagate in the interplanetary medium. These results show that the instrument detects solar-wind disturbances, and the WT methodology provides solar-wind information with good accuracy. The MEXART observations will complement solar-wind IPS studies using other frequencies, and the tracking of solar-wind disturbances by other stations located at different longitudes.

  3. A New 0.5m Telescope (MAST) for Solar Imaging and Polarimetry

    NASA Astrophysics Data System (ADS)

    Mathew, S. K.

    2009-06-01

    In this article we discuss the design of a new 0.5 m telescope which will be installed at the lake site of Udaipur Solar Observatory (USO), India in the first quarter of 2009. The telescope has an off-axis alt-azimuth design, which will provide a low scattered-light performance. The complete telescope including the control system will be made by AMOS, Belgium. The prototype adaptive-optics system for seeing correction is being developed at USO. The design of two back-end instruments, an echelle-scanning spectrograph capable of observing simultaneously in at least two spectral lines, and an imaging spectrometer based on double Fabry-Pérot etalon, and a polarimeter common for both the instruments is in progress. The scientific objectives, design aspects and the current status of the above instruments is discussed in this paper.

  4. An image drift compensation system for a solar pointed space telescope

    NASA Astrophysics Data System (ADS)

    Bartoe, J.-D. F.

    1982-05-01

    Two sounding rocket test flights have been conducted in the development of an image drift compensation system designed for a solar-pointed space telescope. The system, whose scientific results are presented, employs limb-sensing photodiodes at the telescope focal plane and provides drift compensation to better than + or - 0.1 arcsec. A variation of this device will be employed by the Space Shuttle/Spacelab 2 flight of the High Resolution Telescope and Spectrograph (HRTS) Instrument. The data gathered by the rocket flights of the drift compensation system have revealed high velocity ejecta traveling through the transition zone and corona at velocities up to 400 km/sec. The HRTS configuration and its constitutive instruments' optical parameters are described.

  5. The solar array-induced disturbance of the Hubble Space Telescope pointing system

    NASA Technical Reports Server (NTRS)

    Foster, C. L.; Tinker, M. L.; Nurre, G. S.; Till, W. A.

    1995-01-01

    The investigation of the vibrational disturbances of the Hubble Space Telescope that were discovered soon after deployment in orbit is described in detail. It was found that the disturbances were particularly evident during orbital day-night crossings, and that the magnitudes of the disturbances were considerably larger than the design jitter requirements. This paper describes the process by which the vibrations were characterized and isolated to a particular mechanism. The analysis of the flight data and comparisons with computer simulation results showed that the source of the disturbances was the thermally driven deformation of the solar arrays in conjunction with frictional effects in the array mechanisms. The control system was successfully modified to attenuate the disturbances to tolerable levels pending mechanical and thermal redesign of the solar arrays. The new arrays were installed during the first space telescope servicing mission and, in combination with the enhanced control system algorithm, reduced the disturbances to satisfactory levels.

  6. Solar-Array-Induced Disturbance of the Hubble Space Telescope Pointing System

    NASA Technical Reports Server (NTRS)

    Foster, Carlton L.; Tinker, Michael L.; Nurre, Gerald S.; Till, William A.

    1995-01-01

    The investigation of the vibrational disturbances of the Hubble Space Telescope that were discovered soon after deployment in orbit is described in detail. It was found that the disturbances were particularly evident during orbital day-night crossings, and that the magnitude of the disturbances was considerably larger than the design jitter requirement. This paper describes the process by which the vibrations were characterized and isolated to a particular mechanism. The analysis of the flight data and comparisons with computer simulation results showed that the source of the disturbances was the thermally driven deformation of the solar arrays in conjunction with frictional effects in the array mechanisms. The control system was successfully modified to attenuate the disturbances to tolerable levels pending mechanical and thermal redesign of the solar arrays. The new arrays were installed during the first Space Telescope servicing mission, and in combination with the enhanced control system algorithm reduced the disturbances to satisfactory levels.

  7. Scientific Programmes with India's National Large Solar Telescope and their contribution to Prominence Research

    NASA Astrophysics Data System (ADS)

    Hasan, S. S.

    2014-01-01

    The primary objective of the 2-m National Large Solar Telescope (NLST) is to study the solar atmosphere with high spatial and spectral resolution. With an innovative optical design, NLST is an on-axis Gregorian telescope with a low number of optical elements and a high throughput. In addition, it is equipped with a high order adaptive optics system to produce close to diffraction limited performance. NLST will address a large number of scientific questions with a focus on high resolution observations. With NLST, high spatial resolution observations of prominences will be possible in multiple spectral lines. Studies of magnetic fields, filament eruptions as a whole, and the dynamics of filaments on fine scales using high resolution observations will be some of the major areas of focus.

  8. A CCD image transducer and processor suitable for space flight. [satellite borne solar telescope instrumentation

    NASA Technical Reports Server (NTRS)

    Michels, D. J.

    1975-01-01

    A satellite borne extreme ultraviolet solar telescope makes use of CCD area arrays for both image readout and onboard data processing. The instrument is designed to view the inner solar corona in the wavelength band 170 - 630 A, and the output video stream may be selected by ground command to present the coronal scene, or the time-rate-of-change of the scene. Details of the CCD application to onboard image processing are described, and a discussion of the processor's potential for telemetry bandwidth compression is included. Optical coupling methods, data storage requirements, spatial and temporal resolution, and nonsymmetry of resolution (pitch) in the CCD are discussed.

  9. Prospects for solar and space weather research with polish part of the LOFAR telescope

    NASA Astrophysics Data System (ADS)

    Dąbrowski, Bartosz P.; Krankowski, Andrzej; Błaszkiewicz, Leszek; Rothkaehl, Hanna

    2016-06-01

    The LOw-Frequency ARray (LOFAR) is a new radio interferometer that consists of an array of stations. Each of them is a phase array of dipole antennas. LOFAR stations are distributed mostly in the Netherlands, but also throughout Europe. In the article we discuss the possibility of using this instrument for solar and space weather studies, as well as ionosphere investigations. We are expecting that in the near future the LOFAR telescope will bring some interesting observations and discoveries in these fields. It will also help to observe solar active events that have a direct influence on the near-Earth space weather.

  10. Multi-purpose grating spectrograph for the 4-meter European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Calcines, A.; Collados, M.; Feller, A.; Gelly, B.; Grauf, B.; Hirzberger, J.; López Ariste, A.; Lopez, R. L.; Mein, P.; Sayéde, F.

    2012-09-01

    This communication presents a family of spectrographs designed for the European Solar Telescope. They can operate in four different configurations: a long slit standard spectrograph (LsSS), two devices based on subtractive double pass (TUNIS and MSDP) and one based on an integral field, multi-slit, multi-wavelength configuration. The combination of them composes the multi-purpose grating spectrograph of EST, focused on supporting the different science cases of the solar photosphere and chromosphere in the spectral range from 3900 Å to 23000 Å. The different alternatives are made compatible by using the same base spectrographs and different selectable optical elements corresponding to specific subsystems of each configuration.

  11. Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors

    NASA Technical Reports Server (NTRS)

    Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B.; Allen, Maxwell J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C., Jr.

    1991-01-01

    The Multispectral Solar Telescope Array is a rocket-borne observatory which encompasses seven compact soft X-ray/EUV, multilayer-coated, and two compact far-UV, interference film-coated, Cassegrain and Ritchey-Chretien telescopes. Extensive measurements are presented on the efficiency and spectral bandpass of the X-ray/EUV telescopes. Attention is given to systematic errors and measurement errors.

  12. MuSICa image slicer prototype at 1.5-m GREGOR solar telescope

    NASA Astrophysics Data System (ADS)

    Calcines, A.; López, R. L.; Collados, M.; Vega Reyes, N.

    2014-07-01

    Integral Field Spectroscopy is an innovative technique that is being implemented in the state-of-the-art instruments of the largest night-time telescopes, however, it is still a novelty for solar instrumentation. A new concept of image slicer, called MuSICa (Multi-Slit Image slicer based on collimator-Camera), has been designed for the integral field spectrograph of the 4-m European Solar Telescope. This communication presents an image slicer prototype of MuSICa for GRIS, the spectrograph of the 1.5-m GREGOR solar telescope located at the Observatory of El Teide. MuSICa at GRIS reorganizes a 2-D field of view of 24.5 arcsec into a slit of 0.367 arcsec width by 66.76 arcsec length distributed horizontally. It will operate together with the TIP-II polarimeter to offer high resolution integral field spectropolarimetry. It will also have a bidimensional field of view scanning system to cover a field of view up to 1 by 1 arcmin.

  13. Solar Sail - Fresnel Zone Plate Lens for a Large Space Based Telescope

    SciTech Connect

    Early, J T

    2002-02-13

    A Fresnel zone plate lens made with solar sail material could be used as the primary optic for a very large aperture telescope on deep space probes propelled by solar sails. The large aperture telescope capability could enable significant science on fly-by missions to the asteroids, Pluto, Kuiper belt or the tort cloud and could also enable meaningful interstellar fly-by missions for laser propelled sails. This type of lens may also have some potential for laser communications and as a solar concentrator. The techniques for fabrication of meter size and larger Fresnel phase plate optics are under development at LLNL, and we are extending this technology to amplitude zone plates made from sail materials. Corrector optics to greatly extend the bandwidth of these Fresnel optics will be demonstrated in the future. This novel telescope concept will require new understanding of the fabrication, deployment and control of gossamer space structures. It will also require new materials technology for fabricating these optics and understanding their long term stability in a space environment.

  14. The Greenwich Photo-heliographic Results (1874 - 1885): Observing Telescopes, Photographic Processes, and Solar Images

    NASA Astrophysics Data System (ADS)

    Willis, D. M.; Wild, M. N.; Appleby, G. M.; Macdonald, L. T.

    2016-05-01

    Potential sources of inhomogeneity in the sunspot measurements published by the Royal Observatory, Greenwich, during the early interval 1874 - 1885 are examined critically. Particular attention is paid to inhomogeneities that might arise because the sunspot measurements were derived from solar photographs taken at various contributing solar observatories, which used different telescopes, experienced different seeing conditions, and employed different photographic processes. The procedures employed in the Solar Department at the Royal Greenwich Observatory (RGO), Herstmonceux, during the final phase of sunspot observations provide a modern benchmark for interpreting the early sunspot measurements. The different observing telescopes used at the contributing solar observatories during the interval 1874 - 1885 are discussed in detail, using information gleaned from the official RGO publications and other relevant historical documents. Likewise, the different photographic processes employed at the different solar observatories are reviewed carefully. The procedures used by RGO staff to measure the positions and areas of sunspot groups on photographs of the Sun having a nominal radius of either four or eight inches are described. It is argued that the learning curve for the use of the Kew photoheliograph at the Royal Observatory, Greenwich, actually commenced in 1858, not 1874. The RGO daily number of sunspot groups is plotted graphically and analysed statistically. Similarly, the changes of metadata at each solar observatory are shown on the graphical plots and analysed statistically. It is concluded that neither the interleaving of data from the different solar observatories nor the changes in metadata invalidates the RGO count of the number of sunspot groups, which behaves as a quasi-homogeneous time series. Furthermore, it is emphasised that the correct treatment of days without photographs is quite crucial to the correct calculation of Group Sunspot Numbers.

  15. Solar Polar ORbit Telescope (SPORT): A Potential Space Weather Mission of China

    NASA Astrophysics Data System (ADS)

    Liu, Y. D.; Xiong, M.; Wu, J.; Liu, H.; Zheng, J.; Li, B.; Zhang, C.; Sun, W.

    2013-12-01

    We describe a spacecraft mission, named Solar Polar ORbit Telescope (SPORT), which is currently under a scientific and engineering background study in China. SPORT was originally proposed in 2004 by the National Space Science Center, Chinese Academy of Sciences. It will carry a suite of remote-sensing and in-situ instruments to observe coronal mass ejections (CMEs), solar high-latitude magnetism, and the fast solar wind from a polar orbit around the Sun. It is intended to be the first mission that carries remote-sensing instruments from a high-latitude orbit around the Sun, the first mission that could image interplanetary CMEs at radio wavelengths from space, and the first mission that could measure solar high-latitude magnetism leading to eruptions and the fast solar wind. The first extended view of the polar region of the Sun and the ecliptic plane enabled by SPORT will provide a unique opportunity to study CME propagation through the inner heliosphere and solar high-latitude magnetism giving rise to eruptions and the fast solar wind.

  16. Prototype Spectro-Polarimeter for the India's National Large Solar Telescope

    NASA Astrophysics Data System (ADS)

    Elayavalli Rangarajan, Komandur; Sankarasubramanian, Kasiviswanathan; Srivastava, Nandita; Venkatakrishnan, Parameswaran; Mathew, Shibu; Bayanna, Raja; Hasan, Sirajul; Prabhu, Kesavan

    2013-04-01

    India's National Large Solar Telescope (NLST) of two meter aperture size is proposed to be set up in Ladakh region of Himalayas at a height of around 4300 meters. A high resolution spectrograph along with a polarimeter is planned as one of the backend instruments for NLST. Prototype development of the NLST Spectro-Polarimeter (SP) is proposed to be designed and developed for usage at the back focal plane of the Multi-Application Solar Telescope (MAST) recently installed at the Udaipur Solar Observatory. Design of the prototype SP is discussed in detail along with the scientific goals. The SP is designed to be operated in three wavelengths to observe photospheric and chromospheric layers of the solar atmosphere simultaneously. Vector magnetic fields will be calculated in these layers. High resolution of the designed SP will provide accurate estimates of velocities. Highly resolved polarized line profiles will allow us to obtain the height variation of vector magnetic fields when used along with suitable inversion codes (like SPINOR or SIR).

  17. STATISTICAL DISTRIBUTION OF SIZE AND LIFETIME OF BRIGHT POINTS OBSERVED WITH THE NEW SOLAR TELESCOPE

    SciTech Connect

    Abramenko, Valentyna; Yurchyshyn, Vasyl; Goode, Philip; Kilcik, Ali

    2010-12-10

    We present results of 2 hr non-interrupted observations of solar granulation obtained under excellent seeing conditions with the largest aperture ground-based solar telescope-the New Solar Telescope (NST)-of Big Bear Solar Observatory. Observations were performed with adaptive optics correction using a broadband TiO filter in the 705.7 nm spectral line with a time cadence of 10 s and a pixel size of 0.''0375. Photospheric bright points (BPs) were detected and tracked. We find that the BPs detected in NST images are cospatial with those visible in Hinode/SOT G-band images. In cases where Hinode/SOT detects one large BP, NST detects several separated BPs. Extended filigree features are clearly fragmented into separate BPs in NST images. The distribution function of BP sizes extends to the diffraction limit of NST (77 km) without saturation and corresponds to a log-normal distribution. The lifetime distribution function follows a log-normal approximation for all BPs with lifetime exceeding 100 s. A majority of BPs are transient events reflecting the strong dynamics of the quiet Sun: 98.6% of BPs live less than 120 s. The longest registered lifetime was 44 minutes. The size and maximum intensity of BPs were found to be proportional to their lifetimes.

  18. The 2016 Transit of Mercury Observed from Major Solar Telescopes and Satellites

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Schneider, Glenn; Gary, Dale; Chen, Bin; Sterling, Alphonse C.; Reardon, Kevin P.; Dantowitz, Ronald; Kopp, Greg A.

    2016-10-01

    We report observations from the ground and space of the 9 May 2016 transit of Mercury. We build on our explanation of the black-drop effect in transits of Venus based on spacecraft observations of the 1999 transit of Mercury (Schneider, Pasachoff, and Golub, Icarus 168, 249, 2004). In 2016, we used the 1.6-m New Solar Telescope at the Big Bear Solar Observatory with active optics to observe Mercury's transit at high spatial resolution. We again saw a small black-drop effect as 3rd contact neared, confirming the data that led to our earlier explanation as a confluence of the point-spread function and the extreme solar limb darkening (Pasachoff, Schneider, and Golub, in IAU Colloq. 196, 2004). We again used IBIS on the Dunn Solar Telescope of the Sacramento Peak Observatory, as A. Potter continued his observations, previously made at the 2006 transit of Mercury, at both telescopes of the sodium exosphere of Mercury (Potter, Killen, Reardon, and Bida, Icarus 226, 172, 2013). We imaged the transit with IBIS as well as with two RED Epic IMAX-quality cameras alongside it, one with a narrow passband. We show animations of our high-resolution ground-based observations along with observations from XRT on JAXA's Hinode and from NASA's Solar Dynamics Observatory. Further, we report on the limit of the transit change in the Total Solar Irradiance, continuing our interest from the transit of Venus TSI (Schneider, Pasachoff, and Willson, ApJ 641, 565, 2006; Pasachoff, Schneider, and Willson, AAS 2005), using NASA's SORCE/TIM and the Air Force's TCTE/TIM. See http://transitofvenus.info and http://nicmosis.as.arizona.edu.Acknowledgments: We were glad for the collaboration at Big Bear of Claude Plymate and his colleagues of the staff of the Big Bear Solar Observatory. We also appreciate the collaboration on the transit studies of Robert Lucas (Sydney, Australia) and Evan Zucker (San Diego, California). JMP appreciates the sabbatical hospitality of the Division of Geosciences and

  19. A long duration balloon-borne telescope for solar gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Owens, Alan; Chupp, Edward L.; Dunphy, Philip P.

    1989-01-01

    A new solar gamma-ray telescope is described which is intended to take advantage of current long-duration ballon facilities such as the RACOON system. The primary scientific objective is to detect and measure gamma-ray lines from solar flares, along with the associated low-energy continuum. The proposed instrument is centered on a multiheaded Ge system and is designed to operate over the energy range 50 keV to 200 200 MeV. In the nuclear transition energy region, the average energy resolution of the primary detectors is over 20 times better than that achieved with the gamma-ray spectrometer on the Solar Maximum Mission satellite.

  20. The Solar Neutron Telescope at Sierra Negra, Mexico, and the 7 september 2005 Event

    NASA Astrophysics Data System (ADS)

    Francisco Valdes-Galicia, Jose; Gonzalez, Luis Xavier; Sanchez, Federico; Matsubara, Yutaka; Sako, Takeshi; Muraki, Yasushi; Watanabe, Kyoko

    The Solar Neutron Telescope (SNT) at Sierra Negra (19.0 N, 97.3 W and 4580 m.a.s.l) is part of the world wide Solar Neutron Telescope Network. This SNT is composed by four 1m1m30 cm plastic scintillators (Sci). The telescope is completely surrounded by anti-coincidence propor-tional counters (PRCs). It is capable of registering four different energy deposition channels: E¿30, ¿60, ¿90 and ¿120 MeV. The arrival direction of neutrons is determined by four layers of PRCs, orthogonally located underneath the SNT. We present the numerically simulated de-tector response to neutrons, protons, electrons and gammas entering the SNT with a range of energies from 100 to 1000 MeV. We report on the detector efficiency and on its angular reso-lution for particles impinging the device with different zenith angles. The simulation code was written using the Geant4 package, taking into account all relevant physical processes. Strong signals of energetic neutrons associated with the solar flare of 7 September 2005 were detected by the SNTs located at Mt. Chacaltaya, Bolivia and Sierra Negra, Mexico, Neutron Monitors (NMs) located at Mt. Chacaltaya and Mexico City. Based on the numerical simulations done to estimate the response of the detector, we did an analysis of the SNT data to obtain the energy spectrum of the solar neutrons. The SNT channels of different response functions in energy enabled us to obtain spectrum without any assumption on the emission time profile. The result supports conclusions of previous studies supporting the emission of the neutrons and gamma-rays starting at the same time and neutrons gradually and not impulsively emitted.

  1. Calibration development strategies for the Daniel K. Inouye Solar Telescope (DKIST) Data Center

    NASA Astrophysics Data System (ADS)

    Watson, Fraser; Reardon, Kevin P.; Berukoff, Steven J.; Hays, Tony; Wiant, Scott; Spiess, DJ

    2016-05-01

    As telescopes have grown larger and data rates have increased, so have the challenges in providing reliable and accurate calibration strategies for transforming raw data into useful science-ready outputs. The Daniel K. Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world and will use adaptive optics to provide the highest resolution view of the Sun. Its data acquisition rates will be in the hundreds of thousands of frames per day, and it will deliver an average of 12TB of raw solar data on a daily basis. DKIST data will enable significant and transformative discoveries that will dramatically increase our understanding of the Sun and its effects on the Sun-Earth environment. As such, it is a priority of the DKIST Data Center team at the National Solar Observatory (NSO) to be able to deliver timely and accurately calibrated data to the astronomical community for further analysis.The facility will execute a variety of investigator-driven observing programs, which will produce day–to-day variations in the types of acquired data. In combination with large data rates and limited personnel, this will require some degree of automation to be incorporated into the calibration workflows to facilitate the generation of scientifically useful data. The heterogeneity of the data and the unpredictable variations in the seeing conditions (on timescales of seconds or minutes) introduce complexity, which requires a self-adapting, extensible calibration pipeline to provide sufficient automation to the process. Our knowledge of the instrument performance and telescope characteristics will grow as the telescope begins operations, and continuously through the facility lifetime. The automated calibration pipelines will be capable of modification and improvement to incorporate the new information about the DKIST system, as well as potential improvements provided by the DKIST user community.This poster will detail the calibration development strategies being

  2. Calibration development strategies for the Daniel K. Inouye Solar Telescope (DKIST) Data Center

    NASA Astrophysics Data System (ADS)

    Watson, Fraser; Reardon, Kevin P.; Berukoff, Steven J.; Hays, Tony; Wiant, Scott; Spiess, DJ

    2016-05-01

    As telescopes have grown larger and data rates have increased, so have the challenges in providing reliable and accurate calibration strategies for transforming raw data into useful science-ready outputs. The Daniel K. Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world and will use adaptive optics to provide the highest resolution view of the Sun. Its data acquisition rates will be in the hundreds of thousands of frames per day, and it will deliver an average of 12TB of raw solar data on a daily basis. DKIST data will enable significant and transformative discoveries that will dramatically increase our understanding of the Sun and its effects on the Sun-Earth environment. As such, it is a priority of the DKIST Data Center team at the National Solar Observatory (NSO) to be able to deliver timely and accurately calibrated data to the astronomical community for further analysis.The facility will execute a variety of investigator-driven observing programs, which will produce day-to-day variations in the types of acquired data. In combination with large data rates and limited personnel, this will require some degree of automation to be incorporated into the calibration workflows to facilitate the generation of scientifically useful data. The heterogeneity of the data and the unpredictable variations in the seeing conditions (on timescales of seconds or minutes) introduce complexity, which requires a self-adapting, extensible calibration pipeline to provide sufficient automation to the process. Our knowledge of the instrument performance and telescope characteristics will grow as the telescope begins operations, and continuously through the facility lifetime. The automated calibration pipelines will be capable of modification and improvement to incorporate the new information about the DKIST system, as well as potential improvements provided by the DKIST user community.This poster will detail the calibration development strategies being used

  3. Construction Status and Early Science with the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    McMullin, Joseph P.; Rimmele, Thomas R.; Warner, Mark; Martinez Pillet, Valentin; Craig, Simon; Woeger, Friedrich; Tritschler, Alexandra; Berukoff, Steven J.; Casini, Roberto; Goode, Philip R.; Knoelker, Michael; Kuhn, Jeffrey Richard; Lin, Haosheng; Mathioudakis, Mihalis; Reardon, Kevin P.; Rosner, Robert; Schmidt, Wolfgang

    2016-05-01

    The 4-m Daniel K. Inouye Solar Telescope (DKIST) is in its seventh year of overall development and its fourth year of site construction on the summit of Haleakala, Maui. The Site Facilities (Utility Building and Support & Operations Building) are in place with ongoing construction of the Telescope Mount Assembly within. Off-site the fabrication of the component systems is completing with early integration testing and verification starting.Once complete this facility will provide the highest sensitivity and resolution for study of solar magnetism and the drivers of key processes impacting Earth (solar wind, flares, coronal mass ejections, and variability in solar output). The DKIST will be equipped initially with a battery of first light instruments which cover a spectral range from the UV (380 nm) to the near IR (5000 nm), and capable of providing both imaging and spectro-polarimetric measurements throughout the solar atmosphere (photosphere, chromosphere, and corona); these instruments are being developed by the National Solar Observatory (Visible Broadband Imager), High Altitude Observatory (Visible Spectro-Polarimeter), Kiepenheuer Institute (Visible Tunable Filter) and the University of Hawaii (Cryogenic Near-Infrared Spectro-Polarimeter and the Diffraction-Limited Near-Infrared Spectro-Polarimeter). Further, a United Kingdom consortium led by Queen's University Belfast is driving the development of high speed cameras essential for capturing the highly dynamic processes measured by these instruments. Finally, a state-of-the-art adaptive optics system will support diffraction limited imaging capable of resolving features approximately 20 km in scale on the Sun.We present the overall status of the construction phase along with the current challenges as well as a review of the planned science testing and the transition into early science operations.

  4. Reflectivity, polarization properties, and durability of metallic mirror coatings for the European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Feller, A.; Krishnappa, N.; Pleier, O.; Hirzberger, J.; Jobst, P. J.; Schürmann, M.

    2012-09-01

    In the context of the conceptual design study for the European Solar Telescope (EST) we have investigated different metallic mirror coatings in terms of reflectivity, polarization properties and durability. Samples of the following coating types have been studied: bare aluminum, silver with different dielectric layers for protection and UV enhancement, and an aluminum-silver combination. From 2009 to 2011 we have carried out a long-term durability test under realistic observing conditions at the VTT solar telescope of the Observatorio del Teide (Tenerife, Spain), accompanied by repeated reflectivity measurements in the EST spectral working range (0.3 - 20 μm), and by polarization measurements in the visible range. The test results allow us to find the optimum coatings for the different mirrors in the EST beampath and to eventually assess aging effects and re-coating cycles. The results of the polarization measurements are a valuable input for an EST telescope polarization model, helping to meet the stringent requirements on polarimetric accuracy.

  5. Solar System Research with the Spacewatch 1.8-m Telescope

    NASA Technical Reports Server (NTRS)

    McMillan, Robert S.

    2001-01-01

    During this grant period, the 1.8-m Spacewatch telescope was put into routine operation to search for asteroids and comets ranging in location from near-Earth space to regions beyond the orbit of Neptune. All of these classes of objects can be detected simultaneously with our uniform scanning procedures. We are studying near Earth objects (NEOs), main belt asteroids, comets, Centaurs, and trans-Neptunian objects (TNOs), as well as the interrelationships of these classes and their bearing on the origin and evolution of the solar system. The Spacewatch 1.8-meter telescope is sensitive to V(mag) < 22.6 in sidereal scanning mode and is able to reach even fainter in longer 'staring' exposures, with a field of view 0.5 degrees square. These faint limits make the operation of the Spacewatch 1.8-m telescope complementary to asteroid surveys being done by other groups. Specifically, EAs smaller than 100 m in diameter and small main belt asteroids can be found, as well as more distant objects such as Centaurs/Scattered Disk Objects (SDOs) and TNOs. The 1.8-m telescope is also being used to do recoveries and astrometry of recently-discovered asteroids that subsequently become too faint for the other groups before good orbits are established.

  6. Photogrammetric Assessment of the Hubble Space Telescope Solar Arrays During the Second Servicing Mission

    NASA Technical Reports Server (NTRS)

    Sapp, C. A.; Dragg, J. L.; Snyder, M. W.; Gaunce, M. T.; Decker, J. E.

    1998-01-01

    This report documents the photogrammetric assessment of the Hubble Space Telescope (HST) solar arrays conducted by the NASA c Center Image Science and Analysis Group during Second Servicing Mission 2 (SM-2) on STS-82 in February 1997. Two type solar array analyses were conducted during the mission using Space Shuttle payload bay video: (1) measurement of solar array motion due to induced loads, and (2) measurement of the solar array static or geometric twist caused by the cumulative array loading. The report describes pre-mission planning and analysis technique development activities conducted to acquire and analyze solar array imagery data during SM-2. This includes analysis of array motion obtained during SM-1 as a proof-of-concept of the SM-2 measurement techniques. The report documents the results of real-time analysis conducted during the mission and subsequent analysis conducted post-flight. This report also provides a summary of lessons learned on solar array imagery analysis from SM-2 and recommendations for future on-orbit measurements applicable to HST SM-3 and to the International Space Station. This work was performed under the direction of the Goddard Space Flight Center HST Flight Systems and Servicing Project.

  7. Rocket studies of solar corona and transition region. [X-Ray spectrometer/spectrograph telescope

    NASA Technical Reports Server (NTRS)

    Acton, L. W.; Bruner, E. C., Jr.; Brown, W. A.; Nobles, R. A.

    1979-01-01

    The XSST (X-Ray Spectrometer/Spectrograph Telescope) rocket payload launched by a Nike Boosted Black Brant was designed to provide high spectral resolution coronal soft X-ray line information on a spectrographic plate, as well as time resolved photo-electric records of pre-selected lines and spectral regions. This spectral data is obtained from a 1 x 10 arc second solar region defined by the paraboloidal telescope of the XSST. The transition region camera provided full disc images in selected spectral intervals originating in lower temperature zones than the emitting regions accessible to the XSST. A H-alpha camera system allowed referencing the measurements to the chromospheric temperatures and altitudes. Payload flight and recovery information is provided along with X-ray photoelectric and UV flight data, transition camera results and a summary of the anomalies encountered. Instrument mechanical stability and spectrometer pointing direction are also examined.

  8. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope.

    PubMed

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-01-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics. PMID:27071459

  9. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-04-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere’s response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80–200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

  10. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6~m New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale E.; Wang, Haimin

    2016-05-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6~m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

  11. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope.

    PubMed

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-04-13

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

  12. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope

    PubMed Central

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-01-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere’s response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80–200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics. PMID:27071459

  13. Experiment and modal analysis on the primary mirror structure of Space Solar Telescope

    NASA Astrophysics Data System (ADS)

    Chen, Zhiyuan; Zhang, Rui; Chen, Zhiping; Yang, Shimo; Hu, Qiqian

    2006-06-01

    Primary mirror with Φ 1m and f 3.5m is the most important optical part in Space Solar Telescope (SST), which is designed to make observations of transient and steady state solar hydrodynamic and magnetohydrodynamic processes and is being researched and manufactured by National Astronomical Observatories. The primary mirror structure(PMS), a crucial linker for the optical and other subsystems, includes primary mirror and its supporting frame. Therefore, this part must satisfy the optical sufficient strength, stiffness, and thermal stability requirements under the space environment and in the launching process. In this paper the primary mirror structure and its connection are described. The scheme of modal analysis and experiment is built, according to the specific dynamic requirements of the primary mirror structure in Space Solar Telescope. The dynamic response on the primary mirror structure is analyzed with MSC.NASTRAN software. Comparing these results with mode parameters obtained from modal experiment analysis. Modal experiment uses freely hanging primary mirror structure, simple input multi-output, and modal parameter identification through CADA-X software. Both results provide evidences to develop this satellite design.

  14. Capabilities of the Thirty-Meter Telescope (TMT) for Solar System Astronomy

    NASA Astrophysics Data System (ADS)

    Otarola, Angel; Dumas, Christophe; Meech, Karen; Sekiguchi, Tomohiko; Skidmore, Warren; Tian, Feng; Travouillon, Tony; Wong, Michael H.; Ellerbroek, Brent; Simard, Luc

    2015-11-01

    The TMT will consist of a 30-m filled-aperture segmented primary mirror and will include non-sidereal rate tracking capabilities for observing Solar System objects. Its sensitivity will be 14 times larger than that of 8-m class telescopes for seeing-limited observations -up to 200 times larger for background limited adaptive optics (AO) observations- and will allow high angular/spatial resolution with diffraction-limited capability in the near infrared. AO guiding will accommodate faint, small angular size solar system objects to serve as natural guide stars for non-sidereal observations. For Kuiper belt objects (KBOs), on-instrument wavefront sensors can crawl the field-of-view to look for background natural stars that can be used for tip/tilt correction. We will describe the main characteristics of the Thirty Meter Telescope, its first light instrumentation suite, and the most relevant science-driven requirements for its design, emphasizing the strengths of the TMT for Solar System astronomical research. Some real-case scenarios of sensitivities for solar system targets will be presented for the first-light instruments.Complementary information about TMT, and the opportunities it offers for planetary science research, will be presented at this meeting by Dumas et al., and at the TMT Solar System Town Hall event on Tuesday.The international TMT partnership includes Canada, China, India, Japan, Caltech, the University of California, and Funding is also provided by the Gordon and Betty Moore Foundation. AURA is an Associate Member of TMT on behalf of the US national community. Through a cooperative agreement with the NSF, TMT and a US TMT Science Working Group are developing a model for potential US national partnership in the TMT.

  15. The New Solar Shape and Oscillations Telescope (NSSOT) Experiment for SOLARNET

    NASA Astrophysics Data System (ADS)

    Damé, L.

    The diameter was observed to be constant over the solar cycle and as such will never be a proper solar-terrestrial climate indicator ground measures with small telescopes are spurius the Maunder Minimum ones of Picard during the XVII century not being an exception Large instruments like the 45 cm Gregorys of Axel Wittmann in Locarno and Tenerife which average seeing cells see no variations ll 40 mas as well as the space instrument MDI SOHO naturally not affected by turbulence either We present the 4 approaches Wittmann on ground with large telescopes Emilio et al 2000 and Kuhn et al 2004 whom used the 6 pixels limb data of MDI Antia 2003 with a completely different method since using the ultra-precise frequency variation of the f-modes and our approach Dam e and Cugnet 2006 using the complete 7 years of filtergrams data 150 000 photograms and magnetograms of the SOHO MDI experiment These 4 careful analysis converge towards the same insignificant below 15 mas variations or even less 0 6 km 0 8 mas in the helioseismology approach Following Antia we can conclude that If a careful analysis is performed then it turns out that there is no evidence for any variation in the solar radius There were no theoretical reasons for large solar radius variations and there is no observational evidence for them with consistent ground and space observations This being stated and admitted the radius measure keeps interest through the solar shape that might change along the cycle sub-surface convective flows

  16. Extra Solar Planetary Imaging Coronagraph and Science Requirements for the James Webb Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2004-01-01

    1) Extra solar planetary imaging coronagraph. Direct detection and characterization of Jovian planets, and other gas giants, in orbit around nearby stars is a necessary precursor to Terrestrial Planet Finder 0 in order to estimate the probability of Terrestrial planets in our stellar neighborhood. Ground based indirect methods are biased towards large close in Jovian planets in solar systems unlikely io harbor Earthlike planets. Thus to estimate the relative abundances of terrestrial planets and to determine optimal observing strategies for TPF a pathfinder mission would be desired. The Extra-Solar Planetary Imaging Coronagraph (EPIC) is such a pathfinder mission. Upto 83 stellar systems are accessible with a 1.5 meter unobscured telescope and coronagraph combination located at the Earth-Sun L2 point. Incorporating radiometric and angular resolution considerations show that Jovians could be directly detected (5 sigma) in the 0.5 - 1.0 micron band outside of an inner working distance of 5/D with integration times of -10 - 100 hours per observation. The primary considerations for a planet imager are optical wavefront quality due to manufacturing, alignment, structural and thermal considerations. pointing stability and control, and manufacturability of coronagraphic masks and stops to increase the planetary-to- stellar contrast and mitigate against straylight. Previously proposed coronagraphic concepts are driven to extreme tolerances. however. we have developed and studied a mission, telescope and coronagraphic detection concept, which is achievable in the time frame of a Discovery class NASA mission. 2) Science requirements for the James Webb Space Telescope observatory. The James Webb Space Observatory (JWST) is an infrared observatory, which will be launched in 201 1 to an orbit at L2. JWST is a segmented, 18 mirror segment telescope with a diameter of 6.5 meters, and a clear aperture of 25 mA2. The telescope is designed to conduct imaging and spectroscopic

  17. Isoplanatic patch considerations for solar telescope multi-conjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Beckers, Jacques M.

    2014-08-01

    I compare recent site surveys for the future large 4-meter solar and 30-meter nighttime telescopes at the nearby Haleakala and Mauna Kea sites respectively. They show that the outstanding early morning image quality at the solar site corresponds indeed to that observed at the late night one at the nighttime site. That confirms the notion that daytime solar site heating only shows itself later in the morning. The nighttime survey includes observations of the refractive index structure function Cn 2(h) to high altitudes from which the radius of the isoplanatic patch (Ɵ0) can be determined. At zenith (ζ = 00) it equals 2.5 arcsec at 500 nm wavelength. For the early morning (best) seeing at the solar site, which occurs at ζsun = 750 and the cos1.6(ζ) dependence of Θ0,that means an extremely small Ɵ0 (0.26 arcsec). Such small values compromise Adaptive Optics (AO) solar correlation wavefront sensing for which areas are needed equal to about 8"× 8" I suggest options for measuring Cn2(h), and therefore Ɵ0, during the day. These make use of the solar image as well as of daytime images of bright stars and planets. Some use the MASS technique on stars; some use the SHABAR technique using very large detector baselines on the Sun and shorter baselines on planets. It is suggested that these Cn2(h) measurements are made also during regular solar observations. In that way optimal solar observations can be planned using real-time Ɵ0 observations by image selection and optimization of the MCAO configuration.

  18. An Overview of Electron-Proton and High Energy Telescopes of Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Kulkarni, S. R.; Grunau, J.; Boden, S.; Steinhagen, J.; Martin, C.; Wimmer-Schweingruber, R. F.; Boettcher, S.; Seimetz, L.; Ravanbakhsh, A.; Elftmann, R.; Rodriguez-Pacheco, J.; Prieto, M.; Gomez-Herrero, R.

    2013-12-01

    The Energetic Particle Detector (EPD) suite for ESA's Solar Orbiter will provide key measurements to address particle acceleration at and near the Sun. The EPD suite consists of five sensors (STEP, SIS, EPT, and HET). The University of Kiel in Germany is also responsible for the design, development, and build of EPT and HET which are presented here. The Electron Proton Telescope (EPT) is designed to cleanly separate and measure electrons in the energy range from 20 - 400 keV and protons from 20 - 7000 keV. The Solar Orbiter EPT electron measurements from 20 - 400 keV will cover the gap with some overlap between suprathermal electrons measured by STEP and high energy electrons measured by HET. The proton measurements from 20 -7000 keV will partially cover the gap between STEP and HET. The Electron and Proton Telescope relies on the magnet/foil-technique. The High-Energy Telescope (HET) on ESA's Solar Orbiter mission, will measure electrons from 300 keV up to about 30 MeV, protons from 10 -100 MeV, and heavy ions from ~20 to 200 MeV/nuc. Thus, HET covers the energy range which is of specific interest for studies of the space environment and will perform the measurements needed to understand the origin of high-energy events at the Sun which occasionally accelerate particles to such high energies that they can penetrate the Earth's atmosphere and be measured at ground level. Here we present the current development status of EPT-HET units and calibration results of demonstration models and present plans for future activities.

  19. A Novel Lateral Deployment Mechanism for Segmented Mirror/Solar Panel of Space Telescope

    NASA Astrophysics Data System (ADS)

    Thesiya, Dignesh; Srinivas, A. R.; Shukla, Piyush

    2015-09-01

    Space telescopes require large aperture primary mirrors to capture High Definition (HD) ground image while orbiting around the Earth. Fairing Volume of launch vehicles is limited and thus the size of monolithic mirror is limited to fairing size and solar panels are arranged within a petal formation in order to provide a greater power to volume ratio. This generates need for deployable mirrors for space use. This brings out a method for designing new deployment mechanism for segmented mirror. Details of mechanism folding strategy, design of components, FE simulations, realization and Lab model validation results are discussed in order to demonstrate the design using prototype.

  20. Conceptual design of the control software for the European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Di Marcantonio, P.; Cirami, R.; Romano, P.; Cosentino, R.; Ermolli, I.; Giorgi, F.

    2012-09-01

    Aim of this paper is to present an overview of the conceptual design of the Control Software for the European Solar Telescope (EST), as emerged after the successful Conceptual Design Review held in June 2011 which formally concluded the EST Preliminary Design Study. After a general description of ECS (EST Control Software) architecture end-to-end, from operation concepts and observation preparations to the control of the planned focal plane instruments, the paper focuses on the arrangement devised to date of ECS to cope with the foreseen scientific requirements. EST major subsystems together with the functions to be controlled are eventually detailed and discussed.

  1. A simulation of the pointing performance of the Solar Optical Telescope

    NASA Technical Reports Server (NTRS)

    Bundas, David J.

    1987-01-01

    The Space Shuttle-based Solar Optical Telescope (SOT) will be able to resolve details subtending 0.1 arcsec for continuous viewing over several hours. The SOT's jitter must contribute only 0.03 arcsec rms pointing error over the observation periods; this requirement is addressed with several control system layers encompassing the Shuttle, the Instrument Pointing System, the Prime Focus Image Control Functional System, and the Gregorian Focus Image Control Functional System. The mathematical models for system pointing stability presented give attention to the interaction of the structural and control systems on pointing stability and to Space Shuttle disturbances.

  2. Use of ground-based telescopes in determining the composition of the surfaces of solar system objects

    NASA Technical Reports Server (NTRS)

    Mccord, T. B.; Adams, J. B.

    1977-01-01

    Recent evidence suggests that the way that the surfaces of the solar system objects reflect solar radiation is controlled by the composition and mineralogy of the surface materials. The way sunlight is reflected from the surface as a function of wavelength, i.e., the spectral reflectance, is the most important property. Laboratory efforts to use ground-based optical telescope measurements to determine the composition of the surfaces of the solar system objects are reviewed.

  3. The spectrometer telescope for imaging x-rays on board the Solar Orbiter mission

    NASA Astrophysics Data System (ADS)

    Benz, A. O.; Krucker, S.; Hurford, G. J.; Arnold, N. G.; Orleanski, P.; Gröbelbauer, H.-P.; Klober, S.; Iseli, L.; Wiehl, H. J.; Csillaghy, A.; Etesi, L.; Hochmuth, N.; Battaglia, M.; Bednarzik, M.; Resanovic, R.; Grimm, O.; Viertel, G.; Commichau, V.; Meuris, A.; Limousin, O.; Brun, S.; Vilmer, N.; Skup, K. R.; Graczyk, R.; Stolarski, M.; Michalska, M.; Nowosielski, W.; Cichocki, A.; Mosdorf, M.; Seweryn, K.; Przepiórka, A.; Sylwester, J.; Kowalinski, M.; Mrozek, T.; Podgorski, P.; Mann, G.; Aurass, H.; Popow, E.; Onel, H.; Dionies, F.; Bauer, S.; Rendtel, J.; Warmuth, A.; Woche, M.; Plüschke, D.; Bittner, W.; Paschke, J.; Wolker, D.; Van Beek, H. F.; Farnik, F.; Kasparova, J.; Veronig, A. M.; Kienreich, I. W.; Gallagher, P. T.; Bloomfield, D. S.; Piana, M.; Massone, A. M.; Dennis, B. R.; Schwarz, R. A.; Lin, R. P.

    2012-09-01

    The Spectrometer Telescope for Imaging X-rays (STIX) is one of 10 instruments on board Solar Orbiter, a confirmed Mclass mission of the European Space Agency (ESA) within the Cosmic Vision program scheduled to be launched in 2017. STIX applies a Fourier-imaging technique using a set of tungsten grids (at pitches from 0.038 to 1 mm) in front of 32 pixelized CdTe detectors to provide imaging spectroscopy of solar thermal and non-thermal hard X-ray emissions from 4 to 150 keV. The status of the instrument reviewed in this paper is based on the design that passed the Preliminary Design Review (PDR) in early 2012. Particular emphasis is given to the first light of the detector system called Caliste-SO.

  4. Solar-B X-ray Telescope (XRT) Concept Study Report

    NASA Astrophysics Data System (ADS)

    Golub, Leon

    1999-10-01

    The X-ray observations from the Yohkoh SXT provided the greatest step forward in our understanding of the solar corona in nearly two decades. Expanding on the accomplishments of Yohkoh, we believe that the scientific objectives of the Solar-B mission are achieved with a significantly improved X-ray telescope (XRT) similar to the SXT. The Solar-B XRT will have twice the spatial resolution and a broader temperature response, while building on the knowledge gained from the successful Yohkoh mission. We present the scientific justification for this view, discuss the instrumental requirements that flow from the scientific objectives, and describe the instrumentation to meet these requirements. We then provide a detailed discussion of the design activities carried out during Phase A, noting the conclusions that were reached in terms of their implications for the detailed design activities which are now commencing. Details of the instrument that have changed as a result of the Phase A studied are specifically noted, and areas of concern going into Phase B are highlighted. XRT is a grazing-incidence (GI) modified Wolter I X-ray telescope, of 35cm inner diameter and 2.7m focal length. The 2048x2048 back-illuminated CCD (now an ISAS responsibility) has 13.5 micron pixels, corresponding to 1.0 arcsec and giving full Sun field of view. This will be the highest resolution GI X-ray telescope ever flown for Solar coronal studies, and it has been designed specifically to observe both the high and low temperature coronal plasma. A small optical telescope provides visible light images for co-alignment with the Solar-B optical and EUV instruments. The XRT science team is working in close cooperation with our Japanese colleagues in the design and construction of this instrument. All of the expertise and resources of the High Energy and Solar/Stellar Divisions of the Center for Astrophysics are being made available to this program, and our team will carry its full share of

  5. Analysis of optical efficiency of METIS coronagraph telescope on board of the Solar Orbiter mission

    NASA Astrophysics Data System (ADS)

    Polito, V.; Corso, A. J.; Zuppella, P.; Nicolosi, P.; Fineschi, S.; Antonucci, E.; Windt, D. L.; Pelizzo, M. G.

    2012-09-01

    The Multi Element Telescope for Imaging and Spectroscopy (METIS) coronagraph is an instrument belonging to the SOLar Orbiter(SOLO) mission payload which will perform the imaging of the solar corona in three different spectral ranges: 30.4 nm (He-II Lyman-α line), 121.6 nm (H-I Lyman- α line) and visible spectral range (500-650 nm). Optical coatings with high reflectance performances at the interested wavelengths are required to collect enough light at the detector level. Different multilayer structures based on Si/Mo couples with appropriate capping layers have been already designed and tested to achieve this purpose. A model has been developed in order to estimate the efficiency's performances of the instrument on the whole field of view (FoV) by considering the ray paths. The results shown have been obtained taking into account of the experimental results on multilayers structures previously tested and the optical design of the instrument.

  6. Solar-B X-ray Telescope (XRT) Concept Study Report

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1999-01-01

    The X-ray observations from the Yohkoh SXT provided the greatest step forward in our understanding of the solar corona in nearly two decades. Expanding on the accomplishments of Yohkoh, we believe that the scientific objectives of the Solar-B mission are achieved with a significantly improved X-ray telescope (XRT) similar to the SXT. The Solar-B XRT will have twice the spatial resolution and a broader temperature response, while building on the knowledge gained from the successful Yohkoh mission. We present the scientific justification for this view, discuss the instrumental requirements that flow from the scientific objectives, and describe the instrumentation to meet these requirements. We then provide a detailed discussion of the design activities carried out during Phase A, noting the conclusions that were reached in terms of their implications for the detailed design activities which are now commencing. Details of the instrument that have changed as a result of the Phase A studied are specifically noted, and areas of concern going into Phase B are highlighted. XRT is a grazing-incidence (GI) modified Wolter I X-ray telescope, of 35cm inner diameter and 2.7m focal length. The 2048x2048 back-illuminated CCD (now an ISAS responsibility) has 13.5 micron pixels, corresponding to 1.0 arcsec and giving full Sun field of view. This will be the highest resolution GI X-ray telescope ever flown for Solar coronal studies, and it has been designed specifically to observe both the high and low temperature coronal plasma. A small optical telescope provides visible light images for co-alignment with the Solar-B optical and EUV instruments. The XRT science team is working in close cooperation with our Japanese colleagues in the design and construction of this instrument. All of the expertise and resources of the High Energy and Solar/Stellar Divisions of the Center for Astrophysics are being made available to this program, and our team will carry its full share of

  7. NEW SOLAR TELESCOPE OBSERVATIONS OF MAGNETIC RECONNECTION OCCURRING IN THE CHROMOSPHERE OF THE QUIET SUN

    SciTech Connect

    Chae, Jongchul; Ahn, K.; Goode, P. R.; Yurchysyn, V.; Abramenko, V.; Andic, A.; Cao, W.; Park, Y. D.

    2010-04-10

    Magnetic reconnection is a process in which field-line connectivity changes in a magnetized plasma. On the solar surface, it often occurs with the cancellation of two magnetic fragments of opposite polarity. Using the 1.6 m New Solar Telescope, we observed the morphology and dynamics of plasma visible in the H{alpha} line, which is associated with a canceling magnetic feature (CMF) in the quiet Sun. The region can be divided into four magnetic domains: two pre-reconnection and two post-reconnection. In one post-reconnection domain, a small cloud erupted, with a plane-of-sky speed of 10 km s{sup -1}, while in the other one, brightening began at points and then tiny bright loops appeared and subsequently shrank. These features support the notion that magnetic reconnection taking place in the chromosphere is responsible for CMFs.

  8. The properties of flare kernels observed by the Dunn Solar Telescope

    NASA Astrophysics Data System (ADS)

    Fletcher, Lyndsay; Kowalski, A.; Cauzzi, G.; Hawley, S. L.; Hudson, H. S.

    2013-07-01

    We report on a campaign at the Dunn Solar Telescope which resulted in successful imaging and spectroscopic observations of a C1.1 solar flare on 18th August 2011. This flare exhibited ribbons with complicated fine structure at the resolution of the DST/IBIS instrument, and a number of bright kernels with sizes comparable to the smallest scales sampled by IBIS, around 2-4 pixels (0."3-0."6) FWHM. We focus on these bright kernels, describing their spatial characteristics in the core and wing of H alpha and Ca II 8542, and in the UV and EUV with SDO. We also show preliminary broad-band spectroscopy of the kernels which may demonstrate the presence of an optical continuum in this small flare.

  9. Feasibility study of a layer-oriented wavefront sensor for solar telescopes.

    PubMed

    Marino, Jose; Wöger, Friedrich

    2014-02-01

    Solar multiconjugate adaptive optics systems rely on several wavefront sensors, which measure the incoming turbulent phase along several field directions to produce a tomographic reconstruction of the turbulent phase. In this paper, we explore an alternative wavefront sensing approach that attempts to directly measure the turbulent phase present at a particular height in the atmosphere: a layer-oriented cross-correlating Shack-Hartmann wavefront sensor (SHWFS). In an experiment at the Dunn Solar Telescope, we built a prototype layer-oriented cross-correlating SHWFS system conjugated to two separate atmospheric heights. We present the data obtained in the observations and complement these with ray-tracing computations to achieve a better understanding of the instrument's performance and limitations. The results obtained in this study strongly indicate that a layer-oriented cross-correlating SHWFS is not a practical design to measure the wavefront at a high layer in the atmosphere.

  10. Neutron Emission from the Solar Flare of September 07, 2005, Detected by the Solar Neutron Telescope at Sierra Negra, Mexico

    NASA Astrophysics Data System (ADS)

    Valdes-Galicia, J. F.; Gonzalez, L.; Sanchez, F.; Watanabe, K.; Sako, T.; Matsubara, Y.; Muraki, Y.; Shibata, S.; Hurtado, A.; Musalem, O.

    2011-12-01

    The X17.0 solar flare of September 07, 2005 released high-energy neutrons, that were detected by the Solar Neutron Telescope (SNT) at Sierra Negra, Mexico. In two separate and independent studies of this solar neutron event, the energy spectra as a power law was calculated ( Sako, T., et al., 2006, ApJ, 651, 69. Watanabe, K., et al., 2006. ApJ, 636, 1135) In this paper, we show an alternative analysis, based on an improved numerical simulations of the detector using GEANT 4, and a different technique to treat the SNT data. The results indicate that the spectral index which best fits the neutron flux is nearly 3, in agreement with previous works. Based in the numerically calculated energy deposition of SNT, we confirm that neutrons were detected with at least 1GeV, which implies that the solar flare might have produced 10GeV protons; these could not be observed at Earth, as the source flare was in the east limb of the Sun.

  11. TRANSVERSE OSCILLATIONS OF LOOPS WITH CORONAL RAIN OBSERVED BY HINODE/SOLAR OPTICAL TELESCOPE

    SciTech Connect

    Antolin, P.; Verwichte, E. E-mail: erwin.verwichte@warwick.ac.uk

    2011-08-01

    The condensations composing coronal rain, falling down along loop-like structures observed in cool chromospheric lines such as H{alpha} and Ca II H, have long been a spectacular phenomenon of the solar corona. However, considered a peculiar sporadic phenomenon, it has not received much attention. This picture is rapidly changing due to recent high-resolution observations with instruments such as the Hinode/Solar Optical Telescope (SOT), CRISP of the Swedish 1-m Solar Telescope, and the Solar Dynamics Observatory. Furthermore, numerical simulations have shown that coronal rain is the loss of thermal equilibrium of loops linked to footpoint heating. This result has highlighted the importance that coronal rain can play in the field of coronal heating. In this work, we further stress the importance of coronal rain by showing the role it can play in the understanding of the coronal magnetic field topology. We analyze Hinode/SOT observations in the Ca II H line of a loop in which coronal rain puts in evidence in-phase transverse oscillations of multiple strand-like structures. The periods, amplitudes, transverse velocities, and phase velocities are calculated, allowing an estimation of the energy flux of the wave and the coronal magnetic field inside the loop through means of coronal seismology. We discuss the possible interpretations of the wave as either standing or propagating torsional Alfven or fast kink waves. An estimate of the plasma beta parameter of the condensations indicates a condition that may allow the often observed separation and elongation processes of the condensations. We also show that the wave pressure from the transverse wave can be responsible for the observed low downward acceleration of coronal rain.

  12. Life Cycle Testing of Viscoelastic Material for Hubble Space Telescope Solar Array 3 Damper

    NASA Technical Reports Server (NTRS)

    Maly, Joseph R.; Reed, Benjamin B.; Viens, Michael J.; Parker, Bradford H.; Pendleton, Scott C.

    2003-01-01

    During the March 2002 Servicing Mission by Space Shuttle (STS 109), the Hubble Space Telescope (HST) was refurbished with two new solar arrays that now provide all of its power. These arrays were built with viscoelastic/titanium dampers, integral to the supporting masts, which reduce the interaction of the wing bending modes with the Telescope. Damping of over 3% of critical was achieved. To assess the damper s ability to maintain nominal performance over the 10-year on-orbit design goal, material specimens were subjected to an accelerated life test. The test matrix consisted of scheduled events to expose the specimens to pre-determined combinations of temperatures, frequencies, displacement levels, and numbers of cycles. These exposure events were designed to replicate the life environment of the damper from fabrication through testing to launch and life on-orbit. To determine whether material degradation occurred during the exposure sequence, material performance was evaluated before and after the accelerated aging with complex stiffness measurements. Based on comparison of pre- and post-life-cycle measurements, the material is expected to maintain nominal performance through end of life on-orbit. Recent telemetry from the Telescope indicates that the dampers are performing nominally.

  13. Preparing the Public for the James Webb Space Telescope and its Exploration of the Solar System

    NASA Astrophysics Data System (ADS)

    Green, Joel D.; Smith, Denise A.; Meinke, Bonnie K.; Jirdeh, Hussein; Office of Public Outreach

    2016-10-01

    The James Webb Space Telescope (JWST) is the successor to the Hubble Space Telescope. STScI and the Office of Public Outreach are committed to bringing awareness of the technology, the excitement, and the future science potential of this great observatory to the public and to the scientific community, prior to its 2018 launch. The challenges in ensuring the high profile of JWST (understanding the infrared, the vast distance to the telescope's final position, and the unfamiliar science territory) requires us to lay the proper background. We currently engage the full range of the public and scientific communities using a variety of high impact, memorable initiatives, in combination with modern technologies to extend reach, linking the science goals of Webb to the ongoing discoveries being made by Hubble. We have injected Webb-specific content into ongoing outreach programs: for example, simulated, scientifically-inspired but aesthetic JWST scenes (illustrating the differences between JWST and previous missions); partnering with high impact science communicators such as MinutePhysics to produce timely and concise content; incorporating JWST science into activities at large scale events. JWST has unique observational capabilities that optimize its ability ot study the Solar System: monitoring weather, tracking and measuring dusty objects, collaborative parallax observations with other observatories, and more. We discuss some of the ways we engage the public on these concepts.

  14. Photometry’s Bright Future: Detecting Solar System Analogs with Future Space Telescopes

    NASA Astrophysics Data System (ADS)

    Hippke, Michael; Angerhausen, Daniel

    2015-09-01

    Time-series transit photometry from the Kepler space telescope has allowed for the discovery of thousands of exoplanets. We explore the potential of yet improved future missions such as PLATO 2.0 in detecting solar system analogs. We use real-world solar data and end-to-end simulations to explore the stellar and instrumental noise properties. By injecting and retrieving planets, rings, and moons of our own solar system, we show that the discovery of Venus and Earth analogs transiting G dwarfs like our Sun is feasible at high signal-to-noise ratio after collecting 6 yr of data, but Mars and Mercury analogs will be difficult to detect owing to stellar noise. In the best cases, Saturn’s rings and Jupiter’s moons will be detectable even in single-transit observations. Through the high number (>1 billion) of observed stars by PLATO 2.0, it will become possible to detect thousands of single-transit events by cold gas giants, analogs to our Jupiter, Saturn, Uranus, and Neptune. Our own solar system aside, we also show, through signal injection and retrieval, that PLATO 2.0 class photometry will allow for the secure detection of exomoons transiting quiet M dwarfs. This is the first study analyzing in depth the potential of future missions and the ultimate limits of photometry, using realistic case examples.

  15. An Overview of the Electron-Proton and High Energy Telescopes for Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Boden, Sebastian; Kulkarni, Shrinivasrao R.; Tammen, Jan; Steinhagen, Jan; Martin, César; Wimmer-Schweingruber, Robert F.; Böttcher, Stephan I.; Seimetz, Lars; Ravanbakhsh, Ali; Elftmann, Robert; Rodriguez-Pacheco, Javier; Prieto Mateo, Manuel; Gomez Herrero, Rául

    2014-05-01

    The Energetic Particle Detector (EPD) suite for ESA's Solar Orbiter will provide key measurements to address particle acceleration at and near the Sun. The EPD suite consists of four sensors (STEP, SIS, EPT, and HET). The University of Kiel in Germany is responsible for the design, development, and building of STEP, EPT and HET. This poster will focus on the last two. The Electron Proton Telescope (EPT) is designed to cleanly separate and measure electrons in the energy range from 20 - 400 keV and protons from 20 - 7000 keV. To separate electrons and protons EPT relies on the magnet/foil-technique. EPT is intended to close the gap between the supra-thermal particles measured by STEP and the high energy range covered by HET. The High-Energy Telescope (HET) will measure electrons from 300 keV up to about 30 MeV, protons from 10 to 100 MeV, and heavy ions from ~20 to 200 MeV/nuc. To achieve this performance HET consists of a series of silicon detectors in a telescope configuration with a scintillator calorimeter to stop high energy protons and ions. It uses the dE/dx vs. total E technique . In this way HET covers an energy range which is of interest for studies of the space radiation environment and will perform measurements needed to understand the origin of high-energy particle events at the Sun. EPT and HET share a common Electronics Box, there are two EPT-HET sensors on Solar Orbiter to allow rudimentary pitch-angle coverage. Here we present the current development status of EPT-HET units and calibration results of demonstration models as well as plans for future activities.

  16. Search for sub-eV mass solar axions by the CERN Axion Solar Telescope with 3He buffer gas.

    PubMed

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Ezer, C; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Gazis, E N; Geralis, T; Giomataris, I; Gninenko, S; Gómez, H; Gruber, E; Guthörl, T; Hartmann, R; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Laurent, J M; Liolios, A; Ljubičić, A; Lozza, V; Lutz, G; Luzón, G; Morales, J; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Rashba, T; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J A; Vogel, J K; Yildiz, S C; Zioutas, K

    2011-12-23

    The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using (3)He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with (4)He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV≲m(a)≲0.64 eV. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g(aγ)≲2.3×10(-10) GeV(-1) at 95% C.L., the exact value depending on the pressure setting. Kim-Shifman-Vainshtein-Zakharov axions are excluded at the upper end of our mass range, the first time ever for any solar axion search. In the future we will extend our search to m(a)≲1.15 eV, comfortably overlapping with cosmological hot dark matter bounds.

  17. Search for sub-eV mass solar axions by the CERN Axion Solar Telescope with 3He buffer gas.

    PubMed

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Ezer, C; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Gazis, E N; Geralis, T; Giomataris, I; Gninenko, S; Gómez, H; Gruber, E; Guthörl, T; Hartmann, R; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Laurent, J M; Liolios, A; Ljubičić, A; Lozza, V; Lutz, G; Luzón, G; Morales, J; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Rashba, T; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J A; Vogel, J K; Yildiz, S C; Zioutas, K

    2011-12-23

    The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using (3)He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with (4)He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV≲m(a)≲0.64 eV. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g(aγ)≲2.3×10(-10) GeV(-1) at 95% C.L., the exact value depending on the pressure setting. Kim-Shifman-Vainshtein-Zakharov axions are excluded at the upper end of our mass range, the first time ever for any solar axion search. In the future we will extend our search to m(a)≲1.15 eV, comfortably overlapping with cosmological hot dark matter bounds. PMID:22243149

  18. Narrow-Band Imaging System for the Multi-application Solar Telescope at Udaipur Solar Observatory: Characterization of Lithium Niobate Etalons

    NASA Astrophysics Data System (ADS)

    Raja Bayanna, A.; Mathew, Shibu K.; Venkatakrishnan, P.; Srivastava, N.

    2014-10-01

    Multi-application Solar Telescope is a 50 cm off-axis Gregorian telescope that has been installed at the lake site of Udaipur Solar Observatory. For quasi-simultaneous photospheric and chromospheric observations, a narrow-band imager has been developed as one of the back-end instruments for this telescope. Narrow-band imaging is achieved using two lithium niobate Fabry-Perot etalons working in tandem as a filter. This filter can be tuned to different wavelengths by changing either voltage, tilt or temperature of the etalons. To characterize the etalons, a Littrow spectrograph was set up, in conjunction with a 15 cm Carl Zeiss Coud\\'e solar telescope. The etalons were calibrated for the solar spectral lines FeI 6173 {\\AA}, and CaII 8542 {\\AA}. In this work, we discuss the characterization of the Fabry-Perot etalons, specifically the temperature and voltage tuning of the system for the spectral lines proposed for observations. We present the details of the calibration set-up and various tuning parameters. We also present solar images obtained using the system parameters. We also present solar images obtained using the system.

  19. DETECTION OF SMALL-SCALE GRANULAR STRUCTURES IN THE QUIET SUN WITH THE NEW SOLAR TELESCOPE

    SciTech Connect

    Abramenko, V. I.; Yurchyshyn, V. B.; Goode, P. R.; Kitiashvili, I. N.; Kosovichev, A. G.

    2012-09-10

    Results of a statistical analysis of solar granulation are presented. A data set of 36 images of a quiet-Sun area on the solar disk center was used. The data were obtained with the 1.6 m clear aperture New Solar Telescope at Big Bear Solar Observatory and with a broadband filter centered at the TiO (705.7 nm) spectral line. The very high spatial resolution of the data (diffraction limit of 77 km and pixel scale of 0.''0375) augmented by the very high image contrast (15.5% {+-} 0.6%) allowed us to detect for the first time a distinct subpopulation of mini-granular structures. These structures are dominant on spatial scales below 600 km. Their size is distributed as a power law with an index of -1.8 (which is close to the Kolmogorov's -5/3 law) and no predominant scale. The regular granules display a Gaussian (normal) size distribution with a mean diameter of 1050 km. Mini-granular structures contribute significantly to the total granular area. They are predominantly confined to the wide dark lanes between regular granules and often form chains and clusters, but different from magnetic bright points. A multi-fractality test reveals that the structures smaller than 600 km represent a multi-fractal, whereas on larger scales the granulation pattern shows no multi-fractality and can be considered as a Gaussian random field. The origin, properties, and role of the population of mini-granular structures in the solar magnetoconvection are yet to be explored.

  20. Future Diagnostic Capabilities: The 4-meter Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Reardon, Kevin; Elmore, David; Woeger, Friedrich; Tritschler, Alexandra; Rimmele, Thomas

    We discuss the observational capabilities of the Daniel K. Inouye Solar Telescope (DKSIT), formerly known as the Advanced Technology Solar Telescope (ATST), currently under construction on Haleakala Mountain on the island of Maui, Hawaii, with first light anticipated in mid-2019. The DKIST will be a 4-meter aperture Gregorian telescope with advanced environmental control and adaptive optics capable of producing diffraction-limited resolution in visible light of 0.03" or about 20 km in the solar photosphere. The first light instrument suite will include the Visible Broadband Imager (VBI), an interference filter-based instrument capable of 30 Hz imaging of photospheric and chromospheric magnetic structures in the 380 to 800 nm wavelength range. All VBI images will be reconstructed in near-real-time using the KISIP speckle reconstruction algorithm adapted to the DKIST optical and AO configuration. The Visible Spectropolarimeter (ViSP) instrument being fabricated by the High Altitude Observatory (HAO) will enable high-precision slit-spectropolarimetery in any three spectral regions from 380 to 900 nm. The ViSP instrument will be the highest precision spectropolarimeter ever produced with a spatial resolution of approximately 40 km at 600 nm and temporal resolution of 10s to achieve 1e-03 polarimetric precision. The Visible Tunable Filter (VTF) instrument under fabrication at the Kiepenheuer Institute for Solar Physics (KIS) is a triple-etalon Fabry-Perot imaging spectropolarimeter instrument capable of diffraction limited measurements of the Fe I 630.2 nm and Ca II 854.2 nm spectral lines for Doppler and magnetic measurements in the photosphere and chromosphere, respectively. The VTF will also enable the highest spatial and temporal resolution observations yet achieved in the H-alpha line for detailed studies of chromospheric dynamics in response to photospheric magnetic drivers. The Diffraction-Limited Near-IR Spectropolarimeter (DL-NiRSP) and the Cryogenic Near

  1. Multi Element Telescope for Imaging and Spectroscopy (METIS) coronagraph for the Solar Orbiter mission

    NASA Astrophysics Data System (ADS)

    Antonucci, Ester; Fineschi, Silvano; Naletto, Giampiero; Romoli, Marco; Spadaro, Daniele; Nicolini, Gianalfredo; Nicolosi, Piergiorgio; Abbo, Lucia; Andretta, Vincenzo; Bemporad, Alessandro; Auchère, Frédéric; Berlicki, Arkadiusz; Bruno, Roberto; Capobianco, Gerardo; Ciaravella, Angela; Crescenzio, Giuseppe; Da Deppo, Vania; D'Amicis, Raffaella; Focardi, Mauro; Frassetto, Fabio; Heinzel, Peter; Lamy, Philippe L.; Landini, Federico; Massone, Giuseppe; Malvezzi, Marco A.; Moses, J. Dan; Pancrazzi, Maurizio; Pelizzo, Maria-Guglielmina; Poletto, Luca; Schühle, Udo H.; Solanki, Sami K.; Telloni, Daniele; Teriaca, Luca; Uslenghi, Michela

    2012-09-01

    METIS, the “Multi Element Telescope for Imaging and Spectroscopy”, is a coronagraph selected by the European Space Agency to be part of the payload of the Solar Orbiter mission to be launched in 2017. The unique profile of this mission will allow 1) a close approach to the Sun (up to 0.28 A.U.) thus leading to a significant improvement in spatial resolution; 2) quasi co-rotation with the Sun, resulting in observations that nearly freeze for several days the large-scale outer corona in the plane of the sky and 3) unprecedented out-of-ecliptic view of the solar corona. This paper describes the experiment concept and the observational tools required to achieve the science drivers of METIS. METIS will be capable of obtaining for the first time: • simultaneous imaging of the full corona in polarized visible-light (590-650 nm) and narrow-band ultraviolet HI Lyman α (121.6 nm); • monochromatic imaging of the full corona in the extreme ultraviolet He II Lyman α (30.4 nm); • spectrographic observations of the HI and He II Ly α in corona. These measurements will allow a complete characterization of the three most important plasma components of the corona and the solar wind, that is, electrons, hydrogen, and helium. This presentation gives an overview of the METIS imaging and spectroscopic observational capabilities to carry out such measurements.

  2. Current and Planned Solar Wind Observations Using the EISCAT and LOFAR Radio-Telescope Systems

    NASA Astrophysics Data System (ADS)

    Bisi, M. M.; Fallows, R. A.; Jensen, E. A.; Breen, A.; Xiong, M.; Jackson, B. V.

    2011-12-01

    Remote-sensing observations of the inner heliosphere using the technique of interplanetary scintillation (IPS) provide essential information on the velocity and density of developing solar wind structure. For many years, observations of IPS have been undertaken with the European Incoherent SCATter (EISCAT) radio telescopes based across Northern Scandinavia. We are presently developing the IPS experiment for use on new and upcoming cutting-edge instrumentation. Such instrumentation includes the LOw Frequency ARray (LOFAR) which is situated primarily in the Netherlands with additional stations currently sited across central Europe. Using data sets from various IPS-capable systems, the University of California, San Diego (UCSD) three-dimensional (3-D) tomographic-reconstruction and visualisation algorithms can yield reconstruction results for comparison with multi-point it{in-situ} measurements from spacecraft. This makes it possible to study the structure of the inner heliosphere as a whole, including the isolation of individual features or events such as interplanetary coronal mass ejections (ICMEs), stream interaction regions (SIRs), or their interactions with the ambient solar wind as well as the ambient wind itself. We are also testing the Faraday rotation (FR) response at low frequencies using LOFAR. Combined, these techniques have large implications and capabilities for space-weather forecasting. This work is focused on the global structure of the inner heliosphere during the minimum and rise phases of the current solar cycle.

  3. The Tandem Etalon Magnetograph of the Solar Magnetic Activity Research Telescope (SMART) at Hida Observatory

    NASA Astrophysics Data System (ADS)

    Nagata, Shin'ichi; Morita, Satoshi; Ichimoto, Kiyoshi; Nishida, Keisuke; Nakatani, Yoshikazu; Kimura, Goichi; Kaneda, Naoki; Kitai, Reizaburou; UeNo, Satoru; Ishii, Takako T.

    2014-04-01

    The imaging photospheric magnetograph using tandem Fabry-Perot filters is newly installed in the Solar Magnetic Activity Research Telescope (SMART) of Hida Observatory, Kyoto University. The instrument, Tandem Etalon Magnetograph (TEM), consists of a rotating wave plate, tandem Fabry-Perot filters which scan the Fe I 6302.5 Å line with ˜ 130 mÅ bandwidth, a polarizing beam splitter, and two CCD cameras simultaneously taking orthogonally polarized light with a frame rate of 30 frames per second. We have confirmed that the Stokes vector map deduced from 20 s integration achieves a polarimetric sensitivity of ˜ 5 × 10-4 for all polarization states at one wavelength, which is higher than is achieved with a space instrument such as the Spectro-Polarimeter aboard Hinode or the Helioseismic and Magnetic Imager aboard the Solar Dynamic Observatory (SDO). We expect the complementary observations by SMART/TEM, Hinode, and SDO can shed new light on the trigger and energy storage mechanism of solar flares.

  4. A year of operation of Melibea e-Callisto Solar Radio Telescope

    NASA Astrophysics Data System (ADS)

    Russu, A.; Gómez-Herrero, R.; Prieto, M.; Monstein, C.; Ivanov, H.; Rodríguez-Pacheco, J.; Blanco, J. J.

    2015-08-01

    The e-CALLISTO (Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory) is a worldwide radio-spectrograph network with 24 hours a day solar radio burst monitoring. The e-CALLISTO network is led by the Swiss Federal Institute of Technology Zurich (ETHZ Zurich), which work up collaborations with local host institutions. In 2013 the University of Alcalá joined the e-CALLISTO network with the installation of two Solar Radio Telescopes (SRT): the EA4RKU-SRT that was located at the University of Alcalá from January 2013 till June 2013 and the Melibea-SRT that is located at Peralejos de las Truchas (Guadalajara) in operation from June 2013. The Spanish e-Callisto SRTs provide routine data to the network. We present examples of type III and type II radio-bursts observed by Melibea during its first year of operation and study their relation with soft X-ray flares observed by GOES and Coronal Mass Ejections (CMEs) and Solar Energetic Particle (SEP) events observed by space-borne instrumentation.

  5. Progress making the top end optical assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Canzian, Blaise; Barentine, J.; Arendt, J.; Bader, S.; Danyo, G.; Heller, C.

    2012-09-01

    L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to design and produce the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakal', Maui. ATST will perform to a very high optical performance level in a difficult thermal environment. The TEOA, containing the 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, thermally managed Lyot stop, safety interlock and control system, and support frame, operates in the "hot spot" at the prime focus of the ATST and so presents special challenges. In this paper, we describe progress in the L-3 technical approach to meeting these challenges, including silicon carbide off-axis mirror design, fabrication, and high accuracy figuring and polishing all within L-3; mirror support design; the design for stray light control; subsystems for opto-mechanical positioning and high accuracy absolute mirror orientation sensing; Lyot stop design; and thermal management of all design elements to remain close to ambient temperature despite the imposed solar irradiance load.

  6. NEW VACUUM SOLAR TELESCOPE OBSERVATIONS OF A FLUX ROPE TRACKED BY A FILAMENT ACTIVATION

    SciTech Connect

    Yang, Shuhong; Zhang, Jun; Liu, Zhong; Xiang, Yongyuan E-mail: zjun@nao.cas.cn

    2014-04-01

    One main goal of the New Vacuum Solar Telescope (NVST) which is located at the Fuxian Solar Observatory is to image the Sun at high resolution. Based on the high spatial and temporal resolution NVST Hα data and combined with the simultaneous observations from the Solar Dynamics Observatory for the first time, we investigate a flux rope tracked by filament activation. The filament material is initially located at one end of the flux rope and fills in a section of the rope; the filament is then activated by magnetic field cancellation. The activated filament rises and flows along helical threads, tracking the twisted flux rope structure. The length of the flux rope is about 75 Mm, the average width of its individual threads is 1.11 Mm, and the estimated twist is 1π. The flux rope appears as a dark structure in Hα images, a partial dark and partial bright structure in 304 Å, and as a bright structure in 171 Å and 131 Å images. During this process, the overlying coronal loops are quite steady since the filament is confined within the flux rope and does not erupt successfully. It seems that, for the event in this study, the filament is located and confined within the flux rope threads, instead of being suspended in the dips of twisted magnetic flux.

  7. Feasibility study of a layer-oriented wavefront sensor for solar telescopes: comment.

    PubMed

    Kellerer, Aglaé

    2014-11-10

    The future generation of telescopes will be equipped with multi-conjugate adaptive-optics (MCAO) systems in order to obtain high angular resolution over large fields of view. MCAO comes in two flavors: star- and layer-oriented. Existing solar MCAO systems rely exclusively on the star-oriented approach. Earlier we suggested a method to implement the layer-oriented approach, and in view of recent concerns by Marino and Wöger [Appl. Opt.53, 685 (2014)10.1364/AO.53.000685APOPAI1559-128X], we now explain the proposed scheme in further detail. We note that in any layer-oriented system one sensor is conjugated to the pupil and the others are conjugated to higher altitudes. For the latter, not all the sensing surface is illuminated by the entire field of view. The successful implementation of nighttime layer-oriented systems shows that the field reduction is no crucial limitation. In the solar approach the field reduction is directly noticeable because it causes vignetting of the Shack-Hartmann subaperture images. It can be accounted for by a suitable adjustment of the algorithms to calculate the local wavefront slopes. We discuss a further concern related to the optical layout of a layer-oriented solar system.

  8. Heat-stop structure design with high cooling efficiency for large ground-based solar telescope.

    PubMed

    Liu, Yangyi; Gu, Naiting; Rao, Changhui; Li, Cheng

    2015-07-20

    A heat-stop is one of the most important thermal control devices for a large ground-based solar telescope. For controlling the internal seeing effect, the temperature difference between the heat-stop and the ambient environment needs to be reduced, and a heat-stop with high cooling efficiency is required. In this paper, a novel design concept for the heat-stop, in which a multichannel loop cooling system is utilized to obtain higher cooling efficiency, is proposed. To validate the design, we analyze and compare the cooling efficiency for the multichannel and existing single-channel loop cooling system under the same conditions. Comparative results show that the new design obviously enhances the cooling efficiency of the heat-stop, and the novel design based on the multichannel loop cooling system is obviously better than the existing design by increasing the thermal transfer coefficient.

  9. Design of the Polarimeter for the Fibre Arrayed Solar Optical Telescope

    NASA Astrophysics Data System (ADS)

    Dun, Guang-tao; Qu, Zhong-quan

    2013-01-01

    The theoretical design of the polarimeter used for the Fibre Arrayed Solar Optical Telescope (FASOT) is described. It has the following characteris- tics: (1) It is provided with the function of optical polarization switching, which makes the high-effciency polarimetry possible; (2) In the waveband of 750 nm, the polarimetric effciency is higher than 50% for the every Stokes parameter, and higher than 86.6% for the total polarization, thus an observer can make the simultaneous polarization measurements on multiple magnetosensitive lines in such a broad range of wavelength; (3) According to the selected photospheric and chromospheric lines, the measurement can be focused on either linear polarization or circular polarization; (4) The polarimeter has a loose tolerance on the manufacturing technology of polarimetric elements and installation errors. All this makes this polarimeter become a high-performance polarimetric device.

  10. Heat-stop structure design with high cooling efficiency for large ground-based solar telescope.

    PubMed

    Liu, Yangyi; Gu, Naiting; Rao, Changhui; Li, Cheng

    2015-07-20

    A heat-stop is one of the most important thermal control devices for a large ground-based solar telescope. For controlling the internal seeing effect, the temperature difference between the heat-stop and the ambient environment needs to be reduced, and a heat-stop with high cooling efficiency is required. In this paper, a novel design concept for the heat-stop, in which a multichannel loop cooling system is utilized to obtain higher cooling efficiency, is proposed. To validate the design, we analyze and compare the cooling efficiency for the multichannel and existing single-channel loop cooling system under the same conditions. Comparative results show that the new design obviously enhances the cooling efficiency of the heat-stop, and the novel design based on the multichannel loop cooling system is obviously better than the existing design by increasing the thermal transfer coefficient. PMID:26367826

  11. James Webb Space Telescope Observations of Stellar Occultations by Solar System Bodies and Rings

    NASA Astrophysics Data System (ADS)

    Santos-Sanz, P.; French, R. G.; Pinilla-Alonso, N.; Stansberry, J.; Lin, Z.-Y.; Zhang, Z.-W.; Vilenius, E.; Müller, Th.; Ortiz, J. L.; Braga-Ribas, F.; Bosh, A.; Duffard, R.; Lellouch, E.; Tancredi, G.; Young, L.; Milam, Stefanie N.; the JWST “Occultations” Focus Group

    2016-01-01

    In this paper, we investigate the opportunities provided by the James Webb Space Telescope (JWST) for significant scientific advances in the study of Solar System bodies and rings using stellar occultations. The strengths and weaknesses of the stellar occultation technique are evaluated in light of JWST's unique capabilities. We identify several possible JWST occultation events by minor bodies and rings and evaluate their potential scientific value. These predictions depend critically on accurate a priori knowledge of the orbit of JWST near the Sun-Earth Lagrange point 2 (L2). We also explore the possibility of serendipitous stellar occultations by very small minor bodies as a byproduct of other JWST observing programs. Finally, to optimize the potential scientific return of stellar occultation observations, we identify several characteristics of JWST's orbit and instrumentation that should be taken into account during JWST's development.

  12. Geant4 simulation of the solar neutron telescope at Sierra Negra, Mexico

    NASA Astrophysics Data System (ADS)

    González, L. X.; Sánchez, F.; Valdés-Galicia, J. F.

    2010-02-01

    The solar neutron telescope (SNT) at Sierra Negra (19.0°N, 97.3°W and 4580 m.a.s.l) is part of a worldwide network of similar detectors (Valdés-Galicia et al., (2004) [1]). This SNT has an area of 4 m2; it is composed by four 1 m×1 m×30 cm plastic scintillators (Sci). The Telescope is completely surrounded by anti-coincidence proportional counters (PRCs) to separate charged particles from the neutron flux. In order to discard photon background it is shielded on its sides by 10 mm thick iron plates and on its top by 5 mm lead plates. It is capable of registering four different channels corresponding to four energy deposition thresholds: E>30, >60, >90 and >120 MeV. The arrival direction of neutrons is determined by gondolas of PRCs in electronic coincidence, four layers of these gondolas orthogonally located underneath the SNT, two in the NS direction and two in the EW direction. We present here simulations of the detector response to neutrons, protons, electrons and gammas in range of energies from 100 to 1000 MeV. We report on the detector efficiency and on its angular resolution for particles impinging the device with different zenith angles. The simulation code was written using the Geant4 package (Agostinelli et al., (2003) [2]), taking into account all relevant physical processes.

  13. Software control of the Advanced Technology Solar Telescope enclosure PLC hardware using COTS software

    NASA Astrophysics Data System (ADS)

    Borrowman, Alastair J.; de Bilbao, Lander; Ariño, Javier; Murga, Gaizka; Goodrich, Bret; Hubbard, John R.; Greer, Alan; Mayer, Chris; Taylor, Philip

    2012-09-01

    As PLCs evolve from simple logic controllers into more capable Programmable Automation Controllers (PACs), observatories are increasingly using such devices to control complex mechanisms1, 2. This paper describes use of COTS software to control such hardware using the Advanced Technology Solar Telescope (ATST) Common Services Framework (CSF). We present the Enclosure Control System (ECS) under development in Spain and the UK. The paper details selection of the commercial PLC communication library PLCIO. Implemented in C and delivered with source code, the library separates the programmer from communication details through a simple API. Capable of communicating with many types of PLCs (including Allen-Bradley and Siemens) the API remains the same irrespective of PLC in use. The ECS is implemented in Java using the observatory's framework that provides common services for software components. We present a design following a connection-based approach where all components access the PLC through a single connection class. The link between Java and PLCIO C library is provided by a thin Java Native Interface (JNI) layer. Also presented is a software simulator of the PLC based upon the PLCIO Virtual PLC. This creates a simulator operating below the library's API and thus requires no change to ECS software. It also provides enhanced software testing capabilities prior to hardware becoming available. Results are presented in the form of communication timing test data, showing that the use of CSF, JNI and PLCIO provide a control system capable of controlling enclosure tracking mechanisms, that would be equally valid for telescope mount control.

  14. Suppression of Astronomical Sources Using Starshades and the McMath-Pierce Solar Telescope

    NASA Astrophysics Data System (ADS)

    Novicki, Megan; Warwick, Steve; Smith, Daniel; Richards, Michael; Harness, Anthony

    2016-01-01

    The external starshade is a method for the direct detection and spectral characterization of terrestrial planets around other stars, a key goal identified in ASTRO2010. Tests of this approach have been and continue to be conducted in the lab and in the field (Samuele et al., 2010, Glassman et al., 2014) using non-collimated light sources with a spherical wavefront. We extend the current approach to performing night-time observations of astronomical objects using small-scale (approximately 1/300th) starshades and the McMath-Pierce Solar Telescope at Kitt Peak National Observatory. We placed a starshade directly in the path of the beam from an astronomical object in front of the main heliostat. Using only flat mirrors, we then directed the light through the observatory path and reflected it off the West heliostat to an external telescope located approximately 270m away, for an effective baseline of 420m.This configuration allowed us to make measurements of flat wavefront sources with a Fresnel number close to those expected in proposed full-scale space configurations. We present the results of our engineering runs conducted in 2015.

  15. Investigation of intergranular bright points from the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Ji, Kai-Fan; Xiong, Jian-Ping; Xiang, Yong-Yuan; Feng, Song; Deng, Hui; Wang, Feng; Yang, Yun-Fei

    2016-05-01

    Six high-resolution TiO-band image sequences from the New Vacuum Solar Telescope (NVST) are used to investigate the properties of intergranular bright points (igBPs). We detect the igBPs using a Laplacian and morphological dilation algorithm (LMD) and automatically track them using a three-dimensional segmentation algorithm, and then investigate the morphologic, photometric and dynamic properties of igBPs in terms of equivalent diameter, intensity contrast, lifetime, horizontal velocity, diffusion index, motion range and motion type. The statistical results confirm previous studies based on G-band or TiO-band igBPs from other telescopes. These results illustrate that TiO data from the NVST are stable and reliable, and are suitable for studying igBPs. In addition, our method is feasible for detecting and tracking igBPs with TiO data from the NVST. With the aid of vector magnetograms obtained from the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, the properties of igBPs are found to be strongly influenced by their embedded magnetic environments. The areal coverage, size and intensity contrast values of igBPs are generally larger in regions with higher magnetic flux. However, the dynamics of igBPs, including the horizontal velocity, diffusion index, ratio of motion range and index of motion type are generally larger in the regions with lower magnetic flux. This suggests that the absence of strong magnetic fields in the medium makes it possible for the igBPs to look smaller and weaker, diffuse faster, and move faster and further along a straighter path.

  16. A study on support structure of the one-meter primary mirror of the Space Solar Telescope

    NASA Astrophysics Data System (ADS)

    Liu, Mei; Hu, Qi-Qian

    2004-06-01

    In this paper, a reasonable support system of the one-meter primary mirror which is one of important components of the Space Solar Telescope is presented. This system can satisfy the optical calibration on the ground and launching mechanical environment, and guarantee a high precision state during the normal observation on the orbit.

  17. Solar Effects on Tensile and Optical Properties of Hubble Space Telescope Silver-Teflon(Registered Trademark) Insulation

    NASA Technical Reports Server (NTRS)

    deGroh, Kim, K.; Dever, Joyce A.; Snyder, Aaron; Kaminski, Sharon; McCarthy, Catherine E.; Rapoport, Alison L.; Rucker, Rochelle N.

    2006-01-01

    A section of the retrieved Hubble Space Telescope (HST) solar array drive arm (SADA) multilayer insulation (MLI), which experienced 8.25 years of space exposure, was analyzed for environmental durability of the top layer of silver-Teflon (DuPont) fluorinated ethylene propylene (Ag-FEP). Because the SADA MLI had solar and anti-solar facing surfaces and was exposed to the space environment for a long duration, it provided a unique opportunity to study solar effects on the environmental degradation of Ag-FEP, a commonly used spacecraft thermal control material. Data obtained included tensile properties, solar absorptance, surface morphology and chemistry. The solar facing surface was found to be extremely embrittled and contained numerous through-thickness cracks. Tensile testing indicated that the solar facing surface lost 60% of its mechanical strength and 90% of its elasticity while the anti-solar facing surface had ductility similar to pristine FEP. The solar absorptance of both the solar facing surface (0.155 plus or minus 0.032) and the anti-solar facing surface (0.208 plus or minus 0.012) were found to be greater than pristine Ag-FEP (0.074). Solar facing and anti-solar facing surfaces were microscopically textured, and locations of isolated contamination were present on the anti-solar surface resulting in increased localized texturing. Yet, the overall texture was significantly more pronounced on the solar facing surface indicating a synergistic effect of combined solar exposure and increased heating with atomic oxygen erosion. The results indicate a very strong dependence of degradation, particularly embrittlement, upon solar exposure with orbital thermal cycling having a significant effect.

  18. The spectrometer telescope for imaging X-rays (STIX) on board Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Vilmer, Nicole; Krucker, Samuel; Karol Seweryn, D..; Orleanski, Piotr; Limousin, Olivier; Meuris, Aline; Brun, Allan Sacha; Grimm, Oliver; Groebelbauer, HansPeter; Rendtel, J.

    The Spectrometer Telescope for Imaging X-rays (STIX) is one of 10 instruments on board Solar Orbiter, a confirmed M-class mission of the European Space Agency (ESA) within the Cosmic Vision program scheduled to be launched in 2017. STIX applies a Fourier-imaging technique using a set of tungsten grids (at pitches from 0.038 to 1 mm) in front of 32 pixelized CdTe detectors to provide imaging spectroscopy of solar thermal and non-thermal hard X-ray emissions from 4 to 150 keV. The paper presents the status of the instrument for the Critical Design Review to be held with ESA in June 2014. Particular emphasis is given to the CdTe hybrid detector called Caliste-SO for high resolution hard X-ray spectroscopy from 4 to 150 keV: Characterizations of the first production batch are reported. Caliste-SO spectrometer units could also fulfill the needs for the SORENTO instrument of the Russian Interhelioprobe mission currently in assessment study.

  19. PROPERTIES OF UMBRAL DOTS AS MEASURED FROM THE NEW SOLAR TELESCOPE DATA AND MHD SIMULATIONS

    SciTech Connect

    Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.; Goode, P. R.; Cao, W.; Rempel, M.; Kitai, R.; Watanabe, H.

    2012-02-01

    We studied bright umbral dots (UDs) detected in a moderate size sunspot and compared their statistical properties to recent MHD models. The study is based on high-resolution data recorded by the New Solar Telescope at the Big Bear Solar Observatory and three-dimensional (3D) MHD simulations of sunspots. Observed UDs, living longer than 150 s, were detected and tracked in a 46 minute long data set, using an automatic detection code. A total of 1553 (620) UDs were detected in the photospheric (low chromospheric) data. Our main findings are (1) none of the analyzed UDs is precisely circular, (2) the diameter-intensity relationship only holds in bright umbral areas, and (3) UD velocities are inversely related to their lifetime. While nearly all photospheric UDs can be identified in the low chromospheric images, some small closely spaced UDs appear in the low chromosphere as a single cluster. Slow-moving and long-living UDs seem to exist in both the low chromosphere and photosphere, while fast-moving and short-living UDs are mainly detected in the photospheric images. Comparison to the 3D MHD simulations showed that both types of UDs display, on average, very similar statistical characteristics. However, (1) the average number of observed UDs per unit area is smaller than that of the model UDs, and (2) on average, the diameter of model UDs is slightly larger than that of observed ones.

  20. Non-uniform Solar Temperature Field on Large Aperture, Fully-Steerable Telescope Structure

    NASA Astrophysics Data System (ADS)

    Liu, Yan

    2016-09-01

    In this study, a 110-m fully steerable radio telescope was used as an analysis platform and the integral parametric finite element model of the antenna structure was built in the ANSYS thermal analysis module. The boundary conditions of periodic air temperature, solar radiation, long-wave radiation shadows of the surrounding environment, etc. were computed at 30 min intervals under a cloudless sky on a summer day, i.e., worstcase climate conditions. The transient structural temperatures were then analyzed under a period of several days of sunshine with a rational initial structural temperature distribution until the whole set of structural temperatures converged to the results obtained the day before. The non-uniform temperature field distribution of the entire structure and the main reflector surface RMS were acquired according to changes in pitch and azimuth angle over the observation period. Variations in the solar cooker effect over time and spatial distributions in the secondary reflector were observed to elucidate the mechanism of the effect. The results presented here not only provide valuable realtime data for the design, construction, sensor arrangement and thermal deformation control of actuators but also provide a troubleshooting reference for existing actuators.

  1. First Results of Coordinated Observations from IRIS and New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Kosovichev, A. G.; Cao, W.; Goode, P. R.; Gorceix, N.; Kleint, L.; Plymate, C.; Varsik, J. R.; Shumko, S.; Yurchyshyn, V.

    2013-12-01

    Most of the chromospheric structuring and dynamics is controlled by the underlying photospheric processes, associated with turbulent magnetoconvection, ubiquitous magnetic flux emergence, small-scale eruptions and acoustic events. The 1.6 m New Solar Telescope (NST) of Big Bear Solar Observatory offers a substantial improvement in ground-based high-resolution capabilities, and provides important support for the IRIS mission. The primary goal of the coordinated IRIS-NST observations is to obtain complementary data for investigations of photosphere-chromosphere links and drivers of the chromospheric dynamics. The coordinated NST observations are performed using the second-generation adaptive optics system AO-308, and three instruments: Broadband Filter Imagers (G-band and TiO), Visible Imaging Spectrometer (H-alpha), and Near InfraRed Imaging Spectropolarimeter (NIRIS). NIRIS provides high-cadence data in Fe I 1565 nm doublet which is the most Zeeman sensitive probe of magnetic fields in the deep photosphere, and in the He I 1083 nm multiplet for diagnostics of the upper chromosphere. We present initial results of the coordinated observations, and discuss properties of small-scale ejections in fibril magnetic structures, obtained from analysis of IRIS and NST data.

  2. PET - A proton/electron telescope for studies of magnetospheric, solar, and galactic particles

    NASA Technical Reports Server (NTRS)

    Cook, Walter R.; Cummings, Alan C.; Cummings, Jay R.; Garrard, Thomas L.; Kecman, Branislav; Mewaldt, Richard A.; Selesnick, Richard S.; Stone, Edward C.; Baker, Daniel N.; Von Rosenvinge, Tycho T.

    1993-01-01

    The Proton/Electron Telescope (PET) on SAMPEX is designed to provide measurements of energetic electrons and light nuclei from solar, galactic, and magnetospheric sources. PET is an all solid-state system that will measure the differential energy spectra of electrons from about 1 to about 30 MeV and H and He nuclei from about 20 to about 300 MeV/nuc, with isotope resolution of H and He extending from about 20 to about 80 MeV/nuc. As SAMPEX scans all local times and geomagnetic cutoffs over the course of its near-polar orbit, PET will characterize precipitating relativistic electron events during periods of declining solar activity, and it will examine whether the production rate of odd nitrogen and hydrogen molecules in the middle atmosphere by precipitating electrons is sufficient to affect O3 depletion. In addition, PET will complement studies of the elemental and isotopic composition of energetic heavy (Z greater than 2) nuclei on SAMPEX by providing measurements of H, He, and electrons. Finally, PET has limited capability to identify energetic positrons from potential natural and man-made sources.

  3. Hubble Space telescope thermal cycle test report for large solar array samples with BSFR cells (Sample numbers 703 and 704)

    NASA Technical Reports Server (NTRS)

    Alexander, D. W.

    1992-01-01

    The Hubble space telescope (HST) solar array was designed to meet specific output power requirements after 2 years in low-Earth orbit, and to remain operational for 5 years. The array, therefore, had to withstand 30,000 thermal cycles between approximately +100 and -100 C. The ability of the array to meet this requirement was evaluated by thermal cycle testing, in vacuum, two 128-cell solar cell modules that exactly duplicated the flight HST solar array design. Also, the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit was evaluated by performing a cold-roll test using one module.

  4. Reliability of 1.8-meter solar radio telescope at Metsähovi Radio Observatory for long-term solar monitoring

    NASA Astrophysics Data System (ADS)

    Uunila, Minttu; Kallunki, Juha

    2015-09-01

    Our aim is to prove that long time series of solar observations measured with Metsähovi Radio Observatory's 1.8-meter solar radio telescope, RT-1.8, at 11.2 GHz are reliable, and that the data can be used for solar cyclicity studies. We give a detailed description of RT-1.8 and its calibration. We compare 14 years of Metsähovi Radio Observatory's solar data from solar cycles 23 and 24 to both Dominion Radio Astrophysical Observatory (DRAO 2015), Penticton, Canada 2.8 GHz and Nobeyama Solar Radio Observatory (NSRO 2015), Nobeyama, Japan 9.4 and 17.0 GHz data. Our results show high correlation between all data sets.

  5. Application of research for metal primary mirror of large-aperture infrared solar telescope

    NASA Astrophysics Data System (ADS)

    Meng, Xiaohui; Zhang, Haiying; Li, Xinnan

    2010-05-01

    Metal is an early telescope mirror material, it was later replaced by glass which has lower thermal expansion coefficient. However, for observing the sun, these glass materials in the primary mirror are affected by the sun's intense radiation, its temperature rises rapidly, but which conducts heat slowly. The temperature difference between mirror and ambient air is so large that causing the air turbulence which has affected the observation precision. While the metal material has better thermal conductivity characteristics, it can greatly improve the problems caused by air turbulence. This paper analyzes the characteristics of the various mirror materials, and then makes a rust-proof aluminum alloy 5A05 as the mirror substrate material. For the major deficiencies of the soft aluminum surface which is not suitable for polishing, this paper presents a method of electroless nickel plating to improve its surface properties. After the mirror go through a thermal shock, the upper and lower levels of metal CTE don't match with each other, which leads to mirror deformation and warping. The bimetallic effect has been illustrated by the theory of beam element and give a result of elementary approximated. The analysis shows that the displacement deformation of the upper and lower layers of metal which is caused by thermal shock is smaller when the CTE is closer. In the experiments, a spherical aluminum mirrors with the substrate of 5A05 aluminum alloy, diameter of 110mm, the radius of curvature of 258.672mm is manufactured in classical technique. And it ultimately achieves optical mirror-polished precision. Besides, the long-term thermal stability experimental study of the aluminum mirrors proved that Al-infrared solar telescope primary mirror meets the needs of the long-term observation during use.

  6. Observations of Cosmic Rays and Solar Energetic Particles from the Ulysses COSPIN High Energy Telescope Following Completion of the Solar Maximum Solar Polar Passes.*

    NASA Astrophysics Data System (ADS)

    McKibben, R. B.; Lopate, C.; Connell, J. J.; Posner, A.

    2003-04-01

    At the end of 2002, following its second pass over the Sun's north polar region, Ulysses had reached a radial distance of about 4.5 AU at a heliographic latitude of 24°N. While solar activity remained high, the modulated intensity of cosmic rays observed by Ulysses’ COSPIN High Energy Telescope had increased significantly from the levels observed early in 2001, which most likely represented the maximum modulation for this solar cycle. Despite continuing solar activity, the new qA<0 magnetic polarity of the Sun's dipole field was fully established for both poles since the change in the North Pole polarity in 2000. Although the current sheet tilt was still large (>40° as reported by the Wilcox Solar Observatory) and the solar wind was still frequently disturbed by solar activity, it is worthwhile to examine the recent increase in the quiet-time cosmic ray fluxes for evidence of the change in latitudinal gradients expected upon change of magnetic polarity. A difficulty is the lack of a well-matched 1 AU base-line to help distinguish spatial from temporal variations following the termination of IMP-8 operations in late 2001. We will summarize Ulysses observations of energetic (>~30 MeV/n) protons and helium through the most recent available data, and will discuss available options for determining baseline fluxes at 1 AU for studies of the radial and latitudinal gradients. **This work was supported in part by NASA/JPL Contract 955432, by NASA Grant NASA 5-28516 and by NSF grant ATM 99-12341.

  7. 40 CFR 761.306 - Sampling 1 meter square surfaces by random selection of halves.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sampling 1 meter square surfaces by...(b)(3) § 761.306 Sampling 1 meter square surfaces by random selection of halves. (a) Divide each 1 meter square portion where it is necessary to collect a surface wipe test sample into two equal (or...

  8. 40 CFR 761.306 - Sampling 1 meter square surfaces by random selection of halves.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sampling 1 meter square surfaces by...(b)(3) § 761.306 Sampling 1 meter square surfaces by random selection of halves. (a) Divide each 1 meter square portion where it is necessary to collect a surface wipe test sample into two equal (or...

  9. DYNAMICS IN SUNSPOT UMBRA AS SEEN IN NEW SOLAR TELESCOPE AND INTERFACE REGION IMAGING SPECTROGRAPH DATA

    SciTech Connect

    Yurchyshyn, V.; Abramenko, V.; Kilcik, A.

    2015-01-10

    We analyze sunspot oscillations using Interface Region Imaging Spectrograph (IRIS) slit-jaw and spectral data and narrow-band chromospheric images from the New Solar Telescope (NST) for the main sunspot in NOAA AR 11836. We report that the difference between the shock arrival times as measured by the Mg II k 2796.35 Å and Si IV 1393.76 Å line formation levels changes during the observed period, and peak-to-peak delays may range from 40 s to zero. The intensity of chromospheric shocks also displays long-term (about 20 min) variations. NST's high spatial resolution Hα data allowed us to conclude that, in this sunspot, umbral flashes (UFs) appeared in the form of narrow bright lanes stretched along the light bridges and around clusters of umbral bright points. The time series also suggested that UFs preferred to appear on the sunspot-center side of light bridges, which may indicate the existence of a compact sub-photospheric driver of sunspot oscillations. The sunspot's umbra as seen in the IRIS chromospheric and transition region data appears bright above the locations of light bridges and the areas where the dark umbra is dotted with clusters of umbral dots. Co-spatial and co-temporal data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory showed that the same locations were associated with bright footpoints of coronal loops suggesting that the light bridges may play an important role in heating the coronal sunspot loops. Finally, the power spectra analysis showed that the intensity of chromospheric and transition region oscillations significantly vary across the umbra and with height, suggesting that umbral non-uniformities and the structure of sunspot magnetic fields may play a role in wave propagation and heating of umbral loops.

  10. Analysis of Flows inside Quiescent Prominences as Captured by Hinode/Solar Optical Telescope

    NASA Astrophysics Data System (ADS)

    Freed, M. S.; McKenzie, D. E.; Longcope, D. W.; Wilburn, M.

    2016-02-01

    Developing an understanding of how magnetic fields can become entangled in a prominence is important for predicting a possible eruption. This work investigates the kinetic energy and vorticity associated with plasma motion residing inside quiescent prominences (QPs). These plasma flow characteristics can be utilized to improve our understanding of how the prominence maintains a stable magnetic field configuration. Three different contrast-enhanced solar prominence observations from Hinode/Solar Optical Telescope were used to construct velocity maps—in the plane of the sky—via a Fourier local correlation tracking program. The resulting velocities were then used to perform the first-ever analysis of the two-dimensional kinetic energy and enstrophy spectra of a prominence. Enstrophy is introduced here as a means of quantifying the vorticity that has been observed in many QPs. The kinetic energy power spectral density (PSD) produced indices ranging from -1.00 to -1.60. There was a consistent anisotropy in the kinetic energy spectrum of all three prominences examined. Examination of the intensity PSD reveals that a different scaling relationship exists between the observed prominence structure and velocity maps. All of the prominences exhibited an inertial range of at least 0.8≤slant k≤slant 2.0 {rads} {{Mm}}-1. Quasi-periodic oscillations were also detected in the centroid of the velocity distributions for one prominence. Additionally, a lower limit was placed on the kinetic energy density (ɛ ˜ 0.22-7.04 {{km}}2 {{{s}}}-2) and enstrophy density (ω ˜ 1.43-13.69 × \\quad {10}-16 {{{s}}}-2) associated with each prominence.

  11. UPDATED ANALYSIS OF THE UPWIND INTERPLANETARY HYDROGEN VELOCITY AS OBSERVED BY THE HUBBLE SPACE TELESCOPE DURING SOLAR CYCLE 23

    SciTech Connect

    Vincent, Frederic E.; Ben-Jaffel, Lotfi; Harris, Walter M.

    2011-09-10

    The interplanetary hydrogen (IPH), a population of neutrals that fill the space between planets inside the heliosphere, carries the signature of the interstellar medium (ISM) and the heliospheric interface. As the incoming ISM-ionized component deflects at the heliopause, charge exchange reactions decelerate the bulk motion of the neutrals that penetrate the heliosphere. Inside the heliosphere, the IPH bulk velocity is further affected by solar gravity, radiation pressure, and ionization processes, with the latter two processes dependent on solar activity. Solar cycle 23 provided the first partial temporal map of the IPH velocity, including measurements from the Hubble Space Telescope (HST) spectrometers (Goddard High Resolution Spectrograph (GHRS) and Space Telescope Imaging Spectrograph (STIS)) and the Solar and Heliospheric Observatory/Solar Wind ANisotropies (SWAN) instrument. We present an updated analysis of IPH velocity measurements from GHRS and STIS and compare these results with those of SWAN and two different time-dependent models. Our reanalysis of STIS data reveals a significant change in IPH velocity relative to earlier reports, because of the contamination by geocoronal oxygen that was not accounted for. While current models of the heliospheric interface predict the observed IPH velocity for solar maximum, they are not consistent with data covering solar minimum. With updates to the HST data points, we now find that all data can be fit by the existing models to within 1{sigma}, with the exception of SWAN observations taken at solar minimum (1997/1998). We conclude that the current data lack the temporal coverage and/or precision necessary to determine the detailed characteristics of the solar cycle dependence. Hence, new observations are merited.

  12. PRECURSOR OF SUNSPOT PENUMBRAL FORMATION DISCOVERED WITH HINODE SOLAR OPTICAL TELESCOPE OBSERVATIONS

    SciTech Connect

    Shimizu, Toshifumi; Ichimoto, Kiyoshi; Suematsu, Yoshinori

    2012-03-10

    We present observations of a precursory signature that would be helpful for understanding the formation process of sunspot penumbrae. The Hinode Solar Optical Telescope successfully captured the entire evolution of a sunspot from the pore to a large well-developed sunspot with penumbra in an emerging flux region appearing in NOAA Active Region 11039. We found an annular zone (width 3''-5'') surrounding the umbra (pore) in Ca II H images before the penumbra formed around the umbra. The penumbra developed as if to fill the annular zone. The annular zone shows weak magnetogram signals, meaning less magnetic flux or highly inclined fields there. Pre-existing ambient magnetic field islands were distributed at the outer edge of the annular zone and did not come into the zone. There are no strong systematic flow patterns in the zone, but we occasionally observed small magnetic flux patches streaming out. The observations indicate that the annular zone is different from the sunspot moat flow region and that it represents the structure in the chromosphere. We conclude that the annular zone reflects the formation of a magnetic canopy overlying the region surrounding the umbra at the chromospheric level, long before the formation of the penumbra at the photospheric level. The magnetic field structure in the chromosphere needs to be considered in the formation process of the penumbrae.

  13. MAGNETIC RECONNECTION BETWEEN SMALL-SCALE LOOPS OBSERVED WITH THE NEW VACUUM SOLAR TELESCOPE

    SciTech Connect

    Yang, Shuhong; Zhang, Jun; Xiang, Yongyuan

    2015-01-01

    Using the high tempo-spatial resolution Hα images observed with the New Vacuum Solar Telescope, we report solid observational evidence of magnetic reconnection between two sets of small-scale, anti-parallel loops with an X-shaped topology. The reconnection process contains two steps: a slow step with a duration of more than several tens of minutes, and a rapid step lasting for only about three minutes. During the slow reconnection, two sets of anti-parallel loops gradually reconnect, and new loops are formed and stacked together. During the rapid reconnection, the anti-parallel loops approach each other quickly, and then rapid reconnection takes place, resulting in the disappearance of the former loops. In the meantime, new loops are formed and separate. The region between the approaching loops is brightened, and the thickness and length of this region are determined to be about 420 km and 1.4 Mm, respectively. During the rapid reconnection process, obvious brightenings at the reconnection site and apparent material ejections outward along reconnected loops are observed. These observed signatures are consistent with predictions by reconnection models. We suggest that the successive slow reconnection changes the conditions around the reconnection site and triggers instabilities, thus leading to the rapid approach of the anti-parallel loops and resulting in the rapid reconnection.

  14. Site evaluation study for the Indian National Large Solar Telescope using microthermal measurements

    NASA Astrophysics Data System (ADS)

    Dhananjay, K.

    2014-01-01

    A microthermal seeing measurement device has been developed in-house to measure the temperature structure function DT(r, h) and the air temperature Tair(h). A pressure sensor, located adjacent to it, measures the average barometric pressure P(h). From the data measured, the temperature structure coefficient C_T^2(r, h) and the refractive index structure constant C_N^2(h) are computed for the five equidistant microthermal seeing layers in the 3-15 m range in the surface layers. A statistical analysis is performed on the local coherence length ro(loc)(h1, h2). Corresponding values of the atmospheric seeing ɛ(loc)(h1, h2) for all 10 microthermal seeing slabs is also computed and plotted, and the data are logged in real time. Because the characterization of the three sites is under way and the best site for the National Large Solar Telescope facility is yet to be determined, in this paper I discuss the preliminary results obtained from the Hanle site. A summary of the first results is as follows: ɛ(loc) (3 m, 6 m) = 0.663 arcsec, ɛ(loc) (6 m, 9 m) = 0.465 arcsec, ɛ(loc) (9 m, 12 m) = 0.363 arcsec and ɛ(loc) (12 m, 15 m) = 0.315 arcsec.

  15. Plate coil thermal test bench for the Daniel K. Inouye Solar Telescope (DKIST) carousel cooling system

    NASA Astrophysics Data System (ADS)

    Phelps, LeEllen; Murga, Gaizka; Montijo, Guillermo; Hauth, David

    2014-08-01

    Analyses have shown that even a white-painted enclosure requires active exterior skin-cooling systems to mitigate dome seeing which is driven by thermal nonuniformities that change the refractive index of the air. For the Daniel K. Inouye Solar Telescope (DKIST) Enclosure, this active surface temperature control will take the form of a system of water cooled plate coils integrated into the enclosure cladding system. The main objective of this system is to maintain the surface temperature of the enclosure as close as possible to, but always below, local ambient temperature in order to mitigate this effect. The results of analyses using a multi-layer cladding temperature model were applied to predict the behavior of the plate coil cladding system and ultimately, with safety margins incorporated into the resulting design thermal loads, the detailed designs. Construction drawings and specifications have been produced. Based on these designs and prior to procurement of the system components, a test system was constructed in order to measure actual system behavior. The data collected during seasonal test runs at the DKIST construction site on Haleakalā are used to validate and/or refine the design models and construction documents as appropriate. The test fixture was also used to compare competing hardware, software, components, control strategies, and configurations. This paper outlines the design, construction, test protocols, and results obtained of the plate coil thermal test bench for the DKIST carousel cooling system.

  16. Fine pointing of the Solar Optical Telescope in the Space Shuttle environment

    NASA Technical Reports Server (NTRS)

    Gowrinathan, S.

    1985-01-01

    Instruments requiring fine (i.e., sub-arcsecond) pointing, such as the Solar Optical Telescope (SOT), must be equipped with two-stage pointing devices, coarse and fine. Coarse pointing will be performed by a gimbal system, such as the Instrument Pointing System, while the image motion compensation (IMC) will provide fine pointing. This paper describes work performed on the SOT concept design that illustrates IMC as applied to SOT. The SOT control system was modeled in the frequency domain to evaluate performance, stability, and bandwidth requirements. The two requirements of the pointing control, i.e., the 2 arcsecond reproducibility and 0.03 arcsecond rms pointing jitter, can be satisfied by use of IMC at about 20 Hz bandwidth. The need for this high bandwidth is related to Shuttle-induced disturbances that arise primarily from man push-offs and vernier thruster firings. A block diagram of SOT model/stability analysis, schematic illustrations of the SOT pointing system, and a structural model summary are included.

  17. Opto-thermal analysis of a lightweighted mirror for solar telescope.

    PubMed

    Banyal, Ravinder K; Ravindra, B; Chatterjee, S

    2013-03-25

    In this paper, an opto-thermal analysis of a moderately heated lightweighted solar telescope mirror is carried out using 3D finite element analysis (FEA). A physically realistic heat transfer model is developed to account for the radiative heating and energy exchange of the mirror with surroundings. The numerical simulations show the non-uniform temperature distribution and associated thermo-elastic distortions of the mirror blank clearly mimicking the underlying discrete geometry of the lightweighted substrate. The computed mechanical deformation data is analyzed with surface polynomials and the optical quality of the mirror is evaluated with the help of a ray-tracing software. The thermal print-through distortions are further shown to contribute to optical figure changes and mid-spatial frequency errors of the mirror surface. A comparative study presented for three commonly used substrate materials, namely, Zerodur, Pyrex and Silicon Carbide (SiC) is relevant to vast area of large optics requirements in ground and space applications.

  18. An atlas of solar spectra between 1175 and 1950 angstroms recorded on Skylab with the NRL's Apollo Telescope Mount experiment

    SciTech Connect

    Cohen, L.

    1981-03-01

    Spectra of selected solar regions were recorded by the Naval Research Laboratory slit spectrograph on the Apollo Telescope Mount aboard Skylab. This atlas of those spectra is intended as a guide to the formulation of experiments and analysis of data obtained by extreme ultraviolet spectrographs and may be valuable to investigators analyzing International Ultraviolet Explorer spectra and data from Solar Maximum Mission and High Resolution Telescope Spectrograph. The slit spectrograph was used to cover the range 1175 A to 1950 A with a spectral resolution of 0.06 A and a spatial resolution at Sun center of 2 deg by 30 deg. Microdensitometer tracings of spectra from (1) a quiet region, (2) an active region, (3) a coronal hole, and (4) a flare are included and were computer processed to include the characteristic curve of the film. Line identifications for prominent features are included as well as a reference scale permitting the user to obtain absolute intensities.

  19. POlarization Emission of Millimeter Activity at the Sun (POEMAS): new circular polarization solar telescopes at two millimeter wavelength ranges

    NASA Astrophysics Data System (ADS)

    Valio, A. S.; Kaufmann, P.; Gimenez de Castro, C.; Raulin, J.; Fernandes, L. T.; Marun, A.

    2012-12-01

    We present a new system of two circular polarization solar radio telescopes, POEMAS, for observation of the Sun at 45 and 90 GHz. The novel characteristic of these instruments is the capability to measure circular right and left handed polarization at such high frequencies. The two frequencies were chosen so as to bridge the gap at radio frequencies between 20 and 200 GHz of the spectra of solar flares. The telescopes, installed at CASLEO Observatory (Argentina), observe the full disk of the Sun with HPBW of 1.4 degree, time resolution of 10 ms, sensitivity of 0.2 K at both frequencies, that corresponds to 0.5 and 4 SFU, and aperture efficiencies of 45% and 71% at 45 and 90 GHz, respectively. The telescopes system saw the first light on November 2011 and is operating daily since then. A few flares were observed and are presented here.; POEMAS (POlarization Emission of Millimeter Activity at the Sun) Telescopes operating continuously at 45 and 90 GHz.

  20. Ultra-narrow Negative Flare Front Observed in Helium-10830 Å Using the 1.6 m New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Cao, Wenda; Ding, Mingde; Kleint, Lucia; Su, Jiangtao; Liu, Chang; Ji, Haisheng; Chae, Jongchul; Jing, Ju; Cho, Kyuhyoun; Cho, Kyungsuk; Gary, Dale; Wang, Haimin

    2016-03-01

    Solar flares are sudden flashes of brightness on the Sun and are often associated with coronal mass ejections and solar energetic particles that have adverse effects on the near-Earth environment. By definition, flares are usually referred to as bright features resulting from excess emission. Using the newly commissioned 1.6 m New Solar Telescope at Big Bear Solar Observatory, we show a striking “negative” flare with a narrow but unambiguous “dark” moving front observed in He i 10830 Å, which is as narrow as 340 km and is associated with distinct spectral characteristics in Hα and Mg ii lines. Theoretically, such negative contrast in He i 10830 Å can be produced under special circumstances by nonthermal electron collisions or photoionization followed by recombination. Our discovery, made possible due to unprecedented spatial resolution, confirms the presence of the required plasma conditions and provides unique information in understanding the energy release and radiative transfer in astronomical objects.

  1. Witnessing magnetic twist with high-resolution observation from the 1.6-m New Solar Telescope

    PubMed Central

    Wang, Haimin; Cao, Wenda; Liu, Chang; Xu, Yan; Liu, Rui; Zeng, Zhicheng; Chae, Jongchul; Ji, Haisheng

    2015-01-01

    Magnetic flux ropes are highly twisted, current-carrying magnetic fields. They are crucial for the instability of plasma involved in solar eruptions, which may lead to adverse space weather effects. Here we present observations of a flaring using the highest resolution chromospheric images from the 1.6-m New Solar Telescope at Big Bear Solar Observatory, supplemented by a magnetic field extrapolation model. A set of loops initially appear to peel off from an overall inverse S-shaped flux bundle, and then develop into a multi-stranded twisted flux rope, producing a two-ribbon flare. We show evidence that the flux rope is embedded in sheared arcades and becomes unstable following the enhancement of its twists. The subsequent motion of the flux rope is confined due to the strong strapping effect of the overlying field. These results provide a first opportunity to witness the detailed structure and evolution of flux ropes in the low solar atmosphere. PMID:25919706

  2. Production of the 4.26 m ZERODUR mirror blank for the Advanced Technology Solar telescope (ATST)

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Werner, Thomas; Westerhoff, Thomas

    2014-07-01

    The Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST) will be the most powerful solar telescope in the world. It is currently being built by the Association of Universities for Research in Astronomy (AURA) in a height of 3000 m above sea level on the mountain Haleakala of Maui, Hawaii. The primary mirror blank of diameter 4.26 m is made of the extremely low thermal expansion glass ceramic ZERODUR® of SCHOTT AG Advanced Optics. The DKIST primary mirror design is extremely challenging. With a mirror thickness of only 78 to 85 mm it is the smallest thickness ever machined on a mirror of 4.26 m in diameter. Additionally the glassy ZERODUR® casting is one of the largest in size ever produced for a 4 m class ZERODUR® mirror blank. The off axis aspherical mirror surface required sophisticated grinding procedures to achieve the specified geometrical tolerance. The small thickness of about 80 mm required special measures during processing, lifting and transport. Additionally acid etch treatment was applied to the convex back-surface and the conical shaped outer diameter surface to improve the strength of the blank. This paper reports on the challenging tasks and the achievements on the material property and dimensional specification parameter during the production of the 4.26 m ZERODUR® primary mirror blank for AURA.

  3. POlarization Emission of Millimeter Activity at the Sun (POEMAS): New Circular Polarization Solar Telescopes at Two Millimeter Wavelength Ranges

    NASA Astrophysics Data System (ADS)

    Valio, Adriana; Kaufmann, P.; Giménez de Castro, C. G.; Raulin, J.-P.; Fernandes, L. O. T.; Marun, A.

    2013-04-01

    We present a new system of two circular polarization solar radio telescopes, POEMAS, for observations of the Sun at 45 and 90 GHz. The novel characteristic of these instruments is the capability to measure circular right- and left-hand polarizations at these high frequencies. The two frequencies were chosen so as to bridge the gap at radio frequencies between 20 and 200 GHz of solar flare spectra. The telescopes, installed at CASLEO Observatory (Argentina), observe the full disk of the Sun with a half power beam width of 1.4∘, a time resolution of 10 ms at both frequencies, a sensitivity of 2 - 4 K that corresponds to 4 and 20 solar flux unit (=104 Jy), considering aperture efficiencies of 50±5 % and 75±8 % at 45 and 90 GHz, respectively. The telescope system saw first light in November 2011 and is satisfactorily operating daily since then. A few flares were observed and are presented here. The millimeter spectra of some flares are seen to rise toward higher frequencies, indicating the presence of a new spectral component distinct from the microwave one.

  4. a Re-Evaluation of the Neutron Emission from the Solar Flare of September 07, 2005, Detected by the Solar Neutron Telescope at Sierra Negra.

    NASA Astrophysics Data System (ADS)

    González, Xavier

    The X17.0 solar flare of September 7, 2005 released high-energy neutrons, which were detected by the Solar Neutron Telescope (SNT) at Sierra Negra, Mexico. In three separate and independent studies of this solar neutron event, the energy spectra was calculated as a power law. In this paper, we present an alternative analysis, based on improved numerical simulations of the detector using GEANT4, and a different technique to process the SNT data. The results indicate that the spectral index which best fits the neutron flux is around 3, in agreement with previous works. Based on the numerically calculated neutron energy deposition on the SNT, we confirm that the neutrons detected had at least 1 GeV, this implies that the parent solar flare most probably produced 10 GeV protons; these could not be observed at Earth, as theit was an east limb event.

  5. The Las Cumbres Observatory (LCOGT) Network for NEO and Solar System Science

    NASA Astrophysics Data System (ADS)

    Lister, Tim; Greenstreet, Sarah; Gomez, Edward; Christensen, Eric; Larson, Stephen

    2015-11-01

    Las Cumbres Observatory Global Telescope Network (LCOGT) has deployed a homogeneous telescope network of nine 1-meter telescopes to four locations in the northern and southern hemispheres, with a planned network size of twelve 1-meter telescopes at 6 locations. This 1-meter network is in addition to the two 2-meter Faulkes Telescopes that have been operating since 2005. This network is very versatile and is designed to respond rapidly to target of opportunity events and also to perform long term monitoring of slowly changing astronomical phenomena. The global coverage of the network and the apertures of telescope available make LCOGT ideal for follow-up and characterization of Solar System objects e.g. Near-Earth Objects (NEOs), comets, asteroids and Kuiper Belt Objects and also for the discovery of new objects.LCOGT has completed the first phase of the deployment with the installation and commissioning of the nine 1-meter telescopes at McDonald Observatory (Texas), Cerro Tololo (Chile), SAAO (South Africa) and Siding Spring Observatory (Australia). The telescope network has been fully operational since 2014 May, and observations are being executed remotely and robotically. Future expansion to sites in the Canary Islands and Tibet are planned for 2016-2017.I will describe the Solar System science research that is being carried out using the LCOGT Network with highlights from the LCOGT NEO Follow-up Network, long-term monitoring of the Rosetta spacecraft target comet 67P and comet C/2013 A1 (Siding Spring) and work on Kuiper Belt Object occultation targets, including Pluto.

  6. The Las Cumbres Observatory (LCOGT) Network for NEO and Solar System Science

    NASA Astrophysics Data System (ADS)

    Lister, Tim; Greenstreet, Sarah; Gomez, Edward; Christensen, Eric J.; Larson, Stephen M.

    2016-01-01

    Las Cumbres Observatory Global Telescope Network (LCOGT) has deployed a homogeneous telescope network of nine 1-meter telescopes to four locations in the northern and southern hemispheres, with a planned network size of twelve 1-meter telescopes at 6 locations. This 1-meter network is in addition to the two 2-meter Faulkes Telescopes that have been operating since 2005. This network is very versatile and is designed to respond rapidly to target of opportunity events and also to perform long term monitoring of slowly changing astronomical phenomena. The global coverage of the network and the apertures of telescope available make LCOGT ideal for follow-up and characterization of Solar System objects e.g. Near-Earth Objects (NEOs), comets, asteroids and Kuiper Belt Objects and also for the discovery of new objects.LCOGT has completed the first phase of the deployment with the installation and commissioning of the nine 1-meter telescopes at McDonald Observatory (Texas), Cerro Tololo (Chile), SAAO (South Africa) and Siding Spring Observatory (Australia). The telescope network has been fully operational since 2014 May, and observations are being executed remotely and robotically. Future expansion to sites in the Canary Islands and Tibet are planned for 2016-2017.I will describe the Solar System science research that is being carried out using the LCOGT Network with highlights from the LCOGT NEO Follow-up Network, long-term monitoring of the Rosetta spacecraft target comet 67P and comet C/2013 A1 (Siding Spring) and work on Kuiper Belt Object occultation targets, including Pluto.

  7. Distinguishing 3He and 4He with the Electron Proton Telescope (EPT) on Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Boden, S.; Kulkarni, S. R.; Steinhagen, J.; Tammen, J.; Martin-Garcia, C.; Wimmer-Schweingruber, R. F.; Boettcher, S. I.; Seimetz, L.; Ravanbakhsh, A.; Elftmann, R.; Schuster, B.; Kulemzin, A.; Kolbe, S.; Mahesh, Y.; Knieriem, V.; Yu, J.; Kohler, J.; Panitzsch, L.; Terasa, C.; Boehm, E.; Rodriguez-Pacheco, J.; Prieto, M.; Gomez-Herrero, R.

    2015-12-01

    The Electron Proton Telescope (EPT) is one of the sensors of the Energetic Particle Detector (EPD) for the Solar Orbiter mission, which will provide key measurements to address particle acceleration at and near the Sun. The EPD suite consists of four different sensors (STEP, SIS, EPT and HET) which together will resolve the energetic particle spectrum from 2 keV to 20 MeV for electrons, 3 keV to 100 MeV for protons and circa 100 keV/nuc to 100 MeV/nuc for heavier ions.EPT itself is primarily designed to cleanly separate and measure electrons in the energy range from 20 - 400 keV and protons from 20 - 7000 keV. To achieve this, EPT uses two back-to-back solid state detectors with a magnet system to deflect electrons on one side and a Polyimide foil to stop protons below ~400 keV on the other side. The two detectors then serve as each other's anti-coincidence. Additionally this setup also allows us to measure penetrating particles with deposited energies in the 1 MeV to 40 MeV range. Looking at the ratio of deposited energy in the two detectors versus total deposited energy allows us to differentiate between protons and alpha particles. Distinguishing 3He from 4He will be challenging, but possible provided good knowledge of the instrument, high-fidelity modeling and a precise calibration of EPT. Here, we will present feasibility studies leading to a determination of the 3He / 4He ratio with EPT.

  8. A normal incidence, high resolution X-ray telescope for solar coronal observations

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1984-01-01

    A Normal Incidence high resolution X-ray Telescope is reported. The design of a telescope assembly which, after fabrication, will be integrated with the mirror fabrication process is described. The assembly is engineered to fit into the Black Brant rocket skin to survive sounding rocket launch conditions. A flight ready camera is modified and tested.

  9. Measuring the Solar Magnetic Field with STEREO A Radio Transmissions: Faraday Rotation Observations using the 100m Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Kobelski, A.; Jensen, E.; Wexler, D.; Heiles, C.; Kepley, A.; Kuiper, T.; Bisi, M.

    2016-04-01

    The STEREO mission spacecraft recently passed through superior conjunction, providing an opportunity to probe the solar corona using radio transmissions. Strong magnetic field and dense plasma environment induce Faraday rotation of the linearly polarized fraction of the spacecraft radio carrier signal. Variations in the Faraday rotation signify changes in magnetic field components and plasma parameters, and thus can be used to gain understanding processes of the quiescent sun as well as active outbursts including coronal mass ejections. Our 2015 observing campaign resulted in a series of measurements over several months with the 100m Green Bank Telescope (GBT) to investigate the coronal Faraday rotation at various radial distances. These observations reveal notable fluctuations in the Faraday rotation of the signal in the deep corona, and should yield unique insights into coronal magnetohydrodynamics down to a 1.5 solar radius line-of-sight solar elongation.

  10. Simulated Solar Flare X-Ray and Thermal Cycling Durability Evaluation of Hubble Space Telescope Thermal Control Candidate Replacement Materials

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Sechkar, Edward A.; Scheiman, David A.

    1998-01-01

    During the Hubble Space Telescope (HST) second servicing mission (SM2), astronauts noticed that the multilayer insulation (MLI) covering the telescope was damaged. Large pieces of the outer layer of MLI (aluminized Teflon fluorinated ethylene propylene (Al-FEP)) were torn in several locations around the telescope. A piece of curled up Al-FEP was retrieved by the astronauts and was found to be severely embrittled, as witnessed by ground testing. Goddard Space Flight Center (GSFC) organized a HST MLI Failure Review Board (FRB) to determine the damage mechanism of FEP in the HST environment, and to recommend replacement insulation material to be installed on HST during the third servicing mission (SM3) in 1999. Candidate thermal control replacement materials were chosen by the FRB and tested for environmental durability under various exposures and durations. This paper describes durability testing of candidate materials which were exposed to charged particle radiation, simulated solar flare x-ray radiation and thermal cycling under load. Samples were evaluated for changes in solar absorptance and tear resistance. Descriptions of environmental exposures and durability evaluations of these materials are presented.

  11. Search for solar axions by the CERN axion solar telescope with 3He buffer gas: closing the hot dark matter gap.

    PubMed

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Da Riva, E; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Garza, J G; Gazis, E N; Geralis, T; Georgiopoulou, E; Giomataris, I; Gninenko, S; Gómez, H; Gómez Marzoa, M; Gruber, E; Guthörl, T; Hartmann, R; Hauf, S; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Lang, P M; Laurent, J M; Liolios, A; Ljubičić, A; Luzón, G; Neff, S; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Shilon, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J; Vogel, J K; Yildiz, S C; Zioutas, K

    2014-03-01

    The CERN Axion Solar Telescope has finished its search for solar axions with (3)He buffer gas, covering the search range 0.64 eV ≲ ma ≲ 1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of gaγ ≲ 3.3 × 10(-10)  GeV(-1) at 95% C.L., with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of gaγ, for example by the currently discussed next generation helioscope International AXion Observatory.

  12. RE-EVALUATION OF THE NEUTRON EMISSION FROM THE SOLAR FLARE OF 2005 SEPTEMBER 7, DETECTED BY THE SOLAR NEUTRON TELESCOPE AT SIERRA NEGRA

    SciTech Connect

    González, L. X.; Valdés-Galicia, J. F.; Musalem, O.; Hurtado, A.; Sánchez, F.; Muraki, Y.; Sako, T.; Matsubara, Y.; Nagai, Y.; Watanabe, K.; Shibata, S.; Sakai, T.

    2015-12-01

    The X17.0 solar flare of 2005 September 7 released high-energy neutrons that were detected by the Solar Neutron Telescope (SNT) at Sierra Negra, Mexico. In three separate and independent studies of this solar neutron event, several of its unique characteristics were studied; in particular, a power-law energy spectra was estimated. In this paper, we present an alternative analysis, based on improved numerical simulations of the detector using GEANT4, and a different technique for processing the SNT data. The results indicate that the spectral index that best fits the neutron flux is around 3, in agreement with previous works. Based on the numerically calculated neutron energy deposition on the SNT, we confirm that the detected neutrons might have reached an energy of 1 GeV, which implies that 10 GeV protons were probably produced; these could not be observed at Earth, as their parent flare was an east limb event.

  13. Re-evaluation of the Neutron Emission from the Solar Flare of 2005 September 7, Detected by the Solar Neutron Telescope at Sierra Negra

    NASA Astrophysics Data System (ADS)

    González, L. X.; Valdés-Galicia, J. F.; Sánchez, F.; Muraki, Y.; Sako, T.; Watanabe, K.; Matsubara, Y.; Nagai, Y.; Shibata, S.; Sakai, T.; Musalem, O.; Hurtado, A.

    2015-12-01

    The X17.0 solar flare of 2005 September 7 released high-energy neutrons that were detected by the Solar Neutron Telescope (SNT) at Sierra Negra, Mexico. In three separate and independent studies of this solar neutron event, several of its unique characteristics were studied; in particular, a power-law energy spectra was estimated. In this paper, we present an alternative analysis, based on improved numerical simulations of the detector using GEANT4, and a different technique for processing the SNT data. The results indicate that the spectral index that best fits the neutron flux is around 3, in agreement with previous works. Based on the numerically calculated neutron energy deposition on the SNT, we confirm that the detected neutrons might have reached an energy of 1 GeV, which implies that 10 GeV protons were probably produced; these could not be observed at Earth, as their parent flare was an east limb event.

  14. Performance of the SciBar cosmic ray telescope (SciCRT) toward the detection of high-energy solar neutrons in solar cycle 24

    NASA Astrophysics Data System (ADS)

    Sasai, Yoshinori; Nagai, Yuya; Itow, Yoshitaka; Matsubara, Yutaka; Sako, Takashi; Lopez, Diego; Itow, Tsukasa; Munakata, Kazuoki; Kato, Chihiro; Kozai, Masayoshi; Miyazaki, Takahiro; Shibata, Shoichi; Oshima, Akitoshi; Kojima, Hiroshi; Tsuchiya, Harufumi; Watanabe, Kyoko; Koi, Tatsumi; Valdés-Galicia, Jose Francisco; González, Luis Xavier; Ortiz, Ernesto; Musalem, Octavio; Hurtado, Alejandro; Garcia, Rocio; Anzorena, Marcos

    2014-12-01

    We plan to observe solar neutrons at Mt. Sierra Negra (4,600 m above sea level) in Mexico using the SciBar detector. This project is named the SciBar Cosmic Ray Telescope (SciCRT). The main aims of the SciCRT project are to observe solar neutrons to study the mechanism of ion acceleration on the surface of the sun and to monitor the anisotropy of galactic cosmic-ray muons. The SciBar detector, a fully active tracker, is composed of 14,848 scintillator bars, whose dimension is 300 cm × 2.5 cm × 1.3 cm. The structure of the detector enables us to obtain the particle trajectory and its total deposited energy. This information is useful for the energy reconstruction of primary neutrons and particle identification. The total volume of the detector is 3.0 m × 3.0 m × 1.7 m. Since this volume is much larger than the solar neutron telescope (SNT) in Mexico, the detection efficiency of the SciCRT for neutrons is highly enhanced. We performed the calibration of the SciCRT at Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) located at 2,150 m above sea level in Mexico in 2012. We installed the SciCRT at Mt. Sierra Negra in April 2013 and calibrated this detector in May and August 2013. We started continuous observation in March 2014. In this paper, we report the detector performance as a solar neutron telescope and the current status of the SciCRT.

  15. A normal incidence, high resolution X-ray telescope for solar coronal observations

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1984-01-01

    Efforts directed toward the completion of an X-ray telescope assembly design, the procurement of major components, and the coordination of optical fabrication and X-ray multilayer testing are reported.

  16. QUIESCENT PROMINENCE DYNAMICS OBSERVED WITH THE HINODE SOLAR OPTICAL TELESCOPE. I. TURBULENT UPFLOW PLUMES

    SciTech Connect

    Berger, Thomas E.; Slater, Gregory; Hurlburt, Neal; Shine, Richard; Tarbell, Theodore; Title, Alan; Okamoto, Takenori J.; Ichimoto, Kiyoshi; Katsukawa, Yukio; Magara, Tetsuya; Suematsu, Yoshinori; Shimizu, Toshifumi

    2010-06-20

    Hinode/Solar Optical Telescope (SOT) observations reveal two new dynamic modes in quiescent solar prominences: large-scale (20-50 Mm) 'arches' or 'bubbles' that 'inflate' from below into prominences, and smaller-scale (2-6 Mm) dark turbulent upflows. These novel dynamics are related in that they are always dark in visible-light spectral bands, they rise through the bright prominence emission with approximately constant speeds, and the small-scale upflows are sometimes observed to emanate from the top of the larger bubbles. Here we present detailed kinematic measurements of the small-scale turbulent upflows seen in several prominences in the SOT database. The dark upflows typically initiate vertically from 5 to 10 Mm wide dark cavities between the bottom of the prominence and the top of the chromospheric spicule layer. Small perturbations on the order of 1 Mm or less in size grow on the upper boundaries of cavities to generate plumes up to 4-6 Mm across at their largest widths. All plumes develop highly turbulent profiles, including occasional Kelvin-Helmholtz vortex 'roll-up' of the leading edge. The flows typically rise 10-15 Mm before decelerating to equilibrium. We measure the flowfield characteristics with a manual tracing method and with the Nonlinear Affine Velocity Estimator (NAVE) 'optical flow' code to derive velocity, acceleration, lifetime, and height data for several representative plumes. Maximum initial speeds are in the range of 20-30 km s{sup -1}, which is supersonic for a {approx}10,000 K plasma. The plumes decelerate in the final few Mm of their trajectories resulting in mean ascent speeds of 13-17 km s{sup -1}. Typical lifetimes range from 300 to 1000 s ({approx}5-15 minutes). The area growth rate of the plumes (observed as two-dimensional objects in the plane of the sky) is initially linear and ranges from 20,000 to 30,000 km{sup 2} s{sup -1} reaching maximum projected areas from 2 to 15 Mm{sup 2}. Maximum contrast of the dark flows relative to

  17. Thermally Induced Vibrations of the Hubble Space Telescope's Solar Array 3 in a Test Simulated Space Environment

    NASA Technical Reports Server (NTRS)

    Early, Derrick A.; Haile, William B.; Turczyn, Mark T.; Griffin, Thomas J. (Technical Monitor)

    2001-01-01

    NASA Goddard Space Flight Center and the European Space Agency (ESA) conducted a disturbance verification test on a flight Solar Array 3 (SA3) for the Hubble Space Telescope using the ESA Large Space Simulator (LSS) in Noordwijk, the Netherlands. The LSS cyclically illuminated the SA3 to simulate orbital temperature changes in a vacuum environment. Data acquisition systems measured signals from force transducers and accelerometers resulting from thermally induced vibrations of the SAI The LSS with its seismic mass boundary provided an excellent background environment for this test. This paper discusses the analysis performed on the measured transient SA3 responses and provides a summary of the results.

  18. NIRIS: The Second Generation Near-Infrared Imaging Spectro-polarimeter for the 1.6 Meter New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Cao, W.; Goode, P. R.; Ahn, K.; Gorceix, N.; Schmidt, W.; Lin, H.

    2012-12-01

    The largest aperture solar telescope, the 1.6 m New Solar Telescope (NST) has been installed at the Big Bear Solar Observatory (BBSO). To take full advantage of the NST's greatest potential, we are upgrading the routinely operational InfraRed Imaging Magnetograph (IRIM) to its second generation, the NIRIS (Near-InfraRed Imaging Spectropolarimeter). NIRIS will offer unprecedented high resolution spectroscopic and polarimetric imaging data of the solar atmosphere from the deepest photosphere through the base of the corona. With the aid of the BBSO adaptive optics (AO) system, the spatial resolution will be close to the diffraction limit of the NST. The spectroscopic cadence will reach one second, while polarimetric measurements, including Stokes I, Q, U, V profiles, remain at a better than 10 s cadence. Polarization sensitivity is expected to be reach ˜ 10-4Ic. NIRIS will cover a broad spectral range from 1.0 to 1.7μm, with particular attention to two unique spectral lines: the Fe I 1565 nm doublet has already proven to be the most sensitive to Zeeman effect for probing the magnetic field in the deepest photosphere; the He I 1083 nm multiplet is one of the best currently available diagnostic of upper chromospheric magnetic fields that allows one to map the vector field at the base of the corona. NIRIS will be built on dual Fabry-Pérot Interferometers (FPIs), each of which has an aperture of 100 mm. The larger aperture of FPIs allows the available field-of-view up to one and half minutes with a spectral power of ˜ 105.

  19. Thermal Performance of the Hubble Space Telescope (HST) Solar Array-3 During the Disturbance Verification Test (DVT)

    NASA Technical Reports Server (NTRS)

    Nguyen, Daniel H.; Skladany, Lynn M.; Prats, Benito D.; Griffin, Thomas J. (Technical Monitor)

    2001-01-01

    The Hubble Space Telescope (HST) is one of NASA's most productive astronomical observatories. Launched in 1990, the HST continues to gather scientific data to help scientists around the world discover amazing wonders of the universe. To maintain HST in the fore front of scientific discoveries, NASA has routinely conducted servicing missions to refurbish older equipment as well as to replace existing scientific instruments with better, more powerful instruments. In early 2002, NASA will conduct its fourth servicing mission to the HST. This servicing mission is named Servicing Mission 3B (SM3B). During SM3B, one of the major refurbishment efforts will be to install new rigid-panel solar arrays as a replacement for the existing flexible-foil solar arrays. This is necessary in order to increase electrical power availability for the new scientific instruments. Prior to installing the new solar arrays on HST, the HST project must be certain that the new solar arrays will not cause any performance degradations to the observatory. One of the major concerns is any disturbance that can cause pointing Loss of Lock (LOL) for the telescope. While in orbit, the solar-array temperature transitions quickly from sun to shadow. The resulting thermal expansion and contraction can cause a "mechanical disturbance" which may result in LOL. To better characterize this behavior, a test was conducted at the European Space Research and Technology Centre (ESTEC) in the Large Space Simulator (LSS) thermal-vacuum chamber. In this test, the Sun simulator was used to simulate on-orbit effects on the solar arrays. This paper summarizes the thermal performance of the Solar Array-3 (SA3) during the Disturbance Verification Test (DVT). The test was conducted between 26 October 2000 and 30 October 2000. Included in this paper are: (1) brief description of the SA3's components and its thermal design; (2) a summary of the on-orbit temperature predictions; (3) pretest thermal preparations; (4) a

  20. Observations of Solar Energetic Particle Events over the Polar Regions of the Sun at Solar Maximum with the Ulysses COSPIN High Energy Telescope and IMP-8*

    NASA Astrophysics Data System (ADS)

    McKibben, R. B.; Lopate, C.; Zhang, M.

    2002-05-01

    The High Energy Telescope (HET) of the Ulysses COSPIN experi-ment measures intensities and spectra of solar energetic particles (SEPs) with good energy and charge resolution at energies above ~30 MeV/n. During the recent passes over the north and south polar re-gions of the sun, Ulysses observed a number of solar energetic particle events associated with solar activity at low latitudes. Where IMP-8 observations were available, all SEP events observed at proton energies >~30 MeV by Ulysses in the polar regions (solar latitudes above 70 degrees) were also observed at IMP-8. HOwever peak intensities were generally lower and the onsets and rises to maximum were in general significantly slower at Ulysses than at IMP. Anisotropies during the onsets of SEP events at Ulysses were in almost all cases directed outward along the nominal Parker spiral interplanetary magnetic field, implying that the source of the particles on the field lines connecting to Ulysses was inside the orbit of Ulysses. In the late stages of events, generally four to five days after onset, particle fluxes at IMP and Ulysses were approximately equal and remained so for the remainder of the decay phase. We will summarize these and other results from both the north and south polar passes and discuss their significance for models of the ac-celeration and propagation of solar energetic particles. * This work was supported in part by NASA Contract JPL-955432 and by NASA Grant NAG5-8032.

  1. Imaging Extra-Solar Planets with an Ultra-Large Space Telescope

    NASA Technical Reports Server (NTRS)

    Taylor, Charles R.

    1998-01-01

    NASA's Origins Program is directed toward two main goals: Imaging of galactic evolution in the early universe, and searching for planets orbiting nearby stars. The Next-Generation Space Telescope (NGST), operating at low temperature with an 8-m aperture, is well designed to meet the first goal. The goal of imaging planets orbiting nearby stars is more problematic. One line of investigation has been the ULTIMA concept (Ultra-Large Telescope, Integrated Missions in Astronomy). In this report, I will lay out the resolution requirements for telescopes to achieve the imaging of extrasolar planets, and describe a modeling tool created to investigate the requirements for imaging a planet when it is very near a much brighter star.

  2. A normal incidence, high resolution X-ray telescope for solar coronal observations

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1985-01-01

    The following major activities were advanced or completed: complete design of the entire telescope assembly and fabrication of all front-end components; specification of all rocket skin sections including bulkheads, feedthroughs and access door; fabrication, curing, and delivery of the large graphite-epoxy telescope tube; engineering analysis of the primary mirror vibration test was completed and a decision made to redesign the mirror attachment to a kinematic three-point mount; detail design of the camera control, payload and housekeeping electronics; and multilayer mirror flats with 2d spacings of 50 A and 60 A.

  3. NEAT: an astrometric space telescope to search for habitable exoplanets in the solar neighborhood

    NASA Astrophysics Data System (ADS)

    Crouzier, A.; Malbet, F.; Kern, P.; Feautrier, P.; Preiss, O.; Martin, G.; Henault, F.; Stadler, E.; Lafrasse, S.; Behar, E.; Saintpe, M.; Dupont, J.; Potin, S.; Lagage, P.-O.; Cara, C.; Leger, A.; Leduigou, J.-M.; Shao, M.; Goullioud, R.

    2014-03-01

    The last decade has witnessed a spectacular development of exoplanet detection techniques, which led to an exponential number of discoveries and a great diversity of known exoplanets. However, it must be noted that the quest for the holy grail of astrobiology, i.e. a nearby terrestrial exoplanet in habitable zone around a solar type star, is still ongoing and proves to be very hard. Radial velocities will have to overcome stellar noise if there are to discover habitable planets around stars more massive than M ones. For very close systems, transits are impeded by their low geometrical probability. Here we present an alternative concept: space astrometry. NEAT (Nearby Earth Astrometric Telescope) is a concept of astrometric mission proposed to ESA which goal is to make a whole sky survey of close (less then 20 pc) planetary systems. The detection limit required for the instrument is the astrometric signal of an Earth analog (at 10 pc). Differential astrometry is a very interesting tool to detect nearby habitable exoplanets. Indeed, for F, G and K main sequence stars, the astrophysical noise is smaller than the astrometric signal, contrary to the case for radial velocities. The difficulty lies in the fact that the signal of an exo-Earth around a G type star at 10 pc is a tiny 0.3 micro arc sec, which is equivalent to a coin on the moon, seen from the Earth: the main challenge is related to instrumentation. In order to reach this specification, NEAT consists of two formation flying spacecraft at a 40m distance, one carries the mirror and the other one the focal plane. Thus NEAT has a configuration with only one optical surface: an off-axis parabola. Consequently, beamwalk errors are common to the whole field of view and have a small effect on differential astrometry. Moreover a metrology system projects young fringes on the focal plane, which can characterize the pixels whenever necessary during the mission. NEAT has two main scientific objectives: combined with

  4. Telescopes and space exploration

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Maran, S. P.

    1976-01-01

    The necessity for different types of telescopes for astronomical investigations is discussed. Major findings in modern astronomy by ground-based and spaceborne telescopes are presented. Observations of the Crab Nebula, solar flares, interstellar gas, and the Black Hole are described. The theory of the oscillating universe is explored. Operating and planned telescopes are described.

  5. The Hadean, Through a Glass Telescopically: Observations of Young Solar Analogs

    NASA Technical Reports Server (NTRS)

    Gaidos, E. J.

    1998-01-01

    Investigations into the Earth's surface environment during the Hadean eon (prior to 3.8 Ga) are hampered by the paucity of the geological and geochemical record and the relative inaccessibility of better-preserved surfaces with possibly similar early histories (i.e., Mars). One approach is to observe nearby, young solar-mass stars as analogs to the Hadean Sun and its environment. A catalog of 38 G and early K stars within 25 pc was constructed based on main-sequence status, bolometric luminosity, lack of known stellar companions within 800 AU, and coronal X-ray luminosities commensurate with the higher activity of solar-mass stars <0.8 b.y. old. Spectroscopic data support the assignment of ages of 0.2 - 0.8 Ga for most of these stars. Observations of these objects will provide insight into external forces that influenced Hadean atmosphere, ocean, and surface evolution (and potential ecosystems), including solar luminosity evolution, the flux and spectrum of solar ultraviolet radiation, the intensity of the solar wind, and the intensity and duration of a late period of heavy bombardment. The standard model of solar evolution predicts a luminosity of 0.75 solar luminosity at the end of the Hadean, implying a terrestrial surface temperature inconsistent with the presence of liquid water and motivating atmospheric greenhouse models. An alternative model fo solar evolution that invokes mass loss, constructed to explain solar Li depletion, attenuates or reverses this luminosity evolution of the atmospheres of Earth and the other terrestrial planets. This model can be tested by Li abundance measurements. The continuum emission from stellar wind plasma during significant mass loss may be detectable at millimeter and radio wavelengths. The Earth (and Moon) experienced a period of intense bombardment prior to 3.8 Ga, long after accretion was completed in the inner solar system and possibly associated with the clearing of residual planetesimals in the outer solar system. Such

  6. A deployment mechanism for the double roll-out flexible solar array on the space telescope

    NASA Technical Reports Server (NTRS)

    Cawsey, T. R.

    1982-01-01

    A roll-out flexible array which provides more than 4 kW of power for the space telescope was developed. The Array is configured as two wings. The deployment mechanism for each wing is based on flight-proven FRUSA design. Modifications have been incorporated to accommodate an increase in size and mission requirements. The assembly and operation of the deployment mechanism are described together with environmental and functional tests results.

  7. Limitations Placed on the Time Coverage, Isoplanatic Patch Size and Exposure Time for Solar Observations Using Image Selection Procedures in the Presence of Telescope Aberrations

    NASA Astrophysics Data System (ADS)

    Beckers, J. M.; Rimmele, T. R.

    1996-12-01

    Image selection, adaptive optics and post-facto image restoration methods are all techniques being used for diffraction limited imaging with ground-based solar and stellar telescopes. Often these techniques are used in a hybrid form like e.g. the application of adaptive optics and/or post-facto image restoration in combination with already good images obtained by image selection in periods of good seeing. Fried (JOSA 56, 1372, 1966), Hecquet and Coupinot (J. Optics/Paris 16, 21, 1985) and Beckers ("Solar and Stellar Granulation", Kluwer, Rutten & Severino Eds, 55, 1988) already discussed the usefulness of image selection, or the "Lucky Observer" mode, for high resolution imaging. All assumed perfect telescope optics. In case of moderate telescope aberrations image selection can still lead to diffraction limited imaging but only when the atmospheric wavefront aberration happens to compensate that of the telescope. In this "Very Lucky Observer" mode the probability of obtaining a good image is reduced over the un-aberrated case, as are the size of the isoplanatic patch and the exposure time. We describe an analysis of these effects for varying telescope aberrations. These result in a strong case for the removal of telescope aberrations either by initial implementation or by the use of slow active optics.

  8. A CATALOG OF SOLAR X-RAY PLASMA EJECTIONS OBSERVED BY THE SOFT X-RAY TELESCOPE ON BOARD YOHKOH

    SciTech Connect

    Tomczak, M.; Chmielewska, E. E-mail: chmielewska@astro.uni.wroc.pl

    2012-03-01

    A catalog of X-ray plasma ejections (XPEs) observed by the Soft X-ray Telescope on board the Yohkoh satellite has been recently developed in the Astronomical Institute of University of Wroclaw. The catalog contains records of 368 events observed in years 1991-2001 including movies and cross-references to associated events like flares and coronal mass ejections (CMEs). One hundred sixty-three XPEs out of 368 in the catalog were not reported until now. A new classification scheme of XPEs is proposed in which morphology, kinematics, and recurrence are considered. The relation between individual subclasses of XPEs and the associated events was investigated. The results confirm that XPEs are strongly inhomogeneous, responding to different processes that occur in the solar corona. A subclass of erupting loop-like XPEs is a promising candidate to be a high-temperature precursor of CMEs.

  9. Ke Alahaka Program of the Advanced Technology Solar Telescope (ATST) Mitigation Initiative Provides STEM Workshops for Native Hawaiian Students

    NASA Astrophysics Data System (ADS)

    Coopersmith, A.; Cie, D. K.; Naho`olewa, D.; Chirico, J.

    2012-12-01

    The Advanced Technology Solar Telescope (ATST) Mitigation Initiative and the Kahikina O Ka Lā Program are NSF-funded projects at the University of Hawai`i Maui College. These projects will provide instruction and activities intended to increase diversity in STEM or STEM-related careers. Ke Alahaka, the 2012 summer bridge program, was offered to Native Hawaiian high-school students who indicated an interest in STEM areas. Three STEM-content workshops were offered including Marine Science, Sustainable Energy Technology, and Computer Science and Engineering. Students attended hands-on classes three days a week for a month concentrating on only one of the three topics. On the other days, students participated in a Hawaiian Studies course designed to provide a cultural context for the STEM instruction. Focus groups and other program assessments indicate that 50% of the 60 students attending the workshops intend to pursue a STEM major during their undergraduate studies.

  10. Improving characterization and modeling of polarization effects in the calibration retarders for the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Sueoka, Stacey

    2016-05-01

    The Daniel K Inouye Solar Telescope (DKIST) will have a suite of first-light polarimetric instrumentation requiring calibration of a complex off-axis optical path. The DKIST polarization calibration process requires modeling and fitting for several optical, thermal and mechanical effects. Three dimensional polarization ray trace codes (PolarisM) allow modeling of polarization errors inherent in assuming a linear retardation as a function of angle of incidence for our calibration retarders at Gregorian and Coudé foci. Stress induced retardation effects from substrate and coating absorption, mechanical mounting stresses, and inherent polishing uniformity tolerances introduce polarization effects at significant levels. These effects require careful characterization and modeling for mitigation during design, construction, calibration and science observations. Modeling efforts, amplitude estimates and mitigation efforts will be presented for the suite of DKIST calibration optics planned for first-light operations.

  11. Configurable Aperture Space Telescope

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Bendek, Eduardo

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide straw man mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible and/or UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST

  12. Effect of Solar Exposure on the Atomic Oxygen Erosion of Hubble Space Telescope Aluminized-Teflon Thermal Shields

    NASA Technical Reports Server (NTRS)

    Guo, Aobo; Ashmead, Claire C.; deGroh, Kim K.

    2012-01-01

    When exposed to low Earth orbital (LEO) environment, external spacecraft materials degrade due to radiation, thermal cycling, micrometeoroid and debris impacts, and atomic oxygen (AO) interaction. Collisions between AO and spacecraft can result in oxidation of external spacecraft surface materials, which can lead to erosion and severe structural and/or optical property deterioration. It is therefore essential to understand the AO erosion yield (Ey), the volume loss per incident oxygen atom (cu cm/atom), of polymers to assure durability of spacecraft materials. The objective of this study was to determine whether solar radiation exposure can increase the rate of AO erosion of polymers in LEO. The material studied was a section of aluminized-Teflon (DuPont) fluorinated ethylene propylene (Al-FEP) thermal shield exposed to space on the Hubble Space Telescope (HST) for 8.25 years. Retrieved samples were sectioned from the circular thermal shield and exposed to ground laboratory thermal energy AO. The results indicate that the average Ey of the solar facing HST Al-FEP was 1.9 10(exp -24)cu cm/atom, while the average Ey of the anti-solar HST Al-FEP was 1.5 10(exp -24)cu cm/atom. The Ey of the pristine samples was 1.6- 1.7 10(exp -24)cu cm/atom. These results indicate that solar exposure affects the post-flight erosion rate of FEP in a plasma asher. Therefore, it likely affects the erosion rate while in LEO.

  13. Fine-scale structures and material flows of quiescent filaments observed by the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Yan, Xiao-Li; Xue, Zhi-Ke; Xiang, Yong-Yuan; Yang, Li-Heng

    2015-10-01

    Study of the small-scale structures and material flows associated with solar quiescent filaments is very important for understanding the formation and equilibrium of solar filaments. Using high resolution Hα data observed by the New Vacuum Solar Telescope, we present the structures of barbs and material flows along the threads across the spine in two quiescent filaments on 2013 September 29 and on 2012 November 2, respectively. During the evolution of the filament barb, several parallel tube-shaped structures formed and the width of the structures ranged from about 2.3 Mm to 3.3 Mm. The parallel tube-shaped structures merged together accompanied by material flows from the spine to the barb. Moreover, the boundary between the barb and surrounding atmosphere was very neat. The counter-streaming flows were not found to appear alternately in the adjacent threads of the filament. However, the large-scale patchy counter-streaming flows were detected in the filament. The flows in one patch of the filament have the same direction but flows in the adjacent patch have opposite direction. The patches of two opposite flows with a size of about 10″ were alternately exhibited along the spine of the filament. The velocity of these material flows ranged from 5.6 km s-1 to 15.0 km s-1. The material flows along the threads of the filament did not change their direction for about two hours and fourteen minutes during the evolution of the filament. Our results confirm that the large-scale counter-streaming flows with a certain width along the threads of solar filaments exist and are coaligned well with the threads.

  14. Doppler winds mapped around the lower thermospheric terminator of Venus: 2012 solar transit observations from the James Clerk Maxwell Telescope

    NASA Astrophysics Data System (ADS)

    Clancy, R. Todd; Sandor, Brad J.; Hoge, James

    2015-07-01

    Doppler shifts of sub-millimeter 12 CO (346 GHz) and 13 CO (330 GHz) and millimeter 12 CO (230 GHz) line absorptions were mapped around the circum-disk terminator of Venus before, during, and after the June 5, 2012 solar transit, employing the James Clerk Maxwell Telescope (JCMT). Radiative transfer analysis of the solar transit 12 CO thermal line absorptions yields cross-terminator winds in the Venus lower thermosphere (100-120 km) over the local time (LT) and latitude extent of the atmospheric limb presented by the inferior conjunction, nightside apparent disk of Venus. The unique solar transit geometry provides enhanced spatial resolution of the terminator (0.2 h in local time, LT) associated with solar illumination of this atmospheric limb region, and so provides the first characterization of the instantaneous distribution of cross terminator flow in the Venus lower thermosphere versus LT and latitude. Furthermore, by mapping Doppler winds over the nightside disk preceding and following the solar transit, we place the highly variable zonal and subsolar-to-antisolar (SSAS) circulation components of the nightside lower thermosphere (Clancy, R.T., Sandor, B.J., Moriarty-Schieven, G.H. [2012a]. Icarus 217, 794-812) in the context of the day-to-night cross terminator flow that drives this chaotic nightside dynamical regime. The solar transit observations indicate substantially supersonic (200-300 m/s) day-to-night cross terminator winds that are significantly (by 50-150 m/s) stronger over the evening versus the morning terminator. They also exhibit surprisingly large (50%) variations over a 1-2 h timescale that challenge explanation. These behaviors likely contribute to both the variability and the apparent retrograde zonal component of circulation in the Venus nightside upper atmosphere. Hence, these observations support dynamical arguments for preferential deceleration of the morning sector SSAS circulation (e.g., Alexander, M.J. [1992]. Geophys. Res. Lett. 19

  15. Telescoping in on the Microscopic Origins of the Fast Solar Wind

    NASA Astrophysics Data System (ADS)

    Cranmer, S. R.

    2011-12-01

    Despite many years of study, the basic physical processes that are responsible for producing the solar wind are not known (or at least not universally agreed upon). The fact that we have an overabundance of proposed ideas for solving the problems of coronal heating and wind acceleration can be seen as both a blessing and a curse. It is a blessing because it highlights the insight and creativity of the community, but it is a curse because we still do not know how to validate or falsify many of these ideas. Discerning the presence of any given proposed mechanism is difficult not only because measurements are limited, but also because many of the suggested processes act on a wide range of spatial scales (from centimeters to solar radii) with complex feedback effects that are not yet understood. This presentation will discuss a few key examples and controversies regarding the importance of small spatial and temporal scales in the regions where the solar wind is accelerated. For example, new observations have led to a revived debate about whether the hot plasma in the solar wind is injected dynamically from cooler regions below or whether it "evaporates" from the combined effects of radiation and conduction from above. There is also debate about how the open field lines are energized: Is the energy input from waves and turbulent eddies that propagate up from the Sun and dissipate, or is the constantly evolving magnetic carpet responsible for heating the plasma via reconnection? In some areas, traditional observational diagnostics of magnetohydrodynamic plasma properties may not be sufficient to distinguish between competing predictions. Thus, this presentation will also describe why it is probably wise to confront the truly microscopic (nonlinear, non-Maxwellian, collisionless) nature of the relevant particles and fields. Theories and measurements that "zoom in" to this level of kinetic detail have the greatest potential for improving our understanding of the origins of

  16. Improved magnetogram calibration of Solar Magnetic Field Telescope and its comparison with the Helioseismic and Magnetic Imager

    NASA Astrophysics Data System (ADS)

    Bai, X. Y.; Deng, Y. Y.; Teng, F.; Su, J. T.; Mao, X. J.; Wang, G. P.

    2014-11-01

    In this paper, we try to improve the magnetogram calibration method of the Solar Magnetic Field Telescope (SMFT). The improved calibration process fits the observed full Stokes information, using six points on the profile of Fe I 5324.18 Å line, and the analytical Stokes profiles under the Milne-Eddington atmosphere model, adopting the Levenberg-Marquardt least-squares fitting algorithm. In comparison with the linear calibration methods, which employs one point, there is a large difference in the strength of longitudinal field Bl and transverse field Bt, caused by the non-linear relationship, but the discrepancy is little in the case of inclination and azimuth. We conclude that it is better to deal with the non-linear effects in the calibration of Bl and Bt using six points. Moreover, in comparison with Solar Dynamics Observatory/Helioseismic and Magnetic Imager (HMI), SMFT has larger stray light and acquires less magnetic field strength. For vector magnetic fields in two sunspot regions, the magnetic field strength, inclination and azimuth angles between SMFT and HMI are roughly in agreement, with the linear fitted slopes of 0.73/0.7, 0.95/1.04 and 0.99/1.1. In the case of pores and quiet regions (Bl < 600 G), the fitted slopes of the longitudinal magnetic field strength are 0.78 and 0.87, respectively.

  17. Spectral researches of solar system giant planets using 2-m telescope at the Peak Terskol

    NASA Astrophysics Data System (ADS)

    Kuznyetsova, Yu.; Matsiaka, O.; Shliakhetskaya, Ya.; Krushevska, V.; Vidmachenko, A.; Andreev, M.; Sergeev, A.

    2014-03-01

    Results of observations, processing and an analysis of Uranus and Neptune spectra obtained from 2001-2012 are presented. Observations were carried out at the peak Terskol observatory (Northern Caucasus, Russia) using the coude échelle high-resolution spectrograph and the 2-meter mirror telescope Zeiss-2000. Data were obtained with spectral resolution R=45000 within 3700 - 9000 Ångstroms range. Combination of the specified equipment and spectral resolution allowed to solve the following problems: detecting of contribution of Raman scattering in planet spectra; calculating of spectral geometric albedo Ag taking into account of Raman scattering; research of long- and short-periodic variations for Ag and intensities of some chosen spectral lines; calculations of vertical structure parameters of giant planet atmospheres; search of ammonia NH3 lines in planet spectra. A comparative analysis of Uranus and Neptune spectra for different years was done.

  18. Preliminary design analysis for the solar optical telescope main mirror actuator

    NASA Technical Reports Server (NTRS)

    Dunn, R. B.

    1977-01-01

    The resolution of the SOT Gregorian telescope was maintained if the conic foci of the elliptical secondary and parabolic primary were made to coincide within plus or minus 38 microns across the prime focus plane and to within 5 microns in focus. An error in coincidence across the focal plane caused all point images to show additional coma with all the comatic tails pointing in the same direction. An error in focus became magnified by the square of the magnification of the secondary and simply increased the diameter of the point source. Offsetting or rastering the sun may be accomplished by swinging the primary in an arc about the point of coincidence of the conic foci so long as the coincidence is kept to within the tolerance stated.

  19. High-Resolution Observations of Limb Spicules from the Transition Region and Coronal Explorer and the Swedish Solar Telescope

    NASA Astrophysics Data System (ADS)

    Westbrook, Owen; Pasachoff, J. M.; Kozarev, K. A.; Yee, J.

    2006-06-01

    We observed spicules at the solar limb with TRACE and the Swedish Solar Telescope on La Palma for four-day intervals in 2004 and 2005 as well as simultaneous SUMER/SOHO observations in 2004. We are evaluating the apparent motion of individual spicules to infer chromospheric heat flow and mass transfer and to improve the statistics of basic spicule parameters including height, velocity, and inclination. We use the highest available cadence to measure height vs. time curves, using parabolic and linear fits to extract average maximum heights and apparent velocities of rise and descent. Our semiautomatic measurements of several dozen individual Ca II H spicules find an average height of 7610 ± 20 km based on ballistic fits and 7990 ± 80 km based on linear fits, with average velocities 8.7 ± 0.2 km/s ascending and 5.6 ± 0.1 km/s descending. Our TRACE data include observations at 1600 Å, 171 Å, and Lyman-alpha; our SST observations using Lockheed Martin's SOUP include H-alpha (four wing wavelengths to measure velocities) and Ca II H. We are investigating the relationships between spicule height and intensity to search for evidence of sheathed vs. monolithic spicule models, and analyzing ionization fadeout vs. velocity reversals for limiting spicule heights. A third yearly session of simultaneous TRACE/SST observations is scheduled.We thank S. P. Souza, B. De Pontieu, L. Golub, and J. Cirtain; earlier collaboration by D. B. Seaton, J. P. Shoer, D. L. Butts, and J. W. Gangestad; as well as the Royal Swedish Academy of Sciences. Support was provided by a NASA/Solar-Terrestrial Guest Investigator Grant for TRACE (NNG04GK44G), from Sigma Xi, and from the NASA/Massachusetts Space Grant.

  20. A two-dimensional spectropolarimeter as a first-light instrument for the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Schmidt, Wolfgang; Bell, Alexander; Halbgewachs, Clemens; Heidecke, Frank; Kentischer, Thomas J.; von der Lühe, Oskar; Scheiffelen, Thomas; Sigwarth, Michael

    2014-07-01

    The Visible Tunable Filter (VTF) is a narrowband tunable filter system for imaging spectropolarimetry. The instrument will be one of the first-light instruments of the Daniel K. Inouye Solar Telescope (DKIST) that is currently under construction on Maui (Hawaii). The DKIST has a clear aperture of 4 meters. The VTF is being developed by the Kiepenheuer Institut für Sonnenphysik in Freiburg, as a German contribution to the DKIST. The VTF is designed as a diffraction-limited narrowband tunable instrument for Stokes spectro-polarimetry in the wavelength range between 520 and 860 nm. The instrument uses large-format Fabry-Perot interferometers (Etalons) as tunable monochromators with clear apertures of about 240 mm. To minimize the influence of gravity on the interferometer plates, the Fabry-Perots are placed horizontally. This implies a complex optical design and a three-dimensional support structure instead of a horizontal optical bench. The VTF has a field of view of one arc minute squared. With 4096x4096 pixel detectors, one pixel corresponds to an angle of 0.014" on the sky (10 x 10 km on the Sun). The spectral resolution is 6 pm at a wavelength of 600 nm. One 2Dspectrum with a polarimetric sensitivity of 5E-3 will be recorded within 13 seconds. The wavelength range of the VTF includes a number of important spectral lines for the measurement flows and magnetic fields in the atmosphere of the Sun. The VTF uses three identical large-format detectors, two for the polarimetric measurements, and one for broadband filtergrams. The main scientific observables of the VTF are Stokes polarimetric images to retrieve the magnetic field configuration of the observed area, Doppler images to measure the line-of-sight flow in the solar photosphere, and monochromatic intensity filtergrams to study higher layers of the solar atmosphere.

  1. The spectrometer/telescope for imaging X-rays on board the ESA Solar Orbiter spacecraft

    NASA Astrophysics Data System (ADS)

    Krucker, S.; Benz, A. O.; Hurford, G. J.; Arnold, N. G.; Orleański, P.; Gröbelbauer, H.-P.; Casadei, D.; Kobler, S.; Iseli, L.; Wiehl, H. J.; Csillaghy, A.; Etesi, L.; Hochmuth, N.; Battaglia, M.; Bednarzik, M.; Resanovic, R.; Grimm, O.; Viertel, G.; Commichau, V.; Howard, A.; Meuris, A.; Limousin, O.; Brun, S.; Vilmer, N.; Skup, K. R.; Graczyk, R.; Stolarski, M.; Michalska, M.; Nowosielski, W.; Cichocki, A.; Mosdorf, M.; Seweryn, K.; Białek, A.; Sylwester, J.; Kowalinski, M.; Mrozek, T.; Podgorski, P.; Mann, G.; Önel, H.; Aurass, H.; Bauer, S.-M.; Bittner, W.; Dionies, F.; Paschke, J.; Plüschke, D.; Popow, E.; Rendtel, J.; Warmuth, A.; Woche, M.; Wolter, D.; Van Beek, H. F.; Farnik, F.; Lin, R. P.

    2013-12-01

    Solar Orbiter is a Sun-observing mission led by the European Space Agency, addressing the interaction between the Sun and the heliosphere. It will carry ten instruments, among them the X-ray imaging spectrometer STIX. STIX will determine the intensity, spectrum, timing, and location of thermal and accelerated electrons near the Sun through their bremsstrahlung X-ray emission. This report gives a brief overview of the STIX scientific goals and covers in more detail the instrument design and challenges.

  2. Simultaneous observations of solar plage with the solar extreme ultraviolet rocket telescope and spectrograph (SERTS), the VLA, and the Kitt Peak magnetograph

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffrey W.; Davila, Joseph M.; Thompson, William T.; Thomas, Roger J.; Holman, Gordon D.; Gopalswamy, N.; White, Stephen M.; Kundu, Mukul R.; Jones, Harrison P.

    1993-01-01

    We obtained simultaneous images of solar plage on 1991, May 7 with SERTS, the VLA,4 and the NASA/National Solar Observatory spectromagnetograph at the NSO/Kitt Peak Vacuum Telescope. Using intensity ratios of Fe XVI to Fe XV emission lines, we find that the coronal plasma temperature is (2.3-2.9) x 10 exp 6 K throughout the region. The column emission measure ranges from 2.5 x 10 exp 27 to l.3 x 10 exp 28 cm exp -5. The calculated structure and intensity of the 20 cm wavelength thermal bremsstrahlung emission from the hot plasma observed by SERTS is quite similar to the observed structure and intensity of the 20 cm microwave emission observed by the VLA. Using the Meyer (1991, 1992) revised coronal iron abundance, we find no evidence either for cool absorbing plasma or for contributions from thermal gyroemission. Using the observed microwave polarization and the SERTS plasma parameters, we calculate a map of the coronal longitudinal magnetic field. The resulting values, about 30-60 G, are comparable to extrapolated values of the potential field at heights of 5000 and 10,000 km.

  3. Resolving the Fan-spine Reconnection Geometry of a Small-scale Chromospheric Jet Event with the New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Zeng, Zhicheng; Chen, Bin; Ji, Haisheng; Goode, Philip R.; Cao, Wenda

    2016-03-01

    Jets are ubiquitously present in both quiet and active regions on the Sun. They are widely believed to be driven by magnetic reconnection. A fan-spine structure has been frequently reported in some coronal jets and flares, and has been regarded as a signature of ongoing magnetic reconnection in a topology consisting of a magnetic null connected by a fan-like separatrix surface and a spine. However, for small-scale chromospheric jets, clear evidence of such structures is rather rare, although it has been implied in earlier works that showed an inverted-Y-shaped feature. Here we report high-resolution (0.″16) observations of a small-scale chromospheric jet obtained by the New Solar Telescope (NST) using 10830 Å filtergrams. Bi-directional flows were observed across the separatrix regions in the 10830 Å images, suggesting that the jet was produced due to magnetic reconnection. At the base of the jet, a fan-spine structure was clearly resolved by the NST, including the spine and the fan-like surface, as well as the loops before and after the reconnection. A major part of this fan-spine structure, with the exception of its bright footpoints and part of the base arc, was invisible in the extreme ultraviolet and soft X-ray images (observed by the Atmosphere Imaging Assembly and the X-Ray Telescope, respectively), indicating that the reconnection occurred in the upper chromosphere. Our observations suggest that the evolution of this chromospheric jet is consistent with a two-step reconnection scenario proposed by Török et al.

  4. WIDESPREAD NANOFLARE VARIABILITY DETECTED WITH HINODE/X-RAY TELESCOPE IN A SOLAR ACTIVE REGION

    SciTech Connect

    Terzo, Sergio; Reale, Fabio; Miceli, Marco; Klimchuk, James A.; Kano, Ryouhei; Tsuneta, Saku

    2011-08-01

    It is generally agreed that small impulsive energy bursts called nanoflares are responsible for at least some of the Sun's hot corona, but whether they are the explanation for most of the multimillion-degree plasma has been a matter of ongoing debate. We present here evidence that nanoflares are widespread in an active region observed by the X-Ray Telescope on board the Hinode mission. The distributions of intensity fluctuations have small but important asymmetries, whether taken from individual pixels, multipixel subregions, or the entire active region. Negative fluctuations (corresponding to reduced intensity) are greater in number but weaker in amplitude, so that the median fluctuation is negative compared to a mean of zero. Using Monte Carlo simulations, we show that only part of this asymmetry can be explained by Poisson photon statistics. The remainder is explainable through a tendency for exponentially decreasing intensity, such as would be expected from a cooling plasma produced from a nanoflare. We suggest that nanoflares are a universal heating process within active regions.

  5. Thermal Properties of A Solar Coronal Cavity Observed with the X-Ray Telescope on Hinode

    NASA Technical Reports Server (NTRS)

    Reeves, Katherine K.; Gibson, Sarah E.; Kucera, Theresa A.; Hudson, Hugh S.; Kano, Ryouhei

    2011-01-01

    Coronal cavities are voids in coronal emission often observed above high latitude filament channels. Sometimes, these cavities have areas of bright X-ray emission in their centers. In this study, we use data from the X-ray Telescope (XRT) on the Hinode satellite to examine the thermal emission properties of a cavity observed during July 2008 that contains bright X-ray emission in its center. Using ratios of XRT filters, we find evidence for elevated temperatures in the cavity center. The area of elevated temperature evolves from a ring-shaped structure at the beginning of the observation, to an elongated structure two days later, finally appearing as a compact round source four days after the initial observation. We use a morphological model to fit the cavity emission, and find that a uniform structure running through the cavity does not fit the observations well. Instead, the observations are reproduced by modeling several short cylindrical cavity "cores" with different parameters on different days. These changing core parameters may be due to some observed activity heating different parts of the cavity core at different times. We find that core temperatures of 1.75 MK, 1.7 MK and 2.0 MK (for July 19, July 21 and July 23, respectively) in the model lead to structures that are consistent with the data, and that line-of-sight effects serve to lower the effective temperature derived from the filter ratio.

  6. The Substructure of the Solar Corona Observed in the Hi-C Telescope

    NASA Technical Reports Server (NTRS)

    Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.

    2014-01-01

    In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore calculate how the intensity scales from a low-resolution (AIA) pixels to high-resolution (Hi-C) pixels for both the dynamic events and "background" emission (meaning, the steady emission over the 5 minutes of data acquisition time). We find there is no evidence of substructure in the background corona; the intensity scales smoothly from low-resolution to high-resolution Hi-C pixels. In transient events, however, the intensity observed with Hi-C is, on average, 2.6 times larger than observed with AIA. This increase in intensity suggests that AIA is not resolving these events. This result suggests a finely structured dynamic corona embedded in a smoothly varying background.

  7. Discovery of Finely Structured Dynamic Solar Corona Observed in the Hi-C Telescope

    NASA Technical Reports Server (NTRS)

    Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.

    2014-01-01

    In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e. have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70 percent of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  8. DISCOVERY OF FINELY STRUCTURED DYNAMIC SOLAR CORONA OBSERVED IN THE Hi-C TELESCOPE

    SciTech Connect

    Winebarger, Amy R.; Cirtain, Jonathan; Savage, Sabrina; Alexander, Caroline; Golub, Leon; DeLuca, Edward; Schuler, Timothy

    2014-05-20

    In the Summer of 2012, the High-resolution Coronal Imager (Hi-C) flew on board a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e., have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70% of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  9. HILT - A heavy ion large area proportional counter telescope for solar and anomalous cosmic rays

    NASA Technical Reports Server (NTRS)

    Klecker, Berndt; Hovestadt, Dietrich; Scholer, M.; Arbinger, H.; Ertl, M.; Kaestle, H.; Kuenneth, E.; Laeverenz, P.; Seidenschwang, E.; Blake, J. B.

    1993-01-01

    The HILT sensor has been designed to measure heavy ion elemental abundances, energy spectra, and direction of incidence in the mass range from He to Fe and in the energy range 4 to 250 MeV/nucleon. With its large geometric factor of 60 sq cm sr the sensor is optimized to provide compositional and spectral measurements for low intensity cosmic rays (i.e. for small solar energetic particle events and for the anomalous component of cosmic rays). The instrument combines a large area ion drift chamber-proportional counter system with two arrays of 16 Li-drift solid state detectors and 16 CsI crystals. The multi dE/dx-E technique provides a low background mass and energy determination. The sensor also measures particle direction. Combining these measurements with the information on the spacecraft position and attitude in the low-altitude polar orbit, it will be possible to infer the ionic charge of the ions from the local cutoff of the Earth's magnetic field. The ionic charge in this energy range is of particular interest because it provides unique clues to the origin of these particles and has not been investigated systematically so far. Together with the other instruments on board SAMPEX (LEICA, MAST, and PET), a comprehensive measurement of the entire solar and anomalous particle population will be achieved.

  10. MASS AND ENERGY OF ERUPTING SOLAR PLASMA OBSERVED WITH THE X-RAY TELESCOPE ON HINODE

    SciTech Connect

    Lee, Jin-Yi; Moon, Yong-Jae; Kim, Kap-Sung; Raymond, John C.; Reeves, Katharine K.

    2015-01-10

    We investigate seven eruptive plasma observations by Hinode/XRT. Their corresponding EUV and/or white light coronal mass ejection features are visible in some events. Five events are observed in several passbands in X-rays, which allows for the determination of the eruptive plasma temperature using a filter ratio method. We find that the isothermal temperatures vary from 1.6 to 10 MK. These temperatures are an average weighted toward higher temperature plasma. We determine the mass constraints of eruptive plasmas by assuming simplified geometrical structures of the plasma with isothermal plasma temperatures. This method provides an upper limit to the masses of the observed eruptive plasmas in X-ray passbands since any clumping causes the overestimation of the mass. For the other two events, we assume the temperatures are at the maximum temperature of the X-ray Telescope (XRT) temperature response function, which gives a lower limit of the masses. We find that the masses in XRT, ∼3 × 10{sup 13}-5 × 10{sup 14} g, are smaller in their upper limit than the total masses obtained by LASCO, ∼1 × 10{sup 15} g. In addition, we estimate the radiative loss, thermal conduction, thermal, and kinetic energies of the eruptive plasma in X-rays. For four events, we find that the thermal conduction timescales are much shorter than the duration of eruption. This result implies that additional heating during the eruption may be required to explain the plasma observations in X-rays for the four events.

  11. Development of the remote diagnosis system of the solar radio telescope

    NASA Astrophysics Data System (ADS)

    Kawashima, Susumu; Shinohara, Noriyuki; Sekiguchi, Hideaki

    2005-04-01

    "The remote diagnosis system" which we have developed is the one to monitor the operation conditions of two systems of solar radio observation (Nobeyama Radioheliograph and Nobeyama Radio Polarimeters) from the remote place. Under the condition of very limited human power, it is necessary to minimize the load of observers without degrading data quality. Thereupon, we have mulled measures to alleviate the load of observers, and worked out "the remote diagnosis system" which enables us to monitor the operation conditions and detect troubles, if any, in early stages, even if we are away from the observatory building where control system are concentrated. The plan was materialized by adopting an access through the INTERNET to the section where needed information for diagnosis is gathered.

  12. Multi-wavelength Study of Transition Region Penumbral Bright Dots Using Interface Region Imaging Spectrograph and New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Deng, Na; Yurchyshyn, Vasyl B.; Tian, Hui; Kleint, Lucia; Liu, Chang; Xu, Yan; Wang, Haimin

    2016-05-01

    Using high-resolution transition region (TR) observations taken by the Interface Region Imaging Spectrograph (IRIS) mission, Tian et al. (2014b) revealed numerous short-lived sub-arcsecond bright dots above sunspots (mostly located in the penumbrae), which indicate yet unexplained small-scale energy releases. Moreover, whether these TR brightenings have any signature in the lower atmosphere and how they are formed are still not fully resolved. This paper presents a study of these bright dots using a coordinated observation of a near disk-center sunspot with IRIS and the 1.6 m New Solar Telescope (NST) at the Big Bear Solar Observatory. NST provides high-resolution chromospheric and photospheric observations with narrow-band H-alpha imaging spectroscopy and broad-band TiO images, respectively, complementary to IRIS TR observations. A total of 2692 TR penumbral bright dots are identified from a 37-minute time series of IRIS 1400 A slitjaw images. Their locations tend to be associated more with downflowing and darker fibrils in the chromosphere, and weakly associated with bright penumbral features in the photosphere. However, temporal evolution analyses of the dots show that there is no consistent and convincing brightening response in the chromosphere. These results are compatible with a formation mechanism of the TR penumbral bright dots by falling plasma from coronal heights along more vertical and dense magnetic loops. The dots may also be produced by small-scale impulsive magnetic reconnection taking place sufficiently high in the atmosphere that has no energy release in the chromosphere.Acknowledgement: This work is mainly supported by NASA grants NNX14AC12G, NNX13AF76G and by NSF grant AGS 1408703.

  13. Rantiga Osservatorio, Tincana (MPC-D03): Observations and searching for small Solar System bodies using a remotely controlled telescope

    NASA Astrophysics Data System (ADS)

    Zolnowski, M.; Kusiak, M.

    2014-07-01

    Rantiga Osservatorio is the first Polish project aimed at discovering and observing small solar-system objects, including near-Earth objects and comets. The observatory officially started in March 2012, as a result of cooperation between two amateur astronomers: Michal Zolnowski and Michal Kusiak. Subsequently, our station received official designation D03 assigned by the IAU's Minor Planet Center. The equipment is installed in northern Italy, on the border between Emilia-Romagna and Tuscany, in the small village of Tincana at an altitude of 643 m. The heart of the observatory is a 0.4-meter reflector f/3.8, mounted on Paramount ME and CCD camera SBIG STX-16803. The equipment is controlled by an industrial computer connected to the internet, and software allowing for automation and remote control of the telescope from Poland. It is also the first Polish amateur observatory which has been used for the discoveries of potentially new asteroids since 1949. Between 2012 and 2013, Rantiga Osservatorio made it possible to submit over 13,000 astrometric measurements of 3,500 asteroids, and we also reported 1,151 candidates for potentially unknown objects. During our presentation, we would like to introduce details of design and several enhancements to allow a convenient and safe way to control an observing session from anywhere in the world using a smartphone.

  14. Utilizing 1-meter Landcover Data to Assess Associations between Green Space and Stress

    EPA Science Inventory

    Purpose: When using remotely-sensed data to study health, researchers must identify an appropriate spatial resolution to capture potential exposures. Investigations into urban green space are often limited by the unavailability of fine-scale landcover data. We analyzed 1-meter gr...

  15. Determination of the structure and heating mechanisms of coronal loops from soft X-ray observations with the solar probe. [grazing incidence telescope

    NASA Technical Reports Server (NTRS)

    Davis, J. M.; Krieger, A. S.

    1978-01-01

    High resolution soft X-ray imaging from the solar probe is justified in terms of the expected scientific returns which include the determination of the temperature and density structure of a coronal loop. The advantages of the grazing incidence telescope over the multiple pinhole camera are discussed. An instrument package is described which includes a grazing incidence mirror, a thermal prefilter, a three position filter wheel and a focal plane detector baselined as an 800 by 800 back-illuminated charge coupled device. The structural assembly together with the data processing equipment would draw heavily on the designs being developed for the Solar Polar Mission.

  16. The 26 December 2001 Solar Event Responsible for GLE63. I. Observations of a Major Long-Duration Flare with the Siberian Solar Radio Telescope

    NASA Astrophysics Data System (ADS)

    Grechnev, V. V.; Kochanov, A. A.

    2016-10-01

    Ground level enhancements (GLEs) of cosmic-ray intensity occur, on average, once a year. Because they are rare, studying the solar sources of GLEs is especially important to approach understanding their origin. The SOL2001-12-26 eruptive-flare event responsible for GLE63 seems to be challenging in some aspects. Deficient observations limited our understanding of it. Analysis of additional observations found for this event provided new results that shed light on the flare configuration and evolution. This article addresses the observations of this flare with the Siberian Solar Radio Telescope (SSRT). Taking advantage of its instrumental characteristics, we analyze the detailed SSRT observations of a major long-duration flare at 5.7 GHz without cleaning the images. The analysis confirms that the source of GLE63 was associated with an event in active region 9742 that comprised two flares. The first flare (04:30 - 05:03 UT) reached a GOES importance of about M1.6. Two microwave sources were observed, whose brightness temperatures at 5.7 GHz exceeded 10 MK. The main flare, up to an importance of M7.1, started at 05:04 UT and occurred in strong magnetic fields. The observed microwave sources reached a brightness temperature of about 250 MK. They were not static. After appearing on the weaker-field periphery of the active region, the microwave sources moved toward each other nearly along the magnetic neutral line, approaching the stronger-field core of the active region, and then moved away from the neutral line like expanding ribbons. These motions rule out an association of the non-thermal microwave sources with a single flaring loop.

  17. SYSTEMATIC MOTION OF FINE-SCALE JETS AND SUCCESSIVE RECONNECTION IN SOLAR CHROMOSPHERIC ANEMONE JET OBSERVED WITH THE SOLAR OPTICAL TELESCOPE/HINODE

    SciTech Connect

    Singh, K. A. P.; Nishida, K.; Shibata, K.; Isobe, H.

    2012-11-20

    The Solar Optical Telescope (SOT) on board Hinode allows observations with high spatiotemporal resolution and stable image quality. A {lambda}-shaped chromospheric anemone jet was observed in high resolution with SOT/Hinode. We found that several fine-scale jets were launched from one end of the footpoint to the other. These fine-scale jets ({approx}1.5-2.5 Mm) gradually move from one end of the footpoint to the other and finally merge into a single jet. This process occurs recurrently, and as time progresses the jet activity becomes more and more violent. The time evolution of the region below the jet in Ca II H filtergram images taken with SOT shows that various parts (or knots) appear at different positions. These bright knots gradually merge into each other during the maximum phase. The systematic motion of the fine-scale jets is observed when different knots merge into each other. Such morphology would arise due to the emergence of a three-dimensional twisted flux rope in which the axial component (or the guide field) appears in the later stages of the flux rope emergence. The partial appearance of the knots could be due to the azimuthal magnetic field that appears during the early stage of the flux rope emergence. If the guide field is strong and reconnection occurs between the emerging flux rope and an ambient magnetic field, this could explain the typical feature of systematic motion in chromospheric anemone jets.

  18. Systematic Motion of Fine-scale Jets and Successive Reconnection in Solar Chromospheric Anemone Jet Observed with the Solar Optical Telescope/Hinode

    NASA Astrophysics Data System (ADS)

    Singh, K. A. P.; Isobe, H.; Nishida, K.; Shibata, K.

    2012-11-01

    The Solar Optical Telescope (SOT) on board Hinode allows observations with high spatiotemporal resolution and stable image quality. A λ-shaped chromospheric anemone jet was observed in high resolution with SOT/Hinode. We found that several fine-scale jets were launched from one end of the footpoint to the other. These fine-scale jets (~1.5-2.5 Mm) gradually move from one end of the footpoint to the other and finally merge into a single jet. This process occurs recurrently, and as time progresses the jet activity becomes more and more violent. The time evolution of the region below the jet in Ca II H filtergram images taken with SOT shows that various parts (or knots) appear at different positions. These bright knots gradually merge into each other during the maximum phase. The systematic motion of the fine-scale jets is observed when different knots merge into each other. Such morphology would arise due to the emergence of a three-dimensional twisted flux rope in which the axial component (or the guide field) appears in the later stages of the flux rope emergence. The partial appearance of the knots could be due to the azimuthal magnetic field that appears during the early stage of the flux rope emergence. If the guide field is strong and reconnection occurs between the emerging flux rope and an ambient magnetic field, this could explain the typical feature of systematic motion in chromospheric anemone jets.

  19. ATST telescope mount: telescope of machine tool

    NASA Astrophysics Data System (ADS)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  20. A small-scale H-alpha eruption in the north polar limb of the Sun observed by New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Kim, Y.-H.; Park, Y.-D.; Bong, S.-Ch.; Cho, K.-S.; Chae, J.

    2010-12-01

    The 1.6 m New Solar Telescope (NST) at Big Bear Solar Observatory (BBSO) is the recently constructed world's largest optical solar telescope on the ground. Up to date it has been partly operated, i.e., observations that have been made at Nasmyth focus only without adaptive optic (AO) system. The AO system is planned to be installed this summer. Using the NST, we have observed the north polar limb in H-alpha line center wavelength on 2009 August 26. A remarkable H-alpha eruption was observed from 18:20 UT to 18:45 UT with a relatively slower speed of about 10 km/s in its early stage. The eruption was then slightly accelerated up to 20-30 km/s and appeared to be deflected along the pre-existing magnetic field. The eruption also showed several interesting characteristics such as bifurcation, rotation, horizontal oscillation, and direction and thickness changes of its structure during its evolution. In this talk, we report on the observational properties of the small-scale eruption observed by the NST and discuss their implications for magnetic reconnection.

  1. Study of some characteristics of large-scale solar magnetic fields during the global field polarity reversal according to observations at the telescope-magnetograph Kislovodsk Observatory

    NASA Astrophysics Data System (ADS)

    Tlatov, A. G.; Dormidontov, D. V.; Kirpichev, R. V.; Pashchenko, M. P.; Shramko, A. D.; Peshcherov, V. S.; Grigoryev, V. M.; Demidov, M. L.; Svidskii, P. M.

    2015-12-01

    The data obtained at the Routine Prediction Solar Telescope (RPST), which was designed and manufactured mainly at ISTP SB RAS and was installed at Kislovodsk MAS MAO RAN. The telescope is used to register weak large-scale fields throughout the solar disk with an angular resolution about 30 arcsec. The means square error of measurements is ~0.44 G in this case. The MAS MAO RPST observations have been compared with the magnetic fields and other solar activity parameters measured at different ground and space observatories. It was shown that the characteristics of the magnetic fields of active regions and largescale magnetic fields are interrelated. The evolution of the polar magnetic field was considered, and it was shown that the polarity in cycle 24 was reversed in June-July 2013 in the Northern Hemisphere and in December 2014-January 2015 in the Southern Hemisphere. At the same time, it has been noted that the magnetic field strength in the Northern Hemisphere at latitudes higher than 50° varied around zero in 2014, which indicates that the global field sign was reversed for a long time in the Northern Hemisphere.

  2. Depth-dependent global properties of a sunspot observed by Hinode using the Solar Optical Telescope/Spectropolarimeter

    NASA Astrophysics Data System (ADS)

    Tiwari, Sanjiv K.; van Noort, Michiel; Solanki, Sami K.; Lagg, Andreas

    2015-11-01

    Context. For the past two decades, the three-dimensional structure of sunspots has been studied extensively. A recent improvement in the Stokes inversion technique prompts us to revisit the depth-dependent properties of sunspots. Aims: In the present work, we aim to investigate the global depth-dependent thermal, velocity, and magnetic properties of a sunspot, as well as the interconnection between various local properties. Methods: We analysed high-quality Stokes profiles of the disk-centred, regular, leading sunspot of NOAA AR 10933, acquired by the Solar Optical Telescope/Spectropolarimeter (SOT/SP) on board the Hinode spacecraft. To obtain depth-dependent stratification of the physical parameters, we used the recently developed, spatially coupled version of the SPINOR inversion code. Results: First, we study the azimuthally averaged physical parameters of the sunspot. We find that the vertical temperature gradient in the lower- to mid-photosphere is at its weakest in the umbra, while it is considerably stronger in the penumbra, and stronger still in the spot's surroundings. The azimuthally averaged field becomes more horizontal with radial distance from the centre of the spot, but more vertical with height. At continuum optical depth unity, the line-of-sight velocity shows an average upflow of ~300 ms-1 in the inner penumbra and an average downflow of ~1300 ms-1 in the outer penumbra. The downflow continues outside the visible penumbral boundary. The sunspot shows, at most, a moderate negative twist of <5° at log (τ) = 0, which increases with height. The sunspot umbra and the spines of the penumbra show considerable similarity with regard to their physical properties, albeit with some quantitative differences (weaker, somewhat more horizontal fields in spines, commensurate with their location being further away from the sunspot's core). The temperature shows a general anti-correlation with the field strength, with the exception of the heads of penumbral

  3. Optical observations of comet 67P/Churyumov-Gerasimenko with the Nordic Optical Telescope. Comet activity before the solar conjunction

    NASA Astrophysics Data System (ADS)

    Zaprudin, B.; Lehto, H. J.; Nilsson, K.; Pursimo, T.; Somero, A.; Snodgrass, C.; Schulz, R.

    2015-11-01

    Context. 67P/Churyumov-Gerasimenko (67P) is a short-period Jupiter-family comet that was chosen as a target for the Rosetta mission by the European Space Agency (ESA). Monitoring of 67P with the Nordic Optical Telescope (NOT; La Palma, Spain) intends to aid this mission by providing ground-based reference information about the overall activity of the target and its astrometric position before the rendezvous. One motivation for our observations was to monitor sudden major increases in activity because they might have affected the Rosetta mission planning. None were observed. Ground-based photometric observations register the global activity of the comet, while the Rosetta spacecraft mostly measures local events. These data combined can lead to new insights into the comet behavior. Aims: The aim of this work is to perform the photometric and the astrometric monitoring of comet 67P with the NOT and to compare the results with the latest predictions for its position and activity. A new method of fitting extended-source components to the target surface brightness distribution was developed and applied to the data to estimate the size and contribution of the coma to the total brightness of the target. Methods: Comet 67P was monitored by the NOT in service mode during the period between 12.5.2013 and 11.11.2014. The very first observations were performed in the V band alone, but in the latest observations, the R band was used as well to estimate the color and nature of activity of the target. We applied a new method for estimating the coma size by deconvolving the point spread function profile from the image, which used Markov chain Monte Carlo and Bayesian statistics. This method will also be used for coma size estimations in further observations after the solar conjunction of 67P. Results: Photometric magnitudes in two colors were monitored during the period of observations. At the end of April 2014, the beginning of activity was observed. In late September 2014, a

  4. A New Era in Solar Thermal-IR Astronomy: the NSO Array Camera (NAC) on the McMath-Pierce Telescope

    NASA Astrophysics Data System (ADS)

    Ayres, T.; Penn, M.; Plymate, C.; Keller, C.

    2008-09-01

    The U.S. National Solar Observatory Array Camera (NAC) is a cryogenically cooled 1Kx1K InSb ``Aladdin" array that recently became operational at the McMath-Pierce facility on Kitt Peak, a high dry site in the southwest U.S. (Arizona). The new camera is similar to those already incorporated into instruments on nighttime telescopes, and has unprecedented sensitivity, low noise, and excellent cosmetics compared with the Amber Engineering (AE) device it replaces. (The latter was scavenged from a commercial surveillance camera in the 1990's: only 256X256 format, high noise, and annoying flatfield structure). The NAC focal plane is maintained at 30 K by a mechanical closed-cycle helium cooler, dispensing with the cumbersome pumped--solid-N2 40 K system used previously with the AE camera. The NAC linearity has been verified for exposures as short as 1 ms, although latency in the data recording holds the maximum frame rate to about 8 Hz (in "streaming mode"). The camera is run in tandem with the Infrared Adaptive Optics (IRAO) system. Utilizing a 37-actuator deformable mirror, IRAO can--under moderate seeing conditions--correct the telescope image to the diffraction limit longward of 2.3 mu (if a suitable high contrast target is available: the IR granulation has proven too bland to reliably track). IRAO also provides fine control over the solar image for spatial scanning in long-slit mode with the 14 m vertical "Main" spectrograph (MS). A 1'X1' area scan, with 0.5" steps orthogonal to the slit direction, requires less than half a minute, much shorter than p-mode and granulation evolution time scales. A recent engineering test run, in April 2008, utilized NAC/IRAO/MS to capture the fundamental (4.6 mu) and first-overtone (2.3 mu) rovibrational bands of CO, including maps of quiet regions, drift scans along the equatorial limbs (to measure the off-limb molecular emissions), and imaging of a fortuitous small sunspot pair, a final gasp, perhaps, of Cycle 23. Future work with

  5. Space Telescope.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This pamphlet describes the Space Telescope, an unmanned multi-purpose telescope observatory planned for launch into orbit by the Space Shuttle in the 1980s. The unique capabilities of this telescope are detailed, the major elements of the telescope are described, and its proposed mission operations are outlined. (CS)

  6. Solar astronomy

    NASA Technical Reports Server (NTRS)

    Rosner, Robert; Noyes, Robert; Antiochos, Spiro K.; Canfield, Richard C.; Chupp, Edward L.; Deming, Drake; Doschek, George A.; Dulk, George A.; Foukal, Peter V.; Gilliland, Ronald L.

    1991-01-01

    An overview is given of modern solar physics. Topics covered include the solar interior, the solar surface, the solar atmosphere, the Large Earth-based Solar Telescope (LEST), the Orbiting Solar Laboratory, the High Energy Solar Physics mission, the Space Exploration Initiative, solar-terrestrial physics, and adaptive optics. Policy and related programmatic recommendations are given for university research and education, facilitating solar research, and integrated support for solar research.

  7. Hubble Space Telescope overview

    NASA Technical Reports Server (NTRS)

    Polidan, Ronald S.

    1991-01-01

    A general overview of the performance and current status of the Hubble Space Telescope is presented. Most key spacecraft subsystems are operating well, equaling or exceeding specifications. Spacecraft thermal properties, power, and communications, are superb. The only spacecraft subsystem to have failed, a gyro, is briefly discussed. All science instruments are functioning extremely well and are returning valuable scientific data. The two significant problems effecting the Hubble Space Telescope science return, the pointing jitter produced by thermally induced bending of the solar array wings and the optical telescope assembly spherical aberration, are discussed and plans to repair both problems are mentioned. The possible restoration of full optical performance of the axial scientific instruments through the use of the Corrective Optics Space Telescope Axial Replacement, currently under study for the 1993 servicing mission, is discussed. In addition, an overview of the scientific performance of the Hubble Space Telescope is presented.

  8. Science operations for LCOGT: a global telescope network

    NASA Astrophysics Data System (ADS)

    Boroson, T.; Brown, T.; Hjelstrom, A.; Howell, D. A.; Lister, T.; Pickles, A.; Rosing, W.; Saunders, E.; Street, R.; Walker, Z.

    2014-08-01

    The Las Cumbres Observatory Global Telescope Network comprises nine 1-meter and two 2-meter telescopes, all robotic and dynamically scheduled, at five sites spanning the globe. Instrumentation includes optical imagers and low-dispersion spectrographs. A suite of high-dispersion, high-stability spectrographs is being developed for deployment starting late this year. The network has been designed and built to allow regular monitoring of time-variable or moving objects with any cadence, as well as rapid response to external alerts. Our intent is to operate it in a totally integrated way, both in terms of scheduling and in terms of data quality. The unique attributes of the LCOGT network make it different enough from any existing facility that alternative approaches to optimize science productivity can be considered. The LCOGT network V1.0 began full science operations this year. It is being used in novel ways to undertake investigations related to supernovae, microlensing events, solar system objects, and exoplanets. The network's user base includes a number of partners, who are providing resources to the collaboration. A key project program brings together many of these partners to carry out large projects. In the long term, our vision is to operate the network as a part of a time-domain system, in which pre-planned monitoring observations are interspersed with autonomously detected and classified events from wide-area surveys.

  9. Space Telescopes

    NASA Technical Reports Server (NTRS)

    Clampin, Mark; Flanagan, Kathryn A.

    2012-01-01

    Space telescopes have been a dominant force in astrophysics and astronomy over the last two decades. As Lyman Spitzer predicted in 1946, space telescopes have opened up much of the electromagnetic spectrum to astronomers, and provided the opportunity to exploit the optical performance of telescopes uncompromised by the turbulent atmosphere. This special section of Optical Engineering is devoted to space telescopes. It focuses on the design and implementation of major space observatories from the gamma-ray to far-infrared, and highlights the scientific and technical breakthroughs enabled by these telescopes. The papers accepted for publication include reviews of major space telescopes spanning the last two decades, in-depth discussions of the design considerations for visible and x-ray telescopes, and papers discussing concepts and technical challenges for future space telescopes.

  10. Relating a Prominence Observed from the Solar Optical Telescope on the Hinode Satellite to Known 3-D Structures of Filaments

    NASA Astrophysics Data System (ADS)

    Martin, S. F.; Panasenco, O.; Agah, Y.; Engvold, O.; Lin, Y.

    2009-12-01

    We address only a first step in relating limb and disk observations by illustrating and comparing the spines and barbs of three different quiescent prominences and filaments observed in Hα by three different telescopes. Although the appearance of the three quiescent prominences is quite different, we show that each consists of a spine, barbs extending from the spine, and arcs at the base of some of the curtains of barb threads.

  11. Lunar Ultraviolet Telescope Experiment (LUTE). Phase A final report.

    NASA Astrophysics Data System (ADS)

    McBrayer, R. O.

    1994-04-01

    The Lunar Ultraviolet Telescope Experiment (LUTE) is a 1-meter telescope for imaging from the lunar surface the ultraviolet spectrum 1,000 and 3,500 Å. This report provides the results of the LUTE phase A activity begun at the George C. Marshall Space Flight Center in early 1992. It describes the objective of LUTE (science, engineering, and education), a feasible reference design concept that has evolved, and the subsystem trades that were accomplished during the phase A.

  12. On the prevalence of small-scale twist in the solar chromosphere and transition region.

    PubMed

    De Pontieu, B; van der Voort, L Rouppe; McIntosh, S W; Pereira, T M D; Carlsson, M; Hansteen, V; Skogsrud, H; Lemen, J; Title, A; Boerner, P; Hurlburt, N; Tarbell, T D; Wuelser, J P; De Luca, E E; Golub, L; McKillop, S; Reeves, K; Saar, S; Testa, P; Tian, H; Kankelborg, C; Jaeggli, S; Kleint, L; Martinez-Sykora, J

    2014-10-17

    The solar chromosphere and transition region (TR) form an interface between the Sun's surface and its hot outer atmosphere. There, most of the nonthermal energy that powers the solar atmosphere is transformed into heat, although the detailed mechanism remains elusive. High-resolution (0.33-arc second) observations with NASA's Interface Region Imaging Spectrograph (IRIS) reveal a chromosphere and TR that are replete with twist or torsional motions on sub-arc second scales, occurring in active regions, quiet Sun regions, and coronal holes alike. We coordinated observations with the Swedish 1-meter Solar Telescope (SST) to quantify these twisting motions and their association with rapid heating to at least TR temperatures. This view of the interface region provides insight into what heats the low solar atmosphere. PMID:25324398

  13. Hubble Space Telescope Configuration

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This image illustrates the overall Hubble Space Telescope (HST) configuration. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  14. A Space-Based Near-Earth Object Survey Telescope in Support of Human Exploration, Solar System Science, and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.

    2011-01-01

    Human exploration of near-Earth objects (NEOs) beginning in 2025 is one of the stated objectives of U.S. National Space Policy. Piloted missions to these bodies would further development of deep space mission systems and technologies, obtain better understanding of the origin and evolution of our Solar System, and support research for asteroid deflection and hazard mitigation strategies. As such, mission concepts have received much interest from the exploration, science, and planetary defense communities. One particular system that has been suggested by all three of these communities is a space-based NEO survey telescope. Such an asset is crucial for enabling affordable human missions to NEOs circa 2025 and learning about the primordial population of objects that could present a hazard to the Earth in the future.

  15. High-energy gamma-ray emission from solar flares: Summary of Fermi large area telescope detections and analysis of two M-class flares

    SciTech Connect

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Bechtol, K.; Bottacini, E.; Buehler, R.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Buson, S.; Bellazzini, R.; Bregeon, J.; Bissaldi, E.; Bonamente, E.; Bouvier, A.; Brandt, T. J.; Brigida, M.; Bruel, P.; and others

    2014-05-20

    We present the detections of 18 solar flares detected in high-energy γ-rays (above 100 MeV) with the Fermi Large Area Telescope (LAT) during its first 4 yr of operation. This work suggests that particle acceleration up to very high energies in solar flares is more common than previously thought, occurring even in modest flares, and for longer durations. Interestingly, all these flares are associated with fairly fast coronal mass ejections (CMEs). We then describe the detailed temporal, spatial, and spectral characteristics of the first two long-lasting events: the 2011 March 7 flare, a moderate (M3.7) impulsive flare followed by slowly varying γ-ray emission over 13 hr, and the 2011 June 7 M2.5 flare, which was followed by γ-ray emission lasting for 2 hr. We compare the Fermi LAT data with X-ray and proton data measurements from GOES and RHESSI. We argue that the γ-rays are more likely produced through pion decay than electron bremsstrahlung, and we find that the energy spectrum of the proton distribution softens during the extended emission of the 2011 March 7 flare. This would disfavor a trapping scenario for particles accelerated during the impulsive phase of the flare and point to a continuous acceleration process at play for the duration of the flares. CME shocks are known for accelerating the solar energetic particles (SEPs) observed in situ on similar timescales, but it might be challenging to explain the production of γ-rays at the surface of the Sun while the CME is halfway to the Earth. A stochastic turbulence acceleration process occurring in the solar corona is another likely scenario. Detailed comparison of characteristics of SEPs and γ-ray-emitting particles for several flares will be helpful to distinguish between these two possibilities.

  16. The Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    DeBoer, David R.; Welch, William J.; Dreher, John; Tarter, Jill; Blitz, Leo; Davis, Michael; Fleming, Matt; Bock, Douglas; Bower, Geoffrey; Lugten, John; Girmay-Keleta, G.; D'Addario, Larry R.; Harp, Gerry R.; Ackermann, Rob; Weinreb, Sander; Engargiola, Greg; Thornton, Doug; Wadefalk, Niklas

    2004-10-01

    The Allen Telescope Array, originally called the One Hectare Telescope (1hT) [1] will be a large array radio telescope whose novel characteristics will be a wide field of view (3.5 deg-GHz HPBW), continuous frequency coverage of 0.5 - 11 GHz, four dual-linear polarization output bands of 100 MHz each, four beams in each band, two 100 MHz spectral correlators for two of the bands, and hardware for RFI mitigation built in. Its scientific motivation is for deep SETI searches and, at the same time, a variety of other radio astronomy projects, including transient (e.g. pulsar) studies, HI mapping of the Milky Way and nearby galaxies, Zeeman studies of the galactic magnetic field in a number of transitions, mapping of long chain molecules in molecular clouds, mapping of the decrement in the cosmic background radiation toward galaxy clusters, and observation of HI absorption toward quasars at redshifts up to z=2. The array is planned for 350 6.1-meter dishes giving a physical collecting area of about 10,000 square meters. The large number of components reduces the price with economies of scale. The front end receiver is a single cryogenically cooled MIMIC Low Noise Amplifier covering the whole band. The feed is a wide-band log periodic feed of novel design, and the reflector system is an offset Gregorian for minimum sidelobes and spillover. All preliminary and critical design reviews have been completed. Three complete antennas with feeds and receivers are under test, and an array of 33 antennas is under construction at the Hat Creek Radio Observatory for the end of 2004. The present plan is to have a total of about 200 antennas completed by the summer of 2006 and the balance of the array finished before the end of the decade.

  17. The extreme UV imager telescope on-board the Solar Orbiter mission: overview of phase C and D

    NASA Astrophysics Data System (ADS)

    Halain, J.-P.; Rochus, P.; Renotte, E.; Hermans, A.; Jacques, L.; Auchère, F.; Berghmans, D.; Harra, L.; Schühle, U.; Schmutz, W.; Zhukov, A.; Aznar Cuadrado, R.; Delmotte, F.; Dumesnil, C.; Gyo, M.; Kennedy, T.; Smith, P.; Tandy, J.; Mercier, R.; Verbeeck, C.

    2015-09-01

    The Solar Orbiter mission is composed of ten scientific instruments dedicated to the observation of the Sun's atmosphere and its heliosphere, taking advantage of an out-of ecliptic orbit and at perihelion reaching a proximity close to 0.28 A.U. On board Solar Orbiter, the Extreme Ultraviolet Imager (EUI) will provide full-Sun image sequences of the solar corona in the extreme ultraviolet (17.1 nm and 30.4 nm), and high-resolution image sequences of the solar disk in the extreme ultraviolet (17.1 nm) and in the vacuum ultraviolet (121.6 nm). The EUI concept uses heritage from previous similar extreme ultraviolet instrument. Additional constraints from the specific orbit (thermal and radiation environment, limited telemetry download) however required dedicated technologies to achieve the scientific objectives of the mission. The development phase C of the instrument and its sub-systems has been successfully completed, including thermomechanical and electrical design validations with the Structural Thermal Model (STM) and the Engineering Model (EM). The instrument STM and EM units have been integrated on the respective spacecraft models and will undergo the system level tests. In parallel, the Phase D has been started with the sub-system qualifications and the flight parts manufacturing. The next steps of the EUI development will be the instrument Qualification Model (QM) integration and qualification tests. The Flight Model (FM) instrument activities will then follow with the acceptance tests and calibration campaigns.

  18. Surface topography measurements over the 1 meter to 10 micrometer spatial period bandwidth

    SciTech Connect

    Takacs, P.Z.; Furenlid, K.; DeBiasse, R.A.; Church, E.L.; Army Research and Development Command, Dover, NJ )

    1989-09-01

    A recently-developed long-trace surface profiling instrument (LTP) is now in operation in our laboratory measuring surface profiles on grazing incidence aspheres and also conventional optical surface. The LTP characterizes surface height profiles in a non-contact manner over spatial periods ranging from 1 meter (the maximum scan length) to 2 mm (the Nyquist period for 1 mm sampling period) and complements the range of our WYKO NCP-1000 2.5X surface roughness profiler (5 mm to 9.8 {mu}m). Using these two instruments, we can fully characterize both figure and finish of an optical surface in the same way that we normally characterize surface finish, e.g., by means of the power spectral density function in the spatial frequency domain. A great deal of information about the distribution of figure errors over various spatial frequency ranges is available from this data, which is useful for process control and predicting performance at the desired wavelength and incidence angle. In addition, the LTP is able to measure the absolute radius of curvature on long-radius optics with high precision and accuracy. Angular errors in the optical head are measured in real time by an electronic autocollimator as the head traverses the linear air bearing slide. Measurements of kilometer radius optics can be made very quickly and the data analyzed in a format that is very easy to understand. 17 refs., 10 figs.

  19. A search for small solar-system bodies near the earth using a ground-based telescope - Technique and observations

    NASA Technical Reports Server (NTRS)

    Frank, L. A.; Sigwarth, J. B.; Yeates, C. M.

    1990-01-01

    A large, previously undetected flux of small bodies near earth is identified by employing the standard technique of detection of an individual object in two consecutive frames. The observational periods and viewing coordinates for the search for small bodies are presented. A null test is performed in order to further demonstrate that the signatures in the images are not due to instrumental artifacts. The observed fluxes, orbital motions, and radii of the small bodies detected are in agreement with those for the small cometlike objects previously reported. It is pointed out that the radii of the small bodies would be in the range of meters. Since an alternative interpretation of the small bodies is possible, it is suggested that the use of a telescope with larger aperture and/or array detectors with lesser noise levels is necessary to confirm the present observations.

  20. Telescope Equipment

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Renaissance Telescope for high resolution and visual astronomy has five 82-degree Field Tele-Vue Nagler Eyepieces, some of the accessories that contribute to high image quality. Telescopes and eyepieces are representative of a family of optical equipment manufactured by Tele-Vue Optics, Inc.

  1. The Spectrometer/Telescope for Imaging X-rays on Solar Orbiter: Flight design, challenges and trade-offs

    NASA Astrophysics Data System (ADS)

    Krucker, S.; Bednarzik, M.; Grimm, O.; Hurford, G. J.; Limousin, O.; Meuris, A.; Orleański, P.; Seweryn, K.; Skup, K. R.

    2016-07-01

    STIX is the X-ray spectral imaging instrument on-board the Solar Orbiter space mission of the European Space Agency, and together with nine other instruments will address questions of the interaction between the Sun and the heliosphere. STIX will study the properties of thermal and accelerated electrons near the Sun through their Bremsstrahlung X-ray emission, addressing in particular the emission from flaring regions on the Sun. The design phase of STIX has been concluded. This paper reports the final flight design of the instrument, focusing on design challenges that were faced recently and how they were addressed.

  2. Space infrared telescope pointing control system. Automated star pattern recognition

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Vanbezooijen, R. W. H.

    1985-01-01

    The Space Infrared Telescope Facility (SIRTF) is a free flying spacecraft carrying a 1 meter class cryogenically cooled infrared telescope nearly three oders of magnitude most sensitive than the current generation of infrared telescopes. Three automatic target acquisition methods will be presented that are based on the use of an imaging star tracker. The methods are distinguished by the number of guidestars that are required per target, the amount of computational capability necessary, and the time required for the complete acquisition process. Each method is described in detail.

  3. Space Telescopes

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2011-01-01

    The science of astronomy depends on modern-day temples called telescopes. Astronomers make pilgrimages to remote mountaintops where these large, intricate, precise machines gather light that rains down from the Universe. Bit, since Earth is a bright, turbulent planet, our finest telescopes are those that have been launched into the dark stillness of space. These space telescopes, named after heroes of astronomy (Hubble, Chandra, Spitzer, Herschel), are some of the best ideas our species has ever had. They show us, over 13 billion years of cosmic history, how galaxies and quasars evolve. They study planets orbiting other stars. They've helped us determine that 95% of the Universe is of unknown composition. In short, they tell us about our place in the Universe. The next step in this journey is the James Webb Space Telescope, being built by NASA, Europe, and Canada for a 2018 launch; Webb will reveal the first galaxies that ever formed.

  4. SNAP telescope

    SciTech Connect

    Lampton, Michael L.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro, R.; Ealet, A.; Ellis,R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar,A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland,S.E.; Huterer, D.; Karcher, A.; Kim, A.G.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder, E.V.; Loken,S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi,H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto,E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.; Wang, G.

    2002-07-29

    The SuperNova/Acceleration Probe (SNAP) mission will require a two-meter class telescope delivering diffraction limited images spanning a one degree field in the visible and near infrared wavelength regime. This requirement, equivalent to nearly one billion pixel resolution, places stringent demands on its optical system in terms of field flatness, image quality, and freedom from chromatic aberration. We discuss the advantages of annular-field three-mirror anastigmat (TMA) telescopes for applications such as SNAP, and describe the features of the specific optical configuration that we have baselined for the SNAP mission. We discuss the mechanical design and choice of materials for the telescope. Then we present detailed ray traces and diffraction calculations for our baseline optical design. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of tasks to be carried out during the upcoming SNAP research and development phase.

  5. ON THE ABSENCE OF PHOTOSPHERIC NET CURRENTS IN VECTOR MAGNETOGRAMS OF SUNSPOTS OBTAINED FROM HINODE (SOLAR OPTICAL TELESCOPE/SPECTRO-POLARIMETER)

    SciTech Connect

    Venkatakrishnan, P.; Tiwari, Sanjiv Kumar E-mail: stiwari@prl.res.i

    2009-11-20

    Various theoretical and observational results have been reported regarding the presence/absence of net electric currents in the sunspots. The limited spatial resolution of the earlier observations perhaps obscured the conclusions. We have analyzed 12 sunspots observed from Hinode (Solar Optical Telescope/Spectro-polarimeter) to clarify the issue. The azimuthal and radial components of magnetic fields and currents have been derived. The azimuthal component of the magnetic field of sunspots is found to vary in sign with azimuth. The radial component of the field also varies in magnitude with azimuth. While the latter pattern is a confirmation of the interlocking combed structure of penumbral filaments, the former pattern shows that the penumbra is made up of a 'curly interlocking combed' magnetic field. The azimuthally averaged azimuthal component is seen to decline much faster than 1/piv in the penumbra, after an initial increase in the umbra, for all the spots studied. This confirms the confinement of magnetic fields and absence of a net current for sunspots as postulated by Parker. The existence of a global twist for a sunspot even in the absence of a net current is consistent with a fibril-bundle structure of the sunspot magnetic fields.

  6. Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Ekers, Ron; Wilson, Thomas L.

    ``Radio Telescopes" starts with a brief historical introduction from Jansky's1931 discovery of radio emission from the Milky Way through the development ofradio telescope dishes and arrays to aperture synthesis imaging. It includessufficient basics of electromagnetic radiation to provide some understanding of thedesign and operation of radio telescopes. The criteria such as frequencyrange, sensitivity, survey speed, angular resolution, and field of view thatdetermine the design of radio telescopes are introduced. Because it is soeasy to manipulate the electromagnetic waves at radio frequencies, radiotelescopes have evolved into many different forms, sometimes with "wire"structures tuned to specific wavelengths, which look very different from anykind of classical telescope. To assist astronomers more familiar with otherwavelength domains, the appendix A.1. includes a comparison of radioand optical terminology. Some of the different types of radio telescopesincluding the filled aperture dishes, electronically steered phased arrays, andaperture synthesis radio telescopes are discussed, and there is a sectioncomparing the differences between dishes and arrays. Some of the morerecent developments including hierarchical beam forming, phased arrayfeeds, mosaicing, rotation measure synthesis, digital receivers, and longbaseline interferometers are included. The problem of increasing radiofrequency interference is discussed, and some possible mitigation strategies areoutlined.

  7. PHOTOSPHERIC FLOW FIELD RELATED TO THE EVOLUTION OF THE SUN'S POLAR MAGNETIC PATCHES OBSERVED BY HINODE SOLAR OPTICAL TELESCOPE

    SciTech Connect

    Kaithakkal, Anjali John; Suematsu, Y.; Kubo, M.; Iida, Y.; Tsuneta, S.; Shiota, D.

    2015-02-01

    We investigated the role of photospheric plasma motions in the formation and evolution of polar magnetic patches using time-sequence observations with high spatial resolution. The observations were obtained with the spectropolarimeter on board the Hinode satellite. From the statistical analysis using 75 magnetic patches, we found that they are surrounded by strong converging, supergranulation associated flows during their apparent lifetime and that the converging flow around the patch boundary is better observed in the Doppler velocity profile in the deeper photosphere. Based on our analysis, we suggest that the like-polarity magnetic fragments in the polar region are advected and clustered by photospheric converging flows, thereby resulting in the formation of polar magnetic patches. Our observations show that, in addition to direct cancellation, magnetic patches decay by fragmentation followed by unipolar disappearance or unipolar disappearance without fragmentation. It is possible that the magnetic patches of existing polarity fragment or diffuse away into smaller elements and eventually cancel out with opposite polarity fragments that reach the polar region around the solar cycle maximum. This could be one of the possible mechanisms by which the existing polarity decays during the reversal of the polar magnetic field.

  8. Did the 28 October 2003 solar flare accelerate protons to (greater-or-similar sign)20 GeV? A study of the subsequent Forbush decrease with the GRAPES-3 tracking muon telescope

    SciTech Connect

    Nonaka, T.; Hayashi, Y.; Ito, N.; Kawakami, S.; Matsuyama, T.; Oshima, A.; Tanaka, H.; Yoshikoshi, T.; Gupta, S. K.; Jain, A.; Karthikeyan, S.; Mohanty, P. K.; Morris, S. D.; Rao, B. S.; Ravindran, K. C.; Sivaprasad, K.; Sreekantan, B. V.; Tonwar, S. C.; Viswanathan, K.; Kojima, H.

    2006-09-01

    Solar flares accelerate charged particles through a variety of mechanisms, which may be constrained through observations at high energies (>10 GeV). We report here a search for direct emission of protons of energy (greater-or-similar sign)20 GeV in association with an X17 class solar flare that occurred on 28 October 2003, using a large area tracking muon telescope of the GRAPES-3 experiment at Ooty. Some features of the telescope, including its novel capability of high sensitivity search for the directional enhancement of the solar protons are also described. A 99% C.L. upper limit on the flux of protons due to the solar flare has been placed at 1.4x10{sup -6} cm{sup -2} s{sup -1} sr{sup -1}. A separate upper limit on the narrow solid angle flux of protons at 4x10{sup -6} cm{sup -2} s{sup -1} sr{sup -1} is also placed. Solar flares are also associated with coronal mass ejections, which propagate through the interplanetary space producing geomagnetic storms and Forbush decrease (Fd) events, upon their arrival at the Earth. New information on the structure and time evolution of the large Fd observed on 29 October 2003 by GRAPES-3 is presented. The onset of Fd in nine different solid angle bins ({approx}0.3 sr) shows a remarkably similar behavior, with an evolution on a time scale of {approx}1 h. A power law dependence of the magnitude of the Fd on the cutoff rigidity has been derived, using the data from tracking muon telescope, over a narrow range of cutoff rigidity 14.3-24.0 GV, which shows a spectral slope ''{gamma}=0.53{+-}0.04,'' in agreement with earlier measurements.

  9. Infrared telescope

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Hendricks, J. B.

    1985-01-01

    The development of the Infrared Telescope for Spacelab 2 is discussed. The design, development, and testing required to interface a stationary superfluid helium dewar with a scanning cryostate capable of operating in the zero-g environment in the space shuttle bay is described.

  10. Telescopic hindsight

    NASA Astrophysics Data System (ADS)

    Cox, Laurence

    2014-08-01

    In reply to the physicsworld.com blog post "Cosmic blunders that have held back science" (2 June, http://ow.ly/xwC7C), about an essay by the astronomer Avi Loeb in which he criticized, among others, his Harvard University predecessor Edward Pickering, who claimed in 1909 that telescopes had reached their optimal size.

  11. Selecting Your First Telescope.

    ERIC Educational Resources Information Center

    Harrington, Sherwood

    1982-01-01

    Designed for first-time telescope purchasers, provides information on how a telescope works; major telescope types (refractors, reflectors, compound telescopes); tripod, pier, altazimuth, and equatorial mounts; selecting a telescope; visiting an astronomy club; applications/limitations of telescope use; and tips on buying a telescope. Includes a…

  12. Comet C2012 S1 (ISON): Observations of the Dust Grains From SOFIA and of the Atomic Gas From NSO Dunn and Mcmath-Pierce Solar Telescopes

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Woodward, Charles E.; Harker, David E.; Kelley, Michael S. P.; Sitko, Michael; Reach, William T.; De Pater, Imke; Gehrz, Robert D.; Kolokolova, Ludmilla; Cochran, Anita L.; McKay, Adam J.; Reardon, Kevin; Cauzzi, Gianna; Tozzi, Gian Paolo; Christian, Damian J.; Jess, David B.; Mathioudakis, Mihalis; Lisse, Carey Michael; Morgenthaler, Jeffrey P.; Knight, Matthew Manning

    2013-01-01

    Comet C/2012 S1 (ISON) is unique in that it is a dynamically new comet derived from the Oort cloud reservoir of comets with a sun-grazing orbit. Infrared (IR) and visible wavelength observing campaigns were planned on NASA's Stratospheric Observatory For Infrared Astronomy (SOFIA) and on National Solar Observatory Dunn (DST) and McMath-Pierce Solar Telescopes, respectively. We highlight our SOFIA (+FORCAST) mid- to far-IR images and spectroscopy (approx. 5-35 microns) of the dust in the coma of ISON are to be obtained by the ISON-SOFIA Team during a flight window 2013 Oct 21-23 UT (r_h approx. = 1.18 AU). Dust characteristics, identified through the 10 micron silicate emission feature and its strength, as well as spectral features from cometary crystalline silicates (Forsterite) at 11.05-11.2 microns, and near 16, 19, 23.5, 27.5, and 33 microns are compared with other Oort cloud comets that span the range of small and/or highly porous grains (e.g., C/1995 O1 (Hale-Bopp) and C/2001 Q4 (NEAT) to large and/or compact grains (e.g., C/2007 N4 (Lulin) and C/2006 P1 (McNaught)). Measurement of the crystalline peaks in contrast to the broad 10 and 20 micron amorphous silicate features yields the cometary silicate crystalline mass fraction, which is a benchmark for radial transport in our protoplanetary disk. The central wavelength positions, relative intensities, and feature asymmetries for the crystalline peaks may constrain the shapes of the crystals. Only SOFIA can look for cometary organics in the 5-8 micron region. Spatially resolved measurements of atoms and simple molecules from when comet ISON is near the Sun (r_h< 0.4 AU, near Nov-20-Dec-03 UT) were proposed for by the ISON-DST Team. Comet ISON is the first comet since comet Ikeya-Seki (1965f) suitable for studying the alkalai metals Na and K and the atoms specifically attributed to dust grains including Mg, Si, Fe, as well as Ca. DST's Horizontal Grating Spectrometer (HGS) measures 4 settings: Na I, K, C2 to

  13. Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey

    2007-05-01

    The Allen Telescope Array (ATA) is a pioneering centimeter-wavelength radio telescope that will produce science that cannot be done with any other instrument. The ATA is the first radio telescope designed for commensal observing; it will undertake the most comprehensive and sensitive SETI surveys ever done as well as the deepest and largest area continuum and spectroscopic surveys. Science operations will commence this year with a 42-element array. The ATA will ultimately comprise 350 6-meter dishes at Hat Creek in California, and will make possible large, deep radio surveys that were not previously feasible. The telescope incorporates many new design features including hydroformed antenna surfaces, a log-periodic feed covering the entire range of frequencies from 500 MHz to 11.2 GHz, low noise, wide-band amplifiers with a flat response over the entire band. The full array has the sensitivity of the Very Large Array but with a survey capability that is greater by an order of magnitude due to the wide field of view of the 6-meter dishes. Even with 42 elements, the ATA will be one of the most powerful radio survey telescopes. Science goals include the Five GHz sky survey (FiGSS) to match the 1.4-GHz NRAO VLA Sky Survey (NVSS) and the Sloan Digital Sky Survey within the first year of operation with the 42 element array, and a deep all-sky survey of extragalactic hydrogen to investigate galaxy evolution and intergalactic gas accretion. Transient and variable source surveys, pulsar science, spectroscopy of new molecular species in the galaxy, large-scale mapping of galactic magnetic filaments, and wide-field imaging of comets and other solar system objects are among the other key science objectives of the ATA. SETI surveys will reach sufficient sensitivity to detect an Arecibo planetary radar from 1,000,000 stars to distances of 300 pc.

  14. Lunar Ultraviolet Telescope Experiment (LUTE), phase A

    NASA Technical Reports Server (NTRS)

    Mcbrayer, Robert O.

    1994-01-01

    The Lunar Ultraviolet Telescope Experiment (LUTE) is a 1-meter telescope for imaging from the lunar surface the ultraviolet spectrum between 1,000 and 3,500 angstroms. There have been several endorsements of the scientific value of a LUTE. In addition to the scientific value of LUTE, its educational value and the information it can provide on the design of operating hardware for long-term exposure in the lunar environment are important considerations. This report provides the results of the LUTE phase A activity begun at the George C. Marshall Space Flight Center in early 1992. It describes the objective of LUTE (science, engineering, and education), a feasible reference design concept that has evolved, and the subsystem trades that were accomplished during the phase A.

  15. Lunar Ultraviolet Telescope Experiment (LUTE), phase A

    NASA Astrophysics Data System (ADS)

    McBrayer, Robert O.

    1994-04-01

    The Lunar Ultraviolet Telescope Experiment (LUTE) is a 1-meter telescope for imaging from the lunar surface the ultraviolet spectrum between 1,000 and 3,500 angstroms. There have been several endorsements of the scientific value of a LUTE. In addition to the scientific value of LUTE, its educational value and the information it can provide on the design of operating hardware for long-term exposure in the lunar environment are important considerations. This report provides the results of the LUTE phase A activity begun at the George C. Marshall Space Flight Center in early 1992. It describes the objective of LUTE (science, engineering, and education), a feasible reference design concept that has evolved, and the subsystem trades that were accomplished during the phase A.

  16. Hubble Space Telescope-Illustration

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This is a cutaway illustration of the Hubble Space Telescope (HST) with callouts. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  17. Hubble Space Telescope-Concept

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This is an artist's concept of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  18. Hubble Space Telescope-Illustration

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This illustration depicts a side view of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  19. OBSERVING THE FINE STRUCTURE OF LOOPS THROUGH HIGH-RESOLUTION SPECTROSCOPIC OBSERVATIONS OF CORONAL RAIN WITH THE CRISP INSTRUMENT AT THE SWEDISH SOLAR TELESCOPE

    SciTech Connect

    Antolin, P.; Rouppe van der Voort, L. E-mail: v.d.v.l.rouppe@astro.uio.no

    2012-02-01

    Observed in cool chromospheric lines, such as H{alpha} or Ca II H, coronal rain corresponds to cool and dense plasma falling from coronal heights. Considered as a peculiar sporadic phenomenon of active regions, it has not received much attention since its discovery more than 40 years ago. Yet, it has been shown recently that a close relationship exists between this phenomenon and the coronal heating mechanism. Indeed, numerical simulations have shown that this phenomenon is most likely due to a loss of thermal equilibrium ensuing from a heating mechanism acting mostly toward the footpoints of loops. We present here one of the first high-resolution spectroscopic observations of coronal rain, performed with the CRisp Imaging Spectro Polarimeter (CRISP) instrument at the Swedish Solar Telescope. This work constitutes the first attempt to assess the importance of coronal rain in the understanding of the coronal magnetic field in active regions. With the present resolution, coronal rain is observed to literally invade the entire field of view. A large statistical set is obtained in which dynamics (total velocities and accelerations), shapes (lengths and widths), trajectories (angles of fall of the blobs), and thermodynamic properties (temperatures) of the condensations are derived. Specifically, we find that coronal rain is composed of small and dense chromospheric cores with average widths and lengths of {approx}310 km and {approx}710 km, respectively, average temperatures below 7000 K, displaying a broad distribution of falling speeds with an average of {approx}70 km s{sup -1}, and accelerations largely below the effective gravity along loops. Through estimates of the ion-neutral coupling in the blobs we show that coronal rain acts as a tracer of the coronal magnetic field, thus supporting the multi-strand loop scenario, and acts as a probe of the local thermodynamic conditions in loops. We further elucidate its potential in coronal heating. We find that the cooling

  20. Neutrino telescopes

    SciTech Connect

    Costantini, H.

    2012-09-15

    Neutrino astrophysics offers a new possibility to observe our Universe: high-energy neutrinos, produced by the most energetic phenomena in our Galaxy and in the Universe, carry complementary (if not exclusive) information about the cosmos: this young discipline extends in fact the conventional astronomy beyond the usual electromagnetic probe. The weak interaction of neutrinos with matter allows them to escape from the core of astrophysical objects and in this sense they represent a complementary messenger with respect to photons. However, their detection on Earth due to the small interaction cross section requires a large target mass. The aim of this article is to review the scientific motivations of the high-energy neutrino astrophysics, the detection principles together with the description of a running apparatus, the experiment ANTARES, the performance of this detector with some results, and the presentation of other neutrino telescope projects.

  1. The Spitzer Space Telescope Mission

    NASA Technical Reports Server (NTRS)

    Werner, M. W.

    2005-01-01

    The Spitzer Space Telescope, NASA's Great Observatory for infrared astronomy, was launched 2003 August 25 and is returning excellent scientific data from its Earth-trailing solar orbit. Spitzer combines the intrinsic sensitivity achievable with a cryogenic telescope in space with the great imaging and spectroscopic power of modern detector arrays to provide the user community with huge gains in capability for exploration of the cosmos in the infrared. The observatory systems are largely performing as expected, and the projected cryogenic lifetime is about five years. Spitzer is thus both a scientific and a technical precursor to the infrared astronomy missions of the future. This very brief paper refers interested readers to several sets of recent publications which describe both the scientific and the technical features of Spitzer in detail. Note that, until 2003 December, Spitzer was known as the Space Infrared Telescope Facility (SIRTF).

  2. History of Robotic and Remotely Operated Telescopes

    NASA Astrophysics Data System (ADS)

    Genet, Russell M.

    2011-03-01

    While automated instrument sequencers were employed on solar eclipse expeditions in the late 1800s, it wasn't until the 1960s that Art Code and associates at Wisconsin used a PDP minicomputer to automate an 8-inch photometric telescope. Although this pioneering project experienced frequent equipment failures and was shut down after a couple of years, it paved the way for the first space telescopes. Reliable microcomputers initiated the modern era of robotic telescopes. Louis Boyd and I applied single board microcomputers with 64K of RAM and floppy disk drives to telescope automation at the Fairborn Observatory, achieving reliable, fully robotic operation in 1983 that has continued uninterrupted for 28 years. In 1985 the Smithsonian Institution provided us with a suburb operating location on Mt. Hopkins in southern Arizona, while the National Science Foundation funded additional telescopes. Remote access to our multiple robotic telescopes at the Fairborn Observatory began in the late 1980s. The Fairborn Observatory, with its 14 fully robotic telescopes and staff of two (one full and one part time) illustrates the potential for low operating and maintenance costs. As the information capacity of the Internet has expanded, observational modes beyond simple differential photometry opened up, bringing us to the current era of real-time remote access to remote observatories and global observatory networks. Although initially confined to smaller telescopes, robotic operation and remote access are spreading to larger telescopes as telescopes from afar becomes the normal mode of operation.

  3. JSC Particle Telescope

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.

    2003-01-01

    This paper presents a detailed description of the Johnson Space Center's Particle Telescope. Schematic diagrams of the telescope geometry and an electronic block diagram of the detector telescopes' components are also described.

  4. Space infrared telescope facility project

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    1988-01-01

    The functions undertaken during this reporting period were: to inform the planetary science community of the progress and status of the Space Infrared Telescope Facility (SIRTF) Project; to solicit input from the planetary science community on needs and requirements of planetary science in the use of SIRTF at such time that it becomes an operational facility; and a white paper was prepared on the use of the SIRTF for solar system studies.

  5. SNAP Telescope Latest Developments

    NASA Astrophysics Data System (ADS)

    Lampton, M.; SNAP Collaboration

    2004-12-01

    The coming era of precision cosmology imposes new demands on space telescopes with regard to spectrophotometric accuracy and image stability. To meet these requirements for SNAP we have developed an all reflecting two-meter-class space telescope of the three-mirror anastigmat type. Our design features a large flat annular field (1.5 degrees = 580mm diameter) and a telephoto advantage of 6, delivering a 22m focal length within an optical package length of only 3.5 meters. The use of highly stable materials (Corning ULE glass and carbon-fiber reinforced cyanate ester resin for the metering structure) combined with agressive distributed thermal control and an L2 orbit location will lead to unmatched figure stability. Owing to our choice of rigid structure with nondeployable solar panels, finite-element models show no structural resonances below 10Hz. An exhaustive stray light study has been completed. Beginning in 2005, two industry studies will develop plans for fabrication, integration and test, bringing SNAP to a highly realistic level of definition. SNAP is supported by the Office of Science, US DoE, under contract DE-AC03-76SF00098.

  6. Comprehensive Analyses of Data Collected from TEREK (Solar EUV Telescope) RES-C (Solar X-Ray Spectrometer) and SORS (Solar Radio Spectrometer) on board CORONAS-1 Using Magnetohydrodynamic Models

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1997-01-01

    By using the observed magnetic field data obtained from the Wilcox Solar Observatory at Stanford University as the inputs to a two-dimensional plane-of-sky magnetohydrodynamic model, via numerical relaxation method, we have deduced the plasma and magnetic field parameters for the observed coronal hole by CORONAS-1. The method for this self-consistent MHD analysis will be discussed in detail. Numerical results for the magnetic field configuration, velocity distribution, density and temperature distributions will be presented. We have converted the computed density to polarization brightness in order to directly compare the MHD outputs with observations. Also included is a summary of achievements made during the grant period. This section is summarized into three categories: 1) Visit of Co-Investigators; 2) Presentations; and 3) Papers published, accepted and submitted for publication in journals.

  7. Hubble Space Telescope Scale Model

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This is a photograph of a 1/15 scale model of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13- meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  8. Normal incidence X-ray telescope power spectra of X-ray emission from solar active regions. I - Observations. II - Theory

    NASA Technical Reports Server (NTRS)

    Gomez, Daniel O.; Martens, Petrus C. H.; Golub, Leon

    1993-01-01

    Fourier analysis is applied to very high resolution image of coronal active regions obtained by the Normal Incidence X-Ray Telescope is used to find a broad isotropic power-law spectrum of the spatial distribution of soft X-ray intensities. Magnetic structures of all sizes are present down to the resolution limit of the instrument. Power spectra for the X-ray intensities of a sample of topologically different active regions are found which fall off with increasing wavenumber as 1/k-cubed. A model is presented that relates the basic features of coronal magnetic fluctuations to the subphotospheric hydrodynamic turbulence that generates them. The model is used to find a theoretical power spectrum for the X-ray intensity which falls off with increasing wavenumber as 1/k-cubed. The implications of a turbulent regime in active regions are discussed.

  9. STUDY OF RAPID FORMATION OF A {delta} SUNSPOT ASSOCIATED WITH THE 2012 JULY 2 C7.4 FLARE USING HIGH-RESOLUTION OBSERVATIONS OF THE NEW SOLAR TELESCOPE

    SciTech Connect

    Wang Haimin; Liu Chang; Wang Shuo; Deng Na; Xu Yan; Jing Ju; Cao Wenda

    2013-09-10

    Rapid, irreversible changes of magnetic topology and sunspot structure associated with flares have been systematically observed in recent years. The most striking features include the increase of the horizontal field at the polarity inversion line (PIL) and the co-spatial penumbral darkening. A likely explanation of the above phenomenon is the back reaction to the coronal restructuring after eruptions: a coronal mass ejection carries the upward momentum while the downward momentum compresses the field lines near the PIL. Previous studies could only use low-resolution (above 1'') magnetograms and white-light images. Therefore, the changes are mostly observed for X-class flares. Taking advantage of the 0.''1 spatial resolution and 15 s temporal cadence of the New Solar Telescope at the Big Bear Solar Observatory, we report in detail the rapid formation of sunspot penumbra at the PIL associated with the C7.4 flare on 2012 July 2. It is unambiguously shown that the solar granulation pattern evolves to an alternating dark and bright fibril structure, the typical pattern of penumbra. Interestingly, the appearance of such a penumbra creates a new {delta} sunspot. The penumbral formation is also accompanied by the enhancement of the horizontal field observed using vector magnetograms from the Helioseismic and Magnetic Imager. We explain our observations as being due to the eruption of a flux rope following magnetic cancellation at the PIL. Subsequently, the re-closed arcade fields are pushed down toward the surface to form the new penumbra. NLFFF extrapolation clearly shows both the flux rope close to the surface and the overlying fields.

  10. Galactic Cosmic Ray Proton Spectra during Solar Cycle 23 and 24 - Measurement Capabilities of the Electron Proton Helium Telescope on Board SOHO

    NASA Astrophysics Data System (ADS)

    Kühl, Patrick; Klassen, Andreas; Gieseler, Jan; Dresing, Nina; Heber, Bernd

    2016-07-01

    The solar modulation of galactic cosmic rays (GCR) can be studied in detail by long term variations of the GCR energy spectrum (e.g. on the scales of a solar cycle). With almost 20 years of data, the Electron Proton Helium INstrument (EPHIN) aboard SOHO is well suited for these kind of investigations. Although the design of the instrument is optimized to measure proton and helium isotope spectra up to 50 MeV/nucleon the capability exist that allow to determine energy spectra between 250 MeV and 1.6 GeV. Therefore we developed a sophisticated inversion method to calculate such proton spectra. The method relies on a GEANT4 Monte Carlo simulation of the instrument and a simplified spacecraft model that calculates the energy response function of EPHIN for electrons, protons and heavier ions. In order to determine the energy spectra the resulting inversion problem is solved numerically. As a result we present galactic cosmic ray spectra from 1995 to 2015. For validation, the derived spectra are compared to AMS, BESS and PAMELA data. Furthermore we discuss the spectra with respect to the solar modulation.

  11. Observations and Modeling of Solar Coronal Structures Using High-Resolution Eclipse Images and Space-based Telescopes with Wide Field of View

    NASA Astrophysics Data System (ADS)

    Lu, Muzhou; Pasachoff, J. M.; Su, Y.; Van Ballegooijen, A. A.; Seaton, D. B.; West, M.

    2013-07-01

    We present a comparison of the solar corona observed during the total solar eclipses on 2010 July 11 and on 2012 November 13. The white light images were taken at Easter Island in 2010 and at Northeast Queensland, Australia, in 2012; while the concurrent EUV images were take with SDO/AIA and PROBA2/SWAP. The 2010 eclipse was observed at the beginning of Sunspot Cycle 24 [1], which peaked near our 2012 observation. We compare a plethora of corona features in the white light images and reveal some interesting differences in the enhanced EUV images taken by SDO/AIA and PROBA2/SWAP. We construct potential field models using our newly refined Coronal Modeling System (CMS2) software with line-of-sight photospheric magnetograms from SDO/HMI. The source surface heights derived from detailed comparison between our models and observations are compared to the standard source-surface model. We also compare the dynamics of the two eclipse observations. Similar to the 2010 eclipse, a CME was observed using temporally spaced eclipse images. We address unresolved problems in the models and observations with the hope of correcting them for future eclipse observations, such as the 2017 total solar eclipse across the continental U.S. References [1] Pasachoff, J. M., Rusin, V., Druckmüllerová, H., Saniga, M., Lu, M., Malamut, C., Seaton, D. B., Golub, L., Engell, A. J., Hill, S. W., Lucas, R., 2011, ApJ, 734, 114

  12. The space telescope

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers concerning the development of the Space Telescope which were presented at the Twenty-first Annual Meeting of the American Astronautical Society in August, 1975 are included. Mission planning, telescope performance, optical detectors, mirror construction, pointing and control systems, data management, and maintenance of the telescope are discussed.

  13. The Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Prestage, R. M.; Constantikes, K. T.; Hunter, T. R.; King, L. J.; Lacasse, R. J.; Lockman, F. J.; Norrod, R. D.

    2009-08-01

    The Robert C. Byrd Green Bank Telescope of the National Radio Astronomy Observatory is the world's premiere single-dish radio telescope operating at centimeter to long millimeter wavelengths. This paper describes the history, construction, and main technical features of the telescope.

  14. MULTI-STRANDED AND MULTI-THERMAL SOLAR CORONAL LOOPS: EVIDENCE FROM HINODE X-RAY TELESCOPE AND EUV IMAGING SPECTROMETER DATA

    SciTech Connect

    Schmelz, J. T.; Nasraoui, K.; Saar, S. H.; Kashyap, V. L.; Weber, M. A.; DeLuca, E. E.; Golub, L.

    2010-11-10

    Data from the X-Ray Telescope (XRT) and the EUV Imaging Spectrometer (EIS) on the Japanese/USA/UK Hinode spacecraft were used to investigate the spatial and thermal properties of an isolated quiescent coronal loop. We constructed differential emission measure (DEM) curves using Monte Carlo based, iterative forward fitting algorithms. We studied the loop as a whole, in segments, in transverse cuts, and point-by-point, always with some form of background subtraction, and find that the loop DEM is neither isothermal nor extremely broad, with approximately 96% of the EM between 6.2 {<=}log T{<=} 6.7, and an EM-weighted temperature of log T = 6.48 {+-} 0.16. We find evidence for a gradual change in temperature along the loop, with log T increasing only by {approx}0.1 from the footpoints to the peak. The combine XRT-EIS data set does a good job of constraining the temperature distribution for coronal loop plasma. Our studies show that the strong constraints at high and low temperatures provided by the combined data set are crucial for obtaining reasonable solutions. These results confirm that the observations of at least some loops are not consistent with isothermal plasma, and therefore cannot be modeled with a single flux tube and must be multi-stranded.

  15. Multi-stranded and Multi-thermal Solar Coronal Loops: Evidence from Hinode X-ray Telescope and EUV Imaging Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Schmelz, J. T.; Saar, S. H.; Nasraoui, K.; Kashyap, V. L.; Weber, M. A.; DeLuca, E. E.; Golub, L.

    2010-11-01

    Data from the X-Ray Telescope (XRT) and the EUV Imaging Spectrometer (EIS) on the Japanese/USA/UK Hinode spacecraft were used to investigate the spatial and thermal properties of an isolated quiescent coronal loop. We constructed differential emission measure (DEM) curves using Monte Carlo based, iterative forward fitting algorithms. We studied the loop as a whole, in segments, in transverse cuts, and point-by-point, always with some form of background subtraction, and find that the loop DEM is neither isothermal nor extremely broad, with approximately 96% of the EM between 6.2 <=log T<= 6.7, and an EM-weighted temperature of log T = 6.48 ± 0.16. We find evidence for a gradual change in temperature along the loop, with log T increasing only by ≈0.1 from the footpoints to the peak. The combine XRT-EIS data set does a good job of constraining the temperature distribution for coronal loop plasma. Our studies show that the strong constraints at high and low temperatures provided by the combined data set are crucial for obtaining reasonable solutions. These results confirm that the observations of at least some loops are not consistent with isothermal plasma, and therefore cannot be modeled with a single flux tube and must be multi-stranded.

  16. ATA50 telescope: hardware

    NASA Astrophysics Data System (ADS)

    Yeşilyaprak, C.; Yerli, S. K.; Aksaker, N.; Yildiran, Y.; Güney, Y.; Güçsav, B. B.; Özeren, F. F.; Kiliç, Y.; Shameoni, M. N.; Fişek, S.; Kiliçerkan, G.; Nasiroğlu, İ.; Özbaldan, E. E.; Yaşar, E.

    2014-12-01

    ATA50 Telescope is a new telescope with RC optics and 50 cm diameter. It was supported by Atatürk University Scientific Research Project (2010) and established at about 2000 meters altitude in city of Erzurum in Turkey last year. The observations were started a few months ago under the direction and control of Atatürk University Astrophysics Research and Application Center (ATASAM). The technical properties and infrastructures of ATA50 Telescope are presented and we have been working on the robotic automation of the telescope as hardware and software in order to be a ready-on-demand candidate for both national and international telescope networks.

  17. Hubble Space Telescope Servicing begins.

    NASA Astrophysics Data System (ADS)

    1993-12-01

    The day's work began when astronauts Story Musgrave and Jeff Hoffman stepped out into the cargo bay at 9h41 pm CST, Saturday (4h41 am CET, Sunday). They immediately set to work replacing two gyroscope assemblies, known as the Rate Sensor Units, two associated electronics boxes, called Electronic Control Units, and eight electrical fuse plugs. The work was completed ahead of schedule, but the astronauts had trouble closing the doors of the compartment housing the gyros and took over an hour to get them shut. The astronauts also prepared equipment for the replacement of the solar arrays. "The feeling down here is one of great satisfaction for a tremendous job today" said spacecraft communicator Greg Harbaugh in mission control. "We are very proud of the work that you all did and we are very confident in the continued success of the mission. Everything is going great and tomorrow is going to be another great day". ESA astronaut Claude Nicollier played a vital role during the spacewalk moving the astronauts and their equipment around the cargo bay with the shuttle's robot arm. The Hubble Space Telescope servicing mission features more robot arm operations than any other shuttle flight. The telescope's left-hand solar array was rolled up successfully at 6h24 am CST (1h24 pm CET). The 11-tonne observatory was rotated 180 degrees on its turntable before commands were sent to retract the second array at 8h23 am CST (3h23 pm CET). The crew stopped the retraction when it appeared the system may have jammed. Mission control instructed the crew to jettison the array, a procedure that they have trained for. Tomorrow astronauts Kathy Thornton and Tom Akers will make a six-hour spacewalk to jettison the troublesome wing, store the other in the cargo bay, and install two new panels supplied by ESA. The second set of arrays feature thermal shields and a modified thermal compensation system to prevent the flexing that affected the first pair. The Hubble Space Telescope was plucked

  18. Space Infrared Telescope Facility (SIRTF) telescope overview

    NASA Technical Reports Server (NTRS)

    Schember, Helene; Manhart, Paul; Guiar, Cecilia; Stevens, James H.

    1991-01-01

    The Space Infrared Telescope Facility (SIRTF) will be the first true infrared observatory in space, building upon the technical and scientific experience gained through its two NASA survey-oriented predecessors: the Infrared Astronomical Satellite and the Cosmic Background Explorer. During its minimum five year lifetime, the SIRTF will perform pointed scientific observations at wavelengths from 1.8 to 1200 microns with an increase in sensitivity over previous missions of several orders of magnitude. This paper discusses a candidate design for the SIRTF telescope, encompassing optics, cryostat, and instrument accommodation, which has been undertaken to provide a fulcrum for the development of functional requirements, interface definition, risk assessment and cost. The telescope optics employ a baffled Ritchey-Chretien Cassegrain system with a 1-m class primary mirror, an active secondary mirror, and a stationary facetted tertiary mirror. The optics are embedded in a large superfluid He cryostat designed to maintain the entire telescope-instrument system at temperatures below 3 K.

  19. Future Directions in Solar Physics

    NASA Technical Reports Server (NTRS)

    Rabin, Douglas

    2010-01-01

    I will discuss scientific opportunities for space-based solar physics instruments in the coming decade and their synergy with major new ground-based telescopes. l will also discuss ( pow small satellites may complement larger solar physics missions.

  20. Development of Solar Research

    NASA Astrophysics Data System (ADS)

    Wittmann, Axel D.; Wolfschmidt, Gudrun; Duerbeck, Hilmar W.

    Originally based on a workshop on “Development of Solar Research”, held in Freiburg/Breisgau, this book contains articles on megalithic structures, the Nebra sky-disk, ancient sun cults, the observation of sunspots, the photography of the sun during eclipses, eclipse maps and expeditions, solar telescopes, solar physics during the Nazi era, archives of solar observations, scientific ballooning for solar research, site-testing on the Canary Islands, as well as on international cooperation.

  1. A decametric wavelength radio telescope for interplanetary scintillation observations

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.

    1975-01-01

    A phased array, electrically steerable radio telescope (with a total collecting area of 18 acres), constructed for the purpose of remotely sensing electron density irregularity structure in the solar wind, is presented. The radio telescope is able to locate, map, and track large scale features of the solar wind, such as streams and blast waves, by monitoring a large grid of natural radio sources subject to rapid intensity fluctuation (interplanetary scintillation) caused by the irregularity structure. Observations verify the performance of the array, the receiver, and the scintillation signal processing circuitry of the telescope.

  2. JWST pathfinder telescope integration

    NASA Astrophysics Data System (ADS)

    Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.; McKay, Andrew; Levi, Joshua; Keski-Kuha, Ritva; Feinberg, Lee

    2015-08-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI and T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.

  3. Automated telescope scheduling

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1988-01-01

    With the ever increasing level of automation of astronomical telescopes the benefits and feasibility of automated planning and scheduling are becoming more apparent. Improved efficiency and increased overall telescope utilization are the most obvious goals. Automated scheduling at some level has been done for several satellite observatories, but the requirements on these systems were much less stringent than on modern ground or satellite observatories. The scheduling problem is particularly acute for Hubble Space Telescope: virtually all observations must be planned in excruciating detail weeks to months in advance. Space Telescope Science Institute has recently made significant progress on the scheduling problem by exploiting state-of-the-art artificial intelligence software technology. What is especially interesting is that this effort has already yielded software that is well suited to scheduling groundbased telescopes, including the problem of optimizing the coordinated scheduling of more than one telescope.

  4. The Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Grueff, G.; Alvito, G.; Ambrosini, R.; Bolli, P.; D'Amico, N.; Maccaferri, A.; Maccaferri, G.; Morsiani, M.; Mureddu, L.; Natale, V.; Olmi, L.; Orfei, A.; Pernechele, C.; Poma, A.; Porceddu, I.; Rossi, L.; Zacchiroli, G.

    We describe the Sardinia Radio Telescope (SRT), a new general purpose, fully steerable antenna of the National Institute for Astrophysics. The radio telescope is under construction near Cagliari (Sardinia). With its large aperture (64m diameter) and its active surface, SRT is capable of operations up to ˜100GHz, it will contribute significantly to VLBI networks and will represent a powerful single-dish radio telescope for many science fields. The radio telescope has a Gregorian optical configuration with a supplementary beam-waveguide (BWG), which provides additional focal points. The Gregorian surfaces are shaped to minimize the spill-over and standing wave. After the start of the contract for the radio telescope structural and mechanical fabrication in 2003, in the present year the foundation construction will be completed. The schedule foresees the radio telescope inauguration in late 2006.

  5. JWST Pathfinder Telescope Integration

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.; McKay, Andrew; Levi, Joshua; Keski-Kuha, Ritva; Feinberg, Lee

    2015-01-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI&T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.

  6. South Pole Telescope optics.

    PubMed

    Padin, S; Staniszewski, Z; Keisler, R; Joy, M; Stark, A A; Ade, P A R; Aird, K A; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; Dobbs, M A; Halverson, N W; Heimsath, S; Hills, R E; Holzapfel, W L; Lawrie, C; Lee, A T; Leitch, E M; Leong, J; Lu, W; Lueker, M; McMahon, J J; Meyer, S S; Mohr, J J; Montroy, T E; Plagge, T; Pryke, C; Ruhl, J E; Schaffer, K K; Shirokoff, E; Spieler, H G; Vieira, J D

    2008-08-20

    The South Pole Telescope is a 10 m diameter, wide-field, offset Gregorian telescope with a 966-pixel, millimeter-wave, bolometer array receiver. The telescope has an unusual optical system with a cold stop around the secondary. The design emphasizes low scattering and low background loading. All the optical components except the primary are cold, and the entire beam from prime focus to the detectors is surrounded by cold absorber. PMID:18716649

  7. South Pole Telescope optics.

    PubMed

    Padin, S; Staniszewski, Z; Keisler, R; Joy, M; Stark, A A; Ade, P A R; Aird, K A; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; Dobbs, M A; Halverson, N W; Heimsath, S; Hills, R E; Holzapfel, W L; Lawrie, C; Lee, A T; Leitch, E M; Leong, J; Lu, W; Lueker, M; McMahon, J J; Meyer, S S; Mohr, J J; Montroy, T E; Plagge, T; Pryke, C; Ruhl, J E; Schaffer, K K; Shirokoff, E; Spieler, H G; Vieira, J D

    2008-08-20

    The South Pole Telescope is a 10 m diameter, wide-field, offset Gregorian telescope with a 966-pixel, millimeter-wave, bolometer array receiver. The telescope has an unusual optical system with a cold stop around the secondary. The design emphasizes low scattering and low background loading. All the optical components except the primary are cold, and the entire beam from prime focus to the detectors is surrounded by cold absorber.

  8. LISA Telescope Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The results of a LISA telescope sensitivity analysis will be presented, The emphasis will be on the outgoing beam of the Dall-Kirkham' telescope and its far field phase patterns. The computed sensitivity analysis will include motions of the secondary with respect to the primary, changes in shape of the primary and secondary, effect of aberrations of the input laser beam and the effect the telescope thin film coatings on polarization. An end-to-end optical model will also be discussed.

  9. Telescope performance verification

    NASA Astrophysics Data System (ADS)

    Swart, Gerhard P.; Buckley, David A. H.

    2004-09-01

    While Systems Engineering appears to be widely applied on the very large telescopes, it is lacking in the development of many of the medium and small telescopes currently in progress. The latter projects rely heavily on the experience of the project team, verbal requirements and conjecture based on the successes and failures of other telescopes. Furthermore, it is considered an unaffordable luxury to "close-the-loop" by carefully analysing and documenting the requirements and then verifying the telescope's compliance with them. In this paper the authors contend that a Systems Engineering approach is a keystone in the development of any telescope and that verification of the telescope's performance is not only an important management tool but also forms the basis upon which successful telescope operation can be built. The development of the Southern African Large Telescope (SALT) has followed such an approach and is now in the verification phase of its development. Parts of the SALT verification process will be discussed in some detail to illustrate the suitability of this approach, including oversight by the telescope shareholders, recording of requirements and results, design verification and performance testing. Initial test results will be presented where appropriate.

  10. Solar VLBI

    NASA Technical Reports Server (NTRS)

    Tapping, K. F.; Kuijpers, J.

    1986-01-01

    In April, 1981, radio telescopes at Dwingeloo (The Netherlands) and Onsala (Sweden) were used as a long-baseline interferometer at a wavelength of 18 cm. The baseline of 619 km gave a spatial resolution on the Sun of about 45 km. The major problems of Solar Very Long Baseline Interferometry are discussed.

  11. Hubble Space Telescope Deployment-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope after being released into orbit, with the high gain anternas and solar arrays deployed and the aperture doors opened. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  12. Astronomy in Hawaii: Telescopes, Research, and Libraries

    NASA Astrophysics Data System (ADS)

    Robertson, A. K.

    2012-08-01

    Since early Polynesian way-finding combined observations of sky and ocean and allowed voyagers to locate and se ttle the far-flung islands of the Pacific, astronomy has impacted the islands of Hawaii. The Twentieth Century saw telescope development on both Haleakala on Maui and Mauna Kea on Hawaii Island. These complexes have developed libraries and information services to support and enhance their research. The University of Hawaii established the Institute for Astronomy (IfA). The IfA Library serves researchers and instrument developers at each of its three locations. Canada-France-Ha waii Telescope, the Joint Astronomy Center, the W. M. Keck Observatory, Gemini Northern Telescope and Subaru Telescope have each developed library services to respond to their unique needs. The librarians at these organizations have formed Astronomy Libraries of HAwaii (A LOHA) to share resources. As electronic research has developed, each library has responded to capitalize on these new capabilities. In coming years, projects such as the Advanced Technology Solar Telescope on Maui and the Thirty Meter Telescope on Hawaii Island have the promise of enlarging our understanding of the Universe. Astronomy libraries in Hawaii will con tinue to enhance their expertise to match the evolution of astronomy technologies and maximize research impact.

  13. LUTE telescope structural design

    NASA Technical Reports Server (NTRS)

    Ruthven, Gregory

    1993-01-01

    The major objective of the Lunar Ultraviolet Transit Experiment (LUTE) Telescope Structural Design Study was to investigate the feasibility of designing an ultralightweight 1-m aperture system within optical performance requirements and mass budget constraints. This study uses the results from our previous studies on LUTE as a basis for further developing the LUTE structural architecture. After summarizing our results in Section 2, Section 3 begins with the overall logic we used to determine which telescope 'structural form' should be adopted for further analysis and weight estimates. Specific telescope component analysis showing calculated fundamental frequencies and how they compare with our derived requirements are included. 'First-order' component stress analyses to ensure telescope optical and structural component (i.e. mirrors & main bulkhead) weights are realistic are presented. Layouts of both the primary and tertiary mirrors showing dimensions that are consistent with both our weight and frequency calculations also form part of Section 3. Section 4 presents our calculated values for the predicted thermally induced primary-to-secondary mirror despace motion due to the large temperature range over which LUTE must operate. Two different telescope design approaches (one which utilizes fused quartz metering rods and one which assumes the entire telescope is fabricated from beryllium) are considered in this analysis. We bound the secondary mirror focus mechanism range (in despace) based on these two telescope configurations. In Section 5 we show our overall design of the UVTA (Ultraviolet Telescope Assembly) via an 'exploded view' of the sub-system. The 'exploded view' is annotated to help aid in the understanding of each sub-assembly. We also include a two view layout of the UVTA from which telescope and telescope component dimensions can be measured. We conclude our study with a set of recommendations not only with respect to the LUTE structural architecture

  14. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    NASA Astrophysics Data System (ADS)

    1999-11-01

    Today the HST Archives contain more than 260 000 astronomical observations. More than 13 000 astronomical objects have been observed by hundreds of different groups of scientists. Direct proof of the scientific significance of this project is the record-breaking number of papers published : over 2400 to date. Some of HST's most memorable achievements are: * the discovery of myriads of very faint galaxies in the early Universe, * unprecedented, accurate measurements of distances to the farthest galaxies, * significant improvement in the determination of the Hubble constant and thus the age of the Universe, * confirmation of the existence of blacks holes, * a far better understanding of the birth, life and death of stars, * a very detailed look at the secrets of the process by which planets are created. Europe and HST ESA's contribution to HST represents a nominal investment of 15%. ESA provided one of the two imaging instruments - the Faint Object Camera (FOC) - and the solar panels. It also has 15 scientists and computer staff working at the Space Telescope Science Institute in Baltimore (Maryland). In Europe the astronomical community receives observational assistance from the Space Telescope European Coordinating Facility (ST-ECF) located in Garching, Munich. In return for ESA's investment, European astronomers have access to approximately 15% of the observing time. In reality the actual observing time competitively allocated to European astronomers is closer to 20%. Looking back at almost ten years of operation, the head of ST-ECF, European HST Project Scientist Piero Benvenuti states: "Hubble has been of paramount importance to European astronomy, much more than the mere 20% of observing time. It has given the opportunity for European scientists to use a top class instrument that Europe alone would not be able to build and operate. In specific areas of research they have now, mainly due to HST, achieved international leadership." One of the major reasons for

  15. Prototype Secondary Mirror Assembly For The Space Infrared Telescope Facility

    NASA Astrophysics Data System (ADS)

    Stier, M.; Duffy, M.; Gullapalli, S.; Rockwell, R.; Sileo, F.; Krim, M.

    1988-04-01

    We describe our concept for a liquid helium temperature prototype secondary mirror assembly (PSMA) for the Space Infrared Telescope Facility. SIRTF, a NASA "Great Observatory" to be launched in the 1990's, is a superfluid heliumcooled 1-meter class telescope with much more stringent performance requirements than its precursor the Infrared Astronomical Satellite (IRAS). The SIRTF secondary mirror assembly must operate near 4 K and provide the functions of 2-axis dynamic tilting ("chopping") in addition to the conventional functions of focus and centering. The PSMA must be able to withstand random vibration testing and provide all of the functions needed by the SIRTF observatory. Our PSMA concept employs a fused quartz mirror kinematically attached at its center to an aluminum cruciform. The mirror/cruciform assembly is driven in tilt about its combined center of mass using a unique flexure pivot and a four-actuator control system with feed-back provided by pairs of eddy current position sensors. The actuators are mounted on a second flexure-pivoted mass providing angular momentum compensation and isolating the telescope from vibration-induced disturbances. The mirror/cruciform and the reaction mass are attached to opposite sides of an aluminum mounting plate whose AL/L characteristics are nominally identical to that of the aluminum flexure pivot material. The mounting plate is connected to the outer housing by a focus and centering mechanism based upon the six degree of freedom secondary mirror assembly developed for the Hubble Space Telescope.

  16. High resolution telescope

    DOEpatents

    Massie, Norbert A.; Oster, Yale

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  17. Goddard Robotic Telescope

    NASA Astrophysics Data System (ADS)

    Sakamoto, Takanori; Donato, Davide; Gehrels, Neil; Okajima, Takashi; Ukwatta, Tilan N.

    2009-05-01

    We are constructing the 14'' fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are 1) to follow-up the Swift/Fermi Gamma-Ray Bursts (GRBs) and 2) to perform the coordinated optical observations of the Fermi/Large Area Telescope (LAT) Active Galactic Nuclei (AGN). Our telescope system consists of the 14'' Celestron Optical Telescope Assembly (OTA), the Astro-Physics 1200GTO mount, the Apogee U47 CCD camera, the JMI's electronic focuser, and the Finger Lake Instrumentation's color filter wheel with U, B, V, R and I filters. With the focal reducer, 20'×20' field of view has been achieved. The observatory dome is the Astro Haven's 7 ft clam-shell dome. We started the scientific observations on mid-November 2008. While not observing our primary targets (GRBs and AGNs), we are planning to open our telescope time to the public for having a wider use of our telescope in both a different research field and an educational purpose.

  18. Video Telescope Operating Microscopy.

    PubMed

    Divers, Stephen J

    2015-09-01

    Exotic pet veterinarians frequently have to operate on small animals, and magnification is commonly used. Existing endoscopy equipment can be used with a mechanical arm and telescope to enable video telescope operating microscopy. The additional equipment items and their specifics are described, and several case examples are provided. PMID:26117519

  19. Goddard Robotic Telescope

    SciTech Connect

    Sakamoto, Takanori; Donato, Davide; Gehrels, Neil; Okajima, Takashi; Ukwatta, Tilan N.

    2009-05-25

    We are constructing the 14'' fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are 1) to follow-up the Swift/Fermi Gamma-Ray Bursts (GRBs) and 2) to perform the coordinated optical observations of the Fermi/Large Area Telescope (LAT) Active Galactic Nuclei (AGN). Our telescope system consists of the 14'' Celestron Optical Telescope Assembly (OTA), the Astro-Physics 1200GTO mount, the Apogee U47 CCD camera, the JMI's electronic focuser, and the Finger Lake Instrumentation's color filter wheel with U, B, V, R and I filters. With the focal reducer, 20'x20' field of view has been achieved. The observatory dome is the Astro Haven's 7 ft clam-shell dome. We started the scientific observations on mid-November 2008. While not observing our primary targets (GRBs and AGNs), we are planning to open our telescope time to the public for having a wider use of our telescope in both a different research field and an educational purpose.

  20. Video Telescope Operating Microscopy.

    PubMed

    Divers, Stephen J

    2015-09-01

    Exotic pet veterinarians frequently have to operate on small animals, and magnification is commonly used. Existing endoscopy equipment can be used with a mechanical arm and telescope to enable video telescope operating microscopy. The additional equipment items and their specifics are described, and several case examples are provided.

  1. Productivity and Impact of Optical Telescopes

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia; Zaich, Paul; Bosler, Tammy

    2005-01-01

    In 2001, about 2100 papers appearing in 18 journals reported and/or analyzed data collected with ground-based optical and infrared telescopes and the Hubble Space Telescope. About 250 telescopes were represented, including 25 with primary mirror diameters of 3 m or larger. The subjects covered in the papers divide reasonably cleanly into 20 areas, from solar system to cosmology. These papers were cited 24,354 times in 2002 and 2003, for a mean rate of 11.56 citations per paper, or 5.78 citations per paper per year (sometimes called impact or impact factor). We analyze here the distributions of the papers, citations, and impact factors among the telescopes and subject areas and compare the results with those of a very similar study of papers published in 1990-1991 and cited in 1993. Some of the results are exactly as expected. Big telescopes produce more papers and more citations per paper than small ones. There are fashionable topics (cosmology and exoplanets) and less fashionable ones (binary stars and planetary nebulae). And the Hubble Space Telescope has changed the landscape a great deal. Some other results surprised us but are explicable in retrospect. Small telescopes on well-supported sites (La Silla and Cerro Tololo, for instance) produce papers with larger impact factors than similar sized telescopes in relative isolation. Not just the fraction of all papers, but the absolute numbers of papers coming out of the most productive 4 m telescopes of a decade ago have gone down. The average number of citations per paper per year resulting from the 38 telescopes (2 m and larger) considered in 1993 has gone up 38%, from 3.48 to 4.81, a form, perhaps, of grade inflation. And 53% of the 2100 papers and 38% of the citations (including 44% of the papers and 31% of the citations from mirrors of 3 m and larger) pertain to topics often not regarded as major drivers for the next generation of still larger ground-based telescopes.

  2. Two Easily Made Astronomical Telescopes.

    ERIC Educational Resources Information Center

    Hill, M.; Jacobs, D. J.

    1991-01-01

    The directions and diagrams for making a reflecting telescope and a refracting telescope are presented. These telescopes can be made by students out of plumbing parts and easily obtainable, inexpensive, optical components. (KR)

  3. The large binocular telescope.

    PubMed

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010. PMID:20517352

  4. The large binocular telescope.

    PubMed

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010.

  5. Telescopic vision contact lens

    NASA Astrophysics Data System (ADS)

    Tremblay, Eric J.; Beer, R. Dirk; Arianpour, Ashkan; Ford, Joseph E.

    2011-03-01

    We present the concept, optical design, and first proof of principle experimental results for a telescopic contact lens intended to become a visual aid for age-related macular degeneration (AMD), providing magnification to the user without surgery or external head-mounted optics. Our contact lens optical system can provide a combination of telescopic and non-magnified vision through two independent optical paths through the contact lens. The magnified optical path incorporates a telescopic arrangement of positive and negative annular concentric reflectors to achieve 2.8x - 3x magnification on the eye, while light passing through a central clear aperture provides unmagnified vision.

  6. Cooled infrared telescope development

    NASA Technical Reports Server (NTRS)

    Young, L. S.

    1976-01-01

    The feasibility of the design concept for a 1-m-aperture, cryogenically cooled telescope for Spacelab is assessed. The device makes use of double-folded Gregorian reflective optics. The planned cryogen is helium, and beryllium will be used for the 1.2 m primary mirror. Results of studies based on smaller instruments indicate that no new technology will be required to construct a Shuttle Infrared Telescope Facility which will offer improvement over the sensitivity of conventional telescopes by a factor of 1000 at 10 micrometers.

  7. Multi-use lunar telescopes

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Hine, Butler; Genet, Russell; Genet, David; Talent, David; Boyd, Louis; Trueblood, Mark; Filippenko, Alexei V. (Editor)

    1991-01-01

    The objective of multi-use telescopes is to reduce the initial and operational costs of space telescopes to the point where a fair number of telescopes, a dozen or so, would be affordable. The basic approach is to develop a common telescope, control system, and power and communications subsystem that can be used with a wide variety of instrument payloads, i.e., imaging CCD cameras, photometers, spectrographs, etc. By having such a multi-use and multi-user telescope, a common practice for earth-based telescopes, development cost can be shared across many telescopes, and the telescopes can be produced in economical batches.

  8. Stellar Astrophysics with the World's largest Telescopes

    NASA Astrophysics Data System (ADS)

    Mikolajewska, Joanna; Olech, Arkadiusz

    The book reviews the most timely and interesting problems of stellar astrophysics, particularly those suitable for studies with the world's largest telescopes, and it can serve as an introduction to such studies. In particular it gives a comprehensive presentation of state-of-the-art research in stellar and planetary system formation, extra-solar planets, final stages of single and binary stellar evolution, and stellar populations in the Local Group of Galaxies, including observational techniques and technologies applicable to those important fields.

  9. Undergraduate Research with a Small Radio Telescope

    NASA Astrophysics Data System (ADS)

    Fisher, P. L.; Williams, G. J.

    2001-11-01

    We describe the construction of a small radio telescope system at ULM and the role of radio astronomy in undergraduate education. The heart of the system is the Small Radio Telescope (SRT), which is a modified satellite TV antenna and custom receiver purchased from MIT Haystack Observatory. This telescope measures the brightness of many celestial objects at wavelengths near 21 cm. The system consists of various components to control dish movement, as well as perform analog to digital conversions allowing analysis of collected data. Undergraduate students have participated in the construction of the hardware and the task of interfacing the hardware to software on two GNU/Linux computer systems. The construction of the telescope and analysis of data allow the students to employ key concepts from mechanics, optics, electrodynamics, and thermodynamics, as well as computer and electronics skills. We will report preliminary results of solar observations conducted with this instrument and with the MIT Haystack Observatory 37m radio telescope. This work was supported by Louisiana Board of Regents grant LEQSF-ENH-UG-16, NASA/LaSPACE LURA R109139 and ULM Development Foundation Grant 97317.

  10. Webb Telescope: Planetary Evolution

    NASA Video Gallery

    Stars and planets form in the dark, inside vast, cold clouds of gas and dust. The James Webb Space Telescope's large mirror and infrared sensitivity will let astronomers peer inside dusty knots whe...

  11. The Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Schloerb, F. Peter; Carrasco, Luis

    2004-10-01

    We present a summary of the Large Millimeter Telescope Project and its present status. The Large Millimeter Telescope (LMT) is a joint project of the University of Massachusetts (UMass) in the USA and the Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) in Mexico to build a 50m-diameter millimeter-wave telescope. The LMT is being built at an altitude of 4600 m atop Volcan Sierra Negra, an extinct volcanic peak in the state of Puebla, Mexico, approximately 100 km east of the city of Puebla. Construction of the antenna is now well underway. The basic structure with a limited number of surface panels is expected to be completed in 2005. Engineering acceptance and telescope commissioning are expected to be completed in 2007.

  12. Composite Space Telescope Truss

    NASA Video Gallery

    NASA engineers are recycling an idea for a lightweight, compact space telescope structure from the early 1990s. The 315 struts and 84 nodes were originally designed to enable spacewalking astronaut...

  13. Building a Telescope.

    ERIC Educational Resources Information Center

    Linas, Chris F.

    1988-01-01

    Provides information on the parts, materials, prices, dimensions, and tools needed for the construction of a telescope that can be used in high school science laboratories. Includes step-by-step directions and a diagram for assembly. (RT)

  14. Shuttle Infrared Telescope Facility

    NASA Technical Reports Server (NTRS)

    Mccarthy, S. G.

    1976-01-01

    The Shuttle Infrared Telescope Facility (SIRTF) will combine high sensitivity with the flexibility offered by the Space Transportation System. A recently completed study has generated a preliminary design which demonstrates the feasibility of SIRTF. The 1.0 to 1.5 meter aperture, f/8 Gregorian telescope will be cooled to 20 K by a stored supercritical helium system. The telescope will be pointed and stabilized at two levels: the European-developed Instrument Pointing System provides primary pointing and stabilization; and an internal star tracker senses residual errors and drives a folding mirror inside the telescope to null the errors. The folding mirror can also be driven by square or triangular waves to provide space chopping or small-area scanning.

  15. Hubble Space Telescope Deployment-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope (HST) being raised to a vertical position in the cargo bay of the Space Shuttle orbiter. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  16. Hubble Space Telescope Deployment-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope (HST) being positioned for release from the Space Shuttle orbiter by the Remote Manipulator System (RMS). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13- meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  17. Telescopes in History

    NASA Astrophysics Data System (ADS)

    Bond, P.; Murdin, P.

    2000-11-01

    The precise origins of the optical telescope are hidden in the depths of time. In the thirteenth century Roger Bacon claimed to have devised a combination of lenses which enabled him to see distant objects as if they were near. Others who have an unsubstantiated claim to have invented the telescope in the sixteenth century include an Englishman, Leonard DIGGES, and an Italian, Giovanni Batista Po...

  18. LISA Telescope Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    The Laser Interferometer Space Antenna (LISA) for the detection of Gravitational Waves is a very long baseline interferometer which will measure the changes in the distance of a five million kilometer arm to picometer accuracies. As with any optical system, even one with such very large separations between the transmitting and receiving, telescopes, a sensitivity analysis should be performed to see how, in this case, the far field phase varies when the telescope parameters change as a result of small temperature changes.

  19. Long life feasibility study for the shuttle infrared telescope facility

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A study was conducted to assess the feasibility of designing an Infrared Telescope of the 1 meter class which would operate effectively as a Shuttleborne, 14-day Spacelab payload and then be adapted with little modification to work as a 6 month Space station or free flyer payload. The optics configuration and requirements from a previous study were used without modification. In addition, an enhancement to 2 year mission lengths was studied. The cryogenic system selected was a hybrid design with an internal solid Hydrogen tank at 8 Kelvin and an internal superfluid tank at 2K. In addition to the cryogenic design, a detailed look at secondary mirror actuators for chopping, focus and decenter was conducted and analysis and cryo test reported.

  20. The Multiple-Mirror Telescope

    ERIC Educational Resources Information Center

    Carleton, Nathaniel P.; Hoffmann, William F.

    1978-01-01

    Describes the basic design and principle of operating an optical-infrared telescope, the MMT. This third largest telescope in the world represents a new stage in telescope design; it uses a cluster of six reflecting telescopes, and relies on an automatic sensing and control system. (GA)

  1. Comet C/2012 S1 (ISON): Observations of the Dust Grains from SOFIA and of the Atomic Gas from NSO Dunn and McMath-Pierce Solar Telescopes (Invited)

    NASA Astrophysics Data System (ADS)

    Wooden, D. H.; Woodward, C. E.; Harker, D. E.; Kelley, M. S.; Sitko, M.; Reach, W. T.; De Pater, I.; Gehrz, R. D.; Kolokolova, L.; Cochran, A. L.; McKay, A. J.; Reardon, K.; Cauzzi, G.; Tozzi, G.; Christian, D. J.; Jess, D. B.; Mathioudakis, M.; Lisse, C. M.; Morgenthaler, J. P.; Knight, M. M.

    2013-12-01

    Comet C/2012 S1 (ISON) is unique in that it is a dynamically new comet derived from the Oort cloud reservoir of comets with a sun-grazing orbit. Infrared (IR) and visible wavelength observing campaigns were planned on NASA's Stratospheric Observatory For Infrared Astronomy (SOFIA) and on National Solar Observatory Dunn (DST) and McMath-Pierce Solar Telescopes, respectively. We highlight our early results. SOFIA (+FORCAST [1]) mid- to far-IR images and spectroscopy (~5-35 μm) of the dust in the coma of ISON are to be obtained by the ISON-SOFIA Team during a flight window 2013 Oct 21-23 UT (r_h≈1.18 AU). Dust characteristics, identified through the 10 μm silicate emission feature and its strength [2], as well as spectral features from cometary crystalline silicates (Forsterite) at 11.05-11.2 μm, and near 16, 19, 23.5, 27.5, and 33 μm are compared with other Oort cloud comets that span the range of small and/or highly porous grains (e.g., C/1995 O1 (Hale-Bopp) [3,4,5] and C/2001 Q4 (NEAT) [6]) to large and/or compact grains (e.g., C/2007 N4 (Lulin) [7] and C/2006 P1 (McNaught) [8]). Measurement of the crystalline peaks in contrast to the broad 10 and 20 μm amorphous silicate features yields the cometary silicate crystalline mass fraction [9], which is a benchmark for radial transport in our protoplanetary disk [10]. The central wavelength positions, relative intensities, and feature asymmetries for the crystalline peaks may constrain the shapes of the crystals [11]. Only SOFIA can look for cometary organics in the 5-8 μm region. Spatially resolved measurements of atoms and simple molecules from when comet ISON is near the Sun (r_h< 0.4 AU, near Nov-20--Dec-03 UT) were proposed for by the ISON-DST Team. Comet ISON is the first comet since comet Ikeya-Seki (1965f) [12,13] suitable for studying the alkalai metals Na and K and the atoms specifically attributed to dust grains including Mg, Si, Fe, as well as Ca. DST's Horizontal Grating Spectrometer (HGS) measures

  2. Interplanetary scintillation observations with the Cocoa Cross radio telescope

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.; Erskine, F. T.; Huneke, A. H.; Mitchell, D. G.

    1976-01-01

    Physical and electrical parameters for the 34.3-MHz Cocoa Cross radio telescope are given. The telescope is dedicated to the determination of solar-wind characteristics in and out of the ecliptic plane through measurement of electron-density irregularity structure as determined from IPS (interplanetary scintillation) of natural radio sources. The collecting area (72,000 sq m), angular resolution (0.4 deg EW by 0.6 deg NS), and spatial extent (1.3 km EW by 0.8 km NS) make the telescope well suited for measurements of IPS index and frequency scale for hundreds of weak radio sources without serious confusion effects.

  3. The South Pole Telescope

    SciTech Connect

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

  4. Robotic and Survey Telescopes

    NASA Astrophysics Data System (ADS)

    Woźniak, Przemysław

    Robotic telescopes are revolutionizing the way astronomers collect their dataand conduct sky surveys. This chapter begins with a discussion of principles thatguide the process of designing, constructing, and operating telescopes andobservatories that offer a varying degree of automation, from instruments remotelycontrolled by observers to fully autonomous systems requiring no humansupervision during their normal operations. Emphasis is placed on designtrade-offs involved in building end-to-end systems intended for a wide range ofscience applications. The second part of the chapter contains descriptions ofseveral projects and instruments, both existing and currently under development.It is an attempt to provide a representative selection of actual systems thatillustrates state of the art in technology, as well as important ideas and milestonesin the development of the field. The list of presented instruments spans the fullrange in size starting from small all-sky monitors, through midrange robotic andsurvey telescopes, and finishing with large robotic instruments and surveys.Explosive growth of telescope networking is enabling entirely new modesof interaction between the survey and follow-up observing. Increasingimportance of standardized communication protocols and software is stressed.These developments are driven by the fusion of robotic telescope hardware,massive storage and databases, real-time knowledge extraction, and datacross-correlation on a global scale. The chapter concludes with examplesof major science results enabled by these new technologies and futureprospects.

  5. Telescope Adaptive Optics Code

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The defaultmore » parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST« less

  6. Spectroradiometry with space telescopes

    NASA Astrophysics Data System (ADS)

    Pauluhn, Anuschka; Huber, Martin C. E.; Smith, Peter L.; Colina, Luis

    2015-12-01

    Radiometry, i.e. measuring the power of electromagnetic radiation—hitherto often referred to as "photometry"—is of fundamental importance in astronomy. We provide an overview of how to achieve a valid laboratory calibration of space telescopes and discuss ways to reliably extend this calibration to the spectroscopic telescope's performance in space. A lot of effort has been, and still is going into radiometric "calibration" of telescopes once they are in space; these methods use celestial primary and transfer standards and are based in part on stellar models. The history of the calibration of the Hubble Space Telescope serves as a platform to review these methods. However, we insist that a true calibration of spectroscopic space telescopes must directly be based on and traceable to laboratory standards, and thus be independent of the observations. This has recently become a well-supported aim, following the discovery of the acceleration of the cosmic expansion by use of type-Ia supernovae, and has led to plans for launching calibration rockets for the visible and infrared spectral range. This is timely, too, because an adequate exploitation of data from present space missions, such as Gaia, and from many current astronomical projects like Euclid and WFIRST demands higher radiometric accuracy than is generally available today. A survey of the calibration of instruments observing from the X-ray to the infrared spectral domains that include instrument- or mission-specific estimates of radiometric accuracies rounds off this review.

  7. Monolithic afocal telescope

    NASA Technical Reports Server (NTRS)

    Roberts, William T. (Inventor)

    2010-01-01

    An afocal monolithic optical element formed of a shallow cylinder of optical material (glass, polymer, etc.) with fast aspheric surfaces, nominally confocal paraboloids, configured on the front and back surfaces. The front surface is substantially planar, and this lends itself to deposition of multi-layer stacks of thin dielectric and metal films to create a filter for rejecting out-of-band light. However, an aspheric section (for example, a paraboloid) can either be ground into a small area of this surface (for a Cassegrain-type telescope) or attached to the planar surface (for a Gregorian-type telescope). This aspheric section of the surface is then silvered to create the telescope's secondary mirror. The rear surface of the cylinder is figured into a steep, convex asphere (again, a paraboloid in the examples), and also made reflective to form the telescope's primary mirror. A small section of the rear surface (approximately the size of the secondary obscuration, depending on the required field of the telescope) is ground flat to provide an unpowered surface through which the collimated light beam can exit the optical element. This portion of the rear surface is made to transmit the light concentrated by the reflective surfaces, and can support the deposition of a spectral filter.

  8. The Travelling Telescope

    NASA Astrophysics Data System (ADS)

    Murabona Oduori, Susan

    2015-08-01

    The telescope has been around for more than 400 years, and through good use of it scientists have made many astonishing discoveries and begun to understand our place in the universe. Most people, however, have never looked through one. Yet it is a great tool for cool science and observation especially in a continent and country with beautifully dark skies. The Travelling Telescope project aims to invite people outside under the stars to learn about those curious lights in the sky.The Travelling Telescope aims to promote science learning to a wide range of Kenyan schools in various locations exchanging knowledge about the sky through direct observations of celestial bodies using state of the art telescopes. In addition to direct observing we also teach science using various hands-on activities and astronomy software, ideal for explaining concepts which are hard to understand, and for a better grasp of the sights visible through the telescope. We are dedicated to promoting science using astronomy especially in schools, targeting children from as young as 3 years to the youth, teachers, their parents and members of the public. Our presentation focuses on the OAD funded project in rural coastal Kenya.

  9. Optical Observations of GEO Debris with Two Telescopes

    NASA Technical Reports Server (NTRS)

    Seitzer, P.; Abercromby, K.; Rodriguez, H.; Barker, E.

    2007-01-01

    For several years, the Michigan Orbital DEbris Survey Telescope (MODEST), the University of Michigan s 0.6/0.9-m Schmidt telescope on Cerro Tololo Inter-American Observatory in Chile has been used to survey the debris population at GEO in the visible regime. Magnitudes, positions, and angular rates are determined for GEO objects as they move across the telescope s field-of-view (FOV) during a 5-minute window. This short window of time is not long enough to determine a full six parameter orbit so usually a circular orbit is assumed. A longer arc of time is necessary to determine eccentricity and to look for changes in the orbit with time. MODEST can follow objects in real-time, but only at the price of stopping survey operations. A second telescope would allow for longer arcs of orbit to obtain the full six orbital parameters, as well as assess the changes over time. An additional benefit of having a second telescope is the capability of obtaining BVRI colors of the faint targets, aiding efforts to determine the material type of faint debris. For 14 nights in March 2007, two telescopes were used simultaneously to observe the GEO debris field. MODEST was used exclusively in survey mode. As objects were detected, they were handed off in near real-time to the Cerro Tololo 0.9-m telescope for follow-up observations. The goal was to determine orbits and colors for all objects fainter than R = 15th magnitude (corresponds to 1 meter in size assuming a 0.2 albedo) detected by MODEST. The hand-off process was completely functional during the final eight nights and follow-ups for objects from night-to-night were possible. The cutoff magnitude level of 15th was selected on the basis of an abrupt change in the observed angular rate distribution in the MODEST surveys. Objects brighter than 15th magnitude tend to lie on a well defined locus in the angular rate plane (and have orbits in the catalog), while fainter objects fill the plane almost uniformly. We need to determine full

  10. Amateur Telescope Making

    NASA Astrophysics Data System (ADS)

    Tonkin, Stephen

    Many amateur astronomers make their own instruments, either because of financial considerations or because they are just interested. Amateur Telescope Making offers a variety of designs for telescopes, mounts and drives which are suitable for the home-constructor. The designs range from simple to advanced, but all are within the range of a moderately well-equipped home workshop. The book not only tells the reader what he can construct, but also what it is sensible to construct given what time is available commercially. Thus each chapter begins with reasons for undertaking the project, then looks at theoretical consideration before finishing with practical instructions and advice. An indication is given as to the skills required for the various projects. Appendices list reputable sources of (mail order) materials and components. The telescopes and mounts range from "shoestring" (very cheap) instruments to specialist devices that are unavailable commercially.

  11. The Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Pérez-Grovas, Alfonso Serrano; Schloerb, F. Peter; Hughes, David; Yun, Min

    2006-06-01

    We present a summary of the Large Millimeter Telescope (LMT) Project and its current status. The LMT is a joint project of the University of Massachusetts (UMass) in the USA and the Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) in Mexico to build a 50m-diameter millimeter-wave telescope. The LMT site is at an altitude of 4600 m atop Volcan Sierra Negra, an extinct volcanic peak in the state of Puebla, Mexico, approximately 100 km east of the city of Puebla. Construction of the antenna steel structure has been completed and the antenna drive system has been installed. Fabrication of the reflector surface is underway. The telescope is expected to be completed in 2008.

  12. The Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi

    2011-08-01

    We present the status of the Sardinia Radio Telescope (SRT) project, a new general purpose, fully steerable 64 m diameter parabolic radio telescope under construction in Sardinia. The instrument is funded by Italian Ministry of University and Research (MIUR), by the Sardinia Regional Government (RAS), and by the Italian Space Agency (ASI), and it is charge to three research structures of the National Institute for Astrophysics (INAF): the Institute of Radio Astronomy of Bologna, the Cagliari Astronomical Observatory (in Sardinia), and the Arcetri Astrophysical Observatory in Florence. The radio telescope has a shaped Gregorian optical configuration with a 8 m diameter secondary mirror and additional Beam-Wave Guide (BWG) mirrors. One of the most challenging feature of SRT is the active surface of the primary reflector which provides good efficiency up to about 100 GHz. This paper reports on the most recent advances of the construction.

  13. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    NASA Astrophysics Data System (ADS)

    1999-11-01

    Today the HST Archives contain more than 260 000 astronomical observations. More than 13 000 astronomical objects have been observed by hundreds of different groups of scientists. Direct proof of the scientific significance of this project is the record-breaking number of papers published : over 2400 to date. Some of HST's most memorable achievements are: * the discovery of myriads of very faint galaxies in the early Universe, * unprecedented, accurate measurements of distances to the farthest galaxies, * significant improvement in the determination of the Hubble constant and thus the age of the Universe, * confirmation of the existence of blacks holes, * a far better understanding of the birth, life and death of stars, * a very detailed look at the secrets of the process by which planets are created. Europe and HST ESA's contribution to HST represents a nominal investment of 15%. ESA provided one of the two imaging instruments - the Faint Object Camera (FOC) - and the solar panels. It also has 15 scientists and computer staff working at the Space Telescope Science Institute in Baltimore (Maryland). In Europe the astronomical community receives observational assistance from the Space Telescope European Coordinating Facility (ST-ECF) located in Garching, Munich. In return for ESA's investment, European astronomers have access to approximately 15% of the observing time. In reality the actual observing time competitively allocated to European astronomers is closer to 20%. Looking back at almost ten years of operation, the head of ST-ECF, European HST Project Scientist Piero Benvenuti states: "Hubble has been of paramount importance to European astronomy, much more than the mere 20% of observing time. It has given the opportunity for European scientists to use a top class instrument that Europe alone would not be able to build and operate. In specific areas of research they have now, mainly due to HST, achieved international leadership." One of the major reasons for

  14. Cooling Technology for Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    DiPirro, Michael; Cleveland, Paul; Durand, Dale; Klavins, Andy; Muheim, Daniella; Paine, Christopher; Petach, Mike; Tenerelli, Domenick; Tolomeo, Jason; Walyus, Keith

    2007-01-01

    NASA's New Millennium Program funded an effort to develop a system cooling technology, which is applicable to all future infrared, sub-millimeter and millimeter cryogenic space telescopes. In particular, this technology is necessary for the proposed large space telescope Single Aperture Far-Infrared Telescope (SAFIR) mission. This technology will also enhance the performance and lower the risk and cost for other cryogenic missions. The new paradigm for cooling to low temperatures will involve passive cooling using lightweight deployable membranes that serve both as sunshields and V-groove radiators, in combination with active cooling using mechanical coolers operating down to 4 K. The Cooling Technology for Large Space Telescopes (LST) mission planned to develop and demonstrate a multi-layered sunshield, which is actively cooled by a multi-stage mechanical cryocooler, and further the models and analyses critical to scaling to future missions. The outer four layers of the sunshield cool passively by radiation, while the innermost layer is actively cooled to enable the sunshield to decrease the incident solar irradiance by a factor of more than one million. The cryocooler cools the inner layer of the sunshield to 20 K, and provides cooling to 6 K at a telescope mounting plate. The technology readiness level (TRL) of 7 will be achieved by the active cooling technology following the technology validation flight in Low Earth Orbit. In accordance with the New Millennium charter, tests and modeling are tightly integrated to advance the technology and the flight design for "ST-class" missions. Commercial off-the-shelf engineering analysis products are used to develop validated modeling capabilities to allow the techniques and results from LST to apply to a wide variety of future missions. The LST mission plans to "rewrite the book" on cryo-thermal testing and modeling techniques, and validate modeling techniques to scale to future space telescopes such as SAFIR.

  15. The Discovery Channel Telescope

    NASA Astrophysics Data System (ADS)

    Millis, R. L.; Dunham, E. W.; Sebring, T. A.; Smith, B. W.; de Kock, M.; Wiecha, O.

    2004-11-01

    The Discovery Channel Telescope (DCT) is a 4.2-m telescope to be built at a new site near Happy Jack, Arizona. The DCT features a large prime focus mosaic CCD camera with a 2-degree-diameter field of view especially designed for surveys of KBOs, Centaurs, NEAs and other moving or time-variable targets. The telescope can be switched quickly to a Ritchey-Chretien configuration for optical/IR spectroscopy or near-IR imaging. This flexibility allows timely follow-up physical studies of high priority objects discovered in survey mode. The ULE (ultra-low-expansion) meniscus primary and secondary mirror blanks for the telescope are currently in fabrication by Corning Glass. Goodrich Aerospace, Vertex RSI, M3 Engineering and Technology Corp., and e2v Technologies have recently completed in-depth conceptual design studies of the optics, mount, enclosure, and mosaic focal plane, respectively. The results of these studies were subjected to a formal design review in July, 2004. Site testing at the 7760-ft altitude Happy Jack site began in 2001. Differential image motion observations from 117 nights since January 1, 2003 gave median seeing of 0.84 arcsec FWHM, and the average of the first quartile was 0.62 arcsec. The National Environmental Policy Act (NEPA) process for securing long-term access to this site on the Coconino National Forest is nearing completion and ground breaking is expected in the spring of 2005. The Discovery Channel Telescope is a project of the Lowell Observatory with major financial support from Discovery Communications, Inc. (DCI). DCI plans ongoing television programming featuring the construction of the telescope and the research ultimately undertaken with the DCT. An additional partner can be accommodated in the project. Interested parties should contact the lead author.

  16. Hubble Space Telescope Image

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a photograph of giant twisters and star wisps in the Lagoon Nebula. This superb Hubble Space Telescope (HST) image reveals a pair of one-half light-year long interstellar twisters, eerie furnels and twisted rope structures (upper left), in the heart of the Lagoon Nebula (Messier 8) that lies 5,000 light-years away in the direction of the constellation Sagittarius. This image was taken by the Hubble Space Telescope Wide Field/Planetary Camera 2 (WF/PC2).

  17. Ground based automated telescope

    SciTech Connect

    Colgate, S.A.; Thompson, W.

    1980-01-01

    Recommendation that a ground-based automated telescope of the 2-meter class be built for remote multiuser use as a natural facility. Experience dictates that a primary consideration is a time shared multitasking operating system with virtual memory overlayed with a real time priority interrupt. The primary user facility is a remote terminal networked to the single computer. Many users must have simultaneous time shared access to the computer for program development. The telescope should be rapid slewing, and hence a light weight construction. Automation allows for the closed loop pointing error correction independent of extreme accuracy of the mount.

  18. Robust telescope scheduling

    NASA Technical Reports Server (NTRS)

    Swanson, Keith; Bresina, John; Drummond, Mark

    1994-01-01

    This paper presents a technique for building robust telescope schedules that tend not to break. The technique is called Just-In-Case (JIC) scheduling and it implements the common sense idea of being prepared for likely errors, just in case they should occur. The JIC algorithm analyzes a given schedule, determines where it is likely to break, reinvokes a scheduler to generate a contingent schedule for each highly probable break case, and produces a 'multiply contingent' schedule. The technique was developed for an automatic telescope scheduling problem, and the paper presents empirical results showing that Just-In-Case scheduling performs extremely well for this problem.

  19. Pointing the SOFIA Telescope

    NASA Astrophysics Data System (ADS)

    Gross, M. A. K.; Rasmussen, J. J.; Moore, E. M.

    2010-12-01

    SOFIA is an airborne, gyroscopically stabilized 2.5m infrared telescope, mounted to a spherical bearing. Unlike its predecessors, SOFIA will work in absolute coordinates, despite its continually changing position and attitude. In order to manage this, SOFIA must relate equatorial and telescope coordinates using a combination of avionics data and star identification, manage field rotation and track sky images. We describe the algorithms and systems required to acquire and maintain the equatorial reference frame, relate it to tracking imagers and the science instrument, set up the oscillating secondary mirror, and aggregate pointings into relocatable nods and dithers.

  20. Hubble Space Telescope Image

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This color image from the Hubble Space Telescope (HST) shows a region in NGC 1365, a barred spiral galaxy located in a cluster of galaxies called Fornax. A barred spiral galaxy is characterized by a bar of stars, dust, and gas across its center. The black and white photograph from a ground-based telescope shows the entire galaxy, which is visible from the Southern Hemisphere. The galaxy is estimated to be 60-million light-years from Earth. This image was taken by the HST Wide Field/Planetary Camera 2 (WF/PC-2).

  1. Toward Active X-ray Telescopes II

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Aldroft, Thomas L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Johnson-Wilke, Raegan L.; Kolodziejczak, Jeffery J.; Lillie, Charles F.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Sanmartin, Daniel Rodriguez; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan E.; Ulmer, Melville P.; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2012-01-01

    In the half century since the initial discovery of an astronomical (non-solar) x-ray source, the sensitivity for detection of cosmic x-ray sources has improved by ten orders of magnitude. Largely responsible for this dramatic progress has been the refinement of the (grazing-incidence) focusing x-ray telescope. The future of x-ray astronomy relies upon the development of x-ray telescopes with larger aperture areas (greater than 1 m2) and finer angular resolution (less than 1.). Combined with the special requirements of grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically challenging.requiring precision fabrication, alignment, and assembly of large areas (greater than 100 m2) of lightweight (approximately 1 kg m2 areal density) mirrors. Achieving precise and stable alignment and figure control may entail active (in-space adjustable) x-ray optics. This paper discusses relevant programmatic and technological issues and summarizes progress toward active x-ray telescopes.

  2. Hubble Space Telescope, High Speed Photometer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This drawing illustrates the Hubble Space Telescope's (HST's) High Speed Photometer (HSP). The HSP measures the intensity of starlight (brightness), which will help determine astronomical distances. Its principal use will be to measure extremely-rapid variations or pulses in light from celestial objects, such as pulsating stars. The HSP produces brightness readings. Light passes into one of four special signal-multiplying tubes that record the data. The HSP can measure energy fluctuations from objects that pulsate as rapidly as once every 10 microseconds. From HSP data, astronomers expect to learn much about such mysterious objects as pulsars, black holes, and quasars. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  3. TELESCOPES: Astronomers Overcome 'Aperture Envy'.

    PubMed

    Irion, R

    2000-07-01

    Many users of small telescopes are disturbed by the trend of shutting down smaller instruments in order to help fund bigger and bolder ground-based telescopes. Small telescopes can thrive in the shadow of giant new observatories, they say--but only if they are adapted to specialized projects. Telescopes with apertures of 2 meters or less have unique abilities to monitor broad swaths of the sky and stare at the same objects night after night, sometimes for years; various teams are turning small telescopes into robots, creating networks that span the globe and devoting them to survey projects that big telescopes don't have a prayer of tackling. PMID:17832960

  4. The Large Synoptic Survey Telescope

    NASA Astrophysics Data System (ADS)

    Ivezic, Zeljko

    2007-05-01

    The Large Synoptic Survey Telescope (LSST) is currently by far the most ambitious proposed ground-based optical survey. With initial funding from the US National Science Foundation (NSF), Department of Energy (DOE) laboratories and private sponsors, the design and development efforts are well underway at many institutions, including top universities and leading national laboratories. The main science themes that drive the LSST system design are Dark Energy and Matter, the Solar System Inventory, Transient Optical Sky and the Milky Way Mapping. The LSST system, with its 8.4m telescope and 3,200 Megapixel camera, will be sited at Cerro Pachon in northern Chile, with the first light scheduled for 2014. In a continuous observing campaign, LSST will cover the entire available sky every three nights in two photometric bands to a depth of V=25 per visit (two 15 second exposures), with exquisitely accurate astrometry and photometry. Over the proposed survey lifetime of 10 years, each sky location would be observed about 1000 times, with the total exposure time of 8 hours distributed over six broad photometric bandpasses (ugrizY). This campaign will open a movie-like window on objects that change brightness, or move, on timescales ranging from 10 seconds to 10 years, and will produce a catalog containing over 10 billion galaxies and a similar number of stars. The survey will have a data rate of about 30 TB/night, and will collect over 60 PB of raw data over its lifetime, resulting in an incredibly rich and extensive public archive that will be a treasure trove for breakthroughs in many areas of astronomy and astrophysics.

  5. The Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Schloerb, F. Peter

    2008-07-01

    This paper, presented on behalf of the Large Millimeter Telescope (LMT) project team, describes the status and near-term plans for the telescope and its initial instrumentation. The LMT is a bi-national collaboration between Mexico and the USA, led by the Instituto Nacional de Astrofísica, Optica y Electronica (INAOE) and the University of Massachusetts at Amherst, to construct, commission and operate a 50m-diameter millimeter-wave radio telescope. Construction activities are nearly complete at the 4600m LMT site on the summit of Sierra Negra, an extinct volcano in the Mexican state of Puebla. Full movement of the telescope, under computer control in both azimuth and elevation, has been achieved. First-light at centimeter wavelengths on astronomical sources was obtained in November 2006. Installation of precision surface segments for millimeter-wave operation is underway, with the inner 32m-diameter of the surface now complete and ready to be used to obtain first light at millimeter wavelengths in 2008. Installation of the remainder of the reflector will continue during the next year and be completed in 2009 for final commissioning of the antenna. The full LMT antenna, outfitted with its initial complement of scientific instruments, will be a world-leading scientific research facility for millimeter-wave astronomy.

  6. The Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Hughes, D. H.; Schloerb, F. P.; LMT Project Team

    2009-05-01

    This paper, presented on behalf of the Large Millimeter Telescope (LMT) project team, describes the status and near-term plans for the telescope and its initial instrumentation. The LMT is a bi-national collaboration between México and the USA, led by the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) and the University of Massachusetts at Amherst, to construct, commission and operate a 50 m diameter millimeter-wave radio telescope. Construction activities are nearly complete at the LMT site, at an altitude of ˜ 4600 m on the summit of Sierra Negra, an extinct volcano in the Mexican state of Puebla. Full movement of the telescope, under computer control in both azimuth and elevation, has been achieved. First-light at centimeter wavelengths on astronomical sources was obtained in November 2006. Installation of precision surface segments for millimeter-wave operation is underway, with the inner 32 m diameter of the surface now complete and ready to be used to obtain first-light at millimeter wavelengths in 2008. Installation of the remainder of the reflector will continue during the next year and be completed in 2009 for final commissioning of the antenna. The full LMT antenna, outfitted with its initial complement of scientific instruments, will be a world-leading scientific research facility for millimeter-wave astronomy.

  7. Exploring Galileo's Telescope

    ERIC Educational Resources Information Center

    Straulino, Samuele; Terzuoli, Alessandra

    2010-01-01

    In the first months of 2009, the International Year of Astronomy, the authors developed an educational project for middle-level students connected with the first astronomical discoveries that Galileo Galilei (1564-1642) made 400 years ago. The project included the construction of a basic telescope and the observation of the Moon. The project, if…

  8. The Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Odell, C. R.

    1979-01-01

    A convenient guide to the expected characteristics of the Space Telescope Observatory for astronomers and physicists is presented. An attempt is made to provide enough detail so that a professional scientist, observer or theorist, can plan how the observatory may be used to further his observing programs or to test theoretical models.

  9. The Falcon Telescope Network

    NASA Astrophysics Data System (ADS)

    Chun, F.; Tippets, R.; Dearborn, M.; Gresham, K.; Freckleton, R.; Douglas, M.

    2014-09-01

    The Falcon Telescope Network (FTN) is a global network of small aperture telescopes developed by the Center for Space Situational Awareness Research in the Department of Physics at the United States Air Force Academy (USAFA). Consisting of commercially available equipment, the FTN is a collaborative effort between USAFA and other educational institutions ranging from two- and four-year colleges to major research universities. USAFA provides the equipment (e.g. telescope, mount, camera, filter wheel, dome, weather station, computers and storage devices) while the educational partners provide the building and infrastructure to support an observatory. The user base includes USAFA along with K-12 and higher education faculty and students. Since the FTN has a general use purpose, objects of interest include satellites, astronomical research, and STEM support images. The raw imagery, all in the public domain, will be accessible to FTN partners and will be archived at USAFA in the Cadet Space Operations Center. FTN users will be able to submit observational requests via a web interface. The requests will then be prioritized based on the type of user, the object of interest, and a user-defined priority. A network wide schedule will be developed every 24 hours and each FTN site will autonomously execute its portion of the schedule. After an observational request is completed, the FTN user will receive notification of collection and a link to the data. The Falcon Telescope Network is an ambitious endeavor, but demonstrates the cooperation that can be achieved by multiple educational institutions.

  10. A Simple "Tubeless" Telescope

    ERIC Educational Resources Information Center

    Straulino, S.; Bonechi, L.

    2010-01-01

    Two lenses make it possible to create a simple telescope with quite large magnification. The set-up is very simple and can be reproduced in schools, provided the laboratory has a range of lenses with different focal lengths. In this article, the authors adopt the Keplerian configuration, which is composed of two converging lenses. This instrument,…

  11. Coherent array telescopes as a fifteen meter optical telescope equivalent

    NASA Astrophysics Data System (ADS)

    Odgers, G. J.

    1982-10-01

    The potential benefits of using a mirror array to form a large optical telescope equivalent to a 15 m monolithic mirror telescope are discussed. The concept comprises 25 three meter telescopes in a circular array or 13 double unit telescopes, also in a circular array. The double-units would have individual 4.2 m instruments. Meniscus-shaped mirrors with F/2 aperture ratios would allow lightweight construction. A smaller, four double unit telescope would be equivalent to an 8.4 m telescope, larger than any existing in the world. The viewing capabilities could also be extended to the IR. Each sector of the compound telescopes, if built with 3 m apertures, could be controlled with 1/20th arsec acccuracy. Finally, the inherent long baseline of an array telescope would permit enhanced interferometric viewing.

  12. Development of Solar Scintillometer

    NASA Astrophysics Data System (ADS)

    Gupta, Sudhir Kumar; Mathew, Shibu K.; Venkatakrishnan, P.

    2006-09-01

    The index of scintillation measurement is a good parameter to compare different sites for image quality or `seeing'.We have developed a scintillometer, which is deployed on the high resolution SPAR telescope in the island site of Udaipur Solar Observatory, for the site characterization to specify the proposed MAST (Multi Application Solar Telescope). The scintillometer consists of a miniature telescope, termed as micro telescope (4mm aperture, 15mm focal length) mounted on a drive which tracks the Sun continuously, associated amplifiers and a data acquisition system. A photodiode is used as the detector. The telescope along with detector was obtained from National Solar Observatory (NSO), and is similar to the one used for Advanced Technology Solar Telescope (ATST) site survey. At USO we developed the amplifier and data acquisition system for the scintillometer. A 24-bit analog to digital converter based system was designed, assembled, tested and used as the data acquisition system (DAS). In this paper, we discuss the instrumentation and present the initial results.

  13. Advanced solar space missions

    NASA Technical Reports Server (NTRS)

    Bohlin, J. D.

    1979-01-01

    The space missions in solar physics planned for the next decade are similar in that they will have, for the most part, distinct, unifying science objectives in contrast to the more general 'exploratory' nature of the Orbiting Solar Observatory and Skylab/ATM missions of the 1960's and 70's. In particular, the strategy for advanced solar physics space missions will focus on the quantitative understanding of the physical processes that create and control the flow of electromagnetic and particulate energy from the sun and through interplanetary space at all phases of the current sunspot cycle No. 21. Attention is given to the Solar Maximum Mission, the International Solar Polar Mission, solar physics on an early Shuttle mission, principal investigator class experiments for future spacelabs, the Solar Optical Telescope, the Space Science Platform, the Solar Cycle and Dynamics Mission, and an attempt to send a spacecraft to within 4 solar radii of the sun's surface.

  14. The Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Hughes, David H.; Jáuregui Correa, Juan-Carlos; Schloerb, F. Peter; Erickson, Neal; Romero, Jose Guichard; Heyer, Mark; Reynoso, David Huerta; Narayanan, Gopal; Perez-Grovas, Alfonso Serrano; Souccar, Kamal; Wilson, Grant; Yun, Min

    2010-07-01

    This paper describes the current status of the Large Millimeter Telescope (LMT), the near-term plans for the telescope and the initial suite of instrumentation. The LMT is a bi-national collaboration between Mexico and the USA, led by the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) and the University of Massachusetts at Amherst, to construct, commission and operate a 50m-diameter millimeter-wave radio telescope. Construction activities are nearly complete at the 4600m LMT site on the summit of Volcán Sierra Negra, an extinct volcano in the Mexican state of Puebla. Full movement of the telescope, under computer control in both azimuth and elevation, has been achieved. The commissioning and scientific operation of the LMT is divided into two major phases. As part of phase 1, the installation of precision surface segments for millimeter-wave operation within the inner 32m-diameter of the LMT surface is now complete. The alignment of these surface segments is underway. The telescope (in its 32-m diameter format) will be commissioned later this year with first-light scientific observations at 1mm and 3mm expected in early 2011. In phase 2, we will continue the installation and alignment of the remainder of the reflector surface, following which the final commissioning of the full 50-m LMT will take place. The LMT antenna, outfitted with its initial complement of scientific instruments, will be a world-leading scientific research facility for millimeter-wave astronomy.

  15. Giant Magellan Telescope: overview

    NASA Astrophysics Data System (ADS)

    Johns, Matt; McCarthy, Patrick; Raybould, Keith; Bouchez, Antonin; Farahani, Arash; Filgueira, Jose; Jacoby, George; Shectman, Steve; Sheehan, Michael

    2012-09-01

    The Giant Magellan Telescope (GMT) is a 25-meter optical/infrared extremely large telescope that is being built by an international consortium of universities and research institutions. It will be located at the Las Campanas Observatory, Chile. The GMT primary mirror consists of seven 8.4-m borosilicate honeycomb mirror segments made at the Steward Observatory Mirror Lab (SOML). Six identical off-axis segments and one on-axis segment are arranged on a single nearly-paraboloidal parent surface having an overall focal ratio of f/0.7. The fabrication, testing and verification procedures required to produce the closely-matched off-axis mirror segments were developed during the production of the first mirror. Production of the second and third off-axis segments is underway. GMT incorporates a seven-segment Gregorian adaptive secondary to implement three modes of adaptive-optics operation: natural-guide star AO, laser-tomography AO, and ground-layer AO. A wide-field corrector/ADC is available for use in seeing-limited mode over a 20-arcmin diameter field of view. Up to seven instruments can be mounted simultaneously on the telescope in a large Gregorian Instrument Rotator. Conceptual design studies were completed for six AO and seeing-limited instruments, plus a multi-object fiber feed, and a roadmap for phased deployment of the GMT instrument suite is being developed. The partner institutions have made firm commitments for approximately 45% of the funds required to build the telescope. Project Office efforts are currently focused on advancing the telescope and enclosure design in preparation for subsystem- and system-level preliminary design reviews which are scheduled to be completed in the first half of 2013.

  16. The Greenland Telescope

    NASA Astrophysics Data System (ADS)

    Grimes, Paul; Blundell, Raymond

    2012-09-01

    In the spring of 2010, the Academia Sinica Institute of Astronomy and Astrophysics, and the Smithsonian Astrophysical Observatory, acquired the ALMA North America prototype antenna - a state-of-the-art 12-m diameter dish designed for submillimeter astronomy. Together with the MIT-Haystack Observatory and the National Radio Astronomy Observatory, the plan is to retrofit this antenna for cold-weather operation and equip it with a suite of instruments designed for a variety of scientific experiments and observations. The primary scientific goal is to image the shadow of the Super-Massive Black Hole in M87 in order to test Einstein’s theory of relativity under extreme gravity. This requires the highest angular resolution, which can only be achieved by linking this antenna with others already in place to form a telescope almost the size of the Earth. We are therefore developing plans to install this antenna at the peak of the Greenland ice-sheet. This location will produce an equivalent North-South separation of almost 9,000 km when linked to the ALMA telescope in Northern Chile, and an East-West separation of about 6,000 km when linked to SAO and ASIAA’s Submillimeter Array on Mauna Kea, Hawaii, and will provide an angular resolution almost 1000 times higher than that of the most powerful optical telescopes. Given the quality of the atmosphere at the proposed telescope location, we also plan to make observations in the atmospheric windows at 1.3 and 1.5 THz. We will present plans to retrofit the telescope for cold-weather operation, and discuss potential instrumentation and projected time-line.

  17. Survey of earth orbital telescopes and their potential for exobiology

    NASA Technical Reports Server (NTRS)

    Tarter, Jill C.

    1986-01-01

    The opportunities that exist for observational exobiology (OE) are examined. The potential uses of free-flying spacecraft, the Space Shuttle, and the Space Station for OE are considered. Proposed experiments are summarized, including research on extrasolar planetary systems, the solar nebula and its analogs, the solar system, giant-planet atmospheres, Titan, comets and asteroids, and molecules in space. A table listing appropriate NASA and ESA telescopes is given.

  18. Wavefront Analysis of Adaptive Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Hillman, Lloyd

    1997-01-01

    The motivation for this work came from a NASA Headquarters interest in investigating design concepts for a large space telescope employing active optics technology. The development of telescope optical requirements and potential optical design configurations is reported.

  19. A Comparison of Solar Image Restoration Techniques for SST/CRISP Data (Summary)

    NASA Astrophysics Data System (ADS)

    Löfdahl, M.

    2016-04-01

    Solar images from high-resolution, ground-based telescopes are corrected for the blurring effects of atmospheric turbulence by use of adaptive optics and post-facto image restoration. Two classes of image restoration methods are regularly used today, those based on Multi-Frame Blind Deconvolution (MFBD; Löfdahl 2002) and those based on Speckle Interferometry (SI; von der Luhe &Dunn 1987). In a recently started project, we will compare and evaluate such methods for use with spectropolarimetric data from the CRisp Imaging SpectroPolarimeter (CRISP; Scharmer et al. 2008) of the Swedish 1-meter Solar Telescope (SST; Scharmer et al. 2003). For SST/CRISP data we routinely use the Multi-Object MFBD (MOMFBD; van Noort et al. 2005) technique to jointly restore images collected from a wideband camera and from the narrowband cameras behind the CRISP FPI and polarimetry optics. This crucial step in the data reduction pipeline of CRISP (CRISPRED; de la Cruz Rodríguez et al. 2015) is carefully integrated with the application of various procedures that are designed to reduce effects of imperfections in the instruments. In order to make the comparison as fair as possible, we have extended CRISPRED so that the Kiepenheuer-Institut Speckle Interferometry Package (KISIP; Wöger & von der Lühe 2008), together with Speckle Deconvolution (SD; Keller & von der Luehe 1992; Mikurda et al. 2006), can serve as a drop in replacement for MOMFBD. The adaption of SI and SD to CRISPRED will allow us to make fair comparisons not only of the restored images, but also of derivative data like Stokes maps and further on to evaluate the consequences of remaining errors and artifacts for the interpretation of physical quantities inferred through atmospheric model inversions.

  20. Chromospheric telescope of Baikal Astrophysical Observatory. New light

    NASA Astrophysics Data System (ADS)

    Skomorovsky, Valeriy; Kushtal, Galina; Lopteva, Lyubov; Proshin, Vladimir; Trifonov, Viktor; Chuprakov, Sergey; Khimich, Valeriy

    2016-06-01

    A chromospheric telescope is an important instrument for synoptic observations and solar research. After several decades of observations with the chromospheric telescope at Baikal Astrophysical Observatory, a need arose to improve the characteristics of this telescope and filter. A new reimaging lens to produce full-disk solar images 18 mm in diameter at the CCD camera Hamamatsu C-124 with a detector 36×24 mm (4000×2672 pixels) was designed and manufactured to replace the out-of-operation 50×50 mm Princeton Instruments camera. A contrast interference blocking filter and a new Iceland spar and quartz crystal plates instead of damaged ones were made and installed in the Hα birefringent filter (BF), manufactured by Bernhard Halle Nachfl. The optical immersion in the filter was changed. All telescope optics was cleaned and adjusted. We describe for the first time the design features and their related BF passband tuning. The wavefront interferograms of optical elements and telescope as a whole show that the wavefront distortion of the optical path is within 0.25 λ. The BF and pre-filter spectral parameters provide high-contrast monochromatic images. Besides, we give examples of solar chromospheric images in the Hα line core and wing.

  1. SOLARNET: the solution to the high resolution needs of solar physics

    NASA Astrophysics Data System (ADS)

    Dame, L.; Clade, S.; Malherbe, J. M.

    Encounter missions like the Solar Orbiter have high resolution imaging goals in addition to the plasma measurements. If context, arcsec imaging, might be possible and useful to interpret the plasma observation, we will demonstrate that the thermal conditions near the Sun will prevent to achieve any of the higher resolution goals even by taking the most state-of-the-art solar telescope (carbon-carbon structure, SiC mirrors, etc.). A far better solution to fulfill the high resolution needs is the SOLARNET mission. SOLARNET is a medium size high resolution solar physics mission proposed to CNES for a new start in 2006 and a possible launch in 2010. Partnerships with Germany, Belgium, China and India are under discussion. At the center of the SOLARNET mission is a 3-telescopes interferometer of 1 meter baseline capable to provide 50 times the best ever spatial resolution achieved in Space with previous, current or even planned solar missions: 20 mas - 20 km on the Sun in the FUV. The interferometer is associated to an on-axis subtractive double monochromator (imaging spectrograph) capable of high spectral (0.01 nm) and high temporal resolutions (50 ms) on a field of view of 40 arcsec and over the FUV and UV spectral domains (from 117.5 to 400 nm). This will allow to access process scales of magnetic reconnection, dissipation, emerging flux and much more, from the high chromosphere to the low corona with emphasis on the transition zone where the magnetic confinement is expected to be maximum. A whole new chapter of the physics of solar magnetic field structuring and evolution will be opened. Launched by an Eurockot on a high altitude sun-synchronous non-eclipsing orbit, SOLARNET will also provide continuous observations at a sustained rate for Helioseismology and solar cycle studies. We review the scientific program of SOLARNET and its advantages (and complementarities) with an encounter type mission (probe or orbiter), describe the interferometer concept and design

  2. Science operations with Space Telescope

    NASA Astrophysics Data System (ADS)

    Giacconi, R.

    1982-08-01

    The operation, instrumentation, and expected contributions of the Space Telescope are discussed. Space Telescope capabilities are described. The organization and nature of the Space Telescope Science Institute are outlined, including the allocation of observing time and the data rights and data access policies of the institute.

  3. Lunar transit telescope lander design

    NASA Technical Reports Server (NTRS)

    Omar, Husam A.

    1992-01-01

    The Program Development group at NASA's Marshall Space Flight Center has been involved in studying the feasibility of placing a 16 meter telescope on the lunar surface to scan the skies using visible/ Ultraviolet/ Infrared light frequencies. The precursor telescope is now called the TRANSIT LUNAR TELESCOPE (LTT). The Program Development Group at Marshall Space Flight Center has been given the task of developing the basic concepts and providing a feasibility study on building such a telescope. The telescope should be simple with minimum weight and volume to fit into one of the available launch vehicles. The preliminary launch date is set for 2005. A study was done to determine the launch vehicle to be used to deliver the telescope to the lunar surface. The TITAN IV/Centaur system was chosen. The engineering challenge was to design the largest possible telescope to fit into the TITAN IV/Centaur launch system. The telescope will be comprised of the primary, secondary and tertiary mirrors and their supporting system in addition to the lander that will land the telescope on the lunar surface and will also serve as the telescope's base. The lunar lander should be designed integrally with the telescope in order to minimize its weight, thus allowing more weight for the telescope and its support components. The objective of this study were to design a lander that meets all the constraints of the launching system. The basic constraints of the TITAN IV/Centaur system are given.

  4. Lunar transit telescope lander design

    NASA Technical Reports Server (NTRS)

    Omar, Husam A.

    1991-01-01

    The Program Development group at NASA's Marshall Space Flight Center has been involved in studying the feasibility of placing a 16 meter telescope on the lunar surface to scan the skies using visible/ Ultraviolet/ Infrared light frequencies. The precursor telescope is now called the TRANSIT LUNAR TELESCOPE (LTT). The Program Development Group at Marshall Space Flight Center has been given the task of developing the basic concepts and providing a feasibility study on building such a telescope. The telescope should be simple with minimum weight and volume to fit into one of the available launch vehicles. The preliminary launch date is set for 2005. A study was done to determine the launch vehicle to be used to deliver the telescope to the lunar surface. The TITAN IV/Centaur system was chosen. The engineering challenge was to design the largest possible telescope to fit into the TITAN IV/Centaur launch system. The telescope will be comprised of the primary, secondary and tertiary mirrors and their supporting system in addition to the lander that will land the telescope on the lunar surface and will also serve as the telescope's base. The lunar lander should be designed integrally with the telescope in order to minimize its weight, thus allowing more weight for the telescope and its support components. The objective of this study were to design a lander that meets all the constraints of the launching system. The basic constraints of the TITAN IV/Centaur system are given.

  5. OSAC analysis of the Far Ultraviolet Spectroscopic Explorer (FUSE) telescope. [Optical Surface Analysis Code

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Thomas, David A.; Osantowski, John F.

    1986-01-01

    An investigation is made of the sensitivity of the image quality for the proposed FUSE telescope to mirror misalignments and a wide spatial frequency range of figure errors. Representative figure error data was obtained for the analysis from measurements made on the SEUTS (Solar Extreme Ultraviolet Telescope Spectrograph) telescope mirrors. The tolerancing analysis was carried out with the aid of the Optical Surface Analysis Code (OSAC) program.

  6. The Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Deboer, David; Ackermann, Rob; Blitz, Leo; Bock, Douglas; Bower, Geoffrey; Davis, Michael; Dreher, John; Engargiola, Greg; Fleming, Matt; Keleta, Girmay; Harp, Gerry; Lugten, John; Tarter, Jill; Thornton, Doug; Wadefalk, Niklas; Weinreb, Sander; Welch, William J.

    2004-06-01

    The Allen Telescope Array, a joint project between the SETI Institute and the Radio Astronomy Laboratory at the University of California Berkeley, is currently under development and construction at the Hat Creek Radio Observatory in northern California. It will consist of 350 6.1-m offset Gregorian antennas in a fairly densely packed configuration, with minimum baselines of less than 10 m and a maximum baseline of about 900 m. The dual-polarization frequency range spans from about 500 MHz to 11 GHz, both polarizations of which are transported back from each antenna. The first generation processor will provide 32 synthesized beams of 104 MHz bandwidth, eight at each of four tunings, as well as outputs for a full-polarization correlator at two of the tunings at the same bandwidth. This paper provides a general description of the Allen Telescope Array.

  7. Telescopes of galileo.

    PubMed

    Greco, V; Molesini, G; Quercioli, F

    1993-11-01

    The Florentine Istituto e Museo di Storia delta Scienza houses two complete telescopes and a single objective lens (reconstructed from several fragments) that can be attributed to Galileo. These optics have been partially dismantled and made available for optical testing with state-of-the-art equipment. The lenses were investigated individually; the focal length and the radii of curvature were measured, and the optical layout of the instruments was worked out. The optical quality of the surfaces and the overall performance of the two complete telescopes have been evaluated interferometrically at a wavelength of 633 nm (with a He-Ne laser source). It was found in particular that the optics of Galileo came close to attaining diffraction-limited operation.

  8. COROT telescope development

    NASA Astrophysics Data System (ADS)

    Viard, Thierry; Bodin, Pierre; Magnan, Alain

    2004-06-01

    COROTEL is the telescope of the future COROT satellite which aims at measuring stellar flux variations very accurately. To perform this mission, COROTEL has to be very well protected against straylight (from Sun and Earth) and must be very stable with time. Thanks to its high experience in this field, Alcatel Space has proposed an original optical concept associated with a high performance baffle. From 2001, the LAM (Laboratoire d'Astrophysique de Marseille, CNRS) has placed the telescope development contract to Alcatel Space and is presently almost finished. Based on relevant material and efficient thermal control design, COROTEL should meet its ambitious performance and bring to scientific community for the first time precious data coming from stars and their possible companions.

  9. Telescopic limiting magnitudes

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1990-01-01

    The prediction of the magnitude of the faintest star visible through a telescope by a visual observer is a difficult problem in physiology. Many prediction formulas have been advanced over the years, but most do not even consider the magnification used. Here, the prediction algorithm problem is attacked with two complimentary approaches: (1) First, a theoretical algorithm was developed based on physiological data for the sensitivity of the eye. This algorithm also accounts for the transmission of the atmosphere and the telescope, the brightness of the sky, the color of the star, the age of the observer, the aperture, and the magnification. (2) Second, 314 observed values for the limiting magnitude were collected as a test of the formula. It is found that the formula does accurately predict the average observed limiting magnitudes under all conditions.

  10. The Neutrino Telescope ANTARES

    NASA Astrophysics Data System (ADS)

    Hernández, Juan José

    Neutrinos can reveal a brand new Universe at high energies. The ANTARES collaboration [1] , formed in 1996, works towards the building and deployment of a neutrino telescope. This detector could observe and study high energy astrophysical sources such as X-ray binary systems, young supernova remnants or Active Galactic Nuclei and help to discover or set exclusion limits on some of the elementary particles and objects that have been put forward as candidates to fill the Universe (WIMPS, neutralinos, topological deffects, Q-balls, etc). A neutrino telescope will certainly open a new observational window and can shed light on the most energetic phenomena of the Universe. A review of the progress made by the ANTARES collaboration to achieve this goal is presented

  11. The Large Area Telescope

    SciTech Connect

    Michelson, Peter F.; /KIPAC, Menlo Park /Stanford U., HEPL

    2007-11-13

    The Large Area Telescope (LAT), one of two instruments on the Gamma-ray Large Area Space Telescope (GLAST) mission, is an imaging, wide field-of-view, high-energy pair-conversion telescope, covering the energy range from {approx}20 MeV to more than 300 GeV. The LAT is being built by an international collaboration with contributions from space agencies, high-energy particle physics institutes, and universities in France, Italy, Japan, Sweden, and the United States. The scientific objectives the LAT will address include resolving the high-energy gamma-ray sky and determining the nature of the unidentified gamma-ray sources and the origin of the apparently isotropic diffuse emission observed by EGRET; understanding the mechanisms of particle acceleration in celestial sources, including active galactic nuclei, pulsars, and supernovae remnants; studying the high-energy behavior of gamma-ray bursts and transients; using high-energy gamma-rays to probe the early universe to z {ge} 6; and probing the nature of dark matter. The components of the LAT include a precision silicon-strip detector tracker and a CsI(Tl) calorimeter, a segmented anticoincidence shield that covers the tracker array, and a programmable trigger and data acquisition system. The calorimeter's depth and segmentation enable the high-energy reach of the LAT and contribute significantly to background rejection. The aspect ratio of the tracker (height/width) is 0.4, allowing a large field-of-view and ensuring that nearly all pair-conversion showers initiated in the tracker will pass into the calorimeter for energy measurement. This paper includes a description of each of these LAT subsystems as well as a summary of the overall performance of the telescope.

  12. [Galileo and his telescope].

    PubMed

    Strebel, Christoph

    2006-01-01

    Galileo's publication of observations made with his newly reinvented telescope provoked a fierce debate. In April 1610 Martinus Horky, a young Bohemian astronomer, had an opportunity to make his own observations with Galileo's telescope in the presence of Antonio Magini and other astronomers. Horky and the other witnesses denied the adequacy of Galileo's telescope and therefore the bona fides of his discoveries. Kepler conjectured Horky as well as all his witnesses to be myopic. But Kepler's objection could not stop the publication of Horky's Peregrinatio contra nuncium sidereum (Modena, 1610), the first printed refutation of Galileo's Sidereus nuncius. In his treatise, Horky adresses four questions: 1) Do the four newly observed heavenly bodies actually exist? Horky denies their existence on various grounds: a) God, as every astronomer teaches, has created only seven moveable heavenly bodies and astronomical knowledge originates in God, too. b) Heavenly bodies are either stars or planets. Galileo's moveable heavenly bodies fit into neither category. c) If they do exist, why have they not already been observed by other scholars? Horky concludes that there are no such heavenly bodies. 2) What are these phenomena? They are purely artefactual, and produced by Galileo's telescope. 3) How are they like? Galileo's "stars" are so small as to be almost invisible. Galileo claims that he has measured their distances from each other. This however is impossible due to their diminutive size and other observational problems. Hence, Galileo's claim is a further proof that he is a fraud. 4) Why are they? For Galileo they are a chance to earn money but for astronomers like Horky they are a reason to offer thanks and honour to God. Horky's treatise was favourably received by the enemies of Galileo. But Kepler's critique was devastating. After calling on Kepler in Prague, Horky had to revoke the contents of his book.

  13. [Galileo and his telescope].

    PubMed

    Strebel, Christoph

    2006-01-01

    Galileo's publication of observations made with his newly reinvented telescope provoked a fierce debate. In April 1610 Martinus Horky, a young Bohemian astronomer, had an opportunity to make his own observations with Galileo's telescope in the presence of Antonio Magini and other astronomers. Horky and the other witnesses denied the adequacy of Galileo's telescope and therefore the bona fides of his discoveries. Kepler conjectured Horky as well as all his witnesses to be myopic. But Kepler's objection could not stop the publication of Horky's Peregrinatio contra nuncium sidereum (Modena, 1610), the first printed refutation of Galileo's Sidereus nuncius. In his treatise, Horky adresses four questions: 1) Do the four newly observed heavenly bodies actually exist? Horky denies their existence on various grounds: a) God, as every astronomer teaches, has created only seven moveable heavenly bodies and astronomical knowledge originates in God, too. b) Heavenly bodies are either stars or planets. Galileo's moveable heavenly bodies fit into neither category. c) If they do exist, why have they not already been observed by other scholars? Horky concludes that there are no such heavenly bodies. 2) What are these phenomena? They are purely artefactual, and produced by Galileo's telescope. 3) How are they like? Galileo's "stars" are so small as to be almost invisible. Galileo claims that he has measured their distances from each other. This however is impossible due to their diminutive size and other observational problems. Hence, Galileo's claim is a further proof that he is a fraud. 4) Why are they? For Galileo they are a chance to earn money but for astronomers like Horky they are a reason to offer thanks and honour to God. Horky's treatise was favourably received by the enemies of Galileo. But Kepler's critique was devastating. After calling on Kepler in Prague, Horky had to revoke the contents of his book. PMID:16929794

  14. Hubble Space Telescope: Latest citations from the EI Compendex*Plus Database

    NASA Astrophysics Data System (ADS)

    1996-02-01

    The bibliography contains citations concerning the Hubble Space Telescope and its mission. Topics include design changes, flight performance, and initial problems encountered. The Hubble's solar arrays and observations of space are discussed.

  15. A liquid xenon imaging telescope for gamma ray astrophysics: Design and expected performance

    NASA Technical Reports Server (NTRS)

    Aprile, E.; Mukherjee, R.; Chen, D.; Bolotnikov, A.

    1992-01-01

    A high resolution telescope for imaging cosmic x ray sources in the MeV region, with an angular resolution better than 0.5 deg is being developed as balloon-borne payload. The instrument consists of a 3-D liquid xenon TPC as x ray detector, coupled with a coded aperture at a distance of 1 meter. A study of the actual source distribution of the 1.809 MeV line from the decay of Al-26 and the 511 keV positron-electron annihilation line is among the scientific objectives, along with a search for new x ray sources. The telescope design parameters and expected minimum flux sensitivity to line and continuum radiation are presented. The unique capablity of the LXe-TPC as a Compton Polarimeter is also discussed.

  16. MIRI Telescope Simulator

    NASA Astrophysics Data System (ADS)

    Belenguer, T.; Alcacera, M. A.; Aricha, A.; Balado, A.; Barandiarán, J.; Bernardo, A.; Canchal, M. R.; Colombo, M.; Diaz, E.; Eiriz, V.; Figueroa, I.; García, G.; Giménez, A.; González, L.; Herrada, F.; Jiménez, A.; López, R.; Menéndez, M.; Reina, M.; Rodríguez, J. A.; Sánchez, A.

    2008-07-01

    The MTS, MIRI Telescope Simulator, is developed by INTA as the Spanish contribution of MIRI (Mid InfraRed Instrument) on board JWST (James Web Space Telescope). The MTS is considered as optical equipment which is part of Optical Ground Support Equipment for the AIV/Calibration phase of the instrument at Rutherford Appleton Laboratory, UK. It is an optical simulator of the JWST Telescope, which will provide a diffractionlimited test beam, including the obscuration and mask pattern, in all the MIRI FOV and in all defocusing range. The MTS will have to stand an environment similar to the flight conditions (35K) but using a smaller set-up, typically at lab scales. The MTS will be used to verify MIRI instrument-level tests, based on checking the implementation/realisation of the interfaces and performances, as well as the instrument properties not subject to interface control such as overall transmission of various modes of operation. This paper includes a functional description and a summary of the development status.

  17. Hubble Space Telescope satellite

    NASA Technical Reports Server (NTRS)

    Mitchell, R. E.

    1985-01-01

    The Hubble Space Telescope, named for the American astronomer Edwin Powell Hubble, will be the largest and most powerful astronomical instrument ever orbited. Placed above the obscuring effects of the earth's atmosphere in a 600-km orbit, this remotely-controlled, free-flying satellite observatory will expand the terrestrial-equivalent resolution of the universe by a factor of seven, or a volumetric factor of 350. This telescope has a 2.4-m primary mirror and can accommodate five scientific instruments (cameras, spectrographs and photometers). The optics are suitable for a spectral range from 1100 angstrom to 1 mm wavelength. With a projected service life of fifteen years, the spacecraft can be serviced on-orbit for replacement of degraded systems, to insert advanced scientific instruments, and to reboost the telescope from decayed altitudes. The anticipated image quality will be a result of extremely precise lambda/20 optics, stringent cleanliness, and very stable pointing: jitter will be held to less than 0.01 arcsecond for indefinite observation periods, consistent with instrument apertures as small as 0.1 arcsecond.

  18. Fast Fourier transform telescope

    SciTech Connect

    Tegmark, Max; Zaldarriaga, Matias

    2009-04-15

    We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore's law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for large-area surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog{sub 2}N rather than N{sup 2}) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.

  19. Scanning holographic lidar telescope

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Wilkerson, Thomas D.

    1993-01-01

    We have developed a unique telescope for lidar using a holographic optical element (HOE) as the primary optic. The HOE diffracts 532 nm laser backscatter making a 43 deg angle with a normal to its surface to a focus located 130 cm along the normal. The field of view scans a circle as the HOE rotates about the normal. The detector assembly and baffling remain stationary, compared to conventional scanning lidars in which the entire telescope and detector assembly require steering, or which use a large flat steerable mirror in front of the telescope to do the pointing. The spectral bandpass of our HOE is 50 nm (FWHM). Light within that bandpass is spectrally dispersed at 0.6 nm/mm in the focal plane. An aperture stop reduces the bandpass of light reaching the detector from one direction to 1 nm while simultaneously reducing the field of view to 1 mrad. Wavelengths outside the 50 nm spectral bandpass pass undiffracted through HOE to be absorbed by a black backing. Thus, the HOE combines three functions into one optic: the scanning mirror, the focusing mirror, and a narrowband filter.

  20. Beginning Research with the 1.8-meter Spacewatch Telescope

    NASA Technical Reports Server (NTRS)

    Gehrels, Tom

    1997-01-01

    The purpose of Spacewatch is to explore the various populations of small objects within the solar system. Spacewatch provides data for studies of comets and asteroids, finds potential targets for space missions, and provides information on the environmental problem of possible impacts. This grant provided some of the funds to implement Spacewatch operations on the new 1.8-m Spacewatch Telescope.

  1. Formation metrology and control for large separated optics space telescopes

    NASA Technical Reports Server (NTRS)

    Mettler, E.; Quadrelli, M.; Breckenridge, W.

    2002-01-01

    In this paper we present formation flying performance analysis initial results for a representative large space telescope composed of separated optical elements [Mett 02]. A virtual-structure construct (an equivalent rigid body) is created by unique metrology and control that combines both centralized and decentralized methods. The formation may be in orbit at GEO for super-resolution Earth observation, as in the case of Figure 1, or it may be in an Earth-trailing orbit for astrophysics, Figure 2. Extended applications are envisioned for exo-solar planet interferometric imaging by a formation of very large separated optics telescopes, Figure 3. Space telescopes, with such large apertures and f/10 to f/100 optics, are not feasible if connected by massive metering structures. Instead, the new virtual-structure paradigm of information and control connectivity between the formation elements provides the necessary spatial rigidity and alignment precision for the telescope.

  2. Comparing NEO Search Telescopes

    NASA Astrophysics Data System (ADS)

    Myhrvold, Nathan

    2016-04-01

    Multiple terrestrial and space-based telescopes have been proposed for detecting and tracking near-Earth objects (NEOs). Detailed simulations of the search performance of these systems have used complex computer codes that are not widely available, which hinders accurate cross-comparison of the proposals and obscures whether they have consistent assumptions. Moreover, some proposed instruments would survey infrared (IR) bands, whereas others would operate in the visible band, and differences among asteroid thermal and visible-light models used in the simulations further complicate like-to-like comparisons. I use simple physical principles to estimate basic performance metrics for the ground-based Large Synoptic Survey Telescope and three space-based instruments—Sentinel, NEOCam, and a Cubesat constellation. The performance is measured against two different NEO distributions, the Bottke et al. distribution of general NEOs, and the Veres et al. distribution of Earth-impacting NEO. The results of the comparison show simplified relative performance metrics, including the expected number of NEOs visible in the search volumes and the initial detection rates expected for each system. Although these simplified comparisons do not capture all of the details, they give considerable insight into the physical factors limiting performance. Multiple asteroid thermal models are considered, including FRM, NEATM, and a new generalized form of FRM. I describe issues with how IR albedo and emissivity have been estimated in previous studies, which may render them inaccurate. A thermal model for tumbling asteroids is also developed and suggests that tumbling asteroids may be surprisingly difficult for IR telescopes to observe.

  3. The Planck Telescope reflectors

    NASA Astrophysics Data System (ADS)

    Stute, Thomas

    2004-09-01

    The mechanical division of EADS-Astrium GmbH, Friedrichshafen is currently engaged with the development, manufacturing and testing of the advanced dimensionally stable composite reflectors for the ESA satellite borne telescope Planck. The objective of the ESA mission Planck is to analyse the first light that filled the universe, the cosmic microwave background radiation. Under contract of the Danish Space Research Institute and ESA EADS-Astrium GmbH is developing the all CFRP primary and secondary reflectors for the 1.5-metre telescope which is the main instrument of the Planck satellite. The operational frequency ranges from to 25 GHz to 1000 GHz. The demanding high contour accuracy and surface roughness requirements are met. The design provides the extreme dimensional stability required by the cryogenic operational environment at around 40 K. The elliptical off-axis reflectors display a classical lightweight sandwich design with CFRP core and facesheets. Isostatic mounts provide the interfaces to the telescope structure. Protected VDA provides the reflecting surface. The manufacturing is performed at the Friedrichshafen premises of EADS-Space Transportation GmbH, the former Dornier composite workshops. Advanced manufacturing technologies like true angle lay-up by CNC fibre placement and filament winding are utilized. The protected coating is applied at the CAHA facilities at the Calar Alto Observatory, Spain. The exhaustive environmental testing is performed at the facilities of IABG, Munich (mechanical testing) and for the cryo-optical tests at CSL Liege. The project is in advanced state with both Qualification Models being under environmental testing. The flight models will be delivered in 2004. The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  4. Hubble Space Telescope Bi-Stem Thermal Shield Analyses

    NASA Technical Reports Server (NTRS)

    Finlay, Katherine A.

    2004-01-01

    The Hubble Space Telescope (HST) was launched April 24, 1990, and was deployed April 25 into low Earth orbit (LEO). It was soon discovered that the metal poles holding the solar arrays were expanding and contracting as the telescope orbited the Earth passing between the sunlight and the Earth s shadow. The expansion and contraction, although very small, was enough to cause the telescope to shake because of thermal-induced jitters, a detrimental effect when trying to take pictures millions of miles away. Therefore, the European Space Agency (ESA, the provider of the solar arrays) built new solar arrays (SA-11) that contained bi-stem thermal shields which insulated the solar array metal poles. These thermal shields were made of 2 mil thick aluminized-Teflon fluorinated ethylene propylene (FEP) rings fused together into a circular bellows shape. The new solar arrays were put on the HST during an extravehicular activity (EVA), also called an astronaut space walk, during the first servicing mission (SM1) in December 1993. An on-orbit photograph of the HST with the SA-11, and a close up of the bellows-like structure of the thermal shields is provided in Figure 1.

  5. Astronomy before the telescope.

    NASA Astrophysics Data System (ADS)

    Walker, C.

    This book is the most comprehensive and authoritative survey to date of world astronomy before the telescope in AD 1609. International experts have contributed chapters examining what observations were made, what instruments were used, the effect of developments in mathematics and measurement, and the diversity of early views of cosmology and astrology. The achievements of European astronomers from prehistoric times to the Renaissance are linked with those of ancient Egypt and Mesopotamia, India and the Islamic world. Other chapters deal with early astronomy in the Far East and in the Americas, and with traditional astronomical knowledge in Africa, Australia and the Pacific.

  6. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. The science goals for JWST include the formation of the first stars and galaxies in the early universe; the chemical, morphological and dynamical buildup of galaxies and the formation of stars and planetary systems. Recently, the goals have expanded to include studies of dark energy, dark matter, active galactic nuclei, exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitiess Spectrograph will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory is confirmed for launch in 2018; the design is complete and it is in its construction phase. Recent progress includes the completion of the mirrors, the delivery of the first flight instrument(s) and the start of the integration and test phase.

  7. A Cosmic Ray Telescope For Educational Purposes

    NASA Astrophysics Data System (ADS)

    Voulgaris, G.; Kazanas, S.; Chamilothoris, I.

    2010-01-01

    Cosmic ray detectors are widely used, for educational purposes, in order to motivate students to the physics of elementary particles and astrophysics. Using a ``telescope'' of scintillation counters, the directional characteristics, diurnal variation, correlation with solar activity, can be determined, and conclusions about the composition, origin and interaction of elementary particles with the magnetic field of earth can be inferred. A telescope was built from two rectangular scintillator panels with dimensions: 91.6×1.9×3.7 cm3. The scintillators are placed on top of each other, separated by a fixed distance of 34.6 cm. They are supported by a wooden frame which can be rotated around a horizontal axis. Direction is determined by the coincidence of the signals of the two PMTs. Standard NIM modules are used for readout. This device is to be used in the undergraduate nuclear and particle physics laboratory. The design and construction of the telescope as well as some preliminary results are presented.

  8. Building the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. JWST will make progress In almost every area of astronomy, from the first galaxies to form in the early universe to exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitless Spectrograph will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory Is confirmed for launch in 2018; the design is complete and it is in its construction phase. Innovations that make JWST possible include large-area low-noise infrared detectors, cryogenic ASICs, a MEMS micro-shutter array providing multi-object spectroscopy, a non-redundant mask for interferometric coronagraphy and diffraction-limited segmented beryllium mirrors with active wavefront sensing and control. Recent progress includes the completion of the mirrors, the delivery of the first flight instruments and the start of the integration and test phase.

  9. Infrared Astronomy Professional Development for K-12 Educators: WISE Telescope

    NASA Astrophysics Data System (ADS)

    Borders, Kareen; Mendez, B. M.

    2010-01-01

    K-12 educators need effective and relevant astronomy professional development. WISE Telescope (Wide-Field Infrared Survey Explorer) and Spitzer Space Telescope Education programs provided an immersive teacher professional development workshop at Arecibo Observatory in Puerto Rico during the summer of 2009. As many common misconceptions involve scale and distance, teachers worked with Moon/Earth scale, solar system scale, and distance of objects in the universe. Teachers built and used basic telescopes, learned about the history of telescopes, explored ground and satellite based telescopes, and explored and worked on models of WISE Telescope. An in-depth explanation of WISE and Spitzer telescopes gave participants background knowledge for infrared astronomy observations. We taught the electromagnetic spectrum through interactive stations. The stations included an overview via lecture and power point, the use of ultraviolet beads to determine ultraviolet exposure, the study of WISE lenticulars and diagramming of infrared data, listening to light by using speakers hooked up to photoreceptor cells, looking at visible light through diffraction glasses and diagramming the data, protocols for using astronomy based research in the classroom, and infrared thermometers to compare environmental conditions around the observatory. An overview of LIDAR physics was followed up by a simulated LIDAR mapping of the topography of Mars. We will outline specific steps for K-12 infrared astronomy professional development, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional K-12 professional development. Funding was provided by WISE Telescope, Spitzer Space Telescope, Starbucks, Arecibo Observatory, the American Institute of Aeronautics and Astronautics, and the Washington Space Grant Consortium.

  10. Solar flares: an overview.

    PubMed

    Rust, D M

    1992-01-01

    This is a survey of solar phenomena and physical models that may be useful for improving forecasts of solar flares and proton storms in interplanetary space. Knowledge of the physical processes that accelerate protons has advanced because of gamma-ray and X-ray observations from the Solar Maximum Mission telescopes. Protons are accelerated at the onset of flares, but the duration of any subsequent proton storm at 1 AU depends on the structure of the interplanetary fields. X-ray images of the solar corona show possible fast proton escape paths. Magnetographs and high-resolution visible-band images show the magnetic field structure near the acceleration region and the heating effects of sunward-directed protons. Preflare magnetic field growth and shear may be the most important clues to the physical processes that generate high energy solar particles. Any dramatic improvement in flare forecasts will require high resolution solar telescopes in space. Several possibilities for improvements in the art of flare forecasting are presented, among them: the use of acoustic tomography to probe for subsurface magnetic fields; a satellite-borne solar magnetograph; and an X-ray telescope to monitor the corona for eruptions.

  11. Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Nurre, G.

    1987-01-01

    The Hubble Space Telescope will employ magnetic torque controllers, which make use of the Earth's magnetic field augmented by four reaction wheels. DC torques are easily allowed for, but variations, orbit by orbit, can result in excessive wheel speeds which can excite vibratory modes in the telescope structure. If the angular momentum from aerodynamic sources exceeds its allocation of 100 Nms, the excess has to come out of the maneuvering budget since the total capacity of the momentum storage system is fixed at 500 Nms. This would mean that maneuvers could not be made as quickly, and this would reduce the amount of science return. In summary, there is a definite need for a model that accurately portrays short term (within orbit) variations in density for use in angular momentum management analyses. It would be desirable to have a simplified model that could be used for planning purposes; perhaps applicable only over a limited altitude range (400 to 700 km) and limited latitude band.

  12. Antares Reference Telescope System

    SciTech Connect

    Viswanathan, V.K.; Kaprelian, E.; Swann, T.; Parker, J.; Wolfe, P.; Woodfin, G.; Knight, D.

    1983-01-01

    Antares is a 24-beam, 40-TW carbon-dioxide laser-fusion system currently nearing completion at the Los Alamos National Laboratory. The 24 beams will be focused onto a tiny target (typically 300 to 1000 ..mu..m in diameter) located approximately at the center of a 7.3-m-diameter by 9.3-m-long vacuum (10/sup -6/ torr) chamber. The design goal is to position the targets to within 10 ..mu..m of a selected nominal position, which may be anywhere within a fixed spherical region 1 cm in diameter. The Antares Reference Telescope System is intended to help achieve this goal for alignment and viewing of the various targets used in the laser system. The Antares Reference Telescope System consists of two similar electro-optical systems positioned in a near orthogonal manner in the target chamber area of the laser. Each of these consists of four subsystems: (1) a fixed 9X optical imaging subsystem which produces an image of the target at the vidicon; (2) a reticle projection subsystem which superimposes an image of the reticle pattern at the vidicon; (3) an adjustable front-lighting subsystem which illuminates the target; and (4) an adjustable back-lighting subsystem which also can be used to illuminate the target. The various optical, mechanical, and vidicon design considerations and trade-offs are discussed. The final system chosen (which is being built) and its current status are described in detail.

  13. Antares reference telescope system

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.; Kaprelian, E.; Swann, T.; Parker, J.; Wolfe, P.; Woodfin, G.; Knight, D.

    Antares is a 24 beam, 40 TW carbon dioxide laser fusion system currently nearing completion. The 24 beams will be focused onto a tiny target. It is to position the targets to within 10 (SIGMA)m of a selected nominal position, which may be anywhere within a fixed spherical region 1 cm in diameter. The Antares reference telescope system is intended to help achieve this goal for alignment and viewing of the various targets used in the laser system. The Antares reference telescope system consists of two similar electrooptical systems positioned in a near orthogonal manner in the target chamber area of the laser. Each of these consists of four subsystems: (1) a fixed 9% optical imaging subsystem which produces an image of the target at the vidicon; (2) a reticle projection subsystem which superimposes an image of the reticle pattern at the vidicon; (3) an adjustable front lighting subsystem which illuminates the target; and (4) an adjustable back lighting subsystem which also can be used to illuminate the target. The various optical, mechanical, and vidicon design considerations and tradeoffs are discussed. The final system chosen and its current status are described.

  14. Soft X-ray telescope (SXRT)

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1986-01-01

    The soft X-ray telescope (SXRT) will provide direct images of the solar corona with spatial resolution of about 1 arcsecond. These images will show the global structure of the corona, the location and area of coronal holes, and the presence of even the smallest active regions and flares. The good spatial resolution will show the fine scale magnetic structure and changes in these phenomena. These observations are essential for monitoring, predicting, and understanding the solar magnetic cycle, coronal heating, solar flares, coronal mass ejections, and the solar wind. These observations complement those of the White Light Coronagraph and Ultra-Violet Coronal Spectrometer; the SXRT will detect active regions and coronal holes near the east limb, thereby giving a week or more of advanced warning for disturbed geomagnetic conditions at Earth. The instrument consists of a grazing incidence collecting mirror with a full-disk film camera at the primary focus, and a secondary relay optic that feeds a CCD camera with a field of view about the size of an average active region.

  15. Soft X-Ray Telescope (SXRT)

    NASA Technical Reports Server (NTRS)

    Moore, R. L.

    1985-01-01

    The soft X-ray telescope (SXRT) will provide direct images of the solar corona with spatial resolution of about 1 arcsecond. These images will show the global structure of the corona, the location and area of coronal holes, and the presence of even the smallest active regions and flares. The good spatial resolution will show the fine scale magnetic structure and changes in these phenomena. These observations are essential for monitoring, predicting, and understanding the solar magnetic cycle, coronal heating, solar flares, coronal mass ejections, and the solar wind. These observations complement those of the White Light Coronagraph and Ultra-Violet Coronal Spectrometer; the SXRT will detect active regions and coronal holes near the east limb, thereby giving a week or more of advanced warning for disturbed geomagnetic conditions at Earth. The instrument consists of a grazing incidence collecting mirror with a full disk film camera at the primary focus, and a secondary relay optic that feeds a CCD camera with a field of view about the size of an average active region.

  16. The Parkes radio telescope - 1986

    NASA Astrophysics Data System (ADS)

    Ables, J. G.; Jacka, C. E.; McConnell, D.; Schinckel, A. E.; Hunt, A. J.

    The Parkes radio telescope has been refurbished 25 years after its commisioning in 1961, with complete replacement of its drive and control systems. The new computer system distributes computing tasks among a loosely coupled network of minicomputers which communicate via full duplex serial lines. Central to the control system is the 'CLOCK' element, which relates all positioning of the telescope to absolute time and synchronizes the logging of astronomical data. Two completely independent servo loops furnish telescope positioning functions.

  17. Telescope structures - An evolutionary overview

    NASA Technical Reports Server (NTRS)

    Meinel, Aden B.; Meinel, Marjorie P.

    1987-01-01

    A development history is presented for telescope structural support materials, design concepts, equatorial and altazimuthal orientational preferences, and mechanical control system structural realizations. In the course of 50 years after Galileo, the basic configurations of all reflecting telescopes was set for the subsequent 300 years: these were the Cassegrain, Gregorian, and Newtonian designs. The challenge of making a lightweight ribbed pyrex glass primary mirror for the 5-m Palomar telescope was met by von Karman's use of finite element analysis. Attention is given to the prospects for a 20-m deployable space-based reflecting telescope.

  18. Why Space Telescopes Are Amazing

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2012-01-01

    One of humanity's best ideas has been to put telescopes in space. The dark stillness of space allows telescopes to perform much better than they can on even the darkest and clearest of Earth's mountaintops. In addition, from space we can detect colors of light, like X-rays and gamma rays, that are blocked by the Earth's atmosphere I'll talk about NASA's team of great observatories: the Hubble Space Telescope, Spitzer Space Telescope, and Chandra X-ray Observatory} and how they've worked together to answer key questions: When did the stars form? Is there really dark matter? Is the universe really expanding ever faster and faster?

  19. Three-dimensional mapping of fine structure in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Henriques, Vasco M. J.

    2013-04-01

    The effects on image formation through a tilted interference filter in a converging beam are investigated and an adequate compensation procedure is established. A method that compensates for small-scale seeing distortions is also developed with the aim of co-aligning non-simultaneous solar images from different passbands. These techniques are applied to data acquired with a narrow tiltable filter at the Swedish 1-meter Solar Telescope. Tilting provides a way to scan the wing of the Ca II H line. The resulting images are used to map the temperature stratification and vertical temperature gradients in a solar active region containing a sunspot at a resolution approaching 0''10. The data are compared with hydro-dynamical quiet sun models and magneto-hydrodynamic models of plage. The comparison gives credence to the observational techniques, the analysis methods, and the simulations. Vertical temperature gradients are lower in magnetic structures than in non-magnetic. Line-of-sight velocities and magnetic field properties in the penumbra of the same sunspot are estimated using the CRISP imaging spectropolarimeter and straylight compensation adequate for the data. These reveal a pattern of upflows and downflows throughout the entire penumbra including the interior penumbra. A correlation with intensity positively identifies these flows as convective in origin. The vertical convective signatures are observed everywhere, but the horizontal Evershed flow is observed to be confined to areas of nearly horizontal magnetic field. The relation between temperature gradient and total circular polarization in magnetically sensitive lines is investigated in different structures of the penumbra. Penumbral dark cores are prominent in total circular polarization and temperature gradient maps. These become longer and more contiguous with increasing height. Dark fibril structures over bright regions are observed in the Ca II H line core, above both the umbra and penumbra.

  20. Development of solar tower observatories

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    Because the horizontal solar telescope, the Snow Telescope in Yerkes Observatory, was affected by air-currents from the warmed-up soil, George Ellery Hale had the idea of a tower telescope. In 1904, the 60-foot tower in Mt. Wilson was ready, in 1908 the 150-foot tower was built with the help of the Carnegie foundation. After World War I, Germany made heavy efforts to regain its former strong position in the field of science. Already in December 1919 - after the spectacular result of the English eclipse expedition in October 1919 - Erwin Finlay-Freundlich started a successful fund raising (“Einstein-Stiftungrdquo;) among German industrialists. The company Zeiss in Jena was responsible for the instrumentation of the 20-m solar tower, built in 1920-22. The optical design of the Einstein Tower in respect to light intensity surpassed even the Mt. Wilson solar observatory. Also abroad solar tower observatories were built in the 1920s: Utrecht,The Netherlands (1922), Canberra, Australia (1924), Arcetri, Italy (1926), Pasadena, California (1926) and Tokyo, Japan (1928). In the thirties, solar physics became important because of the solar maximum in 1938 and the new observational possibilities created by Bernard Lyot. At the end of the 1930s, Karl-Otto Kiepenheuer proposed to establish a solar tower observatory on Wendelstein in order to improve the predictions of radio interference by observing sunspots. By stressing the importance of the solar research for war efforts, Otto Heckmann of Göttingen observatory finally succeeded in winning the “Reichsluftfahrtministerium” to finance several solar observatories, like Wendelstein, Hainberg/Göttingen, Kanzelhöhe/Villach, and Schauinsland/Freiburg. Solar astronomy profited by the foundation of the new observatories - four of them existed still after the war. Abroad only the solar observatories of Oxford (1935) and the 50 foot tower of the McMath-Hulbert Observatory, University of Michigan (1936) should be mentioned. Only

  1. James Webb Space Telescope (JWST): The First Light Machine

    NASA Technical Reports Server (NTRS)

    Stahl, Philip

    2009-01-01

    This slide presentation review the mission objective, the organization of the mission planning, the design, and testing of the James Webb Space Telescope (JWST). There is also information about the orbit, in comparison to the Hubble Space Telescope, the mirror design, and the science instruments. Pictures of the full scale mockup of the JWST are given. A brief history of the universe is also presented from the big bang through the formation of galaxies, and the planets, to life itself. One of the goals of the JWST is to search for extra solar planets and then to search for signs of life.

  2. CHAIN-project and installation of the flare monitoring telescopes in developing countries

    NASA Astrophysics Data System (ADS)

    Ueno, Satoru; Shibata, Kazunari; Kimura, Goichi; Nakatani, Yoshikazu; Kitai, Reizaburo; Nagata, Shin'ichi

    2007-12-01

    The Flare Monitoring Telescope (FMT) was constructed in 1992 at the Hida Observatory in Japan to investigate the long-term variation of solar activity and explosive events, as a project of the international coordinated observations programme (STEP). The FMT consists of five solar imaging telescopes and one guide telescope. The five telescopes simultaneously observe the full-disk Sun at different wavelengths around H-alpha absorption line or in different modes. Therefore, the FMT can measure the three-dimensional velocity field of moving structures on the full solar disk without the atmospheric seeing effect. The science target of the FMT is to monitor solar flares and erupting filaments continuously all over the solar disk and as many events as possible and to investigate the relationship between such phenomena and space weather. Now we are planning to start a new worldwide project called as ``Continuous H-alpha Imaging Network (CHAIN)-project''. As part of this project, we are examining the possibility of installing telescopes similar to the FMT in developing countries with cooperative help by the United Nations. We have selected Peru as the candidate country where the first oversea FMT will be installed, and are beginning to study the natural environment, the seeing conditions, the proper design of the telescope for Peru and the training and education programme of operating staff, etc.

  3. Large space telescope, phase A. Volume 3: Optical telescope assembly

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development and characteristics of the optical telescope assembly for the Large Space Telescope are discussed. The systems considerations are based on mission-related parameters and optical equipment requirements. Information is included on: (1) structural design and analysis, (2) thermal design, (3) stabilization and control, (4) alignment, focus, and figure control, (5) electronic subsystem, and (6) scientific instrument design.

  4. Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.

  5. Construction Milestone Announced on Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    2000-04-01

    The National Radio Astronomy Observatory announces completion of a major construction milestone on the world's largest fully steerable radio telescope - the National Science Foundation's Green Bank Telescope (GBT). The last of 2,004 aluminum surface panels was recently installed on the GBT's two-acre (100 m x 110 m) collecting dish. The telescope is located at NRAO's Green Bank site, in rural Pocahontas County, West Virginia. The GBT will be used to study everything from the formation of galaxies in the early universe, to the chemical make-up of the dust and gas inside galaxies and in the voids that separate them, to the birth processes of stars. In conjunction with other instruments, it will help make highly accurate radar maps of some familiar objects in our own solar system. The GBT is an engineering marvel. At 485 feet tall, it is comparable in height to the Washington Monument. It weighs 16 million pounds, yet by swiveling the dish in both azimuth and elevation, it can be pointed to any point in the sky with exquisite accuracy. Additionally, the telescope's two-acre collecting dish has many novel features. Most radio telescopes in use today use receivers suspended above the dish by four struts. These struts block some of the surface of the dish, scattering some of the incoming radio waves from celestial objects under study. The GBT's offset feedarm has no struts to block incoming radio waves. The GBT also boasts an active surface. The surface of the dish is composed of 2,004 panels. On the underside of the dish, actuators are located at each corner (i.e., intersection of four panels). These actuators are motors that move the surface panels up and down, keeping the (paraboloid) shape of the dish precisely adjusted, no matter what the tilt of the telescope. The combination of its unblocked aperture and active surface promise that the GBT will display extremely high sensitivity to faint radio signals. The GBT itself is not the only precious national resource in

  6. Hubble Space Telescope Image

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Astronomers using the Hubble Space Telescope (HST) have identified what may be the most luminous star known; a celestial mammoth that releases up to 10-million times the power of the Sun and is big enough to fill the diameter of Earth's orbit. The star unleashes as much energy in six seconds as our Sun does in one year. The image, taken by a UCLA-led team with the recently installed Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) aboard the HST, also reveals a bright nebula, created by extremely massive stellar eruptions. The UCLA astronomers estimate that the star, called the Pistol Star, (for the pistol shaped nebula surrounding it), is approximately 25,000 light-years from Earth, near the center of our Milky Way galaxy. The Pistol Star is not visible to the eye, but is located in the direction of the constellation Sagittarius, hidden behind the great dust clouds along the Milky Way

  7. Composite telescope technology

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Rabin, Douglas

    2014-07-01

    We report the development of optical mirrors based on polymer matrix composite materials. Advantages of this technology are low cost and versatility. By using appropriate combinations of polymers and various metallic and nonmetallic particles and fibers, the properties of the materials can be tailored to suit a wide variety of applications. We report the fabrication and testing of flat and curved mirrors made with metal powders, multiple mirrors replicated with high degree of uniformity from the same mandrels, cryogenic testing, mirrors made of ferromagnetic materials that can be actively or adaptively controlled by non-contact actuation, optics with very smooth surfaces made by replication, and by spincasting. We discuss development of a new generation of ultra-compact, low power active optics and 3D printing of athermal telescopes.

  8. Microoptical telescope compound eye.

    PubMed

    Duparré, Jacques; Schreiber, Peter; Matthes, André; Pshenay-Severin, Ekaterina; Bräuer, Andreas; Tünnermann, Andreas; Völkel, Reinhard; Eisner, Martin; Scharf, Toralf

    2005-02-01

    A new optical concept for compact digital image acquisition devices with large field of view is developed and proofed experimentally. Archetypes for the imaging system are compound eyes of small insects and the Gabor-Superlens. A paraxial 3x3 matrix formalism is used to describe the telescope arrangement of three microlens arrays with different pitch to find first order parameters of the imaging system. A 2mm thin imaging system with 21x3 channels, 70 masculinex10 masculine field of view and 4.5mm x 0.5mm image size is optimized and analyzed using sequential and non-sequential raytracing and fabricated by microoptics technology. Anamorphic lenses, where the parameters are a function of the considered optical channel, are used to achieve a homogeneous optical performance over the whole field of view. Captured images are presented and compared to simulation results. PMID:19494951

  9. The Travelling Telescope

    NASA Astrophysics Data System (ADS)

    Owen, Daniel

    2015-08-01

    The telescope has been around for over 400 years, yet most people have never looked though one. We invite people outside under the stars to learn about those curious lights in the sky, and have a close encounter with the cosmos.Our main aim is to promote science, technology, engineering, and mathematics to the young minds by inspiring, empowering and engaging them using astronomy and astrophysics tools and concepts. We would like to see Africa compete with the rest of the world and we believe this can happen through having a scientifically literate society. We also work closely wit teachers, parents and the general public to further our objectives. We will present on our recently awarded project to work with schools in rural coastal Kenya, a very poor area of the country. We will also present on other work we continue to do with schools to make our project sustainable even after the OAD funding.

  10. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si

  11. Asteroseismology with robotic telescopes

    NASA Astrophysics Data System (ADS)

    Handler, G.

    2004-10-01

    Asteroseismology explores the interior of pulsating stars by analysing their normal mode spectrum. The detection of a sufficient number of pulsation modes for seismic modelling of main sequence variables requires large quantities of high-precision time resolved photometry. Robotic telescopes have become an asset for asteroseismology because of their stable instrumentation, cost- and time-efficient operation and the potentially large amounts of observing time available. We illustrate these points by presenting selected results on several types of pulsating variables, such as δ Scuti stars (main sequence and pre-main sequence), γ Doradus stars, rapidly oscillating Ap stars and β Cephei stars, thereby briefly reviewing recent success stories of asteroseismic studies of main sequence stars.

  12. The metagenomic telescope.

    PubMed

    Szalkai, Balázs; Scheer, Ildikó; Nagy, Kinga; Vértessy, Beáta G; Grolmusz, Vince

    2014-01-01

    Next generation sequencing technologies led to the discovery of numerous new microbe species in diverse environmental samples. Some of the new species contain genes never encountered before. Some of these genes encode proteins with novel functions, and some of these genes encode proteins that perform some well-known function in a novel way. A tool, named the Metagenomic Telescope, is described here that applies artificial intelligence methods, and seems to be capable of identifying new protein functions even in the well-studied model organisms. As a proof-of-principle demonstration of the Metagenomic Telescope, we considered DNA repair enzymes in the present work. First we identified proteins in DNA repair in well-known organisms (i.e., proteins in base excision repair, nucleotide excision repair, mismatch repair and DNA break repair); next we applied multiple alignments and then built hidden Markov profiles for each protein separately, across well-researched organisms; next, using public depositories of metagenomes, originating from extreme environments, we identified DNA repair genes in the samples. While the phylogenetic classification of the metagenomic samples are not typically available, we hypothesized that some very special DNA repair strategies need to be applied in bacteria and Archaea living in those extreme circumstances. It is a difficult task to evaluate the results obtained from mostly unknown species; therefore we applied again the hidden Markov profiling: for the identified DNA repair genes in the extreme metagenomes, we prepared new hidden Markov profiles (for each genes separately, subsequent to a cluster analysis); and we searched for similarities to those profiles in model organisms. We have found well known DNA repair proteins, numerous proteins with unknown functions, and also proteins with known, but different functions in the model organisms. PMID:25054802

  13. The metagenomic telescope.

    PubMed

    Szalkai, Balázs; Scheer, Ildikó; Nagy, Kinga; Vértessy, Beáta G; Grolmusz, Vince

    2014-01-01

    Next generation sequencing technologies led to the discovery of numerous new microbe species in diverse environmental samples. Some of the new species contain genes never encountered before. Some of these genes encode proteins with novel functions, and some of these genes encode proteins that perform some well-known function in a novel way. A tool, named the Metagenomic Telescope, is described here that applies artificial intelligence methods, and seems to be capable of identifying new protein functions even in the well-studied model organisms. As a proof-of-principle demonstration of the Metagenomic Telescope, we considered DNA repair enzymes in the present work. First we identified proteins in DNA repair in well-known organisms (i.e., proteins in base excision repair, nucleotide excision repair, mismatch repair and DNA break repair); next we applied multiple alignments and then built hidden Markov profiles for each protein separately, across well-researched organisms; next, using public depositories of metagenomes, originating from extreme environments, we identified DNA repair genes in the samples. While the phylogenetic classification of the metagenomic samples are not typically available, we hypothesized that some very special DNA repair strategies need to be applied in bacteria and Archaea living in those extreme circumstances. It is a difficult task to evaluate the results obtained from mostly unknown species; therefore we applied again the hidden Markov profiling: for the identified DNA repair genes in the extreme metagenomes, we prepared new hidden Markov profiles (for each genes separately, subsequent to a cluster analysis); and we searched for similarities to those profiles in model organisms. We have found well known DNA repair proteins, numerous proteins with unknown functions, and also proteins with known, but different functions in the model organisms.

  14. The Metagenomic Telescope

    PubMed Central

    Szalkai, Balázs; Scheer, Ildikó; Nagy, Kinga; Vértessy, Beáta G.; Grolmusz, Vince

    2014-01-01

    Next generation sequencing technologies led to the discovery of numerous new microbe species in diverse environmental samples. Some of the new species contain genes never encountered before. Some of these genes encode proteins with novel functions, and some of these genes encode proteins that perform some well-known function in a novel way. A tool, named the Metagenomic Telescope, is described here that applies artificial intelligence methods, and seems to be capable of identifying new protein functions even in the well-studied model organisms. As a proof-of-principle demonstration of the Metagenomic Telescope, we considered DNA repair enzymes in the present work. First we identified proteins in DNA repair in well–known organisms (i.e., proteins in base excision repair, nucleotide excision repair, mismatch repair and DNA break repair); next we applied multiple alignments and then built hidden Markov profiles for each protein separately, across well–researched organisms; next, using public depositories of metagenomes, originating from extreme environments, we identified DNA repair genes in the samples. While the phylogenetic classification of the metagenomic samples are not typically available, we hypothesized that some very special DNA repair strategies need to be applied in bacteria and Archaea living in those extreme circumstances. It is a difficult task to evaluate the results obtained from mostly unknown species; therefore we applied again the hidden Markov profiling: for the identified DNA repair genes in the extreme metagenomes, we prepared new hidden Markov profiles (for each genes separately, subsequent to a cluster analysis); and we searched for similarities to those profiles in model organisms. We have found well known DNA repair proteins, numerous proteins with unknown functions, and also proteins with known, but different functions in the model organisms. PMID:25054802

  15. Solar Flares

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2013-01-01

    Because the Earth resides in the atmosphere of our nearest stellar neighbor, events occurring on the Sun's surface directly affect us by interfering with satellite operations and communications, astronaut safety, and, in extreme circumstances, power grid stability. Solar flares, the most energetic events in our solar system, are a substantial source of hazardous space weather affecting our increasingly technology-dependent society. While flares have been observed using ground-based telescopes for over 150 years, modern space-bourne observatories have provided nearly continuous multi-wavelength flare coverage that cannot be obtained from the ground. We can now probe the origins and evolution of flares by tracking particle acceleration, changes in ionized plasma, and the reorganization of magnetic fields. I will walk through our current understanding of why flares occur and how they affect the Earth and also show several examples of these fantastic explosions.

  16. Kashima 34-m Radio Telescope

    NASA Technical Reports Server (NTRS)

    Sekido, Mamoru; Kawai, Eiji

    2013-01-01

    The Kashima 34-m radio telescope has been continuously operated and maintained by the National Institute of Information and Communications Technology (NICT) as a facility of the Kashima Space Technology Center (KSTC) in Japan. This brief report summarizes the status of this telescope, the staff, and activities during 2012.

  17. The Space-Age Legacy of Telescope Designer George A. Carroll

    NASA Astrophysics Data System (ADS)

    Briggs, John W.

    2013-01-01

    Remembered particularly as a founding member of Stony Ridge Observatory near Mount Wilson, George A. Carroll (1902-1987) was legendary in the Southern California telescope making community. In Texas at the age of sixteen, Carroll built and flew his own aircraft, becoming one of the youngest aviators in the country. He eventually became an employee of Lockheed's "Skunk Works" in Burbank. His earliest known commercial telescopes were high-end amateur instruments built by R. R. Cook. As described in a brochure describing his later telescope work, he had "experience in so many branches of technology that it is unbelievable." By the time Carroll's designs were built by Thomas Tool & Die in Sun Valley, his telescopes were well known in the solar community and in use at National Solar Observatory, Caltech, and at many other domestic and international research institutions. Among the most remarkable were large solar spars for Lockheed Solar Observatory in California and Ottawa River Solar Observatory in Canada. His instrumentation also equipped educational facilities including observatories at UCLA, Westmont College, Pasadena City College, Bevard Community College, and many others. A Carroll telescope boasting a particularly distinguished educational history was a small astrograph built in 1953 for Professor George Moyen of Hollywood and subsequently used for the long-running Summer Science Program in Ojai, California. Later solar instruments built by Carson Instruments were closely derivative of Carroll designs.

  18. Wind buffeting of large telescopes.

    PubMed

    MacMynowski, Douglas G; Andersen, Torben

    2010-02-01

    Unsteady wind loads due to turbulence within the telescope enclosure are one of the largest dynamic disturbances for ground-based optical telescopes. The desire to minimize the response to the wind influences the design of the telescope enclosure, structure, and control systems. There is now significant experience in detailed integrated modeling to predict image jitter due to wind. Based on this experience, a relatively simple model is proposed that is verified (from a more detailed model) to capture the relevant physics. In addition to illustrating the important elements of the telescope design that influence wind response, this model is used to understand the sensitivity of telescope image jitter to a wide range of design parameters. PMID:20119010

  19. Wind buffeting of large telescopes.

    PubMed

    MacMynowski, Douglas G; Andersen, Torben

    2010-02-01

    Unsteady wind loads due to turbulence within the telescope enclosure are one of the largest dynamic disturbances for ground-based optical telescopes. The desire to minimize the response to the wind influences the design of the telescope enclosure, structure, and control systems. There is now significant experience in detailed integrated modeling to predict image jitter due to wind. Based on this experience, a relatively simple model is proposed that is verified (from a more detailed model) to capture the relevant physics. In addition to illustrating the important elements of the telescope design that influence wind response, this model is used to understand the sensitivity of telescope image jitter to a wide range of design parameters.

  20. LOITA: Lunar Optical/Infrared Telescope Array

    NASA Technical Reports Server (NTRS)

    1993-01-01

    libration point will be used in conjunction with the Advanced Tracking and Data Relay Satellite System (ATDRSS). Electrical power of about 10 kW will be supplied by a nuclear reactor based on the SP-100 technology. LOITA will be constructed in three phases of six telescopes each. The total mass of the first operational phase is estimated at 58,820 kg. The cost of the fully operational first phase of the observatory is estimated at $8.9 billion. LOITA's primary objectives will be to detect and characterize planets around nearby stars (up to ten parsec away), study physics of collapsed stellar objects, solar/stellar surface features and the processes in nuclear regions of galaxies and quasars. An interferometric array such as LOITA will be capable of achieving resolutions three orders of magnitude greater than Hubble's design goal. LOITA will also be able to maintain higher signal to noise ratios than are currently attainable due to long observation times available on the moon.

  1. Seismic Imager Space Telescope

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; Ampuero, Jean Paul; Leprince, Sebastien; Michel, Remi

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  2. Limits of Astrometric and Photometric Precision on KBOs using Small Telescopes

    NASA Astrophysics Data System (ADS)

    Markatou, Evangelia Anna; Wang, Amanda; Kosiarek, Molly; Dunham, Emilie

    2014-06-01

    We conducted photometric and astrometric measurements on Haumea and Makemake, two Kuiper Belt Objects which are typically observed by 1-meter class telescopes or larger, with the goal of testing the limitations of small telescopes. Here we present our measurements of Haumea and Makemake obtained between June 5th, 2013 and July 31st, 2013 with the 14-inch Wallace Astrophysical Observatory (WAO) telescopes. Using photometry, we determined that Haumea and Makemake have R-band magnitudes of 17.225±0.347 and 16.850±0.107 respectively. These values agree with the previous R-band measurements of 17.240±0.030 (Lacerda et al. 2008) and 16.802±0.041 (Rabinowitz et al. 2007) for Haumea and Makemake respectively. We obtained rotational light curves for Haumea and Makemake over eight separate nights, again by analysing the photometry observations. Astrometry yielded residuals of -0.039±0.025 arcseconds in RA and 0.234±0.017 arcseconds in DEC for Makemake, and 0.295±0.077 arcseconds in RA and 0.184±0.0554 arcseconds in DEC for Haumea. These results, when submitted to the minor planet center, are able to increase the accuracy of the JPL ephemeris. Additionally, we calculated that observing Haumea with two 14-inch telescopes and Makemake with four 14-inch telescopes, in ideal conditions, could resolve their periodicity. We conclude that with improved observing techniques and modern CCD cameras, it is possible to utilize small telescopes in universities around the world to observe large KBOs and obtain accurate photometric and astrometric results.

  3. Hubble Space Telescope Image

    NASA Technical Reports Server (NTRS)

    1995-01-01

    These eerie, dark, pillar-like structures are actually columns of cool interstellar hydrogen gas and dust that are also incubators for new stars. The pillars protrude from the interior wall of a dark molecular cloud like stalagmites from the floor of a cavern. They are part of the Eagle Nebula (also called M16), a nearby star-forming region 7,000 light-years away, in the constellation Serpens. The ultraviolet light from hot, massive, newborn stars is responsible for illuminating the convoluted surfaces of the columns and the ghostly streamers of gas boiling away from their surfaces, producing the dramatic visual effects that highlight the three-dimensional nature of the clouds. This image was taken on April 1, 1995 with the Hubble Space Telescope Wide Field Planetary Camera 2. The color image is constructed from three separate images taken in the light of emission from different types of atoms. Red shows emissions from singly-ionized sulfur atoms, green shows emissions from hydrogen, and blue shows light emitted by doubly-ionized oxygen atoms.

  4. The Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Dreher, J.

    2006-12-01

    The ATA will be a massively parallel array of 350 6-m antennas operating from 0.5 GHz to 11.3 GHz. It will be a superb instrument for both surveys and for imaging large, complex sources. By exploiting recent drops in the cost of electronics and by adopting the simplest possible design, the cost of the ATA will be significantly less than that of existing 100-m class telescopes. The ATA offers a very large primary field of view that may be imaged with a spectralline correlator and, at the same time, be studied with 16 dual-polarization pencil beams. The ATA also will have unique capabilities for very high fidelity imaging and for RFI excision. Central to the design is a high performance, yet cost effective, antenna with a Gregorian reflector system, connected to a novel ultrawide- band, log-periodic feed. Analog fiber is used to eliminate most of the electronics that are located at the antennas in more conventional arrays, allowing for a massively parallel signal processing design that offers enormous flexibility. A 42-element version of the ATA will begin observing in 2006.

  5. SOFIA: Flying the Telescope

    NASA Technical Reports Server (NTRS)

    Asher, Troy; Cumming, Steve

    2012-01-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is an international cooperative development and operations program between the United States National Aeronautics and Space Administration (NASA) and the German Space Agency, DLR (Deutsches Zentrum fuer Luft-und Raumfahrt). SOFIA is a 2.5 meter, optical/infrared/sub-millimeter telescope mounted in a Boeing model 747SP-21 aircraft and will be used for many basic astronomical observations performed at stratospheric altitudes. It will accommodate installation of different focal plane instruments with in-flight accessibility provided by investigators selected from the international science community. The Facility operational lifetime is planned to be greater than 20 years. This presentation will present the results of developmental testing of SOFIA, including analysis, envelope expansion and the first operational mission. It will describe a brief history of open cavities in flight, how NASA designed and tested SOFIAs cavity, as well as flight test results. It will focus on how the test team achieved key milestones by systematically and efficiently reducing the number of test points to only those absolutely necessary to achieve mission requirements, thereby meeting all requirements and saving the potential loss of program funding. Finally, it will showcase examples of the observatory in action and the first operational mission of the observatory, illustrating the usefulness of the system to the international scientific community. Lessons learned on how to whittle a mountain of test points into a manageable sum will be presented at the conclusion.

  6. Why systems engineering on telescopes?

    NASA Astrophysics Data System (ADS)

    Swart, Gerhard P.; Meiring, Jacobus G.

    2003-02-01

    Although Systems Engineering has been widely applied to the defence industry, many other projects are unaware of its potential benefits when correctly applied, assuming that it is an expensive luxury. It seems that except in a few instances, telescope projects are no exception, prompting the writing of this paper. The authors postulate that classical Systems Engineering can and should be tailored, and then applied to telescope projects, leading to cost, schedule and technical benefits. This paper explores the essence of Systems Engineering and how it can be applied to any complex development project. The authors cite real-world Systems Engineering examples from the Southern African Large Telescope (SALT). The SALT project is the development and construction of a 10m-class telescope at the price of a 4m telescope. Although SALT resembles the groundbreaking Hobby-Eberly Telescope (HET) in Texas, the project team are attempting several challenging changes to the original design, requiring a focussed engineering approach and discernment in the definition of the telescope requirements. Following a tailored Systems Engineering approach on this project has already enhanced the quality of decisions made, improved the fidelity of contractual specifications for subsystems, and established criteria testing their performance. Systems Engineering, as applied on SALT, is a structured development process, where requirements are formally defined before the award of subsystem developmental contracts. During this process conceptual design, modeling and prototyping are performed to ensure that the requirements were realistic and accurate. Design reviews are held where the designs are checked for compliance with the requirements. Supplier factory and on-site testing are followed by integrated telescope testing, to verify system performance against the specifications. Although the SALT project is still far from completion, the authors are confident that the present benefits from

  7. Large Millimeter Telescope (LMT) status

    NASA Astrophysics Data System (ADS)

    Schloerb, F. Peter; Carrasco, Luis; Wilson, Grant W.

    2003-02-01

    We present a summary of the Large Millimeter Telescope Project and its present status. The Large Millimeter Telescope (LMT) is a joint project of the University of Massachusetts (UMass) in the USA and the Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) in Mexico to build a 50m-diameter millimeter-wave telescope. The LMT is being built at an altitude of 4600 m atop Volcan Sierra Negra, an extinct volcanic peak in the state of Puebla, Mexico, approximately 100 km east of the city of Puebla. Construction of the antenna is now well underway, and it is expected to be completed in 2004.

  8. Formation flight astronomical survey telescope

    NASA Astrophysics Data System (ADS)

    Tsunemi, Hiroshi

    2012-03-01

    Formation Flight Astronomical Survey Telescope (FFAST) is a project for hard X-ray observation. It consists of two small satellites; one (telescope satellite) has a super mirror covering the energy range up to 80 keV while the other (detector satellite) has an scintillator deposited CCD (SDCCD) having good spatial resolution and high efficiency up to 100 keV. Two satellites will be put into individual Kepler orbits forming an X-ray telescope with a focal length of 20 m. They will be not in pointing mode but in survey mode to cover a large sky region.

  9. Worldwide Telescope as an earth and planetary science educational platform

    NASA Astrophysics Data System (ADS)

    Fatland, D. R.; Rush, K.; van Ingen, C.; Wong, C.; Fay, J.; Xu, Y.; Fay, D.

    2009-12-01

    Worldwide Telescope (WWT) -available at no cost from Microsoft Research as both Windows desktop and web browser applications - enables personal computers to function as virtual telescopes for viewing the earth, the solar system and the cosmos across many wavelengths. Bringing together imagery from ground and space-based telescopes as well as photography from Mars rovers and Apollo astronauts, WWT is designed to work as both a research tool and a platform for educational exploration. Central to the latter purpose is the Tour authoring facility which enables a student or educator to create narrative stories with dynamic perspective, voice-over narrative, background sound and superimposed content. We describe here the application of recent developments in WWT, particularly the 2009 updates, towards planetary science education with particular emphasis on WWT earth models. Two core themes informing this development are the notions of enabling social networking through WWT Communities and including the earth as part of the bigger picture, in effect swinging the telescope around from the deep sky to look back at our observatory. moon, earth (WWT solar system view)

  10. Geodetic Observatory Wettzell - 20-m Radio Telescope and Twin Telescope

    NASA Technical Reports Server (NTRS)

    Neidhardt, Alexander; Kronschnabl, Gerhard; Schatz, Raimund

    2013-01-01

    In the year 2012, the 20-m radio telescope at the Geodetic Observatory Wettzell, Germany again contributed very successfully to the International VLBI Service for Geodesy and Astrometry observing program. Technical changes, developments, improvements, and upgrades were made to increase the reliability of the entire VLBI observing system. In parallel, the new Twin radio telescope Wettzell (TTW) got the first feedhorn, while the construction of the HF-receiving and the controlling system was continued.

  11. SOLAR-A

    NASA Technical Reports Server (NTRS)

    Ninomiya, K.; Ogawara, Y.

    1991-01-01

    The DSN (Deep Space Network) mission support requirements for SOLAR-A are summarized. The SOLAR-A mission objectives are to investigate high energy phenomena of the Sun using x-ray telescopes and spectrometers during the maximum activity period of the solar cycle. The spacecraft will be launched into a circular earth orbit of approximately 500 km altitude and 31 deg inclination. The mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility.

  12. Astronomical applications of grazing incidence telescopes with polynomial surfaces

    NASA Technical Reports Server (NTRS)

    Cash, W.; Shealy, D. L.; Underwood, J. H.

    1979-01-01

    The report has examined the claim that grazing incidence telescopes having surfaces described by generalized equations have image characteristics superior to those of the paraboloid-hyperboloid and Wolter-Schwarzschild configurations. With emphasis on specific applications in solar and cosmic X-ray/EUV astronomy, raytracing has shown that in many cases there is no advantage in the polynomial design, and in those cases where advantages are theoretically to be expected, the advantages are outweighed by practical considerations.

  13. The Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey C.; Allen Telescope Array Team

    2010-01-01

    The ATA is a 42-element centimeter wavelength array located in Hat Creek, California and jointly operated by UC Berkeley Radio Astronomy Laboratory and the SETI Institute. Since the ATA dedication in Fall 2007, activities have been focused on commissioning the array, retrofitting a handful of components including the feed, developing an operations model, creation of pipeline processing for correlator imaging data, early science observations, and launching of the major surveys for which the telescope was built. The retrofit of the feed improves feed mechanical robustness as well as high frequency performance. Science programs launched include imaging radio transient and static sky surveys (ATATS and PiGSS), commensal SETI and transient surveys of the Galactic Center, targeted SETI observations of nearby stars, the Fly's Eye transient survey, broadband spectra of nearby star-forming galaxies, polarimetric observations of bright radio sources, observations of hydrogen in nearby galaxies and galaxy groups, molecular line observations in the Galaxy, and observations of Jupiter and the Moon. The baseline Square Kilometer Array (SKA) design, a large-N-small-diameter (LNSD) array with wide-band single-pixel feeds and an offset Gregorian antenna, bears a strong resemblance to the ATA. Additional ATA contributions to the SKA include configuration studies for LNSD arrays, the use of fiber optics for broadband data transmission, the use of flexible FPGA-based digital electronics, passive cooling of antennas, and implementation of commensal observing modes. The ATA is currently used for exploration of calibration and imaging algorithms necessary for the SKA. I will summarize current technical status and performance, the results from early science and surveys, and ATA contributions to SKA development.

  14. Lightweighted ZERODUR for telescopes

    NASA Astrophysics Data System (ADS)

    Westerhoff, T.; Davis, M.; Hartmann, P.; Hull, T.; Jedamzik, R.

    2014-07-01

    The glass ceramic ZERODUR® from SCHOTT has an excellent reputation as mirror blank material for earthbound and space telescope applications. It is known for its extremely low coefficient of thermal expansion (CTE) at room temperature and its excellent CTE homogeneity. Recent improvements in CNC machining at SCHOTT allow achieving extremely light weighted substrates up to 90% incorporating very thin ribs and face sheets. In 2012 new ZERODUR® grades EXPANSION CLASS 0 SPECIAL and EXTREME have been released that offer the tightest CTE grades ever. With ZERODUR® TAILORED it is even possible to offer ZERODUR® optimized for customer application temperature profiles. In 2013 SCHOTT started the development of a new dilatometer setup with the target to drive the industrial standard of high accuracy thermal expansion metrology to its limit. In recent years SCHOTT published several paper on improved bending strength of ZERODUR® and lifetime evaluation based on threshold values derived from 3 parameter Weibull distribution fitted to a multitude of stress data. ZERODUR® has been and is still being successfully used as mirror substrates for a large number of space missions. ZERODUR® was used for the secondary mirror in HST and for the Wolter mirrors in CHANDRA without any reported degradation of the optical image quality during the lifetime of the missions. Some years ago early studies on the compaction effects of electron radiation on ZERODUR® were re analyzed. Using a more relevant physical model based on a simplified bimetallic equation the expected deformation of samples exposed in laboratory and space could be predicted in a much more accurate way. The relevant ingredients for light weighted mirror substrates are discussed in this paper: substrate material with excellent homogeneity in its properties, sufficient bending strengths, space radiation hardness and CNC machining capabilities.

  15. Astrophysical science with a spaceborne photometric telescope

    NASA Technical Reports Server (NTRS)

    Granados, Arno F. (Editor); Borucki, William J. (Editor)

    1994-01-01

    The FRESIP Project (FRequency of Earth-Sized Inner Planets) is currently under study at NASA Ames Research Center. The goal of FRESIP is the measurement of the frequency of Earth-sized extra-solar planets in inner orbits via the photometric signature of a transit event. This will be accomplished with a spaceborne telescope/photometer capable of photometric precision of two parts in 100,000 at a magnitude of m(sub v) = 12.5. To achieve the maximum scientific value from the FRESIP mission, an astrophysical science workshop was held at the SETI Institute in Mountain View, California, November 11-12, 1993. Workshop participants were invited as experts in their field of astrophysical research and discussed the astrophysical science that can be achieved within the context of the FRESIP mission.

  16. Uranus's auroras observed from Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-05-01

    New observations from the Hubble Space Telescope provide the first ever images of Uranus's auroras. The new observations, described by Lamy et al., are also the first unambiguous detections of Uranus's auroras since they were first discovered using the Voyager 2 spacecraft, which few by the planet in 1986. Auroras arise from the solar wind's interaction with a planet's magnetosphere. Uranus's magnetosphere, which is not well studied, is unusual because the planet's magnetic axis is both offset and sharply tilted with respect to the planet's spin axis. The newly detected auroras, seen on the dayside of the planet in November 2011, are quite different from Earth's—Uranus's auroras were faint dots of light that lasted online a few minutes, unlike the dancing colored curtains organized along rings of emissions around Earth's magnetic poles, intensified on the nightside and lasting for hours. (Geophysical Research Letters, doi:10.1029/ 2012GL051312, 2012)

  17. Hubble Space Telescope electrical power system

    NASA Technical Reports Server (NTRS)

    Whitt, Thomas H.; Bush, John R., Jr.

    1990-01-01

    The Hubble Space Telescope (HST) electrical power system (EPS) is supplying between 2000 and 2400 W of continuous power to the electrical loads. The major components of the EPS are the 5000-W back surface field reflector solar array, the six nickel-hydrogen (NiH2) 22-cell 88-Ah batteries, and the charge current controllers, which, in conjunction with the flight computer, control battery charging. The operation of the HST EPS and the results of the HST NiH2 six-battery test are discussed, and preliminary flight data are reviewed. The HST NiH2 six-battery test is a breadboard of the HST EPS on test at Marshall Space Flight Center.

  18. James Webb Space Telescope Orbit Determination Analysis

    NASA Technical Reports Server (NTRS)

    Yoon, Sungpil; Rosales, Jose; Richon, Karen

    2014-01-01

    The James Webb Space Telescope (JWST) is designed to study and answer fundamental astrophysical questions from an orbit about the Sun-Earth/Moon L2 libration point, 1.5 million km away from Earth. This paper describes the results of an orbit determination (OD) analysis of the JWST mission emphasizing the challenges specific to this mission in various mission phases. Three mid-course correction (MCC) maneuvers during launch and early orbit phase and transfer orbit phase are required for the spacecraft to reach L2. These three MCC maneuvers are MCC-1a at Launch+12 hours, MCC-1b at L+2.5 days and MCC-2 at L+30 days. Accurate OD solutions are needed to support MCC maneuver planning. A preliminary analysis shows that OD performance with the given assumptions is adequate to support MCC maneuver planning. During the nominal science operations phase, the mission requires better than 2 cm/sec velocity estimation performance to support stationkeeping maneuver planning. The major challenge to accurate JWST OD during the nominal science phase results from the unusually large solar radiation pressure force acting on the huge sunshield. Other challenges are stationkeeping maneuvers at 21-day intervals to keep JWST in orbit around L2, frequent attitude reorientations to align the JWST telescope with its targets and frequent maneuvers to unload momentum accumulated in the reaction wheels. Monte Carlo analysis shows that the proposed OD approach can produce solutions that meet the mission requirements.

  19. James Webb Space Telescope Orbit Determination Analysis

    NASA Technical Reports Server (NTRS)

    Yoon, Sungpil; Rosales, Jose; Richon, Karen

    2014-01-01

    The James Webb Space Telescope (JWST) is designed to study and answer fundamental astrophysical questions from an orbit about the Sun-EarthMoon L2 libration point, 1.5 million km away from Earth. Three mid-course correction (MCC) maneuvers during launch and early orbit phase and transfer orbit phase are required for the spacecraft to reach L2. These three MCC maneuvers are MCC-1a at Launch+12 hours, MCC-1b at L+2.5 days and MCC-2 at L+30 days. Accurate orbit determination (OD) solutions are needed to support MCC maneuver planning. A preliminary analysis shows that OD performance with the given assumptions is adequate to support MCC maneuver planning. During the nominal science operations phase, the mission requires better than 2 cmsec velocity estimation performance to support stationkeeping maneuver planning. The major challenge to accurate JWST OD during the nominal science phase results from the unusually large solar radiation pressure force acting on the huge sunshield. Other challenges are stationkeeping maneuvers at 21-day intervals to keep JWST in orbit around L2, frequent attitude reorientations to align the JWST telescope with its targets and frequent maneuvers to unload momentum accumulated in the reaction wheels. Monte Carlo analysis shows that the proposed OD approach can produce solutions that meet the mission requirements.

  20. Performance of the second MEMS space telescope for observation of extreme lightning from space

    NASA Astrophysics Data System (ADS)

    Jeon, Jin-A.; Lee, Hye Young; Kim, Ji Eun; Lee, Jik; Park, Il H.

    2016-03-01

    A small space-telescope equipped with a micro-electro-mechanical system (MEMS) micro-mirror is applied to space missions for observing random, rare and temporal events like transient luminous events (TLEs). The measurement of TLEs with fine time resolution will show the different temporal profiles predicted by the various models for sprites, blue jets, elves and halos. The proposed space-telescope consists of three components: two sub-telescopes with different focal lengths and a spectrometer. The trigger telescope with a short focal length surveys a wide field of view. The zoom-in telescope with a long focal length looks into a small field of view area that is part of the trigger telescope's wide field of view. Upon identifying a candidate TLE, the trigger telescope determines the location of the event and provides the location to the MEMS micro-mirror. Then, the micro-mirror, which is placed as a pinhole in front of the zoom-in telescope, rotates its mirror plane by such an angle that the zoom-in telescope will watch the small field of view around the center of the event. In this manner, the zoom-in telescope achieves the zoom-in designed by its long focal length. The first such small-space telescope, the MEMS Telescope for Extreme Lightning (MTEL), was launched into space in 2009 and identified a few candidates sprites. However a power failure (over-charge of the solar battery) of the main satellite occurred, and the MTEL was not able to continue space operation to acquire sizable statistics for TLE events. We developed and constructed the second small-space telescope, called MTEL-II, to continue to observe TLE events in space. In this paper, we present the performance of MTEL-II based on ground tests.