Science.gov

Sample records for 1-phosphate sn-glycerol 3-phosphate

  1. sn-Glycerol-3-phosphate transport in Salmonella typhimurium.

    PubMed Central

    Hengge, R; Larson, T J; Boos, W

    1983-01-01

    Salmonella typhimurium contains a transport system for sn-glycerol-3-phosphate that is inducible by growth on glycerol and sn-glycerol-3-phosphate. In fully induced cells, the system exhibited an apparent Km of 50 microM and a Vmax of 2.2 nmol/min . 10(8) cells. The corresponding system in Escherichia coli exhibits, under comparable conditions, a Km of 14 microM and a Vmax of 2.2 nmol/min . 10(8) cells. Transport-defective mutants were isolated by selecting for resistance against the antibiotic fosfomycin. They mapped in glpT at 47 min in the S. typhimurium linkage map, 37% cotransducible with gyrA. In addition to the glpT-dependent system, S. typhimurium LT2 contains, like E. coli, a second, ugp-dependent transport system for sn-glycerol-3-phosphate that was derepressed by phosphate starvation. A S. typhimurium DNA bank containing EcoRI restriction fragments in phage lambda gt7 was used to clone the glpT gene in E. coli. Lysogens that were fully active in the transport of sn-glycerol-3-phosphate with a Km of 33 microM and a Vmax of 2.0 nmol/min . 10(8) cells were isolated in a delta glpT mutant of E. coli. The EcoRI fragment harboring glpT was 3.5 kilobases long and carried only part of glpQ, a gene distal to glpT but on the same operon. The fragment was subcloned in multicopy plasmid pACYC184. Strains carrying this hybrid plasmid produced large amounts of cytoplasmic membrane protein with an apparent molecular weight of 33,000, which was identified as the sn-glycerol-3-phosphate permease. Its properties were similar to the corresponding E. coli permease. The presence of the multicopy glpT hybrid plasmid had a strong influence on the synthesis or assembly of other cell envelope proteins of E. coli. For instance, the periplasmic ribose-binding protein was nearly absent. On the other hand, the quantity of an unidentified E. coli outer membrane protein usually present only in small amounts increased. Images PMID:6408060

  2. Direct nonchromatographic assay for 1-acyl-sn-glycerol-3-phosphate acyltransferase

    SciTech Connect

    Rajasekharan, R.; Ray, T.K.; Cronan, J.E. Jr.

    1988-09-01

    1-Acyl-sn-glycerol-3-phosphate acyltransferase (also called lysophosphatidic acid acyltransferase) which catalyzes the acylation of 1-acyl-sn-glycerol-3-phosphate to phosphatidic acid is generally assayed by the use of a radioactive substrate followed by a time-consuming chromatographic separation of substrate and product. We report a direct and highly sensitive nonchromatographic assay for this enzyme based on the ability of Escherichia coli alkaline phosphatase to dephosphorylate 1-acyl-sn-glycerol-3-phosphate but not phosphatidic acid. This selective hydrolysis coupled with the use of /sup 32/P-labeled 1-acyl-sn-glycerol-3-phosphate as substrate permits measurement of the product, /sup 32/P-labeled phosphatidic acid by solvent extraction or precipitation. We also report a series of enzymatic reactions for the efficient conversion of /sup 32/Pi to /sup 32/P-labeled 1-acyl-sn-glycerol-3-phosphate.

  3. Periplasmic protein related to the sn-glycerol-3-phosphate transport system of Escherichia coli.

    PubMed Central

    Silhavy, T J; Hartig-Beecken, I; Boos, W

    1976-01-01

    Two-dimensional gel electrophoresis of shock fluids of Escherichia coli K-12 revealed the presence of a periplasmic protein related to sn-glycerol-3-phosphate transport (GLPT) that is under the regulation of glpR, the regulatory gene of the glp regulon. Mutants selected for their resistance to phosphonomycin and found to be defective in sn-glycerol-3-phosphate transport either did not produce GLPT or produced it in reduced amounts. Other mutations exhibited no apparent effect of GLPT. Transductions of glpT+ nalA phage P1 into these mutants and selection for growth on sn-glycerol-3-phosphate revealed a 50% cotransduction frequency to nalA. Reversion of mutants taht did not produce GLPT to growth on sn-glycerol-3-phosphate resulted in strains that produce GLPT. This suggests a close relationship of GLPT to the glpT gene and to sn-glycerol-3-phosphate transport. Attempts to demonstrate binding activity of GLPT in crude shock fluid towards sn-glycerol-3-phosphate have failed so far. However, all shock fluids, independent of their GLPT content, exhibited an enzymatic activity that hydrolyzes under the conditions of the binding assay, 30 to 60% of the sn-glycerol-3-phosphate to glycerol and inorganic orthophosphate. Images PMID:770459

  4. Structure and Evolution of the Archaeal Lipid Synthesis Enzyme sn-Glycerol-1-phosphate Dehydrogenase*

    PubMed Central

    Carbone, Vincenzo; Schofield, Linley R.; Zhang, Yanli; Sang, Carrie; Dey, Debjit; Hannus, Ingegerd M.; Martin, William F.; Sutherland-Smith, Andrew J.; Ronimus, Ron S.

    2015-01-01

    One of the most critical events in the origins of cellular life was the development of lipid membranes. Archaea use isoprenoid chains linked via ether bonds to sn-glycerol 1-phosphate (G1P), whereas bacteria and eukaryotes use fatty acids attached via ester bonds to enantiomeric sn-glycerol 3-phosphate. NAD(P)H-dependent G1P dehydrogenase (G1PDH) forms G1P and has been proposed to have played a crucial role in the speciation of the Archaea. We present here, to our knowledge, the first structures of archaeal G1PDH from the hyperthermophilic methanogen Methanocaldococcus jannaschii with bound substrate dihydroxyacetone phosphate, product G1P, NADPH, and Zn2+ cofactor. We also biochemically characterized the enzyme with respect to pH optimum, cation specificity, and kinetic parameters for dihydroxyacetone phosphate and NAD(P)H. The structures provide key evidence for the reaction mechanism in the stereospecific addition for the NAD(P)H-based pro-R hydrogen transfer and the coordination of the Zn2+ cofactor during catalysis. Structure-based phylogenetic analyses also provide insight into the origins of G1PDH. PMID:26175150

  5. Transport of 3,4-dihydroxybutyl-1-phosphonate, an analogue of sn-glycerol 3-phosphate.

    PubMed Central

    Leifer, Z; Engel, R; Tropp, B E

    1977-01-01

    3,4-Dihydroxybutyl-1-phosphonate (DHBP), an analogue of glycerol 3-phosphate, is actively transported by the sn-glycerol 3-phosphate transport system of Escherichia coli strain 8. The Km for the transport of DHBP is 200 microM. PMID:400804

  6. A second transport system for sn-glycerol-3-phosphate in Escherichia coli.

    PubMed Central

    Argast, M; Ludtke, D; Silhavy, T J; Boos, W

    1978-01-01

    Strains containing phage Mucts inserted into glpT were isolated as fosfomycin-resistant clones. These mutants did not transport sn-glycerol-3-phosphate, and they lacked GLPT, a protein previously shown to be a product of the glpT operon. By plating these mutants on sn-glycerol-3-phosphate at 43 degrees C, we isolated revertants that regained the capacity to grow on G3P. Most of these revertants did not map in glpT and did not regain GLPT. These revertants exhibited a highly efficient uptake system for sn-glycerol-3-phosphate within an apparent Km of 5 micron. In addition, three new proteins (GP 1, 2, and 3) appeared in the periplasm of these revertants. None of these proteins were antigentically related to GLPT. However, like GLPT, GP1 exhibits abnormal behavior on sodium dodecyl sulfate-polyacrylamide gels. GP 2 is an efficient binding protein. The new uptake system showed different characteristics than the system that is coded for by the glpT operon. It was inhibited neither by phosphate nor fosfomycin. So far, none of the systems that transport organic acids in Escherichia coli could be implicated in the new sn-glycerol-3-phosphate uptake activity. The mutation ugp+, which was responsible for the appearance of the new transport system and the appearance of GP 1, 2, and 3 in the periplasm was cotransducible with araD by phage P1 transduction and was recessive in merodiploids. Images PMID:363686

  7. Synthesis of sn-glycerol 3-phosphate, a key precursor of membrane lipids, in Bacillus subtilis.

    PubMed Central

    Morbidoni, H R; de Mendoza, D; Cronan, J E

    1995-01-01

    The Bacillus subtilis gpsA gene was cloned by complementation of an Escherichia coli gpsA strain auxotrophic for sn-glycerol 3-phosphate. The gene was sequenced and found to encode an NAD(P)H-dependent dihydroxyacetone phosphate reductase with a deduced molecular mass of 39.5 kDa. The deduced amino acid sequence showed strong conservation with that of the E. coli homolog and to other procaryotic and eucaryotic dihydroxyacetone phosphate reductases. The physical location of gpsA on the B. subtilis chromosome was at about 200 degrees. Disruption of the chromosomal gpsA gene yielded B. subtilis strains auxotrophic for glycerol, indicating that the gpsA gene product is responsible for synthesis of the sn-glycerol 3-phosphate required for phospholipid synthesis. We also found that transformation of the classical B. subtilis glycerol auxotrophs with a gpsA-containing genomic fragment yielded transformants that grew in the absence of glycerol. In agreement with prior work, our attempts to determine the reductase activity in B. subtilis extracts were unsuccessful. However, expression of the B. subtilis gpsA gene in E. coli gave reductase activity that was only slightly inhibited by sn-glycerol 3-phosphate. Since the E. coli GpsA dihydroxyacetone phosphate reductase is very sensitive to allosteric inhibition by sn-glycerol 3-phosphate, these results indicate that the B. subtilis gpsA-encoded reductase differs from that of E. coli. It seems that B. subtilis regulates sn-glycerol 3-phosphate synthesis at the level of gene expression rather than through the E. coli mechanism of strong allosteric inhibition of an enzyme produced in excess. PMID:7592341

  8. Short-term hypothermia activates hepatic mitochondrial sn-glycerol-3-phosphate dehydrogenase and thermogenic systems.

    PubMed

    Bobyleva, V; Pazienza, L; Muscatello, U; Kneer, N; Lardy, H

    2000-08-15

    The contribution of the sn-glycerol-3-phosphate (G-3-P) shuttle in the control of energy metabolism is well established. It is also known that its activity may be modulated by hormones involved in thermogenesis, such as thyroid hormones or dehydroepiandrosterone and its metabolites, that act by inducing de novo synthesis of mitochondrial G-3-P dehydrogenase (mGPDH). However, little is known as to the factors that may influence the activity without enzyme induction. In the present study we investigated the possible role of the G-3-P shuttle in the thermogenic response to different hypothermic stresses. It was found that a decrease of body temperature causes the liver rapidly to enhance mGPDH activity and G-3-P-dependent respiration. The enhancement, which does not result from de novo synthesis of enzymes, has the potential of increasing heat production both by decreased ATP synthesis during the oxidation of G-3-P and by activation of the glycolytic pathway.

  9. Glycerolipid biosynthesis in Saccharomyces cerevisiae: sn-glycerol-3-phosphate and dihydroxyacetone phosphate acyltransferase activities.

    PubMed Central

    Schlossman, D M; Bell, R M

    1978-01-01

    Yeast acyl-coenzyme A:dihydroxyacetone-phosphate O-acyltransferase (DHAP acyltransferase; EC 2.3.1.42) was investigated to (i) determine whether its activity and that of acyl-coenzyme A:sn-glycerol-3-phosphate O-acyltransferase (glycerol-P acyltransferase; EC 2.3.1.15) represent dual catalytic functions of a single membranous enzyme, (ii) estimate the relative contributions of the glycerol-P and DHAP pathways for yeast glycerolipid synthesis, and (iii) evaluate the suitability of yeast for future genetic investigations of the eucaryotic glycerol-P and DHAP acyltransferase activities. The membranous DHAP acyltransferase activity showed an apparent Km of 0.79 mM for DHAP, with a Vmax of 5.3 nmol/min per mg, whereas the glycerol-P acyltransferase activity showed an apparent Km of 0.05 mM for glycerol-P, with a Vmax of 3.4 nmol/min per mg. Glycerol-P was a competitive inhibitor (Ki, 0.07 mM) of the DHAP acyltransferase activity, and DHAP was a competitive inhibitor (Ki, 0.91 mM) of the glycerol-P acyltransferase activity. The two acyltransferase activities exhibited marked similarities in their pH dependence, acyl-coenzyme A chain length preference and substrate concentration dependencies, thermolability, and patterns of inactivation by N-ethylmaleimide, trypsin, and detergents. Thus, the data strongly suggest that yeast glycerol-P and DHAP acyltransferase activities represent dual catalytic functions of a single membrane-bound enzyme. Furthermore, since no acyl-DHAP oxidoreductase activity could be detected in yeast membranes, the DHAP pathway for glycerolipid synthesis may not operate in yeast. PMID:25265

  10. The acylation of sn-glycerol 3-phosphate and the metabolism of phosphatidate in microsomal preparations from the developing cotyledons of safflower (Carthamus tinctorius L.) seed.

    PubMed

    Griffiths, G; Stobart, A K; Stymne, S

    1985-09-01

    Microsomal preparations from the developing cotyledons of safflower (Carthamus tinctorius) catalysed the acylation of sn-glycerol 3-phosphate in the presence of acyl-CoA. The resulting phosphatidate was further utilized in the synthesis of diacyl- and tri-acylglycerol by the reactions of the so-called 'Kennedy pathway' [Kennedy (1961) Fed. Proc. Fed. Am. Soc. Exp. Biol. 20, 934-940]. Diacylglycerol equilibrated with the phosphatidylcholine pool when glycerol backbone, with the associated acyl groups, flowed from phosphatidate to triacylglycerol. The formation of diacylglycerol from phosphatidate through the action of a phosphatidate phosphohydrolase (phosphatidase) was substantially inhibited by EDTA and, under these conditions, phosphatidate accumulated in the microsomal membranes. The inhibition of the phosphatidase by EDTA was alleviated by Mg2+. The presence of Mg2+ in all incubation mixtures stimulated quite considerably the synthesis of triacylglycerol in vitro. Microsomal preparations incubated with acyl-CoA, sn-glycerol 3-phosphate and EDTA synthesized sufficient phosphatidate for the reliable analysis of its intramolecular fatty acid distribution. In the presence of mixed acyl-CoA substrates the sn-glycerol 3-phosphate was acylated exclusively in position 1 with the saturated fatty acids, palmitate and stearate. The polyunsaturated fatty acid linoleate was, however, utilized largely in the acylation of position 2 of sn-glycerol 3-phosphate. The affinity of the enzymes involved in the acylation of positions 1 and 2 of sn-glycerol 3-phosphate for specific species of acyl-CoA therefore governs the non-random distribution of the different acyl groups in the seed triacylglycerols. The acylation of sn-glycerol 3-phosphate in position 1 with saturated acyl components also accounts for the presence of these groups in position 1 of sn-phosphatidylcholine through the equilibration of diacylglycerol with the phosphatidylcholine pool, which occurs when phosphatidate

  11. Cloning, heterologous expression and biochemical characterization of plastidial sn-glycerol-3-phosphate acyltransferase from Helianthus annuus.

    PubMed

    Payá-Milans, Miriam; Venegas-Calerón, Mónica; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2015-03-01

    The acyl-[acyl carrier protein]:sn-1-glycerol-3-phosphate acyltransferase (GPAT; E.C. 2.3.1.15) catalyzes the first step of glycerolipid assembly within the stroma of the chloroplast. In the present study, the sunflower (Helianthus annuus, L.) stromal GPAT was cloned, sequenced and characterized. We identified a single ORF of 1344base pairs that encoded a GPAT sharing strong sequence homology with the plastidial GPAT from Arabidopsis thaliana (ATS1, At1g32200). Gene expression studies showed that the highest transcript levels occurred in green tissues in which chloroplasts are abundant. The corresponding mature protein was heterologously overexpressed in Escherichia coli for purification and biochemical characterization. In vitro assays using radiolabelled acyl-ACPs and glycerol-3-phosphate as substrates revealed a strong preference for oleic versus palmitic acid, and weak activity towards stearic acid. The positional fatty acid composition of relevant chloroplast phospholipids from sunflower leaves did not reflect the in vitro GPAT specificity, suggesting a more complex scenario with mixed substrates at different concentrations, competition with other acyl-ACP consuming enzymatic reactions, etc. In summary, this study has confirmed the affinity of this enzyme which would partly explain the resistance to cold temperatures observed in sunflower plants.

  12. l-Glyceraldehyde 3-Phosphate, a Bactericidal Agent

    PubMed Central

    Tang, Chu-Tay; Engel, Robert; Tropp, Burton E.

    1977-01-01

    At a concentration of 2.5 mM, dl-glyceraldehyde 3-phosphate has a bactericidal effect upon Escherichia coli. The glycerol 3-phosphate transport system is required for the entry of the biologically active l-enantiomer. l-Glyceraldehyde must be phosphorylated by the cell to exert its full effect upon growth. The addition of dl-glyceraldehyde 3-phosphate to a culture of E. coli caused no preferential inhibition of the accumulation of deoxyribonucleic acid, ribonucleic acid, or phosphoglycerides, although protein accumulation was less affected. Studies with mutant strains ruled out catabolic glycerol 3-phosphate dehydrogenase, anabolic nicotinamide adenine dinucleotide (phosphate):sn-glycerol 3-phosphate oxidoreductase, and fructose 1,6-diphosphate aldolase as the primary sites of action. l-Glyceraldehyde 3-phosphate is a competitive inhibitor of sn-glycerol 3-phosphate in the reactions catalyzed by acyl coenzyme A:sn-glycerol 3-phosphate acyltransferase (Ki of 1.8 mM) and cytidine 5′-diphosphate-diglyceride:sn-glycerol 3-phosphate phosphatidyltransferase (Ki of 2.7 mM). A Km mutant for the former enzyme was susceptible to the inhibitor. l-Glyceraldehyde 3-phosphate does not affect acyl coenzyme A:lysophosphatidate acyltransferase activity. In vivo, phosphatidylethanolamine and phosphatidylglycerol accumulation are inhibited to the same extent by the addition of dl-glyceraldehyde 3-phosphate to a culture of E. coli. PMID:319747

  13. Antioxidant behavior of 1-feruloyl-sn-glycerol and 1,3-diferuloyl-sn-glycerol in phospholipid liposomes 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1-Feruloyl-sn-glycerol (FG) and 1,3-diferuloyl-sn-glycerol (DFG) are two natural plant compounds that may be useful in cosmeceutical, food, and skin care applications because of excellent antioxidant properties. FG and DFG enzymatically synthesized through esterification of glycerol and soybean oil...

  14. Structure and polymorphism of saturated monoacid 1,2-diacyl-sn-glycerols

    SciTech Connect

    Kodali, D.R.; Fahey, D.A.; Small, D.M. )

    1990-12-01

    The 1,2-diacyl-sn-glycerols (1,2-DGs) are the predominant naturally occurring isomer found in cell membranes, lipid droplets, and lipoproteins. They are involved in the metabolism of monoacylglycerols, triacylglycerols, and phospholipids. The authors have undertaken a study of the physical properties of a homologous series of synthetic optically active diacylglycerols. Stereospecific 1,2-diacyl-sn-glycerols were synthesized with saturated fatty acyl chains of 12, 16, 18, 22, and 24 carbons in length. Their polymorphic behavior was examined by differential scanning calorimetry and X-ray powder diffraction. The solvent-crystallized form for all the 1,2-DGs packs in the orthorhombic perpendicular subcell ({beta}{prime}) and melts with a single sharp endotherm to an isotropic liquid. On quenching, the C{sub 12}, C{sub 16} and C{sub 18} compounds pack in a hexagonal subcell ({alpha}), whereas the C{sub 22} and C{sub 24} pack in a pseudohexagonal subcell (sub-{alpha}). The sub-{alpha} phase reversibly converts to the {alpha} phase. The long spacings of these compounds in both the {alpha} and {beta}{prime} phases increase with chain length. In the {alpha} and {beta}{prime} phases, the acyl chain tilts were found to be 90{degree} and 62{degree} from the basal methyl plane. The polymorphic behavior of 1,2-diacyl-sn-glycerol is quite different from that of the corresponding monoacid saturated 1,3-diacylglycerols which form two {beta} phases with triclinic parallel subcells.

  15. Effect of chirality on monoacylglycerol ester monolayer characteristics: 3-monostearoyl-sn-glycerol.

    PubMed

    Vollhardt, D; Brezesinski, G

    2017-03-08

    The effect of chirality on the thermodynamic behavior, the morphological features, and the 2D lattice structures of 3-monostearoyl-sn-glycerol monolayers is studied. The present study focusses on the influence of the alkyl chain length on the chiral discrimination. Surface pressure-area (π-A) isotherms, Brewster angle microscopy (BAM), and particularly, grazing incidence X-ray diffraction (GIXD) are the experimental basis of the presented results. The π-A isotherms of the enantiomeric 3-monostearoyl-sn-glycerol monolayers measured between 25 and 38 °C resemble those of the racemic 1-monostearoyl-rac-glycerol monolayers, thus indicating small energetic differences between the enantiomeric and the racemic forms. The absolute ΔS values increase as the temperature decreases and thus, the ordering of the condensed phase increases at lower temperatures. The extrapolation to zero ΔS provides a critical temperature Tc of 42.1 °C (315.3 K), above which the monolayer cannot be compressed into the condensed state. Despite the great tendency of the 3-monostearoyl-sn-glycerol domains to develop irregular deviations in shape and inner texture, regular domains similar to those of the racemic monoacylglycerol esters are also formed. GIXD measurements performed over a large range of lateral pressures at four different temperatures (5, 10, 15 and 20 °C) indicate the dominance of the chiral nature. Contour plots with three clearly separated diffraction signals are observable in a large pressure range which is shifted to higher lateral pressures with increasing temperature. The comparison with the contour plots of the homologous 3-monopalmitoyl-sn-glycerol monolayers reveals the stronger dominance of the chiral nature with increasing alkyl chain length and thus, demonstrates the stronger influence of the lattice symmetry. The lattice data obtained by fitting the contour plots with 3 or 2 peaks demonstrate the resemblance to orthorhombic structures with NN tilted molecules at

  16. A simplified procedure for the preparation of 2,3-O-isopropylidene-sn-glycerol from L-arabinose.

    PubMed

    Kanda, P; Wells, M A

    1980-02-01

    A new procedure for the preparation of 2,3-O-isopropylidene-sn-glycerol is described. L-arabinose is converted to its 4,5-monoisopropylidene diethyl mercaptal derivative. This compound is then subjected to periodate oxidation and borohydride reduction. Following neutralization, the aceton-glycerol is extracted from the aqueous solution into chloroform. Evaporation of the chloroform and subsequent distillation yielded pure 2,3-O-isopropylidene-sn-glycerol ([alpha]D22 = -14.5 degrees (in substance)) in an overall yield of 15-25%.

  17. Metabolism of L-glyceraldehyde 3-phosphate in Escherichia coli

    SciTech Connect

    Kalyananda, M.K.G.S.

    1985-01-01

    E. coli is able to incorporate L-glyceraldehyde and L-glyceraldehyde 3-phosphate into phospholipids, L-(3-/sup 3/H)Glyceraldehyde was synthesized and the purity and the chemical identity of the product were checked by paper chromatography. L-(3-/sup 3/H)Glyceraldehyde 3-phosphate was synthesized from L-(3-/sup 3/H)glyceraldehyde in a reaction catalyzed by glycerokinase. E. coli extract contains a new enzyme activity which catalyzes an NADPH dependent reduction of L-glyceraldehyde 3-phosphate into sn-glycerol 3-phosphate. A procedure, specifically suitable for assaying the reductase activity in the crude extract, was developed. A more convenient spectrophotometric assay method was employed for the purified enzyme. At moderate concentrations sulfhydryl group inhibitors had no effect on the enzyme activity of L-GAP reductase. At 100..mu..M concentration Zn/sup +2/ inhibited the enzyme activity by about 30% while Mn/sup +2/ elevated the activity by about the same margin. Mg/sup +2/, Ca/sup +2/ and Fe/sup +2/ were without effect at this concentration. L-Glyceraldehyde 3-phosphate is known to be bactericidal at 1.25 ..mu..M concentration and the D-enantiomer is without effect. Furthermore, methylglyoxal is known to be bactericidal at or above 0.5 mM concentration. Strains of E. coli resistant to 1 mM methylglyoxal were isolated. The cell extract prepared from the mutant possessed increased capacity to transform methylglyoxal into D-lactate via a glutathione dependent reaction. These mutants were less sensitive to 2.5 mM DL-GAP suggesting that conversion of L-glyceraldehyde 3-phosphate into methylglyoxal may at least partly be responsible for the bactericidal activity of L-GAP.

  18. Metabolism of L-glyceraldehyde 3-phosphate in Escherichia coli

    SciTech Connect

    Kalyananda, M.K.G.S.; Engel, R.; Tropp, B.E.

    1987-06-01

    When either /sup 3/H-labeled L-glyceraldehyde or /sup 3/H-labeled L-glyceraldehyde 3-phosphate (GAP) was added to cultures of Escherichia coli, the phosphoglycerides were labeled. More than 81% of the label appeared in the backbone of the phosphoglycerides. Chromatographic analyses of the labeled phosphoglycerides revealed that the label was normally distributed into phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. These results suggest that L-glyceraldehyde is phosphorylated and the resultant L-GAP is converted into sn-glycerol 3-phosphate (G3P) before being incorporated into the bacterial phosphoglycerides. Cell-free bacterial extracts catalyzed an NADPH-dependent reduction of L-GAP to sn-G3P. The partially purified enzyme was specific for L-GAP and recognized neither D-GAP nor dihydroxyacetone phosphate as a substrate. NADH could not replace NADPH as a coenzyme. The L-GAP:NADPH oxidoreductase had an apparent K/sub m/ of 28 and 35 ..mu..M for L-GAP and NADPH, respectively. The enzyme was insensitive to sulfhydryl reagents and had a pH optimum of approximately 6.6. The phosphonic acid analog of GAP, 3-hydroxy-4-oxobutyl-1-phosphonate, was a substrate for the reductase, with an apparent K/sub m/ of 280 ..mu..M.

  19. Bidirectional roles of the brain 2-arachidonoyl-sn-glycerol in the centrally administered vasopressin-induced adrenomedullary outflow in rats.

    PubMed

    Shimizu, Takahiro; Yokotani, Kunihiko

    2008-03-17

    Previously, we reported that intracerebroventricularly (i.c.v.) administered arginine-vasopressin evokes the secretion of noradrenaline and adrenaline from adrenal medulla through the brain phospholipase C- and diacylglycerol-mediated and cyclooxygenase-mediated mechanisms in rats. Diacylglycerol can be hydrolyzed by diacylglycerol lipase to 2-arachidonoyl-sn-glycerol, which may be further degradated by monoacylglycerol lipase to free arachidonic acid, a representative substrate of cyclooxygenase. Recently, 2-arachidonoyl-sn-glycerol has been recognized as a major endocannabinoid, which can modulate synaptic transmission in the brain. In the present experiment, therefore, we examined (1) a role of the brain 2-arachidonoyl-sn-glycerol as a precursor of arachidonic acid in the centrally administered vasopressin-induced elevation of plasma noradrenaline and adrenaline, and (2) a regulatory role of the brain 2-arachidonoyl-sn-glycerol as an endocannabinoid on the vasopressin-induced response, using urethane-anesthetized rats. The vasopressin (0.2 nmol/animal, i.c.v.)-induced elevation of plasma catecholamines was reduced by RHC-80267 (diacylglycerol lipase inhibitor) (1.3 and 2.6 micromol/animal, i.c.v.) and also reduced by MAFP (monoacylglycerol lipase inhibitor) (0.7 and 1.4 micromol/animal, i.c.v.). MAFP (1.4 micromol/animal, i.c.v.) also attenuated the 2-arachidonoyl-sn-glycerol (0.5 micromol/animal, i.c.v.)-induced elevation of plasma catecholamines. AM 251 (cannabinoid CB(1) receptor antagonist) (90 and 180 nmol/animal, i.c.v.) potentiated the vasopressin (0.2 nmol/animal, i.c.v.)-induced response, while AM 630 (cannabinoid CB(2) receptor antagonist) (198 and 793 nmol/animal, i.c.v.) was largely ineffective. In addition, WIN 55212-2 (cannabinoid CB receptor agonist) (188 and 470 nmol/animal, i.c.v.) dose-dependently reduced the vasopressin-induced response. These results suggest that the brain 2-arachidonoyl-sn-glycerol generated from diacylglycerol plays a role

  20. Physical behavior of the hydrophobic core of membranes: properties of 1-stearoyl-2-linoleoyl-sn-glycerol.

    PubMed

    Di, L; Small, D M

    1995-12-26

    Phospholipids containing a saturated fatty acid in the primary position and an unsaturated fatty acid in the secondary position are a major structural part of biological membranes. The mixed-chain hydrophobic core of the membranes is the diacylglycerol part. To better understand the core properties of membranes we have studied the physical behavior of 1-stearoyl-2-linoleoyl-sn-glycerol (SLDG) by X-ray diffraction and differential scanning calorimetry (DSC) in the dry and hydrated states. Dry SLDG has four polymorphic phases: alpha (transition temperature, 11.6 degrees C; delta H = 7.5 kcal/mol); sub-alpha 1 (3.0 degrees C; 0.6 kcal/mol); sub-alpha 2(-1.0 degrees C; 0.5 kcal/mol); and beta' (16.1 degrees C; 15.4 kcal/mol). The alpha, sub-alpha 1, and sub-alpha 2 phases are metastable with a probable extended bilayer structure (d001 approximately 59.5 A). The chain packing of the alpha phase is hexagonal, while sub-alpha 1 and sub-alpha 2 have pseudohexagonal chain packing. The beta' phase has a tilted bilayer structure (46.9 A) with strong wide-angle diffractions, suggesting elements of orthorhombic perpendicular packing. Compared to saturated 1,2-diacylglycerols, SLDG packs much less efficiently, but, when compared to 1-stearoyl-2-oleoyl-sn-glycerol, it appears to pack somewhat more efficiently. Thus polyunsaturated linoleate chains appear to pack marginally more effectively with the saturated stearate chains than do monounsaturated chains. SLDG hydrates with 0.5 mol of H2O, which prevents the beta' phase from forming. Only one hydrated alpha phase (alpha w) and two hydrated sub-alpha (sub-alpha w1, sub-alpha w2) phases are formed. These phases are similar in structure to the nonhydrated alpha phases, but the bilayer period is increased by about 2 A (d001 approximately 61.5 A). This causes minor changes in polymorphism, including lower melting temperatures and enthalpy. A comparison of diacylglycerols to phosphatidylcholines with the same chains shows that the

  1. Anaerobic energy-yielding reaction associated with transhydrogenation from glycerol 3-phosphate to fumarate by an Escherichia coli system.

    PubMed

    Miki, K; Lin, E C

    1975-12-01

    A particulate subcellular fraction from Escherichia coli K-12 induced in anaerobic sn-glycerol 3-phosphate (G3P) dehydrogenase and fumarate reductase can catalyze under anaerobic conditions the transfer of hydrogens from G3P to fumarate, with attendant generation of high-energy phosphate. The phsophorylation process is more sensitive than the transhydrogenation process to inhibition by the detergent Triton X-100. The same is true with respect to sensitivity to sodium azide, carbonyl cyanide m-chlorophenylhydrazone and N,N'-dicyclohexylcarbodiimide. Such a preparation derived from cells with beta-galactoside permease can accumulate thiomethyl beta-D-galactoside anaerobically, and the accumulation can be stimulated twofold by adding G3P and fumarate. Mutants lacking the membrane-associated Mg2+-dependent adenosine triphosphatase cannot grow anaerobically on glycerol with fumarate as the hydrogen acceptor, although they can grow aerobically on glycerol alone.

  2. Anaerobic energy-yielding reaction associated with transhydrogenation from glycerol 3-phosphate to fumarate by an Escherichia coli system.

    PubMed Central

    Miki, K; Lin, E C

    1975-01-01

    A particulate subcellular fraction from Escherichia coli K-12 induced in anaerobic sn-glycerol 3-phosphate (G3P) dehydrogenase and fumarate reductase can catalyze under anaerobic conditions the transfer of hydrogens from G3P to fumarate, with attendant generation of high-energy phosphate. The phsophorylation process is more sensitive than the transhydrogenation process to inhibition by the detergent Triton X-100. The same is true with respect to sensitivity to sodium azide, carbonyl cyanide m-chlorophenylhydrazone and N,N'-dicyclohexylcarbodiimide. Such a preparation derived from cells with beta-galactoside permease can accumulate thiomethyl beta-D-galactoside anaerobically, and the accumulation can be stimulated twofold by adding G3P and fumarate. Mutants lacking the membrane-associated Mg2+-dependent adenosine triphosphatase cannot grow anaerobically on glycerol with fumarate as the hydrogen acceptor, although they can grow aerobically on glycerol alone. PMID:127785

  3. Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism

    SciTech Connect

    Yeh, Joanne I.; Chinte, Unmesh; Du, Shoucheng

    2008-04-02

    Sn-glycerol-3-phosphate dehydrogenase (GlpD) is an essential membrane enzyme, functioning at the central junction of respiration, glycolysis, and phospholipid biosynthesis. Its critical role is indicated by the multitiered regulatory mechanisms that stringently controls its expression and function. Once expressed, GlpD activity is regulated through lipid-enzyme interactions in Escherichia coli. Here, we report seven previously undescribed structures of the fully active E. coli GlpD, up to 1.75 {angstrom} resolution. In addition to elucidating the structure of the native enzyme, we have determined the structures of GlpD complexed with substrate analogues phosphoenolpyruvate, glyceric acid 2-phosphate, glyceraldehyde-3-phosphate, and product, dihydroxyacetone phosphate. These structural results reveal conformational states of the enzyme, delineating the residues involved in substrate binding and catalysis at the glycerol-3-phosphate site. Two probable mechanisms for catalyzing the dehydrogenation of glycerol-3-phosphate are envisioned, based on the conformational states of the complexes. To further correlate catalytic dehydrogenation to respiration, we have additionally determined the structures of GlpD bound with ubiquinone analogues menadione and 2-n-heptyl-4-hydroxyquinoline N-oxide, identifying a hydrophobic plateau that is likely the ubiquinone-binding site. These structures illuminate probable mechanisms of catalysis and suggest how GlpD shuttles electrons into the respiratory pathway. Glycerol metabolism has been implicated in insulin signaling and perturbations in glycerol uptake and catabolism are linked to obesity in humans. Homologs of GlpD are found in practically all organisms, from prokaryotes to humans, with >45% consensus protein sequences, signifying that these structural results on the prokaryotic enzyme may be readily applied to the eukaryotic GlpD enzymes.

  4. 1,3-Diferuloyl-sn-glycerol from the biocatalytic transesterification of ethyl 4-hydroxy-3-methoxy cinnamic acid (ethyl ferulate) and soybean oil.

    PubMed

    Compton, David L; Laszlo, Joseph A

    2009-06-01

    1,3-Diferuloyl-sn-glycerol is found ubiquitously throughout the plant kingdom, possessing ultraviolet adsorbing and antioxidant properties. Diferuloyl glycerol was synthesized and isolated as a byproduct in up to 5% yield from a pilot plant scale packed-bed, biocatalytic transesterification of ethyl ferulate with soybean oil or mono- and diacylglycerols from soybean oil. The yield of the diferuloyl glycerol byproduct was directly proportional to the overall water concentration of the bioreactor. The isolated diferuloyl glycerol exhibited good ultraviolet adsorbing properties, 280-360 nm with a lambda(max) 322 nm, and compared well to the efficacy of commercial sunscreen active ingredients. The antioxidant capacity of diferuloyl glycerol (0.25-2.5 mM) was determined by its ability to scavenge 2,2-diphenyl-1-picrylhydrazyl radicals and was comparable to that of ferulic acid. At current pilot plant scale production capacity, 120 kg diferuloyl glycerol byproduct could be isolated per year.

  5. Thermotropic phase properties of 1,2-di-O-tetradecyl-3-O-(3-O-methyl- beta-D-glucopyranosyl)-sn-glycerol.

    PubMed Central

    Trouard, T P; Mannock, D A; Lindblom, G; Rilfors, L; Akiyama, M; McElhaney, R N

    1994-01-01

    The hydration properties and the phase structure of 1,2-di-O-tetradecyl-3-O(3-O-methyl-beta-D-glucopyranosyl)-sn-glycerol (3-O-Me-beta-D-GlcDAIG) in water have been studied via differential scanning calorimetry, 1H-NMR and 2H-NMR spectroscopy, and x-ray diffraction. Results indicate that this lipid forms a crystalline (Lc) phase up to temperatures of 60-70 degrees C, where a transition through a metastable reversed hexagonal (Hll) phase to a reversed micellar solution (L2) phase occurs. Experiments were carried out at water concentrations in a range from 0 to 35 wt%, which indicate that all phases are poorly hydrated, taking up < 5 mol water/mol lipid. The absence of a lamellar liquid crystalline (L alpha) phase and the low levels of hydration measured in the discernible phases suggest that the methylation of the saccharide moiety alters the hydrogen bonding properties of the headgroup in such a way that the 3-O-Me-beta-D-GlcDAIG headgroup cannot achieve the same level of hydration as the unmethylated form. Thus, in spite of the small increase in steric bulk resulting from methylation, there is an increase in the tendency of 3-O-Me-beta-D-GlcDAIG to form nonlamellar structures. A similar phase behavior has previously been observed for the Acholeplasma laidlawii A membrane lipid 1,2-diacyl-3-O-(6-O-acyl-alpha-D-glucopyranosyl)-sn-glycerol in water (Lindblom et al. 1993. J. Biol. Chem. 268:16198-16207). The phase behavior of the two lipids suggests that hydrophobic substitution of a hydroxyl group in the sugar ring of the glucopyranosylglycerols has a very strong effect on their physicochemical properties, i.e., headgroup hydration and the formation of different lipid aggregate structures. PMID:7811919

  6. Glycerol-3-phosphate acyltransferase 4 is essential for the normal development of reproductive organs and the embryo in Brassica napus.

    PubMed

    Chen, Xue; Chen, Guanqun; Truksa, Martin; Snyder, Crystal L; Shah, Saleh; Weselake, Randall J

    2014-08-01

    The enzyme sn-glycerol-3-phosphate acyltransferase 4 (GPAT4) is involved in the biosynthesis of plant lipid poly-esters. The present study further characterizes the enzymatic activities of three endoplasmic reticulum-bound GPAT4 isoforms of Brassica napus and examines their roles in the development of reproductive organs and the embryo. All three BnGPAT4 isoforms exhibited sn-2 acyltransferase and phosphatase activities with dicarboxylic acid-CoA as acyl donor. When non-substituted acyl-CoA was used as acyl donor, the rate of acylation was considerably lower and phosphatase activity was not manifested. RNA interference (RNAi)-mediated down-regulation of all GPAT4 homologues in B. napus under the control of the napin promoter caused abnormal development of several reproductive organs and reduced seed set. Microscopic examination and reciprocal crosses revealed that both pollen grains and developing embryo sacs of the B. napus gpat4 lines were affected. The gpat4 mature embryos showed decreased cutin content and altered monomer composition. The defective embryo development further affected the oil body morphology, oil content, and fatty acid composition in gpat4 seeds. These results suggest that GPAT4 has a critical role in the development of reproductive organs and the seed of B. napus.

  7. Berberine treatment attenuates the palmitate-mediated inhibition of glucose uptake and consumption through increased 1,2,3-triacyl-sn-glycerol synthesis and accumulation in H9c2 cardiomyocytes.

    PubMed

    Chang, Wenguang; Chen, Li; Hatch, Grant M

    2016-04-01

    Dysfunction of lipid metabolism and accumulation of 1,2-diacyl-sn-glycerol (DAG) may be a key factor in the development of insulin resistance in type 2 diabetes. Berberine (BBR) is an isoquinoline alkaloid extract that has shown promise as a hypoglycemic agent in the management of diabetes in animal and human studies. However, its mechanism of action is not well understood. To determine the effect of BBR on lipid synthesis and its relationship to insulin resistance in H9c2 cardiomyocytes, we measured neutral lipid and phospholipid synthesis and their relationship to glucose uptake. Compared with controls, BBR treatment stimulated 2-[1,2-(3)H(N)]deoxy-D-glucose uptake and consumption in palmitate-mediated insulin resistant H9c2 cells. The mechanism was though an increase in protein kinase B (AKT) activity and GLUT-4 glucose transporter expression. DAG accumulated in palmitate-mediated insulin resistant H9c2 cells and treatment with BBR reduced this DAG accumulation and increased accumulation of 1,2,3-triacyl-sn-glycerol (TAG) compared to controls. Treatment of palmitate-mediated insulin resistant H9c2 cells with BBR increased [1,3-(3)H]glycerol and [1-(14)C]glucose incorporation into TAG and reduced their incorporation into DAG compared to control. In addition, BBR treatment of these cells increased [1-(14)C]palmitic acid incorporation into TAG and decreased its incorporation into DAG compared to controls. BBR treatment did not alter phosphatidylcholine or phosphatidylethanolamine synthesis. The mechanism for the BBR-mediated decreased precursor incorporation into DAG and increased incorporation into TAG in palmitate-incubated cells was an increase in DAG acyltransferase-2 activity and its expression and a decrease in TAG hydrolysis. Thus, BBR treatment attenuates palmitate-induced reduction in glucose uptake and consumption, in part, through reduction in cellular DAG levels and accumulation of TAG in H9c2 cells.

  8. Two potential fish glycerol-3-phosphate phosphatases.

    PubMed

    Raymond, James A

    2015-06-01

    Winter-acclimated rainbow smelt (Osmerus mordax Mitchill) produce high levels of glycerol as an antifreeze. A common pathway to glycerol involves the enzyme glycerol-3-phosphate phosphatase (GPP), but no GPP has yet been identified in fish or any other animal. Here, two phosphatases assembled from existing EST libraries (from winter-acclimated smelt and cold-acclimated smelt hepatocytes) were found to resemble a glycerol-associated phosphatase from a glycerol-producing alga, Dunaliella salina, and a recently discovered GPP from a bacterium, Mycobacterium tuberculosis. Recombinant proteins were generated and were found to have GPP activity on the order of a few μMol Pi/mg enzyme/min. The two enzymes have acidic pH optima (~5.5) similar to that previously determined for GPP activity in liver tissue, with about 1/3 of their peak activities at neutral pH. The two enzymes appear to account for the GPP activity of smelt liver, but due to their reduced activities at neutral pH, their contributions to glycerol production in vivo remain unclear. Similar enzymes may be active in a glycerol-producing insect, Dendroctonus ponderosae.

  9. Iodination of glyceraldehyde 3-phosphate dehydrogenase

    PubMed Central

    Thomas, Jean O.; Harris, J. Ieuan

    1970-01-01

    1. A high degree of homology in the positions of tyrosine residues in glyceraldehyde 3-phosphate dehydrogenase from lobster and pig muscle, and from yeast, prompted an examination of the reactivity of tyrosine residues in the enzyme. 2. Iodination of the enzyme from lobster muscle with low concentrations of potassium tri-[125I]-iodide led to the identification of tyrosine residues of differing reactivity. Tyrosine-46 appeared to be the most reactive in the native enzyme. 3. When the monocarboxymethylated enzyme was briefly treated with small amounts of iodine, iodination could be confined almost entirely to tyrosine-46 in the lobster enzyme; tyrosine-39 or tyrosine-42, or both, were also beginning to react. 4. These three tyrosine residues were also those that reacted most readily in the carboxymethylated pig and yeast enzymes. 5. The difficulties in attaining specific reaction of the native enzyme are considered. 6. The differences between our results and those of other workers are discussed. ImagesPLATE 1PLATE 2 PMID:5530750

  10. Structure of RNA 3'-phosphate cyclase bound to substrate RNA.

    PubMed

    Desai, Kevin K; Bingman, Craig A; Cheng, Chin L; Phillips, George N; Raines, Ronald T

    2014-10-01

    RNA 3'-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3'-phosphate to form a 2',3'-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA-AMP and RNA(3')pp(5')A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3'-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3'-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3'-phosphate is poised for in-line attack on the P-N bond that links the phosphorous atom of AMP to N(ε) of His307. Thus, we provide the first insights into RNA 3'-phosphate termini recognition and the mechanism of 3'-phosphate activation by an Rtc enzyme.

  11. Sphingosine-1-Phosphate Signaling in Endothelial Disorders.

    PubMed

    Sanchez, Teresa

    2016-06-01

    Numerous preclinical studies indicate that sustained endothelial activation significantly contributes to tissue edema, perpetuates the inflammatory response, and exacerbates tissue injury ultimately resulting in organ failure. However, no specific therapies aimed at restoring endothelial function are available as yet. Sphingosine-1-phosphate (S1P) is emerging as a potent modulator of endothelial function and endothelial responses to injury. Recent studies indicate that S1PR are attractive targets to treat not only disorders of the arterial endothelium but also microvascular dysfunction caused by ischemic or inflammatory injury. In this article, we will review the current knowledge of the role of S1P and its receptors in endothelial function in health and disease, and we will discuss the therapeutic potential of targeting S1PR not only for disorders of the arterial endothelium but also the microvasculature. The therapeutic targeting of S1PR in the endothelium could help to bridge the gap between biomedical research in vascular biology and clinical practice.

  12. Toxic Neuronal Death by Glyeraldehyde-3-Phosphate Dehydrogenase and Mitochondria

    DTIC Science & Technology

    2003-08-01

    Neuroreport, 10(5), 1149-1153. Sioud, M., & Jespersen, L. (1996). Enhancement of hammerhead ribozyme catalysis by glyceraldehyde-3-phosphate dehydrogenase...1996) Enhancemen t of hammerhead r ibozyme cata lysis by glycera ldehyde-3- phospha te dehydrogenase. J Mol Biol 257:775–789. Sirover MA (1997) Role of

  13. Synthesis of phosphonate and phostone analogues of ribose-1-phosphates

    PubMed Central

    Nasomjai, Pitak; Slawin, Alexandra M Z

    2009-01-01

    Summary The synthesis of phosphonate analogues of ribose-1-phosphate and 5-fluoro-5-deoxyribose-1-phosphate is described. Preparations of both the α- and β-phosphonate anomers are reported for the ribose and 5-fluoro-5-deoxyribose series and a synthesis of the corresponding cyclic phostones of each α-ribose is also reported. These compounds have been prepared as tools to probe the details of fluorometabolism in S. cattleya. PMID:19777136

  14. Distinct generation, pharmacology, and distribution of sphingosine 1-phosphate and dihydro-sphingosine 1-phosphate in human neural progenitor cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In-vivo and in-vitro studies suggest a crucial role for Sphingosine 1-phosphate (S1P) and its receptors in the development of the nervous system. Dihydrosphingosine 1-phosphate (dhS1P), a reduced form of S1P, is an active ligand at S1P receptors, but the pharmacology and physiology of dhS1P has not...

  15. Toxic Neuronal Death by Glyceraldehyde-3-Phosphate Dehydrongenase and Mitochondria

    DTIC Science & Technology

    2001-08-01

    Parkinson’s Disease (PD) and after a number of forms of toxic exposure. If unique elements in the signaling pathways for the PD or toxic apoptosis can be identified and their apoptosis signaling impeded, neuronal loss may be slowed or reduced in the conditions. The research proposed in this grant was designed to examine the role of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in apoptotic neuronal signaling. Recent studies in postmortem brain have implicated GAPDH apoptosis signaling in Parkinson’s disease (PD). Propargylamines, with

  16. Model of early self-replication based on covalent complementarity for a copolymer of glycerate-3-phosphate and glycerol-3-phosphate

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1989-01-01

    Glyceraldehyde-3-phosphate acts as the substrate in a model of early self-replication of a phosphodiester copolymer of glycerate-3-phosphate and glycerol-3-phosphate. This model of self-replication is based on covalent complementarity in which information transfer is mediated by a single covalent bond, in contrast to multiple weak interactions that establish complementarity in nucleic acid replication. This replication model is connected to contemporary biochemistry through its use of glyceraldehyde-3-phosphate, a central metabolite of glycolysis and photosynthesis.

  17. Sphingosine-1 phosphate: a new player in osteoimmunology.

    PubMed

    Boyce, Brendan F

    2009-03-01

    Osteoclasts, the cells that degrade bone, differentiate from bone marrow-derived myeloid precursors. Recent work by Ishii et al. shows that sphingosine-1 phosphate in blood attracts osteoclast precursors into the bloodstream to keep them away from bone surfaces. These findings point to a novel mechanism to inhibit bone degradation and prevent bone loss.

  18. Revealing a signaling role of phytosphingosine-1-phosphate in yeast.

    PubMed

    Cowart, L Ashley; Shotwell, Matthew; Worley, Mitchell L; Richards, Adam J; Montefusco, David J; Hannun, Yusuf A; Lu, Xinghua

    2010-01-01

    Sphingolipids including sphingosine-1-phosphate and ceramide participate in numerous cell programs through signaling mechanisms. This class of lipids has important functions in stress responses; however, determining which sphingolipid mediates specific events has remained encumbered by the numerous metabolic interconnections of sphingolipids, such that modulating a specific lipid of interest through manipulating metabolic enzymes causes 'ripple effects', which change levels of many other lipids. Here, we develop a method of integrative analysis for genomic, transcriptomic, and lipidomic data to address this previously intractable problem. This method revealed a specific signaling role for phytosphingosine-1-phosphate, a lipid with no previously defined specific function in yeast, in regulating genes required for mitochondrial respiration through the HAP complex transcription factor. This approach could be applied to extract meaningful biological information from a similar experimental design that produces multiple sets of high-throughput data.

  19. Revealing a signaling role of phytosphingosine-1-phosphate in yeast

    PubMed Central

    Cowart, L Ashley; Shotwell, Matthew; Worley, Mitchell L; Richards, Adam J; Montefusco, David J; Hannun, Yusuf A; Lu, Xinghua

    2010-01-01

    Sphingolipids including sphingosine-1-phosphate and ceramide participate in numerous cell programs through signaling mechanisms. This class of lipids has important functions in stress responses; however, determining which sphingolipid mediates specific events has remained encumbered by the numerous metabolic interconnections of sphingolipids, such that modulating a specific lipid of interest through manipulating metabolic enzymes causes ‘ripple effects', which change levels of many other lipids. Here, we develop a method of integrative analysis for genomic, transcriptomic, and lipidomic data to address this previously intractable problem. This method revealed a specific signaling role for phytosphingosine-1-phosphate, a lipid with no previously defined specific function in yeast, in regulating genes required for mitochondrial respiration through the HAP complex transcription factor. This approach could be applied to extract meaningful biological information from a similar experimental design that produces multiple sets of high-throughput data. PMID:20160710

  20. [Sphingosine 1-phosphate receptors: from biology to physiopathology].

    PubMed

    Cuvillier, Olivier

    2012-11-01

    Sphingosine 1-phosphate (S1P) mediates critical physiological responses by its binding to G protein-coupled receptor (GPCR) subtypes, known as S1P receptors. Five distinct mammalian S1P receptors, designated S1P1-5 have been identified, each with a different cellular pattern of expression which influences the responses to S1P. In this review, we briefly outline our understanding of the modes of action and the roles of S1P receptors in the regulation of physiological and pathological functions in the cardiovascular, immune and central nervous system.

  1. Characterization of mitochondrial glycerol-3-phosphate acyltransferase in notothenioid fishes.

    PubMed

    Keenan, Kelly A; Grove, Theresa J; Oldham, Corey A; O'Brien, Kristin M

    2017-02-01

    Hearts of Antarctic icefishes (suborder Notothenioidei, family Channichthyidae) have higher densities of mitochondria, and mitochondria have higher densities of phospholipids, compared to red-blooded notothenioids. Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the rate-limiting step in glycerolipid biosynthesis. There are four isoforms of GPAT in vertebrates; GPAT1 and GPAT2 are localized to the outer mitochondrial membrane, whereas GPAT3 and GPAT4 are localized to the endoplasmic reticulum membrane. We hypothesized that transcript levels of GPAT1 and/or GPAT2 would mirror densities of mitochondrial phospholipids and be higher in the icefish Chaenocephalus aceratus compared to the red-blooded species Notothenia coriiceps. Transcript levels of GPAT1 were quantified in heart ventricles and liver using qRT-PCR. Additionally, GPAT1 cDNA was sequenced in the Antarctic notothenioids, C. aceratus and N. coriiceps, and in the sub-Antarctic notothenioid, Eleginops maclovinus, to identify amino acid substitutions that may maintain GPAT1 function at cold temperature. Transcript levels of GPAT1 were higher in liver compared to heart ventricles but were not significantly different between the two species. In contrast, transcripts of GPAT2 were only detected in ventricle where they were 6.6-fold higher in C. aceratus compared to N. coriiceps. These data suggest GPAT1 may be more important for synthesizing triacylglycerol, whereas GPAT2 may regulate synthesis of phospholipids. GPAT1 amino acid sequences are highly conserved among the three notothenioids with 97.9-98.7% identity. Four amino acid substitutions within the cytosolic region of Antarctic notothenioid GPAT1 may maintain conformational changes necessary for binding and catalysis at cold temperature.

  2. THE HEME BINDING PROPERTIES OF GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE

    PubMed Central

    Hannibal, Luciana; Collins, Daniel; Brassard, Julie; Chakravarti, Ritu; Vempati, Rajesh; Dorlet, Pierre; Santolini, Jérôme; Dawson, John H.; Stuehr, Dennis J.

    2012-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that also functions in transcriptional regulation, oxidative stress, vesicular trafficking, and apoptosis. Because GAPDH is required for cellular heme insertion into inducible nitric oxide synthase (Chakravarti et al, PNAS 2010, 107(42):18004-9), we extensively characterized the heme binding properties of GAPDH. Substoichiometric amounts of ferric heme bound to GAPDH (1 heme per GAPDH tetramer) to form a low-spin complex with UV-visible maxima at 362, 418 and 537 nm, and when reduced to ferrous gave maxima at 424, 527 and 559 nm. Ferric heme association and dissociation rate constants at 10 °C were kon =17,800 M−1s−1 and koff1 = 7.0 × 10−3 s−1; koff2 = 3.3 × 10−4 s−1 respectively, giving approximate affinities of 19–390 nM. Ferrous heme bound more poorly to GAPDH and dissociated with a koff = 4.2 × 10−3 s−1. Magnetic circular dichroism (MCD), resonance Raman (rR) and EPR spectroscopic data on the ferric, ferrous, and ferrous-CO complexes of GAPDH showed that the heme is bis-ligated with His as the proximal ligand. The distal ligand in ferric complex was not displaced by CN− or N3− but in ferrous complex was displaceable by CO at a rate of 1.75 s−1 (for [CO]>0.2 mM). Studies with heme analogs revealed selectivity toward the coordinating metal and porphyrin ring structure. GAPDH-heme was isolated from bacteria induced to express rabbit GAPDH in the presence of δ-amino levulinic acid. Our finding of heme binding to GAPDH expands the protein’s potential roles. The strength, selectivity, reversibility, and redox sensitivity of heme binding to GAPDH is consistent with it performing heme sensing or heme chaperone-like functions in cells. PMID:22957700

  3. Buformin suppresses the expression of glyceraldehyde 3-phosphate dehydrogenase.

    PubMed

    Yano, Akiko; Kubota, Masafumi; Iguchi, Kazuhiro; Usui, Shigeyuki; Hirano, Kazuyuki

    2006-05-01

    The biguanides metformin and buformin, which are clinically used for diabetes mellitus, are known to improve resistance to insulin in patients. Biguanides were reported to cause lactic acidosis as a side effect. Since the mechanism of the side effect still remains obscure, we have examined genes whose expression changes by treating HepG2 cells with buformin in order to elucidate the mechanisms of the side effect. A subtraction cDNA library was constructed by the method of suppressive subtractive hybridization and the screening of the library was performed with cDNA probes prepared from HepG2 cells treated with or without buformin for 12 h. The expression of the gene and the protein obtained by the screening was monitored by real-time RT-PCR with specific primers and Western blotting with specific antibody. The amounts of ATP and NAD+ were determined with luciferase and alcohol dehydrogenase, respectively. We found that expression of the glyceraldehyde 3-phosphate dehydrogenase (GAPD) gene was suppressed by treating HepG2 cells with 0.25 mM buformin for 12 h as a result of the library screening. The decrease in the expression depended on the treatment period. The amount of GAPD protein also decreased simultaneously with the suppression of the gene expression by the treatment with buformin. The amount of ATP and NAD+ in the HepG2 cells treated with buformin decreased to 10 and 20% of the control, respectively. These observations imply that the biguanide causes deactivation of the glycolytic pathway and subsequently the accumulation of pyruvate and NADH and a decrease in NAD+. Therefore, the reaction equilibrium catalyzed by lactate dehydrogenase leans towards lactate production and this may result in lactic acidosis.

  4. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Galactose-1-phosphate uridyl transferase test... Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a) Identification. A galactose-1-phosphate uridyl transferase test system is a device intended to measure the...

  5. Sphingosine-1-phosphate stimulates rat primary chondrocyte proliferation

    SciTech Connect

    Kim, Mi-Kyoung; Lee, Ha Young; Kwak, Jong-Young; Park, Joo-In; Yun, Jeanho; Bae, Yoe-Sik . E-mail: yoesik@donga.ac.kr

    2006-06-23

    Rat primary chondrocytes express the sphingosine-1-phosphate (S1P) receptor, S1P{sub 2}, S1P{sub 3}, S1P{sub 4}, but not S1P{sub 1}. When chondrocytes were stimulated with S1P or phytosphingosine-1-phosphate (PhS1P, an S1P{sub 1}- and S1P{sub 4}-selective agonist), phospholipase C-mediated cytosolic calcium increase was dramatically induced. S1P and PhS1P also stimulated two kinds of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK) and p38 kinase in chondrocytes. In terms of the two phospholipids-mediated functional modulation of chondrocytes, S1P and PhS1P stimulated cellular proliferation. The two phospholipids-induced chondrocyte proliferations were almost completely blocked by PD98059 but not by SB203580, suggesting that ERK but not p38 kinase is essentially required for the proliferation. Pertussis toxin almost completely inhibited the two phospholipids-induced cellular proliferation and ERK activation, indicating the crucial role of G{sub i} protein. This study demonstrates the physiological role of two important phospholipids (S1P and PhS1P) on the modulation of rat primary chondrocyte proliferation, and the crucial role played by ERK in the process.

  6. Ceramide-1-Phosphate in Phagocytosis and Calcium Homeostasis

    PubMed Central

    Hinkovska-Galcheva, Vania; Shayman, James A.

    2013-01-01

    Sphingolipids are well established sources of important signaling molecules. For example, ceramide (Cer) has been described as a potent inhibitor of cell growth and inducer of apoptosis. In contrast, ceramide 1-phosphate (C1P) has been reported to have mitogenic properties and to inhibit apoptosis. Our understanding of the distinct biological roles of C1P in the regulation of DNA synthesis, inflammation, membrane fusion, and intracellular Ca2+ increase has rapidly expanded. C1P is a bioactive sphingolipid formed by the phosphorylation of ceramide catalyzed by ceramide kinase (CERK). This chapter specifically focuses on the role of C1P in phagocytosis and Ca2+ homeostasis. Studies of the metabolism of C1P during phagocytosis, may lead to a better understanding of its role in signaling. Potentially, the inhibition of CERK and C1P formation may be a therapeutic target for inflammation. PMID:20919651

  7. Modulators of the Sphingosine 1-phosphate receptor 1.

    PubMed

    Urbano, Mariangela; Guerrero, Miguel; Rosen, Hugh; Roberts, Edward

    2013-12-01

    The Sphingosine 1-phosphate receptor (S1P-R) signaling system has proven to be of biological and medical importance in autoimmune settings. S1P1-R is a validated drug target for multiple sclerosis (MS) for which FTY720 (Fingolimod), a S1P1,3-5-R pan-agonist, was recently approved as the first orally active drug for the treatment of relapsing-remitting MS. Transient bradycardia and long half-life are the FTY720 critical pitfalls. This review provides the latest advances on next-generation S1P1-R modulators from 2012 up to date, with an overview of the chemical structures, structure-activity relationships, and relevant biological and clinical properties.

  8. Sphingosine-1-Phosphate Signaling in Inflammatory Bowel Disease.

    PubMed

    Nielsen, Ole Haagen; Li, Yuan; Johansson-Lindbom, Bengt; Coskun, Mehmet

    2017-04-01

    An unmet medical need exists for the development of targeted therapies for the treatment of inflammatory bowel disease (IBD) with easily administered and stable oral drugs, particularly as most patients on biologics [i.e., tumor necrosis factor (TNF) inhibitors and anti-integrins] are either primary non-responders or lose responsiveness during maintenance treatment. A new class of small molecules, sphingosine-1-phosphate (S1P) receptor modulators, has recently shown efficacy in IBD. Here we provide an overview of the mechanism of action of this novel treatment principle in the context of intestinal inflammation. The remarkable impact of therapeutic modulation of the S1P/S1P receptor axis reflects the complexity of the pathogenesis of IBD and the fact that S1P receptor modulation may be a logical therapeutic approach for the future management of IBD.

  9. Biosynthesis of Ether-Type Polar Lipids in Archaea and Evolutionary Considerations

    PubMed Central

    Koga, Yosuke; Morii, Hiroyuki

    2007-01-01

    This review deals with the in vitro biosynthesis of the characteristics of polar lipids in archaea along with preceding in vivo studies. Isoprenoid chains are synthesized through the classical mevalonate pathway, as in eucarya, with minor modifications in some archaeal species. Most enzymes involved in the pathway have been identified enzymatically and/or genomically. Three of the relevant enzymes are found in enzyme families different from the known enzymes. The order of reactions in the phospholipid synthesis pathway (glycerophosphate backbone formation, linking of glycerophosphate with two radyl chains, activation by CDP, and attachment of common polar head groups) is analogous to that of bacteria. sn-Glycerol-1-phosphate dehydrogenase is responsible for the formation of the sn-glycerol-1-phosphate backbone of phospholipids in all archaea. After the formation of two ether bonds, CDP-archaeol acts as a common precursor of various archaeal phospholipid syntheses. Various phospholipid-synthesizing enzymes from archaea and bacteria belong to the same large CDP-alcohol phosphatidyltransferase family. In short, the first halves of the phospholipid synthesis pathways play a role in synthesis of the characteristic structures of archaeal and bacterial phospholipids, respectively. In the second halves of the pathways, the polar head group-attaching reactions and enzymes are homologous in both domains. These are regarded as revealing the hybrid nature of phospholipid biosynthesis. Precells proposed by Wächtershäuser are differentiated into archaea and bacteria by spontaneous segregation of enantiomeric phospholipid membranes (with sn-glycerol-1-phosphate and sn-glycerol-3-phosphate backbones) and the fusion and fission of precells. Considering the nature of the phospholipid synthesis pathways, we here propose that common phospholipid polar head groups were present in precells before the differentiation into archaea and bacteria. PMID:17347520

  10. Uptake of glycerol 3-phosphate and some of its analogs by the hexose phosphate transport system of Escherichia coli.

    PubMed Central

    Guth, A; Engel, R; Tropp, B E

    1980-01-01

    The hexose phosphate transport system transported glycerol 3-phosphate and its analogs 3,4-dihydroxybutyl-1-phosphonate, glyceraldehyde 3-phosphate, and 3-hydroxy-4-oxobutyl-1-phosphonate. PMID:6995450

  11. 40 CFR 174.523 - CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false CP4 Enolpyruvylshikimate-3-phosphate... CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the requirement of a tolerance. Residues of the CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase...

  12. 40 CFR 174.523 - CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false CP4 Enolpyruvylshikimate-3-phosphate... CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the requirement of a tolerance. Residues of the CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase...

  13. 40 CFR 174.523 - CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false CP4 Enolpyruvylshikimate-3-phosphate... CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the requirement of a tolerance. Residues of the CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase...

  14. 40 CFR 174.523 - CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false CP4 Enolpyruvylshikimate-3-phosphate... CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the requirement of a tolerance. Residues of the CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase...

  15. 40 CFR 174.523 - CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false CP4 Enolpyruvylshikimate-3-phosphate... CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase in all plants; exemption from the requirement of a tolerance. Residues of the CP4 Enolpyruvylshikimate-3-phosphate (CP4 EPSPS) synthase...

  16. Sphingosine 1-Phosphate: A Novel Target for Lung Disorders

    PubMed Central

    Mohammed, Sabira; Harikumar, K. B.

    2017-01-01

    Sphingosine 1-phosphate (S1P) is involved in a wide range of cellular processes, which include proliferation, apoptosis, lymphocyte egress, endothelial barrier function, angiogenesis, and inflammation. S1P is produced by two isoenzymes, namely, sphingosine kinase 1 and 2 (SphK1 and 2) and once produced, S1P can act both in an autocrine and paracrine manner. S1P can be dephosphorylated back to sphingosine by two phosphatases (SGPP 1 and 2) or can be irreversibly cleaved by S1P lyase. S1P has a diverse range of functions, which is mediated in a receptor dependent, through G-protein coupled receptors (S1PR1–5) or receptor independent manner, through intracellular targets such as HDACs and TRAF2. The involvement of S1P signaling has been confirmed in various disease conditions including lung diseases. The SphK inhibitors and S1PR modulators are currently under clinical trials for different pathophysiological conditions. There is a significant effort in targeting various components of S1P signaling for several diseases. This review focuses on the ways in which S1P signaling can be therapeutically targeted in lung disorders. PMID:28352271

  17. The role of sphingosine 1-phosphate in immunity and sepsis

    PubMed Central

    Gräler, Markus H

    2012-01-01

    Sphingosine 1-phosphate (S1P) is a lipid metabolite with intra- and extracellular signalling properties. It activates five G protein-coupled cell surface receptors designated S1P-receptors type 1-5 (S1P1-5) that transmit extracellular signals into cells, and it modulates intracellular signalling as a cofactor. The analysis of sphingosine kinases (SphK) type 1 and 2, the key enzymes for S1P production, in different infection models point to an important role for the activation of different immune cells like macrophages, mast cells, and dendritic cells. S1P additionally influences local and systemic lymphocyte circulation and positioning, the vascular tone, and blood pressure. Modulation of S1P-mediated signalling pathways therefore results either in local immune cell activation or systemic immune suppression, or both. Pharmacological approaches that modulate certain S1P-mediated signalling pathways while leaving others untouched appear to be promising new avenues for next generation pharmaceuticals. This review summarizes current strategies to modulate S1P signalling for immune intervention with the clear focus on the specificity of the different principles applied. Known local and systemic effects of S1P on immunity are discussed as potential pharmaceutical targets to combat immune and autoimmune diseases and sepsis. PMID:23885318

  18. Divergent role of sphingosine 1-phosphate on insulin resistance.

    PubMed

    Fayyaz, Susann; Japtok, Lukasz; Kleuser, Burkhard

    2014-01-01

    Insulin resistance is a complex metabolic disorder in which insulin-sensitive tissues fail to respond to the physiological action of insulin. There is a strong correlation of insulin resistance and the development of type 2 diabetes both reaching epidemic proportions. Dysfunctional lipid metabolism is a hallmark of insulin resistance and a risk factor for several cardiovascular and metabolic disorders. Numerous studies in humans and rodents have shown that insulin resistance is associated with elevations of non-esterified fatty acids (NEFA) in the plasma. Moreover, bioactive lipid intermediates such as diacylglycerol (DAG) and ceramides appear to accumulate in response to NEFA, which may interact with insulin signaling. However, recent work has also indicated that sphingosine 1-phosphate (S1P), a breakdown product of ceramide, modulate insulin signaling in different cell types. In this review, we summarize the current state of knowledge about S1P and insulin signaling in insulin sensitive cells. A specific focus is put on the action of S1P on hepatocytes, pancreatic β-cells and skeletal muscle cells. In particular, modulation of S1P-signaling can be considered as a potential therapeutic target for the treatment of insulin resistance and type 2 diabetes.

  19. Endogenous galactose formation in galactose-1-phosphate uridyltransferase deficiency.

    PubMed

    Schadewaldt, Peter; Kamalanathan, Loganathan; Hammen, Hans-Werner; Kotzka, Jorg; Wendel, Udo

    2014-12-01

    Patients with classical galactosaemia (galactose-1-phosphate uridyltransferase (GALT) deficiency) manifest clinical complications despite strict dietary galactose restriction. Therefore the significance of endogenous galactose production has been assessed. Previous in vivo studies primarily focused on patients homozygous for the most common genetic variant Q188R but little is known about other genetic variants. In the present study the endogenous galactose release in a group of non-Q188R homozygous galactosaemic patients (n = 17; 4-34 years) exhibiting comparably low residual GALT activity in red blood cells was investigated. Primed continuous infusion studies with D-[1-(13)C]galactose as substrate were conducted under post-absorptive conditions and in good metabolic control. The results demonstrate that all patients exhibiting residual GALT activity of <1.5% of control showed a comparable pathological pattern of increased endogenous galactose release irrespective of the underlying genetic variations. Possible implications of the findings towards a more differentiated dietary regimen in galactosaemia are discussed.

  20. Ceramide and ceramide 1-phosphate in health and disease

    PubMed Central

    2010-01-01

    Sphingolipids are essential components of cell membranes, and many of them regulate vital cell functions. In particular, ceramide plays crucial roles in cell signaling processes. Two major actions of ceramides are the promotion of cell cycle arrest and the induction of apoptosis. Phosphorylation of ceramide produces ceramide 1-phosphate (C1P), which has opposite effects to ceramide. C1P is mitogenic and has prosurvival properties. In addition, C1P is an important mediator of inflammatory responses, an action that takes place through stimulation of cytosolic phospholipase A2, and the subsequent release of arachidonic acid and prostaglandin formation. All of the former actions are thought to be mediated by intracellularly generated C1P. However, the recent observation that C1P stimulates macrophage chemotaxis implicates specific plasma membrane receptors that are coupled to Gi proteins. Hence, it can be concluded that C1P has dual actions in cells, as it can act as an intracellular second messenger to promote cell survival, or as an extracellular receptor agonist to stimulate cell migration. PMID:20137073

  1. Ceramide 1-phosphate stimulates glucose uptake in macrophages

    PubMed Central

    Ouro, Alberto; Arana, Lide; Gangoiti, Patricia; Rivera, Io-Guané; Ordoñez, Marta; Trueba, Miguel; Lankalapalli, Ravi S.; Bittman, Robert; Gomez-Muñoz, Antonio

    2014-01-01

    It is well established that ceramide 1-phosphate (C1P) is mitogenic and antiapoptotic, and that it is implicated in the regulation of macrophage migration. These activities require high energy levels to be available in cells. Macrophages obtain most of their energy from glucose. In this work, we demonstrate that C1P enhances glucose uptake in RAW264.7 macrophages. The major glucose transporter involved in this action was found to be GLUT 3, as determined by measuring its translocation from the cytosol to the plasma membrane. C1P-stimulated glucose uptake was blocked by selective inhibitors of phosphatidylinositol 3-kinase (PI3K) or Akt, also known as protein kinase B (PKB), and by specific siRNAs to silence the genes encoding for these kinases. C1P-stimulated glucose uptake was also inhibited by pertussis toxin (PTX) and by the siRNA that inhibited GLUT 3 expression. C1P increased the affinity of the glucose transporter for its substrate, and enhanced glucose metabolism to produce ATP. The latter action was also inhibited by PI3K- and Akt-selective inhibitors, PTX, or by specific siRNAs to inhibit GLUT 3 expression. PMID:23333242

  2. Cytoplasmic sphingosine-1-phosphate pathway modulates neuronal autophagy

    PubMed Central

    Moruno Manchon, Jose Felix; Uzor, Ndidi-Ese; Dabaghian, Yuri; Furr-Stimming, Erin E.; Finkbeiner, Steven; Tsvetkov, Andrey S.

    2015-01-01

    Autophagy is an important homeostatic mechanism that eliminates long-lived proteins, protein aggregates and damaged organelles. Its dysregulation is involved in many neurodegenerative disorders. Autophagy is therefore a promising target for blunting neurodegeneration. We searched for novel autophagic pathways in primary neurons and identified the cytosolic sphingosine-1-phosphate (S1P) pathway as a regulator of neuronal autophagy. S1P, a bioactive lipid generated by sphingosine kinase 1 (SK1) in the cytoplasm, is implicated in cell survival. We found that SK1 enhances flux through autophagy and that S1P-metabolizing enzymes decrease this flux. When autophagy is stimulated, SK1 relocalizes to endosomes/autophagosomes in neurons. Expression of a dominant-negative form of SK1 inhibits autophagosome synthesis. In a neuron model of Huntington’s disease, pharmacologically inhibiting S1P-lyase protected neurons from mutant huntingtin-induced neurotoxicity. These results identify the S1P pathway as a novel regulator of neuronal autophagy and provide a new target for developing therapies for neurodegenerative disorders. PMID:26477494

  3. Resveratrol Stimulates Sphingosine-1-Phosphate Signaling of Cathelicidin Production

    PubMed Central

    Park, Kyungho; Elias, Peter M.; Hupe, Melanie; Borkowski, Andrew W.; Gallo, Richard L.; Shin, Kyong-Oh; Lee, Yong-Moon; Holleran, Walter M.; Uchida, Yoshikazu

    2013-01-01

    We recently discovered a regulatory mechanism that stimulates production of the multifunctional antimicrobial peptide, cathelicidin antimicrobial peptide (CAMP). In response to subtoxic levels of ER stress, increased sphingosine-1-phosphate (S1P) production activates an NFκB→C/EBPα dependent pathway that enhances CAMP production in cultured human keratinocytes. Since the multifunctional stilbenoid compound, resveratrol (RESV), increases ceramide (Cer) levels, a precursor of S1P, we hypothesized and assessed whether RESV could exploit the same pathway to regulate CAMP production. Accordingly, RESV significantly increased Cer and S1P levels in cultured keratinocytes, paralleled by increased CAMP mRNA/protein expression. Furthermore, topical RESV also increased murine CAMP mRNA/protein expression in mouse skin. Conversely, blockade of Cer→sphingosine→S1P metabolic conversion, with specific inhibitors of ceramidase or sphingosine kinase, attenuated the expected RESV-mediated increase in CAMP expression. The RESV-induced increase in CAMP expression required both NF-κB and C/EBPα transactivation. Moreover, conditioned media from keratinocyte treated with RESV significantly suppressed Staphylococcus aureus growth. Finally, topical RESV, if not coapplied with a specific inhibitor of sphingosine kinase, blocked Staphylococcus aureus invasion into murine skin. These results demonstrate that the dietary stilbenoid, RESV, stimulates S1P signaling of CAMP production through an NF-κB→C/EBPα-dependent mechanism, leading to enhanced antimicrobial defense against exogenous microbial pathogens. PMID:23856934

  4. Vascular and Immunobiology of the Circulatory Sphingosine 1-Phosphate Gradient.

    PubMed

    Yanagida, Keisuke; Hla, Timothy

    2017-02-10

    Vertebrates are endowed with a closed circulatory system, the evolution of which required novel structural and regulatory changes. Furthermore, immune cell trafficking paradigms adapted to the barriers imposed by the closed circulatory system. How did such changes occur mechanistically? We propose that spatial compartmentalization of the lipid mediator sphingosine 1-phosphate (S1P) may be one such mechanism. In vertebrates, S1P is spatially compartmentalized in the blood and lymphatic circulation, thus comprising a sharp S1P gradient across the endothelial barrier. Circulatory S1P has critical roles in maturation and homeostasis of the vascular system as well as in immune cell trafficking. Physiological functions of S1P are tightly linked to shear stress, the key biophysical stimulus from blood flow. Thus, circulatory S1P confinement could be a primordial strategy of vertebrates in the development of a closed circulatory system. This review discusses the cellular and molecular basis of the S1P gradients and aims to interpret its physiological significance as a key feature of the closed circulatory system.

  5. Pharmacology of the sphingosine-1-phosphate signalling system.

    PubMed

    Zu Heringdorf, Dagmar Meyer; Ihlefeld, Katja; Pfeilschifter, Josef

    2013-01-01

    The recent success of FTY720 (Fingolimod, Gilenya(®)), which has been approved for the treatment of relapsing-remitting multiple sclerosis and is the first-in-class sphingosine-1-phosphate (S1P) receptor modulating drug, has boosted the interest in further drug development in this area. Several selective S1P1 receptor-modulating drugs are being investigated in clinical trials for the treatment of diverse autoimmune disorders. Sphingosine kinase inhibitors are under development for the treatment of cancer, aberrant angiogenesis and inflammatory diseases; an inhibitor of SK2 with relatively low affinity is being analysed in patients with advanced solid tumours. While an indirect S1P lyase inhibitor has just failed the proof of concept in patients with rheumatoid arthritis, S1P lyase is still a promising target for the treatment of inflammatory and autoimmune diseases. Another approach is the development of S1P-scavenging or -clearing agents, including a monoclonal S1P antibody that has successfully passed phase I clinical trials and will be further developed for age-related macular degeneration.

  6. Implication of sphingosin-1-phosphate in cardiovascular regulation

    PubMed Central

    Li, Ningjun; Zhang, Fan

    2016-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite generated by phosphorylation of sphingosine catalyzed by sphingosine kinase. S1P acts mainly through its high affinity G-protein-coupled receptors and participates in the regulation of multiple systems, including cardiovascular system. It has been shown that S1P signaling is involved in the regulation of cardiac chronotropy and inotropy and contributes to cardioprotection as well as cardiac remodeling; S1P signaling regulates vascular function, such as vascular tone and endothelial barrier, and possesses an anti-atherosclerotic effect; S1P signaling is also implicated in the regulation of blood pressure. Therefore, manipulation of S1P signaling may offer novel therapeutic approaches to cardiovascular diseases. As several S1P receptor modulators and sphingosine kinase inhibitors have been approved or under clinical trials for the treatment of other diseases, it may expedite the test and implementation of these S1P-based drugs in cardiovascular diseases. PMID:27100508

  7. Phosphatidic acid inhibits ceramide 1-phosphate-stimulated macrophage migration.

    PubMed

    Ouro, Alberto; Arana, Lide; Rivera, Io-Guané; Ordoñez, Marta; Gomez-Larrauri, Ana; Presa, Natalia; Simón, Jorge; Trueba, Miguel; Gangoiti, Patricia; Bittman, Robert; Gomez-Muñoz, Antonio

    2014-12-15

    Ceramide 1-phosphate (C1P) was recently demonstrated to potently induce cell migration. This action could only be observed when C1P was applied exogenously to cells in culture, and was inhibited by pertussis toxin. However, the mechanisms involved in this process are poorly understood. In this work, we found that phosphatidic acid (PA), which is structurally related to C1P, displaced radiolabeled C1P from its membrane-binding site and inhibited C1P-stimulated macrophage migration. This effect was independent of the saturated fatty acid chain length or the presence of a double bond in each of the fatty acyl chains of PA. Treatment of RAW264.7 macrophages with exogenous phospholipase D (PLD), an enzyme that produces PA from membrane phospholipids, also inhibited C1P-stimulated cell migration. Likewise, PA or exogenous PLD inhibited C1P-stimulated extracellularly regulated kinases (ERK) 1 and 2 phosphorylation, leading to inhibition of cell migration. However, PA did not inhibit C1P-stimulated Akt phosphorylation. It is concluded that PA is a physiological regulator of C1P-stimulated macrophage migration. These actions of PA may have important implications in the control of pathophysiological functions that are regulated by C1P, including inflammation and various cellular processes associated with cell migration such as organogenesis or tumor metastasis.

  8. Sphingosine 1-Phosphate Receptor Modulators and Drug Discovery

    PubMed Central

    Park, Soo-Jin; Im, Dong-Soon

    2017-01-01

    Initial discovery on sphingosine 1-phosphate (S1P) as an intracellular second messenger was faced unexpectedly with roles of S1P as a first messenger, which subsequently resulted in cloning of its G protein-coupled receptors, S1P1–5. The molecular identification of S1P receptors opened up a new avenue for pathophysiological research on this lipid mediator. Cellular and molecular in vitro studies and in vivo studies on gene deficient mice have elucidated cellular signaling pathways and the pathophysiological meanings of S1P receptors. Another unexpected finding that fingolimod (FTY720) modulates S1P receptors accelerated drug discovery in this field. Fingolimod was approved as a first-in-class, orally active drug for relapsing multiple sclerosis in 2010, and its applications in other disease conditions are currently under clinical trials. In addition, more selective S1P receptor modulators with better pharmacokinetic profiles and fewer side effects are under development. Some of them are being clinically tested in the contexts of multiple sclerosis and other autoimmune and inflammatory disorders, such as, psoriasis, Crohn’s disease, ulcerative colitis, polymyositis, dermatomyositis, liver failure, renal failure, acute stroke, and transplant rejection. In this review, the authors discuss the state of the art regarding the status of drug discovery efforts targeting S1P receptors and place emphasis on potential clinical applications. PMID:28035084

  9. Enhancement of Neoangiogenesis and Follicle Survival by Sphingosine-1-Phosphate in Human Ovarian Tissue Xenotransplants

    PubMed Central

    Oktay, Kutluk

    2011-01-01

    Ovarian transplantation is one of the key approaches to restoring fertility in women who became menopausal as a result of cancer treatments. A major limitation of human ovarian transplants is massive follicular loss during revascularization. Here we investigated whether sphingosine-1-phosphate or its receptor agonists could enhance neoangiogenesis and follicle survival in ovarian transplants in a xenograft model. Human ovarian tissue xenografts in severe-combined-immunodeficient mice were treated with sphingosine-1-phosphate, its analogs, or vehicle for 1–10 days. We found that sphingosine-1-phosphate treatment increased vascular density in ovarian transplants significantly whereas FTY720 and SEW2871 had the opposite effect. In addition, sphingosine-1-phosphate accelerated the angiogenic process compared to vehicle-treated controls. Furthermore, sphingosine-1-phosphate treatment was associated with a significant proliferation of ovarian stromal cell as well as reduced necrosis and tissue hypoxia compared to the vehicle-treated controls. This resulted in a significantly lower percentage of apoptotic follicles in sphingosine-1-phosphate-treated transplants. We conclude that while sphingosine-1-phosphate promotes neoangiogenesis in ovarian transplants and reduces ischemic reperfusion injury, sphingosine-1-phosphate receptor agonists appear to functionally antagonize this process. Sphingosine-1-phosphate holds great promise to clinically enhance the survival and longevity of human autologous ovarian transplants. PMID:21559342

  10. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of the enzyme galactose-1-phosphate uridyl transferase in erythrocytes (red blood cells... hereditary disease galactosemia (disorder of galactose metabolism) in infants. (b) Classification. Class II....

  11. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of the enzyme galactose-1-phosphate uridyl transferase in erythrocytes (red blood cells... hereditary disease galactosemia (disorder of galactose metabolism) in infants. (b) Classification. Class II....

  12. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a)...

  13. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a)...

  14. SPHINGOSINE KINASE TYPE 2 INHIBITION ELEVATES CIRCULATING SPHINGOSINE 1-PHOSPHATE

    PubMed Central

    Kharel, Yugesh; Raje, Mithun; Gao, Ming; Gellett, Amanda M.; Tomsig, Jose L.; Lynch, Kevin R.; Santos, Webster L.

    2012-01-01

    Sphingosine 1-phosphate (S1P) is a pleiotropic lipid mediator involved in numerous cellular and physiological functions. Notable among these are cell survival and migration as well as lymphocyte trafficking. S1P, which exerts its effects via five G protein coupled receptors (S1P1-5), is formed by the action of two sphingosine kinases (SphKs). While SphK1 is the more intensively studied isotype, SphK2 is unique in it nuclear localization and has been reported to oppose some of the actions ascribed to SphK1. While several scaffolds of SphK1 inhibitors have been described, there is a scarcity of selective SphK2 inhibitors that are necessary to evaluate the downstream effects of inhibition of this isotype. Herein we report a cationic amphiphilic small molecule that is a selective SphK2 inhibitor. In the course of characterizing this compound in wild type and SphK null mice we discovered that administration of the inhibitor to wild type mice resulted in a rapid increase in blood S1P, which is in contrast to our SphK1 inhibitor that drives circulating S1P levels down. Using a cohort of F2 hybrid mice, we confirmed, compared to wild type mice, that circulating S1P levels were higher in SphK2 null mice and lower in SphK1 null mice. Thus both SphK1 and SphK2 inhibitors recapitulate the blood S1P levels observed in the corresponding null mice. Moreover, circulating S1P levels mirror SphK2 inhibitor levels providing a convenient biomarker of target engagement. PMID:22747486

  15. Sphingosine 1-phosphate lyase enzyme assay using a BODIPY-labeled substrate

    SciTech Connect

    Bandhuvula, Padmavathi; Li Zaiguo; Bittman, Robert; Saba, Julie D.

    2009-03-06

    Sphingosine 1-phosphate lyase (SPL) is responsible for the irreversible catabolism of sphingosine 1-phosphate, which signals through five membrane receptors to mediate cell stress responses, angiogenesis, and lymphocyte trafficking. The standard assay for SPL activity utilizes a radioactive dihydrosphingosine 1-phosphate substrate and is expensive and cumbersome. In this study, we describe an SPL assay that employs an {omega}-labeled BODIPY-sphingosine 1-phosphate substrate, allowing fluorescent product detection by HPLC and incorporating advantages of the BODIPY fluorophore. The major aldehyde product is confirmed by reaction with 2,4-dinitrophenylhydrazine. The SPL-catalyzed reaction is linear over a 30 min time period and yields a K{sub m} of 35 {mu}M for BODIPY-sphingosine 1-phosphate.

  16. Sphingosine-1-phosphate receptor 3 mediates sphingosine-1-phosphate induced release of weibel-palade bodies from endothelial cells.

    PubMed

    van Hooren, Kathinka W E M; Spijkers, Léon J A; van Breevoort, Dorothee; Fernandez-Borja, Mar; Bierings, Ruben; van Buul, Jaap D; Alewijnse, Astrid E; Peters, Stephan L M; Voorberg, Jan

    2014-01-01

    Sphingosine-1-phosphate (S1P) is an agonist for five distinct G-protein coupled receptors, that is released by platelets, mast cells, erythrocytes and endothelial cells. S1P promotes endothelial cell barrier function and induces release of endothelial cell-specific storage-organelles designated Weibel-Palade bodies (WPBs). S1P-mediated enhancement of endothelial cell barrier function is dependent on S1P receptor 1 (S1PR1) mediated signaling events that result in the activation of the small GTPase Rac1. Recently, we have reported that Rac1 regulates epinephrine-induced WPB exocytosis following its activation by phosphatidylinositol-3,4,5-triphosphate-dependent Rac exchange factor 1 (PREX1). S1P has also been described to induce WPB exocytosis. Here, we confirm that S1P induces release of WPBs using von Willebrand factor (VWF) as a marker. Using siRNA mediated knockdown of gene expression we show that S1PR1 is not involved in S1P-mediated release of WPBs. In contrast depletion of the S1PR3 greatly reduced S1P-induced release of VWF. S1P-mediated enhancement of endothelial barrier function was not affected by S1PR3-depletion whereas it was greatly impaired in cells lacking S1PR1. The Rho kinase inhibitor Y27632 completely abrogated S1P-mediated release of VWF. Also, the calcium chelator BAPTA-AM significantly reduced S1P-induced release of VWF. Our findings indicate that S1P-induced release of haemostatic, inflammatory and angiogenic components stored within WPBs depends on the S1PR3.

  17. Mapping of a genetic locus that affects glycerol 3-phosphate transport in Bacillus subtilis.

    PubMed Central

    Lindgren, V

    1978-01-01

    Two types of fosfomycin-resistant mutants of Bacillus subtilis were isolated. Mutants of the first type (GlpT mutants) were resistant to at least 200 microgram of fosfomycin per ml and failed to take up exogenous glycerol 3-phosphate. Mutants of the second type were resistant to lower concentrations of fosfomycin and transported glycerol-3-phosphate as efficiently as wild-type bacteria. The glpT mutations, but not the mutations in the second type of fosfomycin-resistant mutants, map in the cysA-aroI region of the B. subtilis chromosome. PMID:415047

  18. Chemical and enzymatic methodologies for the synthesis of enantiomerically pure glyceraldehyde 3-phosphates.

    PubMed

    Gauss, Dominik; Schoenenberger, Bernhard; Wohlgemuth, Roland

    2014-05-07

    Glyceraldehyde 3-phosphates are important intermediates of many central metabolic pathways in a large number of living organisms. d-Glyceraldehyde 3-phosphate (d-GAP) is a key intermediate during glycolysis and can as well be found in a variety of other metabolic pathways. The opposite enantiomer, l-glyceraldehyde 3-phosphate (l-GAP), has been found in a few exciting new pathways. Here, improved syntheses of enantiomerically pure glyceraldehyde 3-phosphates are reported. While d-GAP was synthesized by periodate cleavage of d-fructose 6-phosphate, l-GAP was obtained by enzymatic phosphorylation of l-glyceraldehyde. (1)H- and (31)P NMR spectroscopy was applied in order to examine pH-dependent behavior of GAP over time and to identify potential degradation products. It was found that GAP is stable in acidic aqueous solution below pH 4. At pH 7, methylglyoxal is formed, whereas under alkaline conditions, the formation of lactic acid could be observed.

  19. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycerol-3-phosphate (G3P) is an important metabolite that contributes to the growth and disease-related physiologies of prokaryotes, plants, animals and humans alike. Here we show that G3P serves as the inducer of an important form of broad-spectrum immunity in plants, termed systemic acquired resi...

  20. EXPRESSION OF THE SPERMATOGENIC CELL-SPECIFIC GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE (GAPDS) IN RAT TESTIS

    EPA Science Inventory

    The spermatogenic cell-specific variant of glyceraldehyde 3-phosphate dehydrogenase (GAPDS) has been cloned from a rat testis cDNA library and its pattern of expression determined. A 1417 nucleotide cDNA has been found to encode an enzyme with substantial homology to mouse GAPDS...

  1. Purification and properties of rabbit muscle l-glycerol 3-phosphate dehydrogenase

    PubMed Central

    Bentley, Philip; Dickinson, F. Mark; Jones, Ian G.

    1973-01-01

    A modified procedure has been developed for the purification of rabbit muscle l-glycerol 3-phosphate dehydrogenase. The product of the preparation satisfies all criteria of homogeneity. Some physical properties of the enzyme have been re-investigated. The results suggest that previous preparations may have been contaminated with significant amounts of heavy-molecular-weight protein. PMID:4778280

  2. Phosphate closes the solution structure of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Mycobacterium tuberculosis.

    PubMed

    Borges, Júlio C; Pereira, José H; Vasconcelos, Igor B; dos Santos, Giovanni C; Olivieri, Johnny R; Ramos, Carlos H I; Palma, Mário S; Basso, Luiz A; Santos, Diógenes S; de Azevedo, Walter F

    2006-08-15

    The 5-enolpyruvylshikimate-3-phosphate synthase catalyses the sixth step of the shikimate pathway that is responsible for synthesizing aromatic compounds and is absent in mammals, which makes it a potential target for drugs development against microbial diseases. Here, we report the phosphate binding effects at the structure of the 5-enolpyruvylshikimate-3-phosphate synthase from Mycobacterium tuberculosis. This enzyme is formed by two similar domains that close on each other induced by ligand binding, showing the occurrence of a large conformation change. We have monitored the phosphate binding effects using analytical ultracentrifugation, small angle X-ray scattering and, circular dichroism techniques. The low resolution results showed that the enzyme in the presence of phosphate clearly presented a more compact structure. Thermal-induced unfolding experiments followed by circular dichroism suggested that phosphate rigidified the enzyme. Summarizing, these data suggested that the phosphate itself is able to induce conformational change resulting in the closure movement in the M. tuberculosis 5-enolpyruvylshikimate-3-phosphate synthase.

  3. Characterization of the human and mouse sphingosine 1-phosphate receptor, S1P5 (Edg-8): structure-activity relationship of sphingosine1-phosphate receptors.

    PubMed

    Im, D S; Clemens, J; Macdonald, T L; Lynch, K R

    2001-11-20

    Five G protein-coupled receptors (S1P(1)/Edg-1, S1P(3)/Edg-3, S1P(2)/Edg-5, S1P(4)/Edg-6, and S1P(5)/Edg-8) for the intercellular lipid mediator sphingosine 1-phosphate have been cloned and characterized. We found human and mouse sequences closely related to rat S1P(5) (97% identical amino acids) and report now the characterization of the human and mouse S1P(5) gene products as encoding sphingosine 1-phosphate receptors. When HEK293T cells were cotransfected with S1P(5) and G protein DNAs, prepared membranes showed sphingosine 1-phosphate concentration-dependent increases in [gamma-(35)S]GTP binding (EC(50) = 12.7 nM). The lipid mediator inhibited forskolin-driven rises in cAMP by greater than 80% after introduction of the mouse or human S1P(5) DNAs into rat hepatoma RH7777 cells (IC(50) = 0.22 nM). This response is blocked fully by prior treatment of cultures with pertussis toxin, thus implicating signaling through G(i/o)alpha proteins. Northern blot analysis showed high expression of human S1P(5) mRNA in spleen, corpus collosum, peripheral blood leukocytes, placenta, lung, aorta, and fetal tissues. Mouse S1P(5) mRNA is also expressed in spleen and brain. Finally, we found that one enantiomer of a sphingosine 1-phosphate analogue wherein the 3-hydroxyl and 4,5-olefin are replaced by an amide functionality shows some selectivity as an agonist S1P(1) and S1P(3) vs S1P(2) and S1P(5).

  4. Purification and properties of myo-inositol-1-phosphate dehydrogenase from germinating mung bean seeds.

    PubMed

    Ghosh, B; De, B P; Biswas, B B

    1984-01-01

    A novel enzyme, myo-inositol-1-phosphate dehydrogenase, which catalyzes the conversion of myo-inositol 1-phosphate to ribulose 5-phosphate has been purified 84-fold from mung bean seedling employing several common techniques. The molecular weight of this purified enzyme has been recorded as 88,500 by Sephadex G-200 column chromatography, and in sodium dodecyl sulfate-polyacrylamide gel electrophoresis one protein band containing three subunits of Mr 32,000 each was discernible. Km values for NAD+ and myo-inositol 1-phosphate have been recorded as 2.8 X 10(-4) and 5.0 X 10(-4) M, respectively. Production of NADH in myo-inositol-1-phosphate dehydrogenase reaction has also been evidenced by measurement of NADH fluorescence. Dehydrogenation and decarboxylation of myo-inositol 1-phosphate are mediated by the same enzyme. In fact, the rate of dehydrogenation corroborates with that of decarboxylation. Stoichiometry of this reaction suggests that for the production of 1 mol of ribulose 5-phosphate 2 mol of NAD+ are reduced.

  5. Sphingomyelinase D activity in model membranes: structural effects of in situ generation of ceramide-1-phosphate.

    PubMed

    Stock, Roberto P; Brewer, Jonathan; Wagner, Kerstin; Ramos-Cerrillo, Blanca; Duelund, Lars; Jernshøj, Kit Drescher; Olsen, Lars Folke; Bagatolli, Luis A

    2012-01-01

    The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy and dynamic light scattering) and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing sphingomyelin were examined. The findings indicate that: 1) ceramide-1-phosphate (particularly lauroyl ceramide-1-phosphate) can be incorporated into sphingomyelin bilayers in a concentration-dependent manner and generates coexistence of liquid disordered/solid ordered domains, 2) the activity of sphingomyelinase D is clearly influenced by the supramolecular organization of its substrate in membranes and, 3) in situ ceramide-1-phosphate generation by enzymatic activity profoundly alters the lateral structure and morphology of the target membranes.

  6. An EPSP synthase inhibitor joining shikimate 3-phosphate with glyphosate: synthesis and ligand binding studies.

    PubMed

    Marzabadi, M R; Gruys, K J; Pansegrau, P D; Walker, M C; Yuen, H K; Sikorski, J A

    1996-04-02

    A novel EPSP synthase inhibitor 4 has been designed and synthesized to probe the configurational details of glyphosate recognition in its herbicidal ternary complex with enzyme and shikimate 3-phosphate (S3P). A kinetic evaluation of the new 3-dephospho analog 12, as well as calorimetric and (31)P NMR spectroscopic studies of enzyme-bound 4, now provides a more precise quantitative definition for the molecular interactions of 4 with this enzyme. The very poor binding, relative to 4, displayed by the 3-dephospho analog 12 is indicative that 4 has a specific interaction with the S3P site. A comparison of Ki(calc) for 12 versus the Ki(app) for 4 indicates that the 3-phosphate group in 4 contributes about 4.8 kcal/mol to binding. This compares well with the 5.2 kcal/mol which the 3-phosphate group in S3P contributes to binding. Isothermal titration calorimetry demonstrates that 4 binds to free enzyme with an observed Kd of 0.53 +/- 0.04 microM. As such, 4 binds only 3-fold weaker than glyphosate and about 150-fold better than N-methylglyphosate. Consequently, 4 represents the most potent N-alkylglyphosate derivative identified to date. However, the resulting thermodynamic binding parameters clearly demonstrate that the formation of EPSPS x 4 is entropy driven like S3P. The binding characteristics of 4 are fully consistent with a primary interaction localized at the S3P subsite. Furthermore, (31)P NMR studies of enzyme-bound 4 confirm the expected interaction at the shikimate 3-phosphate site. However, the chemical shift observed for the phosphonate signal of EPSPS x 4 is in the opposite direction than that observed previously when glyphosate binds with enzyme and S3P. Therefore, when 4 occupies the S3P binding site, there is incomplete overlap at the glyphosate phosphonate subsite. As a glyphosate analog inhibitor, the potency of 4 most likely arises from predominant interactions which occur outside the normal glyphosate binding site. Consequently, 4 is best described

  7. Relationship between a stress membrane protein of Oenococcus oeni and glyceraldehyde-3-phosphate dehydrogenases.

    PubMed

    Carreté, Ramon; Reguant, Cristina; Bordons, Albert; Constantí, Magda

    2005-10-01

    The goal of this study was to analyze how the profiles of membrane proteins of Oenococcus oeni change under particular stress conditions of wine. Sodium dodecyl sulfate polyacrylamide gel electrophoresis protein profiles of membrane fraction showed that a 40-kDa protein was overexpressed in the presence of SO2. The sequence of its N-terminal fragment showed a significant identity with glyceraldehyde-3-phosphate dehydrogenases (GAPDHs), but the protein showed no GAPDH activity. This sequence was compared with those of other GAPDHs with ClustalW alignment, and it was found to be somewhat similar to that of the cell-wall and membrane proteins of other lactic acid bacteria.

  8. Functional characterization of 5-enopyruvylshikimate-3-phosphate synthase from Alkaliphilus metalliredigens in transgenic Arabidopsis.

    PubMed

    Xing, Xiao-Juan; Tian, Yong-Sheng; Peng, Ri-He; Xu, Jing; Zhao, Wei; Yao, Quan-Hong; Sun, Sheng

    2014-10-01

    Although a large number of AroA enzymes (EPSPS: 5-enopyruvylshikimate-3-phosphate synthase) have been identified, cloned, and tested for glyphosate resistance, only two AroA variants, derived from Agrobacterium tumefaciens strain CP4 and Zea mays, have been utilized to produce the commercial glyphosate-resistant crops. Here, we have used a PCR-based twostep DNA synthesis method to synthesize an aroA gene (aroAA. metalliredigens) from Alkaliphilus metalliredigens, encoding a new EPSPS. Furthermore, transgenic Arabidopsis with the new aroAA. metalliredigens gene was obtained to confirm the potential of the novel aroA gene in developing glyphosate-resistant crops.

  9. Cloning and characterization of 5-enopyruvylshikimate-3-phosphate synthase from Pantoea sp.

    PubMed

    Liu, F; Cao, Y P

    2015-12-29

    The shikimate pathway enzyme 5-enopyruvylshikimate-3-phosphate synthase (EPSPS) is the target of the broad spectrum herbicide glyphosate. A novel aroA gene encoding an EPSPS from Pantoea sp was identified and subcloned into the pET-28a vector to construct the recombinant pET-AroAPantoea sp plasmid. Amino acid sequence analysis indicated that AroAPantoea sp is a class I AroA enzyme. When expressed in Escherichia coli, it conveyed high tolerance to glyphosate. AroAPantoea sp may be used to generate transgenic glyphosate-tolerant plants.

  10. DEVELOPMENT OF A METHOD FOR QUANTITATING SPHINGOID BASE 1-PHOSPHATES IN BLOOD SPOTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red blood cells (RBC) accumulate, store and release sphingoid base 1-phosphates,important ligands for the extracellular receptors S1P1-5. The ability of RBC to accumulate these bioactive lipids is because, with the exception of sphingosine kinase, the enzymes responsible for metabolizing sphingosine...

  11. Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Rius, Sebastián P; Casati, Paula; Iglesias, Alberto A; Gomez-Casati, Diego F

    2006-08-01

    Non-phosphorylating glyceraldehyde- 3-phosphate dehydrogenase (NP-GAPDH) is a conserved cytosolic protein found in higher plants. In photosynthetic cells, the enzyme is involved in a shuttle transfer mechanism to export NADPH from the chloroplast to the cytosol. To investigate the role of this enzyme in plant tissues, we characterized a mutant from Arabidopsis thaliana having an insertion at the NP-GAPDH gene locus. The homozygous mutant was determined to be null respect to NP-GAPDH, as it exhibited undetectable levels of both transcription of NP-GAPDH mRNA, protein expression and enzyme activity. Transcriptome analysis demonstrated that the insertion mutant plant shows altered expression of several enzymes involved in carbohydrate metabolism. Significantly, cytosolic phosphorylating (NAD-dependent) glyceraldehyde-3-phosphate dehydrogenase mRNA levels are induced in the mutant, which correlates with an increase in enzyme activity. mRNA levels and enzymatic activity of glucose-6-phosphate dehydrogenase were also elevated, correlating with an increase in NADPH concentration. Moreover, increased ROS levels were measured in the mutant plants. Down-regulation of several glycolytic and photosynthetic genes suggests that NP-GAPDH is important for the efficiency of both metabolic processes. The results presented demonstrate that NP-GAPDH has a relevant role in plant growth and development.

  12. Cloning and characterization of glyceraldehyde-3-phosphate dehydrogenase encoding gene in Gracilaria/Gracilariopsis lemaneiformis

    NASA Astrophysics Data System (ADS)

    Xueying, Ren; Zhenghong, Sui; Xuecheng, Zhang

    2006-04-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays important roles in various cellular processes. A cytosolic GAPDH encoding gene ( gpd) of Gracilaria/Gracilariopsis lemaneiformis was cloned and characterized. Deduced amino acid sequence of the enzyme of G. lemaneiformis had high homology with those of seven red algae. The 5'-untranslated regions of the GAPDHs encoding genes of these red algae varied greatly. GAPDHs of these red algae shared the highly conserved glyceraldehyde 3-phosphate dehydrogenase active site ASCTTNCL. However, such active site of Cyanidium caldarium was different from those of the other six algae at the last two residues (CL to LF), thus the spatial structure of its GAPDH active center may be different from those of the other six. Phylogenetic analysis indicated that GAPDH of G. lemaneiformis might have undergone an evolution similar to those of Porphyra yezoensis, Chondrus crispus, and Gracilaria verrucosa. C. caldarium had a closer evolutionary relationship with Cyanidioschyzon merolae than with Cyanidium sp. Virtual Northern blot analysis revealed that gpd of G. lemaneiformis expressed constitutively, which suggested that it might be house-keeping and could be adapted as an inner control in gene expression analysis of G. lemaneiformis.

  13. Influence of heavy metals on glyceraldehyde-3-phosphate dehydrogenase interactions in Chironomus riparius larvae.

    PubMed

    Wai, Isaac; Chong, King; Ho, Wing Shing

    2013-08-01

    Some aquatic organisms can live in contaminated environment due to their adaptable defense mechanism related to their inducible detoxification and excretion. A recent study showed glyceraldehyde-3-phosphate dehydrogenase (GAPDH) can modulate different cellular activities including transcription activation and detoxification. In the present study, the authors report on experiments to test the GAPDH activity of Chironomus riparius toward heavy metals. Glyceraldehyde-3-phosphate dehydrogenase was isolated and purified from C. riparius. The kinetics of the enzyme was measured. The results showed that GAPDH was inhibited by heavy metals including Co(2+) , Cu(2+) , Fe(2+) , Ni(2+) , Pb(2+) , but was activated by zinc ions. The kinetics study of the enzyme showed maximum initial velocity (Vmax) of GAPDH increased by 50%. In addition, the substrate and cofactor affinity increased in the presence of zinc. The GAPDH from C. riparius had maximum activities at pH 8.5 and 37 °C. The protein sequence analysis shows that there are 2 additional cysteine and histidine residues in the conserved region of GAPDH from C. riparius, which is believed to play an important role in the interactions with heavy metals. The results suggest that exposure to zinc could modulate GAPDH, which could be related to response of antioxidant defense to other heavy metals.

  14. Conformational and activity changes during guanidine denaturation of D-glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Xie, G F; Tsou, C L

    1987-01-05

    Changes in intrinsic protein fluorescence of lobster muscle D-glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) have been compared with inactivation of the enzyme during denaturation in guanidine solutions. The holoenzyme is completely inactivated at guanidine concentrations less than 0.5 M and this is accompanied by a red shift of the emission maximum at 335 nm and a marked decrease in intensity of the intrinsic fluorescence. At 0.5 M guanidine, the inactivation is a slow process, with a first-order rate constant of 2.4 X 10(-3) s-1. A further red shift in the emission maximum and a decrease in intensity occur at guanidine concentrations higher than 1.5 M. The emission peak at 410 nm of the fluorescent NAD derivative introduced at the active site of this enzyme (Tsou, C.L. et al. (1983) Biochem. Soc. Trans. 11, 425-429) shows both a red shift and a marked decrease in intensity at the same guanidine concentration required to bring about the inactivation and the initial changes in the intrinsic fluorescence of the holoenzyme. It appears that treatment by low guanidine concentrations leads to both complete inactivation and perturbation of the active site conformation and that a tryptophan residue is situated at or near the active site.

  15. Moonlighting glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH): an evolutionarily conserved plasminogen receptor on mammalian cells.

    PubMed

    Chauhan, Anoop Singh; Kumar, Manoj; Chaudhary, Surbhi; Patidar, Anil; Dhiman, Asmita; Sheokand, Navdeep; Malhotra, Himanshu; Raje, Chaaya Iyengar; Raje, Manoj

    2017-03-15

    Prokaryotic pathogens establish infection in mammals by capturing the proteolytic enzyme plasminogen (Plg) onto their surface to digest host extracellular matrix (ECM). One of the bacterial surface Plg receptors is the multifunctional glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In a defensive response, the host mounts an inflammatory response, which involves infiltration of leukocytes to sites of inflammation. This requires macrophage exit from the blood and migration across basement membranes, a phenomenon dependent on proteolytic remodeling of the ECM utilizing Plg. The ability of Plg to facilitate inflammatory cell recruitment critically depends on receptors on the surface of phagocyte cells. Utilizing a combination of biochemical, cellular, knockdown, and in vivo approaches, we demonstrated that upon inflammation, macrophages recruit GAPDH onto their surface to carry out the same task of capturing Plg to digest ECM to aid rapid phagocyte migration and combat the invading pathogens. We propose that GAPDH is an ancient, evolutionarily conserved receptor that plays a key role in the Plg-dependent regulation of macrophage recruitment in the inflammatory response to microbial aggression, thus pitting prokaryotic GAPDH against mammalian GAPDH, with both involved in a conserved role of Plg activation on the surface of their respective cells, to conflicting ends.-Chauhan, A. S., Kumar, M., Chaudhary, S., Patidar, A., Dhiman, A., Sheokand, N., Malhotra, H., Raje, C. I., Raje, M. Moonlighting glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH): an evolutionarily conserved plasminogen receptor on mammalian cells.

  16. Folding domains and intramolecular ionic interactions of lysine residues in glyceraldehyde 3-phosphate dehydrogenase.

    PubMed Central

    Lambert, J M; Perham, R N

    1977-01-01

    1. Treatment with methyl acetimidate was used to probe the topography of several tetrameric glyceraldehyde 3-phosphate dehydrogenases, in particular the holoenzymes from rabbit muscle and Bacillus stearothermophilus. During the course of the reaction with the rabbit muscle enzyme, the number of amino groups fell rapidly from the starting value of 27 per subunit to a value of approx. five per subunit. This number could be lowered further to values between one and two per subunit by a second treatment with methyl acetimidate. The enzyme remained tetrameric throughout and retained 50% of its initial catalytic activity at the end of the experiment. 2. Use of methyl [1-14C]acetimidate and small-scale methods of protein chemistry showed that only one amino group per subunit, that of lysine-306, was completely unavailable for reaction with imido ester in the native enzyme. This results is consistent with the structure of the highly homologous glyceraldehyde 3-phosphate dehydrogenase of lobster muscle deduced from X-ray-crystallographic analysis, since lysine-306 can be seen to form an intrachain ion-pair with aspartic acid-241 in the hydrophobic environment of a subunit-subunit interface. 3. Several other amino groups in the rabbit muscle enzyme that reacted only slowly with the reagent were also identified chemically. These were found to be located entirely in the C-terminal half of the polypeptides chain, which comprises a folding domain associated with catalytic activity and subunit contact in the three-dimensional structure. Slow reaction of these 'surface' amino groups with methyl acetimidate is attributed to intramolecular ionic interactions of the amino groups with neighbouring side-chain carboxyl groups, a conclusion that is compatible with the reported three-dimensional structure and with the dependence of the reaction of ionic stength. 4. Very similar results were obtained with the enzymes from B. stearothermophilus and from ox muscle and ox liver, supporting

  17. Epidermal growth factor-induced cellular invasion requires sphingosine-1-phosphate/sphingosine-1-phosphate 2 receptor-mediated ezrin activation

    PubMed Central

    Orr Gandy, K. Alexa; Adada, Mohamad; Canals, Daniel; Carroll, Brittany; Roddy, Patrick; Hannun, Yusuf A.; Obeid, Lina M.

    2013-01-01

    Ezrin, radixin, and moesin (ERM) proteins link cortical actin to the plasma membrane and coordinate cellular events that require cytoskeletal rearrangement, including cell division, migration, and invasion. While ERM proteins are involved in many important cellular events, the mechanisms regulating their function are not completely understood. Our laboratory previously identified reciprocal roles for the sphingolipids ceramide and sphingosine-1-phosphate (S1P) in the regulation of ERM proteins. We recently showed that ceramide-induced activation of PP1α leads to dephosphorylation and inactivation of ERM proteins, while S1P results in phosphorylation and activation of ERM proteins. Following these findings, we aimed to examine known inducers of the SK/S1P pathway and evaluate their ability to regulate ERM proteins. We examined EGF, a known inducer of the SK/S1P pathway, for its ability to regulate the ERM family of proteins. We found that EGF induces ERM c-terminal threonine phosphorylation via activation of the SK/S1P pathway, as this was prevented by siRNA knockdown or pharmacological inhibition of SK. Using pharmacological, as well as genetic, knockdown approaches, we determined that EGF induces ERM phosphorylation via activation of S1PR2. In addition, EGF led to cell polarization in the form of lamellipodia, and this occurred through a mechanism involving S1PR2-mediated phosphorylation of ezrin T567. EGF-induced cellular invasion was also found to be dependent on S1PR2-induced T567 ezrin phosphorylation, such that S1PR2 antagonist, JTE-013, and expression of a dominant-negative ezrin mutant prevented cellular invasion toward EGF. In this work, a novel mechanism of EGF-stimulated invasion is unveiled, whereby S1P-mediated activation of S1PR2 and phosphorylation of ezrin T567 is required.—Orr Gandy, K. A., Adada, M., Canals, D., Carroll, B., Roddy, P., Hannun, Y. A., Obeid, L. M. Epidermal growth factor-induced cellular invasion requires sphingosine-1-phosphate

  18. Chemical synthesis of D-ribo-phytosphingosine-1-phosphate, a potential modulator of cellular processes.

    PubMed

    Li, S; Wilson, W K; Schroepfer, G J

    1999-01-01

    d-erythro -Sphingosine-1-phosphate (2), an intermediate in sphingosine metabolism, shows a diversity of biological activities. Comparable roles might be anticipated for d-ribo -phytosphingosine-1-phosphate (1). We describe an efficient three-step chemical synthesis of 1 from d-ribo -phytosphingosine. Our approach is based on standard phosphoramidite methodology and on the finding of Boumendjel and Miller ( J. Lipid Res. 1994. 35: 2305-2311) that sphingosine can be monophosphorylated at the 1-hydroxyl without protection of the 3-hydroxyl. However, we were unable to duplicate their reported synthesis of 2 without important modifications in reagents and reaction conditions. Under the reported conditions for preparing 2, we obtained a cyclic carbamate (14), which we have isolated and identified. The structures of 1 and the cyclic carbamate 14 were elucidated by a combination of mass spectrometry and 1D and 2D nuclear magnetic resonance spectroscopy.

  19. Succination of proteins by fumarate: mechanism of inactivation of glyceraldehyde-3-phosphate dehydrogenase in diabetes.

    PubMed

    Blatnik, Matthew; Thorpe, Suzanne R; Baynes, John W

    2008-04-01

    S-(2-succinyl)cysteine (2SC) is a chemical modification of proteins formed by a Michael addition reaction between the Krebs cycle intermediate, fumarate, and thiol groups in protein--a process known as succination of protein. Succination causes irreversible inactivation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in vitro. GAPDH was immunoprecipitated from muscle of diabetic rats, then analyzed by ultra-performance liquid chromatography-electrospray ionization-mass spectroscopy. Succination of GAPDH was increased in muscle of diabetic rats, and the extent of succination correlated strongly with the decrease in specific activity of the enzyme. We propose that 2SC is a biomarker of mitochondrial and oxidative stress in diabetes and that succination of GAPDH and other thiol proteins may provide the chemical link between glucotoxicity and the pathogenesis of diabetic complications.

  20. Molecular cloning and characterization of the glyceraldehyde-3-phosphate dehydrogenase gene from Penicillium expansum PE-12.

    PubMed

    Zhang, T; Qi, Z; Yu, Q S; Tang, K X

    2013-07-15

    Penicillium expansum produces large amounts of lipase, which is widely used in laundry detergent and leather industry. We isolated the glyceraldehyde-3-phosphate dehydrogenase gene (PeGPD) from P. expansum PE-12 through reverse transcriptase PCR and 5'-3' rapid amplification of cDNA ends (RACE-PCR). The gene is 1266 bp long, including an ORF of 1014 bp, encoding a polypeptide chain of 337 amino acids. A phylogenetic tree based on GPD proteins showed that P. expansum is close to Aspergillus species, but comparatively distant from P. marneffei. Southern blot results revealed a single copy of PeGPD, and expression analysis gave evidence of high expression levels. PeGPD genes have potential for genetic engineering of P. expansum for industrial lipase production.

  1. Daily Variations in the Glycerol-3-Phosphate Dehydrogenase Isoforms Expression in Triatoma infestans Flight Muscles

    PubMed Central

    Stroppa, María M.; Carriazo, Carlota S.; Gerez de Burgos, Nelia M.; Garcia, Beatríz A.

    2014-01-01

    Triatoma infestans, the main vector of Chagas disease, is a blood-sucking insect. Flight dispersal of adults is the most important mechanism for reinfestation of houses after insecticide spraying. Flight muscles have two glycerol-3-phosphate dehydrogenase (GPDH) isoforms: GPDH-1 is involved in flight metabolism and GPDH-2 provides lipid precursors. In this study, we explored the profile of GPDH expression in females and males adult flight muscles under light/dark cycle, constant light, and constant dark conditions. Under constant dark conditions, GPDH-1 flight muscles of T. infestans showed a rhythmic pattern of transcription synchronous with a rhythmic profile of activity suggesting regulation by the endogenous circadian clock. Otherwise, the GPDH-2 expression analysis showed no regulation by the endogenous clock, but showed that an external factor, such as the dark/light period, was necessary for synchronization of GPDH-2 transcription and activity. PMID:24914000

  2. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a specific substrate of yeast metacaspase.

    PubMed

    Silva, A; Almeida, B; Sampaio-Marques, B; Reis, M I R; Ohlmeier, S; Rodrigues, F; Vale, A do; Ludovico, P

    2011-12-01

    Yeast metacaspase (Yca1p) is required for the execution of apoptosis upon a wide range of stimuli. However, the specific degradome of this yeast protease has not been unraveled so far. By combining different methodologies described as requisites for a protein to be considered a protease substrate, such as digestome analysis, cleavage of recombinant GAPDH by metacaspase and evaluation of protein levels in vivo, we show that upon H(2)O(2)-induced apoptosis, the metabolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a specific target of metacaspase. Nitric oxide (NO) signaling, which mediates H(2)O(2)-induced apoptosis, is required for metacaspase specific GAPDH cleavage. In conclusion, in this work we identified GAPDH as the first direct yeast metacaspase substrate described so far. Although mammalian caspases and yeast metacaspase apparently have distinct target cleavage sites, GAPDH arises as a common substrate for these proteases.

  3. Atomic-level characterization of transport cycle thermodynamics in the glycerol-3-phosphate:phosphate antiporter

    NASA Astrophysics Data System (ADS)

    Moradi, Mahmoud; Enkavi, Giray; Tajkhorshid, Emad

    2015-09-01

    Membrane transporters actively translocate their substrate by undergoing large-scale structural transitions between inward- (IF) and outward-facing (OF) states (`alternating-access' mechanism). Despite extensive structural studies, atomic-level mechanistic details of such structural transitions, and as importantly, their coupling to chemical events supplying the energy, remain amongst the most elusive aspects of the function of these proteins. Here we present a quantitative, atomic-level description of the functional thermodynamic cycle for the glycerol-3-phosphate:phosphate antiporter GlpT by using a novel approach in reconstructing the free energy landscape governing the IF<-->OF transition along a cyclic transition pathway involving both apo and substrate-bound states. Our results provide a fully atomic description of the complete transport process, offering a structural model for the alternating-access mechanism and substantiating the close coupling between global structural transitions and local chemical events.

  4. Receptor protein kinase FERONIA controls leaf starch accumulation by interacting with glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Yang, Tao; Wang, Long; Li, Chiyu; Liu, Ying; Zhu, Sirui; Qi, Yinyao; Liu, Xuanming; Lin, Qinglu; Luan, Sheng; Yu, Feng

    2015-09-11

    Cell expansion is coordinated by several cues, but available energy is the major factor determining growth. Receptor protein kinase FERONIA (FER) is a master regulator of cell expansion, but the details of its control mechanisms are not clear. Here we show that FER interacts with cytosolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH, GAPC1 and GAPC2), that catalyzes a key reaction in glycolysis, which contributes to energy production. When there is an FER deficiency, there are corresponding decreases in the enzyme activity of GAPDH and increased amounts of starch. More importantly, gapc1/2 mutants mimic fer4 mutants. These data indicate that FER regulated starch content is an evolutionarily conserved function in plants that connects the cell expansion and energy metabolism pathways.

  5. Atomic-level characterization of transport cycle thermodynamics in the glycerol-3-phosphate:phosphate antiporter

    PubMed Central

    Moradi, Mahmoud; Enkavi, Giray; Tajkhorshid, Emad

    2015-01-01

    Membrane transporters actively translocate their substrate by undergoing large-scale structural transitions between inward- (IF) and outward-facing (OF) states (‘alternating-access' mechanism). Despite extensive structural studies, atomic-level mechanistic details of such structural transitions, and as importantly, their coupling to chemical events supplying the energy, remain amongst the most elusive aspects of the function of these proteins. Here we present a quantitative, atomic-level description of the functional thermodynamic cycle for the glycerol-3-phosphate:phosphate antiporter GlpT by using a novel approach in reconstructing the free energy landscape governing the IF↔OF transition along a cyclic transition pathway involving both apo and substrate-bound states. Our results provide a fully atomic description of the complete transport process, offering a structural model for the alternating-access mechanism and substantiating the close coupling between global structural transitions and local chemical events. PMID:26417850

  6. Targeting Sphingosine-1-Phosphate Axis in Obesity-Promoted Breast Cancer

    DTIC Science & Technology

    2015-05-01

    2011; 20: 454-63. 5. Pierobon M, Frankenfeld CL. Obesity as a risk factor for triple-negative breast cancers : a systematic review and meta-analysis...AWARD NUMBER: W81XWH-14-1-0071 TITLE: Targeting Sphingosine-1-Phosphate Axis in Obesity-Promoted Breast Cancer PRINCIPAL INVESTIGATOR...0704-0188 Public reporting burden for this collection of infoonation is esttmated to average 1 hour per response, including the time for reViewing

  7. Lysine post-translational modification of glyceraldehyde-3-phosphate dehydrogenase regulates hepatic and systemic metabolism.

    PubMed

    Bond, Simon T; Howlett, Kirsten F; Kowalski, Greg M; Mason, Shaun; Connor, Timothy; Cooper, Adrian; Streltsov, Victor; Bruce, Clinton R; Walder, Ken R; McGee, Sean L

    2017-03-03

    Reciprocal regulation of hepatic glycolysis and gluconeogenesis contributes to systemic metabolic homeostasis. Recent evidence from lower order organisms has found that reversible post-translational modification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), particularly acetylation, contributes to the reciprocal regulation of glycolysis/gluconeogenesis. However, whether this occurs in mammalian hepatocytes in vitro or in vivo is unknown. Several proteomics studies have identified 4 lysine residues in critical regions of mammalian GAPDH that are altered by multiple post-translational modifications. In FAO hepatoma cells, mutation of all 4 lysine residues (4K-R GAPDH) to mimic their unmodified state reduced GAPDH glycolytic activity and glycolytic flux and increased gluconeogenic GAPDH activity and glucose production. Hepatic expression of 4K-R GAPDH in mice increased GAPDH gluconeogenic activity and the contribution of gluconeogenesis to endogenous glucose production in the unfed state. Consistent with the increased reliance on the energy-consuming gluconeogenic pathway, plasma free fatty acids and ketones were elevated in mice expressing 4K-R GAPDH, suggesting enhanced lipolysis and hepatic fatty acid oxidation. In normal mice, food withholding and refeeding, as well as hormonal regulators of reciprocal glycolysis/gluconeogenesis, such as insulin, glucagon, and norepinephrine, had no effect on global GAPDH acetylation. However, GAPDH acetylation was reduced in obese and type 2 diabetic db/db mice. These findings show that post-translational modification of GAPDH lysine residues regulates hepatic and systemic metabolism, revealing an unappreciated role for hepatic GAPDH in substrate selection and utilization.-Bond, S. T., Howlett, K. F., Kowalski, G. M., Mason, S., Connor, T., Cooper, A., Streltsov, V., Bruce, C. R., Walder, K. R., McGee, S. L. Lysine post-translational modification of glyceraldehyde-3-phosphate dehydrogenase regulates hepatic and systemic

  8. Evidence for ligand-induced conformational changes in rabbit-muscle glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Henis, Y I; Levitzki, A; Gafni, A

    1979-07-01

    The tetrameric glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle binds NAD+ and some of its analogues in a negatively cooperative manner, whereas other NAD+ analogues bind non-cooperatively to this enzyme. Subsequent to alkylation of a fraction of the active sites of the enzyme with the fluorescent SH reagent N-iodoacetyl-N'-(5-sulfo-1-naphthyl)-ethylenediamine, it was found that the alkylated sites bind NAD+ and NAD+ analogues with a markedly reduced affinity as compared with non-alkylated sites. It was therefore feasible to measure the fluorescence and the circular polarization of the luminescence of the enzyme-bound alkyl groups as a function of binding of NAD+ and of NAD+ analogues to the non-alkylated sites. The changes observed indicate that ligand binding to the non-alkylated sites induces changes in the fluorescence properties of the alkyl groups bound to neighbouring subunits, most likely through the protein moiety. The nature of these changes appears to depend on the structure of the coenzyme analogue. The binding of the non-cooperative binders acetyl-pyridine--adenine dinucleotide, ATP and ADP-ribose induce different conformational changes in the neighbouring vacant subunit, as monitored by the spectroscopic properties of the bound alkyl group. These results in conjunction with other data support the view that the negative cooperativity in NAD+ binding to glyceraldehyde-3-phosphate dehydrogenase results from ligand-induced conformational changes. Furthermore, these results further support the view that subtle structural changes in the coenzyme molecule determine the nature of the conformational changes induced within the enzyme tetramer.

  9. Sperm-Specific Glyceraldehyde-3-Phosphate Dehydrogenase - An Evolutionary Acquisition of Mammals.

    PubMed

    Muronetz, V I; Kuravsky, M L; Barinova, K V; Schmalhausen, E V

    2015-12-01

    This review is focused on the mammalian sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS). GAPDS plays the major role in the production of energy required for sperm cell movement and does not perform non-glycolytic functions that are characteristic of the somatic isoenzyme of glyceraldehyde-3-phosphate dehydrogenase. The GAPDS sequence is composed of 408 amino acid residues and includes an additional N-terminal region of 72 a.a. that binds the protein to the sperm tail cytoskeleton. GAPDS is present only in the sperm cells of mammals and lizards, possibly providing them with certain evolutionary advantages in reproduction. In this review, studies concerning the problems of GAPDS isolation, its catalytic properties, and its structural features are described in detail. GAPDS is much more stable compared to the somatic isoenzyme, perhaps due to the necessity of maintaining the enzyme function in the absence of protein expression. The site-directed mutagenesis approach revealed the two GAPDS-specific proline residues, as well as three salt bridges, which seem to be the basis of the increased stability of this protein. As distinct from the somatic isoenzyme, GAPDS exhibits positive cooperativity in binding of the coenzyme NAD+. The key role in transduction of structural changes induced by NAD+ is played by the salt bridge D311-H124. Disruption of this salt bridge cancels GAPDS cooperativity and twofold increases its enzymatic activity instead. The expression of GAPDS was detected in some melanoma cells as well. Its role in the development of certain pathologies, such as cancer and neurodegenerative diseases, is discussed.

  10. Phytosphingosine 1-phosphate: a high affinity ligand for the S1P(4)/Edg-6 receptor.

    PubMed

    Candelore, Mari Rios; Wright, Michael J; Tota, Laurie M; Milligan, James; Shei, Gan-ju; Bergstrom, James D; Mandala, Suzanne M

    2002-09-27

    It has been reported recently that the phosphorylated form of the immunomodulator FTY720 activates sphingosine 1-phosphate G protein-coupled receptors. Therefore, understanding the biology of this new class of receptors will be important in clarifying the immunological function of bioactive lysosphingolipid ligands. The S1P(4) receptor has generated interest due to its lymphoid tissue distribution. While the S1P(4) receptor binds the prototypical ligand, S1P, a survey of other lysosphingolipids demonstrated that 4D-hydroxysphinganine 1-phosphate, more commonly known as phytosphingosine 1-phosphate (PhS1P), binds to S1P(4) with higher affinity. Using radiolabeled S1P (S133P), the affinity of PhS1P for the S1P(4) receptor is 1.6nM, while that of S1P is nearly 50-fold lower (119+/-20nM). Radiolabeled PhS1P proved to be superior to S133P in routine binding assays due to improved signal-to-noise ratio. The present study demonstrates the utility of a novel radiolabeled probe, PhS133P, for in vitro studies of the S1P(4) receptor pharmacology.

  11. The structural and molecular biology of type I galactosemia: Enzymology of galactose 1-phosphate uridylyltransferase.

    PubMed

    McCorvie, Thomas J; Timson, David J

    2011-09-01

    Reduced galactose 1-phosphate uridylyltransferase (GALT) activity is associated with the genetic disease type I galactosemia. This results in an increase in the cellular concentration of galactose 1-phosphate. The accumulation of this toxic metabolite, combined with aberrant glycoprotein and glycolipid biosynthesis, is likely to be the major factor in molecular pathology. The mechanism of GALT was established through classical enzymological methods to be a substituted enzyme in which the reaction with UDP-glucose results in the formation of a covalent, UMP-histidine adduct in the active site. The uridylated enzyme can then react with galactose 1-phosphate to form UDP-galactose. The structure of the enzyme from Escherichia coli reveals a homodimer containing one zinc (II) and one iron (II) ion per subunit. This enzymological and structural knowledge provides the basis for understanding the biochemistry of this critical step in the Leloir pathway. However, a high-resolution crystal structure of human GALT is required to assist greater understanding of the effects of disease-associated mutations.

  12. Studies of inositol 1-phosphate analogues as inhibitors of the phosphatidylinositol phosphate synthase in mycobacteria.

    PubMed

    Morii, Hiroyuki; Okauchi, Tatsuo; Nomiya, Hiroki; Ogawa, Midori; Fukuda, Kazumasa; Taniguchi, Hatsumi

    2013-03-01

    We previously reported a novel pathway for the biosynthesis of phosphatidylinositol in mycobacteria via phosphatidylinositol phosphate (PIP) [Morii H., Ogawa, M., Fukuda, K., Taniguchi, H., and Koga, Y (2010) J. Biochem. 148, 593-602]. PIP synthase in the pathway is a promising target for the development of new anti-mycobacterium drugs. In the present study, we evaluated the characteristics of the PIP synthase of Mycobacterium tuberculosis. Four types of compounds were chemically synthesized based on the assumption that structural homologues of inositol 1-phosphate, a PIP synthase substrate, would act as PIP synthase inhibitors, and the results confirmed that all synthesized compounds inhibited PIP synthase activity. The phosphonate analogue of inositol 1-phosphate (Ino-C-P) had the greatest inhibitory effect among the synthesized compounds examined. Kinetic analysis indicated that Ino-C-P acted as a competitive inhibitor of inositol 1-phosphate. The IC(50) value for Ino-C-P inhibition of the PIP synthase activity was estimated to be 2.0 mM. Interestingly, Ino-C-P was utilized in the same manner as the normal PIP synthase substrate, leading to the synthesis of a phosphonate analogue of PIP (PI-C-P), which had a structure similar to that of the natural product, PIP. In addition, PI-C-P had high inhibitory activity against PIP synthase.

  13. Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity

    PubMed Central

    Allonso, Diego; Andrade, Iamara S.; Conde, Jonas N.; Coelho, Diego R.; Rocha, Daniele C. P.; da Silva, Manuela L.; Ventura, Gustavo T.

    2015-01-01

    ABSTRACT Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. IMPORTANCE Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the

  14. Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function.

    PubMed

    Tsigelny, Igor F; Greenberg, Jerry; Kouznetsova, Valentina; Nigam, Sanjay K

    2008-10-01

    Many major facilitator superfamily (MFS) transporters have similar 12-transmembrane alpha-helical topologies with two six-helix halves connected by a long loop. In humans, these transporters participate in key physiological processes and are also, as in the case of members of the organic anion transporter (OAT) family, of pharmaceutical interest. Recently, crystal structures of two bacterial representatives of the MFS family--the glycerol-3-phosphate transporter (GlpT) and lac-permease (LacY)--have been solved and, because of assumptions regarding the high structural conservation of this family, there is hope that the results can be applied to mammalian transporters as well. Based on crystallography, it has been suggested that a major conformational "switching" mechanism accounts for ligand transport by MFS proteins. This conformational switch would then allow periodic changes in the overall transporter configuration, resulting in its cyclic opening to the periplasm or cytoplasm. Following this lead, we have modeled a possible "switch" mechanism in GlpT, using the concept of rotation of protein domains as in the DynDom program17 and membranephilic constraints predicted by the MAPAS program.(23) We found that the minima of energies of intersubunit interactions support two alternate positions consistent with their transport properties. Thus, for GlpT, a "tilt" of 9 degrees -10 degrees rotation had the most favorable energetics of electrostatic interaction between the two halves of the transporter; moreover, this confirmation was sufficient to suggest transport of the ligand across the membrane. We conducted steered molecular dynamics simulations of the GlpT-ligand system to explore how glycerol-3-phosphate would be handled by the "tilted" structure, and obtained results generally consistent with experimental mutagenesis data. While biochemical data remain most consistent with a single-site alternating access model, our results raise the possibility that, while the

  15. Sphingosine-1-Phosphate Lyase Deficient Cells as a Tool to Study Protein Lipid Interactions

    PubMed Central

    Gerl, Mathias J.; Bittl, Verena; Kirchner, Susanne; Sachsenheimer, Timo; Brunner, Hanna L.; Lüchtenborg, Christian; Özbalci, Cagakan; Wiedemann, Hannah; Wegehingel, Sabine; Nickel, Walter; Haberkant, Per; Schultz, Carsten; Krüger, Marcus; Brügger, Britta

    2016-01-01

    Cell membranes contain hundreds to thousands of individual lipid species that are of structural importance but also specifically interact with proteins. Due to their highly controlled synthesis and role in signaling events sphingolipids are an intensely studied class of lipids. In order to investigate their metabolism and to study proteins interacting with sphingolipids, metabolic labeling based on photoactivatable sphingoid bases is the most straightforward approach. In order to monitor protein-lipid-crosslink products, sphingosine derivatives containing a reporter moiety, such as a radiolabel or a clickable group, are used. In normal cells, degradation of sphingoid bases via action of the checkpoint enzyme sphingosine-1-phosphate lyase occurs at position C2-C3 of the sphingoid base and channels the resulting hexadecenal into the glycerolipid biosynthesis pathway. In case the functionalized sphingosine looses the reporter moiety during its degradation, specificity towards sphingolipid labeling is maintained. In case degradation of a sphingosine derivative does not remove either the photoactivatable or reporter group from the resulting hexadecenal, specificity towards sphingolipid labeling can be achieved by blocking sphingosine-1-phosphate lyase activity and thus preventing sphingosine derivatives to be channeled into the sphingolipid-to-glycerolipid metabolic pathway. Here we report an approach using clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated nuclease Cas9 to create a sphingosine-1-phosphate lyase (SGPL1) HeLa knockout cell line to disrupt the sphingolipid-to-glycerolipid metabolic pathway. We found that the lipid and protein compositions as well as sphingolipid metabolism of SGPL1 knock-out HeLa cells only show little adaptations, which validates these cells as model systems to study transient protein-sphingolipid interactions. PMID:27100999

  16. Sphingosine-1-Phosphate Lyase Deficient Cells as a Tool to Study Protein Lipid Interactions.

    PubMed

    Gerl, Mathias J; Bittl, Verena; Kirchner, Susanne; Sachsenheimer, Timo; Brunner, Hanna L; Lüchtenborg, Christian; Özbalci, Cagakan; Wiedemann, Hannah; Wegehingel, Sabine; Nickel, Walter; Haberkant, Per; Schultz, Carsten; Krüger, Marcus; Brügger, Britta

    2016-01-01

    Cell membranes contain hundreds to thousands of individual lipid species that are of structural importance but also specifically interact with proteins. Due to their highly controlled synthesis and role in signaling events sphingolipids are an intensely studied class of lipids. In order to investigate their metabolism and to study proteins interacting with sphingolipids, metabolic labeling based on photoactivatable sphingoid bases is the most straightforward approach. In order to monitor protein-lipid-crosslink products, sphingosine derivatives containing a reporter moiety, such as a radiolabel or a clickable group, are used. In normal cells, degradation of sphingoid bases via action of the checkpoint enzyme sphingosine-1-phosphate lyase occurs at position C2-C3 of the sphingoid base and channels the resulting hexadecenal into the glycerolipid biosynthesis pathway. In case the functionalized sphingosine looses the reporter moiety during its degradation, specificity towards sphingolipid labeling is maintained. In case degradation of a sphingosine derivative does not remove either the photoactivatable or reporter group from the resulting hexadecenal, specificity towards sphingolipid labeling can be achieved by blocking sphingosine-1-phosphate lyase activity and thus preventing sphingosine derivatives to be channeled into the sphingolipid-to-glycerolipid metabolic pathway. Here we report an approach using clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated nuclease Cas9 to create a sphingosine-1-phosphate lyase (SGPL1) HeLa knockout cell line to disrupt the sphingolipid-to-glycerolipid metabolic pathway. We found that the lipid and protein compositions as well as sphingolipid metabolism of SGPL1 knock-out HeLa cells only show little adaptations, which validates these cells as model systems to study transient protein-sphingolipid interactions.

  17. Ceramide and ceramide 1-phosphate are negative regulators of TNF-α production induced by lipopolysaccharide.

    PubMed

    Józefowski, Szczepan; Czerkies, Maciej; Łukasik, Anna; Bielawska, Alicja; Bielawski, Jacek; Kwiatkowska, Katarzyna; Sobota, Andrzej

    2010-12-01

    LPS is a constituent of cell walls of Gram-negative bacteria that, acting through the CD14/TLR4 receptor complex, causes strong proinflammatory activation of macrophages. In murine peritoneal macrophages and J774 cells, LPS at 1-2 ng/ml induced maximal TNF-α and MIP-2 release, and higher LPS concentrations were less effective, which suggested a negative control of LPS action. While studying the mechanism of this negative regulation, we found that in J774 cells, LPS activated both acid sphingomyelinase and neutral sphingomyelinase and moderately elevated ceramide, ceramide 1-phosphate, and sphingosine levels. Lowering of the acid sphingomyelinase and neutral sphingomyelinase activities using inhibitors or gene silencing upregulated TNF-α and MIP-2 production in J774 cells and macrophages. Accordingly, treatment of those cells with exogenous C8-ceramide diminished TNF-α and MIP-2 production after LPS stimulation. Exposure of J774 cells to bacterial sphingomyelinase or interference with ceramide hydrolysis using inhibitors of ceramidases also lowered the LPS-induced TNF-α production. The latter result indicates that ceramide rather than sphingosine suppresses TNF-α and MIP-2 production. Of these two cytokines, only TNF-α was negatively regulated by ceramide 1-phosphate as was indicated by upregulated TNF-α production after silencing of ceramide kinase gene expression. None of the above treatments diminished NO or RANTES production induced by LPS. Together the data indicate that ceramide negatively regulates production of TNF-α and MIP-2 in response to LPS with the former being sensitive to ceramide 1-phosphate as well. We hypothesize that the ceramide-mediated anti-inflammatory pathway may play a role in preventing endotoxic shock and in limiting inflammation.

  18. GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE-S, A SPERM-SPECIFIC GLYCOLYTIC ENZYME, IS REQUIRED FOR SPERM MOTILITY AND MALE FERTILITY

    EPA Science Inventory

    While glycolysis is highly conserved, it is remarkable that several novel isozymes in this central metabolic pathway are found in mammalian sperm. Glyceraldehyde 3-phosphate dehydrogenase-S (GAPDS) is the product of a mouse gene expressed only during spermatogenesis and, like it...

  19. Enhanced resistance in Theobroma cacao against oomycete and fungal pathogens by secretion of phosphatidylinositol-3-phosphate-binding proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The internalization of oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors’ cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants ...

  20. Inactivation of glyceraldehyde-3-phosphate dehydrogenase of human malignant cells by methylglyoxal.

    PubMed

    Ray, M; Basu, N; Ray, S

    1997-12-01

    The effect of methylglyoxal on the activity of glyceraldehyde-3-phosphate dehydrogenase (GA3PD) of several normal human tissues and benign and malignant tumors has been tested. Methylglyoxal inactivated GA3PD of all the malignant cells (47 samples) and the degree of inactivation was in the range of 25-90%, but it had no inhibitory effect on this enzyme from several normal cells (24 samples) and benign tumors (13 samples). When the effect of methylglyoxal on other two dehydrogenases namely glucose 6-phosphate dehydrogenase (G6PD) and L-lactic dehydrogenase (LDH) of similar cells was tested as controls it has been observed that methylglyoxal has some inactivating effect on G6PD of all the normal, benign and malignant samples tested, whereas, LDH remained completely unaffected. These studies indicate that the inactivating effect of methylglyoxal on GA3PD specifically of the malignant cells may be a common feature of all the malignant cells, and this phenomenon can be used as a simple and rapid device for the detection of malignancy.

  1. Negative regulation of phosphatidylinositol 3-phosphate levels in early-to-late endosome conversion

    PubMed Central

    Liu, Kai; Jian, Youli; Sun, Xiaojuan; Yang, Chengkui; Gao, Zhiyang; Zhang, Zhili; Liu, Xuezhao; Li, Yang; Xu, Jing; Jing, Yudong; Mitani, Shohei; He, Sudan

    2016-01-01

    Phosphatidylinositol 3-phosphate (PtdIns3P) plays a central role in endosome fusion, recycling, sorting, and early-to-late endosome conversion, but the mechanisms that determine how the correct endosomal PtdIns3P level is achieved remain largely elusive. Here we identify two new factors, SORF-1 and SORF-2, as essential PtdIns3P regulators in Caenorhabditis elegans. Loss of sorf-1 or sorf-2 leads to greatly elevated endosomal PtdIns3P, which drives excessive fusion of early endosomes. sorf-1 and sorf-2 function coordinately with Rab switching genes to inhibit synthesis of PtdIns3P, allowing its turnover for endosome conversion. SORF-1 and SORF-2 act in a complex with BEC-1/Beclin1, and their loss causes elevated activity of the phosphatidylinositol 3-kinase (PI3K) complex. In mammalian cells, inactivation of WDR91 and WDR81, the homologs of SORF-1 and SORF-2, induces Beclin1-dependent enlargement of PtdIns3P-enriched endosomes and defective degradation of epidermal growth factor receptor. WDR91 and WDR81 interact with Beclin1 and inhibit PI3K complex activity. These findings reveal a conserved mechanism that controls appropriate PtdIns3P levels in early-to-late endosome conversion. PMID:26783301

  2. The Inositol-3-Phosphate Synthase Biosynthetic Enzyme Has Distinct Catalytic and Metabolic Roles

    PubMed Central

    Frej, Anna D.; Clark, Jonathan; Le Roy, Caroline I.; Lilla, Sergio; Thomason, Peter A.; Otto, Grant P.; Churchill, Grant; Insall, Robert H.; Claus, Sandrine P.; Hawkins, Phillip; Stephens, Len

    2016-01-01

    Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders, including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium discoideum, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in an inositol auxotrophy that can be rescued only partially by exogenous inositol. Removal of inositol supplementation from the ino1− mutant resulted in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis, and substrate adhesion. Inositol depletion also caused a dramatic generalized decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 that is independent of inositol biosynthesis. To characterize this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) and having homology to mammalian macromolecular complex adaptor proteins was identified. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism. PMID:26951199

  3. Glyceraldehyde-3-Phosphate Dehydrogenase-Encoding Gene as a Useful Taxonomic Tool for Staphylococcus spp.

    PubMed Central

    Yugueros, Javier; Temprano, Alejandro; Berzal, Beatriz; Sánchez, María; Hernanz, Carmen; Luengo, José María; Naharro, Germán

    2000-01-01

    The gap gene of Staphylococcus aureus, encoding glyceraldehyde-3-phosphate dehydrogenase, was used as a target to amplify a 933-bp DNA fragment by PCR with a pair of primers 26 and 25 nucleotides in length. PCR products, detected by agarose gel electrophoresis, were also amplified from 12 Staphylococcus spp. analyzed previously. Hybridization with an internal 279-bp DNA fragment probe was positive in all PCR-positive samples. No PCR products were amplified when other gram-positive and gram-negative bacterial genera were analyzed using the same pair of primers. AluI digestion of PCR-generated products gave 12 different restriction fragment length polymorphism (RFLP) patterns, one for each species analyzed. However, we could detect two intraspecies RFLP patterns in Staphylococcus epidermidis, Staphylococcus hominis, and Staphylococcus simulans which were different from the other species. An identical RFLP pattern was observed for 112 S. aureus isolates from humans, cows, and sheep. The sensitivity of the PCR assays was very high, with a detection limit for S. aureus cells of 20 CFU when cells were suspended in saline. PCR amplification of the gap gene has the potential for rapid identification of at least 12 species belonging to the genus Staphylococcus, as it is highly specific. PMID:11101563

  4. Bioreaction Engineering Leading to Efficient Synthesis of L-Glyceraldehyd-3-Phosphate.

    PubMed

    Molla, Getachew S; Kinfu, Birhanu M; Chow, Jennifer; Streit, Wolfgang; Wohlgemuth, Roland; Liese, Andreas

    2017-03-01

    Enantiopure L-glyceraldehyde-3-phosphate (L-GAP) is a useful building block in natural biological and synthetic processes. A biocatalytic process using glycerol kinase from Cellulomonas sp. (EC 2.7.1.30) catalyzed phosphorylation of L-glyceraldehyde (L-GA) by ATP is used for the synthesis of L-GAP. L-GAP has a half-life of 6.86 h under reaction conditions. The activity of this enzyme depends on the Mg(2+) to ATP molar ratio showing maximum activity at the optimum molar ratio of 0.7. A kinetic model is developed and validated showing a 2D correlation of 99.9% between experimental and numerical data matrices. The enzyme exhibits inhibition by ADP, AMP, methylglyoxal and Ca(2+) , but not by L-GAP and inorganic orthophosphate. Moreover, equal amount of Ca(2+) exerts a different degree of inhibition relative to the activity without the addition of Ca(2+) depending on the Mg(2+) to ATP molar ratio. If the Mg(2+) to ATP molar ratio is set to be at the optimum value or less, inorganic hexametaphosphate (PPi6) suppresses the enzyme activity; otherwise PPi6 enhances the enzyme activity. Based on reaction engineering parameters such as conversion, selectivity and specific productivity, evaluation of different reactor types reveals that batchwise operation via stirred-tank reactor is the most efficient process for the synthesis of L-GAP.

  5. Glyceraldehyde-3-phosphate dehydrogenase-encoding gene as a useful taxonomic tool for Staphylococcus spp.

    PubMed

    Yugueros, J; Temprano, A; Berzal, B; Sánchez, M; Hernanz, C; Luengo, J M; Naharro, G

    2000-12-01

    The gap gene of Staphylococcus aureus, encoding glyceraldehyde-3-phosphate dehydrogenase, was used as a target to amplify a 933-bp DNA fragment by PCR with a pair of primers 26 and 25 nucleotides in length. PCR products, detected by agarose gel electrophoresis, were also amplified from 12 Staphylococcus spp. analyzed previously. Hybridization with an internal 279-bp DNA fragment probe was positive in all PCR-positive samples. No PCR products were amplified when other gram-positive and gram-negative bacterial genera were analyzed using the same pair of primers. AluI digestion of PCR-generated products gave 12 different restriction fragment length polymorphism (RFLP) patterns, one for each species analyzed. However, we could detect two intraspecies RFLP patterns in Staphylococcus epidermidis, Staphylococcus hominis, and Staphylococcus simulans which were different from the other species. An identical RFLP pattern was observed for 112 S. aureus isolates from humans, cows, and sheep. The sensitivity of the PCR assays was very high, with a detection limit for S. aureus cells of 20 CFU when cells were suspended in saline. PCR amplification of the gap gene has the potential for rapid identification of at least 12 species belonging to the genus Staphylococcus, as it is highly specific.

  6. Phosphoinositol 3-phosphate acts as a timer for reactive oxygen species production in the phagosome.

    PubMed

    Song, Zhi Min; Bouchab, Leïla; Hudik, Elodie; Le Bars, Romain; Nüsse, Oliver; Dupré-Crochet, Sophie

    2017-01-17

    Production of reactive oxygen species (ROS) in the phagosome by the NADPH oxidase is critical for mammalian immune defense against microbial infections and phosphoinositides are important regulators in this process. Phosphoinositol 3-phosphate (PI(3)P) regulates ROS production at the phagosome via p40(phox) by an unknown mechanism. This study tested the hypothesis that PI(3)P controls ROS production by regulating the presence of p40(phox) and p67(phox) at the phagosomal membrane. Pharmacologic inhibition of PI(3)P synthesis at the phagosome decreased the ROS production both in differentiated PLB-985 cells and human neutrophils. It also releases p67(phox), the key cytosolic subunit of the oxidase, and p40(phox) from the phagosome. The knockdown of the PI(3)P phosphatase MTM1 or Rubicon or both increases the level of PI(3)P at the phagosome. That increase enhances ROS production inside the phagosome and triggers an extended accumulation of p67(phox) at the phagosome. Furthermore, the overexpression of MTM1 at the phagosomal membrane induces the disappearance of PI(3)P from the phagosome and prevents sustained ROS production. In conclusion, PI(3)P, indeed, regulates ROS production by maintaining p40(phox) and p67(phox) at the phagosomal membrane.

  7. The influence of cytosolic phosphorylating glyceraldehyde 3-phosphate dehydrogenase (GAPC) on potato tuber metabolism.

    PubMed

    Hajirezaei, Mohammad-Reza; Biemelt, Sophia; Peisker, Martin; Lytovchenko, Anna; Fernie, Alisdair R; Sonnewald, Uwe

    2006-01-01

    The aim of this work was to investigate the importance of cytosolic phosphorylating glyceraldehyde 3-phosphate dehydrogenase (GAPC) in potato carbohydrate metabolism. For this purpose, the cytosolic isoform of phosphorylating GAPC was cloned and used for an antisense approach to generate transgenic potato plants that exhibited constitutively decreased GAPDH activity. Potato lines with decreased activities of phosphorylating GAPC exhibited no major changes in either whole-plant or tuber morphology. However, the levels of 3-phosphoglycerate were decreased in leaves of the transformants. A broad metabolic phenotyping of tubers from the transformants revealed an increase in sucrose and UDPglucose content, a decrease in the glycolytic intermediates 3-phosphoglycerate and phosphoenolpyruvate but little change in the levels of other metabolites. Moreover, the transformants displayed no differences in cold sweetening with respect to the wild type. Taken together these data suggest that phosphorylating GAPC plays only a minor role in the regulation of potato metabolism. The results presented here are discussed in relation to current models regarding primary metabolism in the potato tuber parenchyma.

  8. Endosomal Phosphatidylinositol 3-Phosphate Promotes Gephyrin Clustering and GABAergic Neurotransmission at Inhibitory Postsynapses*♦

    PubMed Central

    Rhee, Hong Jun; Subramanian, Devaraj; Paraskevopoulou, Foteini; Mueller, Rainer; Schultz, Carsten; Brose, Nils; Rhee, Jeong-Seop; Betz, Heinrich

    2017-01-01

    The formation of neuronal synapses and the dynamic regulation of their efficacy depend on the proper assembly of the postsynaptic neurotransmitter receptor apparatus. Receptor recruitment to inhibitory GABAergic postsynapses requires the scaffold protein gephyrin and the guanine nucleotide exchange factor collybistin (Cb). In vitro, the pleckstrin homology domain of Cb binds phosphoinositides, specifically phosphatidylinositol 3-phosphate (PI3P). However, whether PI3P is required for inhibitory postsynapse formation is currently unknown. Here, we investigated the role of PI3P at developing GABAergic postsynapses by using a membrane-permeant PI3P derivative, time-lapse confocal imaging, electrophysiology, as well as knockdown and overexpression of PI3P-metabolizing enzymes. Our results provide the first in cellula evidence that PI3P located at early/sorting endosomes regulates the postsynaptic clustering of gephyrin and GABAA receptors and the strength of inhibitory, but not excitatory, postsynapses in cultured hippocampal neurons. In human embryonic kidney 293 cells, stimulation of gephyrin cluster formation by PI3P depends on Cb. We therefore conclude that the endosomal pool of PI3P, generated by the class III phosphatidylinositol 3-kinase, is important for the Cb-mediated recruitment of gephyrin and GABAA receptors to developing inhibitory postsynapses and thus the formation of postsynaptic membrane specializations. PMID:27941024

  9. Glyceraldehyde 3-phosphate dehydrogenase-telomere association correlates with redox status in Trypanosoma cruzi.

    PubMed

    Pariona-Llanos, Ricardo; Pavani, Raphael Souza; Reis, Marcelo; Noël, Vincent; Silber, Ariel Mariano; Armelin, Hugo Aguirre; Cano, Maria Isabel Nogueira; Elias, Maria Carolina

    2015-01-01

    Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a classical metabolic enzyme involved in energy production and plays a role in additional nuclear functions, including transcriptional control, recognition of misincorporated nucleotides in DNA and maintenance of telomere structure. Here, we show that the recombinant protein T. cruzi GAPDH (rTcGAPDH) binds single-stranded telomeric DNA. We demonstrate that the binding of GAPDH to telomeric DNA correlates with the balance between oxidized and reduced forms of nicotinamide adenine dinucleotides (NAD+/NADH). We observed that GAPDH-telomere association and NAD+/NADH balance changed throughout the T. cruzi life cycle. For example, in replicative epimastigote forms of T. cruzi, which show similar intracellular concentrations of NAD+ and NADH, GAPDH binds to telomeric DNA in vivo and this binding activity is inhibited by exogenous NAD+. In contrast, in the T. cruzi non-proliferative trypomastigote forms, which show higher NAD+ concentration, GAPDH was absent from telomeres. In addition, NAD+ abolishes physical interaction between recombinant GAPDH and synthetic telomere oligonucleotide in a cell free system, mimicking exogenous NAD+ that reduces GAPDH-telomere interaction in vivo. We propose that the balance in the NAD+/NADH ratio during T. cruzi life cycle homeostatically regulates GAPDH telomere association, suggesting that in trypanosomes redox status locally modulates GAPDH association with telomeric DNA.

  10. Glyceraldehyde 3-Phosphate Dehydrogenase-Telomere Association Correlates with Redox Status in Trypanosoma cruzi

    PubMed Central

    Pariona-Llanos, Ricardo; Pavani, Raphael Souza; Reis, Marcelo; Noël, Vincent; Silber, Ariel Mariano; Armelin, Hugo Aguirre; Cano, Maria Isabel Nogueira; Elias, Maria Carolina

    2015-01-01

    Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a classical metabolic enzyme involved in energy production and plays a role in additional nuclear functions, including transcriptional control, recognition of misincorporated nucleotides in DNA and maintenance of telomere structure. Here, we show that the recombinant protein T. cruzi GAPDH (rTcGAPDH) binds single-stranded telomeric DNA. We demonstrate that the binding of GAPDH to telomeric DNA correlates with the balance between oxidized and reduced forms of nicotinamide adenine dinucleotides (NAD+/NADH). We observed that GAPDH-telomere association and NAD+/NADH balance changed throughout the T. cruzi life cycle. For example, in replicative epimastigote forms of T. cruzi, which show similar intracellular concentrations of NAD+ and NADH, GAPDH binds to telomeric DNA in vivo and this binding activity is inhibited by exogenous NAD+. In contrast, in the T. cruzi non-proliferative trypomastigote forms, which show higher NAD+ concentration, GAPDH was absent from telomeres. In addition, NAD+ abolishes physical interaction between recombinant GAPDH and synthetic telomere oligonucleotide in a cell free system, mimicking exogenous NAD+ that reduces GAPDH-telomere interaction in vivo. We propose that the balance in the NAD+/NADH ratio during T. cruzi life cycle homeostatically regulates GAPDH telomere association, suggesting that in trypanosomes redox status locally modulates GAPDH association with telomeric DNA. PMID:25775131

  11. Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco.

    PubMed

    Ye, G N; Hajdukiewicz, P T; Broyles, D; Rodriguez, D; Xu, C W; Nehra, N; Staub, J M

    2001-02-01

    Plastid transformation (transplastomic) technology has several potential advantages for biotechnological applications including the use of unmodified prokaryotic genes for engineering, potential high-level gene expression and gene containment due to maternal inheritance in most crop plants. However, the efficacy of a plastid-encoded trait may change depending on plastid number and tissue type. We report a feasibility study in tobacco plastids to achieve high-level herbicide resistance in both vegetative tissues and reproductive organs. We chose to test glyphosate resistance via over-expression in plastids of tolerant forms of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Immunological, enzymatic and whole-plant assays were used to prove the efficacy of three different prokaryotic (Achromobacter, Agrobacterium and Bacillus) EPSPS genes. Using the Agrobacterium strain CP4 EPSPS as a model we identified translational control sequences that direct a 10,000-fold range of protein accumulation (to >10% total soluble protein in leaves). Plastid-expressed EPSPS could provide very high levels of glyphosate resistance, although levels of resistance in vegetative and reproductive tissues differed depending on EPSPS accumulation levels, and correlated to the plastid abundance in these tissues. Paradoxically, higher levels of plastid-expressed EPSPS protein accumulation were apparently required for efficacy than from a similar nuclear-encoded gene. Nevertheless, the demonstration of high-level glyphosate tolerance in vegetative and reproductive organs using transplastomic technology provides a necessary step for transfer of this technology to other crop species.

  12. U(VI) Sequestration in Hydroxyapatite Produced by Microbial Glycerol 3-Phosphate Metabolism▿ †

    PubMed Central

    Shelobolina, Evgenya S.; Konishi, Hiromi; Xu, Huifang; Roden, Eric E.

    2009-01-01

    Previous studies have demonstrated the potential for removal of U(VI) from solution via precipitation of U(VI)-bearing calcium-phosphate (Ca-P) minerals coupled to microbial hydrolysis of glycerol phosphate compounds. We evaluated this process in circumneutral-pH groundwater from Area 2 of the U.S. Department of Energy Field Research Center at Oak Ridge National Laboratory. Area 2 groundwater contains high concentrations of dissolved calcium (ca. 4 mM), and thus, release of phosphate during glycerol phosphate metabolism has the potential to create conditions favorable for U(VI) sequestration in Ca-P minerals. Microbial enumeration and isolation studies verified the presence of aerobic and nitrate-reducing glycerol 3-phosphate (G3P)-metabolizing microorganisms in Area 2 sediments. Coprecipitation of U(VI) with Ca-P minerals coupled to microbial G3P hydrolysis was demonstrated in artificial groundwater under aerobic and nitrate-reducing conditions. Transmission electron microscopy analysis and mineral-washing experiments demonstrated that U(VI) was incorporated into the structure of the insoluble Ca-P mineral hydroxyapatite [Ca5(PO4)3OH]. Our results support the idea that U(VI) can be effectively removed from solution in contaminated aquifers through stimulation of microbial organophosphate metabolism. PMID:19633115

  13. Identification of Glyceraldehyde 3-Phosphate Dehydrogenase Sequence and Expression Profiles in Tree Shrew (Tupaia belangeri)

    PubMed Central

    Zheng, Yu; Wang, Yingjun; Smith, Wanli W.; Leng, Jing

    2014-01-01

    The tree shrews (Tupaia belangeri) diverged from the primate order (Primates) and are classified as Scandentia, a separate taxonomic group of mammals. The tree shrew has been suggested to use an animal model to study human disease but the genomic sequences of tree shrew is largely unidentified. Here we identified the full-length cDNA sequence of a housekeeping gene, Glyceraldehyde 3-phosphate Dehydrogenase (GAPDH), in tree shrew. We further constructed a phylogenetic family tree base on GAPDH molecules of various organisms and compared GAPDH sequences with human and other small experimental animals. These study revealed that tree shrew was closer to human than mouse, rat, rabbit and guinea pig. The Quantitative Reverse Transcription PCR and western blot analysis further demonstrated that GAPDH expressed in various tissues in tree shrew as a general conservative housekeeping proteins as in human. Our findings provide the novel genetic knowledge of the tree shrew and strong evidences that tree shrew can be an experimental model system to study human disorders. PMID:24887411

  14. Occurrence of a multimeric high-molecular-weight glyceraldehyde-3-phosphate dehydrogenase in human serum.

    PubMed

    Kunjithapatham, Rani; Geschwind, Jean-Francois; Devine, Lauren; Boronina, Tatiana N; O'Meally, Robert N; Cole, Robert N; Torbenson, Michael S; Ganapathy-Kanniappan, Shanmugasundaram

    2015-04-03

    Cellular glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a phylogenetically conserved, ubiquitous enzyme that plays an indispensable role in energy metabolism. Although a wealth of information is available on cellular GAPDH, there is a clear paucity of data on its extracellular counterpart (i.e., the secreted or extracellular GAPDH). Here, we show that the extracellular GAPDH in human serum is a multimeric, high-molecular-weight, yet glycolytically active enzyme. The high-molecular-weight multimers of serum GAPDH were identified by immunodetection on one- and two-dimensional gel electrophoresis using multiple antibodies specific for various epitopes of GAPDH. Partial purification of serum GAPDH by DEAE Affigel affinity/ion exchange chromatography further established the multimeric composition of serum GAPDH. In vitro data demonstrated that human cell lines secrete a multimeric, high-molecular-weight enzyme similar to that of serum GAPDH. Furthermore, LC-MS/MS analysis of extracellular GAPDH from human cell lines confirmed the presence of unique peptides of GAPDH in the high-molecular-weight subunits. Furthermore, data from pulse-chase experiments established the presence of high-molecular-weight subunits in the secreted, extracellular GAPDH. Taken together, our findings demonstrate the presence of a high-molecular-weight, enzymatically active secretory GAPDH in human serum that may have a hitherto unknown function in humans.

  15. Phosphatidic Acid Binds to Cytosolic Glyceraldehyde-3-phosphate Dehydrogenase and Promotes Its Cleavage in Arabidopsis *

    PubMed Central

    Kim, Sang-Chul; Guo, Liang; Wang, Xuemin

    2013-01-01

    Phosphatidic acid (PA) is a class of lipid messengers involved in a variety of physiological processes. To understand how PA mediates cell functions in plants, we used a PA affinity membrane assay to isolate PA-binding proteins from Camelina sativa followed by mass spectrometric sequencing. A cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) was identified to bind to PA, and detailed analysis was carried out subsequently using GAPC1 and GAPC1 from Arabidopsis. The PA and GAPC binding was abolished by the cation zinc whereas oxidation of GAPCs promoted the PA binding. PA had little impact on the GAPC catalytic activity in vitro, but the PA treatment of Arabidopsis seedlings induced proteolytic cleavage of GAPC2 and inhibited Arabidopsis seedling growth. The extent of PA inhibition was greater in GAPC-overexpressing than wild-type seedlings, but the greater PA inhibition was abolished by application of zinc to the seedling. The PA treatment also reduced the expression of genes involved in PA synthesis and utilization, and the PA-reduced gene expression was partially recovered by zinc treatment. These data suggest that PA binds to oxidized GAPDH and promotes its cleavage and that the PA and GAPC interaction may provide a signaling link coordinating carbohydrate and lipid metabolism. PMID:23504314

  16. Comparative molecular analysis of evolutionarily distant glyceraldehyde-3-phosphate dehydrogenase from Sardina pilchardus and Octopus vulgaris.

    PubMed

    Baibai, Tarik; Oukhattar, Laila; Mountassif, Driss; Assobhei, Omar; Serrano, Aurelio; Soukri, Abdelaziz

    2010-12-01

    The NAD(+)-dependent cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12), which is recognized as a key to central carbon metabolism in glycolysis and gluconeogenesis and as an important allozymic polymorphic biomarker, was purified from muscles of two marine species: the skeletal muscle of Sardina pilchardus Walbaum (Teleost, Clupeida) and the incompressible arm muscle of Octopus vulgaris (Mollusca, Cephalopoda). Comparative biochemical studies have revealed that they differ in their subunit molecular masses and in pI values. Partial cDNA sequences corresponding to an internal region of the GapC genes from Sardina and Octopus were obtained by polymerase chain reaction using degenerate primers designed from highly conserved protein motifs. Alignments of the deduced amino acid sequences were used to establish the 3D structures of the active site of two enzymes as well as the phylogenetic relationships of the sardine and octopus enzymes. These two enzymes are the first two GAPDHs characterized so far from teleost fish and cephalopod, respectively. Interestingly, phylogenetic analyses indicated that the sardina GAPDH is in a cluster with the archetypical enzymes from other vertebrates, while the octopus GAPDH comes together with other molluscan sequences in a distant basal assembly closer to bacterial and fungal orthologs, thus suggesting their different evolutionary scenarios.

  17. Effector-induced dissociation of glyceraldehyde-3-phosphate dehydrogenase discriminated by urea solvation.

    PubMed

    Ivanova, V; Krusteva, N; Atanasov, B

    1995-08-01

    The dissociation of glyceraldehyde-3-phosphate dehydrogenase (GAPD) from pig muscle in water solutions (0.1 M phosphate, pH 7) at increased urea concentrations was studied by means of frontal-gel chromatography, intrinsic (TRP) fluorescence, differential absorption spectroscopy and selective chemical modification at TRP0193. The results are in agreement with a consecutive two-step model of dissociation of the tetramer and the dimer (C*T = 0.42 M urea < C*D = 1.39 M urea). The binding effector(s) destabilizes the oligomeric structures (delta GT changes from -1.00 to -0.54 kcal/mol; delta GD from -2.30 to -1.22 kcal/mol). The introduction of the bulky Koshland-reagent group to TRP-193 at the subunit-subunit interface leads to a decrease of the stability with delta delta G approximate to 1 kcal/mol, owing to TRP-193...TYR-39...TYR-92 cluster destruction. By using lobster GAPD atomic coordinates (PDB file 1GPD) and pig muscle GAPD amino-acid sequence, a tentative molecular model was constructed and the subunit contacts in terms of the Lee-Richard static accessibilities were described. A detailed analysis of the dissociation as a transfer of the buried residues from the molecular interface to the urea solutions was performed.

  18. Evidence for thiol/disulfide exchange reactions between tubulin and glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Landino, Lisa M; Hagedorn, Tara D; Kennett, Kelly L

    2014-12-01

    While thiol redox reactions are a common mechanism to regulate protein structure and function, protein disulfide bond formation is a marker of oxidative stress that has been linked to neurodegeneration. Both tubulin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) contain multiple cysteines that have been identified as targets for oxidation to disulfides, S-nitrosation and S-glutathionylation. We show that GAPDH is one of three prominent brain microtubule-associated proteins (MAPs), in addition to MAP-2 and tau, with reactive cysteines. We detected a threefold to fourfold increase in tubulin cysteine oxidation by hydrogen peroxide in the presence of rabbit muscle GAPDH by 5-iodoacetamidofluorescein labeling and by Western blot detection of higher molecular weight inter-chain tubulin disulfides. In thiol/disulfide exchange experiments, tubulin restored ∼50% of oxidized GAPDH cysteines and the equilibrium favored reduced GAPDH. Further, we report that oxidized GAPDH is repaired by the thioredoxin reductase system (TRS). Restoration of GAPDH activity after reduction by both tubulin and the TRS was time-dependent suggesting conformational changes near the active site cysteine149. The addition of brain MAPs to oxidized tubulin reduced tubulin disulfides and labeling of MAP-2 and of GAPDH decreased. Because the extent of tubulin repair of oxidized GAPDH was dependent on buffer strength, we conclude that electrostatics influence thiol/disulfide exchange between the two proteins. The novel interactions presented herein may protect GAPDH from inhibition under oxidative stress conditions.

  19. Chemical Synthesis and Molecular Recognition of Phosphatase-Resistant Analogues of Phosphatidylinositol-3-phosphate

    PubMed Central

    Xu, Yong; Lee, Stephanie A.; Kutateladze, Tatiana G.; Sbrissa, Diego; Shisheva, Assia; Prestwich, Glenn D.

    2008-01-01

    The remodeling of phosphatidylinositol polyphosphates in cellular membranes by phosphatases and kinases orchestrates the signaling by these lipids in space and time. In order to provide chemical tools to study of the changes in cell physiology mediated by these lipids, three new metabolically-stabilized (ms) analogues of phosphatidylinositol-3-phosphate (PtdIns(3)P were synthesized. We describe herein the total asymmetric synthesis of 3-methylphosphonate, 3-monofluoromethylphosphonate and 3-phosphorothioate analogues of PtdIns(3)P. From differentially protected D-myo-inositol key intermediates, a versatile phosphoramidite reagent was employed in the synthesis of PtdIns(3)P analogues with diacylglyceryl moieties containing dioleoyl, dipalmitoyl and dibutyryl chains. In addition, we introduce a new phosphorlyation reagent, monofluoromethylphosphonyl chloride, which has general applications for the preparation of “pKa-matched” monofluorophosphonates. These ms-PtdIns(3)P analogues exhibited reduced binding activities with 15N-labelled FYVE and PX domains, as significant 1H and 15N chemical shift changes in the FYVE domain were induced by titrating ms-PtdIns(3)Ps into membrane-mimetic dodecylphosphocholine (DPC) micelles. In addition, the PtdIns(3)P analogues with dioleyl and dipalmitoyl chains were substrates for the 5-kinase enzyme PIKfyve; the corresponding phosphorylated ms-PI(3,5)P2 products were detected by radio-TLC analysis. PMID:16417379

  20. Structure and kinetic characterization of human sperm-specific glyceraldehyde-3-phosphate dehydrogenase, GAPDS.

    PubMed

    Chaikuad, Apirat; Shafqat, Naeem; Al-Mokhtar, Ruby; Cameron, Gus; Clarke, Anthony R; Brady, R Leo; Oppermann, Udo; Frayne, Jan; Yue, Wyatt W

    2011-04-15

    hGAPDS (human sperm-specific glyceraldehyde-3-phosphate dehydrogenase) is a glycolytic enzyme essential for the survival of spermatozoa, and constitutes a potential target for non-hormonal contraception. However, enzyme characterization of GAPDS has been hampered by the difficulty in producing soluble recombinant protein. In the present study, we have overexpressed in Escherichia coli a highly soluble form of hGAPDS truncated at the N-terminus (hGAPDSΔN), and crystallized the homotetrameric enzyme in two ligand complexes. The hGAPDSΔN-NAD+-phosphate structure maps the two anion-recognition sites within the catalytic pocket that correspond to the conserved Ps site and the newly recognized Pi site identified in other organisms. The hGAPDSΔN-NAD+-glycerol structure shows serendipitous binding of glycerol at the Ps and new Pi sites, demonstrating the propensity of these anion-recognition sites to bind non-physiologically relevant ligands. A comparison of kinetic profiles between hGAPDSΔN and its somatic equivalent reveals a 3-fold increase in catalytic efficiency for hGAPDSΔN. This may be attributable to subtle amino acid substitutions peripheral to the active centre that influence the charge properties and protonation states of catalytic residues. Our data therefore elucidate structural and kinetic features of hGAPDS that might provide insightful information towards inhibitor development.

  1. Nucleotide variability in the 5-enolpyruvylshikimate-3-phosphate synthase gene from Eleusine indica (L.) Gaertn.

    PubMed

    Chong, J L; Wickneswari, R; Ismail, B S; Salmijah, S

    2008-02-01

    This study reports the results of the partial DNA sequence analysis of the 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant (R) and glyphosate-susceptible (S) biotypes of Eleusine indica (L.) Gaertn from Peninsular Malaysia. Sequencing results revealed point mutation at nucleotide position 875 in the R biotypes of Bidor, Chaah and Temerloh. In the Chaah R population, substitution of cytosine (C) to adenine (A) resulted in the change of threonine (Thr106) to proline (Pro106) and from C to thymidine (T) in the Bidor R population, leading to serine (Ser106) from Pro106. As for the Temerloh R, C was substituted by T resulting in the change of Pro106 to Ser106. A new mutation previously undetected in the Temerloh R was revealed with C being substituted with A, resulting in the change of Pro106 to Thr106 indicating multiple founding events rather than to the spread of a single resistant allele. There was no point mutation recorded at nucleotide position 875 previously demonstrated to play a pivotal role in conferring glyphosate resistance to E. indica for the Lenggeng, Kuala Selangor, Melaka R populations. Thus, there may be another resistance mechanism yet undiscovered in the resistant Lenggeng, Kuala Selangor and Melaka populations.

  2. Identification of acyl-CoA synthetases involved in the mammalian sphingosine 1-phosphate metabolic pathway.

    PubMed

    Ohkuni, Aya; Ohno, Yusuke; Kihara, Akio

    2013-12-13

    Sphingosine 1-phosphate (S1P) plays important roles both as a bioactive lipid molecule and an intermediate of the sphingolipid-to-glycerophospholipid metabolic pathway. To identify human acyl-CoA synthetases (ACSs) involved in S1P metabolism, we cloned all 26 human ACS genes and examined their abilities to restore deficient sphingolipid-to-glycerophospholipid metabolism in a yeast mutant lacking two ACS genes, FAA1 and FAA4. Here, in addition to the previously identified ACSL family members (ACSL1, 3, 4, 5, and 6), we found that ACSVL1, ACSVL4, and ACSBG1 also restored metabolism. All 8 ACSs were localized either exclusively or partly to the endoplasmic reticulum (ER), where S1P metabolism takes place. We previously proposed the entire S1P metabolic pathway from results obtained using yeast cells, i.e., S1P is metabolized to glycerophospholipids via trans-2-hexadecenal, trans-2-hexadecenoic acid, trans-2-hexadecenoyl-CoA, and palmitoyl-CoA. However, as S1P is not a naturally occurring long-chain base 1-phosphate in yeast, the validity of this pathway required further verification using mammalian cells. In the present study, we treated HeLa cells with the ACS inhibitor triacsin C and found that inhibition of ACSs resulted in accumulation of trans-2-hexadecenoic acid as in ACS mutant yeast. From these results, we conclude that S1P is metabolized by a common pathway in eukaryotes.

  3. Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome.

    PubMed

    Prasad, Rathi; Hadjidemetriou, Irene; Maharaj, Avinaash; Meimaridou, Eirini; Buonocore, Federica; Saleem, Moin; Hurcombe, Jenny; Bierzynska, Agnieszka; Barbagelata, Eliana; Bergadá, Ignacio; Cassinelli, Hamilton; Das, Urmi; Krone, Ruth; Hacihamdioglu, Bulent; Sari, Erkan; Yesilkaya, Ediz; Storr, Helen L; Clemente, Maria; Fernandez-Cancio, Monica; Camats, Nuria; Ram, Nanik; Achermann, John C; Van Veldhoven, Paul P; Guasti, Leonardo; Braslavsky, Debora; Guran, Tulay; Metherell, Louise A

    2017-03-01

    Primary adrenal insufficiency is life threatening and can present alone or in combination with other comorbidities. Here, we have described a primary adrenal insufficiency syndrome and steroid-resistant nephrotic syndrome caused by loss-of-function mutations in sphingosine-1-phosphate lyase (SGPL1). SGPL1 executes the final decisive step of the sphingolipid breakdown pathway, mediating the irreversible cleavage of the lipid-signaling molecule sphingosine-1-phosphate (S1P). Mutations in other upstream components of the pathway lead to harmful accumulation of lysosomal sphingolipid species, which are associated with a series of conditions known as the sphingolipidoses. In this work, we have identified 4 different homozygous mutations, c.665G>A (p.R222Q), c.1633_1635delTTC (p.F545del), c.261+1G>A (p.S65Rfs*6), and c.7dupA (p.S3Kfs*11), in 5 families with the condition. In total, 8 patients were investigated, some of whom also manifested other features, including ichthyosis, primary hypothyroidism, neurological symptoms, and cryptorchidism. Sgpl1-/- mice recapitulated the main characteristics of the human disease with abnormal adrenal and renal morphology. Sgpl1-/- mice displayed disrupted adrenocortical zonation and defective expression of steroidogenic enzymes as well as renal histology in keeping with a glomerular phenotype. In summary, we have identified SGPL1 mutations in humans that perhaps represent a distinct multisystemic disorder of sphingolipid metabolism.

  4. Structure and function of sphingosine-1-phosphate lyase, a key enzyme of sphingolipid metabolism.

    PubMed

    Bourquin, Florence; Riezman, Howard; Capitani, Guido; Grütter, Markus G

    2010-08-11

    Sphingosine-1-phosphate lyase (SPL), a key enzyme of sphingolipid metabolism, catalyzes the irreversible degradation of sphingoid base phosphates. Its main substrate sphingosine-1-phosphate (S1P) acts both extracellularly, by binding G protein-coupled receptors of the lysophospholipid receptor family, and inside the cell, as a second messenger. There, S1P takes part in regulating various cellular processes and its levels are tightly regulated. SPL is a pivotal enzyme regulating S1P intracellular concentrations and a promising drug target for the design of immunosuppressants. We structurally and functionally characterized yeast SPL (Dpl1p) and its first prokaryotic homolog, from Symbiobacterium thermophilum. The Dpl1p structure served as a basis for a very reliable model of Homo sapiens SPL. The above results, together with in vitro and in vivo studies of SPL mutants, reveal which residues are involved in activity and substrate binding and pave the way to studies aimed at controlling the activity of this pivotal enzyme.

  5. Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome

    PubMed Central

    Prasad, Rathi; Hadjidemetriou, Irene; Meimaridou, Eirini; Buonocore, Federica; Saleem, Moin; Hurcombe, Jenny; Bierzynska, Agnieszka; Barbagelata, Eliana; Bergadá, Ignacio; Cassinelli, Hamilton; Das, Urmi; Krone, Ruth; Hacihamdioglu, Bulent; Sari, Erkan; Yesilkaya, Ediz; Storr, Helen L.; Clemente, Maria; Fernandez-Cancio, Monica; Camats, Nuria; Ram, Nanik; Achermann, John C.; Van Veldhoven, Paul P.; Guasti, Leonardo; Braslavsky, Debora; Guran, Tulay; Metherell, Louise A.

    2017-01-01

    Primary adrenal insufficiency is life threatening and can present alone or in combination with other comorbidities. Here, we have described a primary adrenal insufficiency syndrome and steroid-resistant nephrotic syndrome caused by loss-of-function mutations in sphingosine-1-phosphate lyase (SGPL1). SGPL1 executes the final decisive step of the sphingolipid breakdown pathway, mediating the irreversible cleavage of the lipid-signaling molecule sphingosine-1-phosphate (S1P). Mutations in other upstream components of the pathway lead to harmful accumulation of lysosomal sphingolipid species, which are associated with a series of conditions known as the sphingolipidoses. In this work, we have identified 4 different homozygous mutations, c.665G>A (p.R222Q), c.1633_1635delTTC (p.F545del), c.261+1G>A (p.S65Rfs*6), and c.7dupA (p.S3Kfs*11), in 5 families with the condition. In total, 8 patients were investigated, some of whom also manifested other features, including ichthyosis, primary hypothyroidism, neurological symptoms, and cryptorchidism. Sgpl1–/– mice recapitulated the main characteristics of the human disease with abnormal adrenal and renal morphology. Sgpl1–/– mice displayed disrupted adrenocortical zonation and defective expression of steroidogenic enzymes as well as renal histology in keeping with a glomerular phenotype. In summary, we have identified SGPL1 mutations in humans that perhaps represent a distinct multisystemic disorder of sphingolipid metabolism. PMID:28165343

  6. Prolonging Survival of Corneal Transplantation by Selective Sphingosine-1-Phosphate Receptor 1 Agonist

    PubMed Central

    Gao, Min; Liu, Yong; Xiao, Yang; Han, Gencheng; Jia, Liang; Wang, Liqiang; Lei, Tian; Huang, Yifei

    2014-01-01

    Corneal transplantation is the most used therapy for eye disorders. Although the cornea is somewhat an immune privileged organ, immune rejection is still the major problem that reduces the success rate. Therefore, effective chemical drugs that regulate immunoreactions are needed to improve the outcome of corneal transplantations. Here, a sphingosine-1-phosphate receptor 1 (S1P1) selective agonist was systematically evaluated in mouse allogeneic corneal transplantation and compared with the commonly used immunosuppressive agents. Compared with CsA and the non-selective sphingosine 1-phosphate (S1P) receptor agonist FTY720, the S1P1 selective agonist can prolong the survival corneal transplantation for more than 30 days with a low immune response. More importantly, the optimal dose of the S1P1 selective agonist was much less than non-selective S1P receptor agonist FTY720, which would reduce the dose-dependent toxicity in drug application. Then we analyzed the mechanisms of the selected S1P1 selective agonist on the immunosuppression. The results shown that the S1P1 selective agonist could regulate the distribution of the immune cells with less CD4+ T cells and enhanced Treg cells in the allograft, moreover the expression of anti-inflammatory cytokines TGF-β1 and IL-10 unregulated which can reduce the immunoreactions. These findings suggest that S1P1 selective agonist may be a more appropriate immunosuppressive compound to effectively prolong mouse allogeneic corneal grafts survival. PMID:25216235

  7. Molecular basis of classic galactosemia from the structure of human galactose 1-phosphate uridylyltransferase.

    PubMed

    McCorvie, Thomas J; Kopec, Jolanta; Pey, Angel L; Fitzpatrick, Fiona; Patel, Dipali; Chalk, Rod; Shrestha, Leela; Yue, Wyatt W

    2016-06-01

    Classic galactosemia is a potentially lethal disease caused by the dysfunction of galactose 1-phosphate uridylyltransferase (GALT). Over 300 disease-associated GALT mutations have been reported, with the majority being missense changes, although a better understanding of their underlying molecular effects has been hindered by the lack of structural information for the human enzyme. Here, we present the 1.9 Å resolution crystal structure of human GALT (hGALT) ternary complex, revealing a homodimer arrangement that contains a covalent uridylylated intermediate and glucose-1-phosphate in the active site, as well as a structural zinc-binding site, per monomer. hGALT reveals significant structural differences from bacterial GALT homologues in metal ligation and dimer interactions, and therefore is a zbetter model for understanding the molecular consequences of disease mutations. Both uridylylation and zinc binding influence the stability and aggregation tendency of hGALT. This has implications for disease-associated variants where p.Gln188Arg, the most commonly detected, increases the rate of aggregation in the absence of zinc likely due to its reduced ability to form the uridylylated intermediate. As such our structure serves as a template in the future design of pharmacological chaperone therapies and opens new concepts about the roles of metal binding and activity in protein misfolding by disease-associated mutants.

  8. Sphingosine-1-phosphate receptor 3 influences cell cycle progression in muscle satellite cells.

    PubMed

    Fortier, Mathieu; Figeac, Nicolas; White, Robert B; Knopp, Paul; Zammit, Peter S

    2013-10-15

    Skeletal muscle retains a resident stem cell population called satellite cells, which are mitotically quiescent in mature muscle, but can be activated to produce myoblast progeny for muscle homeostasis, hypertrophy and repair. We have previously shown that satellite cell activation is partially controlled by the bioactive phospholipid, sphingosine-1-phosphate, and that S1P biosynthesis is required for muscle regeneration. Here we investigate the role of sphingosine-1-phosphate receptor 3 (S1PR3) in regulating murine satellite cell function. S1PR3 levels were high in quiescent myogenic cells before falling during entry into cell cycle. Retrovirally-mediated constitutive expression of S1PR3 led to suppressed cell cycle progression in satellite cells, but did not overtly affect the myogenic program. Conversely, satellite cells isolated from S1PR3-null mice exhibited enhanced proliferation ex-vivo. In vivo, acute cardiotoxin-induced muscle regeneration was enhanced in S1PR3-null mice, with bigger muscle fibres compared to control mice. Importantly, genetically deleting S1PR3 in the mdx mouse model of Duchenne muscular dystrophy produced a less severe muscle dystrophic phenotype, than when signalling though S1PR3 was operational. In conclusion, signalling though S1PR3 suppresses cell cycle progression to regulate function in muscle satellite cells.

  9. Molecular basis of classic galactosemia from the structure of human galactose 1-phosphate uridylyltransferase

    PubMed Central

    McCorvie, Thomas J.; Kopec, Jolanta; Pey, Angel L.; Fitzpatrick, Fiona; Patel, Dipali; Chalk, Rod; Shrestha, Leela; Yue, Wyatt W.

    2016-01-01

    Classic galactosemia is a potentially lethal disease caused by the dysfunction of galactose 1-phosphate uridylyltransferase (GALT). Over 300 disease-associated GALT mutations have been reported, with the majority being missense changes, although a better understanding of their underlying molecular effects has been hindered by the lack of structural information for the human enzyme. Here, we present the 1.9 Å resolution crystal structure of human GALT (hGALT) ternary complex, revealing a homodimer arrangement that contains a covalent uridylylated intermediate and glucose-1-phosphate in the active site, as well as a structural zinc-binding site, per monomer. hGALT reveals significant structural differences from bacterial GALT homologues in metal ligation and dimer interactions, and therefore is a zbetter model for understanding the molecular consequences of disease mutations. Both uridylylation and zinc binding influence the stability and aggregation tendency of hGALT. This has implications for disease-associated variants where p.Gln188Arg, the most commonly detected, increases the rate of aggregation in the absence of zinc likely due to its reduced ability to form the uridylylated intermediate. As such our structure serves as a template in the future design of pharmacological chaperone therapies and opens new concepts about the roles of metal binding and activity in protein misfolding by disease-associated mutants. PMID:27005423

  10. Recombinant expression of a functional myo-inositol-1-phosphate synthase (MIPS) in Mycobacterium smegmatis.

    PubMed

    Huang, Xinyi; Hernick, Marcy

    2015-10-01

    Myo-inositol-1-phosphate synthase (MIPS, E.C. 5.5.1.4) catalyzes the first step in inositol production-the conversion of glucose-6-phosphate (Glc-6P) to myo-inositol-1-phosphate. While the three dimensional structure of MIPS from Mycobacterium tuberculosis has been solved, biochemical studies examining the in vitro activity have not been reported to date. Herein we report the in vitro activity of mycobacterial MIPS expressed in E. coli and Mycobacterium smegmatis. Recombinant expression in E. coli yields a soluble protein capable of binding the NAD(+) cofactor; however, it has no significant activity with the Glc-6P substrate. In contrast, recombinant expression in M. smegmatis mc(2)4517 yields a functionally active protein. Examination of structural data suggests that MtMIPS expressed in E. coli adopts a fold that is missing a key helix containing two critical (conserved) Lys side chains, which likely explains the inability of the E. coli expressed protein to bind and turnover the Glc-6P substrate. Recombinant expression in M. smegmatis may yield a protein that adopts a fold in which this key helix is formed enabling proper positioning of important side chains, thereby allowing for Glc-6P substrate binding and turnover. Detailed mechanistic studies may be feasible following optimization of the recombinant MIPS expression protocol in M. smegmatis.

  11. TGF-β/SMAD3 Pathway Stimulates Sphingosine-1 Phosphate Receptor 3 Expression: IMPLICATION OF SPHINGOSINE-1 PHOSPHATE RECEPTOR 3 IN LUNG ADENOCARCINOMA PROGRESSION.

    PubMed

    Zhao, Jiawei; Liu, Jingjing; Lee, Jen-Fu; Zhang, Wenliang; Kandouz, Mustapha; VanHecke, Garrett C; Chen, Shiyou; Ahn, Young-Hoon; Lonardo, Fulvio; Lee, Menq-Jer

    2016-12-30

    Previously, we showed that levels of sphingosine-1 phosphate receptor 3 (S1PR3) are increased in a panel of cultured human lung adenocarcinoma cell lines, and that S1PR3-mediated signaling pathways regulate proliferation, soft agar growth, and invasion of human lung adenocarcinoma cells in vitro In the present study, we examine S1PR3 levels in human lung adenocarcinoma specimens. cDNA array and tumor microarray analysis shows that mRNA and protein levels of S1PR3 are significantly increased in human lung adenocarcinomas when compared with normal lung epithelial cells. Promoter analysis shows 16 candidate SMAD3 binding sites in the promoter region of S1PR3. ChIP indicates that TGF-β treatment stimulates the binding of SMAD3 to the promoter region of S1PR3. Luciferase reporter assay demonstrates that SMAD3 transactivates S1PR3 promoter. TGF-β stimulation or ectopic expression of TGF-β up-regulates S1PR3 levels in vitro and ex vivo Pharmacologic inhibition of TGF-β receptor or SMAD3 abrogates the TGF-β-stimulated S1PR3 up-regulation. Moreover, S1PR3 knockdown dramatically inhibits tumor growth and lung metastasis, whereas ectopic expression of S1PR3 promotes the growth of human lung adenocarcinoma cells in animals. Pharmacological inhibition of S1PR3 profoundly inhibits the growth of lung carcinoma in mice. Our studies suggest that levels of S1PR3 are up-regulated in human lung adenocarcinomas, at least in part due to the TGF-β/SMAD3 signaling axis. Furthermore, S1PR3 activity promotes the progression of human lung adenocarcinomas. Therefore, S1PR3 may represent a novel therapeutic target for the treatment of deadly lung adenocarcinomas.

  12. Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Aggregation Causes Mitochondrial Dysfunction during Oxidative Stress-induced Cell Death*

    PubMed Central

    Itakura, Masanori; Kubo, Takeya; Kaneshige, Akihiro; Harada, Naoki; Izawa, Takeshi; Azuma, Yasu-Taka; Kuwamura, Mitsuru; Yamaji, Ryouichi; Takeuchi, Tadayoshi

    2017-01-01

    Glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein that also mediates cell death under oxidative stress. We reported previously that the active-site cysteine (Cys-152) of GAPDH plays an essential role in oxidative stress-induced aggregation of GAPDH associated with cell death, and a C152A-GAPDH mutant rescues nitric oxide (NO)-induced cell death by interfering with the aggregation of wild type (WT)-GAPDH. However, the detailed mechanism underlying GAPDH aggregate-induced cell death remains elusive. Here we report that NO-induced GAPDH aggregation specifically causes mitochondrial dysfunction. First, we observed a correlation between NO-induced GAPDH aggregation and mitochondrial dysfunction, when GAPDH aggregation occurred at mitochondria in SH-SY5Y cells. In isolated mitochondria, aggregates of WT-GAPDH directly induced mitochondrial swelling and depolarization, whereas mixtures containing aggregates of C152A-GAPDH reduced mitochondrial dysfunction. Additionally, treatment with cyclosporin A improved WT-GAPDH aggregate-induced swelling and depolarization. In doxycycline-inducible SH-SY5Y cells, overexpression of WT-GAPDH augmented NO-induced mitochondrial dysfunction and increased mitochondrial GAPDH aggregation, whereas induced overexpression of C152A-GAPDH significantly suppressed mitochondrial impairment. Further, NO-induced cytochrome c release into the cytosol and nuclear translocation of apoptosis-inducing factor from mitochondria were both augmented in cells overexpressing WT-GAPDH but ameliorated in C152A-GAPDH-overexpressing cells. Interestingly, GAPDH aggregates induced necrotic cell death via a permeability transition pore (PTP) opening. The expression of either WT- or C152A-GAPDH did not affect other cell death pathways associated with protein aggregation, such as proteasome inhibition, gene expression induced by endoplasmic reticulum stress, or autophagy. Collectively, these results suggest that NO-induced GAPDH

  13. Vaccine efficacy of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Edwardsiella ictaluri against E. tarda in tilapia.

    PubMed

    Trung Cao, Thanh; Tsai, Ming-An; Yang, Chung-Da; Wang, Pei-Chyi; Kuo, Tsun-Yung; Gabriel Chen, Hsu-Chung; Chen, Shih-Chu

    2014-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), derived from the outer-membrane protein (OMP) fraction, has been used as a potential candidate for vaccine development. The gene-encoding 37 kDa GAPDH outer membrane protein (OMP) from Edwardsiella ictaluri was amplified using polymerase chain reaction (PCR) and was cloned and expressed in Escherichia coli BL21 (DE3). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting, and nucleotide and amino acid sequencing were used to analyze the expressed antigenic protein and gene encoding this protein. Comparative DNA and protein sequence analysis of GAPDH from E. ictaluri GAPDHs from several Gram-negative bacterial species within the Enterobacteriaceae family revealed that the GAPDHs within this group are highly conserved and share a sequence similarity of 75-100% with E. ictaluri GDPDH. Rabbit antiserum raised against the E. ictaluri recombinant GAPDH (rGAPDH) protein recognized purified GADPH, indicating that it has a strong immunogenicity. Tilapia fish were intraperitoneally immunized with formalin-killed E. ictaluri whole cells, and rGAPDH (30 μg fish(-1)) from E. ictaluri, both of which were emulsified in ISA 763A adjuvant. At 3 months after immunization, fish were challenged with the E. tarda strain to assess vaccine efficacy; the relative percent survival (RPS) values were found to exceed 71.4%. The specific mean antibody titer log2 level of groups vaccinated with rGAPDH at 3 months was significantly higher than that of non-vaccinated fish (control group). Therefore, this recombinant protein can be considered a multi-purpose candidate vaccine against several pathogenic bacteria.

  14. Amperometric triglyceride bionanosensor based on nanoparticles of lipase, glycerol kinase, glycerol-3-phosphate oxidase.

    PubMed

    Pundir, C S; Aggarwal, V

    2017-01-15

    The nanoparticles (NPs) aggregates of lipase from porcine pancreas, glycerol kinase (GK) from Cellulomonas sp. and glycerol-3-phosphate oxidase (GPO) from Aerococcus viridanss were prepared by desolvation and glutaraldehyde crosslinking and functionalized by cysteamine. These enzyme nanoparticles (ENPs) were characterized by transmission electron microscopy (TEM) and Fourier transform infra red (FTIR) spectroscopy. The functionalzed ENPs aggregates were co-immobilized covalently onto polycrystalline Au electrode through thiolated bond. An improved amperometric triglyceride (TG) bionanosensor was constructed using this ENPs modified Au electrode as working electrode. Biosensor showed optimum current at 1.2 V within 5s, at pH 6.5 and 35 °C.A linear relationship was obtained between current (mA) and triolein concentration in lower concentration range,10-100 mg/dL and higher concentration range, 100-500 mg/dL. Limit of detection (LOD) of bionanosensor was 1.0 μg/ml. Percent analytical recovery of added trolein (50 and 100 mg/dL) in serum was 95.2 ± 0.5 and 96.0 ± 0.17. Within and between batch coefficients of variation (CV) were 2.33% and 2.15% respectively. A good correlation (R(2) = 0.99) was obtained between TG values in sera measured by present biosensor and standard enzymic colorimetric method with the regression equation: y= (0.993x + 0.967). ENPs/Au electrode was used 180 times over a period of 3 months with 50% loss in its initial activity, when stored dry at 4 °C.

  15. Oxidation of an Exposed Methionine Instigates the Aggregation of Glyceraldehyde-3-phosphate Dehydrogenase*

    PubMed Central

    Samson, Andre L.; Knaupp, Anja S.; Kass, Itamar; Kleifeld, Oded; Marijanovic, Emilia M.; Hughes, Victoria A.; Lupton, Chris J.; Buckle, Ashley M.; Bottomley, Stephen P.; Medcalf, Robert L.

    2014-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous and abundant protein that participates in cellular energy production. GAPDH normally exists in a soluble form; however, following necrosis, GAPDH and numerous other intracellular proteins convert into an insoluble disulfide-cross-linked state via the process of “nucleocytoplasmic coagulation.” Here, free radical-induced aggregation of GAPDH was studied as an in vitro model of nucleocytoplasmic coagulation. Despite the fact that disulfide cross-linking is a prominent feature of GAPDH aggregation, our data show that it is not a primary rate-determining step. To identify the true instigating event of GAPDH misfolding, we mapped the post-translational modifications that arise during its aggregation. Solvent accessibility and energy calculations of the mapped modifications within the context of the high resolution native GAPDH structure suggested that oxidation of methionine 46 may instigate aggregation. We confirmed this by mutating methionine 46 to leucine, which rendered GAPDH highly resistant to free radical-induced aggregation. Molecular dynamics simulations suggest that oxidation of methionine 46 triggers a local increase in the conformational plasticity of GAPDH that likely promotes further oxidation and eventual aggregation. Hence, methionine 46 represents a “linchpin” whereby its oxidation is a primary event permissive for the subsequent misfolding, aggregation, and disulfide cross-linking of GAPDH. A critical role for linchpin residues in nucleocytoplasmic coagulation and other forms of free radical-induced protein misfolding should now be investigated. Furthermore, because disulfide-cross-linked aggregates of GAPDH arise in many disorders and because methionine 46 is irrelevant to native GAPDH function, mutation of methionine 46 in models of disease should allow the unequivocal assessment of whether GAPDH aggregation influences disease progression. PMID:25086035

  16. Inhibition of glyceraldehyde-3-phosphate dehydrogenase in tissues of the rat by acrylamide and related compounds.

    PubMed

    Vyas, I; Lowndes, H E; Howland, R D

    1985-01-01

    In previous investigations acrylamide was found to inhibit several enzymes of glycolysis both in vitro and in vivo. The present study examines the characteristics of the in vitro inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and compares the in vivo effects of acrylamide on GAPDH activity to other analogs. Inhibition of GAPDH produced by acrylamide was characteristic of an irreversible or slowly reversible mechanism. In vivo, GAPDH activity was determined in sciatic nerve, brain, skeletal muscle and liver after cumulative doses of 250, 350 or 500 mg/kg of acrylamide. Specific activities were significantly lower in extensor muscle and liver after the 250 mg/kg dose. Activities in brain and sciatic nerve tended to be decreased but the differences were not statistically significant. Specific activity of GAPDH was decreased in medulla pons, cerebellum and the rest of the brain after a 350 mg/kg cumulative dose of acrylamide, although protein concentrations were not different from those in controls. The maximum decrease was about 20%. Treatment with acrylamide, methylene-bis-acrylamide (non-neurotoxic), or N-isopropylacrylamide (neurotoxic) significantly decreased the weight of the cortex and associated brain areas as well as general body weights. No signs of developing neuropathy were observed during treatment with methylene-bis-acrylamide to a cumulative dose (8.1 mmoles/kg) equivalent to that of acrylamide causing frank paralysis. Although the compound exhibited some ability to inhibit GAPDH in vitro, no decrease in GAPDH activity was found in rat brain. Treatment with N-isopropylacrylamide resulted in progressive neurologic impairment. After treatment to a cumulative dose of the compound causing a severe hind-limb paralysis (9.2 mmoles/kg), a small but significant decrease in GAPDH was found in the three areas of brain examined.

  17. Glyphosate inhibition of 5-enolpyruvylshikimate 3-phosphate synthease from suspension-cultured cells of Nicotiana silvestris

    SciTech Connect

    Rubin, J.L.; Gaines, C.G.; Jensen, R.A.

    1984-07-01

    Treatment of isogenic suspension-cultured cells of Nicotiana silvestris Speg, et Comes with glyphosate (N-(phosphonomethyl)glycine) led to elevated levels of intracellular shikimate (364-fold increase by 1.0 millimolar glyphosate). In the presence of glyphosate, it is likely that most molecules of shikimate originate from the action of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase-Mn since this isozyme, in contrast to the DAHP synthase-Co isozyme, is insensitive to inhibition by glyphosate. 5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (EC 2.5.1.19) from N. silvestris was sensitive to micromolar concentrations of glyphosate and possessed a single inhibitor binding site. Rigorous kinetic studies of EPSP synthase required resolution from the multiple phosphatase activities present in crude extracts, a result achieved by ion-exchange column chromatography. Although EPSP synthase exhibited a broad pH profile (50% of maximal activity between pH 6.2 and 8.5), sensitivity to glyphosate increased dramatically with increasing pH within this range. In accordance with these data and the pK/sub a/ values of glyphosate, it is likely that the ionic form of glyphosate inhibiting EPSP synthase is COO/sup -/CH/sub 2/NH/sub 2//sup +/CH/sub 2/PO/sub 3//sup 2 -/, and that a completely ionized phosphono group is essential for inhibition. At pH 7.0, inhibition was competitive with respect to phosphoenolpyruvate (K/sub i/ = 1.25 micromolar) and uncompetitive with respect to shikimate-3-P (K/sub i/ = 18.3 micromolar). All data were consistent with a mechanism of inhibition in which glyphosate competes with PEP for binding to an (enzyme:shikimate-3-P) complex and ultimately forms the dead-end complex of (enzyme:shikimate-3-P:glyphosate). 36 references, 8 figures, 1 table.

  18. The Plastidial Glyceraldehyde-3-Phosphate Dehydrogenase Is Critical for Viable Pollen Development in Arabidopsis1[W

    PubMed Central

    Muñoz-Bertomeu, Jesús; Cascales-Miñana, Borja; Irles-Segura, Asunción; Mateu, Isabel; Nunes-Nesi, Adriano; Fernie, Alisdair R.; Segura, Juan; Ros, Roc

    2010-01-01

    Plant metabolism is highly coordinated with development. However, an understanding of the whole picture of metabolism and its interactions with plant development is scarce. In this work, we show that the deficiency in the plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPCp) leads to male sterility in Arabidopsis (Arabidopsis thaliana). Pollen from homozygous gapcp double mutant plants (gapcp1gapcp2) displayed shrunken and collapsed forms and were unable to germinate when cultured in vitro. The pollen alterations observed in gapcp1gapcp2 were attributed to a disorganized tapetum layer. Accordingly, the expression of several of the genes involved in tapetum development was down-regulated in gapcp1gapcp2. The fertility of gapcp1gapcp2 was rescued by transforming this mutant with a construct carrying the GAPCp1 cDNA under the control of its native promoter (pGAPCp1::GAPCp1c). However, the GAPCp1 or GAPCp2 cDNA under the control of the 35S promoter (p35S::GAPCp), which is poorly expressed in the tapetum, did not complement the mutant fertility. Mutant GAPCp isoforms deficient in the catalytic activity of the enzyme were unable to complement the sterile phenotype of gapcp1gapcp2, thus confirming that both the expression and catalytic activity of GAPCp in anthers are necessary for mature pollen development. A metabolomic study in flower buds indicated that the most important difference between the sterile (gapcp1gapcp2, gapcp1gapcp2-p35S::GAPCp) and the fertile (wild-type plants, gapcp1gapcp2-pGAPCp1::GAPCp1c) lines was the increase in the signaling molecule trehalose. This work corroborates the importance of plastidial glycolysis in plant metabolism and provides evidence for the crucial role of GAPCps in pollen development. It additionally brings new insights into the complex interactions between metabolism and development. PMID:20107025

  19. Cellular recovery of glyceraldehyde-3-phosphate dehydrogenase activity and thiol status after exposure to hydroperoxides

    SciTech Connect

    Brodie, A.E.; Reed, D.J. )

    1990-01-01

    The activity of the thiol-dependent enzyme glyceraldehyde-3-phosphate dehydrogenase (GPD), in vertebrate cells, was modulated by a change in the intracellular thiol:disulfide redox status. Human lung carcinoma cells (A549) were incubated with 1-120 mM H2O2, 1-120 mM t-butyl hydroperoxide, 1-6 mM ethacrynic acid, or 0.1-10 mM N-ethylmaleimide for 5 min. Loss of reduced protein thiols, as measured by binding of the thiol reagent iodoacetic acid to GPD, and loss of GPD enzymatic activity occurred in a dose-dependent manner. Incubation of the cells, following oxidative treatment, in saline for 30 min or with 20 mM dithiothreitol (DTT) partially reversed both changes in GPD. The enzymatic recovery of GPD activity was observed either without addition of thiols to the medium or by incubation of a sonicated cell mixture with 2 mM cysteine, cystine, cysteamine, or glutathione (GSH); GSSG had no effect. Treatment of cells with buthionine sulfoximine (BSO) to decrease cellular GSH by varying amounts caused a dose-related increase in sensitivity of GPD activity to inactivation by H2O2 and decreased cellular ability for subsequent recovery. GPD responded in a similar fashion with oxidative treatment of another lung carcinoma cell line (A427) as well as normal lung tissue from human and rat. These findings indicate that the cellular thiol redox status can be important in determining GPD enzymatic activity.

  20. Halophilic class I aldolase and glyceraldehyde-3-phosphate dehydrogenase: some salt-dependent structural features.

    PubMed

    Krishnan, G; Altekar, W

    1993-01-26

    Aldolase and glyceraldehyde-3-phosphate dehydrogenase from the extremely halophilic archaebacterium Haloarcula vallismortis are stable only in high concentrations of KCl present within the physiological environment. Data concerning the structural changes in the two enzymes as a result of lowering of salt concentration and changes in pH were obtained by monitoring the intrinsic protein fluorescence in the presence of quenchers. When the KCl concentrations were lowered below 2 M or in the presence of 6 M guanidine hydrochloride, the emission maximum shifted to a longer wavelength, indicating enhanced exposure of tryptophyl residues to the solvent. The spectral characteristics of the two proteins in guanidine hydrochloride and 0.4 M KCl were identical. However, these denatured states appear to be different than those observed after acid denaturation. Further perturbation of fluorescence was observed due to I-, and application of the Stern-Volmer law showed that the total fluorescence was available to the quenchers only in 0.4 M KCl solutions. The unfolding of proteins in 0.4 M KCl was a gradual process which was accompanied by a time-dependent loss in enzyme activity. The activity loss was complete within 30 min for aldolase whereas in the case of GAPDH nearly 3 h was required for the destruction of activity. For both enzymes, inactivation and protein denaturation were strongly correlated. The data on activity and thermostability measurements of the two enzymes in varying concentrations of KCl and potassium phosphate revealed that though both proteins are halophilic, the forces in the maintenance of their stability could be different.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Glyceraldehyde-3-phosphate Dehydrogenase Aggregates Accelerate Amyloid-β Amyloidogenesis in Alzheimer Disease*

    PubMed Central

    Itakura, Masanori; Nakajima, Hidemitsu; Kubo, Takeya; Semi, Yuko; Kume, Satoshi; Higashida, Shusaku; Kaneshige, Akihiro; Kuwamura, Mitsuru; Harada, Naoki; Kita, Akinori; Azuma, Yasu-Taka; Yamaji, Ryoichi; Inui, Takashi; Takeuchi, Tadayoshi

    2015-01-01

    Alzheimer disease (AD) is a progressive neurodegenerative disorder characterized by loss of neurons and formation of pathological extracellular deposits induced by amyloid-β peptide (Aβ). Numerous studies have established Aβ amyloidogenesis as a hallmark of AD pathogenesis, particularly with respect to mitochondrial dysfunction. We have previously shown that glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) forms amyloid-like aggregates upon exposure to oxidative stress and that these aggregates contribute to neuronal cell death. Here, we report that GAPDH aggregates accelerate Aβ amyloidogenesis and subsequent neuronal cell death both in vitro and in vivo. Co-incubation of Aβ40 with small amounts of GAPDH aggregates significantly enhanced Aβ40 amyloidogenesis, as assessed by in vitro thioflavin-T assays. Similarly, structural analyses using Congo red staining, circular dichroism, and atomic force microscopy revealed that GAPDH aggregates induced Aβ40 amyloidogenesis. In PC12 cells, GAPDH aggregates augmented Aβ40-induced cell death, concomitant with disruption of mitochondrial membrane potential. Furthermore, mice injected intracerebroventricularly with Aβ40 co-incubated with GAPDH aggregates exhibited Aβ40-induced pyramidal cell death and gliosis in the hippocampal CA3 region. These observations were accompanied by nuclear translocation of apoptosis-inducing factor and cytosolic release of cytochrome c from mitochondria. Finally, in the 3×Tg-AD mouse model of AD, GAPDH/Aβ co-aggregation and mitochondrial dysfunction were consistently detected in an age-dependent manner, and Aβ aggregate formation was attenuated by GAPDH siRNA treatment. Thus, this study suggests that GAPDH aggregates accelerate Aβ amyloidogenesis, subsequently leading to mitochondrial dysfunction and neuronal cell death in the pathogenesis of AD. PMID:26359500

  2. Sphingosine-1 Phosphate: A New Modulator of Immune Plasticity in the Tumor Microenvironment

    PubMed Central

    Rodriguez, Yamila I.; Campos, Ludmila E.; Castro, Melina G.; Aladhami, Ahmed; Oskeritzian, Carole A.; Alvarez, Sergio E.

    2016-01-01

    In the last 15 years, increasing evidences demonstrate a strong link between sphingosine-1-phosphate (S1P) and both normal physiology and progression of different diseases, including cancer and inflammation. Indeed, numerous studies show that tissue levels of this sphingolipid metabolite are augmented in many cancers, affecting survival, proliferation, angiogenesis, and metastatic spread. Recent insights into the possible role of S1P as a therapeutic target has attracted enormous attention and opened new opportunities in this evolving field. In this review, we will focus on the role of S1P in cancer, with particular emphasis in new developments that highlight the many functions of this sphingolipid in the tumor microenvironment. We will discuss how S1P modulates phenotypic plasticity of macrophages and mast cells, tumor-induced immune evasion, differentiation and survival of immune cells in the tumor milieu, interaction between cancer and stromal cells, and hypoxic response. PMID:27800303

  3. A chromogenic substrate for phosphatidylinositol-specific phospholipase C: 4-nitrophenyl myo-inositol-1-phosphate.

    PubMed

    Shashidhar, M S; Volwerk, J J; Griffith, O H; Keana, J F

    1991-12-01

    A chromogenic water-soluble substrate for phosphatidylinositol-specific phospholipase C was synthesized starting from myo-inositol employing isopropylidene and 4-methoxytetrahydropyranyl protecting groups. In this analogue of phosphatidylinositol, 4-nitrophenol replaces the diacylglycerol moiety, resulting in synthetic, racemic 4-nitrophenyl myo-inositol-1-phosphate. Using this synthetic substrate a rapid, convenient and sensitive spectrophotometric assay for the phosphatidylinositol-specific phospholipase C from Bacillus cereus was developed. Initial rates of the cleavage of the nitrophenol substrate were linear with time and the amount of enzyme used. At pH 7.0, specific activities for the B. cereus enzyme were 77 and 150 mumol substrate cleaved min-1 (mg protein)-1 at substrate concentrations of 1 and 2 mM, respectively. Under these conditions, less than 50 ng quantities of enzyme were easily detected. The chromogenic substrate was stable during long term storage (6 months) as a solid at -20 degrees C.

  4. Highly selective and potent agonists of sphingosine-1-phosphate 1 (S1P1) receptor.

    PubMed

    Vachal, Petr; Toth, Leslie M; Hale, Jeffrey J; Yan, Lin; Mills, Sander G; Chrebet, Gary L; Koehane, Carol A; Hajdu, Richard; Milligan, James A; Rosenbach, Mark J; Mandala, Suzanne

    2006-07-15

    Novel series of sphingosine-1-phosphate (S1P) receptor agonists were developed through a systematic SAR aimed to achieve high selectivity for a single member of the S1P family of receptors, S1P1. The optimized structure represents a highly S1P1-selective and efficacious agonist: S1P1/S1P2, S1P1/S1P3, S1P1/S1P4>10,000-fold, S1P1/S1P5>600-fold, while EC50 (S1P1) <0.2 nM. In vivo experiments are consistent with S1P1 receptor agonism alone being sufficient for achieving desired lymphocyte-lowering effect.

  5. The sphingosine-1-phosphate receptor: A novel therapeutic target for multiple sclerosis and other autoimmune diseases.

    PubMed

    Mao-Draayer, Yang; Sarazin, Jeffrey; Fox, David; Schiopu, Elena

    2017-02-01

    Multiple sclerosis (MS) is a prototype autoimmune disease of the central nervous system (CNS). Currently, there is no drug that provides a cure for MS. To date, all immunotherapeutic drugs target relapsing remitting MS (RR-MS); it remains a daunting medical challenge in MS to develop therapy for secondary progressive MS (SP-MS). Since the approval of the non-selective sphingosine-1-phosphate (S1P) receptor modulator FTY720 (fingolimod [Gilenya®]) for RR-MS in 2010, there have been many emerging studies with various selective S1P receptor modulators in other autoimmune conditions. In this article, we will review how S1P receptor may be a promising therapeutic target for SP-MS and other autoimmune diseases such as psoriasis, polymyositis and lupus.

  6. PCR-mediated recombination of the amplification products of the Hibiscus tiliaceus cytosolic glyceraldehyde-3-phosphate dehydrogenase gene.

    PubMed

    Wu, Linghui; Tang, Tian; Zhou, Renchao; Shi, Suhua

    2007-03-31

    PCR-mediated recombination describes the process of in vitro chimera formation from related template sequences present in a single PCR amplification. The high levels of genetic redundancy in eukaryotic genomes should make recombination artifacts occur readily. However, few evolutionary biologists adequately consider this phenomenon when studying gene lineages. The cytosolic glyceraldehyde-3-phosphate dehydrogenase gene (GapC), which encodes a NADP-dependent nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase in the cytosol, is a classical low-copy nuclear gene marker and is commonly used in molecular evolutionary studies. Here, we report on the occurrence of PCR-mediated recombination in the GapC gene family of Hibiscus tiliaceus. The study suggests that recombinant areas appear to be correlated with DNA template secondary structures. Our observations highlight that recombination artifacts should be considered when studying specific and allelic phylogenies. The authors suggest that nested PCR be used to suppress PCR-mediated recombination.

  7. Different signaling pathway between sphingosine-1-phosphate and lysophosphatidic acid in Xenopus oocytes: functional coupling of the sphingosine-1-phosphate receptor to PLC-xbeta in Xenopus oocytes.

    PubMed

    Noh, S J; Kim, M J; Shim, S; Han, J K

    1998-08-01

    In Xenopus oocytes, both sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) activate Ca2+-dependent oscillatory Cl- currents by acting through membrane-bound receptors. External application of 50 microM S1P elicited a long-lasting oscillatory current that continued over 30 min from the beginning of oscillation, with 300 nA (n = 11) as a usual maximum peak of current, whereas 1-microM LPA treatment showed only transiently oscillating but more vigorous current responses, with 2,800 nA (n = 18) as a maximum peak amplitude. Both phospholipid-induced Ca2+-dependent Cl- currents were observed in the absence of extracellular Ca2+, were blocked by intracellular injection of the Ca2+ chelator, EGTA, and could not be elicited by treatment with thapsigargin, an inhibitor of endoplasmic reticulum (ER) Ca2+ ATPase. Intracellular Ca2+ release appeared to be from inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ store, because Cl- currents were blocked by heparin injection. Pretreatment with the aminosteroid, U-73122, an inhibitor of G protein-mediated phospholipase C (PLC) activation, to oocytes inhibited the current responses evoked both by S1P and LPA. However, when they were injected with 10 ng of antisense oligonucleotide (AS-ODN) against Xenopus phospholipase C (PLC-xbeta), oocytes could not respond to S1P application, whereas they responded normally to LPA, indicating that the S1P signaling pathway goes through PLC-xbeta, whereas LPA signaling goes through another unknown PLC. To determine the types of G proteins involved, we introduced AS-ODNs against four types of G-protein alpha subunits that were identified in Xenopus laevis; G(q)alpha, G11alpha, G0alpha, and G(i1)alpha. Among AS-ODNs against the G alphas tested, AS-G(q)alpha and AS-G(i1)alpha to S1P and AS-G(q)alpha and AS-G11alpha to LPA specifically reduced current responses, respectively, to about 20-30% of controls. These results demonstrate that LPA and S1P, although they have similar structural

  8. Low sphingosine-1-phosphate plasma levels are predictive for increased mortality in patients with liver cirrhosis

    PubMed Central

    Bartels, Michael; Scholz, Markus; Seehofer, Daniel; Berg, Thomas; Engelmann, Cornelius; Thiery, Joachim; Ceglarek, Uta

    2017-01-01

    Background & aim The association of circulating sphingosine-1-phosphate (S1P), a bioactive lipid involved in various cellular processes, and related metabolites such as sphinganine-1-phosphate (SA1P) and sphingosine (SPH) with mortality in patients with end-stage liver disease is investigated in the presented study. S1P as a bioactive lipid mediator, is involved in several cellular processes, however, in end-stage liver disease its role is not understood. Methods The study cohort consisted of 95 patients with end-stage liver disease and available information on one-year outcome. The median MELD (Model for end-stage liver disease) score was 12.41 (Range 6.43–39.63). The quantification of sphingolipids in citrated plasma specimen was performed after methanolic protein precipitation followed by hydrophilic interaction liquid chromatography and tandem mass spectrometric detection. Results S1P and SA1P displayed significant correlations with the MELD score. Patients with circulating S1P levels below the lowest tertile (110.68 ng/ml) showed the poorest one-year survival rate of only 57.1%, whereas one-year survival rate in patients with S1P plasma levels above 165.67 ng/ml was 93.8%. In a multivariate cox regression analysis including platelet counts, concentrations of hemoglobin and MELD score, S1P remained a significant predictor for three-month and one-year mortality. Conclusions Low plasma S1P concentrations are highly significantly associated with prognosis in end-stage liver disease. This association is independent of the stage of liver disease. Further studies should be performed to investigate S1P, its role in the pathophysiology of liver diseases and its potential for therapeutic interventions. PMID:28334008

  9. Arabidopsis Sphingosine Kinase and the Effects of Phytosphingosine-1-Phosphate on Stomatal Aperture1[w

    PubMed Central

    Coursol, Sylvie; Le Stunff, Hervé; Lynch, Daniel V.; Gilroy, Simon; Assmann, Sarah M.; Spiegel, Sarah

    2005-01-01

    Sphingolipids are a major component of membrane lipids and their metabolite sphingosine-1-phosphate (S1P) is a potent lipid mediator in animal cells. Recently, we have shown that the enzyme responsible for S1P production, sphingosine kinase (SphK), is stimulated by the phytohormone abscisic acid in guard cells of Arabidopsis (Arabidopsis thaliana) and that S1P is effective in regulating guard cell turgor. We have now characterized SphK from Arabidopsis leaves. SphK activity was mainly associated with the membrane fraction and phosphorylated predominantly the Δ4-unsaturated long-chain sphingoid bases sphingosine (Sph) and 4,8-sphingadienine, and to a lesser extent, the saturated long-chain sphingoid bases dihydrosphingosine and phytosphingosine (Phyto-Sph). 4-Hydroxy-8-sphingenine, which is a major sphingoid base in complex glycosphingolipids from Arabidopsis leaves, was a relatively poor substrate compared with the corresponding saturated Phyto-Sph. In contrast, mammalian SphK1 efficiently phosphorylated Sph, dihydrosphingosine, and 4,8-sphingadienine, but not the 4-hydroxylated long-chain bases Phyto-Sph and 4-hydroxy-8-sphingenine. Surface dilution kinetic analysis of Arabidopsis SphK with Sph presented in mixed Triton X-100 micelles indicated that SphK associates with the micellar surface and then with the substrate presented on the surface. In addition, measurements of SphK activity under different assay conditions combined with phylogenetic analysis suggest that multiple isoforms of SphK may be expressed in Arabidopsis. Importantly, we found that phytosphingosine-1-phosphate, similar to S1P, regulates stomatal apertures and that its action is impaired in guard cells of Arabidopsis plants harboring T-DNA null mutations in the sole prototypical G-protein α-subunit gene, GPA1. PMID:15665242

  10. Arabidopsis sphingosine kinase and the effects of phytosphingosine-1-phosphate on stomatal aperture.

    PubMed

    Coursol, Sylvie; Le Stunff, Hervé; Lynch, Daniel V; Gilroy, Simon; Assmann, Sarah M; Spiegel, Sarah

    2005-02-01

    Sphingolipids are a major component of membrane lipids and their metabolite sphingosine-1-phosphate (S1P) is a potent lipid mediator in animal cells. Recently, we have shown that the enzyme responsible for S1P production, sphingosine kinase (SphK), is stimulated by the phytohormone abscisic acid in guard cells of Arabidopsis (Arabidopsis thaliana) and that S1P is effective in regulating guard cell turgor. We have now characterized SphK from Arabidopsis leaves. SphK activity was mainly associated with the membrane fraction and phosphorylated predominantly the Delta4-unsaturated long-chain sphingoid bases sphingosine (Sph) and 4,8-sphingadienine, and to a lesser extent, the saturated long-chain sphingoid bases dihydrosphingosine and phytosphingosine (Phyto-Sph). 4-Hydroxy-8-sphingenine, which is a major sphingoid base in complex glycosphingolipids from Arabidopsis leaves, was a relatively poor substrate compared with the corresponding saturated Phyto-Sph. In contrast, mammalian SphK1 efficiently phosphorylated Sph, dihydrosphingosine, and 4,8-sphingadienine, but not the 4-hydroxylated long-chain bases Phyto-Sph and 4-hydroxy-8-sphingenine. Surface dilution kinetic analysis of Arabidopsis SphK with Sph presented in mixed Triton X-100 micelles indicated that SphK associates with the micellar surface and then with the substrate presented on the surface. In addition, measurements of SphK activity under different assay conditions combined with phylogenetic analysis suggest that multiple isoforms of SphK may be expressed in Arabidopsis. Importantly, we found that phytosphingosine-1-phosphate, similar to S1P, regulates stomatal apertures and that its action is impaired in guard cells of Arabidopsis plants harboring T-DNA null mutations in the sole prototypical G-protein alpha-subunit gene, GPA1.

  11. Advance in the Study of the Mechanisms Regulated by Sphingosine-1-Phosphate

    NASA Astrophysics Data System (ADS)

    Ye, Fei; Kong, Xiangqian; Luo, Cheng

    2010-09-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid messenger in the cells that regulate gene expression and NF-KB signal pathway through unknown mechanisms. Recently, Cheng Luo, associate professor of DDDC in Shanghai Institute of Materia Medica, whose project was funded by the National Natural Science Foundation of China, joined in a research team led by Professor Sarah Spiegel of Virginia Commonwealth University. The team continuously made significant breakthroughs in understanding the regulation mechanism of Sphingosine-1-Phosphate. In September 2009, in a paper published on SCIENCE magazine (Science 2009, 325: 1254-7), they firstly demonstrated that S1P is a physiologically important regulator of histone deacetylases (HDACs), HDACs are direct intracellular targets of S1P. Furthermore, they identified the mechanism that S1P regulates gene expression through regulating the activity of HDACs. In June 24th, 2010, in another paper to be published on NATURE magazine (Nature 2010, June 24th, advance online publication) which reports the regulation of NF-KB signaling pathway by S1P. They demonstrate that S1P is the missing cofactor for TRAF2 (tumour-necrosis factor receptor-associated factor 2) and indicate a new paradigm for the regulation of lysine-63-linked poly-ubiquitination. The study also highlight the key role of SphK1 and its product S1P in TNF-α signalling and the canonical NF-KB activation pathway, and then play crucial role in inflammatory, antiapoptotic and immune processes. The identification of new mechanisms by which S1P regulates gene expression and TNF and NF-KB signaling pathway will light up the road to develop novel inhibitors that might be useful for treatment of cancer and inflammatory diseases.

  12. Sulfur mustard induced nuclear translocation of glyceraldehyde-3-phosphate-dehydrogenase (GAPDH).

    PubMed

    Steinritz, Dirk; Weber, Jana; Balszuweit, Frank; Thiermann, Horst; Schmidt, Annette

    2013-12-05

    Sulfur Mustard (SM) is a vesicant chemical warfare agent, which is acutely toxic to a variety of organ systems including skin, eyes, respiratory system and bone marrow. The underlying molecular pathomechanism was mainly attributed to the alkylating properties of SM. However, recent studies have revealed that cellular responses to SM exposure are of more complex nature and include increased protein expression and protein modifications that can be used as biomarkers. In order to confirm already known biomarkers, to detect potential new ones and to further elucidate the pathomechanism of SM, we conducted large-scale proteomic experiments based on a human keratinocyte cell line (HaCaT) exposed to SM. Surprisingly, our analysis identified glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) as one of the up-regulated proteins after exposure of HaCaT cells to SM. In this paper we demonstrate the sulfur mustard induced nuclear translocation of GAPDH in HaCaT cells by 2D gel-electrophoresis (2D GE), immunocytochemistry (ICC), Western Blot (WB) and a combination thereof. 2D GE in combination with MALDI-TOF MS/MS analysis identified GAPDH as an up-regulated protein after SM exposure. Immunocytochemistry revealed a distinct nuclear translocation of GAPDH after exposure to 300μM SM. This finding was confirmed by fractionated WB analysis. 2D GE and subsequent immunoblot staining of GAPDH demonstrated two different spot locations of GAPH (pI 7.0 and pI 8.5) that are related to cytosolic or nuclear GAPDH respectively. After exposure to 300μM SM a significant increase of nuclear GAPDH at pI 8.5 occurred. Nuclear GAPDH has been associated with apoptosis, detection of structural DNA alterations, DNA repair and regulation of genomic integrity and telomere structure. The results of our study add new aspects to the pathophysiology of sulfur mustard toxicity, yet further studies will be necessary to reveal the specific function of nuclear GAPDH in the pathomechanism of sulfur mustard.

  13. 4-Hydroxy-2-Nonenal-Modified Glyceraldehyde-3-Phosphate Dehydrogenase Is Degraded by Cathepsin G in Rat Neutrophils

    PubMed Central

    Tsuchiya, Yukihiro; Okada, Go; Kobayashi, Shigeki; Chikuma, Toshiyuki; Hojo, Hiroshi

    2011-01-01

    Degradation of oxidized or oxidatively modified proteins is an essential part of the antioxidant defenses of cells. 4-Hydroxy-2-nonenal, a major reactive aldehyde formed by lipid peroxidation, causes many types of cellular damage. It has been reported that 4-hydroxy-2-nonenal-modified proteins are degraded by the ubiquitin-proteasome pathway or, in some cases, by the lysosomal pathway. However, our previous studies using U937 cells showed that 4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase is degraded by cathepsin G. In the present study, we isolated the 4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase-degrading enzyme from rat neutrophils to an active protein fraction of 28 kDa. Using the specific antibody, the 28 kDa protein was identified as cathepsin G. Moreover, the degradation activity was inhibited by cathepsin G inhibitors. These results suggest that cathepsin G plays a crucial role in the degradation of 4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase. PMID:21904640

  14. Biosynthesis of archaeal membrane ether lipids

    PubMed Central

    Jain, Samta; Caforio, Antonella; Driessen, Arnold J. M.

    2014-01-01

    A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether bond to the sn-glycerol-1-phosphate backbone. In bacteria and eukarya on the other hand, fatty acid side chains are linked via an ester bond to the sn-glycerol-3-phosphate backbone. The polar head groups are globally shared in the three domains of life. The unique membrane lipids of archaea have been implicated not only in the survival and adaptation of the organisms to extreme environments but also to form the basis of the membrane composition of the last universal common ancestor (LUCA). In nature, a diverse range of archaeal lipids is found, the most common are the diether (or archaeol) and the tetraether (or caldarchaeol) lipids that form a monolayer. Variations in chain length, cyclization and other modifications lead to diversification of these lipids. The biosynthesis of these lipids is not yet well understood however progress in the last decade has led to a comprehensive understanding of the biosynthesis of archaeol. This review describes the current knowledge of the biosynthetic pathway of archaeal ether lipids; insights on the stability and robustness of archaeal lipid membranes; and evolutionary aspects of the lipid divide and the LUCA. It examines recent advances made in the field of pathway reconstruction in bacteria. PMID:25505460

  15. Birth of Archaeal Cells: Molecular Phylogenetic Analyses of G1P Dehydrogenase, G3P Dehydrogenases, and Glycerol Kinase Suggest Derived Features of Archaeal Membranes Having G1P Polar Lipids

    PubMed Central

    2016-01-01

    Bacteria and Eukarya have cell membranes with sn-glycerol-3-phosphate (G3P), whereas archaeal membranes contain sn-glycerol-1-phosphate (G1P). Determining the time at which cells with either G3P-lipid membranes or G1P-lipid membranes appeared is important for understanding the early evolution of terrestrial life. To clarify this issue, we reconstructed molecular phylogenetic trees of G1PDH (G1P dehydrogenase; EgsA/AraM) which is responsible for G1P synthesis and G3PDHs (G3P dehydrogenase; GpsA and GlpA/GlpD) and glycerol kinase (GlpK) which is responsible for G3P synthesis. Together with the distribution of these protein-encoding genes among archaeal and bacterial groups, our phylogenetic analyses suggested that GlpA/GlpD in the Commonote (the last universal common ancestor of all extant life with a cellular form, Commonote commonote) acquired EgsA (G1PDH) from the archaeal common ancestor (Commonote archaea) and acquired GpsA and GlpK from a bacterial common ancestor (Commonote bacteria). In our scenario based on this study, the Commonote probably possessed a G3P-lipid membrane synthesized enzymatically, after which the archaeal lineage acquired G1PDH followed by the replacement of a G3P-lipid membrane with a G1P-lipid membrane. PMID:27774041

  16. Sphingosine-1-phosphate, regulated by FSH and VEGF, stimulates granulosa cell proliferation.

    PubMed

    Hernández-Coronado, C G; Guzmán, A; Rodríguez, A; Mondragón, J A; Romano, M C; Gutiérrez, C G; Rosales-Torres, A M

    2016-09-15

    Sphingosine-1-phosphate (S1P) is a bioactive polar sphingolipid which stimulates proliferation, growth and survival in various cell types. In the ovary S1P has been shown protect the granulosa cells and oocytes from insults such as oxidative stress and radiotherapy, and S1P concentrations are greater in healthy than atretic large follicles. Hence, we postulate that S1P is fundamental in follicle development and that it is activated in ovarian granulosa cells in response to FSH and VEGF. To test this hypothesis we set out: i) to evaluate the effect of FSH and VEGF on S1P synthesis in cultured bovine granulosa cells and ii) to analyse the effect of S1P on proliferation and survival of bovine granulosa cells in vitro. Seventy five thousand bovine granulosa cells from healthy medium-sized (4-7mm) follicles were cultured in 96-well plates in McCoy's 5a medium containing 10ng/mL of insulin and 1ng/mL of LR-IGF-I at 37°C in a 5% CO2/air atmosphere at 37°C. Granulosa cell production of S1P was tested in response to treatment with FSH (0, 0.1, 1 and 10ng/mL) and VEGF (0, 0.01, 0.1, 1, 10 and 100ng/mL) and measured by HPLC. Granulosa cells produced S1P at 48 and 96h, with the maximum production observed with 1ng/mL of FSH. Likewise, 0.01ng/mL of VEGF stimulated S1P production at 48, but not 96h of culture. Further, the granulosa cell expression of sphingosine kinase-1 (SK1), responsible for S1P synthesis, was demonstrated by Western blot after 48h of culture. FSH increased the expression of phosphorylated SK1 (P<0.05) and the addition of a SK1 inhibitor reduced the constitutive and FSH-stimulated S1P synthesis (P<0.05). Sphingosine-1-phosphate had a biphasic effect on granulosa cell number after culture. At low concentration S1P (0.1μM) increased granulosa cell number after 48h of culture (P<0.05) and the proportion of cells in the G2 and M phase of the cell cycle (P<0.05), whereas higher concentrations decreased cell number (10μM; P<0.05) by an increase (P<0.05) in the

  17. Inhibition of sphingosine-1-phosphate phosphatase 1 promotes cancer cells migration in gastric cancer: Clinical implications.

    PubMed

    Gao, Xiang Y; Li, Lin; Wang, Xiao H; Wen, Xian Z; Ji, Ke; Ye, Lin; Cai, Jun; Jiang, Wen G; Ji, Jia F

    2015-10-01

    Sphingosine-1-phosphate (S1P) plays an important role in regulating many biological processes. Sphingosine-1-phosphate phosphatase 1 (SGPP1) can dephosphorylate S1P into sphingosine and tip the balance of sphingosine-S1P. Increased levels of sphingosine leads to a decrease in the ability of cell invasion as well as an increase in the ability of cell apoptosis. However, little is known regarding the effects of SGPP1 in gastric cancer. The present study examined the function of SGPP1 on gastric cancer cell lines as well as its clinical relevance in gastric cancer progression. Using immunohistochemistry and RT-qPCR techniques, the clinical significance of SGPP1 expression was analyzed in 288 paraffin-embedded gastric tissue specimens and 219 fresh gastric tissues, respectively. Transgenes encoding ribozymes to specifically target human SGPP1 (pEF-SGPP1) was constructed. Human gastric cancer cell lines (AGS and HGC27) were transfected with pEF-SGPP1 transgene and examined by functional analysis. SGPP1 was downregulated in gastric cancer tissues, compared with adjacent normal gastric tissues (p=0.034). SGPP1 mRNA levels in gastric cancer tissues were significantly decreased when compared with their adjacent non-cancerous tissues (p<0.001). Weakly expressed SGPP1 was positively correlated with the lymph node metastasis (p=0.005) and distant metastasis (p=0.031). Kaplan-Meier survival curves revealed that patients with SGPP1 positive expression had a significant increase in overall survival (OS) (p=0.034) and progression-free survival (PFS) (p=0.041). Multivariate analysis indicated the expression of SGPP1 was an independent prognostic factor in gastric cancer patients (p=0.041). In vitro experiments showed that knockdown of SGPP1 resulted in an increase in the invasion (2-fold) and migration (5-fold) of AGS and HGC27. The two gastric cancer cells transfected with pEF-SGPP1 exhibited a slower rate of growth with less adhesion. Thus, our findings provided evidence that

  18. Quantification of Galactose-1-Phosphate Uridyltransferase Enzyme Activity by Liquid Chromatography–Tandem Mass Spectrometry

    PubMed Central

    Li, Yijun; Ptolemy, Adam S.; Harmonay, Lauren; Kellogg, Mark; Berry, Gerard T.

    2013-01-01

    Background The diagnosis of galactosemia usually involves the measurement of galactose-1-phosphate uridyltransferase (GALT) activity. Traditional radioactive and fluorescent GALT assays are nonspecific, laborious, and/or lack sufficient analytical sensitivity. We developed a liquid chromatography–tandem mass spectrometry (LC-MS/MS)–based assay for GALT enzyme activity measurement. Method Our assay used stable isotope-labeled α-galactose-1-phosphate ([13C6]-Gal-1-P) as an enzyme substrate. Sample cleanup and separation were achieved by reversed-phase ion-pair chromatography, and the enzymatic product, isotope-labeled uridine diphosphate galactose ([13C6]-UDPGal), was detected by MS/MS at mass transition (571 > 323) and quantified by use of [13C6]-Glu-1-P (265 > 79) as an internal standard. Results The method yielded a mean (SD) GALT enzyme activity of 23.8 (3.8) µmol · (gHgb)−1 · h−1 in erythrocyte extracts from 71 controls. The limit of quantification was 0.04 µmol · (g Hgb)−1 · h−1 (0.2% of normal control value). Intraassay imprecision was determined at 4 different levels (100%, 25%, 5%, and 0.2% of the normal control values), and the CVs were calculated to be 2.1%, 2.5%, 4.6%, and 9.7%, respectively (n = 3). Interassay imprecision CVs were 4.5%, 6.7%, 8.2%, and 13.2% (n = 5), respectively. The assay recoveries at the 4 levels were higher than 90%. The apparent Km of the 2 substrates, Gal-1-P and UDPGlc, were determined to be 0.38 mmol/L and 0.071 mmol/L, respectively. The assay in erythrocytes of 33 patients with classical galactosemia revealed no detectable activity. Conclusions This LC-MS/MS–based assay for GALT enzyme activity will be useful for the diagnosis and study of biochemically heterogeneous patients with galactosemia, especially those with uncommon genotypes and detectable but low residual activities. PMID:20348403

  19. The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice

    PubMed Central

    Fukuhara, Shigetomo; Simmons, Szandor; Kawamura, Shunsuke; Inoue, Asuka; Orba, Yasuko; Tokudome, Takeshi; Sunden, Yuji; Arai, Yuji; Moriwaki, Kazumasa; Ishida, Junji; Uemura, Akiyoshi; Kiyonari, Hiroshi; Abe, Takaya; Fukamizu, Akiyoshi; Hirashima, Masanori; Sawa, Hirofumi; Aoki, Junken; Ishii, Masaru; Mochizuki, Naoki

    2012-01-01

    The bioactive lysophospholipid mediator sphingosine-1-phosphate (S1P) promotes the egress of newly formed T cells from the thymus and the release of immature B cells from the bone marrow. It has remained unclear, however, where and how S1P is released. Here, we show that in mice, the S1P transporter spinster homolog 2 (Spns2) is responsible for the egress of mature T cells and immature B cells from the thymus and bone marrow, respectively. Global Spns2-KO mice exhibited marked accumulation of mature T cells in thymi and decreased numbers of peripheral T cells in blood and secondary lymphoid organs. Mature recirculating B cells were reduced in frequency in the bone marrow as well as in blood and secondary lymphoid organs. Bone marrow reconstitution studies revealed that Spns2 was not involved in S1P release from blood cells and suggested a role for Spns2 in other cells. Consistent with these data, endothelia-specific deletion of Spns2 resulted in defects of lymphocyte egress similar to those observed in the global Spns2-KO mice. These data suggest that Spns2 functions in ECs to establish the S1P gradient required for T and B cells to egress from their respective primary lymphoid organs. Furthermore, Spns2 could be a therapeutic target for a broad array of inflammatory and autoimmune diseases. PMID:22406534

  20. The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice.

    PubMed

    Fukuhara, Shigetomo; Simmons, Szandor; Kawamura, Shunsuke; Inoue, Asuka; Orba, Yasuko; Tokudome, Takeshi; Sunden, Yuji; Arai, Yuji; Moriwaki, Kazumasa; Ishida, Junji; Uemura, Akiyoshi; Kiyonari, Hiroshi; Abe, Takaya; Fukamizu, Akiyoshi; Hirashima, Masanori; Sawa, Hirofumi; Aoki, Junken; Ishii, Masaru; Mochizuki, Naoki

    2012-04-01

    The bioactive lysophospholipid mediator sphingosine-1-phosphate (S1P) promotes the egress of newly formed T cells from the thymus and the release of immature B cells from the bone marrow. It has remained unclear, however, where and how S1P is released. Here, we show that in mice, the S1P transporter spinster homolog 2 (Spns2) is responsible for the egress of mature T cells and immature B cells from the thymus and bone marrow, respectively. Global Spns2-KO mice exhibited marked accumulation of mature T cells in thymi and decreased numbers of peripheral T cells in blood and secondary lymphoid organs. Mature recirculating B cells were reduced in frequency in the bone marrow as well as in blood and secondary lymphoid organs. Bone marrow reconstitution studies revealed that Spns2 was not involved in S1P release from blood cells and suggested a role for Spns2 in other cells. Consistent with these data, endothelia-specific deletion of Spns2 resulted in defects of lymphocyte egress similar to those observed in the global Spns2-KO mice. These data suggest that Spns2 functions in ECs to establish the S1P gradient required for T and B cells to egress from their respective primary lymphoid organs. Furthermore, Spns2 could be a therapeutic target for a broad array of inflammatory and autoimmune diseases.

  1. Sphingosine-1-phosphate inhibits the adipogenic differentiation of 3T3-L1 preadipocytes.

    PubMed

    Moon, Myung-Hee; Jeong, Jae-Kyo; Lee, You-Jin; Seol, Jae-Won; Park, Sang-Youel

    2014-10-01

    Sphingosine-1-phosphate (S1P) is a pluripotent lipid mediator that transmits signals through G-protein-coupled receptors to control diverse biological processes. The novel biological activity of S1P in the adipogenesis of 3T3-L1 preadipocytes was identified in the present study. S1P significantly decreased lipid accumulation in maturing preadipocytes in a dose‑dependent manner. In order to understand the anti‑adipogenic effects of S1P, preadipocytes were treated with S1P, and the change in the expression of several adipogenic transcription factors and enzymes was investigated using quantitative RT-PCR. S1P downregulated the transcriptional levels of the peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding proteins and adiponectin, which are markers of adipogenic differentiation. The effects of S1P on the levels of mitogen‑activated protein kinase (MAPK) signals in preadipocytes were also investigated. The activation of JNK and p38 were downregulated by S1P treatment in human preadipocytes. In conclusion, the results of this study suggest that S1P alters fat mass by directly affecting adipogenesis. This is mediated by the downregulation of adipogenic transcription factors and by inactivation of the JNK and p38 MAPK pathways. Thus, selective targeting of the S1P receptors and sphingosine kinases may have clinical applications for the treatment of obesity.

  2. Abluminal stimulation of sphingosine 1-phosphate receptors 1 and 3 promotes and stabilizes endothelial sprout formation.

    PubMed

    Das, Anusuya; Lenz, Steven M; Awojoodu, Anthony O; Botchwey, Edward A

    2015-01-01

    Local delivery of lipid mediators has become a promising new approach for therapeutic angiogenesis and regenerative medicine. In this study, we investigated how gradient stimulation (either abluminal/distal or luminal/proximal) of engineered microvessels with sphingosine 1-phosphate (S1P) receptor-subtype-targeted molecules affects endothelial sprout growth using a microfluidic device. Our studies show that distal stimulation of microvessels with FTY720, an S1P1/3 selective agonist, promotes both arterial and venular sprout growth, whereas proximal stimulation does not. Using novel pharmacological antagonists of S1P receptor subtypes, we further show that S1P3 functionality is necessary for VEGF-induced sprouting, and confirmed these findings ex vivo using a murine aortic ring assay from S1P3-deficient mice. S1P3 agonist stimulation enhanced vascular stability in both cell types via upregulation of the interendothelial junction protein VE-cadherin. Lastly, S1P3 activation under flow promoted endothelial sprouting and branching while decreasing migratory cell fate in the microfluidic device. We used an in vivo murine dorsal skinfold window chamber model to confirm S1P3's role in neovascular branching. Together, these data suggest that a distal transendothelial gradient of S1P1/3-targeted drugs is an effective technique for both enhancing and stabilizing capillary morphogenesis in angiogenic applications.

  3. Emerging role of sphingosine-1-phosphate signaling in head and neck squamous cell carcinoma

    PubMed Central

    Nema, Rajeev; Vishwakarma, Supriya; Agarwal, Rahul; Panday, Rajendra Kumar; Kumar, Ashok

    2016-01-01

    Head and neck squamous cell carcinoma (HNSCC) is the sixth most frequent cancer type, with an annual incidence of approximately half a million people worldwide. It has a high recurrence rate and an extremely low survival rate. This is due to limited availability of effective therapies to reduce the rate of recurrence, resulting in high morbidity and mortality of patients with advanced stages of the disease. HNSCC often develops resistance to chemotherapy and targeted drug therapy. Thus, to overcome the problem of drug resistance, there is a need to explore novel drug targets. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid involved in inflammation, tumor progression, and angiogenesis. S1P is synthesized intracellularly by two sphingosine kinases (SphKs). It can be exported to the extracellular space, where it can activate a family of G-protein-coupled receptors. Alternatively, S1P can act as an intracellular second messenger. SphK1 regulates tumor progression, invasion, metastasis, and chemoresistance in HNSCC. SphK1 expression is highly elevated in advanced stage HNSCC tumors and correlates with poor survival. In this article, we review current knowledge regarding the role of S1P receptors and enzymes of S1P metabolism in HNSCC carcinogenesis. Furthermore, we summarize the current perspectives on therapeutic approaches for targeting S1P pathway for treating HNSCC. PMID:27330306

  4. Nitrophenide (Megasul) blocks Eimeria tenella development by inhibiting the mannitol cycle enzyme mannitol-1-phosphate dehydrogenase.

    PubMed

    Allocco, J J; Nare, B; Myers, R W; Feiglin, M; Schmatz, D M; Profous-Juchelka, H

    2001-12-01

    Unsporulated oocysts of the protozoan parasite Eimeria tenella contain high levels of mannitol, which is thought to be the principal energy source for the process of sporulation. Biosynthesis and utilization of this sugar alcohol occurs via a metabolic pathway known as the mannitol cycle. Here, results are presented that suggest that 3-nitrophenyl disulfide (nitrophenide, Megasul), an anticoccidial drug commercially used in the 1950s, inhibits mannitol-1-phosphate dehydrogenase (M1PDH), which catalyzes the committed enzymatic step in the mannitol cycle. Treatment of E. tenella-infected chickens with nitrophenide resulted in a 90% reduction in oocyst shedding. The remaining oocysts displayed significant morphological abnormalities and were largely incapable of further development. Nitrophenide treatment did not affect parasite asexual reproduction, suggesting specificity for the sexual stage of the life cycle. Isolated oocysts from chickens treated with nitrophenide exhibited a dose-dependent reduction in mannitol, suggesting in vivo inhibition of parasite mannitol biosynthesis. Nitrophenide-mediated inhibition of MIPDH was observed in vitro using purified native enzyme. Moreover, MIPDH activity immunoprecipitated from E. tenella-infected cecal tissues was significantly lower in nitrophenide-treated compared with untreated chickens. Western blot analysis and immunohistochemistry showed that parasites from nitrophenide-treated and untreated chickens contained similar enzyme levels. These data suggest that nitrophenide blocks parasite development at the sexual stages by targeting M1PDH. Thus, targeting of the mannitol cycle with drugs could provide an avenue for controlling the spread of E. tenella in commercial production facilities by preventing oocyst shedding.

  5. Sphingosine-1-phosphate promotes erythrocyte glycolysis and oxygen release for adaptation to high-altitude hypoxia

    PubMed Central

    Sun, Kaiqi; Zhang, Yujin; D'Alessandro, Angelo; Nemkov, Travis; Song, Anren; Wu, Hongyu; Liu, Hong; Adebiyi, Morayo; Huang, Aji; Wen, Yuan E.; Bogdanov, Mikhail V.; Vila, Alejandro; O'Brien, John; Kellems, Rodney E.; Dowhan, William; Subudhi, Andrew W.; Jameson-Van Houten, Sonja; Julian, Colleen G.; Lovering, Andrew T.; Safo, Martin; Hansen, Kirk C.; Roach, Robert C.; Xia, Yang

    2016-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive signalling lipid highly enriched in mature erythrocytes, with unknown functions pertaining to erythrocyte physiology. Here by employing nonbiased high-throughput metabolomic profiling, we show that erythrocyte S1P levels rapidly increase in 21 healthy lowland volunteers at 5,260 m altitude on day 1 and continue increasing to 16 days with concurrently elevated erythrocyte sphingonisne kinase 1 (Sphk1) activity and haemoglobin (Hb) oxygen (O2) release capacity. Mouse genetic studies show that elevated erythrocyte Sphk1-induced S1P protects against tissue hypoxia by inducing O2 release. Mechanistically, we show that intracellular S1P promotes deoxygenated Hb anchoring to the membrane, enhances the release of membrane-bound glycolytic enzymes to the cytosol, induces glycolysis and thus the production of 2,3-bisphosphoglycerate (2,3-BPG), an erythrocyte-specific glycolytic intermediate, which facilitates O2 release. Altogether, we reveal S1P as an intracellular hypoxia-responsive biolipid promoting erythrocyte glycolysis, O2 delivery and thus new therapeutic opportunities to counteract tissue hypoxia. PMID:27417539

  6. Sphingosine-1-phosphate Phosphatase 2 Regulates Pancreatic Islet β-Cell Endoplasmic Reticulum Stress and Proliferation.

    PubMed

    Taguchi, Yoshimitsu; Allende, Maria L; Mizukami, Hiroki; Cook, Emily K; Gavrilova, Oksana; Tuymetova, Galina; Clarke, Benjamin A; Chen, Weiping; Olivera, Ana; Proia, Richard L

    2016-06-03

    Sphingosine-1-phosphate (S1P) is a sphingolipid metabolite that regulates basic cell functions through metabolic and signaling pathways. Intracellular metabolism of S1P is controlled, in part, by two homologous S1P phosphatases (SPPases), 1 and 2, which are encoded by the Sgpp1 and Sgpp2 genes, respectively. SPPase activity is needed for efficient recycling of sphingosine into the sphingolipid synthesis pathway. SPPase 1 is important for skin homeostasis, but little is known about the functional role of SPPase 2. To identify the functions of SPPase 2 in vivo, we studied mice with the Sgpp2 gene deleted. In contrast to Sgpp1(-/-) mice, Sgpp2(-/-) mice had normal skin and were viable into adulthood. Unexpectedly, WT mice expressed Sgpp2 mRNA at high levels in pancreatic islets when compared with other tissues. Sgpp2(-/-) mice had normal pancreatic islet size; however, they exhibited defective adaptive β-cell proliferation that was demonstrated after treatment with either a high-fat diet or the β-cell-specific toxin, streptozotocin. Importantly, β-cells from untreated Sgpp2(-/-) mice showed significantly increased expression of proteins characteristic of the endoplasmic reticulum stress response compared with β-cells from WT mice, indicating a basal islet defect. Our results show that Sgpp2 deletion causes β-cell endoplasmic reticulum stress, which is a known cause of β-cell dysfunction, and reveal a juncture in the sphingolipid recycling pathway that could impact the development of diabetes.

  7. Phytosphingosine-1-phosphate is a signaling molecule involved in miconazole resistance in sessile Candida albicans cells.

    PubMed

    Vandenbosch, Davy; Bink, Anna; Govaert, Gilmer; Cammue, Bruno P A; Nelis, Hans J; Thevissen, Karin; Coenye, Tom

    2012-05-01

    Previous research has shown that 1% to 10% of sessile Candida albicans cells survive treatment with high doses of miconazole (a fungicidal imidazole). In the present study, we investigated the involvement of sphingolipid biosynthetic intermediates in this survival. We observed that the LCB4 gene, coding for the enzyme that catalyzes the phosphorylation of dihydrosphingosine and phytosphingosine, is important in governing the miconazole resistance of sessile Saccharomyces cerevisiae and C. albicans cells. The addition of 10 nM phytosphingosine-1-phosphate (PHS-1-P) drastically reduced the intracellular miconazole concentration and significantly increased the miconazole resistance of a hypersusceptible C. albicans heterozygous LCB4/lcb4 mutant, indicating a protective effect of PHS-1-P against miconazole-induced cell death in sessile cells. At this concentration of PHS-1-P, we did not observe any effect on the fluidity of the cytoplasmic membrane. The protective effect of PHS-1-P was not observed when the efflux pumps were inhibited or when tested in a mutant without functional efflux systems. Also, the addition of PHS-1-P during miconazole treatment increased the expression levels of genes coding for efflux pumps, leading to the hypothesis that PHS-1-P acts as a signaling molecule and enhances the efflux of miconazole in sessile C. albicans cells.

  8. Phytosphingosine-1-Phosphate Is a Signaling Molecule Involved in Miconazole Resistance in Sessile Candida albicans Cells

    PubMed Central

    Vandenbosch, Davy; Bink, Anna; Govaert, Gilmer; Cammue, Bruno P. A.; Nelis, Hans J.; Thevissen, Karin

    2012-01-01

    Previous research has shown that 1% to 10% of sessile Candida albicans cells survive treatment with high doses of miconazole (a fungicidal imidazole). In the present study, we investigated the involvement of sphingolipid biosynthetic intermediates in this survival. We observed that the LCB4 gene, coding for the enzyme that catalyzes the phosphorylation of dihydrosphingosine and phytosphingosine, is important in governing the miconazole resistance of sessile Saccharomyces cerevisiae and C. albicans cells. The addition of 10 nM phytosphingosine-1-phosphate (PHS-1-P) drastically reduced the intracellular miconazole concentration and significantly increased the miconazole resistance of a hypersusceptible C. albicans heterozygous LCB4/lcb4 mutant, indicating a protective effect of PHS-1-P against miconazole-induced cell death in sessile cells. At this concentration of PHS-1-P, we did not observe any effect on the fluidity of the cytoplasmic membrane. The protective effect of PHS-1-P was not observed when the efflux pumps were inhibited or when tested in a mutant without functional efflux systems. Also, the addition of PHS-1-P during miconazole treatment increased the expression levels of genes coding for efflux pumps, leading to the hypothesis that PHS-1-P acts as a signaling molecule and enhances the efflux of miconazole in sessile C. albicans cells. PMID:22354293

  9. Inclusion bodies of fuculose-1-phosphate aldolase as stable and reusable biocatalysts.

    PubMed

    Sans, Cristina; García-Fruitós, Elena; Ferraz, Rosa M; González-Montalbán, Núria; Rinas, Ursula; López-Santín, Josep; Villaverde, Antonio; Álvaro, Gregorio

    2012-01-01

    Fuculose-1-phosphate aldolase (FucA) has been produced in Escherichia coli as active inclusion bodies (IBs) in batch cultures. The activity of insoluble FucA has been modulated by a proper selection of producing strain, culture media, and process conditions. In some cases, when an optimized defined medium was used, FucA IBs were more active (in terms of specific activity) than the soluble protein version obtained in the same process with a conventional defined medium, supporting the concept that solubility and conformational quality are independent protein parameters. FucA IBs have been tested as biocatalysts, either directly or immobilized into Lentikat beads, in an aldolic reaction between DHAP and (S)-Cbz-alaninal, obtaining product yields ranging from 65 to 76%. The production of an active aldolase as IBs, the possibility of tailoring IBs properties by both genetic and process approaches, and the reusability of IBs by further entrapment in appropriate matrices fully support the principle of using self-assembled enzymatic clusters as tunable mechanically stable and functional biocatalysts.

  10. Sphingosine-1-Phosphate Receptor-2 Antagonists: Therapeutic Potential and Potential Risks

    PubMed Central

    Blankenbach, Kira V.; Schwalm, Stephanie; Pfeilschifter, Josef; Meyer zu Heringdorf, Dagmar

    2016-01-01

    The sphingosine-1-phosphate (S1P) signaling system with its specific G-protein-coupled S1P receptors, the enzymes of S1P metabolism and the S1P transporters, offers a multitude of promising targets for drug development. Until today, drug development in this area has nearly exclusively focused on (functional) antagonists at the S1P1 receptor, which cause a unique phenotype of immunomodulation. Accordingly, the first-in class S1P1 receptor modulator, fingolimod, has been approved for the treatment of relapsing-remitting multiple sclerosis, and novel S1P1 receptor (functional) antagonists are being developed for autoimmune and inflammatory diseases such as psoriasis, inflammatory bowel disease, lupus erythematodes, or polymyositis. Besides the S1P1 receptor, also S1P2 and S1P3 are widely expressed and regulate many diverse functions throughout the body. The S1P2 receptor, in particular, often exerts cellular functions which are opposed to the functions of the S1P1 receptor. As a consequence, antagonists at the S1P2 receptor have the potential to be useful in a contrasting context and different areas of indication compared to S1P1 antagonists. The present review will focus on the therapeutic potential of S1P2 receptor antagonists and discuss their opportunities as well as their potential risks. Open questions and areas which require further investigations will be emphasized in particular. PMID:27445808

  11. Sphingosine 1-phosphate receptors are essential mediators of eyelid closure during embryonic development.

    PubMed

    Herr, Deron R; Lee, Chang-Wook; Wang, Wei; Ware, Adam; Rivera, Richard; Chun, Jerold

    2013-10-11

    The fetal development of the mammalian eyelid involves the expansion of the epithelium over the developing cornea, fusion into a continuous sheet covering the eye, and a splitting event several weeks later that results in the formation of the upper and lower eyelids. Recent studies have revealed a significant number of molecular signaling components that are essential mediators of eyelid development. Receptor-mediated sphingosine 1-phosphate (S1P) signaling is known to influence diverse biological processes, but its involvement in eyelid development has not been reported. Here, we show that two S1P receptors, S1P2 and S1P3, are collectively essential mediators of eyelid closure during murine development. Homozygous deletion of the gene encoding either receptor has no apparent effect on eyelid development, but double-null embryos are born with an "eyes open at birth" defect due to a delay in epithelial sheet extension. Both receptors are expressed in the advancing epithelial sheet during the critical period of extension. Fibroblasts derived from double-null embryos have a deficient response to epidermal growth factor, suggesting that S1P2 and S1P3 modulate this essential signaling pathway during eyelid closure.

  12. Assessment of ataxia phenotype in a new mouse model of galactose-1 phosphate uridylyltransferase (GALT) deficiency.

    PubMed

    Chen, Wyman; Caston, Rose; Balakrishnan, Bijina; Siddiqi, Anwer; Parmar, Kamalpreet; Tang, Manshu; Feng, Merry; Lai, Kent

    2017-01-01

    Despite adequate dietary management, patients with classic galactosemia continue to have increased risks of cognitive deficits, speech dyspraxia, primary ovarian insufficiency, and abnormal motor development. A recent evaluation of a new galactose-1 phosphate uridylyltransferase (GALT)-deficient mouse model revealed reduced fertility and growth restriction. These phenotypes resemble those seen in human patients. In this study, we further assess the fidelity of this new mouse model by examining the animals for the manifestation of a common neurological sequela in human patients: cerebellar ataxia. The balance, grip strength, and motor coordination of GALT-deficient and wild-type mice were tested using a modified rotarod. The results were compared to composite phenotype scoring tests, typically used to evaluate neurological and motor impairment. The data demonstrated abnormalities with varying severity in the GALT-deficient mice. Mice of different ages were used to reveal the progressive nature of motor impairment. The varying severity and age-dependent impairments seen in the animal model agree with reports on human patients. Finally, measurements of the cerebellar granular and molecular layers suggested that mutant mice experience cerebellar hypoplasia, which could have resulted from the down-regulation of the PI3K/Akt signaling pathway.

  13. A Novel Role of a Lipid Species, Sphingosine-1-Phosphate, in Epithelial Innate Immunity

    PubMed Central

    Park, Kyungho; Elias, Peter M.; Shin, Kyoung-Oh; Lee, Yong-Moon; Hupe, Melanie; Borkowski, Andrew W.; Gallo, Richard L.; Saba, Julie; Holleran, Walter M.

    2013-01-01

    A variety of external perturbations can induce endoplasmic reticulum (ER) stress, followed by stimulation of epithelial cells to produce an innate immune element, the cathelicidin antimicrobial peptide (CAMP). ER stress also increases production of the proapoptotic lipid ceramide and its antiapoptotic metabolite, sphingosine-1-phosphate (S1P). We demonstrate here that S1P mediates ER stress-induced CAMP generation. Cellular ceramide and S1P levels rose in parallel with CAMP levels following addition of either exogenous cell-permeating ceramide (C2Cer), which increases S1P production, or thapsigargin (an ER stressor), applied to cultured human skin keratinocytes or topically to mouse skin. Knockdown of S1P lyase, which catabolizes S1P, enhanced ER stress-induced CAMP production in cultured cells and mouse skin. These and additional inhibitor studies show that S1P is responsible for ER stress-induced upregulation of CAMP expression. Increased CAMP expression is likely mediated via S1P-dependent NF-κB–C/EBPα activation. Finally, lysates of both ER-stressed and S1P-stimulated cells blocked growth of virulent Staphylococcus aureus in vitro, and topical C2Cer and LL-37 inhibited invasion of Staphylococcus aureus into murine skin. These studies suggest that S1P generation resulting in increased CAMP production comprises a novel regulatory mechanism of epithelial innate immune responses to external perturbations, pointing to a new therapeutic approach to enhance antimicrobial defense. PMID:23230267

  14. Inhibition of Sphingosine-1-phosphate receptors in ischemia reperfusion injured autoimmunity-prone mice.

    PubMed

    Edison, Jess; Frattalone, Sharon; Tracy, Christopher; Woodard, Geoffrey E; Butts, Melissa; Moratz, C M

    2017-01-01

    B6.MRL/lpr mice, an autoimmune strain, have an accelerated injury time course, increased intensity of tissue damage, and increased CD4+ T cell infiltration in the mesenteric ischemia/reperfusion injury model. In this study, the mechanism by which CD4+ T cells were recruited into injured tissue was addressed. Fingolimod (FTY720) was utilized to assess the role of infiltrating CD4+ T cells. FTY720 treatment was more effective in attenuating injury in B6.MRL/lpr mice then in control mice. Reduced CD4+ cell infiltration and tissue injury correlated with decreased neutrophil infiltration and pro-inflammatory cytokine generation. Inhibiting downstream Sphingosine-1-phosphate (S1P) receptor signaling, specifically GαI mediated signaling, did not inhibit injury, suggesting differential utilization of the S1P receptors between control and MRL/lpr strains. Analysis of S1P receptor expression exposed a predominance of S1P2 in the B6.MRL/lpr strain. Reliance on alternate S1P receptors in the autoimmune strain will alter the progress of inflammation and tissue injury.

  15. Impaired T-cell responses to sphingosine-1-phosphate in HIV-1 infected lymph nodes

    PubMed Central

    Mudd, Joseph C.; Murphy, Patrick; Manion, Maura; Debernardo, Robert; Hardacre, Jeffrey; Ammori, John; Hardy, Gareth A.; Harding, Clifford V.; Mahabaleshwar, Ganapati H.; Jain, Mukesh K.; Jacobson, Jeffrey M.; Brooks, Ari D.; Lewis, Sharon; Schacker, Timothy W.; Anderson, Jodi; Haddad, Elias K.; Cubas, Rafael A.; Rodriguez, Benigno; Sieg, Scott F.

    2013-01-01

    The determinants of HIV-1-associated lymphadenopathy are poorly understood. We hypothesized that lymphocytes could be sequestered in the HIV-1+ lymph node (LN) through impairments in sphingosine-1-phosphate (S1P) responsiveness. To test this hypothesis, we developed novel assays for S1P-induced Akt phosphorylation and actin polymerization. In the HIV-1+ LN, naïve CD4 T cells and central memory CD4 and CD8 T cells had impaired Akt phosphorylation in response to S1P, whereas actin polymerization responses to S1P were impaired dramatically in all LN maturation subsets. These defects were improved with antiretroviral therapy. LN T cells expressing CD69 were unable to respond to S1P in either assay, yet impaired S1P responses were also seen in HIV-1+ LN T cells lacking CD69 expression. Microbial elements, HIV-1, and interferon α – putative drivers of HIV-1associated immune activation all tended to increase CD69 expression and reduce T-cell responses to S1P in vitro. Impairment in T-cell egress from lymph nodes through decreased S1P responsiveness may contribute to HIV-1-associated LN enlargement and to immune dysregulation in a key organ of immune homeostasis. PMID:23422746

  16. Sphingosine-1-Phosphate Signaling Regulates Myogenic Responsiveness in Human Resistance Arteries

    PubMed Central

    Slack, Daniel L.; Burnstein, Marcus J.; Errett, Lee; Bonneau, Daniel; Latter, David; Rotstein, Ori D.; Bolz, Steffen-Sebastian; Lidington, Darcy; Voigtlaender-Bolz, Julia

    2015-01-01

    We recently identified sphingosine-1-phosphate (S1P) signaling and the cystic fibrosis transmembrane conductance regulator (CFTR) as prominent regulators of myogenic responsiveness in rodent resistance arteries. However, since rodent models frequently exhibit limitations with respect to human applicability, translation is necessary to validate the relevance of this signaling network for clinical application. We therefore investigated the significance of these regulatory elements in human mesenteric and skeletal muscle resistance arteries. Mesenteric and skeletal muscle resistance arteries were isolated from patient tissue specimens collected during colonic or cardiac bypass surgery. Pressure myography assessments confirmed endothelial integrity, as well as stable phenylephrine and myogenic responses. Both human mesenteric and skeletal muscle resistance arteries (i) express critical S1P signaling elements, (ii) constrict in response to S1P and (iii) lose myogenic responsiveness following S1P receptor antagonism (JTE013). However, while human mesenteric arteries express CFTR, human skeletal muscle resistance arteries do not express detectable levels of CFTR protein. Consequently, modulating CFTR activity enhances myogenic responsiveness only in human mesenteric resistance arteries. We conclude that human mesenteric and skeletal muscle resistance arteries are a reliable and consistent model for translational studies. We demonstrate that the core elements of an S1P-dependent signaling network translate to human mesenteric resistance arteries. Clear species and vascular bed variations are evident, reinforcing the critical need for further translational study. PMID:26367262

  17. Platelet-derived sphingosine-1-phosphate and inflammation: from basic mechanisms to clinical implications.

    PubMed

    Vito, Clara Di; Hadi, Loubna Abdel; Navone, Stefania Elena; Marfia, Giovanni; Campanella, Rolando; Mancuso, Maria Elisa; Riboni, Laura

    2016-07-01

    Beyond key functions in hemostasis and thrombosis, platelets are recognized as key players of inflammation, an underlying feature of a variety of diseases. In this regard, platelets act as a circulating source of several pro- and anti-inflammatory molecules, which are secreted from their intracellular stores upon activation. Among them, mounting evidence highlights a crucial role of sphingosine-1-phosphate (S1P), a multifunctional sphingoid mediator. S1P-induced pleiotropic effects include those crucial in inflammatory processes, such as the maintenance of the endothelial barrier integrity, and leukocyte activation and recruitment at the injured site. This review outlines the peculiar features and molecular mechanisms that allow platelets for acting as a unique factory that produces and stores S1P in large quantities. A particular emphasis is placed on the autocrine and paracrine roles of S1P derived from the "inflamed" platelets, highlighting the role of its cross-talk with endothelial and blood cells involved in inflammation, and the mechanisms of its contribution to the development and progression of inflammatory diseases. Finally, potential clinical implications of platelet-derived S1P as diagnostic tool of inflammatory severity, and as therapeutic target in inflammation are discussed.

  18. Abluminal Stimulation of Sphingosine 1-Phosphate Receptors 1 and 3 Promotes and Stabilizes Endothelial Sprout Formation

    PubMed Central

    Lenz, Steven M.; Awojoodu, Anthony O.

    2015-01-01

    Local delivery of lipid mediators has become a promising new approach for therapeutic angiogenesis and regenerative medicine. In this study, we investigated how gradient stimulation (either abluminal/distal or luminal/proximal) of engineered microvessels with sphingosine 1-phosphate (S1P) receptor-subtype-targeted molecules affects endothelial sprout growth using a microfluidic device. Our studies show that distal stimulation of microvessels with FTY720, an S1P1/3 selective agonist, promotes both arterial and venular sprout growth, whereas proximal stimulation does not. Using novel pharmacological antagonists of S1P receptor subtypes, we further show that S1P3 functionality is necessary for VEGF-induced sprouting, and confirmed these findings ex vivo using a murine aortic ring assay from S1P3-deficient mice. S1P3 agonist stimulation enhanced vascular stability in both cell types via upregulation of the interendothelial junction protein VE-cadherin. Lastly, S1P3 activation under flow promoted endothelial sprouting and branching while decreasing migratory cell fate in the microfluidic device. We used an in vivo murine dorsal skinfold window chamber model to confirm S1P3's role in neovascular branching. Together, these data suggest that a distal transendothelial gradient of S1P1/3-targeted drugs is an effective technique for both enhancing and stabilizing capillary morphogenesis in angiogenic applications. PMID:25315888

  19. Deficiency of sphingosine-1-phosphate lyase impairs lysosomal metabolism of the amyloid precursor protein.

    PubMed

    Karaca, Ilker; Tamboli, Irfan Y; Glebov, Konstantin; Richter, Josefine; Fell, Lisa H; Grimm, Marcus O; Haupenthal, Viola J; Hartmann, Tobias; Gräler, Markus H; van Echten-Deckert, Gerhild; Walter, Jochen

    2014-06-13

    Progressive accumulation of the amyloid β protein in extracellular plaques is a neuropathological hallmark of Alzheimer disease. Amyloid β is generated during sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. In addition to the proteolytic processing by secretases, APP is also metabolized by lysosomal proteases. Here, we show that accumulation of intracellular sphingosine-1-phosphate (S1P) impairs the metabolism of APP. Cells lacking functional S1P-lyase, which degrades intracellular S1P, strongly accumulate full-length APP and its potentially amyloidogenic C-terminal fragments (CTFs) as compared with cells expressing the functional enzyme. By cell biological and biochemical methods, we demonstrate that intracellular inhibition of S1P-lyase impairs the degradation of APP and CTFs in lysosomal compartments and also decreases the activity of γ-secretase. Interestingly, the strong accumulation of APP and CTFs in S1P-lyase-deficient cells was reversed by selective mobilization of Ca(2+) from the endoplasmic reticulum or lysosomes. Intracellular accumulation of S1P also impairs maturation of cathepsin D and degradation of Lamp-2, indicating a general impairment of lysosomal activity. Together, these data demonstrate that S1P-lyase plays a critical role in the regulation of lysosomal activity and the metabolism of APP.

  20. Sphingosine 1-phosphate lyase ablation disrupts presynaptic architecture and function via an ubiquitin- proteasome mediated mechanism

    PubMed Central

    Mitroi, Daniel N.; Deutschmann, André U.; Raucamp, Maren; Karunakaran, Indulekha; Glebov, Konstantine; Hans, Michael; Walter, Jochen; Saba, Julie; Gräler, Markus; Ehninger, Dan; Sopova, Elena; Shupliakov, Oleg; Swandulla, Dieter; van Echten-Deckert, Gerhild

    2016-01-01

    The bioactive lipid sphingosine 1-phosphate (S1P) is a degradation product of sphingolipids that are particularly abundant in neurons. We have shown previously that neuronal S1P accumulation is toxic leading to ER-stress and an increase in intracellular calcium. To clarify the neuronal function of S1P, we generated brain-specific knockout mouse models in which S1P-lyase (SPL), the enzyme responsible for irreversible S1P cleavage was inactivated. Constitutive ablation of SPL in the brain (SPLfl/fl/Nes) but not postnatal neuronal forebrain-restricted SPL deletion (SPLfl/fl/CaMK) caused marked accumulation of S1P. Hence, altered presynaptic architecture including a significant decrease in number and density of synaptic vesicles, decreased expression of several presynaptic proteins, and impaired synaptic short term plasticity were observed in hippocampal neurons from SPLfl/fl/Nes mice. Accordingly, these mice displayed cognitive deficits. At the molecular level, an activation of the ubiquitin-proteasome system (UPS) was detected which resulted in a decreased expression of the deubiquitinating enzyme USP14 and several presynaptic proteins. Upon inhibition of proteasomal activity, USP14 levels, expression of presynaptic proteins and synaptic function were restored. These findings identify S1P metabolism as a novel player in modulating synaptic architecture and plasticity. PMID:27883090

  1. Pancreas lineage allocation and specification are regulated by sphingosine-1-phosphate signalling

    PubMed Central

    Serafimidis, Ioannis; Rodriguez-Aznar, Eva; Lesche, Mathias; Yoshioka, Kazuaki; Takuwa, Yoh; Dahl, Andreas; Pan, Duojia; Gavalas, Anthony

    2017-01-01

    During development, progenitor expansion, lineage allocation, and implementation of differentiation programs need to be tightly coordinated so that different cell types are generated in the correct numbers for appropriate tissue size and function. Pancreatic dysfunction results in some of the most debilitating and fatal diseases, including pancreatic cancer and diabetes. Several transcription factors regulating pancreas lineage specification have been identified, and Notch signalling has been implicated in lineage allocation, but it remains unclear how these processes are coordinated. Using a combination of genetic approaches, organotypic cultures of embryonic pancreata, and genomics, we found that sphingosine-1-phosphate (S1p), signalling through the G protein coupled receptor (GPCR) S1pr2, plays a key role in pancreas development linking lineage allocation and specification. S1pr2 signalling promotes progenitor survival as well as acinar and endocrine specification. S1pr2-mediated stabilisation of the yes-associated protein (YAP) is essential for endocrine specification, thus linking a regulator of progenitor growth with specification. YAP stabilisation and endocrine cell specification rely on Gαi subunits, revealing an unexpected specificity of selected GPCR intracellular signalling components. Finally, we found that S1pr2 signalling posttranscriptionally attenuates Notch signalling levels, thus regulating lineage allocation. Both S1pr2-mediated YAP stabilisation and Notch attenuation are necessary for the specification of the endocrine lineage. These findings identify S1p signalling as a novel key pathway coordinating cell survival, lineage allocation, and specification and linking these processes by regulating YAP levels and Notch signalling. Understanding lineage allocation and specification in the pancreas will shed light in the origins of pancreatic diseases and may suggest novel therapeutic approaches. PMID:28248965

  2. Activated platelets release sphingosine 1-phosphate and induce hypersensitivity to noxious heat stimuli in vivo

    PubMed Central

    Weth, Daniela; Benetti, Camilla; Rauch, Caroline; Gstraunthaler, Gerhard; Schmidt, Helmut; Geisslinger, Gerd; Sabbadini, Roger; Proia, Richard L.; Kress, Michaela

    2015-01-01

    At the site of injury activated platelets release various mediators, one of which is sphingosine 1-phosphate (S1P). It was the aim of this study to explore whether activated human platelets had a pronociceptive effect in an in vivo mouse model and whether this effect was based on the release of S1P and subsequent activation of neuronal S1P receptors 1 or 3. Human platelets were prepared in different concentrations (105/μl, 106/μl, 107/μl) and assessed in mice with different genetic backgrounds (WT, S1P1fl/fl, SNS-S1P1−/−, S1P3−/−). Intracutaneous injections of activated human platelets induced a significant, dose-dependent hypersensitivity to noxious thermal stimulation. The degree of heat hypersensitivity correlated with the platelet concentration as well as the platelet S1P content and the amount of S1P released upon platelet activation as measured with LC MS/MS. Despite the significant correlations between S1P and platelet count, no difference in paw withdrawal latency (PWL) was observed in mice with a global null mutation of the S1P3 receptor or a conditional deletion of the S1P1 receptor in nociceptive primary afferents. Furthermore, neutralization of S1P with a selective anti-S1P antibody did not abolish platelet induced heat hypersensitivity. Our results suggest that activated platelets release S1P and induce heat hypersensitivity in vivo. However, the platelet induced heat hypersensitivity was caused by mediators other than S1P. PMID:25954148

  3. Sphingosine 1-phosphate signaling pathway in inner ear biology. New therapeutic strategies for hearing loss?

    PubMed Central

    Romero-Guevara, Ricardo; Cencetti, Francesca; Donati, Chiara; Bruni, Paola

    2015-01-01

    Hearing loss is one of the most prevalent conditions around the world, in particular among people over 60 years old. Thus, an increase of this affection is predicted as result of the aging process in our population. In this context, it is important to further explore the function of molecular targets involved in the biology of inner ear sensory cells to better individuate new candidates for therapeutic application. One of the main causes of deafness resides into the premature death of hair cells and auditory neurons. In this regard, neurotrophins and growth factors such as insulin like growth factor are known to be beneficial by favoring the survival of these cells. An elevated number of published data in the last 20 years have individuated sphingolipids not only as structural components of biological membranes but also as critical regulators of key biological processes, including cell survival. Ceramide, formed by catabolism of sphingomyelin (SM) and other complex sphingolipids, is a strong inducer of apoptotic pathway, whereas sphingosine 1-phosphate (S1P), generated by cleavage of ceramide to sphingosine and phosphorylation catalyzed by two distinct sphingosine kinase (SK) enzymes, stimulates cell survival. Interestingly S1P, by acting as intracellular mediator or as ligand of a family of five distinct S1P receptors (S1P1–S1P5), is a very powerful bioactive sphingolipid, capable of triggering also other diverse cellular responses such as cell migration, proliferation and differentiation, and is critically involved in the development and homeostasis of several organs and tissues. Although new interesting data have become available, the information on S1P pathway and other sphingolipids in the biology of the inner ear is limited. Nonetheless, there are several lines of evidence implicating these signaling molecules during neurogenesis in other cell populations. In this review, we discuss the role of S1P during inner ear development, also as guidance for future

  4. Membrane Organization and Ionization Behavior of the Minor but Crucial Lipid Ceramide-1-Phosphate

    SciTech Connect

    Kooijman, Edgar E.; Sot, Jesus; Montes, L.-Ruth; Alonso, Alicia; Gericke, Arne; de Kruijff, Ben; Kumar, Satyendra; Goni, Felix M.

    2008-08-06

    Ceramide-1-phosphate (Cer-1-P), one of the simplest of all sphingophospholipids, occurs in minor amounts in biological membranes. Yet recent evidence suggests important roles of this lipid as a novel second messenger with crucial tasks in cell survival and inflammatory responses. We present a detailed description of the physical chemistry of this hitherto little explored membrane lipid. At full hydration Cer-1-P forms a highly organized subgel (crystalline) bilayer phase (L{sub c}) at low temperature, which transforms into a regular gel phase (L{sub {beta}}) at {approx}45 C, with the gel to fluid phase transition (L{sub {beta}}-L{sub {alpha}}) occurring at {approx}65 C. When incorporated at 5mol % in a phosphatidylcholine bilayer, the pK{sub a2} of Cer-1-P, 7.39{+-}0.03, lies within the physiological pH range. Inclusion of phosphatidylethanolamine in the phosphatidylcholine bilayer, at equimolar ratio, dramatically reduces the pK{sub a2} to 6.64{+-}0.03. We explain these results in light of the novel electrostatic/hydrogen bond switch model described recently for phosphatidic acid. In mixtures with dielaidoylphosphatidylethanolamine, small concentrations of Cer-1-P cause a large reduction of the lamellar-to-inverted hexagonal phase transition temperature, suggesting that Cer-1-P induces, like phosphatidic acid, negative membrane curvature in these types of lipid mixtures. These properties place Cer-1-P in a class more akin to certain glycerophospholipids (phosphatidylethanolamine, phosphatidic acid) than to any other sphingolipid. In particular, the similarities and differences between ceramide and Cer-1-P may be relevant in explaining some of their physiological roles.

  5. Induction of chemokine (C-C motif) ligand 2 by sphingosine-1-phosphate signaling in neuroblastoma

    PubMed Central

    Li, Mei-Hong; Harel, Miriam; Hla, Timothy; Ferrer, Fernando

    2014-01-01

    Background/Purpose Neuroblastoma (NB) is the most common extracranial solid tumor of childhood. Preliminary data derived from a human angiogenesis array in NB showed that the bioactive lipid sphingosine-1-phosphate (S1P) induced the secretion of several angiogenesis-related proteins including the important inflammatory factor chemokine (C-C motif) ligand 2 (CCL2). In the present study, we investigated the mechanism of S1P-induced CCL2 expression in NB. Methods Quantitative real-time PCR and CCL2 ELISA were conducted to detect the mRNA expression and protein secretion of CCL2 in NB cells. Gain and loss of function studies were performed by using specific S1PR antagonists, adenoviral transduction and siRNA transfection. Macrophage F4/80 receptor in NB xenografts was detected by quantitative real-time PCR and immunohistochemistry staining. Results S1P induced CCL2 mRNA expression and protein secretion in a time- and concentration-dependent manner in NB cells. Blockade of S1P2 signaling using the selective S1P2 antagonist JTE-013 inhibited S1P-induced CCL2 expression. Overexpression of S1P2 by adenoviral transduction increased CCL2 secretion while knockdown of S1P2 by siRNA transfection decreased S1P-induced CCL2 secretion in NB cells. Macrophage infiltration, as detected by F4/80 staining, was significantly decreased in JTE-013-treated NB xenografts. Conclusions Taken together, our data for the first time demonstrate that S1P induced the macrophage-recruiting factor CCL2 expression in NB cells via S1P2, providing new insights into the complicated functions of S1P2 in cancer. PMID:25092091

  6. Chemical Hypoxia Brings to Light Altered Autocrine Sphingosine-1-Phosphate Signalling in Rheumatoid Arthritis Synovial Fibroblasts

    PubMed Central

    Zhao, Chenqi; Moreno-Nieves, Uriel; Di Battista, John A.; Fernandes, Maria J.; Touaibia, Mohamed; Bourgoin, Sylvain G.

    2015-01-01

    Emerging evidence suggests a role for sphingosine-1-phosphate (S1P) in various aspects of rheumatoid arthritis (RA) pathogenesis. In this study we compared the effect of chemical hypoxia induced by cobalt chloride (CoCl2) on the expression of S1P metabolic enzymes and cytokine/chemokine secretion in normal fibroblast-like synoviocytes (FLS) and RAFLS. RAFLS incubated with CoCl2, but not S1P, produced less IL-8 and MCP-1 than normal FLS. Furthermore, incubation with the S1P2 and S1P3 receptor antagonists, JTE-013 and CAY10444, reduced CoCl2-mediated chemokine production in normal FLS but not in RAFLS. RAFLS showed lower levels of intracellular S1P and enhanced mRNA expression of S1P phosphatase 1 (SGPP1) and S1P lyase (SPL), the enzymes that are involved in intracellular S1P degradation, when compared to normal FLS. Incubation with CoCl2 decreased SGPP1 mRNA and protein and SPL mRNA as well. Inhibition of SPL enhanced CoCl2-mediated cytokine/chemokine release and restored autocrine activation of S1P2 and S1P3 receptors in RAFLS. The results suggest that the sphingolipid pathway regulating the intracellular levels of S1P is dysregulated in RAFLS and has a significant impact on cell autocrine activation by S1P. Altered sphingolipid metabolism in FLS from patients with advanced RA raises the issue of synovial cell burnout due to chronic inflammation. PMID:26556954

  7. Sphingosine-1-phosphate lyase downregulation promotes colon carcinogenesis through STAT3-activated microRNAs.

    PubMed

    Degagné, Emilie; Pandurangan, Ashok; Bandhuvula, Padmavathi; Kumar, Ashok; Eltanawy, Abeer; Zhang, Meng; Yoshinaga, Yuko; Nefedov, Mikhail; de Jong, Pieter J; Fong, Loren G; Young, Stephen G; Bittman, Robert; Ahmedi, Yasmin; Saba, Julie D

    2014-12-01

    Growing evidence supports a link between inflammation and cancer; however, mediators of the transition between inflammation and carcinogenesis remain incompletely understood. Sphingosine-1-phosphate (S1P) lyase (SPL) irreversibly degrades the bioactive sphingolipid S1P and is highly expressed in enterocytes but downregulated in colon cancer. Here, we investigated the role of SPL in colitis-associated cancer (CAC). We generated mice with intestinal epithelium-specific Sgpl1 deletion and chemically induced colitis and tumor formation in these animals. Compared with control animals, mice lacking intestinal SPL exhibited greater disease activity, colon shortening, cytokine levels, S1P accumulation, tumors, STAT3 activation, STAT3-activated microRNAs (miRNAs), and suppression of miR-targeted anti-oncogene products. This phenotype was attenuated by STAT3 inhibition. In fibroblasts, silencing SPL promoted tumorigenic transformation through a pathway involving extracellular transport of S1P through S1P transporter spinster homolog 2 (SPNS2), S1P receptor activation, JAK2/STAT3-dependent miR-181b-1 induction, and silencing of miR-181b-1 target cylindromatosis (CYLD). Colon biopsies from patients with inflammatory bowel disease revealed enhanced S1P and STAT3 signaling. In mice with chemical-induced CAC, oral administration of plant-type sphingolipids called sphingadienes increased colonic SPL levels and reduced S1P levels, STAT3 signaling, cytokine levels, and tumorigenesis, indicating that SPL prevents transformation and carcinogenesis. Together, our results suggest that dietary sphingolipids can augment or prevent colon cancer, depending upon whether they are metabolized to S1P or promote S1P metabolism through the actions of SPL.

  8. Implication of matrix metalloproteinases 2 and 9 in ceramide 1-phosphate-stimulated macrophage migration.

    PubMed

    Ordoñez, Marta; Rivera, Io-Guané; Presa, Natalia; Gomez-Muñoz, Antonio

    2016-08-01

    Cell migration is a complex biological function involved in both physiologic and pathologic processes. Although this is a subject of intense investigation, the mechanisms by which cell migration is regulated are not completely understood. In this study we show that the bioactive sphingolipid ceramide 1-phosphate (C1P), which is involved in inflammatory responses, causes upregulation of metalloproteinases (MMP) -2 and -9 in J774A.1 macrophages. This effect was shown to be dependent on stimulation of phosphatidylinositol 3-kinase (PI3K) and extracellularly regulated kinases 1-2 (ERK1-2) as demonstrated by treating the cells with specific siRNA to knockdown the p85 regulatory subunit of PI3K, or ERK1-2. Inhibition of MMP-2 or MMP-9 pharmacologically or with specific siRNA to silence the genes encoding these MMPs abrogated C1P-stimulated macrophage migration. Also, C1P induced actin polymerization and potently increased phosphorylation of the focal adhesion protein paxillin, which are essential factors in the regulation of cell migration. As expected, blockade of paxillin activation with specific siRNA significantly reduced actin polymerization. In addition, inhibition of actin polymerization with cytochalasin D completely blocked C1P-induced MMP-2 and -9 expression as well as C1P-stimulated macrophage migration. It was also observed that pertussis toxin (Ptx) inhibited Akt, ERK1-2, and paxillin phosphorylation, and completely blocked cell migration. The latter findings support the notion that C1P-stimulated macrophage migration is a receptor mediated effect, and point to MMP-2 and -9 as possible therapeutic targets to control inflammation.

  9. The immunosuppressant FTY720 inhibits tumor angiogenesis via the sphingosine 1-phosphate receptor 1.

    PubMed

    Schmid, Gerald; Guba, Markus; Ischenko, Ivan; Papyan, Armine; Joka, Mareile; Schrepfer, Sabine; Bruns, Christiane J; Jauch, Karl-Walter; Heeschen, Christopher; Graeb, Christian

    2007-05-01

    FTY720, a sphingosine 1-phosphate (S1P) analog, acts as an immunosuppressant through trapping of T cells in secondary lymphoid tissues. FTY720 was also shown to prevent tumor growth and to inhibit vascular permeability. The MTT proliferation assay illustrated that endothelial cells are more susceptible to the anti-proliferative effect of FTY720 than Lewis lung carcinoma (LLC1) cells. In a spheroid angiogenesis model, FTY720 potently inhibited the sprouting activity of VEGF-A-stimulated endothelial cells even at concentrations that apparently had no anti-proliferative effect. Mechanistically, the anti-angiogenic effect of the general S1P receptor agonist FTY720 was mimicked by the specific S1P1 receptor agonist SEW2871. Moreover, the anti-angiogenic effect of FTY720 was abrogated in the presence of CXCR4-neutralizing antibodies. This indicates that the effect was at least in part mediated by the S1P1 receptor and involved transactivation of the CXCR4 chemokine receptor. Additionally, we could illustrate in a coculture spheroid model, employing endothelial and smooth muscle cells (SMCs), that the latter confer a strong protective effect regarding the action of FTY720 upon the endothelial cells. In a subcutaneous LLC1 tumor model, the anti-angiogenic capacity translated into a reduced tumor size in syngeneic C57BL/6 mice. Consistently, in the Matrigel plug in vivo assay, 10 mg/kg/d FTY720 resulted in a strong inhibition of angiogenesis as demonstrated by a reduced capillary density. Thus, in organ transplant patients, FTY720 may prove efficacious in preventing graft rejection as well as tumor development.

  10. Role for Peroxynitrite in Sphingosine-1-Phosphate Induced Hyperalgesia in Rats

    PubMed Central

    Doyle, Tim; Finley, Amanda; Chen, Zhoumou; Salvemini, Daniela

    2011-01-01

    Sphingosine-1-phosphate (S1P) is an important mediator of inflammation recently shown in in vitro studies to increase the excitability of small diameter sensory neurons at least in part via activation of the S1P1 receptor subtype. Activation of S1PR1 has been reported to increase the formation of NADPH oxidase-derived superoxide (O2•−) and nitric oxide synthase (NOS)-derived nitric oxide (NO). This process favors the formation of peroxynitrite (ONOO−, PN), a potent mediator of hyperalgesia associated with peripheral and central sensitization. The aims of our study were to determine whether S1P causes peripheral sensitization and thermal hyperalgesia via S1PR1 activation and PN formation. Intraplantar injection of S1P in rats led to a time-dependent development of thermal hyperalgesia that was blocked by the S1PR1 antagonist, W146 but not its inactive enantiomer, W140. The hyperalgesic effects of S1P were mimicked by intraplantar injection of the well characterized S1PR1 agonist, SEW2871. The development of S1P-induced hyperalgesia was blocked by apocynin, a NADPH oxidase inhibitor, L-NAME, a non-selective NOS inhibitor and by the potent PN decomposition catalysts (FeTM-4-PyP5+ and MnTE-2-PyP5+). Our findings provide mechanistic insight into the signaling pathways engaged by S1P in the development of hyperalgesia and highlight the contribution of the S1P1 receptor-to-PN signaling in this process. PMID:21239112

  11. Sphingosine-1-phosphate lyase downregulation promotes colon carcinogenesis through STAT3-activated microRNAs

    PubMed Central

    Degagné, Emilie; Pandurangan, Ashok; Bandhuvula, Padmavathi; Kumar, Ashok; Eltanawy, Abeer; Zhang, Meng; Yoshinaga, Yuko; Nefedov, Mikhail; de Jong, Pieter J.; Fong, Loren G.; Young, Stephen G.; Bittman, Robert; Ahmedi, Yasmin; Saba, Julie D.

    2014-01-01

    Growing evidence supports a link between inflammation and cancer; however, mediators of the transition between inflammation and carcinogenesis remain incompletely understood. Sphingosine-1-phosphate (S1P) lyase (SPL) irreversibly degrades the bioactive sphingolipid S1P and is highly expressed in enterocytes but downregulated in colon cancer. Here, we investigated the role of SPL in colitis-associated cancer (CAC). We generated mice with intestinal epithelium-specific Sgpl1 deletion and chemically induced colitis and tumor formation in these animals. Compared with control animals, mice lacking intestinal SPL exhibited greater disease activity, colon shortening, cytokine levels, S1P accumulation, tumors, STAT3 activation, STAT3-activated microRNAs (miRNAs), and suppression of miR-targeted anti-oncogene products. This phenotype was attenuated by STAT3 inhibition. In fibroblasts, silencing SPL promoted tumorigenic transformation through a pathway involving extracellular transport of S1P through S1P transporter spinster homolog 2 (SPNS2), S1P receptor activation, JAK2/STAT3-dependent miR-181b-1 induction, and silencing of miR-181b-1 target cylindromatosis (CYLD). Colon biopsies from patients with inflammatory bowel disease revealed enhanced S1P and STAT3 signaling. In mice with chemical-induced CAC, oral administration of plant-type sphingolipids called sphingadienes increased colonic SPL levels and reduced S1P levels, STAT3 signaling, cytokine levels, and tumorigenesis, indicating that SPL prevents transformation and carcinogenesis. Together, our results suggest that dietary sphingolipids can augment or prevent colon cancer, depending upon whether they are metabolized to S1P or promote S1P metabolism through the actions of SPL. PMID:25347472

  12. Serum-Sphingosine-1-Phosphate Concentrations Are Inversely Associated with Atherosclerotic Diseases in Humans

    PubMed Central

    Geissen, Markus; Schwedhelm, Edzard; Winkler, Martin S.; Geffken, Maria; Peine, Sven; Schoen, Gerhard; Debus, E. Sebastian; Larena-Avellaneda, Axel; Daum, Guenter

    2016-01-01

    Background and Objectives Atherosclerotic changes of arteries are the leading cause for deaths in cardiovascular disease and greatly impair patient’s quality of life. Sphingosine-1-phosphate (S1P) is a signaling sphingolipid that regulates potentially pro-as well as anti-atherogenic processes. Here, we investigate whether serum-S1P concentrations are associated with peripheral artery disease (PAD) and carotid stenosis (CS). Methods and Results Serum was sampled from blood donors (controls, N = 174) and from atherosclerotic patients (N = 132) who presented to the hospital with either clinically relevant PAD (N = 102) or CS (N = 30). From all subjects, serum-S1P was measured by mass spectrometry and blood parameters were determined by routine laboratory assays. When compared to controls, atherosclerotic patients before invasive treatment to restore blood flow showed significantly lower serum-S1P levels. This difference cannot be explained by risk factors for atherosclerosis (old age, male gender, hypertension, hypercholesteremia, obesity, diabetes or smoking) or comorbidities (Chronic obstructive pulmonary disease, kidney insufficiency or arrhythmia). Receiver operating characteristic curves suggest that S1P has more power to indicate atherosclerosis (PAD and CS) than high density lipoprotein-cholesterol (HDL-C). In 35 patients, serum-S1P was measured again between one and six months after treatment. In this group, serum-S1P concentrations rose after treatment independent of whether patients had PAD or CS, or whether they underwent open or endovascular surgery. Post-treatment S1P levels were highly associated to platelet numbers measured pre-treatment. Conclusions Our study shows that PAD and CS in humans is associated with decreased serum-S1P concentrations and that S1P may possess higher accuracy to indicate these diseases than HDL-C. PMID:27973607

  13. Sphingosine-1-Phosphate Enhancement of Cortical Actomyosin Organization in Cultured Human Schlemm's Canal Endothelial Cell Monolayers

    PubMed Central

    Sumida, Grant M.

    2010-01-01

    Purpose. Perfusion of sphingosine-1-phosphate (S1P) in whole eye organ culture models decreases outflow facility, whereas S1P promotes stress fiber formation and contractility in cultured trabecular meshwork (TM) cells. Because of S1P's known effect of increasing barrier function in endothelial cells, the authors hypothesized that Schlemm's canal (SC) cells in culture respond to S1P by increasing actomyosin organization at the cell cortex. Methods. Using primary cultures of human SC cells, the authors determined S1P activation of the GTP-binding proteins, RhoA and Rac (1,2,3). Time- and dose-dependent myosin light chain (MLC) phosphorylation in response to S1P and total expression of MLC were determined. Immunocytochemistry after S1P treatment was used to monitor filamentous actin (F-actin) and phospho-MLC organization and the localization of β-catenin, a component of adherens junctions. TM and human umbilical vein endothelial cell monolayers were used as controls. Results. S1P (1 μM) activated RhoA and Rac after 5- and 30-minute treatments. S1P increased MLC phosphorylation with a similar time- and dose-dependent response in SC (EC50 = 0.83 μM) compared with TM (EC50 = 1.33 μM), though MLC expression was significantly greater in TM. In response to 1 μM S1P treatment, phospho-MLC concentrated in the SC cell periphery, coincident with cortical actin assembly and recruitment of β-catenin to the cell periphery. Conclusions. Results obtained in this study support the hypothesis that S1P increases actomyosin organization at the SC cell cortex and promotes intercellular junctions at the level of the inner wall of SC to increase transendothelial resistance and in part explains the S1P-induced decrease of outflow facility in organ culture. PMID:20592229

  14. Effects of sphingosine-1-phosphate receptor 1 phosphorylation in response to FTY720 during neuroinflammation

    PubMed Central

    Huang, Yingxiang; Garris, Christopher S.; Moreno, Monica A.; Griffin, Christina W.; Han, May H.

    2016-01-01

    Fingolimod (FTY720, Gilenya), a sphingosine-1-phosphate receptor (S1PR) modulator, is one of the first-line immunomodulatory therapies for treatment of relapsing-remitting multiple sclerosis (MS). Human S1PR1 variants have been reported to have functional heterogeneity in vitro, suggesting that S1PR1 function may influence FTY720 efficacy. In this study, we examined the influence of S1PR1 phosphorylation on response to FTY720 in neuroinflammation. We found that mice carrying a phosphorylation-defective S1pr1 gene [S1PR1(S5A) mice] were refractory to FTY720 treatment in MOG35-55-immunized and Th17-mediated experimental autoimmune encephalomyelitis (EAE) models. Long-term treatment with FTY720 induced significant lymphopenia and suppressed Th17 response in the peripheral immune system via downregulating STAT3 phosphorylation in both WT and S1PR1(S5A) mice. However, FTY720 did not effectively prevent neuroinflammation in the S1PR1(S5A) EAE mice as a result of encephalitogenic cells expressing C-C chemokine receptor 6 (CCR6). Combined treatment with FTY720 and anti-CCR6 delayed disease progression in S1PR1(S5A) EAE mice, suggesting that CCR6-mediated cell trafficking can overcome the effects of FTY720. This work may have translational relevance regarding FTY720 efficacy in MS patients and suggests that cell type–specific therapies may enhance therapeutic efficacy in MS. PMID:27699272

  15. Impairment of Angiogenic Sphingosine Kinase-1/Sphingosine-1-Phosphate Receptors Pathway in Preeclampsia

    PubMed Central

    Dobierzewska, Aneta; Palominos, Macarena; Sanchez, Marianela; Dyhr, Michael; Helgert, Katja; Venegas-Araneda, Pia; Tong, Stephen; Illanes, Sebastian E.

    2016-01-01

    Preeclampsia (PE), is a serious pregnancy disorder characterized in the early gestation by shallow trophoblast invasion, impaired placental neo-angiogenesis, placental hypoxia and ischemia, which leads to maternal and fetal morbidity and mortality. Here we hypothesized that angiogenic sphingosine kinase-1 (SPHK1)/sphingosine-1-phosphate (S1P) receptors pathway is impaired in PE. We found that SPHK1 mRNA and protein expression are down-regulated in term placentae and term chorionic villous explants from patients with PE or severe PE (PES), compared with controls. Moreover, mRNA expression of angiogenic S1PR1 and S1PR3 receptors were decreased in placental samples of PE and PES patients, whereas anti-angiogenic S1PR2 was up-regulated in chorionic villous tissue of PES subjects, pointing to its potential atherogenic and inflammatory properties. Furthermore, in in vitro (JAR cells) and ex vivo (chorionic villous explants) models of placental hypoxia, SPHK1 mRNA and protein were strongly up-regulated under low oxygen tension (1% 02). In contrast, there was no change in SPHK1 expression under the conditions of placental physiological hypoxia (8% 02). In both models, nuclear protein levels of HIF1A were increased at 1% 02 during the time course, but there was no up-regulation at 8% 02, suggesting that SPHK1 and HIF1A might be the part of the same canonical pathway during hypoxia and that both contribute to placental neovascularization during early gestation. Taken together, this study suggest the SPHK1 pathway may play a role in the human early placentation process and may be involved in the pathogenesis of PE. PMID:27284992

  16. Characterization of homologous sphingosine-1-phosphate lyase isoforms in the bacterial pathogen Burkholderia pseudomallei[S

    PubMed Central

    McLean, Christopher J.; Marles-Wright, Jon; Custodio, Rafael; Lowther, Jonathan; Kennedy, Amanda J.; Pollock, Jacob; Clarke, David J.; Brown, Alan R.; Campopiano, Dominic J.

    2017-01-01

    Sphingolipids (SLs) are ubiquitous elements in eukaryotic membranes and are also found in some bacterial and viral species. As well as playing an integral structural role, SLs also act as potent signaling molecules involved in numerous cellular pathways and have been linked to many human diseases. A central SL signaling molecule is sphingosine-1-phosphate (S1P), whose breakdown is catalyzed by S1P lyase (S1PL), a pyridoxal 5′-phosphate (PLP)-dependent enzyme that catalyzes the cleavage of S1P to (2E)-hexadecenal (2E-HEX) and phosphoethanolamine. Here, we show that the pathogenic bacterium, Burkholderia pseudomallei K96243, encodes two homologous proteins (S1PL2021 and S1PL2025) that display moderate sequence identity to known eukaryotic and prokaryotic S1PLs. Using an established MS-based methodology, we show that recombinant S1PL2021 is catalytically active. We also used recombinant human fatty aldehyde dehydrogenase to develop a spectrophotometric enzyme-coupled assay to detect 2E-HEX formation and measure the kinetic constants of the two B. pseudomallei S1PL isoforms. Furthermore, we determined the X-ray crystal structure of the PLP-bound form of S1PL2021 at 2.1 Å resolution revealing that the enzyme displays a conserved structural fold and active site architecture comparable with known S1PLs. The combined data suggest that B. pseudomallei has the potential to degrade host SLs in a S1PL-dependent manner. PMID:27784725

  17. Therapeutic Impact of Sphingosine 1-phosphate Receptor Signaling in Multiple Sclerosis.

    PubMed

    Candido, Kristina; Soufi, Henry; Bandyopadhyay, Mausumi; Dasgupta, Subhajit

    2016-01-01

    Multiple sclerosis (MS) is a female predominant autoimmune demyelinating disease of central nervous system. The proper etiology is not clear. The existing therapies with interferon beta (Betaseron, Rebif), glatiramer acetate (copolymer 1, copaxone) are found to be promising for MS patients. The alpha-4 integrin antagonist monoclonal antibody Natalizumab has been found to decrease brain inflammation in relapsing-remitting MS via inhibition of alpha-4 beta- 1 integrinmediated mode of action of antigen -primed T cells to enter into central nervous system through blood brain barrier. The advancement of drug development introduced prospects of CD52 monoclonal antibody Alemtuzumab and CD20 monoclonal antibody Rituximab in MS therapy. The benefit versus risk ratios of these therapeutic monoclonal antibodies are currently under clinical trial. The ongoing researches demonstrated the importance of HMG-CoA reductase inhibitor statins, NF-κBp65 inhibitor NBD peptide, and antagonist of poly-ADP-ribose polymerase (PARP) in experimental autoimmune encephalomyelitis (EAE), animal model for MS. Recently, the clinical trials indicated the therapeutic prospect of G-protein coupled sphingosine 1-phosphate receptor (S1PR) in MS patients. Recent studies showed remyelination through selective activation of oligodendrocyte progenitor cells. In the context, role of S1PR-mediated signals following interaction with natural ligand S1P and agonist Fingolimod (FTY720) gain profound therapeutic importance in prevention of demyelination in MS brain. The S1PR agonist Fingolimod (FTY 720) has recently been approved by Food and Drug Administration for MS therapy. In the review, we provided an insight on S1PR mode of action in the aspect of treatment of autoimmune disorder, re-myelination and regeneration of axons in damaged central nervous system in multiple sclerosis.

  18. Sphingosine-1-phosphate signaling and biological activities in the cardiovascular system.

    PubMed

    Takuwa, Yoh; Okamoto, Yasuo; Yoshioka, Kazuaki; Takuwa, Noriko

    2008-09-01

    The plasma lysophospholipid mediator sphingosine-1-phosphate (S1P) is produced exclusively by sphingosine kinase (SPHK) 1 and SPHK2 in vivo, and plays diverse biological and pathophysiological roles by acting largely through three members of the G protein-coupled S1P receptors, S1P1, S1P2 and S1P3. S1P1 expressed on endothelial cells mediates embryonic vascular maturation and maintains vascular integrity by contributing to eNOS activation, inhibiting vascular permeability and inducing endothelial cell chemotaxis via Gi-coupled mechanisms. By contrast, S1P2, is expressed in high levels on vascular smooth muscle cells (VSMCs) and certain types of tumor cells, inhibiting Rac and cell migration via a G(12/13)-and Rho-dependent mechanism. In rat neointimal VSMCs, S1P1 is upregulated to mediate local production of platelet-derived growth factor, which is a key player in vascular remodeling. S1P3 expressed on endothelial cells also mediates chemotaxis toward S1P and vasorelaxation via NO production in certain vascular bed, playing protective roles for vascular integrity. S1P3 expressed on VSMCs and cardiac sinoatrial node cells mediates vasopressor and negative chronotropic effect, respectively. In addition, S1P3, together with S1P2 and SPHK1, is suggested to play a protective role against acute myocardial ischemia. However, our recent work indicates that overexpressed SPHK1 is involved in cardiomyocyte degeneration and fibrosis in vivo, in part through S1P activation of the S1P3 signaling. We also demonstrated that exogenously administered S1P accelerates neovascularization and blood flow recovery in ischemic limbs, suggesting its usefulness for angiogenic therapy. These results provide evidence for S1P receptor subtype-specific pharmacological intervention as a novel therapeutic approach to cardiovascular diseases and cancer.

  19. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation.

    PubMed

    Nagata, Yosuke; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor.

  20. Sphingomyelinase D/Ceramide 1-Phosphate in Cell Survival and Inflammation

    PubMed Central

    Rivera, Io-Guané; Ordoñez, Marta; Presa, Natalia; Gomez-Larrauri, Ana; Simón, Jorge; Trueba, Miguel; Gomez-Muñoz, Antonio

    2015-01-01

    Sphingolipids are major constituents of biological membranes of eukaryotic cells. Many studies have shown that sphingomyelin (SM) is a major phospholipid in cell bilayers and is mainly localized to the plasma membrane of cells, where it serves both as a building block for cell architecture and as a precursor of bioactive sphingolipids. In particular, upregulation of (C-type) sphingomyelinases will produce ceramide, which regulates many physiological functions including apoptosis, senescence, or cell differentiation. Interestingly, the venom of some arthropodes including spiders of the genus Loxosceles, or the toxins of some bacteria such as Corynebacterium tuberculosis, or Vibrio damsela possess high levels of D-type sphingomyelinase (SMase D). This enzyme catalyzes the hydrolysis of SM to yield ceramide 1-phosphate (C1P), which promotes cell growth and survival and is a potent pro-inflammatory agent in different cell types. In particular, C1P stimulates cytosolic phospholipase A2 leading to arachidonic acid release and the subsequent formation of eicosanoids, actions that are all associated to the promotion of inflammation. In addition, C1P potently stimulates macrophage migration, which has also been associated to inflammatory responses. Interestingly, this action required the interaction of C1P with a specific plasma membrane receptor, whereas accumulation of intracellular C1P failed to stimulate chemotaxis. The C1P receptor is coupled to Gi proteins and activates of the PI3K/Akt and MEK/ERK1-2 pathways upon ligation with C1P. The proposed review will address novel aspects on the control of inflammatory responses by C1P and will highlight the molecular mechanisms whereby C1P exerts these actions. PMID:25938271

  1. The Role of Sphingosine-1-phosphate Transporter Spns2 in Immune System Function

    PubMed Central

    Nijnik, Anastasia; Clare, Simon; Hale, Christine; Chen, Jing; Raisen, Claire; Mottram, Lynda; Lucas, Mark; Estabel, Jeanne; Ryder, Edward; Adissu, Hibret; Adams, Niels C.; Ramirez-Solis, Ramiro; White, Jacqueline K.; Steel, Karen P.; Dougan, Gordon; Hancock, Robert E.W.

    2012-01-01

    Sphingosine-1-phosphate (S1P) is lipid messenger involved in the regulation of embryonic development, immune system functions, and many other physiological processes. However the mechanisms of S1P transport across cellular membranes remain poorly understood with several ATP-binding cassette family members and the spinster 2 (Spns2) member of the major facilitator superfamily known to mediate S1P transport in cell culture. Spns2 was also shown to control S1P activities in zebrafish in vivo and to play a critical role in zebrafish cardiovascular development. However the in vivo roles of Spns2 in mammals and its involvement in the different S1P-dependent physiological processes have not been investigated. Here we characterized Spns2-null mouse line carrying the Spns2tm1a(KOMP)Wtsi allele (Spns2tm1a). The Spns2tm1a/tm1a animals were viable, indicating a divergence in Spns2 function from its zebrafish orthologue. However the immunological phenotype of the Spns2tm1a/tm1a mice closely mimicked the phenotypes of partial S1P deficiency and impaired S1P-dependent lymphocyte trafficking, with a depletion of lymphocytes in circulation, an increase in mature single-positive T cells in the thymus, and a selective reduction in mature B cells in the spleen and bone marrow. Spns2 activity in the non-hematopoietic cells was critical for normal lymphocyte development and localization. Overall Spns2tm1a/tm1a resulted in impaired humoral immune responses to immunization. This work thus demonstrated a physiological role for Spns2 in mammalian immune system functions but not in cardiovascular development. Other components of the S1P signaling network are investigated as drug targets for immunosuppressive therapy, but the selective action of Spns2 may present an advantage in this regard. PMID:22664872

  2. Sphingosine-1-Phosphate Receptor Subtypes Differentially Regulate Smooth Muscle Cell Phenotype

    PubMed Central

    Wamhoff, Brian R.; Lynch, Kevin R.; Macdonald, Timothy L.; Owens, Gary K.

    2008-01-01

    Objective The role of sphingosine-1-phosphate (S1P) receptors in acute vascular injury and smooth muscle cell (SMC) phenotypic modulation is not completely resolved. Methods and Results S1P receptor antagonists were used to test the hypothesis that specific S1P receptor subtypes differentially regulate SMC phenotypic modulation. In response to acute balloon injury of the rat carotid artery, S1P1/S1P3 receptor mRNA levels were transiently increased at 48 hours whereas S1P2 receptor expression was decreased. S1P2 expression was reinduced and increased at 7 to 10 days postinjury. Daily intraperitoneal injection of the S1P1/S1P3 antagonist VPC44116 decreased neointimal hyperplasia by ≈50%. In vitro, pharmacological inhibition of S1P1/S1P3 receptors with VPC25239 attenuated S1P-induced proliferation of rat aortic SMCs. Conversely, inhibition of S1P2 with JTE013 potentiated S1P-induced proliferation. Inhibition of S1P1/S1P3 resulted in S1P-induced activation of the SMC differentiation marker genes SMα-actin and SMMHC, whereas inhibition of S1P2 attenuated this response. S1P2-dependent activation of SMα-actin and SMMHC was shown to be mediated by L-type voltage-gated Ca2+ channels and subsequent RhoA/Rho kinase– dependent SRF enrichment of CArG box promoter regions. Conclusion Results provide evidence that S1P1/S1P3 receptors promote, whereas S1P2 receptors antagonize, SMC proliferation and phenotypic modulation in vitro in response to S1P, or in vivo after vascular injury. PMID:18535287

  3. Sphingosine-1-phosphate is involved in the occlusive arteriopathy of pulmonary arterial hypertension

    PubMed Central

    Joshi, Sachindra R.; Bastola, Mrigendra M.; McLendon, Jared M.; Oka, Masahiko; Fagan, Karen A.; McMurtry, Ivan F.

    2016-01-01

    Abstract Despite several advances in the pathobiology of pulmonary arterial hypertension (PAH), its pathogenesis is not completely understood. Current therapy improves symptoms but has disappointing effects on survival. Sphingosine-1-phosphate (S1P) is a lysophospholipid synthesized by sphingosine kinase 1 (SphK1) and SphK2. Considering the regulatory roles of S1P in several tissues leading to vasoconstriction, inflammation, proliferation, and fibrosis, we investigated whether S1P plays a role in the pathogenesis of PAH. To test this hypothesis, we used plasma samples and lung tissue from patients with idiopathic PAH (IPAH) and the Sugen5416/hypoxia/normoxia rat model of occlusive PAH. Our study revealed an increase in the plasma concentration of S1P in patients with IPAH and in early and late stages of PAH in rats. We observed increased expression of both SphK1 and SphK2 in the remodeled pulmonary arteries of patients with IPAH and PAH rats. Exogenous S1P stimulated the proliferation of cultured rat pulmonary arterial endothelial and smooth-muscle cells. We also found that 3 weeks of treatment of late-stage PAH rats with an SphK1 inhibitor reduced the increased plasma levels of S1P and the occlusive pulmonary arteriopathy. Although inhibition of SphK1 improved cardiac index and the total pulmonary artery resistance index, it did not reduce right ventricular systolic pressure or right ventricular hypertrophy. Our study supports that S1P is involved in the pathogenesis of occlusive arteriopathy in PAH and provides further evidence that S1P signaling may be a novel therapeutic target. PMID:27683614

  4. Sphingosine 1-Phosphate Receptor-1 Enhances Mitochondrial Function and Reduces Cisplatin-Induced Tubule Injury

    PubMed Central

    Rosin, Diane L.; Chroscicki, Piotr; Lee, Sangju; Dondeti, Krishna; Ye, Hong; Kinsey, Gilbert R.; Stevens, Brian K.; Jobin, Katarzyna; Kenwood, Brandon M.; Hoehn, Kyle L.; Lynch, Kevin R.; Okusa, Mark D.

    2015-01-01

    Sphingosine 1-phosphate (S1P), the natural sphingolipid ligand for a family of five G protein– coupled receptors (S1P1–S1P5Rs), regulates cell survival and lymphocyte circulation. We have shown that the pan-S1PR agonist, FTY720, attenuates kidney ischemia-reperfusion injury by directly activating S1P1 on proximal tubule (PT) cells, independent of the canonical lymphopenic effects of S1P1 activation on B and T cells. FTY720 also reduces cisplatin-induced AKI. Therefore, in this study, we used conditional PT-S1P1-null (PepckCreS1pr1fl/fl) and control (PepckCreS1pr1w/wt) mice to determine whether the protective effect of FTY720 in AKI is mediated by PT-S1P1. Cisplatin induced more renal injury in PT-S1P1-null mice than in controls. Although FTY720 produced lymphopenia in both control and PT-S1P1-null mice, it reduced injury only in control mice. Furthermore, the increase in proinflammatory cytokine (CXCL1, MCP-1, TNF-α, and IL-6) expression and infiltration of neutrophils and macrophages induced by cisplatin treatment was attenuated by FTY720 in control mice but not in PT-S1P1-null mice. Similarly, S1P1 deletion rendered cultured PT cells more susceptible to cisplatin-induced injury, whereas S1P1 overexpression protected PT cells from injury and preserved mitochondrial function. We conclude that S1P1 may have an important role in stabilizing mitochondrial function and that FTY720 administration represents a novel strategy in the prevention of cisplatin-induced AKI. PMID:25145931

  5. Misfolding of galactose 1-phosphate uridylyltransferase can result in type I galactosemia.

    PubMed

    McCorvie, Thomas J; Gleason, Tyler J; Fridovich-Keil, Judith L; Timson, David J

    2013-08-01

    Type I galactosemia is a genetic disorder that is caused by the impairment of galactose-1-phosphate uridylyltransferase (GALT; EC 2.7.7.12). Although a large number of mutations have been detected through genetic screening of the human GALT (hGALT) locus, for many it is not known how they cause their effects. The majority of these mutations are missense, with predicted substitutions scattered throughout the enzyme structure and thus causing impairment by other means rather than direct alterations to the active site. To clarify the fundamental, molecular basis of hGALT impairment we studied five disease-associated variants p.D28Y, p.L74P, p.F171S, p.F194L and p.R333G using both a yeast model and purified, recombinant proteins. In a yeast expression system there was a correlation between lysate activity and the ability to rescue growth in the presence of galactose, except for p.R333G. Kinetic analysis of the purified proteins quantified each variant's level of enzymatic impairment and demonstrated that this was largely due to altered substrate binding. Increased surface hydrophobicity, altered thermal stability and changes in proteolytic sensitivity were also detected. Our results demonstrate that hGALT requires a level of flexibility to function optimally and that altered folding is the underlying reason of impairment in all the variants tested here. This indicates that misfolding is a common, molecular basis of hGALT deficiency and suggests the potential of pharmacological chaperones and proteostasis regulators as novel therapeutic approaches for type I galactosemia.

  6. The role of the sphingosine-1-phosphate signaling pathway in osteocyte mechanotransduction.

    PubMed

    Zhang, Jia-Ning; Zhao, Yan; Liu, Chao; Han, Elizabeth S; Yu, Xue; Lidington, Darcy; Bolz, Steffen-Sebastian; You, Lidan

    2015-10-01

    Osteocytes are proposed to be the mechanosensory cells that translate mechanical loading into biochemical signals during the process of bone adaptation. The lipid mediator sphingosine-1-phosphate (S1P) has been reported to play a role in the mechanotransduction process of blood vessels and also in the dynamic control of bone mineral homeostasis. Nevertheless, the potential role of S1P in bone mechanotransduction has yet to be elucidated. In this study, we hypothesized that a S1P cascade is involved in the activation of osteocytes in response to loading-induced oscillatory fluid flow (OFF) in bone. MLO-Y4 osteocyte-like cells express the necessary components of a functional S1P cascade. To examine the involvement of S1P signaling in osteocyte mechanotransduction, we applied OFF (1 Pa, 1 Hz) to osteocyte-like MLO-Y4 cells under conditions where the S1P signaling pathway was modulated. We found that decreased endogenous S1P levels significantly suppressed the OFF-induced intracellular calcium response. Addition of extracellular S1P to MLO-Y4 cells enhanced the synthesis and release of prostaglandin E2 (PGE2) under static cells and amplified OFF-induced PGE2 release. The stimulatory effect of OFF on the gene expression levels of osteoprotegerin (OPG) and receptor activator for nuclear factor κB ligand (RANKL) was S1P dependent. Furthermore, the S1P2 receptor subtype was shown to be involved in OFF-induced PGE2 synthesis and release, as well as down-regulation of RANKL/OPG gene expression ratio. In summary, our data suggest that S1P cascade is involved in OFF-induced mechanotransduction in MLO-Y4 cells and that extracellular S1P exerts its effect partly through S1P2 receptors.

  7. Sphingosine-1-Phosphate Elicits Receptor-Dependent Calcium Signaling in Retinal Amacrine Cells

    PubMed Central

    Crousillac, Scott; Colonna, Jeremy; McMains, Emily; Dewey, Jill Sayes

    2009-01-01

    Evidence is emerging indicating that sphingosine-1-phosphate (S1P) participates in signaling in the retina. To determine whether S1P might be involved in signaling in the inner retina specifically, we examine the effects of this sphingolipid on cultured retinal amacrine cells. Whole cell voltage-clamp recordings reveal that S1P activates a cation current that is dependent on signaling through Gi and phospholipase C. These observations are consistent with the involvement of members of the S1P receptor family of G-protein-coupled receptors in the production of the current. Immunocytochemistry and PCR amplification provide evidence for the expression of S1P1R and S1P3R in amacrine cells. The receptor-mediated channel activity is shown to be highly sensitive to blockade by lanthanides consistent with the behavior of transient receptor potential canonical (TRPC) channels. PCR products amplified from amacrine cells reveal that TRPCs 1 and 3–7 channel subunits have the potential to be expressed. Because TRPC channels provide a Ca2+ entry pathway, we asked whether S1P caused cytosolic Ca2+ elevations in amacrine cells. We show that S1P-dependent Ca2+ elevations do occur in these cells and that they might be mediated by S1P1R and S1P3R. The Ca2+ elevations are partially due to release from internal stores, but the largest contribution is from influx across the plasma membrane. The effect of inhibition of sphingosine kinase suggests that the production of cytosolic S1P underlies the sustained nature of the Ca2+ elevations. Elucidation of the downstream effects of these signals will provide clues to the role of S1P in regulating inner retinal function. PMID:19776367

  8. Metabolic engineering of enhanced glycerol-3-phosphate synthesis to increase lipid production in Synechocystis sp. PCC 6803.

    PubMed

    Wang, Xi; Xiong, Xiaochao; Sa, Na; Roje, Sanja; Chen, Shulin

    2016-07-01

    With the growing attention to global warming and energy sustainability, biosynthesis of lipids by photosynthetic microorganisms has attracted more interest for the production of renewable transportation fuels. Recently, the cyanobacterium Synechocystis sp. PCC 6803 has been widely used for biofuel production through metabolic engineering because of its efficient photosynthesis and well-developed genetic tools. In lipid biosynthesis, glycerol-3-phosphate (G3P) is a key node for both CO2 fixation and lipid metabolism in cyanobacteria. However, few studies have explored the use of G3P synthesis to improve photosynthetic lipid production. In this study, metabolic engineering combined with flux balance analysis (FBA) was conducted to reveal the effect of G3P synthesis on lipid production. Heterologous genes that encoded glycerol-3-phosphate dehydrogenase (GPD) and diacylglycerol acyltransferase (DGAT) were engineered into Synechocystis sp. PCC 6803 to enhance G3P supply and lipid production. The resultant recombinant Synechocystis produced higher levels of lipids without a significant reduction in cell growth. Compared with the wild-type strain, lipid content and productivity of the engineered cyanobacteria increased by up to 36 and 31 %, respectively, under autotrophic conditions. Lipid production under mixotrophic conditions of the engineered cyanobacteria was also investigated. This work demonstrated that enhanced G3P synthesis was an important factor in photosynthetic lipid production and that introducing heterologous GPD and DGAT genes was an effective strategy to increase lipid production in Synechocystis sp. PCC 6803.

  9. A critical role of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase in the control of plant metabolism and development

    PubMed Central

    Muñoz-Bertomeu, Jesús; Cascales-Miñana, Borja; Alaiz, Manuel; Segura, Juan

    2010-01-01

    Glycolysis is a central metabolic pathway that provides energy and generates precursors for the synthesis of primary metabolites such as amino acids and fatty acids.1–3 In plants, glycolysis occurs in the cytosol and plastids, which complicates the understanding of this essential process.1 As a result, the contribution of each glycolytic pathway to the specific primary metabolite production and the degree of integration of both pathways is still unresolved. The glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the conversion of glyceraldehyde-3-phosphate to 1,3-bisphosphoglycerate. Both cytosolic (GAPCs) and plastidial (GAPCps) GAPDH activities have been described biochemically. But, up to now, little attention had been paid to GAPCps, probably because they have been considered as “minor isoforms” that catalyze a reversible reaction in plastids where it has been assumed that key glycolytic intermediates are in equilibrium with the cytosol. In the associated study,4 we have elucidated the crucial role of Arabidopsis GAPCps in the control of primary metabolism in plants. GAPCps deficiency affects amino acid and sugar metabolism and impairs plant development. Specifically, GAPCp deficiency affects the serine supply to roots, provoking a drastic phenotype of arrested root development. Also, we show that the phosphorylated serine biosynthesis pathway is critical to supply serine to non-photosynthetic organs such as roots. These studies provide new insights of the contribution of plastidial glycolysis to plant metabolism and evidence the complex interactions existing between metabolism and development. PMID:20592814

  10. Synergistic interaction of glyceraldehydes-3-phosphate dehydrogenase and ArsJ, a novel organoarsenical efflux permease, confers arsenate resistance.

    PubMed

    Chen, Jian; Yoshinaga, Masafumi; Garbinski, Luis D; Rosen, Barry P

    2016-06-01

    Microbial biotransformations are major contributors to the arsenic biogeocycle. In parallel with transformations of inorganic arsenic, organoarsenicals pathways have recently been recognized as important components of global cycling of arsenic. The well-characterized pathway of resistance to arsenate is reduction coupled to arsenite efflux. Here, we describe a new pathway of arsenate resistance involving biosynthesis and extrusion of an unusual pentavalent organoarsenical. A number of arsenic resistance (ars) operons have two genes of unknown function that are linked in these operons. One, gapdh, encodes the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase. The other, arsJ, encodes a major facilitator superfamily (MFS) protein. The two genes were cloned from the chromosome of Pseudomonas aeruginosa. When expressed together, but not alone, in Escherichia coli, gapdh and arsJ specifically conferred resistance to arsenate and decreased accumulation of As(V). Everted membrane vesicles from cells expressing arsJ accumulated As(V) in the presence of purified GAPDH, D-glceraldehylde 3-phosphate (G3P) and NAD(+) . GAPDH forms the unstable organoarsenical 1-arseno-3-phosphoglycerate (1As3PGA). We propose that ArsJ is an efflux permease that extrudes 1As3PGA from cells, where it rapidly dissociates into As(V) and 3-phosphoglycerate (3PGA), creating a novel pathway of arsenate resistance.

  11. Crystal Structures of Group B Streptococcus Glyceraldehyde-3-Phosphate Dehydrogenase: Apo-Form, Binary and Ternary Complexes

    PubMed Central

    Schormann, Norbert; Ayres, Chapelle A.; Fry, Alexandra; Green, Todd J.; Banerjee, Surajit; Ulett, Glen C.

    2016-01-01

    Glyceraldehyde 3-phosphate dehydrogenase or GAPDH is an evolutionarily conserved glycolytic enzyme. It catalyzes the two step oxidative phosphorylation of D-glyceraldehyde 3-phosphate into 1,3-bisphosphoglycerate using inorganic phosphate and NAD+ as cofactor. GAPDH of Group B Streptococcus is a major virulence factor and a potential vaccine candidate. Moreover, since GAPDH activity is essential for bacterial growth it may serve as a possible drug target. Crystal structures of Group B Streptococcus GAPDH in the apo-form, two different binary complexes and the ternary complex are described here. The two binary complexes contained NAD+ bound to 2 (mixed-holo) or 4 (holo) subunits of the tetrameric protein. The structure of the mixed-holo complex reveals the effects of NAD+ binding on the conformation of the protein. In the ternary complex, the phosphate group of the substrate was bound to the new Pi site in all four subunits. Comparison with the structure of human GAPDH showed several differences near the adenosyl binding pocket in Group B Streptococcus GAPDH. The structures also reveal at least three surface-exposed areas that differ in amino acid sequence compared to the corresponding areas of human GAPDH. PMID:27875551

  12. Characterization and partial purification of acyl-CoA:glycerol 3-phosphate acyltransferase from sunflower (Helianthus annuus L.) developing seeds.

    PubMed

    Ruiz-López, Noemí; Garcés, Rafael; Harwood, John L; Martínez-Force, Enrique

    2010-01-01

    The glycerol 3-phosphate acyltransferase (GPAT, EC 2.3.1.15) from sunflower (Helianthus annuus L.) microsomes has been characterised and partially purified. The in vitro determination of activity was optimized, and the maximum value for GPAT activity identified between 15 and 20 days after flowering. The apparent Michaelis-Menten K(m) for the glycerol 3-phosphate was 354 muM. The preferred substrates were palmitoyl-CoA = linoleoyl-CoA > oleoyl-CoA with the lowest activity using stearoyl-CoA. High solubilisation was achieved using 0.75% Tween80 and the solubilised GPAT was partially purified by ion-exchange chromatography using a Hi-Trap DEAE FF column, followed by gel filtration chromatography using a Superose 12 HR column. The fraction containing the GPAT activity was analysed by SDS-PAGE and contained a major band of 60.1 kDa. Finally, evidence is provided which shows the role of GPAT in the asymmetrical distribution, between positions sn-1 and sn-3, of saturated fatty acids in highly saturated sunflower triacylglycerols. This work provides background information on the sunflower endoplasmic reticulum GPAT which may prove valuable for future modification of oil deposition in this important crop.

  13. Cloning and characterisation of the glyceraldehyde 3-phosphate dehydrogenase gene of Candida bombicola and use of its promoter.

    PubMed

    Van Bogaert, Inge N A; De Maeseneire, Sofie L; Develter, Dirk; Soetaert, Wim; Vandamme, Erick J

    2008-10-01

    The glyceraldehyde-3-phosphate dehydrogenase gene (GPD) of the sophorolipid producing yeast Candida bombicola was isolated using degenerated PCR and genome walking. The obtained 3,740 bp contain the 1,008 bases of the coding sequence and 1,613 and 783 bp of the upstream and downstream regions, respectively. The corresponding protein shows high homology to the other known GPD genes and is 74% identical to the gyceraldehyde-3-phosphate dehydrogenase of Yarrowia lipolytica. The particular interest in the C. bombicola GPD gene sequence originates from the potential use of its promoter for high and constitutive expression of homologous and heterologous genes. Southern blot analysis did not give any indication for the presence of multiple GPD genes and it can therefore be expected that the promoter can be used for efficient and high expression. This hypothesis was further confirmed by the biased codon usage in the GPD gene. GDP promoter fragments of different lengths were used to construct hygromycin resistance cassettes. The constructs were used for the transformation of C. bombicola and all of them, even the ones with only 190 bp of the GPD promoter, were able to render the cells resistant to hygromycin. The efficacy of a short GPD promoter can be a convenient characteristic for the construction of compact expression cassettes or vectors for C. bombicola. The GenBank accession number of the sequence described in this article is EU315245.

  14. Crystal Structures of Group B Streptococcus Glyceraldehyde-3-Phosphate Dehydrogenase: Apo-Form, Binary and Ternary Complexes.

    PubMed

    Schormann, Norbert; Ayres, Chapelle A; Fry, Alexandra; Green, Todd J; Banerjee, Surajit; Ulett, Glen C; Chattopadhyay, Debasish

    2016-01-01

    Glyceraldehyde 3-phosphate dehydrogenase or GAPDH is an evolutionarily conserved glycolytic enzyme. It catalyzes the two step oxidative phosphorylation of D-glyceraldehyde 3-phosphate into 1,3-bisphosphoglycerate using inorganic phosphate and NAD+ as cofactor. GAPDH of Group B Streptococcus is a major virulence factor and a potential vaccine candidate. Moreover, since GAPDH activity is essential for bacterial growth it may serve as a possible drug target. Crystal structures of Group B Streptococcus GAPDH in the apo-form, two different binary complexes and the ternary complex are described here. The two binary complexes contained NAD+ bound to 2 (mixed-holo) or 4 (holo) subunits of the tetrameric protein. The structure of the mixed-holo complex reveals the effects of NAD+ binding on the conformation of the protein. In the ternary complex, the phosphate group of the substrate was bound to the new Pi site in all four subunits. Comparison with the structure of human GAPDH showed several differences near the adenosyl binding pocket in Group B Streptococcus GAPDH. The structures also reveal at least three surface-exposed areas that differ in amino acid sequence compared to the corresponding areas of human GAPDH.

  15. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    SciTech Connect

    Sato, Chieri; Iwasaki, Tsuyoshi; Kitano, Sachie; Tsunemi, Sachi; Sano, Hajime

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We investigated the role of S1P signaling for osteoblast differentiation. Black-Right-Pointing-Pointer Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. Black-Right-Pointing-Pointer S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. Black-Right-Pointing-Pointer MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P

  16. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    SciTech Connect

    Nagata, Yosuke Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  17. Electrophysiological and functional effects of sphingosine-1-phosphate in mouse ventricular fibroblasts

    SciTech Connect

    Benamer, Najate; Bois, Patrick

    2011-04-29

    Highlights: {yields} In cardiac fibroblasts, SUR2/Kir6.1 channel is activated by S1P via the S1P3R. {yields} S1P increases cell proliferation through SUR2/Kir6.1 activation. {yields} S1P decreases collagen and IL-6 secretion through SUR2/Kir6.1 activation. {yields} S1P stimulates fibroblast migration independently from SUR2/Kir6.1 channel. -- Abstract: The aim of this study was to characterize the effects of sphingosine-1-phosphate (S1P) on cardiac ventricular fibroblasts. Impacts of S1P on fibroblast excitability, cell migration, proliferation and secretion were characterized. The patch-clamp technique in the whole-cell configuration was used to study the S1P-induced current from mouse ventricular fibroblasts. The expression level of the S1P receptor during cell culture duration was evaluated by western-blot. Fibroblast proliferation and migration were quantified using the methylene blue assay and the Boyden chamber technique, respectively. Finally, fibroblast secretion properties were estimated by quantification of the IL-6 and collagen levels using ELISA and SIRCOL collagen assays, respectively. We found that S1P activated SUR2/Kir6.1 channel and that this effect was sensitive to specific inhibition of the S1P receptor of type 3 (S1P3R). In contrast, S1P1R receptor inhibition had no effect. Moreover, the S1P-induced current increased with cell culture duration whereas S1P3R expression level remained constant. The activation of SUR2/Kir6.1 channel by S1P via S1P3R stimulated cell proliferation and decreased IL-6 and collagen secretions. S1P also stimulated fibroblast migration via S1P3R but independently from SUR2/Kir6.1 channel activation. This study demonstrates that S1P, via S1P3R, affects cardiac ventricular fibroblasts function independently or through activation of SUR2/Kir6.1 channel. The latter effect occurs after fibroblasts differentiate into myofibroblasts, opening a new potential therapeutic strategy to modulate fibrosis after cardiac

  18. Sphingosine-1-Phosphate as an Amphipathic Metabolite: Its Properties in Aqueous and Membrane Environments

    PubMed Central

    García-Pacios, Marcos; Collado, M. Isabel; Busto, Jon V.; Sot, Jesús; Alonso, Alicia; Arrondo, José-Luis R.; Goñi, Félix M.

    2009-01-01

    Abstract Sphingosine-1-phosphate (S1P) is currently considered to be an important signaling molecule in cell metabolism. We studied a number of relevant biophysical properties of S1P, using mainly Langmuir balance, differential scanning calorimetry, 31P-NMR, and infrared (IR) spectroscopy. We found that, at variance with other, structurally related sphingolipids that are very hydrophobic, S1P may occur in either an aqueous dispersion or a bilayer environment. S1P behaves in aqueous media as a soluble amphiphile, with a critical micelle concentration of ≈12 μM. Micelles give rise to larger aggregates (in the micrometer size range) at and above a 1 mM concentration. The aggregates display a thermotropic transition at ∼60°C, presumably due to the formation of smaller structures at the higher temperatures. S1P can also be studied in mixtures with phospholipids. Studies with dielaidoylphosphatidylethanolamine (DEPE) or deuterated dipalmitoylphosphatidylcholine (DPPC) show that S1P modifies the gel-fluid transition of the glycerophospholipids, shifting it to lower temperatures and decreasing the transition enthalpy. Low (<10 mol %) concentrations of S1P also have a clear effect on the lamellar-to-inverted hexagonal transition of DEPE, i.e., they increase the transition temperature and stabilize the lamellar versus the inverted hexagonal phase. IR spectroscopy of natural S1P mixed with deuterated DPPC allows the independent observation of transitions in each molecule, and demonstrates the existence of molecular interactions between S1P and the phospholipid at the polar headgroup level that lead to increased hydration of the carbonyl group. The combination of calorimetric, IR, and NMR data allowed the construction of a temperature-composition diagram (“partial phase diagram”) to facilitate a comparative study of the properties of S1P and other related lipids (ceramide and sphingosine) in membranes. In conclusion, two important differences between S1P and ceramide

  19. Pseudomonas-Derived Ceramidase Induces Production of Inflammatory Mediators from Human Keratinocytes via Sphingosine-1-Phosphate

    PubMed Central

    Oizumi, Ami; Nakayama, Hitoshi; Okino, Nozomu; Iwahara, Chihiro; Kina, Katsunari; Matsumoto, Ryo; Ogawa, Hideoki; Takamori, Kenji; Ito, Makoto; Suga, Yasushi; Iwabuchi, Kazuhisa

    2014-01-01

    Ceramide is important for water retention and permeability barrier functions in the stratum corneum, and plays a key role in the pathogenesis of atopic dermatitis (AD). A Pseudomonas aeruginosa-derived neutral ceramidase (PaCDase) isolated from a patient with AD was shown to effectively degrade ceramide in the presence of Staphylococcus aureus-derived lipids or neutral detergents. However, the effect of ceramide metabolites on the functions of differentiating keratinocytes is poorly understood. We found that the ceramide metabolite sphingosine-1-phosphate (S1P) stimulated the production of inflammatory mediators such as TNF-α and IL-8 from three-dimensionally cultured human primary keratinocytes (termed “3D keratinocytes”), which form a stratum corneum. PaCDase alone did not affect TNF-α gene expression in 3D keratinocytes. In the presence of the detergent Triton X-100, which damages stratum corneum structure, PaCDase, but not heat-inactivated PaCDase or PaCDase-inactive mutant, induced the production of TNF-α, endothelin-1, and IL-8, indicating that this production was dependent on ceramidase activity. Among various ceramide metabolites, sphingosine and S1P enhanced the gene expression of TNF-α, endothelin-1, and IL-8. The PaCDase-enhanced expression of these genes was inhibited by a sphingosine kinase inhibitor and by an S1P receptor antagonist VPC 23019. The TNF-α-binding antibody infliximab suppressed the PaCDase-induced upregulation of IL-8, but not TNF-α, mRNA. PaCDase induced NF-κB p65 phosphorylation. The NF-κB inhibitor curcumin significantly inhibited PaCDase-induced expression of IL-8 and endothelin-1. VPC 23019 and infliximab inhibited PaCDase-induced NF-κB p65 phosphorylation and reduction in the protein level of the NF-κB inhibitor IκBα. Collectively, these findings suggest that (i) 3D keratinocytes produce S1P from sphingosine, which is produced through the hydrolysis of ceramide by PaCDase, (ii) S1P induces the production of TNF

  20. Role of sphingosine 1-phosphate receptors, sphingosine kinases and sphingosine in cancer and inflammation.

    PubMed

    Pyne, Nigel J; McNaughton, Melissa; Boomkamp, Stephanie; MacRitchie, Neil; Evangelisti, Cecilia; Martelli, Alberto M; Jiang, Hui-Rong; Ubhi, Satvir; Pyne, Susan

    2016-01-01

    Sphingosine kinase (there are two isoforms, SK1 and SK2) catalyses the formation of sphingosine 1-phosphate (S1P), a bioactive lipid that can be released from cells to activate a family of G protein-coupled receptors, termed S1P1-5. In addition, S1P can bind to intracellular target proteins, such as HDAC1/2, to induce cell responses. There is increasing evidence of a role for S1P receptors (e.g. S1P4) and SK1 in cancer, where high expression of these proteins in ER negative breast cancer patient tumours is linked with poor prognosis. Indeed, evidence will be presented here to demonstrate that S1P4 is functionally linked with SK1 and the oncogene HER2 (ErbB2) to regulate mitogen-activated protein kinase pathways and growth of breast cancer cells. Although much emphasis is placed on SK1 in terms of involvement in oncogenesis, evidence will also be presented for a role of SK2 in both T-cell and B-cell acute lymphoblastic leukemia. In patient T-ALL lymphoblasts and T-ALL cell lines, we have demonstrated that SK2 inhibitors promote T-ALL cell death via autophagy and induce suppression of c-myc and PI3K/AKT pathways. We will also present evidence demonstrating that certain SK inhibitors promote oxidative stress and protein turnover via proteasomal degradative pathways linked with induction of p53-and p21-induced growth arrest. In addition, the SK1 inhibitor, PF-543 exacerbates disease progression in an experimental autoimmune encephalomyelitis mouse model indicating that SK1 functions in an anti-inflammatory manner. Indeed, sphingosine, which accumulates upon inhibition of SK1 activity, and sphingosine-like compounds promote activation of the inflammasome, which is linked with multiple sclerosis, to stimulate formation of the pro-inflammatory mediator, IL-1β. Such compounds could be exploited to produce antagonists that diminish exaggerated inflammation in disease. The therapeutic potential of modifying the SK-S1P receptor pathway in cancer and inflammation will

  1. Characterization of a Sphingosine 1-Phosphate Receptor Antagonist ProdrugS⃞

    PubMed Central

    Kennedy, Perry C.; Zhu, Ran; Huang, Tao; Tomsig, Jose L.; Mathews, Thomas P.; David, Marion; Peyruchaud, Olivier; Macdonald, Timothy L.

    2011-01-01

    Sphingosine 1-phosphate (S1P) is a phospholipid that binds to a set of G protein-coupled receptors (S1P1–S1P5) to initiate an array of signaling cascades that affect cell survival, differentiation, proliferation, and migration. On a larger physiological scale, the effects of S1P on immune cell trafficking, vascular barrier integrity, angiogenesis, and heart rate have also been observed. An impetus for the characterization of S1P-initiated signaling effects came with the discovery that FTY720 [fingolimod; 2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol] modulates the immune system by acting as an agonist at S1P1. In the course of structure-activity relationship studies to better understand the functional chemical space around FTY720, we discovered conformationally constrained FTY720 analogs that behave as S1P receptor type-selective antagonists. Here, we present a pharmacological profile of a lead S1P1/3 antagonist prodrug, 1-(hydroxymethyl)-3-(3-octylphenyl)cyclobutane (VPC03090). VPC03090 is phosphorylated by sphingosine kinase 2 to form the competitive antagonist species 3-(3-octylphenyl)-1-(phosphonooxymethyl)cyclobutane (VPC03090-P) as observed in guanosine 5′-O-(3-[35S]thio)triphosphate binding assays, with effects on downstream S1P receptor signaling confirmed by Western blot and calcium mobilization assays. Oral dosing of VPC03090 results in an approximate 1:1 phosphorylated/alcohol species ratio with a half-life of 30 h in mice. Because aberrant S1P signaling has been implicated in carcinogenesis, we applied VPC03090 in an immunocompetent mouse mammary cancer model to assess its antineoplastic potential. Treatment with VPC03090 significantly inhibited the growth of 4T1 primary tumors in mice. This result calls to attention the value of S1P receptor antagonists as not only research tools but also potential therapeutic agents. PMID:21632869

  2. myo-Inositol 1-Phosphate Synthase Inhibition and Control of Uridine Diphosphate-d-glucuronic Acid Biosynthesis in Plants 12

    PubMed Central

    Loewus, Mary W.; Loewus, Frank

    1974-01-01

    Of the eight intermediates associated with the two pathways of UDP-d-glucuronic acid biosynthesis found in plants, only d-glucuronic acid inhibited myo-inositol 1-phosphate synthase (EC 5.5.1.4), formerly referred to as d-glucose 6-phosphate cycloaldolase. Inhibition was competitive. An attempt to demonstrate over-all reversibility of the synthase indicated that it was less than 5% reversible, if at all. PMID:16658890

  3. PhotoImmunoNanoTherapy Reveals an Anticancer Role for Sphingosine Kinase 2 and Dihydrosphingosine-1-Phosphate

    PubMed Central

    Barth, Brian M.; Shanmugavelandy, Sriram S.; Kaiser, James M.; McGovern, Christopher; Altnoğlu, Erhan İ.; Haakenson, Jeremy K.; Hengst, Jeremy A.; Gilius, Evan L.; Knupp, Sarah A.; Fox, Todd E.; Smith, Jill P.; Ritty, Timothy M.; Adair, James H.; Kester, Mark

    2013-01-01

    Tumor-associated inflammation mediates the development of a systemic immunosuppressive milieu that is a major obstacle to effective treatment of cancer. Inflammation has been shown to promote the systemic expansion of immature myeloid cells which have been shown to exert immunosuppressive activity in laboratory models of cancer as well as cancer patients. Consequentially, significant effort is underway toward the development of therapies that decrease tumor-associated inflammation and immunosuppressive cells. The current study demonstrated that a previously described deep tissue imaging modality, which utilized indocyanine green-loaded calcium phosphosilicate nanoparticles (ICG-CPSNPs), could be utilized as an immunoregulatory agent. The theranostic application of ICG-CPSNPs as photosensitizers for photodynamic therapy was shown to block tumor growth in murine models of breast cancer, pancreatic cancer, and metastatic osteosarcoma by decreasing inflammation-expanded immature myeloid cells. Therefore, this therapeutic modality was termed PhotoImmunoNanoTherapy. As phosphorylated sphingolipid metabolites have been shown to have immunomodulatory roles, it was hypothesized that the reduction of immature myeloid cells by PhotoImmunoNanoTherapy was dependent upon bioactive sphingolipids. Mechanistically, PhotoImmunoNanoTherapy induced a sphingosine kinase 2-dependent increase in sphingosine-1-phosphate and dihydrosphingosine-1-phosphate. Furthermore, dihydrosphingosine-1-phosphate was shown to selectively abrogate myeloid lineage cells while concomitantly allowing the expansion of lymphocytes that exerted an antitumor effect. Collectively, these findings revealed that PhotoImmunoNanoTherapy, utilizing the novel nontoxic theranostic agent ICG-CPSNP, can decrease tumor-associated inflammation and immature myeloid cells in a sphingosine kinase 2-dependent manner. These findings further defined a novel myeloid regulatory role for dihydrosphingosine-1-phosphate. Photo

  4. Glucose 1-phosphate is efficiently taken up by potato (Solanum tuberosum) tuber parenchyma cells and converted to reserve starch granules.

    PubMed

    Fettke, Joerg; Albrecht, Tanja; Hejazi, Mahdi; Mahlow, Sebastian; Nakamura, Yasunori; Steup, Martin

    2010-02-01

    Reserve starch is an important plant product but the actual biosynthetic process is not yet fully understood. Potato (Solanum tuberosum) tuber discs from various transgenic plants were used to analyse the conversion of external sugars or sugar derivatives to starch. By using in vitro assays, a direct glucosyl transfer from glucose 1-phosphate to native starch granules as mediated by recombinant plastidial phosphorylase was analysed. Compared with labelled glucose, glucose 6-phosphate or sucrose, tuber discs converted externally supplied [(14)C]glucose 1-phosphate into starch at a much higher rate. Likewise, tuber discs from transgenic lines with a strongly reduced expression of cytosolic phosphoglucomutase, phosphorylase or transglucosidase converted glucose 1-phosphate to starch with the same or even an increased rate compared with the wild-type. Similar results were obtained with transgenic potato lines possessing a strongly reduced activity of both the cytosolic and the plastidial phosphoglucomutase. Starch labelling was, however, significantly diminished in transgenic lines, with a reduced concentration of the plastidial phosphorylase isozymes. Two distinct paths of reserve starch biosynthesis are proposed that explain, at a biochemical level, the phenotype of several transgenic plant lines.

  5. Mannitol-1-phosphate dehydrogenases/phosphatases: a family of novel bifunctional enzymes for bacterial adaptation to osmotic stress.

    PubMed

    Sand, Miriam; Rodrigues, Marta; González, José M; de Crécy-Lagard, Valérie; Santos, Helena; Müller, Volker; Averhoff, Beate

    2015-03-01

    The nutritionally versatile soil bacterium Acinetobacter baylyi ADP1 copes with salt stress by the accumulation of compatible solutes, a strategy that is widespread in nature. This bacterium synthesizes the sugar alcohol mannitol de novo in response to osmotic stress. In a previous study, we identified MtlD, a mannitol-1-phosphate dehydrogenase, which is essential for mannitol biosynthesis and which catalyses the first step in mannitol biosynthesis, the reduction of fructose-6-phosphate (F-6-P) to the intermediate mannitol-1-phosphate (Mtl-1-P). Until now, the identity of the second enzyme, the phosphatase that catalyses the dephosphorylation of Mtl-1-P to mannitol, was elusive. Here we show that MtlD has a unique sequence among known mannitol-1-phosphate dehydrogenases with a haloacid dehalogenase (HAD)-like phosphatase domain at the N-terminus. This domain is indeed shown to have a phosphatase activity. Phosphatase activity is strictly Mg(2+) dependent. Nuclear magnetic resonance analysis revealed that purified MtlD catalyses not only reduction of F-6-P but also dephosphorylation of Mtl-1-P. MtlD of A. baylyi is the first bifunctional enzyme of mannitol biosynthesis that combines Mtl-1-P dehydrogenase and phosphatase activities in a single polypeptide chain. Bioinformatic analysis revealed that the bifunctional enzyme is widespread among Acinetobacter strains but only rarely present in other phylogenetic tribes.

  6. Overexpression and nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase in a transgenic mouse model of Huntington's disease.

    PubMed

    Senatorov, Vladimir V; Charles, Vinod; Reddy, P H; Tagle, Dan A; Chuang, De-Maw

    2003-03-01

    Huntington's disease is due to an expansion of CAG repeats in the huntingtin gene. Huntingtin interacts with several proteins including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We performed immunohistochemical analysis of GAPDH expression in the brains of transgenic mice carrying the huntingtin gene with 89 CAG repeats. In all wild-type animals examined, GAPDH was evenly distributed among the different cell types throughout the brain. In contrast, the majority of transgenic mice showed GAPDH overexpression, with the most prominent GAPDH changes observed in the caudate putamen, globus pallidus, neocortex, and hippocampal formation. Double staining for NeuN and GFAP revealed that GAPDH overexpression occurred exclusively in neurons. Nissl staining analysis of the neocortex and caudate putamen indicated 24 and 27% of cell loss in transgenic mice, respectively. Subcellular fluorescence analysis revealed a predominant increase in GAPDH immunostaining in the nucleus. Thus, we conclude that mutation of huntingtin is associated with GAPDH overexpression and nuclear translocation in discrete populations of brain neurons.

  7. Analysis of l-glycerol-3-phosphate dehydrogenase mutants in Drosophila melanogaster: complementation for intracellular degradation of the mutant polypeptide.

    PubMed

    Bewley, G C; DeZurik, J M; Pagelson, G

    1980-01-01

    Null and low activity alleles at the genetic locus coding for L-Glycerol-3-phosphate dehydrogenase (alpha-GPDH, NAD+ oxidoreductase, E.C. 1.1.1.8) in Drosophila melanogaster have been analyzed by a combination of rocket immunoelectrophoresis, interallelic complementation, and two-dimensional gel electrophoresis. In addition to proving information on the molecular weight, charged state, and steady state level of CRM in each of these mutants, it is suggested that each mutation has resulted in a genetic lesion within the structural element, Gpdh+. CRM levels appear to be the result of differential sensitivity to the normal intracellular degradative process and the CRM- mutants represent "hypersensitive" alleles, such that the mutant polypeptide does not accumulate in the intracellular environment.

  8. Homocysteine induces glyceraldehyde-3-phosphate dehydrogenase acetylation and apoptosis in the neuroblastoma cell line Neuro2a

    PubMed Central

    Fang, M.; Jin, A.; Zhao, Y.; Liu, X.

    2016-01-01

    High plasma levels of homocysteine (Hcy) promote the progression of neurodegenerative diseases. However, the mechanism by which Hcy mediates neurotoxicity has not been elucidated. We observed that upon incubation with Hcy, the viability of a neuroblastoma cell line Neuro2a declined in a dose-dependent manner, and apoptosis was induced within 48 h. The median effective concentration (EC50) of Hcy was approximately 5 mM. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) nuclear translocation and acylation has been implicated in the regulation of apoptosis. We found that nuclear translocation and acetylation of GAPDH increased in the presence of 5 mM Hcy and that higher levels of acetyltransferase p300/CBP were detected in Neuro2a cells. These findings implicate the involvement of GAPDH in the mechanism whereby Hcy induces apoptosis in neurons. This study highlights a potentially important pathway in neurodegenerative disorders, and a novel target pathway for neuroprotective therapy. PMID:26785692

  9. Autonomous folding of the excised coenzyme-binding domain of D-glyceraldehyde 3-phosphate dehydrogenase from Thermotoga maritima.

    PubMed Central

    Jecht, M.; Tomschy, A.; Kirschner, K.; Jaenicke, R.

    1994-01-01

    An important question in protein folding is whether compact substructures or domains are autonomous units of folding and assembly. The protomer of the tetrameric D-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima has a complex coenzyme-binding domain, in which residues 1-146 form a compact substructure with the last 31 residues (313-333). Here it is shown that the gene of a single-chain protein can be expressed in Escherichia coli after deleting the 163 codons corresponding to the interspersed catalytic domain (150-312). The purified gene product is a soluble, monomeric protein that binds both NAD+ and NADH strongly and possesses the same unfolding transition induced by guanidinium chloride as the native tetramer. The autonomous folding of the coenzyme-binding domain has interesting implications for the folding, assembly, function, and evolution of the native enzyme. PMID:8019412

  10. Characterization of two proteins of Staphylococcus aureus isolated from bovine clinical mastitis with homology to glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Goji, Noriko; Potter, Andrew A; Perez-Casal, Jose

    2004-04-19

    Staphylococcus aureus is the most common causative agent of bovine mastitis and vaccines developed to control this disease showed limited protection due in part to the lack of common antigens among the mastitis isolates. We isolated and identified two genes encoding proteins with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity from a S. aureus strain isolated from bovine clinical mastitis. The GapB and GapC proteins share considerable homology to the GapB and GapC products of human strains of S. aureus. These two proteins could be distinguished by their different GAPDH activities and binding to bovine transferrin properties. Both gapB and gapC genes were conserved in 11 strains tested, and the GapC protein was present on the surface of all S. aureus strains.

  11. Over-expression of PsGPD, a mushroom glyceraldehyde-3-phosphate dehydrogenase gene, enhances salt tolerance in rice plants.

    PubMed

    Cho, Jung-Il; Lim, Hye-Min; Siddiqui, Zamin Shaheed; Park, Sung-Han; Kim, A-Ram; Kwon, Taek-Ryoun; Lee, Seong-Kon; Park, Soo-Chul; Jeong, Mi-Jeong; Lee, Gang-Seob

    2014-08-01

    Transgenic potatoes expressing glyceraldehyde-3-phosphate dehydrogenase (GPD), isolated from the oyster mushroom, Pleurotus sajor-caju, had increased tolerance to salt stress (Jeong et al. Biochem Biophys Res Commun 278:192-196, 2000). To examine the physiological mechanisms enhancing salt tolerance in GPD-transgenic rice plants, the salt tolerance of five GPD transgenic rice lines (T1-T5) derived from Dongjin rice cultivar were evaluated in a fixed 150 mM saline environment in comparison to two known wild-type rice cultivars, Dongjin (salt sensitive) and Pokali (salt tolerant). Transgenic lines, T2, T3, and T5, had a substantial increase in biomass and relative water content compared to Dongjin. Stomatal conductance and osmotic potential were higher in the GPD transgenic lines and were similar to those in Pokali. The results are discussed based on the comparative physiological response of GPD transgenic lines with those of the salt-sensitive and salt-tolerant rice cultivars.

  12. The sweet side of RNA regulation: glyceraldehyde-3-phosphate dehydrogenase as a noncanonical RNA-binding protein

    PubMed Central

    White, Michael R.; Garcin, Elsa D.

    2016-01-01

    The glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has a vast array of extraglycolytic cellular functions, including interactions with nucleic acids. GAPDH has been implicated in the translocation of transfer RNA (tRNA), the regulation of cellular messenger RNA (mRNA) stability and translation, as well as the regulation of replication and gene expression of many single-stranded RNA viruses. A growing body of evidence supports GAPDH–RNA interactions serving as part of a larger coordination between intermediary metabolism and RNA biogenesis. Despite the established role of GAPDH in nucleic acid regulation, it is still unclear how and where GAPDH binds to its RNA targets, highlighted by the absence of any conserved RNA-binding sequences. This review will summarize our current understanding of GAPDH-mediated regulation of RNA function. PMID:26564736

  13. cDNA, genomic sequence cloning and overexpression of glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH) from the Giant Panda.

    PubMed

    Hou, Wan-Ru; Hou, Yi-Ling; Du, Yu-Jie; Zhang, Tian; Hao, Yan-Zhe

    2010-01-01

    GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is a key enzyme of the glycolytic pathway and it is related to the occurrence of some diseases. The cDNA and the genomic sequence of GAPDH were cloned successfully from the Giant Panda (Ailuropoda melanoleuca) using the RT-PCR technology and Touchdown-PCR, respectively. Both sequences were analyzed preliminarily. The cDNA of GAPDH cloned from the Giant Panda is 1191 bp in size, contains an open reading frame of 1002 bp encoding 333 amino acids. The genomic sequence is 3941 bp in length and was found to possess 10 exons and 9 introns. Alignment analysis indicates that the nucleotide sequence and the deduced amino acid sequence are highly conserved in some mammalian species, including Homo sapiens, Mu musculus, Rattus norvegicus, Canis lupus familiaris and Bos taurus. The homologies for the nucleotide sequences of the Giant Panda GAPDH to that of these species are 90.67, 90.92, 90.62, 95.01 and 92.32% respectively, while the homologies for the amino acid sequences are 94.93, 95.5, 95.8, 98.8 and 97.0%. Primary structure analysis revealed that the molecular weight of the putative GAPDH protein is 35.7899 kDa with a theoretical pI of 8.21. Topology prediction showed that there is one Glyceraldehyde 3-phosphate dehydrogenase active site, two N-glycosylation sites, four Casein kinase II phosphorylation sites, seven Protein kinase C phosphorylation sites and eight N-myristoylation sites in the GAPDH protein of the Giant Panda. The GAPDH gene was overexpressed in E. coli BL21. The results indicated that the fusion of GAPDH with the N-terminally His-tagged form gave rise to the accumulation of an expected 43 kDa polypeptide. The SDS-PAGE analysis also showed that the recombinant GAPDH was soluble and thus could be used for further functional studies.

  14. The role of glycerol-3-phosphate dehydrogenase 1 in the progression of fatty liver after acute ethanol administration in mice.

    PubMed

    Sato, Tomoki; Morita, Akihito; Mori, Nobuko; Miura, Shinji

    2014-02-21

    Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, the roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2h and was 1.7-fold greater than that observed in the control group after 6h. The up-regulation of GPD1 began 2h after administering ethanol, and significantly increased 6h later with the concomitant escalation in the glycolytic gene expression. The incorporation of (14)C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation.

  15. Catalytic residues and an electrostatic sandwich that promote enolpyruvyl shikimate 3-phosphate synthase (AroA) catalysis.

    PubMed

    Berti, Paul J; Chindemi, Paul

    2009-05-05

    Enolpyruvylshikimate 3-phosphate synthase (EPSP synthase, AroA) catalyzes the sixth step in aromatic amino acid biosynthesis. It forms EPSP from shikimate 3-phosphate (S3P) and phosphoenolpyruvate (PEP) in an addition/elimination reaction that proceeds through a tetrahedral intermediate. In spite of numerous mechanistic studies, the catalytic roles of specific amino acid residues remain an open question. Recent experimental evidence for cationic intermediates or cationic transition states, and a consideration of the catalytic imperative, have guided this study on the catalytic roles of Lys22 (K22), Asp313 (D313), and Glu341 (E341). Steady-state and pre-steady-state kinetics and protein stability studies showed that mutations of D313 and E341 caused k(cat) to decrease up to 30,000-fold and 76,000-fold, respectively, while the effects on K(M) were modest, never more than 40-fold. Thus, both are identified as catalytic residues. In an active site that is overwhelmingly positively charged, the D313 and E341 side chains are positioned to form an "electrostatic sandwich" around the positive charge at C2 in cationic intermediates/transition states, stabilizing them and thereby promoting catalysis. Mutation of K22 showed large effects on K(M,S3P) (100-fold), K(M,PEP) (>760-fold), and up to 120-fold on k(cat). Thus, K22 had roles in both substrate-binding and transition-state stabilization. These results support the identification of E341 and K22 as general acid/base catalytic residues.

  16. Glyceraldehyde 3-phosphate dehydrogenase augments the intercellular transmission and toxicity of polyglutamine aggregates in a cell model of Huntington disease.

    PubMed

    Mikhaylova, Elena R; Lazarev, Vladimir F; Nikotina, Alina D; Margulis, Boris A; Guzhova, Irina V

    2016-03-01

    The common feature of Huntington disease is the accumulation of oligomers or aggregates of mutant huntingtin protein (mHTT), which causes the death of a subset of striatal neuronal populations. The cytotoxic species can leave neurons and migrate to other groups of cells penetrating and damaging them in a prion-like manner. We hypothesized that the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH), previously shown to elevate the aggregation of mHTT, is associated with an increased efficiency of intercellular propagation of mHTT. GAPDH, on its own or together with polyglutamine species, was shown to be released into the extracellular milieu mainly from dying cells as assessed by a novel enzyme immunoassay, western blotting, and ultrafiltration. The conditioned medium of cells with growing GAPDH-polyQ aggregates was toxic to naïve cells, whereas depletion of the aggregates from the medium lowered this cytotoxicity. The GAPDH component of the aggregates was found to increase their toxicity by two-fold in comparison with polyQ alone. Furthermore, GAPDH-polyQ complexes were shown to penetrate acceptor cells and to increase the capacity of polyQ to prionize its intracellular homolog containing a repeat of 25 glutamine residues. Finally, inhibitors of intracellular transport showed that polyQ-GAPDH complexes, as well as GAPDH itself, penetrated cells using clathrin-mediated endocytosis. This suggested a pivotal role of the enzyme in the intercellular transmission of Huntington disease pathogenicity. In conclusion, GAPDH occurring in complexes with polyglutamine strengthens the prion-like activity and toxicity of the migrating aggregates. Aggregating polygluatmine tracts were shown to release from the cells over-expressing mutant huntingtin in a complex with glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The enzyme enhances the intracellular transport of aggregates to healthy cells, prionization of normal cellular proteins and finally cell death, thus

  17. Purification and properties of glycerol-3-phosphate dehydrogenase from the liver of the hibernating ground squirrel, Urocitellus richardsonii.

    PubMed

    Ruberto, Anthony A; Childers, Christine L; Storey, Kenneth B

    2016-12-01

    Cytosolic glycerol-3-phosphate dehydrogenase (G3PDH, EC 1.1.1.8) is an important branch point enzyme connecting lipid metabolism and carbohydrate metabolism. We investigated the dynamic nature of G3PDH by purifying the enzyme from the liver of Richardson's ground squirrel (Urocitellus richardsonii), a hibernating species, and analyzing its structural and functional changes during hibernation. Kinetic parameters of purified G3PDH from ground squirrel liver were characterized at 37, 22 and 5°C and compared between euthermic and hibernating states. Relative to euthermic liver G3PDH, hibernator liver G3PDH had a decreased affinity for its substrate, glycerol-3-phosphate (G3P), at 37°C and 22°C. However, at 5°C, there was a significant increase in the affinity for G3P in the hibernating form of the enzyme, relative to the euthermic form. Furthermore, the structure of G3PDH in the species' hibernating state showed greater thermal stability compared to its structure in the euthermic state. Western blot analysis revealed greater tyrosine phosphorylation in hibernator G3PDH as compared to euthermic G3PDH. In addition, using the protein sequence of the hibernating thirteen-lined ground squirrel (Ictidomys tridecemlineatus) and bioinformatics tools, a three-dimensional model of G3PDH was built to identify the potential phosphorylation site ((83)Tyr) responsible for the differential phosphorylation between euthermic and hibernator G3PDH. The structural and functional changes in G3PDH support the enzyme's function at a low core body temperature experienced during the species hibernating season.

  18. Sphingosine-1-Phosphate Receptor-1 Selective Agonist Enhances Collateral Growth and Protects against Subsequent Stroke

    PubMed Central

    Ichijo, Masahiko; Ishibashi, Satoru; Li, Fuying; Yui, Daishi; Miki, Kazunori; Mizusawa, Hidehiro; Yokota, Takanori

    2015-01-01

    Background and Purpose Collateral growth after acute occlusion of an intracranial artery is triggered by increasing shear stress in preexisting collateral pathways. Recently, sphingosine-1-phosphate receptor-1 (S1PR1) on endothelial cells was reported to be essential in sensing fluid shear stress. Here, we evaluated the expression of S1PR1 in the hypoperfused mouse brain and investigated the effect of a selective S1PR1 agonist on leptomeningeal collateral growth and subsequent ischemic damage after focal ischemia. Methods In C57Bl/6 mice (n = 133) subjected to unilateral common carotid occlusion (CCAO) and sham surgery. The first series examined the time course of collateral growth, cell proliferation, and S1PR1 expression in the leptomeningeal arteries after CCAO. The second series examined the relationship between pharmacological regulation of S1PR1 and collateral growth of leptomeningeal anastomoses. Animals were randomly assigned to one of the following groups: LtCCAO and daily intraperitoneal (ip) injection for 7 days of an S1PR1 selective agonist (SEW2871, 5 mg/kg/day); sham surgery and daily ip injection for 7 days of SEW2871 after surgery; LtCCAO and daily ip injection for 7 days of SEW2871 and an S1PR1 inverse agonist (VPC23019, 0.5 mg/kg); LtCCAO and daily ip injection of DMSO for 7 days after surgery; and sham surgery and daily ip injection of DMSO for 7 days. Leptomeningeal anastomoses were visualized 14 days after LtCCAO by latex perfusion method, and a set of animals underwent subsequent permanent middle cerebral artery occlusion (pMCAO) 7days after the treatment termination. Neurological functions 1hour, 1, 4, and 7days and infarction volume 7days after pMCAO were evaluated. Results In parallel with the increase in S1PR1 mRNA levels, S1PR1 expression colocalized with endothelial cell markers in the leptomeningeal arteries, increased markedly on the side of the CCAO, and peaked 7 days after CCAO. Mitotic cell numbers in the leptomeningeal arteries

  19. Synergy between Sphingosine 1-Phosphate and Lipopolysaccharide Signaling Promotes an Inflammatory, Angiogenic and Osteogenic Response in Human Aortic Valve Interstitial Cells

    PubMed Central

    Onecha, Esther; Maeso, Patricia; Crespo, Mariano Sánchez; Román, José Alberto San; García-Rodríguez, Carmen

    2014-01-01

    Given that the bioactive lipid sphingosine 1-phosphate is involved in cardiovascular pathophysiology, and since lipid accumulation and inflammation are hallmarks of calcific aortic stenosis, the role of sphingosine 1-phosphate on the pro-inflammatory/pro-osteogenic pathways in human interstitial cells from aortic and pulmonary valves was investigated. Real-time PCR showed sphingosine 1-phosphate receptor expression in aortic valve interstitial cells. Exposure of cells to sphingosine 1-phosphate induced pro-inflammatory responses characterized by interleukin-6, interleukin-8, and cyclooxygenase-2 up-regulations, as observed by ELISA and Western blot. Strikingly, cell treatment with sphingosine 1-phosphate plus lipopolysaccharide resulted in the synergistic induction of cyclooxygenase-2, and intercellular adhesion molecule 1, as well as the secretion of prostaglandin E2, the soluble form of the intercellular adhesion molecule 1, and the pro-angiogenic factor vascular endothelial growth factor-A. Remarkably, the synergistic effect was significantly higher in aortic valve interstitial cells from stenotic than control valves, and was drastically lower in cells from pulmonary valves, which rarely undergo stenosis. siRNA and pharmacological analysis revealed the involvement of sphingosine 1-phosphate receptors 1/3 and Toll-like receptor-4, and downstream signaling through p38/MAPK, protein kinase C, and NF-κB. As regards pro-osteogenic pathways, sphingosine 1-phosphate induced calcium deposition and the expression of the calcification markers bone morphogenetic protein-2 and alkaline phosphatase, and enhanced the effect of lipopolysaccharide, an effect that was partially blocked by inhibition of sphingosine 1-phosphate receptors 3/2 signaling. In conclusion, the interplay between sphingosine 1-phosphate receptors and Toll-like receptor 4 signaling leads to a cooperative up-regulation of inflammatory, angiogenic, and osteogenic pathways in aortic valve interstitial cells

  20. Expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    SciTech Connect

    Elliott, Paul R.; Evans, Daniel; Greenwood, Jacqueline A.; Moody, Peter C. E.

    2008-08-01

    Glyceraldehyde-3-phosphate dehydrogenase A has been cloned, expressed and purified. Apoprotein crystals have been grown which diffracted to 1.75 Å resolution and belonged to space group P2{sub 1}; holo crystals were grown in the presence of NADP, diffracted to 2.6 Å resolution and belonged to space group P3{sub 2}. The classical glycolytic pathway contains an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, with NADP-dependent forms reserved for photosynthetic organisms and archaea. Here, the cloning, expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori is reported; crystals of the protein were grown both in the presence and the absence of NADP.

  1. Glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR) and nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), key enzymes of the respective modified Embden-Meyerhof pathways in the hyperthermophilic crenarchaeota Pyrobaculum aerophilum and Aeropyrum pernix.

    PubMed

    Reher, Matthias; Gebhard, Susanne; Schönheit, Peter

    2007-08-01

    The growth of Pyrobaculum aerophilum on yeast extract and nitrate was stimulated by the addition of maltose. Extracts of maltose/yeast extract/nitrate-grown cells contained all enzyme activities of a modified Embden-Meyerhof (EM) pathway, including ATP-dependent glucokinase, phosphoglucose isomerase, ATP-dependent 6-phosphofructokinase, fructose-1,6-phosphate aldolase, triose-phosphate isomerase, GAPOR, phosphoglycerate mutase, enolase and pyruvate kinase. The activity of GAPOR was stimulated about fourfold by maltose, indicating a role in sugar degradation. GAPOR was purified 200-fold to homogeneity and characterized as a 67 kDa monomeric, extremely thermostable protein. The enzyme showed high specificity for glyceraldehyde-3-phosphate and did not use glyceraldehyde, acetaldehyde or formaldehyde as substrates. By matrix-assisted laser desorption/ionization-time of flight analysis of the purified enzyme, ORF PA1029 was identified as a coding gene, gapor, in the sequenced genome of Pyrobaculum aerophilum. The data indicate that the (micro)aerophilic Pyrobaculum aerophilum contains a functional GAPOR as part of a modified EM pathway. Cells of the strictly aerobic crenarchaeon Aeropyrum pernix also contain enzyme activities of a modified EM pathway similar to that of Pyrobaculum aerophilum, except that a GAPN activity replaces GAPOR activity.

  2. Iminosugar C-Glycoside Analogues of α-d-GlcNAc-1-Phosphate: Synthesis and Bacterial Transglycosylase Inhibition

    PubMed Central

    2015-01-01

    We herein describe the first synthesis of iminosugar C-glycosides of α-d-GlcNAc-1-phosphate in 10 steps starting from unprotected d-GlcNAc. A diastereoselective intramolecular iodoamination–cyclization as the key step was employed to construct the central piperidine ring of the iminosugar and the C-glycosidic structure of α-d-GlcNAc. Finally, the iminosugar phosphonate and its elongated phosphate analogue were accessed. These phosphorus-containing iminosugars were coupled efficiently with lipophilic monophosphates to give lipid-linked pyrophosphate derivatives, which are lipid II mimetics endowed with potent inhibitory properties toward bacterial transglycosylases (TGase). PMID:25137529

  3. Neuroprotective role of sphingosine-1-phosphate in L-BMAA treated neuroblastoma cells (SH-SY5Y).

    PubMed

    Muñoz-Sáez, Emma; de Munck García, Estefanía; Arahuetes Portero, Rosa María; Vicente, Francisca; Ortiz-López, Francisco Javier; Cantizani, Juan; Gómez Miguel, Begoña

    2015-04-23

    Sphingosine-1-phosphate (S1P) is a bioactive lipid which regulates proliferation, cell migration, survival and differentiation by specific receptors activation. We studied its effects on L-BMAA treated neuroblastoma cells (SH-SY5Y), an amino acid that can trigger neurodegenerative diseases such as amyotrophic lateral sclerosis/Parkinson dementia complex (ALS/PDC). We found that S1P protects from necrosis and prevents the GSK3 increasing as long as the PI3K/AKT pathway is active. Moreover, GSK3 inhibition protects against neuronal death caused by L-BMAA.

  4. Enzymatic synthesis of rare sugars with L-rhamnulose-1-phosphate aldolase from Thermotoga maritima MSB8.

    PubMed

    Li, Zijie; Wu, Xiaoru; Cai, Li; Duan, Shenglin; Liu, Jia; Yuan, Peng; Nakanishi, Hideki; Gao, Xiao-Dong

    2015-09-15

    L-Rhamnulose-1-phosphate aldolase from a thermophilic source (Thermotoga maritima MSB8) (RhaDT.mari) was heterologously overexpressed in Escherichia coli and the stereoselectivity of this enzyme with or without Nus tag was investigated. We also applied this enzyme to the synthesis of rare sugars D-psicose, D-sorbose, L-tagatose and L-fructose using our one-pot four-enzyme system. To the best of our knowledge, this is the first use of RhaD from a thermophilic source for rare sugar synthesis and the temperature tolerance of this enzyme paves the path for large scale fermentation.

  5. The role of glycerol-3-phosphate dehydrogenase 1 in the progression of fatty liver after acute ethanol administration in mice

    SciTech Connect

    Sato, Tomoki; Morita, Akihito; Mori, Nobuko; Miura, Shinji

    2014-02-21

    Highlights: • Ethanol administration increased GPD1 mRNA expression. • Ethanol administration increased glucose incorporation into TG glycerol moieties. • No increase in hepatic TG levels was observed in ethanol-injected GPD1 null mice. • We propose that GPD1 is required for ethanol-induced TG accumulation in the liver. - Abstract: Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, the roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2 h and was 1.7-fold greater than that observed in the control group after 6 h. The up-regulation of GPD1 began 2 h after administering ethanol, and significantly increased 6 h later with the concomitant escalation in the glycolytic gene expression. The incorporation of {sup 14}C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation.

  6. Phosphate Tether-Mediated Ring-Closing Metathesis for the Generation of Medium to Large, P-Stereogenic Bicyclo[n.3.1]phosphates.

    PubMed

    Maitra, Soma; Markley, Jana L; Chegondi, Rambabu; Hanson, Paul R

    2015-09-02

    A phosphate tether-mediated ring-closing metathesis study towards the synthesis of P-stereogenic bicyclo[6.3.1]-, bicyclo[7.3.1]-, and bicyclo[8.3.1]phosphates is reported. This study demonstrates expanded utility of phosphate tether-mediated desymmetrization of C2-symmetric, 1,3-anti-diol dienes in generating complex medium to large, P-stereogenic bicyclo[n.3.1]phosphates..

  7. Comparative studies of effects of dehydroepiandrosterone on rat and chicken liver.

    PubMed

    Bobyleva, V; Kneer, N; Bellei, M; Battelli, D; Muscatello, U; Lardy, H

    1993-01-01

    1. An attempt to identify the cause of decrease of gain in body weight during dehydroepiandrosterone (DHEA) treatment was made comparing the effects of hormone treatment on chickens and rats. 2. Chickens treated with DHEA for 7-10 days do not change their weight gain with respect to controls although their mitochondrial respiration and peroxisomal catalase (index of peroxisomal mass) were increased. 3. Liver cytosolic malic enzyme and sn-glycerol-3-phosphate dehydrogenase were depressed in chickens treated with DHEA in comparison with activities in untreated controls. DHEA treatment did not increase the activity of mitochondrial sn-glycerol 3-phosphate dehydrogenase. 4. In contrast to rat liver cytosolic sn-glycerol-3-phosphate dehydrogenase this enzyme in chicken liver was inactive with NADPH.

  8. Nuclear translocation and accumulation of glyceraldehyde-3-phosphate dehydrogenase involved in diclazuril-induced apoptosis in Eimeria tenella (E. tenella).

    PubMed

    Wang, Congcong; Han, Chunzhou; Li, Tao; Yang, Dehao; Shen, Xiaojiong; Fan, Yinxin; Xu, Yang; Zheng, Wenli; Fei, Chenzhong; Zhang, Lifang; Xue, Feiqun

    2013-05-07

    In mammalian cells, GAPDH (glyceraldehyde-3-phosphate dehydrogenase) has recently been shown to be implicated in numerous apoptotic paradigms, especially in neuronal apoptosis, and has been demonstrated to play a vital role in some neurodegenerative disorders. However, this phenomenon has not been reported in protists. In the present study, we report for the first time that such a mechanism is involved in diclazuril-induced apoptosis in Eimeria tenella (E. tenella). We found that upon treatment of parasites with diclazuril, the expression levels of GAPDH transcript and protein were significantly increased in second-generation merozoites. Then, we examined the subcellular localization of GAPDH by fluorescence microscopy and Western blot analysis. The results show that a considerable amount of GAPDH protein appeared in the nucleus within diclazuril-treated second-generation merozoites; in contrast, the control group had very low levels of GAPDH in the nucleus. The glycolytic activity of GAPDH was kinetically analyzed in different subcellular fractions. A substantial decrease (48.5%) in glycolytic activity of GAPDH in the nucleus was displayed. Moreover, the activities of caspases-3, -9, and -8 were measured in cell extracts using specific caspase substrates. The data show significant increases in caspase-3 and caspase-9 activities in the diclazuril-treated group.

  9. Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes.

    PubMed

    Mugabo, Yves; Zhao, Shangang; Seifried, Annegrit; Gezzar, Sari; Al-Mass, Anfal; Zhang, Dongwei; Lamontagne, Julien; Attane, Camille; Poursharifi, Pegah; Iglesias, José; Joly, Erik; Peyot, Marie-Line; Gohla, Antje; Madiraju, S R Murthy; Prentki, Marc

    2016-01-26

    Obesity, and the associated disturbed glycerolipid/fatty acid (GL/FA) cycle, contribute to insulin resistance, islet β-cell failure, and type 2 diabetes. Flux through the GL/FA cycle is regulated by the availability of glycerol-3-phosphate (Gro3P) and fatty acyl-CoA. We describe here a mammalian Gro3P phosphatase (G3PP), which was not known to exist in mammalian cells, that can directly hydrolyze Gro3P to glycerol. We identified that mammalian phosphoglycolate phosphatase, with an uncertain function, acts in fact as a G3PP. We found that G3PP, by controlling Gro3P levels, regulates glycolysis and glucose oxidation, cellular redox and ATP production, gluconeogenesis, glycerolipid synthesis, and fatty acid oxidation in pancreatic islet β-cells and hepatocytes, and that glucose stimulated insulin secretion and the response to metabolic stress, e.g., glucolipotoxicity, in β-cells. In vivo overexpression of G3PP in rat liver lowers body weight gain and hepatic glucose production from glycerol and elevates plasma HDL levels. G3PP is expressed at various levels in different tissues, and its expression varies according to the nutritional state in some tissues. As Gro3P lies at the crossroads of glucose, lipid, and energy metabolism, control of its availability by G3PP adds a key level of metabolic regulation in mammalian cells, and G3PP offers a potential target for type 2 diabetes and cardiometabolic disorders.

  10. Deficiency of glycerol-3-phosphate acyltransferase 1 decreases triacylglycerol storage and induces fatty acid oxidation in insect fat body.

    PubMed

    Alves-Bezerra, Michele; Ramos, Isabela B; De Paula, Iron F; Maya-Monteiro, Clarissa M; Klett, Eric L; Coleman, Rosalind A; Gondim, Katia C

    2017-03-01

    Glycerol-3-phosphate acyltransferases (GPAT) catalyze the initial and rate-limiting step for the de novo synthesis of triacylglycerol (TAG). Four mammalian GPAT isoforms have been identified: the mitochondria-associated GPAT1 and 2, and the endoplasmic reticulum (ER)-associated GPAT3 and 4. In the insect Rhodnius prolixus, a vector of Chagas' disease, we previously predicted a mitochondrial-like isoform (RhoprGPAT1) from genomic data. In the current study, we clone the RhoprGPAT1 coding sequence and identify an ER-associated GPAT (RhoprGPAT4) as the second isoform in the insect. RhoprGPAT1 contributes 15% of the total GPAT activity in anterior midgut, 50% in posterior midgut and fat body, and 70% in the ovary. The RhoprGpat1 gene is the predominant transcript in the midgut and fat body. To evaluate the physiological relevance of RhoprGPAT1, we generate RhoprGPAT1-deficient insects. The knockdown of RhoprGpat1 results in 50% and 65% decrease in TAG content in the posterior midgut and fat body, respectively. RhoprGpat1-deficient insects also exhibits impaired lipid droplet expansion and a 2-fold increase in fatty acid β-oxidation rates in the fat body. We propose that the RhoprGPAT1 mitochondrial-like isoform is required to channel fatty acyl chains towards TAG synthesis and away from β-oxidation. Such a process is crucial for the insect lipid homeostasis.

  11. In silico peptide prediction for antibody generation to recognize 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in genetically modified organisms.

    PubMed

    Marani, Mariela M; Costa, Joana; Mafra, Isabel; Oliveira, Maria Beatriz P P; Camperi, Silvia A; Leite, José Roberto de Souza Almeida

    2015-03-01

    For the prospective immunorecognition of 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS) as a biomarker protein expressed by transgenic soybean, an extensive in silico evaluation of the referred protein was performed. The main objective of this study was the selection of a set of peptides that could function as potential immunogens for the production of novel antibodies against CP4-EPSPS protein. For this purpose, the protein was in silico cleaved with trypsin/chymotrypsin and the resultant peptides were extensively analyzed for further selection of the best candidates for antibody production. The analysis enabled the successful proposal of four peptides with potential immunogenicity for their future use as screening biomarkers of genetically modified organisms. To our knowledge, this is the first attempt to select and define potential linear epitopes for the immunization of animals and, subsequently, to generate adequate antibodies for CP4-EPSPS recognition. The present work will be followed by the synthesis of the candidate peptides to be incubated in animals for antibody generation and potential applicability for the development of an immunosensor for CP4-EPSPS detection.

  12. Fatty acid synthesis and generation of glycerol-3-phosphate in brown adipose tissue from rats fed a cafeteria diet.

    PubMed

    Chaves, Valéria E; Frasson, Danúbia; Martins-Santos, Maria E S; Navegantes, Luiz C C; Galban, Victor D; Garófalo, Maria A R; Kettelhut, Isis C; Migliorini, Renato H

    2008-07-01

    In vivo fatty acid synthesis and the pathways of glycerol-3-phosphate (G3P) production were investigated in brown adipose tissue (BAT) from rats fed a cafeteria diet for 3 weeks. In spite of BAT activation, the diet promoted an increase in the carcass fatty acid content. Plasma insulin levels were markedly increased in cafeteria diet-fed rats. Two insulin-sensitive processes, in vivo fatty acid synthesis and in vivo glucose uptake (which was used to evaluate G3P generation via glycolysis) were increased in BAT from rats fed the cafeteria diet. Direct glycerol phosphorylation, evaluated by glycerokinase (GyK) activity and incorporation of [U-14C]glycerol into triacylglycerol (TAG)-glycerol, was also markedly increased in BAT from these rats. In contrast, the cafeteria diet induced a marked reduction of BAT glyceroneogenesis, evaluated by phosphoenolpyruvate carboxykinase-C activity and incorporation of [1-14C]pyruvate into TAG-glycerol. BAT denervation resulted in an approximately 50% reduction of GyK activity, but did not significantly affect BAT in vivo fatty acid synthesis, in vivo glucose uptake, or glyceroneogenesis. The data suggest that the supply of G3P for BAT TAG synthesis can be adjusted independently from the sympathetic nervous system and solely by reciprocal changes in the generation of G3P via glycolysis and via glyceroneogenesis, with no participation of direct phosphorylation of glycerol by GyK.

  13. Glyceraldehyde 3-phosphate dehydrogenase protein and mRNA are both differentially expressed in adult chickens but not chick embryos.

    PubMed Central

    Milner, R J; Brow, M D; Cleveland, D W; Shinnick, T M; Sutcliffe, J G

    1983-01-01

    We have determined the 679 nucleotide sequence of a cDNA clone which, by hybridization-translation experiments, corresponds to a 36K chick brain protein. Our studies provide a partial amino acid sequence for this protein, identifying it as chicken glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Antisera raised against purified chicken GAPDH reacted with a 36K protein present in chick brain extracts and estimated to be the fourth most prevalent protein, as determined by either Coomassie Blue staining or by in vitro translation of chick brain mRNA. The amounts of GAPDH mRNA in chick brain, liver and muscle and adult chicken brain are similar, whereas the relative amount of adult chicken muscle GPDH mRNA is greatly elevated and that of adult liver lowered. The GAPDH protein levels showed a similar variation between tissues, suggesting that the levels of GAPDH protein are largely regulated by the amount of available GAPDH mRNA. The chicken GAPDH clone does not hybridize to rat mRNA, even though GAPDH is one of the most evolutionarily conserved proteins, indicating that selection pressures are heavier at the primary protein sequence level than at the nucleic acid sequence level for this gene, a situation contrasting to that of the tubulins. Images PMID:6687938

  14. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase.

    PubMed

    Baerson, Scott R; Rodriguez, Damian J; Tran, Minhtien; Feng, Yongmei; Biest, Nancy A; Dill, Gerald M

    2002-07-01

    The spontaneous occurrence of resistance to the herbicide glyphosate in weed species has been an extremely infrequent event, despite over 20 years of extensive use. Recently, a glyphosate-resistant biotype of goosegrass (Eleusine indica) was identified in Malaysia exhibiting an LD(50) value approximately 2- to 4-fold greater than the sensitive biotype collected from the same region. A comparison of the inhibition of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity by glyphosate in extracts prepared from the resistant (R) and sensitive (S) biotypes revealed an approximately 5-fold higher IC(50)(glyphosate) for the (R) biotype. Sequence comparisons of the predicted EPSPS mature protein coding regions from both biotypes revealed four single-nucleotide differences, two of which result in amino acid changes. One of these changes, a proline to serine substitution at position 106 in the (R) biotype, corresponds to a substitution previously identified in a glyphosate-insensitive EPSPS enzyme from Salmonella typhimurium. Kinetic data generated for the recombinant enzymes suggests that the second substitution identified in the (R) EPSPS does not contribute significantly to its reduced glyphosate sensitivity. Escherichia coli aroA- (EPSPS deficient) strains expressing the mature EPSPS enzyme from the (R) biotype exhibited an approximately 3-fold increase in glyphosate tolerance relative to strains expressing the mature EPSPS from the (S) biotype. These results provide the first evidence for an altered EPSPS enzyme as an underlying component of evolved glyphosate resistance in any plant species.

  15. Export of malaria proteins requires co-translational processing of the PEXEL motif independent of phosphatidylinositol-3-phosphate binding

    PubMed Central

    Boddey, Justin A.; O'Neill, Matthew T.; Lopaticki, Sash; Carvalho, Teresa G.; Hodder, Anthony N.; Nebl, Thomas; Wawra, Stephan; van West, Pieter; Ebrahimzadeh, Zeinab; Richard, Dave; Flemming, Sven; Spielmann, Tobias; Przyborski, Jude; Babon, Jeff J.; Cowman, Alan F.

    2016-01-01

    Plasmodium falciparum exports proteins into erythrocytes using the Plasmodium export element (PEXEL) motif, which is cleaved in the endoplasmic reticulum (ER) by plasmepsin V (PMV). A recent study reported that phosphatidylinositol-3-phosphate (PI(3)P) concentrated in the ER binds to PEXEL motifs and is required for export independent of PMV, and that PEXEL motifs are functionally interchangeable with RxLR motifs of oomycete effectors. Here we show that the PEXEL does not bind PI(3)P, and that this lipid is not concentrated in the ER. We find that RxLR motifs cannot mediate export in P. falciparum. Parasites expressing a mutated version of KAHRP, with the PEXEL motif repositioned near the signal sequence, prevented PMV cleavage. This mutant possessed the putative PI(3)P-binding residues but is not exported. Reinstatement of PEXEL to its original location restores processing by PMV and export. These results challenge the PI(3)P hypothesis and provide evidence that PEXEL position is conserved for co-translational processing and export. PMID:26832821

  16. The glyceraldehyde-3-phosphate dehydrogenase homologue is differentially regulated in phases of Paracoccidioides brasiliensis: molecular and phylogenetic analysis.

    PubMed

    Barbosa, Mônica S; Cunha Passos, Daniela A; Felipe, M Sueli S; Jesuíno, Rosália S A; Pereira, Maristela; de Almeida Soares, Célia M

    2004-07-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays important roles in various cellular processes. Here we report the sequence and analysis of a novel developmentally regulated gene and cDNA (Pbgadph), encoding a GAPDH homologue (PbGAPDH), of the pathogenic dimorphic fungus Paracoccidioides brasiliensis. We have analyzed the protein, the cDNA and genomic sequences to provide insights into the structure, function, and potential regulation of PbGAPDH. That Pbgapdh encodes PbGAPDH was demonstrated by micro-sequencing of the native protein homologue isolated from the fungus proteome. The deduced amino acid sequence of Pbgapdh showed identity to those of from other species (88-76%). Phylogenetic analysis indicated that GAPDH could be useful for the determination of evolutionary relationships. Expression of the Pbgapdh gene and the cognate protein were developmentally regulated in phases of P. brasiliensis, with a higher expression in the yeast parasitic phase and was induced during the transition from mycelium to yeast and decreased during the reverse process, transition from yeast to mycelium.

  17. Autophagy and endosomal trafficking inhibition by Vibrio cholerae MARTX toxin phosphatidylinositol-3-phosphate-specific phospholipase A1 activity

    PubMed Central

    Agarwal, Shivani; Kim, Hyunjin; Chan, Robin B.; Agarwal, Shivangi; Williamson, Rebecca; Cho, Wonhwa; Paolo, Gilbert D.; Satchell, Karla J. F.

    2015-01-01

    Vibrio cholerae, responsible for acute gastroenteritis secretes a large multifunctional-autoprocessing repeat-in-toxin (MARTX) toxin linked to evasion of host immune system, facilitating colonization of small intestine. Unlike other effector domains of the multifunctional toxin that target cytoskeleton, the function of alpha-beta hydrolase (ABH) remained elusive. This study demonstrates that ABH is an esterase/lipase with catalytic Ser–His–Asp triad. ABH binds with high affinity to phosphatidylinositol-3-phosphate (PtdIns3P) and cleaves the fatty acid in PtdIns3P at the sn1 position in vitro making it the first PtdIns3P-specific phospholipase A1 (PLA1). Expression of ABH in vivo reduces intracellular PtdIns3P levels and its PtdIns3P-specific PLA1 activity blocks endosomal and autophagic pathways. In accordance with recent studies acknowledging the potential of extracellular pathogens to evade or exploit autophagy to prevent their clearance and facilitate survival, this is the first report highlighting the role of ABH in inhibiting autophagy and endosomal trafficking induced by extracellular V. cholerae. PMID:26498860

  18. Enhanced resistance in Theobroma cacao against oomycete and fungal pathogens by secretion of phosphatidylinositol-3-phosphate-binding proteins.

    PubMed

    Helliwell, Emily E; Vega-Arreguín, Julio; Shi, Zi; Bailey, Bryan; Xiao, Shunyuan; Maximova, Siela N; Tyler, Brett M; Guiltinan, Mark J

    2016-03-01

    The internalization of some oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors' cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants to secrete PI3P-binding proteins. In this study, we tested this strategy using the chocolate tree Theobroma cacao. Transient expression and secretion of four different PI3P-binding proteins in detached leaves of T. cacao greatly reduced infection by two oomycete pathogens, Phytophthora tropicalis and Phytophthora palmivora, which cause black pod disease. Lesion size and pathogen growth were reduced by up to 85%. Resistance was not conferred by proteins lacking a secretory leader, by proteins with mutations in their PI3P-binding site, or by a secreted PI4P-binding protein. Stably transformed, transgenic T. cacao plants expressing two different PI3P-binding proteins showed substantially enhanced resistance to both P. tropicalis and P. palmivora, as well as to the fungal pathogen Colletotrichum theobromicola. These results demonstrate that secretion of PI3P-binding proteins is an effective way to increase disease resistance in T. cacao, and potentially in other plants, against a broad spectrum of pathogens.

  19. Mutation by DNA shuffling of 5-enolpyruvylshikimate-3-phosphate synthase from Malus domestica for improved glyphosate resistance.

    PubMed

    Tian, Yong-Sheng; Xu, Jing; Peng, Ri-He; Xiong, Ai-Sheng; Xu, Hu; Zhao, Wei; Fu, Xiao-Yan; Han, Hong-Juan; Yao, Quan-Hong

    2013-09-01

    A new 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Malus domestica (MdEPSPS) was cloned and characterized by rapid amplification of cDNA ends to identify an EPSPS gene appropriate for the development of transgenic glyphosate-tolerant plants. However, wild-type MdEPSPS is not suitable for the development of transgenic glyphosate-tolerant plants because of its poor glyphosate resistance. Thus, we performed DNA shuffling on MdEPSPS, and one highly glyphosate-resistant mutant with mutations in eight amino acids (N63D, N86S, T101A, A187T, D230G, H317R, Y399R and C413A.) was identified after five rounds of DNA shuffling and screening. Among the eight amino acid substitutions on this mutant, only two residue changes (T101A and A187T) were identified by site-directed mutagenesis as essential and additive in altering glyphosate resistance, which was further confirmed by kinetic analyses. The single-site A187T mutation has also never been previously reported as an important residue for glyphosate resistance. Furthermore, transgenic rice was used to confirm the potential of MdEPSPS mutant in developing glyphosate-resistant crops.

  20. SIRT1 interacts with and protects glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from nuclear translocation: Implications for cell survival after irradiation

    SciTech Connect

    Joo, Hyun-Yoo; Woo, Seon Rang; Shen, Yan-Nan; Yun, Mi Yong; Shin, Hyun-Jin; Park, Eun-Ran; Kim, Su-Hyeon; Park, Jeong-Eun; Ju, Yeun-Jin; Hong, Sung Hee; Hwang, Sang-Gu; Cho, Myung-Haing; Kim, Joon; Lee, Kee-Ho

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer SIRT1 serves to retain GAPDH in the cytosol, preventing GAPDH nuclear translocation. Black-Right-Pointing-Pointer When SIRT1 is depleted, GAPDH translocation occurs even in the absence of stress. Black-Right-Pointing-Pointer Upon irradiation, SIRT1 interacts with GAPDH. Black-Right-Pointing-Pointer SIRT1 prevents irradiation-induced nuclear translocation of GAPDH. Black-Right-Pointing-Pointer SIRT1 presence rather than activity is essential for inhibiting GAPDH translocation. -- Abstract: Upon apoptotic stimulation, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a cytosolic enzyme normally active in glycolysis, translocates into the nucleus and activates an apoptotic cascade therein. In the present work, we show that SIRT1 prevents nuclear translocation of GAPDH via interaction with GAPDH. SIRT1 depletion triggered nuclear translocation of cytosolic GAPDH even in the absence of apoptotic stress. Such translocation was not, however, observed when SIRT1 enzymatic activity was inhibited, indicating that SIRT1 protein per se, rather than the deacetylase activity of the protein, is required to inhibit GAPDH translocation. Upon irradiation, SIRT1 prevented irradiation-induced nuclear translocation of GAPDH, accompanied by interaction of SIRT1 and GAPDH. Thus, SIRT1 functions to retain GAPDH in the cytosol, protecting the enzyme from nuclear translocation via interaction with these two proteins. This serves as a mechanism whereby SIRT1 regulates cell survival upon induction of apoptotic stress by means that include irradiation.

  1. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum.

    PubMed

    Axe, Elizabeth L; Walker, Simon A; Manifava, Maria; Chandra, Priya; Roderick, H Llewelyn; Habermann, Anja; Griffiths, Gareth; Ktistakis, Nicholas T

    2008-08-25

    Autophagy is the engulfment of cytosol and organelles by double-membrane vesicles termed autophagosomes. Autophagosome formation is known to require phosphatidylinositol 3-phosphate (PI(3)P) and occurs near the endoplasmic reticulum (ER), but the exact mechanisms are unknown. We show that double FYVE domain-containing protein 1, a PI(3)P-binding protein with unusual localization on ER and Golgi membranes, translocates in response to amino acid starvation to a punctate compartment partially colocalized with autophagosomal proteins. Translocation is dependent on Vps34 and beclin function. Other PI(3)P-binding probes targeted to the ER show the same starvation-induced translocation that is dependent on PI(3)P formation and recognition. Live imaging experiments show that this punctate compartment forms near Vps34-containing vesicles, is in dynamic equilibrium with the ER, and provides a membrane platform for accumulation of autophagosomal proteins, expansion of autophagosomal membranes, and emergence of fully formed autophagosomes. This PI(3)P-enriched compartment may be involved in autophagosome biogenesis. Its dynamic relationship with the ER is consistent with the idea that the ER may provide important components for autophagosome formation.

  2. Molecular basis for covalent inhibition of glyceraldehyde-3-phosphate dehydrogenase by a 2-phenoxy-1,4-naphthoquinone small molecule.

    PubMed

    Bruno, Stefano; Uliassi, Elisa; Zaffagnini, Mirko; Prati, Federica; Bergamini, Christian; Amorati, Riccardo; Paredi, Gianluca; Margiotta, Marilena; Conti, Paola; Costi, Maria Paola; Kaiser, Marcel; Cavalli, Andrea; Fato, Romana; Bolognesi, Maria Laura

    2017-01-12

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has recently gained attention as an antiprotozoan and anticancer drug target. We have previously identified 2-phenoxy-1,4-naphthoquinone as an inhibitor of both Trypanosoma brucei and human GAPDH. Herein, through multiple chemical, biochemical, and biological studies, and through the design of analogs, we confirmed the formation of a covalent adduct, we clarified the inhibition mechanism, and we demonstrated antitrypanosomal, antiplasmodial, and cytotoxic activities in cell cultures. The overall results lent support to the hypothesis that 2-phenoxy-1,4-naphthoquinone binds the GAPDH catalytic cysteine covalently through a phenolate displacement mechanism. By investigating the reactivity of 2-phenoxy-1,4-naphthoquinone and its analogs with four GAPDH homologs, we showed that the covalent inhibition is not preceded by the formation of a strong non-covalent complex. However, an up to fivefold difference in inactivation rates among homologs hinted at structural or electrostatic differences of their active sites that could be exploited to further design kinetically selective inhibitors. Moreover, we preliminarily showed that 2-phenoxy-1,4-naphthoquinone displays selectivity for GAPDHs over two other cysteine-dependent enzymes, supporting its suitability as a warhead starting fragment for the design of novel inhibitors.

  3. The influence of oxygen on radiation-induced structural and functional changes in glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase

    NASA Astrophysics Data System (ADS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Bubinski, Michal; Krokosz, Anita; Puchala, Mieczyslaw

    2012-07-01

    Proteins are major targets for oxidative damage due to their abundance in cells and high reactivity with free radicals. In the present study we examined the influence of oxygen on radiation-induced inactivation and structural changes of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH). We chose these two enzymes because they occur at high concentrations and participate in the most important processes in organisms; furthermore, they show considerable similarity in their structure. Protein solutions were irradiated with X-rays in doses ranging from 0.1 to 0.7 kGy, in air and N2O. The much higher radiation inactivation of GAPDH as compared to LDH is correlated with substantially greater structural changes in this protein, mainly involving the loss of free thiol groups (-SH). Of lesser importance in the differentiation of the radiosensitivity of the studied enzymes are tryptophan residues. Molecular oxygen, present during irradiation, increased to a significantly greater extent the inactivation and structural changes of GAPDH than that of LDH. The results suggest that the greater effect of oxygen on GAPDH is due to the higher efficiency of the superoxide radical, the higher amount of hydroperoxides generated, and the higher degree of unfolding of this protein.

  4. The glyceraldehyde-3-phosphate dehydrogenase gene of Moniliophthoraperniciosa, the causal agent of witches' broom disease of Theobroma cacao.

    PubMed

    Lima, Juliana O; Pereira, Jorge F; Rincones, Johana; Barau, Joan G; Araújo, Elza F; Pereira, Gonçalo A G; Queiroz, Marisa V

    2009-04-01

    This report describes the cloning, sequence and expression analysis of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene of Moniliophthora perniciosa, the most important pathogen of cocoa in Brazil. Southern blot analysis revealed the presence of a single copy of the GAPDH gene in the M. perniciosa genome (MpGAPDH). The complete MpGAPDH coding sequence contained 1,461 bp with eight introns that were conserved in the GAPDH genes of other basidiomycete species. The cis-elements in the promoter region of the MpGAPDH gene were similar to those of other basidiomycetes. Likewise, the MpGAPDH gene encoded a putative 339 amino acid protein that shared significant sequence similarity with other GAPDH proteins in fungi, plants, and metazoans. Phylogenetic analyses clustered the MPGAPDH protein with other homobasidiomycete fungi of the family Tricholomataceae. Expression analysis of the MpGAPDH gene by real-time PCR showed that this gene was more expressed (~1.3X) in the saprotrophic stage of this hemibiotrophic plant pathogen than in the biotrophic stage when grown in cacao extracts.

  5. Chemical mechanism of glycerol 3-phosphate phosphatase: pH-dependent changes in the rate-limiting step.

    PubMed

    Larrouy-Maumus, Gérald; Kelly, Geoff; de Carvalho, Luiz Pedro Sório

    2014-01-14

    The halo-acid dehalogenase (HAD) superfamily comprises a large number of enzymes that share a conserved core domain responsible for a diverse array of chemical transformations (e.g., phosphonatase, dehalogenase, phosphohexomutase, and phosphatase) and a cap domain that controls substrate specificity. Phosphate hydrolysis is thought to proceed via an aspartyl-phosphate intermediate, and X-ray crystallography has shown that protein active site conformational changes are required for catalytic competency. Using a combination of steady-state and pre-steady-state kinetics, pL-rate studies, solvent kinetic isotope effects, (18)O molecular isotope exchange, and partition experiments, we provide a detailed description of the chemical mechanism of a glycerol 3-phosphate phosphatase. This phosphatase has been recently recognized as a rate-limiting factor in lipid polar head recycling in Mycobacterium tuberculosis [Larrouy-Maumus, G., et al. (2013) Proc. Natl. Acad. Sci. 110 (28), 11320-11325]. Our results clearly establish the existence of an aspartyl-phosphate intermediate in this newly discovered member of the HAD superfamily. No ionizable groups are rate-limiting from pH 5.5 to 9.5, consistent with the pK values of the catalytic aspartate residues. The formation and decay of this intermediate are partially rate-limiting below pH 7.0, and a conformational change preceding catalysis is rate-limiting above pH 7.0.

  6. Increased mitochondrial glycerol-3-phosphate acyltransferase protein and enzyme activity in rat epididymal fat upon cessation of wheel running.

    PubMed

    Kump, David S; Laye, Matthew J; Booth, Frank W

    2006-03-01

    Triacylglycerol synthesis in rat epididymal fat overshoots sedentary levels at 10, 29, and 53 h of physical inactivity after 21 days of wheel running. The purposes of the present study were to determine 1) whether this effect is also observed after an acute bout of physical activity and 2) what enzymatic changes might contribute to this effect. We show that more than one bout of physical activity, such as that which occurs with 21 days of wheel running, is necessary for palmitic acid incorporation into triacylglyceride (triglyceride synthesis) to overshoot sedentary values, which suggests that pretranslational mechanisms may be responsible for this overshoot effect. Ten hours after 21 days of wheel running, activity of the mitochondrial glycerol-3-phosphate acyltransferase-1 (mtGPAT1) isoform, a key regulator of triacylglycerol synthesis, overshot sedentary values by 48% and remained higher than sedentary values at 29 and 53 h of reduced physical activity. The overshoot in mtGPAT1 activity was accompanied by an increase in mtGPAT protein level. Cyclic AMP response element-binding protein-binding protein level was higher in sedentary 29 h after 21 days of wheel running. AMP kinase-alpha Thr(172) phosphorylation was increased immediately after treadmill running, but decreased to sedentary values by 5 h after activity. Casein kinase-2alpha protein level and activity were unchanged. We conclude that an increase in mtGPAT protein might contribute to the overshoot in triacylglycerol synthesis.

  7. Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes

    PubMed Central

    Mugabo, Yves; Zhao, Shangang; Seifried, Annegrit; Gezzar, Sari; Al-Mass, Anfal; Zhang, Dongwei; Lamontagne, Julien; Attane, Camille; Poursharifi, Pegah; Iglesias, José; Joly, Erik; Peyot, Marie-Line; Gohla, Antje; Madiraju, S. R. Murthy; Prentki, Marc

    2016-01-01

    Obesity, and the associated disturbed glycerolipid/fatty acid (GL/FA) cycle, contribute to insulin resistance, islet β-cell failure, and type 2 diabetes. Flux through the GL/FA cycle is regulated by the availability of glycerol-3-phosphate (Gro3P) and fatty acyl-CoA. We describe here a mammalian Gro3P phosphatase (G3PP), which was not known to exist in mammalian cells, that can directly hydrolyze Gro3P to glycerol. We identified that mammalian phosphoglycolate phosphatase, with an uncertain function, acts in fact as a G3PP. We found that G3PP, by controlling Gro3P levels, regulates glycolysis and glucose oxidation, cellular redox and ATP production, gluconeogenesis, glycerolipid synthesis, and fatty acid oxidation in pancreatic islet β-cells and hepatocytes, and that glucose stimulated insulin secretion and the response to metabolic stress, e.g., glucolipotoxicity, in β-cells. In vivo overexpression of G3PP in rat liver lowers body weight gain and hepatic glucose production from glycerol and elevates plasma HDL levels. G3PP is expressed at various levels in different tissues, and its expression varies according to the nutritional state in some tissues. As Gro3P lies at the crossroads of glucose, lipid, and energy metabolism, control of its availability by G3PP adds a key level of metabolic regulation in mammalian cells, and G3PP offers a potential target for type 2 diabetes and cardiometabolic disorders. PMID:26755581

  8. Glycerol-3-Phosphate Acyltransferase Contributes to Triacylglycerol Biosynthesis, Lipid Droplet Formation, and Host Invasion in Metarhizium robertsii

    PubMed Central

    Gao, Qiang; Shang, Yanfang; Huang, Wei

    2013-01-01

    Enzymes involved in the triacylglycerol (TAG) biosynthesis have been well studied in the model organisms of yeasts and animals. Among these, the isoforms of glycerol-3-phosphate acyltransferase (GPAT) redundantly catalyze the first and rate-limiting step in glycerolipid synthesis. Here, we report the functions of mrGAT, a GPAT ortholog, in an insect-pathogenic fungus, Metarhizium robertsii. Unlike in yeasts and animals, a single copy of the mrGAT gene is present in the fungal genome and the gene deletion mutant is viable. Compared to the wild type and the gene-rescued mutant, the ΔmrGAT mutant demonstrated reduced abilities to produce conidia and synthesize TAG, glycerol, and total lipids. More importantly, we found that mrGAT is localized to the endoplasmic reticulum and directly linked to the formation of lipid droplets (LDs) in fungal cells. Insect bioassay results showed that mrGAT is required for full fungal virulence by aiding fungal penetration of host cuticles. Data from this study not only advance our understanding of GPAT functions in fungi but also suggest that filamentous fungi such as M. robertsii can serve as a good model to elucidate the role of the glycerol phosphate pathway in fungal physiology, particularly to determine the mechanistic connection of GPAT to LD formation. PMID:24077712

  9. A Dimer Interface Mutation in Glyceraldehyde-3-Phosphate Dehydrogenase Regulates Its Binding to AU-rich RNA*

    PubMed Central

    White, Michael R.; Khan, Mohd M.; Deredge, Daniel; Ross, Christina R.; Quintyn, Royston; Zucconi, Beth E.; Wysocki, Vicki H.; Wintrode, Patrick L.; Wilson, Gerald M.; Garcin, Elsa D.

    2015-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme best known for its role in glycolysis. However, extra-glycolytic functions of GAPDH have been described, including regulation of protein expression via RNA binding. GAPDH binds to numerous adenine-uridine rich elements (AREs) from various mRNA 3′-untranslated regions in vitro and in vivo despite its lack of a canonical RNA binding motif. How GAPDH binds to these AREs is still unknown. Here we discovered that GAPDH binds with high affinity to the core ARE from tumor necrosis factor-α mRNA via a two-step binding mechanism. We demonstrate that a mutation at the GAPDH dimer interface impairs formation of the second RNA-GAPDH complex and leads to changes in the RNA structure. We investigated the effect of this interfacial mutation on GAPDH oligomerization by crystallography, small-angle x-ray scattering, nano-electrospray ionization native mass spectrometry, and hydrogen-deuterium exchange mass spectrometry. We show that the mutation does not significantly affect GAPDH tetramerization as previously proposed. Instead, the mutation promotes short-range and long-range dynamic changes in regions located at the dimer and tetramer interface and in the NAD+ binding site. These dynamic changes are localized along the P axis of the GAPDH tetramer, suggesting that this region is important for RNA binding. Based on our results, we propose a model for sequential GAPDH binding to RNA via residues located at the dimer and tetramer interfaces. PMID:25451934

  10. Serum sphingolipidomic analyses reveal an upregulation of C16- ceramide and sphingosine-1-phosphate in hepatocellular carcinoma

    PubMed Central

    Grammatikos, Georgios; Schoell, Niklas; Ferreirós, Nerea; Bon, Dimitra; Herrmann, Eva; Farnik, Harald; Köberle, Verena; Piiper, Albrecht; Zeuzem, Stefan; Kronenberger, Bernd

    2016-01-01

    We have recently shown that major alterations of serum sphingolipid metabolites in chronic liver disease associate significantly with the stage of liver fibrosis in corresponding patients. In the current study we assessed via mass spectrometry serum concentrations of sphingolipid metabolites in a series of 122 patients with hepatocellular carcinoma (HCC) compared to an age- and sex-matched series of 127 patients with cirrhosis. We observed a highly significant upregulation of long and very long chain ceramides (C16-C24) in the serum of patients with HCC as compared to patients with cirrhosis (P < 0.001). Accordingly, dihydro-ceramides, synthetic precursors of ceramides and notably sphingosine, sphingosine-1-phosphate (S1P) and sphinganine-1-phosphate (SA1P) were upregulated in patients with HCC (P < 0.001). Especially the diagnostic accuracy of C16-ceramide and S1P, assessed by receiver operating curve (ROC) analysis, showed a higher area under the curve (AUC) value as compared to alpha fetoprotein (AFP) (0.999 and 0.985 versus 0.823, P < 0.001 respectively). In conclusion, serum levels of sphingolipid metabolites show a significant upregulation in patients with HCC as compared to patients with cirrhosis. Particularly C16-ceramide and S1P may serve as novel diagnostic markers for the identification of HCC in patients with liver diseases. Our data justify further investigations on the role of sphingolipids in HCC. PMID:26933996

  11. A limitation of the continuous spectrophotometric assay for the measurement of myo-inositol-1-phosphate synthase activity.

    PubMed

    Huang, Xinyi; Hernick, Marcy

    2011-10-15

    Myo-inositol-1-phosphate synthase (MIPS) catalyzes the conversion of glucose-6-phosphate to myo-inositol-1-phosphate. The reaction catalyzed by MIPS is the first step in the biosynthesis of inositol and inositol-containing molecules that serve important roles in both eukaryotes and prokaryotes. Consequently, MIPS is a target for the development of therapeutic agents for the treatment of infectious diseases and bipolar disorder. We recently reported a continuous spectrophotometric method for measuring MIPS activity using a coupled assay that allows the rapid characterization of MIPS in a multiwell plate format. Here we validate the continuous assay as a high-throughput alternative for measuring MIPS activity and report on one limitation of this assay-the inability to examine the effect of divalent metal ions (at high concentrations) on MIPS activity. In addition, we demonstrate that the activity of MIPS from Arabidopsis thaliana is moderately enhanced by the addition Mg(2+) and is not enhanced by other divalent metal ions (Zn(2+) and Mn(2+)), consistent with what has been observed for other eukaryotic MIPS enzymes. Our findings suggest that the continuous assay is better suited for characterizing eukaryotic MIPS enzymes that require monovalent cations as cofactors than for characterizing bacterial or archeal MIPS enzymes that require divalent metal ions as cofactors.

  12. Evidence for a reactive gamma-carboxyl group (Glu-418) at the herbicide glyphosate binding site of 5-enolpyruvylshikimate-3-phosphate synthase from Escherichia coli.

    PubMed

    Huynh, Q K

    1988-08-25

    Incubation of 5-enolpyruvylshikimate-3-phosphate synthase, a target for the nonselective herbicide glyphosate (N-(phosphonomethyl)glycine), with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide in the presence of glycine ethyl ester resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo-first order kinetics, with a second order rate constant of 2.2 M-1 min-1 at pH 5.5 and 25 degrees C. The inactivation is prevented by preincubation of the enzyme with a combination of the substrate shikimate 3-phosphate plus glyphosate, but not by shikimate 3-phosphate, phosphoenolpyruvate, or glyphosate alone. Increasing the concentration of glyphosate during preincubation resulted in decreasing the rate of inactivation of the enzyme. Complete inactivation of the enzyme required the modification of 4 carboxyl groups per molecule of the enzyme. However, statistical analysis of the residual activity and the extent of modification showed that among the 4 modifiable carboxyl groups, only 1 is critical for activity. Tryptic mapping of the enzyme modified in the absence of shikimate 3-phosphate and glyphosate by reverse phase chromatography resulted in the isolation of a [14C]glycine ethyl ester-containing peptide that was absent in the enzyme modified in the presence of shikimate 3-phosphate and glyphosate. By amino acid sequencing of this labeled peptide, the modified critical carboxyl group was identified as Glu-418. The above results suggest that Glu-418 is the most accessible reactive carboxyl group under these conditions and is located at or close to the glyphosate binding site.

  13. Highly efficient aldol additions of DHA and DHAP to N-Cbz-amino aldehydes catalyzed by L-rhamnulose-1-phosphate and L-fuculose-1-phosphate aldolases in aqueous borate buffer.

    PubMed

    Garrabou, Xavier; Calveras, Jordi; Joglar, Jesús; Parella, Teodor; Bujons, Jordi; Clapés, Pere

    2011-12-21

    Aldol addition reactions of dihydroxyacetone (DHA) to N-Cbz-amino aldehydes catalyzed by L-rhamnulose-1-phosphate aldolase (RhuA) in the presence of borate buffer are reported. High yields of aldol adduct (e.g. 70-90%) were achieved with excellent (>98 : 2 syn/anti) stereoselectivity for most S or R configured acceptors, which compares favorably to the reactions performed with DHAP. The stereochemical outcome was different and depended on the N-Cbz-amino aldehyde enantiomer: the S acceptors gave the syn (3R,4S) aldol adduct whereas the R ones gave the anti (3R,4R) diastereomer. Moreover, the tactical use of Cbz protecting group allows simple and efficient elimination of borate and excess of DHA by reverse phase column chromatography or even by simple extraction. This, in addition to the use of unphosphorylated donor nucleophile, makes a useful and expedient methodology for the synthesis of structurally diverse iminocyclitols. The performance of aldol additions of dihydroxyacetone phosphate (DHAP) to N-Cbz-amino aldehydes using RhuA and L-fuculose-1-phosphate aldolase (FucA) catalyst in borate buffer was also evaluated. For FucA catalysts, including FucA F131A, the initial velocity of the aldol addition reactions using DHAP were between 2 and 10 times faster and the yields between 1.5 and 4 times higher than those in triethanolamine buffer. In this case, the retroaldol velocities measured for some aldol adducts were lower than those without borate buffer indicating some trapping effect that could explain the improvement of yields.

  14. Phylogenetic Analysis of Glycerol 3-Phosphate Acyltransferases in Opisthokonts Reveals Unexpected Ancestral Complexity and Novel Modern Biosynthetic Components

    PubMed Central

    Smart, Heather C.; Mast, Fred D.; Chilije, Maxwell F. J.; Tavassoli, Marjan; Dacks, Joel B.; Zaremberg, Vanina

    2014-01-01

    Glycerolipid synthesis represents a central metabolic process of all forms of life. In the last decade multiple genes coding for enzymes responsible for the first step of the pathway, catalyzed by glycerol 3-phosphate acyltransferase (GPAT), have been described, and characterized primarily in model organisms like Saccharomyces cerevisiae and mice. Notoriously, the fungal enzymes share low sequence identity with their known animal counterparts, and the nature of their homology is unclear. Furthermore, two mitochondrial GPAT isoforms have been described in animal cells, while no such enzymes have been identified in Fungi. In order to determine if the yeast and mammalian GPATs are representative of the set of enzymes present in their respective groups, and to test the hypothesis that metazoan orthologues are indeed absent from the fungal clade, a comparative genomic and phylogenetic analysis was performed including organisms spanning the breadth of the Opisthokonta supergroup. Surprisingly, our study unveiled the presence of ‘fungal’ orthologs in the basal taxa of the holozoa and ‘animal’ orthologues in the basal holomycetes. This includes a novel clade of fungal homologues, with putative peroxisomal targeting signals, of the mitochondrial/peroxisomal acyltransferases in Metazoa, thus potentially representing an undescribed metabolic capacity in the Fungi. The overall distribution of GPAT homologues is suggestive of high relative complexity in the ancestors of the opisthokont clade, followed by loss and sculpting of the complement in the descendent lineages. Divergence from a general versatile metabolic model, present in ancestrally deduced GPAT complements, points to distinctive contributions of each GPAT isoform to lipid metabolism and homeostasis in contemporary organisms like humans and their fungal pathogens. PMID:25340523

  15. Glyceraldehyde 3-Phosphate Dehydrogenase Negatively Regulates the Replication of Bamboo Mosaic Virus and Its Associated Satellite RNA▿†

    PubMed Central

    Prasanth, K. Reddisiva; Huang, Ying-Wen; Liou, Ming-Ru; Wang, Robert Yung-Liang; Hu, Chung-Chi; Tsai, Ching-Hsiu; Meng, Menghsiao; Lin, Na-Sheng; Hsu, Yau-Heiu

    2011-01-01

    The identification of cellular proteins associated with virus replicase complexes is crucial to our understanding of virus-host interactions, influencing the host range, replication, and virulence of viruses. A previous in vitro study has demonstrated that partially purified Bamboo mosaic virus (BaMV) replicase complexes can be employed for the replication of both BaMV genomic and satellite BaMV (satBaMV) RNAs. In this study, we investigated the BaMV and satBaMV 3′ untranslated region (UTR) binding proteins associated with these replicase complexes. Two cellular proteins with molecular masses of ∼35 and ∼55 kDa were specifically cross-linked with RNA elements, whereupon the ∼35-kDa protein was identified as the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Gel mobility shift assays confirmed the direct interaction of GAPDH with the 3′ UTR sequences, and competition gel shift analysis revealed that GAPDH binds preferentially to the positive-strand BaMV and satBaMV RNAs over the negative-strand RNAs. It was observed that the GAPDH protein binds to the pseudoknot poly(A) tail of BaMV and stem-loop-C poly(A) tail of satBaMV 3′ UTR RNAs. It is important to note that knockdown of GAPDH in Nicotiana benthamiana enhances the accumulation of BaMV and satBaMV RNA; conversely, transient overexpression of GAPDH reduces the accumulation of BaMV and satBaMV RNA. The recombinant GAPDH principally inhibits the synthesis of negative-strand RNA in exogenous RdRp assays. These observations support the contention that cytosolic GAPDH participates in the negative regulation of BaMV and satBaMV RNA replication. PMID:21715476

  16. A land-plant-specific glycerol-3-phosphate acyltransferase family in Arabidopsis: substrate specificity, sn-2 preference, and evolution.

    PubMed

    Yang, Weili; Simpson, Jeffrey P; Li-Beisson, Yonghua; Beisson, Fred; Pollard, Mike; Ohlrogge, John B

    2012-10-01

    Arabidopsis (Arabidopsis thaliana) has eight glycerol-3-phosphate acyltransferase (GPAT) genes that are members of a plant-specific family with three distinct clades. Several of these GPATs are required for the synthesis of cutin or suberin. Unlike GPATs with sn-1 regiospecificity involved in membrane or storage lipid synthesis, GPAT4 and -6 are unique bifunctional enzymes with both sn-2 acyltransferase and phosphatase activity resulting in 2-monoacylglycerol products. We present enzymology, pathway organization, and evolutionary analysis of this GPAT family. Within the cutin-associated clade, GPAT8 is demonstrated as a bifunctional sn-2 acyltransferase/phosphatase. GPAT4, -6, and -8 strongly prefer C16:0 and C18:1 ω-oxidized acyl-coenzyme As (CoAs) over unmodified or longer acyl chain substrates. In contrast, suberin-associated GPAT5 can accommodate a broad chain length range of ω-oxidized and unsubstituted acyl-CoAs. These substrate specificities (1) strongly support polyester biosynthetic pathways in which acyl transfer to glycerol occurs after oxidation of the acyl group, (2) implicate GPAT specificities as one major determinant of cutin and suberin composition, and (3) argue against a role of sn-2-GPATs (Enzyme Commission 2.3.1.198) in membrane/storage lipid synthesis. Evidence is presented that GPAT7 is induced by wounding, produces suberin-like monomers when overexpressed, and likely functions in suberin biosynthesis. Within the third clade, we demonstrate that GPAT1 possesses sn-2 acyltransferase but not phosphatase activity and can utilize dicarboxylic acyl-CoA substrates. Thus, sn-2 acyltransferase activity extends to all subbranches of the Arabidopsis GPAT family. Phylogenetic analyses of this family indicate that GPAT4/6/8 arose early in land-plant evolution (bryophytes), whereas the phosphatase-minus GPAT1 to -3 and GPAT5/7 clades diverged later with the appearance of tracheophytes.

  17. Sperm-specific glyceraldehyde-3-phosphate dehydrogenase is stabilized by additional proline residues and an interdomain salt bridge.

    PubMed

    Kuravsky, Mikhail; Barinova, Kseniya; Marakhovskaya, Aleksandra; Eldarov, Mikhail; Semenyuk, Pavel; Muronetz, Vladimir; Schmalhausen, Elena

    2014-10-01

    Sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS) exhibits enhanced stability compared to the somatic isoenzyme (GAPD). A comparative analysis of the structures of these isoenzymes revealed characteristic features, which could be important for the stability of GAPDS: six specific proline residues and three buried salt bridges. To evaluate the impact of these structural elements into the stability of this isoenzyme, we obtained two series of mutant GAPDS: 1) six mutants each containing a substitution of one of the specific prolines by alanine, and 2) three mutants each containing a mutation breaking one of the salt bridges. Stability of the mutants was evaluated by differential scanning calorimetry and by their resistance towards guanidine hydrochloride (GdnHCl). The most effect on thermostability was observed for the mutants P326A and P164A: the Tm values of the heat-absorption curves decreased by 6.0 and 3.3°C compared to the wild type protein, respectively. The resistance towards GdnHCl was affected most by the mutation D311N breaking the salt bridge between the catalytic and NAD(+)-binding domains: the inactivation rate constant in the presence of GdnHCl increased six-fold, and the value of GdnHCl concentration corresponding to the protein half-denaturation decreased from 1.83 to 1.35M. Besides, the mutation D311N enhanced the enzymatic activity of the protein two-fold. The results suggest that the residues P164 (β-turn), P326 (first position of α-helix), and the interdomain salt bridge D311-H124 are significant for the enhanced stability of GAPDS. The salt bridge D311-H124 enhances stability of the active site of GAPDS at the expense of the catalytic activity.

  18. Identification of glyceraldehyde-3-phosphate dehydrogenase of epithelial cells as a second molecule that binds to Porphyromonas gingivalis fimbriae.

    PubMed

    Sojar, Hakimuddin T; Genco, Robert J

    2005-07-01

    Binding of Porphyromonas gingivalis to the host cells is an essential step in the pathogenesis of periodontal disease. P. gingivalis binds to and invades epithelial cells, and fimbriae are thought to be involved in this process. In our earlier studies, two major epithelial cell components of 40 and 50 kDa were identified as potential fimbrial receptors. Sequencing of a cyanogen bromide digestion fragment of the 50-kDa component resulted in an internal sequence identical to keratin I molecules, and hence this cytokeratin represents one of the epithelial cell receptors for P. gingivalis fimbriae. In this study, the 40-kDa component of KB cells was isolated and its amino-terminal sequence determined. The N-terminal amino sequence was found to be GKVKVGVNGF and showed perfect homology with human glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Furthermore, purified P. gingivalis fimbriae were found to bind to rabbit muscle GAPDH. Antibodies directed against internal peptide 49-68 and 69-90 of fimbrillin were shown to inhibit the binding of P. gingivalis and of fimbriae to epithelial cells. Antibodies against these peptides also inhibited the binding of fimbriae to GAPDH. Our results confirmed that the amino-terminal domain corresponding to amino residues 49-68 of the fimbrillin protein is the major GAPDH binding domain. These studies point to GAPDH as a major receptor for P. gingivalis major fimbriae and, as such, GAPDH likely plays a role in P. gingivalis adherence and colonization of the oral cavity, as well as triggering host cell processes involved in the pathogenesis of P. gingivalis infections.

  19. Glyceraldehyde 3-phosphate dehydrogenase and galectin from Dirofilaria immitis participate in heartworm disease endarteritis via plasminogen/plasmin system.

    PubMed

    González-Miguel, Javier; Larrazabal, Carmen; Loa-Mesón, Diana; Siles-Lucas, Mar; Simón, Fernando; Morchón, Rodrigo

    2016-06-15

    The interaction between parasitic protozoa and helminths, both in the blood and in tissues and the fibrinolytic system of their hosts is usually considered as a survival parasite mechanism since this system is the physiological route responsible for degrading fibrin clots. The broad-range proteolytic activity of plasmin, the final enzyme of the route, implies that its recruitment by these parasites is an important mechanism that mediates their invasion and establishment in the hosts. However, recent studies have proposed a dual role for plasmin by linking its over-production with pathological mechanisms at vascular level. Most of these studies have been conducted in Dirofilaria immitis, a blood-borne parasite that survives in the pulmonary arteries of its host for years while it produces a chronic inflammatory disease, whose main pathogenic mechanism is the appearance of proliferative endarteritis. Recently, the participation of two proteins from D. immitis, glyceraldehyde 3-phosphate dehydrogenase (DiGAPDH) and galectin (DiGAL), in the activation of the fibrinolytic system of its host has been demonstrated, which has been a priori associated with parasite survival mechanisms. The aim of the present paper was to study the role of plasmin generated by these proteins in the emergence of proliferative endarteritis. An in vitro model of canine endothelial and smooth muscle cells, as well as the two parasitic recombinant proteins were employed. The results show that DiGAPDH and DiGAL stimulate the proliferation and migration of both cell types, as well as the degradation of the extracellular matrix (ECM) via plasminogen (PLG)/plasmin system, being all of these mechanisms related to the appearance of proliferative endarteritis. Due to the high degree of evolutionary conservation of these antigens, these data support the hypothesis of the survival/pathology ambivalence in the interactions between parasites and the fibrinolytic system of their hosts and represent an

  20. Structure and topological symmetry of the glyphosate target 5-enolpyruvylshikimate-3-phosphate synthase: a distinctive protein fold.

    PubMed Central

    Stallings, W C; Abdel-Meguid, S S; Lim, L W; Shieh, H S; Dayringer, H E; Leimgruber, N K; Stegeman, R A; Anderson, K S; Sikorski, J A; Padgette, S R; Kishore, G M

    1991-01-01

    5-enol-Pyruvylshikimate-3-phosphate synthase (EPSP synthase; phosphoenolpyruvate:3-phosphoshikimate 1-carboxyvinyltransferase, EC 2.5.1.19) is an enzyme on the pathway toward the synthesis of aromatic amino acids in plants, fungi, and bacteria and is the target of the broad-spectrum herbicide glyphosate. The three-dimensional structure of the enzyme from Escherichia coli has been determined by crystallographic techniques. The polypeptide backbone chain was traced by examination of an electron density map calculated at 3-A resolution. The two-domain structure has a distinctive fold and appears to be formed by 6-fold replication of a protein folding unit comprising two parallel helices and a four-stranded sheet. Each domain is formed from three of these units, which are related by an approximate threefold symmetry axis; in each domain three of the helices are completely buried by a surface formed from the three beta-sheets and solvent-accessible faces of the other three helices. The domains are related by an approximate dyad, but in the present crystals the molecule does not display pseudo-symmetry related to the symmetry of point group 32 because its approximate threefold axes are almost normal. A possible relation between the three-dimensional structure of the protein and the linear sequence of its gene will be described. The topological threefold symmetry and orientation of each of the two observed globular domains may direct the binding of substrates and inhibitors by a helix macrodipole effect and implies that the active site is located near the interdomain crossover segments. The structure also suggests a rationale for the glyphosate tolerance conferred by sequence alterations. Images PMID:11607190

  1. Active site cysteine-null glyceraldehyde-3-phosphate dehydrogenase (GAPDH) rescues nitric oxide-induced cell death.

    PubMed

    Kubo, Takeya; Nakajima, Hidemitsu; Nakatsuji, Masatoshi; Itakura, Masanori; Kaneshige, Akihiro; Azuma, Yasu-Taka; Inui, Takashi; Takeuchi, Tadayoshi

    2016-02-29

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a homotetrameric enzyme involved in a key step of glycolysis, also has a role in mediating cell death under nitrosative stress. Our previous reports suggest that nitric oxide-induced intramolecular disulfide-bonding GAPDH aggregation, which occurs through oxidation of the active site cysteine (Cys-152), participates in a mechanism to account for nitric oxide-induced death signaling in some neurodegenerative/neuropsychiatric disorders. Here, we demonstrate a rescue strategy for nitric oxide-induced cell death accompanied by GAPDH aggregation in a mutant with a substitution of Cys-152 to alanine (C152A-GAPDH). Pre-incubation of purified wild-type GAPDH with C152A-GAPDH under exposure to nitric oxide inhibited wild-type GAPDH aggregation in a concentration-dependent manner in vitro. Several lines of structural analysis revealed that C152A-GAPDH extensively interfered with nitric oxide-induced GAPDH-amyloidogenesis. Overexpression of doxycycline-inducible C152A-GAPDH in SH-SY5Y neuroblastoma significantly rescued nitric oxide-induced death, concomitant with the decreased formation of GAPDH aggregates. Further, both co-immunoprecipitation assays and simulation models revealed a heterotetramer composed of one dimer each of wild-type GAPDH and C152A-GAPDH. These results suggest that the C152A-GAPDH mutant acts as a dominant-negative molecule against GAPDH aggregation via the formation of this GAPDH heterotetramer. This study may contribute to a new therapeutic approach utilizing C152A-GAPDH against brain damage in nitrosative stress-related disorders.

  2. Construction and immune effect of Haemophilus parasuis DNA vaccine encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in mice.

    PubMed

    Fu, Shulin; Zhang, Minmin; Ou, Jiwen; Liu, Huazhen; Tan, Chen; Liu, Jinlin; Chen, Huanchun; Bei, Weicheng

    2012-11-06

    Haemophilus parasuis, the causative agent of swine polyserositis, polyarthritis, and meningitis, is one of the most important bacterial diseases of pigs worldwide. The development of a vaccine against H. parasuis has been impeded due to the lack of induction of reliable cross-serotype protection. In this study the gapA gene that encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was shown to be present and highly conserved in various serotypes of H. parasuis and we constructed a novel DNA vaccine encoding GAPDH (pCgap) to evaluate the immune response and protective efficacy against infection with H. parasuis MD0322 serovar 4 or SH0165 serovar 5 in mice. A significant antibody response against GAPDH was generated following pCgap intramuscular immunization; moreover, antibodies to the pCgap DNA vaccine were bactericidal, suggesting that it was expressed in vivo. The gapA transcript was detected in muscle, liver, spleen, and kidney of the mice seven days post-vaccination. The IgG subclass (IgG1 and IgG2a) analysis indicated that the DNA vaccine induced both Th1 and Th2 immune responses, but the IgG1 response was greater than the IgG2a response. Moreover, the groups vaccinated with the pCgap vaccine exhibited 83.3% and 50% protective efficacy against the H. parasuis MD0322 serovar 4 or SH0165 serovar 5 challenges, respectively. The pCgap DNA vaccine provided significantly greater protective efficacy compared to the negative control groups or blank control groups (P<0.05 for both). Taken together, these findings indicate that the pCgap DNA vaccine provides a novel strategy against infection of H. parasuis and offer insight concerning the underlying immune mechanisms of a bacterial DNA vaccine.

  3. Structure of holo-glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus at 1.8 A resolution.

    PubMed

    Skarzyński, T; Moody, P C; Wonacott, A J

    1987-01-05

    The structure of holo-glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus has been crystallographically refined at 1.8 A resolution using restrained least-squares refinement methods. The final crystallographic R-factor for 93,120 reflexions with F greater than 3 sigma (F) is 0.177. The asymmetric unit of the crystal contains a complete tetramer, the final model of which incorporates a total of 10,272 unique protein and coenzyme atoms together with 677 bound solvent molecules. The structure has been analysed with respect to molecular symmetry, intersubunit contacts, coenzyme binding and active site geometry. The refined model shows the four independent subunits to be remarkable similar apart from local deviations due to intermolecular contacts within the crystal lattice. A number of features are revealed that had previously been misinterpreted from an earlier 2.7 A electron density map. Arginine at position 195 (previously thought to be a glycine) contributes to the formation of the anion binding sites in the active site pocket, which are involved in binding of the substrate and inorganic phosphates during catalysis. This residue seems to be structurally equivalent to the conserved Arg194 in the enzyme from other sources. In the crystal both of the anion binding sites are occupied by sulphate ions. The ND atom of the catalytically important His176 is hydrogen-bonded to the main-chain carbonyl oxygen of Ser177, thus fixing the plane of the histidine imidazole ring and preventing rotation. The analysis has revealed the presence of several internal salt-bridges stabilizing the tertiary and quaternary structure. A significant number of buried water molecules have been found that play an important role in the structural integrity of the molecule.

  4. The Glycerol-3-Phosphate Acyltransferase GPAT6 from Tomato Plays a Central Role in Fruit Cutin Biosynthesis.

    PubMed

    Petit, Johann; Bres, Cécile; Mauxion, Jean-Philippe; Tai, Fabienne Wong Jun; Martin, Laetitia B B; Fich, Eric A; Joubès, Jérôme; Rose, Jocelyn K C; Domergue, Frédéric; Rothan, Christophe

    2016-06-01

    The thick cuticle covering and embedding the epidermal cells of tomato (Solanum lycopersicum) fruit acts not only as a protective barrier against pathogens and water loss but also influences quality traits such as brightness and postharvest shelf-life. In a recent study, we screened a mutant collection of the miniature tomato cultivar Micro-Tom and isolated several glossy fruit mutants in which the abundance of cutin, the polyester component of the cuticle, was strongly reduced. We employed a newly developed mapping-by-sequencing strategy to identify the causal mutation underlying the cutin deficiency in a mutant thereafter named gpat6-a (for glycerol-3-phosphate acyltransferase6). To this end, a backcross population (BC1F2) segregating for the glossy trait was phenotyped. Individuals displaying either a wild-type or a glossy fruit trait were then pooled into bulked populations and submitted to whole-genome sequencing prior to mutation frequency analysis. This revealed that the causal point mutation in the gpat6-a mutant introduces a charged amino acid adjacent to the active site of a GPAT6 enzyme. We further showed that this mutation completely abolished the GPAT activity of the recombinant protein. The gpat6-a mutant showed perturbed pollen formation but, unlike a gpat6 mutant of Arabidopsis (Arabidopsis thaliana), was not male sterile. The most striking phenotype was observed in the mutant fruit, where cuticle thickness, composition, and properties were altered. RNA sequencing analysis highlighted the main processes and pathways that were affected by the mutation at the transcriptional level, which included those associated with lipid, secondary metabolite, and cell wall biosynthesis.

  5. Studies on the inhibition of sphingosine-1-phosphate lyase by stabilized reaction intermediates and stereodefined azido phosphates.

    PubMed

    Sanllehí, Pol; Abad, José-Luís; Bujons, Jordi; Casas, Josefina; Delgado, Antonio

    2016-11-10

    Two kinds of inhibitors of the PLP-dependent enzyme sphingosine-1-phosphate lyase have been designed and tested on the bacterial (StS1PL) and the human (hS1PL) enzymes. Amino phosphates 1, 12, and 32, mimicking the intermediate aldimines of the catalytic process, were weak inhibitors on both enzyme sources. On the other hand, a series of stereodefined azido phosphates, resulting from the replacement of the amino group of the natural substrates with an azido group, afforded competitive inhibitors in the low micromolar range on both enzyme sources. This similar behavior represents an experimental evidence of the reported structural similarities for both enzymes at their active site level. Interestingly, the anti-isomers of the non-natural enantiomeric series where the most potent inhibitors on hS1PL.

  6. Identification of cardiac hemo-vascular precursors and their requirement of sphingosine-1-phosphate receptor 1 for heart development

    PubMed Central

    Hu, Yan; Belyea, Brian C.; Li, Minghong; Göthert, Joachim R.; Gomez, R. Ariel; Sequeira-Lopez, Maria Luisa S.

    2017-01-01

    The cardiac endothelium plays a crucial role in the development of a functional heart. However, the precise identification of the endocardial precursors and the mechanisms they require for their role in heart morphogenesis are not well understood. Using in vivo and in vitro cell fate tracing concomitant with specific cell ablation and embryonic heart transplantation studies, we identified a unique set of precursors which possess hemogenic functions and express the stem cell leukemia (SCL) gene driven by its 5′ enhancer. These hemo-vascular precursors give rise to the endocardium, atrioventricular cushions and coronary vascular endothelium. Furthermore, deletion of the sphingosine-1-phosphate receptor 1 (S1P1) in these precursors leads to ventricular non-compaction cardiomyopathy, a poorly understood condition leading to heart failure and early mortality. Thus, we identified a distinctive population of hemo-vascular precursors which require S1P1 to exert their functions and are essential for cardiac morphogenesis. PMID:28338096

  7. Inhibition of phosphomannose isomerase by fructose 1-phosphate: an explanation for defective N-glycosylation in hereditary fructose intolerance.

    PubMed

    Jaeken, J; Pirard, M; Adamowicz, M; Pronicka, E; van Schaftingen, E

    1996-11-01

    Isoelectrofocusing of serum sialotransferrins from patients with untreated hereditary fructose intolerance (HFI) shows a cathodal shift similar to that in carbohydrate-deficient glycoprotein (CDG) syndrome type I and in untreated galactosemia. This report is on serum lysosomal enzyme abnormalities in untreated HFI that are identical to those found in CDG syndrome type I but different from those in untreated galactosemia. CDG syndrome type I is due to phosphomannomutase deficiency, a defect in the early glycosylation pathway. It was found that fructose 1-phosphate is a potent competitive inhibitor (Ki congruent to 40 microM) of phosphomannose isomerase (EC 5.3.1.8), the first enzyme of the N-glycosylation pathway thus explaining the N-glycosylation disturbances in HFI.

  8. Characterization of substrate binding and catalysis in the potential antibacterial target N-acetylglucosamine-1-phosphate uridyltransferase (GlmU)

    PubMed Central

    Mochalkin, Igor; Lightle, Sandra; Zhu, Yaqi; Ohren, Jeffrey F.; Spessard, Cindy; Chirgadze, Nickolay Y.; Banotai, Craig; Melnick, Michael; McDowell, Laura

    2007-01-01

    N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) catalyzes the first step in peptidoglycan biosynthesis in both Gram-positive and Gram-negative bacteria. The products of the GlmU reaction are essential for bacterial survival, making this enzyme an attractive target for antibiotic drug discovery. A series of Haemophilus influenzae GlmU (hiGlmU) structures were determined by X-ray crystallography in order to provide structural and functional insights into GlmU activity and inhibition. The information derived from these structures was combined with biochemical characterization of the K25A, Q76A, D105A, Y103A, V223A, and E224A hiGlmU mutants in order to map these active-site residues to catalytic activity of the enzyme and refine the mechanistic model of the GlmU uridyltransferase reaction. These studies suggest that GlmU activity follows a sequential substrate-binding order that begins with UTP binding noncovalently to the GlmU enzyme. The uridyltransferase active site then remains in an open apo-like conformation until N-acetylglucosamine-1-phosphate (GlcNAc-1-P) binds and induces a conformational change at the GlcNAc-binding subsite. Following the binding of GlcNAc-1-P to the UTP-charged uridyltransferase active site, the non-esterified oxygen of GlcNAc-1-P performs a nucleophilic attack on the α-phosphate group of UTP. The new data strongly suggest that the mechanism of phosphotransfer in the uridyltransferase reaction in GlmU is primarily through an associative mechanism with a pentavalent phosphate intermediate and an inversion of stereochemistry. Finally, the structural and biochemical characterization of the uridyltransferase active site and catalytic mechanism described herein provides a basis for the structure-guided design of novel antibacterial agents targeting GlmU activity. PMID:18029420

  9. Functional Characterization of UDP-Glucose:Undecaprenyl-Phosphate Glucose-1-Phosphate Transferases of Escherichia coli and Caulobacter crescentus

    PubMed Central

    Patel, Kinnari B.; Toh, Evelyn; Fernandez, Ximena B.; Hanuszkiewicz, Anna; Hardy, Gail G.; Brun, Yves V.; Bernards, Mark A.

    2012-01-01

    Escherichia coli K-12 WcaJ and the Caulobacter crescentus HfsE, PssY, and PssZ enzymes are predicted to initiate the synthesis of colanic acid (CA) capsule and holdfast polysaccharide, respectively. These proteins belong to a prokaryotic family of membrane enzymes that catalyze the formation of a phosphoanhydride bond joining a hexose-1-phosphate with undecaprenyl phosphate (Und-P). In this study, in vivo complementation assays of an E. coli K-12 wcaJ mutant demonstrated that WcaJ and PssY can complement CA synthesis. Furthermore, WcaJ can restore holdfast production in C. crescentus. In vitro transferase assays demonstrated that both WcaJ and PssY utilize UDP-glucose but not UDP-galactose. However, in a strain of Salmonella enterica serovar Typhimurium deficient in the WbaP O antigen initiating galactosyltransferase, complementation with WcaJ or PssY resulted in O-antigen production. Gas chromatography-mass spectrometry (GC-MS) analysis of the lipopolysaccharide (LPS) revealed the attachment of both CA and O-antigen molecules to lipid A-core oligosaccharide (OS). Therefore, while UDP-glucose is the preferred substrate of WcaJ and PssY, these enzymes can also utilize UDP-galactose. This unexpected feature of WcaJ and PssY may help to map specific residues responsible for the nucleotide diphosphate specificity of these or similar enzymes. Also, the reconstitution of O-antigen synthesis in Salmonella, CA capsule synthesis in E. coli, and holdfast synthesis provide biological assays of high sensitivity to examine the sugar-1-phosphate transferase specificity of heterologous proteins. PMID:22408159

  10. Ceramide 1-Phosphate Increases P-Glycoprotein Transport Activity at the Blood-Brain Barrier via Prostaglandin E2 Signaling.

    PubMed

    Mesev, Emily V; Miller, David S; Cannon, Ronald E

    2017-04-01

    P-glycoprotein, an ATP-driven efflux pump, regulates permeability of the blood-brain barrier (BBB). Sphingolipids, endogenous to brain tissue, influence inflammatory responses and cell survival in vitro. Our laboratory has previously shown that sphingolipid signaling by sphingosine 1-phosphate decreases basal P-glycoprotein transport activity. Here, we investigated the potential for another sphingolipid, ceramide 1-phosphate (C1P), to modulate efflux pumps at the BBB. Using confocal microscopy and measuring luminal accumulation of fluorescent substrates, we assessed the transport activity of several efflux pumps in isolated rat brain capillaries. C1P treatment induced P-glycoprotein transport activity in brain capillaries rapidly and reversibly. In contrast, C1P did not affect transport activity of two other major efflux transporters, multidrug resistance protein 2 and breast cancer resistance protein. C1P induced P-glycoprotein transport activity without changing transporter protein expression. Inhibition of the key signaling components in the cyclooxygenase-2 (COX-2)/prostaglandin E2 signaling cascade (phospholipase A2, COX-2, multidrug resistance protein 4, and G-protein-coupled prostaglandin E2 receptors 1 and 2), abolished P-glycoprotein induction by C1P. We show that COX-2 and prostaglandin E2 are required for C1P-mediated increases in P-glycoprotein activity independent of transporter protein expression. This work describes how C1P activates a signaling cascade to dynamically regulate P-glycoprotein transport at the BBB and offers potential clinical targets to modulate neuroprotection and drug delivery to the CNS.

  11. Ceramide 1-Phosphate Increases P-Glycoprotein Transport Activity at the Blood-Brain Barrier via Prostaglandin E2 Signaling

    PubMed Central

    Mesev, Emily V.; Miller, David S.

    2017-01-01

    P-glycoprotein, an ATP-driven efflux pump, regulates permeability of the blood-brain barrier (BBB). Sphingolipids, endogenous to brain tissue, influence inflammatory responses and cell survival in vitro. Our laboratory has previously shown that sphingolipid signaling by sphingosine 1-phosphate decreases basal P-glycoprotein transport activity. Here, we investigated the potential for another sphingolipid, ceramide 1-phosphate (C1P), to modulate efflux pumps at the BBB. Using confocal microscopy and measuring luminal accumulation of fluorescent substrates, we assessed the transport activity of several efflux pumps in isolated rat brain capillaries. C1P treatment induced P-glycoprotein transport activity in brain capillaries rapidly and reversibly. In contrast, C1P did not affect transport activity of two other major efflux transporters, multidrug resistance protein 2 and breast cancer resistance protein. C1P induced P-glycoprotein transport activity without changing transporter protein expression. Inhibition of the key signaling components in the cyclooxygenase-2 (COX-2)/prostaglandin E2 signaling cascade (phospholipase A2, COX-2, multidrug resistance protein 4, and G-protein–coupled prostaglandin E2 receptors 1 and 2), abolished P-glycoprotein induction by C1P. We show that COX-2 and prostaglandin E2 are required for C1P-mediated increases in P-glycoprotein activity independent of transporter protein expression. This work describes how C1P activates a signaling cascade to dynamically regulate P-glycoprotein transport at the BBB and offers potential clinical targets to modulate neuroprotection and drug delivery to the CNS. PMID:28119480

  12. Ultra fast and sensitive liquid chromatography tandem mass spectrometry based assay for galactose-1-phosphate uridylyltransferase and galactokinase deficiencies.

    PubMed

    Li, Yijun; Ptolemy, Adam S; Harmonay, Lauren; Kellogg, Mark; Berry, Gerard T

    2011-01-01

    The diagnosis of transferase and galactokinase deficiency galactosemia usually involves the measurement of erythrocyte galactose-1-phosphate uridylyltransferase (GALT) and galactokinase (GALK) enzyme activity, respectively. The current gold standard assays for these enzymes are radioactive assays, which are laborious and/or incapable of measuring low enzyme activities. To further our knowledge of genotype-phenotype relationships, we had developed an assay for GALT activity alone using LC-MS/MS. In this study we generated a robust and sensitive LC-MS/MS based GALT and GALK assay using a novel normal phase chromatographic condition. We improved upon our earlier assay by drastically reducing the instrument run time and eliminating the use of an ion pairing reagent. Stable isotope labeled substrates were utilized in the GALT and GALK assays. The enzymatic products ([(13)C(6)]-uridine diphosphate galactose in GALT assay and [(13)C(6)]-galactose-1-phosphate in GALK assay) were quantified in a 3 min LC-MS/MS run. The assays were sensitive enough to allow for the quantification of enzyme activities as low as 0.2% and 0.3% of normal control values in the GALT and GALK assays, respectively. Thirty-three samples from non-galactosemic patients were assayed to have erythrocyte GALT activity of 23.4±4.2 and GALK activity of 1.8±0.47 (mean±SD) μmol⋅(g Hgb)(-1) h(-1). Erythrocyte GALT activities in a cohort of 16 patients with classic or severe galactosemia were measured: 4 patients had GALT activity less than 1% of normal control values and the remaining 12 had no detectable GALT activity. No GALK activity was detected in a GALK deficient sample we analyzed. Lastly, we tested the feasibility of adapting this LC-MS/MS based GALT/GALK assay as a newborn screening (NBS) test.

  13. Ultra Fast and Sensitive Liquid Chromatography Tandem Mass Spectrometry Based Assay for Galactose-1-Phosphate Uridylyltransferase and Galactokinase Deficiencies

    PubMed Central

    Li, Yijun; Ptolemy, Adam S.; Harmonay, Lauren; Kellogg, Mark; Berry, Gerard T.

    2013-01-01

    The diagnosis of transferase and galactokinase deficiency galactosemia usually involves the measurement of erythrocyte galactose-1-phosphate uridylyltransferase (GALT) and galactokinase (GALK) enzyme activity, respectively. The current gold standard assays for these enzymes are radioactive assays, which are laborious and/or incapable of measuring low enzyme activities. To further our knowledge of genotype-phenotype relationships, we had developed an assay for GALT activity alone using LC-MS/MS. In this study we generated a robust and sensitive LC-MS/MS based GALT and GALK assay using a novel normal phase chromatographic condition. We improved upon our earlier assay by drastically reducing the instrument run time and eliminating the use of an ion pairing reagent. Stable isotope labeled substrates were utilized in the GALT and GALK assays. The enzymatic products ([13C6]-uridine diphosphate galactose in GALT assay and [13C6]-galactose-1-phosphate in GALK assay) were quantified in a 3 min LC-MS/MS run. The assays were sensitive enough to allow for the quantification of enzyme activities as low as 0.2% and 0.3% of normal control values in the GALT and GALK assays, respectively. Thirty-three samples from non-galactosemic patients were assayed to have erythrocyte GALT activity of 23.4 ± 4.2 and GALK activity of 1.8 ± 0.47 (mean ± SD) µmol·(g Hgb) −1·hr−1. Erythrocyte GALT activities in a cohort of 16 patients with classic galactosemia were measured: 4 patients had GALT activity less than 1% of normal control values and the remaining 12 had no detectable GALT activity. No GALK activity was detected in a GALK deficient sample we analzyed. Lastly, we tested the feasibility of adapting this LC-MS/MS based GALT/GALK assay as a newborn screening (NBS) test. PMID:20863731

  14. Expression of the Saccharomyces cerevisiae inositol-1-phosphate synthase (INO1) gene is regulated by factors that affect phospholipid synthesis.

    PubMed Central

    Hirsch, J P; Henry, S A

    1986-01-01

    The INO1 gene of Saccharomyces cerevisiae encodes the regulated enzyme inositol-1-phosphate synthase, which catalyzes the first committed step in the synthesis of inositol-containing phospholipids. The expression of this gene was analyzed under conditions known to regulate phospholipid synthesis. RNA blot hybridization with a genomic clone for INO1 detected two RNA species of 1.8 and 0.6 kb. The abundance of the 1.8-kb RNA was greatly decreased when the cells were grown in the presence of the phospholipid precursor inositol, as was the enzyme activity of the synthase. Complementation analysis showed that this transcript encoded the INO1 gene product. The level of INO1 RNA was repressed 12-fold when the cells were grown in medium containing inositol, and it was repressed 33-fold when the cells were grown in the presence of inositol and choline together. The INO1 transcript was present at a very low level in cells containing mutations (ino2 and ino4) in regulatory genes unlinked to INO1 that result in inositol auxotrophy. The transcript was constitutively overproduced in cells containing a mutation (opi1) that causes constitutive expression of inositol-1-phosphate synthase and results in excretion of inositol. The expression of INO1 RNA was also examined in cells containing a mutation (cho2) affecting the synthesis of phosphatidylcholine. In contrast to what was observed in wild-type cells, growth of cho2 cells in medium containing inositol did not result in a significant decrease in INO1 RNA abundance. Inositol and choline together were required for repression of the INO1 transcript in these cells, providing evidence for a regulatory link between the synthesis of inositol- and choline-containing lipids. The level of the 0.6-kb RNA was affected, although to a lesser degree, by many of the same factors that influence INO1 expression. Images PMID:3025587

  15. Generation of reactive oxygen species (ROS) is a key factor for stimulation of macrophage proliferation by ceramide 1-phosphate

    SciTech Connect

    Arana, Lide; Gangoiti, Patricia; Ouro, Alberto; Rivera, Io-Guane; Ordonez, Marta; Trueba, Miguel; Lankalapalli, Ravi S.; Bittman, Robert; Gomez-Munoz, Antonio

    2012-02-15

    We previously demonstrated that ceramide 1-phosphate (C1P) is mitogenic for fibroblasts and macrophages. However, the mechanisms involved in this action were only partially described. Here, we demonstrate that C1P stimulates reactive oxygen species (ROS) formation in primary bone marrow-derived macrophages, and that ROS are required for the mitogenic effect of C1P. ROS production was dependent upon prior activation of NADPH oxidase by C1P, which was determined by measuring phosphorylation of the p40phox subunit and translocation of p47phox from the cytosol to the plasma membrane. In addition, C1P activated cytosolic calcium-dependent phospholipase A{sub 2} and protein kinase C-{alpha}, and NADPH oxidase activation was blocked by selective inhibitors of these enzymes. These inhibitors, and inhibitors of ROS production, blocked the mitogenic effect of C1P. By using BHNB-C1P (a photolabile caged-C1P analog), we demonstrate that all of these C1P actions are caused by intracellular C1P. It can be concluded that the enzyme responsible for C1P-stimulated ROS generation in bone marrow-derived macrophages is NADPH oxidase, and that this enzyme is downstream of PKC-{alpha} and cPLA{sub 2}-{alpha} in this pathway. -- Highlights: Black-Right-Pointing-Pointer Ceramide 1-phosphate (C1P) stimulates reactive oxygen species (ROS) formation. Black-Right-Pointing-Pointer The enzyme responsible for ROS generation by C1P in macrophages is NADPH oxidase. Black-Right-Pointing-Pointer NADPH oxidase lies downstream of cPLA{sub 2}-{alpha} and PKC-{alpha} in this pathway. Black-Right-Pointing-Pointer ROS generation is essential for the stimulation of macrophage proliferation by C1P.

  16. Expression, purification, crystallization and preliminary X-ray analysis of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    SciTech Connect

    Elliott, Paul R.; Mohammad, Shabaz; Melrose, Helen J.; Moody, Peter C. E.

    2008-08-01

    Glyceraldehyde-3-phosphate dehydrogenase B from H. pylori has been cloned, expressed, purified and crystallized in the presence of NAD. Crystals of GAPDHB diffracted to 2.8 Å resolution and belonged to space group P6{sub 5}22, with unit-cell parameters a = b = 166.1, c = 253.1 Å. Helicobacter pylori is a dangerous human pathogen that resides in the upper gastrointestinal tract. Little is known about its metabolism and with the onset of antibiotic resistance new treatments are required. In this study, the expression, purification, crystallization and preliminary X-ray diffraction of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from H. pylori are reported.

  17. The sequential 2',3'-cyclic phosphodiesterase and 3'-phosphate/5'-OH ligation steps of the RtcB RNA splicing pathway are GTP-dependent.

    PubMed

    Chakravarty, Anupam K; Shuman, Stewart

    2012-09-01

    The RNA ligase RtcB splices broken RNAs with 5'-OH and either 2',3'-cyclic phosphate or 3'-phosphate ends. The 3'-phosphate ligase activity requires GTP and entails the formation of covalent RtcB-(histidinyl)-GMP and polynucleotide-(3')pp(5')G intermediates. There are currently two models for how RtcB executes the strand sealing step. Scheme 1 holds that the RNA 5'-OH end attacks the 3'-phosphorus of the N(3')pp(5')G end to form a 3',5'-phosphodiester and release GMP. Scheme 2 posits that the N(3')pp(5')G end is converted to a 2',3'-cyclic phosphodiester, which is then attacked directly by the 5'-OH RNA end to form a 3',5'-phosphodiester. Here we show that the sealing of a 2',3'-cyclic phosphate end by RtcB requires GTP, is contingent on formation of the RtcB-GMP adduct, and involves a kinetically valid RNA(3')pp(5')G intermediate. Moreover, we find that RtcB catalyzes the hydrolysis of a 2',3'-cyclic phosphate to a 3'-phosphate at a rate that is at least as fast as the rate of ligation. These results weigh in favor of scheme 1. The cyclic phosphodiesterase activity of RtcB depends on GTP and the formation of the RtcB-GMP adduct, signifying that RtcB guanylylation precedes the cyclic phosphodiesterase and 3'-phosphate ligase steps of the RNA splicing pathway.

  18. Regulation of adenine nucleotide translocase and glycerol 3-phosphate dehydrogenase expression by thyroid hormones in different rat tissues.

    PubMed Central

    Dümmler, K; Müller, S; Seitz, H J

    1996-01-01

    Thyroid hormone (T3)-dependent gene expression of the adenine nucleotide translocase (ANT) and the FAD-linked glycerol 3-phosphate dehydrogenase (mGPDH) was investigated in several rat tissues. Both proteins provide an important link between cytosolic and mitochondrial metabolic pathways and seem to be involved in the stimulation of mitochondrial oxygen consumption in response to T3. Here we show that two ANT isoforms are expressed in rat, the muscle-specific ANT1 form and the ubiquitous ANT2 form. The expression of ANT1 mRNA is not sensitive to T3 whereas the amount of ANT2 mRNA is increased 7-9-fold in liver and heart within 12-48 h after T3 application. Little or no effect of T3 on ANT2 mRNA was observed in kidney and brain. The mRNA changes are paralleled by an increase in ANT protein, thus explaining the accelerated ADP/ATP exchange observed in mitochondria isolated from hyperthyroid rats. The key role of ANT2 in the control of hyperthyroid metabolism is evident because the expression of the mersalyl-sensitive phosphate carrier and the mitochondrial creatine kinase mRNA, which are functionally linked to ANT, did not respond to T3. Similarly to the ADP/ATP exchange, the transfer of cytosolic NADH to the respiratory chain via the glycerophosphate shuttle is very sensitive to T3. Recently we demonstrated the 10-15-fold induction of mGPDH mRNA in rat liver after administration of T3 [Müller and Seitz (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 10581-10585]. Here we show that, in contrast with ANT2, the time course of induction is fast (4-6 h). Furthermore, mGPDH mRNA is induced 6-fold by T3 in heart and 4-fold in kidney. From these results we conclude that the T3-mediated transcriptional induction leading to increased activity of ANT2 and mGPDH contributes considerably to the increase in mitochondrial oxygen consumption in rat tissues. PMID:8760382

  19. Photo-oxidation of 5-enolpyruvoylshikimate-3-phosphate synthase from Escherichia coli: evidence for a reactive imidazole group (His385) at the herbicide glyphosate-binding site.

    PubMed

    Huynh, Q K

    1993-03-01

    Photo-oxidation of Escherichia coli 5-enolpyruvoylshikimate-3-phosphate synthase, a target for the non-selective herbicide glyphosate (N-phosphonomethylglycine), in the presence of pyridoxal 5'-phosphate resulted in irreversible inactivation of the enzyme. The inactivation followed pseudo-first-order and saturation kinetics with a Kinact. of 50 microM. The inactivation is specifically prevented by preincubation of the enzyme with the combination of shikimate 3-phosphate and glyphosate. Increasing glyphosate concentration during preincubation resulted in a decreasing rate of inactivation. On 95% inactivation, approximately one histidine per molecule of enzyme was oxidized. Tryptic mapping of the enzyme modified in the absence and presence of shikimate 3-phosphate and glyphosate as well as analyses of the histidine content in the isolated peptides indicated that His385, in the peptide Asn383-Asp-His-Arg386, was the site of oxidation. These results suggest that His385 is the most accessible reactive imidazole group under these conditions and is located close to the glyphosate-binding site.

  20. Improving ethanol productivity by modification of glycolytic redox factor generation in glycerol-3-phosphate dehydrogenase mutants of an industrial ethanol yeast.

    PubMed

    Guo, Zhong-peng; Zhang, Liang; Ding, Zhong-yang; Wang, Zheng-Xiang; Shi, Gui-Yang

    2011-08-01

    The GPD2 gene, encoding NAD(+)-dependent glycerol-3-phosphate dehydrogenase in an industrial ethanol-producing strain of Saccharomyces cerevisiae, was deleted. And then, either the non-phosphorylating NADP(+)-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Bacillus cereus, or the NADP(+)-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Kluyveromyces lactis, was expressed in the obtained mutant AG2 deletion of GPD2, respectively. The resultant recombinant strain AG2A (gpd2Δ P (PGK)-gapN) exhibited a 48.70 ± 0.34% (relative to the amount of substrate consumed) decrease in glycerol production and a 7.60 ± 0.12% (relative to the amount of substrate consumed) increase in ethanol yield, while recombinant AG2B (gpd2Δ P (PGK)-GAPDH) exhibited a 52.90 ± 0.45% (relative to the amount of substrate consumed) decrease in glycerol production and a 7.34 ± 0.15% (relative to the amount of substrate consumed) increase in ethanol yield compared with the wild-type strain. More importantly, the maximum specific growth rates (μ (max)) of the recombinant AG2A and AG2B were higher than that of the mutant gpd2Δ and were indistinguishable compared with the wild-type strain in anaerobic batch fermentations. The results indicated that the redox imbalance of the mutant could be partially solved by expressing the heterologous genes.

  1. Sphingosine-1-Phosphate Receptor Subtype 3: A Novel Therapeutic Target of K-Ras Mutant Driven Non-Small Cell Lung Carcinoma

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0346 TITLE: Sphingosine-1-Phosphate Receptor Subtype 3: A Novel Therapeutic Target of K-Ras Mutant Driven Non-Small... Mutant Driven Non-Small Cell Lung Carcinoma 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0346 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Lee...14. ABSTRACT: This award aims to characterize the functional role of sphingosine-1-phosphate receptor subtype 3 (S1PR3) in oncogenic K-Ras mutant

  2. Pelvic organ prolapse is associated with alteration of sphingosine-1-phosphate/Rho-kinase signalling pathway in human vaginal wall.

    PubMed

    Rhee, S H; Zhang, P; Hunter, K; Mama, S T; Caraballo, R; Holzberg, A S; Seftel, R H; Seftel, A D; Echols, K T; DiSanto, M E

    2015-01-01

    Pelvic organ prolapse (POP) is a debilitating condition of unknown aetiology affecting > 50% of women over 40 years of age. In POP patients, the vaginal walls are weakened allowing descent of pelvic organs through the vagina. We sought to determine if sphingosine-1-phosphate (S1P) signalling, which regulates smooth muscle contractility and apoptosis via the RhoA/Rho-kinase (ROK) pathway, is altered in the vagina of women with POP. Utilising anterior vaginal wall specimens, we provide novel demonstration of the S1P pathway in this organ. Additionally, comparing specimens from women having pelvic reconstructive surgery for POP and control subjects, we reveal increases in mRNA expression of the three major mammalian S1P receptors (S1P1-S1P3), and RhoA and the ROK isoforms: ROKα and ROKβ in POP patients, which correlates with a decrease in elastic fibre assembly pathway constituents. Taken together, our data suggest the S1P/ROK pathway as a novel area for future POP research and potential therapeutic development.

  3. Sphingosine-1-phosphate and other lipid mediators generated by mast cells as critical players in allergy and mast cell function.

    PubMed

    Kulinski, Joseph M; Muñoz-Cano, Rosa; Olivera, Ana

    2016-05-05

    Sphingosine-1-phosphate (S1P), platelet activating factor (PAF) and eicosanoids are bioactive lipid mediators abundantly produced by antigen-stimulated mast cells that exert their function mostly through specific cell surface receptors. Although it has long been recognized that some of these bioactive lipids are potent regulators of allergic diseases, their exact contributions to disease pathology have been obscured by the complexity of their mode of action and the regulation of their metabolism. Indeed, the effects of such lipids are usually mediated by multiple receptor subtypes that may differ in their signaling mechanisms and functions. In addition, their actions may be elicited by cell surface receptor-independent mechanisms. Furthermore, these lipids may be converted into metabolites that exhibit different functionalities, adding another layer of complexity to their overall biological responses. In some instances, a second wave of lipid mediator synthesis by both mast cell and non-mast cell sources may occur late during inflammation, bringing about additional roles in the altered environment. New evidence also suggests that bioactive lipids in the local environment can fine-tune mast cell maturation and phenotype, and thus their responsiveness. A better understanding of the subtleties of the spatiotemporal regulation of these lipid mediators, their receptors and functions may aid in the pursuit of pharmacological applications for allergy treatments.

  4. Phytosphingosine-1-phosphate and epidermal growth factor synergistically restore extracellular matrix in human dermal fibroblasts in vitro and in vivo.

    PubMed

    Kwon, Seung Bin; An, Sungkwan; Kim, Min Jung; Kim, Ka Ram; Choi, Young Min; Ahn, Kyu Joong; An, In-Sook; Cha, Hwa Jun

    2017-03-01

    Phytosphingosine-1-phosphate (PhS1P), which is found in plants and fungi, is generated by the phosphorylation of phytosphingosine and is structurally similar to molecules that promote cellular growth and proliferation. The aim of this study was to ascertain whether PhS1P displays synergistic effects together with epidermal growth factor (EGF), which is also critical for activating proliferation, migration and survival pathways. We utilized cultured human dermal fibroblasts (HDFs) and a number of assays, including western blotting, cell migration assays, quantitative (real-time) PCR, and viability assays. We found that PhS1P promoted the activity of EGF in vitro. We then conducted a clinical trial in females over 35 years of age, with visible signs of skin aging. By evaluating skin hydration, dermal density and thickness, length of fine wrinkles, and skin elasticity, we verified the clinical efficacy of a combined treatment of PhS1P and EGF in vivo. On the whole, our data suggest that PhS1P displays a synergistic anti-aging effect together with EGF, both in vitro and in vivo.

  5. Phytosphingosine-1-phosphate stimulates chemotactic migration of L2071 mouse fibroblasts via pertussis toxin-sensitive G-proteins.

    PubMed

    Kim, Mi-Kyoung; Park, Kyoung Sun; Lee, Hyuck; Kim, Young Dae; Yun, Jeanho; Bae, Yoe-Sik

    2007-04-30

    Phytosphingosine-1-phosphate (PhS1P) was found to stimulate an intracellular calcium increase via phospholipase C but not pertussis toxin (PTX)-sensitive G-proteins in L2071 mouse fibroblasts. PhS1P also activated ERK and p38 kinase, and these activations by PhS1P were inhibited by PTX. Moreover, PhS1P stimulated the chemotactic migration of L2071 cells via PTX-sensitive Gi protein(s). In addition, the PhS1P-induced chemotactic migration of L2071 cells was also dramatically inhibited by LY294002 and SB203580 (inhibitors of phosphoinositide 3-kinase and p38 kinase, respectively). L2071 cells are known to express four S1P receptors, i.e., S1P1, S1P2, S1P3, and S1P4, and pretreatment with an S1P1 and S1P3 antagonist (VPC 23019) did not affect on PhS1P-induced chemotaxis. This study demonstrates that PhS1P stimulates at least two different signaling cascades, one is a PTX-insensitive but phospholipase C dependent intracellular calcium increase, and the other is a PTX-sensitive chemotactic migration mediated by phosphoinositide 3-kinase and p38 kinase.

  6. Phytosphingosine-1-phosphate and epidermal growth factor synergistically restore extracellular matrix in human dermal fibroblasts in vitro and in vivo.

    PubMed

    Kwon, Seung Bin; An, Sungkwan; Kim, Min Jung; Kim, Ka Ram; Choi, Young Min; Ahn, Kyu Joong; An, In-Sook; Cha, Hwa Jun

    2017-01-23

    Phytosphingosine-1-phosphate (PhS1P), which is found in plants and fungi, is generated by the phosphorylation of phytosphingosine and is structurally similar to molecules that promote cellular growth and proliferation. The aim of this study was to ascertain whether PhS1P displays synergistic effects together with epidermal growth factor (EGF), which is also critical for activating proliferation, migration and survival pathways. We utilized cultured human dermal fibroblasts (HDFs) and a number of assays, including western blotting, cell migration assays, quantitative (real-time) PCR, and viability assays. We found that PhS1P promoted the activity of EGF in vitro. We then conducted a clinical trial in females over 35 years of age, with visible signs of skin aging. By evaluating skin hydration, dermal density and thickness, length of fine wrinkles, and skin elasticity, we verified the clinical efficacy of a combined treatment of PhS1P and EGF in vivo. On the whole, our data suggest that PhS1P displays a synergistic anti-aging effect together with EGF, both in vitro and in vivo.

  7. Critical role of sphingosine-1-phosphate receptor-2 in the disruption of cerebrovascular integrity in experimental stroke

    PubMed Central

    Kim, Gab Seok; Yang, Li; Zhang, Guoqi; Zhao, Honggang; Selim, Magdy; McCullough, Louise D.; Kluk, Michael J.; Sanchez, Teresa

    2015-01-01

    The use and effectiveness of current stroke reperfusion therapies are limited by the complications of reperfusion injury, which include increased cerebrovascular permeability and haemorrhagic transformation. Sphingosine-1-phosphate (S1P) is emerging as a potent modulator of vascular integrity via its receptors (S1PR). By using genetic approaches and a S1PR2 antagonist (JTE013), here we show that S1PR2 plays a critical role in the induction of cerebrovascular permeability, development of intracerebral haemorrhage and neurovascular injury in experimental stroke. In addition, inhibition of S1PR2 results in decreased matrix metalloproteinase (MMP)-9 activity in vivo and lower gelatinase activity in cerebral microvessels. S1PR2 immunopositivity is detected only in the ischemic microvessels of wild-type mice and in the cerebrovascular endothelium of human brain autopsy samples. In vitro, S1PR2 potently regulates the responses of the brain endothelium to ischaemic and inflammatory injury. Therapeutic targeting of this novel pathway could have important translational relevance to stroke patients. PMID:26243335

  8. Altered expression of sphingosine kinase 1 and sphingosine-1-phosphate receptor 1 in mouse hippocampus after kainic acid treatment

    SciTech Connect

    Lee, Dong Hoon; Jeon, Byeong Tak; Jeong, Eun Ae; Kim, Joon Soo; Cho, Yong Woon; Kim, Hyun Joon; Kang, Sang Soo; Cho, Gyeong Jae; Choi, Wan Sung; Roh, Gu Seob

    2010-03-12

    Kainic acid (KA) induces hippocampal cell death and astrocyte proliferation. There are reports that sphingosine kinase (SPHK)1 and sphingosine-1- phosphate (S1P) receptor 1 (S1P{sub 1}) signaling axis controls astrocyte proliferation. Here we examined the temporal changes of SPHK1/S1P{sub 1} in mouse hippocampus during KA-induced hippocampal cell death. Mice were killed at 2, 6, 24, or 48 h after KA (30 mg/kg) injection. There was an increase in Fluoro-Jade B-positive cells in the hippocampus of KA-treated mice with temporal changes of glial fibrillary acidic protein (GFAP) expression. The lowest level of SPHK1 protein expression was found 2 h after KA treatment. Six hours after KA treatment, the expression of SPHK1 and S1P{sub 1} proteins steadily increased in the hippocampus. In immunohistochemical analysis, SPHK1 and S1P{sub 1} are more immunoreactive in astrocytes within the hippocampus of KA-treated mice than in hippocampus of control mice. These results indicate that SPHK1/S1P{sub 1} signaling axis may play an important role in astrocytes proliferation during KA-induced excitotoxicity.

  9. Assay to measure the secretion of sphingosine-1-phosphate from cells induced by S1P lyase inhibitors.

    PubMed

    Loetscher, Erika; Schneider, Karolina; Beerli, Christian; Billich, Andreas

    2013-04-12

    Inhibitors of the sphingosine-1-phosphate (S1P) degrading enzyme S1P lyase (SPL) may be useful in the therapy of inflammatory diseases by preventing lymphocyte recruitment to diseased tissues. Here we describe a cellular assay for such inhibitors, which takes advantage of the observation that a fraction of the intracellular S1P accumulated in the presence of SPL inhibitors is secreted into the medium of cultured cells. The secreted S1P is then quantified using an S1P-sensitive reporter cell line. In the routine assay protocol, human HEK293T cells are treated with SPL inhibitors in the presence of phosphatase inhibitors and sphingosine; while the phosphatase inhibitors are included to prevent the degradation of S1P secreted from the cells, sphingosine is added as source for intracellular S1P that is prone to SPL degradation. The secreted S1P in the supernatant of the cell cultures is then quantified by measuring calcium flux induced in CHO-K1 cells expressing the human S1P3 receptor. Using this method SPL inhibitors were shown to induce a concentration-dependent increase of extracellular S1P under the conditions used; thus, the assay allows for the ranking of SPL inhibitors according to their potency on living cells.

  10. Sphingosine kinase 2 (Sphk2) regulates platelet biogenesis by providing intracellular sphingosine 1-phosphate (S1P).

    PubMed

    Zhang, Lin; Urtz, Nicole; Gaertner, Florian; Legate, Kyle R; Petzold, Tobias; Lorenz, Michael; Mazharian, Alexandra; Watson, Steve P; Massberg, Steffen

    2013-08-01

    Human megakaryocytes (MKs) release trillions of platelets each day into the circulation to maintain normal homeostatic platelet levels. We have previously shown that extracellular sphingosine 1-phosphate (S1P) plays a key role in thrombopoiesis via its receptor S1pr1. In addition to its role as an extracellular mediator, S1P can also function as a second messenger in the intracellular compartment. Although signaling via intracellular S1P is involved in various cellular processes, a role in thrombopoiesis has not been examined. Sphingosine kinases are the key enzymes that produce intracellular S1P. Here we report that sphingosine kinase 2 (Sphk2) is the major messenger RNA species present in MKs. Sphk2 predominantly localizes to the nucleus and is the major source of intracellular S1P in MKs. Loss of Sphk2 significantly reduced intracellular S1P in MKs and downregulated the expression and activity of Src family kinases (SFKs). Loss of Sphk2 and inhibition of SFK activity resulted in defective intravascular proplatelet shedding, the final stage of thrombopoiesis. Correspondingly, mice lacking Sphk2 in the hematopoietic system display thrombocytopenia. Together, our data suggest that Sphk2 provides the source of intracellular S1P that controls thrombopoiesis, which is associated with SFK expression and activity in MKs.

  11. Sphingosine-1-phosphate (S1P): A Potential Biomarker and Therapeutic Target for Endothelial Dysfunction and Sepsis?

    PubMed

    Winkler, Martin S; Nierhaus, Axel; Poppe, Annika; Greiwe, Gillis; Gräler, Markus; Daum, Guenter

    2016-12-02

    Sepsis is an acute life-threatening multiple organ failure caused by a dysregulated host response to infection. Endothelial dysfunction, particularly barrier disruption leading to increased vascular permeability, edema and insufficient tissue oxygenation is critical to sepsis pathogenesis. Sphingosine-1-phosphate (S1P) is a signaling lipid that regulates important pathophysiological processes including vascular endothelial cell permeability, inflammation and coagulation. It is present at high concentrations in blood and lymph and at very low concentrations in tissues due to the activity of the S1P-degrading enzyme S1P-lyase in tissue cells. Recently, four preclinical observational studies determined S1P levels in serum or plasma of sepsis patients, and all found reduced S1P levels associated with the disease. Based on these findings, this review summarizes S1P-regulated processes pertaining to endothelial functions, discusses the possible use of S1P as a marker and possibilities how to manipulate S1P levels and S1P receptor activation to restore endothelial integrity, dampen the inflammatory host response, and improve organ function in sepsis.

  12. Mechanistic characterization of the tetraacyldisaccharide-1-phosphate 4'-kinase LpxK involved in lipid A biosynthesis.

    PubMed

    Emptage, Ryan P; Pemble, Charles W; York, John D; Raetz, Christian R H; Zhou, Pei

    2013-04-02

    The sixth step in the lipid A biosynthetic pathway involves phosphorylation of the tetraacyldisaccharide-1-phosphate (DSMP) intermediate by the cytosol-facing inner membrane kinase LpxK, a member of the P-loop-containing nucleoside triphosphate (NTP) hydrolase superfamily. We report the kinetic characterization of LpxK from Aquifex aeolicus and the crystal structures of LpxK in complex with ATP in a precatalytic binding state, the ATP analogue AMP-PCP in the closed catalytically competent conformation, and a chloride anion revealing an inhibitory conformation of the nucleotide-binding P-loop. We demonstrate that LpxK activity in vitro requires the presence of a detergent micelle and formation of a ternary LpxK-ATP/Mg(2+)-DSMP complex. Using steady-state kinetics, we have identified crucial active site residues, leading to the proposal that the interaction of D99 with H261 acts to increase the pKa of the imidazole moiety, which in turn serves as the catalytic base to deprotonate the 4'-hydroxyl of the DSMP substrate. The fact that an analogous mechanism has not yet been observed for other P-loop kinases highlights LpxK as a distinct member of the P-loop kinase family, a notion that is also reflected through its localization at the membrane, lipid substrate, and overall structure.

  13. Sphingosine-1-phosphate induces human endothelial VEGF and MMP-2 production via transcription factor ZNF580: Novel insights into angiogenesis

    SciTech Connect

    Sun, Hui-Yan; Wei, Shu-Ping; Xu, Rui-Cheng; Xu, Peng-Xiao; Zhang, Wen-Cheng

    2010-05-07

    Sphingosine-1-phosphate (S1P)-induced migration and proliferation of endothelial cells are critical for angiogenesis. C2H2-zinc finger (ZNF) proteins usually play an essential role in altering gene expression and regulating the angiogenesis. The aim of this study is to investigate whether a novel human C2H2-zinc finger gene ZNF580 (Gene ID: 51157) is involved in the migration and proliferation of endothelial cells stimulated by S1P. Our study shows that EAhy926 endothelial cells express S1P1, S1P3 and S1P5 receptors. Furthermore, S1P upregulates both ZNF580 mRNA and protein levels in a concentration- and time-dependent manner. SB203580, the specific inhibitor of the p38 mitogen-activated protein kinase (p38 MAPK) pathway, blocks the S1P-induced upregulation of ZNF580. Moreover, overexpression/downexpression of ZNF580 in EAhy926 cells leads to the enhancement/decrease of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) expression as well as the migration and proliferation of EAhy926 endothelial cells. These results elucidate the important role that ZNF580 plays in the process of migration and proliferation of endothelial cells, which provides a foundation for a novel approach to regulate angiogenesis.

  14. Sphingosine-1-phosphate promotes lymphangiogenesis by stimulating S1P1/Gi/PLC/Ca2+ signaling pathways.

    PubMed

    Yoon, Chang Min; Hong, Bok Sil; Moon, Hyung Geun; Lim, Seyoung; Suh, Pann-Ghill; Kim, Yoon-Keun; Chae, Chi-Bom; Gho, Yong Song

    2008-08-15

    The lymphatic system plays pivotal roles in mediating tissue fluid homeostasis and immunity, and excessive lymphatic vessel formation is implicated in many pathological conditions, which include inflammation and tumor metastasis. However, the molecular mechanisms that regulate lymphatic vessel formation remain poorly characterized. Sphingosine-1-phosphate (S1P) is a potent bioactive lipid that is implicated in a variety of biologic processes such as inflammatory responses and angiogenesis. Here, we first report that S1P acts as a lymphangiogenic mediator. S1P induced migration, capillary-like tube formation, and intracellular Ca(2+) mobilization, but not proliferation, in human lymphatic endothelial cells (HLECs) in vitro. Moreover, a Matrigel plug assay demonstrated that S1P promoted the outgrowth of new lymphatic vessels in vivo. HLECs expressed S1P1 and S1P3, and both RNA interference-mediated down-regulation of S1P1 and an S1P1 antagonist significantly blocked S1P-mediated lymphangiogenesis. Furthermore, pertussis toxin, U73122, and BAPTA-AM efficiently blocked S1P-induced in vitro lymphangiogenesis and intracellular Ca(2+) mobilization of HLECs, indicating that S1P promotes lymphangiogenesis by stimulating S1P1/G(i)/phospholipase C/Ca(2+) signaling pathways. Our results suggest that S1P is the first lymphangiogenic bioactive lipid to be identified, and that S1P and its receptors might serve as new therapeutic targets against inflammatory diseases and lymphatic metastasis in tumors.

  15. Targeting sphingosine 1-phosphate (S1P) levels and S1P receptor functions for therapeutic immune interventions.

    PubMed

    Gräler, Markus H

    2010-01-01

    Sphingosine 1-phosphate (S1P) is an important regulator of many different immune functions including lymphocyte circulation, antigen presentation, and T cell development. It stimulates five G protein-coupled receptors designated S1P(1-5), which are also expressed by immune cells. S1P receptors couple to different heterotrimeric G proteins including G alpha i, q, and 12/13, and elicit cellular signalling events by activating the small GTPases Rac and Rho and protein kinases Akt, ERK, and JNK, and by inducing cellular calcium flux and inhibiting cAMP accumulation, amongst others. S1P is the exit signal for lymphocytes leaving lymphoid organs and present in blood and lymph at high nanomolar concentrations due to the S1P-producing activity of sphingosine kinases (SK). The S1P-degrading enzyme S1P-lyase maintains low amounts of S1P in lymphoid organs. Disrupting this concentration difference by S1P receptor agonists and antagonists like FTY720, SEW2871, and VPC23019, by an anti-S1P antibody, or by inhibiting the S1P-lyase has therapeutic potential for autoimmune diseases like multiple sclerosis (MS) and rheumatoid arthritis and for many other disorders like cancer, fibrosis, inflammation, macular degeneration, diabetic retinopathy, and glaucoma. This report aims to provide a brief overview of concepts, approaches, pharmaceutical compounds, and targets that are currently used to modulate S1P-driven immune functions.

  16. Periodic nanostructuring of Er/Yb-codoped IOG1 phosphate glass by using ultraviolet laser-assisted selective chemical etching

    SciTech Connect

    Pappas, C.; Pissadakis, S.

    2006-12-01

    The patterning of submicron period ({approx_equal}500 nm) Bragg reflectors in the Er/Yb-codoped IOG1 Schott, phosphate glass is demonstrated. A high yield patterning technique is presented, wherein high volume damage is induced into the glass matrix by exposure to intense ultraviolet 213 nm, 150 ps Nd:YAG laser radiation and, subsequently, a chemical development in potassium hydroxide (KOH)/ethylenediamine tetra-acetic acid (EDTA) aqueous solution selectively etches the exposed areas. The electronic changes induced by the 213 nm ultraviolet irradiation are examined by employing spectrophotometric measurements, while an estimation of the refractive index changes recorded is provided by applying Kramers-Kronig transformation to the absorption change data. In addition, real time diffraction efficiency measurements were obtained during the formation of the volume damage grating. After the exposure, the growth of the relief grating pattern in time was measured at fixed time intervals and the dependence of the grating depth on the etching time and exposure conditions is presented. The gratings fabricated are examined by atomic and scanning electron microscopies to reveal the relief topology of the structures. Gratings with average depth of 120 nm and excellent surface quality were fabricated by exposing the IOG1 phosphate glass to 36 000 pulses of 208 mJ/cm{sup 2} energy density, followed by developing in the KOH/EDTA agent for 6 min.

  17. Hyperthermophilic aldolases as biocatalyst for C-C bond formation: rhamnulose 1-phosphate aldolase from Thermotoga maritima.

    PubMed

    Oroz-Guinea, Isabel; Sánchez-Moreno, Israel; Mena, Montaña; García-Junceda, Eduardo

    2015-04-01

    The TM1072 gene from Thermotoga maritima codifies for a putative form of a rhamnulose-1-phosphate aldolase (Rha-1PA Tm). To investigate this enzyme further, its gene was cloned and expressed in Escherichia coli. The purified enzyme was activated by Co(2+) as a divalent metal ion cofactor, instead of Zn(2+) as its E. coli homologue, and exhibited a maximum of activity at 95 °C. Furthermore, the enzyme displayed a high stability against extreme reaction conditions, retaining 90 % of its activity in the presence of 40 % of acetonitrile and showing a half-life greater than 3 h at 115 °C. The kinetic parameters at room temperature (R/T) were also studied; the K M was calculated to be 3.6 ± 0.33 mM, while k cat/K M was found to be 0.7 × 10(3) s(-1) M(-1). Given these characteristics, Rha-1PA Tm is an attractive enzyme for use as a biocatalyst for industrial applications, offering intriguing possibilities for practical biocatalysis.

  18. The Enhancement of Bone Allograft Incorporation by the Local Delivery of the Sphingosine 1-phosphate Receptor Targeted Drug FTY720

    PubMed Central

    Aronin, Caren E Petrie; Shin, Soo J; Naden, Kimberly B; Rios, Peter D; Sefcik, Lauren S; Zawodny, Sarah R; Bagayoko, Namory D; Cui, Quanjun; Khan, Yusuf

    2010-01-01

    Poor vascularization coupled with mechanical instability is the leading cause of post-operative complications and poor functional prognosis of massive bone allografts. To address this limitation, we designed a novel continuous polymer coating system to provide sustained localized delivery of pharmacological agent, FTY720, a selective agonist for sphingosine 1-phosphate receptors, within massive tibial defects. In vitro drug release studies validated 64% loading efficiency with complete release of compound following 14 days. Mechanical evaluation following six weeks of healing suggested significant enhancement of mechanical stability in FTY720 treatment groups compared with unloaded controls. Furthermore, superior osseous integration across the host-graft interface, significant enhancement in smooth muscle cell investment, and reduction in leukocyte recruitment was evident in FTY720 treated groups compared with untreated groups. Using this approach, we can capitalize on the existing mechanical and biomaterial properties of devitalized bone, add a controllable delivery system while maintaining overall porous structure, and deliver a small molecule compound to constitutively target vascular remodeling, osseous remodeling, and minimize fibrous encapsulation within the allograft-host bone interface. Such results support continued evaluation of drug-eluting allografts as a viable strategy to improve functional outcome and long-term success of massive cortical allograft implants. PMID:20621764

  19. Isolation, identification, and synthesis of 2-carboxyarabinitol 1-phosphate, a diurnal regulator of ribulase-bisphosphate carboxylase activity

    SciTech Connect

    Berry, J.A.; Lorimer, G.H.; Pierce, J.; Seemann, J.R.; Meek, J.; Freas, S.

    1987-02-01

    The diurnal change in activity of ribulose 1,5-bisphosphate (Rbu-1,5-P/sub 2/) carboxylase (3-phospho-D-glycerate carboxy-lyase (dimerizing); EC 4.1.1.39) of leaves of Phaseolus vulgaris is regulated (in part) by mechanisms that control the level of an endogenous inhibitor that binds tightly to the activated (carbamoylated) form of Rbu-1,5-P/sub 2/ carboxylase. This inhibitor was extracted from leaves and copurified with the Rbu-1,5-P/sub 2/ carboxylase of the leaves. Further purification by ion-exchange chromatography, adsorption to purified Rbu-1,5-P/sub 2/ carboxylase, barium precipitation, and HPLC separation yielded a phosphorylated compound that was a strong inhibitor of Rbu-1,5-P/sub 2/ carboxylase. The compound was analyzed by GC/MS, /sup 13/C NMR, and /sup 1/H NMR and shown to be 2-carboxyarabinitol 1-phosphate ((2-C-phosphohydroxymethyl)-D-ribonic acid). The structure of the isolated compound differs from the Rbu-1,5-P/sub 2/ carboxylase transition-state analogue 2-carboxyarabinitol 1,5-bisphosphate only by the lack of the C-5 phosphate group. This difference results in a higher binding constant for the monophosphate compared with the bisphosphate. The less tightly bound compound acts in a light-dependent, reversible regulation of Rbu-1,5-P/sub 2/ carboxylase activity in vivo.

  20. Sphingosine 1-phosphate lyase inhibition by 2-acetyl-4-(tetrahydroxybutyl)imidazole (THI) under conditions of vitamin B6 deficiency.

    PubMed

    Ohtoyo, Mamoru; Tamura, Masakazu; Machinaga, Nobuo; Muro, Fumihito; Hashimoto, Ryuji

    2015-02-01

    Caramel food colorant 2-acetyl-4-(tetrahydroxybutyl)imidazole (THI) causes lymphopenia in animals through sphingosine 1-phosphate lyase (SPL) inhibition. However, this mechanism of action is partly still controversial because THI did not inhibit SPL in vitro either in cell-free or in cell-based systems. It is thought that the in vitro experimental conditions which have been used so far were not suitable for the evaluation of SPL inhibition, especially in case of cell-based experiments. We speculated that the key factor might be the coenzyme pyridoxal 5'-phosphate (PLP), an active form of vitamin B6 (VB6), because media used in cell-based assays usually contain an excess amount of VB6 which leads to the activation of SPL. By the use of VB6-deficient culture medium, we could regulate apo- (without PLP) and holo- (with PLP) SPL enzyme in cultured cells, resulting in the successful detection of SPL inhibition by THI. Although the observed inhibitory effect was not as strong as that of 4-deoxypyridoxine (a VB6 analog SPL inhibitor), these findings may be useful for further understanding the mechanism of action of THI.

  1. The sphingosine 1-phosphate receptor modulator FTY720 prevents iodide-induced autoimmune thyroiditis in non-obese diabetic mice.

    PubMed

    Morohoshi, Kazuki; Osone, Michiko; Yoshida, Katsumi; Nakagawa, Yoshinori; Hoshikawa, Saeko; Ozaki, Hiroshi; Takahashi, Yurie; Ito, Sadayoshi; Mori, Kouki

    2011-09-01

    FTY720 is an immunomodulator that alters migration and homing of lymphocytes via sphingosine 1-phosphate receptors. This compound has been shown to be effective in suppressing autoimmune diseases in experimental and clinical settings. In the present study, we tested whether FTY720 prevented autoimmune thyroiditis in iodide-treated non-obese diabetic (NOD) mice, a model of Hashimoto's thyroiditis (HT) in humans. Mice were given 0.05% iodide water for 8 weeks, and this treatment effectively induced thyroiditis. Iodide-treated mice were injected intraperitoneally with either saline or FTY720 during the iodide treatment. FTY720 clearly suppressed the development of thyroiditis and reduced serum anti-thyroglobulin antibody levels. The number of circulating lymphocytes and spleen cells including CD4(+) T cells, CD8(+) T cells, and CD4(+)Foxp3(+) T cells was decreased in FTY720-treated mice. Our results indicate that FTY720 has immunomodulatory effects on iodide-induced autoimmune thyroiditis in NOD mice and may be a potential candidate for use in the prevention of HT.

  2. Monitoring ceramide and sphingosine-1-phosphate levels in cancer cells and macrophages from tumours treated by photodynamic therapy.

    PubMed

    Korbelik, Mladen; Zhang, Wei; Separovic, Duska

    2012-05-01

    Eradication of tumours by photodynamic therapy (PDT) is accompanied by marked changes in local sphingolipid (SL) engagement. Because of the heterogeneity of cellular composition, analysis of tumour tissue homogenates to quantify SL species is inadequate for evaluating their levels in parenchymal cancer cell population. By staining tumour-derived single cell suspensions with antibodies specific to ceramide and sphingosine 1-phosphate (S1P) followed by flow cytometry, we were able to document changes in the levels of these two key SLs in cancer cells and tumour-associated macrophages (TAMs) of mouse SCCVII tumours following PDT. The results confirm previously obtained indications that tumour treatment by PDT induces a marked rise in ceramide levels in cancer cells within these lesions. Cancer cells from PDT-treated SCCVII tumours undergoing apoptosis were found to have much higher ceramide levels and substantially lower S1P levels than their viable counterparts. Compared to cancer cells, considerably higher ceramide and S1P levels were consistently found in TAMs. Treatment of SCCVII tumour-bearing mice with ceramide analog LCL29 induced a rise in ceramide levels in TAMs but not in cancer cells. When combined with PDT, LCL29 treatment produced a further increase in ceramide levels in TAMs while having no evident impact on ceramide content in cancer cells within same tumours. The results highlight SLs as important participants in tumour response to PDT and potential adjuvant therapeutic targets to PDT.

  3. Characterization and site-directed mutagenesis of a novel class II 5-enopyruvylshikimate-3-phosphate (EPSP) synthase from the deep-sea bacterium Alcanivorax sp. L27.

    PubMed

    Zhang, Yi; Yi, Licong; Lin, Yongjun; Zhang, Lili; Shao, Zongze; Liu, Ziduo

    2014-09-01

    The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is a key enzyme in the aromatic amino acid biosynthetic pathway in microorganisms and plants, which catalyzes the formation of 5-enolpyruvylshikimate-3-phosphate (EPSP) from shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). In this study, a novel AroA-encoding gene was identified from the deep sea bacterium Alcanivorax sp. L27 through screening the genomic library and termed as AroAA.sp. A phylogenetic analysis revealed that AroAA.sp (1317 bp and 438 amino acids) is a class II AroA. This enzyme exhibited considerable activity between pH 5.5 and pH 8.0 and notable activity at low temperatures. The KM for PEP and IC50 [glyphosate] values (the concentration of glyphosate that inhibited enzyme activity by 50%) of AroAA.sp were 78 μM and 1.5 mM, respectively. Furthermore, site-directed mutagenesis revealed that the G100A mutant had a 30-fold increase in the IC50 [glyphosate] value; while the L105P mutant showed only 20% catalytic activity compared to wild-type AroAA.sp. The specific activity of the wild-type AroAA.sp, the G100A mutant and the L105P mutant were 7.78 U/mg, 7.26 U/mg and 1.76 U/mg, respectively. This is the first report showing that the G100A mutant of AroA displays considerably improved glyphosate resistance and demonstrates that Leu105 is essential for the enzyme's activity.

  4. Glyceraldehyde-3-phosphate dehydrogenase acts as an adhesin in Erysipelothrix rhusiopathiae adhesion to porcine endothelial cells and as a receptor in recruitment of host fibronectin and plasminogen.

    PubMed

    Zhu, Weifeng; Zhang, Qiang; Li, Jingtao; Wei, Yanmin; Cai, Chengzhi; Liu, Liang; Xu, Zhongmin; Jin, Meilin

    2017-03-21

    Erysipelothrix rhusiopathiae is the causative agent of animal erysipelas and human erysipeloid. Previous studies suggested glyceraldehyde 3-phosphate dehydrogenase (GAPDH) plays a role in the pathogenesis of E. rhusiopathiae infection. We studied E. rhusiopathiae GAPDH interactions with pig vascular endothelial cells, fibronectin, and plasminogen. Recombinant GAPDH (rGAPDH) was successfully obtained, and it was shown that it plays a role in E. rhusiopathiae adhesion to pig vascular endothelial cells. Moreover, rGAPDH could bind fibronectin and plasminogen in a dose-dependent manner. To our knowledge, this is the first study demonstrating that a moonlighting protein plays a role in pathogenesis of E. rhusiopathiae infections.

  5. The 2',4'-dihydroxychalcone could be explored to develop new inhibitors against the glycerol-3-phosphate dehydrogenase from Leishmania species.

    PubMed

    Passalacqua, Thais G; Torres, Fábio A E; Nogueira, Camila T; de Almeida, Leticia; Del Cistia, Mayara L; dos Santos, Mariana B; Regasini, Luis O; Graminha, Márcia A S; Marchetto, Reinaldo; Zottis, Aderson

    2015-09-01

    The enzyme glycerol-3-phosphate dehydrogenase (G3PDH) from Leishmania species is considered as an attractive target to design new antileishmanial drugs and a previous in silico study reported on the importance of chalcones to achieve its inhibition. Here, we report the identification of a synthetic chalcone in our in vitro assays with promastigote cells from Leishmania amazonensis, its biological activity in animal models, and docking followed by molecular dynamics simulation to investigate the molecular interactions and structural patterns that are crucial to achieve the inhibition complex between this compound and G3PDH. A molecular fragment of this natural product derivative can provide new inhibitors with increased potency and selectivity.

  6. Ablation of Sphingosine 1-Phosphate Receptor Subtype 3 Impairs Hippocampal Neuron Excitability In vitro and Spatial Working Memory In vivo

    PubMed Central

    Weth-Malsch, Daniela; Langeslag, Michiel; Beroukas, Dimitra; Zangrandi, Luca; Kastenberger, Iris; Quarta, Serena; Malsch, Philipp; Kalpachidou, Theodora; Schwarzer, Christoph; Proia, Richard L.; Haberberger, Rainer V.; Kress, Michaela

    2016-01-01

    Understanding the role of the bioactive lipid mediator sphingosine 1-phosphate (S1P) within the central nervous system has recently gained more and more attention, as it has been connected to major diseases such as multiple sclerosis and Alzheimer's disease. Even though much data about the functions of the five S1P receptors has been collected for other organ systems, we still lack a complete understanding for their specific roles, in particular within the brain. Therefore, it was the aim of this study to further elucidate the role of S1P receptor subtype 3 (S1P3) in vivo and in vitro with a special focus on the hippocampus. Using an S1P3 knock-out mouse model we applied a range of behavioral tests, performed expression studies, and whole cell patch clamp recordings in acute hippocampal slices. We were able to show that S1P3 deficient mice display a significant spatial working memory deficit within the T-maze test, but not in anxiety related tests. Furthermore, S1p3 mRNA was expressed throughout the hippocampal formation. Principal neurons in area CA3 lacking S1P3 showed significantly increased interspike intervals and a significantly decreased input resistance. Upon stimulation with S1P CA3 principal neurons from both wildtype and S1P3−/− mice displayed significantly increased evoked EPSC amplitudes and decay times, whereas rise times remained unchanged. These results suggest a specific involvement of S1P3 for the establishment of spatial working memory and neuronal excitability within the hippocampus. PMID:27872583

  7. Taurocholate Induces Cyclooxygenase-2 Expression via the Sphingosine 1-phosphate Receptor 2 in a Human Cholangiocarcinoma Cell Line*

    PubMed Central

    Liu, Runping; Li, Xiaojiaoyang; Qiang, Xiaoyan; Luo, Lan; Hylemon, Phillip B.; Jiang, Zhenzhou; Zhang, Luyong; Zhou, Huiping

    2015-01-01

    Cholangiocarcinoma (CCA) is a rare, but highly malignant primary hepatobiliary cancer with a very poor prognosis and limited treatment options. Our recent studies reported that conjugated bile acids (CBAs) promote the invasive growth of CCA via activation of sphingosine 1-phosphate receptor 2 (S1PR2). Cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) is the most abundant prostaglandin in various human malignancies including CCA. Previous studies have indicated that COX-2 was highly expressed in CCA tissues, and the survival rate of CCA patients was negatively associated with high COX-2 expression levels. It has also been reported that CBAs induce COX-2 expression, whereas free bile acids inhibit COX-2 expression in CCA mouse models. However, the underlying cellular mechanisms and connection between S1PR2 and COX-2 expression in CCA cells have still not been fully elucidated. In the current study, we examined the role of S1PR2 in conjugated bile acid (taurocholate, (TCA))-induced COX-2 expression in a human HuCCT1 CCA cell line and further identified the potential underlying cellular mechanisms. The results indicated that TCA-induced invasive growth of human CCA cells was correlated with S1PR2-medated up-regulation of COX-2 expression and PGE2 production. Inhibition of S1PR2 activation with chemical antagonist (JTE-013) or down-regulation of S1PR2 expression with gene-specific shRNA not only reduced COX-2 expression, but also inhibited TCA-induced activation of EGFR and the ERK1/2/Akt-NF-κB signaling cascade. In conclusion, S1PR2 plays a critical role in TCA-induced COX-2 expression and CCA growth and may represent a novel therapeutic target for CCA. PMID:26518876

  8. Sphingosine 1-phosphate is a ligand for peroxisome proliferator-activated receptor-γ that regulates neoangiogenesis.

    PubMed

    Parham, Kate A; Zebol, Julia R; Tooley, Katie L; Sun, Wai Y; Moldenhauer, Lachlan M; Cockshell, Michaelia P; Gliddon, Briony L; Moretti, Paul A; Tigyi, Gabor; Pitson, Stuart M; Bonder, Claudine S

    2015-09-01

    Sphingosine 1-phosphate (S1P) is a bioactive lipid that can function both extracellularly and intracellularly to mediate a variety of cellular processes. Using lipid affinity matrices and a radiolabeled lipid binding assay, we reveal that S1P directly interacts with the transcription factor peroxisome proliferator-activated receptor (PPAR)γ. Herein, we show that S1P treatment of human endothelial cells (ECs) activated a luciferase-tagged PPARγ-specific gene reporter by ∼12-fold, independent of the S1P receptors. More specifically, in silico docking, gene reporter, and binding assays revealed that His323 of the PPARγ ligand binding domain is important for binding to S1P. PPARγ functions when associated with coregulatory proteins, and herein we identify that peroxisome proliferator-activated receptor-γ coactivator 1 (PGC1)β binds to PPARγ in ECs and their progenitors (nonadherent endothelial forming cells) and that the formation of this PPARγ:PGC1β complex is increased in response to S1P. ECs treated with S1P selectively regulated known PPARγ target genes with PGC1β and plasminogen-activated inhibitor-1 being increased, no change to adipocyte fatty acid binding protein 2 and suppression of CD36. S1P-induced in vitro tube formation was significantly attenuated in the presence of the PPARγ antagonist GW9662, and in vivo application of GW9662 also reduced vascular development in Matrigel plugs. Interestingly, activation of PPARγ by the synthetic ligand troglitazone also reduced tube formation in vitro and in vivo. To support this, Sphk1(-/-)Sphk2(+/-) mice, with low circulating S1P levels, demonstrated a similar reduction in vascular development. Taken together, our data reveal that the transcription factor, PPARγ, is a bona fide intracellular target for S1P and thus suggest that the S1P:PPARγ:PGC1β complex may be a useful target to manipulate neovascularization.

  9. Evidence for a link between histone deacetylation and Ca²+ homoeostasis in sphingosine-1-phosphate lyase-deficient fibroblasts.

    PubMed

    Ihlefeld, Katja; Claas, Ralf Frederik; Koch, Alexander; Pfeilschifter, Josef M; Meyer Zu Heringdorf, Dagmar

    2012-11-01

    Embryonic fibroblasts from S1P (sphingosine-1-phosphate) lyase-deficient mice [Sgpl1-/- MEFs (mouse embryonic fibroblasts)] are characterized by intracellular accumulation of S1P, elevated cytosolic [Ca2+]i and enhanced Ca2+ storage. Since S1P, produced by sphingosine kinase 2 in the nucleus of MCF-7 cells, inhibited HDACs (histone deacetylases) [Hait, Allegood, Maceyka, Strub, Harikumar, Singh, Luo, Marmorstein, Kordula, Milstein et al. (2009) Science 325, 1254-1257], in the present study we analysed whether S1P accumulated in the nuclei of S1P lyase-deficient MEFs and caused HDAC inhibition. Interestingly, nuclear concentrations of S1P were disproportionally elevated in Sgpl1-/- MEFs. HDAC activity was reduced, acetylation of histone 3-Lys9 was increased and the HDAC-regulated gene p21 cyclin-dependent kinase inhibitor was up-regulated in these cells. Furthermore, the expression of HDAC1 and HDAC3 was reduced in Sgpl1-/- MEFs. In wild-type MEFs, acetylation of histone 3-Lys9 was increased by the S1P lyase inhibitor 4-deoxypyridoxine. The non-specific HDAC inhibitor trichostatin A elevated basal [Ca2+]i and enhanced Ca2+ storage, whereas the HDAC1/2/3 inhibitor MGCD0103 elevated basal [Ca2+]i without influence on Ca2+ storage in wild-type MEFs. Overexpression of HDAC1 or HDAC2 reduced the elevated basal [Ca2+]i in Sgpl1-/- MEFs. Taken together, S1P lyase-deficiency was associated with elevated nuclear S1P levels, reduced HDAC activity and down-regulation of HDAC isoenzymes. The decreased HDAC activity in turn contributed to the dysregulation of Ca2+ homoeostasis, particularly to the elevated basal [Ca2+]i, in Sgpl1-/- MEFs.

  10. Sphingosine-1-Phosphate as a Regulator of Hypoxia-Induced Factor-1α in Thyroid Follicular Carcinoma Cells

    PubMed Central

    Asghar, Muhammad Yasir; Bergelin, Nina; Jaakkola, Panu; Törnquist, Kid

    2013-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid, which regulates several cancer-related processes including migration and angiogenesis. We have previously shown S1P to induce migration of follicular ML-1 thyroid cancer cells. Hypoxia-induced factor-1 (HIF-1) is an oxygen-sensitive transcription factor, which adapts cells to hypoxic conditions through increased survival, motility and angiogenesis. Due to these properties and its increased expression in response to intratumoral hypoxia, HIF-1 is considered a significant regulator of tumor biology. We found S1P to increase expression of the regulatory HIF-1α subunit in normoxic ML-1 cells. S1P also increased HIF-1 activity and expression of HIF-1 target genes. Importantly, inhibition or knockdown of HIF-1α attenuated the S1P-induced migration of ML-1 cells. S1P-induced HIF-1α expression was mediated by S1P receptor 3 (S1P3), Gi proteins and their downstream effectors MEK, PI3K, mTOR and PKCβI. Half-life measurements with cycloheximide indicated that S1P treatment stabilized the HIF-1α protein. On the other hand, S1P activated translational regulators eIF-4E and p70S6K, which are known to control HIF-1α synthesis. In conclusion, we have identified S1P as a non-hypoxic regulator of HIF-1 activity in thyroid cancer cells, studied the signaling involved in S1P-induced HIF-1α expression and shown S1P-induced migration to be mediated by HIF-1. PMID:23824493

  11. Lysophosphatidic Acid and Sphingosine-1-Phosphate: A Concise Review of Biological Function and Applications for Tissue Engineering.

    PubMed

    Binder, Bernard Y K; Williams, Priscilla A; Silva, Eduardo A; Leach, J Kent

    2015-12-01

    The presentation and controlled release of bioactive signals to direct cellular growth and differentiation represents a widely used strategy in tissue engineering. Historically, work in this field has primarily focused on the delivery of large cytokines and growth factors, which can be costly to manufacture and difficult to deliver in a sustained manner. There has been a marked increase over the past decade in the pursuit of lipid mediators due to their wide range of effects over multiple cell types, low cost, and ease of scale-up. Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are two bioactive lysophospholipids (LPLs) that have gained attention for use as pharmacological agents in tissue engineering applications. While these lipids can have similar effects on cellular response, they possess distinct chemical backbones, mechanisms of synthesis and degradation, and signaling pathways using a discrete set of G-protein-coupled receptors (GPCRs). LPA and S1P predominantly act extracellularly on their GPCRs and can directly regulate cell survival, differentiation, cytokine secretion, proliferation, and migration--each of the important functions that must be considered in regenerative medicine. In addition to these potent physiological functions, these LPLs play pivotal roles in a number of pathophysiological processes. To capitalize on the promise of these molecules in tissue engineering, these lipids have been incorporated into biomaterials for in vivo delivery. Here, we survey the effects of LPA and S1P on both cellular- and tissue-level phenotypes, with an eye toward regulating stem/progenitor cell growth and differentiation. In particular, we examine work that has translational applications for cell-based tissue engineering strategies in promoting cell survival, bone and cartilage engineering, and therapeutic angiogenesis.

  12. Hypoxia augments outgrowth endothelial cell (OEC) sprouting and directed migration in response to sphingosine-1-phosphate (S1P).

    PubMed

    Williams, Priscilla A; Stilhano, Roberta S; To, Vivian P; Tran, Lyndon; Wong, Kevin; Silva, Eduardo A

    2015-01-01

    Therapeutic angiogenesis provides a promising approach to treat ischemic cardiovascular diseases through the delivery of proangiogenic cells and/or molecules. Outgrowth endothelial cells (OECs) are vascular progenitor cells that are especially suited for therapeutic strategies given their ease of noninvasive isolation from umbilical cord or adult peripheral blood and their potent ability to enhance tissue neovascularization. These cells are recruited to sites of vascular injury or tissue ischemia and directly incorporate within native vascular endothelium to participate in neovessel formation. A better understanding of how OEC activity may be boosted under hypoxia with external stimulation by proangiogenic molecules remains a challenge to improving their therapeutic potential. While vascular endothelial growth factor (VEGF) is widely established as a critical factor for initiating angiogenesis, sphingosine-1-phosphate (S1P), a bioactive lysophospholipid, has recently gained great enthusiasm as a potential mediator in neovascularization strategies. This study tests the hypothesis that hypoxia and the presence of VEGF impact the angiogenic response of OECs to S1P stimulation in vitro. We found that hypoxia altered the dynamically regulated S1P receptor 1 (S1PR1) expression on OECs in the presence of S1P (1.0 μM) and/or VEGF (1.3 nM). The combined stimuli of S1P and VEGF together promoted OEC angiogenic activity as assessed by proliferation, wound healing, 3D sprouting, and directed migration under both normoxia and hypoxia. Hypoxia substantially augmented the response to S1P alone, resulting in ~6.5-fold and ~25-fold increases in sprouting and directed migration, respectively. Overall, this report highlights the importance of establishing hypoxic conditions in vitro when studying ischemia-related angiogenic strategies employing vascular progenitor cells.

  13. Sphingosine-1-Phosphate (S1P) Lyase Inhibition Causes Increased Cardiac S1P Levels and Bradycardia in Rats.

    PubMed

    Harris, Christopher M; Mittelstadt, Scott; Banfor, Patricia; Bousquet, Peter; Duignan, David B; Gintant, Gary; Hart, Michelle; Kim, Youngjae; Segreti, Jason

    2016-10-01

    Inhibition of the sphingosine-1-phosphate (S1P)-catabolizing enzyme S1P lyase (S1PL) elevates the native ligand of S1P receptors and provides an alternative mechanism for immune suppression to synthetic S1P receptor agonists. S1PL inhibition is reported to preferentially elevate S1P in lymphoid organs. Tissue selectivity could potentially differentiate S1PL inhibitors from S1P receptor agonists, the use of which also results in bradycardia, atrioventricular block, and hypertension. But it is unknown if S1PL inhibition would also modulate cardiac S1P levels or cardiovascular function. The S1PL inhibitor 6-[(2R)-4-(4-benzyl-7-chlorophthalazin-1-yl)-2-methylpiperazin-1-yl]pyridine-3-carbonitrile was used to determine the relationship in rats between drug concentration, S1P levels in select tissues, and circulating lymphocytes. Repeated oral doses of the S1PL inhibitor fully depleted circulating lymphocytes after 3 to 4 days of treatment in rats. Full lymphopenia corresponded to increased levels of S1P of 100- to 1000-fold in lymph nodes, 3-fold in blood (but with no change in plasma), and 9-fold in cardiac tissue. Repeated oral dosing of the S1PL inhibitor in telemeterized, conscious rats resulted in significant bradycardia within 48 hours of drug treatment, comparable in magnitude to the bradycardia induced by 3 mg/kg fingolimod. These results suggest that S1PL inhibition modulates cardiac function and does not provide immune suppression with an improved cardiovascular safety profile over fingolimod in rats.

  14. Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway: Therapeutic Targets in Autoimmunity and Inflammation.

    PubMed

    Tsai, Hsing-Chuan; Han, May H

    2016-07-01

    Sphingosine-1-phosphate (S1P) and S1P receptors (S1PR) are ubiquitously expressed. S1P-S1PR signaling has been well characterized in immune trafficking and activation in innate and adaptive immune systems. However, the full extent of its involvement in the pathogenesis of autoimmune diseases is not well understood. FTY720 (fingolimod), a non-selective S1PR modulator, significantly decreased annualized relapse rates in relapsing-remitting multiple sclerosis (MS). FTY720, which primarily targets S1P receptor 1 as a functional antagonist, arrests lymphocyte egress from secondary lymphoid tissues and reduces neuroinflammation in the central nervous system (CNS). Recent studies suggest that FTY720 also decreases astrogliosis and promotes oligodendrocyte differentiation within the CNS and may have therapeutic benefit to prevent brain atrophy. Since S1P signaling is involved in multiple immune functions, therapies targeting S1P axis may be applicable to treat autoimmune diseases other than MS. Currently, over a dozen selective S1PR and S1P pathway modulators with potentially superior therapeutic efficacy and better side-effect profiles are in the pipeline of drug development. Furthermore, newly characterized molecules such as apolipoprotein M (ApoM) (S1P chaperon) and SPNS2 (S1P transporter) are also potential targets for treatment of autoimmune diseases. Finally, the application of therapies targeting S1P and S1P signaling pathways may be expanded to treat several other immune-mediated disorders (such as post-infectious diseases, post-stroke and post-stroke dementia) and inflammatory conditions beyond their application in primary autoimmune diseases.

  15. Sphingosine 1-phosphate protects primary human keratinocytes from apoptosis via nitric oxide formation through the receptor subtype S1P₃.

    PubMed

    Schmitz, Elisabeth I; Potteck, Henrik; Schüppel, Melanie; Manggau, Marianti; Wahydin, Elly; Kleuser, Burkhard

    2012-12-01

    Although the lipid mediator sphingosine 1-phosphate (S1P) has been identified to induce cell growth arrest of human keratinocytes, the sphingolipid effectively protects these epidermal cells from apoptosis. The molecular mechanism of the anti-apoptotic action induced by S1P is less characterized. Apart from S1P, endogenously produced nitric oxide (NO•) has been recognized as a potent modulator of apoptosis in keratinocytes. Therefore, it was of great interest to elucidate whether S1P protects human keratinocytes via a NO•-dependent signalling pathway. Indeed, S1P induced an activation of endothelial nitric oxide synthase (eNOS) in human keratinocytes leading to an enhanced formation of NO•. Most interestingly, the cell protective effect of S1P was almost completely abolished in the presence of the eNOS inhibitor L-NAME as well as in eNOS-deficient keratinocytes indicating that the sphingolipid metabolite S1P protects human keratinocytes from apoptosis via eNOS activation and subsequent production of protective amounts of NO•. It is well established that most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. Therefore, the involvement of S1P-receptor subtypes in S1P-mediated eNOS activation has been examined. Indeed, this study clearly shows that the S1P(3) is the exclusive receptor subtype in human keratinocytes which mediates eNOS activation and NO• formation in response to S1P. In congruence, when the S1P(3) receptor subtype is abrogated, S1P almost completely lost its ability to protect human keratinocytes from apoptosis.

  16. Galactosemia caused by a point mutation that activates cryptic donor splice site in the galactose-1-phosphate uridyltransferase gene

    SciTech Connect

    Wadelius, C.; Lagerkvist, A. Uppsala Univ. ); Molin, A.K.; Larsson, A. ); Von Doebeln, U. )

    1993-08-01

    Galactosemia affects 1/84,000 in Sweden and is manifested in infancy when the child is exposed to galactose in the diet. If untreated there is a risk of severe early symptoms and, even with a lactose-free diet, late symptoms such as mental retardation and ovarial dysfunction may develop. In classical galactosemia, galactose-1-phosphate uridyltransferase (GALT) (EC 2.7.7.12) is defective and the normal cDNA sequence of this enzyme has been characterized. Recently eight mutations leading to galactosemia were published. Heparinized venous blood was drawn from a patient with classical galactosemia. In the cDNA from the patient examined, an insertion of 54 bp was found at position 1087. Amplification of the relevant genomic region of the patient's DNA was performed. Exon-intron boundaries and intronic sequences thus determined revealed that the 54-bp insertion was located immediately downstream of exon 10. It was further found that the patient was heterozygous for a point mutation, changing a C to a T (in 5 of 9 clones) at the second base in the intron downstream of the insertion. This alteration creates a sequence which, as well as the ordinary splice site, differs in only two positions from the consensus sequence. It was found that the mutation occurred in only one of the 20 alleles from galactosemic patients and in none of the 200 alleles from normal controls. The mutation is inherited from the mother, who also was found to express the 54-bp-long insertion at the mRNA level. Sequences from the 5[prime] end of the coding region were determined after genomic amplification, revealing a sequence identical to that reported. The mutation on the paternal allele has not been identified. 9 refs., 1 fig.

  17. Oxidized LDL-induced angiogenesis involves sphingosine 1-phosphate: prevention by anti-S1P antibody

    PubMed Central

    Camaré, Caroline; Trayssac, Magali; Garmy-Susini, Barbara; Mucher, Elodie; Sabbadini, Roger; Salvayre, Robert; Negre-Salvayre, Anne

    2015-01-01

    BACKGROUND AND PURPOSE Neovascularization occurring in atherosclerotic lesions may promote plaque expansion, intraplaque haemorrhage and rupture. Oxidized LDL (oxLDL) are atherogenic, but their angiogenic effect is controversial; both angiogenic and anti-angiogenic effects have been reported. The angiogenic mechanism of oxLDL is partly understood, but the role of the angiogenic sphingolipid, sphingosine 1-phosphate (S1P), in this process is not known. Thus, we investigated whether S1P is involved in the oxLDL-induced angiogenesis and whether an anti-S1P monoclonal antibody can prevent this effect. EXPERIMENTAL APPROACH Angiogenesis was assessed by capillary tube formation by human microvascular endothelial cells (HMEC-1) cultured on Matrigel and in vivo by the Matrigel plug assay in C57BL/6 mice. KEY RESULTS Human oxLDL exhibited a biphasic angiogenic effect on HMEC-1; low concentrations were angiogenic, higher concentrations were cytotoxic. The angiogenic response to oxLDL was blocked by the sphingosine kinase (SPHK) inhibitor, dimethylsphingosine, by SPHK1-siRNA and by an anti-S1P monoclonal antibody. Moreover, inhibition of oxLDL uptake and subsequent redox signalling by anti-CD36 and anti-LOX-1 receptor antibodies and by N-acetylcysteine, respectively, blocked SPHK1 activation and tube formation. In vivo, in the Matrigel plug assay, low concentrations of human oxLDL or murine oxVLDL also triggered angiogenesis, which was prevented by i.p. injection of the anti-S1P antibody. CONCLUSION AND IMPLICATIONS These data highlight the role of S1P in angiogenesis induced by oxLDL both in HMEC-1 cultured on Matrigel and in vivo in the Matrigel plug model in mice, and demonstrate that the anti-S1P antibody effectively blocks the angiogenic effect of oxLDL. PMID:25176316

  18. Sorbitol production from lactose by engineered Lactobacillus casei deficient in sorbitol transport system and mannitol-1-phosphate dehydrogenase.

    PubMed

    De Boeck, Reinout; Sarmiento-Rubiano, Luz Adriana; Nadal, Inmaculada; Monedero, Vicente; Pérez-Martínez, Gaspar; Yebra, María J

    2010-02-01

    Sorbitol is a sugar alcohol largely used in the food industry as a low-calorie sweetener. We have previously described a sorbitol-producing Lactobacillus casei (strain BL232) in which the gutF gene, encoding a sorbitol-6-phosphate dehydrogenase, was expressed from the lactose operon. Here, a complete deletion of the ldh1 gene, encoding the main L-lactate dehydrogenase, was performed in strain BL232. In a resting cell system with glucose, the new strain, named BL251, accumulated sorbitol in the medium that was rapidly metabolized after glucose exhaustion. Reutilization of produced sorbitol was prevented by deleting the gutB gene of the phosphoenolpyruvate: sorbitol phosphotransferase system (PTS(Gut)) in BL251. These results showed that the PTS(Gut) did not mediate sorbitol excretion from the cells, but it was responsible for uptake and reutilization of the synthesized sorbitol. A further improvement in sorbitol production was achieved by inactivation of the mtlD gene, encoding a mannitol-1-phosphate dehydrogenase. The new strain BL300 (lac::gutF Deltaldh1 DeltagutB mtlD) showed an increase in sorbitol production whereas no mannitol synthesis was detected, avoiding thus a polyol mixture. This strain was able to convert lactose, the main sugar from milk, into sorbitol, either using a resting cell system or in growing cells under pH control. A conversion rate of 9.4% of lactose into sorbitol was obtained using an optimized fed-batch system and whey permeate, a waste product of the dairy industry, as substrate.

  19. Sphingosine-1-phosphate receptors regulate individual cell behaviours underlying the directed migration of prechordal plate progenitor cells during zebrafish gastrulation.

    PubMed

    Kai, Masatake; Heisenberg, Carl-Philipp; Tada, Masazumi

    2008-09-01

    During vertebrate gastrulation, cells forming the prechordal plate undergo directed migration as a cohesive cluster. Recent studies revealed that E-cadherin-mediated coherence between these cells plays an important role in effective anterior migration, and that platelet-derived growth factor (Pdgf) appears to act as a guidance cue in this process. However, the mechanisms underlying this process at the individual cell level remain poorly understood. We have identified miles apart (mil) as a suppressor of defective anterior migration of the prospective prechordal plate in silberblick (slb)/wnt11 mutant embryos, in which E-cadherin-mediated coherence of cell movement is reduced. mil encodes Edg5, a sphingosine-1-phosphate (S1P) receptor belonging to a family of five G-protein-coupled receptors (S1PRs). S1P is a lipid signalling molecule that has been implicated in regulating cytoskeletal rearrangements, cell motility and cell adhesion in a variety of cell types. We examined the roles of Mil in anterior migration of prechordal plate progenitor cells and found that, in slb embryos injected with mil-MO, cells migrate with increased motility but decreased directionality, without restoring the coherence of cell migration. This indicates that prechordal plate progenitor cells can migrate effectively as individuals, as well as in a coherent cluster of cells. Moreover, we demonstrate that Mil regulates cell motility and polarisation through Pdgf and its intracellular effecter PI3K, but modulates cell coherence independently of the Pdgf/PI3K pathway, thus co-ordinating cell motility and coherence. These results suggest that the net migration of prechordal plate progenitors is determined by different parameters, including motility, persistence and coherence.

  20. Results From the First-in-Human Study With Ozanimod, a Novel, Selective Sphingosine-1-Phosphate Receptor Modulator.

    PubMed

    Tran, Jonathan Q; Hartung, Jeffrey P; Peach, Robert J; Boehm, Marcus F; Rosen, Hugh; Smith, Heather; Brooks, Jennifer L; Timony, Gregg A; Olson, Allan D; Gujrathi, Sheila; Frohna, Paul A

    2017-04-11

    The sphingosine-1-phosphate 1 receptor (S1P1R ) is expressed by lymphocytes, dendritic cells, and vascular endothelial cells and plays a role in the regulation of chronic inflammation and lymphocyte egress from peripheral lymphoid organs. Ozanimod is an oral selective modulator of S1P1R and S1P5R receptors in clinical development for the treatment of chronic immune-mediated, inflammatory diseases. This first-in-human study characterized the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of ozanimod in 88 healthy volunteers using a range of single and multiple doses (7 and 28 days) and a dose-escalation regimen. Ozanimod was generally well tolerated up to a maximum single dose of 3 mg and multiple doses of 2 mg/d, with no severe adverse events (AEs) and no dose-limiting toxicities. The most common ozanimod-related AEs included headache, somnolence, dizziness, nausea, and fatigue. Ozanimod exhibited linear PK, high steady-state volume of distribution (73-101 L/kg), moderate oral clearance (204-227 L/h), and an elimination half-life of approximately 17 to 21 hours. Ozanimod produced a robust dose-dependent reduction in total peripheral lymphocytes, with a median decrease of 65% to 68% observed after 28 days of dosing at 1 and 1.5 mg/d, respectively. Ozanimod selectivity affected lymphocyte subtypes, causing marked decreases in cells expressing CCR7 and variable decreases in subsets lacking CCR7. A dose-dependent negative chronotropic effect was observed following the first dose, with the dose-escalation regimen attenuating the first-dose negative chronotropic effect. Ozanimod safety, PK, and PD properties support the once-daily regimens under clinical investigation.

  1. Berberine Preconditioning Protects Neurons Against Ischemia via Sphingosine-1-Phosphate and Hypoxia-Inducible Factor-1[Formula: see text].

    PubMed

    Zhang, Qichun; Bian, Huimin; Guo, Liwei; Zhu, Huaxu

    2016-01-01

    Berberine exerts neuroprotective and modulates hypoxia inducible factor-1-alpha (HIF-1[Formula: see text]. Based on the role of HIF-1[Formula: see text] in hypoxia preconditioning and association between HIF-1[Formula: see text] and sphingosine-1-phosphate (S1P), we hypothesized that berberine preconditioning (BP) would ameliorate the cerebral injury induced by ischemia through activating the system of HIF-1[Formula: see text] and S1P. Adult male rats with middle cerebral artery occlusion (MCAO) and rat primary cortical neurons treated with oxygen and glucose deprivation (OGD) with BP at 24[Formula: see text]h (40[Formula: see text]mg/kg) and 2[Formula: see text]h (10[Formula: see text][Formula: see text]mol/L), respectively, were used to determine the neuroprotective effects. The HIF-1[Formula: see text] accumulation, and S1P metabolism were assayed in the berberine-preconditioned neurons, and the HIF-1[Formula: see text]-mediated transcriptional modulation of sphingosine kinases (Sphk) 1 and 2 was analyzed using chromatin immunoprecipitation and real-time polymerase chain reaction. BP significantly prevented cerebral ischemic injury in the MCAO rats at 24[Formula: see text]h and 72[Formula: see text]h following ischemia/reperfusion. In OGD-treated neurons, BP enhanced HIF-1[Formula: see text] accumulation with activation of PI3K/Akt, and induced S1P production by activating Sphk2 via the promotion of HIF-1[Formula: see text]-mediated Sphk2 transcription. In conclusion, BP activated endogenous neuroprotective mechanisms associated with the S1P/HIF-1 pathway and helped protect neuronal cells against hypoxia/ischemia.

  2. Exogenous Sphingosine-1-Phosphate Boosts Acclimatization in Rats Exposed to Acute Hypobaric Hypoxia: Assessment of Haematological and Metabolic Effects

    PubMed Central

    Chawla, Sonam; Rahar, Babita; Singh, Mrinalini; Bansal, Anju; Saraswat, Deepika; Saxena, Shweta

    2014-01-01

    Background The physiological challenges posed by hypobaric hypoxia warrant exploration of pharmacological entities to improve acclimatization to hypoxia. The present study investigates the preclinical efficacy of sphingosine-1-phosphate (S1P) to improve acclimatization to simulated hypobaric hypoxia. Experimental Approach Efficacy of intravenously administered S1P in improving haematological and metabolic acclimatization was evaluated in rats exposed to simulated acute hypobaric hypoxia (7620m for 6 hours) following S1P pre-treatment for three days. Major Findings Altitude exposure of the control rats caused systemic hypoxia, hypocapnia (plausible sign of hyperventilation) and respiratory alkalosis due to suboptimal renal compensation indicated by an overt alkaline pH of the mixed venous blood. This was associated with pronounced energy deficit in the hepatic tissue along with systemic oxidative stress and inflammation. S1P pre-treatment improved blood oxygen-carrying-capacity by increasing haemoglobin, haematocrit, and RBC count, probably as an outcome of hypoxia inducible factor-1α mediated erythropoiesis and renal S1P receptor 1 mediated haemoconcentation. The improved partial pressure of oxygen in the blood could further restore aerobic respiration and increase ATP content in the hepatic tissue of S1P treated animals. S1P could also protect the animals from hypoxia mediated oxidative stress and inflammation. Conclusion The study findings highlight S1P’s merits as a preconditioning agent for improving acclimatization to acute hypobaric hypoxia exposure. The results may have long term clinical application for improving physiological acclimatization of subjects venturing into high altitude for occupational or recreational purposes. PMID:24887065

  3. Establishing New Cut-Off Limits for Galactose 1-Phosphate-Uridyltransferase Deficiency for the Dutch Newborn Screening Programme.

    PubMed

    Kemper, E A; Boelen, A; Bosch, A M; van Veen-Sijne, M; van Rijswijk, C N; Bouva, M J; Fingerhut, R; Schielen, P C J I

    2017-01-01

    Newborn screening for classical galactosemia in the Netherlands is performed by five laboratories and is based on the measurement of galactose 1-phosphate-uridyltransferase (GALT) activity and total galactose (TGAL) in heel prick blood spots. Unexpected problems with the GALT assay posed a challenge to switch to a new assay. The aim of this study was to make an analytical and clinical evaluation of GALT assays to replace the current assay and to establish new cut-off values (COVs).First, the manual assay from PerkinElmer (NG-1100) and the GSP assay were compared by analyzing 626 anonymous heel prick samples in parallel. Secondly, a manual GSP method was evaluated and 2,052 samples were compared with the automated GSP assay. Finally, a clinical evaluation was performed by collecting data from 93 referred newborns.No satisfactory correlation was observed between GALT activity measured with the manual NG-1100 assay and the automated GSP assay. An acceptable correlation was found between the manual and automated GSP assay. Intra- and inter-assay variation of the automated GSP were 1.8-10.0% and 3.1-13.9%, respectively. Evaluation of clinical data demonstrated that adjusting the COVs for GALT to 2.0 U/dl and TGAL to 1,100 μmol/l improved specificity of screening for classical galactosemia.An assay designed for automated processing to measure GALT activity in heel prick samples works equally well when processed manually. We therefore adopted both methods in the Dutch screening laboratories. As a result of this evaluation new COVs for GALT and TGAL have been introduced and are valid from July 2015.

  4. Analysis of Molecular Species Profiles of Ceramide-1-phosphate and Sphingomyelin Using MALDI-TOF Mass Spectrometry.

    PubMed

    Yamashita, Ryouhei; Tabata, Yumika; Iga, Erina; Nakao, Michiyasu; Sano, Shigeki; Kogure, Kentaro; Tokumura, Akira; Tanaka, Tamotsu

    2016-02-01

    Ceramide-1-phosphate (C1P) is a potential signaling molecule that modulates various cellular functions in animals. It has been known that C1P with different N-acyl lengths induce biological responses differently. However, molecular species profiles of the C1P in animal tissues have not been extensively examined yet. Here, we developed a method for determination of the molecular species of a C1P using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with Phos-tag, a phosphate capture molecule. The amounts of total C1P in skin, brain, liver, kidney and small intestine of mice were determined to be 344, 151, 198, 96 and 90 pmol/g wet weight, respectively. We found a C1P species having an α-hydroxypalmitoyl residue (h-C1P, 44 pmol/g wet weight) in mouse skin. The h-C1P was detected only in the skin, and not other tissues of mice. The same analysis was applied to sphingomyelin after conversion of sphingomyelin to C1P by Streptomyces chromofuscus phospholipase D. We found that molecular species profiles of sphingomyelin in skin, kidney and small intestine of mice were similar to those of C1P in corresponding tissues. In contrast, molecular species profiles of sphingomyelin in liver and brain were quite different from those of C1P in these tissues, indicating selective synthesis or degradation of C1P in these tissues. The method described here will be useful for detection of changes in molecular species profiles of C1P and sphingomyelin.

  5. Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway.

    PubMed

    Loh, Kenneth C; Leong, Weng-In; Carlson, Morgan E; Oskouian, Babak; Kumar, Ashok; Fyrst, Henrik; Zhang, Meng; Proia, Richard L; Hoffman, Eric P; Saba, Julie D

    2012-01-01

    Sphingosine-1-phosphate (S1P) activates a widely expressed family of G protein-coupled receptors, serves as a muscle trophic factor and activates muscle stem cells called satellite cells (SCs) through unknown mechanisms. Here we show that muscle injury induces dynamic changes in S1P signaling and metabolism in vivo. These changes include early and profound induction of the gene encoding the S1P biosynthetic enzyme SphK1, followed by induction of the catabolic enzyme sphingosine phosphate lyase (SPL) 3 days later. These changes correlate with a transient increase in circulating S1P levels after muscle injury. We show a specific requirement for SphK1 to support efficient muscle regeneration and SC proliferation and differentiation. Mdx mice, which serve as a model for muscular dystrophy (MD), were found to be S1P-deficient and exhibited muscle SPL upregulation, suggesting that S1P catabolism is enhanced in dystrophic muscle. Pharmacological SPL inhibition increased muscle S1P levels, improved mdx muscle regeneration and enhanced SC proliferation via S1P receptor 2 (S1PR2)-dependent inhibition of Rac1, thereby activating Signal Transducer and Activator of Transcription 3 (STAT3), a central player in inflammatory signaling. STAT3 activation resulted in p21 and p27 downregulation in a S1PR2-dependent fashion in myoblasts. Our findings suggest that S1P promotes SC progression through the cell cycle by repression of cell cycle inhibitors via S1PR2/STAT3-dependent signaling and that SPL inhibition may provide a therapeutic strategy for MD.

  6. Fructose 1-phosphate is the one and only physiological effector of the Cra (FruR) regulator of Pseudomonas putida

    PubMed Central

    Chavarría, Max; Durante-Rodríguez, Gonzalo; Krell, Tino; Santiago, César; Brezovsky, Jan; Damborsky, Jiri; de Lorenzo, Víctor

    2014-01-01

    Fructose-1-phosphate (F1P) is the preferred effector of the catabolite repressor/activator (Cra) protein of the soil bacterium Pseudomonas putida but its ability to bind other metabolic intermediates in vivo is unclear. The Cra protein of this microorganism (CraPP) was submitted to mobility shift assays with target DNA sequences (the PfruB promoter) and candidate effectors fructose-1,6-bisphosphate (FBP), glucose 6-phosphate (G6P), and fructose-6-phosphate (F6P). 1 mM F1P was sufficient to release most of the Cra protein from its operators but more than 10 mM of FBP or G6P was required to free the same complex. However, isothermal titration microcalorimetry failed to expose any specific interaction between CraPP and FBP or G6P. To solve this paradox, transcriptional activity of a PfruB-lacZ fusion was measured in wild-type and ΔfruB cells growing on substrates that change the intracellular concentrations of F1P and FBP. The data indicated that PfruB activity was stimulated by fructose but not by glucose or succinate. This suggested that CraPP represses expression in vivo of the cognate fruBKA operon in a fashion dependent just on F1P, ruling out any other physiological effector. Molecular docking and dynamic simulations of the Cra-agonist interaction indicated that both metabolites can bind the repressor, but the breach in the relative affinity of CraPP for F1P vs FBP is three orders of magnitude larger than the equivalent distance in the Escherichia coli protein. This assigns the Cra protein of P. putida the sole role of transducing the presence of fructose in the medium into a variety of direct and indirect physiological responses. PMID:24918052

  7. Phenotypic Regulation of the Sphingosine 1-Phosphate Receptor Miles Apart by G Protein-Coupled Receptor Kinase 2

    PubMed Central

    2016-01-01

    The evolutionarily conserved DRY motif at the end of the third helix of rhodopsin-like, class-A G protein-coupled receptors (GPCRs) is a major regulator of receptor stability, signaling activity, and β-arrestin-mediated internalization. Substitution of the DRY arginine with histidine in the human vasopressin receptor results in a loss-of-function phenotype associated with diabetes insipidus. The analogous R150H substitution of the DRY motif in zebrafish sphingosine-1 phosphate receptor 2 (S1p2) produces a mutation, miles apart m93 (milm93), that not only disrupts signaling but also impairs heart field migration. We hypothesized that constitutive S1p2 desensitization is the underlying cause of this strong zebrafish developmental defect. We observed in cell assays that the wild-type S1p2 receptor is at the cell surface whereas in distinct contrast the S1p2 R150H receptor is found in intracellular vesicles, blocking G protein but not arrestin signaling activity. Surface S1p2 R150H expression could be restored by inhibition of G protein-coupled receptor kinase 2 (GRK2). Moreover, we observed that β-arrestin 2 and GRK2 colocalize with S1p2 in developing zebrafish embryos and depletion of GRK2 in the S1p2 R150H miles apart zebrafish partially rescued cardia bifida. The ability of reduced GRK2 activity to reverse a developmental phenotype associated with constitutive desensitization supports efforts to genetically or pharmacologically target this kinase in diseases involving biased GPCR signaling. PMID:25555130

  8. Effects of Sphingosine-1-Phosphate on Pacemaker Activity of Interstitial Cells of Cajal from Mouse Small Intestine

    PubMed Central

    Kim, Young Dae; Han, Kyoung Taek; Lee, Jun; Park, Chan Guk; Kim, Man Yoo; Shahi, Pawan Kumar; Zuo, Dong Chuan; Choi, Seok; Jun, Jae Yeoul

    2013-01-01

    Interstitial cells of Cajal (ICC) are the pacemaker cells that generate the rhythmic oscillation responsible for the production of slow waves in gastrointestinal smooth muscle. Spingolipids are known to present in digestive system and are responsible for multiple important physiological and pathological processes. In this study, we are interested in the action of sphingosine 1-phosphate (S1P) on ICC. S1P depolarized the membrane and increased tonic inward pacemaker currents. FTY720 phosphate (FTY720P, an S1P1,3,4,5 agonist) and SEW 2871 (an S1P1 agonist) had no effects on pacemaker activity. Suramin (an S1P3 antagonist) did not block the S1P-induced action on pacemaker currents. However, JTE-013 (an S1P2 antagonist) blocked the S1P-induced action. RT-PCR revealed the presence of the S1P2 in ICC. Calphostin C (a protein kinase C inhibitor), NS-398 (a cyclooxygenase-2 inhibitor), PD 98059 (a p42/44 inhibitor), or SB 203580 (a p38 inhibitor) had no effects on S1P-induced action. However, c-jun NH2-terminal kinase (JNK) inhibitor II suppressed S1P-induced action. External Ca2+-free solution or thapsigargin (a Ca2+-ATPase inhibitor of endoplasmic reticulum) suppressed action of S1P on ICC. In recording of intracellular Ca2+ ([Ca2+]i) concentration using fluo-4/AM S1P increased intensity of spontaneous [Ca2+]i oscillations in ICC. These results suggest that S1P can modulate pacemaker activity of ICC through S1P2 via regulation of external and internal Ca2+ and mitogen-activated protein kinase activation. PMID:23307289

  9. The specific role of plastidial glycolysis in photosynthetic and heterotrophic cells under scrutiny through the study of glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Anoman, Armand Djoro; Flores-Tornero, María; Rosa-Telléz, Sara; Muñoz-Bertomeu, Jesús; Segura, Juan; Ros, Roc

    2016-01-01

    The cellular compartmentalization of metabolic processes is an important feature in plants where the same pathways could be simultaneously active in different compartments. Plant glycolysis occurs in the cytosol and plastids of green and non-green cells in which the requirements of energy and precursors may be completely different. Because of this, the relevance of plastidial glycolysis could be very different depending on the cell type. In the associated study, we investigated the function of plastidial glycolysis in photosynthetic and heterotrophic cells by specifically driving the expression of plastidial glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in a glyceraldehyde-3-phosphate dehydrogenase double mutant background (gapcp1gapcp2). We showed that GAPCp is not functionally significant in photosynthetic cells, while it plays a crucial function in heterotrophic cells. We also showed that (i) GAPCp activity expression in root tips is necessary for primary root growth, (ii) its expression in heterotrophic cells of aerial parts and roots is necessary for plant growth and development, and (iii) GAPCp is an important metabolic connector of carbon and nitrogen metabolism through the phosphorylated pathway of serine biosynthesis (PPSB). We discuss here the role that this pathway could play in the control of plant growth and development.

  10. Overexpression of ACC gene from oleaginous yeast Lipomyces starkeyi enhanced the lipid accumulation in Saccharomyces cerevisiae with increased levels of glycerol 3-phosphate substrates.

    PubMed

    Wang, Jiancai; Xu, Ronghua; Wang, Ruling; Haque, Mohammad Enamul; Liu, Aizhong

    2016-06-01

    The conversion of acetyl-CoA to malonyl-CoA by acetyl-CoA carboxylase (ACC) is the rate-limiting step in fatty acid biosynthesis. In this study, a gene coding for ACC was isolated and characterized from an oleaginous yeast, Lipomyces starkeyi. Real-time quantitative PCR (qPCR) analysis of L. starkeyi acetyl-CoA carboxylase gene (LsACC1) showed that the expression levels were upregulated with the fast accumulation of lipids. The LsACC1 was co-overexpressed with the glycerol 3-phosphate dehydrogenase gene (GPD1), which regulates lipids biosynthesis by supplying another substrates glycerol 3-phosphate for storage lipid assembly, in the non-oleaginous yeast Saccharomyces cerevisiae. Further, the S. cerevisiae acetyl-CoA carboxylase (ScACC1) was transferred with GPD1 and its function was analyzed in comparison with LsACC1. The results showed that overexpressed LsACC1 and GPD1 resulted in a 63% increase in S. cerevisiae. This study gives new data in understanding of the molecular mechanisms underlying the regulation of fatty acids and lipid biosynthesis in yeasts.

  11. Evaluation and Optimization of in silico designed Sphingosine-1-Phosphate (S1P) Receptor Subtype 1 Modulators for the Management of Multiple Sclerosis

    PubMed Central

    Gusman, Daphne H.; Shoemake, Claire

    2017-01-01

    Multiple Sclerosis (MS) is a chronic autoimmune disorder affecting the Central Nervous System (CNS) through inflammation, demyelination and neurodegeneration. Sphingosine-1-phosphate receptor (S1PR1) modulators have been approved for the management of MS. Phosphorylated fingolimod mimics endogenous sphingosine-1-phosphate (S1P), a bioactive lipid that regulates remyelination and cell injury. Amiselimod was developed as a successor of fingolimod, with more specificity for S1PR1, and showed promising results until phase 2 clinical trials. This study utilized the fingolimod and amiselimod scaffolds, together with their critical binding interactions for the S1PR1 Ligand Binding Pocket, as templates for the in silico de novo design of high efficiency binding Lipinski rule-compliant molecules. A rigorous selection process identified two molecules, Molecules 003 and 019, deriving from fingolimod and amiselimod, respectively, which were deemed most suitable for further optimization. PMID:28356890

  12. The Granuloma Response Controlling Cryptococcosis in Mice Depends on the Sphingosine Kinase 1–Sphingosine 1-Phosphate Pathway

    PubMed Central

    Farnoud, Amir M.; Bryan, Arielle M.; Kechichian, Talar; Luberto, Chiara

    2015-01-01

    Cryptococcus neoformans is a fungal pathogen that causes pulmonary infections, which may progress into life-threatening meningitis. In commonly used mouse models of C. neoformans infections, fungal cells are not contained in the lungs, resulting in dissemination to the brain. We have previously reported the generation of an engineered C. neoformans strain (C. neoformans Δgcs1) which can be contained in lung granulomas in the mouse model and have shown that granuloma formation is dependent upon the enzyme sphingosine kinase 1 (SK1) and its product, sphingosine 1-phosphate (S1P). In this study, we have used four mouse models, CBA/J and C57BL6/J (both immunocompetent), Tgε26 (an isogenic strain of strain CBA/J lacking T and NK cells), and SK−/− (an isogenic strain of strain C57BL6/J lacking SK1), to investigate how the granulomatous response and SK1-S1P pathway are interrelated during C. neoformans infections. S1P and monocyte chemotactic protein-1 (MCP-1) levels were significantly elevated in the bronchoalveolar lavage fluid of all mice infected with C. neoformans Δgcs1 but not in mice infected with the C. neoformans wild type. SK1−/− mice did not show elevated levels of S1P or MCP-1. Primary neutrophils isolated from SK1−/− mice showed impaired antifungal activity that could be restored by the addition of extracellular S1P. In addition, high levels of tumor necrosis factor alpha were found in the mice infected with C. neoformans Δgcs1 in comparison to the levels found in mice infected with the C. neoformans wild type, and their levels were also dependent on the SK1-S1P pathway. Taken together, these results suggest that the SK1-S1P pathway promotes host defense against C. neoformans infections by regulating cytokine levels, promoting extracellular killing by phagocytes, and generating a granulomatous response. PMID:25895971

  13. The Development and Maintenance of Paclitaxel-induced Neuropathic Pain Require Activation of the Sphingosine 1-Phosphate Receptor Subtype 1*

    PubMed Central

    Janes, Kali; Little, Joshua W.; Li, Chao; Bryant, Leesa; Chen, Collin; Chen, Zhoumou; Kamocki, Krzysztof; Doyle, Timothy; Snider, Ashley; Esposito, Emanuela; Cuzzocrea, Salvatore; Bieberich, Erhard; Obeid, Lina; Petrache, Irina; Nicol, Grant; Neumann, William L.; Salvemini, Daniela

    2014-01-01

    The ceramide-sphingosine 1-phosphate (S1P) rheostat is important in regulating cell fate. Several chemotherapeutic agents, including paclitaxel (Taxol), involve pro-apoptotic ceramide in their anticancer effects. The ceramide-to-S1P pathway is also implicated in the development of pain, raising the intriguing possibility that these sphingolipids may contribute to chemotherapy-induced painful peripheral neuropathy, which can be a critical dose-limiting side effect of many widely used chemotherapeutic agents. We demonstrate that the development of paclitaxel-induced neuropathic pain was associated with ceramide and S1P formation in the spinal dorsal horn that corresponded with the engagement of S1P receptor subtype 1 (S1PR1)-dependent neuroinflammatory processes as follows: activation of redox-sensitive transcription factors (NFκB) and MAPKs (ERK and p38) as well as enhanced formation of pro-inflammatory and neuroexcitatory cytokines (TNF-α and IL-1β). Intrathecal delivery of the S1PR1 antagonist W146 reduced these neuroinflammatory processes but increased IL-10 and IL-4, potent anti-inflammatory/neuroprotective cytokines. Additionally, spinal W146 reversed established neuropathic pain. Noteworthy, systemic administration of the S1PR1 modulator FTY720 (Food and Drug Administration-approved for multiple sclerosis) attenuated the activation of these neuroinflammatory processes and abrogated neuropathic pain without altering anticancer properties of paclitaxel and with beneficial effects extended to oxaliplatin. Similar effects were observed with other structurally and chemically unrelated S1PR1 modulators (ponesimod and CYM-5442) and S1PR1 antagonists (NIBR-14/15) but not S1PR1 agonists (SEW2871). Our findings identify for the first time the S1P/S1PR1 axis as a promising molecular and therapeutic target in chemotherapy-induced painful peripheral neuropathy, establish a mechanistic insight into the biomolecular signaling pathways, and provide the rationale for the

  14. AB302. SPR-29 Sphingosine-1-phosphate in vitro and in vivo modulates corpus cavernosum smooth muscle tone

    PubMed Central

    Zhang, Xinhua; Yin, Jing; Kanika, Nirmala D.; Tong, Yuehong; Villegas, Guillermo; Melman, Arnold; DiSanto, Michael E.

    2016-01-01

    Objective The bioactive lipid sphingosine-1-phosphate (S1P) regulates smooth muscle (SM) contractility predominantly via three G protein-coupled receptors. The S1P1 receptor is associated with nitric oxide-mediated SM relaxation while S1P2 & S1P3 receptors are linked to SM contraction via activation of the Rho-kinase (ROK) pathway. The objective of this study was to determine the role of S1P in the modulation of corpus cavernosum (CC) SM (CCSM) tone. Methods Human and rat samples were used. Plasma S1P levels were detected by high-performance liquid chromatography. The expression of S1P1-3 receptors and sphingosine kinase-1 (SphK1) was determined by real-time RT-PCR and western blot. In vitro organ bath contractility and in vivo intracavernous pressure (ICP) measurements were performed. Results were expressed as mean ± SEM for n experiments. Statistical analysis was performed using either the Student’s t-test (when two sample treatments were being compared) or using ANOVA when multiple means were compared. P<0.05 was considered significant. Results Plasma S1P levels were determined to be ~200 nanomolar. Human and rat CC both express SphK1 and all S1P1-3 receptors. Exogenous S1P and the S1P receptor agonist FTY720-P contracted while antagonist JTE-013 relaxed CCSM in vitro. Meanwhile, force produced by S1P and agonists could be totally reversed by ROK inhibitor. Also, intracavernous injection of FTY720-P inhibited ICP rise induced by submaximal electrical stimulation of cavernous nerve, while JTE-013 alone induced ICP increase in vivo. Finally, SphK1 siRNA knocked down rat CC SphK1 by 80% and ICP were significantly potentiated. Conclusions In conclusion, we provide novel data that S1P, possibly coupling S1P2 and S1P3 receptors via RhoA/ROK pathway, mediates CCSM in vitro and in vivo. Antagonizing S1P or its receptors induces CCSM relaxation and proerectile effects. Thus, we provide the first clear evidences that the S1P system is another key contractile regulatory

  15. Sphingosine-1-Phosphate Receptor 1 in Classical Hodgkin Lymphoma: Assessment of Expression and Role in Cell Migration

    PubMed Central

    Kluk, Michael J.; Ryan, Kieran; Wang, Bonnie; Zhang, Guoqi; Rodig, Scott J.; Sanchez, Teresa

    2013-01-01

    Classical Hodgkin lymphoma (CHL), a neoplasm of abnormal B lymphocytes (Hodgkin-Reed Sternberg cells), has been described to have a typical pattern of clinical presentation and dissemination often involving functionally contiguous lymph nodes. Despite the progress made in understanding CHL pathophysiology, the factors which regulate the spread of lymphoma cells in CHL are poorly understood. Sphingosine-1-Phosphate (S1P), a bioactive sphingolipid present at high concentrations in plasma and lymphatic fluid, is known to play a critical role in regulating lymphocyte trafficking mainly through S1PR1. In this study, we explore the role of the S1P-S1PR1 axis in Hodgkin lymphoma cell migration and the expression of S1PR1 in CHL cell lines and clinical cases. We found that S1PR1 is present in the KM-H2 and SUP-HD1 Hodgkin lymphoma cell lines at the mRNA and protein level. In addition, functionally, S1P potently stimulated migration of both cell lines. S1P-induced migration was inhibited by the S1PR1 antagonist, VPC44116 and the S1PR1 functional antagonist, FTY720-P, but was potentiated by the S1PR2 specific antagonist, JTE013. We also determined that S1PR1 induced migration in the KM-H2 and SUP-HD1 cells via the heterotrimeric G protein Gi and the phosphatidylinositol-3-kinase (PI3K) pathway. Immunohistochemical assessment of tissue from CHL samples revealed that a subset of cases (7/57; 12%) show strong, membranous staining for S1PR1 in Hodgkin-Reed Sternberg cells. Altogether our data indicate that S1PR1 is a functional receptor on Hodgkin-Reed Sternberg cells which governs tumor cell migration and is expressed in a subset of CHL cases. Given the availability of S1PR1 antagonists, some of which are used clinically for modulation of the immune system, these results suggest that S1PR1 could be a future therapeutic target in the treatment of those cases of S1PR1-positive, refractory/recurrent CHL. PMID:23419711

  16. Sphingosine 1-phosphate elicits RhoA-dependent proliferation and MRTF-A mediated gene induction in CPCs.

    PubMed

    Castaldi, Alessandra; Chesini, Gino P; Taylor, Amy E; Sussman, Mark A; Brown, Joan Heller; Purcell, Nicole H

    2016-08-01

    Although c-kit(+) cardiac progenitor cells (CPCs) are currently used in clinical trials there remain considerable gaps in our understanding of the molecular mechanisms underlying their proliferation and differentiation. G-protein coupled receptors (GPCRs) play an important role in regulating these processes in mammalian cell types thus we assessed GPCR mRNA expression in c-kit(+) cells isolated from adult mouse hearts. Our data provide the first comprehensive overview of the distribution of this fundamental class of cardiac receptors in CPCs and reveal notable distinctions from that of adult cardiomyocytes. We focused on GPCRs that couple to RhoA activation in particular those for sphingosine-1-phosphate (S1P). The S1P2 and S1P3 receptors are the most abundant S1P receptor subtypes in mouse and human CPCs while cardiomyocytes express predominantly S1P1 receptors. Treatment of CPCs with S1P, as with thrombin and serum, increased proliferation through a pathway requiring RhoA signaling, as evidenced by significant attenuation when Rho was inhibited by treatment with C3 toxin. Further analysis demonstrated that both S1P- and serum-induced proliferation are regulated through the S1P2 and S1P3 receptor subtypes which couple to Gα12/13 to elicit RhoA activation. The transcriptional co-activator MRTF-A was activated by S1P as assessed by its nuclear accumulation and induction of a RhoA/MRTF-A luciferase reporter. In addition S1P treatment increased expression of cardiac lineage markers Mef2C and GATA4 and the smooth muscle marker GATA6 through activation of MRTF-A. In conclusion, we delineate an S1P-regulated signaling pathway in CPCs that introduces the possibility of targeting S1P2/3 receptors, Gα12/13 or RhoA to influence the proliferation and commitment of c-kit(+) CPCs and improve the response of the myocardium following injury.

  17. Developmental delay in a Streptomyces venezuelae glgE null mutant is associated with the accumulation of α-maltose 1-phosphate.

    PubMed

    Miah, Farzana; Bibb, Maureen J; Barclay, J Elaine; Findlay, Kim C; Bornemann, Stephen

    2016-07-01

    The GlgE pathway is thought to be responsible for the conversion of trehalose into a glycogen-like α-glucan polymer in bacteria. Trehalose is first converted to maltose, which is phosphorylated by maltose kinase Pep2 to give α-maltose 1-phosphate. This is the donor substrate of the maltosyl transferase GlgE that is known to extend α-1,4-linked maltooligosaccharides, which are thought to be branched with α-1,6 linkages. The genome of Streptomyces venezuelae contains all the genes coding for the GlgE pathway enzymes but none of those of related pathways, including glgC and glgA of the glycogen pathway. This provides an opportunity to study the GlgE pathway in isolation. The genes of the GlgE pathway were upregulated at the onset of sporulation, consistent with the known timing of α-glucan deposition. A constructed ΔglgE null mutant strain was viable but showed a delayed developmental phenotype when grown on maltose, giving less cell mass and delayed sporulation. Pre-spore cells and spores of the mutant were frequently double the length of those of the wild-type, implying impaired cross-wall formation, and spores showed reduced tolerance to stress. The mutant accumulated α-maltose 1-phosphate and maltose but no α-glucan. Therefore, the GlgE pathway is necessary and sufficient for polymer biosynthesis. Growth of the ΔglgE mutant on galactose and that of a Δpep2 mutant on maltose were analysed. In both cases, neither accumulation of α-maltose 1-phosphate/α-glucan nor a developmental delay was observed. Thus, high levels of α-maltose 1-phosphate are responsible for the developmental phenotype of the ΔglgE mutant, rather than the lack of α-glucan.

  18. Chirality of the hydrogen transfer to the coenzyme catalyzed by ribitol dehydrogenase from Klebsiella pneumoniae and D-mannitol 1-phosphate dehydrogenase from Escherichia coli.

    PubMed

    Alizade, M A; Gaede, K; Brendel, K

    1976-08-01

    The stereochemistry of the hydrogen transfer to NAD catalyzed by ribitol dehydrogenase (ribitol:NAD 2-oxidoreductase, EC 1.1.1.56) from Klebsiella pneumoniae and D-mannitol-1-phosphate dehydrogenase (D-mannitol-1-phosphate:NAD 2-oxidoreductase, EC 1.1.1.17) from Escherichia coli was investigated. [4-3H]NAD was enzymatically reduced with nonlabelled ribitol in the presence of ribitol dehydrogenase and with nonlabelled D-mannitol 1-phosphate and D-mannitol 1-phosphate dehydrogenase, respectively. In both cases the [4-3H]-NADH produced was isolated and the chirality at the C-4 position determined. It was found that after the transfer of hydride, the label was in both reactions exclusively confined to the (4R) position of the newly formed [4-3H]NADH. In order to explain these results, the hydrogen transferred from the nonlabelled substrates to [4-3H]NAD must have entered the (4S) position of the nicotinamide ring. These data indicate for both investigated inducible dehydrogenases a classification as B or (S) type enzymes. Ribitol also can be dehydrogenated by the constitutive A-type L-iditol dehydrogenase (L-iditol:NAD 5-oxidoreductase, EC 1.1.1.14) from sheep liver. When L-iditol dehydrogenase utilizes ribitol as hydrogen donor, the same A-type classification for this oxidoreductase, as expected, holds true. For the first time, opposite chirality of hydrogen transfer to NAD in one organic reaction--ribitol + NAD = D-ribu + NADH + H--is observed when two different dehydrogenases, the inducible ribitol dehydrogenase from K. pneumoniae and the constitutive L-iditol dehydrogenase from sheep liver, are used as enzymes. This result contradicts the previous generalization that the chirality of hydrogen transfer to the coenzyme for the same reaction is independent of the source of the catalyzing enzyme.

  19. Developmental delay in a Streptomyces venezuelae glgE null mutant is associated with the accumulation of α-maltose 1-phosphate

    PubMed Central

    Miah, Farzana; Bibb, Maureen J.; Barclay, J. Elaine; Findlay, Kim C.

    2016-01-01

    The GlgE pathway is thought to be responsible for the conversion of trehalose into a glycogen-like α-glucan polymer in bacteria. Trehalose is first converted to maltose, which is phosphorylated by maltose kinase Pep2 to give α-maltose 1-phosphate. This is the donor substrate of the maltosyl transferase GlgE that is known to extend α-1,4-linked maltooligosaccharides, which are thought to be branched with α-1,6 linkages. The genome of Streptomyces venezuelae contains all the genes coding for the GlgE pathway enzymes but none of those of related pathways, including glgC and glgA of the glycogen pathway. This provides an opportunity to study the GlgE pathway in isolation. The genes of the GlgE pathway were upregulated at the onset of sporulation, consistent with the known timing of α-glucan deposition. A constructed ΔglgE null mutant strain was viable but showed a delayed developmental phenotype when grown on maltose, giving less cell mass and delayed sporulation. Pre-spore cells and spores of the mutant were frequently double the length of those of the wild-type, implying impaired cross-wall formation, and spores showed reduced tolerance to stress. The mutant accumulated α-maltose 1-phosphate and maltose but no α-glucan. Therefore, the GlgE pathway is necessary and sufficient for polymer biosynthesis. Growth of the ΔglgE mutant on galactose and that of a Δpep2 mutant on maltose were analysed. In both cases, neither accumulation of α-maltose 1-phosphate/α-glucan nor a developmental delay was observed. Thus, high levels of α-maltose 1-phosphate are responsible for the developmental phenotype of the ΔglgE mutant, rather than the lack of α-glucan. PMID:27121970

  20. Differential response of the catalase, superoxide dismutase and glycerol-3-phosphate dehydrogenase to different environmental stresses in Debaryomyces nepalensis NCYC 3413.

    PubMed

    Kumar, Sawan; Kalyanasundaram, Gayathiri T; Gummadi, Sathyanarayana N

    2011-02-01

    The effect of salt, pH, and temperature stress on the cellular level of antioxidant enzymes, catalase and superoxide dismutase (SOD) and glycerol-3-phosphate dehydrogenase (G3PDH) was studied in Debaryomyces nepalensis NCYC 3413, a halotolerant yeast. The catalase activity increased in different phases, while SOD and G3PDH activities declined in late stationary phase. A significant increase in SOD activity was observed under different stress as compared to control. Salt and temperature stress enhanced the catalase activity where as it was suppressed by pH stress. G3PDH level increased with salt stress, however, no significant change was observed under pH and temperature stress. The observations recorded in this investigation suggested that D. nepalensis has an efficient protective mechanism of antioxidant enzymes and G3PDH against salt, pH, and temperature stresses.

  1. Site-Directed Mutagenesis from Arg195 to His of a Microalgal Putatively Chloroplastidial Glycerol-3-Phosphate Acyltransferase Causes an Increase in Phospholipid Levels in Yeast

    PubMed Central

    Ouyang, Long-Ling; Li, Hui; Yan, Xiao-Jun; Xu, Ji-Lin; Zhou, Zhi-Gang

    2016-01-01

    To analyze the contribution of glycerol-3-phosphate acyltransferase (GPAT) to the first acylation of glycerol-3-phosphate (G-3-P), the present study focused on a functional analysis of the GPAT gene from Lobosphaera incisa (designated as LiGPAT). A full-length cDNA of LiGPAT consisting of a 1,305-bp ORF, a 1,652-bp 5′-UTR, and a 354-bp 3′-UTR, was cloned. The ORF encoded a 434-amino acid peptide, of which 63 residues at the N-terminus defined a chloroplast transit peptide. Multiple sequence alignment and phylogeny analysis of GPAT homologs provided the convincible bioinformatics evidence that LiGPAT was localized to chloroplasts. Considering the conservation of His among the G-3-P binding sites from chloroplastidial GPATs and the substitution of His by Arg at position 195 in the LiGPAT mature protein (designated mLiGPAT), we established the heterologous expression of either mLiGPAT or its mutant (Arg195His) (sdmLiGPAT) in the GPAT-deficient yeast mutant gat1Δ. Lipid profile analyses of these transgenic yeasts not only validated the acylation function of LiGPAT but also indicated that the site-directed mutagenesis from Arg195 to His led to an increase in the phospholipid level in yeast. Semi-quantitative analysis of mLiGPAT and sdmLiGPAT, together with the structural superimposition of their G-3-P binding sites, indicated that the increased enzymatic activity was caused by the enlarged accessible surface of the phosphate group binding pocket when Arg195 was mutated to His. Thus, the potential of genetic manipulation of GPAT to increase the glycerolipid level in L. incisa and other microalgae would be of great interest. PMID:27014309

  2. A multidomain enzyme, with glycerol-3-phosphate dehydrogenase and phosphatase activities, is involved in a chloroplastic pathway for glycerol synthesis in Chlamydomonas reinhardtii.

    PubMed

    Morales-Sánchez, Daniela; Kim, Yeongho; Terng, Ee Leng; Peterson, Laura; Cerutti, Heriberto

    2017-03-08

    Understanding the unique features of algal metabolism may be necessary to realize the full potential of algae as feedstock for the production of biofuels and biomaterials. Under nitrogen deprivation, the green alga C. reinhardtii showed substantial triacylglycerol (TAG) accumulation and up-regulation of a gene, GPD2, encoding a multidomain enzyme with a putative phosphoserine phosphatase (PSP) motif fused to glycerol-3-phosphate dehydrogenase (GPD) domains. Canonical GPD enzymes catalyze the synthesis of glycerol-3-phosphate (G3P) by reduction of dihydroxyacetone phosphate (DHAP). G3P forms the backbone of TAGs and membrane glycerolipids and it can be dephosphorylated to yield glycerol, an osmotic stabilizer and compatible solute under hypertonic stress. Recombinant Chlamydomonas GPD2 showed both reductase and phosphatase activities in vitro and it can work as a bifunctional enzyme capable of synthesizing glycerol directly from DHAP. In addition, GPD2 and a gene encoding glycerol kinase were up-regulated in Chlamydomonas cells exposed to high salinity. RNA-mediated silencing of GPD2 revealed that the multidomain enzyme was required for TAG accumulation under nitrogen deprivation and for glycerol synthesis under high salinity. Moreover, a GPD2-mCherry fusion protein was found to localize to the chloroplast, supporting the existence of a GPD2-dependent plastid pathway for the rapid synthesis of glycerol in response to hyperosmotic stress. We hypothesize that the reductase and phosphatase activities of PSP-GPD multidomain enzymes may be modulated by post-translational modifications/mechanisms, allowing them to synthesize primarily G3P or glycerol depending on environmental conditions and/or metabolic demands in algal species of the core Chlorophytes. This article is protected by copyright. All rights reserved.

  3. The Class II Phosphatidylinositol 3-Phosphate Kinase PIK3C2A Promotes Shigella flexneri Dissemination through Formation of Vacuole-Like Protrusions

    PubMed Central

    Dragoi, Ana-Maria

    2015-01-01

    Intracellular pathogens such as Shigella flexneri and Listeria monocytogenes achieve dissemination in the intestinal epithelium by displaying actin-based motility in the cytosol of infected cells. As they reach the cell periphery, motile bacteria form plasma membrane protrusions that resolve into vacuoles in adjacent cells, through a poorly understood mechanism. Here, we report on the role of the class II phosphatidylinositol 3-phosphate kinase PIK3C2A in S. flexneri dissemination. Time-lapse microscopy revealed that PIK3C2A was required for the resolution of protrusions into vacuoles through the formation of an intermediate membrane-bound compartment that we refer to as a vacuole-like protrusion (VLP). Genetic rescue of PIK3C2A depletion with RNA interference (RNAi)-resistant cDNA constructs demonstrated that VLP formation required the activity of PIK3C2A in primary infected cells. PIK3C2A expression was required for production of phosphatidylinositol 3-phosphate [PtdIns(3)P] at the plasma membrane surrounding protrusions. PtdIns(3)P production was not observed in the protrusions formed by L. monocytogenes, whose dissemination did not rely on PIK3C2A. PIK3C2A-mediated PtdIns(3)P production in S. flexneri protrusions was regulated by host cell tyrosine kinase signaling and relied on the integrity of the S. flexneri type 3 secretion system (T3SS). We suggest a model of S. flexneri dissemination in which the formation of VLPs is mediated by the PIK3C2A-dependent production of the signaling lipid PtdIns(3)P in the protrusion membrane, which relies on the T3SS-dependent activation of tyrosine kinase signaling in protrusions. PMID:25667265

  4. Seasonal freeze resistance of rainbow smelt (Osmerus mordax) is generated by differential expression of glycerol-3-phosphate dehydrogenase, phosphoenolpyruvate carboxykinase, and antifreeze protein genes.

    PubMed

    Liebscher, Ryan S; Richards, Robert C; Lewis, Johanne M; Short, Connie E; Muise, Denise M; Driedzic, William R; Ewart, K Vanya

    2006-01-01

    In winter, rainbow smelt (Osmerus mordax) accumulate glycerol and produce an antifreeze protein (AFP), which both contribute to freeze resistance. The role of differential gene expression in the seasonal pattern of these adaptations was investigated. First, cDNAs encoding smelt and Atlantic salmon (Salmo salar) phosphoenolpyruvate carboxykinase (PEPCK) and smelt glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were cloned so that all sequences required for expression analysis would be available. Using quantitative PCR, expression of beta actin in rainbow smelt liver was compared with that of GAPDH in order to determine its validity as a reference gene. Then, levels of glycerol-3-phosphate dehydrogenase (GPDH), PEPCK, and AFP relative to beta actin were measured in smelt liver over a fall-winter-spring interval. Levels of GPDH mRNA increased in the fall just before plasma glycerol accumulation, implying a driving role in glycerol synthesis. GPDH mRNA levels then declined during winter, well in advance of serum glycerol, suggesting the possibility of GPDH enzyme or glycerol conservation in smelt during the winter months. PEPCK mRNA levels rose in parallel with serum glycerol in the fall, consistent with an increasing requirement for amino acids as metabolic precursors, remained elevated for much of the winter, and then declined in advance of the decline in plasma glycerol. AFP mRNA was elevated at the onset of fall sampling in October and remained elevated until April, implying separate regulation from GPDH and PEPCK. Thus, winter freezing point depression in smelt appears to result from a seasonal cycle of GPDH gene expression, with an ensuing increase in the expression of PEPCK, and a similar but independent cycle of AFP gene expression.

  5. High-resolution crystal structures of the photoreceptor glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with three and four-bound NAD molecules.

    PubMed

    Baker, Bo Y; Shi, Wuxian; Wang, Benlian; Palczewski, Krzysztof

    2014-11-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the oxidative phosphorylation of d-glyceraldehyde 3-phosphate (G3P) into 1,3-diphosphoglycerate (BGP) in the presence of the NAD cofactor. GAPDH is an important drug target because of its central role in glycolysis, and nonglycolytic processes such as nuclear RNA transport, DNA replication/repair, membrane fusion and cellular apoptosis. Recent studies found that GAPDH participates in the development of diabetic retinopathy and its progression after the cessation of hyperglycemia. Here, we report two structures for native bovine photoreceptor GAPDH as a homotetramer with differing occupancy by NAD, bGAPDH(NAD)4 , and bGAPDH(NAD)3 . The bGAPDH(NAD)4 was solved at 1.52 Å, the highest resolution for GAPDH. Structural comparison of the bGAPDH(NAD)4 and bGAPDH(NAD)3 models revealed novel details of conformational changes induced by cofactor binding, including a loop region (residues 54-56). Structure analysis of bGAPDH confirmed the importance of Phe34 in NAD binding, and demonstrated that Phe34 was stabilized in the presence of NAD but displayed greater mobility in its absence. The oxidative state of the active site Cys149 residue is regulated by NAD binding, because this residue was found oxidized in the absence of dinucleotide. The distance between Cys149 and His176 decreased upon NAD binding and Cys149 remained in a reduced state when NAD was bound. These findings provide an important structural step for understanding the mechanism of GAPDH activity in vision and its pathological role in retinopathies.

  6. A case of classical galactosemia: identification and characterization of 3 distinct mutations in galactose-1-phosphate uridyl transferase (GALT) gene in a single family.

    PubMed

    Singh, Ramandeep; Kaur, Gurjit; Thapa, Babu R; Prasad, Rajendra; Kulkarni, Ketan

    2011-07-01

    Galactosemia is an autosomal recessive disorder of galactose metabolism. In the very first instance of its kind from India, the authors report the presence of three different galatose-1-phosphate uridyl transferase (GALT) gene mutations, associated with galactosemia, in a single Indian family. One of the three mutations, S307X, is a novel mutation (GenBank Accession number GQ355273) and is of nonsense nature causing the truncation of the GALT protein resulting in the decreased enzyme activity. The authors have also emphasized the importance of introduction of new born screening program for galactosemia and its genetic analysis in select settings across the country.

  7. The control of fatty acid and triglyceride synthesis in rat epididymal adipose tissue. Roles of coenzyme A derivatives, citrate and l-glycerol 3-phosphate

    PubMed Central

    Denton, R. M.; Halperin, M. L.

    1968-01-01

    1. Methods are described for the extraction and assay of acetyl-CoA and of total acid-soluble and total acid-insoluble CoA derivatives in rat epididymal adipose tissue. 2. The concentration ranges of the CoA derivatives in fat pads incubated in vitro under various conditions were: total acid-soluble CoA, 0·20–0·59mm; total acid-insoluble CoA, 0·08–0·23mm; acetyl-CoA, 0·03–0·14mm. 3. An investigation was made of some postulated mechanisms of control of fatty acid and triglyceride synthesis in rat epididymal fat pads incubated in vitro. The concentrations of intermediates of possible regulatory significance were measured at various rates of fatty acid and triglyceride synthesis produced by the addition to the incubation medium (Krebs bicarbonate buffer containing glucose) of insulin, adrenaline, albumin, palmitate or acetate. 4. The whole-tissue concentrations of glucose 6-phosphate, l-glycerol 3-phosphate, citrate, acetyl-CoA, total acid-soluble CoA and total acid-insoluble CoA were assayed after 30 or 60min. incubation. The rates of fatty acid and triglyceride synthesis, calculated from the incorporation of [U-14C]glucose into fatty acids and glyceride glycerol respectively, and the rates of glucose uptake, lactate plus pyruvate output and glycerol output were measured over a 60min. incubation. 5. The rate of triglyceride synthesis could not be correlated with the concentrations of either l-glycerol 3-phosphate or long-chain fatty acyl-CoA (measured as total acid-insoluble CoA). Factor(s) other than the whole-tissue concentrations of these recognized precursors appear to be involved in the determination of the rate of triglyceride synthesis. 6. No relationship was found between the rate of fatty acid synthesis and the whole-tissue concentrations of the intermediates, citrate or acetyl-CoA, or with the two proposed effectors of acetyl-CoA carboxylase, citrate (as activator) or long-chain fatty acyl-CoA (as inhibitor). The control of fatty acid synthesis

  8. 2-O-α-D-Glucosylglycerol Phosphorylase from Bacillus selenitireducens MLS10 Possessing Hydrolytic Activity on β-D-Glucose 1-Phosphate

    PubMed Central

    Nihira, Takanori; Saito, Yuka; Ohtsubo, Ken’ichi; Nakai, Hiroyuki; Kitaoka, Motomitsu

    2014-01-01

    The glycoside hydrolase family (GH) 65 is a family of inverting phosphorylases that act on α-glucosides. A GH65 protein (Bsel_2816) from Bacillus selenitireducens MLS10 exhibited inorganic phosphate (Pi)-dependent hydrolysis of kojibiose at the rate of 0.43 s−1. No carbohydrate acted as acceptor for the reverse phosphorolysis using β-d-glucose 1-phosphate (βGlc1P) as donor. During the search for a suitable acceptor, we found that Bsel_2816 possessed hydrolytic activity on βGlc1P with a kcat of 2.8 s−1; moreover, such significant hydrolytic activity on sugar 1-phosphate had not been reported for any inverting phosphorylase. The H218O incorporation experiment and the anomeric analysis during the hydrolysis of βGlc1P revealed that the hydrolysis was due to the glucosyl-transferring reaction to a water molecule and not a phosphatase-type reaction. Glycerol was found to be the best acceptor to generate 2-O-α-d-glucosylglycerol (GG) at the rate of 180 s−1. Bsel_2816 phosphorolyzed GG through sequential Bi-Bi mechanism with a kcat of 95 s−1. We propose 2-O-α-d-glucopyranosylglycerol: phosphate β-d-glucosyltransferase as the systematic name and 2-O-α-d-glucosylglycerol phosphorylase as the short name for Bsel_2816. This is the first report describing a phosphorylase that utilizes polyols, and not carbohydrates, as suitable acceptor substrates. PMID:24466148

  9. The Expression of Glyceraldehyde-3-Phosphate Dehydrogenase Associated Cell Cycle (GACC) Genes Correlates with Cancer Stage and Poor Survival in Patients with Solid Tumors

    PubMed Central

    Wang, Dunrui; Moothart, Daniel R.; Lowy, Douglas R.; Qian, Xiaolan

    2013-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is often used as a stable housekeeping marker for constant gene expression. However, the transcriptional levels of GAPDH may be highly up-regulated in some cancers, including non-small cell lung cancers (NSCLC). Using a publically available microarray database, we identified a group of genes whose expression levels in some cancers are highly correlated with GAPDH up-regulation. The majority of the identified genes are cell cycle-dependent (GAPDH Associated Cell Cycle, or GACC). The up-regulation pattern of GAPDH positively associated genes in NSCLC is similar to that observed in cultured fibroblasts grown under conditions that induce anti-senescence. Data analysis demonstrated that up-regulated GAPDH levels are correlated with aberrant gene expression related to both glycolysis and gluconeogenesis pathways. Down-regulation of fructose-1,6-bisphosphatase (FBP1) in gluconeogenesis in conjunction with up-regulation of most glycolytic genes is closely related to high expression of GAPDH in the tumors. The data presented demonstrate that up-regulation of GAPDH positively associated genes is proportional to the malignant stage of various tumors and is associated with an unfavourable prognosis. Thus, this work suggests that GACC genes represent a potential new signature for cancer stage identification and disease prognosis. PMID:23620736

  10. Phosphatidylinositol 3-phosphate-binding protein AtPH1 controls the localization of the metal transporter NRAMP1 in Arabidopsis.

    PubMed

    Agorio, Astrid; Giraudat, Jérôme; Bianchi, Michele Wolfe; Marion, Jessica; Espagne, Christelle; Castaings, Loren; Lelièvre, Françoise; Curie, Catherine; Thomine, Sébastien; Merlot, Sylvain

    2017-04-03

    "Too much of a good thing" perfectly describes the dilemma that living organisms face with metals. The tight control of metal homeostasis in cells depends on the trafficking of metal transporters between membranes of different compartments. However, the mechanisms regulating the location of transport proteins are still largely unknown. Developing Arabidopsis thaliana seedlings require the natural resistance-associated macrophage proteins (NRAMP3 and NRAMP4) transporters to remobilize iron from seed vacuolar stores and thereby acquire photosynthetic competence. Here, we report that mutations in the pleckstrin homology (PH) domain-containing protein AtPH1 rescue the iron-deficient phenotype of nramp3nramp4 Our results indicate that AtPH1 binds phosphatidylinositol 3-phosphate (PI3P) in vivo and acts in the late endosome compartment. We further show that loss of AtPH1 function leads to the mislocalization of the metal uptake transporter NRAMP1 to the vacuole, providing a rationale for the reversion of nramp3nramp4 phenotypes. This work identifies a PH domain protein as a regulator of plant metal transporter localization, providing evidence that PH domain proteins may be effectors of PI3P for protein sorting.

  11. The complete sequence of a full length cDNA for human liver glyceraldehyde-3-phosphate dehydrogenase: evidence for multiple mRNA species.

    PubMed Central

    Arcari, P; Martinelli, R; Salvatore, F

    1984-01-01

    A recombinant M13 clone (O42) containing a 65 b.p. cDNA fragment from human fetal liver mRNA coding for glyceraldehyde-3-phosphate dehydrogenase has been identified and it has been used to isolate from a full-length human adult liver cDNA library a recombinant clone, pG1, which has been subcloned in M13 phage and completely sequenced with the chain terminator method. Besides the coding region of 1008 b.p., the cDNA sequence includes 60 nucleotides at the 5'-end and 204 nucleotides at the 3'-end up to the polyA tail. Hybridization of pG1 to human liver total RNA shows only one band about the size of pG1 cDNA. A much stronger hybridization signal was observed using RNA derived from human hepatocarcinoma and kidney carcinoma cell lines. Sequence homology between clone 042 and the homologous region of clone pG1 is 86%. On the other hand, homology among the translated sequences and the known human muscle protein sequence ranges between 77 and 90%; these data demonstrate the existence of more than one gene coding for G3PD. Southern blot of human DNA, digested with several restriction enzymes, also indicate that several homologous sequences are present in the human genome. Images PMID:6096821

  12. A novel 5-enolpyruvoylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide.

    PubMed

    Wang, Wei; Xia, Hui; Yang, Xiao; Xu, Ting; Si, Hong Jiang; Cai, Xing Xing; Wang, Feng; Su, Jun; Snow, Allison A; Lu, Bao-Rong

    2014-04-01

    Understanding evolutionary interactions among crops and weeds can facilitate effective weed management. For example, gene flow from crops to their wild or weedy relatives can lead to rapid evolution in recipient populations. In rice (Oryza sativa), transgenic herbicide resistance is expected to spread to conspecific weedy rice (Oryza sativa f. spontanea) via hybridization. Here, we studied fitness effects of transgenic over-expression of a native 5-enolpyruvoylshikimate-3-phosphate synthase (epsps) gene developed to confer glyphosate resistance in rice. Controlling for genetic background, we examined physiological traits and field performance of crop-weed hybrid lineages that segregated for the presence or absence of this novel epsps transgene. Surprisingly, we found that transgenic F2 crop-weed hybrids produced 48-125% more seeds per plant than nontransgenic controls in monoculture- and mixed-planting designs without glyphosate application. Transgenic plants also had greater EPSPS protein levels, tryptophan concentrations, photosynthetic rates, and per cent seed germination compared with nontransgenic controls. Our findings suggest that over-expression of a native rice epsps gene can lead to fitness advantages, even without exposure to glyphosate. We hypothesize that over-expressed epsps may be useful to breeders and, if deployed, could result in fitness benefits in weedy relatives following transgene introgression.

  13. Re-evaluation of the glycerol-3-phosphate dehydrogenase/L-lactate dehydrogenase enzyme system. Evidence against the direct transfer of NADH between active sites.

    PubMed Central

    Brooks, S P; Storey, K B

    1991-01-01

    An investigation of the direct transfer of metabolites from rabbit muscle L-lactate dehydrogenase (LDH, EC 1.1.1.27) to glycerol-3-phosphate dehydrogenase (GPDH, EC 1.1.1.8) revealed discrepancies between theoretical predictions and experimental results. Measurements of the GPDH reaction rate at a fixed NADH concentration and in the presence of increasing LDH concentrations gave experimental results similar to those previously obtained by Srivastava, Smolen, Betts, Fukushima, Spivey & Bernhard [(1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6464-6468]. However, a mathematical solution of the direct-transfer-mechanism equations as described by Srivastava et al. (1989) showed that the direct-transfer model did not adequately describe the experimental behaviour of the reaction rate at increasing LDH concentrations. In addition, experiments designed to measure the formation of an LDH4.NADH.GPDH2 complex, predicted by the direct-transfer model, indicated that no significant formation of tertiary complex occurred. An examination of other kinetic models, developed to describe the LDH/GPDH/NADH system better, revealed that the experimental results may be best explained by assuming that free NADH, and not E1.NADH, is the sole substrate for GPDH. These results suggest that direct transfer of NADH between rabbit muscle LDH and GPDH does not occur in vitro. PMID:1898374

  14. Plastidial Glycolytic Glyceraldehyde-3-Phosphate Dehydrogenase Is an Important Determinant in the Carbon and Nitrogen Metabolism of Heterotrophic Cells in Arabidopsis.

    PubMed

    Anoman, Armand D; Muñoz-Bertomeu, Jesús; Rosa-Téllez, Sara; Flores-Tornero, María; Serrano, Ramón; Bueso, Eduardo; Fernie, Alisdair R; Segura, Juan; Ros, Roc

    2015-11-01

    This study functionally characterizes the Arabidopsis (Arabidopsis thaliana) plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in photosynthetic and heterotrophic cells. We expressed the enzyme in gapcp double mutants (gapcp1gapcp2) under the control of photosynthetic (Rubisco small subunit RBCS2B [RBCS]) or heterotrophic (phosphate transporter PHT1.2 [PHT]) cell-specific promoters. Expression of GAPCp1 under the control of RBCS in gapcp1gapcp2 had no significant effect on the metabolite profile or growth in the aerial part (AP). GAPCp1 expression under the control of the PHT promoter clearly affected Arabidopsis development by increasing the number of lateral roots and having a major effect on AP growth and metabolite profile. Our results indicate that GAPCp1 is not functionally important in photosynthetic cells but plays a fundamental role in roots and in heterotrophic cells of the AP. Specifically, GAPCp activity may be required in root meristems and the root cap for normal primary root growth. Transcriptomic and metabolomic analyses indicate that the lack of GAPCp activity affects nitrogen and carbon metabolism as well as mineral nutrition and that glycerate and glutamine are the main metabolites responding to GAPCp activity. Thus, GAPCp could be an important metabolic connector of glycolysis with other pathways, such as the phosphorylated pathway of serine biosynthesis, the ammonium assimilation pathway, or the metabolism of γ-aminobutyrate, which in turn affect plant development.

  15. Transgenic tobacco simultaneously overexpressing glyphosate N-acetyltransferase and 5-enolpyruvylshikimate-3-phosphate synthase are more resistant to glyphosate than those containing one gene.

    PubMed

    Liu, Yunjun; Cao, Gaoyi; Chen, Rongrong; Zhang, Shengxue; Ren, Yuan; Lu, Wei; Wang, Jianhua; Wang, Guoying

    2015-08-01

    5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) and glyphosate N-acetyltransferase (GAT) can detoxify glyphosate by alleviating the suppression of shikimate pathway. In this study, we obtained transgenic tobacco plants overexpressing AM79 aroA, GAT, and both of them, respectively, to evaluate whether overexpression of both genes could confer transgenic plants with higher glyphosate resistance. The transgenic plants harboring GAT or AM79 aroA, respectively, showed good glyphosate resistance. As expected, the hybrid plants containing both GAT and AM79 aroA exhibited improved glyphosate resistance than the transgenic plants overexpressing only a single gene. When grown on media with high concentration of glyphosate, seedlings containing a single gene were severely inhibited, whereas plants expressing both genes were affected less. When transgenic plants grown in the greenhouse were sprayed with glyphosate, less damage was observed for the plants containing both genes. Metabolomics analysis showed that transgenic plants containing two genes could maintain the metabolism balance better than those containing one gene after glyphosate treatment. Glyphosate treatment did not lead to a huge increase of shikimate contents of tobacco leaves in transgenic plants overexpressing two genes, whereas significant increase of shikimate contents in transgenic plants containing only a single gene was observed. These results demonstrated that pyramiding both aroA and GAT in transgenic plants can enhance glyphosate resistance, and this strategy can be used for the development of transgenic glyphosate-resistant crops.

  16. A H2 very high frequency capacitively coupled plasma inactivates glyceraldehyde 3-phosphate dehydrogenase(GapDH) more efficiently than UV photons and heat combined

    NASA Astrophysics Data System (ADS)

    Stapelmann, Katharina; Lackmann, Jan-Wilm; Buerger, Ines; Bandow, Julia Elisabeth; Awakowicz, Peter

    2014-02-01

    Plasma sterilization is a promising alternative to commonly used sterilization techniques, because the conventional methods suffer from certain limitations, e.g. incompatibility with heat-sensitive materials, or use of toxic agents. However, plasma-based sterilization mechanisms are not fully understood yet. A low-pressure very high frequency capacitively coupled plasma is used to investigate the impact of a hydrogen discharge on the protein glyceraldehyde 3-phosphate dehydrogenase (GapDH). GapDH is an enzyme of glycolysis. As a part of the central metabolism, it occurs in nearly all organisms from bacteria to humans. The plasma is investigated with absolutely calibrated optical emission spectroscopy in order to identify and to quantify plasma components that can contribute to enzyme inactivation. The contribution of UV photons and heat to GapDH inactivation is investigated separately, and neither seems to be a major factor. In order to investigate the mechanisms of GapDH inactivation by the hydrogen discharge, samples are investigated for etching, induction of amino acid backbone breaks, and chemical modifications. While neither etching nor strand breaks are observed, chemical modifications occur at different amino acid residues of GapDH. Deamidations of asparagines as well as methionine and cysteine oxidations are detected after VHF-CCP treatment. In particular, oxidation of the cysteine in the active centre is known to lead to GapDH inactivation.

  17. Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides.

    PubMed

    Liu, Yanbin; Koh, Chong Mei John; Sun, Longhua; Hlaing, Mya Myintzu; Du, Minge; Peng, Ni; Ji, Lianghui

    2013-01-01

    The oleaginous yeast Rhodosporidium toruloides, which belongs to the Pucciniomycotina subphylum in the Basidiomycota, has attracted strong interest in the biofuel community recently due to its ability to accumulate more than 60% of dry biomass as lipid under high-density fermentation. A 3,543-nucleotide (nt) DNA fragment of the glyceraldehyde-3-phosphate dehydrogenase gene (GPD1) was isolated from R. toruloides ATCC 10657 and characterized in details. The 1,038-nt mRNA derived from seven exons encodes an open reading frame (ORF) of 345 amino acids that shows high identity (80%) to the Ustilago maydis homolog. Notably, the ORF is composed of codons strongly biased towards cytosine at the Wobble position. GPD1 is transcriptionally regulated by temperature shock, osmotic stress, and carbon source. Nested deletion analysis of the GPD1 promoter by GFP reporter assay revealed that two regions, -975 to -1,270 and -1,270 to -1,429, upstream from the translational start site of GPD1 were important for responses to various stress stimuli. Interestingly, a 176-bp short fragment maintained 42.2% promoter activity of the 795-bp version in U. maydis whereas it was reduced to 17.4% in R. toruloides. The GPD1 promoter drove strong expression of a codon-optimized enhanced green fluorescent protein gene (RtGFP) and a codon-optimized hygromycin phosphotransferase gene (hpt-3), which was critical for Agrobacterium tumefaciens-mediated transformation in R. toruloides.

  18. A novel 5-enolpyruvoylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide

    PubMed Central

    Wang, Wei; Xia, Hui; Yang, Xiao; Xu, Ting; Si, Hong Jiang; Cai, Xing Xing; Wang, Feng; Su, Jun; Snow, Allison A; Lu, Bao-Rong

    2014-01-01

    Understanding evolutionary interactions among crops and weeds can facilitate effective weed management. For example, gene flow from crops to their wild or weedy relatives can lead to rapid evolution in recipient populations. In rice (Oryza sativa), transgenic herbicide resistance is expected to spread to conspecific weedy rice (Oryza sativa f. spontanea) via hybridization. Here, we studied fitness effects of transgenic over-expression of a native 5-enolpyruvoylshikimate-3-phosphate synthase (epsps) gene developed to confer glyphosate resistance in rice. Controlling for genetic background, we examined physiological traits and field performance of crop–weed hybrid lineages that segregated for the presence or absence of this novel epsps transgene. Surprisingly, we found that transgenic F2 crop–weed hybrids produced 48–125% more seeds per plant than nontransgenic controls in monoculture- and mixed-planting designs without glyphosate application. Transgenic plants also had greater EPSPS protein levels, tryptophan concentrations, photosynthetic rates, and per cent seed germination compared with nontransgenic controls. Our findings suggest that over-expression of a native rice epsps gene can lead to fitness advantages, even without exposure to glyphosate. We hypothesize that over-expressed epsps may be useful to breeders and, if deployed, could result in fitness benefits in weedy relatives following transgene introgression. PMID:23905647

  19. Reconstructed Ancestral Myo-Inositol-3-Phosphate Synthases Indicate That Ancestors of the Thermococcales and Thermotoga Species Were More Thermophilic than Their Descendants

    PubMed Central

    Butzin, Nicholas C.; Lapierre, Pascal; Green, Anna G.; Swithers, Kristen S.; Gogarten, J. Peter; Noll, Kenneth M.

    2013-01-01

    The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS). These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT) of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants. PMID:24391933

  20. Reconstructed ancestral Myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants.

    PubMed

    Butzin, Nicholas C; Lapierre, Pascal; Green, Anna G; Swithers, Kristen S; Gogarten, J Peter; Noll, Kenneth M

    2013-01-01

    The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS). These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT) of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants.

  1. Iron starvation causes release from the group A streptococcus of the ADP-ribosylating protein called plasmin receptor or surface glyceraldehyde-3-phosphate-dehydrogenase.

    PubMed Central

    Eichenbaum, Z; Green, B D; Scott, J R

    1996-01-01

    In many pathogenic bacteria, iron starvation serves as an environmental signal that triggers the expression of virulence factors, many of which are found on the cell surface or secreted into the culture supernatant. Using the chelating agent nitrilotriacetic acid, we have established conditions for iron starvation of the important human pathogen Streptococcus pyogenes (the group A streptococcus) and determined that iron limitation results in the specific appearance of several new proteins in the culture supernatant. One of these supernatant proteins is the ADP-ribosylating protein known as streptococcal plasmin receptor (Plr) or as the streptococcal surface glyceraldehyde-3-phosphate-dehydrogenase because of its other activities. Upon iron starvation, Plr is specifically released into the culture supernatant in a time-dependent manner, and its appearance in the supernatant is not accompanied by induction of plr mRNA synthesis. Release of Plr from the bacteria may be important for the virulence of group A streptococci and the manifestation of diseases. PMID:8675293

  2. Comparison of the regulation, metabolic functions, and roles in virulence of the glyceraldehyde-3-phosphate dehydrogenase homologues gapA and gapB in Staphylococcus aureus.

    PubMed

    Purves, Joanne; Cockayne, Alan; Moody, Peter C E; Morrissey, Julie A

    2010-12-01

    The Gram-positive bacterium Staphylococcus aureus contains two glyceraldehyde-3-phosphate dehydrogenase (GAPDH) homologues known as GapA and GapB. GapA has been characterized as a functional GAPDH protein, but currently there is no biological evidence for the role of GapB in metabolism in S. aureus. In this study we show through a number of complementary methods that S. aureus GapA is essential for glycolysis while GapB is essential in gluconeogenesis. These proteins are reciprocally regulated in response to glucose concentrations, and both are influenced by the glycolysis regulator protein GapR, which is the first demonstration of the role of this regulator in S. aureus and the first indication that GapR homologues control genes other than those within the glycolytic operon. Furthermore, we show that both GapA and GapB are important in the pathogenesis of S. aureus in a Galleria mellonella model of infection, showing for the first time in any bacteria that both glycolysis and gluconeogenesis have important roles in virulence.

  3. Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: genomic complexity and molecular evolution of the gene.

    PubMed Central

    Tso, J Y; Sun, X H; Kao, T H; Reece, K S; Wu, R

    1985-01-01

    Full length cDNAs encoding the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from rat and man have been isolated and sequenced. Many GAPDH gene-related sequences have been found in both genomes based on genomic blot hybridization analysis. Only one functional gene product is known. Results from genomic library screenings suggest that there are 300-400 copies of these sequences in the rat genome and approximately 100 in the human genome. Some of these related sequences have been shown to be processed pseudogenes. We have isolated several rat cDNA clones corresponding to these pseudogenes indicating that some pseudogenes are transcribed. Rat and human cDNAs are 89% homologous in the coding region, and 76% homologous in the first 100 base pairs of the 3'-noncoding region. Comparison of these two cDNA sequences with those of the chicken, Drosophila and yeast genes allows the analysis of the evolution of the GAPDH genes in detail. Images PMID:2987855

  4. Plastidial Glycolytic Glyceraldehyde-3-Phosphate Dehydrogenase Is an Important Determinant in the Carbon and Nitrogen Metabolism of Heterotrophic Cells in Arabidopsis1

    PubMed Central

    Anoman, Armand D.; Muñoz-Bertomeu, Jesús; Rosa-Téllez, Sara; Flores-Tornero, María; Serrano, Ramón; Bueso, Eduardo; Fernie, Alisdair R.; Segura, Juan; Ros, Roc

    2015-01-01

    This study functionally characterizes the Arabidopsis (Arabidopsis thaliana) plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in photosynthetic and heterotrophic cells. We expressed the enzyme in gapcp double mutants (gapcp1gapcp2) under the control of photosynthetic (Rubisco small subunit RBCS2B [RBCS]) or heterotrophic (phosphate transporter PHT1.2 [PHT]) cell-specific promoters. Expression of GAPCp1 under the control of RBCS in gapcp1gapcp2 had no significant effect on the metabolite profile or growth in the aerial part (AP). GAPCp1 expression under the control of the PHT promoter clearly affected Arabidopsis development by increasing the number of lateral roots and having a major effect on AP growth and metabolite profile. Our results indicate that GAPCp1 is not functionally important in photosynthetic cells but plays a fundamental role in roots and in heterotrophic cells of the AP. Specifically, GAPCp activity may be required in root meristems and the root cap for normal primary root growth. Transcriptomic and metabolomic analyses indicate that the lack of GAPCp activity affects nitrogen and carbon metabolism as well as mineral nutrition and that glycerate and glutamine are the main metabolites responding to GAPCp activity. Thus, GAPCp could be an important metabolic connector of glycolysis with other pathways, such as the phosphorylated pathway of serine biosynthesis, the ammonium assimilation pathway, or the metabolism of γ-aminobutyrate, which in turn affect plant development. PMID:26134167

  5. Apicoplast-Localized Lysophosphatidic Acid Precursor Assembly Is Required for Bulk Phospholipid Synthesis in Toxoplasma gondii and Relies on an Algal/Plant-Like Glycerol 3-Phosphate Acyltransferase

    PubMed Central

    Callahan, Damien L.; Dubois, David; van Dooren, Giel G.; Shears, Melanie J.; Cesbron-Delauw, Marie-France; Maréchal, Eric; McConville, Malcolm J.; McFadden, Geoffrey I.; Yamaryo-Botté, Yoshiki; Botté, Cyrille Y.

    2016-01-01

    Most apicomplexan parasites possess a non-photosynthetic plastid (the apicoplast), which harbors enzymes for a number of metabolic pathways, including a prokaryotic type II fatty acid synthesis (FASII) pathway. In Toxoplasma gondii, the causative agent of toxoplasmosis, the FASII pathway is essential for parasite growth and infectivity. However, little is known about the fate of fatty acids synthesized by FASII. In this study, we have investigated the function of a plant-like glycerol 3-phosphate acyltransferase (TgATS1) that localizes to the T. gondii apicoplast. Knock-down of TgATS1 resulted in significantly reduced incorporation of FASII-synthesized fatty acids into phosphatidic acid and downstream phospholipids and a severe defect in intracellular parasite replication and survival. Lipidomic analysis demonstrated that lipid precursors are made in, and exported from, the apicoplast for de novo biosynthesis of bulk phospholipids. This study reveals that the apicoplast-located FASII and ATS1, which are primarily used to generate plastid galactolipids in plants and algae, instead generate bulk phospholipids for membrane biogenesis in T. gondii. PMID:27490259

  6. Two glycerol 3-phosphate dehydrogenase isogenes from Candida versatilis SN-18 play an important role in glycerol biosynthesis under osmotic stress.

    PubMed

    Mizushima, Daiki; Iwata, Hisashi; Ishimaki, Yuki; Ogihara, Jun; Kato, Jun; Kasumi, Takafumi

    2016-05-01

    Two isogenes of glycerol 3-phosphate dehydrogenase (GPD) from Candida versatilis SN-18 were cloned and sequenced. These intronless genes (Cagpd1 and Cagpd2) were both predicted to encode a 378 amino acid polypeptide, and the deduced amino acid sequences mutually showed 76% identity. Interestingly, Cagpd1 and Cagpd2 were located tandemly in a locus of genomic DNA within a 262 bp interval. To our knowledge, this represents a novel instance of isogenic genes relating to glucose metabolism. The stress response element (STRE) was found respectively at -93 to -89 bp upstream of the 5'end of Cagpd1 and -707 to -703 bp upstream of Cagpd2, indicating that these genes are involved in osmotic stress response. In heterologous expression using a gpd1Δgpd2Δ double deletion mutant of Saccharomyces cerevisiae, Cagpd1 and Cagpd2 transformants complemented the function of GPD, with Cagpd2 being much more effective than Cagpd1 in promoting growth and glycerol synthesis. Phylogenetic analysis of the amino acid sequences suggested that Cagpd1p and Cagpd2p are NADP(+)-dependent GPDs (EC 1.1.1.94). However, crude enzyme extract from Cagpd1 and Cagpd2 transformants showed GPD activity with only NAD(+) as cofactor. Hence, both Cagpd1p and Cagpd2p are likely NAD(+)-dependent GPDs (EC 1.1.1.8), similar to GPDs from S. cerevisiae and Candida magnoliae.

  7. Detection of a mutation in the intron of Sperm-specific glyceraldehyde-3-phosphate dehydrogenase gene in patients with fibrous sheath dysplasia of the sperm flagellum.

    PubMed

    Elkina, Y L; Kuravsky, M L; Bragina, E E; Kurilo, L F; Khayat, S S; Sukhomlinova, M Y; Schmalhausen, E V

    2017-03-01

    The fibrous sheath is a unique cytoskeletal structure surrounding the axoneme and outer dense fibres of the sperm flagellum. Dysplasia of the fibrous sheath (DFS) is a defect of spermatozoa observed in severe asthenozoospermic patients and characterised by morphologically abnormal flagella with distorted fibrous sheaths. Sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS) is a glycolytic enzyme that is tightly associated with the fibrous sheath of the sperm flagellum. The enzymatic activity of GAPDS was investigated in sperm samples of seven patients with DFS and compared to that of normal spermatozoa (n = 10). The difference in GAPDS activity in DFS and normal spermatozoa was statistically significant (0.19 ± 0.11 and 0.75 ± 0.11 μmol NADH per min per mg protein respectively). Immunochemical staining revealed irregular distribution of GAPDS in the flagellum of DFS spermatozoa. Other five samples with typical alterations in the fibrous sheath were assayed for mutations within human GAPDS gene. In all five cases, a replacement of guanine by adenine was revealed in the intron region between the sixth and the seventh exons of GAPDS. It is assumed that the deficiency in GAPDS observed in most DFS sperm samples is ascribable to a disorder in the regulation of GAPDS expression caused by the mutation in the intron region of GAPDS gene.

  8. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of glyceraldehyde-3-phosphate dehydrogenase from Streptococcus agalactiae NEM316

    PubMed Central

    Nagarajan, Revathi; Ponnuraj, Karthe

    2014-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an essential enzyme involved in glycolysis. Despite lacking the secretory signal sequence, this cytosolic enzyme has been found localized at the surface of several bacteria and fungi. As a surface protein, GAPDH exhibits various adhesive functions, thereby facilitating colonization and invasion of host tissues. Streptococcus agalactiae, also known as group B streptococcus (GBS), binds onto the host using its surface adhesins and causes sepsis and pneumonia in neonates. GAPDH is one of the surface adhesins of GBS binding to human plasminogen and is a virulent factor associated with host colonization. Although the surface-associated GAPDH has been shown to bind to a variety of host extracellular matrix (ECM) molecules in various bacteria, the molecular mechanism underlying their interaction is not fully understood. To investigate this, structural studies on GAPDH of S. agalactiae were initiated. The gapC gene of S. agalactiae NEM316 encoding GAPDH protein was cloned into pET-28a vector, overexpressed in Escherichia coli BL21(DE3) cells and purified to homogeneity. The purified protein was crystallized using the hanging-drop vapour-diffusion method. The GAPDH crystals obtained in two different crystallization conditions diffracted to 2.8 and 2.6 Å resolution, belonging to two different space groups P21 and P212121, respectively. The structure was solved by molecular replacement and structure refinement is now in progress. PMID:25005093

  9. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase.

    PubMed

    Michnick, S; Roustan, J L; Remize, F; Barre, P; Dequin, S

    1997-07-01

    The possibility of the diversion of carbon flux from ethanol towards glycerol in Saccharomyces cerevisiae during alcoholic fermentation was investigated. Variations in the glycerol 3-phosphate dehydrogenase (GPDH) level and similar trends for alcohol dehydrogenase (ADH), pyruvate decarboxylase and glycerol-3-phosphatase were found when low and high glycerol-forming wine yeast strains were compared. GPDH is thus a limiting enzyme for glycerol production. Wine yeast strains with modulated GPD1 (encoding one of the two GPDH isoenzymes) expression were constructed and characterized during fermentation on glucose-rich medium. Engineered strains fermented glucose with a strongly modified [glycerol] : [ethanol] ratio. gpd1delta mutants exhibited a 50% decrease in glycerol production and increased ethanol yield. Overexpression of GPD1 on synthetic must (200 g/l glucose) resulted in a substantial increase in glycerol production ( x 4) at the expense of ethanol. Acetaldehyde accumulated through the competitive regeneration of NADH via GPDH. Accumulation of by-products such as pyruvate, acetate, acetoin, 2,3 butane-diol and succinate was observed, with a marked increase in acetoin production.

  10. Overexpression of the triose phosphate translocator (TPT) complements the abnormal metabolism and development of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase mutants.

    PubMed

    Flores-Tornero, María; Anoman, Armand D; Rosa-Téllez, Sara; Toujani, Walid; Weber, Andreas P M; Eisenhut, Marion; Kurz, Samantha; Alseekh, Saleh; Fernie, Alisdair R; Muñoz-Bertomeu, Jesús; Ros, Roc

    2017-03-01

    The presence of two glycolytic pathways working in parallel in plastids and cytosol has complicated the understanding of this essential process in plant cells, especially the integration of the plastidial pathway into the metabolism of heterotrophic and autotrophic organs. It is assumed that this integration is achieved by transport systems, which exchange glycolytic intermediates across plastidial membranes. However, it is unknown whether plastidial and cytosolic pools of 3-phosphoglycerate (3-PGA) can equilibrate in non-photosynthetic tissues. To resolve this question, we employed Arabidopsis mutants of the plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp) that express the triose phosphate translocator (TPT) under the control of the 35S (35S:TPT) or the native GAPCp1 (GAPCp1:TPT) promoters. TPT expression under the control of both promoters complemented the vegetative developmental defects and metabolic disorders of the GAPCp double mutants (gapcp1gapcp2). However, as the 35S is poorly expressed in the tapetum, full vegetative and reproductive complementation of gapcp1gapcp2 was achieved only by transforming this mutant with the GAPCp1:TPT construct. Our results indicate that the main function of GAPCp is to supply 3-PGA for anabolic pathways in plastids of heterotrophic cells and suggest that the plastidial glycolysis may contribute to fatty acid biosynthesis in seeds. They also suggest a 3-PGA deficiency in the plastids of gapcp1gapcp2, and that 3-PGA pools between cytosol and plastid do not equilibrate in heterotrophic cells.

  11. Proteome profiling of the dimorphic fungus Penicillium marneffei extracellular proteins and identification of glyceraldehyde-3-phosphate dehydrogenase as an important adhesion factor for conidial attachment.

    PubMed

    Lau, Susanna K P; Tse, Herman; Chan, Joanna S Y; Zhou, Anna C; Curreem, Shirly O T; Lau, Candy C Y; Yuen, Kwok-Yung; Woo, Patrick C Y

    2013-12-01

    Despite being the most important thermal dimorphic fungus causing systemic mycosis in Southeast Asia, the pathogenic mechanisms of Penicillium marneffei remain largely unknown. By comparing the extracellular proteomes of P. marneffei in mycelial and yeast phases, we identified 12 differentially expressed proteins among which glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and heat shock protein 60 (HSP60) were found to be upregulated in mycelial and yeast phases respectively. Based on previous findings in other pathogens, we hypothesized that these two extracellular proteins may be involved in adherence during P. marneffei-host interaction. Using inhibition assays with recombinant GAPDH (rGAPDH) proteins and anti-rGAPDH sera, we demonstrated that adhesion of P. marneffei conidia to fibronectin and laminin was inhibited by rGAPDH or rabbit anti-rGAPDH serum in a dose-dependent manner. Similarly, a dose-dependent inhibition of conidial adherence to A549 pneumocytes by rGAPDH or rabbit anti-rGAPDH serum was observed, suggesting that P. marneffei GAPDH can mediate binding of conidia to human extracellular matrix proteins and pneumocytes. However, HSP60 did not exhibit similar inhibition on conidia adherence, and neither GAPDH norHSP60 exhibited inhibition on adherence to J774 or THP-1 macrophage cell lines. This report demonstrates GAPDH as an adherence factor in P. marneffei by mediating conidia adherence to host bronchoalveolar epithelium during the early establishment phase of infection.

  12. Determination of Cellular Phosphatidylinositol-3-phosphate (PI3P) Levels Using a Fluorescently Labelled Selective PI3P Binding Domain (PX)

    PubMed Central

    Munson, Michael J.; Ganley, Ian G.

    2017-01-01

    The lipid Phosphatidylinositol-3-phosphate [PtdIns3P or PI(3)P] plays many membrane trafficking roles and is primarily produced by the Class III PI3K, VPS34. Determining the level of cellular PI(3)P however can be complex. Extraction of cellular lipids by methanol/chloroform can struggle to separate and identify distinct phospholipid species. Alternately mass spectrometry may be utilised but this requires significant set up of specialised equipment and time to utilise. Use of a PI(3)P-binding-specific recombinant protein domain is a quick method for ascertaining cellular PI(3)P levels and can also allow visualisation of sub-cellular localisation. The PX domain of p40phox (herein referred to as PX) is very specific for PI(3)P over other phospholipid species (Kanai et al., 2001). However, expressing PX directly in cells can be problematic, as it will act in a dominant negative manner to bind and sequester PI(3)P with greater affinity than endogenous proteins, thus disturbing cellular pathways and the normal balance of PI(3)P levels. Using fluorescently labelled PX following cell fixation is therefore more suitable, as it is able to highlight PI(3)P rich structures without risk of perturbing the system. PMID:28127574

  13. Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations.

    PubMed

    Guadalupe-Medina, Víctor; Metz, Benjamin; Oud, Bart; van Der Graaf, Charlotte M; Mans, Robert; Pronk, Jack T; van Maris, Antonius J A

    2014-01-01

    Glycerol production by Saccharomyces cerevisiae, which is required for redox-cofactor balancing in anaerobic cultures, causes yield reduction in industrial bioethanol production. Recently, glycerol formation in anaerobic S. cerevisiae cultures was eliminated by expressing Escherichia coli (acetylating) acetaldehyde dehydrogenase (encoded by mhpF) and simultaneously deleting the GPD1 and GPD2 genes encoding glycerol-3-phosphate dehydrogenase, thus coupling NADH reoxidation to reduction of acetate to ethanol. Gpd⁻ strains are, however, sensitive to high sugar concentrations, which complicates industrial implementation of this metabolic engineering concept. In this study, laboratory evolution was used to improve osmotolerance of a Gpd⁻ mhpF-expressing S. cerevisiae strain. Serial batch cultivation at increasing osmotic pressure enabled isolation of an evolved strain that grew anaerobically at 1 M glucose, at a specific growth rate of 0.12 h⁻¹. The evolved strain produced glycerol at low concentrations (0.64 ± 0.33 g l⁻¹). However, these glycerol concentrations were below 10% of those observed with a Gpd⁺ reference strain. Consequently, the ethanol yield on sugar increased from 79% of the theoretical maximum in the reference strain to 92% for the evolved strains. Genetic analysis indicated that osmotolerance under aerobic conditions required a single dominant chromosomal mutation, and one further mutation in the plasmid-borne mhpF gene for anaerobic growth.

  14. The complex of band 3 protein of the human erythrocyte membrane and glyceraldehyde-3-phosphate dehydrogenase: stoichiometry and competition by aldolase.

    PubMed

    von Rückmann, Bogdan; Schubert, Dieter

    2002-02-10

    The cytoplasmic domain of band 3, the main intrinsic protein of the erythrocyte membrane, possesses binding sites for a variety of other proteins of the membrane and the cytoplasm, including the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and aldolase. We have studied the stoichiometry of the complexes of human band 3 protein and GAPDH and the competition by aldolase for the binding sites. In addition, we have tried to verify the existence of mixed band 3/GAPDH/aldolase complexes, which could represent the nucleus of a putative glycolytic multienzyme complex on the erythrocyte membrane. The technique applied was analytical ultracentrifugation, in particular sedimentation equilibrium analysis, on mixtures of detergent-solubilized band 3 and dye-labelled GAPDH, in part of the experiments supplemented by aldolase. The results obtained were analogous to those reported for the binding of hemoglobin, aldolase and band 4.1 to band 3: (1) the predominant or even sole band 3 oligomer forming the binding site is the tetramer. (2) The band 3 tetramer can bind up to four tetramers of GAPDH. (3) The band 3/GAPDH complexes are unstable. (4) Artificially stabilized band 3 dimers also represent GAPDH binding sites. In addition it was found that aldolase competes with GAPDH for binding to the band 3 tetramer, and that ternary complexes of band 3 tetramers, GAPDH and aldolase do exist.

  15. Ste12/Fab1 phosphatidylinositol-3-phosphate 5-kinase is required for nitrogen-regulated mitotic commitment and cell size control

    PubMed Central

    Schauries, Marie; Kaczmarek, Adrian; Franz-Wachtel, Mirita; Du, Wei; Krug, Karsten; Maček, Boris; Petersen, Janni

    2017-01-01

    Tight coupling of cell growth and cell cycle progression enable cells to adjust their rate of division, and therefore size, to the demands of proliferation in varying nutritional environments. Nutrient stress promotes inhibition of Target Of Rapamycin Complex 1 (TORC1) activity. In fission yeast, reduced TORC1 activity advances mitotic onset and switches growth to a sustained proliferation at reduced cell size. A screen for mutants, that failed to advance mitosis upon nitrogen stress, identified a mutant in the PIKFYVE 1-phosphatidylinositol-3-phosphate 5-kinase fission yeast homolog Ste12. Ste12PIKFYVE deficient mutants were unable to advance the cell cycle to reduce cell size after a nitrogen downshift to poor nitrogen (proline) growth conditions. While it is well established that PI(3,5)P2 signalling is required for autophagy and that Ste12PIKFYVE mutants have enlarged vacuoles (yeast lysosomes), neither a block to autophagy or mutants that independently have enlarged vacuoles had any impact upon nitrogen control of mitotic commitment. The addition of rapamycin to Ste12PIKFYVE deficient mutants reduced cell size at division to suggest that Ste12PIKFYVE possibly functions upstream of TORC1. ste12 mutants display increased Torin1 (TOR inhibitor) sensitivity. However, no major impact on TORC1 or TORC2 activity was observed in the ste12 deficient mutants. In summary, Ste12PIKFYVE is required for nitrogen-stress mediated advancement of mitosis to reduce cell size at division. PMID:28273166

  16. Effects of deletion of glycerol-3-phosphate dehydrogenase and glutamate dehydrogenase genes on glycerol and ethanol metabolism in recombinant Saccharomyces cerevisiae.

    PubMed

    Kim, Jin-Woo; Chin, Young-Wook; Park, Yong-Cheol; Seo, Jin-Ho

    2012-01-01

    Bioethanol is currently used as an alternative fuel for gasoline worldwide. For economic production of bioethanol by Saccharomyces cerevisiae, formation of a main by-product, glycerol, should be prevented or minimized in order to reduce a separation cost of ethanol from fermentation broth. In this study, S. cerevisiae was engineered to investigate the effects of the sole and double disruption of NADH-dependent glycerol-3-phosphate dehydrogenase 1 (GPD1) and NADPH-requiring glutamate dehydrogenase 1 (GDH1) on the production of glycerol and ethanol from glucose. Even though sole deletion of GPD1 or GDH1 reduced glycerol production, double deletion of GPD1 and GDH1 resulted in the lowest glycerol concentration of 2.31 g/L, which was 46.4% lower than the wild-type strain. Interestingly, the recombinant S. cerevisiae ∆GPD1∆GDH1 strain showed a slight improvement in ethanol yield (0.414 g/g) compared with the wild-type strain (0.406 g/g). Genetic engineering of the glycerol and glutamate metabolic pathways modified NAD(P)H-requiring metabolic pathways and exerted a positive effect on glycerol reduction without affecting ethanol production.

  17. Cloning and molecular characterization of a glycerol-3-phosphate O-acyltransferase (GPAT) gene from Echium (Boraginaceae) involved in the biosynthesis of cutin polyesters.

    PubMed

    Mañas-Fernández, Aurora; Li-Beisson, Yonghua; Alonso, Diego López; García-Maroto, Federico

    2010-09-01

    The glycerol-based lipid polyester called cutin is a main component of cuticle, the protective interface of aerial plant organs also controlling compound exchange with the environment. Though recent progress towards understanding of cutin biosynthesis has been made in Arabidopsis thaliana, little is known in other plants. One key step in this process is the acyl transfer reaction to the glycerol backbone. Here we report the cloning and molecular characterization of EpGPAT1, a gene encoding a glycerol-3-phosphate O-acyltransferase (GPAT) from Echium pitardii (Boraginaceae) with high similarity to the AtGPAT4/AtGPAT8 of Arabidopsis. Quantitative analysis by qRT-PCR showed highest expression of EpGPAT1 in seeds, roots, young leaves and flowers. Acyltransferase activity of EpGPAT1 was evidenced by heterologous expression in yeast. Ectopic expression in leaves of tobacco plants lead to an increase of C16 and C18 hydroxyacids and alpha,omega-diacids in the cell wall fraction, indicating a role in the biosynthesis of polyesters. Analysis of the genomic organization in Echium revealed the presence of EpGPAT2, a closely related gene which was found to be mostly expressed in developing leaves and flowers. The presence of a conserved HAD-like domain at the N-terminal moiety of GPATs from Echium, Arabidopsis and other plant species suggests a possible phosphohydrolase activity in addition to the reported acyltransferase activity. Evolutive implications of this finding are discussed.

  18. Metabolic and structural evidence for the existence of a third species of polyphosphoinositide in cells: D-phosphatidyl-myo-inositol 3-phosphate.

    PubMed Central

    Stephens, L; Hawkins, P T; Downes, C P

    1989-01-01

    When human 1321 N1 astrocytoma cells were labelled to steady state with [3H]inositol and briefly with [32P]orthophosphate, a compound which contained both radiotracers and which co-migrated with phosphatidylinositol-myo-inositol 4-phosphate during t.l.c. could be extracted in acidic chloroform/methanol. Treatment with methylamine under conditions which lead to deacylation of conventional glycerophospholipids yielded a water-soluble moiety which was labelled with both radioisotopes and was eluted from an anion-exchange h.p.l.c. column with a retention time similar to, but distinct from, that of glycerophosphoinositol 4-phosphate. Experiments using sodium periodate and selective phosphatase enzymes to degrade this compound systematically generated a series of products which suggested the structure of the parent phospholipid was phosphatidyl-myo-inositol 3-phosphate (PtdIns3P). PtdIns3P is metabolically closely related to the pool(s) of inositol phospholipid(s) that serves as substrate(s) for an agonist-sensitive phosphoinositidase C, as the levels of PtdIns3P fell significantly when 1321 N1 cells were stimulated with carbachol. The relative rate of turnover of the inositol moiety of PtdIns3P is similar to that of both of the major polyphosphoinositides and significantly higher than that of total cellular phosphatidyl-myo-inositol. This suggests that all three polyphosphoinositides are synthesized from a common, rapidly metabolized, pool of phosphatidyl-myo-inositol. PMID:2541684

  19. Phosphorus-31, sup 15 N, and sup 13 C NMR of glyphosate: Comparison of pH titrations to the herbicidal dead-end complex with 5-enolpyruvoylshikimate-3-phosphate synthase

    SciTech Connect

    Castellino, S.; Leo, G.C.; Sammons, R.D.; Sikorski, J.A. )

    1989-05-02

    The herbicidal dead-end ternary complex (E{sup S3P}{sub Glyph}) of glyphosate (N-(phosphonomethyl)glycine) with 5-enolpyruvoylshikimate-3-phosphate synthase (EPSPS) and the substrate shikimate 3-phosphate (S3P) has been characterized by {sup 31}P, {sup 15}N, and {sup 13}C NMR. The NMR spectra of EPSPS-bound glyphosate show unique chemical shifts ({delta}) for each of the three nuclei. By {sup 31}P NMR, glyphosate in the dead-end complex is a distinct species 3.5 ppm downfield from free glyphosate. The {sup 13}C signal of glyphosate in the dead-end complex is shifted 4 ppm downfield from that of free glyphosate. The {sup 15}N signal for glyphosate (99%) in the dead-end complex is 5 ppm further downfield than that of any free zwitterionic species and 10 ppm downfield from that of the average free species at pH 10.1. The structures of each ionic state of glyphosate are modeled with force field calculations by using MacroModel. A correlation is made for the {sup 31}P {delta} and the C-P-O bond angle, and the {sup 13}C and {sup 15}N {delta} values are postulated to be related to C-C-O and C-N-C bond angles, respectively. The downfield {sup 31}P chemical shift perturbation for S3P in the EPSPS binary complex is consistent with ionization of the 3-phosphate of S3P upon binding. Comparison with the S3P {sup 31}P {delta} vs pH titration curve specifies predominantly the dianion of the 3-phosphate in the E{sup S3P} binary complex, while the E{sup S3P}{sub Glyph} complex indicates net protonation at the 3-phosphate. Chemical shift perturbations of this latter type may be explained by changes in the O-P-O bond angle.

  20. Functional characterization of the phosphorylating D-glyceraldehyde 3-phosphate dehydrogenase from the archaeon Methanothermus fervidus by comparative molecular modelling and site-directed mutagenesis.

    PubMed

    Talfournier, F; Colloc'h, N; Mornon, J P; Branlant, G

    1999-10-01

    Phosphorylating archaeal D-glyceraldehyde 3-phosphate dehydrogenases (GraP-DHs) share only 15-20% identity with their glycolytic bacterial and eukaryotic counterparts. Unlike the latter which are NAD-specific, archaeal GraP-DHs exhibit a dual-cofactor specificity with a marked preference for NADP. In the present study, we have constructed a three-dimensional model of the Methanothermus fervidus GraP-DH based upon the X-ray structures of the Bacillus stearothermophilus and Escherichia coli GraP-DHs. The overall structure of the archaeal enzyme is globally similar to homology modelling-derived structures, in particular for the cofactor binding domain, which might adopt a classical Rossmann fold. M. fervidus GraP-DH can be considered as a dimer of dimers which exhibits negative and positive cooperativity in binding the coenzymes NAD and NADP, respectively. As expected, the differences between the model and the templates are located mainly within the loops. Based on the predictions derived from molecular modelling, site-directed mutagenesis was performed to characterize better the cofactor binding pocket and the catalytic domain. The Lys32Ala, Lys32Glu and Lys32Asp mutants led to a drastic increase in the Km value for NADP (i.e. 165-, 500- and 1000-fold, respectively), thus demonstrating that the invariant Lys32 residue is one of the most important determinants favouring the adenosine 2'-PO42- binding of NADP. The involvement of the side chain of Asn281, which was postulated to play a role equivalent to that of the Asn313 of bacterial and eukaryotic GraP-DHs in fixing the position of the nicotinamide ring in a syn orientation [Fabry, S. & Hensel, R. (1988) Gene 64, 189-197], was ruled out. Most of the amino acids involved in catalysis and in substrate recognition in bacterial and eukaryotic GraP-DHs are not conserved in the archaeal enzyme except for the essential Cys149. Inspection of our model suggests that side chains of invariant residues Asn150, Arg176, Arg177 and

  1. Using a Personal Glucose Meter and Alkaline Phosphatase for Point-of-Care Quantification of Galactose-1-Phosphate Uridyltransferase in Clinical Galactosemia Diagnosis.

    PubMed

    Zhang, Jingjing; Xiang, Yu; Novak, Donna E; Hoganson, George E; Zhu, Junjie; Lu, Yi

    2015-10-01

    The personal glucose meter (PGM) was recently shown to be a general meter to detect many targets. Most studies, however, focus on transforming either target binding or enzymatic activity that cleaves an artificial substrate into the production of glucose. More importantly, almost all reports exhibit their methods by using artificial samples, such as buffers or serum samples spiked with the targets. To expand the technology to even broader targets and to validate its potential in authentic, more complex clinical samples, we herein report expansion of the PGM method by using alkaline phosphatase (ALP) that links the enzymatic activity of galactose-1-phosphate uridyltransferase to the production of glucose, which allows point-of-care galactosemia diagnosis in authentic human clinical samples. Given the presence of ALP in numerous enzymatic assays for clinical diagnostics, the methods demonstrated herein advance the field closer to point-of-care detection of a wide range of targets in real clinical samples.

  2. An emerging link in stem cell mobilization between activation of the complement cascade and the chemotactic gradient of sphingosine-1-phosphate.

    PubMed

    Ratajczak, Mariusz Z; Borkowska, Sylwia; Ratajczak, Janina

    2013-01-01

    Under steady-state conditions, hematopoietic stem/progenitor cells (HSPCs) egress from bone marrow (BM) and enter peripheral blood (PB) where they circulate at low levels. Their number in PB, however, increases significantly in several stress situations related to infection, organ/tissue damage, or strenuous exercise. Pharmacologically mediated enforced egress of HSPCs from the BM microenvironment into PB is called "mobilization", and this phenomenon has been exploited in hematological transplantology as a means to obtain HSPCs for hematopoietic reconstitution. In this review we will present the accumulated evidence that innate immunity, including the complement cascade and the granulocyte/monocyte lineage, and the PB plasma level of the bioactive lipid sphingosine-1-phosphate (S1P) together orchestrate this evolutionarily conserved mechanism that directs trafficking of HSPCs.

  3. Sphingosine-1-phosphate stimulates human glioma cell proliferation through Gi-coupled receptors: role of ERK MAP kinase and phosphatidylinositol 3-kinase beta.

    PubMed

    Van Brocklyn, James; Letterle, Catherine; Snyder, Pamela; Prior, Thomas

    2002-07-26

    The regulation of glioma cell proliferation by sphingosine-1-phosphate (S1P) was studied using the human glioblastoma cell line U-373 MG. U-373 MG cells responded mitogenically to nanomolar concentrations of S1P, and express mRNA encoding the S1P receptors S1P1/endothelial differentiation gene (EDG)-1, S1P3/EDG-3 and S1P2/EDG-5. S1P-induced proliferation required extracellular signal-regulated kinase activation and was partially sensitive to pertussis toxin and wortmannin, indicating involvement of a Gi-coupled receptor and phosphatidylinositol 3-kinase. Moreover, S1P1, S1P3 and S1P2 receptors are expressed in the majority of human glioblastomas as determined by reverse transcriptase-polymerase chain reaction analysis. Thus, S1P signaling through EDG receptors may contribute to glioblastoma growth in vivo.

  4. Calcium- and Nitric Oxide-Dependent Nuclear Accumulation of Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase in Response to Long Chain Bases in Tobacco BY-2 Cells.

    PubMed

    Testard, Ambroise; Da Silva, Daniel; Ormancey, Mélanie; Pichereaux, Carole; Pouzet, Cécile; Jauneau, Alain; Grat, Sabine; Robe, Eugénie; Brière, Christian; Cotelle, Valérie; Mazars, Christian; Thuleau, Patrice

    2016-10-01

    Sphinganine or dihydrosphingosine (d18:0, DHS), one of the most abundant free sphingoid long chain bases (LCBs) in plants, is known to induce a calcium-dependent programmed cell death (PCD) in plants. In addition, in tobacco BY-2 cells, it has been shown that DHS triggers a rapid production of H2O2 and nitric oxide (NO). Recently, in analogy to what is known in the animal field, plant cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC), a ubiquitous enzyme involved in glycolysis, has been suggested to fulfill other functions associated with its oxidative post-translational modifications such as S-nitrosylation on cysteine residues. In particular, in mammals, stress signals inducing NO production promote S-nitrosylation of GAPC and its subsequent translocation into the nucleus where the protein participates in the establishment of apoptosis. In the present study, we investigated the behavior of GAPC in tobacco BY-2 cells treated with DHS. We found that upon DHS treatment, an S-nitrosylated form of GAPC accumulated in the nucleus. This accumulation was dependent on NO production. Two genes encoding GAPCs, namely Nt(BY-2)GAPC1 and Nt(BY-2)GAPC2, were cloned. Transient overexpression of Nt(BY-2)GAPC-green fluorescent protein (GFP) chimeric constructs indicated that both proteins localized in the cytoplasm as well as in the nucleus. Mutating into serine the two cysteine residues thought to be S-nitrosylated in response to DHS did not modify the localization of the proteins, suggesting that S-nitrosylation of GAPCs was probably not necessary for their nuclear relocalization. Interestingly, using Förster resonance energy transfer experiments, we showed that Nt(BY-2)GAPCs interact with nucleic acids in the nucleus. When GAPCs were mutated on their cysteine residues, their interaction with nucleic acids was abolished, suggesting a role for GAPCs in the protection of nucleic acids against oxidative stress.

  5. A Land-Plant-Specific Glycerol-3-Phosphate Acyltransferase Family in Arabidopsis: Substrate Specificity, sn-2 Preference, and Evolution1[W][OA

    PubMed Central

    Yang, Weili; Simpson, Jeffrey P.; Li-Beisson, Yonghua; Beisson, Fred; Pollard, Mike; Ohlrogge, John B.

    2012-01-01

    Arabidopsis (Arabidopsis thaliana) has eight glycerol-3-phosphate acyltransferase (GPAT) genes that are members of a plant-specific family with three distinct clades. Several of these GPATs are required for the synthesis of cutin or suberin. Unlike GPATs with sn-1 regiospecificity involved in membrane or storage lipid synthesis, GPAT4 and -6 are unique bifunctional enzymes with both sn-2 acyltransferase and phosphatase activity resulting in 2-monoacylglycerol products. We present enzymology, pathway organization, and evolutionary analysis of this GPAT family. Within the cutin-associated clade, GPAT8 is demonstrated as a bifunctional sn-2 acyltransferase/phosphatase. GPAT4, -6, and -8 strongly prefer C16:0 and C18:1 ω-oxidized acyl-coenzyme As (CoAs) over unmodified or longer acyl chain substrates. In contrast, suberin-associated GPAT5 can accommodate a broad chain length range of ω-oxidized and unsubstituted acyl-CoAs. These substrate specificities (1) strongly support polyester biosynthetic pathways in which acyl transfer to glycerol occurs after oxidation of the acyl group, (2) implicate GPAT specificities as one major determinant of cutin and suberin composition, and (3) argue against a role of sn-2-GPATs (Enzyme Commission 2.3.1.198) in membrane/storage lipid synthesis. Evidence is presented that GPAT7 is induced by wounding, produces suberin-like monomers when overexpressed, and likely functions in suberin biosynthesis. Within the third clade, we demonstrate that GPAT1 possesses sn-2 acyltransferase but not phosphatase activity and can utilize dicarboxylic acyl-CoA substrates. Thus, sn-2 acyltransferase activity extends to all subbranches of the Arabidopsis GPAT family. Phylogenetic analyses of this family indicate that GPAT4/6/8 arose early in land-plant evolution (bryophytes), whereas the phosphatase-minus GPAT1 to -3 and GPAT5/7 clades diverged later with the appearance of tracheophytes. PMID:22864585

  6. A BAR-Domain Protein SH3P2, Which Binds to Phosphatidylinositol 3-Phosphate and ATG8, Regulates Autophagosome Formation in Arabidopsis[C][W

    PubMed Central

    Zhuang, Xiaohong; Wang, Hao; Lam, Sheung Kwan; Gao, Caiji; Wang, Xiangfeng; Cai, Yi; Jiang, Liwen

    2013-01-01

    Autophagy is a well-defined catabolic mechanism whereby cytoplasmic materials are engulfed into a structure termed the autophagosome. In plants, little is known about the underlying mechanism of autophagosome formation. In this study, we report that SH3 DOMAIN-CONTAINING PROTEIN2 (SH3P2), a Bin-Amphiphysin-Rvs domain–containing protein, translocates to the phagophore assembly site/preautophagosome structure (PAS) upon autophagy induction and actively participates in the membrane deformation process. Using the SH3P2–green fluorescent protein fusion as a reporter, we found that the PAS develops from a cup-shaped isolation membranes or endoplasmic reticulum–derived omegasome-like structures. Using an inducible RNA interference (RNAi) approach, we show that RNAi knockdown of SH3P2 is developmentally lethal and significantly suppresses autophagosome formation. An in vitro membrane/lipid binding assay demonstrates that SH3P2 is a membrane-associated protein that binds to phosphatidylinositol 3-phosphate. SH3P2 may facilitate membrane expansion or maturation in coordination with the phosphatidylinositol 3-kinase (PI3K) complex during autophagy, as SH3P2 promotes PI3K foci formation, while PI3K inhibitor treatment inhibits SH3P2 from translocating to autophagosomes. Further interaction analysis shows that SH3P2 associates with the PI3K complex and interacts with ATG8s in Arabidopsis thaliana, whereby SH3P2 may mediate autophagy. Thus, our study has identified SH3P2 as a novel regulator of autophagy and provided a conserved model for autophagosome biogenesis in Arabidopsis. PMID:24249832

  7. Identification of a Glyphosate-Resistant Mutant of Rice 5-Enolpyruvylshikimate 3-Phosphate Synthase Using a Directed Evolution Strategy1[W][OA

    PubMed Central

    Zhou, Min; Xu, Honglin; Wei, Xiaoli; Ye, Zhiqiang; Wei, Liping; Gong, Weimin; Wang, Yongqin; Zhu, Zhen

    2006-01-01

    5-Enolpyruvylshikimate 3-phosphate synthase (EPSPS) is a key enzyme in the shikimate pathway and is targeted by the wide-spectrum herbicide glyphosate. Here, we describe the use of a selection system based on directed evolution to select glyphosate-resistant mutants of EPSPS. Using this system, the rice (Oryza sativa) EPSPS gene, mutagenized by Error-Prone polymerase chain reaction, was introduced into an EPSPS-deficient Escherichia coli strain, AB2829, and transformants were selected on minimal medium by functional complementation. Three mutants with high glyphosate resistance were identified in three independent glyphosate selection experiments. Each mutant contained a C317→T transition within the EPSPS coding sequence, causing a change of proline-106 to leucine (P106L) in the protein sequence. Glyphosate resistance assays indicated a 3-fold increase in glyphosate resistance of E. coli expressing the P106L mutant. Affinity of the P106L mutant for glyphosate and phosphoenolpyruvate was decreased about 70-fold and 4.6-fold, respectively, compared to wild-type EPSPS. Analysis based on a kinetic model demonstrates that the P106L mutant has a high glyphosate resistance while retaining relatively high catalytic efficiency at low phosphoenolpyruvate concentrations. A mathematical model derived from the Michaelis-Menten equation was used to characterize the effect of expression level and selection conditions on kinetic (Ki and Km) variation of the mutants. This prediction suggests that the expression level is an important aspect of the selection system. Furthermore, glyphosate resistance of the P106L mutant was confirmed in transgenic tobacco (Nicotiana tabacum), demonstrating the potential for using the P106L mutant in transgenic crops. PMID:16361526

  8. Evolution of a Double Amino Acid Substitution in the 5-Enolpyruvylshikimate-3-Phosphate Synthase in Eleusine indica Conferring High-Level Glyphosate Resistance1

    PubMed Central

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R. Douglas; Powles, Stephen B.

    2015-01-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I + P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action. PMID:25717039

  9. Mice deficient in mitochondrial glycerol-3-phosphate acyltransferase-1 have diminished myocardial triacylglycerol accumulation during lipogenic diet and altered phospholipid fatty acid composition

    PubMed Central

    Lewin, Tal M.; de Jong, Hendrik; Schwerbrock, Nicole J. M.; Hammond, Linda E.; Watkins, Steven M.; Combs, Terry P.; Coleman, Rosalind A.

    2008-01-01

    Glycerol-3-phosphate acyltransferase-1 (GPAT1), which is located on the outer mitochondrial membrane comprises up to 30% of total GPAT activity in the heart. It is one of at least four mammalian GPAT isoforms known to catalyze the initial, committed, and rate limiting step of glycerolipid synthesis. Because excess triacylglycerol (TAG) accumulates in cardiomyocytes in obesity and type 2 diabetes, we determined whether lack of GPAT1 would alter the synthesis of heart TAG and phospholipids after a 2-week high sucrose diet or a 3-month high fat diet. Even in the absence of hypertriglyceridemia, TAG increased 2-fold with both diets in hearts from wildtype mice. In contrast, hearts from Gpat1−/− mice contained 20–80% less TAG than the wildtype controls. In addition, hearts from Gpat1−/− mice fed the high-sucrose diet incorporate 60% less [14C]palmitate into heart TAG as compared to wildtype mice. Because GPAT1 prefers 16:0-CoA to other long chain acyl-CoA substrates, we determined the fatty acid composition of heart phospholipids. Compared to wildtype littermate controls, hearts from Gpat1−/− mice contained a lower amount of 16:0 in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine/phosphatidylinositol and significantly more C20:4n6. Phosphatidylcholine and phosphatidylethanolamine from Gpat1−/− hearts also contained higher amounts of 18:0 and 18:1. Although at least three other GPAT isoforms are expressed in the heart, our data suggest that GPAT1 contributes significantly to cardiomyocyte TAG synthesis during lipogenic or high fat diets and influences the incorporation of 20:4n6 into heart phospholipids. PMID:18522808

  10. Glycerol-3-phosphate acyltransferase-4-deficient mice are protected from diet-induced insulin resistance by the enhanced association of mTOR and rictor.

    PubMed

    Zhang, Chongben; Cooper, Daniel E; Grevengoed, Trisha J; Li, Lei O; Klett, Eric L; Eaton, James M; Harris, Thurl E; Coleman, Rosalind A

    2014-08-01

    Glycerol-3-phosphate acyltransferase (GPAT) activity is highly induced in obese individuals with insulin resistance, suggesting a correlation between GPAT function, triacylglycerol accumulation, and insulin resistance. We asked whether microsomal GPAT4, an isoform regulated by insulin, might contribute to the development of hepatic insulin resistance. Compared with control mice fed a high fat diet, Gpat4(-/-) mice were more glucose tolerant and were protected from insulin resistance. Overexpression of GPAT4 in mouse hepatocytes impaired insulin-suppressed gluconeogenesis and insulin-stimulated glycogen synthesis. Impaired glucose homeostasis was coupled to inhibited insulin-stimulated phosphorylation of Akt(Ser⁴⁷³) and Akt(Thr³⁰⁸). GPAT4 overexpression inhibited rictor's association with the mammalian target of rapamycin (mTOR), and mTOR complex 2 (mTORC2) activity. Compared with overexpressed GPAT3 in mouse hepatocytes, GPAT4 overexpression increased phosphatidic acid (PA), especially di16:0-PA. Conversely, in Gpat4(-/-) hepatocytes, both mTOR/rictor association and mTORC2 activity increased, and the content of PA in Gpat4(-/-) hepatocytes was lower than in controls, with the greatest decrease in 16:0-PA species. Compared with controls, liver and skeletal muscle from Gpat4(-/-)-deficient mice fed a high-fat diet were more insulin sensitive and had a lower hepatic content of di16:0-PA. Taken together, these data demonstrate that a GPAT4-derived lipid signal, likely di16:0-PA, impairs insulin signaling in mouse liver and contributes to hepatic insulin resistance.

  11. Oxygen transfer as a tool for fine-tuning recombinant protein production by Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter.

    PubMed

    Güneş, Hande; Çalık, Pınar

    2016-07-01

    Effects of oxygen transfer on recombinant protein production by Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter were investigated. Recombinant glucose isomerase was chosen as the model protein. Two groups of oxygen transfer strategies were applied, one of which was based on constant oxygen transfer rate where aeration rate was Q O/V = 3 and 10 vvm, and agitation rate was N = 900 min(-1); while the other one was based on constant dissolved oxygen concentrations, C DO = 5, 10, 15, 20 and 40 % in the fermentation broth, by using predetermined exponential glucose feeding with μ o = 0.15 h(-1). The highest cell concentration was obtained as 44 g L(-1) at t = 9 h of the glucose fed-batch phase at C DO = 20 % operation while the highest volumetric and specific enzyme activities were obtained as 4440 U L(-1) and 126 U g(-1) cell, respectively at C DO = 15 % operation. Investigation of specific enzyme activities revealed that keeping C DO at 15 % was more advantageous with an expense of relatively higher by-product formation and lower specific cell growth rate. For this strategy, the highest oxygen transfer coefficient and oxygen uptake rate were K L a = 0.045 s(-1) and OUR = 8.91 mmol m(-3) s(-1), respectively.

  12. S100B impairs glycolysis via enhanced poly(ADP-ribosyl)ation of glyceraldehyde 3-phosphate dehydrogenase in rodent muscle cells.

    PubMed

    Hosokawa, Kaori; Hamada, Yoji; Fujiya, Atsushi; Murase, Masatoshi; Maekawa, Ryuya; Niwa, Yasuhiro; Izumoto, Takako; Seino, Yusuke; Tsunekawa, Shin; Arima, Hiroshi

    2017-02-07

    S100 calcium-binding protein B (S100B), a multifunctional macromolecule mainly expressed in nerve tissues and adipocytes, has been suggested to contribute to the pathogenesis of obesity. To clarify the role of S100B in insulin action and glucose metabolism in peripheral tissues, we investigated the effect of S100B on glycolysis in myoblast and myotube cells. Rat myoblast L6 cells were treated with recombinant mouse S100B to examine glucose consumption, lactate production, glycogen accumulation, glycolytic metabolites and enzyme activity, insulin signaling, and poly(ADP-ribosyl)ation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Glycolytic metabolites were investigated by enzyme assays or metabolome analysis, and insulin signaling was assessed by western blot analysis. Enzyme activity and poly(ADP-ribosyl)ation of GAPDH was evaluated by an enzyme assay and immunoprecipitation followed by dot blot with an anti-poly(ADP-ribose) antibody, respectively. S100B significantly decreased glucose consumption, glucose analog uptake, and lactate production in L6 cells, in either the presence or absence of insulin. In contrast, S100B had no effect on glycogen accumulation and insulin signaling. Metabolome analysis revealed that S100B increased the concentration of glycolytic intermediates upstream of GAPDH. S100B impaired GAPDH activity and increased poly(ADP-ribosyl)ated GAPDH proteins. The effects of S100B on glucose metabolism were mostly canceled by a poly(ADP-ribose) polymerase (PARP) inhibitor. Similar results were obtained in C2C12 myotube cells. We conclude that S100B as a humoral factor may impair glycolysis in muscle cells independently of insulin action, and the effect may be attributed to the inhibition of GAPDH activity from enhanced poly(ADP-ribosyl)ation of the enzyme.

  13. Genetic variability of Yersinia pestis isolates as predicted by PCR-based IS100 genotyping and analysis of structural genes encoding glycerol-3-phosphate dehydrogenase (glpD).

    PubMed

    Motin, Vladimir L; Georgescu, Anca M; Elliott, Jeffrey M; Hu, Ping; Worsham, Patricia L; Ott, Linda L; Slezak, Tomas R; Sokhansanj, Bahrad A; Regala, Warren M; Brubaker, Robert R; Garcia, Emilio

    2002-02-01

    A PCR-based genotyping system that detects divergence of IS100 locations within the Yersinia pestis genome was used to characterize a large collection of isolates of different biovars and geographical origins. Using sequences derived from the glycerol-negative biovar orientalis strain CO92, a set of 27 locus-specific primers was designed to amplify fragments between the end of IS100 and its neighboring gene. Geographically diverse members of the orientalis biovar formed a homogeneous group with identical genotype with the exception of strains isolated in Indochina. In contrast, strains belonging to the glycerol-positive biovar antiqua showed a variety of fingerprinting profiles. Moreover, strains of the biovar medievalis (also glycerol positive) clustered together with the antiqua isolates originated from Southeast Asia, suggesting their close phylogenetic relationships. Interestingly, a Manchurian biovar antiqua strain Nicholisk 51 displayed a genotyping pattern typical of biovar orientalis isolates. Analysis of the glycerol pathway in Y. pestis suggested that a 93-bp deletion within the glpD gene encoding aerobic glycerol-3-phosphate dehydrogenase might account for the glycerol-negative phenotype of the orientalis biovar. The glpD gene of strain Nicholisk 51 did not possess this deletion, although it contained two nucleotide substitutions characteristic of the glpD version found exclusively in biovar orientalis strains. To account for this close relationship between biovar orientalis strains and the antiqua Nicholisk 51 isolate, we postulate that the latter represents a variant of this biovar with restored ability to ferment glycerol. The fact that such a genetic lesion might be repaired as part of the natural evolutionary process suggests the existence of genetic exchange between different Yersinia strains in nature. The relevance of this observation on the emergence of epidemic Y. pestis strains is discussed.

  14. Genetic Variability of Yersinia pestis Isolates as Predicted by PCR-Based IS100 Genotyping and Analysis of Structural Genes Encoding Glycerol-3-Phosphate Dehydrogenase (glpD)

    PubMed Central

    Motin, Vladimir L.; Georgescu, Anca M.; Elliott, Jeffrey M.; Hu, Ping; Worsham, Patricia L.; Ott, Linda L.; Slezak, Tomas R.; Sokhansanj, Bahrad A.; Regala, Warren M.; Brubaker, Robert R.; Garcia, Emilio

    2002-01-01

    A PCR-based genotyping system that detects divergence of IS100 locations within the Yersinia pestis genome was used to characterize a large collection of isolates of different biovars and geographical origins. Using sequences derived from the glycerol-negative biovar orientalis strain CO92, a set of 27 locus-specific primers was designed to amplify fragments between the end of IS100 and its neighboring gene. Geographically diverse members of the orientalis biovar formed a homogeneous group with identical genotype with the exception of strains isolated in Indochina. In contrast, strains belonging to the glycerol-positive biovar antiqua showed a variety of fingerprinting profiles. Moreover, strains of the biovar medievalis (also glycerol positive) clustered together with the antiqua isolates originated from Southeast Asia, suggesting their close phylogenetic relationships. Interestingly, a Manchurian biovar antiqua strain Nicholisk 51 displayed a genotyping pattern typical of biovar orientalis isolates. Analysis of the glycerol pathway in Y. pestis suggested that a 93-bp deletion within the glpD gene encoding aerobic glycerol-3-phosphate dehydrogenase might account for the glycerol-negative phenotype of the orientalis biovar. The glpD gene of strain Nicholisk 51 did not possess this deletion, although it contained two nucleotide substitutions characteristic of the glpD version found exclusively in biovar orientalis strains. To account for this close relationship between biovar orientalis strains and the antiqua Nicholisk 51 isolate, we postulate that the latter represents a variant of this biovar with restored ability to ferment glycerol. The fact that such a genetic lesion might be repaired as part of the natural evolutionary process suggests the existence of genetic exchange between different Yersinia strains in nature. The relevance of this observation on the emergence of epidemic Y. pestis strains is discussed. PMID:11807062

  15. Insulin activation of vacuolar protein sorting 34 mediates localized phosphatidylinositol 3-phosphate production at lamellipodia and activation of mTOR/S6K1.

    PubMed

    Hirsch, Dianne S; Shen, Yi; Dokmanovic, Milos; Yu, Joyce; Mohan, Nishant; Elzarrad, Mohammed Khair; Wu, Wen Jin

    2014-06-01

    The class III phosphatidylinositol 3-kinase, VPS34, phosphorylates the D3 hydroxyl of inositol generating phosphatidylinositol 3-phosphate (ptdins(3)p). Initial studies suggested that ptdins(3)p solely functioned as a component of vesicular and endosomal membranes and that VPS34 did not function in signal transduction. However, VPS34 has recently been shown to be required for insulin-mediated activation of S6 kinase 1 (S6K1). Whether VPS34 activity is directly regulated by insulin is unclear. It is also not known whether VPS34 activity can be spatially restricted in response to extracellular stimuli. Data presented here demonstrate that in response to insulin, VPS34 is activated and translocated to lamellipodia where it produces ptdins(3)p. The localized production of ptdins(3)p is dependent on Src phosphorylation of VPS34. In cells expressing VPS34 with mutations at Y231 or Y310, which are Src-phosphorylation sites, insulin-stimulated VPS34 translocation to the plasma membrane and lamellipodia formation are blocked. mTOR also colocalizes with VPS34 and ptdins(3)p at lamellipodia following insulin-stimulation. In cells expressing the VPS34-Y231F mutant, which blocks lamellipodia formation, mTOR localization at the plasma membrane and insulin-mediated S6K1 activation are reduced. This suggests that mTOR localization at lamellipodia is important for full activation of S6K1 induced by insulin. These data demonstrate that insulin can spatially regulate VPS34 activity through Src-mediated tyrosine phosphorylation and that this membrane localized activity contributes to lamellipodia formation and activation of mTOR/S6K1signaling.

  16. An asynchronous unfolding among molecular different regions of lobster D-glyceraldehyde-3-phosphate dehydrogenase and maltotetraose-forming amylase from an Alcaligenes sp. during guanidine denaturation.

    PubMed

    He, R Q; Zhao, K Y; Yan, Z Z; Li, M

    1993-06-04

    Changes in ultraviolet absorbance and intrinsic protein fluorescence of 1,4-alpha-D-glucan maltotetrahydrolase (EC 3.2.1.60) from an Alcaligenes sp. (Gram-negative bacteria 537.1) and D-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) have been compared with their inactivation during denaturation in guanidinium-Cl solutions. The two enzymes were completely inactivated at GuHCl concentrations less than 0.6 M and this was accompanied by marked absorbance and intrinsic fluorescence changes suggesting exposure of aromatic residues. The changes of the intrinsic fluorescence of the amylase have a relatively constant plateau in emission intensities and maxima at GuHCl concentrations from 0.8-2.0 M, similar to that of muscle GAPDH. The relative activity of the enzyme increased markedly in dilute GuHCl solutions accompanied by very little change of its intrinsic fluorescence at 8 degrees C. The kinetic decrease in emission intensities, excited respectively by 230 nm and 292 nm, was different for the two enzymes. The inactivation was a biphasic process with a fast phase faster than the unfolding rate as measured by fluorescence changes in 0.5 M GuHCl solution. Similar to the inactivation process, changes in intensity of 410 nm NAD fluorescent derivative of GAPDH which is in situ at the active site is also a biphasic process under the same condition. It appears that there may be an unfolding intermediate state of the enzymes and an asynchronous unfolding process among the different regions in the molecules during GuHCl denaturation, this may be due to differences in their flexibility.

  17. Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance.

    PubMed

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R Douglas; Powles, Stephen B

    2015-04-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I+P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action.

  18. DNA vaccine encoding the moonlighting protein Onchocerca volvulus glyceraldehyde-3-phosphate dehydrogenase (Ov-GAPDH) leads to partial protection in a mouse model of human filariasis.

    PubMed

    Steisslinger, Vera; Korten, Simone; Brattig, Norbert W; Erttmann, Klaus D

    2015-10-26

    River blindness, caused by the filarial parasite Onchocerca volvulus, is a major socio-economic and public health problem in Sub-Saharan Africa. In January 2015, The Onchocerciasis Vaccine for Africa (TOVA) Initiative has been launched with the aim of providing new tools to complement mass drug administration (MDA) of ivermectin, thereby promoting elimination of onchocerciasis in Africa. In this context we here present Onchocerca volvulus glyceraldehyde-3-phosphate dehydrogenase (Ov-GAPDH) as a possible DNA vaccine candidate. We report that in a laboratory model for filariasis, immunization with Ov-GAPDH led to a significant reduction of adult worm load and microfilaraemia in BALB/c mice after challenge infection with the filarial parasite Litomosoides sigmodontis. Mice were either vaccinated with Ov-GAPDH.DNA plasmid (Ov-pGAPDH.DNA) alone or in combination with recombinantly expressed Ov-GAPDH protein (Ov-rGAPDH). During the following challenge infection of immunized and control mice with L. sigmodontis, those formulations which included the DNA plasmid, led to a significant reduction of adult worm loads (up to 57% median reduction) and microfilaraemia (up to 94% reduction) in immunized animals. In a further experiment, immunization with a mixture of four overlapping, synthetic Ov-GAPDH peptides (Ov-GAPDHpept), with alum as adjuvant, did not significantly reduce worm loads. Our results indicate that DNA vaccination with Ov-GAPDH has protective potential against filarial challenge infection in the mouse model. This suggests a transfer of the approach into the cattle Onchocerca ochengi model, where it is possible to investigate the effects of this vaccination in the context of a natural host-parasite relationship.

  19. Acute and long-term outcomes in a Drosophila melanogaster model of classic galactosemia occur independently of galactose-1-phosphate accumulation

    PubMed Central

    Daenzer, Jennifer M. I.; Jumbo-Lucioni, Patricia P.; Ryan, Emily L.

    2016-01-01

    ABSTRACT Classic galactosemia (CG) is a potentially lethal inborn error of metabolism that results from the profound loss of galactose-1-phosphate uridylyltransferase (GALT), the second enzyme in the Leloir pathway of galactose metabolism. Neonatal detection and dietary restriction of galactose minimizes or resolves the acute sequelae of CG, but fails to prevent the long-term complications experienced by a majority of patients. One of the substrates of GALT, galactose-1-phosphate (Gal-1P), accumulates to high levels in affected infants, especially following milk exposure, and has been proposed as the key mediator of acute and long-term pathophysiology in CG. However, studies of treated patients demonstrate no association between red blood cell Gal-1P level and long-term outcome severity. Here, we used genetic, epigenetic and environmental manipulations of a Drosophila melanogaster model of CG to test the role of Gal-1P as a candidate mediator of outcome in GALT deficiency. Specifically, we both deleted and knocked down the gene encoding galactokinase (GALK) in control and GALT-null Drosophila, and assessed the acute and long-term outcomes of the resulting animals in the presence and absence of dietary galactose. GALK is the first enzyme in the Leloir pathway of galactose metabolism and is responsible for generating Gal-1P in humans and Drosophila. Our data confirmed that, as expected, loss of GALK lowered or eliminated Gal-1P accumulation in GALT-null animals. However, we saw no concomitant rescue of larval survival or adult climbing or fecundity phenotypes. Instead, we saw that loss of GALK itself was not benign and in some cases phenocopied or exacerbated the outcome seen in GALT-null animals. These findings strongly contradict the long-standing hypothesis that Gal-1P alone underlies pathophysiology of acute and long-term outcomes in GALT-null Drosophila and suggests that other metabolite(s) of galactose, and/or other pathogenic factors, might be involved. PMID

  20. Acute and long-term outcomes in a Drosophila melanogaster model of classic galactosemia occur independently of galactose-1-phosphate accumulation.

    PubMed

    Daenzer, Jennifer M I; Jumbo-Lucioni, Patricia P; Hopson, Marquise L; Garza, Kerry R; Ryan, Emily L; Fridovich-Keil, Judith L

    2016-11-01

    Classic galactosemia (CG) is a potentially lethal inborn error of metabolism that results from the profound loss of galactose-1-phosphate uridylyltransferase (GALT), the second enzyme in the Leloir pathway of galactose metabolism. Neonatal detection and dietary restriction of galactose minimizes or resolves the acute sequelae of CG, but fails to prevent the long-term complications experienced by a majority of patients. One of the substrates of GALT, galactose-1-phosphate (Gal-1P), accumulates to high levels in affected infants, especially following milk exposure, and has been proposed as the key mediator of acute and long-term pathophysiology in CG. However, studies of treated patients demonstrate no association between red blood cell Gal-1P level and long-term outcome severity. Here, we used genetic, epigenetic and environmental manipulations of a Drosophila melanogaster model of CG to test the role of Gal-1P as a candidate mediator of outcome in GALT deficiency. Specifically, we both deleted and knocked down the gene encoding galactokinase (GALK) in control and GALT-null Drosophila, and assessed the acute and long-term outcomes of the resulting animals in the presence and absence of dietary galactose. GALK is the first enzyme in the Leloir pathway of galactose metabolism and is responsible for generating Gal-1P in humans and Drosophila Our data confirmed that, as expected, loss of GALK lowered or eliminated Gal-1P accumulation in GALT-null animals. However, we saw no concomitant rescue of larval survival or adult climbing or fecundity phenotypes. Instead, we saw that loss of GALK itself was not benign and in some cases phenocopied or exacerbated the outcome seen in GALT-null animals. These findings strongly contradict the long-standing hypothesis that Gal-1P alone underlies pathophysiology of acute and long-term outcomes in GALT-null Drosophila and suggests that other metabolite(s) of galactose, and/or other pathogenic factors, might be involved.

  1. Phosphoryl transfer from α-d-glucose 1-phosphate catalyzed by Escherichia coli sugar-phosphate phosphatases of two protein superfamily types.

    PubMed

    Wildberger, Patricia; Pfeiffer, Martin; Brecker, Lothar; Rechberger, Gerald N; Birner-Gruenberger, Ruth; Nidetzky, Bernd

    2015-03-01

    The Cori ester α-d-glucose 1-phosphate (αGlc 1-P) is a high-energy intermediate of cellular carbohydrate metabolism. Its glycosidic phosphomonoester moiety primes αGlc 1-P for flexible exploitation in glucosyl and phosphoryl transfer reactions. Two structurally and mechanistically distinct sugar-phosphate phosphatases from Escherichia coli were characterized in this study for utilization of αGlc 1-P as a phosphoryl donor substrate. The agp gene encodes a periplasmic αGlc 1-P phosphatase (Agp) belonging to the histidine acid phosphatase family. Had13 is from the haloacid dehydrogenase-like phosphatase family. Cytoplasmic expression of Agp (in E. coli Origami B) gave a functional enzyme preparation (kcat for phosphoryl transfer from αGlc 1-P to water, 40 s(-1)) that was shown by mass spectrometry to exhibit no free cysteines and the native intramolecular disulfide bond between Cys(189) and Cys(195). Enzymatic phosphoryl transfer from αGlc 1-P to water in H2 (18)O solvent proceeded with complete (18)O label incorporation into the phosphate released, consistent with catalytic reaction through O-1-P, but not C-1-O, bond cleavage. Hydrolase activity of both enzymes was not restricted to a glycosidic phosphomonoester substrate, and d-glucose 6-phosphate was converted with a kcat similar to that of αGlc 1-P. By examining phosphoryl transfer from αGlc 1-P to an acceptor substrate other than water (d-fructose or d-glucose), we discovered that Agp exhibited pronounced synthetic activity, unlike Had13, which utilized αGlc 1-P mainly for phosphoryl transfer to water. By applying d-fructose in 10-fold molar excess over αGlc 1-P (20 mM), enzymatic conversion furnished d-fructose 1-phosphate as the main product in a 55% overall yield. Agp is a promising biocatalyst for use in transphosphorylation from αGlc 1-P.

  2. Reaching for mechanistic consensus across life kingdoms: structure and insights into catalysis of the myo-inositol-1-phosphate synthase (mIPS) from Archaeoglobus fulgidus.

    PubMed

    Stieglitz, Kimberly A; Yang, Hongying; Roberts, Mary F; Stec, Boguslaw

    2005-01-11

    myo-Inositol-1-phosphate synthase (mIPS) catalyzes the first step in the synthesis of l-myo-inositol-1-phosphate. We have solved and refined the structure of the mIPS from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus at 1.9 A resolution. The enzyme crystallized from poly(ethylene glycol) in the P1 space group with one tetramer in the asymmetric unit and provided a view of the entire biologically active oligomer. Despite significant changes in sequence length and amino acid composition, the general architecture of the archaeal enzyme is similar to that of the eukaryotic mIPS from Saccharomyces cerevisiae and bacterial mIPS from Mycobacterium tuberculosis. The enhanced thermostability of the archaeal enzyme as compared to that from yeast is consistent with deletion of a number of surface loops that results in a significantly smaller protein. In the structure of the A. fulgidus mIPS, the active sites of all four subunits were fully ordered and contained NAD(+) and inorganic phosphate. The structure also contained a single metal ion (identified as K(+)) in two of the four subunits. The analysis of the electrostatic potential maps of the protein suggested the presence of a second metal-ion-binding site in close proximity to the first metal ion and NAD(+). The modeling of the substrate and known inhibitors suggests a critical role for the second metal ion in catalysis and provides insights into the common elements of the catalytic cycle in enzymes from different life kingdoms.

  3. Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus.

    PubMed

    Schwender, J; Seemann, M; Lichtenthaler, H K; Rohmer, M

    1996-05-15

    Isoprenoid biosynthesis was investigated in the green alga Scenedesmus obliquus grown heterotrophically on 13C-labelled glucose and acetate. Several isoprenoid compounds were isolated and investigated by 13C-NMR spectroscopy. According to the 13C-labelling pattern indicated by the 13C-NMR spectra, the biosynthesis of all plastidic isoprenoids investigated (prenyl side-chains of chlorophylls and plastoquinone-9, and the carotenoids beta-carotene and lutein), as well as of the non-plastidic cytoplasmic sterols, does not proceed via the classical acetate/mevalonate pathway (which leads from acetyl-CoA via mevalonate to isopentenyl diphosphate), but via the novel glyceraldehyde 3-phosphate/pyruvate route recently detected in eubacteria. Formation of isopentenyl diphosphate involves the condensation of a C2 unit derived from pyruvate decarboxylation with glyceraldehyde 3-phosphate and a transposition yielding the branched C5 skeleton of isoprenic units.

  4. Analysis of Onset Mechanisms of a Sphingosine 1-Phosphate Receptor Modulator Fingolimod-Induced Atrioventricular Conduction Block and QT-Interval Prolongation

    SciTech Connect

    Yagi, Yukihiro; Nakamura, Yuji; Kitahara, Ken; Harada, Takuma; Kato, Kazuhiko; Ninomiya, Tomohisa; Cao, Xin; Ohara, Hiroshi; Izumi-Nakaseko, Hiroko; Suzuki, Kokichi; Ando, Kentaro; and others

    2014-11-15

    Fingolimod, a sphingosine 1-phosphate (S1P) receptor subtype 1, 3, 4 and 5 modulator, has been used for the treatment of patients with relapsing forms of multiple sclerosis, but atrioventricular conduction block and/or QT-interval prolongation have been reported in some patients after the first dose. In this study, we directly compared the electropharmacological profiles of fingolimod with those of siponimod, a modulator of sphingosine 1-phosphate receptor subtype 1 and 5, using in vivo guinea-pig model and in vitro human ether-a-go-go-related gene (hERG) assay to better understand the onset mechanisms of the clinically observed adverse events. Fingolimod (0.01 and 0.1 mg/kg) or siponimod (0.001 and 0.01 mg/kg) was intravenously infused over 10 min to the halothane-anaesthetized guinea pigs (n = 4), whereas the effects of fingolimod (1 μmol/L) and siponimod (1 μmol/L) on hERG current were examined (n = 3). The high doses of fingolimod and siponimod induced atrioventricular conduction block, whereas the low dose of siponimod prolonged PR interval, which was not observed by that of fingolimod. The high dose of fingolimod prolonged QT interval, which was not observed by either dose of siponimod. Meanwhile, fingolimod significantly inhibited hERG current, which was not observed by siponimod. These results suggest that S1P receptor subtype 1 in the heart could be one of the candidates for fingolimod- and siponimod-induced atrioventricular conduction block since S1P receptor subtype 5 is localized at the brain, and that direct I{sub Kr} inhibition may play a key role in fingolimod-induced QT-interval prolongation. - Highlights: • Fingolimod and siponimod are S1P{sub 1,3,4,5} and S1P{sub 1,5} receptor modulators, respectively. • Fingolimod and siponimod induced AV block in the halothane-anesthetized guinea pigs. • S1P{sub 1} in the hearts may be the target of fingolimod- and siponimod-induced AV block. • Fingolimod directly inhibited hERG current, which was not

  5. Sphingosine-1-phosphate promotes expansion of cancer stem cells via S1PR3 by a ligand-independent Notch activation.

    PubMed

    Hirata, Naoya; Yamada, Shigeru; Shoda, Takuji; Kurihara, Masaaki; Sekino, Yuko; Kanda, Yasunari

    2014-09-25

    Many tumours originate from cancer stem cells (CSCs), which is a small population of cells that display stem cell properties. However, the molecular mechanisms that regulate CSC frequency remain poorly understood. Here, using microarray screening in aldehyde dehydrogenase (ALDH)-positive CSC model, we identify a fundamental role for a lipid mediator sphingosine-1-phosphate (S1P) in CSC expansion. Stimulation with S1P enhances ALDH-positive CSCs via S1P receptor 3 (S1PR3) and subsequent Notch activation. CSCs overexpressing sphingosine kinase 1 (SphK1), an S1P-producing enzyme, show increased ability to develop tumours in nude mice, compared with parent cells or CSCs. Tumorigenicity of CSCs overexpressing SphK1 is inhibited by S1PR3 knockdown or S1PR3 antagonist. Breast cancer patient-derived mammospheres contain SphK1(+)/ALDH1(+) cells or S1PR3(+)/ALDH1(+) cells. Our findings provide new insights into the lipid-mediated regulation of CSCs via Notch signalling, and rationale for targeting S1PR3 in cancer.

  6. Sphingosine-1-phosphate induced epithelial-mesenchymal transition of hepatocellular carcinoma via an MMP-7/syndecan-1/TGF-β autocrine loop

    PubMed Central

    Zeng, Ye; Yao, Xinghong; Chen, Li; Yan, Zhiping; Liu, Jingxia; Zhang, Yingying; Feng, Tang; Wu, Jiang; Liu, Xiaoheng

    2016-01-01

    Sphingosine-1-phosphate (S1P) induces epithelial–mesenchymal transition (EMT) in hepatocellular carcinoma (HCC). However, its underlying mechanism remains largely unknown. In the present study, we investigated the correlation between S1P and syndecan-1 in HCC, the molecular mechanism involved, as well as their roles in EMT of HCC. Results revealed a high serum S1P level presents in patients with HCC, which positively correlated with the serum syndecan-1 level. A significant inverse correlation existed between S1P1 and syndecan-1 in HCC tissues. S1P elicits activation of the PI3K/AKT signaling pathways via S1P1, which triggers HPSE, leading to increases in expression and activity of MMP-7 and leading to shedding and suppression of syndecan-1. The loss of syndecan-1 causes an increase in TGF-β1 production. The limited chronic increase in TGF-β1 can convert HCC cells into a mesenchymal phenotype via establishing an MMP-7/Syndecan-1/TGF-β autocrine loop. Finally, TGF-β1 and syndecan-1 are essential for S1P-induced epithelial to mesenchymal transition. Taken together, our study demonstrates that S1P induces advanced tumor phenotypes of HCC via establishing an MMP-7/syndecan-1/TGF-β1 autocrine loop, and implicates targetable S1P1-PI3K/AKT-HPSE-MMP-7 signaling axe in HCC metastasis. PMID:27556509

  7. HDL activation of endothelial sphingosine-1-phosphate receptor-1 (S1P1) promotes regeneration and suppresses fibrosis in the liver

    PubMed Central

    Sun, Yue; Chen, Yutian; Swendeman, Steven L.; Jung, Bongnam; Chavez, Deebly; Cao, Zhongwei; Christoffersen, Christina; Nielsen, Lars Bo; Schwab, Susan R.; Rafii, Shahin; Hla, Timothy

    2016-01-01

    Regeneration of hepatic sinusoidal vasculature is essential for non-fibrotic liver regrowth and restoration of its metabolic capacity. However, little is known about how this specialized vascular niche is regenerated. Here we show that activation of endothelial sphingosine-1-phosphate receptor-1 (S1P1) by its natural ligand bound to HDL (HDL-S1P) induces liver regeneration and curtails fibrosis. In mice lacking HDL-S1P, liver regeneration after partial hepatectomy was impeded and associated with aberrant vascular remodeling, thrombosis and peri-sinusoidal fibrosis. Notably, this “maladaptive repair” phenotype was recapitulated in mice that lack S1P1 in the endothelium. Reciprocally, enhanced plasma levels of HDL-S1P or administration of SEW2871, a pharmacological agonist specific for S1P1 enhanced regeneration of metabolically functional vasculature and alleviated fibrosis in mouse chronic injury and cholestasis models. This study shows that natural and pharmacological ligands modulate endothelial S1P1 to stimulate liver regeneration and inhibit fibrosis, suggesting that activation of this pathway may be a novel therapeutic strategy for liver fibrosis. PMID:28018969

  8. Activation of Sphingosine 1-Phosphate Receptor 1 Enhances Hippocampus Neurogenesis in a Rat Model of Traumatic Brain Injury: An Involvement of MEK/Erk Signaling Pathway

    PubMed Central

    Yu, Xinguang

    2016-01-01

    Among sphingosine 1-phosphate receptors (S1PRs) family, S1PR1 has been shown to be the most highly expressed subtype in neural stem cells (NSCs) and plays a crucial role in the migratory property of NSCs. Recent studies suggested that S1PR1 was expressed abundantly in the hippocampus, a specific neurogenic region in rodent brain for endogenous neurogenesis throughout life. However, the potential association between S1PR1 and neurogenesis in hippocampus following traumatic brain injury (TBI) remains unknown. In this study, the changes of hippocampal S1PR1 expression after TBI and their effects on neurogenesis and neurocognitive function were investigated, focusing on particularly the extracellular signal-regulated kinase (Erk) signaling pathway which had been found to regulate multiple properties of NSCs. The results showed that a marked upregulation of S1PR1 occurred with a peak at 7 days after trauma, revealing an enhancement of proliferation and neuronal differentiation of NSCs in hippocampus due to S1PR1 activation. More importantly, it was suggested that mitogen-activated protein kinase-Erk kinase (MEK)/Erk cascade was required for S1PR1-meidated neurogenesis and neurocognitive recovery following TBI. This study lays a preliminary foundation for future research on promoting hippocampal neurogenesis and improving TBI outcome. PMID:28018679

  9. The interaction between the pleckstrin homology domain of ceramide kinase and phosphatidylinositol 4,5-bisphosphate regulates the plasma membrane targeting and ceramide 1-phosphate levels

    SciTech Connect

    Kim, Tack-Joong; Mitsutake, Susumu; Igarashi, Yasuyuki . E-mail: yigarash@pharm.hokudai.ac.jp

    2006-04-07

    Ceramide kinase (CERK) converts ceramide to ceramide-1-phosphate (C1P), which has recently emerged as a new bioactive molecule capable of regulating diverse cellular functions. The N-terminus of the CERK protein encompasses a sequence motif known as a pleckstrin homology (PH) domain. Although the PH domain was previously demonstrated to be an important domain for the subcellular localization of CERK, the precise properties of this domain remained unclear. In this study, we reveal that the PH domain of CERK exhibits high affinity for phosphatidylinositol 4,5-bisphosphate (PI(4,5)P{sub 2}), among other lipids. Furthermore, in COS7 cells, GFP-fused CERK translocated rapidly from the cytoplasm to the plasma membrane in response to hyper-osmotic stress, which is known to increase the intracellular PI(4,5)P{sub 2} levels, whereas a PH domain deletion mutant did not. Additionally, in [{sup 32}P]orthophosphate-labeled COS7 cells, the translocation of CERK to the plasma membrane induced a 2.8-fold increase in C1P levels. The study presented here provides insight into the crucial role of the CERK-PH domain in plasma membrane targeting, through its binding to PI(4,5)P{sub 2}, and subsequent induction of C1P production in the vicinity of the membrane.

  10. miR-125b Enhances IL-8 Production in Early-Onset Severe Preeclampsia by Targeting Sphingosine-1-Phosphate Lyase 1

    PubMed Central

    Li, Qinghua; Pan, Zhifang; Han, Xuefu; Zhang, Cuijuan; Wang, Guohui; Ji, Chao; Wang, Guili; Jia, Guangtao; Ju, Jiyu; Gao, Wei; Yu, Wenjing; Liu, Xiaoying; Chen, Xi; Feng, Weiguo; Gao, Zhiqin; Li, Jie; Ren, Chune

    2016-01-01

    Preeclampsia (PE) is one of the leading causes of maternal and perinatal mortality and morbidity. One of the main hallmarks observed in PE is impaired inflammation state. In the current study, we found that miR-125b was deregulated in placental tissues and plasma derived from PE patients, which suggest a potential association between this miRNA and the pathogenesis of PE. Overexpression of miR-125b significantly reduced SGPL1 expression, and luciferase assays confirmed that SGPL1 is a direct target of miR-125b. We also found that miR-125b enhanced IL-8 production by directly targeting sphingosine-1-phosphate lyase 1 (SGPL1), and this effect could be reversed by SGPL1 overexpression. In placentas derived from PE patients, a negative correlation of miR-125b and SGPL1 was observed, and IL-8 was validated to be increased in the circulation of PE patients. Our data demonstrated a critical role of miR-125b in IL-8 production and the development of PE. PMID:27935985

  11. A role of the sphingosine-1-phosphate (S1P)-S1P receptor 2 pathway in epithelial defense against cancer (EDAC).

    PubMed

    Yamamoto, Sayaka; Yako, Yuta; Fujioka, Yoichiro; Kajita, Mihoko; Kameyama, Takeshi; Kon, Shunsuke; Ishikawa, Susumu; Ohba, Yusuke; Ohno, Yusuke; Kihara, Akio; Fujita, Yasuyuki

    2016-02-01

    At the initial step of carcinogenesis, transformation occurs in single cells within epithelia, where the newly emerging transformed cells are surrounded by normal epithelial cells. A recent study revealed that normal epithelial cells have an ability to sense and actively eliminate the neighboring transformed cells, a process named epithelial defense against cancer (EDAC). However, the molecular mechanism of this tumor-suppressive activity is largely unknown. In this study, we investigated a role for the sphingosine-1-phosphate (S1P)-S1P receptor 2 (S1PR2) pathway in EDAC. First, we show that addition of the S1PR2 inhibitor significantly suppresses apical extrusion of RasV12-transformed cells that are surrounded by normal cells. In addition, knockdown of S1PR2 in normal cells induces the same effect, indicating that S1PR2 in the surrounding normal cells plays a positive role in the apical elimination of the transformed cells. Of importance, not endogenous S1P but exogenous S1P is involved in this process. By using FRET analyses, we demonstrate that S1PR2 mediates Rho activation in normal cells neighboring RasV12-transformed cells, thereby promoting accumulation of filamin, a crucial regulator of EDAC. Collectively these data indicate that S1P is a key extrinsic factor that affects the outcome of cell competition between normal and transformed epithelial cells.

  12. Sphingosine 1-phosphate receptor 1 (S1P(1)) upregulation and amelioration of experimental autoimmune encephalomyelitis by an S1P(1) antagonist.

    PubMed

    Cahalan, Stuart M; Gonzalez-Cabrera, Pedro J; Nguyen, Nhan; Guerrero, Miguel; Cisar, Elizabeth A George; Leaf, Nora B; Brown, Steven J; Roberts, Edward; Rosen, Hugh

    2013-02-01

    Sphingosine 1-phosphate receptor 1 (S1P(1)) is a G protein-coupled receptor that is critical for proper lymphocyte development and recirculation. Agonists to S1P(1) are currently in use clinically for the treatment of multiple sclerosis, and these drugs may act on both S1P(1) expressed on lymphocytes and S1P(1) expressed within the central nervous system. Agonists to S1P(1) and deficiency in S1P(1) both cause lymphocyte sequestration in the lymph nodes. In the present study, we show that S1P(1) antagonism induces lymphocyte sequestration in the lymph nodes similar to that observed with S1P(1) agonists while upregulating S1P(1) on lymphocytes and endothelial cells. Additionally, we show that S1P(1) antagonism reverses experimental autoimmune encephalomyelitis in mice without acting on S1P(1) expressed within the central nervous system, demonstrating that lymphocyte sequestration via S1P(1) antagonism is sufficient to alleviate autoimmune pathology.

  13. Downregulation of sphingosine 1-phosphate (S1P) receptor 1 by dexamethasone inhibits S1P-induced mesangial cell migration.

    PubMed

    Koch, Alexander; Jäger, Manuel; Völzke, Anja; Grammatikos, Georgios; Zu Heringdorf, Dagmar Meyer; Huwiler, Andrea; Pfeilschifter, Josef

    2015-06-01

    Sphingosine 1-phosphate (S1P) is generated by sphingosine kinase (SK)-1 and -2 and acts mainly as an extracellular ligand at five specific receptors, denoted S1P1-5. After activation, S1P receptors regulate important processes in the progression of renal diseases, such as mesangial cell migration and survival. Previously, we showed that dexamethasone enhances SK-1 activity and S1P formation, which protected mesangial cells from stress-induced apoptosis. Here we demonstrate that dexamethasone treatment lowered S1P1 mRNA and protein expression levels in rat mesangial cells. This effect was abolished in the presence of the glucocorticoid receptor antagonist RU-486. In addition, in vivo studies showed that dexamethasone downregulated S1P1 expression in glomeruli isolated from mice treated with dexamethasone (10 mg/kg body weight). Functionally, we identified S1P1 as a key player mediating S1P-induced mesangial cell migration. We show that dexamethasone treatment significantly lowered S1P-induced migration of mesangial cells, which was again reversed in the presence of RU-486. In summary, we suggest that dexamethasone inhibits S1P-induced mesangial cell migration via downregulation of S1P1. Overall, these results demonstrate that dexamethasone has functional important effects on sphingolipid metabolism and action in renal mesangial cells.

  14. Circulating levels of sphingosine-1-phosphate are elevated in severe, but not mild psoriasis and are unresponsive to anti-TNF-α treatment

    PubMed Central

    Checa, Antonio; Xu, Ning; Sar, Daniel G.; Haeggström, Jesper Z.; Ståhle, Mona; Wheelock, Craig E.

    2015-01-01

    Sphingolipids are bioactive molecules with a putative role in inflammation. Alterations in sphingolipids, in particular ceramides, have been consistently observed in psoriatic skin. Herein, we quantified the circulating sphingolipid profile in individuals with mild or severe psoriasis as well as healthy controls. In addition, the effects of anti-TNF-α treatment were determined. Levels of sphingoid bases, including sphingosine-1-phosphate (S1P), increased in severe (P < 0.001; n = 32), but not in mild (n = 32), psoriasis relative to healthy controls (n = 32). These alterations were not reversed in severe patients (n = 16) after anti-TNF-α treatment despite significant improvement in psoriasis lesions. Circulating levels of sphingomyelins and ceramides shifted in a fatty acid chain length-dependent manner. These alterations were also observed in psoriasis skin lesions and were associated with changes in mRNA levels of ceramide synthases. The lack of S1P response to treatment may have pathobiological implications due to its close relation to the vascular and immune systems. In particular, increased levels of sphingolipids and especially S1P in severe psoriasis patients requiring biological treatment may potentially be associated with cardiovascular comorbidities. The fact that shifts in S1P levels were not ameliorated by anti-TNF-α treatment, despite improvements in the skin lesions, further supports targeting S1P receptors as therapy for severe psoriasis. PMID:26174087

  15. Attenuation of cell motility observed with high doses of sphingosine 1-phosphate or phosphorylated FTY720 involves RGS2 through its interactions with the receptor S1P.

    PubMed

    Kohno, Takayuki; Igarashi, Yasuyuki

    2008-07-01

    Sphingosine 1-phosphate (S1P) stimulation enhances cell motility via the G-protein coupled S1P receptor S1P1. This ligand-induced, receptor-mediated cell motility follows a typical bell-shaped dose-response curve, that is, stimulation with low concentrations of S1P enhances cell motility, whereas excess ligand stimulation does not enhance it. So far, the attenuation of the response at higher ligand concentrations has not been explained. We report here that S1P1 interacts with the regulator of G protein signaling (RGS)-2 protein, which is a GTPase-activating protein (GAP) for heterotrimeric G proteins, in a concentration dependent manner. The RGS2-S1P1 complex dissociated at higher ligand concentrations, yet it was unaffected at low concentrations, suggesting that the dissociated RGS2 is involved in the concurrent decrease of cell motility. In RGS2 knockdown cells, the decrease of cell motility induced by high ligand concentrations was rescued. S1P1 internalization was not implicated in the attenuation of the response. Similar results were observed upon stimulation with the phosphorylated form of FTY720 (FTYP), which is an S1P1 agonist. In conclusion, the suppressed response in cell motility induced by excess S1P or FTYP via S1P1 is regulated by RGS2 functioning through a mechanism that is independent of S1P1 internalization.

  16. One-Pot Biosynthesis of High-Concentration α-Glucose 1-Phosphate from Starch by Sequential Addition of Three Hyperthermophilic Enzymes.

    PubMed

    Zhou, Wei; You, Chun; Ma, Hongwu; Ma, Yanhe; Zhang, Y-H Percival

    2016-03-02

    α-Glucose 1-phosphate (G1P) is synthesized from 5% (w/v) corn starch and 1 M phosphate mediated by α-glucan phosphorylase (αGP) from the thermophilic bacterium Thermotoga maritima at pH 7.2 and 70 °C. To increase G1P yield from corn starch containing branched amylopectin, a hyper-thermostable isoamylase from Sulfolobus tokodaii was added for simultaneous starch gelatinization and starch-debranching hydrolysis at 85 °C and pH 5.5 before αGP use. The pretreatment of isoamylase increased G1P titer from 120 mM to 170 mM. To increase maltose and maltotriose utilization, the third thermostable enzyme, 4-glucanotransferase (4GT) from Thermococcus litoralis, was added during the late stage of G1P biotransformation, further increasing G1P titer to 200 mM. This titer is the highest G1P level obtained on starch or its derived products (maltodextrin and soluble starch). This study suggests that in vitro multienzyme biotransformation has an advantage of great engineering flexibility in terms of space and time compared with microbial fermentation.

  17. Circulating levels of sphingosine-1-phosphate are elevated in severe, but not mild psoriasis and are unresponsive to anti-TNF-α treatment

    NASA Astrophysics Data System (ADS)

    Checa, Antonio; Xu, Ning; Sar, Daniel G.; Haeggström, Jesper Z.; Ståhle, Mona; Wheelock, Craig E.

    2015-07-01

    Sphingolipids are bioactive molecules with a putative role in inflammation. Alterations in sphingolipids, in particular ceramides, have been consistently observed in psoriatic skin. Herein, we quantified the circulating sphingolipid profile in individuals with mild or severe psoriasis as well as healthy controls. In addition, the effects of anti-TNF-α treatment were determined. Levels of sphingoid bases, including sphingosine-1-phosphate (S1P), increased in severe (P < 0.001 n = 32), but not in mild (n = 32), psoriasis relative to healthy controls (n = 32). These alterations were not reversed in severe patients (n = 16) after anti-TNF-α treatment despite significant improvement in psoriasis lesions. Circulating levels of sphingomyelins and ceramides shifted in a fatty acid chain length-dependent manner. These alterations were also observed in psoriasis skin lesions and were associated with changes in mRNA levels of ceramide synthases. The lack of S1P response to treatment may have pathobiological implications due to its close relation to the vascular and immune systems. In particular, increased levels of sphingolipids and especially S1P in severe psoriasis patients requiring biological treatment may potentially be associated with cardiovascular comorbidities. The fact that shifts in S1P levels were not ameliorated by anti-TNF-α treatment, despite improvements in the skin lesions, further supports targeting S1P receptors as therapy for severe psoriasis.

  18. Measurement of 2-carboxyarabinitol 1-phosphate in plant leaves by isotope dilution. [Spinacea oleracea; Triticum aestivum; Arabidopsis thaliana; Maize; Phaseolus vulgaris; Petunia hybrida

    SciTech Connect

    Moore, B.D.; Kobza, J.; Seemann, J.R. )

    1991-05-01

    The level of 2-carboxyarabinitol 1-phosphate (CA1P) in leaves of 12 species was determined by an isotope dilution assay. {sup 14}C-labeled standard was synthesized from (2-{sup 14}C)carboxyarabinitol 1,5-bisphosphate using acid phosphatase, and was added at the initial point of leaf extraction. Leaf CA1P was purified and its specific activity determined. CA1P was found in dark-treated leaves of all species examined, including spinach (Spinacea oleracea), wheat (Triticum aestivum), Arabidopsis thaliana, and maize (Zea mays). The highest amounts were found in bean (Phaseolus vulgaris) and petunia (Petunia hybrida), which had 1.5 to 1.8 moles CA1P per mole ribulose 1,5-bisphosphate carboxylase catalytic sites. Most species had intermediate amounts of CA1P (0.2 to 0.8 mole CA1P per mole catalytic sites). Such intermediate to high levels of CA1P support the hypothesis that CA1P functions in many species as a light-dependent regulator of ribulose 1,5-bisphosphate carboxylase activity and whole leaf photosynthetic CO{sub 2} assimilation. However, CA1P levels in spinach, wheat, and A. thaliana were particularly low (less than 0.09 mole CA1P per mole catalytic sites). In such species, CA1P does not likely have a significant role in regulating ribulose 1,5-bisphosphate carboxylase activity, but could have a different physiological role.

  19. A Biochemical Approach to Understand the Pathogenesis of Advanced Pulmonary Arterial Hypertension: Metabolomic Profiles of Arginine, Sphingosine-1-Phosphate, and Heme of Human Lung.

    PubMed

    Zhao, Yidan D; Chu, Lei; Lin, Kathleen; Granton, Elise; Yin, Li; Peng, Jenny; Hsin, Michael; Wu, Licun; Yu, Amy; Waddell, Thomas; Keshavjee, Shaf; Granton, John; de Perrot, Marc

    2015-01-01

    Pulmonary arterial hypertension (PAH) is a vascular disease characterized by persistent precapillary pulmonary hypertension (PH), leading to progressive right heart failure and premature death. The pathological mechanisms underlying this condition remain elusive. Analysis of global metabolomics from lung tissue of patients with PAH (n = 8) and control lung tissue (n = 8) leads to a better understanding of disease progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we showed unbiased metabolomic profiles of disrupted arginine pathways with increased Nitric oxide (NO) and decreased arginine. Our results also showed specific metabolic pathways and genetic profiles with increased Sphingosine-1-phosphate (S1P) metabolites as well as increased Heme metabolites with altered oxidative pathways in the advanced stage of the human PAH lung. The results suggest that PAH has specific metabolic pathways contributing to the vascular remodeling in severe pulmonary hypertension. Profiling metabolomic alterations of the PAH lung has provided a new understanding of the pathogenic mechanisms of PAH, which benefits therapeutic targeting to specific metabolic pathways involved in the progression of PAH.

  20. Structure-based design of diverse inhibitors of Mycobacterium tuberculosis N-acetylglucosamine-1-phosphate uridyltransferase: combined molecular docking, dynamic simulation, and biological activity.

    PubMed

    Soni, Vijay; Suryadevara, Priyanka; Sriram, Dharmarajan; Kumar, Santhosh; Nandicoori, Vinay Kumar; Yogeeswari, Perumal

    2015-07-01

    Persistent nature of Mycobacterium tuberculosis is one of the major factors which make the drug development process monotonous against this organism. The highly lipophilic cell wall, which constituting outer mycolic acid and inner peptidoglycan layers, acts as a barrier for the drugs to enter the bacteria. The rigidity of the cell wall is imparted by the peptidoglycan layer, which is covalently linked to mycolic acid by arabinogalactan. Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) serves as the starting material in the biosynthesis of this peptidoglycan layers. This UDP-GlcNAc is synthesized by N-acetylglucosamine-1-phosphate uridyltransferase (GlmU(Mtb)), a bi-functional enzyme with two functional sites, acetyltransferase site and uridyltransferase site. Here, we report design and screening of nine inhibitors against UTP and NAcGlc-1-P of uridyltransferase active site of glmU(Mtb). Compound 4 was showing good inhibition and was selected for further analysis. The isothermal titration calorimetry (ITC) experiments showed the binding energy pattern of compound 4 to the uridyltransferase active site is similar to that of substrate UTP. In silico molecular dynamics (MD) simulation studies, for compound 4, carried out for 10 ns showed the protein-compound complex to be stable throughout the simulation with relative rmsd in acceptable range. Hence, these compounds can serve as a starting point in the drug discovery processes against Mycobacterium tuberculosis.

  1. Identification of the archaeal alg7 gene homolog (encoding N-acetylglucosamine-1-phosphate transferase) of the N-linked glycosylation system by cross-domain complementation in Saccharomyces cerevisiae.

    PubMed

    Shams-Eldin, Hosam; Chaban, Bonnie; Niehus, Sebastian; Schwarz, Ralph T; Jarrell, Ken F

    2008-03-01

    The Mv1751 gene product is thought to catalyze the first step in the N-glycosylation pathway in Methanococcus voltae. Here, we show that a conditional lethal mutation in the alg7 gene (N-acetylglucosamine-1-phosphate transferase) in Saccharomyces cerevisiae was successfully complemented with Mv1751, highlighting a rare case of cross-domain complementation.

  2. DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418.

    PubMed Central

    Forage, R G; Lin, E C

    1982-01-01

    In Klebsiella pneumoniae NCIB 418, the pathways normally responsible for aerobic growth on glycerol and sn-glycerol 3-phosphate (the glp system) are superrepressed. However, aerobic growth on glycerol can take place by the intervention of the NAD-linked glycerol dehydrogenase and the ATP-dependent dihydroxyacetone kinase of the dha system normally inducible only anaerobically by glycerol or dihydroxyacetone. Conclusive evidence that the dha system is responsible for both aerobic and anaerobic dissimilation of glycerol was provided by a Tn5 insertion mutant lacking dihydroxyacetone kinase. An enzymatically coupled assay specific for this enzyme was devised. Spontaneous reactivation of the glp system was achieved by selection for aerobic growth on sn-glycerol 3-phosphate or on limiting glycerol as the sole carbon and energy source. However, the expression of this system became constitutive. Aerobic operation of the glp system highly represses synthesis of the dha system enzymes by catabolite repression. Images PMID:6284704

  3. The interconversion of diacylglycerol and phosphatidylcholine during triacylglycerol production in microsomal preparations of developing cotyledons of safflower (Carthamus tinctorius L.).

    PubMed

    Stobart, A K; Stymne, S

    1985-11-15

    Microsomal preparations from the developing cotyledons of safflower (Carthamus tinctorius) catalyse the acylation of sn-glycerol 3-phosphate in the presence of acyl-CoA. Under these conditions the radioactive glycerol in sn-glycerol 3-phosphate accumulates in phosphatidic acid, phosphatidylcholine, diacyl- and tri-acylglycerol. The incorporation of glycerol into phosphatidylcholine is via diacylglycerol and probably involves a cholinephosphotransferase. The results show that the glycerol moiety and the acyl components in phosphatidylcholine exchange with the diacylglycerol during the biosynthesis of diacylglycerol from phosphatidic acid. The continuous reversible transfer of diacylglycerol with phosphatidylcholine, which operates during active triacylglycerol synthesis, will control in part the polyunsaturated-fatty-acid quality of the final seed oil.

  4. Sphingosine 1-phosphate (S1P)/S1P receptor 1 signaling regulates receptor activator of NF-{kappa}B ligand (RANKL) expression in rheumatoid arthritis

    SciTech Connect

    Takeshita, Harunori; Kitano, Masayasu; Iwasaki, Tsuyoshi; Kitano, Sachie; Tsunemi, Sachi; Sato, Chieri; Sekiguchi, Masahiro; Azuma, Naoto; Miyazawa, Keiji; Hla, Timothy; Sano, Hajime

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer MH7A cells and CD4{sup +} T cells expressed S1P1 and RANKL. Black-Right-Pointing-Pointer S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells. Black-Right-Pointing-Pointer The effect of S1P in MH7A cells was inhibited by specific Gi/Go inhibitors. -- Abstract: Sphingosine 1-phosphate (S1P)/S1P receptor 1 (S1P1) signaling plays an important role in synovial cell proliferation and inflammatory gene expression by rheumatoid arthritis (RA) synoviocytes. The purpose of this study is to clarify the role of S1P/S1P1 signaling in the expression of receptor activator of NF-{kappa}B ligand (RANKL) in RA synoviocytes and CD4{sup +} T cells. We demonstrated MH7A cells, a human RA synovial cell line, and CD4{sup +} T cells expressed S1P1 and RANKL. Surprisingly, S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells in a dose-dependent manner. Moreover, S1P enhanced RANKL expression induced by stimulation with TNF-{alpha} in MH7A cells and CD4{sup +} T cells. These effects of S1P in MH7A cells were inhibited by pretreatment with PTX, a specific Gi/Go inhibitor. These findings suggest that S1P/S1P1 signaling may play an important role in RANKL expression by MH7A cells and CD4{sup +} T cells. S1P/S1P1 signaling of RA synoviocytes is closely connected with synovial hyperplasia, inflammation, and RANKL-induced osteoclastogenesis in RA. Thus, regulation of S1P/S1P1 signaling may become a novel therapeutic target for RA.

  5. Ceramide 1-phosphate induces neointimal formation via cell proliferation and cell cycle progression upstream of ERK1/2 in vascular smooth muscle cells

    SciTech Connect

    Kim, Tack-Joong; Kang, Yeo-Jin; Lim, Yong; Lee, Hyoung-Woo; Bae, Kiho; Lee, Youn-Sun; Yoo, Jae-Myung; Yoo, Hwan-Soo; Yun, Yeo-Pyo

    2011-08-15

    Ceramide 1-phosphate (C1P) is a novel bioactive sphingolipid formed by ceramide kinase (CERK)-catalyzed phosphorylation of ceramide. It has been